

Connected Health Framework
Architecture and Design Blueprint

A Stable Foundation for Agile Health and Social Care

Part 3 – Technical Framework

Second Edition Published March 2009

© 2009 Microsoft Corporation 2

| Knowledge Driven Health

The information contained in this document (a) represents the current view of Microsoft Corporation on the issues discussed as of the date of
publication and is subject to change at any time without notice to you, and (b) should not be interpreted as an offer or commitment on the part of
Microsoft. The information presented here is “AS IS” and Microsoft does not guarantee the accuracy of any information presented and assumes no
liability arising from your use of the information. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, IN THIS
DOCUMENT.

It is the user’s responsibility to comply with all applicable copyright laws. Without limiting the rights under copyright, no part of this document may be
reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation. Microsoft may have patents, patent
applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in
any written license agreement from Microsoft, the this document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property. Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred. The descriptions of other companies’ products in this proposal, if any, are provided only as a
convenience to you. Any such references should not be considered an endorsement or support by Microsoft. Microsoft cannot guarantee their
accuracy, and the products may change over time. Also, the descriptions are intended as brief highlights to aid understanding, rather than as
thorough coverage. For authoritative descriptions of these products, please consult their respective manufacturers. Microsoft, Active Directory,
BizTalk, Windows, Windows Server, and Windows Server System are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. All other trademarks are property of their respective owner.

© 2009 Microsoft Corporation. All rights reserved.

Part #098-106615

© 2009 Microsoft Corporation 3

| Knowledge Driven Health

Contents
INTRODUCTION TO PART 3 ... 6

ADDRESSING COMMON ARCHITECTURAL CHALLENGES .. 9
FLEXIBILITY AND AGILITY .. 9

Why Flexibility and Agility Are Essential .. 9
Architecting for Flexibility ... 9

USER EXPERIENCE AND ACCEPTANCE .. 10
Providing Safe and Intuitive User Interfaces .. 10
Choice of Thin, Rich, or Smart Client .. 10
Managing User Processes ... 11
Using Mobile Devices .. 11

SUPPORT FOR MULTIPLICITY ... 12
Growing Range of Capabilities .. 12
Variety of Access Channels .. 12
Broad Support for Different Client Platforms ... 13
Multilingual Capability and Universal Accessibility .. 13
Exposing e-Health Services in a Consistent and Secure Manner ... 14

HANDLING HEALTH DATA ... 14
Requirements Related to Data .. 14
Types of Data .. 15
Data Topologies .. 16

IDENTITY AND ACCESS ... 25
Multiplicity of… ... 25
Consistent Sign On and Single Sign On .. 27
Identity Mapping .. 27
Scale ... 29
Scope .. 29
Authorization .. 30
Identity Metasystem – Laws of Identity ... 31

INTEROPERABILITY .. 32
Interoperability Layers .. 32
Role of Standards and Interoperability Profiles.. 33
Integrating Natively .. 34
Adapters in the Hub .. 34
Adapters in the Remote Spokes ... 35
Isolating Common Functionality .. 36

SECURING THE SOLUTION ... 37
Why It Is Important ... 37
Architecting Secure Solutions .. 37

SCALABILITY AND PERFORMANCE ... 38
AVAILABILITY, RESILIENCE, AND DISASTER RECOVERY .. 39
ENABLING ADVANCED E-HEALTH SERVICES .. 39
REALIZING THE VALUE OF COMMON INFRASTRUCTURE .. 42

The Need for an Owner and Sponsor ... 42
Initial Investment with Delayed Future Benefits .. 43
Common Conflicts with Individual Projects .. 43

© 2009 Microsoft Corporation 4

| Knowledge Driven Health

REFERENCE ARCHITECTURE ... 44
PRINCIPLES GUIDING THE ARCHITECTURE .. 45

Flexible and Agile .. 45
Service Oriented .. 45
Interfaces and Standards .. 45
Service Discovery .. 46
Federated Security .. 46
Secure ... 46
Scalable and Performant ... 46

THE CONNECTED HEALTH SERVICES NODE .. 46
Client Interactions ... 47
Interactions with External Services and Nodes .. 48

SERVICES PROVIDED IN THE E-HEALTH REFERENCE ARCHITECTURE ... 48
Identity Management Services .. 49
Authentication and Authorization Services .. 59
Privacy Services ... 69
Service Publication and Discovery Services .. 71
e-Health Business Services .. 75
Electronic Health Record Services .. 76
Health Domain Services .. 78
Health Registry Services .. 79
Integration Services .. 79
Data Services .. 98
Communication Services ... 99

DEPLOYMENT OPTIONS ... 103
Single Central Node... 103
Node as a Platform for Integration.. 104
Peer-to-Peer Nodes ... 105
Hierarchy of Nodes ... 106
Cloud Services, SaaS, and Software + Services ... 108

SECURING THE SYSTEM .. 110
Generic Approaches to a Secure Solution Architecture .. 110
Security Architecture Specifics for e-Health Systems .. 112

PERFORMANCE AND SCALABILITY ... 116
Capacity Planning ... 117
Understanding System Performance Factors ... 117
Architecting e-Health Solutions for Performance and Scalability ... 118

© 2009 Microsoft Corporation 5

| Knowledge Driven Health

Figures
Figure 1. Alignment of the Business Pattern and the Reference Architecture .. 6
Figure 2. Connected Health Framework Joined-Up Architecture ... 7
Figure 3. Connected Health Framework – A Stable Foundation for Agile Health and Social Care ... 8
Figure 4. Centralized Data Model .. 17
Figure 5. Federated Data Model (Broadcast) ... 18
Figure 6. Federated Data Model (Central Index).. 19
Figure 7. Federated Data Model (Replicated Index) .. 20
Figure 8. Hybrid Data Model ... 21
Figure 9. Data Hierarchy ... 22
Figure 10. Partitioned Data ... 24
Figure 11. Using Adapters in the Hub to Integrate Disparate Systems ... 34
Figure 12. Using Remote Service Adaptors to Integrate Disparate Systems ... 35
Figure 13. Reusing Generic Integration Features in Multiple Remote Adapters ... 36
Figure 14. Each client deals independently with each back-end service .. 40
Figure 15. A common hub or gateway rationalizes communication between clients and back-end services................................ 41
Figure 16. The hub can also take over responsibilities for message routing and process orchestration 42
Figure 17. Context and External Interactions of an e-Health Services Node... 48
Figure 18. The Identity Model ... 50
Figure 19. Generic Pattern for Pluggable Providers ... 52
Figure 20. Generic Architecture of Knowledge-Based Authentication Service ... 53
Figure 21. Different Types of Validation with Local and Remote Reference Data .. 55
Figure 22. Invoking Different Authentication Providers ... 61
Figure 23. Federated Authentication... 63
Figure 24. STS Roles and Token Exchange ... 67
Figure 25. STS Roles and Token Exchange, Next Service .. 68
Figure 26. Interaction Between a Service Consumer, Service Provider, and a Service Directory .. 72
Figure 27. UDDI Entity Relationships ... 74
Figure 28. Care Pathway Fragment ... 76
Figure 29. Basic Architecture of Submission Service .. 81
Figure 30. High Level Services Provided by the Public Interface of Submission Service .. 82
Figure 31. High-Level Services Provided by a Private Implementation of a Submission Service ... 84
Figure 32. An Example of an Envelope-Formatted Document ... 85
Figure 33. An Example of a Document Containing Nested Envelopes .. 86
Figure 34. Transport-Level Security ... 87
Figure 35. Message-Level Security .. 88
Figure 36. Document Routing by the Submission Service .. 92
Figure 37. Example of Business Processes Implementing a Business Protocol Between Two Parties ... 97
Figure 38. Technical considerations that influence the design of data access logic components and business entities 99
Figure 39. Single Central Node .. 103
Figure 40. Integration Node .. 104
Figure 41. Peer-to-Peer Nodes .. 105
Figure 42. Hierarchy of Nodes ... 107
Figure 43. Using Cloud Services ... 109
Figure 44. Scope of Improvements for Web Application Security: Threats and Countermeasures ... 111
Figure 45. Scope of the Microsoft Patterns and Practices Guide on Performance and Scalability .. 116

© 2009 Microsoft Corporation 6

| Knowledge Driven Health

Introduction to Part 3

In Part 2 – Business Framework of this guide we discussed the service-oriented approach to defining a core set of
business components, each addressing a major subject area and offering a range of services that can be
“orchestrated” to enable and support the wide range of healthcare business processes. The resulting set of business
components and service definitions for citizen-centric care constitutes our Business Pattern for Health and Social
Care.

This Part 3 – Technical Framework is focused on the technical architecture aspects, starting with advice on
Addressing Common Architectural Challenges, and then describing the typical set of infrastructural services likely to
form the foundation of e-Health and e-Care solutions at any level – Reference Architecture (page44).

As pointed out in Part 1, The Business Pattern and the Reference Architecture focus on different aspects of the
system and represent distinct viewpoints, but they align very closely, as shown in Figure 1.

Figure 1. Alignment of the Business Pattern and the Reference Architecture

© 2009 Microsoft Corporation 7

| Knowledge Driven Health

Figure 2 shows the Business and Technical Frameworks within a combined schematic, aligned around the Connected
Health Services Hub.

Figure 2. Connected Health Framework Joined-Up Architecture

The presentational business requirements of the user interface and user processes are facilitated using technical
capabilities of the Identity Management, Privacy and Security and Presentation and Point of Access Services
provided in the Technical Framework. Similarly, the business process requirements are facilitated using the
Connected Health and Social Care Services Hub and the technical capabilities of the Service Publication and
Location, eHR, Health Domain, Registry, and Integration Services provided in the Technical Framework. The data
access requirements are supported by the Data Services capability.

Business Services, identified and componentized in the Business Framework, can now operate upon the platform
provided by the Technical Framework and combine through the Connected Health and Social Care Services Hub to
satisfy the business requirements of the Health and Social Care domains.

© 2009 Microsoft Corporation 8

| Knowledge Driven Health

We recognize the need for agility made possible by having a stable foundation. The Connected Health Framework
helps support that agility by separating the more volatile user and business processes from the more stable business
and data services, the “join” between the agile and stable worlds being provided by the Connected Health Services
Hub (Figure 3).

Figure 3. Connected Health Framework – A Stable Foundation for Agile Health and Social Care

© 2009 Microsoft Corporation 9

| Knowledge Driven Health

Addressing Common Architectural Challenges

This section of the guide discusses the most common architectural challenges faced by e-Health solutions, areas that
require special consideration (and are sometimes, at least initially, overlooked), some of the available options, and
the recommended approach to addressing these challenges. The focus is on the major issues specific to e-Health
solutions, beyond those commonly encountered in other large-scale electronic delivery and integration projects.

This section discusses the technical architectural challenges at a high level, in order to develop an appreciation of
the complexities, issues, and available options—irrespective of the specific technologies and implementations. The
section Reference Architecture starting on page 44 contains further recommendations on how to address these
challenges.

Flexibility and Agility

Being able to cope effectively with changes, and adapt to accommodate new requirements, is essential for most
systems. This is even more important for e-Health solutions, where the pace of growth and the volume of unknown
factors at the start mean that the rate of change is typically much higher. Likewise, the need to provide backward
compatibility with systems and versions deployed previously is even greater.

Why Flexibility and Agility Are Essential

E-Health solutions provide a platform that must support a growing range of services. Unlike many commercial
systems, where the range and variety of services and delivery channels—both existing or anticipated—is reasonably
well-defined and stable, an e-Health integration platform has to cope effectively with changes as they arrive,
anticipated or not, and preferably without redesign or disruption of existing services.

The common pattern seen in many countries is that e-Health solutions typically start small as a “pilot” or “proof”
and involve a few carefully selected services, usually based on their visibility, urgency, and readiness to deliver
quickly. After a successful initial phase, the ambitions and the appetite for delivering more services online grow very
rapidly, and the expectation is that the platform already in place should accommodate these seamlessly.

Changes, such as enablement of new services, new authentication providers, and new delivery channels, are not
rare occasions that must entail major disruption and be possible only through new releases of the e-Health
platform. Instead, they should be part of a normal and mainstream usage scenario, adequately supported by the
architecture and design of the system, tools, and procedures.

Ideally, the application of such incremental changes to the running system will be possible without downtime, as the
implementations in some countries and in other areas like e-Government have already demonstrated.

Architecting for Flexibility

Achieving this higher level of flexibility is an important factor driving the architecture of the solution. To
accommodate major change scenarios such as adding new services, new message types, changing validation
methods, or reconfiguring routing rules—preferably without code changes—the whole solution requires
management through configuration parameters and data updates as required.

© 2009 Microsoft Corporation 10

| Knowledge Driven Health

Adopting an architecture that assumes and caters for multiplicity at every level (nature and type of participating
nodes, authentication providers, identification models, and service-specific rules) is an essential requirement.
Expecting the requirements and rules for different services to vary, if not initially then at some point in the future,
requires an architecture that supports per-service segregation. This minimizes the core set of common rules,
message flows, and formats that every participant must agree on for the system to work. Avoiding assumptions
about particular types of connectivity, security, and other logistical limitations is essential to support an expanding
range of services.

User Experience and Acceptance

Ultimately, the success (or failure) of an e-Health system, regardless of its technical merits, is critically dependent on
the acceptance of the end users. Ensuring that their experience with the system is easy and intuitive, the range of
supported devices fits their working practices, and gains in productivity are important architectural considerations.

Providing Safe and Intuitive User Interfaces

To date, there has been no standardization for the display of important information elements, such as patient
identification information and dates, in clinical applications. As healthcare becomes more reliant on electronic
systems, there is a need to standardize display elements so that healthcare professionals can switch between
different applications and rapidly identify the information they need, thereby increasing clinical effectiveness and
improving patient safety.

A clear, consistent and simple interface enables healthcare workers to perform their jobs more efficiently by being
able to find, view, and enter patient information in a predictable and easily recognizable manner. This also aids in
the reduction of their cognitive load and the need for specialist training.

Pioneering work in this area, led by patient safety professionals from the National Health Service in the United
Kingdom and user experience experts from Microsoft, has produced a set of user interface guidelines and reusable
by application developers controls compliant with the guidance. Microsoft Health Common User Interface (CUI) is
published and available free on http://www.mscui.net.

Choice of Thin, Rich, or Smart Client

Most requirements emanating from government and public sector organizations seem to want a browser-based
solution, whereas most solutions from ISVs are rich client based. This presents something of a dilemma. The
argument for the browser solution is largely economic: they can run on cheaper devices, with low maintenance
overhead, and can be “locked down” to prevent unauthorized use. Rich client solutions are favored by ISVs because
most of their products began life as departmental solutions, either running stand-alone or in a client/server
configuration. They were designed to run on PCs that did other things too, like word processing or spreadsheets. So
recently ISVs have been creating Web browser versions of their products. However, it seems that many clinicians do
not like Web page displays with limited or no functionality and want displays that are rich to the extent that they
support the processes they carry out. Using terminal server technology to present a server-based rich solution on a
thin client device is popular but quite expensive in terms of server hardware. We have noticed in practice that the
number of concurrent sessions that can run, before performance and capacity issues arise, can be fewer than
predicted in design calculations.

http://www.mscui.net/

© 2009 Microsoft Corporation 11

| Knowledge Driven Health

A preferred solution is the so-called “smart” client. With this, the interface is tailored to the role of the user,
providing only the functionality and data required by the user for the task he or she is currently carrying out. At one
extreme this might well be a just Web page—for example, showing a busy ward nurse today’s care plans for her
patients—while at the other extreme, a rich client display showing a consultant physician the patient’s history,
current and previous test results, some research findings, possible treatment plans, and areas to enter notes and
prescribe might be more appropriate.

We conclude that a range of display options should be offered; there is a place for thin, thick, and smart client
options, depending on the context and functionality. The important point is that each kind of display is fuelled by
the same data. This infers separation of the presentation layer of the application from the logic and data layers as
we suggest later.

Managing User Processes

Recently, there has been much discussion of clinical acceptance (or the lack of it) of major health records systems.
Much of this reluctance stems from a belief held by many clinicians that computer systems will not reduce their
workload, but rather will increase it. They are fearful of increased data entry tasks, duplicated effort, and receipt of
erroneous or incomplete information. It is believed that much of this distrust comes about because use of IT is not
part and parcel of the routine processes carried out by healthcare professionals.

Therefore, we believe that much effort should be made to reflect the actual user process into the system dialogue.
This includes not only tailoring the screen contents to the items needed at any point in the process, but preloading
anticipated data and performing in-flight validation. User processes vary of course, the same task being carried out
in different ways in different hospitals, for example. Personal preferences can also apply.

The imaginative and perceptive combination of device, user interface, and user workflow can produce major
benefits in terms of user acceptance, data quality, and operating effectiveness.

Using Mobile Devices

Many people today use laptop computers, Tablet PCs, PDAs, Smartphones, and other portable devices in their
business and personal lives. These can be of considerable value in Health and Social Care scenarios. Many care
professionals visit their patients either at home or during ward rounds. The ability to have current patient data
available during such encounters and to make on-the-spot transactions and in-flight data validation is a highly
valuable asset.

However, use of these devices can present problems. First, they may require special user interfaces because the
processes they support are different from in-house processes. Second, they must be secure. The loss of a device
containing confidential, personal data could be embarrassing at least. Third, to be fully useful, such devices need to
be connected to base for the uploading and downloading of information. However, communication facilities are not
always available or reliable.

Therefore, in designing mobile applications, provision must be made for the context within which the device is being
used—“in-house” (such as in the hospital, clinic, or practice); or “on the road” (in the patient’s home or some
external location). This means that different operating modes will be needed. For example, an “in-house”
connection will be to a secure network, whereas for an “on the road” connection, public networks will be used with
potential security and coverage problems. Mechanisms are needed to cover each of these situations. Typically, “on
the road” issues may be handled by preloading applications and data and storing input for uploading when back at

© 2009 Microsoft Corporation 12

| Knowledge Driven Health

base. However, this might not apply in the unexpected situation or give the desired level of response, in which case,
methods of remote data provision and secure interactions will be needed.

An issue arises when a remote session fails in mid-flight due to a loss of connectivity. The procedure then would be
to freeze the session at its last synchronization point, continue “offline” and “rehydrate” the session when
communication is restored. This procedure is similar to the “ActiveSync” process using Microsoft Pocket Outlook on
a Smartphone or PDA. An interesting variant of this could be the scenario of a hospital consultant doing his rounds.
During a patient consultation using his Tablet PC, he is interrupted by an emergency call and suspends the session
immediately. Later, having dealt with the emergency, he wants to resume the session to complete his notes – but
this time in his office using his desktop system. This too is a “freeze-and-rehydrate” situation, but this time picking
up on a different computer with different capabilities.

Support for Multiplicity

Many aspects of e-Health services involve a solution to the issue of multiplicity, and can benefit from the
consolidation and simplification provided by a unifying shared infrastructure that supports these services. The
following sections highlight the main areas where such multiplicity is encountered.

Growing Range of Capabilities

E-Health initiatives typically start small, with only a few capabilities available initially, and then grow over time,
aiming to incorporate a growing range of services. This presents some unique challenges stemming from the variety
of types of systems, and their growing number.

The back-end systems supporting these e-Health services typically run on a wide range of platforms and use
different technologies. Gradual discovery of these disparate services is the common scenario as e-Health initiatives
expand and evolve over time. Designing and implementing a common infrastructure capable of effectively
supporting this growing range of capabilities is a significant challenge, beyond that normally encountered in most
traditional commercial systems.

An effective e-Health platform, once put in place and running in production, should be able to support the addition
of new participants, new services, new transactions, and other changes to requirements seamlessly, without code
changes in the core solution and preferably with no downtime affecting existing services. Adding new services
should be a mainstream use case, not a rare exception—adequately catered for by the solution design.

Variety of Access Channels

There is a high probability that even when the delivery channels for the initial set of services are well defined at the
onset of the project and catered for in the first implementation, requirements to support new categories of users
and new access channels will emerge over time. Examples include kiosks in public areas, interactive TV, mobile
devices for patient/consumer services, and the growing variety of device form factors for care professionals.

A well-architected integration platform exposing services in a consistent way should allow adding the capability to
use new delivery channels through a single, one-off effort in the central hub to enable the new channel—without
affecting the multitude of individual services.

© 2009 Microsoft Corporation 13

| Knowledge Driven Health

Broad Support for Different Client Platforms

E-Health projects are often subject to stricter regulations and restrictions than typical commercial systems.
Provision of non-discriminatory access for citizens to e-Health services from a wide variety of client platforms is
often an explicit legal requirement, or at least politically desirable. This can involve different types and versions of
hardware, operating systems, and browser software.

The owner of a commercial system can make a calculated trade-off decision to exclude some small proportion of
prospective customers by narrowing the range of supported platforms and losing only small potential revenue, but
making significant savings from the reduced complexity of the design, development, and testing for the system.

However, healthcare providers are much more constrained in this respect, and often have to bear the significant
cost of supporting relatively obscure platforms in order not to exclude and discriminate against even a small
proportion of their constituencies.

Creating the architecture for an e-Health integration platform with a clear understanding of the constraints and
requirements for broad client platform support is very important, because satisfying these at later stages of
development can be very expensive or even impossible.

Multilingual Capability and Universal Accessibility

In many countries, providing multilingual access to health services is a legal requirement, or is at least highly
desirable. It is important to cater for this upfront, since it has a significant impact on the design. In general, there are
three important areas to be aware of:

 Accepting the input of multilingual data, and using alternative scripts, pages, and validation logic (for
example, for right to left written languages and languages that use special characters)

 Core processing and storage of data, where multilingual requirements can influence the data model,
message formats, and encoding, and may require special consideration when writing code

 It may be required to design a fully multilingual user interface, where all text strings and messages are
separated from the code for easy localization. This usually includes a requirement for alternate graphics and
other content to enable full support for character-based right-to-left languages, and taking into account that
the same text in different languages results in differing string lengths.

Health sites and services are often subject to very stringent accessibility requirements—more so than ordinary
commercial sites where accessibility is often desirable to reach a wider audience, but lack of it may have only a
limited commercial impact. For health sites and services, accessibility is usually a legal requirement, and an
important political issue.

Retrofitting multilingual capability and accessibility after the design of the system is complete is difficult, expensive,
and sometimes impossible. Designing for accessibility should be a primary consideration from the start.

Part 5 – References of this guide contains checklists for creating translatable applications, and a list of links to
current accessibility legislation and national initiatives including the World Wide Web Consortium (W3C)
accessibility guidelines, the various types of specialized screen readers and browsers that are available, tools for
testing accessibility of applications, and links to other useful resources.

© 2009 Microsoft Corporation 14

| Knowledge Driven Health

Exposing e-Health Services in a Consistent and Secure Manner

Exposing e-Health services through electronic (online) channels requires substantial investment and effort to meet
the necessary requirements for security, availability, and reliability. In some countries, there are stringent
regulations and a mandatory certification process for connecting systems to the Internet. If the electronic
enablement of these services occurs independently, duplication of this effort takes place for each service. This
wastes time, resources, and expertise that is not always readily available in all organizations and agencies
responsible for these services.

The problem grows as the number of electronic services increases beyond the initial circle of major agencies and
providers that have the size, visibility, and political influence to secure the necessary resources. Smaller
organizations, such as local health authorities, clinics, and individual practitioners, often cannot afford the high
initial cost of entry to offer their services electronically on their own.

Isolating the most challenging elements of online enablement, and implementing them once in a common e-Health
platform shared by all services, can help ensure the high quality, consistency, and security of the resulting solutions
and produce significant savings.

Handling Health Data

Health-related data for a particular individual is typically stored in disparate computer systems, operated by
different care providers, in multiple locations, sometimes even in different countries. There is a major issue in
knowing what data is where, how current it may be, and whether it is accurate. Assembling a consolidated record
from such diverse sources (either proactively, by feeding some “master” data store, or dynamically when needed),
in order to provide care professionals with the relevant complete picture and to support them in making well-
informed decisions, presents significant architectural challenges. Choosing the most appropriate data topology—in
the specific context and at various levels of the system—is one of the central architectural challenges and can be
critical for the overall success of the project.

In this section, we analyze the typical Requirements Related to Data, how they apply to different Types of Data, and
discuss possible Data Topologies—their advantages and disadvantages, and typical scenarios where each may be
appropriate.

Requirements Related to Data

The typical requirements related to data in e-Health systems can be grouped as follows:

 Resilience – once stored, data must be protected from loss or damage as a result of technical problems or
operational or human errors

 Availability – data must be available when and where needed

 Accuracy and consistency – data must properly reflect the “last known” state

 Privacy – personal data must be protected from unauthorized and inappropriate access, in compliance with
the legal and privacy regulations

 Access and audit – access to data must be controlled and audited

It is important to distinguish the degrees to which these requirements may apply to different categories of data.
One commonly seen mistake is vaguely defined, “blanket” requirements like “no data loss” or “access within 2 sec”,

© 2009 Microsoft Corporation 15

| Knowledge Driven Health

without any details or further qualification of what kinds of data they refer to (and hence assumed to apply to all
data), appearing in RFPs—which make the resulting systems over-engineered and more expensive than needed to
meet the actual needs in the specific context. The following section provides further guidance on a more
differentiated approach to requirements, depending on the Types of Data. After that, we look at typical Data
Topologies, their advantages and disadvantages, and offer some recommendations for choosing the most
appropriate in a specific context.

Types of Data

Data can be categorized in a number of different dimensions (by volatility, content, scope) – with their respective
(and often quite different) requirements.

By Volatility

It is essential to distinguish data depending on how frequently it may change, and the source of these changes – as
this can determine the appropriate (and often different) strategies for meeting the requirements above:

 Reference data – infrequent changes, typically distributed periodically top-down from national or other
levels. Examples include catalog of medicines approved for use, lists of care providers and their specialties,
approved treatments, care pathways, and price lists. All such data can be easily cloned/replicated through
the system as needed, with multiple copies existing in parallel, and some mechanism for
rebuilding/refreshing (periodically or event-driven). Resilience is rarely an issue; privacy, access, and audit
typically do not apply to this type of data (except for the master source).

 Stable (cumulative, historical) data (like snapshots of episodes of care) – once created, these typically do
not change; each new item is added (appended) to the previous set. Data related to a single episode is
clearly, uniquely identifiable and date-time stamped—it does not conflict or overlap with any other such
item, even if replicated/transmitted and arriving out of sequence. The analogy from another industry: each
bank transaction, which may originate in a different place, is uniquely identifiable – and they all eventually
arrive and reconcile in a ledger or statement. The stable and independent nature of each “transaction”
(such as an episode of care) makes achieving data consistency across a distributed system relatively easy.
Resilience is important, especially in the time window from creation to transmission to another node – after
that, redundant copies of the data allow recovery from other nodes.

 Core (current) data – which reflects some “current” (or “last known”) state, and may be updated. The
analogy is the “current balance” of a bank account, reflecting all known/processed transactions. Patient
data like personal details and core medical information (allergies, current problems, and medications) are
typically in this category. Satisfying requirements for this type of data is more challenging than for the other
two above. Managing potentially concurrent updates to such “single core set” must be designed carefully
to handle possible conflicts and prevent data loss. Ensuring accuracy (and completeness) of the core data,
taking into account the latency and cost of communications, could also be a challenge.

By Content

Data can also be categorized by its content and subject:

 Clinical – directly related to the subject of care (observations, examinations, treatment, prescriptions). This
narrow category is typically the main focus of the discussions about data distribution and topologies, with
the most stringent requirements.

© 2009 Microsoft Corporation 16

| Knowledge Driven Health

 Administrative – related to managing various care provider activities (teams, schedules, assignments,
appointments). Most of the data in this category is only used within the particular provider node and rarely
needs to be shared, transmitted, or consolidated at higher levels—so requirements around privacy,
consistency, and access may be more relaxed.

 Financial – data related to financial planning and reporting of care provider entities, and their relationships
with each other, payers, or other parties. This data could be detached and processed independently from
the sensitive personal data, allowing for more relaxed requirements around privacy and access.
Consolidation and bottom-up reporting are common in many countries.

By Scope

The applicability of requirements would also vary depending on the scope of data:

 Internal for a level (department, enterprise, group, region, national) or node – data that originates and is
used only within that particular node. For example, individual temperature readings are not likely to be
needed beyond a particular episode of care; so too are the meals eaten by a patient. All such data rarely
needs to go anywhere outside of a node, and may not remain stored indefinitely. So, even when
requirements like “all data is stored centrally” are proclaimed, it is never actually “all” data, and further
qualification is needed. This becomes even more important for fine-grained data collected directly from
various devices – as the data volumes are no longer naturally constrained by manual procedures.

 Shared – data that is transmitted to another node (typically up the hierarchy) to form a broader,
consolidated record. In this case, it is important to define how the ownership and “master source” status
are transferred, how multiple copies are kept synchronized, and so on.

