
COLUMNS
Toolbox
Data Snapshots, Subversion,
Source Code Organization,
And More
Scott Mitchell page 9

CLR Inside Out
Code Contracts
Melitta Andersen page 15

Data Points
Data Performance And Fault
Strategies In Silverlight 3
John Papa page 22

Cutting Edge
Pros And Cons Of Data
Transfer Objects
Dino Esposito page 28

Patterns In Practice
Incremental Delivery Through
Continuous Design
Jeremy Miller page 34

Security Briefs
Cryptographic Agility
Bryan Sullivan page 75

Under The Table
How Data Access Code Affects
Database Performance
Bob Beauchemin page 82

Foundations
Windows Workfl ow
Design Pattners
Matthew Milner page 87

.NET Matters
Aggregating Exceptions
Stephen Toub page 92

AUGUST 2009 VOL 24 NO 8

Visualizing Information With .NET
Laurence Moroney page 40

N-Tier Application Patterns
Daniel Simmons page 48

Implementing The Domain Model Pattern
Udi Dahan page 55

EF v2 And Data Access Architecture Best Practices
Tim Mallalieu page 62

The Relational Database Of
The Azure Services Platform
David Robinson page 71

THIS MONTH at msdn.microsoft.com/magazine:
USABILITY IN PRACTICE: Information Architecture And Design
Dr. Charles B. Kreitzberg & Ambrose Little

INSIDE MICROSOFT patterns & practices: WPF & Silverlight Using Prism
Erwin van der Valk

INSIDE WINDOWS 7: MultiTouch Capabilities In Windows 7
Yochay Kiriaty

http://msdn.microsoft.com/magazine

4 msdn magazine Printed in the USA

LUCINDA ROWLEY Director

EDITORIAL: mmeditor@microsoft.com

HOWARD DIERKING Editor-in-Chief

WEB SITE

MICHAEL RICHTER Webmaster

CONTRIBUTING EDITORS Don Box, Keith Brown, Dino Esposito, Juval Lowy,
Dr. James McCaffrey, Fritz Onion, John Papa, Ted Pattison, Charles Petzold,
Jeff Prosise, Jeffrey Richter, John Robbins, Aaron Skonnard, Stephen Toub

MSDN Magazine (ISSN # 1528-4859) is published monthly by TechWeb, a division of United Business
Media LLC., 600 Community Drive, Manhasset, NY 11030 516-562-5000. Periodicals Postage Paid
at Manhasset, NY and at additional mailing offi ces. Back issue rates: U.S. $10. All others: $12. Basic
one-year subscription rates: U.S. $45. Canada and Mexico $55. Registered for GST as TechWeb, a
division of United Business Media LLC., GST No. R13288078, Customer No. 2116057 Canada Post:
Publications Mail Agreement #40612608. Canada Returns to be sent to Bleuchip International, P.O.
Box 25542, London, ON N6C 6B2. All other foreign orders $70, must be prepaid in U.S. dollars drawn
on a U.S. bank. Circulation Department, MSDN Magazine, P.O. Box 1081, Skokie, IL 60076-8081, fax
847-763-9583. Subscribers may call from 8:00 AM to 4:00 PM CST M-F. In the U.S. and Canada 888-
847-6188; all others 847-763-9606. U.K. subscribers may call Jill Sutcliffe at Parkway Gordon 01-49-
1875-386. Manuscript submissions and all other correspondence should be sent to MSDN Magazine,
6th Floor, 1290 Avenue of the Americas, New York, NY 10104. Copyright © 2009 Microsoft Corporation.
All rights reserved; reproduction in part or in whole without permission is prohibited.

POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 1081, Skokie, IL 60076-8081

READERS: Order, renew, or make payment for subscriptions; order back issues; and submit
customer service inquiries via the Web at http://msdn.microsoft.com/msdnmag/service.

PUBLISHER:

Jill Thiry jthiry@techweb.com

ADVERTISING SALES: 785-838-7573/dtimmons@techweb.com

David Timmons Associate Publisher
Jon Hampson Regional Account Director, Northeast US and EMEA
Ed Day Regional Account Manager, West & South US and APAC
Brenner Fuller Strategic Account Manager, West & South US and APAC
Michele Hurabiell-Beasley Strategic Account Manager, Key Accounts
Julie Thibault Strategic Account Manager, Northeast US and EMEA
Meagon Marshall Account Manager
Pete C. Scibilia Production Manager / 516-562-5134
Wright’s Reprints 877-652-5295
ubmreprints@wrightsreprints.com

ONLINE SERVICES: 415-947-6158/mposth@techweb.com

Mark Posth Community Manager
Meagon Marshall Online Specialist

AUDIENCE SERVICES: 516-562-7833/kmcaleer@techweb.com

Karen McAleer Audience Development Director

SUBSCRIBER SERVICES: 800-677-2452/lawrencecs@techinsights.com

TechWeb, a division of United Business Media LLC.–The Global Leader in Business Technology Media

Tony L. Uphoff CEO
Bob Evans SVP and Content Director
Eric Faurot SVP, Live Events Group
Joseph Braue SVP, Light Reading Communications Group
John Siefert VP and Publisher, InformationWeek and TechWeb Network
Scott Vaughan VP, Marketing Services
John Ecke VP, Financial Technology Group
Jill Thiry Publisher, MSDN Magazine and TechNet Magazine
John Dennehy General Manager
Fritz Nelson Executive Producer, TechWeb TV
Scott Popowitz Senior Group Director, Audience Development
Beth Rivera Senior Human Resources Manager

AUGUST 2009 VOLUME 24 NUMBER 8

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/msdnmag/service
mailto:jthiry@techweb.com
mailto:785-838-7573/dtimmons@techweb.com
mailto:ubmreprints@wrightsreprints.com
mailto:415-947-6158/mposth@techweb.com
mailto:516-562-7833/kmcaleer@techweb.com
mailto:800-677-2452/lawrencecs@techinsights.com

msdn magazine6

The Tale of Two Database Schemas
I recently had the opportunity to author
the editor’s note for TechNet Magazine. I have to
say that, being a developer, addressing an audi-
ence of IT professionals was a bit daunting. Both
disciplines are vital to any business, but many
times their paths only cross when something is
broken. However, I believe that when it comes
to the management of data, both developers and

IT professionals need to be involved up front in planning solutions.
Given that the theme of that particular TechNet Magazine issue was
business intelligence and that the theme of this issue of MSDN
Magazine is data, I’ll address some of the main points I made in that
editor’s note but more from the developer perspective.

When you get right down to it, the role that soft ware generally plays
in most businesses is to get, process, and store data. Th erefore, while we
may have all sorts of high-level discussions and debates around archi-
tectural patterns and object-oriented heuristics, the fact remains that the
most elegantly designed application is still eff ectively taking data from
somewhere, doing something to it and putting it somewhere else.

Now don’t get me wrong—I’m not suggesting that design heuristics
we argue so fervently over are immaterial. Aft er all, a Ford Model
T and a Lamborghini Diablo both accomplish the task of moving
people from one place to another; but given a choice between the
two, it’s pretty clear in my mind which one I would choose. Instead,
I’m suggesting that we put the same level of thinking and technology
consideration into data structure and management that we do for
our class models. Furthermore, I’m not just talking about relational
schema design or whether or not to use stored procedures. I’m talking
much more generally about understanding how the business needs
to consume data in a way that provides meaningful value.

One prime example of poor application planning and design as
it relates to data is found in reporting. Forget the object-relational
impedance mismatch for a moment—the transactional-reporting
impedance mismatch seems to be one of those problems that
rears its head in just about every business support system that
we touch. And in nearly every case, the transactional concerns
win by a landslide. Reporting requirements become limited by

EDITOR’S NOTE

© 2009 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by United Business Media LLC. United Business Media LLC is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this
magazine. The recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation
does not make any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and
Microsoft logos are used by United Business Media under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments, or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

THANKS TO THE FOLLOWING MICROSOFT TECHNICAL EXPERTS FOR THEIR HELP WITH
THIS ISSUE: Mike Barnett, Bob Brumfi eld, Pablo Castro, Jeff Currier, Diego Dagum,
Nelly Delgado, Jeff Derstadt, Manuel Fahndrich, Shawn Farkas, Elisa Flasko, Shawn
Hernan, Tim Heuer, Carl Perry, Ayende Rahien, and Blaine Wastell.

the inherent complexity and performance limitations found
in the highly normalized database schemas of well-designed
transactional systems. Even when well-meaning system design-
ers try to accommodate both sets of concerns in the application
schema, the result generally does slightly better at meeting the
reporting requirements, and it does so at the great expense of the
transactional requirements.

So what’s the solution? First, get comfortable with the reality that
there is not, nor will there ever be, a relational database design that will
successfully meet both transactional and reporting requirements—at
least not in a sustained way. From there, start assuming that your
system should have at least two database schemas—one highly normal-
ized schema that is optimized for processing transactions and one
denormalized schema that is optimized for reporting and for mining.
What I’m describing is known as the diff erence between relational
and dimensional data modeling. For a great resource on getting
started with dimensional modeling, check out Th e Data Warehouse
Toolkit by Ralph Kimball and Margy Ross (Wiley, ).

Freeing yourself from the burden of trying to build a single
relational schema that takes into account both reporting and
transactional concerns will enable you to truly optimize both new
schemas according to how they are actually used. Put another way,
you will have eff ectively shift ed your problem from a design problem
to an extract, transform and load (ETL) problem—and the latter is
generally a much more straightforward type of problem to solve.
Additionally, I think that once you dig into some of the technologies
that support dimensional modeling, from online analytical process-
ing to data mining, you may just fi nd that implementing reporting
requirements can actually become a great deal more fun.

At the very least, think of it as ensuring that
your databases follow the single responsibility
principle.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

9August 2009

Save, Organize, and Annotate
Snapshots of Your Data

Virtually all computer programs allow
users to serialize their current working state
to a portable, self-contained fi le, which can
then be opened from another computer
that has the same software installed. In
less formal terms, most programs have
a Save option that lets you persist your
work to a fi le. Wouldn’t it be nice if such
functionality were possible with database
queries? Imagine if you could run one or
more SELECT statements and then save the
resultsets to a fi le. Such fi les could be used
to store and review historical data, to serve
as a “before” snapshot of data before per-
forming a bulk modifi cation, and to allow
testers, analysts, and other stakeholders the
ability to view a precise set of data without
needing access to the database.

SQL Sets version 1.5 is an ingenious piece
of software that brings such functionality
to the database world. SQL Sets has three
primary use cases: storing the results of
one or more queries into a portable data
document fi le, or “set”; viewing, organizing,
and annotating the data stored in a set; and
comparing the data between two sets. A set
is stored on disk as a self-contained, static,
read-only snapshot of data at a specifi c
point in time. It stores the raw data and
has no dependency on the database. This
means that sets can be moved to other
computers, viewed, and shared among
team members without having to grant
anyone access to the database.

Creating a set fi le is a breeze. Launch the
SQL Sets application, connect to the data-
base that contains the data of interest, and
specify the query (or queries) whose data
you want to capture. You can write these
queries yourself or have SQL Sets build them

for you by selecting one or more tables from
the Connection Explorer window. Once
the queries have been specifi ed, click the
Save icon to save the data returned from
the queries to a set fi le.

When you view a set, its data is displayed
in a grid that supports sorting, fi ltering, and
grouping by column. Rows can be book-
marked for quick access and annotated to
include notes or other information about
the row. All of these features are available
through pointing and clicking. Also, the
person viewing the set does not need to be
familiar with SQL syntax. What’s more, with
the click of a button you can export the set’s

TOOLBOXSCOTT MITCHELL

data to Microsoft Excel or to HTML. There’s
also an Export to ADO.NET DataSet option,
which translates the set’s schema and data
into an XML serialized ADO.NET DataSet
that you can use in a .NET application.

SQL Sets also allows you to compare two
sets. Start by selecting the two set fi les to
compare, then indicate whether to show
only rows that are the same in both, rows that
are different, rows that are in one set but
not the other, or any combination thereof.
SQL Sets then loads the data and clearly
highlights those rows with differences.

SQL Sets makes it remarkably easy
to take snapshots of database data and

All prices confi rmed at press time and are subject to change. The opinions expressed in this column are
solely those of the author and do not necessarily refl ect the opinions at Microsoft.

Send your questions and comments for Scott to toolsmm@microsoft.com.

Data Snapshots, Subversion, Source Code
Organization and More

SQL Sets

mailto:toolsmm@microsoft.com

msdn magazine12 Toolbox

to allow team members to review, sort,
fi lter, group, bookmark, and annotate
the snapshot data. These snapshots can
also serve as archived data or as “before”
and “after” snapshots when performing
a bulk modifi cation.

Price: $149
sqlsets.com

Blogs of Note
At MIX09, Microsoft released ASP.NET

MVC version 1.0, a framework for creating
ASP.NET Web applications using a Model-
View-Controller pattern. ASP.NET MVC
offers developers precise control over the
markup emitted from Web pages; a much
cleaner separation of presentation and
business logic concerns; better testability;
and human-readable, terse, SEO-friendly
URLs. Moving from the ASP.NET Web Forms
model to ASP.NET MVC requires a shift in
thinking and problem solving. Web Forms
allow ASP.NET developers to almost forget
about the client/server nature of the Web
and to think of HTML, JavaScript, and CSS as
low-level details that are abstracted away.
ASP.NET MVC puts the distinction between
the client and the server into sharp focus
and requires a working knowledge of HTML
and client-side script.

Developers who are interested in learning
or are currently using ASP.NET MVC should
check out the tips, tutorials, and sample
chapters available on Stephen Walther’s
Blog. There you’ll fi nd more than 50 tips
on ASP.NET MVC. Each tip shows how to
perform a very specifi c task and provides
step-by-step instructions with detailed
code snippets and screen shots. For ex-
ample, Tip #41 is titled, “Create Cascading
Drop-Down Lists with Ajax,” and walks
through three different ways to create such
lists in an ASP.NET MVC application.

Stephen’s blog also includes a number
of end-to-end tutorials that illustrate how
to create a particular type of application
using ASP.NET MVC. For instance, there’s
a six-part tutorial on building an online
message board application and a fi ve-part
tutorial on creating a family video Web site.
The blog is also home to the rough drafts
of chapters from Stephen’s book, ASP.NET
MVC Framework Unleashed, forthcoming
from Sams.

In addition to maintaining his blog,
Stephen also writes many of the tutorials
and How-To videos for ASP.NET MVC on
the offi cial ASP.NET Web site, asp.net.

Price: Free
stephenwalther.com/blog

The Easy Way to Install and
Confi gure Subversion

Regardless of how many developers are
employed, every company that creates
software should be using source control.
Over the years, I’ve helped a number of
independent consultants and small com-
panies set up and confi gure source control
systems. The fi rst step is selecting which
source control system to use. There are
a variety of free and commercial source
control systems available; Wikipedia lists
more than 50 offerings in its “List of revi-
sion control software” entry. One of the
more popular source control systems is
Subversion, a free, open-source option
that was fi rst released in 2000. Subversion
has a strong online community and is
the source control system of choice for
many open-source projects. It is also a
popular source control system within the
enterprise.

Although installing, confi guring, and
managing Subversion is not rocket science,
these processes are not the most intuitive or
user-friendly, either. For instance, in order

to access Subversion through HTTP, you
need to also install and confi gure the
Apache Web server. Creating user accounts
involves editing a particular text fi le. And
because Subversion lacks a graphical user
interface, much of the confi guration and
maintenance must be done from the com-
mand line. The good news is that installing,
confi guring, and managing Subversion is
a breeze with VisualSVN Server version
1.7.1, a free product from the same com-
pany that makes VisualSVN, a Visual Studio
plug-in that integrates source control
through Subversion into the Visual Studio
IDE. (VisualSVN was reviewed in the 2008
Launch issue: msdn.microsoft.com/en-us/magazine/

cc164246.aspx.)
With VisualSVN Server, there’s no need

to download and install Subversion and
Apache, or to interface with Subversion
through the command line or to tinker
with its confi guration fi les. Installing
VisualSVN Server automatically installs the
latest versions of Subversion and Apache
for you. During the installation process,
you are prompted for key Subversion
and Apache settings, such as the location
where Subversion should store its reposi-
tories, what port it should use, whether to
support secure HTTPS connections, and
whether authentication should be handled
by Subversion or Windows. VisualSVN
Server then applies these settings to the

Stephen Walther’s Blog

http://sqlsets.com
http://stephenwalther.com/blog
http://msdn.microsoft.com/en-us/magazine/cc164246.aspx
http://asp.net

13August 2009msdnmagazine.com

Subversion and Apache confi gurations
on your behalf.

Once it is installed, use the VisualSVN
Server Manager to view and manage
repositories, users, and groups. With a
few clicks of the mouse, you can create
new repositories, manage users, specify
permissions and other security settings, and
manage the fi les in a repository. Without
VisualSVN Server, these tasks would have
to be done from the command line or by
modifying confi guration fi les. VisualSVN
Server also offers a graphical interface for
specifying hooks, which are programs that
run in response to certain source control
events, such as check-in and check-out.
And because VisualSVN Server installs
and confi gures Apache, you can view the
contents of repositories from your Web
browser and access the repository and
check in items over the Internet.

If you plan to install Subversion in a
Windows environment, there’s no reason
not to use VisualSVN. It greatly simplifi es
installing and managing Subversion and
is available for free.

Price: Free
visualsvn.com/server

Automatically Organize
Your Source Code

Code refactoring, or “cleaning up” code,
can greatly improve the readability and
understandability of the source code,
thereby making the application more main-
tainable and updatable. Some changes,
such as renaming a variable to a more
fi tting name or moving a block of code into
a new function, make the code easier to
understand. Other changes, such as adding
white space or rearranging the methods in
a fi le so that they are in alphabetical order,
make the code easier to read.

Manually refactoring code can be a
tedious process. Fortunately, there are
tools to help automate many common
refactoring tasks. For instance, Visual Studio
has a Refactor menu that offers one-click

access to common refactoring tasks.
Another useful tool is NArrange (version
0.2.7), which automatically organizes C#
and Visual Basic source code into a more
readable format. NArrange can be run from
the command line or from within Visual
Studio to arrange a single fi le, all code fi les
in a specifi ed directory, or all code fi les in
a Visual Studio Project or Solution. When
invoked, NArrange begins by saving a
backup of the fi les that will be modifi ed.
Next, it parses each of the specifi ed fi les,
rearranges their contents based on the
confi guration options, and then writes the
rearranged source code back to disk.

By default, NArrange groups construc-
tors, fi elds, properties, methods, and events
into regions and alphabetizes the members
within each region. Consecutive blank
lines are removed, tabs are converted into
spaces, and the using or Import directives
within a class fi le are consolidated and
sorted. However, NArrange’s formatting

and parsing rules can be customized. For
example, you can instruct NArrange to not
use regions and to not delete consecutive
blank lines.

NArrange provides a fast and easy way
to organize source code into a much more
readable format. Use it to beautify your
code or to reformat legacy code you’ve
inherited to make it more readable.
NArrange can also be used to ensure
a consistent formatting style among
developers in a team setting.

Price: Free, open source
narrange.net

SCOTT MITCHELL, author of numerous books and
founder of GuysFromRolla.com, is an MVP who has
been working with Microsoft Web technologies since
. Scott is an independent consultant, trainer, and
writer. Reach him at Mitchell@guysfromrolla.com
or via his blog at ScottOnWriting.NET.

VisualSVN Server

mailto:Mitchell@4guysfromrolla.com
http://www.msdnmagazine.com
http://visualsvn.com/server
http://4GuysFromRolla.com
http://ScottOnWriting.NET
http://narrange.net

15August 2009

are diff erent from the released version. But the general principles
should remain the same.

Parts of the Code Contracts System
Th ere are four basic parts that are involved in using code contracts

in the .NET Framework . Th e fi rst part is the contract library.
Contracts are encoded using static method calls defi ned in the
Contract class in the System.Diagnostics.Contracts namespace
in mscorlib.dll. Contracts are declarative, and these static calls at
the beginning of your methods can be thought of as part of the
method signature. Th ey are methods, and not attributes, because
attributes are very limited in what they can express, but the concepts
are similar.

Th e second part is the binary rewriter, ccrewrite.exe. Th is tool
modifi es the Microsoft Intermediate Language (MSIL) instructions
of an assembly to place the contract checks where they belong.
With the library, you declare your contracts at the beginning of the
method. Ccrewrite.exe will place checks for the method guarantees
at all return points from the method and will inherit contracts
from other locations, such as base classes or interfaces. Th is is the
tool that enables runtime checking of contracts to help you debug
your code. Without it, contracts are simply documentation and
shouldn’t be compiled into your binary.

Th e third part is the static checker, cccheck.exe, that examines
code without executing it and tries to prove that all of the contracts
are satisfi ed. Th is tool is used only for advanced scenarios where
the programmer is willing to go through the eff ort required to track
down unproven contracts and add extra information as needed.
Attributes exist that let you specify which assemblies, types, or
members should be checked. It is generally a good plan to start
small and then expand the scope for your static analysis.

Running the rewriter and adding many extra checks to your as-
semblies is benefi cial to help you catch errors and write quality code.
But those checks can slow down your code, and you don’t always
want to include them in your shipping assemblies. However, if you
are developing APIs that others might write code against, it would
be useful for them to have access to the contracts for your code.

Code Contracts

Oft en there are certain facts about code that exist only in the
developer’s head or, if you’re lucky, in the code comments. For
example, method Foo assumes that the input parameter is always
positive and fails to do anything useful on negative numbers, so
you had better make sure you’re calling it with a positive number.
Or class Bar guarantees that property Baz is always non-null, so
you don’t have to bother checking it. If you violate one of these
conditions, it can lead to diffi cult-to-fi nd bugs. In general, the later
a bug is found, the more diffi cult it is to fi x. Wouldn’t it be great if
there were a way to encode and check this kind of assumption to
make it easier to catch bugs, or even help prevent you from writing
them in the fi rst place?

Th is is where programming with contracts comes in. Th e practice
was fi rst introduced by Bertrand Meyer with the Eiff el program-
ming language. Th e basic idea is that classes and methods should
explicitly state what they require and what they guarantee if those
requirements are met, i.e., their contracts. Ideally, they are decided
upon at design time, and not tacked on aft er development has
already happened. Th ese contracts are not only human-readable,
but they can also be picked up by tooling that can perform runtime
checking or static verifi cation, or perhaps include them in generated
documentation.

For those familiar with Debug.Assert, you may be thinking this
is a solved problem. But Debug.Assert only allows you to express
that a particular condition should be true at a particular point in
the code. Code contracts allow you to declare once that a particular
condition should hold any time certain events occur, such as every
exit point from a method. Th ey can also express invariants that
should be true class-wide, or requirements and guarantees that
should exist even for subclasses.

The Common Language Runtime (CLR) team is introducing
a library to allow programming with contracts in the Microsoft
.NET Framework . Adding them as a library allows all .NET
languages to take advantage of contracts. This is different from
Eiffel or Spec#, a language from Microsoft Research (research.micro-

soft.com/en-us/projects/specsharp/), where the contracts are baked
into the language.

Th is article will share some of the best practices that the Base
Class Libraries (BCL) team devised as it added the code contract
libraries and started to take advantage of them in its own code. Th is
article is based on a prerelease version of code contracts that is more
recent than the beta  version, so there may be some details that

This column is based on a prerelease version of the Microsoft .NET Framework 4.
Details are subject to change.

Send your questions and comments to clrinout@microsoft.com.

CLR INSIDE OUTMELITTA ANDERSEN

mailto:clrinout@microsoft.com
http://research.microsoft.com/en-us/projects/specsharp/

msdn magazine16 CLR Inside Out

To that end is the fourth part, the tool ccrefgen.exe, which will
create separate contract reference assemblies that contain only the
contracts. Th e rewriter and static checker will then make use of any
contract assemblies when they are doing their instrumentation
and analysis.

To get more information about all of these tools or to get the
latest releases, please check the Code Contracts site on DevLabs:
msdn.microsoft.com/en-us/devlabs/dd491992.aspx.

The Code Contract Library
Th ere are three basic types of code contracts: preconditions,

postconditions, and object invariants. Preconditions express
what program state is required for the method to run successfully.
Postconditions tell you what you can rely upon at the completion
of the method. Object invariants are guarantees about conditions
that will always be true for an object. Th ey can be also thought of
as postconditions that apply to every (public) method. Each of
these three types has several fl avors, and there are a few other types
of contracts that we will eventually get into in some detail. If you
want all of the nitty-gritty details about the library, please look in
the documentation.

Th ere are a few things that are common to all types of code
contracts. First, since code contracts are primarily to help fi nd
bugs in code, they are conditionally compiled upon the symbol
CONTRACTS_FULL. Th is way, the developer can choose whether
to include the checks as needed. On the BCL team, most contracts
are included in debug builds to provide more information for
fi nding bugs, but are not included in retail builds. Second, all
conditions that are checked by contracts must be side-eff ect free.
Th ird, contracts are inherited. Th is is because you oft en have an
API that expects type T, but might receive a subclass of T instead.
Th e programmer expects T’s guarantees to hold, and contract
inheritance ensures this.

Preconditions
Th ere are three basic forms of preconditions, two of which take

the form of diff erent Requires methods on the Contract class. Both
of these also have overloads that allow you to include a message
to display if the contract is violated. Here is an example of using
Requires statements to encode preconditions:

 public Boolean TryAddItemToBill(Item item)
 {
 Contract.Requires<NullReferenceException>(item != null);
 Contract.Requires(item.Price >= 0);
 …

Th e Requires method is simply a way to encode that a particular
condition must be true upon entry to the method. It can only use
data that is at least as visible as the method itself, so that callers
might actually be able to satisfy the condition. Th e other form,
Requires<TException>, makes that same statement, but further
guarantees that if the condition is not met, an exception of type
TException should be thrown. It is also unique in that it is always
compiled, so use of this method entails a hard dependency on
the tools. You should decide if you want that before using this
method.

Th e last form of precondition is something developers have been
using since the beginning of the .NET Framework. It is the if-then-
throw form used for parameter validation. For example:

 public Boolean ExampleMethod(String parameter)
 {
 if (parameter == null)
 throw new ArgumentNullException("parameter must be non-null");
 }

Th e benefi t of this type of precondition is that it is always there
to perform the runtime check. But there are several things that the
code contract system provides that are not present with this form of
validation: these exceptions can be swallowed by catch statements;
they aren’t inherited; and it is diffi cult for tools to recognize them. For
that reason, there exists the Contract.EndContractBlock method.
Th is method is a no-op at runtime, but indicates to the tools that all
preceding if-then-throw statements ought to be treated as contracts.
So, to let the tools know about these contracts, we could modify
the above example as follows:

public Boolean ExampleMethod(String parameter)
{
 if (parameter == null)
 throw new ArgumentNullException("parameter must be non-null");
 // tells tools the if-check is a contract
 Contract.EndContractBlock();

Note that if-then-throw statements may appear in many places
in your code, such as for validating user input, but the only place
one counts as a contract is when it is at the beginning of your
method and is followed by a call to EndContractBlock or one of
the Requires or Ensures methods.

Th ere are three diff erent ways to encode preconditions, but
which one should you use? Th at might vary from class to class or
assembly to assembly, but there are some general guidelines you
should follow. If you don’t want to do any argument validation
in your release code, use Requires. Th at way you enable contract
checking only for your debug builds.

If you do want argument validation in your released code, there
are several things to consider. One factor is whether you are writing
brand new code or updating existing code. In the BCL, we use the
if-then-throw contracts to match our existing patterns. Th is does
mean that we need to do any inheritance manually, since we do
not run the tools on our fi nal builds. If you are writing new code,
you can decide whether you want to use the old form or switch to
the new form and get the other benefi ts of contracts. Part of that
decision should be determining whether you are willing to take a
dependency on the binary rewriter as part of your build process.
Th e CLR team chose not to, as the tool is currently under active
development. So, we use the if-then-throw form for anything we

On the BCL team, most
contracts are included in

debug builds to provide more
information for fi nding bugs.

http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx

17August 2009msdnmagazine.com

want to make sure is in the retail build, but we can use the Requires
form for extra checks to help with debugging.

Postconditions
Th ere are two basic types of postconditions: guarantees about normal

returns and guarantees about exceptional returns. For this, there are two
diff erent methods on the Contract class. Again, each has an overload
that will allow the developer to pass in a message for when the contract
is violated. To continue with the example from the preconditions, here
are some postconditions on that same method:

 public Boolean TryAddItemToBill(Item item)
 {
 Contract.Ensures(TotalCost >= Contract.
 OldValue(TotalCost));
 Contract.Ensures(ItemsOnBill.Contains(item) ||
 (Contract.Result<Boolean>() == false));
 Contract.EnsuresOnThrow<IOException>(TotalCost ==
 Contract.OldValue(TotalCost))
 …

Th e Ensures method simply makes a statement about a condition
that is guaranteed to be true at normal return from a method. In
general, these methods are not intended to be included in your retail
builds, but are only for debugging purposes. Th eir use is encouraged
wherever they make sense. EnsuresOnTh row<TException> makes
a guarantee for the case where a particular exception is thrown. Th e
ability to make statements about exceptional conditions is another
benefi t over a simple Debug.Assert. Note that this should only be
used for exceptions that you expect to throw from your method

and should be as specifi c as possible. Using the type Exception for
TException is not recommended, as then you are making guarantees
about program state aft er events you do not control, such as an
OutOfMemoryException or StackOverfl owException.

You may have noticed some extra Contract methods in that
example. In order to express more useful postconditions, it helps
to have a way to express information about values at various points
in the method. For example, say you have a method that ensures
that the value of the instance at the end of the method is the same
as the value when the method was called, and you want to be able
to check that guarantee with contracts. Th e Contract class provides
several methods that can only be used in postconditions to help
out with that:

 public static T Result<T>();
 public static T OldValue<T>(T value);
 public static T ValueAtReturn<T>(out T value);

Th e Result<T> method is used to represent the return value
of the method. OldValue<T> is used to represent the value of a

variable at the beginning of the method. Each Ensures method is
evaluated at any exit from a method, so all of the variables used
refer to the value at the end of the method and no special syntax
is needed. However, the Ensures methods are declared at the
beginning of the method. So out parameters would not have been
assigned to yet. Most compilers will complain about this, so the
ValueAtReturn<T> method exists to allow you to use out parameters
in postcondition contracts.

So if you wanted to implement the aforementioned example,
you could write the following:

public class ExampleClass
{
 public Int32 myValue;
 public Int32 Sum(Int32 value)
 {
 Contract.Ensures(Contract.OldValue(this.myValue) == this.myValue);
 myValue += value; //this violates the contact and will be caught
 return myValue;
 }
}

Notice the error in the method above. It claims that myValue will
be the same at the end of the method as it was at the beginning, but
a line in the code violates that. When you enable contract checking,
this bug will be detected and the developer can fi x it.

One thing to keep in mind when writing postconditions is
that they can be very difficult to get correct after the fact. We
added some postconditions to the BCL that we thought were
fairly straight-forward and obvious. But when we tested them,
we found several of them that were violated in subclasses or in
corner cases that we hadn’t thought about. And we could not break
the existing code to follow the new, cleaner postconditions, so
we had to modify or remove our annotations. It helps to decide
on the guarantees you want to make before you implement the
class, so that you can catch any violations and fix them while
you are writing them.

Object Invariants
Th e third major type of code contract is the object invariant. Th ese

are object-wide contracts about a condition that is guaranteed to
always hold. Th ey can be thought of as postconditions on every
single public member of the object. Object invariants are encoded
with the Invariant method on the Contract class:

 public static void Invariant(bool condition);
 public static void Invariant(bool condition, String userMessage);

Th ey are declared in a single method on the class that contains
only calls to Invariant, and it must be marked with the Contract-
InvariantMethod attribute. It is common practice to name that
method “ObjectInvariant” and to make it protected so that users
cannot accidentally call this method. For example, an object invariant
for the same object that contained the TryAddItemToBill method
might be the following:

 [ContractInvariantMethod]
 protected void ObjectInvariant()
 {
 Contract.Invariant(TotalCost >= 0);
 }

Again, it is useful to decide upon the object invariants before
implementing the class. Th at way you can try to avoid violating
them, and thus avoid writing bugs in the fi rst place.

To express more useful
postconditions, it helps to provide

information about values at
various points in the method.

http://www.msdnmagazine.com

msdn magazine20 CLR Inside Out

Other Contracts
Th e remaining contracts are very similar to Debug.Assert in that

they make a guarantee only about a particular point in the code.
In fact, if you are using code contracts, the following two methods
can be used in place of Debug.Assert:

 public static void Assert(bool condition);
 public static void Assert(bool condition, String userMessage);
 public static void Assume(bool condition);
 public static void Assume(bool condition, String userMessage);

These methods are conditionally compiled on both the
CONTRACTS_FULL and DEBUG symbols, so that they can be
used anywhere Debug.Assert would be. Th ey are useful mainly for
implementation details, such as placing requirements on internal
data. At runtime, these two methods have the same behavior. Th e
diff erence comes during static analysis. Th e static checker will
attempt to prove any Assert, but it will treat the Assume statements
as defi nitely true and add them to its collection of facts.

Debugging with Code Contracts
Aft er you have taken the time to add contracts to your code, how

can you take advantage of them to fi nd bugs? One scenario is to
run the static analysis tool and investigate any contracts it cannot
prove. Th e other is to enable runtime checking. To get the most
out of runtime checking, it helps to know what happens when a
contract is violated or evaluates to false. Th ere are two stages for
this: notifi cation and reaction.

