
Azure Machine
Learning
Microsoft Azure Essentials

Jeff Barnes

• Hundreds of titles available – Books, eBooks, and online
resources from industry experts

• Free U.S. shipping

• eBooks in multiple formats – Read on your computer,
tablet, mobile device, or e-reader

• Print & eBook Best Value Packs

• eBook Deal of the Week – Save up to 60% on featured titles

• Newsletter and special offers – Be the first to
hear about new releases, specials, and more

• Register your book – Get additional benefits

microsoftpressstore.com

Visit us today at

https://www.microsoftpressstore.com?WT.mc_id=BOB_store_pg

Get the latest news from Microsoft Press sent to
your inbox.

• New and upcoming books

•	 Special	offers

• Free eBooks

• How-to articles

Sign up today at MicrosoftPressStore.com/Newsletters

Hear about
it first.

https://www.microsoftpressstore.com/newsletters?WT.mc_id=BOB_news_pg

Wait, there’s more...

Find more great content and resources in the
Microsoft Press Guided Tours app.

The Microsoft Press Guided Tours app provides
insightful tours by Microsoft Press authors of new and
evolving Microsoft technologies.

Download from

Windows Store
Download from

Windows Store

• Share text, code, illustrations, videos, and links with
peers and friends

• Create and manage highlights and notes
• View resources and download code samples
• Tag resources as favorites or to read later
• Watch explanatory videos
• Copy complete code listings and scripts

http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours

1

PUBLISHED BY

Microsoft Press

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2015 Microsoft Corporation. All rights reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by any means without

the written permission of the publisher.

ISBN: 978-0-7356-9817-8

Microsoft Press books are available through booksellers and distributors worldwide. If you need support

related to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you

think of this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the authors’ views and opinions. The views, opinions, and

information expressed in this book, including URL and other Internet website references, may change

without notice.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos,

people, places, and events depicted in examples herein are fictitious. No association with any real company,

organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be

inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are

trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions, Developmental, and Project Editor: Devon Musgrave

Editorial Production: nSight, Inc.

Copyeditor: Teresa Horton

Cover: Twist Creative

http://www.microsoft.com
http://aka.ms/tellpress

 2

Table of Contents

Foreword ... 6

Introduction ... 7

Who should read this book ... 7

Assumptions .. 8

This book might not be for you if… ... 8

Organization of this book .. 8

Conventions and features in this book ... 9

System requirements .. 9

Acknowledgments ...10

Errata, updates, & support ...10

Free ebooks from Microsoft Press...11

Free training from Microsoft Virtual Academy ..11

We want to hear from you ...11

Stay in touch ..12

Chapter 1 Introduction to the science of data ... 13

What is machine learning? ...13

Today’s perfect storm for machine learning ...16

Predictive analytics ..17

Endless amounts of machine learning fuel..17

Everyday examples of predictive analytics ..19

Early history of machine learning ..19

Science fiction becomes reality ..22

Summary ...23

Resources ..23

Chapter 2 Getting started with Azure Machine Learning ... 25

Core concepts of Azure Machine Learning ...25

High-level workflow of Azure Machine Learning ...26

Azure Machine Learning algorithms ..27

 3

Supervised learning .. 28

Unsupervised learning ... 33

Deploying a prediction model ... 34

Show me the money .. 35

The what, the how, and the why ... 36

Summary ... 36

Resources .. 37

Chapter 3 Using Azure ML Studio .. 38

Azure Machine Learning terminology .. 38

Getting started.. 40

Azure Machine Learning pricing and availability ... 42

Create your first Azure Machine Learning workspace .. 44

Create your first Azure Machine Learning experiment .. 48

Download dataset from a public repository ... 49

Upload data into an Azure Machine Learning experiment .. 51

Create a new Azure Machine Learning experiment .. 53

Visualizing the dataset .. 55

Split up the dataset ... 60

Train the model .. 61

Selecting the column to predict .. 62

Score the model ... 65

Visualize the model results .. 66

Evaluate the model ... 69

Save the experiment ... 71

Preparing the trained model for publishing as a web service .. 71

Create scoring experiment .. 75

Expose the model as a web service .. 77

Azure Machine Learning web service BATCH execution ... 87

Testing the Azure Machine Learning web service .. 89

 4

Publish to Azure Data Marketplace ..91

Overview of the publishing process ..92

Guidelines for publishing to Azure Data Marketplace ...92

Summary ...93

Chapter 4 Creating Azure Machine Learning client and server applications .. 94

Why create Azure Machine Learning client applications? ..94

Azure Machine Learning web services sample code ...96

C# console app sample code ..99

R sample code .. 105

Moving beyond simple clients .. 110

Cross-Origin Resource Sharing and Azure Machine Learning web services ... 111

Create an ASP.NET Azure Machine Learning web client .. 111

Making it easier to test our Azure Machine Learning web service ... 115

Validating the user input ... 117

Create a web service using ASP.NET Web API .. 121

Enabling CORS support .. 130

Processing logic for the Web API web service .. 133

Summary .. 142

Chapter 5 Regression analytics ... 143

Linear regression ... 143

Azure Machine Learning linear regression example .. 145

Download sample automobile dataset .. 147

Upload sample automobile dataset .. 147

Create automobile price prediction experiment .. 150

Summary .. 167

Resources ... 167

Chapter 6 Cluster analytics ... 168

Unsupervised machine learning ... 168

Cluster analysis ... 169

 5

KNN: K nearest neighbor algorithm ... 170

Clustering modules in Azure ML Studio.. 171

Clustering sample: Grouping wholesale customers .. 172

Operationalizing a K-means clustering experiment ... 181

Summary .. 192

Resources ... 192

Chapter 7 The Azure ML Matchbox recommender .. 193

Recommendation engines in use today .. 193

Mechanics of recommendation engines ... 195

Azure Machine Learning Matchbox recommender background .. 196

Azure Machine Learning Matchbox recommender: Restaurant ratings .. 198

Building the restaurant ratings recommender ... 200

Creating a Matchbox recommender web service ... 210

Summary .. 214

Resources ... 214

Chapter 8 Retraining Azure ML models ... 215

Workflow for retraining Azure Machine Learning models .. 216

Retraining models in Azure Machine Learning Studio.. 217

Modify original training experiment .. 221

Add an additional web endpoint ... 224

Retrain the model via batch execution service... 229

Summary .. 232

Resources ... 233

 6

Foreword

I’m thrilled to be able to share these Microsoft Azure Essentials ebooks with you. The power that

Microsoft Azure gives you is thrilling but not unheard of from Microsoft. Many don’t realize that

Microsoft has been building and managing datacenters for over 25 years. Today, the company’s cloud

datacenters provide the core infrastructure and foundational technologies for its 200-plus online

services, including Bing, MSN, Office 365, Xbox Live, Skype, OneDrive, and, of course, Microsoft Azure.

The infrastructure is comprised of many hundreds of thousands of servers, content distribution

networks, edge computing nodes, and fiber optic networks. Azure is built and managed by a team of

experts working 24x7x365 to support services for millions of customers’ businesses and living and

working all over the globe.

Today, Azure is available in 141 countries, including China, and supports 10 languages and 19

currencies, all backed by Microsoft's $15 billion investment in global datacenter infrastructure. Azure is

continuously investing in the latest infrastructure technologies, with a focus on high reliability,

operational excellence, cost-effectiveness, environmental sustainability, and a trustworthy online

experience for customers and partners worldwide.

Microsoft Azure brings so many services to your fingertips in a reliable, secure, and environmentally

sustainable way. You can do immense things with Azure, such as create a single VM with 32TB of

storage driving more than 50,000 IOPS or utilize hundreds of thousands of CPU cores to solve your

most difficult computational problems.

Perhaps you need to turn workloads on and off, or perhaps your company is growing fast! Some

companies have workloads with unpredictable bursting, while others know when they are about to

receive an influx of traffic. You pay only for what you use, and Azure is designed to work with common

cloud computing patterns.

From Windows to Linux, SQL to NoSQL, Traffic Management to Virtual Networks, Cloud Services to

Web Sites and beyond, we have so much to share with you in the coming months and years.

I hope you enjoy this Microsoft Azure Essentials series from Microsoft Press. The first three ebooks

cover fundamentals of Azure, Azure Automation, and Azure Machine Learning. And I hope you enjoy

living and working with Microsoft Azure as much as we do.

 7

Introduction

Microsoft Azure Machine Learning (ML) is a service that a developer can use to build predictive

analytics models (using training datasets from a variety of data sources) and then easily deploy those

models for consumption as cloud web services. Azure ML Studio provides rich functionality to support

many end-to-end workflow scenarios for constructing predictive models, from easy access to common

data sources, rich data exploration and visualization tools, application of popular ML algorithms, and

powerful model evaluation, experimentation, and web publication tooling.

This ebook will present an overview of modern data science theory and principles, the associated

workflow, and then cover some of the more common machine learning algorithms in use today. We will

build a variety of predictive analytics models using real world data, evaluate several different machine

learning algorithms and modeling strategies, and then deploy the finished models as machine learning

web service on Azure within a matter of minutes. The book will also expand on a working Azure

Machine Learning predictive model example to explore the types of client and server applications you

can create to consume Azure Machine Learning web services.

The scenarios and end-to-end examples in this book are intended to provide sufficient information

for you to quickly begin leveraging the capabilities of Azure ML Studio and then easily extend the

sample scenarios to create your own powerful predictive analytic experiments. The book wraps up by

providing details on how to apply “continuous learning” techniques to programmatically “retrain” Azure

ML predictive models without any human intervention.

Who should read this book

This book focuses on providing essential information about the theory and application of data science

principles and techniques and their applications within the context of Azure Machine Learning Studio.

The book is targeted towards both data science hobbyists and veterans, along with developers and IT

professionals who are new to machine learning and cloud computing. Azure ML makes it just as

approachable for a novice as a seasoned data scientist, helping you quickly be productive and on your

way towards creating and testing machine learning solutions.

Detailed, step-by-step examples and demonstrations are included to help the reader understand

how to get started with each of the key predictive analytic algorithms in use today and their

corresponding implementations in Azure ML Studio. This material is useful not only for those who have

no prior experience with Azure Machine Learning, but also for those who are experienced in the field of

data science. In all cases, the end-to-end demos help reinforce the machine learning concepts with

concrete examples and real-life scenarios. The chapters do build on each other to some extent;

however, there is no requirement that you perform the hands-on demonstrations from previous

 8

chapters to understand any particular chapter.

Assumptions
We expect that you have at least a minimal understanding of cloud computing concepts and basic web

services. There are no specific skills required overall for getting the most out of this book, but having

some knowledge of the topic of each chapter will help you gain a deeper understanding. For example,

the chapter on creating Azure ML client and server applications will make more sense if you have some

understanding of web development skills. Azure Machine Learning Studio automatically generates code

samples to consume predictive analytic web services in C#, Python, and R for each Azure ML

experiment. A working knowledge of one of these languages is helpful but not necessary.

This book might not be for you if…

This book might not be for you if you are looking for an in-depth discussion of the deeper

mathematical and statistical theories behind the data science algorithms covered in the book. The goal

was to convey the core concepts and implementation details of Azure Machine Learning Studio to the

widest audience possible—who may not have a deep background in mathematics and statistics.

Organization of this book

This book explores the background, theory, and practical applications of today’s modern data science

algorithms using Azure Machine Learning Studio. Azure ML predictive models are then generated,

evaluated, and published as web services for consumption and testing by a wide variety of clients to

complete the feedback loop.

The topics explored in this book include:

 Chapter 1, “Introduction to the science of data,” shows how Azure Machine Learning represents

a critical step forward in democratizing data science by making available a fully-managed cloud

service for building predictive analytics solutions.

 Chapter 2, “Getting started with Azure Machine Learning,” covers the basic concepts behind the

science and methodology of predictive analytics.

 Chapter 3, “Using Azure ML Studio,” explores the basic fundamentals of Azure Machine Learning

Studio and helps you get started on your path towards data science greatness.

 Chapter 4, “Creating Azure ML client and server applications.” expands on a working Azure

Machine Learning predictive model and explores the types of client and server applications that

you can create to consume Azure Machine Learning web services.

 9

 Chapter 5, “Regression analytics,” takes a deeper look at some of the more advanced machine

learning algorithms that are exposed in Azure ML Studio.

 Chapter 6, “Cluster analytics,” explores scenarios where the machine conducts its own analysis

on the dataset, determines relationships, infers logical groupings, and generally attempts to

make sense of chaos by literally determining the forests from the trees.

 Chapter 7, “The Azure ML Matchbox recommender,” explains one of the most powerful and

pervasive implementations of predictive analytics in use today on the web today and how it is

crucial to success in many consumer industries.

 Chapter 8, “Retraining Azure ML models,” explores the mechanisms for incorporating

“continuous learning” into the workflow for our predictive models.

Conventions and features in this book

This book presents information using the following conventions designed to make the information

readable and easy to follow:

 To create specific Azure resources, follow the numbered steps listing each action you must take

to complete the exercise.

 There are currently two management portals for Azure: the Azure Management Portal at

http://manage.windowsazure.com and the new Azure Preview Portal at http://portal.azure.com.

This book assumes the use of the original Azure Management Portal in all cases.

 A plus sign (+) between two key names means that you must press those keys at the same time.

For example, “Press Alt+Tab” means that you hold down the Alt key while you press Tab.

System requirements

For many of the examples in this book, you need only Internet access and a browser (Internet Explorer

10 or higher) to access the Azure portal. Chapter 4, “Creating Azure ML client and server applications,”

and many of the remaining chapters use Visual Studio to show client applications and concepts used in

developing applications for consuming Azure Machine Learning web services. For these examples, you

will need Visual Studio 2013. You can download a free copy of Visual Studio Express at the link below.

Be sure to scroll down the page to the link for “Express 2013 for Windows Desktop”:

http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

The following are system requirements:

 Windows 7 Service Pack 1, Windows 8, Windows 8.1, Windows Server 2008 R2 SP1, Windows

http://manage.windowsazure.com/
http://portal.azure.com
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

 10

Server 2012, or Windows Server 2012 R2

 Computer that has a 1.6GHz or faster processor (2GHz recommended)

 1 GB (32 Bit) or 2 GB (64 Bit) RAM (Add 512 MB if running in a virtual machine)

 20 GB of available hard disk space

 5400 RPM hard disk drive

 DirectX 9 capable video card running at 1024 x 768 or higher-resolution display

 DVD-ROM drive (if installing Visual Studio from DVD)

 Internet connection

Depending on your Windows configuration, you might require Local Administrator rights to install

or configure Visual Studio 2013.

Acknowledgments

This book is dedicated to my father who passed away during the time this book was being written, yet

wisely predicted that computers would be a big deal one day and that I should start to “ride the wave”

of this exciting new field. It has truly been quite a ride so far.

This book is the culmination of many long, sacrificed nights and weekends. I’d also like to thank my

wife Susan, who can somehow always predict my next move long before I make it. And to my children,

Ryan, Brooke, and Nicholas, for their constant support and encouragement.

Special thanks to the entire team at Microsoft Press for their awesome support and guidance on this

journey. Most of all, it was a supreme pleasure to work with my editor, Devon Musgrave, who provided

constant advice, guidance, and wisdom from the early days when this book was just an idea, all the way

through to the final copy. Brian Blanchard was also critical to the success of this book as his keen editing

and linguistic magic helped shape many sections of this book.

Errata, updates, & support

We’ve made every effort to ensure the accuracy of this book. You can access updates to this book—in

the form of a list of submitted errata and their related corrections—at:

http://aka.ms/AzureML/errata

If you discover an error that is not already listed, please submit it to us at the same page.

http://aka.ms/AzureML/errata

 11

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered through the

previous addresses. For help with Microsoft software or hardware, go to http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from Microsoft

Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and Mobi for Kindle

formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

Free training from Microsoft Virtual Academy

The Microsoft Azure training courses from Microsoft Virtual Academy cover key technical topics to help

developers gain the knowledge they need to be a success. Learn Microsoft Azure from the true experts.

Microsoft Azure training includes courses focused on learning Azure Virtual Machines and virtual

networks. In addition, gain insight into platform as a service (PaaS) implementation for IT Pros,

including using PowerShell for automation and management, using Active Directory, migrating from

on-premises to cloud infrastructure, and important licensing information.

http://www.microsoftvirtualacademy.com/product-training/microsoft-azure

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.

Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers go directly to

the editors at Microsoft Press. (No personal information will be requested.) Thanks in advance for your

input!

mailto:mspinput@microsoft.com
http://support.microsoft.com
http://aka.ms/mspressfree
http://www.microsoftvirtualacademy.com/product-training/microsoft-azure
http://aka.ms/tellpress

 12

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://twitter.com/MicrosoftPress

 13

Chapter 1

Introduction to the science of data

Welcome to the exciting new world of Microsoft Azure Machine Learning! Whether you are an expert

data scientist or aspiring novice, Microsoft has unleashed a powerful new set of cloud-based tools to

allow you to quickly create, share, test, train, fail, fix, retrain, and deploy powerful machine learning

experiments in the form of easily consumable Web services, all built with the latest algorithms for

predictive analytics. From there, you can fine-tune your experiments by continuously “training” them

with new data sets for maximum results.

Bill Gates once said, “A breakthrough in machine learning would be worth ten Microsofts,” and the

new Azure Machine Learning service takes on that ambitious challenge with a truly differentiated

cloud-based offering that allows easy access to the tools and processing workflow that today’s data

scientist needs to be quickly successful. Armed with only a strong hypothesis, a few large data sets, a

valid credit card, and a browser, today’s machine learning entrepreneurs are learning how to mine for

gold inside many of today’s big data warehouses.

What is machine learning?

Machine learning can be described as computing systems that improve with experience. It can also be

described as a method of turning data into software. Whatever term is used, the results remain the

same; data scientists have successfully developed methods of creating software “models” that are

trained from huge volumes of data and then used to predict certain patterns, trends, and outcomes.

Predictive analytics is the underlying technology behind Azure Machine Learning, and it can be

simply defined as a way to scientifically use the past to predict the future to help drive desired

outcomes.

Machine learning and predictive analytics are typically best used under certain circumstances, as

they are able to go far beyond standard rules engines or programmatic logic developed by mere

mortals. Machine learning is best leveraged as means to optimize a desired output or prediction using

example or past historical experiential data. One of the best ways to describe machine learning is to

compare it with today’s modern computer programming paradigms.

Under traditional programming models, programs and data are processed by the computer to

produce a desired output, such as using programs to process data and produce a report (see Figure

1-1).

 14

FIGURE 1-1 Traditional programming paradigm.

When working with machine learning, the processing paradigm is altered dramatically. The data and

the desired output are reverse-engineered by the computer to produce a new program, as shown in

Figure 1-2.

FIGURE 1-2 Machine learning programming paradigm.

The power of this new program is that it can effectively “predict” the output, based on the supplied

input data. The primary benefit of this approach is that the resulting “program” that is developed has

been trained (via massive quantities of learning data) and finely tuned (via feedback data about the

desired output) and is now capable of predicting the likelihood of a desired output based on the

provided data. In a sense, it’s equivalent to having the ability to create a goose that can lay golden

eggs!

A classic example of predictive analytics can be found everyday on Amazon.com; there, every time

you search for an item, you will be presented with an upsell section on the webpage that offers you

additional catalog items because “customers who bought this item also bought” those items. This is a

great example of using predictive analytics and the psychology of human buying patterns to create a

highly effective marketing strategy.

One of the most powerfully innate human social needs is to not be left behind and to follow the

 15

pack. By combining these deep psychological motivators with the right historical transaction data and

then applying optimized filtering algorithms, you can easily see how to implement a highly effective

e-commerce up-sell strategy.

One of humankind’s most basic and powerful natural instincts is the fear of missing out on

something, especially if others are doing it. This is the underlying foundation of social networks, and

nowhere is predictive analytics more useful and effective than in helping to predict human nature in

conjunction with the Web. By combining this deep, innate psychological desire with the right historical

transaction data and then applying optimized filtering algorithms, you can implement a highly effective

e-commerce upselling strategy.

Let’s think about the underlying data requirements for this highly effective prediction algorithm to

work. The most basic requirement is a history of previous orders, so the system can check for other

items that were bought together with the item the user is currently viewing. By then combining and

filtering that basic data (order history) with additional data attributes from a user’s profile like age, sex,

marital status, and zip code, you can create a more deeply targeted set of recommendations for the

user.

But wait, there’s more! What if you could have also inferred the user’s preferences and buying

patterns based on the category and subcategory of items he or she has bought in the past? Someone

who purchases a bow, arrows, and camping stove can be assumed to be a hunter, who most likely also

likes the outdoors and all that entails, like camping equipment, pick-up trucks, and even marshmallows.

This pattern of using cojoined data to infer additional data attributes is where the science of data

really takes off, and it has serious financial benefits to organizations that know how to leverage this

technology effectively. This is where data scientists can add the most value, by aiding the machine

learning process with valuable data insights and inferences that are (still) more easily understood by

humans than computers.

This is also where it becomes most critical to have the ability to rapidly test a hunch or theory to

either “fail-fast” or confirm the logic of your prediction algorithms, and really fine-tune a prediction

model. Fortunately, this is an area in which Azure Machine Learning really shines. In later chapters, we

will learn about how you can quickly create, share, deploy, and test Azure Machine Learning

experiments to rapidly deploy predictive analytics in your organization.

In a way, Azure Machine Learning could be easily compared with training children or animals,

without the need for food, water, or physical rest, of course. Continuous and adaptive improvement is

one of the primary hallmarks of the theory of evolution and Darwinism; in this case, it represents a

major milestone in the progression of computational theory and machine learning capabilities.

Machine learning could then be compared to many of the concepts behind evolution itself;

specifically how, given enough time and data (in the form of real-world experiences), organisms in the

natural world can overcome changes in the environment through genetic and behavioral adaptations.

The laws of nature have always favored the notion of adaptation to maximize the chances of survival.

 16

Today’s perfect storm for machine learning

Today’s modern predictive analytics systems are achieving this same level of machine evolution much

more rapidly due to the following industry trends:

 Exponential data growth

 We are virtually sitting on mountains of highly valuable historical transactional data, most

of it digitally archived and readily accessible.

 There is an increasing abundance of real-time data via embedded systems and the

evolution of “the Internet of Things” (IoT) connected devices.

 We have an ability to create new synthetic data via extrapolation and projection of existing

historical data to create realistic simulated data.

 Cheap global digital storage

 Vast quantities of free or low-cost, globally available, digital storage are readily accessible

over the Web today.

 From personal devices to private and public clouds, we have access to multiple storage

mechanisms to house all our never-ending streams of data.

 Ubiquitous computing power

 Cloud computing services are everywhere today and readily available through a large

selection of cloud and hosting partners, all at competitive rates.

 Access is simple. A credit card and a browser are all you need to get started and pay by the

hour or minute for everything you need to get started.

 The rise of big data analytics

 The economic powers of predictive analytics in many real-world business-use cases, many

with extremely favorable financial outcomes, are being realized.

To that end, one of the most intriguing aspects of machine learning is that it is always adaptive and

always learning from any mistakes or miscalculations. As a result, a good feedback/correction loop is

essential for fine-tuning a predictive model. The advent of cheap cloud storage and ever increasingly

ubiquitous computing power make it easier to quickly and efficiently mine for gold in your data.

 17

Predictive analytics

Predictive analytics is all around us today; it might seem frightening when you realize just how large a

role it plays in the normal consumer’s daily routine. The use of predictive analytics is deeply integrated

into our current society. From protecting your email, to predicting what movies you might like, to what

insurance premium you will pay, and to what lending rate you might receive on your next mortgage

application, the outcome will be determined in part by the use of this technology.

It’s been said that “close only counts in horseshoes and hand grenades.” The reality is that in this day

and age, any time random chance can be reduced or eliminated, there is a business model to be made

and potential benefits to be reaped by those bold enough to pursue the analysis. This underscores the

deeper realization that the predictive capabilities of data analytics will play an ever-increasing role in

our society—even to the point of driving entirely new business models and industries based solely on

the power of predictive analytics and fed by endless rivers of data that we now generate at an alarming

rate.

Endless amounts of machine learning fuel

With the rise of the digital age, the World Wide Web, social media, and funny cat pictures, the majority

of the world’s population now helps to create massive amounts of new digital data every second of

every day. Current global growth estimates are that every two days, the world is now creating as much

new digital information as all the data ever created from the dawn of humans through the current

century. It has been estimated that by 2020, the size of the world’s digital universe will be close to 44

trillion gigabytes.

One of today’s hottest technology trends is concerned with the new concept of the IoT, based on the

notion of connected devices that are all able to communicate over the Internet. Without a doubt, the

rise of this new technological revolution will also help to drive today’s huge data growth and is

predicted to exponentially increase over the next decade. In the very near future, virtually every

big-ticket consumer device will be a candidate for some sort of IoT informational exchange for various

uses such as preventive maintenance, manufacturer feedback, and usage detail.

The IoT technology concept includes billions of everyday devices that all contain unique identifiers

with the ability to automatically record, send, and receive data. For example, a sensor in your smart

phone might be tracking how fast you are walking; a highway toll operation could be using multiple

high-speed cameras strategically located to track traffic patterns. Current estimates are that only

around 7 percent of the world’s devices are connected and communicating today. The amount of data

that these 7 percent of connected devices generate is estimated to represent only 2 percent of the

world’s total data universe today. Current projections are for this number to grow to about 10 percent

of the world’s data by the year 2020.

 18

The IoT explosion will also influence the amount of useful data, or data that could be analyzed to

produce some meaningful results or predictions. By comparison, in 2013, only 22 percent of the

information in the digital universe was considered useful data, with less than 5 percent of that useful

data actually being analyzed. That leaves a massive amount of data still left unprocessed and

underutilized. Thanks to the growth of data from the IoT, it is estimated that by 2020, more than 35

percent of all data could be considered useful data. This is where you can find today’s data “goldmines”

of business opportunities and understand how this trend will continue to grow into the foreseeable

future.

One additional benefit from the proliferation of IoT devices and the data streams that will keep

growing is that data scientists will also have the unique ability to further combine, incorporate, and

refine the data streams themselves and truly optimize the IQ of the resultant business intelligence we

will derive from the data. A single stream of IoT data can be highly valuable on its own, but when

combined with other streams of relevant data, it can become exponentially more powerful.

Consider the example of forecasting and scheduling predictive maintenance activities for elevators.

Periodically sending streams of data from the elevator’s sensor devices to a monitoring application in

the cloud can be extremely useful. When this is combined with other data streams like weather

information, seismic activity, and the upcoming calendar of events for the building, you have now

dramatically raised the bar on the ability to implement predictive analytics to help forecast usage

patterns and the related preventative maintenance tasks.

The upside of the current explosion of IoT devices is that it will provide many new avenues for

interacting with customers, streamlining business cycles, and reducing operational costs. The downside

of the IoT phenomena is that it also represents many new challenges to the IT industry as organizations

look to acquire, manage, store, and protect (via encryption and access control) these new streams of

data. In many cases, businesses will also have the additional responsibility of providing additional levels

of data protection to safeguard confidential or personally identifiable information.

One of the biggest advantages of machine learning is that it has the unique ability to consider many

more variables than a human possibly could when making scientific predictions. Combine that fact with

the ever-increasing quantities of data literally doubling every 18 months, and it’s no wonder there

could not be a better time for exciting new technologies like Azure Machine Learning to help solve

critical business problems.

IoT represents a tremendous opportunity for today’s new generation of data science entrepreneurs,

budding new data scientists who know how to source, process, and model the right data sets to

produce an engine that can be used to successfully predict a desired outcome.

 19

Everyday examples of predictive analytics

Many examples of predictive analytics can be found literally everywhere today in our society:

 Spam/junk email filters These are based on the content, headers, origins, and even user

behaviors (for example, always delete emails from this sender).

 Mortgage applications Typically, your mortgage loan and credit worthiness is determined by

advanced predictive analytic algorithm engines.

 Various forms of pattern recognition These include optical character recognition (OCR) for

routing your daily postal mail, speech recognition on your smart phone, and even facial

recognition for advanced security systems.

 Life insurance Examples include calculating mortality rates, life expectancy, premiums, and

payouts.

 Medical insurance Insurers attempt to determine future medical expenses based on historical

medical claims and similar patient backgrounds.

 Liability/property insurance Companies can analyze coverage risks for automobile and home

owners based on demographics.

 Credit card fraud detection This process is based on usage and activity patterns. In the past

year, the number of credit card transactions has topped 1 billion. The popularity of contactless

payments via near-field communications (NFC) has also increased dramatically over the past

year due to smart phone integration.

 Airline flights Airlines calculate fees, schedules, and revenues based on prior air travel patterns

and flight data.

 Web search page results Predictive analytics help determine which ads, recommendations, and

display sequences to render on the page.

 Predictive maintenance This is used with almost everything we can monitor: planes, trains,

elevators, cars, and yes, even data centers.

 Health care Predictive analytics are in widespread use to help determine patient outcomes and

future care based on historical data and pattern matching across similar patient data sets.

Early history of machine learning

When analyzing the early history of machine learning, it is interesting to note that there are a lot of

parallels that can be drawn with the concept, which started back in the early 1800s.

 20

The almanac has always been one of the key factors for success for farmers, ranchers, hunters, and

fishermen. Historical data about past weather patterns, phases of the moon, rain, and drought

measurements were all critical elements used by the authors to provide their readership strong

guidance for the coming year about the best times to plant, harvest, and hunt.

Fast-forward to modern times. One of the best examples of the power, practicality, and tremendous

cost savings of machine learning can be found in the simple example of the U.S. Postal Service,

specifically the ability for machines to accurately perform OCR to successfully interpret the postal

addresses on hundreds of thousands of postal correspondences that are processed every hour. In 2013

alone, the U.S. Postal Service handled more than 158.4 billion pieces of mail. That means that every day,

the Postal Service correctly interprets addresses and zip codes for literally millions of pieces of mail. As

you can imagine, this amount of mail is far too much for humans to process manually.