Data Topologies

Choosing the appropriate topology and model for data distribution between nodes is one of the key architectural
decisions when designing e-Health systems. There is no single “right” model appropriate in all cases; many factors
influence these decisions at every level of the system (local, group, region, national, cross-agency). The following
sections discuss the advantages and challenges presented by various models, and provide guidance on how to select
the most appropriate one depending on the circumstances. These considerations would typically be applied
multiple times, depending on the scope of the system, to each level of the hierarchy, and to different types of
data—possibly leading to different optimal choices.

From an architecture perspective, there are two extreme models at the opposite ends of the spectrum: centralized
and distributed (federated).

Centralized Data Model

In the centralized model (Figure 4), all data is stored centrally, and accessed by all consumers from that single
source. Other subsystems may act as “data feeders”, providing and transmitting data to the central store.

© 2009 Microsoft Corporation 17

| Knowledge Driven Health

Figure 4. Centralized Data Model

Depending on the scope of the system, this model could be applied at different levels: to a single entity (hospital) –
with various departmental or laboratory systems feeding a central repository; to a group or region – with
participating nodes (clinics, hospitals, GPs) providing data for a regional repository; to a national system – with
regions or other nodes acting as feeders for the national repository; and so on.

The main advantage of this model is its simplicity – the complete data set (for example, the patient’s electronic
health record) is available from a single, well-known (central) source. The solutions for bringing data into this
central repository could be independent from the subsequent access to that data, may use different technology,
and could have more relaxed performance and latency requirements (such as asynchronous messaging and periodic
file transfer). Providing expected quality of service (availability, resilience), security, and manageability for one
central data store may be easier and more cost-effective than managing multiple data stores in participating
nodes—especially when these are remote locations with no adequate IT skills or support, like small clinics or GP
practices.

Accessing data in the central repository from client nodes depends on the availability, reliability, and performance of
all elements in the chain: central data store, communication between nodes, and local systems. The centralized
model is a common choice for smaller, local systems. As the scope of the system grows larger and more distributed,
the challenge of providing adequate scalability and performance may become a limiting factor. Nevertheless, there
are examples of this model being used at a national level (NHS England).

In this model, only the data already saved in the central data store is available. It may originate elsewhere, but
unless and until it makes it to the central repository, it does not exist for the consumers. There is no mechanism to
request and receive data from subordinate nodes on an “as-needed” basis. Deciding what types of data (and how
detailed) should go into the central repository is often a challenge: storing too little can make unavailable important
details that may be needed in the future; collecting too many rarely used details would require more storage and
can impact performance. The latter approach, however, has proven successful in commercial products like
Microsoft Amalga (http://www.microsoft.com/amalga) – where collecting all data from “feeder” systems and
storing it in flexible structures (different from the traditional, highly normalized, relational data models) allows
unprecedented flexibility to develop new applications and uses of available data at dramatically lower marginal cost.

http://www.microsoft.com/amalga

© 2009 Microsoft Corporation 18

| Knowledge Driven Health

Other constraints often limiting the possible scope for using this model are the applicable legal and privacy
regulations. In some jurisdictions, personal health data cannot be stored outside the entity that produced or
collected the data (such as a hospital or a health provider group). The federated model (discussed in the next
section) offers an alternative approach well suited to such cases.

Distributed (Federated) Data Model

In the distributed model, data is not concentrated in a single store, but remains spread across multiple nodes
(subsystems). Depending on the scope of the system, these may be regional nodes (in a national system), health
providers, and other participants holding and providing data. In order to provide a complete data set (such as a
patient health record), relevant subsets must be collected from these different sources and then assembled in a
single “virtual” record. This allows presenting the composite record and allowing informed decisions to be made,
while complying with legal and privacy regulations not to store data outside of certain boundaries. The model is also
well suited for cross-border or cross-agency access to information (for example, between health, social services, and
other care providers) – where it is rarely feasible or politically acceptable to construct and maintain a joint data
store.

There are various practical implementations of this model: “broadcast”, “central index”, and “replicated index”.

It is possible for the central node (which itself holds no data) to simply “broadcast” the request (with the
appropriate identifiers and other attributes determining what data is needed) to all nodes, and then process and
collate the responses (Figure 5). This may be a workable approach for a relatively small number of participating
nodes.

Figure 5. Federated Data Model (Broadcast)

A more common solution (Figure 6) is for the central node to hold “index” information about which nodes contain
information for each particular person (often called a Master Patient Index). In this case, requests are only sent to
nodes known to contain relevant data, which is more economical than broadcasting to all, especially for large
numbers of nodes. The other advantage is that this central index may also provide a translation between different
identifiers that may be used by participating nodes – so that each receives requests in its own “language”,
independent from the others.

© 2009 Microsoft Corporation 19

| Knowledge Driven Health

Figure 6. Federated Data Model (Central Index)

The central node may also contain relevant “metadata” associated with individual items stored in the nodes (dates,
nature of the episode, type of data, etc.) – allowing search and filtering, and sending requests only for the items
needed (such as laboratory results) instead of everything (full medical history). This is exactly the use case
supported by the IHE XDS profile, with the central node acting as Registry (in IHE terminology) and the nodes as
Repositories. The main principle, however, remains: there is no real data stored centrally—only indexing and
metadata information. For this model to work, the “index” (or the Registry) must be updated every time a node
acquires new data, which is typically done by a message from the node holding the data (Repository) to the central
node (Registry).

Another implementation of this model avoids having a central node altogether, by maintaining a “replicated index”
in each of the participating nodes (Figure 7). These are kept in sync by a peer-to-peer replication mechanism – for
example, every time a new data item of interest appears in one of the nodes, notifications are sent to all other
nodes, and their indexes are updated. Depending on the level of detail (metadata) kept in the index, the granularity
of these notifications would vary. In the simplest case, if there is no metadata beyond just the fact that “node X has
information about patient P”, notifications are only needed when a particular node sees a patient for the first time.
At any time, in any node, just by checking the local to that node index, it is possible to determine which other nodes
contain information of interest, and send requests to them peer-to-peer. Collating responses allows a complete
picture (such as a patient history or lab results) to be composed and used to make informed decisions, without
storing it permanently (in compliance with privacy regulations). Any new data is stored in the respective node, and
others are notified as appropriate.

© 2009 Microsoft Corporation 20

| Knowledge Driven Health

Figure 7. Federated Data Model (Replicated Index)

The commercial product that pioneered the use of the federated model with a replicated among nodes index is the
dbMotion Collaboration Platform (http://www.dbmotion.com), which can also implement the centralized and
hybrid models.

The main advantage of the distributed (federated) model is that data remains stored in the individual nodes where
it was originally created or collected. This can be essential for meeting privacy regulations in some countries, where
no other option may be compliant. Collecting data from the nodes on an “as-needed” basis is also more economical
in terms of storage and communication traffic, rather than accumulating everything proactively in case it may be
needed in the future. It also avoids the difficult upfront decisions about what exactly to collect (as in the centralized
model) – once the general mechanism to request data from the nodes is in place, it is very easy to extend the range
and types of data, or add more nodes.

It is worth noting that, once the mechanism for requesting data from other nodes is in place, more advanced
scenarios become possible. Some data may be held in nodes different from the originator—especially when the
originating node itself is not capable of providing anytime, on-demand access. If the originator can only provide
data periodically and in bulk, not on demand (for example, the results from all lab analyses at the end of the day, or
images), these may then be stored in a separate specialized node, which becomes the source of data on demand for
all further requests. Nothing else in the models needs to change – only the pointers to the data store now lead not
to the originating node, but to the specialized storage facility. The location, size, and other characteristics of such
storage nodes can be optimized based on technical, organizational, and other considerations – and change over
time with minimal disruption to the rest of the system. This is also fully supported by the IHE XDS profile, where the
Originator of the data (documents) is distinct and separate from the Repository (where the data is stored) and the
Registry (where the metadata index is maintained) – although some of these may be implemented as a single node.

Implementing a mechanism for requesting and reconciling data from multiple nodes makes the solution more
complex, compared to accessing a single central data store. Providing adequate quality of service (availability,
performance, latency) for these requests—typically when the data is needed, “real time”—is essential for this model
to work. This means that the nodes must be up and running, and data available any time. Communication networks
to each node must also be reliable and of sufficient quality. All these factors can make the federated model
inappropriate in some cases.

http://www.dbmotion.com/

© 2009 Microsoft Corporation 21

| Knowledge Driven Health

Hybrid Data Model

The hybrid model has both central storage and a mechanism for obtaining data from participating nodes “on
demand” – so it is a combination of the centralized and federated models. In fact, both these can be fully supported
by the hybrid model as “boundary cases”: with 100 percent of the data available from the central store (centralized)
or 0 percent centralized (federated). The great advantage of the hybrid model is that the boundary between what
data is stored centrally and what remains distributed can be anywhere between 0 and 100 percent, and be easily
adjusted over time as requirements, usage patterns, and technology constraints change. In contrast: in the
centralized model, data that is not in the central repository can never be available; in the federated model, no data
can be obtained without a real-time request/response to the respective node.

The hybrid model (Figure 8) allows a flexible approach, where certain categories (and level of detail) of frequently
needed data can be stored centrally for quick and reliable access directly from the single store, while further details,
rarely used, or large in size data can remain in the originating nodes – and be requested when needed. Depending
on where data is stored, the quality of service guarantees (availability, speed of access) can vary, which often drives
the decisions of what to store centrally and what to keep distributed.

Typical candidates for patient information to be stored centrally are the basic elements of what is often called
“emergency data set”—the essential data usually needed for providing unscheduled or emergency care:

 Basic patient data – identity, contact information, provider affiliation or entitlement

 Core medical information – allergies, current problems/conditions, medications

Beyond that, the next level of detail is the cumulative care history (episodes of care). In the hybrid model, only
some summary level information would normally be stored centrally – including date, type, and outcome of the
episode – with pointers to the full details available on demand from the respective node. This allows quick
“headline” access: list of episodes (chronologically, by type, etc.) from which the care provider can select those of
interest and request more details.

Figure 8. Hybrid Data Model

© 2009 Microsoft Corporation 22

| Knowledge Driven Health

For the reasons described above, and because the hybrid model still allows implementation of the other two (or
anything in between) and is easy to change, we recommend considering adopting this model to ensure future
flexibility, even if the initial project goals and constraints lead to one of the other two. Putting in place both a
central store and a mechanism for requesting data from the nodes (even of not using one of them from day one) is a
much better option than trying to extend at a later date an already deployed central model to allow requesting
additional data “when needed”, or a federated model to hold some subset of frequently needed data centrally.

Hierarchies and Combinations

All the models discussed above in general architectural terms can be applied in different combinations to complex
real-life scenarios, depending on the scope and topology of the system.

In a common three-tier hierarchy with local, regional, and national levels, a centralized model for the regions can be
combined with a federated or hybrid model at the national level (Figure 9).

Many countries with strong regional focus on care provision are either implementing or considering such an
approach (Canada, Sweden, Spain).

Figure 9. Data Hierarchy

From the point of view of scalability, especially for large systems, it is very important to identify the level of
granularity at which data sets are independent, and can be processed and stored separately. For example, all data
related to a particular person (like a complete Care Record) is typically independent from the similar data for
another person—with the possible exception of mother and child, which often are treated as a unit. This means
that even for a centralized model, the actual implementation could be partitioned for scalability, efficiency, and
other reasons—for example, multiple physical nodes or data stores can implement a single logical “central” store.
For each person, only one of these would be the single central store. This is how large-scale systems typically
handle performance, scale, and capacity challenges – allowing seamless redistribution and repartitioning as the
system grows.

© 2009 Microsoft Corporation 23

| Knowledge Driven Health

Another variation of the “central – partitioned” approach described above is the assignment of a “home” node to
each individual, and that “home” acting as a central repository for all data related to that person (Figure 10). In this
case, a set of peer nodes act as the partitioned “central” store – where each is expected to contain the full record
for its own “constituency” and can provide it when needed. All relevant information from episodes of care
occurring outside of the “home” realm is expected to be transmitted to it (directly or indirectly) by the originator.
The “home” nodes could be regions, or countries – each implementing a true “centralized” model (with its own data
store), or acting as a proxy and collecting the necessary data from lower-level nodes.