When a failure is detected, the contract raises an event with the
following EventArgs:

public sealed class ContractFailedEventArgs : EventArgs
{
 public String Message { get; }
 public String Condition { get; }
 public ContractFailureKind FailureKind { get; }
 public Exception OriginalException { get; }
 public Boolean Handled { get; }
 public Boolean Unwind { get; }
 public void SetHandled();
 public void SetUnwind();
 public ContractFailedEventArgs(ContractFailureKind failureKind,
 String message, String condition,
 Exception originalException);
}

Remember that this is still a prerelease version of the class, so
things could fl uctuate a bit before the fi nal release.

Th ere is no default handler for this event, so the recommended
practice is to register one with your desired behavior, if you want
behavior other than the default. You might treat this as simply a
logging mechanism, and record the information according to your
general practices. You can also choose to handle the failure with
anything from tearing down the process to ignoring it and continu-
ing. If you choose to do the latter, you should call SetHandled so
that the next step of the failure will not take place. You might also
just want to break into the debugger. When running the handlers,
all exceptions are swallowed. But if you really want to unwind the
stack, you can call SetUnwind. Th en, aft er all of the handlers have
been called, an exception will be thrown.

When adding contracts to the BCL, we quickly realized that
registering a handler should be one of the fi rst things you do in your
code, either in your main method or as you start an AppDomain.
Object invariants are checked aft er any constructor, so you might
end up with contract failures before you are ready to handle them
if you do not register your handler right away.

If no handler sets Handled or Unwind, the default behavior is
an assertion. Th e exception to that is if the application is hosted,
and then escalation policy is triggered so that the host can decide
upon appropriate behavior. Skipping the handler, and letting the
assertion happen, may be the most reasonable thing to do as you
are developing. Th e dialog gives you the option to break into the
debugger and fi nd your problem, so you can fi x it. Recall that
contract violations are never an expected outcome, so they should
always be fi xed.

However, if you are testing code using a testing framework,
assertions are likely not what you want. In that case, you want to
register a handler that will report contract failures as test failures
in your framework. Here is one example of how to do this with
Visual Studio’s unit test framework:

 [AssemblyInitialize]
 public static void AssemblyInitialize(TestContext testContext)
 {
 Contract.ContractFailed += (sender, eventArgs) =>
 {
 eventArgs.SetHandled();
 eventArgs.SetUnwind(); // cause code to abort after event
 Assert.Fail(eventArgs.Message); // report as test failure
 };
 }

Where to Get More Information
Th is article is mostly an overview of code contracts, as well as

coverage of some best practices the BCL team developed as it
started using contracts. To get more details on the class and fi nd
out what more you can do with code contracts, you should check
out the MSDN documentation. As of the writing of this article, the
documentation for code contracts in the fi rst beta release of the
Microsoft .NET Framework  can be found here: msdn.microsoft.com/

en-us/library/system.diagnostics.contracts(VS.100).aspx. Th ere are also
recordings of two talks from the  Microsoft Professional
Developers Conference that give some examples and demos of
code contracts: channel9.msdn.com/pdc2008/TL51/ on some tools from
Microsoft Research, and channel9.msdn.com/pdc2008/PC49/ on new
features in the CLR.

To get the tools and more information about their use, check out
the Code Contracts site on DevLabs: msdn.microsoft.com/en-us/devlabs/

dd491992.aspx. Th e site contains a forum, documentation, an FAQ,
and downloads for the tools.

MELITTA ANDERSEN is a Program Manager on the Base Class Libraries team of
the CLR. She mainly works on base types, numerics, collections, globalization,
and code contracts.

http://msdn.microsoft.com/en-us/library/system.diagnostics.contracts(VS.100).aspx
http://channel9.msdn.com/pdc2008/TL51/
http://channel9.msdn.com/pdc2008/PC49/
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx

msdn magazine22

Th is is not a compression strategy, so there is no negative eff ect
on performance for packing and unpacking compressed data.
However, the binary encoding usually does reduce the size of the
data being passed. Size reduction is not guaranteed, but is readily
apparent when using large object graphs and integer data. Th e key
improvement gained from binary encoding is that it is optimized
to increase server throughput.

Confi guring Binary Encoding
WCF services can communicate with Silverlight  applications

using basicHttpBinding, which sends data as text over HTTP. When
using the Silverlight-enabled WCF Service fi le template—which is
installed when you install the Silverlight tools for Visual Studio—to
create a WCF service for Silverlight , the binding was confi gured
to use basicHttpBinding. Th is fi le template has been changed in
Silverlight  to confi gure the WCF service to use the binary message
encoder instead of text.

Th e Silverlight-enabled WCF Service fi le template confi gured
a WCF service to use binary-encoded messaging. If you use
an existing WCF service, it can be confi gured to use binary
message encoding by creating a custom binding in the bind-
ings section of the Web.confi g fi le. The following code sample
shows the custom binding, named silverlightCustomBinding,
as it appears in the <system.serviceModel> section of a
confi guration fi le. Th e silverlightCustomBinding, confi gured to
use binaryMessageEncoding, is then referenced by its name in
the service’s endpoint confi guration.
<endpoint address="" binding="silverlightCustomBinding"
 contract="MyTestService" />
<bindings>
 <customBinding>
 <binding name="silverlightBinaryBinding">
 <binaryMessageEncoding />
 <httpTransport />
 </binding>
 </customBinding>
</bindings>

Since basicHttpBinding sends messages as text over HTTP, it is
easy to debug the messages through a tool such as Fiddler. While
basicHttpBinding can still be confi gured, the advantages of the

Data Performance and Fault
Strategies in Silverlight 3

Silverlight applications oft en rely on Web services for their data. Th e
performance of data retrieval and the ability to retrieve meaningful
information about exceptions that may occur in Web services are
two critical areas that have been improved in Silverlight .

Poor performance can be an application killer. Good strategies
for retrieving data from a Web service can help, but sometimes it
is necessary to retrieve an object graph that can be huge and take a
long time to pass from a Web service to a client. Silverlight  off ers
a new feature that passes data from a Web service using binary
encoding, and this can dramatically improve performance when
passing large object graphs.

A lot can go wrong when passing data between services and
Silverlight applications. Th at is why it is important to have a good
strategy for handling exceptions that may occur when calling a Web
service. Silverlight  off ers some networking enhancements that
give developers more options to pass information about managed
exceptions from Web services.

In this month’s column, I will demonstrate how binary encoding
works, the eff ect it has on an application’s performance, and how
it behaves by demonstrating it in action. I will also walk through
several techniques that can be used to pass exception information
using undeclared and declared faults from Windows Communica-
tion Foundation (WCF) Web services to Silverlight. I will start by
demonstrating what happens when an exception occurs and how to
add some quick changes to the confi guration to show information
while debugging. Th en, I will show you how to set up a strategic fault
pattern to handle the passing exception information over SOAP
services, using declared faults. All code is based on the Silverlight
 beta and accompanies this article online.

Built for Speed
SOAP and XML passed as text severely bloats the message being

passed between WCF and Silverlight. Th is can have a negative eff ect
on performance, in both processing the data and the time it takes to
pass the data over HTTP. Silverlight  introduces the ability to use
a binary message encoder with WCF services that communicate
with Silverlight  client applications. Th e binary message encoder
can improve the performance of WCF services, especially when
passing large objects graphs. Th e biggest gains in performance
using binary message encoding are realized when passing arrays,
numbers, and object graphs; lesser gains are found with very small
messages and strings.

This article is based on prerelease versions of Silverlight 3.

Send your questions and comments for John to mmdata@microsoft.com.

Code download available at msdn.microsoft.com/mag200908DataPoints.

DATA POINTS JOHN PAPA

mailto:mmdata@microsoft.com
http://code.msdn.microsoft.com/mag200908DataPoints

23August 2009msdnmagazine.com

binary encoder can be so great that it is the recommended approach.
It is easy to toggle back and forth between binary and text, simply
by changing the confi g fi le. Th is is convenient when debugging a
WCF service. Binary encoding is only supported by WCF services
and clients. If you need a non-WCF client application to consume
your WCF service, it is best not to use binary encoding.

Binary Data Versus Text Data
Th e fi rst demonstration will show the diff erences, in both

confi guration and performance, between using basicHttpBinding
and a binary message encoding between WCF and Silverlight . Th e
sample application included with this article breaks both examples
(text and binary) out into separate services that can be called from
the same Silverlight  client.

Th e confi guration for these services in the Web.confi g fi le of the
sample application is shown in Figure 1. Th e diff erences between the
text and binary encoding confi gurations are in bold. Notice that the
service SpeedService uses the basicHttpBinding, while SpeedSer-
vice uses a customBinding with the binding confi guration named
silverlightBinaryBinding (shown in the previous code sample.)

Th e services SpeedService and SpeedService both retrieve all
products and each product’s category, supplier, and order details.
Th e query (shown in Figure 2) uses the Entity Framework to
retrieve the object graph.

One of the best aspects of the binary message encoding is that
the only changes are found in the confi guration fi le. No changes
need be made to the code.

When the sample application is run and the Text encoding
option is selected (as shown in Figure 3), the service that uses
basicHttpBinding is executed. Th e object graph is returned and
using an HTTP monitoring tool such as Fiddler or FireBug, the
results show that the object graph in text form was MB in size
and took ms to retrieve. When choosing the Binary encoding
option, the object graph returned is MB and took ms to
retrieve. While this is a small sample using a moderately sized object
graph from the Northwind database, the results are in line with the
Silverlight Web Service team’s benchmarks (blogs.msdn.com/silverlightws/

archive/2009/06/07/improving-the-performance-of-Web-services-in-sl3-beta.aspx).

In this sample using the binary encoding, the object graph contains
about , total objects and is reduced in size by % and is %
faster than the text encoding.

Error Messages Are Data
When .NET managed exceptions are thrown in a Web service,

they cannot be converted to a SOAP message and passed back to a
Silverlight  client application. Also, Silverlight  cannot read SOAP
faults. Th ese two issues make debugging Web services diffi cult with
Silverlight . Because SOAP Faults cannot be used with Silverlight
, a common error message that most Silverlight  developers
eventually run into when accessing a Web service is the infamous
“Th e remote server returned an error: NotFound,” which contains
no pratical information. Th e original exception and its details are
not transported to the Silverlight  client, which makes debugging
the Web services diffi cult. Error messages contain data that is oft en
critical in determining how the client application should respond. For
example, Figure 4 shows the results of calling a Web service where
an exception is thrown because the database cannot be found.

When the exception is raised, an HTTP status code of  is
returned to Silverlight. Th e browser networking stack prevents
Silverlight from reading responses with a status code of , so
any SOAP fault information contained within is unavailable to
the Silverlight client application. Even if the message could be
retrieved, Silverlight  is not capable of converting the fault back
into a managed exception. Both of these issues have been addressed
in Silverlight .

Tackling the Issues
Handling exceptions with WCF and Silverlight  requires tackling

both of these issues. First, for the exception to be returned to the
Silverlight client without the networking browser stack preventing
Silverlight from reading it, the status code must be changed from
 to something that allows Silverlight to read the response. Th is

<services>
 <service
behaviorConfiguration="SilverlightFaultData.Web.SpeedServiceBehavior"
 name="SilverlightFaultData.Web.SpeedService0">
 <endpoint address="" binding="basicHttpBinding"
 contract="SilverlightFaultData.Web.SpeedService0" />
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
 <service
behaviorConfiguration="SilverlightFaultData.Web.SpeedServiceBehavior"
 name="SilverlightFaultData.Web.SpeedService1">
 <endpoint address="" binding="customBinding"
 bindingConfiguration="silverlightBinaryBinding"
 contract="SilverlightFaultData.Web.SpeedService1" />
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
</services>

Figure 1 Confi guring Text vs. Binary

[OperationContract]
public IList<Products> DoWork()
{
 var ctx = new NorthwindEFEntities();
 var query = from p in ctx.Products
 .Include("Categories")
 .Include("Suppliers")
 .Include("OrderDetails")
 select p;
 var productList = query.ToList<Products>();
 return productList;
}

Figure 2 Retrieving an Object Graph

Figure 3 Getting the Data via BasicHttpBinding

http://www.msdnmagazine.com
https://blogs.msdn.com/silverlightws/archive/2009/06/07/improving-the-performance-of-Web-services-in-sl3-beta.aspx

msdn magazine24 Data Points

can be achieved by deriving from the BehaviorExtensionElement
and implementing IEndpointBehavior class, making it change the
status code from  to  prior to whenever a fault occurs, and
setting the services to use the behavior in the confi guration fi le.
Th e MSDN documentation contains a WCF endpoint behavior
(msdn.microsoft.com/en-us/library/dd470096(VS.96).aspx) that can be used to
accomplish this, and thus allow Silverlight clients access to the contents
of the fault. Th e following code sample shows the specifi c code in the
SilverlightFaultBehavior class that converts the status code:

public void BeforeSendReply(ref Message reply, object correlationState)
{
 if (reply.IsFault)
 {
 HttpResponseMessageProperty property =
 new HttpResponseMessageProperty();
 // Here the response code is changed to 200.
 property.StatusCode = System.Net.HttpStatusCode.OK;
 reply.Properties[HttpResponseMessageProperty.Name] = property;
 }
}

Th e SilverlightFaultBehavior class can be referenced in the
Web.confi g fi le as a behavior extension, as shown in the following
code snippet:

<extensions>
 <behaviorExtensions>
 <add name="silverlightFaults"
 type="SilverlightFaultBehavior.SilverlightFaultBehavior,
 SilverlightFaultBehavior, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=null" />
 </behaviorExtensions>
</extensions>

With the SilverlightFaultBehavior in place, the second issue is
getting Silverlight to be able to convert the fault to a managed excep-
tion, so it can read it. Th ough this is not possible with Silverlight
, Silverlight  now has the ability to process faults. Th is allows
Silverlight  to read a fault and present appropriate information to
the user when an exception is thrown in a Web service.

Th e entire process of reading the exception information in
Silverlight  goes something like this:
) An exception is thrown in a Web service.
) Th e service uses the SilverlightFaultBehavior to convert the

HTTP status code from  to .
) Th e exception is converted to a SOAP fault and passed to the

Silverlight  client.
) Th e browser allows Silverlight to read the message because it

has a status code of .
) Code in the Silverlight  application checks the type of error

to see if it is a FaultException or a FaultException<Exception
Detail>.

Undeclared Faults
SOAP-based WCF services communicate errors using SOAP

fault messages, or .NET managed exceptions. Th erefore, the .NET
managed exceptions are converted to a SOAP fault, passed to the
client, and then translated back to a .NET managed exception.

Faults can be undeclared or declared, and all are strongly typed.
Undeclared faults are not specifi ed in the operation contract and should
only be used for debugging. Undeclared faults return the exception
message to the client exactly as it was raised in the Web service. To allow
an undeclared fault, the confi g element’s includeExceptionDetailInFaults
attribute must be set to true, as shown below:

<serviceDebug>
<behavior name="SilverlightFaultData.Web.Service1Behavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="true" />
</behavior>

Th e sample application’s Service uses this behavior, which
then allows the exception to be converted automatically into a
FaultException<ExceptionDetail>. Th e Silverlight  client can
then check the e.Error argument in its asynchronous completion
event handler and take appropriate action, as shown in the code
below and in Figure 5:

if (e.Error != null) {
 ErrorPanel.DataContext = e.Error;
 if (e.Error is FaultException<ExceptionDetail>) {
 var fault = e.Error as FaultException<ExceptionDetail>;
 ErrorPanel.DataContext = fault;
 }
}

Undeclared faults show the exception in its raw state with all of the
ugly error information, which is obviously not a good idea to show to a
user. For this reason, it is not recommended to use undeclared faults in
a production application. Th e managed exceptions can contain internal
application information too (sometimes sensitive information). Setting
the includeExceptionDetailInFaults to true should only be done when
temporarily debugging an application error, and not in production
environments. I strongly recommend that the includeException
DetailInFaults is set to false for production applications.

Declared Faults
A declared fault is created when the service operation is

decorated with a FaultContractAttribute (or a derived type of the
FaultContractAttribute). Unlike undeclared faults, declared faults
are good for production as they specifi cally translate an exception’s

Figure 4 Infamous NotFound Error

http://msdn.microsoft.com/en-us/library/dd470096(VS.96).aspx

msdn magazine26 Data Points

information in code to the fault type. In the Web service, a developer
can create the fault type in code and set its properties with informa-
tion that is appropriate to send to Silverlight. Th e fault should only
be fi lled with information that the client must know. Any sensitive
information (such as credentials) should not be sent to the client
in the fault. In the Silverlight client, a developer can write code to
look for that type and tell the user something appropriate.

Figure 6 shows the service operation being decorated with the
FaultContract attribute with a type of DataFault. The general F
aultContract<typeof(ExceptionDetail)> could have been used,
though I recommend using a specific custom fault type for the
operation. In this case, the operation uses the DataFault type
that I created in the sample application. This service operation
will fail because the database cannot be found. An exception
will be thrown and then caught by the try/catch block, where the
exception is read and key information is put into the DataFault
before it is thrown. At this point, the DataFault is converted to

a SOAP fault and sent back to the Silverlight client with a status
code of .

The DataFault class (shown in Figure 7) defines an Operation
property and a Description property. The properties that the fault
contains are up to the developer. The properties should represent
the key information for the fault so it can be examined by the
Silverlight client. The operation is set to a custom enumeration
of type Operation (also shown in Figure 7) that will indicate
the type of SQL operation that was being performed when the
exception occurred. The Description should be set to a custom
message and not to the exception message to avoid sending any
sensitive information. (The sample application uses ex.Message
just for demonstration purposes. I do not recommend passing
the exception’s Message directly back to the Silverlight client.)
The FaultException also accepts a parameter that represents
the reason for the exception. In the sample, the reason is set to
“because.” The reason can be used to help the client classify the
cause of the exception.

Th e sample’s Service has a confi guration whose endpoint
indicates that the behaviorConfiguration should use the
SilverlightFaultBehavior class (this translates the status code from
 to ). Th e confi guration is shown here:

<service
 behaviorConfiguration="SilverlightFaultData.Web.Service3Behavior"
 name="SilverlightFaultData.Web.Service3">
 <endpoint address=""
 behaviorConfiguration="SilverlightFaultBehavior"
 binding="customBinding" bindingConfiguration="silverlightBinaryBinding"
 contract="SilverlightFaultData.Web.Service3" />
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
</service>

When the service that uses the declared fault is executed, the
Silverlight client receives and can read the fault. Th e following
code is executed when the asynchronous Web service operation
completes:

if (e.Error is FaultException<ServiceReference3.DataFault>)
{
 var fault = e.Error as FaultException<ServiceReference3.DataFault>;
 ErrorPanel.DataContext = fault;
}

Th e Error is checked to see if it is a FaultException of type
DataFault. If it is, then its individual properties Operation and
Description can be examined. Figure 8 shows the DataFault’s
custom information displayed directly to the user.

[OperationContract]
[FaultContract(typeof(DataFault))]
public IList<Products> DoWork()
{
 try
 {
 var ctx = new NorthwindEFEntities();
 var query = from p in ctx.Products
 select p;
 return query.ToList<Products>();
 }
 catch (Exception ex)
 {
 DataFault fault = new DataFault { Operation = Operation.Other,
 Description = ex.Message };
 throw new FaultException<DataFault>(fault, "because");
 }
}

Figure 6 Creating a Declared Fault

public class DataFault
{
 public Operation Operation { get; set; }
 public string Description { get; set; }
}

public enum Operation
{
 Select,
 Insert,
 Update,
 Delete,
 Other
}

Figure 7 DataFault class

Figure 5 Undeclared FaultException

27August 2009msdnmagazine.com

In production applications, a custom fault strategy should be
devised to map some exceptions to SOAP faults. Th e key here is

JOHN PAPA (johnpapa.net) is a senior consultant and a baseball fan who spends
summer nights rooting for the Yankees with his family. John, a Silverlight MVP,
Silverlight Insider, and INETA speaker, has authored several books, including his
latest, titled Data-Driven Services with Silverlight  (O’Reilly, ). He oft en
speaks at conferences such as VSLive!, DevConnections, and MIX.

Figure 8 Examining the Declared Fault

determining the circumstances under which exceptions should be
mapped to faults. Th is depends on whether the client application
should be informed of specifi c information about errors on the
server.

Wrapping Up
Th is article explained how Silverlight  applications can benefi t

from both binary encoding and exception management features.
Binary message encoding is a solid choice over basicHttpBinding
when using .NET WCF clients, such as Silverlight. Exceptions
oft en contain critical information that can help in debugging an
application. Th is article showed how to surface exception informa-
tion in both development and production environments, using the
Silverlight  enhancements.

http://www.msdnmagazine.com

msdn magazine28

are grouped as static methods in one or more entry-point classes.
Alternatively, operations can be implemented as commands in a
Command pattern approach. Organization of data access is left to
the developer and typically results in chunks of ADO.NET code.

Th e TS pattern is fairly simple to set up; at the same time, it
obviously doesn’t scale that well, as the complexity of the applica-
tion grows. In the .NET space, another pattern has gained wide
acceptance over the years: the Table Module pattern. In a nutshell,
the Table Module pattern suggests a database-centric vision of the
BLL. It requires you to create a business component for each data-
base table. Known as the table module class, the business compo-
nent packages the data and behavior together.

In the Table Module pattern, the BLL is broken into a set of
coarse-grained components, each representing an entire database
table. Being strictly table-oriented, the Table Module pattern lends
itself to using recordset-like data structures for passing data around.
ADO.NET data containers or, better yet, customized and typed
version of ADO.NET containers are the natural choice.

As the need for a more conceptual view of the problem domain
arises, the BLL patterns that have worked for years in the .NET
space need to evolve some more. Architects tend to build an entity/
relationship model that represents the problem domain and then
look at technologies like LINQ-to-SQL and Entity Framework as
concrete tools to help.

Object-Based Patterns for BLL
Th e Table Module pattern is based on objects, but it’s not really

an object-based pattern for modeling the business logic. It does
have objects, but they are objects representing tables, not objects
representing the domain of the problem.

In an object-oriented design, the business logic identifi es entities
and expresses all of the allowed and required interactions between
entities. In the end, the application is viewed as a set of interrelated
and interoperating objects. Th e set of objects mapping to entities,
plus some special objects performing calculations form the domain
model. (In the Entity Framework, you express the domain model
using the Entity Data Model [EDM].)

Th ere are various levels of complexity in a domain model that
suggest diff erent patterns—typically the Active Record pattern
or the Domain Model pattern. A good measure of this complex-
ity is the gap between the entity model you have in mind and the
relational data model you intend to create to store data. A simple

CUTTING EDGE

Pros and Cons of Data Transfer Objects

Nearly every developer and architect would agree on the following,
though relatively loose, defi nition of the business logic layer (BLL)
of a soft ware application: Th e BLL is the part of the soft ware appli-
cation that deals with the performance of business-related tasks.
Code in the BLL operates on data that attempts to model entities
in the problem domain—invoices, customers, orders, and the like.
Operations in the BLL attempt to model business processes.

Under the hood of this largely accepted defi nition lie a number
of key details that are left undefi ned and unspecifi ed. Design pat-
terns exist to help architects and code designers transform loose
defi nitions into blueprints. In general, BLL design patterns have a
slightly diff erent focus. Th ey model operations and data and oft en
serve as the starting point for designing the BLL.

In this article, aft er a brief refresher on procedural and object-
based patterns for organizing the BLL, I’ll focus on one side of the
problem—data transfer objects—that if not eff ectively addressed
at the architecture level, may have a deep impact on the develop-
ment of the project.

Procedural Patterns for BLL
When it comes to designing the BLL, you can start from the use-

cases that have emerged during the analysis phase. Typically, you
end up coding one method for each required interaction between
the user and the system. Each interaction forms a logical transaction
that includes all due steps—from collecting input to performing the
task, and from database access to refreshing the user interface. Th is
approach is referred to as the Transaction Script (TS) pattern.

In TS, you focus on the required actions and don’t really build
a conceptual model of the domain as the gravitational center of
the application.

To move data around, you can use any container objects that
may suit you. In the Microsoft .NET space, this mostly means using
ADO.NET data containers such as DataSets and DataTables. Th ese
objects are a type of super-array object, with some search, index-
ing, and fi ltering capabilities. In addition, DataSets and DataTables
can be easily serialized across tiers and even persisted locally to
enable offl ine scenarios.

Th e TS pattern doesn’t mandate a particular model for data rep-
resentation (and doesn’t prevent any either). Typically, operations

DINO ESPOSITO

Send your questions and comments for Dino to cutting@microsoft.com.

mailto:cutting@microsoft.com

29August 2009msdnmagazine.com

domain model is one in which your entities map closely to tables in
the data model. A not-so-simple model requires mapping to load
and save domain objects to a relational database.

Th e Active Record pattern is an ideal choice when you need a
simple domain model; otherwise, when it is preferable to devise
entities and relationships regardless of any database notion, the
Domain Model pattern is the way to go.

Th e Active Record pattern is similar to what you get from a LINQ-
to-SQL object model (and the defaultgenerated model with the Entity
Designer in the Entity Framework Version .). Starting from an
existing database, you create objects that map a row in a database
table. Th e object will have one property for each table column of
the same type and with the same constraints. Th e original formu-
lation of the Active Record pattern recommends that each object
makes itself responsible for its own persistence. Th is means that
each entity class should include methods such as Save and Load.
Neither LINQ-to-SQL nor Entity Framework does this though, as
both delegate persistence to an integrated O/RM infrastructure that
acts as the real data access layer, as shown in Figure 1.

The Service Layer
In Figure 1, you see a logical section of the BLL named as the

“service layer” sitting in between the presentation layer and the
layer that takes care of persistence. In a nutshell, the service layer
defi nes an interface for the presentation layer to trigger predefi ned
system actions. Th e service layer decouples presentation and busi-
ness logic and represents the façade for the presentation logic to
call into the BLL. Th e service layer does its own job, regardless of
how the business logic is organized internally.

As a .NET developer, you are quite familiar with event handlers
in Web or Windows forms. Th e canonical Button_Click method
belongs to the presentation layer and expresses the system’s behav-
ior aft er the user has clicked a given button. Th e system’s behavior—
more exactly, the use case you’re implementing—may require some
interaction with BLL components. Typically, you need to instan-
tiate the BLL component and then script it. Th e code necessary to
script the component may be as simple as calling the constructor
and perhaps one method. More oft en, though, such code is fairly
rich with branches, and may need to call into multiple objects or
wait for a response. Most developers refer to this code as applica-
tion logic. Th erefore, the service layer is the place in the BLL where
you store application logic, while keeping it distinct and separate

from domain logic. Th e domain logic is any logic you fold into the
classes that represent domain entities.

In Figure 1, the service layer and domain model blocks are distinct
pieces of the BLL, although they likely belong to diff erent assemblies.
Th e service layer knows the domain model and references the corre-
sponding assembly. Th e service layer assembly, instead, is referenced
from the presentation layer and represents the only point of contact
between any presentation layer (be it Windows, Web, Silverlight, or
mobile) and the BLL. Figure 2 shows the graph of references that
connect the various actors. Th e service layer is a sort of mediator
between the presentation layer and the rest of the BLL. As such, it
keeps them neatly separated but loosely coupled so that they are
perfectly able to communicate. In Figure 2, the presentation layer
doesn’t hold any reference to the domain model assembly. Th is is a
key design choice for most layered solutions.

Introducing Data Transfer Objects
When you have a domain-based vision of the application, you

can’t help but look seriously into data transfer objects. No multitier
solution based on LINQ to SQL or Entity Framework is immune
from this design issue. Th e question is, how would you move data
to and from the presentation layer? Put another way, should the
presentation layer hold a reference to the domain model assembly?
(In an Entity Framework scenario, the domain model assembly is
just the DLL created out of the EDMX fi le.)

Ideally, the design should look like Figure 3, where made-to-
measure objects are used to pass data from the presentation layer
to the service layer, and back. Th ese ad hoc container objects take
the name of Data Transfer Objects (DTOs).

A DTO is nothing more than a container class that exposes
properties but no methods. A DTO is helpful whenever you

Figure 1 A Layered Architecture – the Domain Model Pattern
Used for the BLL

Figure 2 Graph of References Between Participant Actors

Figure 3 Communication Between Presentation Layer and
Service Layer

http://www.msdnmagazine.com

msdn magazine30 Inside Microsoft patterns & practices

• Business logic and business rules. Th e business logic
drives the business processes, and the business rules can perform
validation on the business entities.

• Business entities. Th ese are classes that represent the data
of your application.
Code that is more infrastructure-related is usually very hard to

multi-target. Th e following are examples:
• Visual elements (views). The way that you specify visual

elements, such as controls, differs enough between WPF
and Silverlight to make them hard to multi-target. Not only
are different controls available for each platform, but the
XAML that’s used to specify the layout also has different
capabilities. Although it’s not impossible to multi-target
very simple views or some simple styling, you’ll quickly
run into limitations.

• Confi guration settings. Silverlight does not include the
System.Confi guration namespace and has no support for
confi guration fi les. If you want to make your Silverlight applica-
tion confi gurable, you’ll need to build a custom solution.

• Data access. Th e only way a Silverlight application can have
access through data is through Web services. Unlike WPF, a
Silverlight application cannot directly access databases.

• Interop (with other applications, COM, or Windows
Forms). A WPF application in a full-trust environment can
interact with other applications on your computer or use
existing assets such as COM or Windows Forms objects. Th is
is not possible in Silverlight, because it runs in a protected
sandbox.

• Logging and tracing. Because of the protected sandbox,
a Silverlight application cannot write log information to the
EventLog or trace information to a fi le (other than in isolated
storage).

In order to design an application that allows you to easily reuse
your business logic, you should try to separate things that are easy to
multi-target from things that are hard to multi-target. Interestingly
enough, this is exactly the architecture of a typical Prism application.
Figure 2 shows the typical architecture of a Prism application.

In this diagram, the views are classes that perform the visualization
aspect of your application. Typically, these are controls and pages,
and in the case of WPF or Silverlight applications, they oft en defi ne
the layout in XAML. Th e logic of your application is factored out
into separate classes. I’ll dive a bit more into the design patterns
behind this when I talk about separated presentation patterns.

Th e application services in this diagram can provide a wide
variety of functionality. For example, a Logger or a Data Access
component can be considered an application service. Prism also
off ers a couple of these services, such as the RegionManager or
the XapModuleTypeLoader. I’ll discuss these services more when
I talk about building platform-specifi c services.

Separated Presentation
As part of the guidance that we provide with Prism, we recommend

that you separate the visualization aspect of your application from
the presentation logic. A lot of design patterns, such as Model-
View-ViewModel or Model-View-Presenter, can help you with this.
What most of these patterns have in common is that they describe
how to split up your user-interface-related code (and markup) into
separate classes, each with distinct responsibilities. Figure 3 shows
an example of the Model-View-ViewModel pattern.

Th e Model class has the code to contain and access data. Th e
View is usually a control that has code (preferably in the form of
XAML markup) that visualizes some of the data in your model and
ViewModel. And then there is a class named either ViewModel,
PresentationModel, or Presenter that will hold as much of the UI
logic as possible. Typically, a separated presentation pattern is
implemented to make as much of your UI-related code unit testable
as possible. Because the code in your views is notoriously hard to

Figure 2 Typical Prism Application Architecture

Views

Presentation
logic

Business
logic and rules

Business
entities

Application
services

(such as logging,
configuration,
data access)

Figure 3 Example of Model-View-ViewModel Pattern

31August 2009msdnmagazine.com

unit test, these separated presentation patterns help you place as
much of the code as possible in a testable ViewModel class. Ideally,
you would not have any code in your views, just some XAML
markup that defi nes the visual aspects of your application and
some binding expressions to display data from your ViewModel
and Model.

When it comes to multi-targeting, a separated presentation
pattern has another signifi cant advantage. It allows you to reuse
all of your UI logic, because you have factored out that logic into
separate classes. Although it’s not impossible to multi-target some
of the code in your views (the XAML, controls, and code-behind),
we’ve found that the diff erences between WPF and Silverlight are
big enough that multi-targeting your XAML is not practical. XAML
has diff erent abilities, and the controls that are available for WPF
and Silverlight are not the same. Th is not only aff ects the XAML,
but it also aff ects the code-behind.

Although it’s not likely that you are able to reuse all of your
UI-related code, a separated presentation pattern helps you reuse
as much of the presentation logic as possible.

Building Platform-Specifi c Services
While building the Prism libraries and the Stock Trader Reference

Implementation, we strictly followed the single-responsibility
principle. Th is principle describes that each class should have only
one reason to change. If a class addresses multiple concerns or has
more than one responsibility, it has multiple reasons to change. For
example, a class that can load a report from a database and print
that report can change if the database changes or if the layout of
the report changes. An interesting indication if your class does
too much: if you fi nd that you have diffi culty determining a name
for your class that describes its responsibility, it has too many
responsibilities.

If you follow the single-responsibility principle, you’ll oft en
end up with a lot of smaller classes, each with its own discrete
responsibility and a descriptive name. We oft en consider many
of these classes to be application services, because they provide a
service to your application.