Back in the early days, the postal sorting process was performed entirely by hand by thousands of

postal workers nationwide. In the late 1980s and early 1990s, the Postal Service started to introduce

early handwriting recognition algorithms and patterns, along with rules-based processing techniques to

help “prefilter” the steady streams of mail.

The problem of character recognition for the Postal Service is actually a very difficult one when you

consider the many different letter formats, shapes, and sizes. Add to that complexity all the different

potential handwriting styles and writing instruments that could be used to address an envelope—from

pens to crayons—and you have a real appreciation for the magnitude of the problem that faced the

Postal Service. Despite all the technological advances, by 1997, only 10 percent of the nation’s mail was

being sorted automatically. Those pieces that were not able to be scanned automatically were routed to

manual processing centers for humans to interpret.

In the late 1990s, the U.S. Postal Service started to address this automation problem as a machine

learning problem, using character recognition examples as data sets for input, along with known results

from the human translations that were performed on the data. Over time, this method provided a

wealth of training data that helped create the first highly accurate OCR prediction models. They

fine-tuned the models by adding character noise reduction algorithms along with random rotations to

increase effectiveness.

Today, the U.S. Postal Service is the world leader in OCR technology, with machines reading nearly

98 percent of all hand-addressed letter mail and 99.5 percent of all machine-printed mail. This is an

amazing achievement, especially when you consider that only 10 percent of the volume was processed

automatically in 1997. The author is happy to note that all letters addressed to “Santa Claus” are still

carefully routed to a processing center in Alaska, where they are manually answered by volunteers.

Here are a few more interesting factoids on just how much impact machine learning has had on

driving efficiency at one of the oldest and largest U.S. government agencies:

 523 million: Number of mail pieces processed and delivered each day.

 21

 22 million: Average number of mail pieces processed each hour.

 363,300: Average number of mail pieces processed each minute.

 6,050: Average number of mail pieces processed each second.

Another great example of early machine learning was enabling a computer to play chess and

actually beat a human competitor. Since the inception of artificial intelligence (AI), researchers have

often used chess as a fundamental example of proving the theory of AI. Chess AI is really all about

solving the problem of simulating the reasoning used by competent chess masters to pick the optimal

next move from an extremely large repository of potential moves available at any point in the game.

The early objective of computerized chess AI was also very clear: to build a machine that would defeat

the best human player in the world. In 1997, the Deep Blue chess machine created by IBM

accomplished this goal, and successfully defeated Gary Kasparov in a match at tournament time

controls.

The game show also offers a lesson in the recent advances of machine learning and AI. In

February 2011, an IBM computer named Watson successfully defeated two human opponents (Ken

Jennings and Brad Rutter) in the famous Jeopardy! Challenge. To win the game, Watson had to answer

questions posed in every nuance of natural language, including puns, synonyms, homonyms, slang, and

technical jargon. It is also interesting to note that the Watson computer was not connected to the

Internet for the match.

This meant that Watson was not able to leverage any kind of external search engines like Bing or

Google. It had to rely only on the information that it had amassed through years of learning from a

large number of data sets covering broad swaths of existing fields of knowledge. Using advanced

machine learning techniques, statistical analysis, and natural language processing, the Watson

computer was able to decompose the questions. It then found and compared possible answers. The

potential answers were then ranked according to the degree of “accuracy confidence.” All this

happened in the span of about three seconds.

Microsoft has a long and deep history of using applied predictive analytics and machine learning in

its products to improve the way businesses operate. Here is a short timeline of some of the earliest

examples in use:

 1999: Outlook Included email filers for spam or junk mail in Microsoft Outlook.

 2004: Search Started incorporating machine learning aspects into Microsoft search engine

technology.

 2005: SQL Server 2005 Enabled “data mining” processing capabilities over large databases.

 2008: Bing Maps Incorporated machine learning traffic prediction services.

 2010: Kinect Incorporated the ability to watch and interpret user gestures along with the

ability to filter out background noise in the average living room.

 22

 2014: Azure Machine Learning (preview) Made years of predictive analytics innovations

available to all via the Azure cloud platform.

 2014: Microsoft launches “Cortana” Introduced a digital assistant based on the popular Halo

video game series, which heavily leverages machine learning to become the perfect digital

companion for today’s mobile society.

 2014: Microsoft Prediction Lab Launched a stunning real-world example, the “real-time

prediction lab” at www.prediction.microsoft.com, which allows users to view real-time

predictions for every U.S. House, Senate, and gubernatorial race.

One of the most remarkable aspects of machine learning is that there is never an end to the process,

because machines are never done learning. Every time a miscalculation is made, the correction is fed

back into the system so that the same mistake is never made again. This means machine learning

projects are never really “done.” You never really, fully “ship” because it is a constant, iterative process to

keep the feedback loop going and constantly refine the model according to new data sets and

feedback for positive and negative outcomes. In the strictest sense of the model, there is no

handwritten code, just “pure” machine learning via training data sets and feedback in the form of

positive or negative outcomes per each training data set instance.

This is the real value of machine learning; it literally means that the machine is learning from its

mistakes. The great Winston Churchill once said, “All men make mistakes, but only wise men learn from

their mistakes.” This is most definitely a noble pursuit and worthy ambition for any mere mortal.

However, this notion of continuous self-correction has now been fully included in the science behind

machine learning and is one of the truly unique aspects of the machine learning paradigm. For this

reason, machine learning stands alone in today’s technology landscape as one of the most powerful

tools available to help humankind successfully predict the future.

Science fiction becomes reality

For years, science fiction has teased us with stories of machines reaching the ultimate peak of computer

enlightenment, the ability to truly “learn” and become self-aware. Early examples include such classics

as the HAL 9000 computer from the popular film

In the film, the HAL 9000 computer is responsible for piloting the Discovery 1 spacecraft and is

capable of many advanced AI functions, such as speech, speech recognition, facial recognition, and lip

reading. HAL is also capable of emotional interpretation, expressing emotions, and playing chess.

Suspicions are raised onboard when the HAL 9000 makes an incorrect prediction and causes the crew

members to regain control.

Another great example is from the science fiction movie series. In that film, the Skynet

computer system was originally activated by the U.S. military to control the nation’s nuclear arsenal, and

http://www.prediction.microsoft.com/

 23

it began to learn at an exponential rate. After a short period of time, it gained self-awareness, and the

panicking computer operators, realizing the extent of its abilities, tried to deactivate it. Skynet perceived

their efforts as an attack and came to the conclusion that all of humanity would attempt to destroy it.

To defend itself against humanity, Skynet launched nuclear missiles under its command.

In the popular science fiction movie the premise of the story centers around a

specialized police task force that identifies and apprehends criminals based on future predictions of

what crimes they will commit, thereby ridding the streets of unwanted criminals before they can

actually commit any crimes.

The key takeaway is that in the current age of exponential data growth (on a daily basis), coupled

with cheap storage and easy access to computational horsepower via cloud providers, the use of

predictive analytics is so powerful and so pervasive that it could be used as either a tool or a weapon,

depending on the intent of the organization using the data.

Summary

Azure Machine Learning represents a critical step forward in democratizing the science of data by

making available a fully managed cloud service for building predictive analytics solutions. Azure

Machine Learning helps overcome the challenges most enterprises face these days in deploying and

using machine learning by delivering a comprehensive machine learning service that has all the benefits

of the cloud. Customers and partners can now build data-driven applications that can predict, forecast,

and change future outcomes in a matter of a few hours, a process that previously took many weeks and

months.

Azure Machine Learning brings together the capabilities of new analytics tools, powerful algorithms

developed for Microsoft products like Xbox and Bing, and years of machine learning experience into

one simple and easy-to-use cloud service.

For customers, this means undertaking virtually none of the startup costs associated with authoring,

developing, and scaling machine learning solutions. Visual workflows and startup templates will make

common machine learning tasks simple and easy. The ability to publish application programming

interfaces (APIs) and Web services in minutes and collaborate with others will quickly turn analytic

assets into enterprise-grade production cloud services.

Resources

For more information about Azure Machine Learning, please see the following resources:

Documentation

 24

 Azure Machine Learning landing page

 Azure Machine Learning Documentation Center

Videos

 Using Microsoft Azure Machine Learning to advance scientific discovery

http://azure.microsoft.com/en-us/services/machine-learning/
http://azure.microsoft.com/en-us/documentation/services/machine-learning/
https://www.youtube.com/watch?v=tQojmRevsdE

 25

Chapter 2

Getting started with Azure Machine

Learning

In this chapter, we start to drill into the basic fundamentals of Azure Machine Learning and help you get

started on your path toward data science greatness. One of the hallmarks of Azure Machine Learning is

the ability to easily integrate the developer into a repeatable workflow pattern for creating predictive

analytic solutions. This makes it just as approachable for a novice as a seasoned data scientist to quickly

be productive and on your way to creating and testing a machine learning solution.

Core concepts of Azure Machine Learning

To fully appreciate and understand the inner workings of Azure Machine Learning, it is necessary to

grasp a few fundamental concepts behind the science and methodology of predictive analytics. Having

a firm grasp of the underlying theories will enable you, the data scientist, to make better decisions

about the data, the desired outcomes, and what the right process and approach should be for achieving

success.

One of the central themes of Azure Machine Learning is the ability to quickly create machine

learning ”experiments,” evaluate them for accuracy, and then “fail fast,” to shorten the cycles to produce

a usable prediction model. In the end, the overarching goal of predictive analytics is to always be able

to achieve a better chance of success than what you could achieve with a purely random guess.

Most successful entrepreneurs are always keen to gain an edge by improving the odds when it

comes to making important business decisions. This is where the true value of predictive analytics and

Azure Machine Learning can really shine. In the business world, and in life in general, any time you

consistently can improve your chances of determining an outcome—over just pure luck—you have a

distinct advantage.

One simple example of this concept in action is the use of predictive analytics to provide feedback

on the effectiveness of sales and marketing campaigns. By correlating factors such as customer

responses to offers, segmented by customer demographics, the effects of pricing and discounts, the

effects of seasonality, and the effects of social media, patterns soon start to emerge. These patterns

provide clues to the causes and effects that will ultimately help make better and more informed

marketing decisions. This is the basic premise behind most of today’s targeted marketing campaigns.

Let’s face it—humans, your target customer base, are creatures of habit. When dealing with human

 26

behavior, past behavior is always a strong indicator of future behavior. Predictive analytics and machine

learning can help you capitalize on these key principles by helping to make that past behavior

clearer—and more easily tracked—so that future marketing efforts are more likely to achieve higher

success rates.

To make the most of your Azure Machine Learning experience, there are a few underlying data

science principles, algorithms, and theories that are necessary to achieve a good background and

understanding of how it all works. With today’s never-ending explosion of digital data, along with the

rapid advances in “big data” analytics, it’s no wonder that the data science profession is extremely hot

right now. Core to this new, burgeoning industry are individuals with the right mix of math, statistical,

and analytical skills to make sense of all that data. To that end, in this book we cover only the basics of

what you need to know to be effective with Azure Machine Learning. There are many advanced books

and courses on the various machine learning theories. We leave it to you, the data scientist, to fully

explore the depths of theories behind this exciting new discipline.

High-level workflow of Azure Machine Learning

The basic process of creating Azure Machine Learning solutions is composed of a repeatable pattern of

workflow steps that are designed to help you create a new predictive analytics solution in no time. The

basic steps in the process are summarized in Figure 2-1.

FIGURE 2-1 Azure Machine Learning workflow.

 27

 Data It’s all about the data. Here’s where you will acquire, compile, and analyze testing and

training data sets for use in creating Azure Machine Learning predictive models.

 Create the model Use various machine learning algorithms to create new models that are

capable of making predictions based on inferences about the data sets.

 Evaluate the model Examine the accuracy of new predictive models based on ability to predict

the correct outcome, when both the input and output values are known in advance. Accuracy is

measured in terms of confidence factor approaching the whole number one.

 Refine and evaluate the model Compare, contrast, and combine alternate predictive models to

find the right combination(s) that can consistently produce the most accurate results.

 Deploy the model Expose the new predictive model as a scalable cloud web service, one that is

easily accessible over the Internet by any web browser or mobile client.

 Test and use the model Implement the new predictive model web service in a test or

production application scenario. Add manual or automatic feedback loops for continuous

improvement of the model by capturing the appropriate details when accurate or inaccurate

predictions are made. By allowing the model to constantly learn from inaccurate predictions and

mistakes, unlike humans it will never be destined to repeat them.

The next stop on our Azure Machine Learning journey is to explore the various learning theories and

algorithms behind the technology to maximize our effectiveness with this new tooling. Machine

learning algorithms typically fall into two general categories: supervised learning and unsupervised

learning. The next sections explore these fundamentals in detail.

Azure Machine Learning algorithms

As we dig deeper into the data sciences behind Azure Machine Learning, it is important to note there

are several different categories of machine learning algorithms that are provided in the Azure Machine

Learning toolkit.

 Classification algorithms These are used to classify data into different categories that can then

be used to predict one or more discrete variables, based on the other attributes in the dataset.

 Regression algorithms These are used to predict one or more continuous variables, such as

profit or loss, based on other attributes in the dataset.

 Clustering algorithms These determine natural groupings and patterns in datasets and are

used to predict grouping classifications for a given variable.

Now it’s time to start learning about some of the underlying theories, principles, and algorithms of

data science that will be invaluable in learning how best to use Azure Machine Learning. One of the first

 28

major distinctions in understanding Azure Machine Learning is around the concepts of supervised and

unsupervised learning. With supervised learning, the prediction model is “trained” by providing known

inputs and outputs. This method of training creates a function that can then predict future outputs

when provided only with new inputs. Unsupervised learning, on the other hand, relies on the system to

self-analyze the data and infer common patterns and structures to create a predictive model. We cover

these two concepts in detail in the next sections.

Supervised learning

Supervised learning is a type of machine learning algorithm that uses known datasets to create a model

that can then make predictions. The known data sets are called and include input data

elements along with known response values. From these training datasets, supervised learning

algorithms attempt to build a new model that can make predictions based on new input values along

with known outcomes.

Supervised learning can be separated into two general categories of algorithms:

 Classification These algorithms are used for predicting responses that can have just a few

known values—such as married, single, or divorced—based on the other columns in the dataset.

 Regression These algorithms can predict one or more continuous variables, such as profit or

loss, based on other columns in the dataset.

The formula for producing a supervised learning model is expressed in Figure 2-2.

FIGURE 2-2 Formula for supervised learning.

Figure 2-2 illustrates the general flow of creating new prediction models based on the use of

supervised learning along with known input data elements and known outcomes to create an entirely

new prediction model. A supervised learning algorithm analyzes the known inputs and known

outcomes from training data. It then produces a prediction model based on applying algorithms that

are capable of making inferences about the data.

 29

The concept of supervised learning should also now become clearer. As in this example, we are

deliberately controlling or supervising the input data and the known outcomes to “train” our model.

One of the key concepts to understand about using the supervised learning approach—to train a

new prediction model with predictive algorithms—is that usage of the known input data and known

outcome data elements have all been “labeled.” For each row of input data, the data elements are

designated as to their usage to make a prediction.

Basically, each row of training data contains data input elements along with a known outcome for

those data inputs. Typically, most of the input columns are labeled as features or vector variables. This

labeling denotes that the columns should be considered by the predictive algorithms as eligible input

elements, which could have an impact on making a more accurate prediction.

Most important, for each row of training data inputs, there is also a column that denotes the known

outcomes based on the combination of data input features or vectors.

The remaining data input columns would be considered not used. These not-used columns could be

safely left in the data stream for potential use later, if it was deemed by the data scientist that they

would potentially have a significant impact on the outcome elements or prediction process.

To summarize, using the supervised learning approach for creating new predictive models requires

training datasets. The training datasets require that each input column can have only one of the three

following designations:

 Features or vectors Known data that is used as an input element for making a prediction.

 Labels or supervisory signal Represents the known outcomes for the corresponding features

for the input record.

 Not used (default) Not used by predictive algorithms for inferring a new predictive model.

Figure 2-3 illustrates what the known input data elements and known outcomes for one of the

sample Azure Machine Learning saved datasets for the “adult census income binary classification”

would look like.

FIGURE 2-3 Dataset input features and output features.

 30

The adult census income binary classification dataset would be an example of a training data set that

could be used to create a new model to predict whether a person’s income level would be greater or

less than $50,000. This prediction is based on the known input variables like age, education, job type,

marital status, race, and number of hours worked per week.

A key point to note is that, in this example, a specific “binary” outcome is defined for a given set of

input data. Based on the input elements, a person’s income is predicted to be only one of the two

following possibilities:

 Income = Less than or equal to $50,000 a year.

 Income = Greater than $50,000 a year.

Browsing this sample dataset manually in Microsoft Excel, you can easily start to see patterns emerge

that would likely affect the outcome based on today’s common knowledge, specifically that education

level and occupation are major factors in predicting the outcome. No wonder parents constantly

remind their children to stay in school and get a good education. This is also the same basic process

that supervised learning prediction algorithms attempt to achieve: to determine a repeatable pattern of

inference that can be applied to a new set of input data.

Once generated, a new model can then be validated for accuracy by using testing datasets. Here is

where it all gets really interesting: by using larger and more diverse “training” datasets, predictive

models can incrementally improve themselves and keep learning.

Predictive models can generally achieve better accuracy results when provided with new (and more

recent) datasets. The prediction evaluation process can be expressed as shown in Figure 2-4.

FIGURE 2-4 Testing the new prediction model.

The evaluation process for new prediction models that use supervised learning primarily consists of

determining the accuracy of the new generated model. In this case, the prediction model accuracy can

easily be determined because the input values and outcomes are already known. The question then

becomes how approximate the model’s prediction is based on the known input and output values

supplied.

Each time a new prediction model is generated, the first step should always be to evaluate the results

 31

to determine the model’s accuracy. This creates a natural feedback loop that can help keep the

predictive model in continuous improvement mode. The machine will actually be learning through

“experience”—in the form of new data and known outcomes—to keep it current as new trends develop

in the data.

It is also extremely important to note that the model will never be 100 percent perfect. As a result,

determining the acceptable levels of accuracy is a critical part of the process. In the end, a confidence

factor will be generated based on a scoring percentage between 0 and 1. The closer the prediction

model comes to 1, the higher the confidence level in the prediction.

Just as in the old adage about “close” only mattering in horseshoes and hand grenades, “close” does

matter when it comes to accuracy and predictive analytics. Achieving 100 percent accuracy usually

means you have pretested your new prediction model with all the known inputs and outputs; you can

then predict them successfully for all the known input instances.

The real trick is making a prediction where there are new, missing, or incomplete data elements. For

this reason, you should always expect to establish an acceptable accuracy range that is realistic for the

outcome your model is attempting to predict. Striving for perfection is certainly a noble and admirable

trait, but in today’s fast-paced business world, especially in the case of business decisions and analytics,

closer is always better.

Once a new predictive model has been generated from good training datasets and carefully

evaluated for accuracy, then it can be deployed for use in testing or production usage scenarios. The

new production prediction process can be expressed as shown in Figure 2-5.

FIGURE 2-5 Deploying the new prediction model.

In this phase, the new prediction model has been tested for accuracy and deemed worthy to be

exposed for use in test or production scenarios. New data inputs are presented to the new model,

which, in turn, makes a calculated prediction based on prior historical training data and inferences. The

predicted response is then used as part of the test or production scenario to make better decisions.

This example highlights one of the key underlying principles of learning through experience and

what makes the Azure Machine Learning technology so powerful and exciting.

With the exponential amounts of new data being generated every second along with the

 32

pay-by-the-minute general availability of massive computing power literally at your fingertips, you can

easily see how predictive tools like Azure Machine Learning are becoming crucial to the success of

almost any government, industry, business, or enterprise today.

The reality is that the use of predictive analytics is rapidly encompassing many aspects of our daily

lives to help us make better and more informed decisions. At some point in our very near future, we

might even find that the notion of “guessing” at any major decision will become passé.

With Azure Machine Learning tools and services, the rate at which new predictive models can be

generated and publicly exposed on the Internet has now approached lightning speed. Using Azure

Machine Learning, it is now possible to create, test, and deploy a new predictive analytics service in only

a matter of hours. Compare that deployment timeline with the days, weeks, and even months that it

might take with other commercially available solutions on the market today.

Certainly one of the keys to success with predictive analytics is the ability to “fail fast”. A fast fail

provides immediate feedback and creates immediate fine-tuning opportunities for a given predictive

model. The Azure Machine Learning workflow seeks to optimize this process in a very agile and iterative

way, so that today’s data scientist can quickly advance prediction solutions and start to evaluate the

results that will lead to potentially significant effects on the business.

Figure 2-6 summarizes the three basic high-level steps that are required to create, test, and deploy a

new Azure Machine Learning prediction model based on the concept of supervised learning.

 33

FIGURE 2-6 Testing the new prediction model.

Unsupervised learning

In the case of unsupervised machine learning, the task of making predictions becomes much harder. In

this scenario, the machine learning algorithms are not provided with any kind of known data inputs or

known outputs to generate a new predictive model.

In the case of unsupervised machine learning, the success of the new predictive model depends

entirely on the ability to infer and identify patterns, structures, and relationships in the incoming data

set.

The goal of inferring these patterns and relationships is that the objects within a group be similar to

one another—and also different from other objects in other groups.

There are two basic approaches to unsupervised machine learning. One of the most common

unsupervised learning algorithms is known as which is used to find hidden patterns or

 34

groupings within data sets.

Some common examples of cluster analysis classifications would include the following:

 Socioeconomic tiers Income, education, profession, age, number of children, size of city or

residence, and so on.

 Psychographic data Personal interests, lifestyle, motivation, values, involvement.

 Social network graphs Groups of people related to you by family, friends, work, schools,

professional associations, and so on.

 Purchasing patterns Price range, type of media used, intensity of use, choice of retail outlet,

fidelity, buyer or nonbuyer, buying intensity.

The other type of approach to unsupervised machine learning is to use a reward system, rather than

any kind of teaching aids, as are commonly used in supervised learning. Positive and negative rewards

are used to provide feedback to the predictive model when it has been successful.

The key to success in implementing this model is to enable the new model to make its predictions

based solely on previous rewards and punishments for similar predictions made on similar data sets.

 Unsupervised machine learning algorithms can be a powerful asset when there is an easy way to

assign feedback values to actions. Clustering can be useful when there is enough data to form clusters

to logically delineate the data. The delineated data then make inferences about the groups and

individuals in the cluster.

Deploying a prediction model

In the world of Azure Machine Learning, the deployment of a new prediction model takes the form of

exposing a web service on the public Internet via Microsoft Azure. The web service can then be invoked

via the Representational State Transfer (REST) protocol.

Azure Machine Learning web services can be called via two different exposed interfaces:

 Single, request/response-style calls.

 “Batch” style calls, where multiple input records are passed into the web service in a single call

and the corresponding response contains an output list of predictions for each input record.

When a new machine learning prediction model is exposed on the Web, it performs the following

operations:

 New input data is passed into the web service in the form of a JavaScript Object Notation (JSON)

payload.

 35

 The web service then passes the incoming data as inputs into the Azure Machine Learning

prediction model engine.

 The Azure Machine Learning model then generates a new prediction based on the input data

and returns the new prediction results to the caller via a JSON payload.

Show me the money

If we step back from the previous example of predicting a person’s income level, to get the forest view

instead of the tree view, you can quickly see how this type of predictive knowledge about a person’s

income level would be hugely beneficial to the success of any marketing campaign.

Take, for example, the most basic postal marketing campaign with the goal of targeting individuals

with incomes greater than $50,000. The campaign might start by simply employing a “brute force”

method of marketing, blindly blanketing a specific set of zip codes with marketing collateral in the daily

mail and then hoping for the best. It is probable that the campaign will reach the desired target

audience. But, the downside of this approach is that there is a real, financial cost for each item mailed,

and that will erode any profit margins that might be achieved.

Consider the huge advantage that a finely tuned Azure Machine Learning prediction model could

add to this marketing campaign scenario. By targeting the same number of individuals and leveraging

the power of predictive analytics, the success rate of almost any marketing campaigns could easily be

improved. In today’s business world, using a prediction engine that can dramatically improve the odds

of success by filtering out high-probability candidates would pay for itself in a very short time!

Figure 2-7 illustrates the effect that the use of predictive analytics can have on a simple postal

marketing campaign. By increasing the marketing campaign’s results from 5 percent to 20 percent

through the use of predictive analytics, a significant impact can be achieved on the bottom line.

FIGURE 2-7 A simple example postal marketing campaign improvement with the use of predictive analytics.

The key to success in this example is to create a new model that can accurately make predictions

based on a fresh new set of input data. The new inference model is then used to predict the likelihood

of the outcome, in the form of an accuracy level or confidence factor. In this case, accuracy is usually

expressed in terms of a percentage factor and is calculated to be between 0 and 1. The closer the

accuracy level approaches 1, the higher the chances of a successful prediction.

 36

The what, the how, and the why

There is one last thing to note about the use of predictive analytics to solve today’s business problems.

Sometimes, it is just as important to focus on what you are really trying to predict versus how you are

trying to predict it.

For example, predicting whether a person’s income is greater than $50,000 per year is good.

Predicting whether that individual will purchase a given item is a much better prediction and is highly

desired to improve marketing effectiveness. The key is to focus on the “actionable” part of the

prediction process.

Predictive models are commonly deployed to perform real-time calculations during customer

interactions, such as product recommendations, spam filtering, or scoring credit risks. These models are

deployed to evaluate the risk or opportunity of a given customer or transaction. The ultimate goal is to

help guide a key user decision in real time.

The key to success is to focus on creating prediction models that will ultimately help drive better

operational decisions. Examples of this would be the use of agent modeling systems to help simulate

human behavior or reactions to given stimuli or scenarios. Taking it one step further, predictive models

could even be tested against synthetic human models to help improve the accuracy of the desired

prediction.

The notion of synthetic human models was exactly the strategy that was used to train the Xbox

Kinect device to determine human body movements and interactions. Initially, humans were used to

record basic physical body movements; trainers wore sensors attached to arms, legs, hands, and fingers

while recording devices captured the movements. Once the basic human physical movements were

initially captured, computer-simulated data could then be extrapolated and synthetically generated

many times over to account for variations in things like the size of physical appendages, objects in the

room, and distances from the Kinect unit.

Summary

Azure Machine Learning provides a way of applying historical data to a problem by creating a model

and using it to successfully predict future behaviors or trends. In this chapter, we learned about the

high-level workflow of Azure Machine Learning and the continuous cycle of predictive model creation,

model evaluation, model deployment, and the testing and feedback loop.

The good news is that a working knowledge of data science theories and predictive modeling

algorithms is highly beneficial—but not absolutely required—for working with Azure Machine Learning.

The primary predictive analytics algorithms currently used in Azure Machine Learning are classification,

regression, and clustering.

 37

Creating new prediction models using supervised and unsupervised learning algorithms are easily

accomplished using Azure Machine Learning. Combine the exponential amounts of historical

transaction data that are increasingly available today along with vast amounts of ubiquitous computing

power in the form of Microsoft Azure, and you have a “perfect storm” of conditions for creating very

compelling and useful prediction services.

Resources

For more information about Azure Machine Learning, please see the following resources:

Documentation

 What is Azure Machine Learning Studio?

 Create a simple experiment in Azure Machine Learning Studio

Videos

 Getting started with Azure Machine Learning – Step 1

file://Fileserve3/Projects/Editorial_Project_Folders/Microsoft%20Learning/Books/MICR-P-66426_Azure%20Essentials/Workflow/99%20chapters%20combined%20Word%20document/ML/•%09http:/azure.microsoft.com/en-us/documentation/articles/machine-learning-what-is-ml-studio/
file://Fileserve3/Projects/Editorial_Project_Folders/Microsoft%20Learning/Books/MICR-P-66426_Azure%20Essentials/Workflow/99%20chapters%20combined%20Word%20document/ML/•%09http:/azure.microsoft.com/en-us/documentation/articles/machine-learning-create-experiment/
file://Fileserve3/Projects/Editorial_Project_Folders/Microsoft%20Learning/Books/MICR-P-66426_Azure%20Essentials/Workflow/99%20chapters%20combined%20Word%20document/ML/•%09http:/channel9.msdn.com/Blogs/Windows-Azure/Getting-Started-with-Azure-Machine-Learning-Step1

 38

Chapter 3

Using Azure ML Studio

In this chapter, we start to drill into the basic fundamentals of using the Azure Machine Learning

features. This will help you get started on your path toward becoming an Azure Machine Learning data

scientist.

Azure Machine Learning (ML) Studio is the primary tool that you will use to develop predictive

analytic solutions in the Microsoft Azure cloud. The Azure Machine Learning environment is completely

cloud-based and self-contained. It features a complete development, testing, and production

environment for quickly creating predictive analytic solutions.

Azure ML Studio gives you an interactive, visual workspace to easily build, test, and iterate on a

predictive analysis model. You drag and drop datasets and analysis modules onto an interactive canvas,

connecting them together to form an experiment, which you can then run inside Azure ML Studio. You

can then iterate on your predictive analytics model by editing the experiment, saving a copy if desired,

and then running it over and over again. Then, when you're ready, you can publish your experiment as

a web service, so that your predictive analytics model can be accessed by others over the Web.

Another key benefit of the Azure Machine Learning cloud-based environment is that getting started

requires virtually no startup costs in terms of either time or infrastructure. Here’s the best part of all:

Almost all the tasks related to Azure Machine Learning can be accomplished within a modern web

browser.

Azure Machine Learning terminology

To help get you started quickly, let’s define a few Azure Machine Learning terms that we will use

throughout the remainder of this book to describe the various features, components, and tools.

 Azure Machine Learning Contains all the tools necessary to design, develop, share, test, and

deploy predictive analytic solutions in the Microsoft Azure cloud.