© 2009 Microsoft Corporation 24

| Knowledge Driven Health

Figure 10. Partitioned Data

In fact, there is an EC-funded project under way (http://www.epsos.eu), aiming to pilot cross-border e-Health
interoperability and continuity of care for European patients, which is likely to use this approach.


~~~~~~~~~~ 

As we have seen in this section, architectural decisions on how to structure, distribute, store, and handle data in 
complex distributed systems are challenging—and one size certainly does not fit all.  It is essential to analyze 
different types of data and relevant requirements, in order to choose the most appropriate model for each level of 
the system.  Retaining flexibility to change – without causing a major disruption – and tune the models in response 
to evolving demands and constraints is also essential for long-term success. 

 

http://www.epsos.eu/


 

 

© 2009 Microsoft Corporation 25 

| Knowledge Driven Health 
 
 

Identity and Access 

Identity and access are important for any large-scale distributed system, and there is plenty of generic guidance and 
solutions available in this space.  However, in addition to the common challenges, there are numerous aspects of 
identity and access requirements specific to systems in health and social services – which often make traditional 
approaches and solutions not adequate.  This section provides an overview of the most significant of these 
“additional challenges” and discusses architectural approaches to addressing them. 

Multiplicity of… 

One of the important challenges is what we call “multiplicity” – which can have many different dimensions. 

Systems in health and social services need to support effectively a wide variety of usage scenarios, types of users, 
authentication methods, identity providers, and technologies.  The scale and dynamic nature of such systems 
require built-in agility to change and extend over time, connecting new participants and broadening supported 
scenarios, with minimal disruption to existing services and participants. 

…User Types  

The two major types of users are the care professionals (health and care professionals, administrators, etc.), and 
subjects of care (patients, citizens, beneficiaries) – and the approaches to managing their identities and access are 
inevitably quite different.   

Care professionals are typically employed and managed by some organization, and traditional enterprise identity 
and access solutions are often used.  As the scope of the systems expands from the traditional “enterprise” space to 
regional and national networks, there are some additional challenges (discussed below in the sections Scale and 
Scope), but still managing this type of organizational user is relatively straightforward. 

In contrast, subjects of care are more numerous, and not directly managed – so any identity and access solution 
must have the scale and characteristics of a consumer service (low-touch, low-cost, self-service) to be viable. 

…Usage Scenarios 

For care provider type users, traditional systems typically target well-established usage scenarios with workstations 
and devices within the organization (doctor’s surgery, hospital, care worker office).  However, the most significant 
gains in productivity and quality of care can be realized by harnessing the growing capabilities of portable and 
mobile devices, and extending the access to information and functionality beyond the boundaries of the traditional 
workplace.  While some of these can still be viewed as “extension” and “virtual office” reliant on private networks 
and infrastructure, an increasing number of scenarios depend on the flexibility to connect and work from anywhere, 
with minimum dependency on a particular (private) infrastructure – which is a significant challenge for many 
traditional identity and access solutions.  For example, a doctor receiving alerts on a mobile device, then checking a 
summary of laboratory results, and giving care instructions while on the move is no longer a visionary fiction, but a 
real capability supported by today’s technology.  Therefore, the full range of likely usage scenarios for care 
professionals should be analyzed carefully, and identity solutions chosen accordingly, in order not to constrain the 
ability to support more ambitious scenarios in the future. 



 

 

© 2009 Microsoft Corporation 26 

| Knowledge Driven Health 
 
 

For care subjects, the ability to access their own data, report status, receive reminders, make requests and 
appointments—remotely, in self-service mode, through a variety of devices and delivery channels—is essential for 
improving the quality of care while reducing the burden on care professionals.  Identity and access solutions should 
have the flexibility to support such variety of access channels – instead of tying (and constraining) everything to a 
particular (single) authentication method. 

…Authentication Methods 

In order to support the wide variety of usage scenarios and access channels discussed above, the identity system 
must be open to use multiple authentication methods – depending on the type of the user, device, communication 
channel, and usage scenario.  Even for the same user (say, a doctor), different authentication methods may be 
appropriate (or even possible) depending on the circumstances: smart card inserted in a reader of a PC in an office; 
fingerprint scan on a Tablet PC; proximity smart card in an operating theatre; password or PIN on a mobile device; 
and so on. 

No single authentication method can be expected to work effectively in all situations.  Identity systems making hard 
and restrictive assumptions about relying exclusively on a specific method of authentication (like a smart card) 
inevitably constrain the ability to support a broader range of scenarios and should be avoided.  Ideally, the actual 
authentication method should be abstracted from the rest of the system – so that the functionality can remain 
independent from particular (and possibly changing over time) implementation specifics.   

Application logic, access to data, and functionality should only be dependent on a generic “strength of 
authentication” attribute indicating the relative “trust level” of the performed authentication (such as a password, 
certificate + PIN, physical token/smartcard, or biometric) – not on the specific method and implementation.  This 
will allow easy inclusion of new authentication technologies as they become available and relevant, without 
disruption of existing systems and functionality. 

…Identity Providers 

The need to support multiple independent identity providers results from the variety of user types, authentication 
methods, and substantially different identity management models required.   

The typical identity provider for organizationally managed care professionals is some form of an enterprise directory 
(which might be, as in NHS England, scaled up to a national level).  Flexibility to support multiple providers allows a 
variety of identity systems already in place to be reused through identity federation outside of their original scope 
(hospital, region), instead of rolling out a completely new national system.  This capability also allows extending 
easily access to solutions and data beyond the boundaries of a particular organization, which is essential for 
supporting most “continuity of care” scenarios. 

Subjects of care are better served by a broader, citizen-centric identity provider.  Many countries have implemented 
(or are planning) national-level, healthcare-specific identity systems for citizens (such as e-Health cards).  A better 
and more flexible solution is to allow other, independent identity providers for citizens (already in place in some 
cases) to be used in the context of health and social services.  This also reduces the overhead and cost of deploying 
and maintaining a separate identity solution.   



 

 

© 2009 Microsoft Corporation 27 

| Knowledge Driven Health 
 
 

…Credentials 

Interactions of patients/citizens and care professionals with separate health and social services providers and 
services often require identifiers that are specific for each service – such as a patient number, insurance plan 
number, health professional ID, or care provider ID. Enabling access to multiple services electronically, when 
identification and access controls are implemented independently for each service, usually involves the creation of 
separate, different credentials for each service – which users have to manage and remember.  

This is challenging enough for users, even for frequently used services like online banking. For health services 
perhaps accessed infrequently when an urgent need arises, remembering passwords and other identifiers for each 
service is even more cumbersome for users.  

An e-Health platform that allows access to multiple services with a single set of credentials is a major advance, 
contributing to the successful adoption of e-Health services. 

It is important to note that use of a single credential for many services does not imply that a single credential is 
suitable for all services. While there are advantages in enabling access to several services through one set of 
credentials, the platform should help provide users with the freedom to choose which services they want to link to a 
particular set of credentials, and permit the use of several independent set of credentials if this is what they prefer. 
This aligns well with the principles articulated in the section Identity Metasystem – Laws of Identity on page 31.  

Consistent Sign On and Single Sign On 

Once users have acquired an e-Health credential, making it possible to access a growing range of services with that 
single credential is beneficial both for the user, and for the providers of services – minimizing the incremental cost 
and overhead for enabling access to each subsequent service.  

Accessing several services with the same credential can be at different levels, called “consistent sign on” and “single 
sign on”. The simplest form is consistent sign on, where it is possible to provide access to many separate services 
with a single credential, while still requiring the user to log on explicitly to each individual service. Users benefit 
from having to maintain and remember only a single credential, but there is an explicit logon step involved for each 
service (though, in some cases, this explicit logon step may be desirable). Consistent sign on implementation can be 
through independent services, each with its own user authentication database. These databases help maintain and 
synchronize the data so that all the separate copies of the sign on credential are the same.  

Alternatively, with a single sign on, multiple services may rely on a single common authentication service (identity 
provider), instead of each implementing its own. This helps provide the desired consistency automatically, because 
there is a single instance of the user’s credentials.  A more advanced scenario allows users to access multiple 
services transparently, after logging on explicitly only once. This helps provide a seamless user experience, and may 
allow for aggregation of services. Portal sites that offer a view across all services while interacting with individual 
back-end services are a good example of this.  

Identity Mapping 

The use of a single credential to access multiple services can certainly be useful, but it helps with only one part of 
the problem: improving the user experience. The target systems still may need the appropriate service-specific 
identifiers that help distinguish the user in the context of that particular system—for example, the patient number 
for electronic health records, the senior citizen ID for home care arrangements, insurance or health plan ID for 



 

 

© 2009 Microsoft Corporation 28 

| Knowledge Driven Health 
 
 

payments, and so on. These identifiers are essential for helping with the successful mapping and processing of 
requests, and are typically meaningless outside of the context of the specific service. Most existing back-end 
systems depend on such distinct service-specific identifiers, and providing the mapping from a single credential to 
the appropriate service-specific identifiers is essential for the effective delivery of a growing range of services 
through a common e-Health platform.  

During interaction with a service, it is sufficient to authenticate the user (with the single user credential if 
appropriate), and then pass only the service-specific identifiers relevant to that interaction on to the service, 
without disclosing the common user identifier that may have been used to correlate the user's identity across 
multiple services. Where such correlation is needed and beneficial (for example, to provide a better, more seamless 
user experience and aggregated services), it has to be established explicitly and with the appropriate user consent. 
Silent enablement is not an option, due to both good practice and legal constraints—for example; some countries 
such as France, Portugal, and the United Kingdom have explicit regulations prohibiting such correlation.  

Helping to provide a reliable and secure one-way mapping of the generic user identity to the service-specific 
identifiers appropriate for the context of the interaction is one of the fundamental challenges that a common e-
Health infrastructure, shared by all participating services, can address.  

In many countries, there is no universal national identifier for citizens, and each service uses its own service-specific 
identifiers. Even in countries where all citizens have unique identifiers (such as Ireland, Belgium, France, and 
Bulgaria), and healthcare systems can use these to identify the user, there are limitations. For example, where 
multiple relationships are possible for a single person with a target service— such as dealing with several hospitals, 
or health insurance providers, or social services— the citizen identifier alone is often not enough to distinguish each 
relationship, and a service-specific identifier is required.  

However, the direct use of citizen identifiers or a national patient number by services, even where technically 
possible, also raises concerns about privacy, and violates some of the fundamental principles of identity 
management. This includes Minimal Disclosure for a Constrained Use and Directed Identity, as discussed later in the 
section Identity Metasystem – Laws of Identity on page 31. 

When the relationships are more complex, the need to map the single credential to the appropriate service-specific 
identity for each context is even more obvious.  There are numerous scenarios common in e-Health services that the 
simple traditional models for access management cannot adequately handle. While the principle of “a single 
credential for each user, providing access to multiple services” is a good foundation, there are cases where more 
complex one-to-many or many-to-many relationships between users and target services have to be handled, for 
example: 

 Several individuals, each with their own credentials, accessing the same target service in the same context 
(in other words, using the same service-specific identifiers). This may be the case of several care 
professionals from a single organization, accessing a patient’s results in an external lab facility. 

 A duly-appointed representative, with a single credential, interacting with a single target service but acting 
on behalf of many clients with different contexts (different service-specific identifiers) for each client.  This 
could be a relative acting as “health manager” for family members. 

 

A mapping of individual credentials to the target service can help support this type of access authorization, where 
each access requires specific context identification. It is also important to ensure traceability and non-repudiation of 



 

 

© 2009 Microsoft Corporation 29 

| Knowledge Driven Health 
 
 

actions by individuals, including auditing of the credentials used—something the common practice of sharing 
individual credentials effectively circumvents. 

Maintaining and keeping track of such mappings (if they do not change too frequently) is possible within a common 
e-Health infrastructure shared by all services, instead of individually by each service. Apart from the advantage of 
implementing it only once, existing back-end systems are rarely capable of easily accommodating such new 
functionality. In cases where mappings are very dynamic (such as those related to shift and team assignments in a 
hospital), the relevant information may be managed better in lower-level systems. 

Scale 

The number of users of e-Health and e-Care solutions, whose identities have to be managed, is significant.  
Deploying and managing a national-level identity system for care professionals may be a challenge beyond the 
capabilities of typical enterprise identity products (for example, NHS in England employs around 1.2 million 
people!).  Subjects of care are the entire population of the region or country—often tens of millions.  In addition to 
typical technical performance and scale considerations, the requirements and procedures for provisioning of users 
and providing assistance on such a large scale have to be analyzed very carefully.  For example, even with the most 
optimistic (low) estimates of usage, the cost of staffing and providing a Help Desk to deal with inevitable user issues 
(password/PIN reset, lost or damaged cards, etc.) for millions of people can easily exceed the entire budget for an e-
Health or e-Care solution—yet another reason why tapping into and reusing identity providers already in place is 
highly recommended. 

Scope  

The scope of the identity system required to support advanced care collaboration scenarios is typically larger than a 
single organization.  Even when a single national-level identity solution for care professionals (such as health 
workers) is envisaged, it is important to consider also the existing organizational structures and practices – which 
are needed to support the provisioning and management of users.  These professionals will still need access to local 
resources (computers, networks, buildings) – and if the “national” identity solution exists independently in parallel, 
there could be significant overhead and inconvenience (multiple separate logons, several cards, and so on) for the 
users. 

Even if a single national identity system for health professionals is successfully deployed (making all these members 
of a virtual single “organization”), the next challenge is the authentication and access for users outside of this 
security realm—for example, social and elderly care workers, who belong to other organizations.  One approach—
adding (and managing) each one of these individually as “external users”—is difficult and costly.  A better 
alternative is to federate the identity systems, leaving each organization to manage its own users, and establishing 
trust relationships at the organizational, rather than individual, level. 

After enabling care provider users from different organizations to collaborate securely and effectively, the next 
challenge is to allow the subjects of care (the more numerous general population) to get access to data and services.  
As soon as this access becomes targeted and personalized beyond just publishing generic information (for example, 
involves personal data), these users have to be authenticated by some identity provider – which is most likely to be 
separate and independent from the identity provider for care workers.  This scenario also leads naturally to 
federated identity solutions. 



 

 

© 2009 Microsoft Corporation 30 

| Knowledge Driven Health 
 
 

Authorization 

Requirements and regulations governing access to data and functionality in Health and Social Care are often quite 
specific, and not easily serviced by mainstream approaches and products.  In this section, we are reviewing the most 
significant such “deviations”, requiring special attention when architecting e-Health and e-Care systems. 

Role-Based Access 

Role-based access (the mainstream approach for the majority of computer systems) remains applicable to Health 
and Social Care.  It allows access rights to be defined at a “logical” level, in relation to a “role” – and applied 
automatically to all individuals assigned to the role.  However, while in most other industries the mapping of users 
to roles is relatively static, in our case changes could be much more frequent, if the granularity of roles is too fine or 
extends to team assignments, working shifts, and so on.  Managing such dynamic attributes of users by assigning 
them to roles and groups through traditional directory and user management tools may prove cumbersome, and 
alternative approaches are needed. 

Legitimate Relationship 

Coarse-grained roles are only the initial step in determining the level and scope of access to personal information—
for example, a doctor, nurse, or social worker would normally have access to different categories (subsets) or 
information needed to perform his or her duties.  An important concept in many jurisdictions is the explicit 
“legitimate relationship” link between a specific individual (patient, citizen) and a care provider (“My GP”, “My Case 
Worker”) – which restricts access to specifically assigned individuals (rather than all users belonging to a role).  This 
is often linked to privacy regulations, scope of consent given (implicitly or explicitly), and other established practices 
– which historically matched the physical storage of records.  With the proliferation of electronic records and the 
technical ability to share them between care providers, providing access to information (and improved quality of 
care) has to be carefully balanced with the privacy constraints.  

Sealed Envelopes 

In addition to the generic rules for role-based access, uniformly applicable to everybody, many countries also have 
the provision for further control by the individual of the access to particularly sensitive parts of their health history. 
The concept of “sealed envelopes” places additional restrictions, allowing access to chosen types of information 
(such as sexual and psychiatric histories) only in certain circumstances or by separate explicit consent. 

Emergency Override 

Another commonly seen interesting requirement is to provide a special “emergency override” capability for 
accessing patient information regardless of the roles, applicable access rules, and “sealed envelopes” – if such 
access is deemed necessary by the care provider.  This is typically invoked in life-threatening situations, when quick 
and easy access is critical.  At the same time, providing such functionality can open up opportunities for misuse 
(such as using “emergency access” in routine scenarios simply because it is easier than the normal procedures).  It is 
important to find the right balance between servicing genuine emergency needs and preventing abuse—typically 
through strong auditing, notification, and subsequent review mechanisms.  

 



 

 

© 2009 Microsoft Corporation 31 

| Knowledge Driven Health 
 
 

Identity Metasystem – Laws of Identity 

The key principles (Laws of Identity: http://www.identityblog.com) of digital identity systems, formulated by Kim 
Cameron in 2005, are now widely adopted by the industry: 

User Control and Consent – Technical identity systems must only reveal information identifying a user with the 
user’s consent.  Putting the user in control (what identities are used, what information is disclosed, and for what 
purpose) is essential for gaining the user’s trust. 

Minimal Disclosure for a Constrained Use – The solution that discloses the least amount of identifying information 
and best limits its use is the most stable long-term solution. To minimize the risk and potential damage from a 
security breach, identity information should be disclosed on a “need-to-know” basis, and only to the extent needed.  
For example, in order to confirm someone’s age, it is not necessary to disclose the exact date of birth – which is 
valuable identifying information in itself.  Citizen Identity numbers in use by many countries (which include the date 
of birth within the number itself) are in clear breach of this principle. 

Justifiable Parties – Digital identity systems must be designed so the disclosure of identifying information is limited 
to parties having a necessary and justifiable place in a given identity relationship.  While it is usually beneficial to 
consolidate identity providers for different government services, using the same identity by the individual to access 
more private services may not be acceptable.  

Directed Identity – The identity system must support “unidirectional” identifiers to prevent unnecessary release of 
correlation handles. Directed identity allows identification of the person to the particular service, but the identifiers 
used cannot be linked with any other service used by the same person.  Some of the technologies currently in use 
(RFID, Bluetooth) are not compliant with this principle – they can emit identifying information indiscriminately – and 
propositions for their use to identify individuals (in patient bracelets, passports, and ID cards) should be scrutinized 
very carefully to eliminate possible abuse. 

Pluralism of Operators and Technologies – A universal identity system must channel and enable interworking of 
multiple identity technologies run by multiple identity providers.  It is not realistic to expect that a single (centralized 
monolithic) identity system can support all possible scenarios and categories of users – this is why a metasystem (a 
collection of independent systems) is needed.  It is not only a matter of having identity providers run by different 
parties, but of having identity systems that offer different features.  

Human Integration – The universal identity metasystem must define the human user to be a component of the 
distributed system integrated through unambiguous human–machine communication mechanisms offering 
protection against identity attacks.   

Consistent Experience Across Contexts – The unifying identity metasystem must guarantee its users a simple 
consistent experience while enabling separation of contexts through multiple operators and technologies.  Users 
must be able to see their multiple identities and parties involved, and choose the one appropriate for the context 
through consistent, unambiguous user interface. 

The main categories of “players” in the Identity Metasystem are as follows: 

 Relying Parties – systems and applications that require identities 

 Subjects – individuals and other entities about whom claims are made 

 Identity Providers – which issue identities  

http://www.identityblog.com/


 

 

© 2009 Microsoft Corporation 32 

| Knowledge Driven Health 
 
 

Aligning the identity and access solutions with these principles, widely supported by the industry and policymakers, 
addresses most of the identity and access challenges discussed in the previous sections, and is highly recommended 
as a general approach.  

 

Interoperability  

At any level—from national and regional e-Health systems to a single organization—interoperability between a 
growing numbers of independent nodes is one of the major architectural challenges for e-Health initiatives. While 
even complex commercial systems need to integrate with a finite and typically well known from the start set of 
systems, e-Health solutions usually face a bigger challenge. They must provide a platform for integrating a larger, 
and to some degree unknown, set of current and future services. Making the integration easier and avoiding 
disruption to existing services is a major factor for the successful adoption of an e-Health solution.  

Various options for integrating separate systems (which could be running on different platforms and software 
stacks) are possible, and the following sections discuss these. Choosing the most appropriate option depends on the 
specific constraints, type of interoperability required, and other factors.  

Note: Detailed generic Microsoft guidance on this topic is available in the document Integration Patterns available at 
http://msdn.microsoft.com/practices/patterns/default.aspx?pull=/library/en-us/dnpag/html/intpatt.asp.  Here we 
focus primarily on the aspects most relevant to e-Health.   

Interoperability Layers  

As discussed in the section Integration and Interoperability in Health and Social Care in Part 1 of this guide, there are 
several aspects of interoperability that have to be catered for.  To paraphrase, we need to provide interoperability 
at the following levels (starting from the most basic and moving up): 

 Technical interoperability – providing the basic means for connecting participating nodes  

 Syntactic interoperability – general rules and protocols governing the initiation and termination of 
connections; types, format, and sequence of messages, and so on. 

 Semantic interoperability – allowing communicating parties to have a consistent, mutual understanding of 
the content of the conversation 

These can be viewed as a “stack”, where each layer depends on the ones below – but are also independent, and 
each level can be realized by a variety of providers.  Such separation and flexibility, common in other industries, 
allows significant economies by reusing existing experience, established standards, and infrastructure. 

To make an analogy with the telephone system: technical interoperability is the taken-for-granted these days ability 
to use a mobile phone pretty much anywhere in the world; syntactic interoperability is the ability to successfully 
place a call (or send a text message) to anyone (possibly in a different country), and all necessary in the process 
exchanges of messages; semantic interoperability is the ability to actually understand each other (using common 
language).   

The actual routing of the call (mobile network base stations, land lines, undersea cables, satellite links), the process 
of cross-billing between participating providers, and other mechanics remain hidden within the infrastructure – and 
may vary widely depending on the circumstances.  Naturally, just being able to call someone is of little use if you 

http://msdn.microsoft.com/practices/patterns/default.aspx?pull=/library/en-us/dnpag/html/intpatt.asp


 

 

© 2009 Microsoft Corporation 33 

| Knowledge Driven Health 
 
 

cannot understand each other – and this remains something the parties have to agree on and handle between 
themselves, the telephone infrastructure does not offer any help (yet).  However, you still would not expect the 
phone (or network) you use when speaking French to be different from the one for Spanish.  

In many cases today, the e-Health systems are still where the telephony (or banking, or many other industries) were 
some decades ago—islands of incompatible systems, protocols, terminology, and coding.   

The discussions that follow, and the different interoperability options presented, can include any subset of these 
levels: for example, interoperability adapters (in the central hub or in the remote spokes) may support not only 
technical and syntactic, but also semantic interoperability—conversions of language, terminology, and so on.  

Role of Standards and Interoperability Profiles 

Industry standards can help achieve interoperability by narrowing down the wide variety of options available at any 
of the levels discussed above in Interoperability Layers to a more manageable subset.   

However, agreeing on a standard does not automatically guarantee interoperability.  Without widespread adoption 
and support in commercial products and tools, a standard (even when officially endorsed by an authoritative body) 
may remain outside of the mainstream development, an exotic aberration few can understand, and wane unused.  
Sometimes, this is a result of sudden changes in the direction of technology development—for example, the use of 
the Internet universal communication medium—and often hard to predict.  Technical superiority or other positive 
qualities of a standard are not a guarantee either, and there are plenty of such examples in IT and other areas.  

The other potential problem is that standards are usually too broad, with many options to choose from – and 
flawless interoperability resulting purely from adherence to a standard is a more of a lucky coincidence when both 
parties made the same choices (or both sides are implemented by the same developer).  In addition to that, there 
could be multiple standards available at different Interoperability Layers. – increasing the number of possible 
permutations of individual choices made.  The recommended way to handle the latter is to promote isolation and 
independence between the layers -- so that, for example, a decision on how to achieve interoperability at the 
transport or messaging infrastructure layer does not impact the choices and standards available at other levels. 

An approach gaining popularity in the industry, and promoted by policy bodies (such as the European Commission 
mandate on health interoperability M/4031), is the creation of interoperability profiles.  Targeting a specific usage 
scenario, these profiles define the applicable set of existing standards and a particular way of using them to achieve 
interoperability.  Reference implementations from different vendors are tested to confirm compliance with the 
profile and provide practical demonstrations of cross-platform interoperability.  As a result, compliance with 
established interoperability profiles provides a good foundation for achieving interoperability in e-Health systems.  
The most relevant to our area are the interoperability profiles for Web Services Interoperability (WS-I2) and those 
developed by Integrating the Healthcare Enterprise (IHE3). 

For a more detailed discussion, see the section Utilizing Standards for Greater Interoperability on page 100.  

Part 5 – References of this guide contains a detailed list of pointers to standards, related bodies, and resources. 

 

                                                     
1  http://www.ehealth-interop.nen.nl/  
2  http://www.ws-i.org/Profiles/BasicProfile-1.1.html  
3  http://www.ihe.net  

http://www.ehealth-interop.nen.nl/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ihe.net/


 

 

© 2009 Microsoft Corporation 34 

| Knowledge Driven Health 
 
 

Integrating Natively 

Native integration between two systems is possible when they are compatible to the required level. In other words, 
there is compatibility between the infrastructure and networking systems, the data access features, the service and 
component model, the integration of processes, security, and identity implementation, and systems management. If 
two systems can interact successfully, then successful integration may require only minor extra effort.  

This was generally the case when both systems were running on the same platform, using compatible software, 
object model, and development tools. However, a service-oriented architecture (SOA) helps such native 
interoperability to exist across a much broader range of platforms, as long as these are compliant with the industry 
standards. 

Native integration is the "ideal case" that e-Health systems should aim for whenever possible because it minimizes 
the effort required for successful integration. However, the architecture should also cater for cases where the 
constraints on existing or future systems that do not or cannot support standard SOA interfaces, such as Web 
Services, could otherwise prevent integration. 

Adapters in the Hub 

One common approach for integrating a broad range of different systems, possibly residing on diverse platforms, is 
the addition of a set of adapters to the central system or hub, each adapter reaching into a different type of remote 
system. Figure 11 illustrates this overall approach, where the hub contains four adapters that provide access to four 
services potentially using different integration technologies.   

 

Figure 11. Using Adapters in the Hub to Integrate Disparate Systems 

The advantage is that the remote systems can remain unchanged, and the hub helps take care of the extra work 
required by, for example, bridging network protocols, transforming data, matching semantics, and managing the 
flow of messages exchanged.  

The disadvantages of this approach include: 

 Various native protocols are propagated beyond remote systems all the way to the hub where the adapters 
reside, which may be cumbersome or impossible over a wide-area network or the Internet. 



 

 

© 2009 Microsoft Corporation 35 

| Knowledge Driven Health 
 
 

 Integration of new types of systems requires changes to the hub in the form of a new adapter, which may 
result in a disruption to other services. 

 Scalability is limited, especially when the number and variety of systems to integrate with grows over time. 

For these reasons, the "adapters in the central hub" approach is not usually feasible beyond the concept of a few 
adapters supporting widely used and well-established standards. 

Adapters in the Remote Spokes 

Another variation of the adapter approach described above is the use of “remote adapters”. In this case, matching 
of the specifics of a given system, such as network connectivity and protocols, data formats, and semantics, occurs 
within the remote system. Each system is responsible for its own integration up to the level of some common 
standard.  

The widely adopted and recommended current standard for this is Web Services. Fronted by the appropriate 
adapter, such remote systems can integrate natively with the hub. The amount of custom integration work depends 
on how different the remote system is from the common standard but, generally, it is comparable with the effort 
required in custom integration through the “adapter in the hub” approach, and only the location is different. 

The adapters may become part of the original remote system, or implemented separately on some intermediary 
platform. This second approach may be useful when changes to the existing systems are not possible. Figure 12 
shows the high-level architecture where the adapters are located at, but are not part of, the remote system. 

 

Figure 12. Using Remote Service Adaptors to Integrate Disparate Systems 

The main characteristics of this approach are: 

 Each system integrates to a common standard and the integration is implemented locally to the remote 
system, potentially making it easier.  

 Communications to all remote systems over a wide area network (WAN), or other networks such as the 
Internet, can be standardized to use the same protocol and interfaces. 

 New services can easily be added because the central hub is not affected. There is no need for new adapters 
within the hub, and all remote services can integrate in the same standardized way. 



 

 

© 2009 Microsoft Corporation 36 

| Knowledge Driven Health 
 
 

 The integration effort is still multiplied by the number of remote systems, and potentially repeated, though 
some commonality may exist between the adapters for individual services. 

Isolating Common Functionality 

Isolation of the generic common functionality required for the integration of remote systems with the central hub—
such as security, reliable delivery, and message store-and-forward—from the integration that is specific, 
customized, and unique to each target system provides certain advantages. It is possible to reuse a common 
implementation of such a generic integration base, which eliminates repeated and redundant effort and leaves only 
the requirement for specific integration implementation against each target service. 

Figure 13 shows how specific parts of the integration implementation, marked “X” in the figure, can be reused in 
more than one adapter, reducing development effort and integration timescales. 

 

Figure 13. Reusing Generic Integration Features in Multiple Remote Adapters 

The development, testing, and maintenance of such a “base” or “starter” integration solution can be done once, and 
then reused by a growing number of participating nodes – significantly simplifying the integration.   

Investing once in the design, development, and testing of such a common integration solution, and offering it to 
affiliated services as a base for their specific integration, can provide significant savings while still assuring the 
quality of the base solution. The common integration solution can deal effectively with most of the difficult issues 
around reliable remote communication, security, and other requirements, most of which may require expertise not 
readily available at each healthcare agency—especially as the spread of e-Health services reaches smaller entities 
such as local authorities. Service-specific integration, when performed locally to the target system, can be much 
simpler and easier than full integration all the way to the hub. 

Microsoft has published for free reuse the Health Connection Engine, which is an example of such a “starter” 
integration solution, implementing most of the commonly needed functionality. 
(http://www.microsoft.com/industry/healthcare/technology/solutions.mspx#HealthConnectionEngine)  

Combining this architectural approach with the appropriate governance and commercial arrangements—for 
example, offering a complete base integration solution that includes hardware, software, installation, and support—
can be a significant positive driver for the successful adoption of online delivery for a growing range of e-Health 

http://www.microsoft.com/industry/healthcare/technology/solutions.mspx#HealthConnectionEngine


 

 

© 2009 Microsoft Corporation 37 

| Knowledge Driven Health 
 
 

services. The positive experience in several countries demonstrates the advantages of such an approach. It is a much 
better proposition than providing prospective participants with just a specification for common integration with the 
hub, and leaving them to do the rest on their own. 

 

Securing the Solution 

Of all the issues that face the architect and developer of an e-Health solution, security is the one that can potentially 
cause the most problems if not implemented in sufficient breadth and depth throughout the entire system. Often, 
security is treated as an “add-on” feature that is considered only after design and implementation of the solution is 
complete. This approach invites disaster, and instead it is imperative to build security into the architecture of the 
application right from the start. 

Why It Is Important 

All Web sites, services, and applications must protect themselves from intrusion and damage caused by malicious 
persons, automated code such as viruses and worms, and service interruptions such as denial of service (DoS) 