Th is single-responsibility principle really helps when it comes
to multi-targeting. Take, for example, the module loading process
in Prism. A lot of aspects of this process are similar for both WPF
and Silverlight. Some similarities include how the ModuleCatalog
keeps track of which modules are present in the system and how
the ModuleInitializer creates the module instances and calls the
IModule.Initialize() method on them. But then again, how we are
loading the assembly fi les that contain the modules diff ers quite a
bit between WPF and Silverlight. Figure 4 illustrates this.

It’s perfectly reasonable for a WPF application to load its modules
from disk. So this is what the FileModuleTypeLoader does. However,
this doesn’t make sense for a Silverlight application, because its
protected sandbox doesn’t give access to the fi le system. But for
Silverlight, you’ll need a XapModuleTypeLoader to load modules
from a .xap fi le.

Because we created smaller classes, each with a distinct respon-
sibility, it was a lot easier to reuse most of these classes and create

only platform-specifi c services to encapsulate the behavior that
diff ers between the platforms.

Avoid Inconsistencies and Try to
Keep a Single Code Base

Even though most functionality in Prism was easily ported to
Silverlight, we inevitably ran into situations where we would rely
on a feature in WPF that didn’t exist in Silverlight. Dependency
property inheritance was one of them. In WPF, you could set a
dependency property on a control and it would automatically be
inherited by any of its children. We were using this capability to
associate a region with a region manager. Unfortunately, automatic
property inheritance is not available in Silverlight.

For Silverlight, we had to create a solution that delayed the creation
of regions until the region manager could be located through
some other mechanism. With a couple of tweaks, we could reuse
this code for WPF. We could have kept the original, much simpler
solution for WPF and used only the new solution for Silverlight,
but then we would have had to maintain two code bases and off er
a diff erent public API.

When trying to build a functionality for use in both WPF and
Silverlight, you’ll inevitably run into situations where one of the
platforms doesn’t support a feature that you want to use. Your
best defense against these situations is to try to work around
these “incompatibilities” and create a solution that works in both
environments. Maintaining a single code base is a lot easier than
maintaining two code bases!

Accommodate for Different Platform Capabilities
Th ere are cases where it doesn’t make sense or isn’t possible

to work around platform diff erences, such as when there is no
common solution that would work in both WPF and Silverlight.
When this happens, there are a couple of strategies to consider.
For anything but small and isolated platform diff erences, I would
recommend building platform-specifi c services. But for small

ModuleManager

IModuleCatalog IModuleInitializer

IModuleTypeLoader

XapModuleTypeLoader FileModuleTypeLoader
(WPF only)(Silverlight only)

Loads modules
from XAP files

Loads modules from
the file system

Keeps track of the
modules in our

system

Creates the modules
and calls Initialize

on them

Coordinates the
module loading

process

Figure 4 Module Loading in Prism

http://www.msdnmagazine.com

msdn magazine32 Cutting Edge

need to group values in ad hoc structures for passing data
around.

From a pure design perspective, DTOs are a solution really close
to perfection. DTOs help to further decouple presentation from
the service layer and the domain model. When DTOs are used,
the presentation layer and the service layer share data contracts
rather than classes. A data contract is essentially a neutral repre-
sentation of the data that interacting components exchange. Th e
data contract describes the data a component receives, but it is not
a system-specifi c class, like an entity. At the end of the day, a data
contract is a class, but it is more like a helper class specifi cally cre-
ated for a particular service method.

A layer of DTOs isolates the domain model from the presentation,
resulting in both loose coupling and optimized data transfer.

Other Benefi ts of DTOs
Th e adoption of data contracts adds a good deal of fl exibility

to the service layer and subsequently to the design of the entire
application. For example, if DTOs are used, a change in the require-
ments that forces a move to a diff erent amount of data doesn’t have
any impact on the service layer or even the domain. You modify
the DTO class involved by adding a new property, but leave the
overall interface of the service layer intact.

It should be noted that a change in the presentation likely means a
change in one of the use cases and therefore in the application logic.
Because the service layer renders the application logic, in this context
a change in the service layer interface is still acceptable. However,
in my experience, repeated edits to the service layer interface may
lead to the wrong conclusion that changes in the domain objects—
the entities—may save you further edits in the service layer. Th is
doesn’t happen in well-disciplined teams or when developers have
a deep understanding of the separation of roles that exists between
the domain model, the service layer, and DTOs.

As Figure 4 shows, when DTOs are employed, you also need
a DTO adapter layer to adapt one or more entity objects to a
diff erent interface as required by the use case. In doing so, you
actually implement the “Adapter” pattern—one of the classic and
most popular design patterns. Th e Adapter pattern essentially

converts the interface of one class into another interface that a
client expects.

With reference to Figure 4, the adapter layer is responsible
for reading an incoming instance of the OperationRequest-
DTO class and for creating and populating fresh instances of
OperationResponseDTO.

When requirements change and force changes in a DTO-based
service layer, all you need to do is update the public data contract
of the DTO and adjust the corresponding DTO adapter.

Th e decoupling benefi ts of DTOs don’t end here. In addition,
to happily surviving changes in the presentation, you can enter
changes to the entities in the domain model without impacting
any clients you may have.

Any realistic domain model contains relationships, such as
Customer-to-Orders and Order-to-Customer, that form a double
link between Customer and Order entities. With DTOs, you also
work around the problem of managing circular references during
the serialization of entity objects. DTOs can be created to carry a
fl at stream of values that, if needed, serialize just fi ne across any
boundaries. (I’ll return to this point in a moment.)

Drawbacks of DTOs
From a pure design perspective, DTOs are a real benefi t, but

is this theoretical point confi rmed by practice, too? As in many
architecture open points, the answer is, it depends.

Having hundreds of entities in the domain model is defi nitely
a good reason for considering alternatives to a pure DTO-based
approach. In large projects with so many entities, DTOs add a re-
markable level of (extra) complexity and work to do. In short, a pure,
% DTO solution is oft en just a  percent painful solution.

While normally the complexity added to a solution by DTOs is
measured with the cardinality of the domain model, the real number
of needed DTOs can be more reliably determined looking at the use
cases and the implementation of the service layer. A good formula
for estimating how many DTOs you need is to look at the number
of methods in the service layer. Th e real number can be smaller if
you are able to reuse some DTOs across multiple service layer calls,
or higher if your DTOs group some data using complex types.

In summary, the only argument against using DTOs is the
additional work required to write and manage the number of
resulting DTO classes. It is not, however, a simple matter of a
programmer’s laziness. In large projects, decoupling presentation
from the service layer costs you hundreds of new classes.

It should also be noted that a DTO is not simply a lightweight copy
of every entity you may have. Suppose that two distinct use cases
require you to return a collection of orders—say, GetOrdersByCountry
and GetOrdersByCustomer. Quite likely, the information to put in
the “order” is diff erent. You probably need more (or less) details in
GetOrdersByCustomer than in GetOrdersByCountry. Th is means
that distinct DTOs are necessary. For this reason, hundreds of enti-
ties are certainly a quick measure of complexity, but the real number
of DTOs can be determined only by looking at use cases.

If DTOs are not always optimal, what would be a viable alter-
nate approach? Figure 4 DTO Adapters in the BLL

33August 2009msdnmagazine.com

Th e only alternative to using DTOs is to reference the domain
model assembly from within the presentation layer. In this way
though, you establish a tight coupling between layers. And tightly
coupled layers may be an even worse problem.

Referencing Entities Directly
A fi rst, not-so-obvious condition to enable the link of entities

directly from the presentation layer is that it is acceptable for the
presentation layer to receive data in the format of entity objects.
Sometimes the presentation needs data formatted in a particu-
lar manner. A DTO adapter layer exists to just massage data as
required by the client. If you don’t use DTOs though, the burden
of formatting data properly must be moved onto the presenta-
tion layer. In fact, the wrong place in which to format data for
user interface purposes is the domain model itself.

Realistically, you can do without DTOs only if the presentation
layer and the service layer are co-located in the same process. In
this case, you can easily reference the entity assembly from within
both layers without dealing with thorny issues such as remoting
and data serialization. Th is consideration leads to another good
question: Where should you fi t the service layer?

If the client is a Web page, the service layer is preferably local to
the Web server that hosts the page. In ASP.NET applications, the
presentation layer is all in code-behind classes and lives side by side
with the service layer in the same AppDomain. In such a scenario,
every communication between the presentation layer and the service
layer occurs in-process and objects can be shared with no further
worries. ASP.NET applications are a good scenario where you can
try a solution that doesn’t use the additional layer of DTOs.

Technology-wise, you can implement the service layer via plain
.NET objects or via local Windows Communication Foundation
(WCF) services. If the application is successful, you can easily
increase scalability by relocating the service layer to a separate
application server.

 If the client is a desktop application, then the service layer is typi-
cally deployed to a diff erent tier and accessed remotely from the client.
As long as both the client and remote server share the same .NET
platform, you can use remoting techniques (or, better, WCF services)
to implement communication and still use native entity objects on
both ends. Th e WCF infrastructure will take care of marshaling data
across tiers and pump it into copies of native entities. Also, in this
case you can arrange an architecture that doesn’t use DTOs. Th ings
change signifi cantly if the client and server platforms are incompat-
ible. In this case, you have no chances to link the native objects and
invoke them from the client; subsequently, you are in a pure service-
oriented scenario and using DTOs is the only possibility.

The Middle Way
DTOs are the subject of an important design choice that aff ects

the implementation of any communication between the presen-
tation and the back end of the system.

If you employ DTOs, you keep the system loosely coupled and
open toward a variety of clients. DTOs are the ideal choice, if you
can aff ord it. DTOs add a signifi cant programming overhead to

any real-world system. Th is doesn’t mean that DTOs should not
be used, but they lead to a proliferation of classes that can really
prefi gure a maintenance nightmare in projects with a few hundred
entity objects and even more use cases.

If you are at the same time a provider and consumer of the ser-
vice layer, and if you have full control over the presentation, there
might be benefi ts in referencing the entity model assembly from
the presentation. In this way, all methods in the service layer are
allowed to use entity classes as the data contracts of their signatures.
Th e impact on design and coding is clearly quite soft er.

Whether to use DTOs or not is not a point easy to generalize. To be
eff ective, the fi nal decision should always be made looking at the par-
ticulars of the project. In the end, a mixed approach is probably what
you’ll be doing most of the time. Personally, I tend to use entities as
much as I can. Th is happens not because I’m against purity and clean
design, but for a simpler matter of pragmatism. With an entity model
that accounts for only  entities and a few use cases, using DTOs all the
way through doesn’t pose any signifi cant problem. And you get neat
design and low coupling. However, with hundreds of entities and use
cases, the real number of classes to write, maintain, and test ominously
approaches the order of thousands. Any possible reduction of com-
plexity that fulfi lls requirements is more than welcome.

As an architect, however, you should always be on the alert to rec-
ognize signs indicating that the distance between the entity model and
what the presentation expects is signifi cant or impossible to cover. In
this case, you should take the safer (and cleaner) route of DTOs.

Mixed Approach
Today’s layered applications reserve a section of the BLL to the

service layer. Th e service layer (also referred to as the application
layer) contains the application logic; that is, the business rules and
procedures that are specifi c to the application but not to the domain.
A system with multiple front ends will expose a single piece of domain
logic through entity classes, but then each front end will have an
additional business layer specifi c to the use cases it supports. Th is
is what is referred to as the service (or application) layer.

Triggered from the UI, the application logic scripts the entities
and services in the business logic. In the service layer, you imple-
ment the use cases and expose each sequence of steps through a
coarse-grained method for the presentation to call.

In the design of the service layer, you might want to apply a few
best practices, embrace service-orientation, and share data contracts
instead of entity classes. While this approach is ideal in theory, it
oft en clashes with the real world, as it ends up adding too much
overhead in projects with hundreds of entities and use cases.

It turns out that a mixed approach that uses data contracts only
when using classes is not possible, is oft en the more acceptable
solution. But as an architect, you must not make this decision lightly.
Violating good design rules is allowed, as long as you know what
you’re doing.

DINO ESPOSITO is an architect at IDesign and co-author of Microsoft .NET:
Architecting Applications for the Enterprise (Microsoft Press, ). Based in
Italy, Dino is a frequent speaker at industry events worldwide. You can join his
blog at weblogs.asp.net/despos.

http://www.msdnmagazine.com
http://weblogs.asp.net/despos

msdn magazine34

interface, even though that code conformed to the design documents.
At that point, IT management and the business partners didn’t see
any value being delivered by the project and threw in the towel in
favor of other initiatives.

Ironically, to me the parent company was and is one of the
world’s leading examples of a lean or just-in-time manufacturer.
Most of our competitors used “push” manufacturing, in which
large quantities of parts are ordered for factory lines based on the
forecasted demand over some period of time. Th e downfalls of
push manufacturing are that you lose money any time you order
more parts than you can use; you have to pay extra to store the
stocks of surplus parts before you’re ready to use them; and you
are vulnerable to part shortages on the factory fl oor any time the
forecasts are wrong—and forecasts are rarely accurate.

In contrast, my then-employer used “pull” manufacturing. Several
times a day the factory systems scheduled the customer orders they
needed to build over the next couple of hours, determined the quanti-
ties of parts they needed to complete those orders, and then ordered
for immediate delivery exactly the number and type of parts needed.
Th e advantages of pull manufacturing are that by buying only what
is needed, you waste much less money on parts that can’t be used;
factories have far fewer on-hand part stocks to contend with, making
manufacturing somewhat more effi cient; you can quickly adapt to new
circumstances and market forces when you aren’t bound by forecasts
made months ago; and forecasts and estimates are more accurate when
made over the short term rather than a longer term.

So how does the pull versus push issue apply to soft ware devel-
opment? Th e failed project I described earlier used push design
by trying to fi rst determine all the infrastructural needs of the
system and then trying to build out the data access infrastructure
before writing other types of code. Th e team wasted a lot of eff ort
designing, documenting, and building code that was never used
in production.

Instead, what if the team had settled for quickly writing a high-level
specifi cation with minimal details, then proceeded to develop the
highest-priority feature to production-ready quality, then the next
highest-priority feature, and so on. In this scenario, the team would
build out only infrastructure code, like data access code, that was
pulled in by the requirements of the particular feature.

Incremental Delivery Through
Continuous Design

In earlier Patterns in Practice columns, I’ve focused mainly on
technical “patterns,” but in this article I’ll discuss the soft er “practice”
side of soft ware design. Th e end goal of soft ware projects is to deliver
value to the customer, and my experience is that soft ware design
is a major factor in how successfully a team can deliver that value.
Over design, under design, or just fl at out wrong design impedes
a project. Good design enables a team to be more successful in
its eff orts.

My experience is also that the best designs are a product of
continuous design (also known as emergent or evolutionary
design) rather than the result of an eff ort that tries to get the entire
design right up front. In continuous design, you might start with a
modicum of up-front design, but you delay committing to technical
directions as long as you can. Th is approach lets you strive to apply
lessons learned from the project to continuously improve the design,
instead of becoming locked into an erroneous design developed
too early in the project.

In addition, I fi rmly believe that the best way to create business
value is through incremental delivery of working features rather than
focusing fi rst on building infrastructure. In this article, I’ll explore
how incremental delivery of working features enables a project team
to better deliver business value, and how using continuous design
can enable incremental delivery to be more effi cient and help you
create better soft ware designs.

Incremental Delivery of Features
In , my then-employer was experimenting with the newly

minted Microsoft .Net Framework and had launched a trial project
using ASP.NET .. I, along with many others, eagerly watched
the project, hoping for success so that we could start using this
exciting new framework on projects of our own. Six months later
the project was canceled. Th e team had certainly been busy, and
by all accounts it had written a lot of code, but none of that code
was suitable for production.

Th e experience of that project team yields some important lessons.
Th e team fi rst wrote a design specifi cation that was apparently fairly
complete and conformed to our organization’s standards. With
this document in hand, the team started the project by attempting
to build the entire data access layer, then the business logic layer,
and fi nally the user interface. When they started to code the user
interface screens, the developers quickly realized that the existing
data access code wasn’t exactly what they needed to build the user

PATTERNS IN PRACTICE JEREMY MILLER

Send your questions and comments to mmpatt@microsoft.com.

mailto:mmpatt@microsoft.com

msdn magazine36 Patterns In Practice

Th ink about this. What is a better outcome for a project at the
end of its scheduled timeline?
. Only  percent of the proposed features are complete, but

the most important features of the initial project proposal are
ready to deploy to production.

. Most of the coding infrastructure is complete, but no features
are completely usable and nothing can be deployed to
production.
In both cases the team is only roughly half done and neither

outcome is truly a success compared to the initial plan and schedule.
But which “failure” would you rather explain to your boss? I know
my boss and our sales team would defi nitely prefer the fi rst outcome
based on incremental delivery.

Th e key advantages of incremental delivery are the following:
. Working in order of business priority. Building incrementally

by feature gives you a better chance to complete the features
most important to the business. Aft er all, why should you spend
any time whatsoever designing, building, and testing a “nice to
have” feature before the “must have” features are complete?

. Risk mitigation. Frankly, the biggest risk in most projects isn’t
technical. Th e biggest risk is that you don’t deliver business
value or you deliver the wrong system. Also, the harsh reality
is that the requirements and project analysis given to you is just
as likely to be wrong as your design or code. By demonstrating
working features to the business partners early in the project,
you can get valuable feedback on your project’s requirements.
For my team, early demonstrations to our product manager and
sales team have been invaluable for fi ne-tuning our application’s
usability.

. Early delivery. Completed features can be put into production
before the rest of the system to start earning some return on
value.

. Flexible delivery. Believe it or not, the business partners and
your product manager sometimes change their priorities.
Instead of gnashing your teeth at the injustice of it all, you can
work in such a way that assumes that priorities will change. By
tying infrastructure code to the features in play, you reduce the
likelihood of wasted eff ort due to changing priorities.
Now, for the downside of incremental delivery: it’s hard to do. In

the lean manufacturing example, pull manufacturing worked only
because the company’s supply chain was ultraeffi cient and was able
to stock factories with parts almost on demand. Th e same holds
true for incremental delivery. You must be able to quickly design
the elements of the new features and keep the quality of the code
structure high enough that you don’t make building future features
more diffi cult. What you don’t have time to do is spend weeks or even
months at a time working strictly on architectural concerns—but
those architectural concerns still exist. You need to change the way
you design soft ware systems to fi t the incremental delivery model.
Th is is where continuous design comes into the picture.

Continuous Design
Proponents of traditional development oft en believe that projects

are most successful when the design can be completely specifi ed up

front to reduce wasted eff ort in coding and rework. Th e rise of Agile
and Lean programming has challenged traditional notions of the
timing of soft ware design by introducing a process of continuous
design that happens throughout the project life cycle. Continuous
design purposely delays commitments to particular designs, spreads
more design work over the life cycle of the project, and encourages
a team to evolve a design as the project unfolds by applying lessons
learned from the code.

Th ink of it this way. I simply won’t develop the detailed design
for a feature until it’s time to build that feature. I could try to design
it now, but that design work wouldn’t provide any benefi ts until
much later—and by the time my team gets to that feature, I’m likely
to understand much more about our architecture and system and
be able to come up with a better design than I could have at the
beginning of the project.

Before I go any further, I’d like to say that continuous design
does not imply that no design work takes place up front. I like
this quote from Robert C. (Uncle Bob) Martin (www.agilealliance.org/

system/article/fi le/833/fi le.pdf): “Th e goal is to create a small but capable
initial design, and then maintain and evolve that design over the life
of the system.”

Before you write off continuous design as risky and prone to
error, let’s discuss how to make continuous design succeed (in other
words, I’m going to try to convince you that this isn’t crazy).

The Last Responsible Moment
If not up front, when do you make design decisions? One of

the most important lessons you learn through continuous design
is to be cognizant of the decisions you make about your design
and to consciously decide when to make those decisions. Lean
programming teaches us to make decisions at the “last responsible
moment.” According to Mary Poppendieck (in her book Lean
Soft ware Development), following this principle means to “delay
commitment until … the moment at which failing to make a decision
eliminates an important alternative.”

The point is to make decisions as late as possible because
that’s when you have the most information with which to make
the decision. Think back to the failed project I described at the
beginning of this article. That team developed and committed
to a detailed design for the data access code far too early. If the
developers had let the user interface and business logic needs drive
the shape of the data access code as they built the user interface
features, they could have prevented quite a bit of wasted effort.
(This is an example of “client-driven design,” where you build
out the consumer of an API first in order to define the shape and
signature of the API itself.)

One of the key ideas here is that you should think ahead and
continuously propose design changes, but you shouldn’t commit
irrevocably to a design direction until you have to. We don’t
want to act based on speculative design. Committing early to
a design precludes the possibility of using a simpler or better
alternative that might present itself later in the project. To quote
a former colleague, Mike Two of NUnit  fame, “Think ahead
yes, do ahead no.”

http://www.agilealliance.org/system/article/file/833/file.pdf):
http://www.agilealliance.org/system/article/file/833/file.pdf):

37August 2009msdnmagazine.com

Reversibility
Martin Fowler says, “If you can easily change your decisions, this

means it’s less important to get them right—which makes your life
much simpler.” Closely related to the last responsible moment is
the concept of reversibility, which I would describe as the ability
or inability to change a decision. Being cognizant of the inherent
reversibility of your decisions is essential to following the principle
of the last responsible moment. Th e fi rst decision my team made for
a recent project was whether to develop with Ruby on Rails or stay
with a .NET architecture. Choosing a platform and programming
language is not an easily reversible decision, and we knew we needed
to make that decision early. On other projects, I’ve had to coordinate
with external groups that needed to defi ne and schedule their time
months in advance. In cases like those, my team absolutely had to
make decisions up front to engage with the external teams.

A classic decision involving reversibility is whether to build
caching in an application. Th ink about cases where you don’t know
for sure if you really need to cache some piece of data. If you’re
afraid that caching will be impossible to retrofi t later, you invariably
have to build that caching at the start—even though that may be
a waste of time. On the other hand, what if you’ve structured the
code to isolate the access to this data in such a way that you could
easily retrofi t caching into the existing code with little risk? In the
second case, you can responsibly forgo the caching support for the
moment and deliver the functionality faster.

Reversibility also guides my team in what technologies and
techniques we use. Because we use an incremental delivery process
(Kanban with Extreme Programming engineering practices), we
defi nitely favor technologies and practices that promote higher
reversibility. Our system will probably have to support multiple
database engines at some point in the future. To that end, we use
an Object Relational Mapping framework to largely decouple our
middle tier from the actual database engine. Just as important, we’ve

got a fairly comprehensive set of automated tests that exercise our
database access. When it’s time to swap database engines, we can
use those tests to be confi dent that our system works with the
new database engine—or at least point out exactly where we’re
incompatible.

First of all, what is software design? For many people, soft-
ware design means “creating a design specifi cation before coding
starts” or the “Planning/Elaboration Phase.” I’d like to step away
from formal processes and intermediate documentation and
defi ne software design more generally as “the act of determining
how the code should be structured.” That being said, we can
now think of software design happening in two different modes:
predictive or reactive (or refl ective if you prefer).

Predictive design is the design work you do before coding.
Predictive design is creating UML or CRC models, performing
design sessions with the development team at the beginning of
iteration, and writing design specifi cations. Reactive design is the
adjustments you make based on feedback during or after coding.
Refactoring is reactive design. Every team and even individuals
within a team have different preferences in using predictive or
reactive design. Continuous design simply puts more importance
on reactive design than does traditional software development
processes.

Predictive versus Reactive Design

Many projects are truly straightforward, with well-
understood requirements, and strictly use well-known technologies.
Up-front design might work fairly well with these projects, but my
experience is the opposite. Almost every project I’ve worked on has
had some degree of novelty, either in the technology used, the
development techniques employed, or in the requirements. In
those cases, I believe that the best way to be successful is to adopt
an attitude of humility and doubt. You should never assume that
what you’re doing and thinking works until you have some sort of
feedback that verifi es the code or design.

Because continuous design involves the evolution of the code
structure, it’s even more important when using that approach
to create rapid feedback cycles to detect early errors caused by
changes to the code. Let’s take the Extreme Programming (XP)
model of development as an example. XP calls for a highly itera-
tive approach to development that remains controversial. Almost
as controversial is the fact that XP specifi es a series of practices
that are somewhat diffi cult to accept for many developers and
shops. Specifi cally, XP practices are largely meant to compensate
for the rapid rate of iteration by providing rapid and comprehen-
sive feedback cycles.

• Collective ownership through pair programming. Love it or
hate it, pair programming requires that at least two pairs of
eyes review each and every line of production code. Pair
programming provides feedback from a design or code
review mere seconds after the code is written

• Test-driven development (TDD), behavior-driven development
(BDD), and acceptance tests. All these activities create very
rapid feedback. TDD and BDD help drive out defects in the
code when initially written, but just as important, the high
level of unit-test coverage makes later design changes and
additions to the code much safer by detecting regression
failures in a fi ne-grained way.

• Continuous integration. When combined with a high level of
automated test coverage and possibly static code analysis
tools, continuous integration can quickly fi nd problems in the
code base each and every time code is checked in.

• Retrospectives. This requires that the development team stop
and discuss how the software design is helping or hurting the
development effort. I’ve seen numerous design improvements
come out of iteration and release retrospectives.
The quality and quantity of your feedback mechanisms greatly

affect how you do design. For example, high automated test
coverage with well-written unit tests makes refactoring much
easier and more effective. Refactoring with low or no automated
test coverage is probably too risky. Poorly written unit tests can be
almost as unhelpful as having no tests whatsoever.

The reversibility of your code is greatly enhanced by solid
feedback mechanisms.

The Importance of Feedback

http://www.msdnmagazine.com

msdn magazine38 Patterns In Practice

YAGNI and the Simplest Thing that
Could Possibly Work

To do continuous design, we have to make our code easy to change,
but we’d really like to prevent a lot of rework in our code as we’re
making changes to it. To do incremental delivery, we want to focus
on building only the features we’re tasked with building right now,
but we don’t want to make the next feature impossible or harder to
develop by making the design incompatible with future needs.

Extreme programming introduced two sayings to the develop-
ment vernacular that are relevant here: “You aren’t gonna need it”
(YAGNI, pronounced “yawg-nee”), and “Th e simplest thing that
could possibly work.”

First, YAGNI forbids you to add any code to the system now that
will not be used by current features. “Analysis paralysis” in soft ware
development is a very real problem, and YAGNI cuts through this
problem by forcing you to focus on only the immediate problem.
Dealing with complexity is hard, but YAGNI helps by reducing the
scope of the system design you need to consider at any one time.

Of course, YAGNI can sound scary and maybe even irrespon-
sible because you might very well need the level of complexity
you bypassed the fi rst time around. Following YAGNI shouldn’t
mean that you eliminate future possibilities. One of the best
ways to ensure that is to employ “the simplest thing that could
possibly work.”

I like Alan Shalloway’s defi nition of the simplest thing that could
possibly work shown in the following list. (Th e once-and-only-once
rule refers to the elimination of duplication from the code; it’s
another way of describing the “don’t repeat yourself ” principle).
You should choose the simplest solution that still conforms to
these rules:
. Runs all the tests.
. Follows the once-and-only-once rule.
. Has high cohesion.
. Has loose coupling.

Th ese structural qualities of code make code easier to modify
later.

Th e point of these complementary sayings is that each piece of
complexity has to earn its right to exist. Th ink about all the things
that can happen when you choose a more complex solution over
a simpler one:
. Th e extra complexity is clearly warranted.
. Th e extra complexity isn’t necessary and represents wasted

eff ort over a simpler approach.
. Th e extra complexity makes further development harder.
. Th e extra complexity turns out to be fl at-out wrong and has to

be changed or replaced.
Th e results of adding complexity include one positive outcome

and three negative outcomes. In contrast, until proven otherwise,
a simple solution may be adequate. More important, the simple
approach will probably be much easier to build and to use with other
parts of the code, and if it does have to be changed, well, it’s easier
to change simple code than complex code. Th e worst case scenario
is that you have to throw away the simple code and start over, but

by that time you’re likely to have a much better understanding of
the problem anyway.

Sometimes a more complex solution will defi nitely turn out to
be justifi ed and the correct choice, but more oft en than not, using
a simpler approach is better in the end. Consistently following
YAGNI and “the simplest thing” when you’re in doubt is simply
following the odds.

How Much Modeling Before Coding?
Let’s put documentation requirements aside for the moment. Here’s

a classic question in soft ware development: “How much design and
modeling should I do before starting to code?” Th ere is no defi nitive
answer because every situation is diff erent. Th e key point here is
that when you’re unsure how to proceed, this means you are in a
learning mode. Whether you do some modeling or exploratory
coding fi rst strictly depends on which approach helps you learn
faster about the problem at hand, and, of course, I have to repeat
this classic quote from Bertrand Meyer: “Bubbles don’t crash.”

• If you’re working with an unfamiliar technology or design
pattern, I think that modeling isn’t nearly as useful as getting
your hands dirty with some exploratory coding.

• If a design idea is much easier for you to visualize in a model
than in code, by all means draw some models.

• If you have no idea where to start in the code, don’t just stare
at the IDE window hoping for inspiration. Take out a pen and
paper and write down the logical tasks and responsibilities for
the task you’re working on.

• Switch to coding the second that you reach a point of diminish-
ing returns with modeling. (Remember, bubbles don’t crash!)
Better aligning the boxes in your diagram does not help you
write better code!

• If you do jump straight into coding and begin to struggle, stop
and go back to modeling.

• Remember that you can switch between coding and modeling.
Many times when you’re confronted with a diffi cult coding
problem, the best thing to do is pick out the simplest tasks,
code those in isolation, and use the form of that code to help
you determine what the rest of the code should look like.
Another thing to keep in mind is that some forms of model-

ing are more lightweight than others. If UML isn’t helping you
with a problem, switch to CRC cards or even entity relationship
diagrams.

What’s Ahead
Th is article had no code whatsoever, but I feel strongly that these

concepts apply to almost all design decisions. In a future column, I’ll
talk about some specifi c concepts and strategies for developing designs
that allow you to use continuous design principles. I’ll also describe
in much more detail how refactoring fi ts into continuous design.

JEREMY MILLER, a Microsoft MVP for C#, is also the author of the open-source
StructureMap (structuremap.sourceforge.net) tool for Dependency Injection
with .NET and the forthcoming StoryTeller (storyteller.tigris.org) tool for super-
charged FIT testing in .NET. Visit his blog, “Th e Shade Tree Developer,” part of
the CodeBetter site.

http://structuremap.sourceforge.net

msdn magazine40

Visualizing Information
with .NET

Information visualization has been around for a long time,
but ask diff erent people what it means, and you’ll likely get many
diff erent answers—for example, charting, innovative animated
images, or computationally intensive representations of complex
data structures. Information visualization encapsulates all of these
answers, and an information visualization platform is one that can
support each of these scenarios.

From a scientifi c perspective, information visualization is usually
used to defi ne the study of the visual representation of large-scale
collections of information that is not necessarily numeric in nature,
and the use of graphical representations of this data to allow the data
to be analyzed and understood. From a business perspective, infor-
mation visualization is all about deriving value from data through
graphical rendering of the data, using tools that allow end users to
interact with the data to fi nd the information that they need.

Of course, having just the capability to draw these pictures usually
isn’t enough for a good information visualization platform; there
are also other levels of functionality that need to be addressed,
such as:

• Interactivity Interactivity can vary from animating the
movement of slices in and out of a pie chart to providing users
with tools for data manipulation, such as zooming in and out
of a time series.

• Generating related metadata Many charts have
value added to them through related contextual metadata.

This article discusses:
• Data visualization

• Building data-agnostic services

• Building a visualization server

Technologies discussed:
C#, ASP.NET, XML

Laurence Moroney

For example, when you view a time-series chart, you might
want to generate a moving average and tweak the period for
this moving average or experiment with what-if scenarios. It’s
not feasible to expect a data source to generate all of these data
views for you. Some form of data manipulation is necessary at
the presentation layer.

• Overlaying related data A common requirement for
charting is to take a look at other stimuli that might affect
the data and have the visualization reflect this. Consider a
time series showing a company’s stock value and a feed of
news stories about that particular stock. Real value can be
added to the chart by showing how the news affected the
value. “Good” news might make it go up, “bad’” news might
make it go down. Being able to add this data to your time-
series chart turns it from a simple chart into information
visualization.

IN FO RMAT ION V I SUAL IZAT ION

msdn magazine42 Information Visualization

Th e key to building a visualization platform that can enable all
of this is to have fl exibility, so that you can render any data in any
way at any time. Th is is a huge and generally specialized eff ort, but
a technique that you can use to ease this eff ort is to use with called
data agnotisticism.

Data agnosticism arises when you defi ne an architecture for visual-
izing your data that isn’t dependent on the data itself. For example,
if you consider the example of a time-series chart that provides
related metadata, it’s quite easy to program an application to read the
time-series data and the related metadata (such as a news feed) and
to write the data on to the screen using a charting engine. However,
once you’ve done this, your eff ort is good for this representation and
this representation alone. Th e application you’ve written is tightly
bound to the data itself.

Th e principle of data agnosticism allows you to pick a data source,
defi ne the data you want, and then tell the visualization engine to
go and draw it however you want it to. We’ll take a look at how to
build a simple version of this engine in this article.

Getting Started
As with anything else, it’s good to start with the data. In this

section, I’ll give a brief overview of a simple XML-over-HTTP
service that provides time-series data provided by Yahoo Financial
Services.