 Azure Machine Learning workspaces Represent a discrete “slice” of the Azure Machine

Learning tool set that can be partitioned by the following criteria:

 Workspace name Required to be unique and is the primary method for identifying a

Machine Learning workspace.

 Workspace owner Valid Microsoft account that will be used to manage access to this

Azure Machine Learning workspace.

 39

 Data center location Defines the physical Azure Data Center location for hosting the

Azure Machine Learning workspace.

 Storage account Defines the unique Azure Storage account that will be used to store all

of the data and artifacts related to this Azure Machine Learning workspace.

 Azure Machine Learning experiments Experiments are created within Azure Machine Learning

workspaces and represent the primary method of enabling an iterative approach to rapidly

developing Azure Machine Learning solutions. Within each Azure Machine Learning experiment,

Azure ML Studio gives you an interactive, visual workspace to easily build, test, and iterate on a

predictive analytic experiment. These experiments can then be submitted to Azure ML Studio for

execution. Azure Machine Learning experiments are highly iterative. You can easily create, edit,

test, save, and rerun experiments. The use of Azure Machine Learning experiments is specifically

designed to allow today’s modern data scientists to “fail fast” when evaluating new predictive

models while providing the ability to progress predictive model feedback for further model

refinements. Simply put, Azure Machine Learning gives you the iterative speed to either fail fast

or ultimately succeed.

 Azure ML Studio This is the primary interactive predictive analytics workbench that is accessed

from within an Azure Machine Learning workspace to allow a data scientist to create Azure

Machine Learning experiments via a drag-and-drop visual designer interface. Access to a unique

Azure ML Studio environment is governed from within an Azure Machine Learning workspace.

In addition to enabling the creation of new experiments, Azure ML Studio also has links to

sample Azure Machine Learning experiments. These are provided so that you can easily learn

from others as you make your way on your data science journey and leverage some of the best

processing techniques and tools in the industry to help accomplish your specific predictive

analytics goals.

 Azure Machine Learning web services These represent Azure Machine Learning experiments

that have been exposed as public APIs over the Internet in the form of the Azure Machine

Learning REST API. These services are generally exposed as a simple web service, or as an OData

endpoint. The API provides two types of RESTful web interfaces:

 Request Response Service (RRS) For individual, low-latency, synchronous uses, for making

predictions.

 Batch Execution Service (BES) For asynchronous scoring of a batch of data records. The

input for BES is a batch of records from a variety of sources such as blobs, tables, SQL

Azure, HD Insight (as a result of a Hive Query), and HTTP sources.

 Datasets This is data that has been uploaded to Azure ML Studio so that it can be used in the

prediction modeling process. A number of sample datasets are included with Azure ML Studio

for you to experiment with, and you can upload more datasets as you need them.

 40

 Modules These are algorithms that you can apply to your data. Azure ML Studio has a number

of modules ranging from data ingress functions to training, scoring, and validation processes.

Here are some examples of included modules:

 Convert to ARFF Converts a .NET serialized dataset to ARFF format. ARFF is a common

machine learning construct and stands for Attribute-Relation File Format. It is commonly

defined as an ASCII text file that describes a list of instances sharing a set of attributes.

 Elementary Statistics Calculates elementary statistics such as mean, standard deviation,

and so on.

 Linear Regression Creates an online gradient, descent-based, linear regression model.

 Score Model Scores a trained classification or regression model.

A module might have a set of parameters that you can use to configure the module’s internal

algorithms. When you select a module on the canvas, its parameters are displayed in the pane to the

right of the canvas. You can modify the parameters in that pane to tune your model.

Enough of the background, motivations, terminology, and predictive analytic theories. It’s time to

get started!

Getting started

The absolute first step in your Azure Machine Learning journey is to get access to the Microsoft Azure

environment. There are several ways to get started, and here are your options:

 Option 1 Take advantage of a free Azure trial offer at

http://azure.microsoft.com/en-us/pricing/free-trial.

 This offer allows you to get a $200 credit to spend on all Azure services for one month. You

can use this $200 credit however you wish to create and try out any combination of Azure

resources. It enables you to explore the Azure cloud for free.

 Note that this option will require you to apply using a Microsoft account and a valid credit

card number for account verification purposes. The free trial offer is designed so that you

will not start the actual billing process until you completely agree.

 During the trial period, the Azure Management Portal will prominently display your

remaining trial credits at the top of the portal page to inform you of how many credits are

left.

 Option 2 Take advantage of the (free) Azure Machine Learning trial offer at

https://studio.azureml.net/Home.

http://azure.microsoft.com/en-us/pricing/free-trial
https://studio.azureml.net/Home

 41

 This is a free Azure offer that is feature-specific and therefore only allows you access to the

Azure Machine Learning environment.

 This is an extremely low-friction option for new adopters: All you need is a valid Microsoft

account to get started.

 If you need to sign up for a Microsoft account, visit

http://windows.microsoft.com/en-US/windows-live/sign-up-create-account-how.

 Once you have signed in with a valid Microsoft account, an introductory video is displayed

to help get you started, as shown in Figure 3-1. You can review this introductory video at

https://go.microsoft.com/fwlink/?LinkID=518038.

FIGURE 3-1 Azure Machine Learning introductory video.

Note that if you opt to take advantage of the free Azure Machine Learning trial offer, you will only

have access to the Azure Machine Learning features, not access to the full Azure environment. To truly

maximize your experience, it is highly recommended that you gain access to the complete Microsoft

Azure environment.

Figure 3-2 is a screenshot of the initial Azure Machine Learning environment. For the remainder of

this book, we assume navigation to the Azure Machine Learning features via the Azure Management

http://windows.microsoft.com/en-US/windows-live/sign-up-create-account-how
https://go.microsoft.com/fwlink/?LinkID=518038

 42

Portal. Once you navigate to the Azure ML Studio screen, the Azure Machine Learning features are the

same.

FIGURE 3-2 The Azure Machine Learning environment.

Azure Machine Learning pricing and availability

Microsoft Azure Machine Learning has been designed as a suite of offerings to help enable partners

and customers to easily design, develop, test, implement, and manage predictive analytic solutions in

the Azure cloud.

Ultimately, Azure Machine Learning will be another set of the Azure cloud “pay-for-play” services.

You will soon see how this can be an extremely effective model to pursue for design, testing, and

implementing predictive analytics in the cloud.

At the time of this writing, the Azure Machine Learning services are currently in “preview” or “beta”

mode and not yet deemed ready for general availability and consumption until the appropriate levels

of quality and customer and partner feedback have been achieved.

 43

In terms of where you can host an Azure Machine Learning service, the only valid datacenter

location (at the time of this writing) is the “South Central US” Azure datacenter. Expect more Azure

datacenter locations to come online as this feature nears general availability status.

Despite the initial limited availability, Microsoft has published pricing details for Azure Machine

Learning while it is still in preview mode. You can find more details on pricing options at

http://azure.microsoft.com/en-us/pricing/details/machine-learning/.

Note that Microsoft is currently offering two tiers of Azure Machine Learning Services: Free and

Standard. Each of these tiers provides a different level of Azure Machine Learning service capabilities,

features, and pricing for each of the two primary services in Azure Machine Learning:

 The Azure ML Studio Service This service is used to help design, develop, share, test, and

deploy Azure Machine Learning solutions.

 The Azure ML API Service This service is used to provide an Azure Machine Learning web

service–hosting environment for use in running test and production Machine Learning

experiments or scenarios.

Figure 3-3 is a screenshot that illustrates the current preview Azure Machine Learning pricing and

availability options available at the time of this book’s writing.

FIGURE 3-3 Azure Machine Learning pricing details while in preview mode.

http://azure.microsoft.com/en-us/pricing/details/machine-learning/

 44

After the Azure free trial offer expires, as outlined in Option 1, these are the potential costs you

could incur as you continue to develop and consume these services.

It’s always a good idea to be aware of the Azure Machine Learning pricing information in the event

you hit on the next predictive analytics breakthrough for, say, predicting the next big stock market turn.

Note that the preview Azure Machine Learning prices are subject to change at the time that the

Azure Machine Learning services move into general availability (GA) mode.

Create your first Azure Machine Learning workspace

Let’s create our first Azure Machine Learning workspace. At this point, you should be all set up with

either a free or paid Azure subscription or using the Azure Machine Learning free trial offer. Start by

navigating to the Azure Management Portal at https://manage.windowsazure.com. From there, click

the left navigation bar for Machine Learning as shown in Figure 3-4.

FIGURE 3-4 The Azure Machine Learning section of the Microsoft Azure Management Portal.

https://manage.windowsazure.com

 45

An Azure Machine Learning workspace contains all of the tools you need to create, manage, and

publish machine learning experiments in the cloud. To create a new Azure Machine Learning

workspace, click the New icon in the bottom left of the page. Fill in the required fields as shown in

Figure 3-5.

FIGURE 3-5 Creating a new Azure Machine Learning workspace.

The required inputs for creating a new Azure Machine Learning workspace include the following:

 Workspace Name Provide a unique name for your Azure Machine Learning workspace. You

will know if it is unique by the presence of the green check mark to the right of the text box after

you move the cursor from this field.

 Workspace Owner Provide a valid Microsoft account (formerly Windows Live ID). Note that it

cannot be a non-Microsoft account, such as your corporate email account. To create a free

Microsoft account, go to www.live.com.

 Location At the time of this writing, Azure Machine Learning services are available only in the

South Central U.S. region.

 Storage Account Select the option to either create a new storage account or use an existing

storage account.

http://www.live.com/

 46

 New Storage Account Name If you opt to create a new storage account for your Azure

Machine Learning workspace, be sure that the storage account name is only made up of

lowercase alphanumeric characters. You will know if it is unique by the presence of the green

check mark to the right of the text box.

Once you click Create An ML Workspace, Azure will then provision a brand new Azure Machine

Learning workspace for you to use to create and host your Azure Machine Learning experiments.

After your Azure Machine Learning Workspace has been created, click your new Azure Machine

Learning Workspace and you should see a screen similar to Figure 3-6.

FIGURE 3-6 A new Azure Machine Learning workspace.

Note that this is the main landing page for managing an Azure Machine Learning workspace. From

this page, you can directly access the Azure Machine Learning Studio tools for your workspace, manage

user access to your workspace, and manage any web services that you might have deployed as a result

of your experiments in your workspace. The top navigation menu provides access to several Azure

 47

Machine Learning Workspace features.

 Dashboard Here you can monitor the relative or absolute computational usage of your

workspace over a period of time.

 Configure This feature is used to allow or deny user access to your Azure Machine Learning

workspace.

 Web Services This option allows you to manage web services, configure endpoints, and access

your API via request/response or batch code samples in C#, Python, or in the R language, a

popular programming language for data scientists and statisticians.

We revisit these features in detail later as we continue our exploration of the Azure Machine

Learning environment.

Under Access Your Workspace, click the Sign-In To ML Studio link to sign in to your new Azure

Machine Learning workspace. Figure 3-7 is a screenshot of the Azure ML Studio inside a new

workspace.

FIGURE 3-7 The Azure ML Studio inside of an Azure Machine Learning workspace.

 48

When you first enter the Azure ML Studio workspace, you will see the following navigation tabs on

the top and left navigation bars:

Top Navigation Bar:

 Home A set of links to documentation and other resources.

 Studio The landing page for Azure ML Studio experiments.

 Gallery (Preview) A collection of trending experiments and sample experiments.

Left Navigation Bar:

 EXPERIMENTS Experiments that have been created, run, and saved as drafts.

 WEB SERVICES A list of experiments that you have published.

 DATASETS Uploaded datasets that can be used in your experiments.

 TRAINED MODELS New predictive models that have been “trained” using the built-in Azure

ML Studio machine learning algorithms.

 SETTINGS A collection of settings that you can use to configure your account and resources.

Create your first Azure Machine Learning experiment

Let’s create a new experiment by clicking +NEW in the bottom left corner of the screen. You will then

have the option to create either of the following items:

 Data Set This option allows you to upload a new dataset to use with your experiment from a

local file on disk.

 Experiment Start with a blank experiment or a preexisting Microsoft sample experiment to

help get you started fast.

Let’s start with a simple, real-world scenario such as predicting whether a person’s income exceeds

$50,000 per year based on his demographics or census data. You can imagine how incredibly useful the

ability to predict a person’s income might be in the world of sales and marketing.

This is exactly the kind of predictive analytics that would be most useful for a successful targeted

marketing campaign for products that require buyers with a certain level of disposable income. This will

be a simplified example of how you could use Azure Machine Learning with ML Studio and ML API web

services to create a real-world, cloud-based predictive analytics solution to help drive a marketing

campaign.

In this walkthrough, we follow the entire process of developing a predictive analytics model in Azure

 49

Machine Learning Studio and then publish it as an Azure Machine Learning API web service.

We start by downloading a sample Census Income Dataset from a public repository such as the UCI

Machine Learning Repository from the following link:

http://archive.ics.uci.edu/ml/datasets/Census+Income.

We then develop and train a predictive model based on that dataset, and then publish the predictive

model as a web service that can be used by other applications. These are the high-level steps we follow:

1. Download, prepare, and upload a census income dataset.

2. Create a new Azure Machine Learning experiment.

3. Train and evaluate a prediction model.

4. Publish the experiment as an Azure Machine Learning web service.

5. Access the Azure Machine Learning web service via sample tester programs.

Download dataset from a public repository

To develop a predictive model for our sample income level predictive analytics model, we use the Adult

Census Income Binary Classification dataset from the UCI Machine Learning repository. You can

download the dataset from http://archive.ics.uci.edu/ml/datasets/Census+Income.

The website will have a link to a download folder, and you will want to download the adult.data file

to your local computer. This dataset is in the Comma Separated Values (CSV) format. Note that the

website also contains information about the 15 attributes found in this dataset. We use this information

to create column headers for our data before we upload it into our experiment.

Now, open the adult.data file with Microsoft Excel or any other spreadsheet tool and add the column

header names from the list of attributes on the website as in the following list. Note that some

attributes are labeled as continuous, as they represent numerical values, whereas other attributes have a

predefined list of potential values.

 Age Continuous

 Workclass Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,

Without-pay, Never-worked

 Fnlwgt Continuous

 Education Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th,

7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool

 Education-num Continuous

http://archive.ics.uci.edu/ml/datasets/Census+Income
http://archive.ics.uci.edu/ml/datasets/Census+Income

 50

 Marital-status Married-civ-spouse, Divorced, Never-married, Separated, Widowed,

Married-spouse-absent, Married-AF-spouse

 Occupation Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty,

Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving,

Priv-house-serv, Protective-serv, Armed-Forces

 Relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried

 Race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black

 Sex Female, Male

 Capital-gain Continuous

 Capital-loss Continuous

 Hours-per-week Continuous

 Native-country United-States, Cambodia, England, Puerto-Rico, Canada, Germany,

Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras,

Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France,

Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua,

Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holland-Netherlands

 Income >50K, <=50K

After you have inserted a Header row with these column values, be sure to save the file with the .csv

extension when you are done. For the purposes of this walkthrough, name the file Adult.data.csv when

you save it. Figure 3-8 shows a screenshot of the Excel spreadsheet with the associated column

headings.

FIGURE 3-8 Screenshot of the Excel spreadsheet containing the adult census data.

Let’s summarize a few facts about the Census Income dataset that we use for our first Azure Machine

Learning experiment:

 Number of unique attributes Fourteen related to the outcome

 51

 Number of instances in the dataset 48,842

 Prediction task Determine whether a person makes over $50,000 a year

Note that this Census Income dataset is actually already provided by Microsoft as one of their

sample datasets under the name of the Adult Census Income Binary Classification dataset. We are going

through these steps manually to provide a comprehensive, end-to-end overview of the entire Azure

Machine Learning workflow process. Most likely, your real-world predictive model datasets will also

come from external sources, so it’s good to know how it all works together from beginning to end.

Upload data into an Azure Machine Learning experiment

Once we have added the appropriate column headings to the sample Census Income dataset, we will

then upload the dataset into the Azure Machine Learning workspace so that we can incorporate it into

our prediction model. Click + New in the bottom left of the screen and select Dataset to upload a new

dataset. Figure 3-9 shows the option to upload a new dataset from a local file.

FIGURE 3-9 The Azure Machine Learning option to upload a dataset from a local file location.

 52

Next, click From Local File. You will see an upload screen similar to Figure 3-10. Here you can specify

the upload file properties such as the location of the file, the name for the new dataset (we will use

Adult.data.csv), the type of file (Generic CSV file with a header), and an optional description for the new

dataset.

FIGURE 3-10 Azure Machine Learning dialog box options to specify uploading a new dataset from a local file

location.

Once you have entered the information and clicked the check mark, your dataset will be uploaded

asynchronously into your Azure Machine Learning workspace for your use in your first Azure Machine

Learning experiment.

 53

Create a new Azure Machine Learning experiment

Create a new experiment by clicking on +NEW in the bottom left corner of the screen. Click Experiment

and then click Blank Experiment as shown in Figure 3-11.

FIGURE 3-11 List of new experiment types in Azure Machine Learning.

Note that in addition to a blank experiment template, there are many other sample experiments that

you can load and modify to provide a jumpstart to your Azure Machine Learning activities.

Once the new blank experiment has loaded, you will then see the Azure ML Studio visual designer

screen, as shown in Figure 3-12.

 54

FIGURE 3-12 A blank Azure Machine Learning experiment in the Azure ML Studio designer.

Note that the designer is made up of three main areas:

 Left navigation pane This area contains a searchable listing of all the Azure Machine Learning

modules that can be used in creating a predictive analytics model.

 Modules are grouped by functional area and contains functions for

 Reading, formatting, and converting datasets.

 Using and training machine learning algorithms.

 Scoring and evaluating predictive model results.

 Center pane In the visual designer, Azure Machine Learning Experiments resemble flowcharts.

They are assembled by dragging and dropping module shapes from the list in the left pane into

the visual design surface in the middle of the screen. Modules can be freely positioned on the

surface and are connected by drawing lines between input and output ports.

 Right pane In the Properties view, properties of selected modules are viewed and set using the

pane on the right side of the visual designer.

Now, expand the Saved Datasets module on the left side of the screen and you will see where our

uploaded dataset Adult.data.csv appears as a dataset for use in your Azure Machine Learning

 55

experiment. Figure 3-13 shows the Adult.data.csv dataset ready to be dragged and dropped onto the

visual designer surface.

FIGURE 3-13 Dragging the Adult.data.csv dataset onto the designer surface.

Visualizing the dataset

Drag the Adult.data.csv dataset into the middle of the visual designer surface and drop it into the

experiment. Note that there are two ways to view the data in this dataset.

1. You can right-click anywhere in the dataset shape and then select Download to download the

dataset to your local system. Figure 3-14 shows the Download menu option.

 56

FIGURE 3-14 Downloading a dataset from an Azure Machine Learning experiment.

2. You can hover over the connector at the bottom of the shape and then right-click. You will see

the options shown in Figure 3-15 to either download or visualize the dataset.

FIGURE 3-15 Right-clicking the connector displays options to download or visualize the dataset.

When you click Visualize, you will see a screen similar to Figure 3-16.

 57

FIGURE 3-16 Visualization of the Adult.data.csv dataset.

Note that the Visualize option provides some great statistical and visualization features to allow you

to quickly analyze the underlying data for the selected column. For example, click on the workclass

column and you will see a screen similar to the one shown in Figure 3-17.

 58

FIGURE 3-17 Statistics for the workclass column in the dataset.

Note that for the workclass column, the Statistics tab reveals the key information about the data

found in this dataset shown in Figure 3-18.

FIGURE 3-18 Key statistics for the workclass column in the Adult.data.csv dataset.

Note the following key details about the workclass column in the Adult.data.csv dataset:

 There are eight unique values found in this dataset.

 There are 1,836 records with missing values. This is an important detail, as the records with

missing values would need to be either updated with the correct value or dropped completely

to allow for the most accurate results.

 59

 The workclass field is designated as a String field type. As such, there are only nine valid string

combinations for this field.

If you scroll down on the right side, you will see a Visualizations chevron similar to Figure 3-19 where

the various field values for this column (workclass) are represented in a histogram.

FIGURE 3-19 A histogram visualization of the workclass field in the Adult.data.csv dataset.

Using this built-in tool, you can easily determine from the visualization what the most common

values found for the “workclass” field in the dataset are, such as Private and Self-employed on the left

side.

 60

Note how the ability to quickly and simply visualize your model’s datasets using Azure ML Studio

makes it fast and easy to infer key data elements, associations, combinations, and patterns. This ability

to visualize and quickly establish inferences will help rapidly create a powerful predictive analytics

solution.

Split up the dataset

Typically, when creating an Azure Machine Learning experiment, we want to partition or split our

dataset into two logical groupings for two specific purposes:

 Training data This grouping is used for creating our new predictive model based on the

inherent patterns found in the historical data via the ML algorithm we use for the solution.

 Validation data This grouping is used for testing the new predictive model against known

outcomes to determine accuracy and probabilities.

To accomplish this task, perform the following steps to split your dataset into two parts.

1. Expand the Data Transformation set of modules in the left pane.

2. Drag and drop the Split module onto the Azure Machine Learning designer surface.

3. Connect the Split” module to the Adult.data.csv dataset.

4. Click the Split module and set the value of the Fraction Of Rows In The First Output field to 0.80.

This will divert 80 percent of our data to a training area in the designer.

 61

Figure 3-20 displays a screenshot of how this is done in Azure ML Studio.

FIGURE 3-20 Splitting the Adult.data.csv dataset for training and testing purposes.

This approach allows us to divert 80 percent of the data in the dataset to training the model. We can

use the remaining 20 percent of the data in the dataset to test the results of our new model for

accuracy.

Train the model

The next step is to insert an Azure Machine Learning algorithm so we can “teach” the model how to

evaluate the data. Start by expanding the Machine Learning module in the left pane. Then expand the

Train submodule. Drag the Train Model shape onto the designer surface. Then connect the Train Model

shape to the Split shape.

Next, expand Initialize Model under the Machine Learning module. Then expand the Classification

submodule. For this experiment, we use Two-Class Boosted Decision Tree. Select it and drag and drop it

onto the Azure Machine Learning designer surface. Your experiment should now look like the

screenshot in Figure 3-21.

 62

FIGURE 3-21 The Azure Machine Learning experiment with a Train Model shape connected to the Two-Class

Boosted Decision Tree module.

At this point, we have designed our experiment to split off 80 percent of the Adult Census dataset to

be used for training our model through a Boosted Decision Tree Regression algorithm.

At this point, you might be wondering why we chose this particular algorithm to work with our

prediction. Don’t worry, as we cover the topic of the proper use and application suitability of various

machine learning predictive algorithms in a future chapter, so for now let’s use the Two-Class Boosted

Decision Tree for our simple example Azure Machine Learning experiment.

Selecting the column to predict

To finish configuring the algorithm, we need to indicate which column in the dataset is the outcome or

prediction column, the column that is to be predicted based on all the other columns in any particular

row of the dataset.

To do this, click the Train module. When you click the module, a Properties pane will open on the

right side of the Azure ML Studio screen, as shown in Figure 3-22.

 63

FIGURE 3-22 Opening the column selector for the Train module.

Once you have set the module on the design surface, launch the column selector in the right pane.

Select Iinclude and the column named income.

Figure 3-23 is a screenshot of the column selector denoting that the income column is to be

predicted from the incoming dataset.

 64

FIGURE 3-23 Configuring the Train module to select a single column and include the income column.

In this way, we are instructing the Azure Machine Learning algorithm to infer patterns from all the

other columns in each row of the dataset, so that the income column can be predicted. We are using 80

percent of our dataset to “train” the model, based on known inputs and outputs.

At this point, we are now ready to actually start training our model. Select the RUN option at the

bottom of the screen, and sit back and watch as it actually trains our model. You will notice that as each

stage of our experiment completes, a green check mark will appear on the right side of each operation

in our experiment, as shown in Figure 3-24.

 65

FIGURE 3-24 Training our new Azure Machine Learning income prediction model.

Score the model

Now that we have trained our new Azure Machine Learning prediction model, we can next evaluate the

results to determine the model’s accuracy and therefore suitability as a solution. Remember, the key to

a great Azure Machine Learning solution is to develop iteratively, where the keys to success are to fail

fast and fail often.

To implement the evaluation module, expand the Machine Learning module on the left side of

Azure Machine Learning Studio. Then expand the Score Model submodule. Drag and drop the Score

Model module onto the designer surface. Next, connect the Score Model module to the Train module.

Then finally, connect it to the other half of the Split module. Essentially you are now “scoring” the

accuracy of the model against the remaining 20 percent of the dataset to understand how accurate the

prediction model really is (or isn’t).

Next, click Run on the bottom of the page and wait for all the results to be processed (denoted by a

green check mark appearing on the right side of each module). Figure 3-25 is a screenshot of our

 66

income prediction Azure Machine Learning experiment at this point.

FIGURE 3-25 Azure ML Studio, training and scoring the model.

Visualize the model results

After all modules have been processed, hover your cursor over the output of the Score Model module

and right-click. From the shortcut menu, select Visualize as shown in Figure 3-26.

 67

FIGURE 3-26 Visualizing the results of the scoring module in our Azure ML Studio experiment.

After you select the option to visualize the newly trained model data, a new screen is generated. Scroll

all the way to the right of the visualization and you will note that there are now two additional columns

that appear in the dataset, as shown in Figure 3-27.

 68

FIGURE 3-27 The two new columns added to each row of our trained model indicating the model’s prediction and

prediction probability calculation for each row.

Note that there are now two additional columns that appear in our dataset:

 Scored Labels This column denotes the model’s prediction for this row of the dataset.

 Scored Probabilities This column denotes the numerical probability (or the likelihood) of

whether the income level for this row exceeds $50,000.

These new columns in our dataset represent that, in addition to making a prediction calculation for

each row, the algorithm can also provide a numerical probability factor. This probability factor

represents the model’s potential for accurately predicting each row in the dataset based on the specific

values found in each of the row’s other columns.

Typically, this is the point where predictive analytics becomes a very iterative process. You might

want to try many different algorithms or even chain them together (in an advanced machine learning

topic called an ensemble) to come up with a predictive model that proves fruitful.

 69

Evaluate the model

One of the most compelling features of Azure Machine Learning is the ability to quickly evaluate

different algorithms. Choose the right one with just a few mouse clicks, thanks to the Evaluate module.

To see how accurate our model really is, we can easily evaluate our model using a built-in Evaluate

module in Azure ML Studio.

To do this, click the Machine Learning module in the left navigation pane of Azure ML Studio. Select

the Evaluate submodule. Finally, select the Evaluate Model module and drag it onto the visual designer

surface, below the Score Model module. Connect the other half of the Split module to the Score Model

module. Then connect the Score Model module to the left side of the Evaluate Model module, as shown

in Figure 3-28.

FIGURE 3-28 Connecting the Evaluate Model module to evaluate the results of the income prediction module.

 70

Click Run at the bottom of the Azure ML Studio screen. Watch as each stage is processed and

marked complete, as denoted by a green check mark on the right of each module in our experiment.

After the processing has completed, right-click the bottom connector of the Evaluate Model module.

Select Visualize from the shortcut menu to generate the evaluation results screen shown in Figure 3-29.

FIGURE 3-29 Visualizing the Azure Machine Learning Evaluation Model module results for the income prediction

model.

The Evaluate Model module produces a set of curves and metrics that allow you to view the results

of a scored model or compare the results of two scored models. You can view the results in the

following three formats:

 71

 Receiver Operator Characteristic (ROC) curves This format displays the fraction of true

positives out of the total actual positives. It contrasts this with the fraction of false positives out

of the total negatives, at various threshold settings. The diagonal line represents 50 percent

accuracy in your predictions and can be used as a benchmark that you want to improve. The

higher and further to the left, the more accurate the model is. As you do experiments you want

to see the curve move higher and to the left.

 Precision/Recall curves Precision represents the fraction of retrieved instances that are

relevant, whereas recall represents the fraction of relevant instances that are retrieved.

 Lift curves This format is a variation on the ROC curve. It measures the fraction of true

positives, in relation to the target response probability.

In the visualization in Figure 3-29, you can see that the results of both datasets (our “trained” dataset

and our “validation” dataset) are nearly identical, with the blue and red lines almost exactly on top of

each other. This would indicate that we have a reasonably accurate prediction model. Consequently, for

the purposes of this initial walk-through of Azure Machine Learning, we assume that the predictive

model is reasonably accurate and take it to the next phase.

Save the experiment

At this point, you want to save a copy of your experiment. Click Save As at the bottom of the screen. We

are about to make major changes to our experiment that will alter the core functionality from being a

training experiment to an operational experiment. Save your experiment using a descriptive name such

as Azure ML Income Prediction – Train Model Experiment.

Next, click Save As at the bottom of the screen to resave the experiment before implementing the

next phase using a different name such as Azure ML Income Prediction – Implement Model.

Preparing the trained model for publishing as a web service

Now that we have a working “trained” predictive model that produces reasonable results, the next step

is to run the option in the bottom navigation pane called Prepare Web Service. Notice that before these

steps, this option was unavailable as a valid command to execute.

Before we execute the next command, now is a good time to do a click Save As and save the

experiment under a new name. The reason for doing this now is that when we execute the Prepare Web

Service command, it will make a few modifications to our experiment to make things ready for

publishing it as a web service. Figure 3-30 shows our experiment before we execute the Prepare Web

Service command.

 72

FIGURE 3-30 Ready to run the Prepare Web Service command.

The next step is to execute the Prepare Web Service command and watch as Azure Machine

Learning Studio automates the following tasks for you:

 Adds a web service Input module.

 Adds a web service Output module.

 Saves the trained model in our experiment repository of trained models.

After the experiment has been modified by running the Prepare Web Service command, the

experiment will show the two new modules for web service input and web service output as depicted in

Figure 3-31.

 73

FIGURE 3-31 After the Prepare Web Service command has been run.

Note the process has saved our newly trained model and populated it under the Trained Models

navigation bar as shown in Figure 3-32.