attacks. However, e-Health projects carry specific risks – generally beyond those even of financial institutions such 
as online banking sites. This is because they present a high-profile target for: 

 Politically-inspired attackers determined to infiltrate the system and cause as much havoc to services as 
possible. 

 Attacks on individual users for any number of non-political reasons—for example, attempting to destroy a 
user's confidence, intimidate, or prevent access to services for which they are entitled. 

 Attempts to gain access to sensitive personal information about prominent individuals (politicians, 
celebrities).  

 Persons attempting to perpetrate identity theft. For example, obtaining details of a user's identifying 
numbers, address, health records, and other detailed information that can be used to impersonate the user 
and aid identity theft. 

 Fraud or attempted fraud if users can make unauthorized changes to the data—for example, by avoiding or 
reducing payment for services. 

Some organizations and institutions can “hide” the results of security breaches; however, e-Health applications are 
usually highly visible, and so any successful attacks are likely to be equally visible to the community. Such events will 
prove embarrassing both politically and in terms of public relations with suppliers and users. The result of even 
minor security failures can add unplanned cost and inconvenience to users and healthcare organizations by 
destroying confidence in the system, and thereby making acceptance harder to achieve in the long term. 

Architecting Secure Solutions 

The section Securing the System (page 110) of the Reference Architecture later in this guide contains specific advice 
and guidance for helping design and build secure solutions. This includes techniques for using multiple layers of 
security for achieving the three main goals of confidentiality, data integrity, and reliable authentication – as well as 
understanding the issues of threat modeling and the suggested countermeasures available.  



 

 

© 2009 Microsoft Corporation 38 

| Knowledge Driven Health 
 
 

However, security goes beyond the technological implementation, and any design process must also address other 
considerations for architecting a solution that can adapt to an ever-changing security landscape. These include the 
following: 

 Designing for the expansion of services and features over time 

 Implementing secure storage of sensitive project data, and devices such as digital keys and certificates 

 Managing the development team and the implementation methodology to ensure that best practices are 
followed 

 Testing the application is all scenarios to ensure that the architecture design is robust and implements the 
planned security requirements 

 Hardening the environment during and post deployment, and ensuring that it meets configuration and 
installation requirements 

 Monitoring the performance of the application and services, auditing processes, and creating suitable action 
plans to manage intrusion or data corruption 

 Implementing an ongoing process to respond to any newly found security risks, and regularly updating 
software and hardware with the latest service packs 

Microsoft provides a wealth of guidelines, patterns and practices, systematic development documentation, and best 
practice white papers to help design, build, and deploy secure solutions. See the Microsoft Security Developer 
Center at http://msdn.microsoft.com/security for more information. 

Scalability and Performance  

E-Health solutions typically have to meet stringent requirements for performance and scalability. By their very 
nature, many of the interactions with healthcare services are infrequent, perhaps annually or quarterly, and with 
significant seasonal peaks. Providing adequate throughput capacity to handle such peak loads within acceptable 
performance targets is critical for the successful adoption of e-Health services. Any failures such as delays or 
unavailability of the service during these busy periods are highly embarrassing, undermining public confidence in 
the services and affecting negatively one of the key drivers of using electronic services—the ability to conduct 
electronic interactions faster and easier than through traditional channels. 

Starting small, e-Health solutions tend to grow over time as the popularity of the online services and the number of 
active users increases. Where delivery of these services is through a shared common infrastructure, there is also 
growth of the number of services offered, in addition to the increased usage of each service. Therefore, it is 
important to scrutinize and validate any “estimated” and “projected” growth numbers – as these often tend to be 
overly optimistic.  

Measuring such requirements against available known metrics (current volumes of interactions with services 
through traditional channels, penetration of online services in other similar areas) and constraints (network 
capacity, back-end systems capabilities) is a useful initial filter. There have been cases where a simple calculation of 
the volume of interactions multiplied by the average estimated size resulted in volumes of data traffic far exceeding 
the actual network capacity, providing a clear indication that the projected volumes were unrealistic and 
unachievable due to other constraints. Blindly accepting such “projected” performance requirements, and trying to 
meet them, can unnecessarily complicate the design and implementation of an e-Health platform.  

The topic Performance and Scalability (page 116) in the Reference Architecture section of this guide contains advice 
on designing e-Health solutions for high performance and scalability. 

http://msdn.microsoft.com/security


 

 

© 2009 Microsoft Corporation 39 

| Knowledge Driven Health 
 
 

 

Availability, Resilience, and Disaster Recovery  

As part of the design brief for implementing a scalable system that meets performance requirements, there are 
other related issues. Lack of performance obviously affects availability of the solution by causing intermittent or 
even extended failures when users attempt to connect to and use the system. Providing high availability means 
ensuring that all parts of the infrastructure, such as the hardware, software, and network, are resilient. In other 
words, a single point of failure should not cause a catastrophic effect. 

In fact, availability and resilience cover a multitude of issues connected with the architecture of the solution. The 
topic Performance and Scalability in the Reference Architecture section of this guide discusses the way that 
hardware scaling can help to protect against individual hardware and software failures by employing multiple and in 
some cases redundant backup components that take the processing if required. 

Of course, no one can guarantee that failures will never occur. It could be a simple software fault, a failed hardware 
component, or even a street contractor digging through your network feed. More dire circumstances, such a serious 
fire or structural accident at the location where the servers reside, will almost guarantee that the application will 
fail. Other issues to consider are malicious operators, innocent mistakes by staff, or data errors that destroy whole 
disk arrays. 

To cope with such issues requires a well-defined, thorough, and fully tested emergency backup plan to be in place 
pending such a disaster. This plan will attempt to cover all eventualities ranging from simply reloading data from 
backup disks or tapes, to moving the entire operation to a different location with equipment and software installed 
ready for immediate use. Enterprise suppliers provide a range of such services, which can help to greatly reduce the 
downtime for vitally important applications such as e-Health solutions that must be available at all times. 

Enabling Advanced e-Health Services 

E-Health is not just about converting paper records to electronic ones, but also about making these electronic 
records available, when required, to healthcare providers across the chain, from general practitioners to hospitals 
and pharmacies.  Beyond this, it applies ICT to telemedicine, enabling, for example, patients to have a consultation 
with hospital-based specialists over a video link from their GP’s surgery. It permits analysis results and images to be 
transmitted for assessment by specialists. It allows patients to monitor chronic conditions themselves from home. 

These services may be provided to different types of users: care professionals, accessing a variety of systems; 
administrators, for example, who wish to manage patients’ admission records electronically; or the general public 
via information portals established by governments and care providers to enhance public awareness of health issues 
and promote improvements in public health.  

When developed independently, each service may implement the identification and communication processes in a 
different way, and users may have to maintain separate credentials (such as user names and passwords) for every 
service with which they interact, as illustrated in Figure 14.  As the range of the available services online grows, so 
does the complexity of managing user identification, and communicating securely and reliably with that user. 



 

 

© 2009 Microsoft Corporation 40 

| Knowledge Driven Health 
 
 

 

Figure 14. Each client deals independently with each back-end service 

Obviously, this approach leads to problems with duplication of development effort, multiple identities for each user, 
and makes it difficult to achieve any joint orchestration of processes. For example, users have to log on to each 
service in turn to register changes such as a new address or updating of a contact phone number. 

 

The concept of a common gateway or hub may provide a solution to some of these issues. Figure 15 shows how a 
common hub or gateway might act as a broker or integrator for multiple back-end systems. Now each user connects 
to a single endpoint, and a single set of credentials provides identification. Development effort can be concentrated 
on providing a secure and reliable connection point for all kinds of users. The gateway or hub takes over all 
responsibility for helping the user connect to the appropriate back-end service. 



 

 

© 2009 Microsoft Corporation 41 

| Knowledge Driven Health 
 
 

 

Figure 15. A common hub or gateway rationalizes communication between clients and back-end services 

This still does not address all the issues, however. For example, how does the hub know which back-end service the 
user has permission to access, and how does each back-end service know that the user has been correctly 
identified? Extending the gateway or hub to perform two separate sets of tasks can solve this problem, and allow 
users to perform multiple operations in one go (for example, updating their address). 

The first set of tasks is not only to identify (authenticate) the users, but also to have knowledge of the services that 
they may use and their status within that service. For example, which users have registered for, and have permission 
to access, patient records online? Alternatively, which users can act as an agent for other users—perhaps by being 
able to retrieve patient records on behalf of their senior clinician? For this to be possible, the hub must be able to 
route messages to the back-end service and access those using credentials provided by the user; or with some 
equivalent “service ticket” that indicates the correct authentication of the user. 

The second set of tasks is to orchestrate the processes that the user performs. This involves extending the 
capabilities of the gateway or hub to expose functionality to the user. For example, it may provide the interface 
necessary for changing an address or phone number, and then update all the other back-end services that store and 
use this information. It also allows one service to pass messages and updates on to other services, perhaps 
prompting the patient administration service to send out “change of circumstances” notifications and the 
appropriate information when a birth is recorded (see Figure 16). 



 

 

© 2009 Microsoft Corporation 42 

| Knowledge Driven Health 
 
 

 

Figure 16. The hub can also take over responsibilities for message routing and process orchestration 

These diagrams show only the most basic types of infrastructure, indicating why the gateway or hub approach may 
be an appropriate approach for integrating e-Health systems. In the later sections of this guide, the topology and 
architecture is explored in more depth. 

 

Realizing the Value of Common Infrastructure 

A common e-Health integration solution, shared between many services, can very effectively address many of the 
architectural challenges discussed so far. For more details, see the Reference Architecture section of this guide on 
page 44. While such an approach has definite advantages, implementing it may be challenging due to political, 
commercial, and other constraints. The following sections discuss the most common issues and challenges. 

The Need for an Owner and Sponsor 

In many countries, healthcare agencies implement segmented e-Health initiatives with little or no coordination, 
often as an extension of their current systems and projects. Even if some central healthcare body in charge of e-
Health initiatives exists, it may have limited power to facilitate and coordinate implementation, and no funding to 
support the actual design, development, and deployment of a shared infrastructure. As a result, even though most 
agree with the benefits of having a shared integration platform and see the resulting savings, it may be difficult in 
practice to deliver it in the absence of a clear owner and sponsor.  



 

 

© 2009 Microsoft Corporation 43 

| Knowledge Driven Health 
 
 

The best results occur where there is a central body with the necessary authority and funding to promote the 
adoption of e-Health services, and capable of driving delivery of a common integration platform. Such a body also 
acts as a facilitator, hosting discussions and driving for a consensus among stakeholders, and as a custodian of the 
overall architecture. 

 

Initial Investment with Delayed Future Benefits 

Investing in the architecture, design, development, and deployment of a shared integration platform builds a 
foundation for the successful and efficient delivery of e-Health services. However, the initial phases deliver primarily 
infrastructure, which is not visible to the users and stakeholders, and does not directly generate any benefits. It only 
enables the success of e-Health services built on this foundation, as they become available.  

To be able to demonstrate the possible benefits from the platform, quick deployment of a carefully selected initial 
set of services is essential. This makes the benefits to the service providers and their constituency more tangible. In 
addition, if the platform is architected and implemented, the cumulative net benefit will grow with each new service 
connected to it, while the incremental cost of new additions will be lower. 

Common Conflicts with Individual Projects 

When designing and implementing the shared e-Health platform alongside the initial set of services that will use it, 
there is often a tension between the generic nature of the common platform and the specific requirements of each 
service. While such friction can be creative and positive in providing early validation of the actual fit between the 
platform providers and the service providers, it can also influence negatively the design of the common platform to 
adopt and implement functionality that does not belong there.  

There is a natural tendency, especially under the pressure of tight timescales and budgets, for each owner of a part 
of the whole to push the boundary between services and get someone else to do particular work. For example, as 
discussed in the section on  

Interoperability, the integration work necessary to connect a node to the common infrastructure can be performed 
either at that node or at the hub.  Combined with the fact that e-Health projects are often driven primarily by one, 
or few, powerful agencies (and the scope and budget for the common infrastructure may be carved out from their 
own), the pressure to implement as common functionality—which is not genuinely generic and reusable, but saves a 
particular participant time and cost—can be very hard to resist. However, this will inevitably compromise the 
integrity of the architecture, and will affect subsequent services – which may all have to adapt to changes made to 
suit only a few.  

It is essential to safeguard the integrity of the architecture from attempts to insert into the common shared 
infrastructure services and functionality that are not genuinely generic and reusable by the majority of participants. 

 



 

 

© 2009 Microsoft Corporation 44 

| Knowledge Driven Health 
 
 

Reference Architecture 

This section presents typical reference architecture for implementing an e-Health solution at any level—from local 
enterprise to regional to national and cross-agency systems.  It consists of the following sections: 

 Principles Guiding the Architecture (page 45) lists the overall principles guiding the architecture, as 
discussed in more detail in other parts of this guide.  

 The Connected Health Services Node (page 46) introduces the concept of a generic e-Health node providing 
a common infrastructure that can be shared by multiple providers of e-Health services. 

 Services Provided in the e-Health Reference Architecture (page 48) discusses the various services that may 
be provided through the e-Health Services Hub including: 

o Identity Management Services (page 49) 

o Authentication and Authorization Services (page 59) 

o Service Publication and Discovery Services (page 71) 

o e-Health Business Services (page 75) 

o Electronic Health Record Services (page 76) 

o Health Domain Services (page 78) 

o Health Registry Services (page 79) 

o Integration Services (page 79) 

o Data Services (page 98) 

o Communication Services (page 99) 

 Deployment Options  (page 102) looks at various deployment models to be considered when implementing 
the e-Health reference architecture against varying jurisdictional requirements and constraints. 

 Securing the System (page 110) provides pointers to available general guidance on building secure systems, 
and security architecture aspects specific to e-Health systems. 

 Performance and Scalability (page 116) looks at the approaches for creating a solution that meets the 
criteria for availability, robustness, and performance, capable of growing over time to support increased 
usage and a broader range of services.  



 

 

© 2009 Microsoft Corporation 45 

| Knowledge Driven Health 
 
 

Principles Guiding the Architecture 

In order to tackle successfully the challenges discussed in Addressing Common Architectural Challenges earlier in this 
guide, the Connected Health Framework reference architecture described in this section follows the key principles 
listed below. 

Flexible and Agile 

As discussed in the section Flexibility and Agility (page 9), being able to cope effectively with changes and adapt to 
accommodate new requirements is essential for e-Health solutions aiming to provide an agile platform for a growing 
range of participants and services. 

Flexibility provided by the architecture and built in from the start is the key for the success of e-Health solutions. 
The requirement for extending and adapting the core infrastructure in response to the changing scope and 
requirements (such as adding new services, participating nodes, authentication methods) is a mainstream use case, 
properly supported by the framework, processes, and tools, and not an afterthought or periodic activity between 
major releases. 

The architecture should also have the flexibility to support e-Health solutions at all levels: enterprise, regional, 
national, international – as well as cross-agency systems.  

Service Oriented 

Adopting a Service Oriented Architecture (SOA) approach to the implementation of large, complex software systems 
like e-Health integration solutions allows effective addressing of the fundamental challenge of ensuring that these 
systems are adaptable, flexible, and reliable in the face of change.  

The functionality of the e-Health integration platform should be accessible as a set of generic services, available for 
use independently and as required.  Service Oriented Architecture (SOA) is a framework and a set of policies and 
practices that help enable implemented application functionality to be published as services at a granularity 
relevant to the service requestor. They abstract the implementation by using platform-agnostic, standards-based 
interfaces. 

Interfaces and Standards 

In order to achieve the required independence for different participating nodes from the implementation and 
platform, and in compliance with principles of Service Oriented Architecture, interfaces between autonomous 
subsystems and nodes should be defined using applicable industry standards.  This should be the preferred 
approach for all Interoperability Layers (see page 32)—technical, syntactic, and semantic.  

At the technical infrastructure level, Web Services are becoming the dominant way of exposing services in an 
industry-standard, implementation-independent, and platform-independent way. All major vendors are adopting 
Web Services standards, and there is a growing range of software products supporting these standards. They will 
gradually reduce the share of custom application development in favor of the use of commercial products where 
appropriate. Relying on the products and tools to implement fundamental features natively, such as security and 
reliable messaging, will reduce the cost and effort required to implement the required functionality. 

For more details and pointers to the full set of Web Services specifications, see Part 5 – References of this guide.  



 

 

© 2009 Microsoft Corporation 46 

| Knowledge Driven Health 
 
 

Service Discovery  

The reference architecture should include an infrastructure for registration and discovery (at design-time and/or 
run-time) of the available services, and a repository for the relevant metadata such as schemas, interfaces, and 
policies – using applicable industry standards. 

Federated Security 

As discussed in the section Identity and Access (page 24), the architecture must support a variety of authentication 
methods, credential types, identity providers, authorization methods, and trust models—some not yet known. This 
architecture should provide a generic framework, with the ability to add new providers and methods over time, and 
construct systems with various topologies to satisfy specific requirements and constraints.  It should not assume 
that central authentication and management of all potential users is possible by a single provider. 

Adoption of the principles discussed in Identity Metasystem – Laws of Identity (page 31) and Web Services standards 
in this space will allow interoperability between different implementations and effective use of commercial 
products with these capabilities as they become available. 

Secure 

Multiple layers of protection and different aspects of security should be part of the architecture from the start to 
enable the construction of solutions to the appropriate levels of security for e-Health services. The security model 
itself should be flexible, and permit adoption of various current and emerging security technologies without major 
redesign. 

Scalable and Performant 

The architecture should provide adequate performance, and support growth to meet increasing demand and a 
widening range of services offered. 

The Connected Health Services Node 

A common infrastructure implementing a set of generic reusable services, shared by multiple providers of e-Health 
services, overcomes many of the challenges outlined in the section Addressing Common Architectural Challenges. In 
the context of the Connected Health Framework we use the term Connected Health Services Node.  

While the benefits of sharing common services in such a node generally increase with the number of services using 
it, instead of each one implementing similar functionality separately, there is no assumption or requirement to have 
only a single node for all e-Health services.  Multiple nodes may exist, implementing to varying degrees a subset of 
the full range of services, and cooperating with each other in a variety of topologies—hierarchies, peer-to-peer 
networks, and so on. The aim is to provide flexibility capable of accommodating different requirements and 
topologies, and achieve adaptability to the required scale of implementation – while following the same generic 
blueprint with a core set of common services.  

The e-Health Services Node provides a common set of services available to different types of clients. The node itself 
acts as a client in turn, calling other external systems (services)—see Figure 17. 



 

 

© 2009 Microsoft Corporation 47 

| Knowledge Driven Health 
 
 

Client Interactions 

Architecturally, everything accessing the services provided by the e-Health Services Node is considered a client. 
These can be Web sites and portals servicing their own users but relying on the services in the node, applications 
running on client systems, or any other systems that request services from the node.  

Typical categories of clients: 

 Portals – which may use the identity and security services provided by the node to authenticate their users, 
perform maintenance functions, submit documents on behalf of the user through the node messaging 
services, or access other services. 

 Client Applications – such as clinical applications running on client workstations or servers, may 
communicate with the node to submit requests and access data and other functionality. 

 Other Systems (or other nodes) – which act as clients and access the node functionality. These can be third-
party, back-end (healthcare agency) systems, or other nodes. 

All client interaction is through published interfaces, based on industry standards. This provides the necessary 
openness, compatibility with a wide range of commercial products, and cross-platform interoperability. Client 
interactions with the e-Health Services Node are independent from the actual implementation and platform used by 
the clients.  

It is important to think ahead, and expose the full functionality of the hub services via programmatic interfaces. 
Some implementations of such systems may include a Web user interface as part of the hub, as the only way to 
access some basic functionality. Over time, however, many providers prefer to use the hub functionality from their 
own applications and portals – providing better, more seamless user experience. Adding programmatic interfaces to 
a running system is far more difficult than including them in the design from the start. 



 

 

© 2009 Microsoft Corporation 48 

| Knowledge Driven Health 
 
 

 

Figure 17. Context and External Interactions of an e-Health Services Node 

Interactions with External Services and Nodes  

The e-Health Services Node acts in turn as a client when accessing other (external to the node) services. 
Architecturally, these interactions are the same – but the major types are: 

 Provider Services the node relies on for its core functionality – like external authentication providers called 
by the node to verify credentials.  

 Downstream target services that receive requests from clients sent through the node. The hub acts as an 
intermediary and may add some value within the routing path, such as validation. The target services could 
be healthcare agencies or other systems, or integration hubs fronting such systems. 

 

Services Provided in the e-Health Reference Architecture 

The e-Health Reference Architecture provides a comprehensive set of generic services, different subsets of which 
are likely to be present in any instance of an e-Health node – depending on its role and position in the chosen 
topology.     

The following sections describe major design considerations and aspects specific to e-Health for these services.  



 

 

© 2009 Microsoft Corporation 49 

| Knowledge Driven Health 
 
 

Identity Management Services 

From the Identity Metasystem perspective (see Identity Metasystem – Laws of Identity on page 31), an e-Health 
node can play the role of identity provider, relying party, or both – depending on the positioning of the node in the 
overall topology of the system, and distribution of functionality between nodes.  Respectively, some of the Identity 
Management services discussed in the following sections may be only partially (or not at all) present in a particular 
node. 

Core Identity Model and Principles 

This section defines the core entities within the identity model, their relationships, and the principles driving the 
identity management aspects of the architecture. The generic model for identity management should be open and 
flexible enough to accommodate different (current and future) requirements for different types of authentication, 
mapping of users to services, delegation of authority, and so on.  

Core Entities within the Identity Model 

The following terms describe entities that represent the core identity: 

 User (claimant, constituent) – the individual to be identified, authenticated, and authorized to use certain 
services. Credentials and identity represent users within the model.  

 Identity – represents and identifies a user within the identity management system. A user can choose to 
maintain several separate identities, typically representing different roles or groupings of services that 
remain segregated. 

 Credential – information or other items that are verifiable to assert an identity. Multiple credentials may be 
associated with the same identity. Typical examples are a user identifier and password, a digital certificate, 
and so on. 

 Service – a logical grouping of business functionality offered by a service provider, with consistent rules 
governing authorization and access for users. A healthcare agency can offer several separate services, and 
the access rules and levels of authentication required may be different for each one. Alternatively, grouping 
the business functionality from several agencies as a single service is possible as long as these are consistent 
and there is a clear ownership and responsibility assigned for the aggregated service. 

 Enrollment – the linkage of identity to a particular service, with the relevant service-specific context 
attributes (identifiers). A valid and active enrollment entitles the owner (or a duly authorized 
representative) to access the service in the context defined by identifiers.  

 Identifiers – information attributes attached to an enrollment, which uniquely identify and provide context 
for the relationship of an identity with the respective service. Examples of such identifiers are a citizen tax 
reference, a national insurance number, a social security number, a company registration identifier, a value-
added tax registration number, a property tax identifier, a utility provider identifier, or an account number. 

 Group – represents a collection of users sharing the same enrollments, typically as representatives of an 
organization. 

 Role – a broad category of identity used to define or constrain access to the appropriate services for all 
users within that identity. The typical set of roles includes: 



 

 

© 2009 Microsoft Corporation 50 

| Knowledge Driven Health 
 
 

o Individual (citizen, patient, clinician, consumer, client, and so on) – represents the clients for 
healthcare services. 

o Organization (group) – represents organizations (businesses) where multiple individuals in a group 
can share the same enrollments and act on behalf of the organization. 

o Intermediary (agent, delegate) – the permanently or temporarily appointed representative of an 
individual or organization, authorized to act on its behalf in the context of specified service. 

o Healthcare – individuals and systems representing healthcare agencies and authorized to access 
specific services. 

The Identity Model 

Figure 18 illustrates the relationships between the entities listed above within the identity model. Note that: 

 A User can have multiple Credentials. 

 Each Credential maps to an Identity, and the same Identity may be asserted by several Credentials. 

 Each Identity links to a single Role, which determines the subset of Services available to that Identity. 

 Multiple Identities may link to a Group. 

 A Group can own multiple Enrollments for Services. 

 Each Enrollment maps to a single Service. 

 Each Enrollment for a Service has associated Identifiers, uniquely identifying the context of the relationship 
between the owner of the Enrollment and the Service. 

 

 

Figure 18. The Identity Model 

 



 

 

© 2009 Microsoft Corporation 51 

| Knowledge Driven Health 
 
 

Separation of Identity from Authentication Credentials 

An important principle that ensures the flexibility of the model is the separation of identity from authentication 
credentials. The use and independent verification of multiple credentials may assert a single identity. This can be 
useful for authentication through different delivery channels, where the technology and usage scenarios restrict the 
ability to present some types of credentials (for example, a lack of smart card readers, or only numeric data entry is 
available).  

This multiplicity of credentials can evolve and extend an existing set of relationships (enrollments) by upgrading to 
higher levels of authentication – enabling access to a broader range of services with minimum overhead and 
disruption. Such separation of credentials from identity also allows external credential authentication, outside of the 
e-Health Services Node. This is the foundation for federated authentication and other advanced scenarios.  

Different authentication providers may be involved, depending on the type of credential and its issuer, yet the rest 
of the authorization and mapping to services remains generic. The relationship of several credentials to a single 
identity supports this. 

Support for Federated Authentication 

As a forward-looking solution, expected to be in use without major redesign for many years, it is imperative to 
consider support for a federated authentication model from the start. In other words, assume there will be multiple 
authentication and identity providers. To achieve this, it is important to segregate pure authentication 
(implemented natively by existing and future products and technologies) from the specific functionality like the 
mapping of users to services (which is likely to be specific and require custom-designed processes). 

Federated authentication should be based on the current industry standards such as WS-Trust, WS-
MetadataExchange, WS-SecurityPolicy, and WS-Federation (see Part 5 - References of this guide for more details)—
to ensure interoperability across different platforms and providers, and to maximize the use of commercial products 
implementing those standards.   

For more details on the Microsoft vision for an interoperable architecture for digital identity that assumes people 
will have several digital identities based on multiple underlying technologies, implementations, and providers, see 
Kim Cameron’s Identity Blog (http://www.identityblog.com)  and specifically Identity Software + Services Roadmap 
(http://www.identityblog.com/wp-content/images/2009/01/PDC-2008.pdf). 

Generic Pattern – Pluggable Providers 

The implementation of identity services follows the same generic pattern, as illustrated in Figure 19. It consists of a 
common unified service interface front-end with a variable number of “pluggable providers", which may be of the 
following core types: 

 An internal provider of the service, with the relevant reference data being held locally – this is the 
traditional “in house” approach to identity and authentication, with data in a directory or other storage 

 Some internal processing, where the logic is in the code so there is no dependency on reference data – 
typically used to perform fast and efficient validation of a security token 

 As an interface to an external provider of the relevant service, which may include remote reference data – 
when we rely on “outsourced” identity and authentication services,  for example, sharing a common identity 
service for citizens 

http://www.identityblog.com/
http://www.identityblog.com/wp-content/images/2009/01/PDC-2008.pdf


 

 

© 2009 Microsoft Corporation 52 

| Knowledge Driven Health 
 
 

 

Figure 19. Generic Pattern for Pluggable Providers 

Multiple instances of the same type of provider may be present, for example, performing different types of 
validation or accessing different external providers. The goal is to have all external interactions based on Web 
Services standards, but where this is not possible or feasible the interface component can perform the necessary 
transformation to the appropriate (legacy or otherwise non-standard) interface of the provider. 

Initial User Provisioning – Knowledge-Based Authentication 

The process for initial provisioning (identification and registration) of users for a large-scale e-Health solution has to 
be efficient, secure, and require minimum human interaction from the service provider side. A “self-service” feature 
driven by the users themselves is the ideal. Flexibility to define the specific rules and process for each service 
separately is essential for the successful accommodation of evolving and diverging requirements. 

Given the challenges specific to e-Health solutions, such as a large number of prospective users, no prior online 
relationship, and infrequent interactions, an approach named Knowledge-Based Authentication (KBA) is gaining 
popularity.  Although these methods are especially useful for large constituencies of unmanaged users (like citizens), 
they can also be used to improve the efficiency of provisioning managed users (like care practitioners). 

Briefly, KBA uses information provided by the “claimant” to verify the claimed identity – which could be related to 
the user in general (identifying the user), or to the context of a specific service (for example, date of the visit with a 
physician or medical record number).  



 

 

© 2009 Microsoft Corporation 53 

| Knowledge Driven Health 
 
 

Figure 20 shows the generic architecture of a knowledge-based authentication system. The flow of data, indicated 
by the numbers in the figure, is as follows: 

 

Figure 20. Generic Architecture of Knowledge-Based Authentication Service 

1. The claimant presents a set of information items (perhaps preceded by challenging the claimant with a set 
of questions).  

2. The KBA logic matches the submitted items (and any answers) with the reference data, which may be local 
or remote. 

3. The response indicates authentication success or failure, and can contain additional information—for 
example, the claimant’s unique identifier that results from the matching process, which may be different 
from the information items provided. 

 

Note: For more details of Knowledge-Based Authentication, see KBA Applicability to e-Gov by Mindy Rudell, Dick 
Stewart, Robin Medlock, Angel Rivera: http://csrc.nist.gov/archive/kba/Presentations/Day%202/Rudell%20-
%20KBA%20Applicability%20to%20e-Gov.pdf  

 

Choosing Appropriate Information Items for KBA 

The reliability of KBA authentication depends on the nature of the information items chosen and the validation 
process. Typical requirements driving these choices include the following: 

 The information is clearly bound to and uniquely identifies the claimant—a zip/postal code by itself is clearly 
not enough, but a citizen ID or social security number might be. 

 The information is legitimately known to the claimant, but not readily available to others. A company 
registration number printed on letterhead and visible to all clients is not suitable, but some specific data 
from the last health services bill, like a medical record number or payment amount (which is normally 
known only by the legitimate recipient), could be. 

http://csrc.nist.gov/archive/kba/Presentations/Day%202/Rudell%20-%20KBA%20Applicability%20to%20e-Gov.pdf
http://csrc.nist.gov/archive/kba/Presentations/Day%202/Rudell%20-%20KBA%20Applicability%20to%20e-Gov.pdf


 

 

© 2009 Microsoft Corporation 54 

| Knowledge Driven Health 
 
 

 The scope for guessing the correct answer or value is limited—the range is big enough to make trying all 
possible values unfeasible, and there is no easy way of deriving a correct value from another known 
legitimate one. (For example, incremental numbers should be avoided.) 

 Values that change regularly over time (for example, the last claim or payment amount) can further reduce 
the likelihood of a successful guess, hence providing a better choice than constant data items. 

Note that these requirements apply to the set as a whole. In other words, several information items, each one of 
which may not itself be sufficiently secure, can be combined to achieve the appropriate level of assurance that only 
the legitimate claimant would know them all. 

Verification Logic and Reference Data 

After the claimant has supplied the set of information, verification takes place, typically against some reference 
data, by applying appropriate matching rules. Certain transformations are possible for approximate matching—for 
example, making the comparison case-insensitive, ignoring spaces, partial matching of items like post codes and 
addresses, or tolerating spelling variations and abbreviations. In general, however, it is difficult to define sufficiently 
robust matching rules for items that have a wide variety of possible formats (like addresses), and so the use of items 
with more predictable formats is generally preferable.  

The matching rules can also include cross-item dependencies. For example, a successful match of three out of four 
items may be deemed sufficient. Since the matching logic can be custom-developed and, if necessary, be different 
for each type of authentication and service, it can accommodate a very wide variety of requirements—both for 
current and future requirements. This is essential for the flexibility of the solution and is one of the key architectural 
principles (as described in Flexible and Agile in the section Principles Guiding the Architecture earlier in this guide).  

The reference data used to perform validation can be local (provided by the respective owner and hosted in the 