Th e Yahoo time-series service returns a CSV fi le containing basic
time-series data with the following fi elds: Date, Opening Price,
Closing Price, High, Low, Volume, and Adjusted Close. Th e API
to call it is very simple:

ichart.fi nance.yahoo.com/table.csv

You use the following parameters:

Parameter Value
s Stock Ticker (for example, MSFT)
a Start Month (0-based; 0=January, 11=December)
b Start Day
c Start Year
d End Month (0-based; 0=January, 11=December)
e End Day
f End Year

g Always use the letter d

ignore Always use the value ‘.csv’

To get the time-series data for Microsoft (MSFT) from January
, , to January , , you use the following URL:

http://ichart.fi nance.yahoo.com/table.csv?s=MSFT&a=0&b=1&c=2008&d=0&e

=1&f=2009&g=d&ignore=.csv

Figure 1 shows a C# function that takes string parameters for
ticker, start date, and end date and builds this URI.

Now that you have the URI for the data, you need to read it and
to use it. In this case, I’ll convert the CSV data to XML. A function
that can do this is shown in Figure 2.

I put these functions into a class called HelperFunctions and added
the class to an ASP.NET Web project. To this, I added an ASP.NET
Web Form (ASPX) called GetPriceHistory and edited the ASPX

page to remove the HTML markup so that it looks like this:
<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="GetPriceHistory.aspx.cs" Inherits="PriceHistoryService.
 GetPriceHistory" %>

Th e nice thing about this approach is that you can now write code
that writes directly to the response buff er and set the response type
so that you can write XML over HTTP.

Because the helper functions take strings for the ticker and for the
start and end dates, you can use them as parameters to the ASPX.
You can then pass them to the helper functions to generate XML,
which you then write out to the response buff er. In addition, the
MIME type needs to be set to “text/xml” so that any reader sees it
as XML and not text.

public string BuildYahooURI(string strTicker,
 string strStartDate, string strEndDate)
{
 string strReturn = "";
 DateTime dStart = Convert.ToDateTime(strStartDate);
 DateTime dEnd = Convert.ToDateTime(strEndDate);
 string sStartDay = dStart.Day.ToString();
 string sStartMonth = (dStart.Month -1).ToString();
 string sStartYear = dStart.Year.ToString();
 string sEndDay = dEnd.Day.ToString();
 string sEndMonth = (dEnd.Month - 1).ToString();
 string sEndYear = dEnd.Year.ToString();
 StringBuilder sYahooURI =
 new StringBuilder("http://ichart.finance.yahoo.com/table.csv?s=");
 sYahooURI.Append(strTicker);
 sYahooURI.Append("&a=");
 sYahooURI.Append(sStartMonth);
 sYahooURI.Append("&b=");
 sYahooURI.Append(sStartDay);
 sYahooURI.Append("&c=");
 sYahooURI.Append(sStartYear);
 sYahooURI.Append("&d=");
 sYahooURI.Append(sEndMonth);
 sYahooURI.Append("&e=");
 sYahooURI.Append(sEndDay);
 sYahooURI.Append("&f=");
 sYahooURI.Append(sEndYear);
 sYahooURI.Append("&g=d");
 sYahooURI.Append("&ignore=.csv");
 strReturn = sYahooURI.ToString();
 return strReturn;
}

Figure 1 A C# Function That Builds a URI to Capture Data

public XmlDocument getXML(string strTicker,
 string strStartDate, string strEndDate)
 {
 XmlDocument xReturn = new XmlDocument();
 DataSet result = new DataSet();
 string sYahooURI =
 BuildYahooURI(strTicker, strStartDate, strEndDate);
 WebClient wc = new WebClient();
 Stream yData = wc.OpenRead(sYahooURI);
 result = GenerateDataSet(yData);
 StringWriter stringWriter = new StringWriter();
 XmlTextWriter xmlTextwriter = new XmlTextWriter(stringWriter);
 result.WriteXml(xmlTextwriter, XmlWriteMode.IgnoreSchema);
 XmlNode xRoot = xReturn.CreateElement("root");
 xReturn.AppendChild(xRoot);
 xReturn.LoadXml(stringWriter.ToString());

 return xReturn;
 }

Figure 2 Converting CSV Data to XML

43August 2009msdnmagazine.com

Figure 3 shows the code to do that. Remember that HelperFunc-
tions is the name of a class containing the functions that build the
Yahoo URI and that read it and convert the CSV data to XML.

You now have a simple XML-over-HTTP service that returns
time-series data. Figure 4 shows an example of it in action.

Building a Data-Agnostic Service
That Uses This Data

With server-generated visualization, a client renders an image, and
all processing is done on the server. Some very smart visualization
engines provide code that can post back to the server to provide

interactivity by using image maps in the image that is rendered back,
but this is extremely complex to generate, and the functionality
can be limited. Th is approach is useful if you want to generate
static charts that require no end-user runtime because the browser
can render the common image formats. Figure 5 shows a typical
architecture for this approach.

When you build this architecture, you usually write server code
that understands the data. In the previous case, for example, if you’re
writing a time-series chart that is plotting the Close value, you would
write code that reads in the XML and takes the Close data and loads
it into a series on the chart so that it can be plotted.

If you are using the Microsoft ASP.NET charting engine (which
is freely downloadable; see the link later in this article), you’d typi-
cally defi ne a chart like this:

 <asp:Chart ID="Chart1" runat="server">
 <Series>
 <asp:Series Name="Series1">
 </asp:Series>
 </Series>
 <ChartAreas>
 <asp:ChartArea Name="ChartArea1">
 </asp:ChartArea>
 </ChartAreas>
 </asp:Chart>

Th is approach, however, usually limits you to charting rather
than visualization because the ability to provide interactivity is
limited. Th e ability to generate related metadata is also limited in
this scenario because all requests require a post-back to the server
to generate a new chart and would be limited to the functionality
that is provided on the server. Th e ability to overlay related metadata
is also limited for the same reasons.

However, the important capabilities of data agnosticism can
be enabled by this scenario. It’s relatively easy for you to confi gure
metadata about your data source and where in the data source

HelperFunctions hlp = new HelperFunctions();
protected void Page_Load(object sender, EventArgs e)
{
 string strTicker, strStartDate, strEndDate;

 if(Request.Params["ticker"]!=null)
 strTicker = Request.Params["ticker"].ToString();
 else
 strTicker = "MSFT";

 if(Request.Params["startdate"]!=null)
 strStartDate = Request.Params["startdate"].ToString();
 else
 strStartDate = "1-1-2008";

 if(Request.Params["enddate"]!=null)
 strEndDate = Request.Params["enddate"].ToString();
 else
 strEndDate = "1-1-2009";

 XmlDocument xReturn = hlp.getXML(strTicker, strStartDate, strEndDate);

 Response.ContentType = "text/xml";
 Response.Write(xReturn.OuterXml);

}

Figure 3 Code for the Helper Functions

Figure 5 Typical Server-Rendered Visualization Architecture

Data

Servers

Client /
browser

Server fetches data from
the data source

Server renders data as
a picture (GIF/JPG/

PNG etc)

Client requests graphics
and gets the image back

Figure 4 A Simple XML-over-HTTP Service

http://www.msdnmagazine.com

msdn magazine44 Information Visualization

that I discuss here are similar across all of them. In this section, I’ll
look at the free ASP.NET charting engine from Microsoft , which you
can download from microsoft.com/downloads/details.aspx?FamilyID=130f7986-

bf49-4fe5-9ca8-910ae6ea442c&DisplayLang=en. You also need the Visual
Studio add-ins for the Charting server, which you can download
from microsoft.com/downloads/details.aspx?familyid=1D69CE13-E1E5-4315-

825C-F14D33A303E9&displaylang=en.

Let’s look at what it takes to build a pie chart with this charting
engine. Th e code is very simple. First, add an instance of the chart
control to an ASPX Web form. You’ll see something like this in
the code view:

 <asp:Chart ID="Chart1" runat="server">
 <Series>
 <asp:Series Name="Series1">
 </asp:Series>
 </Series>
 <ChartAreas>
 <asp:ChartArea Name="ChartArea1">
 </asp:ChartArea>
 </ChartAreas>
 </asp:Chart>

Th en write code like the following to render some data in the
chart control:

 double[] yValues = { 20, 10, 24, 23 };
 string[] xValues = { "England", "Scotland", "Ireland", "Wales" };
 Series mySeries = Chart1.Series[0];
 mySeries.Points.DataBindXY(xValues, yValues);
 mySeries.ChartType = SeriesChartType.Pie;

you can fi nd your data series and data categories. An engine can
process this metadata and turn it into the series and categories that
the server can render, making it easy to add new visualizations
without a lot of extra programming.

Building a Data-Agnostic Visualization Server
Th ere are a number of server-side charting technologies available,

and the programming APIs change across them, but the principles

<root>
 <Chart Name="PriceHistory1">
 <Uri>
 <Path>http://localhost/PriceHistoryService/GetPriceHistory.aspx</Path>
 <Param Name="ticker">MSFT</Param>
 <Param Name="startdate">1-1-2008</Param>
 <Param name="enddate">1-1-2009</Param>
 </Uri>
 <Data>
 <SeriesDefinitions>
 <Series id="ClosePrice">
 <Data>/NewDataSet/TimeSeries/Close</Data>
 <Type>Line</Type>
 </Series>
 </SeriesDefinitions>
 </Data>
 </Chart>
</root>

Figure 6 A Confi guration File That Defi nes a Chart

protected void Button1_Click(object sender, EventArgs e)
{
 // Variable declarations
 StringBuilder dataURI = new StringBuilder();
 WebClient webClient = new WebClient();
 XmlDocument xmlChartConfig = new XmlDocument();
 XmlDocument xmlData = new XmlDocument();
 // Get the chart config
 Uri uri = new Uri(Server.MapPath("ChartConfig.xml"),
 UriKind.RelativeOrAbsolute);
 Stream configData = webClient.OpenRead(uri);
 XmlTextReader xmlText = new XmlTextReader(configData);
 xmlChartConfig.Load(xmlText);

 // I'm hard coding to read in the chart called 'Price History 1'. In a
 // 'real' environment my config would contain multiple charts, and I'd
 // pass the desired chart (along with any parameters) in the request
 // string. But for simplicity I've kept this hard coded.
 XmlNodeList lst =
 xmlChartConfig.SelectNodes("/root/Chart[@Name='PriceHistory1']/Uri/*");

 // The first child contains the root URI
 dataURI.Append(lst.Item(0).InnerText.ToString());

 // The rest of the children of this node contain the parameters
 // the first parameter is prefixed with ?, the rest with &
 // i.e. http://url?firstparam=firstval&secondparam=secondval etc
 for (int lp = 1; lp < lst.Count; lp++)
 {
 if (lp == 1)
 dataURI.Append("?");
 else
 dataURI.Append("&");

 // In this case the desired parameters are hard coded into the XML.
 // in a 'real' server you'd likely accept them as params to this page
 dataURI.Append(lst.Item(lp).Attributes.Item(0).Value.ToString());
 dataURI.Append("=");
 dataURI.Append(lst.Item(lp).InnerText);
 }

 // Now that we have the URI, we can call it and get the XML
 uri = new Uri(dataURI.ToString());
 Stream phData = webClient.OpenRead(uri);
 xmlText = new XmlTextReader(phData);
 xmlData.Load(xmlText);

 // This simple example is hard coded for a particular chart
 // ('PriceHistory1') and assumes only 1 series
 lst = xmlChartConfig.SelectNodes(
 "/root/Chart[@Name='PriceHistory1']/Data/SeriesDefinitions/Series/Data");

 // I'm taking the first series, because I only have 1
 // A 'real' server would iterate through all the matching nodes on the
 // XPath
 string xPath = lst.Item(0).InnerText;

 // I've read the XPath that determines the data location, so I can
 // create a nodelist from that
 XmlNodeList data = xmlData.SelectNodes(xPath);
 Series series = new Series();

 // I'm hard coding for 'Line' here -- the 'real' server should
 // read the chart type from the config
 series.ChartType = SeriesChartType.Line;
 double nCurrent = 0.0;

 // I can now iterate through all the values of the node list, and
 foreach (XmlNode nd in data)
 {
 // .. create a DataPoint from them, which is added to the Series
 DataPoint d = new DataPoint(nCurrent, Convert.ToDouble(nd.
 InnerText));
 series.Points.Add(d);
 nCurrent++;
 }

 // Finally I add the series to my chart
 Chart1.Series.Add(series);
}

Figure 7 Plotting the DTime-Series Data on an ASP.NET Chart

http://microsoft.com/downloads/details.aspx?FamilyID=130f7986-bf49-4fe5-9ca8-910ae6ea442c&DisplayLang=en
http://microsoft.com/downloads/details.aspx?familyid=1D69CE13-E1E5-4315-825C-F14D33A303E9&displaylang=en.

msdn magazine46 Information Visualization

from Close to Closing Price. You wouldn’t have to edit or recompile your
code; you’d simply edit the XPath variable in the chart defi nition.

It’s not much of a stretch to think about how you would edit
this to connect to diff erent types of data sources, such as database
connections or Web services. Figure 7 shows the code that plots
the time-series data on an ASP.NET chart.

Th e results are shown in Figure 8. No confi guration has been
done on the chart, and it’s using the default confi guration values,
but the data is being read and being plotted.

A small tweak to the confi guration fi le to give me volume and
a diff erent set of dates (-- to --) provides the view in
Figure 9—without changing a line of code in the charting service
because it is data-agnostic.

Documenting how to build a data-agnostic server would take an
entire book in its own right, and here I’ve just skimmed the surface.
Th e principles you’ve seen will apply to most APIs you work with,
and the majority of the code you write should be for managing the
external chart confi guration to get the data, making what you’ve
seen here very portable.

Next Time
In this article, I looked at one of the main principles of building

data visualizations—providing a way to render your data in a
data-agnostic manner. In a future article, I will explore using rich
technologies on the client side to provide the ability to interact
with your data and to smartly aggregate disparate data sources.
Th e power of the .NET platform is now available in the browser
using Microsoft Silverlight, so we will use it to demonstrate these
principles.

In this case, I’ve hard-coded the values, but you would usually
read them from a database or from a service and then load them
into the arrays before using them to generate the chart. Of course,
the reuse of this code becomes diffi cult, and any changes in the
data source can break it, so let’s take a look at writing something
that doesn’t need to be bound to the data type.

Th e nice thing about representing the data in XML is that I can
use the XPath language to defi ne where in the XML document the
data I want to plot will come from. For the data shown in Figure 1,
the XPath statement that defi nes the location of the Close prices
looks like this:

/NewDataSet/TimeSeries/Close

Now, if you think about it, instead of writing code that contains the
defi nitions for your chart, you can externalize it as a confi guration.
Imagine a confi guration fi le like the one shown in Figure 6.

You’re now defi ning a chart called PriceHistory that takes its
data from the given URL, appending parameters with the given
names and given values. Th e values are hardcoded in this case, but
there’s nothing to stop you from writing code that uses parameters
generated by an end user.

Additionally, the Series Defi nitions section defi nes a number of
series with an XPath statement indicating where the data comes
from and how to draw it. Right now it uses a simple defi nition of a
chart type, but you could include extra parameters here for color
or other elements or for defi ning multiple series (it’s XML aft er all,
so it’s easy to add extra nodes) as well as categories, labels, or other
such metadata. For this example I’ve kept it simple.

Now your charting-engine code will look vastly diff erent. Instead
of writing code that reads the data, parses the data, and loads it
directly into the chart, you can write code that reads the confi gura-
tion, builds the service call URI from the confi guration data, calls
the service, gets the returned XML, and uses the XPath variables
in the confi guration to get the data series you want.

Under these conditions, your architecture can be much more robust.
Consider, for example, if the data source value changed its XML tag

Figure 8 The Results Generated by the Time-Series Data Figure 9 New Results After Tweaking the Confi guration File

LAURENCE MORONEY is a senior technology evangelist with Microsoft , specializing
in Silverlight. He is the author of many books on computing topics, including
Silverlight, AJAX, interoperability, and security. You can fi nd Laurence’s blog at
blogs.msdn.com/webnext.

http://blogs.msdn.com/webnext

msdn magazine48

ENT IT Y FRAMEW OR K

In my previous article, I described a foundation on which
you can build successful n-tier applications, focusing mainly on
anti-patterns to avoid. Th ere are many issues to consider before
making decisions about the design of an n-tier application. In this
article, I examine n-tier patterns for success and some of the key
APIs and issues specifi c to the Entity Framework. I also provide a
sneak peak at features coming in the Microsoft .NET Framework
 that should make n-tier development signifi cantly easier.

Change Set
Th e idea behind the change set pattern is to create a serializable

container that can keep the data needed for a unit of work together
and, ideally, perform change tracking automatically on the client. Th e
container glues together the parts of the unit of work in a custom
format, so this approach also tends to be quite full-featured and is
easy to use on the mid-tier and on the client.

DataSet is the most common example of this pattern, but other
examples exist, such as the EntityBag sample I wrote some time
ago as an exploration of this technique with the Entity Framework.
Both examples exhibit some of the downsides of this pattern. First,
the change set pattern places signifi cant constraints on the client
because the wire format tends to be very specifi c to the change set
and hard to make interoperable. In practice, the client must use
.NET with the same change set implementation used on the mid-tier.
Second, the wire format is usually quite ineffi cient. Among other
things, change sets are designed to handle arbitrary schemas, so
overhead is required to track the instance schema. Another issue

with change set implementations such as DataSet, but not neces-
sarily endemic to the pattern, is the ease with which you can end
up tightly coupling two or more of the tiers, which causes problems
if you have diff erent rates of change. Finally, and probably of most
concern, is how easy it is to abuse the change set.

In some ways, this pattern automates and submerges critical
concerns that should be at the forefront of your mind when designing
your solution. Precisely because it is so easy to put data into the
change set, send it to the mid-tier, and then persist, you can do so
without verifying on the mid-tier that the changes you are persisting
are only of the type that you expect. Imagine that you have a service
intended to add an expense report to your accounting system that
ends up also modifying someone’s salary.

Th e change set pattern is best used in cases where you have
full control over client deployment so that you can address the
coupling and technology requirement issues. It is also the right
choice if you want to optimize for developer effi ciency rather than
runtime effi ciency. If you do adopt this pattern, be sure to exercise
the discipline to validate any changes on the mid-tier rather than
blindly persisting whatever changes arrive.

DTOs
At the opposite end of the spectrum from change sets are Data

Transfer Objects, or DTOs. Th e intent of this pattern is to separate
the client and the mid-tier by using diff erent types to hold the data
on the mid-tier and the data on the client and in the messages sent
between them.

Th e DTO approach requires the most eff ort to implement, but
when implemented correctly, it can achieve the most architectural
benefi ts. You can develop and evolve your mid-tier and your client
on completely separate schedules because you can keep the data
that travels between the two tiers in a stable format regardless of
changes made on either end. Naturally, at times you’ll need to add
some functionality to both ends, but you can manage the rollout
of that functionality by building versioning plus backward and
forward compatibility into the code that maps the data to and from

Danny Simmons

N-Tier Application
Patterns

This article discusses:
• N-tier design patterns

• Entity Framework

• Microsoft .NET Framework 4

Technologies discussed:
Entity Framework, Windows Communication Foundation

49August 2009msdnmagazine.com

the transfer objects. Because you explicitly design the format of the
data for when it transfers between the tiers, you can use an approach
that interoperates nicely with clients that use technologies other
than .NET. If necessary, you can use a format that is very effi cient to
send across the wire, or you can choose, for instance, to exchange
only a subset of an entity’s data for security reasons.

Th e downside to implementing DTOs is the extra eff ort required
to design three diff erent sets of types for essentially the same data
and to map the information between the types. You can consider a
variety of shortcuts, however, like using DTOs as the types on the
client so that you have to design only two types instead of three;
using LINQ to Objects to reduce the code that must be written
to move data between the types; or using an automatic mapping
library, which can further reduce the code for copying data by
detecting patterns such as properties with the same name on more
than one type. But there is no way around the fact that this pattern
involves more eff ort than any of the other options—at least for
initial implementation.

Th is is the pattern to consider when your solution becomes very
large with very sophisticated requirements for interoperability,
long-term maintenance, and the like. Th e longer the life of a project,
the more likely that DTOs will pay off . For many projects, however,
you might be able to achieve your goals with a pattern that requires
less eff ort.

Simple Entities
Like the change set pattern, the simple entities pattern reuses the

mid-tier entity types on the client, but unlike change sets, which
wrap those entities in a complex data structure for communication
between tiers, simple entities strives to keep the complexity of the
data structure to a minimum and passes entity instances directly
to service methods. Th e simple entities pattern allows only simple
property modifi cation to entity instances on the client. If more
complex operations are required, such as changing the relation-
ships between entities or accomplishing a combination of inserts,
updates, and deletes, those operations should be represented in
the structure of the service methods.

Th e beauty of the simple entities approach is that no extra types
are required and no eff ort has to be put into mapping data from one
type to another. If you can control deployment of the client, you
can reuse the same entity structures (either the same assemblies or
proxies), and even if you have to work with a client technology other
than .NET, the data structures are simple and therefore easy to make
interoperable. Th e client implementation is typically straightforward
because minimal tracking is required. When properties must be
modifi ed, the client can change them directly on an entity instance.
When operations involving multiple entities or relationships are
required, special service methods do the work.

Th e primary disadvantage of this pattern is that more methods are
usually required on the service if you need to accomplish complex
scenarios that touch multiple entities. Th is leads to either chatty
network traffi c, where the client has to make many service calls to
accomplish a scenario or special-purpose service methods with
many arguments.

Th e simple entities approach is especially eff ective when you have
relatively simple clients or when the scenarios are such that operations
are homogenous. Consider, for example, the implementation of an
e-commerce system in which the vast majority of operations involve
creating new orders. You can design your application-interaction
patterns so that modifi cations to information like customer data are
performed in separate operations from creating new orders. Th en the
service methods you need are generally either queries for read-only
data, modifi cations to one entity at a time without changing much
in the way of relationships, or inserting a set of related entities all
at once for a new order. Th e simple entities pattern works fairly
well with this kind of scenario. When the overall complexity of a
solution goes up, when your client becomes more sophisticated, or
when network performance is so critical that you need to carefully
tune your wire format, other patterns are more appropriate.

Self-Tracking Entities
Th e self-tracking entities pattern is designed to build on the simple

entities pattern and achieve a good balance between the various
concerns to create a single pattern that works in many scenarios.
Th e idea is to create smart entity objects that keep track of their
own changes and changes to related entities. To reduce constraints
on the client, these entities are plain-old CLR objects (POCO) that
are not tied to any particular persistence technology—they just
represent the entities and some information about whether they
are unchanged, modifi ed, new, or marked for deletion.

Because the entities are self-tracking, they have many of the
ease-of-use characteristics of a change set, but because the tracking
information is built into the entities themselves and is specifi c to
their schema, the wire format can be more effi cient than with a change
set. In addition, because they are POCO, they make few demands
on the client and interoperate well. Finally, because validation
logic can be built into the entities themselves, you can more easily
remain disciplined about enforcing the intended operations for a
particular service method.

Th ere are two primary disadvantages for self-tracking entities
compared to change sets. First, a change set can be implemented
in a way that allows multiple change sets to be merged if the client
needs to call more than one service method to retrieve the data it
needs. While such an implementation can be accomplished with
self-tracking entities, it is harder than with a change set. Second, the
entity defi nitions themselves are complicated somewhat because
they include the tracking information directly instead of keeping
that information in a separate structure outside the entities. Oft en
this information can be kept to a minimum, however, so it usually
does not have much eff ect on the usability or maintainability of
the entities.

Naturally, self-tracking entities are not as thoroughly decoupled
as DTOs, and there are times when more effi cient wire formats can
be created with DTOs than with self-tracking entities. Nothing
prevents you from using a mix of DTOs and self-tracking entities,
and, in fact, as long as the structure of the tracking information is
kept as simple as possible, it is not diffi cult to evolve self-tracking
entities into DTOs at some later date if that becomes necessary.

http://www.msdnmagazine.com

msdn magazine50 Entity Framework

Implementing N-Tier with the Entity Framework
Having reviewed your options and decided that you need an

n-tier application, you can select a pattern and a client technology
knowing what pitfalls to avoid. Now you’re ready to get rolling. But
where does the Entity Framework (EF) fi t into all this?

Th e EF provides a foundation for addressing persistence concerns.
Th is foundation includes a declarative mapping between the database
and your conceptual entities, which decouples your mid-tier from the
database structure; automatic concurrency checks on updates as long
as appropriate change-tracking information is supplied; and transpar-
ent change tracking on the mid-tier. In addition, the EF is a LINQ
provider, which means that it is relatively easy to create sophisticated
queries that can help with mapping entities to DTOs.

Th e EF can be used to implement any of the four patterns
described earlier, but various limitations in the fi rst release of the
framework (shipped as part of Visual Studio  SP/.NET .
SP) make patterns other than the simple entities pattern very
diffi cult to implement. In the upcoming release of the EF in Visual
Studio /.NET , a number of features have been added to make
implementing the other patterns easier. Before we look at the future
release, though, let’s look at what you can do with the EF now by
using the simple entities pattern.

Concurrency Tokens
Th e fi rst step you need to take before looking at any aspects of

n-tier development is to create your model and make sure that
you have concurrency tokens. You can read about the basics of
building a model elsewhere. Th ere are some great tutorials, for
instance, available in the Entity Framework section of the MSDN
Data Platform Developer Center at msdn.microsoft.com/data/.

Th e most important point for this discussion, however, is to make
sure that you have specifi ed concurrency tokens for each entity.
Th e best option is to use a row version number or an equivalent
concept. A row’s version automatically changes whenever any part
of the row changes in the database. If you cannot use a row version,
the next best option is to use something like a time stamp and add a
trigger to the database so that the time stamp is updated whenever a
row is modifi ed. You can also perform this sort of operation on the
client, but that is prone to causing subtle data corruption problems
because multiple clients could inadvertently come up with the same
new value for the concurrency token. Once you have an appropriate
property confi gured in the database, open the Entity Designer with
your model, select the property, and set its Concurrency Mode in
the Properties pane to Fixed instead of the default value None.
Th is setting tells the EF to perform concurrency checks using this
property. Remember that you can have more than one property
in the same entity with Concurrency Mode set to Fixed, but this
is usually not necessary.

Serialization
Aft er you have the prerequisites out of the way, the next topic is

serialization. You need a way to move your entities between tiers. If
you are using the default entity code generated by the EF and you are
building a Windows Communication Foundation (WCF) service, your

work is done because the EF automatically generates DataContract
attributes on the types and DataMember attributes on the persistable
properties of your entities. Th is includes navigation properties, which
means that if you retrieve a graph of related entities into memory,
the whole graph is serialized automatically. Th e generated code also
supports binary serialization and XML serialization out of the box,
but XML serialization applies only to single entities, not to graphs.

Another important concept to understand is that while the
default-generated entities support serialization, their change-
tracking information is stored in the ObjectStateManager (a part
of the ObjectContext), which does not support serialization. In the
simple entities pattern, you typically retrieve unmodifi ed entities
from the database on the mid-tier and serialize them to the client,
which does not need the change-tracking information. Th at code
might look something like this:

public Customer GetCustomerByID(string id)
{
 using (var ctx = new NorthwindEntities())
 {
 return ctx.Customers.Where(c => c.CustomerID == id).First();
 }
}

When it comes time to perform an update, however, the change-
tracking information must be managed somehow, and that leads to
the next important part of the EF you need to understand.

Working with the ObjectStateManager
For two-tier persistence operations, the ObjectStateManager does

its job automatically for the most part. You don’t have to think about
it at all. Th e state manager keeps track of the existence of each entity
under its control; its key value; an EntityState value, which can be
unchanged, modifi ed, added, or deleted; a list of modifi ed properties;
and the original value of each modifi ed property. When you retrieve
an entity from the database, it is added to the list of entities tracked by
the state manager, and the entity and the state manager work together
to maintain the tracking information. If you set a property on the
entity, the state of the entity automatically changes to Modifi ed, the
property is added to the list of modifi ed properties, and the original
value is saved. Similar information is tracked if you add or delete
an entity. When you call SaveChanges on the ObjectContext, this
tracking information is used to compute the update statements for
the database. If the update completes successfully, deleted entities
are removed from the context, and all other entities transition to the
unchanged state so that the process can start over again.

When you send entities to another tier, however, this automatic
tracking process is interrupted. To implement a service method on
the mid-tier that performs an update by using information from the
client, you need two special methods that exist on the ObjectContext
for just this purpose: Attach and ApplyPropertyChanges.

Th e Attach method tells the state manager to start tracking an
entity. Normally, queries automatically attach entities, but if you
have an entity that you retrieved some other way (serialized from the
client, for example), then you call Attach to start the tracking process.
Th ere are two critical things about Attach to keep in mind.

First, at the end of a successful call to Attach, the entity will
always be in the unchanged state. If you want to eventually get

http://msdn.microsoft.com/data/

msdn magazine52 Entity Framework

the entity into some other state, such as modified or deleted, you
need to take additional steps to transition the entity to that state.
In effect, Attach tells the EF, “Trust me. At least at some point in
the past, this is how this entity looked in the database.” The value
an entity’s property has when you attach it will be considered the
original value for that property. So, if you retrieve an entity with
a query, serialize it to the client, and then serialize it back to the
mid-tier, you can use Attach on it rather than querying again. The
value of the concurrency token when you attach the entity will be
used for concurrency checks. (For more information about the
danger of querying again, see my description of the anti-pattern
Mishandled Concurrency in the June issue of MSDN Magazine
at msdn.microsoft.com/magazine/dd882522.aspx.)

Th e second thing to know about Attach is that if you attach an
entity that is part of a graph of related entities, the Attach method
will walk the graph and attach each of the entities it fi nds. Th is
occurs because the EF never allows a graph to be in a mixed state,
where it is partially attached and partially not attached. So if the EF
attaches one entity in a graph, it needs to make sure that the rest of
the graph becomes attached as well.

Th e ApplyPropertyChanges method implements the other
half of a disconnected entity modifi cation scenario. It looks in
the ObjectStateManager for another entity with the same key as
its argument and compares each regular property of the two enti-
ties. When it fi nds a property that is diff erent, it sets the property
value on the entity in the state manager to match the value from
the entity passed as an argument to the method. Th e eff ect is the
same as if you had performed changes directly on the entity in
the state manager when it was being tracked. It is important to
note that this method operates only on “regular” properties and
not on navigation properties, so it aff ects only a single entity, not
an entire graph. It was designed especially for the simple entities
pattern, where a new copy of the entity contains all the information
you need in its property values—no extra tracking information is
required for it to function.

If you put the Attach and ApplyPropertyChanges methods
together to create a simple service method for updating an entity,
the method might look something like this:

public void UpdateCustomer(Customer original, Customer modified)
{
 using (var ctx = new NorthwindEntities())
 {
 ctx.Attach(original);
 ctx.ApplyPropertyChanges(modified.EntityKey.EntitySetName,
 modified);
 ctx.SaveChanges();
 }
}

While these methods make implementation of the service easy,
this kind of service contract adds some complication to the client
which now needs to copy the entity before modifying it. Many
times, this level of complexity is more than you want or need
on the client. So, instead of using ApplyPropertyChanges, you
can attach the modifi ed entity and use some lower-level APIs on
the ObjectStateManager to tell it that the entity should be in the
modifi ed state and that every property is modifi ed. Th is approach
has the advantage of reducing the data that must travel from the

client to the mid-tier (only one copy of the entity) at the expense
of increasing the data that is updated in the database in some
scenarios (every property will be updated even if the client modifi ed
only some because there is no way to tell which properties were
modifi ed and which were not). Figure 1 shows what the code for
this approach would look like.

Expanding the service to include methods for adding new
customers and deleting customers is also straightforward. Figure 2
shows an example of this code.

This approach can be extended to methods that change
relationships between entities or perform other operations.
The key concept to remember is that you need to first get
the state manager into something like the state it would have
been in originally if you had queried the database, then make
changes to the entities for the effect you want, and then call
SaveChanges.

Patterns Other Than Simple Entities in .NET 3.5 SP1
If you decide to use the fi rst release of the EF to implement one

of the other patterns, my fi rst suggestion is to read the next section,
which explains how .NET  will make things much easier. If your
project needs one of the other patterns before .NET  is released,
however, here are a few things to think about.

Th e change set pattern can certainly be implemented. You can
see a sample of this pattern that was written to work with one of
the prerelease betas of the EF at code.msdn.com/entitybag/. Th is sample
has not been updated to work with the . SP version of the EF,
but the work required to do that is fairly easily. One key step you
might want to adopt even if you choose to build a change set
implementation from scratch is to create an ObjectContext on
the client with only the conceptual model metadata (no mapping,
storage model, or real connection to the database is needed) and
use that as a client-side change tracker.