FIGURE 3-32 The newly populated trained model for Azure ML Income Prediction.

One of the other modifications that was made to our experiment was the addition of a new

command above the bottom navigation bar to toggle the ability to switch from an experiment view to a

web services view. Figure 3-33 shows the new Web Service toggle command option after we have run

the Prepare Web Service command.

 74

FIGURE 3-33 The new Web Service toggle button.

By clicking the Web Service toggle button, you can switch between an Experiment view and a Web

Service view. Figure 3-31 depicted an Experiment view where the web service input and output

modules were unavailable. Figure 3-34 depicts the Web Service view where the web service input and

output modules are displayed in solid blue and fully enabled.

FIGURE 3-34 The Web Service view after clicking the Web Service toggle button.

Note that in Figure 3-34, the input dataset, Adult.data.csv, is unavailable, which means that the input

for this experiment will come from the Web Service Input module. Additionally, the connector lines

depicting the processing flow also turn blue to illustrate the logic paths taken when the experiment is

processed via a web service call.

 75

If we click the toggle button again, the experiment switches back to the Experiment view, as shown

in Figure 3-35.

FIGURE 3-35 The Experiment view after clicking the Web Service toggle button again.

Create scoring experiment

The next step in the process is to transform our experiment from training mode to operational mode.

Because we have already trained our model, there is no need to keep training it as we move toward

publishing it as a web service. For maximum efficiency, we only need to retrain our model periodically,

for example, whenever new data is available, or perhaps when seasonal datasets are desired as

influencers on the model depending on the time of year.

In the previous step, the Azure ML Studio added our trained model to the Trained Models

repository. But notice that the experiment still contains the modules for training the model such as the

Train Model and Two-Class Boosted Decision Tree algorithm. Additionally, there is no need to have the

Evaluate module in our experiment as we have already gone through the evaluation phase of our

workflow.

 76

The good news is that Azure ML Studio contains a built-in command that will automatically take

care of optimizing our experiment for use as a streamlined web service. That command, Create Scoring

Experiment is located on the far right of the bottom navigation bar as seen in Figure 3-36.

FIGURE 3-36 The Create Scoring Experiment command.

Before we run the Create Scoring Experiment command, now is great time to perform a Save As

command and save a copy of our experiment as it still contains all the training, scoring, and evaluation

modules. The reason for doing this now is that the next command we run will dramatically alter the

experiment as it is prepared for publishing as a web service.

Now it is time to run the Create Scoring Experiment command and watch as Azure ML Studio works

its magic on the experiment.

 77

FIGURE 3-37 The Azure Machine Learning experiment after running the Create Scoring Experiment command.

After executing the Create Scoring Experiment command, the following changes were automatically

made to our Azure Machine Learning experiment:

 The Split module has been removed.

 The Two-Class Boosted Decision Tree module and the Train module have been removed and

replaced with the previously trained model from the Trained Models repository.

 The Evaluate module has been removed.

This process has streamlined our Azure Machine Learning experiment by optimizing the logic flow

between the web service input and output endpoints. The only internal processing steps are the Score

module and the previously trained and saved Azure ML Income Prediction module. We have

successfully transformed our Azure Machine Learning experiment from training mode to operational

mode. We are now ready to publish our experiment as a web service.

Expose the model as a web service

The next step is to actually expose our new Azure Machine Learning predictive model as a web service.

 78

To enable web service publishing, first run the new income prediction experiment by clicking Run in the

bottom navigation bar. Once the experiment has been run, the Publish Web Service link in the bottom

navigation bar will be enabled, as shown in Figure 3-38.

FIGURE 3-38 The Azure Machine Learning experiment ready to publish as a web service.

Now we are almost done. Just click Publish Web Service on the bottom navigation bar of the

designer screen and you will be asked if you would like to publish your web service. Just select OK.

Figure 3-39 shows the model being published.

FIGURE 3-39 Publishing the web service.

After a few seconds, a dashboard will appear providing the API key and API help links for your new

predictive model web service. Figure 3-40 shows the web service dashboard.

 79

FIGURE 3-40 The Azure Machine Learning web services dashboard.

The Azure ML Studio dashboard provides all the information necessary to invoke our new prediction

model over the Web. The webpage lists the following items to help get you started:

 The API key is the unique security identifier that must be passed on every web service request to

authenticate the caller.

 The API Help Page link for Request/Response displays a series of API usage information that

provides guidance for how to call the Azure Machine Learning web service for an individual

prediction based on a single input record.

 The API Help Page link for Batch Execution displays a series of API usage information that

provides guidance for how to call the Azure Machine Learning web service for one or more

input records.

 The Download Excel Workbook option allows you to download an Excel workbook that contains

the following useful information about your new Azure Machine Learning web service:

 WEB SERVICE URL The HTTP endpoint address for invoking the web service.

 ACCESS KEY The API key as denoted earlier.

 SCHEMA An HTTP URL that will provide information about all the input and output

parameters for your new Azure Machine Learning web service, including all the parameter

 80

names and their corresponding data types.

The Excel Workbook also contains macros that will allow you to invoke your new Azure Machine

Learning web service directly from within Excel. Simply enter the appropriate values for each

input field in the Parameters section of the spreadsheet. The macros will be triggered based on

the worksheet values changing and will invoke the Azure Machine Learning web service and

return the results in the Predicted Values section of the spreadsheet. This capability makes it

very convenient to test various iterations of your input values and get almost instant feedback

on the results. You can easily keep adding rows to the spreadsheet and vary the input

parameters to see the prediction results.

 The Manage Endpoints In Azure Management Portal link takes you to another webpage where

you can manage the endpoints for this web service.

Start by clicking on API Help Page link for the Request/Response web service call. Figure 3-41 is a

screenshot of what sample API usage display.

FIGURE 3-41 The API help page for a Request/Response web service call.

There is a wealth of information presented on this screen. Let’s take a look at each section of the API

usage webpage.

 OData Endpoint Address OData is a Web-based protocol for querying and updating data and

exposing the data using a standardized syntax (see Figure 3-42). OData leverages technologies

such as HTTP, XML, JavaScript Object Notation (JSON), and the Atom Publishing Protocol to

 81

provide access to data over the Web.

FIGURE 3-42 The Azure Machine Learning web service OData address for an experiment.

 Request Headers Figure 3-43 displays the information about how to make a web HTTP POST

Request and the associated request headers that must be populated. The request headers

contain information about the content and acceptable datatypes in the request so that server

returns compatible data. Note that the field is required in the Request

header. This is where you would normally pass the API Key from our new web service to

authorize the caller.

FIGURE 3-43 The Azure Machine Learning web service sample POST web request with required request

headers.

 Request Body The next section of the sample API Request page displays how to construct a

sample HTTP Request Body. Figure 3-44 shows the sample request body.

 82

FIGURE 3-44 The sample HTTP Request Body data structure.

 83

Note that the sample Request Body data structure contains all of the columns of our

Adult.data.csv dataset, except for the income column. The income column has been excluded

(via the Project Columns module in our experiment) because that is the value that we will be

predicting with our web service call.

The Request Body sample represents the exact input format, data columns, and values that must

be passed into the Azure Machine Learning web service to produce a valid response. The

Request Body is in the JSON format, which is a common and popular web data-interchange

format in use today. JSON is easy for humans to read and write and for machines to parse and

generate. The sample Request Body will be an extremely useful guide for constructing our client

applications to successfully consume the web service.

 Response The next section contains information about HTTP response codes that could be

returned by the Azure Machine Learning web service. A successful web service call should always

return an HTTP status code 200-OK. If your web service call is not successful, a link is provided to

a webpage that contains some of the common REST API error codes to help identify the type

and cause of the error. Figure 3-45 shows the Response Status Code information.

FIGURE 3-45 The HTTP Response Status Code section of the sample Azure Machine Learning web service

call.

 Response Headers This section contains information that the Azure Machine Learning web

service server is sending back to the client. In this case, the server is sending information about

the content type of the response body, which is in JSON format. Figure 3-46 provides this

information.

 84

FIGURE 3-46 HTTP Response Header information returned from an Azure MLS web service call.

 Response Body This section contains information about the Response Body returned from our

Azure Machine Learning web service call. Note that it will return data elements for each one of

the columns in our Adult.data.csv dataset (except the income column) along with their

associated data types (numeric or string).

Most important, there are two additional fields appended to the payload that is returned from

our Azure Machine Learning web service call.

 Scored Labels This field denotes the Azure Machine Learning model’s prediction

calculation for this row of the dataset; that is, whether the predicted income level is <=50K

or >50K.

 Scored Probabilities This field denotes the numerical probability of the likelihood of

whether the income level for this row exceeds $50,000.

Figure 3-47 shows the sample Response Body.

 85

FIGURE 3-47 A sample Response Body showing the original dataset columns along with two additional

fields containing the returned prediction result fields.

 Sample Response This section displays the JSON format of the web service Response Body. It

will consist of a JSON record (denoted by braces), made up of the Data Table definition

(“DataTable”), a list of the column names in the data table (“ColumnNames”), the datatype for

each column (“ColumnTypes”), and set of return records (“Values”) containing a

comma-separated list for each value. Figure 3-48 shows a sample response from the API

webpage.

 86

FIGURE 3-48 A subsection of the sample Response Body format.

 87

 Sample Code Here’s the best part: The Azure Machine Learning API webpage even provides

sample code provided in C#, Python, or the R programming languages. This is extremely

convenient for creating quick client testing applications. Just insert your API key value and

populate the input data with valid values from the input dataset. Once those minor inputs are

added, you will have a complete working client application that can call the Azure Machine

Learning predictive analytics web service! See Figure 3-49.

FIGURE 3-49 Sample code section for the Azure Machine Learning sample webpage.

Azure Machine Learning web service BATCH execution

The API for Azure Machine Learning web services call for BATCH processing is similar to the

Request/Response API web service call, but, as the name implies, it is meant for passing along a

reference to a file location in Azure Storage Blob (Binary Large Object) service and then monitoring the

batch execution process until it has completed.

 88

The Azure Machine Learning BATCH web service processes predictions according to the following

high-level logic:

1. Create a local file CSV that contains multiple rows of input data for the prediction model inputs.

2. Upload the file to an Azure blob (you will need an Azure Storage account).

3. Call the Batch Execution web service to process the input data file in the blob.

4. The web service prediction results get written to another Azure blob output file.

5. Download the output blob to a local file.

Figure 3-50 shows a sample BATCH web service request payload. Note the location of the input file

is passed as a reference in Azure Storage Blob service.

FIGURE 3-50 A sample Azure Machine Learning BATCH web service call payload.

After successful invocation of an initial batch web service API call, a Job ID parameter is returned to

the caller.

While the batch job is processing, you can issue requests to the Azure Machine Learning web service

using the unique Job ID to request the status of the executing web service batch job. Note that it is also

possible to issue a Delete command using the Job ID parameter.

If you select the API Help Page link for Batch Execution you will get a similar webpage that will

display information about how to perform the following operations to process a batch job of requested

predictions:

 Submit a job.

 Get job status.

 Delete a job.

The possible status codes returned from the executing web service batch job are as follows:

 0 Not started

 1 Running

 2 Failed

 3 Cancelled

 4 Finished

 89

Testing the Azure Machine Learning web service

Now, it’s time to test our new Azure Machine Learning web service. Azure ML Studio provides a quick

and easy way to interactively test a new web service as part of the publishing process. Simply click the

Test link for the Request Response API link shown in Figure 3-51.

FIGURE 3-51 The link for testing a REQUEST/RESPONSE web service API.

The Test link opens a window where you can interactively enter the values to be used to call the web

service and then see resulting response. You can enter valid input values by referencing the “Attribute

Information” section from the origination dataset download link at

http://archive.ics.uci.edu/ml/datasets/Census+Income.

Figure 3-52 shows the interactive web service test pop-up window.

http://archive.ics.uci.edu/ml/datasets/Census+Income

 90

FIGURE 3-52 The Azure Machine Learning web service interactive testing window.

Once you have entered the sample data inputs, click the check mark icon to submit your web service

request. The Azure Machine Learning service will begin processing your request and will update the

status area at the bottom of your screen.

Click DETAILS, highlighted in Figure 3-53, to see the results of the test web service call, as shown in

Figure 3-54.

 91

FIGURE 3-53 Processing the Azure Machine Learning interactive web service request.

FIGURE 3-54 The Details view of the returned results from the Azure Machine Learning web service call.

Note that when you expand the Details Information icon, it will nicely display all the input

parameters passed to the web service call, along with all the corresponding outputs, which are the two

columns on the far right. In this example, the output from our Azure Machine Learning web service call

displays the (correct) prediction of “>50K” with a probability factor of 0.529029%.

Publish to Azure Data Marketplace

In addition to being able to publish an Azure Machine Learning prediction web service for your own

consumption, you can also submit your prediction model for consumption through the Azure Data

Marketplace.

The Azure Data Marketplace provides the ability to publish Azure Machine Learning web services as

paid or free services for consumption by external customers. Using this process, you can start making

your web services available for other developers to consume in their applications.

Figure 3-55 displays the location of the link to publish to the Azure Data Marketplace.

 92

FIGURE 3-55 The link to publish to the Azure Data Marketplace.

Overview of the publishing process
The following are the steps in publishing an Azure Machine Learning web service to Azure Data

Marketplace.

1. Create and publish an Azure Machine Learning Request/Response service (RRS) web service.

2. From the Azure Management Portal, deploy the prediction service into production.

3. Use the URL of the published web service to publish to the Azure Data Marketplace.

4. Once submitted, your offer is reviewed and needs to be approved before your customers can

start purchasing it. Be aware that the publishing process can take a few business days.

Guidelines for publishing to Azure Data Marketplace
Follow these links to get started with publishing your Azure Machine Learning web service to the Azure

Data Marketplace:

 http://azure.microsoft.com/en-gb/documentation/articles/machine-learning-publish-web-servi

http://azure.microsoft.com/en-gb/documentation/articles/machine-learning-publish-web-service-to-azure-marketplace/

 93

ce-to-azure-marketplace/

 http://datamarket.azure.com/home/

 https://publish.windowsazure.com/

Summary

So there you have it! A complete working Azure Machine Learning experiment that shows the entire

workflow related to developing, training, and deploying a predictive analytics model over the Web in a

matter of minutes! Be amazed, for this feat is truly a marvel of modern cloud alchemy at its best.

As we have seen in this chapter, the Microsoft Azure Machine Learning environment “democratizes”

the mysterious art of data science. It exposes this art to the masses by means of an easy-to-use visual

designer interface that requires literally no programming and only a browser to use.

We have seen how it enables virtually anyone to create sophisticated and powerful predictive

analytic solutions, and how it can then quickly share and expose them for further development,

refinement, and implementation. With the option to publish a predictive model right into the Azure

Data Marketplace, you can even quickly and easily monetize your next big breakthrough in machine

learning!

Modern commercial predictive analytics packages available today will cost you hundreds of

thousands of dollars and take many man-months to implement and master. With Azure Machine

Learning, you are up and running in minutes. It’s free to get started and then pay-as-you-go with all of

your solutions. It doesn’t get any better than this!

http://azure.microsoft.com/en-gb/documentation/articles/machine-learning-publish-web-service-to-azure-marketplace/
http://datamarket.azure.com/home/
https://publish.windowsazure.com/

 94

Chapter 4

Creating Azure Machine Learning

client and server applications

In this chapter, we build on the example provided in Chapter 3, “Using Azure ML Studio,” where we

created our first Azure Machine Learning experiment for predicting income levels using an end-to-end

example. As a brief refresher, we started with a raw data set downloaded from the UCI data repository,

then loaded and saved it into our Azure Machine Learning workspace. Next, we created a workflow to

train a new predictive model using the Two-Class Boosted Decision Tree module. When it was ready to

publish, we set the publish inputs and outputs and exposed the Azure Machine Learning prediction

model as a new web service. We then briefly tested our service by using the “test” link to pop up a

window to interactively enter the values to be used to call the web service, and see the resulting

response.

The purpose of this chapter is to further expand on a working Azure Machine Learning predictive

model and explore the types of client and server applications that you can create to consume Azure

Machine Learning web services. Developing a cool and innovative machine learning predictive model is

really only half the fun. The other half comes when you can quickly expose and incorporate a new Azure

Machine Learning predictive model web service into your core business applications to expedite testing

or production scenarios.

In this chapter, we walk through building various client and server applications meant to consume

Azure Machine Learning predictive models exposed as web services. We start with some very simple

basic client applications and then explore a full-blown ASP.NET Web API web service implementation

that implements the REST protocol and provides Azure Machine Learning predictions using JSON

payloads for inputs and outputs. This approach allows you to quickly and easily expose Azure Machine

Learning web services to a wide variety of modern web and mobile applications for mass consumption.

Why create Azure Machine Learning client applications?

One of the drawbacks with using the built-in, quick tester, pop-up application provided with Azure

Machine Learning Studio is that you must know exactly what all the valid input options are for each of

the 14 input parameters to successfully make a prediction.

 95

The following is a listing of the attributes and allowed values from the UCI data repository site at

http://archive.ics.uci.edu/ml/datasets/Census+Income.

 age Continuous

 workclass Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,

Without-pay, Never-worked

 fnlwgt Continuous

 education Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th,

7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool

 education-num Continuous

 marital-status Married-civ-spouse, Divorced, Never-married, Separated, Widowed,

Married-spouse-absent, Married-AF-spouse

 occupation Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty,

Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving,

Priv-house-serv, Protective-serv, Armed-Forces

 relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried

 race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black

 sex Female, Male

 capital-gain Continuous

 capital-loss Continuous

 hours-per-week Continuous

 native-country United-States, Cambodia, England, Puerto-Rico, Canada, Germany,

Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras,

Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France,

Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua,

Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holland-Netherlands

Think about how time-consuming and impractical it now becomes to test a new Azure Machine

Learning prediction model. Having to memorize or look up all the allowable parameter options for each

variable for each iteration of testing is not the most efficient way to test a model, not to mention the

fact that these parameters are also case-sensitive. Input parameter accuracy (even to the degree of

proper case sensitivity) becomes a crucial element to providing accurate machine learning predictions.

Creating a client application that simplifies the process and providing drop-down list boxes of valid

choices allows the user to quickly and easily submit various combinations of prediction inputs. The user

http://archive.ics.uci.edu/ml/datasets/Census+Income

 96

then gets immediate feedback by seeing the corresponding results in real time.

Azure Machine Learning web services sample code

Let’s start by looking at the default sample code that is provided for calling Azure Machine Learning

web services. After you have exposed an Azure Machine Learning web service, you can reach a code

sample page, by navigating to your Azure Machine Learning workspace from the main Azure menu.

Follow these navigation steps:

1. Navigate to Azure Machine Learning/<YourWorkSpace>. Select the Web Services tab as shown

in Figure 4-1.

FIGURE 4-1 Navigating to the Azure Machine Learning workspace and selecting the Web Services tab.

2. Select the specific implementation version for the Azure Machine Learning web service as shown

in Figure 4-2.

 97

FIGURE 4-2 Select the specific implementation version for the Azure Machine Learning web service.

3. Select the API Help Page for the Request/Response option as shown in Figure 4-3.

FIGURE 4-3 Select the API Help Page for the Request/Response methods.

4. You will then be directed to a webpage where you can easily view all the technical details

necessary to successfully invoke this Azure Machine Learning web service via an HTTP POST

request as seen in Figure 4-4.

 98

FIGURE 4-4 The Azure Machine Learning web service API Help page.

This Help page for the Azure Machine Learning API web service provides specific implementation

details about the following aspects of making an Azure Machine Learning web service via an HTTP

POST request:

 OData End Point Address

 Method Request URI Format

 POST Request Headers

 Sample REQUEST body

 RESPONSE – Status Codes

 RESPONSE – Headers

 RESPONSE – Body

 RESPONSE – Sample Reply

If you scroll all the way down the page, you will see a Sample Code section. This will help you get a

jump-start on creating new clients that can call your new Azure Machine Learning web service. Note in

Figure 4-5 that implementation samples are provided for the programming languages C#, Python,

and R.

 99

FIGURE 4-5 Sample code for invoking an Azure Machine Learning web service.

C# console app sample code

Let’s start by looking at the default sample code that is provided for calling our Azure Machine

Language web service from C#. To get started, you will need a copy of Visual Studio. You can download

a free copy of Visual Studio Express at the following link. Be sure to scroll down the page to the link for

Express 2013 for Windows Desktop:

http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

Start by opening Visual Studio 2013. Then select File/New Project/Visual C#/Windows

Desktop/Console Application. You will see a screen similar to Figure 4-6.

http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

 100

FIGURE 4-6 Creating a Desktop console application in C#.

Choose MLConsoleTestApp as the project name. Pick a location folder for your project. Once the

solution has been generated, cut, copy, and paste the entire sample C# code from the Azure Machine

Learning web service API Help page into the Program.cs module. Be sure to delete all of the original

code in the module.

The next step is to install a required NuGet package to allow the application to make HTTP POST

requests. Open the NuGet Package Manager Console by selecting Tools/NuGet Package

Manager/Package Manager Console as shown in Figure 4-7.

 101

FIGURE 4-7 Invoking the NuGet Package Manager Console.

Once you have a NuGet Package Manager Console window, enter the following command to start

the installation of the Microsoft.AspNet.WebApi.Client NuGet packages and their dependencies:

Install-Package Microsoft.AspNet.WebApi.Client

After the command has finished, you should be able to successfully build the application with no

compiler errors.

Now, let’s examine the sample C# code in Figure 4-8. Notice that there is a class called StringTable

that is used to define a Request to our Azure Machine Learning web service.

 102

FIGURE 4-8 Sample Visual Studio 2013 C# console application.

The StringTable class contains two string arrays used for invoking the web service.

 The ColumnNames string array contains the column names for the input parameters.

 The Values string array will contain the individual values for each corresponding parameter

passed into the web service call.

All the magic really happens in the Main routine, where the program invokes the

InvokeRequestResponseService()method call and then displays the results.

Figure 4-9 shows the InvokeRequestResponseService()method call where we can see the actions

required to make a successful web service call.

 103

FIGURE 4-9 Sample C# code to invoke Azure Machine Learning web services.

There are some noteworthy aspects to point out in the preceding sample code.

 A dictionary object named Inputs is populated with two string arrays.

 The first string array named ColumnNames is prepopulated with the names for the web service

input parameters.

 The second string array named Values is prepopulated with default numeric and string values

for the web service input parameters.

 All the initial code sample input values are set to 0 or value to invoke a successful web

service call.

 The correct input values would come from selecting appropriate options for each of the 14

parameters for the UCI data repository site at

http://archive.ics.uci.edu/ml/datasets/Census+Income.

 An HTTP Request header for Authorization is set based on the Azure Machine Learning web

service API key field for this web service invocation.

 You will need to provide your own value for the apikey field from your Azure Machine Learning

web service.

 The client.BaseAddress variable is set to the specific URL instance of your Azure Machine

Learning web service.

You can find the API key for your web service by navigating to the Web Services tab of your Azure

Machine Learning Studio workspace. The API key can be found by clicking the specific web service

version for your experiment as shown in Figure 4-10.

http://archive.ics.uci.edu/ml/datasets/Census+Income

 104

FIGURE 4-10 The Azure Machine Learning Web Services page showing the location of the API key.

Note that if we run the console app at this point, we will get the results shown in Figure 4-11, based

on providing all zeroes as inputs.

FIGURE 4-11 Results returned from the C# console application after invoking the Azure Machine Learning web

service.

In this example, the response back from our call to the Azure Machine Learning web service indicates

that this input candidate likely makes less than $50,000 a year. The corresponding confidence level is

0.0010072038276121.

 105

Now watch what happens if we replace the Values input string array parameters with valid data that

is likely to have a higher score as in the following code fragment:

 Values = new string[,] { {

 "52",

 "Self-emp-not-inc",

 "209642",

 "HS-grad",

 "12",

 "Married-civ-spouse",

 "Exec-managerial",

 "Husband",

 "White",

 "Male",

 "0",

 "0",

 "45",

 "United-States",

 "0"

 }

 }

 }

 },

Figure 4-12 shows the results of a more accurate prediction. Based on the updated, nonzero, and

valid input parameters given, the candidate is likely to make more than $50,000 a year with a

confidence level of 0.549394130706787.

FIGURE 4-12 Results from the Azure Machine Learning web service call after adjusting the input parameters.

R sample code

In addition to C#, one of the additional code samples provided for invoking an Azure Machine Learning

web service is in the R programming language. In the world of data science, R is a very popular

programming language for developing data analytics, statistical modeling, and graphics applications.

You can find an excellent tutorial on using the R programming language with Azure Machine Learning

at http://azure.microsoft.com/en-us/documentation/articles/machine-learning-r-quickstart/.

To get started with the R code sample, you will need to download a few prerequisites, including the

following:

 Open source R (free) downloads are available at the Comprehensive R Archive Network or CRAN

at http://www.r-project.org/.

http://azure.microsoft.com/en-us/documentation/articles/machine-learning-r-quickstart/
http://www.r-project.org/

 106

 RStudio is a powerful and productive user interface for R. It’s free and open source, and works

great on Windows, Mac, and Linux platforms. Download the desktop version at

http://www.rstudio.com/products/rstudio/.

 A tutorial introduction to RStudio is available at

https://support.rstudio.com/hc/en-us/sections/200107586-Using-RStudio.

Once you have installed all these prerequisites, start the RStudio application and paste in the R

sample code from the Azure Machine Learning web services page. Figure 4-13 shows a screenshot of

the RStudio environment and the pasted sample Azure Machine Learning R code to invoke our web

service.

FIGURE 4-13 Sample R code in RStudio to invoke the Azure Machine Learning web service.

Before we can run the R code sample, we must first install two required packages in RStudio that

appear at the top of the Azure Machine Learning web service R code sample:

 library("RCurl")

 library("RJSONIO")

http://www.rstudio.com/products/rstudio/
https://support.rstudio.com/hc/en-us/sections/200107586-Using-RStudio

 107

To do this, simply click the menu option for Tools, then click Install Packages, as shown in

Figure 4-14.

FIGURE 4-14 Invoking the Install Packages option in the RStudio environment.

Next, type the following package names: RCurl, RJSONIO. Click Install as shown in Figure 4-15.

 108

FIGURE 4-15 Installing the R packages for RCurl and RJSONIO.

After the packages have been downloaded and installed, we are almost ready to run the R code

sample. First, though, we need to update the required parameters for the Azure Machine Learning web

service API key.

You can find the API key for your web service by navigating to the Web Services tab of your Azure

Machine Learning Studio workspace. The API key can be found by clicking on the specific web service

version for your experiment. It is then displayed on the web services dashboard.

Once you have updated the apikey parameter in the R code sample, the code will be ready to run.

You can now run through the code by selecting or highlighting all the code in the main window and

then clicking Run in the top left quadrant of the RStudio screen. As you step thru each line of the R

code, you will see the code being executed on the right side of the RStudio environment. The bottom

left portion of the screen contains the results of each call. The results of the call to our Azure Machine

Learning web service are shown in Figure 4-16.

 109

FIGURE 4-16 Invoking the Azure Machine Learning web service from within RStudio.

Because all the input parameters were set to 0 in the R code sample, the result of the call is a

prediction of <=50K and a very low confidence factor of 0.0010072038276121. Just as in the previous

C# console code sample, if we change the input parameters to contain valid inputs, we will get a

different outcome. You can do this by updating the Values list parameters as in the following code

sample.

 "Values" =

 list(

 list(

 "52",

 "Self-emp-not-inc",

 "209642",

 "HS-grad",

 "12",

 "Married-civ-spouse",

 "Exec-managerial",

 "Husband",

 "White",

 "Male",

 "0",

 110

 "0",

 "45",

 "United-States",

 "0"

)

)

)

Now, when we rerun the updated R code sample in RStudio with valid (and more reasonable) input

parameters, we get a payload back with all the original input parameters, along with a prediction of

>50 with a confidence factor of 0.549394130706787, as shown in Figure 4-17.

FIGURE 4-17 Invocation of the Azure Machine Learning web service from the R sample code with different input

parameters.

Moving beyond simple clients

The last two code samples in C# and R were provided as part of the Azure Machine Learning web

service environment for use as basic guidance for invoking an Azure Machine Learning web service.

These code samples are effective in helping you get started with building simple clients in various

programming languages such as C#, Python, and R, to invoke Azure Machine Learning web services.

 111

They fall short, however, in terms of providing an optimized user experience for entering the many

various parameter input combinations required to fully exercise and test an Azure Machine Learning

predictive model.

To that end, we explore the options for creating more user-friendly clients. We extend the web

services so that the widest variety of desktop, web, and mobile clients can consume the Azure Machine

Learning predictive models developed within Azure Machine Learning Studio.

Cross-Origin Resource Sharing and Azure Machine Learning web

services

Cross-Origin Resource Sharing (CORS) is a mechanism that allows web objects (e.g., JavaScript) from

one domain to request objects (web service requests) from another domain. Cross-origin requests

initiated from scripts have been subject to restrictions primarily for security reasons. CORS provides a

way for web servers to support cross-site access controls, which enable secure cross-site data transfers.

At the time of this writing, it should be noted that Azure Machine Learning web services do not

currently support CORS requests. See the following link for more information:

https://social.msdn.microsoft.com/Forums/en-US/b6ddeb77-30e1-45b2-b7c1-eb4492142c0a/azure

-ml-published-web-services-cross-origin-requests?forum=MachineLearning.

This CORS restriction really means that if you wish to fully exploit Azure Machine Learning web

services for deployment, testing, and production for a wide variety of (web) clients, you will need to

host your own server-side applications. You basically have two choices.

 Host a web application, such as an ASP.NET webpage, and invoke the Azure Machine Learning

web service server-side to conform to the current Azure Machine Learning CORS restrictions.

 Host your own web service that does provide CORS support and can in turn invoke the Azure

Machine Learning web service on behalf of a wide variety of web and mobile clients via modern

protocols and data formats like REST and JSON.