node), or remote (where the node makes calls to the owner to perform the verification, and the data remains with 
the owner). It is also possible to implement verification logic that uses only the information items provided by the 
claimant and does not require additional reference data. In this case, the consistency of the whole set must be 
assured. As an example, one of the data items could be a result of some secret transformation performed on the 
others, similar to the check digits on credit cards, but more secure. The claimant’s unique identifier must also be 
provided, or be derivable from the data items supplied. 

Figure 21 illustrates the three different types of validation that are possible using a pluggable provider such as a KBA 
service: 

 A – the reference data is remote and the KBA logic calls the provider to perform the validation 

 B – the validation logic is not dependent on any reference data 

 C – the node hosts the validation logic and reference data, and accesses it locally 



 

 

© 2009 Microsoft Corporation 55 

| Knowledge Driven Health 
 
 

 

Figure 21. Different Types of Validation with Local and Remote Reference Data 

The reference architecture supports “pluggable” validation modules of all types, and the decision of which to use in 
each case depends on numerous factors. The most important considerations include the following: 

 Response time for validation – reference data hosted locally in the hub can help support faster validation. 
The latency of calls from the hub to a remote data store could be significant, impacting performance and 
negatively affecting the user experience. 

 Availability – hosting reference data in the node helps make it self-contained and independent from other 
systems, so authentication availability is that of the node itself. Relying on remote reference data for the 
validation makes the availability of the solution dependent on the remote system. 

 Data volume – the amount of reference data could be significant, and capacity planning should consider 
this. In cases where only a small proportion of the potential user population is likely to use the service, 
keeping a copy of the reference data for the whole constituency on the node could be expensive and 
cumbersome. 

 Updates to the reference data – the reference data stored in the node must keep up to date with any 
changes originating at its source. Depending on the volatility of the data, the volume of these changes (for 
the whole constituency that might use the service) can be significant. Relying on reference data that 
remains at the source eliminates the need to update copies in the hub. 

 Privacy constraints – in some countries, regulations prohibit hosting of service-specific data outside of the 
relevant agency, so uploading such reference data to a central node is not an option – regardless of other 
factors and technical feasibility. 



 

 

© 2009 Microsoft Corporation 56 

| Knowledge Driven Health 
 
 

The choice of the most appropriate mechanism for validation and location of the reference data may vary across 
different service providers. 

Obtaining Information Items for Knowledge-Based Authentication 

The information items provided by the claimants for knowledge-based authentication can be something they know 
or have received in the course of normal interactions with the service provider (such as correspondence or bills), or 
can be items specifically communicated for the purpose of initial online authentication. It is also possible to link 
together the process of obtaining the necessary data items to some procedure, accreditation, or verification of 
documents (presented remotely via mail or face-to-face). Knowledge-based authentication is a generic mechanism, 
independent from the exact mechanics of obtaining the necessary data. These processes remain out-of-band, may 
vary between different services, and support linking to an appropriate external process.  

The Service-Centric Approach to User Provisioning 

Uniform and reliable initial identification of users to a level that is acceptable for all services is often difficult to 
achieve.  To provide the necessary flexibility, and accommodate the potentially diverging requirements that current 
and future service providers might have, service-specific initial user identification is preferred. This allows the 
definition of data items, validation rules, and reference data for each service, completely independent from other 
services.  

Such service-specific initial authentication may be in addition to some prior validation of the claimant as individual 
in a generic sense (irrespective of the services concerned), or there could be no reliance on the generic user 
identification at all – with each service acting completely independently and not trusting any other. In the latter 
case, the registration of the user is conditional upon successful initial identification for at least one service. This 
approach is suitable for countries where no generic citizen identity is established, and initial identification must rely 
on the service providers for reference data and validation procedures.  

 

Note: While it is possible to register users without initial validation, and later bind that identity to services, avoid 
this approach. In the absence of a reliable initial authentication, it is difficult to protect the node from denial-of-
service attacks through malicious registration of a large number of bogus users (not validated for any services), 
because there is no mechanism to distinguish such registrations from the legitimate ones. This can tie up data 
storage and computing capacity, potentially affecting the availability of the service, and increase running costs. 
The service-centric approach ensures application of some validation before new users can register, and it is 
therefore safer. It also allows implementation of additional activation procedures, dependent on data provided by 
services (like a mailing address) that may not be available otherwise. For a more detailed discussion of the 
activation options, see Activation of Registrations and Enrollments later in this section of the guide. 

 

Service Enrollment and Identity Mapping 

After a successful initial identification, in the context of a particular service, the appropriate set of unique service-
specific identifiers assists creation of an enrollment to that service. This process binds an identity with that service. 
The generic identity itself remains transparent and not visible to the service provider – instead it translates to the 
identifiers meaningful to that service. For example, enrollment may link Joe Smith with the Health Service using a 
Health Service ID as an attribute of the enrollment, and with the Elderly Home Help Service using a HHS ID number 
and other items as attributes. By storing the appropriate set of service-specific unique identifiers as attributes of the 



 

 

© 2009 Microsoft Corporation 57 

| Knowledge Driven Health 
 
 

enrollment, all subsequent authentications and authorizations can map the single generic identity to the multiple 
service-specific identities. 

This ”identity mapping” is one of the unique value-added features of the e-Health Services Node. Even if 
authentication is completely externalized (in other words, there is no identity store within the hub and it relies only 
on external authentication providers through federated trust), the mapping of the verified generic identity to the 
appropriate service-specific identifiers ensures that the target service receives the usual identifiers it can recognize. 
This complies with the principles of Minimal Disclosure for a Constrained Use and Directed Identity, as discussed in 
Identity Metasystem – Laws of Identity  within the main section Addressing Common Architectural Challenges earlier 
in this guide. 

Activation of Registrations and Enrollments 

Knowledge-based initial identification can be supplemented with additional procedures to improve the security 
beyond just relying on the claimants to supply the correct information items (and on the low probability of others 
being able to do so successfully and pose as the legitimate claimant).  These procedures can be invoked after a 
successful knowledge-based initial validation, and may include sending additional information to the claimant that 
they must then enter to complete the verification process.   

A typical implementation (as used in the United Kingdom and other countries) involves obtaining the registered 
mailing address for the claimant from the service provider, and then sending a one-time “activation code” to that 
address. Only after presenting this activation code to the hub does the enrollment for the service (initially created in 
a “pending activation” state) become active and the functionality become available. This procedure improves 
security by making the successful receipt of the activation code an additional check before enabling the service 
enrollment.   

A successful attack by someone pretending to be the legitimate claimant would require not only obtaining and 
presenting the correct information items for knowledge-based identification, but also intercepting and tampering 
with postal mail. Depending on the reliability of the mail system and the respective legal deterrents (in the United 
States, for example, tampering with mail is a federal offence carrying serious penalties), this can significantly 
improve the overall security of the solution for initial identification. 

Other variations of this approach may use different channels for transmitting the activation code, such as e-mail, 
mobile phone, or text message. The challenge with these is the reliability of the “address” used—while postal 
addresses are held by most service providers, other types of addresses may not be readily available and reliable. 
Consideration of potential threats is necessary when choosing the method of communication to minimize the 
opportunities for malicious misrepresentation. One possible way of improving the reliability of an e-mail address is 
to use one bound to the identity of the claimant through previous verification, as is the case with e-mail addresses 
included in some digital certificates.  

The use of a separate activation loop can improve the security, but comes at a cost: 

 The necessary reliable addressing information must be available from the service provider, and transmitted 
(in bulk or individually, as enrollments occur) to the node to initiate the secondary loop. 

 Facilities for secure printing and mailing of the activation codes (similar to the mailing of bank and credit 
card PINs) must be procured and deployed locally or outsourced to external providers. Not all agencies that 
intend to use e-Health services may have such facilities themselves, and these are typically provided though 
the central shared e-Health infrastructure. 

 Secure communication of the activation codes and addresses to the printing facility – this is very sensitive 
information that should be adequately protected by technical means and operational procedures. 



 

 

© 2009 Microsoft Corporation 58 

| Knowledge Driven Health 
 
 

 Delay can be introduced into the process; printing and postal delivery extends the process from initial 
identification to active service enrollment by several days. This may cause significant inconvenience to 
prospective users, especially when they need to use e-Health services immediately only to discover that the 
process will take too long to actually complete. 

It is possible to eliminate the delay factor, while preserving other aspects and advantages of the additional 
activation loop. The UK Inland Revenue (tax agency) and other services successfully implemented a modified 
approach called “immediate activation.” This involves generating activation codes and communicating these in 
advance to the prospective users of a service.  

The initial knowledge-based identification of users for the service can optionally extend to request the activation 
code along with other information items. The reference data includes the activation codes sent to the users, and the 
validation procedure tries to match these as well. If the claimant provides the correct code, activation of service 
enrollment takes place at creation and the respective services are available to the user immediately. By changing 
the sequence of the separate verification loops (mailing of activation codes still occurs, but in advance), such 
modified processes can provide the same level of security as delayed activation but without the delay. The advance 
mailing of activation codes also acts as an unsolicited invitation, raising the awareness of the availability of the 
online service among its constituency and increasing the take-up. 

A Generic Credential and Authentication Provider  

The identity management functionality of the node relies on one or more authentication providers, some of which 
may be external. In such cases, the node makes calls to these external providers to verify presented credentials. It is 
possible for a node to rely only on such external providers, and not to have a credential store of its own. However, it 
is also possible for the node to have an internal credential and authentication provider. This allows users who have 
not established prior relationship with one of the accredited external credential providers to register successfully, 
and the node to then issue the appropriate credentials. 

To cater for a variety of evolving requirements for different types of credentials, it is important for the generic 
credential provider in the node to be flexible in supporting and issuing different types of credentials. Specific rules 
are configurable on installation of the provider, or dynamically at run time. Some examples of different types of 
credentials are as follows: 

 User ID and Password – the credential provider generates User IDs that are globally unique within the scope 
of the node, with a preconfigured format and length, and users can either choose or are issued an initial 
password (again, in the appropriate format and with the appropriate complexity rules applied). For 
successful authentication, a full and valid User ID and Password combination is required. 

 Memorable Words (with or without prompts) – these can be combined with User ID and Password for 
added security, and required either selectively (for some sensitive operations such as a password reset) or 
at all times. It is common to request only parts of the memorable word, for example several randomly 
chosen letters (such as the third and fifth, changing for every interaction), or to have several pairs of 
question/answer combinations stores and ask for one of them.  

 Certificates – the generic credential provider for the node may issue digital certificates to users. While 
technically feasible, operational logistics and management require consideration. Owning such a facility 
without the relevant experience and infrastructure can be a challenge and a distraction. In practice, e-
Health implementations to date in many countries have opted for relying on external accredited and trusted 
parties (commercial or government agencies) to issue certificates and handle the relevant procedures. 

The choice of type of credentials, and the relevant rules, should take into account the following points: 



 

 

© 2009 Microsoft Corporation 59 

| Knowledge Driven Health 
 
 

 Prior constraints and requirements – such as a desire to use already established unique identifiers (like a 
citizen ID) as the User ID, instead of randomly generated ones. 

 Scale – the range and type of identifiers should be large enough to offer a sufficient number of unique 
identifiers for the potential number of users.  

 Security – the size and complexity of the identifier and password should cover a large enough range to make 
brute-force attacks (guessing IDs and passwords by trying all possible combinations) unfeasible. 

 Convenience – users should be able to comfortably handle, and ideally remember, their IDs, passwords, and 
other information. The longer and more complex these are, the higher the probability that users will have to 
write them down somewhere, undermining the increased security that the complexity was intended to 
provide. This decision requires a careful balance between convenience and security. 

 Delivery channels – the choice of identifiers and passwords can constrain the use of certain delivery 
channels. For example, interactive voice response (IVR) telephony systems, mobile phones, and IPTV may be 
limited to numbers only. Again, the desire for higher security is a balance against the intended use and 
convenience. It may be appropriate to consider using separate sets of credentials for different channels, 
distinguishing the level of security and services offered. 

 

Authentication and Authorization Services 

The authentication and authorization functionality provided by the e-Health Services Node is generic, and applies to 
all types of identities, such as those that represent individual users (directly or through intermediaries), 
organizations, systems, and other entities. The functionality can be used directly—for example, by portals to verify 
the identity of interactive users, in which case the node acts as an identity provider and secure token service. 
Indirect use is also possible—for example, by the messaging services to validate the identity used to sign a request 
and the authorization for the target service.  

Authentication 

Authentication validates the credentials presented by the user and maps them to a specific identity. 

Levels of Authentication 

Each authentication can be associated with a level, which indicates the reliability of the authentication type and 
related procedures.  

One such classification used in the United Kingdom is “tScheme” – where levels 0, 1, 2, 3 represent increasing 
reliability of the authentication, which may be appropriate for different types of online activity: 

 Level 0 – no authentication: the real-world identity of the registrant is not verified (for example, anonymous 
access, or users volunteer some information like name or e-mail address – which may be stored and used, 
but not verified)  

 Level 1 – on the balance of probabilities, the registrant’s real-world identity is verified (for example, online 
ordering of a publication using a credit card, with the goods delivered to the account holder’s address) 

 Level 2 – there is substantial assurance that the registrant’s real-world identity is verified (for example, 
submission of a Value-Added Tax, Sales Tax, form, which is legally binding) 



 

 

© 2009 Microsoft Corporation 60 

| Knowledge Driven Health 
 
 

 Level 3 – verification of the registrant’s real-world identity is beyond reasonable doubt (for example, an 
online application for a passport) 

The higher the level, the greater the assurance required for the verification of the identity of the registrant. A 
combination of technical methods and procedures achieves the appropriate level of assurance, as prescribed and 
accredited by tScheme. 

The advantage of using tScheme or a similar system is the uniformity of requirements and the universal acceptance 
(and compatibility) of providers who are accredited under tScheme by all government agencies. Establishment of 
something similar, to stimulate the adoption of e-Health services, is possible in countries where such a framework 
does not already exist. 

The association of a level with each authentication, and the definition of a rule for the minimum level required for 
each type of operation, results in basic access control checks at various stages of processing becoming easy and very 
effective. For example, “Which services can be offered to a certain user for enrollment?” The answer is “those with 
a minimum required level less than or equal to the authentication level”. Can the user submit a particular type of 
request? The answer is “yes, if the required minimum level for that type of request is equal to or less than the 
authentication level, plus any other authorization rules.”  This can also work when the same individual is using 
different methods of authentication depending on the circumstances.  For example, a doctor using a mobile device 
to receive important notifications may get access to a subset of the normal functionality available when logged on 
with a smart card on a PC. 

When the tScheme granularity is not sufficient to meet some specific requirements, its further extension is possible, 
in two ways: 

 By adding more interim levels, such as 1.5, 2.1, 2.3, while preserving the simplicity of the basic rule 
(authentication level must be >= the minimum level required). Different types of authentication are still 
compared purely on their levels, so that 2.2 is always higher than 2 regardless of the authentication provider 
being used), and that ranking is universally accepted by all participants and providers of target services. 

 By distinguishing between authentication providers, even if they are at the same level, and applying more 
complex rules—for example, matching both the authentication provider and the level. While this flexible 
approach accommodates a wide variety of specific requirements (such as “require level-3 authentication 
with smart card embedded in a driver's license, but do not accept level-3 authentication from another 
provider, like a credit card”), it limits convergence and reuse of common authentication providers across the 
full range of e-Health services. In the extreme, an “each service with its own authentication provider” model 
is not desirable, and applicable only to meet specific requirements. 

In line with the principle of flexibility (see the earlier section Principles Guiding the Architecture), the authentication 
and authorization service of an e-Health Services Node should enable the full flexibility described above (smaller 
granularity levels and rules that are more complex) to meet requirements that may emerge over time.  

Presenting Credentials and Claims  

Authentication depends on the validation of credentials or claims presented by the requestor. Upon successful 
verification, these can be associated with the appropriate identity, which permits creation of new claims linked to 
that identity. The generic “provider” model enables the use of multiple providers of different types for validating 
credentials.  

Some possible authentication flows that use different authentication providers are shown in Figure 22. The 
numbered steps within the figure demonstrate how, when the authentication request contains credentials and 
depending on their type and origin, validation is available: 



 

 

© 2009 Microsoft Corporation 61 

| Knowledge Driven Health 
 
 

 Directly by an internal (local) provider (1), which compares them against the local credential store (2). 

 Through a call to a trusted external provider (3), which performs its own validation of the credentials 
provided. 

 When the authentication request contains a security token, it is usually validated locally (4). This can be a 
security token issued by an STS trusted by the hub, or token issued by the hub itself – as a result of a 
previous authentication performed by the hub through any of the possible routes described earlier.  

 

Figure 22. Invoking Different Authentication Providers 

Regardless of the particular types of validation and provider invoked in the process (internal or external), a 
successful authentication maps the presented credentials or claims to an identity. This is the basis for further 
mapping to service-specific identifiers (see the later section Mapping Identity to Service-Specific Identifiers on page 
64) and the issuing of security tokens (see the later section Security Token Service on page 65). 

 

 



 

 

© 2009 Microsoft Corporation 62 

| Knowledge Driven Health 
 
 

Federated Authentication 

Traditional authentication models, where a single identity provider performs verification of credentials, limit the use 
of a wider range of pre-existing or future identity providers, and inhibit access by distinct groups of users to a 
common set of e-Health services.  

Federated authentication provides more flexibility, which enables users from different (independent and separate) 
trust domains to authenticate with their credentials in the home domain, but gain access to resources in other 
domains – based on established trust relationships between domains. Local identities are not required for target 
services and thus identity information and other attributes can remain hidden as appropriate.  This is in compliance 
with the principles of Minimal Disclosure for a Constrained Use and Directed Identity, as discussed in Identity 
Metasystem – Laws of Identity (page 31) within the main section Addressing Common Architectural Challenges 
earlier in this guide. 

A set of Web Services specifications and standards define a consistent and extensible security model for such 
federation that is independent from specific platforms and implementations. This permits effective integration and 
the use of commercial software products. For more details of the standards such as WS-Security, WS-Trust, and WS-
Federation, see Part 5 – References of this guide.  

An e-Health Services Node can perform several distinct roles and participate in different types of federated trust 
topologies. These topologies are often composed of multiple nodes, as discussed in the section Deployment 
Options(page 102) later in this guide. The hub may act as: 

 A requestor Identity Provider – authentication performed by the hub produces a security token for 
presentation to the target service to gain authorized access. 

 A resource (Relying Party) identity provider – which verifies security tokens presented by requestors, and 
issues tokens granting access to the target. 

 A broker of trust between two or more parties (as illustrated in Peer-to-Peer on page 105 in Deployment 
Options), in which case the trust relationship of each party with the broker establishes brokered trust 
between the parties themselves. 

Figure 23 shows an example of the typical flows between the parties involved. The numbered steps in the figure are 
as follows: 

4. Requestor A presents the necessary credentials to its identity provider in Node 1. 

5. The Requestor Identity Provider in Node 1 validates the identity and returns an identity security token to 
Requestor A. 

6. Requestor A presents the identity security token to the Resource Identity Provider in Node 2. 

7. The Resource Identity Provider in Node 2 checks the validity and origin of the identity token and returns an 
access token for the target resource. The Resource Identity Provider does not need to recognize Requestor 
A or its identity—it trusts the Requestor Identity Provider in Node 1 and the identity token issued by it. 

8. Requestor A presents the access token to Target Resource C (for which Node 2 manages security) to gain 
access to this resource. 



 

 

© 2009 Microsoft Corporation 63 

| Knowledge Driven Health 
 
 

 

Figure 23. Federated Authentication 

This example deliberately separates all parties to illustrate the interactions more clearly. Requestor A could be a 
portal or other system, Node 1 could be a central e-Health Services Node, and Target Resource C could be some e-
Health service provider that relies on Node 2 for security and integration. However, many other variations are also 
possible while implementing the same general flow. For example, the messaging subsystem (B) hosted in Node 1 
can also play the role of a requestor, obtaining the necessary identity and access tokens in order to send a message 
to the messaging subsystem (D) hosted in Node 2. 

Authorization  

When authentication is complete and the identity established, authorization typically follows – at the appropriate 
granularity for the context level. At a minimum, authentication produces some unique identifier representing the 
authenticated entity, but it may also provide other attributes, which can be the basis for authorization decisions 
(such as role or rank).  In some cases, combining authentication and authorization can provide efficiency in a single 
call to the Authentication and Authorization subsystem.  

There are two main options for authorization requests: 

 Get All – enumerate everything for which a given identity is authorized (and which the requestor is 
authorized to access – see comments below) 

 Explicit – the authorization request explicitly specifies the targets sought for authorization  

While the Get All approach may seem simpler and easier, there are some serious considerations to take into account 
before deciding to use it – especially in the context of e-Health services. It may lead to unnecessary disclosure of 
information to the requestor, which it may or may not be entitled to see. In general, such approach could violate 
some of the key principles of the Identity Metasystem – Laws of Identity (page 31).  

For example, consider a user who holds a single credential that provides access to a range of services. When 
accessing an e-Health Web portal to book an appointment with a doctor, that user may not wish the portal to be 
able to obtain identifiers related to a support group for recovering alcoholics (or even discover that the user is 



 

 

© 2009 Microsoft Corporation 64 

| Knowledge Driven Health 
 
 

enrolled for such services), if these facts are not relevant to the requested service. Allowing the portal to perform 
Get All authorization operations could provide information about all the relationships between that user and other 
services, which may not be appropriate.  

The recommended approach in such cases is to use explicit authorization. The requestor specifies the target 
authorization sought, and the authorization provider responds accordingly. This is not limited to a single target at a 
time; the request can contain a list of target services. Additional checks may be performed based on the identity of 
the requestor (in case of intermediaries, checking what targets the requestor is allowed to check authorizations for), 
or based on an explicit consent from the user, contained in the request itself. 

There are some exceptions to this general recommendation when there is a legitimate need (and the user has 
provided consent) to obtain authorization for all services that user has permission to access—for example, to 
provide a complete list of all available services for maintenance purposes. 

Checking Service Enrollments 

In the generic identity model discussed earlier in Core Identity Model and Principles (page 49) in the main section 
Identity Management Services, the granularity of authorizations is at the level of a target service – for example, “can 
or cannot access service X”. This dictates the definition of the target services – each has to be a grouping of actions 
(requests or document submissions) with uniform access rules. 

Authorization requests must map the previously authenticated identity against the valid existing and activated 
enrollments for services. For Get All requests, authorization returns the full list of all valid enrollments mapping to 
the identity. Explicit authorization requests compare the list of services requested with valid enrollments for that 
identity, and returns only a subset of that list (the services for which a valid enrollment exists).  

Mapping Identity to Service-Specific Identifiers 

An important aspect of authorization is the mapping of the generic (and potentially common for many services) 
identity to the service-specific identifiers associated with each of the active service enrollments found. This allows 
the generic identity to remain hidden, and provides the appropriate context for the relationship with the particular 
service. Target services can independently select the identifiers to use, and do not have to change their back-end 
systems to accommodate some new identifier (unless they choose to do so). Once the generic identity has been 
bound to a service through the enrollment process within the context of a service-specific set of identifiers, 
subsequent authorization calls for that identity and target will return the identifiers. For more details, see Service 
Enrollment and Identity Mapping (page 56) earlier in this guide. 

Delegation of Trust 

In the case of delegated authority, which is the assignment of other users to act on behalf of the principal (such as 
the mother acting on behalf of family members), the mapping process is more complicated. It involves searching for 
a valid chain of mappings from the identity to the target service. However, the result is fundamentally the same: 
“Identity A can access Service S in the context of the service-specific identifiers X, Y, and Z” (in the example above, A 
is the mother; X, Y, Z are the family members). This type of delegation is suitable for relatively stable, long-term 
delegation that remains valid until specifically revoked. 

For more transient delegations (such as delegations valid only in the course of a specific interaction like submitting a 
request or accessing test results), the authority to delegate can be included within the authorization request itself. 
In this case, the process of mapping the identity to service enrollments takes into account delegation (producing the 
same output as a permanent delegation, but with an explicit validity time window and other limitations). However, 



 

 

© 2009 Microsoft Corporation 65 

| Knowledge Driven Health 
 
 

this does not result in permanent storage of delegation relationships, and previous transient delegation does not 
affect subsequent requests – unless they also contain transient delegation instructions.  

Granularity of Authorization 

Authorization checks performed by the node are limited to the level of a target service, based on the active 
enrollments and any transfer of authority known to that node. Further, finer-grained authorization decisions can be 
made elsewhere (including in another node), based on the service-specific identifiers provided by the authenticating 
node. The appropriate granularity of services and the level of detail provided in the identifiers is an important design 
decision. This must balance the convenience of receiving detailed identifiers that may include role, rank, and other 
attributes from the authorization process, with the need to maintain up-to-date copies of these attributes within 
the hub.  

An example of such “cascading” authorization could be a doctor in a hospital seeking access to some patient data.  
The doctor is authenticated by a central e-Health Services Node with the appropriate credentials (for example, a 
smart card), issued by that node or some other trusted authority, and confirmed as having active enrollment for 
“National e-Health” – with the appropriate unique identifier (such as a Clinician ID).  Additional attributes resulting 
from the authentication may include more specific role or rank.  

As far as the central node is concerned, the authenticated identity of the doctor allows access to “National e-Health” 
services, and the context is the respective service-specific IDs. Based on these IDs, the hospital portal (or any other 
system) can make further authorization decisions – using locally available information. For example, they can check 
for appropriate links to the specific patient, team or shift assignments and role, or the doctor, and permit access to 
information. In this scenario, the target service maintains fine-grained authorization information about the specific 
assignments and so on, and does not expose this information to the central node – which simply authenticates the 
user and authorizes to the level of target service as a whole. This allows for rational distribution of information 
across the system, taking into account the nature and volatility of the data – as discussed earlier in Types of Data 
(page 15) in the main section Addressing Common Architectural Challenges. 

Security Token Service 

The e-Health Services Node can help perform the role of a Security Token Service (STS), as defined in WS-Trust, WS-
Federation, and WS-Security standards (see Part 5 - References for links to the WS standards). The node can 
therefore participate in a federated network of Web Services providing authentication, authorization, and other 
functionality that facilitates effective integration based on industry standards and specifications. 

Security Token Services issue, validate, and exchange security tokens. A requestor sends a request, and if the policy 
permits and the recipient’s requirements allow, the requestor receives a security token response.  

Security Tokens 

Security tokens contain sets of claims, and the issuing authority asserts the validity of these claims. The issuer can 
cryptographically sign security tokens to guarantee their integrity (no alterations made since signing) and enable 
verification of their origin. Successful authentication and authorization by an e-Health Services Hub typically results 
in the return of security tokens to the caller.  

Issuing Security Tokens 

A security token represents the result of the authentication and authorization performed by a hub. This token will 
contain one or more of the following types of claims: 



 

 

© 2009 Microsoft Corporation 66 

| Knowledge Driven Health 
 
 

 Identity information resulting from the authentication, with related attributes such as the level and type of 
authentication 

 “Authorized for X” information – for example, a list of target services  

 Service-specific identifiers and attributes for each of the authorized services 

Depending on the particular role of the node and its location within the overall topology, the type of claims 
contained in the security token will vary. The issue of multiple tokens for different target services is also possible. 
The next section of this guide provides some examples of possible scenarios. 

Possible Scenarios 

The interactions between several hubs and the roles their respective Security Token Services play can vary, 
depending on the chosen topology and model. Figure 24 illustrates some of the possible variations. The numbered 
steps in the figure are as follows: 

1. A user interacts with a Portal and presents his or her e-Health Credentials 

2. The Portal sends a  request  to Node A (which may be a central e-Health node), presenting the user's 

credentials and specifying the target Service X 

3. Upon successful authentication of the user and authorization for Service X, Node A returns two tokens issued 
by STS A: 

a. An authentication token    Au    that confirms successful authentication of the user, and which can be used 

for obtaining additional authorizations later without requiring full user authentication through credentials  

b. An authorization token   AzX  for the user for Service X, which contains the appropriate service-specific 

identifiers defining the context of the relationship of the user with Service X (Health ID or Social Services ID) 

4. The Portal, on behalf of the user, makes the initial call to Service X and presents the authorization token  

  AzX   issued by STS A 

5. STS X checks the validity of the token AzX, and issues a new token    X    (a token specific to this STS), containing 

the claims appropriate for accessing Service X. For example, it may translate or map the service-specific 
identifiers contained as attributes in token AzX to more specific role and other information within the context 
of Service X 

6,7,8 … Subsequent calls from the user and Portal present token    X    , which can be validated very efficiently—far 

more efficiently than the initial validation of AzX and translation or mapping of attributes. Transfer of the 
appropriate service-specific identifiers for Service X, which are contained in Token X, into the call context also 
permits authorization decisions within the service  

 



 

 

© 2009 Microsoft Corporation 67 

| Knowledge Driven Health 
 
 

 

Figure 24. STS Roles and Token Exchange 

 

Continuing from the previous example, after interacting with Service X, the user (or the Portal on behalf of the user) 
needs to access another Service Y.  Figure 25 illustrates this, but there are subtle differences from the previous 
example. 

Assuming that the authentication token (Au) previously issued by STS A is still valid, and has been preserved reliably 
and securely by the intermediary or by the user, obtaining a token for accessing another Service Y could be simpler 
and not require the original credentials from the user. This is the concept of a single sign on across several services. 
The flow is as follows: 

1. The user needs access to another Service Y 

2. The Portal sends a  request  to Node A,  presenting the authentication token    Au    previously issued by STS A, 

and specifying the target Service Y 

3. Upon successful verification of the validity of the authentication token Au, and authorization of the user for 
Service Y, Hub A returns two tokens issued by STS A: 

a. Optionally, a refreshed or renewed authentication token    Au   , perhaps with an extended validity window 

to allow continuation of the original authentication and “single sign on across services” capability (subject to 
compliance with the appropriate policies that balance security and convenience) 



 

 

© 2009 Microsoft Corporation 68 

| Knowledge Driven Health 
 
 

b. An authorization token   AzY   for the user for Service Y, which contains the appropriate service-specific 

identifiers defining the context of the relationship of the user with Service Y 

4. The Portal makes, on behalf of the user, the initial call to Service Y and presents the authorization token  

  AzY   that was issued by STS A 

5. STS Y checks the validity of the token AzY, and issues a new token    Y    (specific to this STS), containing the 

claims appropriate for accessing Service Y.  

6,7,8 … Subsequent calls from the user or the Portal present token    Y    , which can be validated very efficiently—

far more efficiently than the initial validation of AzX and translation or mapping of attributes. Transfer of the 
appropriate service-specific identifiers for Service Y, which are contained in Token Y, into the call context also 
permits authorization decisions within the service 

 

Figure 25. STS Roles and Token Exchange, Next Service 

The STS functionality of the generic e-Health Services Node supports numerous other scenarios, enabling the 
deployment of different topologies matching the specific requirements and constraints. 



 

 

© 2009 Microsoft Corporation 69 

| Knowledge Driven Health 
 
 

Privacy Services 

Data Protection and Privacy 

Depending on the implementation and the chosen topology, an e-Health Services Node may host personally 