DTOs are also possible. In fact, implementing DTOs is not that
much more diffi cult with the fi rst release of the EF than it will be
in later releases. In either case, you have to write your own code
or use an automatic mapper to move data between your entities
and the DTOs. One idea to consider is to use LINQ projections
to copy data from queries directly into your DTOs. For example,
if I created a CustomerDTO class that has just name and phone

public void UpdateCustomer(Customer modified)
{
 using (var ctx = new NorthwindEntities())
 {
 ctx.Attach(modified);
 var stateEntry = ctx.ObjectStateManager.GetObjectStateEntry(modified);
 foreach (var propertyName in stateEntry.CurrentValues
 .DataRecordInfo.FieldMetadata
 .Select(fm => fm.FieldType.Name))
 {
 stateEntry.SetModifiedProperty(propertyName);
 }
 }
 ctx.SaveChanges();
}

Figure 1 Update Service Method

http://msdn.microsoft.com/magazine/dd882522.aspx
http://code.msdn.com/entitybag/

53August 2009msdnmagazine.com

properties, I could then create a service method that returns a set
of CustomerDTOs like this:

public List<CustomerDTO> GetCustomerDTOs()
{
 using (var ctx = new NorthwindEntities())
 {
 var query = from c in ctx.Customers
 select new CustomerDTO()
 {
 Name = c.ContactName,
 Phone = c.Phone
 };
 return query.ToList();
 }
}

Unfortunately, self-tracking entities is the hardest pattern to
implement in the SP release for two reasons. First, the EF in
.NET . SP does not support POCO, so any self-tracking entities
that you implement have a dependency on the . SP version
of .NET, and the serialization format will not be as suitable for
interoperability. You can address this by hand writing proxies
for the client, but they will be tricky to implement correctly.
Second, one of the nice features of self-tracking entities is that
you can create a single graph of related entities with a mix of
operations—some entities can be modified, others new, and still
others marked for deletion—but implementing a method on the
mid-tier to handle such a mixed graph is quite difficult. If you
call the Attach method, it will walk the whole graph, attaching
everything it can reach. Similarly, if you call the AddObject
method, it will walk the whole graph and add everything it
can reach. After either of those operations occurs, you will
encounter cases in which you cannot easily transition some
entities to their intended final state because the state manager
allows only certain state transitions. You can move an entity
from unchanged to modified, for instance, but you cannot
move it from unchanged to added. To attach a mixed graph
to the context, you need to shred your graph into individual
entities, add or attach each one separately, and then reconnect
the relationships. This code is very difficult.

API Improvements in .NET 4
In the upcoming release of the EF, which will ship with Visual

Studio  and .NET , we have made a number of improvements

to ease the pain of implementing n-tier patterns—especially self-
tracking entities. I’ll touch on some of the most important features
in the following sections.

POCO
Th e EF will support complete persistence ignorance for entity

classes. Th is means that you can create entities that have no
dependencies on the EF or other persistence-related DLLs. A single
entity class used for persisting data with the EF will also work on
Silverlight or earlier versions of .NET. Also, POCO helps isolate
the business logic in your entities from persistence concerns and
makes it possible to create classes with a very clean, interoperable
serialization format.

Improved N-Tier Support APIs
Working with the ObjectStateManager will be easier because we

have relaxed the state transition constraints. It will be possible to
fi rst add or attach an entire graph and then walk over that graph
changing entities to the right state. You will be able to set the original
values of entities, change the state of an entity to any value, and
change the state of a relationship.

Foreign Key Property Support
Th e fi rst release of the EF supports modeling relationships only

as completely separate from entities, which means that the only
way to change relationships is through the navigation properties
or the RelationshipManager. In the upcoming release, you’ll be able
to build a model in which an entity exposes a foreign key property
that can be manipulated directly.

T4-Based Code Generation
Th e fi nal important change to the EF will be the use of the T

template engine to allow easy, complete control over the code that is
generated for entities. Th is is important because it means Microsoft
can create and release templates that generate code for a variety of
scenarios and usage patterns, and you can customize those templates
or even write your own. One of the templates we will release will
produce classes that implement the self-tracking entities pattern
with no custom coding required on your part. Th e resulting classes
allow the creation of very simple clients and services.

More to Learn
I hope this article has given you a good survey of the design issues

involved in creating n-tier applications and some specifi c hints for
implementing those designs with the Entity Framework. Th ere is
certainly a lot more to learn, so I encourage you to take a look at
the Application Architecture Guide from the patterns & practices
group (codeplex.com/AppArchGuide/) and the Entity Framework FAQ at
blogs.msdn.com/dsimmons/pages/entity-framework-faq.aspx.

public void AddCustomer(Customer customer)
{
 using (var ctx = new NorthwindEntities())
 {
 ctx.AddObject("Customers", customer);
 ctx.SaveChanges();
 }
}

public void DeleteCustomer(Customer customer)
{
 using (var ctx = new NorthwindEntities())
 {
 ctx.Attach(customer);
 ctx.DeleteObject(customer);
 ctx.SaveChanges();
 }
}

Figure 2 Add and Delete Service Methods

DANNY SIMMONS is dev manager for the Entity Framework team at Microsoft .
You can read more of his thoughts on the Entity Framework and other subjects
at blogs.msdn.com/dsimmons.

http://www.msdnmagazine.com
http://codeplex.com/AppArchGuide/
http://blogs.msdn.com/dsimmons/pages/entity-framework-faq.aspx
http://blogs.msdn.com/dsimmons

55August 2009

DOMAIN MO D EL S

Employing The Domain
Model Pattern

If you had come to me a few years ago and asked me if I
ever used the domain model pattern, I would have responded with
an absolute “yes.” I was sure of my understanding of the pattern.
I had supporting technologies that made it work.

But, I would have been completely wrong.
My understanding has evolved over the years, and I’ve gained

an appreciation for how an application can benefi t from aligning
itself with those same domain-driven principles.

In this article, we’ll go through why we’d even want to consider
employing the domain model pattern (as well as why not), the
benefi ts it is supposed to bring, how it interacts with other parts
of an application, and the features we’d want to be provided by
supporting technologies, and discuss some practical tips on keeping
the overall solution as simple as possible.

What Is It?
Th e author of the domain model pattern, Martin Fowler, provides

this defi nition (Fowler, ):
An object model of the domain that incorporates both behavior

and data.
To tell you the truth, this definition can be interpreted to fit

almost any piece of code—a fairly good reason why I thought
I was using the pattern when in fact I wasn’t being true to its
original intent.

Let’s dig deeper.

In this article, we’ll go through the reasons to (and not to) employ the
domain model pattern, the benefi ts it brings, as well as provide some
practical tips on keeping the overall solution as simple as possible.

This article discusses:
• Domain model pattern

• Scenarios for using the domain model pattern

• Domain events

• Keeping the business in the domain

Technologies discussed:
Domain Model Pattern

Udi Dahan

Reasons Not to Use the Domain Model
In the text following the original description, I had originally

blown past this innocuous passage, but it turns out that many
important decisions hinge on understanding it.

Since the behavior of the business is subject to a lot of change, it’s
important to be able to modify, build, and test this layer easily. As a
result you’ll want the minimum of coupling from the Domain Model
to other layers in the system.

So one reason not to make use of the domain model pattern is if the
business your soft ware is automating does not change much. Th at’s
not to say it does not change at all—but rather that the underlying

msdn magazine56 Domain Models

rules dictating how business is done aren’t very dynamic. While
other technological and environmental factors may change, that
is not the context of this pattern.

Technology
Some examples of this include supporting multiple databases (such

as SQL Server and Oracle) or multiple UI technologies (Windows,
Web, Mobile, and so on). If the behavior of the business hasn’t
changed, these do not justify the use of the domain model pattern.
Th at is not to say one could not get a great deal of value from using
technologies that support the pattern, but we need to be honest
about which rules we break and why.

Reasons to Use the Domain Model
In those cases where the behavior of the business is subject to

a lot of change, having a domain model will decrease the total
cost of those changes. Having all the behavior of the business that
is likely to change encapsulated in a single part of our software
decreases the amount of time we need to perform a change
because it will all be performed in one place. By isolating that
code as much as possible, we decrease the likelihood of changes
in other places causing it to break, thus decreasing the time it
takes to stabilize the system.

Scenarios for Not Using the Domain Model
Th is leads us to the No.  most common fallacy about employing

domain models. I myself was guilty of making this false assumption
for a number of years and see now where it led me astray.
Fallacy: Any persistent object model is a domain model

First of all, a persistent object model does not inherently encap-
sulate all the behaviors of the business that are likely to change.
Second, a persistent object model may include functionality that
is not likely to change.

Th e nature of this fallacy is similar to stating that any screwdriver is
a hammer. While you can (try to) hammer in nails with a screwdriver,
you won’t be very eff ective doing it that way. One could hardly say
you were being true to the hammer pattern.

Bringing this back to concrete scenarios we all know and love,
let’s consider the ever-present requirement that a user’s e-mail
address should be unique.

For a while, I thought that the whole point of having a domain
model was that requirements like this would be implemented
there. However, when we consider the guidance that the
domain model is about capturing those business behaviors
that are subject to change, we can see that this requirement
doesn’t fit that mold. It is likely that this requirement will
never change.

Therefore, choosing to implement such a requirement in
the part of the system that is about encapsulating the volatile
parts of the business makes little sense, may be difficult to
implement, and might not perform that well. Bringing all
e-mail addresses into memory would probably get you locked
up by the performance police. Even having the domain model
call some service, which calls the database, to see if the e-mail

address is there is unnecessary. A unique constraint in the
database would suffice.

Th is pragmatic thinking is very much at the core of the domain
model pattern and domain-driven design and is what will keep
things simple even as we tackle requirements more involved than
simple e-mail uniqueness.

Scenarios for Using the Domain Model
Business rules that indicate when certain actions are allowed are

good candidates for being implemented in a domain model.
For example, in an e-commerce system a rule stating that a

customer may have no more than $, in unpaid orders would
likely belong in the domain model. Notice that this rule involves
multiple entities and would need to be evaluated in a variety of
use cases.

Of course, in a given domain model we’d expect to see many of
these kinds of rules, including cases where some rules override
others. In our example above, if the user performing a change to an
order is the account manager for the account the customer belongs
to, then the previous rule does not apply.

It may appear unnecessary to spend time going through which
rules need to apply in which use cases and quickly come up with
a list of entities and relationships between them—eschewing the
“big design up front” that agile practices rail against. However, the
business rules and use cases are the very reasons we’re applying
the domain model pattern in the fi rst place.

When solving these kinds of problems in the past, I wouldn’t have
thought twice and would have quickly designed a Customer class
with a collection of Order objects. But our rules so far indicate only
a single property on Customer instead—UnpaidOrdersAmount.
We could go through several rules and never actually run into
something that clearly pointed to a collection of Orders. In which
case, the agile maxim “you aren’t gonna need it” (YAGNI) should
prevent us from creating that collection.

When looking at how to persist this graph of objects, we may
fi nd it expedient to add supporting objects and collections under-
neath. We need to clearly diff erentiate between implementation
details and core business behaviors that are the responsibility of
the domain model.

More Complex Interactions
Consider the requirement that when a customer has made more

than $, worth of purchases with our company, they become
a “preferred” customer. When a customer becomes a preferred
customer, the system should send them an e-mail notifying them
of the benefi ts of our preferred customer program.

What makes this scenario diff erent from the unique e-mail address
requirement described previously is that this interaction does
necessarily involve the domain model. One option is to implement
this logic in the code that calls the domain model as follows:

public void SubmitOrder(OrderData data)
{
 bool wasPreferredBefore = customer.IsPreferred;
 // call the domain model for regular order submit logic
 if (customer.IsPreferred && !wasPreferredBefore)
 // send email
}

57August 2009msdnmagazine.com

One pitfall that the sample code avoids is that of checking the
amount that constitutes when a customer becomes preferred. Th at
logic is appropriately entrusted to the domain model.

Unfortunately, we can see that the sample code is liable to become
bloated as more rules are added to the system that needs to be evaluated
when orders are submitted. Even if we were to move this code into
the domain model, we’d still be left with the following issues.

Cross-Cutting Business Rules
Th ere may be other use cases that result in the customer becom-

ing preferred. We wouldn’t want to have to duplicate that logic in
multiple places (whether it’s in the domain model or not), especially
because refactoring to an extracted method would still require
capturing the customer’s original preferred state.

We may even need to go so far as to include some kind of
interception/aspect-oriented programming (AOP) method to
avoid the duplication.

It looks like we’d better rethink our approach before we cut
ourselves on Occam’s razor. Looking at our requirements again
may give us some direction.

When a customer has become a [something] the system should
[do something].

We seem to be missing a good way of representing this requirement
pattern, although this does sound like something that an event-based
model could handle well. Th at way, if we’re required to do more in
the “should do something” part, we could easily implement that
as an additional event handler.

Domain Events and Their Callers
Domain events are the way we explicitly represent the fi rst part

of the requirement described:
When a [something] has become a [something] ...
While we can implement these events on the entities themselves,

it may be advantageous to have them be accessible at the level of
the whole domain. Let’s compare how the service layer behaves
in either case:

public void SubmitOrder(OrderData data)
{
 var customer = GetCustomer(data.CustomerId);
 var sendEmail = delegate { /* send email */ };
 customer.BecamePreferred += sendEmail;
 // call the domain model for the rest of the regular order submit logic
 customer.BecamePreferred -= sendEmail; // to avoid leaking memory
}

While it’s nice not having to check the state before and aft er the
call, we’ve traded that complexity with that of subscribing and
removing subscriptions from the domain event. Also, code that
calls the domain model in any use case shouldn’t have to know if
a customer can become preferred there. When the code is directly
interacting with the customer, this isn’t such a big deal. But consider
that when submitting an order, we may bring the inventory of
one of the order products below its replenishment threshold—we
wouldn’t want to handle that event in the code, too.

It would be better if we could have each event be handled by a
dedicated class that didn’t deal with any specifi c use case but could
be generically activated as needed in all use cases. Here’s what such

a class would look like:
public class CustomerBecamePreferredHandler : Handles<CustomerBecamePreferred>
{
 public void Handle(CustomerBecamePreferred args)
 {
 // send email to args.Customer
 }
}

We’ll talk about what kind of infrastructure will make this class
magically get called when needed, but let’s see what’s left of the
original submit order code:

public void SubmitOrder(OrderData data)
{
 // call the domain model for regular order submit logic
}

Th at’s as clean and straightforward as one could hope—our code
doesn’t need to know anything about events.

Explicit Domain Events
In the CustomerBecamePreferredHandler class we see the

reference to a type called CustomerBecamePreferred—an explicit
representation in code of the occurrence mentioned in the require-
ment. Th is class can be as simple as this:

public class CustomerBecamePreferred : IDomainEvent
{
 public Customer Customer { get; set; }
}

Th e next step is to have the ability for any class within our domain
model to raise such an event, which is easily accomplished with
the following static class that makes use of a container like Unity,
Castle, or Spring.NET:

public static class DomainEvents
{
 public IContainer Container { get; set; }
 public static void Raise<T>(T args) where T : IDomainEvent
 {
 foreach(var handler in Container.ResolveAll<Handles<T>>())
 handler.Handle(args);
 }
}

Now, any class in our domain model can raise a domain event,
with entity classes usually raising the events like so:

public class Customer
{
 public void DoSomething()
 {
 // regular logic (that also makes IsPreferred = true)
 DomainEvents.Raise(new CustomerBecamePreferred() { Customer = this });
 }
}

Testability
While the DomainEvents class shown is functional, it can make

unit testing a domain model somewhat cumbersome as we’d need
to make use of a container to check that domain events were raised.
Some additions to the DomainEvents class can sidestep the issue,
as shown in Figure 1.

Now a unit test could be entirely self-contained without needing
a container, as Figure 2 shows.

Commands and Queries
Th e use cases we’ve been examining so far have all dealt with

changing data and the rules around them. Yet in many systems,

http://www.msdnmagazine.com

msdn magazine58 Domain Models

users will also need to be able to view this data, as well as perform
all sorts of searches, sorts, and fi lters.

I had originally thought that the same entity classes that were
in the domain model should be used for showing data to the user.
Over the years, I’ve been getting used to understanding that my
original thinking oft en turns out to be wrong. Th e domain model
is all about encapsulating data with business behaviors.

Showing user information involves no business behavior and is
all about opening up that data. Even when we have certain security-
related requirements around which users can see what information,
that oft en can be represented as a mandatory fi ltering of the data.

While I was “successful” in the past in creating a single persistent
object model that handled both commands and queries, it was oft en
very diffi cult to scale it, as each part of the system tugged the model
in a diff erent direction.

It turns out that developers oft en take on more strenuous
requirements than the business actually needs. Th e decision to use
the domain model entities for showing information to the user is
just such an example.

You see, in a multi-user system, changes made by one user don’t
necessarily have to be immediately visible to all other users. We all
implicitly understand this when we introduce caching to improve
performance—but the deeper questions remain: If you don’t need
the most up-to-date data, why go through the domain model that
necessarily works on that data? If you don’t need the behavior
found on those domain model classes, why plough through them
to get at their data?

For those old enough to remember, the best practices around
using COM+ guided us to create separate components for read-
only and for read-write logic. Here we are, a decade later, with new
technologies like the Entity Framework, yet those same principles
continue to hold.

Getting data from a database and showing it to a user is a fairly
trivial problem to solve these days. Th is can be as simple as using
an ADO.NET data reader or data set.

Figure 3 shows what our “new” architecture might look like.
One thing that is diff erent in this model from common approaches

based on two-way data binding, is that the structure that is used
to show the data isn’t used for changes. Th is makes things like
change-tracking not entirely necessary.

In this architecture, data fl ows up the right side from the database
to the user in the form of queries and down the left side from the
user back to the database in the form of commands. Choosing to
go to a fully separate database used for those queries is a compelling

public static class DomainEvents
{
 [ThreadStatic] //so that each thread has its own callbacks
 private static List<Delegate> actions;

 public IContainer Container { get; set; } //as before

 //Registers a callback for the given domain event
 public static void Register<T>(Action<T> callback) where T : IDomainEvent
 {
 if (actions == null)
 actions = new List<Delegate>();

 actions.Add(callback);
 }

 //Clears callbacks passed to Register on the current thread
 public static void ClearCallbacks ()
 {
 actions = null;
 }

 //Raises the given domain event
 public static void Raise<T>(T args) where T : IDomainEvent
 {
 foreach(var handler in Container.ResolveAll<Handles<T>>())
 handler.Handle(args);

 if (actions != null)
 foreach (var action in actions)
 if (action is Action<T>)
 ((Action<T>)action)(args);
 }
}

Figure 1 Additions to the DomainEvents Class

 public class UnitTest
 {
 public void DoSomethingShouldMakeCustomerPreferred()
 {
 var c = new Customer();
 Customer preferred = null;

 DomainEvents.Register<CustomerBecamePreferred>(
 p => preferred = p.Customer
);

 c.DoSomething();
 Assert(preferred == c && c.IsPreferred);
 }
 }

Figure 2 Unit Test Without Container

ViewsUI

BL

DAL

optional

Controllers

Domain
Model

Queries

ADO.NETEF

DB OLAP

Figure 3 Model for Getting Data from a Database

msdn magazine60 Domain Models

option in terms of performance and scalability, as reads don’t
interfere with writes in the database (including which pages of data
are kept in memory in the database), yet an explicit synchronization
mechanism between the two is required. Options for this include
ADO.NET Sync Services, SQL Server Integration Services (SSIS),
and publish/subscribe messaging. Choosing one of these options
is beyond the scope of this article.

Keeping the Business in the Domain
One of the challenges facing developers when designing a domain

model is how to ensure that business logic doesn’t bleed out of the
domain model. Th ere is no silver-bullet solution to this, but one
style of working does manage to fi nd a delicate balance between
concurrency, correctness, and domain encapsulation that can even
be tested for with static analysis tools like FxCop.

Here is an example of the kind of code we wouldn’t want to see
interacting with a domain model:

public void SubmitOrder(OrderData data)
{
 var customer = GetCustomer(data.CustomerId);
 var shoppingCart = GetShoppingCart(data.CartId);
 if (customer.UnpaidOrdersAmount + shoppingCart.Total > Max)
 // fail (no discussion of exceptions vs returns codes here)
 else
 customer.Purchase(shoppingCart);
}

Although this code is quite object-oriented, we can see that a
certain amount of business logic is being performed here rather
than in the domain model. A preferable approach would be this:

public void SubmitOrder(OrderData data)
{
 var customer = GetCustomer(data.CustomerId);
 var shoppingCart = GetShoppingCart(data.CartId);
 customer.Purchase(shoppingCart);
}

In the case of the new order exceeding the limit of unpaid orders,
that would be represented by a domain event, handled by a separate
class as demonstrated previously. Th e purchase method would
not cause any data changes in that case, resulting in a technically
successful transaction without any business eff ect.

When inspecting the diff erence between the two code samples,
we can see that calling only a single method on the domain model
necessarily means that all business logic has to be encapsulated
there. Th e more focused API of the domain model oft en further
improves testability.

While this is a good step in the right direction, it does open up
some questions about concurrency.

Concurrency
You see, in between the time where we get the customer and the

time we ask it to perform the purchase, another transaction can
come in and change the customer in such a way that its unpaid order
amount is updated. Th at may cause our transaction to perform the
purchase (based on previously retrieved data), although it doesn’t
comply with the updated state.

Th e simplest way to solve this issue is for us to cause the customer
record to be locked when we originally read it—performed by
indicating a transaction isolation level of at least repeatable-read

(or serializable—which is the default) as follows:
public void SubmitOrder(OrderData data)
{
 using (var scope = new TransactionScope(
 TransactionScopeOption.Required,
 new TransactionOptions() { IsolationLevel = IsolationLevel.
 RepeatableRead }
))
 {
 // regular code
 }
}

Although this does take a slightly more expensive lock than the
read-committed isolation level some high-performance environ-
ments have settled on, performance can be maintained at similar
levels when the entities involved in a given use case are eagerly
loaded and are connected by indexed columns. Th is is oft en largely
off set by the much simpler applicative coding model, because no
code is required for identifying or resolving concurrency issues.
When employing a separate database for the query portions of the
system and all reads are offl oaded from the OLTP database serving
the domain model, performance and scalability can be almost
identical to read-committed-based solutions.

Finding a Comprehensive Solution
Th e domain model pattern is indeed a powerful tool in the hands

of a skilled craft sman. Like many other developers, the fi rst time
I picked up this tool, I over-used it and may even have abused it with
less than stellar results. When designing a domain model, spend more
time looking at the specifi cs found in various use cases rather than
jumping directly into modeling entity relationships—especially be
careful of setting up these relationships for the purposes of showing
the user data. Th at is better served with simple and straightforward
database querying, with possibly a thin layer of facade on top of it
for some database-provider independence.

When looking at how code outside the domain model interacts with
it, look for the agile “simplest thing that could possibly work”—a single
method call on a single object from the domain, even in the case when
you’re working on multiple objects. Domain events can help round out
your solution for handling more complex interactions and technological
integrations, without introducing any complications.

When starting down this path, it took me some time to adjust my
thinking, but the benefi ts of each pattern were quickly felt. When I
began employing all of these patterns together, I found they provided
a comprehensive solution to even the most demanding business
domains, while keeping all the code in each part of the system small,
focused, and testable—everything a developer could want.

Works Cited
Fowler, M. Patterns of Enterprise Application Architecture, (Addison

Wesley, ).

UDI DAHAN Recognized as an MVP, an IASA Master Architect, and Dr. Dobb’s
SOA Guru, Udi Dahan is Th e Soft ware Simplist, an independent consultant,
speaker, author, and trainer providing high-end services in service-oriented,
scalable, and secure enterprise architecture and design. Contact Udi via his blog:
UdiDahan.com.

http://UdiDahan.com

msdn magazine62

DATA S E RV IC ES

Applying Entity
Framework 4.0 to Your
Application Architecture
Tim Mallalieu

David Hill, in his preface to the latest patterns & prac-
tices Architecture Guidance, jokes that the key to being a good
architect is learning to answer “It depends” to most questions.
In this article, I’ll take that joke to heart. How can you use the
Entity Framework with your application architecture? Well, it
depends.

Developers deploy a wide variety of development
philosophies and architecture styles. This article explores
three common perspectives on application development and
describes how the Entity Framework can be employed in each.
Specifically, I’ll look at the forms-centric, model-centric, and
code-centric development styles and their relationship to the
Entity Framework.

This article uses beta and CTP software. Some features discussed
are not currently available in Visual Studio 2010 beta but will be
available in upcoming releases of Visual Studio 2010.

This article uses the following technologies:
• Microsoft Visual Studio 2010, ADO.NET Entity Framework

Feature CT1

This article discusses:
• Application development styles

• Design patterns

Application Development Styles
I’ll start with a discussion of the various development styles. Th is
discussion does not make strong assumptions about particular
methodologies that can be applied within these development styles,
and I should note that I’ve used stereotypes for the purpose of this
article. Most development styles blend elements of the models
I describe. Figure 1 shows the relative characteristics of the
models I’ll discuss.
Forms-Centric. In the forms-centric (or “forms-over-data”) style
of development, the focus is largely on the construction of the top-
level user interface (UI) elements that bind to data. Th e Microsoft
development experience for this style is oft en a drag-and-drop
experience in which you defi ne a data source and then systematically
construct a series of forms that can perform create, read, update,
and delete (CRUD) operations on the underlying data source. Th is
experience tends to be highly productive and intuitive for a developer.
Th e cost is oft en that the developer accepts a fairly high degree of
prescription from the tools and frameworks being used.
Model-Centric. Model-centric development is a step beyond the
forms-centric approach. In model-centric development, a developer
defi nes a model in a visual tool or some textual domain-specifi c
language (DSL) and uses this model as the source for generating
classes to program against and a database for persistence. Th is
experience is oft en handy for tools developers who want to build on
existing infrastructure to deliver added value. It is also oft en useful

63August 2009msdnmagazine.com

Th e next step is to specify the Entity Framework as a data source for
the application. You do this by adding a new ADO.NET Entity Data
Model project item to the project, as you can see in Figure 3.

Aft er selecting this project item, you perform the following
three steps:
. Choose to start from a database.
. Choose the database to target.
. Select the tables to import.

 At this point, you click Finish and see the model that is generated
from the database, as shown in Figure 4.

Now that the model has been generated, using it in the Dynamic
Data application is as simple as confi guring the form to register the
object context that was created in the steps performed earlier. In Global.
asax.cs, you can modify the following code to point to the context:

DefaultModel.RegisterContext(typeof(NorthwindEntities), new
 ContextConfiguration()
 { ScaffoldAllTables = true});

You should now be able to run your application and have a func-
tional set of forms over your persistent data, as shown in Figure 5.

Th is exercise illustrates the most straightforward forms-driven
experience. You can now start working on how the presenta-
tion should look and what behaviors you need. Th e ASP.NET
Dynamic Data framework uses CLR attributes in the System.

for organizations that want to prescribe their own standards for
their application architectures and databases. Th e cost of this path
has historically been in the investment required to enable a complete
experience. As with the forms-centric experience, a developer leverag-
ing a model-centric experience tends to give up some fl exibility as a
consequence of operating in a more prescribed world.
Code-Centric. In the code-centric application development style,
the truth is the code. Developers defi ne persistent classes on their
own. Th ey elect to write their own data access layer to support
these classes, or they use some available persistence off ering to
do this for them. Th e main benefi t of the code-centric option is
that developers get the utmost fl exibility. Th e cost consideration
tends to fall on the approach chosen for persistence. If a developer
selects a solution that allows her to focus on the business domain
instead of the persistence infrastructure, the overall benefi t of this
approach can be very high.

Building a Forms-Centric Application
In this section, I’ll walk through how to build a very simple

application using the forms-centric approach with the Entity
Framework. Th e fi rst step is to create a Visual Studio project. For
this example, I created a Dynamic Data application. In Visual Studio
, you select the Dynamic Data Entities Web Application, as
shown in Figure 2.

Figure 1 Development Styles and Their Associated Tradeoffs

Figure 2 Visual Studio 2010 New Project dialog box with
Dynamic Data Entities Web Application project template
selected.

Figure 3 Add New Item Dialog Box with ADO.NET Entity Data
Model Project Item Selected

Figure 4 Default Entity Data Model Created from the North-
wind Database

http://www.msdnmagazine.com

msdn magazine64 Data Services

ComponentModel.DataAnnotations namespace to provide guid-
ance on how data can be rendered. For example, you can change
how the form is rendered by adding an annotation that hides a
particluar column. Th e attribute is as follows:

[ScaffoldColumn(false)]

Th e Scaff oldColumn attribute indicates whether the Dynamic
Data framework renders the column. In a case where a table is to
be rendered, you can use the Scaff oldColumn attribute to opt out
of rendering a specifi c column. Th e interesting challenge in the
current scenario is where and when do you attribute a column? In
this example, the CLR classes, which are used by Dynamic Data,
were generated from the Entity Data Model. You can attribute the
generated classes, but then any changes to the model will cause
the loss of the attributes. Dynamic Data also allows you to apply
attributes by using partial classes associated with your entities class,
but then you lose some readability and discoverability because of
the loss of encapsulation.

Entity Framework . will provide an extensibility model that
allows developers to extend the Entity Framework Designer’s tooling
surface and add additional metadata that can then be used in code
or database generation; however, this functionality is not available
in Visual Studio  beta .

Th e Entity Framework developer who wants to work with
Dynamic Data can have a very productive experience. He can start
with a database and annotate a model with the appropriate metadata
to drive much of that experience. Aft er the model is in good shape,
the developer can focus on the UI. For more information on using
Dynamic Data with the Entity Framework, please take a look at the
offi cial Dynamic Data Web site, asp.net/dynamicdata.

Thoughts on Forms-Centric Applications
Using ASP.NET Dynamic Data and the Entity Framework provides

a highly productive experience for developing data-centric applica-
tions. However, forms-centric applications are not local to Dynamic
Data. Many UI-fi rst development experiences that allow developers
to build an application by creating a set of screens over a data source
tend to share the same characteristics. Th e developer experience
generally relies on some combination of design-time and run-time
experiences that prescribe a given architectural style. Th e data model

oft en refl ects the shape of the persistent store (the underlying tables),
and there is oft en a fair bit of UI metadata (such as DataAnnotations
in the case of Dynamic Data) that help to defi ne the UI.

Th e role of the Entity Framework within a forms-centric experience
is primarily as the abstraction over the underlying data source. Th e
extensibility capabilities give a developer one true place to defi ne all the
model metadata that they need to express. Th e mapping capabilities
allow a developer to reshape the mid-tier domain classes declaratively
without having to dive down into infrastructure code.

Building a Model-Centric Application
Th e promise of model-driven development is that developers

can declaratively express a model that is closer to the conceptual
business domain than the run-time concerns of a given application
architecture. For the purpose of this article, I’ve focused on the
experience of having a single design surface on which you defi ne
the domain and related metadata and from which you provision
classes and storage.

In the Microsoft .NET Framework , there are a number of
innovations in Entity Framework tooling that enable a model-
centric experience. Entity Framework tooling provides a basic
experience plus the capabilities for framework developers, ISVs,
and IT organizations to extend those capabilities. To illustrate the
experience, I’ll walk through a simple application.

I’ll start with a new Dynamic Data project again and add an
ADO.NET Entity Data Model project item. Th is time, however,
I’ll start with a blank model rather than create the model from a
database. By starting with a blank surface, you can build out the
model you want. I’ll build a very simple Fitness application with
just two entity types, Workout and WorkoutType. Th e data models
for the types are shown in Figure 6.

When you defi ne a model like this in the Entity Framework
Designer, there is no mapping or store defi nition created. However,
the Entity Framework Designer now allows developers to create
a database script from this model. By right-clicking the designer
surface, you can choose Generate Database Script From Model, as
shown in Figure 7, and the Entity Framework Designer generates a
default database from the entity model. For this simple model, two
tables are defi ned. Th e names of the tables match the EntitySets that
are defi ned in the designer. In the default generation, the database
created will build join tables for many-to-many relationships and
employ a Table Per Type (TPT) scheme for building tables that
must support an inheritance hierarchy.

Figure 5 Default Dynamic Data Site Using the Entity Framework

Figure 6 Simple Entity Data Model

msdn magazine66 Data Services

When you invoke Generate Database
Script from Model, a new T-SQL fi le
is added to the project and the Entity
Data Model you’ve created provides
the Entity Framework metadata with
valid mapping and store descriptions.
You can see these in Figure 8.

If a developer is using Visual Studio
Team Architect or Team Suite, she can
deploy and execute the T-SQL script
within Visual Studio merely by clicking
in the T-SQL fi le to give it focus and
then pressing F. You are prompted to
select the target database, and then the
script executes.

At the same time, the Entity Frame-
work Designer runs the default code
generation to create classes based on the
model, the Entity Framework artifacts
required to describe the mapping between
the model and the database, and a description of the data store that
was created. As a result, you now have a strongly typed data access
layer that can be used in the context of your application.

At this point, you’ve seen only the default experience. Th e Entity
Framework Designer’s extensibility allows you to customize many aspects
of the model-driven experience. Th e database-generation and code-
generation steps use T templates that can be customized to tailor the
database schema and the code that is produced. Th e overall generation
process is a Windows Workfl ow Foundation (WF) workfl ow that can also
be customized, and you have already seen how you can add extensions
to the tools surface by using Managed Extensibility Framework–based
Visual Studio extensibility. As an example of this extensibility, let’s look
at how you can change the code-generation step in the project.

By right-clicking the design surface,
you can choose Add New Artifact
Generation Item. Choosing this com-
mand opens a dialog box in which you
can select any of the installed templates
to add to the project. In the example
shown in Figure 9, I selected the Entity
Framework POCO Code Generator
template (Note: Th e POCO template
does not work with Dynamic Data in
Visual Studio  beta , but it will
work in upcoming releases.) POCO
(Plain Old CLR Objects) classes allow
developers to defi ne only the items they
care about in their classes and avoid pol-
luting them with implementation details
from the persistence framework. With
.NET ., we have introduced POCO
support within the Entity Framework,
and one way of creating POCO classes

when you are using a model-centric or data-centric development
style is with the use of the POCO template. Th e POCO template
is currently available in the ADO.NET Entity Framework Feature
CTP , which can be downloaded from msdn.microsoft.com/data and
used with Visual Studio  beta .