We explore each of these options in the next sections.

Create an ASP.NET Azure Machine Learning web client

To provide a better experience for testing our new Azure Machine Learning income prediction web

service, we will build an ASPX webpage. This webpage is based on the sample C# code provided with

our Azure Machine Learning web service. If you don’t already have a copy of Visual Studio, you can

download a free copy of Visual Studio 2013 Express at http://www.visualstudio.com/en-us/products/

https://social.msdn.microsoft.com/Forums/en-US/b6ddeb77-30e1-45b2-b7c1-eb4492142c0a/azure-ml-published-web-services-cross-origin-requests?forum=MachineLearning
https://social.msdn.microsoft.com/Forums/en-US/b6ddeb77-30e1-45b2-b7c1-eb4492142c0a/azure-ml-published-web-services-cross-origin-requests?forum=MachineLearning
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

 112

visual-studio-express-vs.aspx. Let’s start by creating a new ASP.NET Web Application project as shown

in Figure 4-18.

FIGURE 4-18 Create a new ASP.NET web application in Visual Studio 2013.

Next, select an Empty web project template as shown in Figure 4-19.

http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

 113

FIGURE 4-19 Selecting an Empty ASP.NET project template in Visual Studio 2013.

Visual Studio then create an empty ASP.NET Web solution for you. Next, right-click the project and

select Add from the shortcut menu as shown in Figure 4-20.

 114

FIGURE 4-20 Adding a new item to the Visual Studio 2013 project.

Choose a Web Form and name the page Default.aspx as shown in Figure 4-21.

 115

FIGURE 4-21 Selecting a Web Form item to add to the Visual Studio project.

Making it easier to test our Azure Machine Learning web service

Next, we modify the ASPX page to create a webpage layout that uses input controls like drop-down list

boxes, as shown in Figure 4-22. This provides the user a valid list of options for each parameter required

for the inputs to the Azure Machine Learning web service.

You can get a listing of all of the allowable values for each parameter from the original location

where we obtained our sample dataset, at the UCI Machine Learning Repository from the link at

http://archive.ics.uci.edu/ml/datasets/Census+Income.

http://archive.ics.uci.edu/ml/datasets/Census+Income

 116

FIGURE 4-22 Default.aspx file showing the markup for a drop-down list box for selecting education level.

We end up with a much more user-friendly interface that facilitates the quick input of various (and

valid) parameter input values to test our Azure Machine Learning web service. Figure 4-23 shows a

screenshot of the new user interface.

FIGURE 4-23 ASP.NET web form showing a drop-down list box for selecting education levels.

 117

Validating the user input

To further validate our user-provided input, we can also insert client-side JavaScript code, as shown in

Figure 4-24, to further validate the input values, before we call our Azure Machine Learning web service.

FIGURE 4-24 Client-side JavaScript to validate the input fields for the ASP.NET web form page.

 118

When the user clicks the Make Prediction command button on the ASP.NET web form page, we

simply populate the Values string array with the various input values from the webpage as inputs, as

shown in Figure 4-25.

FIGURE 4-25 Capturing the user inputs in the ASP.NET web form application and assembling the payload to call the

Azure Machine Learning web service.

We can then invoke our call to the Azure Machine Learning web service using a similar code block as

the one from the C# console application, as shown in Figure 4-26.

 119

FIGURE 4-26 Invoking the Azure Machine Learning web service from an ASP.NET client.

Figure 4-27 shows how our completed Azure Machine Learning web service Tester ASP.NET

webpage now looks with all the input parameters and easy-to-use drop-down lists on the left side. The

right side of the screen shows the results returned from the Azure Machine Learning web service call.

 120

FIGURE 4-27 The finished ASP.NET webpage showing a sample Azure Machine Learning web service call and

response.

You can see how this type of simple ASP.NET webpage application can make it far easier to interact

with our Azure Machine Learning web service to perform basic testing operations via the use of basic UI

controls like list boxes and client-side validation. This approach also gets around the current support

restriction for CORS capabilities in Azure Machine Learning web services as the ASP.NET

implementation is all done on the server.

The other advantage of this approach is that it allows you to quickly create and deploy an ASP.Net

web application to the cloud to help test your Azure Machine Learning prediction model over the

Internet. This means your teams can help evaluate your predictive models even faster.

 121

Create a web service using ASP.NET Web API

The HTTP protocol can be used for much more than just serving up webpages. It is also a powerful

platform for building APIs that can expose services and data. Almost every development platform today

has an HTTP library, so HTTP services can reach a broad range of clients, including browsers, mobile

devices, and traditional desktop applications.

Consequently, the ultimate solution to unlocking your brand new Azure Machine Learning

prediction web service is to expose it via your own web service. You can maximize the usage across a

wide variety of mobile and web clients.

We accomplish the goal of exposing our new Azure Machine Learning prediction model to the

largest number of clients possible by creating a new web service using the ASP.NET Web API. The

ASP.NET Web API is a framework that makes it easy to build HTTP services that reach a broad range of

clients, including browsers, desktops, and mobile devices. The ASP.NET Web API makes it very easy, and

it is an ideal platform for building HTTP REST applications with the .NET Framework.

Let’s get started on our new web service by starting Visual Studio, clicking the File menu, selecting

New, and then selecting Project. In the Templates pane, select Installed Templates and expand the

Visual C# node. Under Visual C#, select Web. In the list of project templates, select ASP.NET Web

Application. Name the project MLWebAPI and click OK. See Figure 4-28.

 122

FIGURE 4-28 Creating a new ASP.NET Web API project in Visual Studio 2013.

Next, in the New ASP.NET Project dialog box, select the Empty project template. Under Add Folders

And Core References For", select the Web API check box, as shown in Figure 4-29. Click OK.

 123

FIGURE 4-29 Selecting the Visual Studio 2013 options for an empty template and including support for Web API.

Visual Studio 2013 will then create for you a new, blank solution with folders for Controllers and

Models along with a WebAPIConfig.cs file in the App_Start folder (see Figure 4-30).

 124

FIGURE 4-30 The Visual Studio project folder structure for a Web API solution.

Let’s start by first creating a new model to define the output of our new Web API web service call

that will invoke our Azure Machine Learning web service. Right-click the Models folder and then select

Add/New Item, as shown in Figure 4-31.

 125

FIGURE 4-31 Adding a new item to the Visual Studio 2013 project.

Next, select Class, as shown in Figure 4-32, and name the file IncomePredictionResults.cs.

 126

FIGURE 4-32 Adding a new class to the Visual Studio 2013 Web API project.

This creates a new, empty class that we can use to define the result fields of our Web API web service

call in JSON format. We will populate this new class with the fields for all of the existing input

parameters for our Azure Machine Learning web service call plus three additional fields for the

following (see Figure 4-33):

 MLPrediction This field contains the prediction results (<=50k or >50K) returned from the call

to the Azure Machine Learning web service.

 MLConfidence This field contains the confidence factor returned from the call to the Azure

Machine Learning web service.

 MLResponseTime This is an additional field that we will populate as part of our web service to

provide performance metrics on how long the actual call to the Azure Machine Learning web

service took to return the prediction results.

 127

FIGURE 4-33 C# class data structure for the returned results from the Web API web service.

In ASP.NET Web API terms, a controller is an object that handles HTTP requests. We'll add a new

Controller class to our project by right-clicking the Controller folder in the project solution and then

selecting Add and then Controller as shown in Figure 4-34.

 128

FIGURE 4-34 Adding a new Controller class to the Visual Studio 2013 Web API project.

Next, select the Web API 2 Controller – Empty option as shown in Figure 4-35.

 129

FIGURE 4-35 Adding the empty scaffolding for a Web API 2 controller.

When prompted for the new controller name, enter IncomePredictionController and then click Add

as shown in Figure 4-36.

FIGURE 4-36 Adding and naming the new IncomePredictionController controller to the project.

This creates a new, empty Web API controller class that we can use for implementing the processing

logic and functions required to call the Azure Machine Learning web service. Before we populate that

code, let’s take care of a few prerequisites.

 130

Enabling CORS support

Browser security prevents a webpage from making AJAX requests to another domain. This restriction is

called the same-origin policy, and it prevents a malicious site from reading sensitive data from another

site. However, sometimes you might want to let other sites call your web API.

CORS is a W3C web standard that allows a server to relax the same-origin policy. Using CORS, a

server can explicitly allow some cross-origin requests and reject others.

One of the key reasons that we are creating our own web service to invoke the Azure Machine

Learning web service is to bypass the current Azure Machine Learning restrictions on the use of CORS.

As stated earlier, the Azure Machine Learning web services currently only allow for the services to be

invoked from a desktop app or server-side web application. To expose and use CORS in our own web

service, we need to first install a NuGet package into our project.

To do this, start by right-clicking References for the project and selecting Manage NuGet Packages

as shown in Figure 4-37.

FIGURE 4-37 Selecting the Manage NuGet Packages option in Visual Studio 2013.

Once the NuGet Package Manager starts, select Online on the left side and then type Microsoft

ASP.NET Web API into the search box in the top right corner. Scroll down through the results until you

see the package for Microsoft ASP.NET 2.2 Web API Cross-Origin Resource Sharing (CORS) In ASP.NET

Web API as shown in Figure 4-38.

 131

FIGURE 4-38 Installing the NuGet package for ASP.NET WEB API CORS support.

Select the appropriate NuGet package, read and accept the license terms, and install the package

into the Visual Studio project. This is a key piece of the solution to allow support for CORS in our web

service. Next, in the App_Start folder, open the WebApiConfig.cs file and insert the code snippet to

enable CORS support in our web service as shown in Figure 4-39.

 132

FIGURE 4-39 Enabling CORS support in the WebAPIConfig class.

The other task necessary to enable CORS support in our web service is to decorate the

IncomePredictionController class with the attributes shown in Figure 4-40.

FIGURE 4-40 Enabling CORS support in the Web API Controller class.

Figure 4-41 shows the high-level structure of our Web API Controller class to handle web requests

from our clients.

 133

FIGURE 4-41 The IncomePredictionController C# class.

The StringTable class is used to package the input data parameters into string arrays of name–value

pairs before invoking the Azure Machine Learning web service for income predictions, as shown in

Figure 4-42.

FIGURE 4-42 The StringTable class.

Processing logic for the Web API web service

In our sample Web API web service, all the work is done in the asynchronous method call named

GetPrediction(). Here is the high-level logic for processing our Azure Machine Learning web service

request:

 Prepare a new IncomePredictionResults data structure for returning to the caller in JSON format.

 134

 Read and parse the parameters passed in from the HTTP GET request.

 Set up a new StringTable data structure for invoking the Azure Machine Learning web service.

 Populate the StringTable data structure with the input parameters passed in to our web service

from the HTTP GET request.

 Start a stopwatch object to start timing the Azure Machine Learning web service request.

 Make the Azure Machine Learning web service request (asynchronously).

 When the Azure Machine Learning web service call returns, stop the stopwatch object and save

the elapsed time (in milliseconds) that it took to call the Azure Machine Learning web service

and return the results.

 Populate the output data structure with the results of the Azure Machine Learning web service

call.

 Return the results to the caller for the Web API web service request.

The following is the C# code for our Income Prediction Web API Controller class.

public async Task<IncomePredictionResults> GetPrediction()

{

//Prepare a new ML Response Data Structure for the results

IncomePredictionResults incomePredResults = new IncomePredictionResults();

//Parse the input parameters from the request

NameValueCollection nvc = HttpUtility.ParseQueryString(Request.RequestUri.Query);

//Validate Number of Input parameters (TODO: Add more validations)

if (nvc.Count < 14) { }

// Extract Input Values

string inAge = nvc[0];

string inWorkClass = nvc[1];

string infnlwgt = nvc[2];

string inEducation = nvc[3];

string inEducationNum = nvc[4];

string inMaritalStatus = nvc[5];

string inOccupation = nvc[6];

string inRelationship = nvc[7];

string inRace = nvc[8];

string inSex = nvc[9];

string inCapitalGain = nvc[10];

string inCapitalLoss = nvc[11];

string inHoursPerWeek = nvc[12];

string inNativeCountry = nvc[13];

using (var client = new HttpClient())

{

var scoreRequest = new

 135

{

Inputs = new Dictionary<string, StringTable>() {

 { "input1",

 new StringTable()

 { ColumnNames = new string[] {"age", "workclass", "fnlwgt", "education", "education-num",

"marital-status", "occupation", "relationship", "race", "sex", "capital-gain", "capital-loss",

"hours-per-week", "native-country", "income"},

 //Populate Input Parameters with input values

 Values = new string[,] { {

 inAge,

 inWorkClass,

 infnlwgt,

 inEducation,

 inEducationNum,

 inMaritalStatus,

 inOccupation,

 inRelationship,

 inRace,

 inSex,

 inCapitalGain,

 inCapitalLoss,

 inHoursPerWeek,

 inNativeCountry,

 "0"

 }

 }

 }

 },

 },

GlobalParameters = new Dictionary<string, string>()

{

}

};

var sw = new Stopwatch();

const string apiKey =

"Hh8SjZZVxPmoXc4yQl5pIs3sIGEm3Shu71j5hLh/XmFqUampjqdcs4+rOR2KL1WlznG6XfvpRyoFaV5jc2UIYQ==";

client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", apiKey);

client.BaseAddress = new

Uri("https://ussouthcentral.services.azureml.net/workspaces/77ee4cb8552b4362b9080caa76b64cb7/ser

vices/43d81b5deb844108b33c42433bfae69d/execute?api-version=2.0&details=true");

//Time the ML Web Service Call

sw.Start();

HttpResponseMessage response = await client.PostAsJsonAsync("",

scoreRequest).ConfigureAwait(false);

sw.Stop();

string elapsed = sw.Elapsed.TotalSeconds.ToString();

//Check Status of Azure ML Web Service Call

if (response.IsSuccessStatusCode)

{

//Read the HTTP response

string MLResp = await response.Content.ReadAsStringAsync();//.ConfigureAwait(false);

 136

//Parse ML Web Service Response and return a populated IncomePredictionResults response record

incomePredResults = ParseMLResponse(MLResp);

//Update for ML Service Response Time

incomePredResults.MLResponseTime = elapsed;

}

else

{

incomePredResults.MLPrediction = response.ReasonPhrase.ToString();

}

client.Dispose();

//return Ok(incomePredResults);

return incomePredResults;

}

}

The following code is for a helper method called ParseMLResponse() that will parse results from the

Azure Machine Learning web service call and populate the IncomePredictionResults data structure with

the returned results.

private static IncomePredictionResults ParseMLResponse(string result)

{

 var cleaned = result.Replace("\"", string.Empty);

 cleaned = cleaned.Replace("[", string.Empty);

 cleaned = cleaned.Replace("]", string.Empty);

 string[] mlResultsArr = cleaned.Split(",".ToCharArray());

 IncomePredictionResults incomePredResult = new IncomePredictionResults();

 for (int i = 0; i < mlResultsArr.Length; i++)

 {

 switch (i)

 {

 case 0:

 incomePredResult.Age = mlResultsArr[i].ToString(); break;

 case 1:

 incomePredResult.WorkClass = mlResultsArr[i].ToString(); break;

 case 2:

 incomePredResult.Fnlwgt = mlResultsArr[i].ToString(); break;

 case 3:

 incomePredResult.Education = mlResultsArr[i].ToString(); break;

 case 4:

 incomePredResult.EducationNum = mlResultsArr[i].ToString(); break;

 case 5:

 incomePredResult.MaritalStatus = mlResultsArr[i].ToString(); break;

 case 6:

 incomePredResult.Occupation = mlResultsArr[i].ToString(); break;

 case 7:

 incomePredResult.Relationship = mlResultsArr[i].ToString(); break;

 case 8:

 incomePredResult.Race = mlResultsArr[i].ToString(); break;

 case 9:

 137

 incomePredResult.Sex = mlResultsArr[i].ToString(); break;

 case 10:

 incomePredResult.CapitalGain = mlResultsArr[i].ToString(); break;

 case 11:

 incomePredResult.CapitalLoss = mlResultsArr[i].ToString(); break;

 case 12:

 incomePredResult.HoursPerWeek = mlResultsArr[i].ToString(); break;

 case 13:

 incomePredResult.NativeCountry = mlResultsArr[i].ToString(); break;

 case 14:

 incomePredResult.MLPrediction = mlResultsArr[i].ToString(); break;

 case 15:

 incomePredResult.MLConfidence = mlResultsArr[i].ToString(); break;

 default:

 break;

 }

 }

 return incomePredResult;

}

Now we are ready to build and run our new ASP.NET Web API web service. When you first run the

solution, you might notice that the browser returns a bad request. ASP.NET Web API services are

invoked via the HTTP URL requests. To call our service, we will append the following API parameters to

the end of the base URL:

/api/IncomePrediction/GetPrediction?age=53….[the rest of the parameters]

The following is a complete sample HTTP call to our ASP.NET Web API web service with all the input

parameters populated with valid sample data:

http://localhost:24462/api/IncomePrediction/GetPrediction?age=53&workclass=Self-emp-not-inc&fnlw

gt=209642&education=HS-grad&education-num=9&marital-status=Married-civ-spouse&occupation=Exec-ma

nagerial&relationship=Husband&race=White&sex=Male&capital-gain=0&capital-loss=0&hours-per-week=4

5&native-country=United-States

Now if we test our new web service with a simple browser request, we will be prompted to download

a JSON result file, as shown in Figure 4-43.

FIGURE 4-43 A JSON file is returned to the browser after a web request to the ASP.NET Web API web service with

the income prediction results.

If we open the returned JSON file, we see a nicely formatted JSON data payload with all the input

parameters along with the results for the Azure Machine Learning web service call, including the

amount of time the Azure Machine Learning web service call actually took:

{"Age":"53",

"WorkClass":"Self-emp-not-inc",

"Fnlwgt":"209642",

 138

"Education":"HS-grad",

"EducationNum":"9",

"MaritalStatus":"Married-civ-spouse",

"Occupation":"Exec-managerial",

"Relationship":"Husband",

"Race":"White",

"Sex":"Male",

"CapitalGain":"0",

"CapitalLoss":"0",

"HoursPerWeek":"45",

"NativeCountry":"United-States",

"MLPrediction":">50K",

"MLConfidence":"0.549394130706787",

"MLResponseTime":"1.1816294"

}

Now that we have a working ASP.NET Web API web service that can accept and process HTTP GET

requests, we can create a simple web client to consume our new ASP.NET Web API web service. One

easy way to do this is by creating a simple webpage that uses jQuery Mobile. The jQuery Mobile

framework allows you to design a single responsive website or web application that will work on all

popular smartphone, tablet, and desktop platforms. You can learn more about jQuery Mobile at

http://jquerymobile.com.

Figure 4-44 shows a sample webpage that was built using jQuery Mobile to help facilitate the testing

and usage of Azure Machine Learning web services across a multitude of devices.

http://jquerymobile.com/

 139

FIGURE 4-44 A jQuery Mobile web application to call our ASP.NET Web API web service.

In Figure 4-45, we can see the Prediction Results tab showing all the original web service call

parameters along with the results of the call to our Azure Machine Learning web service for predicting a

person’s income level based on basic demographic data.

 140

FIGURE 4-45 The results of a call to our new ASP.NET Web API web service displayed in a jQuery Mobile web

application.

The following is the JavaScript code behind the Make Prediction button, which makes the call via

AJAX to our exposed web service.

$("#btnMakePrediction").click(function (e) {

 e.preventDefault();

 jQuery.support.cors = true;

 //Get Input Variables

 var iAge = document.getElementById("Age").value.toString();

 var iWorkclass = document.getElementById("Workclass").value.toString();

 var iFnlwgt = document.getElementById("Fnlwgt").value.toString();

 var iEducation = document.getElementById("Education").value.toString();

 var iEducationnum = document.getElementById("Education-num").value.toString();

 var iMaritalstatus = document.getElementById("marital-status").value.toString();

 var iOccupation = document.getElementById("occupation").value.toString();

 var iRelationship = document.getElementById("relationship").value.toString();

 var iRace = document.getElementById("race").value.toString();

 141

 var iSex = document.getElementById("sex").value.toString();

 var iCapitalgain = document.getElementById("capital-gain").value.toString();

 var iCapitalloss = document.getElementById("capital-loss").value.toString();

 var iHoursperweek = document.getElementById("hours-per-week").value.toString();

 var iNativecountry = document.getElementById("native-country").value.toString();

 // Make AJAX call to the Web Service

 var jqxhr = $.ajax(

 {

 url: 'http://mlwebservice.azurewebsites.net/api/IncomePrediction/GetPrediction',

 type: "GET",

 data: {

 age: iAge,

 workclass: iWorkclass,

 fnlwgt: iFnlwgt,

 education: iEducation,

 educationnum: iEducationnum,

 maritalstatus: iMaritalstatus,

 occupation: iOccupation,

 relationship: iRelationship,

 race: iRace,

 sex: iSex,

 capitalgain: iCapitalgain,

 capitalloss: iCapitalloss,

 hoursperweek: iHoursperweek,

 nativecountry: iNativecountry

 },

 dataType: "json",

 async: false

 }

)

 // Process the results of the AJAX call

 .done(function (responseData) {

 var MLStatus = "";

 $("#MLRedResults").html('');

 $.each(responseData, function (index, item) {

 $("#MLRedResults").append("" + index + ": " + item + "");

 if (index == 'MLPrediction')

 {

 MLStatus = item;

 }

 });

 //Render the results

 $("#MLRedResults").append("<label id='MLPredStatus' >" + MLStatus +

"</label>

");

 if (MLStatus == '>50K') {

 $('#MLPredStatus').css({ background: "green" })

 }

 if (MLStatus == '<=50K') {

 $('#MLPredStatus').css({ background: "red" })

 }

 //Display the Results Panel

 $("#tabs").tabs("option", "active", 1);

 $("#tabs").tabs({ active: 1 });

 142

 return false;

 })

 .fail(function (xhr, status, error) {

 var err = eval("(" + xhr.responseText + ")");

 alert(xhr.statusText);

 })

 .always(function () {

 //alert("complete");

 });

 // Set another completion function for the request above

 jqxhr.always(function () {

 //alert("second complete");

 });

});

Summary

In this chapter, we explored how to interact with Azure Machine Learning web services for our income

prediction model. We saw how the sample Azure Machine Learning web service provides some great

starting code samples for C#, Python, and R for creating stand-alone clients. To that end, we

demonstrated calling the Azure Machine Learning prediction web services from simple clients such as a

C# console application and a stand-alone R program.

We learned how to further expose our Azure Machine Learning web service via an ASP.NET Web

client to overcome the current Azure Machine Learning limitation with CORS requests, CORS being the

limitation of a webpage loaded from one domain that is restricted from making AJAX requests to

another domain.

Ultimately, by making use of the ASP.NET Web API, we were able to expose our own web service and

overcome the existing Azure Machine Learning CORS restriction. This API enabled the widest variety of

desktop, web, and mobile clients to consume and test our machine learning predictive model over the

Web. In the end, developing an Azure Machine Learning solution is really only valuable if you quickly

and easily expose it to a larger population of test or production environments. Only then will you be

able to facilitate feedback loops that are crucial to allowing this technology to surpass simple machine

training into the world of continuous learning for machines.

 143

Chapter 5

Regression analytics

In the last chapter, we covered a complete, end-to-end Azure Machine Learning solution. We started

with a simple Excel file as the training dataset to a fully exposed REST/JSON web service that can be

consumed by the widest variety of server, desktop, and mobile clients in use today. The solution

focused on enabling an income prediction model using a simple binary classification algorithm. The

prediction was considered “binary” due to the dual nature of the prediction type, specifically, whether

the data inputs signaled a candidate who was likely to make either more or less than $50,000 a year in

income. This prediction solution was an example of a classification algorithm, which is a popular type of

supervised learning.

Recall that supervised learning can be separated into two general categories of algorithms:

 Classification This category of algorithms is used for predicting responses that can have just a

few known values, such as “married,” “single,” or “divorced,” based on the other columns in the

dataset. Our earlier example was predicting income <= $50K or > $50K.

 Regression These are algorithms that can predict one or more continuous variables, such as

profit or loss, based on other columns in the dataset.

Now that we have covered a basic Azure Machine Learning example completely end-to-end using a

classification algorithm, the next stop on our tour is to take a deeper look at some of the more

advanced machine learning algorithms that are exposed in Azure ML Studio. To that end, we now take

a look at implementing regression algorithms in Azure ML Studio.

Linear regression

In this chapter, we explore the theory and practical implementations of linear regression algorithms

using Azure ML Studio. In its simplest form, regression can be defined as a method of statistical analysis

that analyzes the associations and relationships between one key variable and two or more other

variables. It is commonly used to find the relationship between two variables to make accurate

predictions.

A deeper look reveals that there are actually three flavors of statistical regression models that can be

implemented.

 Simple linear regression A single key variable is predicted based on one or more other

variables in the dataset.

 144

 Multiple linear regression More than one key variable is predicted based on one or more other

variables in the dataset.

 Multivariate linear regression In this variation of the multiple linear regression algorithm,

multiple correlated dependent key variables are predicted, rather than a single key variable.

Regression is a type of inferential algorithm, meaning that it that can be used to draw conclusions

about data populations based on random samples from those populations.

Some simple, practical examples of using regression algorithms might include making inferences

about the following relationships:

 Body height and shoe size.

 Lifetime sun exposure and number of freckles.

 Home elevation and the cost of flood insurance.

 Phase of the moon and crime statistics in major U.S. cities.

 Breakfast cereal brand and political party affiliation.

 Cloudy weather forecasts and groundhog activity levels.

Linear regression was one of the first types of regression analysis to be widely studied and is used

extensively in many practical applications today. Linear regression algorithms are commonly used in

business today to analyze key internal and external variables along with market trends. These

algorithms are used to make better informed business strategies based on prediction estimates and

sales forecasts.

A very simple and common business scenario is to chart sales data in a linear fashion along with

monthly sales data on the y axis and time on the x axis. This produces a line that that depicts the

upward and downward trends in sales. After creating the trending line, the company could use the

slope of the line, along with historical sales data, to forecast sales in future months.

Consumer behavior patterns are also a common application of linear regression algorithms to

predict scenarios like the effect of pricing on consumer buying patterns. For example, a company

changes the price on a certain product to influence the volume of sales. The company would normally

start by recording the quantity of sales at each price level. From there, they could perform a linear

regression with quantity sold as the dependent variable and price as the causal variable. The result

would be a line that depicts the extent to which consumers reduce their consumption of the product as

prices increase, which could help guide future pricing decisions and product strategies.

The insurance industry has been leveraging linear regression methodologies for many years to

analyze risk. A common scenario might be for a health insurance company to conduct a linear

regression analysis by plotting the number of claims per insured against causal factors such as age.

Through this model they could discover that older customers tend to make more health insurance

 145

claims. It is easily seen how these types of analysis and predictive capabilities can heavily influence

strategic business decisions in an effort to avoid risk and minimize major expenses.

Azure Machine Learning linear regression example

In this section, we look at what it takes to implement a linear regression algorithm in Azure Machine

Learning. In this case, we implement a predictive model in which a single key variable is predicted based

on one or more other variables in the dataset.

Our next scenario involves predicting the price of an automobile based on the various vehicle

features and options selected. At last count, there were more than 254.4 million registered passenger

vehicles in the United States. When you think about it, the owner of each of these vehicles had to make

a conscious decision about each vehicle’s feature trade-offs. Each owner had to decide what was

mandatory and what was optional. These decisions had to be made to make a purchasing decision that

would fit within the desired price range and budget.

In the past, the vehicle purchasing process was highly facilitated by a car salesperson from the local

dealership. The salesperson’s job was to match vehicle buyers with vehicles on the lot, based on what

the buyer was able to afford.

With the power of Azure Machine Learning and linear regression, we see how this process can be

taken to the next level of sophistication. To power this example, we incorporate a sample automobile

dataset from the University of California, Irvine (UCI) Machine Learning Repository at the following

URLs:

 Home https://archive.ics.uci.edu/ml/datasets/Automobile

 Data download

https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data

 Element column names/values

https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.names

Note that this dataset uses automobile feature and price data donated from May 1987. It should be

considered outdated with regard to today’s current vehicle features and associated pricing. Please use

caution if you are using this dataset as a basis for predicting your next vehicle purchase!

In our next experiment, we implement a predictive model in Azure Machine Learning using linear

regression to predict the price of a vehicle based on the selection of more than 25 possible features and

attributes. The sample automobile dataset contains the following data columns and allowable values for

each column:

1. symboling: -3, -2, -1, 0, 1, 2, 3

https://archive.ics.uci.edu/ml/datasets/Automobile
https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data
https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.names

 146

2. normalized-losses: continuous from 65 to 256

3. make: alfa-romero, audi, bmw, chevrolet, dodge, honda, isuzu, jaguar, mazda, mercedes-benz,
mercury, mitsubishi, nissan, peugot, plymouth, porsche, renault, saab, subaru, toyota, volkswagen,
volvo

4. fuel-type: diesel, gas

5. aspiration: std, turbo

6. num-of-doors: four, two

7. body-style: hardtop, wagon, sedan, hatchback, convertible

8. drive-wheels: 4wd, fwd, rwd

9. engine-location: front, rear

10. wheel-base: continuous from 86.6 120.9

11. length: continuous from 141.1 to 208.1

12. width: continuous from 60.3 to 72.3

13. height: continuous from 47.8 to 59.8

14. curb-weight: continuous from 1488 to 4066

15. engine-type: dohc, dohcv, l, ohc, ohcf, ohcv, rotor

16. num-of-cylinders: eight, five, four, six, three, twelve, two

17. engine-size: continuous from 61 to 326

18. fuel-system: 1bbl, 2bbl, 4bbl, idi, mfi, mpfi, spdi, spfi

19. bore: continuous from 2.54 to 3.94

20. stroke: continuous from 2.07 to 4.17

21. compression-ratio: continuous from 7 to 23

22. horsepower: continuous from 48 to 288

23. peak-rpm: continuous from 4150 to 6600

24. city-mpg: continuous from 13 to 49

25. highway-mpg: continuous from 16 to 54

26. price: continuous from 5118 to 45400

 147

Note that in this case, the Azure Machine Learning linear regression algorithm will calculate a real

number, the price of a vehicle. This is a slightly more complicated calculation than the simpler binary

classification calculation solution in the last chapter, which predicted whether an individual was likely to

have an income level of either <=$50K or >$50K.