identifiable information related to very large groups of users—potentially the entire population of a country. Legal 
and regulatory constraints may affect architectural decisions, narrowing the choice of available technical options.  

Identifiers and Reference Data 

Even if a node is not storing any health records data, there are still data protection and privacy considerations to be 
taken into account. For example, if the local regulations prohibit any kind of sharing of information (even just 
identifiers) between healthcare agencies, or hosting agency data on infrastructure it does not control, then the 
initial identification of users when enrolling for services will have to be performed remotely. The central node will 
have to make a call to the service provider to validate the information provided by the user, instead of performing 
such validation against reference data previously uploaded to the central hub. (For a more detailed description of 
these options, see Verification Logic and Reference Data (page 54) in the Identity Management Services section 
earlier in this guide.) 

When reference data for individual services resides on one central node, specific measures are required to protect 
the access to service-specific data. For example, keeping the reference data for each service in its own separate 
database enables segregation of access control for individual administrators. 

Indexes and Metadata 

In some of the possible data topologies (as discussed in Data Topologies starting on page 16), a node may contain a 
master index and pointers to actual data storage, potentially also performing the necessary mapping of identifiers 
from different domains related to the same individual.  This data could be abstract enough (and free from any 
personally identifiable information) not to be subject to the usual personal data protection regulations, potentially 
making the design and compliance of such a node easier.  However, in some jurisdictions (such as the United 
Kingdom), even such cross-service “linking” information is considered sensitive – and has to be protected 
accordingly. 

If the “master index” facility also stores additional attributes to facilitate matching (such as a person’s name or date 
of birth) across domain and organizational boundaries, then it will be subject to all regulations related to personally 
identifiable data. 

In the models where one node contains only summary information (metadata—date, type of encounter, code of the 
condition or analysis) to facilitate searching, and the actual data (documents, test results) is stored in another node 
(“Registry” and “Repository” in the IHE XDS profile terminology – see Distributed (Federated) Data Model on page 
18), the metadata may still be considered sensitive information—for example, when the sole existence of data 
implies the presence of a disease/condition deemed sensitive.  In such cases, the metadata store (“Registry”) has to 
comply with the regulations governing protection of personal data, or pseudonymization techniques should be used 
(see section Anonymization and Pseudonymization of Data on page 70).  

 



 

 

© 2009 Microsoft Corporation 70 

| Knowledge Driven Health 
 
 

Health Records Data 

Actual health records data is most sensitive, and requires full protection in compliance with the applicable in the 
jurisdiction data privacy regulations.  As discussed in Data Topologies (page 16), in many cases the particular 
constraints of these regulations (like “data cannot be stored outside of the legal entity which collected it”) drive the 
choice of topology for the e-Health system, rather than architectural or technical considerations. 

 

Anonymization and Pseudonymization of Data 

Collecting and storing medical history data is considered beneficial for supporting future clinical decisions related to 
the individual with the right information.  For this to work, the data must remain linked to the individual and be 
properly protected.   

Other beneficial uses of collected data are for reporting, identifying trends, generating statistics, facilitating medical 
research, and public health monitoring. These do not typically need to identify particular individuals, but rather rely 
on more general and derived attributes (e.g. “45-50-year-old male”, “living in area X”, etc.).   

Anonymization services remove identifiable personal elements from the data, making it less sensitive and 
potentially not subject to stringent regulations governing privacy of personal data, while retaining its value for 
legitimate secondary uses like research and reporting.  Replacing specific personal information with broader 
categories (see the examples above) does not automatically guarantee complete anonymity – care must be taken to 
analyze the possibility that a combination of attributes may yield a sufficiently small set of individuals to still allow 
identification.   

Anonymization is an irreversible, one-way process, making it impossible to revert back and identify the individual 
from anonymized data.  In some scenarios, the processing and analysis (possibly combined with other information) 
may identify a particular group of subjects who have to be contacted—for example, those at increased risk, or 
suitable candidates for new treatment.   

Pseudonymization allows holding data in non-identifiable form to protect personal privacy, while providing a 
mechanism for reverse identification with sufficient protection against misuse.  To achieve this, identifiable personal 
elements are removed, and replaced with some abstract unique “keys” representing the individuals without 
disclosing their identities – allowing legitimate secondary use of the data.  The information and procedures needed 
to perform the reverse mapping to specific individuals are protected and controlled to prevent misuse.  

 

Consent Management Service 

The Consent Management Service is responsible for helping to manage patient consent directives in the context of 
e-Health solutions and services.  Privacy and corresponding consent policies vary significantly across country, 
jurisdiction, and legislative boundaries, resulting in the need for a highly flexible and configurable consent 
management service.  

Patient consent directives can be: 

 Implied or explicit 

 Stored in a local, central, or multiple locations 

 Applied to data and services from a summary view down to specific health domain data elements 



 

 

© 2009 Microsoft Corporation 71 

| Knowledge Driven Health 
 
 

 Overridden as required in emergency situations 

The Consent Management Service records, manages, and validates patient consent information and ensures that 
data access requests are compliant with the recorded consent directives during a request for patient information.  
The patient consent directives may be augmented by other privacy restrictions including legislation, jurisdictional 
policy, and domain-specific business rules. 

The Consent Management Service is exposed in the form of a set of Web Services that provide the following 
functions: 

 Record and revoke patient consent directives 

 Validate patient consent directives 

 Override patient consent directives 

 Provide access control to patient data based upon recorded consent directives (and optionally other 
managed business rules) 

 Record and audit all patient-consent-related activity 

 

Service Publication and Discovery Services 

Service Directory Service 

One of the core principles of a service-oriented architecture is the location transparency of the services it may 
provide to consumers. The physical location of a service may change for various reasons, such as more than one 
geographically dispersed service offering the same service contract, or a disaster recovery failover that makes a 
service in a different location available. 

A consuming application may fix the physical address of the service out-of-band at design time through manual 
discovery, and store that address in some service configuration. However, movement or deprecation of the service 
will mean that the consuming application no longer works. In addition, the consumer should not be concerned 
about where the service lives. Instead, it should be concerned with what the service offers to the consumer.  

As a result, it is necessary for the consumer to fix the physical address at runtime to avoid the hard lock-in at design 
time. This is the purpose of a service directory. It enables consumers to discover services, given a set of searchable 
criteria, at runtime and when required. 

Due to the lack of physical location awareness of the consuming application prior to using the service, it is necessary 
for the provider of the service to offer a reasonably coarse-grained interface—in other words, an interface that does 
not provide a granular or “chatty” interface that may cause performance issues when the service is geographically 
located far away. Services should accept messages that contain enough information to perform a business operation 
in its entirety, without resorting to expensive chat backwards and forwards between the consumer and the provider 
– as is typically the case with distributed object RPC-style protocols. 

The Service Directory Service should contain registrations for all of the e-Health Hub services (EHR, health registry, 
security, integration, etc.) to allow consumers to discover the correct service—for example, a Submission Service in 
a particular region or a local Security Service that offers authentication services. Figure 26 illustrates the interaction 
between a consumer and a provider while utilizing a Service Directory. 



 

 

© 2009 Microsoft Corporation 72 

| Knowledge Driven Health 
 
 

The service provider registers itself with the service directory out-of-band, so that it is can be found by service 
consumers. After registration of the service, the service consumer can search for a service based on searchable 
metadata associated with the service. After finding the appropriate service, the consumer binds to its physical 
address and uses the service. 

 

Figure 26. Interaction Between a Service Consumer, Service Provider, and a Service Directory 

 

UDDI 

A standard that has gained some acceptance in the industry, and which provides the necessary protocols and 
structure for a service directory, is UDDI. 

 

Note: UDDI stands for Universal Description, Discovery, and Integration, and version 3 is an OASIS Standard, 
although the WS-I Basic Profile 1.1 (for providing a basis for interoperability between Web Services) currently 
specifies version 2.  

OASIS manages the UDDI specification, available at http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm#uddiv3. 

 

UDDI helps enable the registration of Web Services by providers, and publication of Web Service definitions to 
consumers. In effect, it is an advertising and discovery service for Web Services. 

UDDI services generally offer three categories of information: white, yellow, and green pages. White pages contain 
contact information, addresses, and so on for the businesses that provide Web Services. Yellow pages contain the 
categorization for the Web Services through standard taxonomies. Green pages provide the technical specifications 
of the Web Services, such as binding information and consumer implementation details. 

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3


 

 

© 2009 Microsoft Corporation 73 

| Knowledge Driven Health 
 
 

 

Note: Due to the potentially complex relationships that can be created in a UDDI registry, the possibility of 
extending the data model with new categorization schemes, and ensuring that consistent naming standards are 
adopted, it is necessary to plan the structure of a UDDI registry prior to implementation. It is useful to consider 
planning of the design and implementation in a similar fashion to the implementation of a technology such as 
Active Directory. 

 

Service Metadata 

In UDDI, each service can have associated metadata that consumers can use to search for a service supporting a 
particular operation or feature. This metadata is the tModel that is used to allow the exchange of information such 
as a service description (which may be implemented using WSDL), or pointers to other metadata associated with the 
service. A tModel is not specific to a particular service entry in UDDI, but can provide a reference in its own right to 
search for compatible Web Services. Therefore, multiple services can all point to the same tModel. In addition, each 
service can reference multiple tModels where that service may implement multiple interfaces. 

Publishing a Service 

UDDI offers both a publisher and an inquiry SOAP API for interacting with the UDDI service registry. Service 
providers use the publisher API to enter information such as business details, new services, tModels, and 
classifications into the UDDI registry. All of the publisher API operations transmit the requests to the UDDI operator 
though HTTPS to ensure the privacy of information during registration. 

To use the publishing API, a service provider must first register with the UDDI operator (the owner of the service 
directory) to gain credentials for use in interaction with the registry. After receiving the credentials, the service 
provider must then get an authentication token every time they wish to use the publisher API to enter information 
about their services, which takes advantage of the get_authToken operation. 

The UDDI data model includes the following entities, which the publisher API manipulates when changing 
information about the provider or about the services that the provider offers: 

 businessEntity – describes a business or service provider. Associated with this structure are all of the 
other structures below, and contact information such as the name and address of the provider. Providers 
may represent organizations, departments, and so on, and a publisherAssertion entity represents the 
relationships between business entities. 

 businessService – describes a logical group of one or more services offered by the provider and can be 
categorized using a categorization scheme that may indicate its geographical location, service type, quality 
of service (QoS) parameters, and so on. 

 bindingTemplate – describes the binding for an instance of a Web Service that is associated with the 
business service logical grouping. This binding specifies, in the case of SOAP-based Web Services accessed 
over HTTP, the URL location that the service consumer can physically find the Web Service. 

 tModel – provides a fingerprint or collection of information about the specification of a Web Service. 
Typically, this represents the location of the WSDL interface specification for the service, but it may 
represent any other descriptive data. 

 

 



 

 

© 2009 Microsoft Corporation 74 

| Knowledge Driven Health 
 
 

Figure 27 illustrates the relationships between these top-level entities. 

 

Figure 27. UDDI Entity Relationships 

Finding a Service 

The inquiry API allows a service consumer to find and bind to a Web Service at runtime. Searching is available 
against businesses, services, and tModels (service interfaces) that return a set of results. The consumer can then 
iterate through the response, selecting the most appropriate entry. 

It is not typical to bind to the contract at runtime, as this is a task for the development phase. The developer has to 
understand the interface of the service in order to consume it within the application, and this is not possible 
dynamically. The dynamic binding at runtime relates only to the physical location (the URL or address) of the service 
that offers the expected interface. 

The API offers a set of core operations that are central to searching for a specific set of related services: 

 find_business – this operation finds information about one or more businesses that are associated 
with certain categories or identifications. A search is also possible through a name or tModel reference. 

 find_service – this operation returns a list of services that meet search criteria, such as the service 
type. 

 find_tModel – this operation returns tModel structures that permit a consumer to search the registry for 
matching services. 

It is possible to implement a simple form of load balancing by iterating through a set of services (that all implement 
the same service interface) in a round-robin fashion for each service invocation. In addition, if a Web Service 
invocation fails, the design of the consumer can provide features to either retry this service or choose the next 
service in the list. This provides an element of failover protection. 



 

 

© 2009 Microsoft Corporation 75 

| Knowledge Driven Health 
 
 

Replication 

The UDDI registry has support for replicating its data with other registries in a similar way to the Domain Name 
System (DNS). A specific replication API supports this, and registry operators can use this to ensure synchronization 
of the UDDI registries. While updates do replicate changes to entities (such as service addresses), the service 
provider publishing the new information should return to the same operator they have registered with to update 
the existing information. 

Replicating the registries ensures that a consumer can query a local Service Directory to find a service where the 
service provider for that service has a publisher's registration with a different Service Directory. The only out-of-
band configuration required by the consumer is the location of a suitable Service Directory. Without replication, the 
consumer would always have to know—prior to searching for a service—the registration location of a particular 
service in order for the consumer to locate the physical address. 

 

e-Health Business Services 

This section of the document describes the e-Health business services that directly support the specific health 
domain requirements of any e-Health solution. The e-Health services and supporting business components are 
wholly dependent upon the specific nature of the healthcare requirements being addressed.  

The e-Health Business Framework discussed in Part 2 of this set of documents describes the concepts of Patient 
Care Records, Care Pathways, Patient Journeys, and Health Care Providers.  Together these concepts help to 
describe and provide a frame of reference for the specific healthcare solution under consideration.  

As an example, Figure 28 shows a portion of a generic Care Pathway (somewhat simplified) for Colorectal Cancer.  
The diagram for the full Care Pathway is large and is included as an appendix in Part 5. We have also included 
subsidiary diagrams showing the individual phases of the Care Pathway. This Care Pathway has been constructed to 
illustrate the care process for colorectal cancer and is based on professional advice. We have structured the Care 
Pathway into a longitudinal, step-by-step process and grouped these steps into meaningful “blocks”. We have 

analyzed the process into four  phases   (in pink): Examination, Treatment, Post-Operative Treatment, and Follow-

Up.  Each of these phases comprises a number of  activities   (in green), each activity involves the carrying out of a 

clinical process, and each  clinical process   (in white) comprises a number of actions. 



 

 

© 2009 Microsoft Corporation 76 

| Knowledge Driven Health 
 
 

 

Figure 28. Care Pathway Fragment 

The e-Health services described in this section realize the required functionality to support the Care Pathways and 
Patient Journeys necessary to fulfill against any specific e-Health solution.  We have grouped the e-Health services 
into three categories, each responsible for a specific set of the broad e-Health business requirements which, when 
combined, fulfill against the required e-Health solution requirements. These groupings are Electronic Health Record 
(EHR) Services, Health Domain Services, and Health Registry Services.  It should be apparent from this discussion 
that the e-Health services, much more than the other services described as part of this reference architecture, will 
be specific to and dependent upon the specific e-Health scenarios that a specific solution is aiming to address. 

 

Electronic Health Record Services 

The Electronic Health Record (EHR) Services are a set of e-Health services responsible for capturing, persisting, 
summarizing, and providing access to longitudinal patient health information in both a summary and detailed 
format. These services are central to all e-Health solutions and represent a centerpiece of the e-Health Service Hub.   

All domain-specific e-Health solutions (such as lab and drug information systems) are dependent upon the EHR 
services to provide the required summary patient information as well as a mechanism to locate the source health 



 

 

© 2009 Microsoft Corporation 77 

| Knowledge Driven Health 
 
 

system containing the complete health records. The EHR services are responsible for accepting and marshalling 
requests for the creation, update, and queries of patient and patient encounter data; acting as an intermediary to 
the various domain services and repositories; and acting as a data source itself in the form of a summary patient 
health record.  

The EHR Services are supported by a Summary Clinical Data Repository (SCDR), which contains the minimum set of 
patient and patient encounter data required to support a high percentage of all patient health information requests 
at a summary level. The SCDR also contains pointers for each of the patient and encounter records to the source 
system from which the summary information was derived.  

It is recommended that the information model supporting the SCDR be aligned with the HL7 v3 Reference 
Information Model (RIM). This alignment will help to ensure that the exposed EHR services fully support an HL7 v3 
message infrastructure and will provide a high level of fidelity between the available services and SCDR. The Record 
Locator Service (RLS) of the Connecting for Health/MA-SHARE RHIO in the United States is very similar to the 
Connected Health Framework EHR Services where no summary data is stored in the SCDR. The SCDR is still used for 
storing pointers to the detailed clinical encounter records. 

 

Note: Although we expect new systems to be built using newer standards and formats such as HL7 Messaging v3, 
there might be a requirement that legacy formats still be accepted, especially where the burden of translating to 
different standards might impose too high of a barrier for participation in the e-Health system. As an example, the 
vast majority of the hospitals in the United States implement HL7 v2 for their laboratory results (HL7 v2.x ORU 
messages), given the inherent complexity in transforming from HL7 v2 to HL7 v3, a system that aims to provide 
access the majority of hospitals might want to enable them to publish lab results in a canonical HL7 v2 format 
detailed in the implementation guides. In other circumstances, it might be required to support different standards 
because of their applicability and scope, such as DICOM for imaging, NCPDP for U.S. pharmacies, and so on. 

 

The following EHR Services are published through the e-Health Service Hub. The expectation is that these services 
are based on HL7 v3 messages exposed through a set of Web Services: 

 EHR Access Services 
The EHR Access Services provide for the querying and retrieving of summary patient and patient encounter 
information from the SCDR. The query parameters are based on rationalized patient and provider 
identifiers. The summarized and aggregated patient and patient encounter information returned will 
depend upon the query parameters supplied to this service. The returned summary patient and patient 
encounter information will also provide source service location (service address) for each summary patient 
encounter. 

 EHR Update Services 
The EHR Update Services allow participating clinical systems and services to update the SCDR with patient 
and patient encounter information.  The Health Domain Services (described below) will be the primary 
clients of the EHR Update Services. Whenever activity occurs within one of the Health Domains, the 
associated patient encounter will be updated in the EHR through the EHR Update Services. 

 EHR Process Orchestration Services 
The EHR Process Orchestration Services maintain and execute the process workflows or “orchestrations” 
that control the interaction of supporting e-Health Service Bus services required to fulfill the EHR Services. 
This can include orchestration of Integration Services, Security Services, and Health Domain Services. 



 

 

© 2009 Microsoft Corporation 78 

| Knowledge Driven Health 
 
 

 EHR Business Rule Services 
The EHR Business Rule Services maintain and execute business rules associated with the execution of all EHR 
Services. Business rules can range from simple validations to complex business logic. 

 

Health Domain Services 

The Health Domain Services are a set of e-Health services responsible for capturing, persisting, and providing access 
to specific health domain information (such as lab information systems, drug information systems, and diagnostic 
imaging systems) in both summary and detailed format.  These Health Domain Services are central to all e-Health 
solutions and govern access to detailed patient clinical encounter activity.  The Health Domain Services use the EHR 
Services described previously, to keep the summary patient EHR information current.  Similarly, the Health Domain 
Services are used to retrieve the detailed clinical encounter records that are summarized by the EHR Services. The 
Health Domain Services that are implemented and deployed will vary by e-Health solution and will depend upon the 
specific e-Health solution requirements. Health Domain Services may be used for a single health domain or to 
aggregate information from across multiple health domains. 

The following Health Domain Services are required for each health domain (such as a lab or pharmacy) that is 
supported as part of the e-Health solution. The services are published through the e-Health Service Hub with an 
expectation that the services are based on HL7 v3 messages. 

 Health Domain Access Services 
The Health Domain Access Services provide for the querying and retrieving of health domain information 
from the source domain system (such as a lab system or repository). This set of services is typically used to 
get detailed domain information based upon summary information provided through the EHR Services. 

 Health Domain Update Services 
The Health Domain Update Services provide for participating clinical systems and services to update the 
source domain SCDR with patient and patient encounter information.  The Health Domain Services 
(described below) will be the primary clients of the EHR Update Services.  Whenever activity occurs within 
one of the Health Domains, the associated patient encounter will be updated in the EHR through the EHR 
Update Services. 

 Health Domain Process Orchestration Services 
The Health Domain Process Orchestration Services maintain and execute the process workflows or 
“orchestrations” that control the interaction of supporting e-Health Service Bus services required to fulfill 
the Health Domain Services.  This can include orchestration of Integration Services, Security Services, and 
EHR Services. 

 Health Domain Business Rule Services 
The Health Domain Business Rule Services maintain and execute business rules associated with the 
execution of all Health Domain Services. Business rules can include simple validations through complex 
business logic. 

 



 

 

© 2009 Microsoft Corporation 79 

| Knowledge Driven Health 
 
 

Health Registry Services 

The Health Registry Services are a set of e-Health services responsible for maintaining central health registry 
indexes.  The health registries governed by this set of services include patient, healthcare provider, and location.  
These services provide indexing, access, update, and matching/linking functionality for each of the health registries.  

The following Health Registry Services are published through the e-Health Service Hub. The expectation is that these 
services are based on HL7 v3 messages exposed through a set of Web Services: 

 Health Registry Access Services 
The Health Registry Access Services provide for the searching, selecting, and retrieving of health registry 
(patient, healthcare provider, location) data.  The registry services use both exact matching and probabilistic 
linking algorithms to return the candidate set of information. The Health Registry Access Services will 
typically employ EMPI (Enterprise Master Patient Index) solutions to create and maintain the registry index. 

 Health Registry Update Services 
The Health Registry Update Services allow participating clinical systems and services to update the health 
registries (patient, healthcare provider, location) with new or changed registry information.  The update 
services are typically called in conjunction with or in response to a related domain or EHR activity (such as 
an “admitting a patient” event in a connected clinical system). 

 Health Registry Process Orchestration Services 
The Health Registry Process Orchestration Services maintain and execute the process workflows or 
“orchestrations” that control the interaction of supporting e-Health Service Bus services required to fulfill 
the Health Registry Services.  This can include orchestration of Integration Services, Security Services, and 
Health Domain Services. 

 Health Registry Business Rule Services 
The Health Registry Business Rule Services maintain and execute business rules associated with the 
execution of all EHR Services. Business rules can include simple validations through to complex business 
logic. 

Integration Services 

Underlying and directly supporting the e-Health Business services described in the previous section is a rich set of 
integration services which are responsible for providing a fabric of connectivity among all participating healthcare 
systems and stakeholders.  The integration services ensure the interoperability between connected healthcare 
systems and services, providing the required network and application protocol bridging, syntactic and semantic 
message transformation, message routing and process orchestration, and transaction management.  These services 
are offered in a secure, reliable, and highly available architecture. 

Submission Service 

The reference architecture described in this guide enables multiple channels to interact with the e-Health Services 
Node electronically. A key part of the interaction with any Healthcare agency is document submission. Ordering lab 
tests, viewing a patient’s summary health record, or updating a patient’s address—all of these operations require 
submission of some form of document (and sometimes attachments such as images). 



 

 

© 2009 Microsoft Corporation 80 

| Knowledge Driven Health 
 
 

The Role of a Submission Service 

In an e-Health Services Node, the Message Submission Service is responsible for the receipt of documents and the 
processing of these documents on behalf of the channel or other peer Message Submission Services that initiated 
the delivery. 

The document delivery envelope is a message that contains not only the document itself, but can also contain 
metadata about the document such as the identity of the sender, the originating application or service, the date of 
submission, and the type of document contained within the message. Message metadata is useful to any service 
that needs to understand some general properties about the payload (the document itself) in order to make 
decisions on how to process or route the message. The document type and the destination agency service are 
examples of metadata that, at a minimum, are useful when routing the message to the correct agency. 

The Submission Service is also responsible for checking the security of the message and preventing tampering of the 
content. In addition to checking the validity of the message, the Submission Service may have to decrypt the 
payload in order for it to route the message to an agency service that does not have the technology in place to 
decrypt the message. 

After checking the validity of the message, the Submission Service should verify the authenticity of the sender by 
ensuring that the embedded security token is valid. It must then authorize the submission based on the 
requirements of the target service, by checking the authentication level against the minimum authentication level 
specified for that service. In other words, a target service may require verification of the sender's identity through a 
username and a strong password. If the verification was through a username and a weak password, the service may 
not accept the message. The authentication level must be a property of the message (digitally signed so that it is 
tamper-proof) for the Submission Service to perform the authorization. 

After verification of the sender and confirmation of the appropriate authentication level for the target service, 
authorization of the operation can take place at a coarse-grained level. The operation is the submission of a 
document of a certain type to a particular service, or it could be routing of the document on to another peer 
Submission Service. However, preauthorization can take place before routing. Authorization involves checking a set 
of claims against the Authorization Service. These claims may range from the sender having the permissions to 
submit a document of type X, or belonging to group Y, or any combination thereof. 

Document routing to the destination service takes place after successfully passing the security checks. This may be 
on to a peer Submission Service, in which case the security checks may or may not have occurred depending on the 
requirements of the sender. The requirement may be that the message is checked only when it reaches its ultimate 
destination, or it may be that message checks are carried out by an intermediary Submission Service. 

Basic Architecture of the Message Submission Service 

The basic architecture of the Submission Service divides into two main areas: 

 A black box public side used by consumers that are submitting documents 

 A white box private side used by the service provider (central Healthcare, an authority, or local health care 
body, or a single agency offering Submission Services) that enables integration with the agency systems 

 

Figure 29 highlights these two areas for a basic Submission Service architecture. 



 

 

© 2009 Microsoft Corporation 81 

| Knowledge Driven Health 
 
 

 

Figure 29. Basic Architecture of Submission Service 

 

Public Interface 

The public interface of the Submission Service defines how the consumer interacts with the service; what operations 
are supported; the necessary protocols and message formats that the service supports; and the non-functional 
requirements placed on the consumer by the service, such as what level of encryption and signing is mandatory. It is 
how the consumer sees the service. 

An external service consumer—which can be a portal, an ISV application, another service, or a partner—interacts 
with the Submission Service through its public interface. The provider of the service offers an interface that, at its 
most basic level, enables the consumer to submit documents both synchronously and asynchronously. Supporting 
this interface will be ancillary operations that allow the consumer to check submission status, and retrieve and clean 
up responses if submission is asynchronous. 

In most cases the public interface of the Submission Service will be wrapped by a set of healthcare-specific 
interfaces that are published through the Service Directory Services. 

Figure 30 illustrates a high-level view of the public interface of the Submission Service. 



 

 

© 2009 Microsoft Corporation 82 

| Knowledge Driven Health 
 
 

 

Figure 30. High Level Services Provided by the Public Interface of Submission Service 

 

Asynchronous Communication 

The Submission Service implements the basic communication patterns (synchronous and asynchronous) to ensure 
support for as wide a client base as possible. However, if consumers are blocking through a synchronous interface, 
the service has to process and return a response on the same connection. This means holding onto resources longer 
than would be the case in an asynchronous scenario, thus limiting the scalability of the service. 

Using the asynchronous interface for document submission is preferable, as this affords better scalability because 
the consumer is not required to block waiting for a response. In addition, the underlying technology used to 
implement the Submission Service does not have to ensure it returns a response in as short a time as possible.  

The consumer provides the service with a location where that service can deliver its response, independent of and 
after processing of the request. If the consumer is unable to provide a response location, it has to resort to polling 
for a response from the Submission Service. This implies that the service has to maintain the state for any responses 
received asynchronously from agency services, utility services, or other peer services, and raises questions such as 
“at what point do I start to clean up responses that have not been fetched by the consumer?” 

The simplest approach is to offer a “dispose-like” operation on the Submission Service that permits the consumer to 
dispose of their own resources once they have finished with the response. In addition, the service itself cleans up 
resources based on a period of decay for forgotten responses, or after the consumer has collected them. In essence, 
this is a garbage collector for response messages. 

Synchronous Communication 

In some cases, the client may not support an asynchronous pattern that requires a location for the receipt of 
asynchronous responses. The client can still poll for a response asynchronously, or may prefer to call the Submission 
Service synchronously for other reasons. An example is to provide immediate responses to the end user.  



 

 

© 2009 Microsoft Corporation 83 

| Knowledge Driven Health 
 
 

Protocols such as HTTP are request/response protocols, where the Web browser posts a request to the Web server 
and the Web server generates an HTML page, returning it to the client on the same connection. In a synchronous 
scenario, the response would be the actual response from the target service(s), rather than merely an 
acknowledgment response that would be produced in an asynchronous scenario.  

However, at the Submission Service level (rather than at the target service) a synchronous pattern may be extremely 
difficult to achieve due to dependencies on downstream services (other services or utilities) that provide the 
response. Generating a synchronous response is entirely dependent on the implementation and support of the 
synchronous pattern by these downstream services as well. This means that the consumer must be able to discover 
the capabilities of the health or utility service at design time to see if it supports a synchronous or asynchronous 
interface. 

Although the asynchronous pattern is preferable, it does mean that the public interface becomes a little more 
complex to support polling and cleanup operations. However, exclusive use of the synchronous pattern by 
consumers (where downstream health services support this pattern) can introduce additional scalability problems 
that otherwise may not exist using the asynchronous pattern for document submission. Therefore, it is sensible to 
only promote the synchronous pattern where it is necessary—for example, with a patient health summary service 
that retrieves summary data from a local store and provides an immediate response. 

The communication services and protocols supporting both the synchronous and asynchronous message exchange 
are described more completely in the Communication Services section later in this document (page 99). 

Private Implementation 

The public interface of a document Submission Service is concerned with interaction with consumers in a 
standardized way. However, the private implementation is concerned with how the service will actually process 
requests, integrate with agency or utility services, return responses, and ensure that—operationally—it provides the 
correct information to other services. 

The Submission Service has many responsibilities that require implementation, including the following: 

 Receive and process requests 

 Return responses either synchronously or asynchronously, depending on the requirements of the agency or 
utility service 

 Store requests where delivery to the target agency or utility service is not currently possible 

 Store responses where they cannot be delivered asynchronously, or if the consumer supports only polling 
for a response 

 Authorize the requests 

 Process polling requests 

 Process cleanup requests 

 Audit requests, responses, and any security-related operations such as authorization 

 Provide instrumentation in the form of information on errors, warnings, and basic operational information; 
performance counters for determining service health; and runtime tracing information that can be switched 
on or off to aid diagnosis 

 Integrate with agency and utility services 



 

 

© 2009 Microsoft Corporation 84 

| Knowledge Driven Health 
 
 

 Route documents on to agency, utility, or peer services 

 Support higher-level application protocols through the orchestration of business processes 

This and the following sections examine these responsibilities. Meanwhile, Figure 31 provides a high-level view of 
the implementation of a Submission Service. 

 

Figure 31. High-Level Services Provided by a Private Implementation of a Submission Service 

 

Messaging Services 

The message format is XML, which is fast becoming the de-facto format for the communication between 
applications (service consumers) and Web Services (service providers). XML provides a defined structure that gives 
meaning to data. 

 

Note: The World Wide Web Consortium (W3C) is the organization that governs the XML specification, currently a 
W3C Recommendation at version 1.1. The W3C are at http://www.w3.org/. The XML specification is at 
http://www.w3.org/XML/. 

 

http://www.w3.org/
http://www.w3.org/XML/


 

 

© 2009 Microsoft Corporation 85 

| Knowledge Driven Health 
 
 

The rise of XML is due in part to its ease of use, and the fact that it is text-based, which ensures that even the 
simplest of systems has the ability to understand a message formatted as XML. Support for XML is widespread 
across multiple operating systems, with even some databases now supporting XML as a native data type. 