By selecting the ADO.NET EF POCO Code Generator template,
you get a diff erent set of generated classes. Specifi cally, you get a set
of POCO classes generated as a single fi le per class, a helper class to
use for changes to related items, and a separate context class. Note
that you did not do anything to the model. You merely changed
the code-generation template.

One interesting capability added in .NET . is the capability to
defi ne functions in terms of the Entity Data Model. Th ese functions
are expressed in the model and can be referenced in queries. Th ink
about trying to provide a method to determine how many calories
are burned in a given workout. Th ere is no property defi ned on the
type that captures the calories burned. You could query the exist-
ing types and then enumerate the results, calculating the calories
burned in memory; however, by using model-defi ned functions,

Figure 7 Generating a Database Script from the
Model

Figure 8 The T-SQL File Generated from the Model Figure 9 Add New Item Dialog Box

http://msdn.microsoft.com/data

67August 2009msdnmagazine.com

you can fold this query into the database query that is sent to the
store, thus yielding a more effi cient operation. You can defi ne the
function in the EDMX (XML) as follows:

<Function Name="CaloriesBurned" ReturnType="Edm.Int32">
 <Parameter Name="workout" Type="Fitness.Workout" />
 <DefiningExpression>
 workout.Duration * workout.WorkoutType.CaloriesPerHour / 60
 </DefiningExpression>
</Function>

To allow this function to be used in a LINQ query, you need to
provide a function in code that can be leveraged. You annotate this
method to indicate which model function you intend to use. If
you want the function to work when directly invoked, you should
implement the body. For the purpose of this exercise, we will throw
an unsupported exception because we expect to use this function
in the form of LINQ queries that will be pushed to the store:

 [EdmFunction("Fitness", "CaloriesBurned")]
 public int CaloriesBurned(Workout workout)
 { throw new NotSupportedException(); }

If you want to then build a query to retrieve all high-calorie
workouts, where a high-calorie workout is greater than ,
calories, you can write the following query:

 var highCalWorkouts = from w in context.MyWorkouts
 where
 context.CaloriesBurned(w) > 1000
 select w;

Th is LINQ query is a valid query that can now leverage the
CaloriesBurned function and be translated to native T-SQL that
will be executed in the database.

Thoughts on Model-Centric
Application Development

In the degenerate case, where a developer uses the model-fi rst
experience and does not customize any of the steps, the model-
centric experience is very much like the forms-centric experience.
Th e model the developer is working with is a higher-level model
than the logical data model, but it is still a fairly data-centric view
of the application.

Developers who extend their Entity Data Model to express
more metadata about their domain and who customize the
code and/or database generation can come to a place where the
experience approaches one in which you define all the metadata
for your runtime. This is great for IT organizations that want to
prescribe a strict architecture and set of coding standards. It is
also very useful for ISVs or framework developers who want
to use the Entity Framework Designer as a starting point for
describing the model and then generate a broader end-to-end
experience from it.

Code-Centric Application Development
Th e best way to describe code-centric application development

is to cite the cliché “the code is the truth.” In the forms-centric
approach, the focus is on building a data source and UI model for
the application. In the model-centric approach, the model is the
truth: you defi ne a model, and then generation takes place on both
sides (storage and the application). In the code-centric approach,
all your intent is captured in code.

One of the challenges of code-centric approaches is the
tradeoff between domain logic and infrastructure logic. Object
Relational Mapping (ORM) solutions tend to help with code-
centric approaches because developers can focus on expressing
their domain model in classes and let the ORM take care of the
persistence.

As we saw in the model-centric approach, POCO classes can
be used with an existing EDM model (in either the model-first
or database-first approaches). In the code-centric approach,
we use something called Code Only, where we start with just
POCO classes and no other artifacts. Code Only is currently
available in the ADO.NET Entity Framework Feature CTP 
(msdn.microsoft.com/data/aa937695.aspx), which can be down-
loaded from msdn.microsoft.com/data and used with Visual Studio
 Beta .

Consider replicating the Fitness application using only code.
Ideally, you would defi ne the domain classes in code such as shown
in Figure 10.

To make the domain classes work with the Entity Framework,
you need to defi ne a specialized ObjectContext that represents
the entry point into the Entity Framework (much like a session or
connection abstraction for your interaction with the underlying
database). Th e ObjectContext class must defi ne the EntitySets
that you can create LINQ queries on top of. Here’s an example
of the code:

 public class FitnessContext : ObjectContext
 {
 public FitnessContext(EntityConnection connection)
 : base(connection, "FitnessContext")
 {
 }

 public IObjectSet<Workout> Workouts {
 get { return this.CreateObjectSet<Workout>(); } }

 public IObjectSet<WorkoutType> WorkoutTypes {
 get { return this.CreateObjectSet<WorkoutType>(); } }
 }

In the code-only experience, a factory class is used to retrieve an
instance of the context. Th is context class refl ects over the context
and builds up the requisite metadata for the run-time execution.
Th e factory signature is as follows:

 ContextBuilder.Create<T>(SqlConnection conn)

For convenience, you can add a factory method to the generated
context. You provide a static fi eld for the connection string and a
static factory method to return instances of a FitnessContext. First

 public class Workout
 {
 public int Id { get; set; }
 public DateTime DateTime { get; set; }
 public string Notes { get; set; }
 public int Duration { get; set; }
 public virtual WorkoutType WorkoutType { get; set; }

 }
 public class WorkoutType
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public int CaloriesPerHour { get; set; }
 }

Figure 10 Workout and WorkoutType Domain Classes

http://www.msdnmagazine.com
http://www.microsoft.com/downloads/details.aspx?familyid=7FD7164E-9E73-43F7-90AB-5B2BF2577AC9&displaylang=en
http://msdn.microsoft.com/data

msdn magazine68 Data Services

the connection string:
 static readonly string connString = new SqlConnectionStringBuilder
 {
 IntegratedSecurity = true,
 DataSource = ".\\sqlexpress",
 InitialCatalog = "FitnessExpress",
 }.ConnectionString;

And here is the factory method:
 public static FitnessContext CreateContext()
 {
 return ContextBuilder.Create<FitnessContext>(
 new SqlConnection(connString));
 }

With this, you have enough to be able to use the context. For
example, you could write a method such as the following to query
all workout types:

 public List<WorkoutType> AllWorkoutTypes()
 {
 FitnessContext context = FitnessContext.CreateContext();
 return (from w in context.WorkoutTypes select w).ToList();
 }

As with the model-fi rst experience, it is handy to be able to deploy
a database from the code-only experience. Th e ContextBuilder
provides some helper methods that can check whether a database
exists, drop it if you want to, and create it.

You can write code like the following to bootstrap a simple set
of demo functionality using the code-only approach:

 public void CreateDatabase()
 {
 using (FitnessContext context = FitnessContext.CreateContext())
 {
 if (context.DatabaseExists())
 {
 context.DropDatabase();
 }
 context.CreateDatabase();
 }
 }

At this point, you can use the Repository pattern from domain-
driven design (DDD) to elaborate a bit in what we have seen so
far. Th e use of DDD principles is a common trend in application

development today, but I won’t attempt to defi ne or evangelize
domain driven design here. (For more information, read content
from experts such as Eric Evans (Domain-Driven Design: Tackling
Complexity in the Heart of Soft ware, Addison-Wesley, ) and
Jimmy Nilsson (Applying Domain-Driven Design and Patterns: With
Examples in C# and .NET, Addison-Wesley, ).

Currently, we have a handwritten set of domain classes and a
specialized ObjectContext. When we used Dynamic Data, we
just pointed the framework at the ObjectContext. But if we want
to consider a stronger abstraction of our underlying persistence
layer, and if we want to truly constrain the contract of operations
to just the meaningful domain operations that one should do, we
can leverage the Repository pattern.

For this example, I’ll defi ne two repositories: one for Workout-
Types and one for Workouts. When you follow DDD principles,
you should think hard about the aggregate root(s) and then think
about modeling the repositories appropriately. In this very simple
example, I’ve used two repositories to illustrate high-level concepts.
Figure 11 shows the WorkoutType repository, and Figure 12 shows
the Workout repository.

One interesting thing to note is that the return types are not
IQueryable<T>; they are List<T>. There are debates about
whether you should expose IQueryable past the boundaries of
the persistence layer. My opinion is that exposing IQueryable
breaks the encapsulation of the persistence layer and compro-
mises the boundary between explicit operations that happen
in memory and operations that happen in the database. If you

 public class WorkoutTypeRepository
 {
 public WorkoutTypeRepository()
 {
 _context = FitnessContext.CreateContext();
 }
 public List<WorkoutType> AllWorkoutTypes()
 {
 return _context.WorkoutTypes.ToList();
 }
 public WorkoutType WorkoutTypeForName(string name)
 {
 return (from w in _context.WorkoutTypes
 where w.Name == name
 select w).FirstOrDefault();
 }
 public void AddWorkoutType(WorkoutType workoutType)
 {
 _context.WorkoutTypes.AddObject(workoutType);
 }
 public void Save()
 {
 this._context.SaveChanges();
 }
 private FitnessContext _context;
 }

Figure 11 The WorkoutType Repository

 public class WorkoutRepository
 {
 public WorkoutRepository()
 {
 _context = FitnessContext.CreateContext();
 }

 public Workout WorkoutForId(int Id)
 {
 return (from w in _context.Workouts where w.Id == Id select
 w).FirstOrDefault();
 }

 public List<Workout> WorkoutsForDate(DateTime date)
 {
 return (from w in _context.Workouts where w.DateTime == date
 select w).ToList();
 }

 public Workout CreateWorkout(int id, DateTime dateTime, int
 duration, string notes, WorkoutType workoutType)
 {
 _context.WorkoutTypes.Attach(workoutType);
 Workout workout = new Workout() { Id = id, DateTime =
 dateTime, Duration = duration,
 Notes = notes, WorkoutType = workoutType };
 _context.Workouts.AddObject(workout);
 return workout;
 }

 public void Save()
 {
 _context.SaveChanges();
 }

 private FitnessContext _context;

 }

Figure 12 The Workout Repository

69August 2009msdnmagazine.com

expose an IQueryable<T> from the repository, you have no idea
who will end up composing a database query in LINQ higher
up the stack.

You can now use these repositories to add some data in the
store. Figure 13 shows two methods that could be used to create
some sample data.

In the model-fi rst scenario, we used model-defi ned functions
to provide a method to determine how many calories are burned
in a given workout, even though there is no property defi ned on
the type that captures the calories burned. With the code-only
approach, you do not have the option to defi ne model-defi ned
functions here. You can, however, compose on top of the existing
Workout EntitySet to defi ne a query that already encapsulates the
high-calorie fi lter, as shown here:

 public IQueryable<Workout> HighCalorieWorkouts()
 {
 return (
 from w in Workouts
 where (w.Duration * w.WorkoutType.CaloriesPerHour / 60) > 1000
 select w);
 }

If we defi ne this method on the FitnessContext, we can then
leverage it in the Workout Repository as follows:

 public List<Workout> HighCalorieWorkouts()
 {
 return _context.HighCalorieWorkouts().ToList();
 }

Because the method on the context returned an IQueryable, you
could have further composed on top of it, but I chose, for symmetry,
to just return the results as a List.

Thoughts on Code-Centric Development
The code-centric experience is highly compelling for

developers who want to express their domain logic in code. The
code-centric experience lends itself well to providing a level of
flexibility and clarity needed to work with other frameworks.
Using abstractions like the Repository pattern, this approach lets
developers provide a high degree of isolation for the persistence
layer, which allows the application to remain ignorant of the
persistence layer.

Final Thoughts on the Application
Development Styles

Th ese are the three application development styles that we oft en
see. As mentioned earlier, there is no single, true classifi cation of
these development styles. Th ey lie more on a continuum from
highly prescriptive, very data-centric and CRUD-centric experi-
ences that focus on productivity, to highly expressive code-centric
experiences.

For all of these, the Entity Framework can be leveraged to provide
the persistence layer. As you move toward the form-centric and
model-centric side of the spectrum, the explicit model and the ability
to extend the model and tool chain can help the Entity Framework
improve overall developer productivity. On the code-centric side,
the improvements in the Entity Framework allow the runtime to
get out of the way and be merely an implementation detail for
persistence services.

public void AddWorkouts()
{
 Console.WriteLine("--- adding workouts ---");
 WorkoutRepository repository = new WorkoutRepository();
 WorkoutTypeRepository typeRepository = new WorkoutTypeRepository();

 WorkoutType squash = typeRepository.WorkoutTypeForName("Squash");
 WorkoutType running = typeRepository.WorkoutTypeForName("Running");

 repository.CreateWorkout(0,new DateTime(2009, 4, 20, 7, 0, 0),
 60, "nice squash workout", squash);
 repository.CreateWorkout(1, new DateTime(2009, 4, 21, 7, 0, 0),
 180, "long run", running);
 repository.CreateWorkout(2, new DateTime(2009, 4, 22, 7, 0, 0),
 45, "short squash match", squash);
 repository.CreateWorkout(3, new DateTime(2009, 4, 23, 7, 0, 0),
 120, "really long squash", squash);
 repository.Save();
}

Figure 13 Methods for Building Sample Data

TIM MALLALIEU is the product unit manager for the Entity Framework and
LINQ to SQL. He can be reached at blogs.msdn.com/adonet.

http://www.msdnmagazine.com
http://blogs.msdn.com/adonet

71August 2009

The Relational Database
of the Azure Services
Platform

In March of 2008 at the annual MIX conference, Microsoft
announced SQL Data Services (SDS), its fi rst data store for the
cloud. SDS was an Entity-Attribute-Value (EAV) store that could
be accessed using industry standard Internet protocols. It included
all the features you would expect from a cloud-based off ering,
including high availability, fault tolerance, and disaster recovery;
all powered by the Microsoft SQL Server engine. Th ough the initial
data model was EAV-based, the more relational features promised
at MIX began to be delivered at the Professional Developers
Conference in October .

Over the months that followed, the SDS team gathered essential
feedback from the user community, most importantly that while
the current SDS off ering provided a valuable data storage utility,
it wasn’t SQL Server. What customers wanted was a relational

This article is based on a prerelease version of SQL Data Services.
All information herein is subject to change.

This article discusses:
• SQL Data Platform

• SQL Data Services Architecture

• Building Applications that Consume SQL Data Services

Technologies discussed:
SQL Data Services

David Robinson

database off ered as a service. In March , the SQL Server team
announced it was accelerating its plans to off er exactly that, and this
was met by overwhelmingly positive feedback from the community.
Microsoft has always provided a comprehensive data platform and
the new relational capabilities of SDS continue that tradition. With
SDS, Microsoft SQL Server now extends from handheld devices
with SQL Server CE, to the desktop with SQL Server Express, to
the enterprise with SQL Server (both standard and enterprise
editions), and now, to the cloud. SDS is the relational database of
the Azure Services Platform.

Extending the SQL Data Platform to the Cloud
SDS is the relational database of the Azure Services Platform

in the same way that SQL Server is the database of the Windows
Server Platform. In the initial off ering, only the core relational
database features are provided. Th e research that the product

SQL DATA SERV IC ES

The native protocol used by clients to communicate
with Microsoft SQL Server is called Tabular Data Stream, or TDS.
TDS is a well-documented protocol that is used by the under-
lying Microsoft client components to exchange data with the
SQL Server engine. There are even General Public License (GPL)
implementations of TDS that can be found on thse Internet.

The TDS Protocol

msdn magazine72 SQL Data Services

team has done shows that the current feature set
addresses about  percent of Web and departmental
workloads. When you look at the SQL Server brand,
the database engine is only one piece of a larger
suite of products. Since SDS uses the same network
protocol as the on-premises SQL Server product,
all the existing ancillary products continue to work.
But though the products will function, they must
be run on-premises on your own network. Th e
SQL Server team plans to enable the rest of the SQL
Server stack, in the future, to function in the cloud.
Th e end result will be a consistent development
experience, whether your solution targets Windows
Server or Windows Azure. In fact, the same code
will continue to work. All that will be required is a
connection string change.

SDS Architecture
As mentioned earlier, SDS provides a SQL

Server database as a utility service. Features like high
availability, fault tolerance and disaster recovery
are built in. Figure 1 provides a view of the SDS architecture. Let’s
take a look.

SQL Data Services Front End
Th e SDS front-end servers are the Internet-facing machines that

expose the TDS protocol over port . In addition to acting as the
gateway to the service, these servers also provide some necessary
customer features, such as account provisioning, billing, and usage
monitoring. Most importantly, the servers are in charge of routing
requests to the appropriate back-end server. SDS maintains a
directory that keeps track of where on the SDS back-end servers
your primary data and all the backup replicas are located. When
you connect to SDS, the front end looks in the directory to see
where your database is located and forwards the request to that
specifi c back-end node.

SQL Data Services Back End
The SDS back-end servers, or data nodes, are where the

SQL Server engine lives, and it is in charge of providing all the
relational database services that an application will consume.
The product team is often asked why SDS provides only a subset
of the features found in the on-premises SQL Server product. The
reason for this is that the feature surface area of SQL Server is
extremely large. A significant amount of engineering and testing
goes into each feature area that is exposed in SDS, to ensure that
the feature is hardened and that a customer’s data is completely
siloed from all the other SDS customer data. By providing the
core relational features that address  percent of Web and
departmental applications, the team could get the product to
market sooner. And, because SDS is an Internet service, we are
able to be much more agile and provide new features at a faster
pace. Over time, you can expect to see most of the features in the
on-premises product available in SDS.

Th e SDS back end receives the TDS connection from the front
end and processes all CRUD (Create, Retrieve, Update, Delete)
operations. What features are currently supported? Everything
you have come to expect from a relational database, as listed in
“Supported Features.”

SQL Data Services Fabric
Th e SDS fabric is in charge of maintaining the fault tolerance

and high availability of the system. Th e fabric plays a key role in the
SDS system of automatic failure detection, self-healing and load
balancing across all the SDS back-end data nodes. Earlier on, we
discussed how SDS maintains a primary copy of your data as well
as a series of backup replicas. Th e fabric provides SDS automatic
failure detection. If the node where the primary copy of your data
exists experiences a failure, the fabric automatically promotes one
of the backup replicas to primary and reroutes the requests. Once
the Fabric sees that the failover has occurred, it automatically

Application

TDS (tcp:1433)

TDS Connection
Boundary

TDS Connection
Boundary

Applications use standard SQL
client libraries: ODBC, OLEDB,
ADO.Net, and so on

Load balancer forwards “sticky ”
sessions to TDS protocol tier

Back End Back End Back End Back End

Front End Front End Front End Front End Front End Front End

Scalabil ity and Availabil ity Fabric

Load Balancer

Figure 1 SQL Data Services Architecture

In version 1, SDS will support
• Tables, indexes and views
• Stored procedures
• Triggers
• Constraints
• Table variables, session temp tables (#t)

The following are out of scope for SDS v1
• Distributed transactions
• Distributed query
• CLR
• Service Broker
• Spatial data types
• Physical server or catalog DDL and views

Supported Features

73August 2009msdnmagazine.com

rebuilds the backup replica in case another failure
should occur.

Connecting to SQL Data Services
Th is is the part of the article where the SDS team

hopes I put you to sleep. Th e fact of the matter is
that because SDS exposes the TDS protocol, all
the existing clients like ADO.Net and ODBC just
work. Take, for example, the following ADO.Net
connection string:

SqlConnection conn = new SqlConnection("Data
 Source=testserver; Database=northwind; encrypt=true;
 User ID=david; Password=M5DNR0ck5");

To connect to SDS, that string would look
like this:

SqlConnection conn = new SqlConnection("Data
 Source=testserver.database.windows.net;
 Database=northwind; encrypt=true; User ID=david;
 Password=M5DNR0ck5");

All that’s changed is where the server is located.
Note that the string includes the optional param-
eter encrypt=true. Th is parameter is not optional
for SDS, which requires that all communication
be over an encrypted SSL channel. If you try to
connect without encryption, the SDS front end
will terminate the connection. Because of the TDS
protocol, all your existing knowledge, tools and
techniques developing against SQL Server still
apply. Th e only thing you need to be concerned
about is where your application will run and its
proximity to the data.

Building Applications that Consume
SQL Data Services

As previously mentioned, one of the main
things you need to be concerned with when
storing data in SDS is where your application
code will run—whether your application follows
a “Code Near” architecture or a “Code Far”
architecture.
Code Near A Code Near application typically
means that your data and your data access components are located
on the same network segment, for example when you have your
application running on your corporate network. In the case of the
Azure Services Platform, it would mean having your application
running in Windows Azure and your data residing in SDS. When
the Azure platform goes live later this year, you will have the option
of picking the region where your application will be hosted as well
as the region where your data will be hosted. As long as you choose
the same region for both, your application code will be accessing
data within the same datacenter, as shown in Figure 2.

Code Far When your application is a Code Far
application, this typically means having your
data and data access components on separate
networks as shown in Figure 3, oft en with the
Internet in between. Th e Internet has been an
incredible enabler for business and technology,
but from a data-access perspective, it does pose
some interesting challenges, depending on your
application and its architecture.

Suppose, for example, that your application
provided some sort of data archival service to your
customers. In this scenario, the typical pattern is
write once, read seldom (or never), and latency
would not be too much of a concern.

On the fl ip side, suppose your application
was highly transactional with many reads and
writes per second. Th e performance of this type
of application would be poor if it was running
on your corporate network and the data was
located in SDS. Some sort of data cache, perhaps
the project code-named “Velocity” might help, but
as application architects and developers, we need
to look at each application on a case-by-case basis
to identify the best architecture for the application’s
purposes.

New Face of SQL Data Services
SDS is the relational database of the Azure

Services Platform, which will be commercially
available at PDC  this November. SDS currently
provides the key relational features you have come
to know and love from SQL Server. Over time,
additional features will be enabled, as well as
support for additional products in the SQL Server
family, such as SQL Server Reporting Services
and SQL Server Analysis Services. Because SDS
is accessed over TDS—the same protocol as SQL
Server—all the existing tools, client libraries and
development techniques continue to work. I hope

that by reading this article you have been given a glimpse of the
new face of SDS, and that you can see that it is truly an extension
of SQL Server in the cloud.

SOAP/REST
HTTP/S

SDS access from within MS Datacenter
(Azure compute–ADO.NET)

Astoria/REST-EF
HTTP/S

Browser

T-SQL (TDS)

MS
Datacenter

SQL Data
Services

Windows Azure

App Code
(ASP.NET)

Figure 2 Code Near Application

T-SQL (TDS)

MS
Datacenter

SQL Data
Services

Topology supported
for some apps

SDS access
from outside MS Datacenter

(On-premises–ADO.NET)

App Code/
Tools

Figure 3 Code Far Application

DAVID ROBINSON is a Senior Program Manager on the SQL Server Data Services
team at Microsoft . He spends his time driving new and compelling features into
the product. He also enjoys doing presentations at community events and getting
feedback from customers on SDS.

http://www.msdnmagazine.com

75August 2009

Cryptographic Agility

Even if you follow these standards in your own
code, using only the most secure algorithms and
the longest key lengths, there’s no guarantee that
the code you write today will remain secure. In
fact, it will probably not remain secure if history
is any guide.

Planning for Future Exploits
You can address this unpleasant scenario reactively

by going through your old applications’ code bases,
picking out instantiations of vulnerable algorithms,
replacing them with new algorithms, rebuilding the
applications, running them through regression tests,
and then issuing patches or service packs to your
users. Th is is not only a lot of work for you, but it still

leaves your users at risk until you can get the fi xes shipped.
A better alternative is to plan for this scenario from the begin-

ning. Rather than hard-coding specifi c cryptographic algorithms
into your code, use one of the crypto-agility features built into
the Microsoft .NET Framework. Let’s take a look at a few C# code
snippets, starting with the least agile example:

private static byte[] computeHash(byte[] buffer)
{
 using (MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider())
 {
 return md5.ComputeHash(buffer);
 }
}

Th is code is completely nonagile. It is tied to a specifi c algorithm
(MD) as well as a specifi c implementation of that algorithm, the
MDCryptoServiceProvider class. Modifying this application to
use a secure hashing algorithm would require changing code and
issuing a patch. Here’s a little better example:

private static byte[] computeHash(byte[] buffer)
{
 string md5Impl = ConfigurationManager.AppSettings["md5Impl"];
 if (md5Impl == null)
 md5Impl = String.Empty;

 using (MD5 md5 = MD5.Create(md5Impl))
 {
 return md5.ComputeHash(buffer);
 }
}

Th roughout history, people have used various forms
of ciphers to conceal information from their adversar-
ies. Julius Caesar used a three-place shift cipher (the
letter A is converted to D, B is converted to E, and
so on) to communicate battle plans. During World
War II, the German navy used a signifi cantly more
advanced system—the Enigma machine—to encrypt
messages sent to their U-boats. Today, we use even
more sophisticated encryption mechanisms as part
of the public key infrastructure that helps us perform
secure transactions on the Internet.

But for as long as cryptographers have been making
secret codes, cryptanalysts have been trying to break
them and steal information, and sometimes the code
breakers succeed. Cryptographic algorithms once
considered secure are broken and rendered useless. Sometimes
subtle fl aws are found in the algorithms, and sometimes it is simply
a matter of attackers having access to more computing power to
perform brute-force attacks.

Recently, security researchers have demonstrated weaknesses
in the MD hash algorithm as the result of collisions; that is, they
have shown that two messages can have the same computed MD
hash value. Th ey have created a proof-of-concept attack against
this weakness targeted at the public key infrastructures that protect
e-commerce transactions on the Web. By purchasing a specially
craft ed Web site certifi cate from a certifi cate authority (CA) that
uses MD to sign its certifi cates, the researchers were able to create
a rogue CA certifi cate that could eff ectively be used to impersonate
potentially any site on the Internet. Th ey concluded that MD is
not appropriate for signing digital certifi cates and that a stronger
alternative, such as one of the SHA- algorithms, should be used.
(If you’re interested in learning more about this research, you can
read the white paper at win.tue.nl/hashclash/rogue-ca/.)

Th ese fi ndings are certainly cause for concern, but they are not a
huge surprise. Th eoretical MD weaknesses have been demonstrated
for years, and the use of MD in Microsoft products has been
banned by the Microsoft SDL cryptographic standards since .
Other once-popular algorithms, such as SHA- and RC, have been
similarly banned. Figure 1 shows a complete list of the cryptographic
algorithms banned or approved by the SDL. Th e list of SDL-approved
algorithms is current as of this writing, but this list is reviewed and
updated annually as part of the SDL update process.

Send your questions and comments to briefs@microsoft.com.

Rather than hard-
code specifi c

cryptographic
algorithms, use

one of the crypto-
agility features
built into .NET.

SECURITY BRIEFSBRYAN SULLIVAN

mailto:briefs@microsoft.com

msdn magazine76 Security Briefs

Th is function uses the System.Confi guration.Confi guration
Manager class to retrieve a custom app setting (the “mdImpl” setting)
from the application’s confi guration fi le. In this case, the setting is
used to store the strong name of the algorithm implementation class
you want to use. Th e code passes the retrieved value of this setting to
the static function MD.Create to create an instance of the desired
class. (System.Security.Cryptography.MD is an abstract base class
from which all implementations of the MD algorithm must derive.)
For example, if the application setting for mdImpl was set to the
string “System.Security.Cryptography.MDCng, System.Core,
Version=..., Culture=neutral, PublicKeyToken=bace
”, MD.Create would create an instance of the MDCng class.

Th is approach solves only half of our crypto-agility problem, so
it really is no solution at all. We can now specify an implementa-
tion of the MD algorithm without having to change any source
code, which might prove useful if a fl aw is discovered in a specifi c
implementation, like MDCng, but we’re still tied to the use of MD
in general. To solve this problem, we keep abstracting upward:

private static byte[] computeHash(byte[] buffer)
{
 using (HashAlgorithm hash = HashAlgorithm.Create("MD5"))
 {
 return hash.ComputeHash(buffer);
 }
}

At fi rst glance, this code snippet does not look substantially diff erent
from the fi rst example. It looks like we’ve once again hard-coded the
MD algorithm into the application via the call to HashAlgorithm.
Create(“MD”). Surprisingly though, this code is substantially more
cryptographically agile than both of the other examples. While the de-
fault behavior of the method call HashAlgorithm.Create(“MD”)—as
of .NET .—is to create an instance of the MDCryptoServiceProvider
class, the runtime behavior can be customized by making a change
to the machine.confi g fi le.

Let’s change the behavior of this code to create an instance of the
SHAalgorithm instead of MD. To do this, we need to add two
elements to the machine.confi g fi le: a <cryptoClass> element to map
a friendly algorithm name to the algorithm implementation class
we want; and a <nameEntry> element to map the old, deprecated
algorithm’s friendly name to the new friendly name.

<configuration>
 <mscorlib>

 <cryptographySettings>
 <cryptoNameMapping>
 <cryptoClasses>
 <cryptoClass MyPreferredHash="SHA512CryptoServiceProvider,
 System.Core, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/>
 </cryptoClasses>
 <nameEntry name="MD5" class="MyPreferredHash"/>
 </cryptoNameMapping>
 </cryptographySettings>
 </mscorlib>
</configuration>

Now, when our code makes its call to HashAlgorithm.
Create(“MD”), the CLR looks in the machine.confi g fi le and sees
that the string “MD” should map to the friendly algorithm name
“MyPreferredHash”. It then sees that “MyPreferredHash” maps to
the class SHACryptoServiceProvider (as defi ned in the assembly
System.Core, with the specifi ed version, culture, and public key
token) and creates an instance of that class.

It’s important to note that the algorithm remapping takes place
not at compile time but at run time: it’s the user’s machine.confi g that
controls the remapping, not the developer’s. As a result, this technique
solves our dilemma of being tied to a particular algorithm that might
be broken at some time in the future. By avoiding hard-coding the
cryptographic algorithm class into the application—coding only the
abstract type of cryptographic algorithm, HashAlgorithm, instead—
we create an application in which the end user (more specifi cally,
someone with administrative rights to edit the machine.confi g fi le
on the machine where the application is installed) can determine
exactly which algorithm and implementation the application will
use. An administrator might choose to replace an algorithm that
was recently broken with one still considered secure (for example,
replace MD with SHA-) or to proactively replace a secure
algorithm with an alternative with a longer bit length (replace
SHA- with SHA-).

Potential Problems
Modifying the machine.confi g fi le to remap the default algorithm-

type strings (like “MD” and “SHA”) might solve crypto-agility
problems, but it can create compatibility problems at the same time.
Making changes to machine.confi g aff ects every .NET application
on the machine. Other applications installed on the machine might
rely on MD specifi cally, and changing the algorithms used by

Algorithm Type Banned (algorithms to be replaced
in existing code or used only for
decryption)

Acceptable (algorithms acceptable for
existing code, except sensitive data)

Recommended (algorithms for new code)

Symmetric Block DES, DESX, RC2, SKIPJACK 3DES (2 or 3 key) AES (>=128 bit)

Symmetric Stream SEAL, CYLINK_MEK, RC4 (<128bit) RC4 (>= 128bit) None, block cipher is preferred

Asymmetric RSA (<2048 bit),
Diffi e-Hellman (<2048 bit)

RSA (>=2048bit),
Diffi e-Hellman (>=2048bit)

RSA (>=2048bit),
Diffi e-Hellman (>=2048bit),
ECC (>=256bit)

Hash
(includes HMAC usage)

SHA-0 (SHA), SHA-1, MD2, MD4, MD5 SHA-2 SHA-2 (includes: SHA-256, SHA-384,
SHA-512)

HMAC Key Lengths <112bit >= 112bit >= 128bit

Figure 1 SDL-Approved Cryptographic Algorithms

77August 2009msdnmagazine.com

these applications might break them in unexpected ways that are
diffi cult to diagnose. As an alternative to forcing blanket changes
to the entire machine, it’s better to use custom, application-specifi c
friendly names in your code and map those name entries to preferred
classes in the machine.confi g. For example, we can change “MD”
to “MyApplicationHash” in our example:

private static byte[] computeHash(byte[] buffer)
{
 using (HashAlgorithm hash = HashAlgorithm.Create("MyApplicationHash"))
 {
 return hash.ComputeHash(buffer);
 }
}

We then add an entry to the machine.confi g fi le to map
“MyApplicationHash” to the “MyPreferredHash” class:

…
<cryptoClasses>
 <cryptoClass MyPreferredHash="SHA512CryptoServiceProvider,
 System.Core, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/>
</cryptoClasses>
<nameEntry name="MyApplicationHash" class="MyPreferredHash"/>
…

You can also map multiple friendly names to the same class; for
example, you could have one friendly name for each of your applica-
tions, and in this way change the behavior of specifi c applications
without aff ecting every other application on the machine:

…
<cryptoClasses>
 <cryptoClass MyPreferredHash="SHA512CryptoServiceProvider,
 System.Core, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/>
</cryptoClasses>
<nameEntry name="MyApplicationHash" class="MyPreferredHash"/>
<nameEntry name="MyApplication2Hash" class="MyPreferredHash"/>
<nameEntry name="MyApplication3Hash" class="MyPreferredHash"/>
…

However, we’re still not out of the woods with regard to compat-
ibility problems in our own applications. You need to plan ahead
regarding storage size, for both local variables (transient storage)
and database and XML schemas (persistent storage). For example,
MD hashes are always  bits in length. If you budget exactly 
bits in your code or schema to store hash output, you will not be
able to upgrade to SHA- ( bit-length output) or SHA-
( bit-length output).