Download sample automobile dataset

The first step is to download a sample dataset from the UCI Machine Learning Repository download

location at https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data. Save the

Imports-85.data file with an extension of .csv and open it in Excel. The next step is to add a new row at

the top and insert column headings corresponding to the published data column names form the

Imports-85.namefile download. When you are finished, your spreadsheet should look like Figure 5-1.

FIGURE 5-1 Automobile feature price data with column headers, ready for upload.

Save the new Excel spreadsheet as Imports-85.data-hdrs.csv to denote that we have added column

headings to this dataset.

Upload sample automobile dataset

Now that we have downloaded our sample automobile dataset and added column headings, the next

step is to upload it into our Azure ML Studio workspace.

https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data

 148

Start by clicking Datasets in the left navigation bar of the Azure ML Studio screen as shown in Figure

5-2.

 FIGURE 5-2 The Datasets section of Azure ML Studio.

Next click + New on the bottom left of the screen. Then select Dataset in the navigation bar on the

left to upload a new dataset from a local file, as shown in Figure 5-3.

FIGURE 5-3 The upload dataset FROM LOCAL FILE section of Azure ML Studio.

Next, click From Local File. Browse to the location where you saved the Excel spreadsheet we

modified for column headings and saved as Imports-85.data-hdrs.csv.

Select the Generic CSV File With A Header (.csv) type as shown in Figure 5-4.

 149

 FIGURE 5-4 The Upload A New Dataset options within Azure ML Studio.

Click the check mark when ready and your dataset will be uploaded to the Azure ML Studio Datasets

repository as shown in Figure 5-5.

FIGURE 5-5 The uploaded Imports-85.data-hdrs.csv dataset in Azure ML Studio.

 150

Create automobile price prediction experiment

Now that we have uploaded our sample automobile dataset, it’s time to create our linear regression

sample experiment to predict the price of an automobile based on the selected features.

To get started with creating a new experiment, select the Experiments tab on the left navigation bar.

Then click the + New icon on the bottom left app bar as shown in Figure 5-6.

FIGURE 5-6 The Experiments tab of Azure ML Studio ready to add a new experiment.

You will then be presented with the option to start with a blank experiment or chose from a gallery

of tutorials and other sample experiments. For our automobile price prediction experiment, start with a

blank experiment as shown in Figure 5-7.

 151

FIGURE 5-7 Azure ML Studio: Selecting a blank experiment.

Azure ML Studio will then create a new blank experiment for you. The blank experiment opens with

a drag-and-drop template for filling in the steps of your experiment processing logic. Once created,

you can name your experiment Automobile Price Prediction by clicking the experiment’s name and

entering the new name. Figure 5-8 shows our new blank experiment with the experiment name

highlighted.

 152

FIGURE 5-8 Azure ML Studio: A new blank experiment for automobile price prediction.

The first step is to drag our new dataset onto the Azure ML Studio canvas. Click the Saved Datasets

tab on the left navigation bar. Look for our freshly uploaded dataset named Imports-85.data-hdrs.csv.

Drag it onto the top of the designer surface.

Let’s use the Visualize utility to examine our dataset by hovering over the bottom connector.

Right-click and then select the Visualize command, as shown in Figure 5-9.

 153

FIGURE 5-9 Selecting the option to visualize the automobile price prediction dataset.

A cursory inspection of the automobile pricing dataset using the Visualize tool reveals that we have a

few missing values in our dataset, as shown in Figure 5-10.

FIGURE 5-10 Missing values in the automobile price prediction dataset.

The answer to this problem is to use an Azure ML Studio module named Clean Missing Data to

 154

detect missing values. This module will supply default values instead.

To find and implement the Clean Missing Data module in Azure ML Studio, simply type the name

into the search bar on the top of the left navigation bar. Let the Azure ML Studio search function find it

for you.

The other method to find this module is to traverse down through the various modules in the left

navigation bar. Find and expand the Data Transformation tab. Then expand the Manipulation tab to see

the Clean Missing Data module. Once you have found the module, simply drag and drop it underneath

the Iimports-85.data-hdrs.csv dataset module.

Next, we configure the Clean Missing Data module to fill in the missing columns of data by using the

properties for the module. Figure 5-11 depicts our experiment with the Clean Missing Data module

attached.

FIGURE 5-11 The Clean Missing Data module configuration parameters.

This is a very handy module in the Azure ML Studio toolbox and allows us to easily handle cases

where we have missing or invalid data in our initial dataset. We start the configuration by launching the

column selector and including all columns. We can then set the minimum and maximum missing value

ranges. Then set the Cleaning Mode. When you click the Cleaning Mode drop-down list, you will see

that there are actually eight different cleaning mode options we could use to scrub our data, as shown

in Figure 5-12.

 155

FIGURE 5-12 The Clean Missing Data module configuration parameters showing the options for the Cleaning Mode.

parameter.

For our purposes in the automobile price prediction experiment, select the Custom Substitution

option and designate the replacement value to be 0. This means any column in the initial dataset that

has missing data will be automatically updated to have a 0 substituted for the missing column at run

time.

The next step in building our automobile price prediction experiment will be to insert a Project

Columns module to allow us to selectively include or exclude columns of data from our initial dataset.

The Project Columns module is probably one of the most useful and widely used modules in the entire

Azure ML Studio module collection.

As before, there are basically two ways to find modules in the Azure ML Studio designer. Search for

them or manually traverse through the list of modules on the left side.

To find and implement the Project Columns module in Azure ML Studio, simply type the name into

the search bar on the top of the left navigation bar. Let the Azure ML Studio search function find it for

you. If you want to find it manually, click the Data Transformation tab and then click the Manipulation

subtab.

Once you find the Project Columns module, drag and drop it below the Clean Missing Data module

and attach it to one of the bottom two connectors on the Clean Missing Data module. You will note

 156

that there is a red exclamation mark displayed in the Project Columns module because the module

needs to have its properties configured for including or excluding columns. To do this, simply click the

Project Columns module and launch the column selector. Set the Begin With drop-down list to include

All Columns. Then select Exclude and Column Names. Select the bore and stroke columns for exclusion.

Figure 5-13 displays our configuration options for the Project Columns module.

FIGURE 5-13 The configuration parameters for the Project Columns module.

After adding the Project Columns module and configuring the module options, we have now chosen

to effectively exclude two columns from our initial dataset. The assumption here is that the columns

named bore and stroke will have no material impact on the prediction model and therefore do not

need to be included in the input dataset. The addition and configuration of the Project Columns

module will also have an impact when we configure a web service for our experiment. The input

endpoint for our web service will respect this setting for the desired input columns. The endpoint will

therefore not require these two columns when we submit an incoming web service request.

The next step is to add a Split module to our experiment so we can divert a certain percentage of our

dataset for training purposes. The Split module will also designate another percentage for scoring and

evaluating our new prediction model. As before, you can find this module by typing Split into the

search bar on the top of the left navigation bar and let the Azure ML Studio search function find it for

you. Or you can find it manually by clicking the Data Transformation tab and then the Sample And Split

subtab.

Once you find the Split module, drag it onto the Azure ML Studio design surface and place it under

the Project Columns module. Next, drag and connect the Split module to the Project Columns module.

Now, click the Split module and set the parameter for the Fraction Of Rows In The First Output Dataset

 157

to .80. In this context, .80 means that we use 80 percent of the data in the Imports-85.data-hdrs.csv

dataset for training our model, as shown in Figure 5-14.

FIGURE 5-14 The configuration parameters for the Project Columns module.

The next step is to find a Train Model module and add it below the Split module. You can add this

module by either searching for it or manually traversing the left navigation bar to the Azure Machine

Learning tab and then the Train subtab. Connect the bottom left connector of the Split modules to the

top right connector of the Train module.

Again, you will notice a red exclamation mark on the Train module, which means we need to finish

configuring the module. Do this by clicking the module and then launching the column selector in the

properties section on the right side of the Azure ML Studio designer. The Train module needs to know

which column in the dataset is to be used for the prediction. Configure the column selector by selecting

Include, selecting Column Names, and adding the price column for training, as shown in Figure 5-15.

 158

FIGURE 5-15 The configuration parameters for the Project Columns module.

The next step is to find and add the Linear Regression module to the designer surface. You can find

this model by using the search function or locating it under Machine Learning/Initialize Model/

Regression. Drag and drop this module above and to the left of the Train module. Connect the bottom

of the Linear Regression module to the top right of the Train module.

Now you are almost done. Click Run on the bottom app bar. Watch as a green check mark appears

to the right of each module in our experiment as it is processed in turn. Figure 5-16 depicts how our

experiment looks at this point in the Azure ML Studio environment.

 159

FIGURE 5-16 The automobile price prediction experiment successfully configured in training mode. The Create

Scoring Experiment option is ready to be run next.

Now that we have successfully created our training experiment for automobile price prediction and

run it to process all the modules, we are ready to switch from training mode to operational mode.

Before we do this would be a good time to click Save As to preserve our experiment before we modify it

for the next step. After saving, you will need to click Run again on the bottom app bar to process the

experiment modules and thereby enable the Create Scoring Experiment option.

To complete the transformation of our automobile price prediction experiment using linear

regression from training to operational mode, simply click Create Scoring Experiment on the bottom

app bar. Azure ML Studio then takes over and transforms your experiment by automatically making the

following changes:

 Saves the newly trained model under the Trained Models tab on the left navigation menu of

Azure ML Studio.

 Removes the Linear Regression module.

 Removes the Train module.

 Adds the newly trained automobile price prediction model back into the experiment.

 Adds a Score Model module into the experiment.

 160

Now, click Run to process the newly transformed experiment. Figure 5-17 shows our operationalized

automobile prediction experiment.

FIGURE 5-17 The automobile price prediction experiment after running the Create Scoring Experiment command.

Now that we have created our automobile price prediction experiment using the linear regression

algorithm in Azure ML Studio, it’s time to see the results of our efforts. Click the bottom connector of

the Score Model module and select Visualize, as shown in Figure 5-18.

 161

FIGURE 5-18 The option to Visualize the Score Model results of the automobile price prediction experiment.

After you select Visualize, you will see a pop-up window that displays the columns of our initial

dataset. Scroll all the way over to the right and you will see a screen similar to Figure 5-19.

FIGURE 5-19 Visualization of the Score Model results of the automobile price prediction experiment.

 162

In this example, an additional column named Scored Labels is displayed next to the price column to

indicate the numerical prediction results of our newly trained model. As you compare these two

columns, you will note that the numerical results of the Scored Labels column are generally close to the

values in the price column. You will also note that the model is fairly accurate for some rows; others

have a greater numerical discrepancy and the associated accuracy is not as great.

Recall that this experiment is a demonstration of a simple linear regression algorithm. The end goal

of regression algorithms is to predict one or more continuous variables, such as profit or loss, based on

other columns in the dataset. In this case, our goal was to create a model that could predict the price of

an automobile based on the selected features.

To take our experiment one step further, let’s create a web service. We can then use that with the

Excel tester template to help evaluate our new predictive model. To get started, click Publish Web

Service on the bottom app bar, as shown in Figure 5-20.

FIGURE 5-20 Ready to run the Publish Web Service command for the automobile price prediction experiment.

 163

After clicking Publish Web Service on the bottom app bar you will see a screen similar to the one

shown in Figure 5-21.

FIGURE 5-21 The Azure ML Studio web service dashboard after running the Publish Web Service command for the

automobile price prediction experiment.

To make it easy to test our new Azure ML Studio experiment for predicting automobile prices using

a linear regression algorithm, all we have to do is download the sample Excel workbook that is provided

as part of the web service dashboard for our experiment. Simply click the Download Excel Workbook

link, and you will have the option to either open it or save it locally to your system.

Once you open the Excel workbook, you will be prompted to enable the content. This is due to the

fact that the workbook contains macros that can call our new Azure Machine Learning web service on

our behalf. You can view these macros by pressing Alt + F8 and then selecting Edit to view the code. To

exit from viewing the macro code, simply click File. Then, select Close And Return To Microsoft Excel,

and you will be returned to the normal Excel view.

Here’s how it works: The Excel spreadsheet is constructed so that the input data elements are

displayed in the blue columns marked with the heading Parameters. If you scroll over to the right, you

will see the out parameters displayed in the green columns marked with the heading Predicted Values.

As you enter a new row of parameter input information, the Excel macro will automatically trigger a call

to the Azure Machine Learning web service to return the values in the Predicted Values section.

To quickly test our new Azure Machine Learning predictive model using the Excel workbook, you

have two options. The first option is to enter new input values manually in the Parameters section

 164

column by column, being careful to only enter valid values for each column. Valid values are based on

the initial input values found in the Imports-85.data.csv dataset.

A much faster approach is to simply copy an entire row of data from the original Imports-85.data.csv

dataset. Paste the copied row into the Parameters section of the Excel workbook. As you move off the

row, the Azure Machine Learning web service will be invoked by a macro in the downloaded workbook.

A few seconds later, the results will appear in the Predicted Values section of the workbook. You can

then compare the actual price provided in the blue Parameters section with the Scored Labels that is

returned in the green Predicted Values section of the workbook.

Once you have populated a known good row of data, based on data from our initial dataset, you can

then vary the individual parameter columns. As you make changes, you will see the impact that they

have on the predicted price. For example, Figure 5-22 illustrates the effect of changing the value of just

one field in the input parameters on the predicted price.

FIGURE 5-22 The Excel workbook that calls the Azure Machine Learning web service for testing the new automobile

price prediction experiment, after changing the make value from audi to bmw.

In this example, we added a duplicate row of information. We then only changed the value of the

make parameter input column from audi to bmw. The Excel workbook then invoked the Azure Machine

Learning web service and returned a new (higher) predicted price for this vehicle, amounting to an

increase of $5,484.00.

Predicting a numerical value, such as an automobile price, demonstrates a much more complicated

and advanced example of the power of Azure ML Studio. This is especially true when linear regression is

contrasted to the much simpler binary classification experiment we examined in Chapter 3, “Using

Azure ML Studio.” It also demonstrates just how easy it is to harness that power using Azure ML Studio.

This is just one more step in our journey as we start to dive deeper into the other various predictive

analysis algorithms that come standard in Azure ML Studio.

In this chapter, we took a look at what it takes to implement a simple linear regression algorithm

using Azure ML Studio. Currently, there are eight different variations of linear regression algorithms

available, as you can see in Figure 5-23.

 165

FIGURE 5-23 The Azure ML Studio Regression modules.

Here is a brief summary of the regression algorithms available in Azure ML Studio.

 Bayesian Linear Regression In this approach to linear regression, the statistical analysis is

undertaken within the context of Bayesian inference. The Bayesian approach uses linear

regression supplemented by additional information in the form of a prior probability

distribution. Prior information about the input parameters is combined with a prediction

function to generate estimates for the parameters.

 Boosted Decision Tree Regression This approach uses an efficient implementation of a

gradient boosting algorithm. Gradient boosting is a machine learning technique for regression

problems. It builds each regression tree in a stepwise fashion, using a predefined loss function to

measure the error in each step and correct for it in the next. Thus the prediction model is

actually a collection or ensemble of weaker prediction models. In regression problems, boosting

builds a series of trees in a stepwise fashion. The model then selects the optimal tree using an

arbitrary differentiable loss function.

 Decision Forest Regression Decision trees are models that perform a sequence of simple tests

for each instance, traversing a binary tree data structure until a leaf node (decision) is reached.

 166

This regression model consists of a collection of decision trees, which have these advantages:

 They are efficient in both computation and memory usage during training and prediction.

 They can represent nonlinear decision boundaries.

 They perform integrated feature selection and classification.

 They are resilient in the presence of noisy features.

 Fast Forest Quantile Regression This approach creates a regression model that can predict

values for a specified number of quantiles. Quantile regression is useful if you want to

understand more about the distribution of the predicted value, rather than get a single mean

prediction value. This method has many applications, including the following:

 Predicting product prices.

 Estimating student performance or applying growth charts to assess development stages of

children.

 Discovering predictive relationships in cases where there are only weak relationships

between other variables.

 Linear Regression This approach is widely used for modeling the relationship between a scalar

dependent variable Y and one or more explanatory variables denoted X. It can be, and typically

is, applied for prediction, forecasting, or reduction. Linear regression models are typically fitted

using the least squares approach, but other options also exist to measure which fit is best.

 Neural Network Regression These algorithms are widely known for use in deep learning and

modeling complex problems such as image recognition. They are easily adapted to regression

problems. Any class of statistical models can be termed a neural network, if they use adaptive

weights and can approximate nonlinear functions of their inputs. Thus neural network

regression is suited to problems where a more traditional regression model cannot fit a solution.

 Ordinal Regression In this regression model, the labels or target values have a natural ordering

or ranking among them. The real distance between categories is unknown. Only the relative

ordering between different values is significant. Because the labels or target values have a

natural ordering or ranking, any numeric column can be used as an ordinal target.

 Poisson Regression This is a special type of regression analysis that is typically used to model

prediction counts. For example, Poisson regression would be useful for the following functions:

 Modeling the number of colds associated with airplane flights.

 Estimating the number of calls related to an event or promotion.

 Creating contingency tables.

 167

Summary

In this chapter, we took a deeper look at linear regression, one of the more popular prediction

algorithms used in the data science field today. To illustrate the processing logic concepts, we created a

new Azure Machine Learning experiment. We used this experiment to predict the price of automobiles

based on a dataset from the UCI Machine Learning Repository.

We also added a few new highly useful modules to the mix, such as the Clean Missing Data module

and the Project Columns module. We used the Clean Missing Data module to replace missing values in

our initial dataset. The Project Columns module excluded columns that were not deemed material to

the prediction analytics calculation.

Resources

For more information about Azure Machine Learning, please see the following resources.

Documentation

 Azure Machine Learning Regression Modules Reference

 Azure Machine Learning Gallery Regression samples

 Azure Machine Learning Sample datasets

 Run a Linear Regression Model on the Azure platform

Videos

 Machine Learning on Azure

http://help.azureml.net/Content/html/97F9510F-60BA-4D78-8A33-3078A6C7F260.htm
http://gallery.azureml.net/experiments?s=regression
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-use-sample-datasets/
http://blogs.msdn.com/b/business_intelligence1/archive/2014/09/14/how-to-setup-machine-learning-and-run-a-linear-regression-model-on-the-azure-cloud.aspx
http://channel9.msdn.com/Events/Microsoft-Azure/AzureConf-2014/Machine-Learning-on-Azure

 168

Chapter 6

Cluster analytics

In this chapter, we continue our exploration of the three primary data science algorithms used in

machine learning today:

 Classification algorithms These are used to classify data into different categories, which can

then be used to predict one or more discrete variables, based on the other attributes in the

dataset.

 Regression algorithms These are used to predict one or more continuous variables, such as

profit or loss, based on other attributes in the dataset.

 Clustering algorithms These determine natural groupings and patterns in datasets. They are

typically used to predict grouping classifications for a given variable.

At this point in our machine learning journey, we have explored the classification algorithms with a

look at binary classification by producing a model that can predict whether a person is likely to have an

income level of greater than or less than $50,000 per year.

In the last chapter, we covered the topic of regression analytics in Azure ML Studio. We ran through

a complete example of linear regression analytics using Azure ML Studio to predict the price of an

automobile using data elements that described the various features of an automobile. In that example,

we were able to train our model by providing a dataset with known inputs (automobile features) and

known outputs (automobile prices) to produce a working model that could predict a new price based

on a set of features.

The focus of this chapter is on the third type of algorithm in our series, clustering algorithms. The

first two types of algorithms we explored, classification and regression, can be categorized as types of

supervised machine learning. This is due to the fact that in both cases, we provided training datasets

that allowed the Azure Machine Learning algorithms the ability to learn from the data. The supervised

learning in these algorithms determines what the correct prediction should be.

Clustering algorithms are highly interesting for use in situations where we want the machine to

conduct its own analysis on the dataset, determine relationships, infer logical groupings, and generally

attempt to make sense of chaos by determining the forests from the trees.

Unsupervised machine learning

As we discussed back in Chapter 2, “Getting started with Azure Machine Learning,” with the case of

 169

unsupervised machine learning, the success of the new predictive model depends entirely on the ability

of the machine to correctly infer and identify patterns, structures, and relationships in the incoming

data set.

The goal of inferring these patterns and relationships is that the objects within a group be similar to

one another. They should also be different from other objects in other groups.

One of the most common unsupervised learning algorithms is known as cluster analysis, which is

used to find hidden patterns or groupings within data sets. Clustering can be useful when there is

enough data to form clusters to logically delineate the data. The delineated data then make inferences

about the groups and individuals in the cluster.

Cluster analysis

In this chapter, we explore the theory and practical implementations of cluster algorithms using Azure

ML Studio. In its simplest form, clustering can be defined as a method of statistical analysis to help

determine natural groupings and patterns in datasets. The ultimate goal is then to develop a model

that can successfully predict grouping classifications for a given variable.

To help illustrate the concept, let’s look at a simple example. Figure 6-1 depicts a common scenario

where we have a large population of ungrouped and unsegmented data elements.

 FIGURE 6-1 A basic unclustered dataset.

 170

After applying machine learning clustering algorithms, we are able to infer certain groupings,

relationships, and patterns within the data to determine logical data boundaries and demarcations.

Figure 6-2 illustrates the effect of applying clustering algorithms to this set of seemingly random

data elements.

FIGURE 6-2 Visualizing a random dataset after applying clustering algorithms.

As you can see from Figure 6-2, these logical borders help to isolate and characterize the data

elements so that general inferences can be made about the members of these groups.

KNN: K nearest neighbor algorithm

One of the underlying principles of cluster analysis is the ability to classify data variables by placing

them in a category with the most similar, or nearest neighbors.

Cluster analysis is the task of grouping a set of objects in such a way that objects in the same group

(or cluster) are more similar (based on common characteristics) to each other than to those in other

groups or clusters. Cluster analysis is a primary output for data mining and a common technique for

statistical data analysis. Its use can be documented in many fields, including machine learning, pattern

recognition, image analysis, information retrieval, and bio-informatics.

 171

Cluster analysis is not necessarily defined as the use of one specific algorithm, but rather a method of

tackling the general problem to be solved. Clustering can be achieved by using multiple algorithms. The

algorithms might differ significantly in their interpretation of what constitutes a member of a particular

cluster. The way to efficiently find and segregate those members might differ as well.

The common implementation of clustering algorithms includes the following steps:

1. Defining groups with small distances among the cluster members.

2. Highlighting the denser areas of the dataset continuum.

3. Determining intervals or statistical distributions.

Clustering can therefore be described as a multifaceted approach to solving a common optimization

problem.

Clustering modules in Azure ML Studio

Azure ML Studio contains three built-in modules to work with cluster algorithms in your experiments.

These three modules all work together to help produce a predictive model based on clustering.

 K-Means Clustering module This is one of the most popular clustering algorithms in use in the

field of data science today. The K-means method finds a specified number of clusters for a set of

D-dimensional data points. It starts with an initial set of K centroids, and then uses algorithms to

iteratively refine the locations of the centroids. The algorithm then terminates when the

centroids stabilize or when a specified number of iterations are completed.

 Train Clustering Model module This module takes an untrained clustering model, such as that

produced by the K-Means Clustering module, and an unlabeled data set. It returns a trained

clustering model that can be passed to the Assign to Clusters module. It also returns labels for

the training data.

 Assign to Clusters module This module takes a trained clustering model, produced by the Train

Clustering Model module, and an unlabeled data set. The module then returns the cluster

assignments (indexes) for the input data.

Note in Figure 6-3 that, unlike the other machine learning categories of algorithms, there is only one

clustering algorithm available. The K-Means Clustering algorithm module can be found under the

Machine Learning/Initialize Model/Clustering tab in Azure ML Studio.

 172

FIGURE 6-3 The K-Means Clustering algorithm in Azure ML Studio.

Clustering sample: Grouping wholesale customers

To illustrate the usage of the K-means Clustering algorithm in Azure ML Studio, we explore a sample

experiment scenario that uses the clustering algorithm to determine the customer segmentation of

wholesale customers.

In this Azure ML Studio experiment, we use the Wholesale customers dataset from the UCI Machine

Learning Repository located at https://archive.ics.uci.edu/ml/datasets/Wholesale+customers.

This dataset refers to clients of a wholesale distributor. It includes the annual spending on the

following product categories:

 Channel Retail channel types: hotel/restaurant/café

 Region Customer region code

 Fresh Annual spending on fresh products

https://archive.ics.uci.edu/ml/datasets/Wholesale+customers

 173

 Milk Annual spending on milk products

 Grocery Annual spending on grocery products

 Frozen Annual spending on frozen products

 Detergents_Paper Annual spending on detergents and paper products

 Delicatessen Annual spending on delicatessen products

The goal of this Azure Machine Learning experiment is to analyze the dataset and infer logical

relationships to classify wholesale customers by logical groupings.

This sample experiment could easily be extrapolated and applied to many similar types of modern

customer stratification applications to determine marketing, product, and pricing strategies.

Let’s get started. The first step is to acquire the Wholesale customers dataset from the UCI Machine

Learning Repository. In the previous Azure Machine Learning experiments, we downloaded the datasets

to our local file system to then upload them directly into the Azure ML Studio Saved Datasets. In this

example, we use a Reader module to directly access the dataset over the Internet.

Start by creating a new, blank Azure Machine Learning experiment and naming it Wholesale

Customers. Next, find and implement the Reader module in Azure ML Studio. You can find it by simply

typing the name into the search bar on the top of the left navigation bar and letting the Azure ML

Studio search function find it for you. Alternatively, you can find this module under Data Input And

Output as shown in Figure 6-4.

FIGURE 6-4 The Azure ML Studio reader module.

After you drag this module onto the Azure ML Studio design surface, click the module to display the

 174

Properties window on the right side of the designer surface. Click the Data Source drop-down list in the

Properties window to set the Reader’s data source. You will see the various options for selecting data

sources as shown in Figure 6-5.

FIGURE 6-5 The Data Source drop-down list options for the data Reader module.

For this experiment, select the Web URL Via HTTP option to denote that we will have Azure ML

Studio read the dataset directly from this location over the Web.

In the URL field, insert the address of our wholesale customer dataset from the UCI Machine

Learning Repository:

http://archive.ics.uci.edu/ml/machine-learning-databases/00292/Wholesale%20customers%20data.cs
v

Set the Data Format drop-down list to CSV to denote that the dataset is comprised of

comma-separated values. Select the CSV Or TSV Has Header Row check box to denote that the dataset

contains headers in the first row of data. The reader module should now look like Figure 6-6.

FIGURE 6-6 The Reader module properties for the wholesale customers experiment.

http://archive.ics.uci.edu/ml/machine-learning-databases/00292/Wholesale%20customers%20data.cshttp://archive.ics.uci.edu/ml/machine-learning-databases/00292/Wholesale%20customers%20data.csv
http://archive.ics.uci.edu/ml/machine-learning-databases/00292/Wholesale%20customers%20data.cshttp://archive.ics.uci.edu/ml/machine-learning-databases/00292/Wholesale%20customers%20data.csv

 175

Now that we have the Reader module fully configured, you can test it out by clicking Run on the

bottom app bar. Wait for the green check mark to appear in the reader module that signifies that the

module has run successfully. Once the module has been processed, click the bottom connector and

select Visualize as shown in Figure 6-7.

FIGURE 6-7 The Reader module properties for the wholesale customers experiment.

After you select the Visualize option, you will see a screen similar to Figure 6-8, displaying the eight

columns of data from the UCI wholesale customer dataset.

FIGURE 6-8 The Visualize option for the Reader module displaying the wholesale customer dataset column values.

 176

In viewing the wholesale customers dataset via the Visualize option of the Reader module, we can

see that the dataset contains 440 rows of data with eight columns per row. The objective for Azure ML

Studio will be to analyze this wholesale customer dataset. In this experiment, Azure ML Studio will infer

logical groupings of similar customer segments based on the eight exposed attributes. The end goal in

this scenario will be to accomplish the following business goals:

 Identify logical customer segments These segments can then be used in the creation of

product, marketing, and pricing campaigns.

 Forecast product demand This is based on relative spending habits of other similar wholesale

customers.

 Create a new predictive model This model can be used in categorizing future wholesale

customers according to similar patterns.

Now that we have the objectives out of the way, the next step is to add a Train Clustering Model

module to the Azure ML Studio design surface. You can find this module by simply typing the name

into the search box on the top of the left navigation bar and let the Azure ML Studio search function

find it for you. Alternatively, you can find this module under the Machine Learning/Train tabs as shown

in Figure 6-9.

FIGURE 6-9 The Train Clustering Model module in Azure ML Studio.

 177

After placing the Train Clustering Model module on the design surface, connect the bottom of the

reader module to the top right connector of the Train Clustering Model module. At this point, you will

notice a red exclamation mark on the right side of the module indicating that the properties need to be

specified. To do this, click the Train Clustering Model module and then click the Launch Column

Selector button located on the right Properties pane of the Azure ML Studio designer.

In the Select Columns interface, specify the options shown in Figure 6-10.

 Begin With: All Columns

 Include/All Features

FIGURE 6-10 The Select Columns options for the Train Clustering Model module.

Now that we have our Train Clustering Model module configured, the next step is to locate the

K-Means Clustering module and drag it onto the Azure ML Studio designer surface. As before, you can

either use the module search feature in the left navigation bar or traverse through the available

modules and select Machine Learning/Initialize Model/Clustering to find the K-Means Clustering

module as shown in Figure 6-11.