As such, using XML to provide the basic message structure makes sense when building a framework designed to 
ensure interoperability between systems and applications in a heterogeneous health care world. 

Envelopes, Headers, and Payloads 

The “envelope” format for messages enables message metadata to be stored alongside the payload. The format 
includes a header that contains the metadata, and a body that contains the payload. An example of an envelope 
format in use today is SOAP, the XML-based protocol (adopted by the majority of Web Service software 
manufacturers) that facilitates application communication and wraps requests and responses with associated 
metadata. The Submission Service uses the SOAP format for encapsulating requests and responses to and from 
other services. This ensures the Submission Service is as interoperable as possible with any healthcare service that 
runs on any platform and uses any operating system technology. 

 

Note: The W3C governs the SOAP specification, available at http://www.w3.org/2000/xp/Group/ and is currently 
a W3C Recommendation at version 1.2. 

 

Figure 32 highlights the structure of an envelope-formatted document, where the envelope provides the structure 
to contain both the header and body. 

 

Figure 32. An Example of an Envelope-Formatted Document 

This format also supports nesting—for example, a custom envelope format used by a healthcare service may permit 
a SOAP payload nested inside a SOAP message. This implies several levels of message metadata: the metadata 
(business metadata) associated with the document separated from the metadata associated with the SOAP message 
(technical metadata that may be concerned more with message security and reliability). 

Figure 33 shows a nested-enveloped-formatted message where the body of the root-level document contains yet 
another envelope. This nesting can continue, with nested envelopes containing other envelopes if required. 

http://www.w3.org/2000/xp/Group/


 

 

© 2009 Microsoft Corporation 86 

| Knowledge Driven Health 
 
 

 

Figure 33. An Example of a Document Containing Nested Envelopes 

Message Attachments 

Sometimes it is necessary for some extra collateral to accompany an XML document. This might be scanned paper 
documents, X-ray or scan images, or any other digital representations. 

Associating attachments with an XML document has been technically possible for some time, through various 
mechanisms and following various specifications such as SOAP with Attachments. The latest specification, which 
deprecates all others, is based on two specifications by the W3C: XML-binary Optimized Packaging (XOP) and the 
SOAP Message Transmission Optimization Mechanism (MTOM). 

 

Note: The XOP specification is a W3C Recommendation found at http://www.w3.org/TR/xop10/. The MTOM 
specification is also a W3C Recommendation, and found at http://www.w3.org/TR/soap12-mtom/. 

 

The purpose of XOP is to enable Base64 encoding for repackaging of binary data into a MIME-formatted message. 
The schema for the document will define a Base64 type as an xs:base64Binary data type, and this is a 
supported lexical canonical form contained in the XML InfoSet specification (an abstract data model of a serialized 
XML document). 

 

Note: The Base64 characters must be in a canonical form—that is, no extraneous white space preceding, inline, or 
following the encoding. If this is not the case, it will be impossible for the receiving Web Service to reconstitute 
the original encoding when including the white space from the binary optimized format. 

 

http://www.w3.org/TR/xop10/
http://www.w3.org/TR/soap12-mtom/


 

 

© 2009 Microsoft Corporation 87 

| Knowledge Driven Health 
 
 

A binary format is more likely to provide optimizations for applications than a Base64-encoded version that has to 
be decoded. Binary format is also likely to be smaller. In place of the Base64-encoded data in the XML InfoSet, an 
XOP specific element provides a link to the XOP optimized binary content in the MIME message. The resulting 
package (after serialization of the InfoSet) is known as an XOP package, and contains the XML document (XOP ) and 
the extracted content in a MIME Multipart/Related package. 

MTOM is a specification that describes how to optimize transmission of the SOAP message (in particular the 
envelope), and relates to the XOP specification where it describes how the optimization is implemented. The Web 
Service that receives the SOAP message is responsible for reconstructing the original message by decoding the 
optimized binary content back into the Base64 representation, although this is not mandatory. 

Securing the Messages  

The basic communication with Web Services involves sending and receiving messages. Typically, SOAP is the format 
used for these messages. The problem with transmitting documents as payloads of SOAP messages is that there are 
no inherent security features built into each message. SOAP as a specification does not define any security support, 
only the basic structure of a SOAP message (envelope, header, and body). Consequentially, there are two main 
approaches to securing the messages: transport-level security and message-level security. Their respective 
advantages and disadvantages are discussed in the following sections.  

Transport-Level Security 

This lack of standards or specifications early in the development of Web Services, and in particular SOAP, meant 
reliance on other available mechanisms to provide security. These mechanisms were environment-based, such as 
transport-level security using protocols such as SSL, TLS, or IPSec. They rely on the establishment of a secure 
channel, following an initial “handshake” to confirm the identities of the endpoints and exchange the necessary 
encryption keys.  After that, the channel protects the integrity and privacy of the traffic between two endpoints for 
the duration of the session (see Figure 34). 

 

Figure 34. Transport-Level Security 

The main advantage of transport security is that it is mature, well-established technology, widely supported in 
commercial products – even incorporated in the network infrastructure. Originating and terminating the secure 



 

 

© 2009 Microsoft Corporation 88 

| Knowledge Driven Health 
 
 

channels at the edge of a node, using specialized equipment and hardware accelerators, can offload the additional 
processing from the main servers, and could be completely transparent to the applications.     

However, transport-level security also has some notable shortcomings: 

Security applied at the transport level protects message privacy and integrity point-to-point only between the 
sender and the receiver. Outside of the secure channel between the sender and receiver, the message is potentially 
unsecured and viewable as plain text. At this point, the security of the message is dependent on the underlying 
platform to ensure the privacy and integrity of the message.  

For this reason, there are no guarantees that a message has remained private and has avoided tampering along the 
entire route between the sending and receiving applications. Even worse, if the message path routes it through one 
or more intermediary nodes, the message is potentially unsecured as it moves from one network to another. 

Even within the boundaries of a single system, transport-level security is often provided by specialized hardware and 
software (for performance and efficiency reasons), located at the edge of the system. Secure sessions terminate at 
that point. Even when the appropriate mutual authentication has taken place to establish a connection, information 
about the origin of the message may be lost between its arrival at the edge of the system and actual processing.  

Message-Level Security 

Security at the message level aims to overcome the issues with transport-level security, and guarantee true end-to-
end privacy and integrity of the messages, independent from the transport used and any intermediaries along the 
route.  Messages themselves are self-contained, can be encrypted, and carry all the necessary security information 
(see Figure 35). 

 

Figure 35. Message-Level Security 

To achieve this, various specifications introduce message security information into the SOAP header. The most 
prominent of these is WS-Security. 

WS-Security defines a set of SOAP headers used to ensure the preservation of privacy and integrity for messages 
sent from sender to recipient, and regardless of the networks traversed, the number of intermediary nodes, and the 
platforms that the message may reside on before re-routing. 



 

 

© 2009 Microsoft Corporation 89 

| Knowledge Driven Health 
 
 

 

Note: OASIS manages and coordinates the WS-Security standard; see: http://www.oasis-open.org/specs/#wssv1.1 

 

Privacy 

Encryption ensures the privacy of the message, and involves scrambling the plain text into indecipherable binary 
data using a standard encryption algorithm such as Triple DES, AES, or RSA. There are two types of encryption—
symmetric and asymmetric—and both use mathematical algorithms that involve encryption keys for both 
encryption and decryption. 

Symmetric encryption requires both the sender and receiver to know the same key (called a shared secret), and 
relies on some key exchange mechanism to ensure both parties are in possession of an identical key before 
communications can be secured. 

Asymmetric encryption uses two different keys: public and private. The public key, which the key owner gives to 
anyone wishing to protect the privacy of messages sent to and from the key owner, enables encryption of the plain 
text. The private key (which only the key owner knows) enables decryption of the message.  

Only the private key can decrypt what the public key encrypted, and only the public key can decrypt what the 
private key encrypted. As long as the key owner keeps the private key safe and private, it is a convenient method of 
protecting the privacy of messages because there are no restrictions when sending out a public key.  

Why would the use of asymmetric encryption not be the obvious choice all the time when it is easier to distribute 
keys? This is because the mathematical algorithm and size of keys involved (in order to resist brute force attacks) 
means that it is computationally more expensive and consumes far more processing power than symmetric 
encryption. As a result, it is more efficient to use symmetric encryption where possible, particularly during a 
message exchange between Web Services. Asymmetric encryption is useful for establishing a shared secret or 
session key, which then secures the rest of the conversation using symmetric encryption. Secure Sockets Layer (SSL) 
over HTTP is an example of a protocol that works in this way. 

Encryption at any level is possible in a SOAP message when using WS-Security. Encryption is possible for the entire 
payload, or selected for parts of it. Even the SOAP headers can be encrypted where appropriate. WS-Security takes 
advantage of the XML Encryption specification that describes the conventions used to include encryption in a SOAP 
message. 

Integrity 

While a message content may not be sensitive or confidential to require encryption, there may be a need to ensure 
that tampering has not taken place on the message while in transit and the integrity of the message is intact. This is 
particularly useful for transmission of a letter or request, where verification of the sender that produced the 
document is possible. This is known as signing the document, and results in a digital signature. 

Signing a document involves running a hash algorithm such as SHA-1 against it to produce a small, fixed-length 
binary value called a hash or message digest that is unique, and which differs for even the smallest change to the 
source document. The private key then encrypts the message digest to produce a digital signature. The receiver uses 
the public key to decrypt the signature and retrieve the message digest, and then runs the same hash algorithm 
against the message to produce another message digest. Comparing the two digests reveals whether or not the 
message has suffered tampering. It so, rejection takes place. A match guarantees that the message is identical to 
that signed at source. 

http://www.oasis-open.org/specs/#wssv1.1


 

 

© 2009 Microsoft Corporation 90 

| Knowledge Driven Health 
 
 

The problem with running a hash function against XML is that two XML documents may be syntactically identical, 
but still different due to extraneous white space, carriage returns, and so on. These affect the formatting of the XML 
document, but not the syntax. Therefore, it is necessary to run a canonicalization algorithm against the XML 
document before running the hash function to strip out white space according to a predefined set of rules. 

 

Note: The W3C have released a specification called Canonical XML (sometimes described as C14N 
canonicalization) that describes the rules for the canonicalization of documents for use in signing. It is a W3C 
Recommendation at version 1.0 and is available at http://www.w3.org/TR/xml-c14n. 

 

In a SOAP message that uses WS-Security, application of digital signatures over a combination of arbitrary parts of 
the message is possible, in the same way as encryption. WS-Security specifies the use of the XML Signature 
specification that describes the conventions used to sign and include digital signatures in a SOAP message. 

 

Note: The XML Signature specification is a W3C Recommendation and is available at 
http://www.w3.org/TR/xmldsig-core/. 

 

Authorization 

The Submission Service should expect to receive a security token in the SOAP header that identifies the sender upon 
receipt of document. The sender should have authenticated with their Identity Provider prior to submitting the 
document, and—provided there is a trust relationship between the domain that issued the token and the domain 
(Relying Party) that the Submission Service runs in—the service accepts the sender’s authentication status. A digital 
signature applied to the token ensures that tampering cannot take place, and integrity checks are possible on the 
message. 

After verification of the security token, the Submission Service is responsible for checking that the sender has the 
authorization to submit a document to the agency or utility service by checking the enrollments against the 
Authorization Service. In addition, checks take place to ensure that the level of authentication that the sender used 
to verify their identity with their trust domain matches the minimum level accepted by the agency or utility service. 
Any negative response from the Authorization Service causes the Submission Service to return a SOAP fault message 
that indicates the sender failed authorization in terms of submitting the document to the service. 

Message Validation 

Assuming that verification of the sender and authorization to submit the document and the message are successful 
and that checks on the message headers succeed, the payload may require validation. Validating the payload 
ensures that the structure and content is in an acceptable format before delivery of the message to the target 
agency or utility service. Validation of the payload on behalf of a peer service can take place before it is re-routed. 
This could be because the peer service may not have the necessary resources to accomplish this. 

The Submission Service should return a SOAP fault message if validation of the document fails. The advantage in the 
Submission Service performing basic validation is that the target agency service receives only documents that are 
correct according to their schema. 

Normally, a schema defined using XML Schema (XSD) performs validation. XSD allows the structure of the XML 
document to be strictly defined, including restrictions on repeating elements, either/or existence of elements, and 

http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xmldsig-core/


 

 

© 2009 Microsoft Corporation 91 

| Knowledge Driven Health 
 
 

so on. XSD also allows type checking against content data types, as well as checking against allowable sets of data 
(enumerations) and complex pattern matching of content data. 

In cases where higher-level semantic validation (such as extended vocabulary validation or business rules validation) 
is required, it might be appropriate for the recipient to perform this step and—if the original message is not 
correct—eventually return an application-level error message to the sender. 

Message Store 

The Submission Service should offer the sender an indication of safe receipt, and a guarantee that the document 
they submitted will not be lost or ignored. To implement this guarantee, the document is stored temporarily as it 
flows through the system. If the Submission Service is unable to deliver a document to an agency service, utility 
service, or peer service, it holds it in the message store until delivery is possible. The Submission Service may 
implement a retry algorithm that ensures periodic delivery attempts. 

The message store also acts as a temporary store for responses not yet delivered to the sender (assuming the 
sender provided a response location), or not yet retrieved by the sender when it polls for responses. 

The message store is critical to the operation of the Submission Service, and so suitable protection from software 
failures and environmental disasters is required. 

Routing Service 

One of the core purposes of the e-Health Integration Services is to route documents to the correct destination. This 
may involve routing the document to: 

 A peer service located locally at a health agency, if coming from a domain-level Submission Service. 

 A peer service located centrally at domain level, if coming from a local Submission Service. 

 A peer service located in another trust domain, if coming from either a domain-level or local-level 
Submission Service. 

 A utility service. 

 A target service. 

 

Figure 36  shows the various routing paths that a document may take. The key to the colored lines is as follows: 

 Red – peer-level service physical route 

 Dotted Red – peer-level service logical route—the physical routing to the node may be by way of other 
nodes 

 Blue – agency service route 

 Green – utility service route 



 

 

© 2009 Microsoft Corporation 92 

| Knowledge Driven Health 
 
 

 

Figure 36. Document Routing by the Submission Service 

 

Addressing Web Services 

The location of a Web Service can be determined at runtime by querying the UDDI repository. This preserves one of 
the core tenets of a service-oriented architecture: location transparency. The address returned from the query 
represents the physical location of the Web Service. This may take the form of an HTTP URL if communication with 
the Web Service is over the HTTP protocol, but it could equally represent another type of address if a different 
protocol is used—for example, basic TCP/IP. 

A SOAP message that contains a business document should include SOAP headers containing the address of the 
endpoint that is to receive and process the business document. This endpoint is likely to be the address of a 
Submission Service that is responsible for forwarding the message to the target health or utility service. In addition 
to the endpoint address, a set of properties can be attached that describe the health or utility service required, and 
any further technical or application-specific properties dependent on the requirements of the target or utility 
service. This allows routing of the message to a Submission Service that uses the associated properties to re-route 
the message to the correct service. 



 

 

© 2009 Microsoft Corporation 93 

| Knowledge Driven Health 
 
 

The WS-Addressing specification allows Web Service addresses to assume a standardized format within the SOAP 
header. The recipient of the message (the endpoint address) is identified by the To element, and the operation to 

be performed on the Web Service is identified by the Action element. The From element identifies the source of the 
message, and the ReplyTo element specifies where to send replies. Finally, the FaultTo element identifies 
where to send errors. Associated with each of the endpoint address elements are optional reference properties 
represented by the ReferenceProperties element. 

Message Paths and Intermediaries 

It is possible to submit a message to a Submission Service that is acting as an intermediary, but is not the service 
identified by the endpoint address in the To element of the SOAP header. In this instance, the Submission Service 

re-routes the message based on business rules that map the To address to the next node in the path. This node may 
or may not be the ultimate endpoint, thus the SOAP message follows a dynamical message path through a set of 
intermediary nodes. 

While it is possible to define the path taken by a SOAP message in the header (and early specifications such as WS-
Routing attempted to do so), this is not always desirable. If the header defines the route, then, effectively, changes 
are not possible unless an intermediary can update the header. In addition, the intermediary must remove its entry 
from the path, or set a flag to indicate processing has taken place.  

This introduces a security issue. A digital signature is likely to be in use to protect the addressing header and avoid 
delivery of the message to a malicious node. If the intermediary is required to update the header, it must be 
unsigned – and this could leave an attacker free to update the addressing details in the header to include a 
malicious node. As it is obvious that signing of the header is required, dynamic routing decisions are not possible at 
the intermediary node and the header should define a fixed route. 

Peer Routing 

Routing between peers involves forwarding messages on to other Submission Services, whether they exist in the 
same trust domain or are located in other trust domains. This may be because the address of the ultimate endpoint 
is not available for one reason or another. 

The target service for the message is determined by mapping the endpoint address (the ultimate receiver) to a node 
that is the next hop or the ultimate endpoint. The mapping rules exist in a rules engine or routing cache (similar to a 
network router) that network administrators can use to optimize message delivery. 

Metadata-Based Routing 

Sometimes, mapping the address in the header is not sufficient to determine the message route. Additional 
properties are often required for this. These properties are associated with the message, but generally not 
considered part of the payload. This metadata may take the form of the network protocol in use (HTTP, TCP, UDP, 
IPX, etc.), the health service expected to process the document, the sender of the message, and so on. These 
properties can supplement the decision-making process when determining the next hop. 

Content-Based Routing 

Taking the concept of metadata-based routing further is Content-Based Routing (CBR). This is routing based on the 
contents of the payload. CBR is a powerful mechanism for providing fine-grained control over the rules for routing 
messages. The node performing the routing has to understand the payload in order to extract the relevant 
properties used for routing. 



 

 

© 2009 Microsoft Corporation 94 

| Knowledge Driven Health 
 
 

Transaction Service 

It may be necessary for message delivery to be a part of some higher-level transaction that encompasses multiple 
operations. Transactions can be “short lived” and “long running.” 

Short-lived transactions are analogous to database transactions, and are atomic in nature. All of the operations 
within a transaction are successful or none succeeds—it is an “all-or-nothing” approach. In addition to the atomicity 
of the transaction, the effects of the operations are isolated from other transactions until committed, otherwise 
inconsistent results may occur. Due to the requirement for isolation of a short-lived transaction from other 
operations, holding onto resources is a possibility, until all operations within a transaction are in a consistent and 
ready-to-commit state. This forces the transaction to be short-lived in order to avoid resource contention and 
concurrency issues. The effects of the transaction on all of the resource managers involved in the transaction are 
durable—that is, once committed, the effects are permanent and available to other operations. These are the 
principles of ACID (atomicity, consistency, isolation, durability) based transactions. 

Long-running transactions, on the other hand, may span days, weeks, or months – something that a short-lived 
transaction simply cannot afford to do. These types of transactions typically occur in processes where some form of 
business-to-business message coordination is required. A long-running transaction may spawn several smaller 
atomic transactions for individual operations, but the effect of the entire long-running transaction does not conform 
to the ACID rules that short-lived transactions generally support. 

If a failure occurs during an operation in a long-running transaction, automatic rollback of the effects of any previous 
operations (as occurs in an atomic transaction) is not possible. This can leave external resources in an inconsistent 
state. With long-running transactions, it is necessary to implement transaction compensation logic to cater for 
failures. Rollback is through specific compensation logic that understands how to roll back the results of each 
previously successful individual operation. 

Currently, Web Service operations are unable to take advantage of transactional behavior because the SOAP 
specification does not provide the necessary protocols for enlistment in a transaction. Therefore, each SOAP 
message is a separate operation in the absence of some higher-level application protocol providing transactional-
like behavior (a SOAP processor would not understand this anyway, as it would be application specific). 

The WS-Coordination specification, along with the WS-AtomicTransaction and WS-BusinessActivity specifications, 
aims to provide the necessary protocols for Web Services to take part in different types of transaction. These 
specifications define a set of standard SOAP headers that allow Web Service operations to be part of a multiparty 
distributed transaction. 

Depending on the consumer requirements, document submission to a Submission Service could take part in a short-
lived or long-running transaction, depending on the capabilities of the agency or utility service. The maturity of 
these specifications needs to occur with general support from the underlying platform before this becomes a reality, 
however. 

Mapping Service 

The message mapping services provided by the e-Health Service Node as part of the integration services supply the 
core functionality to transform source message formats into target message formats.  This may be an incoming 
message format transformed to an internal canonical format used by the service hub, or an internally formatted 
message to an outgoing message format required by a peer health service. 

The following message mapping services are provided by the e-Health Service Hub: 

 Support for transforming messages to and from HL7 2.x, HL7 Version 3, XML, and custom flat file formats. 



 

 

© 2009 Microsoft Corporation 95 

| Knowledge Driven Health 
 
 

 Support for various inbound and outbound messaging protocols such as MLLP, Web Services, HTTP, HTTP(S), 
FTP, MSMQ, and MQSeries. 

 Standardized Schema Library—a common best practice for integration and brokering systems is to abstract 
the schema of the incoming message from the schema of the outgoing message.  This is accomplished by 
transforming the incoming message to an internal canonical schema and then to the target schema on the 
outbound message transfer.  This isolates changes to either inbound or outbound message formats, 
preventing any required changes to correlated subscribing or publishing parties.  

Transformation maps are used to process and convert the content and structure of any source information (based 
on its schema representation) into any target message format (also based on schema).  Information is mapped from 
one or more attributes in a source schema to one or more attributes in the destination schema based on the 
semantic relationships between the attributes. 

In most integration mapping scenarios, a canonical schema is used to represent a standard version of the message 
schema, independent of the mapping endpoints.   

Maps can be reused and modified as needed to implement any number of transformation requirements.  These 
maps are typically based on XSLT, an open standards protocol for transforming XML information.  

Orchestration Service 

The Message Submission Service routes documents according to rules based on the service address mapping, 
metadata, or content. In addition, the Submission Service takes advantage of industry standards and specifications 
such as those from W3C and OASIS, in conjunction with the WS-* specifications, to provide basic messaging 
requirements such as privacy, integrity, guaranteed delivery, transactional behavior, and attachments. 

At a messaging level, these requirements are critical in some cases and desirable in others. What is not covered, 
however, is the ability to layer an application protocol on top of the simple message exchange that coordinates 
message flow and delivery/receipt of messages to and from endpoints. This application protocol, or “business 
process”, generally arises from both static and dynamic business rules. Sometimes the term “system workflow” 
applies—workflow between local or remote systems that does not require human interaction. 

The execution of a business process by an orchestration engine ensures that a message flows through the process 
and may be delivered to any number of endpoints (partners, services, applications, etc.) based on the rules set out 
in that process. For example, a message exchanging protocol that manages message flow between a consumer and 
a payment service provider (PSP) involves the following steps: 

 Send a preauthorization request to the PSP 

 Receive the acknowledgement receipt 

 Check the acknowledgement receipt for confirmed authorization 

 Then, if authorized: 

 Send the payment request to PSP 

 Receive the acknowledgement receipt for the request 

 Check the receipt for errors 

This process could be further refined to select the most cost-effective PSP based on payment value and the cost per 
transaction as charged by the PSP. 



 

 

© 2009 Microsoft Corporation 96 

| Knowledge Driven Health 
 
 

In this instance, the static part of the business process defines the steps, decisions, and branching required as part 
of the business logic. It is static because the basic flow remains the same until a change in business requirements 
may result in some extra steps, such as involving a line of business application in the process.  

The dynamic part of the business process defines the parameters or business policy that affects the outcome of any 
decisions. Changes in business policy require a consequent reflection in runtime behavior to maintain the agility of 
the business. Following on with the same example, the cost-per-transaction rates may be a part of the dynamic 
business policy that can be changed immediately to reflect current rates offered by payment service providers, or 
the payment value threshold by which one PSP is preferred over another may be changed according to the policy in 
effect at the time. 

Figure 37 is a simplified view of the above interaction between two participants. The colored triangle symbols 
represent the public interfaces, and therefore interaction points in the process, while the document symbols 
represent data flow. 

The WS-BPEL specification (formerly called BPEL4WS) represents the interactions between these participants, and 
an orchestration engine uses this to execute the process logic. Therefore, BPEL offers a standard way for processes 
to be represented that is technology-agnostic and can span system and organizational boundaries. 

 

Note: OASIS manages the WS-BPEL specification, which is at Draft stage for version 2.0, and is available from 
http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel. 

 

 

http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel


 

 

© 2009 Microsoft Corporation 97 

| Knowledge Driven Health 
 
 

 

Figure 37. Example of Business Processes Implementing a Business Protocol Between Two Parties 

 



 

 

© 2009 Microsoft Corporation 98 

| Knowledge Driven Health 
 
 

Business Process in the e-Health Services Node 

While the node exists to facilitate e-Health communication, some of the communication may be more complex than 
the simple delivery of a document from one endpoint to another. Where higher-level business protocols and 
processes exist, the node must represent and execute these processes in a standardized way supported across 
multiple platforms and technologies.  Examples of these higher-level business protocols are those that are published 
through the Electronic Health Record Services, Health Domain Services and Health Registry Services (see these 
sections earlier in the document for a complete description of the e-Health business processes). 

Other than the public interface (the business protocol that is used to interact between multiple parties), the inner 
workings of a business process are generally private to an organization. In the e-Health Services Hub, they exist 
behind the public service layer and in the Routing, Integration, and Business Process Services private layer, which is 
available for customization by the owner—whether that is a central host, a jurisdictional body, or a partnership 
sharing the cost of running a hub. 

Data Services 

The Data Services provide a set of data access, update, and management services for data that is managed by the e-
Health solutions.  In all cases, these services are consumed by e-Health business services, and not exposed directly 
to external systems and services. The following types of data services are provided: 

 Data Access and Persistence 
These services provide standard data access and persistence services to the e-Health business services and 
components. These services are provided in a manner that is independent of the underlying data storage 
technology and database management system. 

 Data Aggregation Services 
These services provide a means to aggregate data from a number of data stores in accordance with a 
specific schema definition. 

 Data Caching Services 
These services store temporary copies of data that have previously retrieved from participating data 
sources. The caching services provide for faster responses to user queries.  The location and use of data 
caching services are dependent upon data store location, user query patterns, and system performance 
criteria. 

 Data Loading and Replication Services 
These services provide for initial data store loading as well as replication to and from other associated data 
stores. 

 Data Code Set Services 
These services provide for the storage and translation of multiple code and terminology sets used by the 
various participating health services and solutions. Alignment to an agreed-upon code set is supported 
through this set of code set services. 

The specific Data Services that are deployed as part of any e-Health solution will depend upon a number of factors 
including the type, location, and storage mechanism of the data; the data transfer objects used to communicate 
data between services; and the consumption patterns of the stored data.   



 

 

© 2009 Microsoft Corporation 99 

| Knowledge Driven Health 
 
 

Data Access Patterns and Practices 

The concepts of patterns and practices are in the index page of the Microsoft Patterns and Practices Center on 
MSDN. The main index of available Patterns and Practices is at http://msdn.microsoft.com/practices/.  
A number of guides specific to best practices for data access and management can be found within this set of 
Patterns and Practices.  

The guide entitled “Designing Data Tier Components and Passing Data Through Tiers” outlines a series of best 
practices for designing and developing a set of Data Services on the .NET platform. This pattern and practice 
document is available at http://msdn.microsoft.com/practices/compcat/default.aspx?pull=/library/en-
us/dnbda/html/boagag.asp 

 

 

Figure 38. Technical considerations that influence the design of data access logic components and business entities 

 

Communication Services 

The Communication Services provide the required foundational communication infrastructure upon which the rest 
of the e-Health services architecture depends. These Communication Services are supplied through infrastructure 

http://msdn.microsoft.com/practices/
http://msdn.microsoft.com/practices/compcat/default.aspx?pull=/library/en-us/dnbda/html/boagag.asp
http://msdn.microsoft.com/practices/compcat/default.aspx?pull=/library/en-us/dnbda/html/boagag.asp


 

 

© 2009 Microsoft Corporation 100 

| Knowledge Driven Health 
 
 

which supplies core network and application protocols support, which in most cases is already fully or partially 
deployed in the target solution environment.  It is important that the Communication Services adhere to and 
support relevant industry standards relative to both network and application communication protocols. 

Utilizing Standards for Greater Interoperability 

The network protocol services provided by the Communication Services are based almost exclusively on named and 
de-facto network standards including TCP/IP, (S)HTTP, SMTP, and FTP.  Exclusive to healthcare and HL7-based 
systems is the use of MLLP (Minimum Lower Layer Protocol) as another network-level protocol supported by the 
Communication Services layer.  The basic network protocols can further be extended to include vendor-specific 
message queuing services such as the Microsoft MSMQ and IBM’s MQSeries.  

Beyond the network-level communication layer, various industry specifications exist to support application-level 
communication services. These include WS-Policy for describing the requirements and capabilities of a Web Service, 
WSDL for describing the contract of a Web Service, XML Schema (XSD) for describing the format of messages, SOAP 
for providing the basic protocol used to wrap a Web Service request and response, XML for providing the basic 
structure of a Web Service request and response, and HL7 for providing the accepted standard for health message 
payloads. The Reference Section at the end of this guide provides links to more information on these specifications.  

Typically, HTTP is a high-level protocol (it sits higher in the stack than a network protocol such as TCP) that contains 
the SOAP request when making a submission to a Web Service. In reality, however, any network protocol such as 
TCP or UDP is suitable. As long as a “listener” that can receive and process the SOAP requests is running, the 
network protocol is almost irrelevant. HTTP, however, is a convenient protocol due to its monopoly of browser-
based Internet traffic. The convenience of using a Web server that already accepts HTTP or HTTPS on IP ports 80 and 
443 means that the network infrastructure (including firewalls, routers, and so on) is already in place to cope with 
traffic of this type. As such, Web Service SOAP requests naturally fit into this environment. 

Due to the proliferation of differing platforms and technologies in healthcare, it is essential to ensure that Web 
Services are interoperable, regardless of the technology used to implement them. Using the Web Services 
Interoperability WS-I Basic Profile as a basis for interoperable Web Services (http://www.ws-
i.org/Profiles/BasicProfile-1.1.html) ensures a baseline of standards that all implementations of a Web Service 
should adhere to. The basic profile specifies a minimum set of specifications that Web Services should support to 
ensure interoperability across diverse platforms. These specifications include SOAP 1.1 (although SOAP 1.2 is now 
ratified as a W3C Recommendation), XML 1.0 and HTTP 1.1 for messaging and message formats, WSDL 1.1 and XML 
Schema 1.0 for service description, UDDI v2 for service publication and discovery, HTTP over TLS and SSL, and X.509 
Public Key Infrastructure Certificate and CRL Profile for security. The HL7 Profile for Web Services provides a 
standard means of communicating HL7 messages across a Web Services transport. 

Integrating the Healthcare Enterprise (IHE) (http://www.ihe.net) is an initiative by healthcare professionals and the 
industry to improve the way computer systems in healthcare share information. IHE promotes the coordinated use 
of established standards such as DICOM and HL7 to address specific clinical need in support of optimal patient care.  
In particular, IHE offers an extensive set of interoperability profiles for a variety of clinical and IT infrastructure 
scenarios, including Cross-Enterprise Document Sharing (XDS). The IHE IT Infrastructure integration profiles are 
available at http://www.ihe.net/Technical_Framework/index.cfm#IT . 

Message Security 

After agreement of the core platform of specifications, the next level is to ensure that there is support for message 
security. As discussed earlier (page 88), Message-Level Security has advantages over transport-based security in that 
it provides end-to-end protection, independent from the transport and any intermediaries along the route, because 

http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ihe.net/
http://www.ihe.net/Technical_Framework/index.cfm#IT


 

 

© 2009 Microsoft Corporation 101 

| Knowledge Driven Health 
 
 

the security is applied directly to and carried in the message. Using the WS-I Basic Security Profile  for message-level 
security (http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html) ensures that there is interoperability at the 
security level and that all parties understand how the messages security is applied. The basic security profile 
specifies the acceptable security mechanisms for Web Service communication. This includes transport-layer security 
(SSL and TLS) as well as SOAP message security through the WS-Security specification (http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss), and including the security token types supported by this 
specification. There are additional profiles that specify further token types such as REL (Rights Expression Language) 
and SAML (Security Assertion Markup Language). In addition, other WS-* specifications support other aspects of 