Th is does beg the question of how much storage is enough. Is
 bits enough, or should you use ,, ,, or more? I can’t
provide a hard rule here because every application has diff erent
requirements, but as a rule of thumb I recommend that you
budget twice as much space for hashes as you currently use. For
symmetric- and asymmetric-encrypted data, you might reserve an
extra  percent of space at most. It’s unlikely that new algorithms
with output sizes signifi cantly larger than existing algorithms will
be widely accepted.

However, applications that store hash values or encrypted data
in a persistent state (for example, in a database or fi le) have bigger
problems than reserving enough space. If you persist data using
one algorithm and then try to operate on that data later using a
diff erent algorithm, you will not get the results you expect. For
example, it’s a good idea to store hashes of passwords rather than
the full plaintext versions. When the user tries to log on, the code

can compare the hash of the password supplied by the user to the
stored hash in the database. If the hashes match, the user is authen-
tic. However, if a hash is stored in one format (say, MD) and an
application is upgraded to use another algorithm (say, SHA-),
users will never be able to log on because the SHA- hash value
of the passwords will always be diff erent from the MD hash value
of those same passwords.

You can get around this issue in some cases by storing the original
algorithm as metadata along with the actual data. Th en, when
operating on stored data, use the agility methods (or refl ection)
to instantiate the algorithm originally used instead of the current
algorithm:

private static bool checkPassword(string password, byte[] storedHash,
 string storedHashAlgorithm)
{
 using (HashAlgorithm hash = HashAlgorithm.Create(storedHashAlgorithm))
 {
 byte[] newHash =
 hash.ComputeHash(System.Text.Encoding.Default.GetBytes(password));
 if (newHash.Length != storedHash.Length)
 return false;
 for (int i = 0; i < newHash.Length; i++)
 if (newHash[i] != storedHash[i])
 return false;
 return true;
 }
}

Unfortunately, if you ever need to compare two stored hashes,
they have to have been created using the same algorithm. There
is simply no way to compare an MD hash to a SHA- hash
and determine if they were both created from the same original
data. There is no good crypto-agility solution for this problem,
and the best advice I can offer is that you should choose the
most secure algorithm currently available and then develop an
upgrade plan in case that algorithm is broken later. In general,
crypto agility tends to work much better for transient data than
for persistent data.

Alternative Usage and Syntax
Assuming that your application design allows the use of

crypto agility, let’s continue to look at some alternative uses and
syntaxes for this technique. We’ve focused almost entirely on
cryptographic hashing algorithms to this point in the article, but
crypto agility also works for other cryptographic algorithm types.
Just call the static Create method of the appropriate abstract
base class: SymmetricAlgorithm for symmetric (secret-key)
cryptography algorithms such as AES; AsymmetricAlgorithm for
asymmetric (public key) cryptography algorithms such as RSA;
KeyedHashAlgorithm for keyed hashes; and HMAC for hash-based
message authentication codes.

You need to plan ahead regarding
storage size for both local variables
and database and XML schemas.

http://www.msdnmagazine.com

msdn magazine78 Security Briefs

You can also use crypto agility to replace one of the standard
.NET cryptographic algorithm classes with a custom algorithm
class, such as one of the algorithms developed by the CLR security
team and uploaded to CodePlex (clrsecurity.codeplex.com/). However,
writing your own custom crypto libraries is highly discouraged.
Your homemade algorithm consisting of an ROT followed by a
bitwise left shift and an XOR against your cat’s name might seem
secure, but it will pose little challenge to an expert code breaker.
Unless you are an expert in cryptography, leave algorithm design
to the professionals.

Also resist the temptation to develop your own algorithms—or to
revive long-dead, obscure ones, like the Vigenère cipher—even in
situations where you don’t need cryptographically strong protection.
Th e issue isn’t so much what you do with your cipher, but what
developers who come aft er you will do with it. A new developer
who fi nds your custom algorithm class in the code base years
later might decide that it’s just what he needs for the new product
activation key generation logic.

So far we’ve seen one of the syntaxes for implementing crypto-
graphically agile code, AlgorithmType.Create(algorithmName), but
two other approaches are built into the .NET Framework. Th e fi rst
is to use the System.Security.Cryptography.CryptoConfi g class:

private static byte[] computeHash(byte[] buffer)
{
 using (HashAlgorithm hash = (HashAlgorithm)CryptoConfig.CreateFromName
 ("MyApplicationHash"))
 {
 return hash.ComputeHash(buffer);
 }
}

Th is code performs the same operations as our previous example
using HashAlgorithm.Create(“MyApplicationHash”): the CLR
looks in the machine.confi g fi le for a remapping of the string
“MyApplicationHash” and uses the remapped algorithm class if it
fi nds one. Notice that we have to cast the result of CryptoConfi g.
CreateFromName because it has a return type of System.Object and
can be used to create SymmetricAlgorithms, AsymmetricAlgorithms,
or any other kind of object.

Th e second alternative syntax is to call the static algorithm
Create method in our original example but with no parameters,
like this:

private static byte[] computeHash(byte[] buffer)
{
 using (HashAlgorithm hash = HashAlgorithm.Create())
 {
 return hash.ComputeHash(buffer);
 }
}

In this code, we simply ask the framework to provide an instance
of whatever the default hash algorithm implementation is. You can
fi nd the list of defaults for each of the System.Security.Cryptography
abstract base classes (as of .NET .) in Figure 2.

For HashAlgorithm, you can see that the default algorithm is SHA-
and the default implementation class is SHACryptoServiceProvider.
However, we know that SHA- is banned by the SDL cryptographic
standards. For the moment, let’s ignore the fact that potential
compatibility problems make it generally unwise to remap inherent
algorithm names like “SHA” and alter our machine.confi g to remap

“SHA” to SHACryptoServiceProvider:
…
<cryptoClasses>
 <cryptoClass MyPreferredHash="SHA512CryptoServiceProvider,
 System.Core, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/>
</cryptoClasses>
<nameEntry name="SHA1" class="MyPreferredHash"/>
…

Now let’s insert a debug line in the computeHash function to
confi rm that the algorithm was remapped correctly and then run
the application:

private static byte[] computeHash(byte[] buffer)
{
 using (HashAlgorithm hash = HashAlgorithm.Create())
 {
 Debug.WriteLine(hash.GetType());
 return hash.ComputeHash(buffer);
 }
}

Th e debug output from this method is:
System.Security.Cryptography.SHA1CryptoServiceProvider

What happened? Didn’t we remap SHA to SHA-? Actually,
no, we didn’t. We remapped only the string “SHA” to the class
SHACryptoServiceProvider, and we did not pass the string
“SHA” as a parameter to the call to HashAlgorithm.Create.

Even though Create appears to have no string parameters
to remap, it is still possible to change the type of object that is
created. You can do this because HashAlgorithm.Create() is just
shortcut syntax for HashAlgorithm.Create(“System.Security.
Cryptography.HashAlgorithm”). Now let’s add another line to
the machine.config file to remap “System.Security.Cryptography.
HashAlgorithm” to SHACryptoServiceProvider and then run
the app again:

…
<cryptoClasses>
 <cryptoClass MyPreferredHash="SHA512CryptoServiceProvider,
 System.Core, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/>
</cryptoClasses>
<nameEntry name="SHA1" class="MyPreferredHash"/>
<nameEntry name="System.Security.Cryptography.HashAlgorithm"
class="MyPreferredHash"/>
…

Th e debug output from computeHash is now exactly what we
expected:

System.Security.Cryptography.SHA512CryptoServiceProvider

However, remember that remapping classes in this way can
create unexpected and diffi cult-to-debug compatibility issues. It’s
preferable to use application-specifi c friendly names that can be
remapped with less chance of causing problems.

Abstract Base Class Default Algorithm Default Implementation

HashAlgorithm SHA-1 SHA1CryptoServiceProvider

SymmetricAlgorithm AES (Rijndael) RijndaelManaged

AsymmetricAlgorithm RSA RSACryptoServiceProvider

KeyedHashAlgorithm SHA-1 HMACSHA1

HMAC SHA-1 HMACSHA1

Figure 2 Default Algorithms and Implementations
in the .NET Framework 3.5

http://clrsecurity.codeplex.com/

msdn magazine80 Security Briefs

Another Benefi t of Crypto Agility
In addition to letting you replace broken algorithms on the fl y

without having to recompile, crypto agility can be used to improve
performance. If you’ve ever looked at the System.Security.Cryptog-
raphy namespace, you might have noticed that oft en several diff erent
implementation classes exist for a given algorithm. For example,
there are three diff erent implementations of SHA-: SHACng,
SHACryptoServiceProvider, and SHAManaged.

Of these classes, SHACng usually off ers the best performance.
A quick test on my laptop (running Windows  release candidate)
shows that the –Cng classes in general are about  percent faster
than the -CryptoServiceProvider and -Managed classes. My col-
leagues in the Core Architecture group inform me that in some
circumstances the –Cng classes can actually run  times faster
than the others!

Clearly, using the –Cng classes is preferable, and we could set
up our machine.confi g fi le to remap algorithm implementations
to use those classes, but the -Cng classes are not available on every
operating system. Only Windows Vista, Windows Server ,
and Windows  (and later versions, presumably) support –Cng.
Trying to instantiate a –Cng class on any other operating system
will throw an exception.

Similarly, the –Managed family of crypto classes (AesManaged,
RijndaelManaged, SHAManaged, and so on) are not always
available, but for a completely different reason. The Federal
Information Processing Standard  (FIPS) specifies standards
for cryptographic algorithms and implementations. As of this
writing, both the –Cng and –CryptoServiceProvider imple-
mentation classes are FIPS-certified, but –Managed classes are
not. Furthermore, you can configure a Group Policy setting
that allows only FIPS-compliant algorithms to be used. Some
U.S. and Canadian government agencies mandate this policy
setting. If you’d like to check your machine, open the Local
Group Policy Editor (gpedit.msc), navigate to the Computer
Configuration/Windows Settings/Security Settings/Local Poli-
cies/Security Options node, and check the value of the setting
“System Cryptography: Use FIPS compliant algorithms for
encryption, hashing, and signing”. If this policy is set to Enabled,
attempting to instantiate a –Managed class on that machine will
throw an exception.

Th is leaves the –CryptoServiceProvider family of classes as the
lowest common denominator guaranteed to work on all platforms,
but these classes also generally have the worst performance. You can
overcome this problem by implementing one of the three crypto-
agility syntaxes mentioned earlier in this article and customizing
the machine.confi g fi le remapping for deployed machines based
on their operating system and settings. For machines running
Windows Vista or later, we can remap the machine.confi g to prefer
the –Cng implementation classes:

…
<cryptoClasses>
 <cryptoClass MyPreferredHash="SHA512Cng, System.Core,
 Version=3.5.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
</cryptoClasses>
<nameEntry name="MyApplicationHash" class="MyPreferredHash"/>
…

For machines running operating systems earlier than Windows
Vista with FIPS compliance disabled, we can remap machine.confi g
to prefer the –Managed classes:

…
<cryptoClasses>
 <cryptoClass MyPreferredHash="SHA512Managed"/>
</cryptoClasses>
<nameEntry name="MyApplicationHash" class="MyPreferredHash"/>
…

For all other machines, we remap to the –CryptoServiceProvider
classes:

…
<cryptoClasses>
 <cryptoClass MyPreferredHash="SHA512CryptoServiceProvider,
 System.Core, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/>
</cryptoClasses>
<nameEntry name="MyApplicationHash" class="MyPreferredHash"/>
…

Any call to HashAlgorithm.Create(“MyApplicationHash”) now
creates the highest-performing implementation class available for
that machine. Furthermore, since the algorithms are identical, you
don’t need to worry about compatibility or interoperability issues.
A hash created for a given input value on one machine will be the
same as a hash created for that same input value on another machine,
even if the implementation classes are diff erent. Th is holds true for
the other algorithm types as well: you can encrypt an input on one
machine by using AesManaged and decrypt it successfully on a
diff erent machine by using AesCryptoServiceProvider.

Wrapping Up
Given the time and expense of recoding your application in

response to a broken cryptographic algorithm, not to mention the
danger to your users until you can get a new version deployed, it
is wise to plan for this occurrence and write your application in a
cryptographically agile fashion. Th e fact that you can also obtain a
performance benefi t from coding this way is icing on the cake.

Never hardcode specifi c algorithms or implementations of those
algorithms into your application. Always declare cryptographic
algorithms as one of the following abstract algorithm type classes:
HashAlgorithm, SymmetricAlgorithm, AsymmetricAlgorithm,
KeyedHashAlgorithm, or HMAC.

I believe that an FxCop rule that would verify cryptographic
agility would be extremely useful. If someone writes such a rule
and posts it to Codeplex or another public code repository, I will
be more than happy to give them full credit in this space and on
the SDL blog (blogs.msdn.com/sdl/).

Finally, I would like to acknowledge Shawn Hernan from the SQL
Server security team and Shawn Farkas from the CLR security team
for their expert feedback and help in producing this article.

BRYAN SULLIVAN is a security program manager for the Microsoft Security
Development Lifecycle team, specializing in Web application security issues.
He is the author of Ajax Security (Addison-Wesley, ).

http://blogs.msdn.com/sdl/

msdn magazine82

Th is is because the line feed characters are in diff erent places in
the statement. To help with query plan reuse, the SQL Server query
processor can perform a process known as autoparameterization.
Autoparameterization will change a statement like

SELECT * FROM authors WHERE au_fname = 'Innes'

To a parameterized statement and a parameter declaration:
(@0 varchar(8000))SELECT * FROM authors WHERE au_fname = @0

Th ese statements can be observed in the plan cache, using either
sys.dm_exec_query_stats or sys.dm_exec_cache_plans, with a
CROSS APPLY using sys.dm_exec_sql_text(handle) to correlate
the text with the other information. Autoparameterization assists
in query plan reuse, but it’s not perfect.

For example, the statement
 SELECT * FROM titles WHERE price > 9.99

is parameterized to
 (@0 decimal(3,2))SELECT * FROM titles WHERE price > @0

while
 SELECT * FROM titles WHERE price > 19.99

is parameterized to use a diff erent data type
 (@0 decimal(4,2))SELECT * FROM titles WHERE price > @0

and
 SELECT * FROM titles WHERE price > $19.99

is parameterized to
 (@0 money)SELECT * FROM titles WHERE price > @0

Having multiple query plans for similar queries that could use the
same plan is known as plan cache pollution. Not only does it fi ll up
the plan caches with redundant plans, but it also causes time (and
CPU and I/O) to be consumed creating the redundant plans. Notice
that in autoparameterization, the query processor must “guess” the
parameter type based on the parameter value. Autoparameterization
helps, but it does not completely eliminate plan cache pollution. In
addition, the text of parameterized queries is normalized so that
plans are reused even if the original text uses diff erent formatting.
Autoparameterization is used only for a subset of queries, based on
the complexity of the query. Although a complete discussion of all
the autoparameterization rules is beyond the scope of this article,
realize that SQL Server uses one of two sets of rules: SIMPLE and
FORCED parameterization. An example of the diff erence is that
simple parameterization will not autoparameterize a multitable
query, but forced parameterization will.

How Data Access Code Affects
Database Performance

Th ere’s been a consistent debate over whether query tuning, and
database application performance tuning in general, is the province
of the database administrator, the application developer, or both.
Th e database administrator usually has access to more tools than
the developer. Th e DBA can look at the performance monitor
counters and dynamic management views, run SQL Profi ler,
decide where to place the database, and create indexes to make
queries perform better. Th e application developer usually writes
the queries and stored procedures that access the database. Th e
developer can use most of the same tools in a test system, and
based on knowledge of the application’s design and use cases, the
developer can recommend useful indexes. But an oft en overlooked
point is that the application developer writes the database API code
that accesses the database. Code that accesses the database, such
as ADO.NET, OLE DB, or ODBC, can have an eff ect on database
performance. Th is is especially important when attempting to
write a generalized data access framework or choosing an existing
framework. In this article, we’ll delve into some typical approaches
to writing data access code and look at the eff ect they can have on
performance.

Query Plan Reuse
Let’s start by going over the lifetime of a query. When a query is

submitted through the query processor, the query processor parses
the text for syntactic correctness. Queries in stored procedures are
syntax-checked during the CREATE PROCEDURE statement. Before
the query or stored procedure is executed, the processor checks the
plan cache for a query plan that matches the text. If the text matches,
the query plan is reused; if no match occurs, a query plan is created
for the query text. Aft er the query is executed, the plan is returned
to the cache to be reused. Query plan creation is an expensive opera-
tion, and query plan reuse is almost always a good idea. Th e query
text that’s being compared against text of the plan in the cache must
match using a case-sensitive string comparison.

So the query
 SELECT a.au_id, ta.title_id FROM authors a
 JOIN titleauthor ta ON a.au_id = ta.au_id
 WHERE au_fname = 'Innes';

will not match
 SELECT a.au_id, ta.title_id FROM authors a
 JOIN titleauthor ta ON a.au_id = ta.au_id
 WHERE au_fname = 'Johnson';

Note that it also will not match this text
 SELECT a.au_id, ta.title_id
 FROM authors a JOIN titleauthor ta ON a.au_id = ta.au_id
 WHERE au_fname = 'Innes';

Send your questions and comments for Bob to mmdbdev@microsoft.com.

UNDER THE TABLE BOB BEAUCHEMIN

mailto:mmdbdev@microsoft.com

83August 2009msdnmagazine.com

Stored Procedures and Parameterized Queries
A much better choice is to use parameterized queries or stored

procedures. Not only do these help with query plan reuse, but, if you
defi ne your parameters properly, data type guessing is never done.
Using stored procedures is the best choice, because the parameter
data type is specifi ed exactly in the stored procedure defi nition. Bear
in mind that stored procedures are not perfect either. One diffi culty
is that database object name resolution is not done at CREATE PRO-
CEDURE time; a table or column name that does not exist causes an
execution-time error. Also, although a stored procedure’s parameters
constitute a “contract” between application code and procedure code,
stored procedures can also return resultsets. No metadata defi nition,
and therefore no contract, exists on the number of resultsets and the
number and data types of resultset columns.

Stored procedures can be called in at least two ways in database
API code. Here's an example using ADO.NET:

SqlCommand cmd = new SqlCommand("EXECUTE myproc 100", conn);
int i = cmd.ExecuteNonQuery();

Or:
SqlCommand cmd = new SqlCommand("myproc", conn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add("@a", SqlDbType.Int); cmd.Parameters.Value = 100;
int i = cmd.ExecuteNonQuery();

Executing a stored procedure as a command string (Command-
Type.Text) without using ADO.NET’s ParameterCollection uses
a SQL Server language statement, while using CommandType.
StoredProcedure results in a lower-overhead remote procedure
call (RPC). Th is diff erence can be observed in SQL Profi ler. How
you pass your parameters is also important because of when the
query plans are created, but I’ll get back to that later.

Parameterized queries use parameters in APIs the way stored proce-
dures do, with a few important exceptions. ADO.NET’s SqlParameter
class contains properties not only for parameter name and value, but
also for parameter data type, length, precision, and scale. It’s important
to avoid plan cache pollution by specifying the correct values for all
relevant parameters in parameterized queries. Otherwise, because there
isn’t a parameter contract as there is with stored procedures, ADO.
NET must guess at these properties. Th is is similar to the way that
autoparameterization guesses, but the implementation is diff erent in
a few areas. Th e charts below, Figure 1 and Figure 2, show the current
implementation in SQL Server  of autoparameterization and ADO.
NET . SP’s SqlParameterCollection’s AddWithValue method.

When you’re using parameterized queries, it’s a bad idea to use
Parameters.AddWithValue. In this case, ADO.NET must guess
the data type, and there’s a special hazard when using strings and

AddWithValue. First of all, the .NET string class is a Unicode
string, whereas in T-SQL, a string constant can either be specifi ed
as Unicode or non-Unicode. ADO.NET will pass in a Unicode
string parameter (NVARCHAR in SQL). Th is can have negative
repercussions on the query plan itself, if the column that’s being used
in the predicate is non-Unicode. For example, suppose you have a
table with a VARCHAR column as the clustered primary key:

CREATE TABLE sample (
 thekey varchar(7) primary key,
 name varchar(20) -- other columns omitted
)

In my ADO.NET code, I want to do a lookup by primary key:
cmd.CommandText = "SELECT * FROM sample when thekey = @keyvalue;"

And I specify the parameter using this:
cmd.Parameters.AddWithValue("@keyvalue", "ABCDEFG");

ADO.NET will decide on a parameter data type of NVARCHAR().
Because the conversion from NVARCHAR to VARCHAR happens in
the query execution step that retrieves the rows, the parameter value
cannot be used as a search argument. Rather than perform a Clustered
Index Seek of one row, the query will perform a Clustered Index Scan
of the entire table. Now, imagine this with a table with  million rows.
Since you’ve submitted a parameterized query, there’s nothing that
SQL Server autoparameterization can do, and nothing that a database
administrator can change in the server to fi x this behavior. Using the
FORCESEEK query hint as a last resort fails to produce a plan at all.
When the parameter type is specifi ed as SqlDbType.VarChar rather
than making ADO.NET guess the data type, the response of such a
query drops from multiple seconds (at best) to milliseconds.

Parameter Length
Another good habit to get into for string-based data types is to

always specify the length of the parameter. Th is value should be
the length of the fi eld in the SQL predicate that uses the parameter,
or the maximum string length (, for NVARCHAR, , for
VARCHAR), not the length of the string itself. SQL Server autopa-
rameterization always assumes the maximum string length, but
SqlParameterCollection.AddWithValue makes the parameter length
equal to the length of the string. So, using the following calls produces
diff erent parameter data types and therefore diff erent plans:

// produces an nvarchar(5) parameter
cmd.Parameters.AddWithValue(
"SELECT * FROM authors WHERE au_fname = @name", "@name", "Innes");
// produces an nvarchar(7) parameter
cmd.Parameters.AddWithValue(
"SELECT * FROM authors WHERE au_fname = @name", "@name", "Johnson");

By not specifying the length when you’re using Parameter
Collection.AddWithValue, you can have as many diff erent queries
in the plan cache as you have diff erent string lengths. Now that’s

Literal Type Parameter Produced
Non-Unicode String VARCHAR(8000)
Unicode String NVARCHAR(4000)
Whole Number Smallest fi t: TINYINT, SMALLINT, INT,

or BIGINT
Fractional Number DECIMAL(p,s) with precision and scale

matching the literal
Number with Currency Symbol MONEY

Figure 1 Parameter Data Types Produced by Autoparameterization

Literal Type Parameter Produced
String NVARCHAR(x) where x is the length of

the string
Whole Number Smallest fi t: INT or BIGINT
Fractional Number FLOAT(53) Note: this is double-

precision fl oating point

Figure 2 Parameter Data Types Produced by ADO.NET’s
AddWithValue and Parameterized Queries

http://www.msdnmagazine.com

msdn magazine84 Under the Table

plan cache pollution in a big way. Although I mention ADO.NET in
conjunction with this behavior, note that other database APIs share
the problem of string parameter plan cache pollution. Th e current
versions of both LINQ to SQL and ADO.NET Entity Framework
exhibit a variant of this behavior. With vanilla ADO.NET, you have
the option of specifying a string parameter’s length; with the frame-
works, the conversion to API calls is done by LINQ to SQL or Entity
Framework itself, so you can’t do anything about their string parameter
plan cache pollution. Both LINQ to SQL and Entity Framework will
address this problem in the upcoming .NET Framework release.
So if you’re using your own parameterized queries, don’t forget to
specify the proper SqlDbType, the length of string parameters, and
the precision and scale of decimal parameters. Performance here is
absolutely the realm of the programmer, and most DBAs won’t check
your ADO.NET code if they’re concerned about performance. If you’re
using stored procedures, the explicit parameter contract will ensure
that you always use the correct parameter type and length.

Although you should always use parameterized SQL statements
inside and output stored procedures if possible, there are a few cases
when parameterization cannot be used. You cannot parameterize
the names of columns or names of tables in your SQL statements.
Th is includes DDL (Data Defi nition Language statements) as well
as DML (Data Manipulation Language statements). So although
parameterization helps performance and is the best safeguard against
SQL injection (using string concatenation rather than parameters
can allow nefarious users to inject addition SQL into your code),
it’s not always possible to parameterize everything.

Where you set the value of your parameters is also signifi cant. If
you’ve used SQL Profi ler to observe the SQL generated by ADO.NET
when you use parameterized queries, you’ll notice that it doesn’t
look like this:

(@0 VARCHAR(40))SELECT * FROM authors WHERE au_fname = @0

Instead you’ll see:
sp_executesql N'SELECT * FROM authors WHERE au_fname = @name',
 N'@name VARCHAR(40)', 'Innes'

Th e procedure sp_executesql is a system stored procedure that
executes a dynamically built SQL string that can include parameters.
One reason why ADO.NET uses it to execute a parameterized query
is that this results in use of the lower-overhead RPC call. Another
important reason why sp_executesql is used is to enable a SQL
Server query processor behavior known as “parameter sniffi ng.”
Th is results in the best performance, because the query processing
knows the parameter values at plan-generation time and can make
the best use of its statistics.

SQL Server Statistics
SQL Server uses statistics to help generate the best query plan for

the job. Th e two main types of statistics are density statistics (how
many unique values exist for a specify column) and cardinality
statistics (a histogram of value distribution.) For more information
about these statistics, reference the white paper “Statistics Used by the
Query Optimizer in Microsoft SQL Server ,” by Eric N. Hanson
and Lubor Kollar (technet.microsoft.com/en-us/library/cc966419.aspx). Th e
key to understanding how SQL Server uses statistics is knowing that
SQL Server creates query plans for all queries in a batch or stored

procedure at the beginning of the batch or stored procedure. If the
query processor knows the value of a parameter at plan-generation
time, then the cardinality and density statistics can be used. If the
value is unknown at plan-creation time, then only the density

statistics can be used. For example, if the ADO.NET programmer
uses parameters like the following, there’s no way for the query
processor to know you’re looking for authors from California and
use the cardinality statistics on the state column:

cmd.CommandText = "declare @a char(2); set @a = 'CA'; select * from
 authors where state = @a ";
SqlDataReader rdr = cmd.ExecuteReader();

The plan is created before the first statement (before the
DECLARE statement in this case), when the parameter value hasn’t
been assigned yet. That’s why a parameterized query is translated
into sp_executesql. In this case, the plan is created on entry to
the sp_executesql stored procedure, and the query processor
can sniff the value of the parameter at plan-generation time.
The parameter values are specified in the call to sp_executesql.
The same concept applies if you write a stored procedure. Say
you have a query that retrieves the authors from California if
the value passed in is NULL, otherwise the user must specify
the state he wants, as follows:

CREATE PROCEDURE get_authors_by_state (@state CHAR(2))
AS
BEGIN
IF @state IS NULL THEN @state = 'CA';
SELECT * FROM authors WHERE state = @state;
END

Now, in the most common case (no parameter is specifi ed and
the state is NULL), the query is optimized for the value NULL, not
the value “CA.” If CA is a common value of the column, then you’ll
be potentially getting the wrong plan. So, when you’re using param-
eterized queries in ADO.NET, remember that this means using the
SqlParameterCollection, and not specifying the parameter declaration
and assignment in the SQL statement itself. If you’re writing stored
procedures, make sure you keep in mind that setting parameters in
the code itself works against parameter sniffi ng. Note that you won’t
see diff erent query plans in the example above that uses the authors
table in the pubs database; it’s too small. In larger tables, this can aff ect
the physical JOIN type that is used and aff ect other parts of the query
plan indirectly. For examples of how parameter sniffi ng can aff ect query
plans, refer to the white paper “Batch Compilation, Recompilation,
and Plan Caching Issues in SQL Server ,” by Arun Marathe and
Shu Scott (technet.microsoft.com/en-us/library/cc966425.aspx).

Parameter sniffi ng is usually a good idea. Th e cardinality statistics
are calculated to contain an approximately equal number of rows in
each histogram step, so that any parameter value is representative of
the cardinality as a whole. But, because there is a limited number of

You cannot parameterize the
names of columns or names of
tables in your SQL statements.

http://technet.microsoft.com/en-us/library/cc966419.aspx
http://technet.microsoft.com/en-us/library/cc966425.aspx

85August 2009msdnmagazine.com

cardinality buckets ( bucket maximum) and because some columns
consist of mostly repeating values, this isn’t always the case. Imagine
that you have a table of customers. Because your business is based
in California, most of your customers come from California. Let’s
imagine , customers from California and  customers from
Oregon. A query plan joining your customers table with fi ve other
tables might be very diff erent when you’re looking for customers in
California as opposed to customers in Oregon. If the fi rst query is for
customers in Oregon, your cached and reused plan for a California
customer would also assume  California customers as opposed
to the large number of California customers. In this case, using the
cardinality statistics isn’t a help, but a hindrance. Th e easiest (but most
fragile) way out of this dilemma is to use conditional code—either in
the application or in a separate stored procedure, to call two diff erent
stored procedures, one for states with many customers and one for
states with few customers. SQL Server will not share query plans,
even for exactly the same query, if the query occurs in two diff erent
stored procedures. Th e fragile part is determining what constitutes
“a state with many customers,” and realizing that your distribution
of customers can change over time. SQL Server also provides some
query hints that can help out. If you decide that having everyone use
the plan for California customers is OK (because you have only a small
number of rows to process in other states anyway), then you can use
the query hint OPTION (OPTIMIZE FOR parameter_name=value).
Th at ensures the plan in cache will always be the plan for states with
many customers. As an alternative, you can use SQL Server ’s new
OPTION (OPTIMIZE FOR UNKNOWN) hint, which makes SQL
Server ignore cardinality statistics and come up with an intermediate
plan, perhaps not optimized for either a big or small state. In addi-
tion, if you have a query that uses many parameters, but only uses a
value for them one at a time (imagine a system where someone can
search from one to ten diff erent conditions defi ned by parameters in
the same query,) then your best bet might be to produce a diff erent
query plan each time on purpose. Th is is specifi ed with an OPTION
RECOMPILE query hint.

Right Plan for the Job
To summarize, using parameters guards against plan cache

pollution and SQL injection. Always use parameterized queries
or parameterized stored procedures. Always specifying the right
data type, length, precision, and scale will ensure that you’re not
doing data type coercion at execution time. Making the values
available at query plan creation time ensures that the optimizer
can have access to all the statistics that it needs. And if parameter
sniffi ng is a problem (too much caching,) don’t go back to a plan
for every query that pollutes the cache. Instead, use query hints or
stored procedures to ensure that you get the right plan for the job.
Remember that the data access and stored procedure code that
you, the application programmer, write can make a big diff erence
in performance.

BOB BEAUCHEMIN is a database-centric application practitioner and architect,
course author and instructor, writer, and developer skills partner at SQLskills. He’s
written books and articles on SQL Server, data access and integration technologies,
and database security. You can reach him at bobb@sqlskills.com.

mailto:bobb@sqlskills.com
http://www.msdnmagazine.com

87August 2009

Send your questions and comments to mmnet30@microsoft.com.

Code download available at code.msdn.microsoft.com/mag200908Foundations.

Design patterns provide a common, repeatable approach to solving
soft ware development tasks, and many diff erent patterns can describe
how to accomplish a certain goal in code. When developers begin
working with Windows Workfl ow Foundation (WF), they oft en
ask about how to accomplish common tasks with the technology.
Th is month I discuss several design patterns used in WF.

Doing Work for N Items of Data
Oft en, workfl ows are not driven purely by logic but also by data,

such as a list of people in an organization or a list of orders, where
a set of steps in the workfl ow needs to execute once for each item.
Although perhaps not a pattern in itself, this simple, reusable bit of
logic is an important component of the other patterns I discuss in
this article. Th e key to this scenario is using the Replicator activity
to iterate over a collection of data and execute the same activities
for each item in the collection.

Th e Replicator activity provides a property for the collection
of data items that drives the iterations, events for initializing the
child activities for each data item, and conditions
to enable you to break out of the execution.
Essentially, the Replicator activity provides you
with ForEach semantics coupled with DoWhile-
style conditional execution.

For example, given a workfl ow with a prop-
erty of type List<string> containing employee
e-mail addresses, you can iterate over the list
and send a message to each employee, as shown
in Figure 1.

In this scenario, the Replicator activity must
have the InitialChildData property bound to
a collection implementing the IEnumerable
interface that contains the e-mail addresses
to be used. These addresses are used to set
the recipient’s address for each iteration. By
handling the ChildInitialized event, you
gain access to the data item and the dynamic

activity instance that is executed. Figure 2 shows how the e-mail
address from the collection is passed to the event and can be
used to set the RecipientAddress property on the related e-mail
activity instance.

Th e Replicator activity can execute either sequentially or in
parallel. In sequential mode, Replicator waits for each iteration to
complete before beginning a new iteration. In parallel mode, all
activities are initialized and scheduled at the same time, and the
execution is much like the Parallel activity, except with the same
defi nition in each branch. Being able to iterate over data items,
invoke some actions in parallel, and wait for responses for each
item is critical in many design patterns, including several discussed
in this article.

Listen with Timeout
In the Listen with Timeout scenario, you have a requirement

to wait for some input, but only for a certain amount of time. For
example, you might have notifi ed a manager with an e-mail message

and need to wait for a reply, but if the manager
does not respond within a certain period of time,
your workfl ow should take further action, such
as sending a reminder.