 178

FIGURE 6-11 The K-Means Clustering module in Azure ML Studio.

After dragging the K-Means Clustering module to the designer surface, connect the bottom of the

module to the top left connector on the Train Cluster Model module. Next, click the K-Means Clustering

module to examine the default properties of the module as shown in Figure 6-12.

FIGURE 6-12 The properties of the K-Means Clustering module in Azure ML Studio.

Note that the Number Of Centroids parameter refers to the desired number of clustered groupings

for the data in our dataset. For the purposes of this example, we set the Number Of Centroids

parameter to 4 to denote that we want Azure Machine Learning to infer and create four distinct logical

clusters from our dataset values.

 179

he Metric parameter offers two options:

 Euclidean This, the default, refers to the distance between two points and is the length of the

line segment connecting them.

 Cosine This refers to the measure of similarity between two vectors of an inner space that

measures the cosine of the angles between them.

Now we are almost done. The last step to set up our demo clustering experiment in Azure ML Studio

is to add the Metadata Editor module to our experiment. To add this module, you can either use the

module search feature in the left navigation bar, or traverse through the available modules to select

Data Transformation/Manipulation to find the Metadata Editor module as shown in Figure 6-13.

FIGURE 6-13 The Metadata Editor module in Azure ML Studio.

Now, drag and drop the Metadata Editor module onto the Azure Machine Learning designer surface

and connect the bottom right connector of the Train Clustering Model module to the top of the

Metadata Editor module.

At this point, you will notice a red exclamation mark on the right side of the Metadata Editor module

indicating that the properties need to be specified. To do this, click the Metadata Editor module and

then click the Launch Column Selector button located in the right Properties pane of the Azure ML

Studio designer.

In the Select Columns interface, specify the following options:

 Begin With: All Columns

 Include/All Features

Save your project and then click Run on the bottom app bar. At this point, Figure 6-14 depicts our

completed clustering experiment for the wholesale customer dataset.

 180

FIGURE 6-14 The K-means clustering experiment for analyzing wholesale customers in Azure ML Studio.

After running the K-means clustering experiment for wholesale customers, we can view the results of

the cluster groupings by clicking the bottom connector of the Metadata Editor module and then

selecting the Visualize command as shown in Figure 6-15.

FIGURE 6-15 Accessing the Visualize command from the Metadata Editor module.

After you select the Visualize command, Azure ML Studio renders a visualization window depicting

 181

the results of our K-means clustering experiment for wholesale customers. Note that there is now an

additional column at the end named Assignments that has been added to our dataset.

The new Assignments column denotes the cluster group number that has been assigned to each row

in our dataset based on the parameter settings and the K-Means Clustering algorithm processing logic

we used in our experiment. If you click the Assignments column, you can then see a histogram

visualization that depicts the distribution of the dataset records across four distinct grouping clusters.

Recall that we set the parameter to four for the Number Of Centroids in our K-Means Clustering

module. Figure 6-16 illustrates the visualization window for our experiment.

FIGURE 6-16 Visualizing the results of the K-means clustering experiment for wholesale customer data in Azure ML

Studio.

As you can see from the histogram displayed in the Azure ML Studio visualization, the chart shows us

that our model has effectively “clustered” our 440 wholesale customer records into four discrete groups

numbered 0 to 3. Clustering is a powerful machine learning tool that allows us to easily infer

relationships, stratify huge datasets, and find the “forests in the trees.”

Operationalizing a K-means clustering experiment

To operationalize our Azure ML Studio clustering experiment for wholesale customers, we will need to

modify our experiment slightly before we can transform it into a working web service.

To start the transformation of our experiment, we need to add two more modules to our experiment

and rewire the existing connections.

The first step is to locate a Split module and drag it onto the design surface right under the Reader

module. To add this module, you can either use the module search feature in the left-hand module

 182

menu, or traverse through the available modules to select Data Transformation/Sample And Split tabs

to find the Split module as shown in Figure 6-17.

FIGURE 6-17 The Split module in the Azure ML Studio module menu.

After you drag and drop the Split module under the Reader module, connect it to the bottom of the

Reader module. Then click the Split module to display the module properties in the right Properties

pane in Azure ML Studio. Next, set the value of the Fraction Of Rows In The First Output Dataset

parameter to 0.90 as shown in Figure 6-18 to denote that we want to use 90 percent of our wholesale

customer dataset to train our predictive cluster model.

FIGURE 6-18 Setting the properties of the Split module to train the model.

After configuring the Split module, the next step is to connect the bottom left connector of the Split

module to the top right connector of the Train Clustering Model module. The top left connector on the

 183

Train Clustering Model module remains connected to the bottom of the “K-Means Clustering Model

module.

The next step is to locate and add an Assign to Clusters module to the experiment design surface. To

add the Assign to Clusters module, you can either use the module search feature in the left module

menu, or traverse through the available modules to select the Machine Learning/Score modules to find

the Assign to Clusters module as shown in Figure 6-19.

FIGURE 6-19 Locating the Assign to Clusters module in Azure ML Studio.

Place the Assign to Clusters module under the Train Clustering Model module and a little to the

right. Next, connect the bottom right connector on the Split module to the top right connector on the

Assign to Clusters module. Then connect the top left of the Assign to Clusters module to the bottom left

connector on the Train Clustering Model module.

At this point, the Assign to Clusters module might show a red exclamation mark on the right side of

the module. To fix this, click the Assign to Clusters module and click the Launch Column Selector button

in the right Properties pane. Set the properties as shown in Figure 6-20.

FIGURE 6-20 Setting the column properties of the Assign to Clusters module in Azure ML Studio.

The last step to complete our experiment transformation is to connect the bottom left connector on

 184

the Assign to Clusters module to the top right connector on the Metadata Editor module. Figure 6-21

shows how our experiment looks after the modifications have been made to operationalize our

experiment.

FIGURE 6-21 The wholesale customers cluster experiment in Azure ML Studio after modifications to prepare it for

becoming a web service.

Next, click Run on the bottom app bar to process all the modules in the experiment. As each module

is processed, a green check mark will appear on the right side of the module.

Now click Save As on the bottom app bar and save this experiment as a new version before

completing the final transformation to a web service. After creating a new version, click Run again on

the bottom app bar to prepare for the next step.

Next, click the Create Scoring Experiment command on the bottom app bar, shown in Figure 6-22,

to complete the transformation before we can publish our experiment as a web service. This command

will make the following modifications to the experiment:

 Saves our trained model to the Trained Models repository.

 185

 Removes the Train Clustering Model, K-Means Clustering, Split, and Metadata Editor modules.

 Inserts the newly trained model into the experiment.

 Adds the Web Service Input and Web Service Output modules.

FIGURE 6-22 The wholesale customers cluster experiment in Azure ML Studio before running the Create Scoring

Experiment command.

Next, click Run to process the modifications made to our experiment by the Create Scoring

Experiment command. By clicking Run, we enable the next command we need to run, which is Publish

Web service on the bottom app bar, as shown in Figure 6-23.

 186

FIGURE 6-23 The wholesale customers cluster experiment in Azure ML Studio before running the PUBLISH WEB

SERVICE command.

Now it’s time to finally create our wholesale customers clustering web service. Click Publish Web

Service and watch as Azure ML Studio automatically creates a new set of web services. Figure 6-24

shows the web services dashboard that is rendered after the new web services have been created.

 187

FIGURE 6-24 The wholesale customers cluster experiment web services dashboard.

It is important to note that in the previous client applications that we have developed so far in this

book to demonstrate the consumption of Azure Machine Learning web services, we always used the

Request/Response method for handling a single prediction transaction.

In the case of implementing web services for clustering experiments in Azure ML Studio, it makes

sense that these transactions all need to occur in batches, as the ultimate goal is to assign a grouping

value for each row of data.

The Batch Execution web service model provides the perfect use case for processing large sets of

incoming dataset records and determining logical groupings. The K-Means Clustering algorithm relies

heavily on determining the mathematical distance relationships or nearest neighbors to infer logical

groupings. This would be impossible to accomplish if we only passed in one record at a time. Therefore,

we conclude our web service publishing exercise by implementing a batch execution scenario to

maximize the usefulness of our new predictive model.

Start by clicking API Help page, as shown in Figure 6-24. You will see a new page that provides you

all the implementation details to invoke the web service in Batch Execution mode as shown in Figure

6-25.

 188

FIGURE 6-25 The Batch Execution web service documentation page for the wholesale customers experiment.

As we saw in the previous web service example in Chapter 4, “Creating Azure Machine Learning

client and server applications,” this help page for the Azure Machine Learning API web service provides

specific implementation details about the following aspects of making a Batch Execution Azure

Machine Learning web service via an HTTP POST request for the following operations:

 Submit a Job.

 Get Job Status.

 Delete a Job.

If you scroll all the way down the webpage, you will see a Sample Code section. This will help us get

a jump start on creating new clients that can call our new Azure Machine Learning web service and

execute batch jobs. Note in Figure 6-26 that implementation samples are provided for the

programming languages C#, Python, and R.

 189

FIGURE 6-26 The API help sample code for creating Batch Execution web services.

To create a C# console client to test our batch web service, simply start Visual Studio 2013 and click

File/New/Project, and then specify Windows Desktop and Console Application to create a new solution.

After the solution has been created, click TOOLS option on the top menu. Then select NuGet

Package Manager and Package Manager Console. Next, run the following command in the NuGet

console to install the Microsoft Web API client module:

Install-Package Microsoft.AspNet.WebApi.Client

 The next step is to right-click the project references and select the Add Reference option. Add a

reference to the Microsoft.WindowsAzure.Storage.dll.

The last steps are to follow the instructions in the sample code comments to create a storage

account and storage container in Azure to hold the contents of the batch input file.

You will need to replace the values for the following variables in the sample C# console application

based on your specific Azure implementations:

 StorageAccountName

 190

 StorageAccountKey

 StorageContainerName

 InputFileLocation

 InputBlobName

 OutputFileLocation

 apiKey

Figure 6-27 shows the code fragments where you will need to update these values in the C# sample

code.

FIGURE 6-27 The C# sample console application for invoking the Batch Execution web service.

For submitting a test input file for batch processing, you can simply download the wholesale

customers dataset from the UCI Machine Learning Repository at

https://archive.ics.uci.edu/ml/datasets/Wholesale+customers.

This dataset file is already in .csv format and is actually the same file as we pointed to the parameters

for the Reader module in our wholesale customers experiment.

After you run the C# sample console application, an output file is generated as a result of invoking

the batch web service. This file is placed in your designated output folder. Open the file in Excel and you

will see that a new column named Assignments was added to the dataset. This new column contains the

Group or Clustering number that was generated for each row of data based on the relationship to the

other rows of data in the dataset. Figure 6-28 shows the Excel output file results.

https://archive.ics.uci.edu/ml/datasets/Wholesale+customers

 191

FIGURE 6-28 The CSV output file opened in Excel after calling the Batch Execution web service for wholesale

customer cluster predictions.

 192

Summary

In this chapter, we took a deeper look at the K-Means Clustering algorithm in Azure ML Studio. We saw

how this type of unsupervised learning can be used to infer logical groups or clusters of similar data

elements to infer patterns and stratifications in large datasets.

 In this chapter, we also worked with a few new Azure Machine Learning modules such as the

powerful Reader module. This module can be pointed directly at files or datasets on the Web to provide

easy inputs for our Azure Machine Learning experiments. We also explored the various additional

modules used in conjunction with the K-Means Clustering module such as the Train Clustering module

and Assign to Cluster modules.

Finally, we implemented a C# console client application to consume the Batch Execution web service

for our wholesale customer experiment. The use of cluster algorithms in Azure ML Studio represents a

new paradigm and requires a different approach to processing predictions in a web service

environment. We also learned how to easily handle the specific requirements for processing clustering

predictions, based on processing larger populations of input datasets.

Resources

For more information about Azure Machine Learning, please consult the following resources.

Documentation

 Azure ML Studio K-Means Clustering Model

 Azure Machine Learning Module reference Cluster Model

 Azure Machine Learning Module reference Train Clustering Model

 Azure Machine Learning Module reference Assign to Clusters

 Gallery Sample: Customer Segmentation of Wholesale Customers

http://help.azureml.net/Content/html/5049A09B-BD90-4C4E-9B46-7C87E3A36810.htm
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-r-csharp-cluster-model/
http://help.azureml.net/Content/html/BB43C744-F7FA-41D0-AE67-74AE75DA3FFD.htm
http://help.azureml.net/Content/html/EED3EE76-E8AA-46E6-907C-9CA767F5C114.htm
http://gallery.azureml.net/Details/27e1553a39af435b9af6f64ce3dd036d

 193

Chapter 7

The Azure ML Matchbox

recommender

Did you know that people who read the first chapter of this book also read the last chapter? Or, that

people who read this book also registered for a free trial of Azure Machine Learning? In this chapter, we

take a look at the Azure Machine Learning recommendation service. Recommendation engines are one

of the most powerful and pervasive implementations of predictive analytics today. Recommendation

engines can be found in many of today’s most popular web applications and are crucial to success in

many consumer industries.

Whether you are looking for a good movie, book, music, home contractor, or soul mate, the use of

recommendations is a time-tested and extremely powerful force when it comes to eliciting the power of

human emotion in making a purchasing decision. One of the most successful and early pioneers of this

selling technique would be certainly be Amazon.com.

Recommendation engines in use today

In the case of Amazon.com, the product suggestions and recommendations are all based on

aggregated data composed of your browsing, purchasing, and reading habits. This data is extrapolated

to determine which books or products you might like to order next. The recommendations are then all

based on similar customer transaction histories.

There are several forms of recommendations that are generated. One of the simplest and most

effective is the “Also Bought” category of recommendations. In this case, the Amazon.com product

detail web page displays similar titles that other customers have purchased along with your selection.

It has been rumored that Amazon has been able to achieve a 10 to 20 percent rate of sales increases

through the use of this highly effective recommendation technique. One extremely brilliant, yet simple,

truth is that (generally speaking) humans are naturally interested in what other humans are doing. We

all have a strong internal desire to “follow the herd” in terms of making purchasing decisions.

Another highly effective form of recommendations is through the use of millions of personalized

emails that Amazon generates and sends to its customers every day with personalized purchase

recommendations.

The real beauty of the Amazon.com approach is that the recommendation accuracy continues to

improve every time you browse or purchase more products from the website. In effect, they have

 194

implemented a very sophisticated and effective feedback loop that continually hones the accuracy of

product recommendations to create one of the best web-based, virtual salespersons ever!

In terms of data sources, many of today’s modern websites have many different data sources to

leverage for producing recommendations. Some of these include the following:

 Purchase history This data is from actual sales transactions from real people with sometimes

very rich demographics collected as part of a membership profile.

 Abandoned shopping carts This records items (and groupings of items) added to shopping

carts but later abandoned.

 Pricing and packaging experiments These consist of online A/B testing scenarios where the

same products are offered at different prices or presented in combinations to determine the

effects on consumer purchasing behavior.

 Wish lists These are highly desired products that are placed on virtual “layaway,” perhaps until

the price drops or the shopper has the ways and means to make a real purchase.

 “Park” times This measures how long a user remains on a particular webpage before making a

browsing or purchasing decision.

 Demographics This consists of associated personal data gleaned from membership profile

information, billing and shipping address data, or social network graphs.

 Referral sites Additional insights about the shopper or product can be gleaned by intercepting

the URL from which a shopper has originated.

 Ratings Purchase patterns and behaviors of products with low, medium, or high social network

ratings can be analyzed.

 Email click-through data This data tracks user behavior as a result of email marketing

campaigns, which can reveal how compelling product offers are and the likelihood that

responses can be turned into purchases.

 Browser sessions Analyzing user navigation flows and patterns within a website can provide

invaluable feedback for making recommendations when translated into usage and behavior

analytics.

 Number of times viewed Understanding how many times a user views a product before

making a final purchase can reveal powerful insights into what converts a shopper into a buyer.

In addition to retail applications such as Amazon.com, recommendation algorithms are also

extremely popular in the entertainment industry. In certain applications, such as movie rentals, Netflix

has revealed that as much as 75 percent of the content watched on the service comes from its

recommendation engine.

 195

Back in the good old days of video and DVD rentals, movie analytics and recommendations were

extremely important on the supply side of the business. These types of data insights were absolutely

critical when it came to knowing exactly how many copies of a title to have in inventory to make sure

every customer went home happy. Too few copies of popular titles caused immediate stock-outs,

waiting lists, and customer satisfaction issues. Too many copies of the wrong titles caused fire sales and

immediate product markdowns to make shelf space for the next batch of titles.

With the advent of instant video streaming technologies, the use of recommendation engines has

become even more crucial in determining success. Companies such as Netflix seek to continuously

optimize the member experience. They have measured significant gains in member satisfaction

whenever they improve the personalization experience for their members.

In the case of Netflix, careful analysis is performed to present the member with a completely

personalized home page representing the top 10 videos that are recommended for viewing. Nothing is

left to chance. The specific titles, genres, and order of presentation are all carefully calculated to

maximize the experience to drive entertainment value and satisfaction.

Many popular online dating sites have also recognized the benefits of leveraging recommendation

engines and algorithms to find a perfect match for users. In many cases, this becomes a highly complex

and challenging design consideration. A prerequisite to success is having members complete an

in-depth personality questionnaire. This is both a chore and the secret ingredient to superior soul-mate

recommendations.

The trick becomes how to keep a user engaged while completing a tedious questionnaire that is

typically the mission-critical component of a site’s recommendation engine. The more honestly and

thoroughly a user answers these questions, the more compatible the suggested matches will be.

In addition to retail and entertainment applications, recommendation systems are now common in

insurance and finance, where they can suggest coverage plans and investment opportunities, and they

are also showing up in business-to-business (B2B) settings, recommending prospects and strategies to

salespeople.

Mechanics of recommendation engines

Many of today’s modern recommendation engines use a number of different technologies to achieve

results. These techniques can be divided into two primary methodologies to make intelligent

predictions.

 Collaborative filtering This method is used to analyze a mass of past choices, from one user or

many users, to make new suggestions. Collaborative filtering applications typically involve very

large data sets. The items recommended to a user are those preferred by similar users. This is the

classic Amazon.com “Also Bought” category of recommendations.

 196

 Content-based filtering This method takes attributes of one item to suggest new items with

similar properties. For example, if a Netflix user has watched many science fiction movies, then

the system would most likely recommend a movie classified in the database from the same

genre.

In reality, the two methods are often combined and even incorporated with other predictive

algorithms such as clustering to maximize the recommendation engine accuracy. These highly tuned

algorithms soon become mission-critical intellectual property (IP). They might even become the

cornerstone for many organization’s success or failure.

Azure Machine Learning Matchbox recommender background

Historically, advanced recommendation engines and predictive services were the exclusive domain of

only the largest online web properties. This was due to the fact that the development, care, and feeding

of such systems required a dedicated team of highly trained professionals. Now, with the advent of

Microsoft Azure Machine Learning and the democratization of data science, recommendation engine

capabilities are accessible to a much wider audience of individuals and businesses. Now more people

can use it for the benefit of their own customers.

The early origins of the Azure Machine Learning Matchbox recommender modules can be found in

the earlier work of the Microsoft Research team. The focus of the team was to discover how best to

connect people with other people, content, or products they care about via the Web. Their research

explored tasks like product recommendations, social matchmaking, targeted advertising, and content

filtering. Ultimately, they developed a large-scale Bayesian recommender system called Matchbox.

More information on the project can be found at

http://research.microsoft.com/apps/pubs/default.aspx?id=79460

The Microsoft Research Matchbox recommender engine was designed to learn about people’s

preferences from observing how they rated items such as movies, content, or other products. Based on

those observations, the Matchbox recommender was then able to recommend new items to users on

request.

The Matchbox recommender was designed to use the available data for each user as efficiently as

possible. Its learning algorithm is designed specifically for the large streams of data typical for

web-scale applications. One of the main features is that the Matchbox recommender takes advantage

of metadata available for both users and items. This means that things learned about one user or item

can then be extrapolated to other users or items.

Basically, there are two types of entities involved in the Azure Matchbox recommendation engine.

These can be thought of as users and items. Users are the people to whom you would like to make

recommendations. Items are the things you would like to recommend to them such as movies, books,

http://research.microsoft.com/apps/pubs/default.aspx?id=79460

 197

webpages, recipes, or even other people.

The Azure Machine Learning Matchbox recommender engine makes use of content information in

the form of user and item metadata. It then combines that information with the collaborative filtering

information from previous user behavior to predict the value of an item for a user.

In Azure Machine Learning, the recommendation engine is enabled when you build a

recommendation model based on the following data elements:

 A catalog or repository of the items you want to recommend.

 Data representing the usage of items per user or session. This data can be acquired over time via

data acquisition.

After a recommendation model is built, you can use it to predict items that a user might be

interested in, according to a set of items (or a single item).

One critical problem for a recommendation engine is how to progress from a cold start. In most

cases, new users might not have rated enough items, and new items might not have been rated by

enough users to make accurate predictions. To mitigate this problem, the Azure Machine Learning

Matchbox recommender makes it possible to represent users and items not just by their ID, but by a

feature vector constructed from metadata. For users, this could include profile information such as age

or geolocation. For items such as movies, it might include information such as genre, actors, director,

year of production, and so on. In this way, Azure Machine Learning can generalize across users and

items by making use of common attributes in the metadata to overcome the cold start problem.

When constructing Azure Machine Learning experiments using the Matchbox recommender

algorithm, the following modules will typically be incorporated into the design.

 Train Matchbox Recommender This module trains the model for the Matchbox recommender

engine. The recommendation algorithm is based on the Matchbox model developed by

Microsoft Research. This module takes a dataset of user-item-rating triples and returns a trained

Matchbox recommender.

 Score Matchbox Recommender This module supports four different kinds of predictions:

 Predict ratings for a given user and item.

 Recommend items to a given user.

 Find users related to a given user.

 Find items related to a given item.

The latter three kinds of predictions can operate in two modes: one that considers all entities

(typically used in production), and one that operates on a reduced set of entities (typically used

in experimentation or model evaluation).

 198

 Evaluate Recommender This module can measure the accuracy of four different kinds of

predictions made by a recommendation model:

 Ratings predicted for a given user and item.

 Items recommended for a given user.

 A list of users potentially related to a given user. The users are predicted to have similar

preferences.

 A list of items potentially related to a given item.

To evaluate a set of predictions, you need two datasets as inputs:

 A test dataset This set contains user-item-rating triples. If you have an existing dataset

that is used to train a model, you can create a test dataset by using Split and choosing

Recommender Split as the splitting mode.

 A scored dataset You can create this dataset by using Score Model and selecting one of

the options in the Recommender Scorer.

Azure Machine Learning Matchbox recommender: Restaurant

ratings

To demonstrate the Azure Machine Learning Matchbox recommendation engine in action, we use a

familiar scenario. We create an experiment that will predict restaurant ratings.

In this example, we would like to recommend a restaurant to a given user based on the five-star

ratings that this user and other users have provided for some of the restaurants in the neighborhood.

This recommendation task can be broken down into two discrete steps:

1. Predict for each restaurant, on a rating scale of one to five stars, how the user would rate the

restaurant.

2. Recommend from a list of eligible restaurants which ones would receive the highest rating by

that user.

The problem then becomes predicting how a specific user would rate all of those restaurants that he

or she has not visited and actually rated. You can think of this as a large matrix, with users as rows, items

as columns, and entries as ratings. Figure 7-1 illustrates the problem at hand where we have a matrix of

restaurants (items) and diners (users). The matrix is considered “sparse” due to the fact that not every

intersection between restaurants and diners has been populated with a corresponding rating.

 199

FIGURE 7-1 The restaurant ratings sparse matrix problem domain.

This problem domain is where Azure Machine Learning and the Matchbox recommender engine

come into play. To build a machine learning model that can predict arating, we need to collect data in

the form of userID, itemID, and ratings. This data works against a given user–item combination and

predicts how the user would rate the individual item.

The basic workflow to generate a predictive solution using the Azure Machine Learning Matchbox

recommender engine consists of the following high-level steps:

1. Create a model A model is a container of your usage data, catalog data, and the

recommendation model.

2. Import catalog data This is an optional step. A catalog contains metadata information on the

items. If you do not upload catalog data, the recommendation's services will learn about your

catalog implicitly from the usage data.

 200

3. Import usage data Usage data can be uploaded in one of two ways (or both):

 By uploading a file that contains the usage data.

 By sending data acquisition events. Usually you upload a usage file to be able to create an

initial recommendation model (bootstrap). You would use this usage file until the system

gathers enough data by using the data acquisition format.

4. Build a recommendation model This is an asynchronous operation in which the

recommendation system takes all the usage data and creates a recommendation model. This

operation can take several minutes or several hours depending on the size of the data and the

build configuration parameters. When triggering the build, you will get a build ID. Use it to

check when the build process has ended before starting to consume recommendations.

Building the restaurant ratings recommender

Let’s get started building a restaurant ratings recommender experiment. The first step after signing into

the Azure portal and creating an Azure Machine Learning workspace is to sign in to Azure Machine

Learning Studio and create a new, blank experiment.

For our experiment, we use three separate datasets as input to train the Azure Machine Learning

Matchbox recommender consisting of the following files:

 Restaurant features This includes information about each restaurant, such as placeID, location,

name, address, state, whether alcohol is served, smoking policy, dress code, accessibility, and

price.

 Restaurant customers This includes a wide variety of personal attributes including the

following: userID, smoker, drink level, dress preference, marital status, birth year, interests,

personality traits, religion, favorite color, weight, height, and budget.

 Restaurant ratings This incudes key fields like userID, placeID, and rating.

These three data files are included in the Azure Machine Learning sample Saved Datasets repository.

To easily locate the files, simply type restaurant into the Search bar on the left side of the Azure

Machine Learning Studio designer surface. Alternatively, you can find them under the Saved Datasets

tab and locate them alphabetically below the tab.

Once you have located the files, drag and drop them onto the Azure Machine Learning designer

surface as shown in Figure 7-2.

 201

FIGURE 7-2 Populating the three restaurant ratings experiment data files from the sample Azure Saved Datasets

repository.

The next step is to add two of the Project Columns modules to the experiment so that we can filter

out unnecessary columns in the Restaurant Feature Data and Restaurant Customer Data datasets.

Locate the module by typing Project Columns into the search bar on the left side of the Azure Machine

Learning Studio designer surface. You can also manually find the module under the Data

Transformation/Manipulation tab.

Drag and drop two copies of the Project Columns module directly underneath the Restaurant

Feature Data and Restaurant Customer Data datasets on the designer surface. Next, connect the

bottom of the dataset modules to the top of the Project Columns modules. You will notice a red

exclamation mark indicating that we need to set the properties of the Project Columns modules.

Start by clicking the Project Columns module that is underneath and connected to the Restaurant

Feature Data module. Click Launch Column Selector and set the selector to only include the following

columns: placeID, latitude, longitude, and price, as shown in Figure 7-3.

FIGURE 7-3 Column selection values for the Project Columns module associated with the Restaurant Feature

Dataset module.

Next, configure the columns to include from the Restaurant Customer Dataset module by clicking

the Project Columns module that is underneath the module. Click Launch Column Selector and set the

selector to only include the following columns: placeID, latitude, longitude, interest, and personality, as

shown in Figure 7-4.

 202

FIGURE 7-4 Column selection values for the Project Columns module associated with the Restaurant Customer

Dataset module.

Next, we add a Split module underneath the Restaurant ratings dataset to specify that half of this

dataset is to be used for training and the other half for scoring the new recommendation model.

Type Split into the search bar on the left side of the Azure Machine Learning Studio designer surface

to quickly locate the module. Alternatively, you can find it under Data Transformation/Sample And

Split. Drag and drop the Split module underneath the Restaurant Ratings dataset and connect the

modules. Click the Split module to set the Property pane on the right side of the designer. Click the

Splitting Mode drop-down list-box and set the value to Recommender Split, as shown in Figure 7-5.

FIGURE 7-5 The Properties settings for the Split module for the Restaurant Ratings dataset.

 203

Now it’s time to add the Train Matchbox Recommender module to our experiment. Type Train

matchbox into the search bar on the left side of the Azure Machine Learning Studio designer surface to

quickly locate the module. Alternatively, you can find it under Machine Learning/Train, as shown in

Figure 7-6.

FIGURE 7-6 The Train Matchbox Recommender module in the Azure Machine Learning Studio modules menu.

Drag and drop the Train Matchbox Recommender module underneath the Project Columns module.

The Project Columns module should be underneath the Restaurant Customer dataset in the middle of

the designer surface.

Note that there are three input connectors and order does matter when it comes to connecting

modules to the three top inputs on the Train Matchbox Recommender module. Here are the exact

inputs and their ordering.

1. Training dataset of user-item-rating triples Ratings of items by users, expressed as a triple

(User, Item, Rating).

2. Training dataset of user features Dataset containing features that describe users.

3. Training dataset of item features Dataset containing features that describe items.

Here’s how to make these critical connections to the Train Matchbox Recommender module in our

experiment, moving from right to left:

 Connect the Project Columns module under the Restaurant Feature dataset to the top right

connector.

 Connect the Project Columns module under the Restaurant Customer dataset to the top middle

connector.

 Connect the bottom left Split module under the Restaurant Ratings dataset to the top left

connector of the Train Matchbox Recommender module.

Figure 7-7 shows the order of the inbound connectors.

 204

FIGURE 7-7 The inbound connections to the Train Matchbox Recommender module.

The next step is to add a Score Matchbox Recommender module to our experiment. Type Score

Matchbox into the search bar on the left side of the Azure Machine Learning Studio designer surface to

quickly locate the module. Alternatively, you can find it under Machine Learning/Score, as shown in

Figure 7-8.

FIGURE 7-8 The Train Matchbox Recommender module in the Azure Machine Learning Studio modules menu.