The heart of any implementation of this
pattern is the Listen activity. The Listen activity
allows a workflow to pause and wait for many
different events or inputs at the same time.
This capability can also be accomplished with
the Parallel activity, but the difference is that
the Listen activity reacts when the first event
occurs and stops listening for all other events,
whereas the Parallel activity waits for all events.
Combining this functionality with the ability to
wait for a designated amount of time, provided
by the Delay activity, lets a workflow wait for an
event but timeout if the event does not occur.
Figure 3 shows a Listen activity waiting for
messages to arrive via Windows Communication

Foundation (WCF) or for the timeout to expire. Notice that the
Listen activity can have multiple branches and can therefore be
listening for many different events at the same time.

Workfl ow Design Patterns

MATT MILNER FOUNDATIONS

public List<string> emails = new List<string>
 {"matt@contoso.com","msdnmag@example.com"};

private void InitChildSendMail(object sender, ReplicatorChildEventArgs e)
{
 SendMailActivity sendMail = e.Activity as SendMailActivity;
 sendMail.RecipientAddress = e.InstanceData.ToString();
}

Figure 2 Initializing the Child Activity

replicatorActivity1

sendMailActivity1

Figure 1 Replicator with
SendMail Activity

mailto:mmnet30@microsoft.com
http://code.msdn.microsoft.com/mag200908Foundations

msdn magazine88 Foundations

set to force the While activity to schedule the child activities again,
as shown in Figure 4.

In this example, the trigger condition to stop waiting is simply
a response from the manager, but, of course, any level of complex
evaluation can be done on the input data received. One option is to
use a rule set and the Policy activity to determine whether all condi-
tions have been met to move to the next step in the workfl ow.

Variation: State Machine
One variation on the Listen with Timeout pattern occurs when

you develop a State Machine workfl ow instead of a Sequential
workfl ow. In this case, the State activity takes the place of the Listen
activity and provides the ability to listen for multiple events at the
same time, including using the Delay activity. In a given state, say,
Waiting For Approval, you can model the same scenario as before,
where you wait for a response or the timeout. Figure 5 shows a
sample workfl ow implementing the same logic as before but using
a State Machine workfl ow.

It is actually simpler to manage the conditions here because there
is no need for a While activity. Instead, when the delay occurs, you
can send the reminder or take other actions and then transition
back to the current state by using the SetState activity, which causes
the Delay activity to execute again, resetting the timeout. If the
response is received and meets the conditions for continuing, you
use the SetState activity to move to the next state. Both branches
are shown in Figure 6.

Scatter Gather
When you have the need to start many child workfl ows to do

some work, use the Scatter Gather pattern. Th ese workfl ows might
all be doing the same work over diff erent data, or each might be
doing diff erent work. Th e goal is to start all the work, optimize the
use of multiple threads to accomplish the tasks faster if possible,
and then notify the parent workfl ow when each task is complete
to collect the results.

You can start multiple workfl ows simply by using the Replicator
activity and the InvokeWorkfl ow activity. Th e workfl ows are started

An implementation like this enables a workfl ow to wait for a
certain amount of time for a response. Typically, if the timeout
occurs, the workfl ow is designed to take appropriate actions.
To expand on the manager approval example, once the timeout
occurs, the manager should be reminded that she has an outstand-
ing request she needs to approve. Aft er the manager is reminded,
the workfl ow needs to be restored to a state of waiting for the
response and the timeout. Surrounding a Listen with a While
activity enables the workfl ow to continue waiting until a certain
condition is met. Inside the branches of the Listen activity, the
condition is manipulated appropriately to continue waiting or to
move on aft er the response that is wanted is received. In a simple
case, a fl ag can be used to manage the condition, causing the While
activity to loop until the fl ag is set. Th us, when the manager sends a
response, the fl ag can be set and the While activity closes, allowing
the workfl ow to move on to the next activity. In the branch with
the Delay activity, aft er the delay occurs, activities are used to send
a reminder to the manager and to ensure that the condition is still

ListenForResponse

MgrApprovalBranch

ManagerTimeout

DelayBranch

Approve

Drop Activities
Here

MgrRejectionBranch

Reject

Drop Activities
Here

Figure 3 Listen Activity with Multiple Branches

Figure 4 Listen with While to Send Reminders

ListenForResponse

UntilResponseReceived

MgrApprovalBranch

ManagerTimeout

SendReminderEmail

MgrRejectionBranch DelayBranch

Approve

Drop Activities
Here

Reject

Drop Activities
Here

SetFlagApproved SetFlagRejected

InitialState

ApprovalEvent

RejectionEvent

TimeoutEvent

stateInitializationActivity1

WaitingForApproval

EndState

Figure 5 State Machine Listening

89August 2009msdnmagazine.com

asynchronously, which is what you want, but it makes waiting in
the parent workfl ow more challenging because you need a blocking
activity that can receive the data back from the child workfl ows.
Using the Receive activity, the parent workfl ow can wait for each
child activity to fi nish and receive any results back from each
workfl ow that was started. Th e high-level view of this pattern in
the parent workfl ow is shown in Figure 7.

Th e fi gure makes this pattern look simple to implement, but
several key steps are needed to ensure that the child workfl ows
can correctly call back to the parent workfl ow using WCF. Context
information needs to be passed from the parent workfl ow to each
child to enable the child to send data back to the parent workfl ow,
including the workfl ow instance identifi er and the conversation

identifi er to select the correct Receive activity. Additionally, the
parent workfl ow must be hosted as a WCF service to enable the
communication, but it needs to be started using Workfl owRuntime,
as shown in Figure 8.

Each child workfl ow needs to have input parameters for at least
the parent workfl ow ID and the receive activity ID, in addition to
any business data that needs to be processed in the child workfl ow.
Parameters to the workfl ow are defi ned as public properties on the
workfl ow defi nition.

Th e InvokeWorkfl ow activity allows you to pass parameters to the
child workfl ow and surfaces those properties in the property dialog
box. Th e parameters on the InvokeWorkfl ow activity can be bound
to a property or to a fi eld in the workfl ow. However, when using the
Replicator activity to invoke many workfl ows, the parameters need
to be set in code because each invocation requires unique values;
for each iteration, the property or fi eld can be set with the current
inputs. Th erefore, the parameters on the InvokeWorkfl ow activity
should be bound to fi elds in the workfl ow, and those fi elds will be
updated in your code before the child workfl ow is created.

Your initial inclination might be to set the property during the
ChildInitialized event for the Replicator, as I showed with the Send-
Mail example earlier, and this is a good place to start. However, when
executing the Replicator activity in parallel mode, all the children
are initialized before any instances begin to execute. Th erefore, if
you set the property in the ChildInitialized event, by the time the
InvokeWorkfl ow activity executes, all instances of the activity would
use a single set of data. However, the ChildInitialized event does
provide access to the activity instance and the data item driving the
iteration. One approach is to collect the data item and store it with
a unique identifi er so that it can be related to the correct activity
instance during execution. Figure 9 shows the ChildInitialized
event handler for the Replicator activity where the instance data
is stored in a dictionary keyed on the unique identifi er for the
ActivityExecutionContext.

Figure 6 Listening in a State Activity

WaitingForApprovalWaitingForApproval

TimeoutEvent ApprovalEvent

Timeout

SelfTransition
WaitingForApproval

Approve

Drop Activities
Here

setStateActivity1
EndState

Figure 7 Replicator with InvokeWorkfl ow and Receive Activities

ReportCompletion

processReplyActi

IterateOverData

IterationSteps

StartChildWorkflow

Build the project
to view workflow

WorkflowServiceHost host = new WorkflowServiceHost(typeof(MSDN.Workflows.
 ParentWorkflow));

try
{
 host.Open();
 WorkflowRuntime runtime = host.Description.Behaviors.
 Find<WorkflowRuntimeBehavior>().WorkflowRuntime;
 WorkflowInstance instance = runtime.CreateWorkflow(
 typeof(MSDN.Workflows.ParentWorkflow));
 instance.Start();
 Console.ReadLine();
}
catch (Exception ex)
{
 Console.WriteLine(ex);
 Console.ReadLine();
}
finally
{
 if (host != null && host.State == CommunicationState.Opened)
 host.Close();
 else
 host.Abort();
}

Figure 8 Starting a Workfl ow That Must Be Hosted as a WCF Service

http://www.msdnmagazine.com

msdn magazine90 Foundations

one method call. Th at is, the client application might not always
invoke the same operation to begin interacting with your workfl ow,
and you need to be able to design the workfl ow so that it can be
started on the basis of multiple operations.

Th ere are actually two diff erent varieties of this pattern, depend-
ing on how you want to handle requests aft er the fi rst request. Th e
fi rst option is to enable the workfl ow to start with one of several
operations and, aft er that operation is complete, move on with
the workfl ow processing until you defi ne another point where
operations can be called. To accomplish this goal, you need to
return to the Listen activity and use it as the fi rst activity in your
workfl ow defi nition. Th en, in each branch of the activity, add a
Receive activity, confi gure it with the appropriate service operation
information, and bind any necessary parameters for processing, as
shown in Figure 11.

Th e crucial step is to ensure that all the Receive activities in the
Listen activity have the CanCreateInstance property set to True. Th is
instructs the WCF runtime that if no context information is available
on the request indicating an existing workfl ow instance, it is okay to
start a new instance based on the confi gured operation. Although
it might seem slightly odd to create the workfl ow with an activity
other than Receive, the runtime creates the instance, then starts,
and only then attempts to send the contents of the WCF message
to the Receive activity. In this case, once the workfl ow starts, both
Receive activities are executing and waiting for input.

I mentioned that there are two variations of this pattern. When
you use the Listen activity as I did in the previous example, one of the
operations starts the workfl ow, but then the Listen activity completes
aft er that single branch is done and the service is no longer able to
receive requests for the other operations modeled in the Listen. Th is

Next, to initialize the InvokeWorkfl ow activity, you use the Invok-
ing event to set up the parameters. At this point in the execution, all
the values needed for input to the child workfl ow are available. Th e
workfl ow identifi er can be retrieved from the Workfl owEnvironment,
and the conversation identifi er can be retrieved from the context
property on the Receive activity instance. Finally, the business
data can be retrieved using the identifi er for the current execution
context. Figure 10 shows the code to initialize the parameter to be
passed to the workfl ow.

Aft er the child workfl ow is started, it can begin to execute the
work to be done and, on completion, use the Send activity to notify
the parent workfl ow. Before sending the message, the context must
be set on the Send activity to ensure that the message gets sent to
the correct Receive activity in the parent workfl ow. Using the values
passed from the parent, the context can be correctly set using the
BeforeSend event, as shown here.

e.SendActivity.Context = new Dictionary<string, string>{
 {"instanceId", InputValues.WFInstanceID},
 {"conversationId", InputValues.ConversationID}};

With all these parts in place, the parent workfl ow starts, and the
Replicator activity iterates over the collection of data, starting one
child workfl ow for each item and waiting for a message back from
each in parallel. Th en, as the child workfl ows fi nish, they send a
message back to the parent, which can continue processing aft er
all the child workfl ows have reported back their results. Using this
approach, the child workfl ows can be running at the same time, each
with its own thread, providing truly asynchronous processing.

Starting Workfl ow Services with
Multiple Operations

In many samples, workfl ow services start with a single Receive
activity modeling a single operation. In the scenario I’ve discussed
here, you have a need to start the workfl ow service with more than

private void InitChild(object sender, ReplicatorChildEventArgs e)
{
 InvokeWorkflowActivity startWF =
 (InvokeWorkflowActivity)e.Activity.GetActivityByName("StartChild
 Workflow");
 InputValueCollection[(Guid)e.Activity.GetValue(
 Activity.ActivityContextGuidProperty)] = e.InstanceData.ToString();
}

Figure 9 Storing Data During Iterations

private void PrepChildParams(object sender, EventArgs e)
{
 InvokeWorkflowActivity startWf = sender as InvokeWorkflowActivity;
 ReceiveActivity receive =
 (ReceiveActivity)startWf.Parent.GetActivityByName(
 "ReceiveChildCompletion");
 Contracts.ChildWFRequest request = new Contracts.ChildWFRequest();
 request.WFInstanceID = WorkflowEnvironment.WorkflowInstanceId.ToString();
 request.ConversationID = receive.Context["conversationId"];
 request.RequestValue =
 InputValueCollection[(Guid)startWf.Parent.GetValue(
 Activity.ActivityContextGuidProperty)];
 StartWF_Input = request;
}

Figure 10 Initializing the InvokeWorkfl ow Activity

Figure 11 Multiple Receive Activities in a Listen Activity

Sequential Workflow

StartWithEitherOperation

FirstOperation

Drop Activities
Here

StartWithFirst

writeLineActivity1

SecondOperation

Drop Activities
Here

StartWithSecond

writeLineActivity2

91August 2009msdnmagazine.com

might be exactly what you want in some scenarios, but in others
you want the workfl ow to handle an entire set of operations before
it moves on. Th at is, you know the workfl ow will receive several
requests on diff erent operations in the service contract, but you
are not sure which request will be fi rst. In this case, instead of the
Listen activity, you can use the Parallel activity with each branch
containing a Receive activity with its CanCreateInstance property
set to True. Th is still allows the workfl ow to start with any opera-
tion, but it also keeps the workfl ow in a state to receive all the other
operation calls modeled in the various branches.

Finally, when using a State Machine workfl ow, you have more
fl exibility in how the workfl ow behaves when a particular message
is received. Consider a state machine in which the initial state
contains several event-driven activities, each with a Receive activity
as the starting activity, and each Receive marked to enable creation.
Normally, the State activity acts much like the Listen activity, but
as the developer, you decide when control moves from the current
state to another state. When the Listen activity completes, it closes,
and control moves to the next activity in the sequence. With a State
activity, aft er a branch executes, if the workfl ow does not move to a
new state, the workfl ow remains in the current state and continues
to wait for the defi ned inputs.

To use semantics such as the Listen activity, you must use the
SetState activity to move the workfl ow to the next state when one
of the operations is invoked. Th is usually puts the workfl ow into

MATT MILNER is a member of the technical staff at Pluralsight, where he focuses
on connected systems technologies (WCF, Windows Workfl ow, BizTalk, “Dublin,”
and the Azure Services Platform). Matt is also an independent consultant special-
izing in Microsoft .NET application design and development. Matt regularly shares
his love of technology by speaking at local, regional, and international conferences
such as Tech. Ed. Microsoft has recognized Matt as an MVP for his community
contributions around connected systems technology. Contact Matt via his blog:
pluralsight.com/community/blogs/matt/.

a state in which it is waiting for diff erent WCF operations to be
invoked. If, on the other hand, you want semantics closer to the
Parallel model, where all the operations must be invoked but not
in a particular order, then aft er each Receive activity you have the
choice of not changing state or of using the SetState activity to
transition back to the same state, a self-transition.

Th is last option is not entirely like the Parallel activity model
in one potentially signifi cant manner. With the Parallel activity,
aft er an operation has been called, it cannot be called again unless
modeled somewhere aft er the Parallel activity. In the state machine
model, aft er the operation is invoked, if the workfl ow remains in
the same state, it can receive messages for the other operations or
the original operation. In eff ect, the state can provide you with
semantics similar to a Listen activity in a While activity, waiting
for all events, reacting to a single event, and then looping back and
waiting for all those same events again.

http://www.msdnmagazine.com
http://pluralsight.com/community/blogs/matt/

msdn magazine92

 foreach (var d in handler.GetInvocationList()) {
 try {
 ((EventHandler)d)(this, EventArgs.Empty);
 }
 catch{}
 }
 }
}

Now we’re catching all the exceptions that escape
from a registered handler, allowing delegates that
come aft er an exception to still be invoked. If you
rerun the earlier example, you’ll see that “”, “”, “”,
and “” are output, even though an exception is
thrown from one of the delegates. Unfortunately, this
new implementation is also eating the exceptions, a

practice that is greatly frowned on. Th ose exceptions could indicate a
serious issue with the application, an issue that is not being handled
because the exceptions are ignored.

What we really want is to capture any exceptions that might
emerge, and then once we’ve fi nished invoking all the event handlers,
throw again all the exceptions that escaped from a handler. Of course,
as already mentioned, only one exception instance can be thrown
on a given thread at a given time. Enter AggregateException.

In the .NET Framework , System.AggregateException is a
new exception type in mscorlib. While a relatively simple type,
it enables a plethora of scenarios by providing central and useful
exception-related functionality.

AggregateException is itself an exception (deriving from System.
Exception) that contains other exceptions. Th e base System.Exception
class already has the notion of wrapping a single Exception instance,
referred to as the “inner exception.” Th e inner exception, exposed
through the InnerException property on Exception, represents the
cause of the exception and is oft en used by frameworks that layer
functionality and that use exceptions to elevate the information
being provided. For example, a component that parses input data
from a stream might encounter an IOException while reading from
the stream. It might then create a CustomParserException that
wraps the IOException instance as the InnerException, providing
higher-level details about what went wrong in the parse operation
while still providing the IOException for the lower-level and
underlying details.

Aggregating Exceptions

Exceptions in .NET are the fundamental mechanism
by which errors and other exceptional conditions are
communicated. Exceptions are used not only to store
information about such issues but also to propagate
that information in object-instance form through
a call stack. Based on the Windows structured
exception handling (SEH) model, only one .NET
exception can be “in fl ight” at any particular time
on any particular thread, a restriction that is usually
nary a thought in developers’ minds. Aft er all, one
operation typically yields only one exception, and
thus in the sequential code we write most of the time,
we need to be concerned about only one exception at
a time. However, there are a variety of scenarios in which multiple
exceptions might result from one operation. Th is includes (but is
not limited to) scenarios involving parallelism and concurrency.

Consider the raising of an event in .NET:
public event EventHandler MyEvent;

protected void OnMyEvent() {
 EventHandler handler = MyEvent;
 if (handler != null) handler(this, EventArgs.Empty);
}

Multiple delegates can be registered with MyEvent, and when
the handler delegate in the previous code snippet is invoked, the
operation is equivalent to code like the following:

foreach(var d in handler.GetInvocationList()) {
 ((EventHandler)d)(this, EventArgs.Empty);
}

Each delegate that makes up the handler multicast delegate is
invoked one aft er the other. However, if any exception is thrown
from any of the invocations, the foreach loop ceases processing,
which means that some delegates might not be executed in the case
of an exception. As an example, consider the following code:

MyEvent += (s, e) => Console.WriteLine("1");
MyEvent += (s, e) => Console.WriteLine("2");
MyEvent += (s, e) => { throw new Exception("uh oh"); };
MyEvent += (s, e) => Console.WriteLine("3");
MyEvent += (s, e) => Console.WriteLine("4");

If MyEvent is invoked now, “” and “” are output to the console,
an exception is thrown, and the delegates that would have output
“” and “” will not be invoked.

To ensure that all the delegates are invoked even in the face of an
exception, we can rewrite our OnMyEvent method as follows:

protected void OnMyEvent() {
 EventHandler handler = MyEvent;
 if (handler != null) {

Send your questions and comments for Stephen to netqa@microsoft.com.

Only one .NET
exception can be
“in fl ight” at any
particular time

on any particular
thread.

.NET MATTERS STEPHEN TOUB

mailto:netqa@microsoft.com

93August 2009msdnmagazine.com

AggregateException simply extends that support to enable wrap-
ping of inner exceptions—plural. It provides constructors that accept
params arrays or enumerables of these inner exceptions (in addition
to the standard constructor that accepts a single inner exception),
and it exposes the inner exceptions through an InnerExceptions
property (in addition to the InnerException property from the
base class). See Figure 1 for an overview of AggregateException’s
public surface area.

If the AggregateException doesn’t have any inner exceptions,
InnerException returns null and InnerExceptions returns an empty
collection. If the AggregateException is provided with a single
exception to wrap, InnerException returns that instance (as you’d
expect), and InnerExceptions returns a collection with just that
one exception. And if the AggregateException is provided with
multiple exceptions to wrap, InnerExceptions returns all those
in the collection, and InnerException returns the fi rst item from
that collection.

Now, with AggregateException, we can augment our .NET
event-raising code as shown in Figure 2, and we’re able to have our
cake and eat it, too. Delegates registered with the event continue to
run even if one throws an exception, and yet we don’t lose any of
the exceptional information because they’re all wrapped into an

aggregate and thrown again at the end (only if any of the delegates
fail, of course).

Events provide a solid example of where exception aggregation is
useful for sequential code. However, AggregateException is also of
prime importance for the new parallelism constructs in .NET  (and,
in fact, even though AggregateException is useful for non-parallel
code, the type was created and added to the .NET Framework by
the Parallel Computing Platform team at Microsoft).

Consider the new Parallel.For method in .NET , which is used
for parallelizing a for loop. In a typical for loop, only one iteration
of that loop can execute at any one time, which means that only
one exception can occur at a time. With a parallel “loop,” however,
multiple iterations can execute in parallel, and multiple iterations can
throw exceptions concurrently. A single thread calls the Parallel.For
method, which can logically throw multiple exceptions, and thus
we need a mechanism through which those multiple exceptions
can be propagated onto a single thread of execution. Parallel.For
handles this by gathering the exceptions thrown and propagating
them wrapped in an AggregateException. Th e rest of the methods
on Parallel (Parallel.ForEach and Parallel.Invoke) handle things
similarly, as does Parallel LINQ (PLINQ), also part of .NET .
In a LINQ-to-Objects query, only one user delegate is invoked at
a time, but with PLINQ, multiple user delegates can be invoked
in parallel, those delegates might throw exceptions, and PLINQ
deals with that by gathering them into an AggregateException and
propagating that aggregate.

As an example of this kind of parallel execution, consider Figure 3,
which shows a method that uses the Th readPool to invoke multiple
user-provided Action delegates in parallel. (A more robust and scalable
implementation of this functionality exists in .NET  on the Parallel
class.) Th e code uses QueueUserWorkItem to run each Action. If
the Action delegate throws an exception, rather than allowing that

[Serializable]
[DebuggerDisplay("Count = {InnerExceptions.Count}")]
public class AggregateException : Exception
{
 public AggregateException();
 public AggregateException(params Exception[] innerExceptions);
 public AggregateException(IEnumerable<Exception> innerExceptions);
 public AggregateException(string message);
 public AggregateException(string message, Exception innerException);
 public AggregateException(string message,
 params Exception[] innerExceptions);
 public AggregateException(string message,
 IEnumerable<Exception> innerExceptions);

 public AggregateException Flatten();
 public void Handle(Func<Exception, bool> predicate);

 public ReadOnlyCollection<Exception> InnerExceptions { get; }
}

Figure 1 System.AggregateException

protected void OnMyEvent() {
 EventHandler handler = MyEvent;
 if (handler != null) {
 List<Exception> exceptions = null;
 foreach (var d in handler.GetInvocationList())
 {
 try {
 ((EventHandler)d)(this, EventArgs.Empty);
 }
 catch (Exception exc) {
 if (exceptions == null)
 exceptions = new List<Exception>();
 exceptions.Add(exc);
 }
 }
 if (exceptions != null) throw new AggregateException(exceptions);
 }
}

Figure 2 Using AggregateException when Raising Events

public static void ParallelInvoke(params Action[] actions)
{
 if (actions == null) throw new ArgumentNullException("actions");
 if (actions.Any(a => a == null)) throw new ArgumentException
 ("actions");
 if (actions.Length == 0) return;

 using (ManualResetEvent mre = new ManualResetEvent(false)) {
 int remaining = actions.Length;
 var exceptions = new List<Exception>();
 foreach (var action in actions) {
 ThreadPool.QueueUserWorkItem(state => {
 try {
 ((Action)state)();
 }
 catch (Exception exc) {
 lock (exceptions) exceptions.Add(exc);
 }
 finally {
 if (Interlocked.Decrement(ref remaining) == 0) mre.Set();
 }
 }, action);
 }
 mre.WaitOne();
 if (exceptions.Count > 0) throw new AggregateException
 (exceptions);
 }
}

Figure 3 AggregateException in Parallel Invocation

http://www.msdnmagazine.com

95August 2009msdnmagazine.com

exception to propagate and go unhandled (which, by default, results
in the process being torn down), the code captures the exception and
stores it in a list shared by all the work items. Aft er all the asynchro-
nous invocations have completed (successfully or exceptionally), an
AggregateException is thrown with the captured exceptions, if any
were captured. (Note that this code could be used in OnMyEvent to
run all delegates registered with an event in parallel.)

Th e new System.Th reading.Tasks namespace in .NET  also makes
liberal use of AggregateExceptions. A Task in .NET  is an object that
represents an asynchronous operation. Unlike QueueUserWorkItem,
which doesn’t provide any mechanism to refer back to the queued
work, Tasks provides a handle to the asynchronous work, enabling
a large number of important operations to be performed, such as
waiting for a work item to complete or continuing from it to perform
some operation when the work completes. Th e Parallel methods
mentioned earlier are built on top of Tasks, as is PLINQ.

Furthering the discussion of AggregateException, an easy construct
to reason about here is the static Task.WaitAll method. You pass to
WaitAll all the Task instances you want to wait on, and WaitAll “blocks”
until those Task instances have completed. (I’ve placed quotation marks
around “blocks” because the WaitAll method might actually assist in
executing the Tasks so as to minimize resource consumption and
provide better effi ciency than just blocking a thread.) If the Tasks all
complete successfully, the code goes on its merry way. However, mul-
tiple Tasks might have thrown exceptions, and WaitAll can propagate
only one exception to its calling thread, so it wraps the exceptions into
a single AggregateException and throws that aggregate.

Tasks use AggregateExceptions in other places as well. One that
might not be as obvious is in parent/child relationships between
Tasks. By default, Tasks created during the execution of a Task are
parented to that Task, providing a form of structured parallelism.
For example, Task A creates Task B and Task C, and in doing so
Task A is considered the parent of both Task B and Task C. Th ese
relationships come into play primarily in regard to lifetimes. A Task
isn’t considered completed until all its children have completed, so if
you used Wait on Task A, that instance of Wait wouldn’t return until
both B and C had also completed. Th ese parent/child relationships
not only aff ect execution in that regard, but they’re also visible
through new debugger tool windows in Visual Studio , greatly
simplifying the debugging of certain types of workloads.

Consider code like the following:
var a = Task.Factory.StartNew(() => {
 var b = Task.Factory.StartNew(() => {
 throw new Exception("uh");
 });
 var c = Task.Factory.StartNew(() => {
 throw new Exception("oh");
 });
});
...
a.Wait();

Here, Task A has two children, which it implicitly waits for
before it is considered complete, and both of those children
throw unhandled exceptions. To account for this, Task A wraps
its children’s exceptions into an AggregateException, and it’s that
aggregate that’s returned from A’s Exception property and thrown
out of a call to Wait on A.

As I’ve demonstrated, AggregateException can be a very useful
tool. For usability and consistency reasons, however, it can also lead
to designs that might at fi rst be counterintuitive. To clarify what I
mean, consider the following function:

public void DoStuff()
{
 var inputNum = Int32.Parse(Console.ReadLine());
 Parallel.For(0, 4, i=> {
 if (i < inputNum) throw new MySpecialException(i.ToString());
 });
}

Here, depending on user input, the code contained in the paral-
lel loop might throw , , or more exceptions. Now consider the
code you’d have to write to handle those exceptions. If Parallel.For
wrapped exceptions in an AggregateException only when multiple
exceptions were thrown, you, as the consumer of DoStuff , would
need to write two separate catch handlers: one for the case in which
only one MySpecialException occurred, and one for the case in
which an AggregateException occurred. Th e code for handling the
AggregateException would likely search the AggregateException’s
InnerExceptions for a MySpecialException and then run the same
handling code for that individual exception that you would have in
the catch block dedicated to MySpecialException. As you start dealing
with more exceptions, this duplication problem grows. To address
this problem as well as to provide consistency, methods in .NET  like
Parallel.For that need to deal with the potential for multiple exceptions
always wrap, even if only one exception occurs. Th at way, you need
to write only one catch block for AggregateException. Th e exception
to this rule is that exceptions that may never occur in a concurrent
scope will not be wrapped. So, for example, exceptions that might
result from Parallel.For due to it validating its arguments and fi nding
one of them to be null will not be wrapped. Th at argument validation
occurs before Parallel.For spins off any asynchronous work, and thus
it’s impossible that multiple exceptions could occur.

Of course, having exceptions wrapped in an AggregateException
can also lead to some diffi culties in that you now have two models
to deal with: unwrapped and wrapped exceptions. To ease the
transition between the two, AggregateException provides several
helper methods to make working with these models easier.

Th e fi rst helper method is Flatten. As I mentioned, AggregateException
is itself an Exception, so it can be thrown. Th is means, however, that
AggregateException instances can wrap other AggregateException

Methods in .NET that need
to deal with the potential
for multiple exceptions

always wrap, even if only one
exception occurs.

http://www.msdnmagazine.com

msdn magazine96 .NET Matters

instances, and, in fact, this is a likely occurrence, especially when
dealing with recursive functions that might throw aggregates. By
default, AggregateExceptions retains this hierarchical structure,
which can be helpful when debugging because the hierarchical
structure of the contained aggregates will likely correspond to the
structure of the code that threw those exceptions. However, this can
also make aggregates more diffi cult to work with in some cases. To
account for that, the Flatten method removes the layers of contained
aggregates by creating a new AggregateException that contains the
non-AggregateExceptions from the whole hierarchy. As an example,
let’s say I had the following structure of exception instances:

• AggregateException
 • InvalidOperationException
 • ArgumentOutOfRangeException
 • AggregateException
 • IOException
 • DivideByZeroException
 • AggregateException
 • FormatException
 • AggregateException
 • TimeZoneException

If I call Flatten on the outer AggregateException instance, I get
a new AggregateException with the following structure:

• AggregateException
• InvalidOperationException
• ArgumentOutOfRangeException
• IOException
• DivideByZeroException
• FormatException
• TimeZoneException

Th is makes it much easier for me to loop through and examine
the InnerExceptions of the aggregate, without having to worry
about recursively traversing contained aggregates.

Th e second helper method, Handle, makes such traversal easier.
Handle has the following signature:

public void Handle(Func<Exception,bool> predicate);

Here’s an approximation of its implementation:
public void Handle(Func<Exception,bool> predicate)
{
 if (predicate == null) throw new ArgumentNullException("predicate");
 List<Exception> remaining = null;
 foreach(var exception in InnerExceptions) {
 if (!predicate(exception)) {
 if (remaining == null) remaining = new List<Exception>();
 remaining.Add(exception);
 }
 }

 if (remaining != null) throw new AggregateException(remaining);
}

Handle iterates through the InnerExceptions in the
AggregateException and evaluates a predicate function for each.
If the predicate function returns true for a given exception instance,
that exception is considered handled. If, however, the predicate
returns false, that exception is thrown out of Handle again as part
of a new AggregateException containing all the exceptions that
failed to match the predicate. Th is approach can be used to quickly
fi lter out exceptions you don’t care about; for example:

try {
 MyOperation();
}
catch(AggregateException ae) {
 ae.Handle(e => e is FormatException);
}

Th at call to Handle fi lters out any FormatExceptions from the
AggregateException that is caught. If there are exceptions besides
FormatExceptions, only those exceptions are thrown again as
part of the new AggregateException, and if there aren’t any non-
FormatException exceptions, Handle returns successfully with
nothing being thrown again. In some cases, it might also be useful
to fi rst fl atten the aggregates, as you see here:

ae.Flatten().Handle(e => e is FormatException);

Of course, at its core an AggregateException is really just a
container for other exceptions, and you can write your own helper
methods to work with those contained exceptions in a manner that
fi ts your application’s needs. For example, maybe you care more about
just throwing a single exception than retaining all the exceptions.
You could write an extension method like the following:

public static void PropagateOne(this AggregateException aggregate)
{
 if (aggregate == null) throw new ArgumentNullException("aggregate");
 if (aggregate.InnerException != null)
 throw aggregate.InnerException; // just throw one
}

which you could then use as follows:
catch(AggregateException ae) { ae.PropagateOne(); }

Or maybe you want to fi lter to show only those exceptions that
match a certain criteria and then aggregate information about those
exceptions. For example, you might have an AggregateException
containing a whole bunch of ArgumentExceptions, and you want
to summarize which parameters caused the problems:

AggregateException aggregate = ...;
string [] problemParameters =
 (from exc in aggregate.InnerExceptions
 let argExc = exc as ArgumentException
 where argExc != null && argExc.ParamName != null
 select argExc.ParamName).ToArray();

All in all, the new System.AggregateException is a simple but
powerful tool, especially for applications that can’t aff ord to let any
exception go unnoticed. For debugging purposes, AggregateException’s
ToString implementation outputs a string rendering all the contained
exceptions. And as you can see back in Figure 1, there’s even a
DebuggerDisplayAttribute on AggregateException to help you quickly
identify how many exceptions an AggregateException contains.

STEPHEN TOUB is a Senior Program Manager Lead on the Parallel Computing
Platform team at Microsoft. He is also a Contributing Editor for MSDN
Magazine.

At its core, an
AggregateException is really

just a container for other
exceptions.

	Back
	Print
	MSDN Magazine, August 2009
	Contents
	Toolbox
	CLR Inside Out
	Data Points
	Cutting Edge
	Patterns In Practice
	.NET Visualization
	Entity Framework
	Domain Models
	EF Data Access
	SQL Data Services
	Security Briefs
	Under The Table
	Foundations
	.NET Matters