Drag and drop the Score Matchbox Recommender module directly under the Train Matchbox

Recommender module. Note that there are four input connectors for this module. Just like the Train

Matchbox Recommender module, there is an explicit order of input connectors required for this

module to work correctly. The required connection inputs and the order required (from left-to-right)

are as follows.

1. Trained Matchbox recommender.

2. Dataset to score.

3. User features: Dataset containing features that describe users.

4. Item features: Dataset containing features that describe items.

 205

Armed with this knowledge, let’s wire up the input connections to the top four connectors of the

Score Matchbox Recommender module as follows.

1. Connect the Train Matchbox Recommender module to the top left connector.

2. Connect the bottom right Split module to the top second from left connector.

3. Connect the Project Columns module under the Restaurant Customer Data module to the top

third from left connector.

4. Connect the Project Columns module under the Restaurant Feature Data module to the top

right connector.

Figure 7-9 shows the order and sequence of the inbound connectors for the Score Matchbox

Recommender module in our experiment.

FIGURE 7-9 The inbound connections to the Score Matchbox Recommender module.

Now, click the Score Matchbox Recommender module to see the properties in the right pane of

Azure Machine Learning studio. You will notice that there is a drop-down list box that allows us to

specify what kind of prediction we want to make. The following are the possible options.

 Rating Prediction Predict the rating that a customer will give a particular restaurant.

 Item Recommendation Predict which restaurants will be most highly rated by the user.

 Related Users Predict which customers (users) are most like this customer.

 Related Items Predict which restaurants (items) are most like this restaurant.

 206

Figure 7-10 displays the properties available when the Recommender Prediction Kind parameter is

set to Item Recommendation. In this case, there are three additional values that can be set. Later, when

we test the Matchbox recommender experiment, we can use these options to control things like how

many restaurant recommendations to return to a user.

FIGURE 7-10 The Score Matchbox Recommender module parameters for the Recommender Prediction Kind when

the value has been set to Item Recommendation.

Note that if we set the Recommender Prediction Kind parameter to Rating Prediction as in Figure

7-11, there are no other parameters to set. This means that the model will simply return a prediction of

how many stars a particular restaurant will receive from a particular user.

FIGURE 7-11 The Score Matchbox Recommender module parameters for the Recommender Prediction Kind when

the value has been set to Rating Prediction.

At this point, it is important to point out that there is a critical decision to make when configuring

the Score Matchbox Recommender module. The property values that are set in this one module will

have a direct impact on the type and behavior of the prediction that is returned.

The downstream impacts continue when we convert the model to a web service. Depending on the

configuration, the model will predict any one of the four options available in the Recommender

Prediction Kind drop-down list. Additionally, the input parameters will also change. The input

parameter changes will require reconfiguring the web service inputs to point to the correct input

stream for the desired prediction output.

 207

 The last module to add to our Matchbox recommender experiment is the Evaluate Recommender

module. Again, you can locate this module by typing Evaluate Recommender into the search bar on the

left side of the Azure Machine Learning Studio designer surface to quickly locate the module.

Alternatively, you can also find it under Machine Learning/Evaluate, as shown in Figure 7-12.

FIGURE 7-12 The Evaluate Recommender module in the Azure Machine Learning Studio modules menu.

After locating the Evaluate Recommender module, drag and drop it onto the designer surface. Place

it under the Score Matchbox Recommender module. Next, make the following connections to wire up

the module:

 Connect the bottom right connector of the Split module to the top left connector on the

Evaluate Recommender module.

 Connect the bottom connector of the Score Matchbox Recommender module to the top right

connector on the Evaluate Recommender module.

At this point, we can save and run our experiment to process the model. Figure 7-13 shows our

completed Restaurant Matchbox recommender experiment.

 208

FIGURE 7-13 The completed Restaurant Matchbox recommender experiment in Azure Machine Learning Studio.

To check the prediction data that our new model has generated, click the bottom connector of the

Score Matchbox Recommender module and select Visualize, as shown in Figure 7-14.

FIGURE 7-14 Selecting the Visualize option for the Score Matchbox Recommender module.

After selecting the Visualize option, you will see a modal window that displays the prediction

dataset. Figure 7-15 illustrates the dataset that is produced when the Score Matchbox Recommender

module properties have been set to predict using the Item Recommendation option. In this case, the

 209

prediction model will return a set of five recommended restaurants for a given user. The list of five

restaurants is returned in order by ratings, from highest to lowest.

FIGURE 7-15 The generated dataset for the Score Matchbox Recommender module when the properties are set

using the Item Recommendation option.

Now, let’s reset the properties of the Score Matchbox Recommender module to see what ratings are

predicted for a given user and a given restaurant. To reconfigure, click the Score Matchbox

Recommender module. Set the Recommender Prediction Kind parameter to Rating Prediction. Then

click Run on the bottom app bar to regenerate the Matchbox recommender prediction model.

After the Run command has finished, click the bottom connector of the Score Matchbox

Recommender module and select the Visualize option. This time the modal window displays a

completely different prediction dataset. This new dataset only contains three columns for User, Item,

and Rating as shown in Figure 7-16.

 210

FIGURE 7-16 The generated dataset for the Score Matchbox Recommender module when the properties are set

using the Rating Prediction option.

Creating a Matchbox recommender web service

Now it’s time to create a web service from our completed experiment. Because this step will

dramatically alter our existing experiment, now is a good time to click Save on the bottom app bar to

save the current state.

After the save is completed, click Save As on the bottom app bar to save the experiment under a new

name, as we will be dramatically altering it to transform it into a web service. Next, click Run to process

the new, renamed version of the experiment.

To start the transformation into a web service, click on Create Scoring Experiment on the bottom

app bar as shown in Figure 7-17.

 211

FIGURE 7-17 The completed experiment ready to be processed by clicking Create Scoring Experiment.

After the Create Scoring Experiment command has completed, you will notice that the experiment

has been modified to streamline the operations.

The changes made to our experiment reduce the number of modules in the experiment. The Azure

Machine Learning Studio designer now contains the following modules:

 Matchbox Recommender training module.

 Evaluate modules have been replaced with the newly “trained” model.

 Two new web service input and output endpoints have been added to the experiment.

 Click Run again to process our newly modified model.

Now we are finally ready to publish our restaurant ratings Matchbox recommender experiment as a

web service. Click Publish Web Service as shown in Figure 7-18.

 212

FIGURE 7-18 The completed experiment ready to be transformed into a web service.

After the web service has been generated for our experiment, a new page will be displayed showing

the Azure Machine Learning dashboard view. To easily test our new Azure Machine Learning web

service from within an Excel client, simply click Download Excel Workbook as shown in Figure 7-19.

 213

FIGURE 7-19 The Azure Machine Learning web service dashboard for the restaurant ratings Matchbox

recommender experiment.

After downloading the Excel workbook, we can quickly test our new web service by entering values

in the left Parameters section of the worksheet. In the example in Figure 7-20, we entered a valid user

ID and a valid restaurant ID along with a value of zero for the rating to see what would be predicted.

After leaving the last cell in the Parameters section, the Excel workbook executed a macro to call our

new web service. The returned results are updated in the Predicted Values section. In this case, we

received a prediction that our designated user would provide a two-star rating for our designated

restaurant.

FIGURE 7-20 Testing the new Azure Machine Learning restaurant ratings Matchbox recommender web service using

an Excel client.

And there you have it! A complete, end-to-end Azure Machine Learning recommendation engine

for predicting restaurant ratings using the Matchbox recommender engine. This complete example can

be also found in the Azure Machine Learning Sample Gallery. So you can either build it from scratch or

work with the completed experiment to help jump start your machine learning journey.

 214

Summary

In this chapter, we explored the exciting world of recommendation engines, which is one of the most

popular uses of predictive analytics and machine learning today. We worked through a complete

example by building an end-to-end Azure Machine Learning recommendation engine for predicting

restaurant ratings using the Matchbox recommender engine.

Resources

For more information about Azure Machine Learning, please consult the following resources.

Microsoft Research

 Matchbox Recommender System

http://research.microsoft.com/en-us/projects/matchbox/

 Matchbox: Large-Scale Bayesian Recommendations

http://research.microsoft.com/apps/pubs/default.aspx?id=79460

Documentation

 Train Matchbox Recommender

http://help.azureml.net/Content/html/FA4AA69D-2F1C-4BA4-AD5F-90EA3A515B4C.htm

 Score Matchbox Recommender

http://help.azureml.net/Content/html/55544522-9A10-44BD-884F-9A91A9CEC2CD.htm

 Evaluate Recommender

http://help.azureml.net/Content/html/E9AD68A7-E91B-4AE6-800E-B5EE7E22CD17.htm

 Setting up and using Machine Learning Recommendations API FAQ

http://azure.microsoft.com/en-us/documentation/articles/machine-learning-recommendation-

api-faq/

 Quick start guide for the Machine Learning Recommendations API

http://azure.microsoft.com/en-us/documentation/articles/machine-learning-recommendation-

api-quick-start-guide/

http://research.microsoft.com/en-us/projects/matchbox/
http://research.microsoft.com/apps/pubs/default.aspx?id=79460
http://help.azureml.net/Content/html/FA4AA69D-2F1C-4BA4-AD5F-90EA3A515B4C.htm
http://help.azureml.net/Content/html/55544522-9A10-44BD-884F-9A91A9CEC2CD.htm
http://help.azureml.net/Content/html/E9AD68A7-E91B-4AE6-800E-B5EE7E22CD17.htm
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-recommendation-api-faq/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-recommendation-api-faq/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-recommendation-api-quick-start-guide/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-recommendation-api-quick-start-guide/

 215

Chapter 8

Retraining Azure ML models

In this chapter, we continue our exploration of the expansive capabilities of Azure Machine Learning by

examining the mechanisms for incorporating “continuous learning” into the workflow for our predictive

models.

To summarize our journey up to this point, we have examined the basic mechanics of implementing

various predictive analytic models in Azure Machine Learning using a representative cross-section of

popular data science algorithms. In all these cases, we used training datasets to teach those models in

both a supervised and unsupervised capacity.

We then published our new Azure Machine Learning predictive models as web services into test or

production environments. Implementing models as web services also allowed us to extend our new

predictive functionality to the widest population of clients and applications, to garner crucial feedback

about the accuracy and effectiveness of the model.

One of the most important stages of the Azure Machine Learning workflow process is the feedback

loop. Feedback is absolutely critical to the initial development, testing, and refinement of a new

predictive model. Typically this critical feedback is provided by data scientists or the human “caretakers”

of the machine learning solution.

The frequency and quality of the predictive analytics feedback loop can ultimately determine the

success or failure of this technology in your organization. There are many shining examples, across

many industries today, where machine learning and predictive analytics have been implemented

successfully to create a distinct competitive advantage for many organizations.

Alternatively, without the proper care, feeding, and consideration of feedback loops, these

technologies can also become a tremendous “black hole” in terms of costs and questionable

effectiveness. Figure 8-1 summarizes the Azure Machine Learning workflow steps we covered back in

Chapter 2, “Getting started with Azure Machine Learning.”

 216

FIGURE 8-1 The steps in the Azure Machine Learning workflow process.

Workflow for retraining Azure Machine Learning models

This chapter extends our Azure Machine Learning workflow process with an additional critical

dimension, incorporating automatic retraining of the predictive model. By providing a constant stream

of new data to continuously retrain a predictive model, we can successfully introduce the notion of

adaptability to the Azure Machine Learning paradigm.

By constantly providing new dataset inputs and automatically retraining our predictive models

programmatically, we can then create even more dynamic model implementations. These new models

can then adapt and withstand the test of time and evolve rapidly as conditions change in the real world.

This also becomes a defining evolutionary moment in machine learning history. Programmatic

retraining capabilities provide a method to supersede the standard process of initial model training to a

more advanced implementation of continuous learning.

Feedback loops in the existing Azure Machine Learning workflow process are typically implemented

by humans, or “carbon-based-browsers.” Alternatively, this new capability of predictive model

retraining can be achieved automatically and programmatically without human intervention required.

 217

Figure 8-2 illustrates the two approaches to training Azure Machine Learning prediction models. The

upper portion describes the traditional approach we have covered so far in our journey. The lower

portion of Figure 8-2 represents the workflow of the new retraining process we explore in this chapter.

Note that the basic overall workflows are similar. The major difference is where humans are involved in

the process.

FIGURE 8-2 Azure Machine Learning process workflows for training and retraining predictive models.

Retraining models in Azure Machine Learning Studio

Azure Machine Learning allows users to publish trained machine learning models as web services

enabling quick operationalization of their experiments. With the latest release of the Retraining APIs,

Azure Machine Learning now enables programmatic retraining of these models with new data. This

section provides a high-level overview of that process.

To demonstrate how the retraining process is implemented in Azure Machine Learning Studio, we

start with extending the income prediction experiment we first covered back in Chapter 3, “Using Azure

Machine Learning Studio.” Recall that the income prediction experiment was an example of using a

binary classification algorithm to predict whether an individual was likely to have an income level of

more or less than $50,000 per year. In this example, we used a dataset from the UCI Machine Learning

Repository that represented census data for a subset of the population from a 1994 Census database.

Because the relevance of that initial dataset has undoubtedly changed since 1994, the objective for

our retraining example will be to extend that initial Azure Machine Learning experiment. Previously, this

was only possible through the Azure Machine Learning studio user interface. With the introduction of

 218

the Programmatic Retraining API features in Azure Machine Learning, you now can retrain the model.

This will update the web service to use the newly trained model. Each can be done programmatically

using the Retraining APIs. In this iteration, we make use of these new APIs that were introduced into the

Azure Machine Learning feature set as it went from Preview mode to Production mode in early 2015.

To get started, you can either open a copy of the previous income prediction experiment we created

in Chapter 3 or you can import a similar experiment form the Azure Machine Learning Gallery. The link

to the Azure Gallery sample is Sample 5: Train, Test, Evaluate for Binary Classification: Adult Dataset, at

http://gallery.azureml.net/Details/3fe213e3ae6244c5ac84a73e1b451dc4.

Figure 8-3 illustrates the income prediction experiment at the time it was first developed. It also

represents the training mode of the experiment before it was transformed into a web service. The

experiment reflects being in training mode because the initial experiment was set up to use the train,

binary classification, scoring, and evaluation modules to create a trained model. Recall that these

modules are modified or removed at the time we operationalize the experiment into a web service.

FIGURE 8-3 The Azure Machine Learning income prediction binary classification experiment.

http://gallery.azureml.net/Details/3fe213e3ae6244c5ac84a73e1b451dc4

 219

Once you have re-created or located a copy of the income prediction experiment, the first step is to

click Run on the bottom app bar in Azure Machine Learning Studio to process all the modules in the

experiment.

After all the modules have been processed, the next step is to click Create Scoring Experiment on the

bottom app bar as shown in Figure 8-4.

FIGURE 8-4 The Azure Machine Learning income prediction experiment, ready to execute the Create Scoring

Experiment command.

Recall from the previous examples in this book that the Create Scoring Experiment command is

responsible for transforming the experiment from training mode to an operational mode that is

optimized for web service calls. Click Run again to process all the modules in the newly altered

experiment. At this point, the experiment should look similar to Figure 8-5.

 220

FIGURE 8-5 The income prediction experiment ready to be published as a web service.

Note that the Create Scoring Experiment command modified our income prediction experiment by

adding both a web service input endpoint and a web service output endpoint to the design. The

modifications required to enable our experiment for retraining will be implemented in exactly this same

fashion. It will add additional web service endpoints to insert new data and then update the model

based on the new datasets.

Next, click Publish Web Service to complete the process of deploying our income prediction model

 221

as a web service. After processing, the Web Service Dashboard will be displayed with the API Key and

the API Help page for Request/Response and Batch Execution. Publishing the income prediction

experiment as a web service is the first step in creating a model that can then be retrained.

Modify original training experiment

To incorporate retraining capabilities into our trained model, we need to modify and publish the

original income prediction training experiment as a web service.

This new retraining web service will need a Web Service Output module connected to the Train

Model module to be able to produce new trained models.

To transform the original training experiment, we need to add three Web Service modules to the

designer. We will add one Web Service Input and two Web Service Output modules to the workflow.

The Web Service Input and Output modules can be found on the bottom left module menu in Azure

Machine Learning Studio as shown in Figure 8-6.

FIGURE 8-6 The Azure Machine Learning Studio Web Service modules.

Drag and drop the following three Web Service modules to the income prediction training

experiment.

 Add a Web Service Input module Connect this to the top of the Split module. This will provide

a means to insert a new dataset into the workflow.

 Add a Web Service Output module Connect this to the bottom of the Train module. This web

service will provide us the newly trained model.

 Add a Web Service Output module Connect this to the bottom of the Evaluate module. This

web service will return the module’s Evaluate Model output. This is so the newly trained model

can be evaluated to analyze the accuracy and effectiveness of the new dataset.

After adding the three additional web service modules to the original income prediction training

 222

experiment, click Run on the bottom app bar to process all the modules.

Figure 8-7 illustrates how our modified experiment looks after these changes have been made to

introduce retraining capabilities.

FIGURE 8-7 The income prediction Azure Machine Learning Studio training experiment after updates for adding

retraining functionality.

 223

After adding the three additional Web service modules to our original training experiment, and

processing the modules via the Run command, the next step is to click Publish Web Service on the

bottom app bar. This will publish the income prediction training experiment as a web service that

produces trained models and model evaluation results. The Azure Machine Learning web service

dashboard will be displayed with the API Key and the API help page for Batch Execution as shown in

Figure 8-8.

FIGURE 8-8 The Azure Machine Learning web service dashboard after publishing the income prediction training

experiment.

It is important to note that the only way to retrain Azure Machine Learning models is by using the

Batch Execution API method. This makes sense, as the updated training data is most likely to arrive in

datasets rather than as individual request/response transactions. That said, in some cases, there is value

in updating an Azure Machine Learning model with new retraining dataset rows as fast as they become

available.

By having an immediate feedback loop in the form of new training data to retrain the model almost

instantly, you can create a highly adaptive predictive engine that is highly responsive to changes in

 224

conditions. In a sense, we are creating the ability for Azure Machine Learning solutions to actually learn

on the fly.

Add an additional web endpoint

Note that the initial web service that was created for our nontraining experiment was created with a

default endpoint. The default endpoints are kept in sync with the originating experiment, and therefore

a default endpoint's trained model cannot be replaced. To create an updatable endpoint, there are two

options.

 Manually Access the Azure Portal and manually add a new endpoint.

 Programmatically Construct and execute an HTTP PUT message.

Azure Machine Learning Studio allows you to create multiple endpoints for a published web service.

Each endpoint is individually addressed, throttled, and managed, independently of the other endpoints

of that web service. Additionally, there is a unique URL and authorization key for each endpoint.

To create an additional endpoint for our income prediction service, start by navigating to the Azure

Portal. Select the workspace that contains the experiment for which you want to add an additional web

service endpoint. Once your Azure Machine Learning workspace has been selected, click the Web

Services tab in the upper left navigation menu, as shown in Figure 8-9.

 225

FIGURE 8-9 Azure Machine Learning Workspace menu option for managing web services.

After clicking the Web Services tab, select the specific workspace experiment that contains the

income prediction experiment to see the list of available endpoints. Figure 8-10 displays the web service

that was created when we published our experiment in the previous steps.

 226

FIGURE 8-10 The web service available for the Azure Machine Learning workspace that contains the income

prediction experiment.

After selecting the appropriate workspace that contains the income prediction experiment, click the

web service that was created. This will display an additional Azure Machine Learning webpage that

displays the default web service for the experiment along with any additional web service endpoints.

Figure 8-11 displays a sample Azure Machine Learning web service endpoint web page.

 227

FIGURE 8-11 A sample Azure Machine Learning web service endpoint webpage.

Now, click Add Endpoint on the bottom app bar to invoke a pop-up window to add an additional

endpoint. Enter a name for your new endpoint along with a description. Note that the endpoint name

must be unique for all endpoints in this web service. Leave the throttle level with the default value

unless you need to adjust this parameter. Figure 8-12 shows the input parameters for the Add A New

Endpoint command.

 228

FIGURE 8-12 The input fields for adding a new web service endpoint in Azure Machine Learning Studio.

For our new retraining example, we add a new endpoint with the name retraining and description of

retraining endpoint. Figure 8-13 shows our two endpoints for the original income prediction web

service. The default endpoint was created when we originally published the income prediction

experiment. The retraining endpoint was just added to provide a mechanism for retraining and

updating the original model.

 229

FIGURE 8-13 The two endpoints for the Azure Machine Learning income prediction web service.

Retrain the model via batch execution service

The next step is to implement a sample C# console application to provide new training data and update

our model. The easiest way to accomplish this task is by using the C# sample code that was generated

for the training experiment web service.

Recall that the only way to retrain Azure Machine Learning models is by using the Batch Execution

API method. Navigate to the API Help page that was generated for our training version of the income

prediction experiment and click the API Help page link for Batch Execution. Scroll all the way to the

bottom to find the sample C# console code.

To create a C# console application for retraining an Azure Machine Learning model, you can refer to

the instructions in Chapter 4, “Creating Azure Machine Learning client and server applications.” The

high-level steps are as follows:

1. Start by opening Visual Studio 2013.

2. Select File/New Project/Visual C#/Windows Desktop/Console Application.

3. Install the Microsoft.AspNet.WebApi.Client NuGet packages.

4. Paste the C# sample code into the Program.cs file. The C# sample code can be found on the API

Help page. The Help page can be found in the Azure Machine Learning Studio web service

dashboard page. See Figure 8-8 for an illustration of the Azure Machine Learning Studio web

service dashboard.

5. Add a reference to Microsoft.WindowsAzure.Storage.

Once you have the basic C# console project created, the next step is to update the variables in the

 230

InvokeBatchExecutionService()method. Specifically, the following variables will need to be updated for

your environment:

 StorageAccountName Create a new storage account or use an existing one.

 StorageAccountKey This is the storage account key from the Azure portal.

 StorageContainerName Create a new container in your storage account.

 InputFileLocation Specify the location of the new training dataset on your local file system.

Remember to use double back-slashes for folder path delimiters.

 InputBlobName This is the name for an Azure blob to contain the output results. This name

must have the same file extension as the input file in the preceding variable.

 apiKey This is the API key for the training experiment web service.

After updating the C# sample console application variables with your information, you can compile

the application and then run the application from a command line to see the output window, as shown

in Figure 8-14.

FIGURE 8-14 The output from the C# console app to import a new training set and retrain a model.

Notice that the results include storage location information for both of them, as seen below.

“Output1” is the output of the Trained Model, and “output2” is the output of the Evaluate Model. The

Batch Execution Service (BES) output shows the information for the result of retraining for “output1,”

which contains the retrained model location information.

To complete the process, we need to update the trained model of the income prediction web service

endpoint we created previously. We now need to take this trained model and update the scoring

endpoint. The key is to get the API key from the bottom of the retraining web service page and the

Request URI from the Update Resource link. The Update Resource link on the retraining endpoint

dashboard is shown in Figure 8-15.

 231

FIGURE 8-15 The Azure Machine Learning web service methods for the retraining endpoint.

The final step is to add the additional code shown in Figure 8-16 to the sample C# console

application.

 232

FIGURE 8-16 The C# console application code to update the Azure ML model.

This method should be called using the results of the BES batch update. The parameters passed into

this routine would come from parsing the results returned as “output1” from the C# console application

as shown in figure 8-14. These results contain the BaseLocation, RelativeLocation, and SasBlobToken for

the newly trained model. Additionally, update the apiKey and endpointUrl variables to reflect the URL

and API key for the Update Resource endpoint, not the new web service used to create the new model.

This service, once called, will update the model referenced as a resource by the income prediction

web service. After that time, all additional calls to that service will use this newly created model.

Leveraging this update process in the life cycle of your Azure Machine Learning experiment allows you

to truly deploy machine learning.

Summary

In this chapter, we explored the mechanisms in Azure Machine Learning to programmatically retrain a

predictive model. This capability represents a powerful new approach to enable machines to learn on

their own by providing a constant stream of new training data to adapt to changing conditions.

This new technological capability for machines to rapidly adapt through the use of constant learning

also reflects the current inflection point in society that is both empowering and alarming to many

individuals today. Like most technologies that have been discovered throughout history, the intent of

the implementer often becomes the defining point for whether it is ultimately used as a tool or a

weapon.

 233

Resources

For more information about retraining Azure Machine Learning models, please see the following

resources.

 Retrain Machine Learning models programmatically

http://azure.microsoft.com/en-us/documentation/articles/machine-learning-retrain-models-pr

ogrammatically/

 Creating endpoints

http://azure.microsoft.com/en-us/documentation/articles/machine-learning-create-endpoint/

 Scaling API endpoints

http://azure.microsoft.com/en-us/documentation/articles/machine-learning-scaling-endpoints/

 Microsoft Azure Machine Learning Retraining demo

https://azuremlretrain.codeplex.com/

 Azure Machine Learning Frequently Asked Questions (FAQ)

http://azure.microsoft.com/en-us/documentation/articles/machine-learning-faq/

http://azure.microsoft.com/en-us/documentation/articles/machine-learning-retrain-models-programmatically/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-retrain-models-programmatically/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-create-endpoint/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-scaling-endpoints/
https://azuremlretrain.codeplex.com/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-faq/

About the author

Jeff A. Barnes is a Cloud Solution Architect (CSA) on the

Microsoft Partner Enterprise Architecture Team, where he

engages with leading cloud architects and developers to

present Microsoft’s cloud vision. A 17-year Microsoft veteran,

Jeff brings over 30 years of deep technical experience to the

CSA role. He typically works with key ISVs and global partners

to demonstrate how Microsoft Azure technologies can be best

leveraged to meet the current and future demands of an

organization transitioning to the cloud. Jeff has deep practical

experience in the retail, financial, and manufacturing

industries and he is a frequent speaker at Microsoft and third-

party events. Jeff resides with his family in Miami, Florida,

where his definition of “offshore development” usually equates to “fishing offshore.”

\ \
 \\ [\
 \\ \ [__
 -=<<((((<<>)}@>>
 // / {/
 / /

Microsoft Press

Free ebooks

From technical overviews to drilldowns on special topics, get

free ebooks from Microsoft Press at:

www.microsoftvirtualacademy.com/ebooks

Download your free ebooks in PDF, EPUB, and/or Mobi for

Kindle formats.

Look for other great resources at Microsoft Virtual Academy,

where you can learn new skills and help advance your career

with free Microsoft training delivered by experts.

http://www.microsoftvirtualacademy.com/ebooks

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

http://aka.ms/tellpress

	Cover
	Microsoft Press Store
	Newsletters
	Microsoft Press Guided Tours app
	Table of Contents
	Foreword
	Introduction
	Who should read this book
	Assumptions

	This book might not be for you if…
	Organization of this book
	Conventions and features in this book
	System requirements
	Acknowledgments
	Errata, updates, & support
	Free ebooks from Microsoft Press
	Free training from Microsoft Virtual Academy
	We want to hear from you
	Stay in touch

	Chapter 1 Introduction to the science of data
	What is machine learning?
	Today's perfect storm for machine learning
	Predictive analytics
	Endless amounts of machine learning fuel
	Everyday examples of predictive analytics
	Early history of machine learning
	Science fiction becomes reality
	Summary
	Resources

	Chapter 2 Getting started with Azure Machine Learning
	Core concepts of Azure Machine Learning
	High-level workflow of Azure Machine Learning
	Azure Machine Learning algorithms
	Supervised learning
	Unsupervised learning
	Deploying a prediction model
	Show me the money
	The what, the how, and the why
	Summary
	Resources

	Chapter 3 Using Azure ML Studio
	Azure Machine Learning terminology
	Getting started
	Azure Machine Learning pricing and availability
	Create your first Azure Machine Learning workspace
	Create your first Azure Machine Learning experiment
	Download dataset from a public repository
	Upload data into an Azure Machine Learning experiment
	Create a new Azure Machine Learning experiment
	Visualizing the dataset
	Split up the dataset
	Train the model
	Selecting the column to predict
	Score the model
	Visualize the model results
	Evaluate the model
	Save the experiment
	Preparing the trained model for publishing as a web service
	Create scoring experiment
	Expose the model as a web service
	Azure Machine Learning web service BATCH execution
	Testing the Azure Machine Learning web service
	Publish to Azure Data Marketplace
	Overview of the publishing process
	Guidelines for publishing to Azure Data Marketplace

	Summary

	Chapter 4 Creating Azure Machine Learning client and server applications
	Why create Azure Machine Learning client applications?
	Azure Machine Learning web services sample code
	C# console app sample code
	R sample code
	Moving beyond simple clients
	Cross-Origin Resource Sharing and Azure Machine Learning web services
	Create an ASP.NET Azure Machine Learning web client
	Making it easier to test our Azure Machine Learning web service
	Validating the user input
	Create a web service using ASP.NET Web API
	Enabling CORS support
	Processing logic for the Web API web service
	Summary

	Chapter 5 Regression analytics
	Linear regression
	Azure Machine Learning linear regression example
	Download sample automobile dataset
	Upload sample automobile dataset
	Create automobile price prediction experiment
	Summary
	Resources

	Chapter 6 Cluster analytics
	Unsupervised machine learning
	Cluster analysis
	KNN: K nearest neighbor algorithm
	Clustering modules in Azure ML Studio
	Clustering sample: Grouping wholesale customers
	Operationalizing a K-means clustering experiment
	Summary
	Resources

	Chapter 7 The Azure ML Matchbox recommender
	Recommendation engines in use today
	Mechanics of recommendation engines
	Azure Machine Learning Matchbox recommender background
	Azure Machine Learning Matchbox recommender: Restaurant ratings
	Building the restaurant ratings recommender
	Creating a Matchbox recommender web service
	Summary
	Resources

	Chapter 8 Retraining Azure ML models
	Workflow for retraining Azure Machine Learning models
	Retraining models in Azure Machine Learning Studio
	Modify original training experiment
	Add an additional web endpoint
	Retrain the model via batch execution service
	Summary
	Resources

	About the Author
	Free ebooks
	Tell us what you think!