message security such as WS-Trust for issuing security tokens, WS-SecureConversation for enabling session keys to 
be established for session-based security, and WS-SecurityPolicy that complements WS-Security by providing 
assertions that relate at the message level to the types of tokens supported, the algorithms, and so on. 

Service Requirements 

The service itself may have mandatory requirements for any consumer that interacts with the service. These may 
include the supported security tokens or the algorithm for signing the messages. This information must be available 
in a standardized form across all consumer services, and is the purpose of the WS-Policy specification that enables 
the specification of service requirements and capabilities through a policy definition discoverable at design time. As 
the specification does not make any assumptions about policy discoverability, and has no attachment to a Web 
Service, it is necessary to consider other technology-specific specifications such as WS-PolicyAttachment – which 
defines the mechanisms for associating policy with Web Services. 

How to Address Web Services 

To enter into a conversation with a Web Service, it is vital that each party understands the message exchange 
protocol and the delivery location. Using the WS-Addressing specification (currently in Working Draft status) for 
message transmission through networks in a transport-neutral manner ensures that both parties can understand 
how each one addressed the message, and the delivery location for the messages. The specification provides a 
common means to address Web Service endpoints using an endpoint reference, and to convey information about 
the routing of a message and invocation of a service using message information headers. This means that 
representation of both synchronous and asynchronous message flow is possible within a SOAP header in a 
standardized fashion that is transport-neutral, as opposed to relying on certain transport-specific headers to convey 
information about the Web Service request. An example of this is the SOAP-ACTION header entry in HTTP that 
describes the SOAP operation at a transport level, which is the case today with the majority of HTTP-based Web 
Services. Moving this information into the SOAP header, and therefore into a part of the message, ensures that 
transmission of the SOAP message is possible over any network protocol, and that the correct operation on the right 
service is executed. 

 

Reliable Delivery 

In any distributed architecture that supports message delivery, there are likely to be some messages deemed 
critical, and for which reliable delivery is a requirement. Use of the WS-ReliableMessaging specification ensures that 
messages are transmitted with a guarantee of reliability (http://schemas.xmlsoap.org/ws/2005/02/rm/). This 
involves a handshake of acknowledgement messages between the two parties (the sender and the receiver) to 
ensure delivery of the message. In addition to reliable delivery, WS-ReliableMessaging also supports preservation of 
message ordering so that the receiving service accepts the messages in the order they were sent. 

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://schemas.xmlsoap.org/ws/2005/02/rm/


 

 

© 2009 Microsoft Corporation 102 

| Knowledge Driven Health 
 
 

Transactional Support 

Sometimes there is a requirement that a Web Service request participates within a transaction that is part of a 
larger operation. These transactions can range from simple database transactions (known as atomic transactions 
that typically follow the classic ACID rules) to long-running business transactions that may span days, weeks, or 
months rather than seconds. Using the WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity 
specifications ensures support within the SOAP message for the representation of transactions such as these, 
permitting the recipient of the request to participate in the associated transaction. 

Message Attachments 

Attachments to messages are quite common in e-Health. There may be a need to attach an image to a message for 
transmission to a department service. In this instance, the protocol used to communicate with the Web Service 
must provide support for embedding attachments. Both the SOAP Message Transmission Optimization Method 
(MTOM) and XML-binary Optimized Packaging (XOP) specifications support embedding binary data with XML into a 
MIME-formatted message, and then binding the result to SOAP. 

Web Service Metadata 

With the proliferation of Web Services, it will be necessary to provide a standard mechanism for consumers to 
discover the associated metadata of a Web Service at design time, in a transport-neutral way. This enables the 
consumer to understand the requirements and capabilities of the Web Service. The metadata includes policy 
information (WS-Policy), the contract (WSDL), and the schema (XSD). The specification WS-MetadataExchange 
provides a standard mechanism for consumers to query a Web Service for its associated metadata. 

In summary, the Communication Service must be based on non-proprietary standards and specifications to ensure 
that supported e-Health services are interoperable across differing platforms and technologies. The creation of a 
standardized “public highway” that all can understand and interoperate with is essential for the successful adoption 
of e-Health services. 

 



 

 

© 2009 Microsoft Corporation 103 

| Knowledge Driven Health 
 
 

Deployment Options 

The generic nature of the reference architecture and functionality of an e-Health Service Node enables numerous 
different topologies. Depending on the specific requirements and location of each node, different subsets of the 
generic functionality may be used – giving flexibility of choice in where and how to perform certain operations, store 
data, authenticate users, provide reference information, and so on. Possible topologies range from a single central 
hub to a federated peer-to-peer network of cooperating federated hubs, or multilevel hierarchies that are even 
more complex.  

Single Central Node 

Using a single central e-Health Services Hub is the most obvious configuration (see Figure 39). The central e-Health 
Services Hub provides a common platform implementing essential functionality such as identity and security, 
processing and routing of messages, and reference services, and may hold health records or indexes – depending on 
the chosen data topology. Concentrating key functions in a single hub shared by all providers of e-Health services 
offers convenience, efficiency, and reliability, and allows fast deployment and rapid growth both in the number of 
services offered and their usage.  This model is commonly at lower levels (such as a hospital or group), but there are 
also examples of the central model being used at a regional and national level. 

 

Figure 39. Single Central Node 

 



 

 

© 2009 Microsoft Corporation 104 

| Knowledge Driven Health 
 
 

Node as a Platform for Integration 

A cut-down version of the generic node with only the functionality relevant to the role of an integration system can 
be a very effective platform for connecting to the back-end systems of the service provider (see Figure 40).  

 

Figure 40. Integration Node 

The integration node can use generic messaging, routing, and integration functionality for receiving messages from 
a central node or other systems, performing the necessary validation and passing the messages on to the target 
systems. In addition to the generic messaging and integration capabilities, the node can host custom integration and 
transformation functionality that is specific for the particular health agency or back-end systems. For more details 
on how the capabilities of the hub can facilitate integration with back-end systems, see the topic Integration 
Services (page 79) earlier in this document.  Also see the section Isolating Common Functionality (page 36) in 
Addressing Common Architectural Challenges. 

The integration node can trust and rely on the central node to validate and authenticate incoming messages, or it 
can perform additional checks of its own to authenticate and authorize the request. This may involve calling external 
services, including the central node—especially in cases when the messages are not coming from a trusted central 
node.  

 

 



 

 

© 2009 Microsoft Corporation 105 

| Knowledge Driven Health 
 
 

Peer-to-Peer Nodes 

In many cases, it could be inefficient or impractical to channel all traffic through a central node, especially if there is 
not much value added by the central node during the process (for example, validation, authorization, or tracking). 
Peer-to-peer communication can be used instead, exclusively or in addition to communications via the central node, 
or for specific types of messages—for example, returning a response directly to the client system, even if the 
request came through the central node, or at certain phases of conversations comprising multiple messages, such as 
after the initial interaction. 

Instances of the generic node can facilitate effective peer-to-peer communications between services, performing 
some of the standard tasks that otherwise would require implementation by the services themselves. Depending on 
the type of interactions and the features required, deployment of different subsets of the generic node functionality 
is an option. 

Figure 41 illustrates one possible flow of messages between peer hubs, where the central hub performs the role of 
authentication provider and Secure Token Service (STS).  

 

Figure 41. Peer-to-Peer Nodes 

The steps within the process shown in the figure are as follows: 

1. The originator calls the central node or another identity provider to obtain a security token appropriate for 
the target, which should be issued by a Security Token Service (STS) trusted by the target service.  

2. The message, including the STS token, passes to the receiving node. 



 

 

© 2009 Microsoft Corporation 106 

| Knowledge Driven Health 
 
 

3. The validity of the STS token is checked, and appropriate authorization decisions are made by the receiving 
node’s Identity and Security services – with or without using internal to the node data or calls to other 
parties. 

4. The message passes to the target service for processing. 

In this scenario, contact with the central node is only during the initial step, in order to obtain a valid STS token. 
After that, numerous direct interactions between the peer node can take place (within the time window of the 
validity of the token), without involving the central node – which in this case only plays the role of authentication 
provider (STS). 

Various other scenarios are also possible. For example, after the initial exchange described above, the recipient 
node may issue its own service-specific “session” token and return it to the originating node. Subsequent calls can 
present this token, and the recipient can validate them very effectively.  

Hierarchy of Nodes 

More complex topologies are possible, where node at several levels cooperate and execute within a distributed and 
federated model. Some of the generic node functionality (such as routing, orchestration, or authorization decisions 
at different levels of granularity) is distributable between node, based on considerations such as performance, 
availability, and ownership of data and updating and maintenance procedures.  Instead of the “one size fits all” 
approach, solutions adapt to fit a much broader variety of requirements and constraints. Figure 42 shows an 
example of such hierarchy. 

The left-hand side of Figure 42 shows one of the possible flows and distribution of functionality (with emphasis on 
message routing by a Regional or Group Node) through the steps: 

1. The Central Node accepts and processes messages as usual, including performing validation and checking 
authorization for the requested service. 

2. The message then flows to a lower-level Regional or Group Node, which may service several agencies or 
service providers. 

3. The Regional or Group Node may perform further processing and advanced message routing, perhaps to 
cater for dynamic circumstances such as load redistribution or system failures, or to implement 
orchestration of business processes between several back-end services. The ownership and responsibility 
for these remain at the group level, and the Central Node is not involved. 

4. Messages pass to the appropriate service providers, which may themselves be fronted by Integration Nodes. 

 

The right-hand side of Figure 42 shows another flow and distribution of functionality, with emphasis on 
authorization at different levels of granularity by an Agency Hub (as discussed in Granularity of Authorization, page 
65): 

1. The Central Node accepts and processes messages as usual, including performing message validation and 
authentication and authorization checking. This time, however, the granularity of the authorization is at the 
service level rather than Regional or Group Node level.  

2. The message then flows to the Agency Node. 



 

 

© 2009 Microsoft Corporation 107 

| Knowledge Driven Health 
 
 

3. The Agency Node may perform additional authorization checks based on the claims received with the 
message. For example, the identity can map to more specific roles and assignments (including delegation of 
authority) that exist at this level. 

4. Messages pass to the appropriate service providers, which may be fronted by Integration Nodes. 

 

Figure 42. Hierarchy of Nodes 

The terms “Group”, “Regional”, and “Agency” Node, and the selected functionality in the examples above, are for 
illustration only. Various other combinations are, of course, possible. The generic node functionality is distributable 
between several instances of the node, allowing solutions tailored to cater for the specific requirements and 
constraints. 



 

 

© 2009 Microsoft Corporation 108 

| Knowledge Driven Health 
 
 

Cloud Services, SaaS, and Software + Services  

In the previous sections, we emphasized the important flexibility of the architecture to support a variety of 
topologies and distribution of particular services between nodes, and provided some examples.   

Deciding where particular functionality or data should reside in the system, how it will be accessed by other nodes, 
and ensuring the agility to change such distribution over time is, in our view, one of the key architectural 
considerations for a successful e-Health system.   

All these discussions also apply to the case where some of the functionality or data may be provided externally, by a 
hosted or “cloud” service.  Architecturally, there isn’t a significant difference between the case where a node 
“consumes” services from another node (within or outside the e-Health domain), or from a “cloud” service.  The 
requirements for openness and stability of interfaces, robustness, and scalability are much higher for a “cloud” 
service – but from the consuming node’s perspective, it is still very similar—such as consuming identity and 
authentication services for care professionals from a national node (within e-Health) vs. authenticating citizens 
through a shared e-Government facility (a node outside the e-Health domain) vs. authentication of citizens with a 
“cloud” service.  The differences are mostly in the deployment, hosting arrangements, business model, and so on – 
largely transparent to the consumers of those services.  Wherever possible, we should aim to define interfaces and 
interactions with services in a way that can be consistent, supports all these models, and allows switching between 
them with little disruption. 

With the growing prominence and widespread availability of “cloud” services primarily in the consumer space, 
interesting new opportunities emerge for e-Health services solutions.  Offerings like Microsoft Health Vault4 and 
Google Health5 allow consumers to store, organize, and share their health-related information in a “cloud” service. 
It is also possible to upload health information from one provider and then share it with another – effectively using 
the cloud service and data store as a bridge between two systems that otherwise may not be able to exchange 
information directly.  Since the patient/consumer is in complete control and decides what information to upload 
and who to share it with, many of the tricky issues related to privacy of personal data and user consent (typical 
obstacles when connecting two systems directly) are substantially simplified.   

The diagram in Figure 43 illustrates one possible usage scenario of a Cloud e-Health Node to make available health 
information originating from one care provider to another. 

The numbered sequence of steps is as follows: 

1. The user asks the Care Provider A to upload particular health information to his or her personal data store in 
the Cloud e-Health Node. 

2. Appropriately formatted information is transmitted to the Cloud e-Health Node via the Provider A 
integration facility (Node A), using the published protocols for interaction with the Cloud e-Health Node.  

3. The user accesses the Health Portal provided by the Cloud e-Health Node, and authorizes Care Provider B to 
access selected portions of his or her health information 

4. Care Provider B requests and receives the selected health information for the user from the Cloud e-Health 
Node.  The information may then be stored (if permitted) in local systems for Provider B. 

 

                                                     
4   http://healthvault.com  
5   http://www.google.co.uk/intl/en-US/health/about/index.html   

http://healthvault.com/
http://www.google.co.uk/intl/en-US/health/about/index.html


 

 

© 2009 Microsoft Corporation 109 

| Knowledge Driven Health 
 
 

 

Figure 43. Using Cloud Services 

The currently fashionable “Software As A Service” (SaaS) trend emphasizes the role of externally (“cloud”) hosted 
services, often to the exclusion of any local functionality and data.  The assumption is that with these provided by a 
hosted service, systems can rely exclusively on such SaaS, and deliver all the necessary functionality through a slim 
client platform consisting of low capability (i.e. cheap) hardware, operating systems, and browser.  While this 
approach may be adequate in some scenarios, it is not likely to be universally applicable, to provide the rich user 
interaction experience, to provide seamless integration with common desktop productivity tools, and to offer the 
ability to work offline (disconnected).  For these reasons, we believe that a broader, more inclusive approach called 
“Software + Services” (S+S) is a better choice.  Like the Hybrid Data Model (page 21) discussed earlier in this guide, 
S+S combines the benefits of locally deployed functionality and data with externally provided shared services—
allowing the choice of the appropriate (for the context and usage scenario) mix of both, and enabling easier moving 
of the boundary between “local” and “cloud” as needs, requirements, and technology evolve over time. 

 



 

 

© 2009 Microsoft Corporation 110 

| Knowledge Driven Health 
 
 

Securing the System 

One of the most important aspects of any computer system is securing it in such a way that protects it against 
malicious users, automated code attacks, denial of service incidents, and exposure of confidential information. This 
is particularly important in e-Health projects because the highly sensitive nature of the data it contains makes it a 
prime target for attacks aimed at identity theft, as well as damage to the data and/or service interruption. The 
architecture of a secure solution requires both general security topics, as well as those specific to e-Health 
integration solutions, be addressed.  

Generic Approaches to a Secure Solution Architecture  

The three main security goals when building any system are as follows: 

 Confidentiality: The system must ensure that access to data, and to all operations that affect data, are only 
available to the appropriate users. No other user should be able to view, delete, or change any data. 

 Integrity: All actions taken with data must protect that data from corruption. Operations must succeed and 
leave the data in the correct new state, or all fail and leave the data unchanged—and notify the user and/or 
appropriate authority of any failure. All changes to data must also be visible, generally through audit 
tracking, and allow reconstruction of the original data and monitoring of changes. 

 Authentication: Each user requires accurate identification at the point of entry, and again as required, 
before permitting any actions within the application. This includes viewing, deleting, and changing data. 

In general, these three goals require an architecture that uses logical tiers, and implements security across the tiers. 
As each tier of the application makes a call to another tier or a remote service, it provides authentication 
information for that call, based on the authentication of the user at the initiation of the current service call. If the 
receiving tier or service requires additional information, it will prompt for this before allowing the process to 
continue. 

Security Patterns and Practices 

The concepts of patterns and practices are explained on the home page of the Microsoft Patterns and Practices 
Center at http://msdn.microsoft.com/en-gb/practices/bb190357.aspx . The main index of available guidance related 
to security is at http://msdn.microsoft.com/en-gb/practices/bb978782.aspx#security .  

The Microsoft Security Developer Center provides guidance on the architecture and implementation of secure 
solutions using the .NET Framework and Web Services. The page http://msdn.microsoft.com/security/default.aspx 
contains general advice, plus a link to the Microsoft Patterns and Practices Center that provides scenario-specific 
recommendations. 

The first step in implementing a secure architecture is to understand the threats faced by the application, and the 
techniques available to counter these threats. Figure 44, taken from the document “Improving Web Application 
Security: Threats and Countermeasures” (http://msdn.microsoft.com/en-us/library/ms994921.aspx), illustrates the 
common threats. This pattern and practice document is available at http://msdn.microsoft.com/library/en-
us/dnnetsec/html/ThreatCounter.asp . 

 

http://msdn.microsoft.com/en-gb/practices/bb190357.aspx
http://msdn.microsoft.com/en-gb/practices/bb978782.aspx#security
http://msdn.microsoft.com/security/default.aspx
http://msdn.microsoft.com/en-us/library/ms994921.aspx
http://msdn.microsoft.com/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/ThreatCounter.asp


 

 

© 2009 Microsoft Corporation 111 

| Knowledge Driven Health 
 
 

 

Figure 44. Scope of Improvements for Web Application Security: Threats and Countermeasures6 

This pattern and practice document describes the concept of threat modeling, securing the individual layers of the 
application, securing the host, and securing the application itself. It also contains checklists that help to turn the 
information into actions, and a series of "How To" articles that describe individual tasks in a systematic fashion. 

Security Best Practices 

More information on the design of secure solution architectures is available from the Security Best Practices site at 
http://msdn.microsoft.com/en-gb/practices/bb978782.aspx#security. This site provides a series of articles that 
describe best practices in specific scenarios. These include: 

 Secure Coding Guidelines for the .NET Framework 

 Code Access Security Policy Best Practices 

 Minimizing the Code Exposed to Untrusted Users 

 Designing Application-Managed Authorization 

 Building and Configuring Secure Web Sites 

                                                     
6  From "Improving Web Application Security: Threats and Countermeasures"  
http://msdn.microsoft.com/en-us/library/ms994921.aspx  

http://msdn.microsoft.com/en-gb/practices/bb978782.aspx#security
http://msdn.microsoft.com/en-us/library/ms994921.aspx


 

 

© 2009 Microsoft Corporation 112 

| Knowledge Driven Health 
 
 

Security Architecture Specifics for e-Health Systems 

E-Health integration projects share many of the characteristics of other similar large-scale online services (such as 
online banking and e-commerce retail sites). All the usual security threats, and the general guidance summarized in 
the previous section, still apply. In addition, there are some unique security aspects specific to the architecture of e-
Health systems discussed in this section. 

Infrastructure and Networking 

In some countries, dedicated infrastructure, including networks, may exist specifically for use by healthcare agencies 
and providers. It may be considered to be more secure (at varying levels) than public networks or the Internet, with 
specific rules and accreditation procedures that control who can connect to it, and how. After connection, the 
infrastructure may provide sufficiently secure communication at the network connectivity level between parties, 
which simplifies the integration process.  

In cases where such infrastructure is available and already connects the providers of e-Health services, exposure of 
their services to the public electronically in a secure manner is easier through a common e-Health Services Node. 
This can act as a bridge between the secure healthcare infrastructure and the public networks. Instead of each 
service owner having to meet the security required within their systems before connection to the secure and public 
networks, this work (and the relevant accreditation) can be performed only once for the central node. The service 
providers then need only to connect to the shared node. 

However, even when such secure infrastructure is available, and the service providers can benefit from it, 
oversimplification of the architecture is still undesirable. There should be no assumption that all service providers, 
now and in the future, will connect uniformly through such a secure network.  

The architecture should support features adequate for secure communication over public networks, preferably as a 
simple configuration option on a per-service or per-node basis. This enables the common e-Health Services platform 
to accommodate future requirements such as extending the range of providers of e-Health services beyond just 
healthcare agencies that have access to the secure network.  

The accumulated experience from numerous e-Health integration projects in many countries shows that the 
requirements for such flexibility usually emerge much sooner than originally anticipated, and a constrained 
architecture designed under such assumptions about the specific types of connectivity required may lead to 
expensive rework later.  

Securing Hosts 

E-Health systems are often a complex web of different nodes, on a variety of platforms, with distributed ownership 
and maintenance procedures, and sometimes lack central authority enforcing consistently and effectively good 
security practices.  While in some countries all elements of the healthcare infrastructure must be compliant with the 
appropriate security standards (like ISO 17799) and accredited before allowed into production use, this may not the 
case everywhere.  Adequate security of the individual hosts in such environments is a far more complex task than in 
commercial environments. Therefore, it is very important to assume that some hosts may suffer successful attacks, 
and need to have sufficient additional layers of defense to cope effectively with such compromise should it occur. 

Assumptions about, and over-reliance on, the physical security of systems participating in an exchange of messages 
may be a reasonable compromise for systems hosted in secure data centers, such as a hospital. An example of this 



 

 

© 2009 Microsoft Corporation 113 

| Knowledge Driven Health 
 
 

might be deciding that TLS/SSL mutual authentication at the endpoints is a sufficient guarantee that the requests 
must be coming from a trusted source, without a requirement for message-level security. 

However, when the same service becomes available to a wider client base, the risk of a compromised host is much 
higher. For example, opening the service to remote pharmacies, where the hosts are not physically secure and the 
staff are not IT professionals, requires additional layers of security—in particular over-the-wire message encryption.  

Architecting appropriate (multiple) layers of security into the system from the start, with the ability to switch them 
on and off as needed, is the recommended approach to achieve flexibility and to gracefully handle a wide variety of 
current and future, known and unknown, requirements. 

Securing hosts remains an important element of the overall security agenda, and the recommendation is for 
implementation to as high a level as possible. Depending on the platforms and versions of system software used, a 
range of effective options are available—from those designed for managed environments (SMS, SUS), to consumer-
oriented services (like automatic Windows Update)—and should be used to keep systems adequately patched with 
all the latest updates and security enhancements. 

Denial of Service Attacks 

Denial of Service (DoS) style attacks are common against commercial and public systems, and are likely—with an 
even greater potential impact—against e-Health systems. In addition to being an attractive and high-profile target, 
the scale and the number of users who may be affected is greater. With this in mind, special care is required to 
minimize the opportunities for such attacks against e-Health hubs. Some typical areas for such attacks include: 

 Registration of large numbers of bogus users – when the legitimacy checks on user registration requests 
cannot be effectively accomplished, an attacker can create a very large number of “made-up” users. This 
can expend significant computational resources and permanently consume storage for such registrations. 
Both of these factors can cause disruption of the service for legitimate users. 

 Repeated invalid logon attempts – in the absence of effective “volume throttling” control, such as a count of 
failed attempts followed by account closure, an attacker can execute a large number of authentication 
requests. Again, this consumes server resources, and may trigger account lockout through repeated failures 
for legitimate users. 

 Repeated computationally intensive requests – any other type of request executed repeatedly, which 
consumes server resources.  This includes submitting valid but large documents through a document 
submission system. 

Protecting against such attacks is an important consideration that affects the architecture of the system. Following 
are some examples of techniques to minimize the possibility of a successful attack. 

Countering the Registration of Bogus Users 

If there is no reliable method to confirm whether user registration attempts originate from legitimate users, make 
the initial user registration dependent on some other process that can be validated—for example, successful 
enrollment for a service. Avoid allowing users to register simply by choosing a name or ID and a password, because 
this provides no effective way of distinguishing real from malicious registrations.  



 

 

© 2009 Microsoft Corporation 114 

| Knowledge Driven Health 
 
 

Binding of the identity to a target service requires successful matching of the information provided by the user with 
some reference data, and so new users can only register after a successful enrollment for at least one service. This 
effectively eliminates the risk of malicious registration of a large number of bogus users.  

For details of binding users to services, see Initial User Provisioning – Knowledge-Based Authentication (page 52) in 
the Identity Management Services section earlier in this guide.  

Countering Invalid Logon Attempts 

Restricting repeated invalid logon attempts can be difficult, especially when random User IDs are used. Keeping 
count of invalid attempts needs some unique ID to be associated with each attempt, and this is typically the User ID. 
A random spread of these malicious attempts across the entire range of possible IDs makes such counting at the 
system or application level impossible.  

One distinguishing characteristic of such attacks is a high frequency of requests coming from one or a few sources, 
and appropriate defense may be possible at the network infrastructure level based on the location address (for 
example, the IP address). However, in cases where large numbers of legitimate users may be accessing the services 
from an environment that presents itself as a single source (for example, through a proxy server), this may 
incorrectly be identified as an attack. Therefore, any such defenses require very careful tuning to make this 
distinction.  

To minimize any disruption caused by attacks locking out legitimate users, it is important to incorporate a self-
healing mechanism—for example, lockout for a configurable period only, followed by an automatic unlock. This way, 
if an attack causes the lockout of a large number of users, there will be an automatic recovery after some period of 
unavailability of the service to these users.  

In the absence of a self-healing mechanism, a successful attack will not only disrupt the service when it occurs, but 
may also affect the helpdesk, which must reset all these users manually. 

Countering Computationally Intensive Requests 

An example where designing to minimize the impact of malicious computationally intensive requests is essential is 
the scenario of digital certificate renewal. Digital certificates may bind an identity with the appropriate e-Health 
service enrollments. Logons with a certificate normally involve checking the origin of the certificate (the provider) 
and the validity (not expired and not explicitly revoked), and then mapping the certificate unique identifiers to the 
identity. This enables lookup of other mappings that link the identity and service enrollments. 

When external certificate providers are used, the periodic renewal of certificates may occur, as far as the e-Health 
node is concerned, out-of-band. For example, when a certificate is renewed (some providers do this transparently to 
the user), they issue a new certificate with the same details, except that it contains a new serial number and 
expiration date. Therefore, the first authentication attempt against the hub with the renewed certificate would fail 
the normal matching, because the node is unaware of the renewal and still holds the old serial number. To handle 
this gracefully, a more complex matching of other details from the certificate is required and, if successful, a silent 
renewal takes place within the hub. It updates the stored serial number, while preserving all other relationships and 
linkages.  



 

 

© 2009 Microsoft Corporation 115 

| Knowledge Driven Health 
 
 

To support this renewal logic, the node must store more details beyond just the serial number (perhaps the 
distinguished name and other attributes) to recognize and match the old and the renewed certificate. The search for 
such matches on long text strings, especially when the user population is large, could be expensive in terms of 
resources used. This search will be invoked every time a certificate serial number is not found in the local reference 
store, including the case where authentication is attempted with an arbitrary certificate from the trusted provider. 
Some of the techniques commonly used to minimize the impact of this type of attack are as follows: 

 Precede the search and matching of the long identifying string (distinguished name) with matching on a 
hash of that string – which is a much shorter value. This makes the search operation more efficient. 
Compute and store the hash along with the original distinguished name, appropriately indexed, then 
compute the hash of the distinguished name from the certificate and search for this. Although the 
probability of collisions (where two different strings produce the same hash value) is extremely low, 
comparison of the original distinguished names is possible after successful matching on the hash. 

 Employ tracking by certificate ID of authentication attempts. The possession of a valid certificate from a 
trusted provider is a prerequisite to initiate such authentication (otherwise it would fail the validation 
checks prior to the searching for a matching “old” certificate), so it is likely that the same certificate(s) will 
be used repeatedly. Keeping track of suspicious certificate IDs that cause repeated failures, and checking 
this “black list” before more expensive operations are attempted, can minimize the impact of such attack. 

These are just a few selected examples illustrating the additional challenges and considerations in the area of 
security that influence the architecture of e-Health solutions. 



 

 

© 2009 Microsoft Corporation 116 

| Knowledge Driven Health 
 
 

Performance and Scalability 

Implementing a solution that is secure, reliable, and robust is a necessity, but many solutions fail to provide the 
required performance, and hence do not achieve user acceptability, after deployment into the “real world.” Testing 
can highlight many issues and locate sections of the application that are causing bottlenecks or affecting overall 
throughput. However, a thorough understanding of the requirements and the actual or projected usage patterns for 
the application is necessary to be able to build in the required performance levels.  

Microsoft provides a complete online book as part of the Patterns and Practices group documentation. The 
publication “Improving .NET Application Performance and Scalability” is available from 
http://msdn.microsoft.com/en-us/library/ms998530.aspx. It discusses the various roles involved in the life cycle of 
implementing a solution, including architects, designers, developers, testers, and administrators.  Figure 45 (taken 
from that document) shows the overall scope of the guide. 

 

Figure 45. Scope of the Microsoft Patterns and Practices Guide on Performance and Scalability7 

                                                     
7
  Taken from “Improving .NET Application Performance and Scalability” at http://msdn.microsoft.com/en-us/library/ms998523.aspx  

http://msdn.microsoft.com/en-us/library/ms998530.aspx
http://msdn.microsoft.com/en-us/library/ms998523.aspx


 

 

© 2009 Microsoft Corporation 117 

| Knowledge Driven Health 
 
 

Capacity Planning 

It is generally impossible to design a solution that will provide acceptable performance unless you can project the 
requirements during the design phase. This is especially true of a distributed system, where simply adding extra 
memory, CPU power, or disk space to a server may not benefit performance if there are bottlenecks in other stages 
of the distributed processes. Capacity planning allows the designer and architect to determine a realistic set of 
requirements for the application as a whole, and from this calculate and test the requirements for individual parts of 
the application. 

The article “Tools for Capacity Planning” published by Microsoft at http://msdn.microsoft.com/en-
us/library/ms978394.aspx explores the general principles of capacity planning and system requirements analysis, 
and focuses on the wide variety of tools that are available for testing the different components of an enterprise 
system. It discusses:  

 Gathering the requirements information: the number of users expected at peak and on average, the usage 
pattern profile, the required response time for each process or activity, and other factors such as the 
maximum percentage CPU load you will accept on the servers. 

 Using a range of sizing tools to estimate the hardware required, including validation of the capacity of a 
specified configuration, and the use of load simulators such as Microsoft Application Center Test (ACT) and 
LoadSim to test the configurations. 

Understanding System Performance Factors 

A more detailed discussion of performance involves some of the factors that directly affect the network and 
hardware implementation you choose. It is vital to understand the implications of percentage-availability 
requirements, and the way that scaling a solution can meet requirements. For distributed enterprise applications, 
locating any single points of failure that could prevent the complete system from performing correctly is obviously a 
major issue, and can be mitigated by adopting a load balancing and/or clustering technique where several servers 
are connected together to share the load. If one server fails, the remaining servers take over and share the load (a 
process called failover). 

Load balancing and clustering techniques include Microsoft Cluster Service (MSCS) and Network Load Balancing 
(NLB), plus a range of hardware solutions available from other manufacturers. Most enterprise-level application 
components such as Microsoft Exchange Server, Microsoft BizTalk® Server, Microsoft Internet Information Server 
(IIS), Microsoft SQL Server®, and Microsoft Commerce Server can benefit from these products. It is also important to 
ensure adequate protection for hard disks and other storage components against individual failures. Fault-tolerant 
RAID disk configurations provide a solution, perhaps as a shared disk array connected via a high-speed channel using 
fiber or SCSI. 

Scale Up or Scale Out? 

The term “scale out” refers to the process of clustering and load balancing a solution, because it spreads the 
processing load outwards over multiple machines and multiple hardware installations to provide failover protection 
for applications. However, the alternative approach, named “scale up,” is suitable for processes that must offer high 
availability, and which require servers with large memory and processing power capabilities. 

Fault-tolerant servers are available, which use hot-swap components that allow the server to survive hardware 
failures without interruption to the application. Combined with new processor types and the ability of operating 
systems to address large quantities of memory, the scale-up solution is a useful alternative approach. The document 

http://msdn.microsoft.com/en-us/library/ms978394.aspx
http://msdn.microsoft.com/en-us/library/ms978394.aspx


 

 

© 2009 Microsoft Corporation 118 

| Knowledge Driven Health 
 
 

Overview of System Performance at http://msdn.microsoft.com/en-us/library/ms978391.aspx  discusses the issues 
of availability, scalability, and performance in detail, and provides links to other useful resources.  

Performance Tuning of Windows Services 

As well as implementing a robust and reliable infrastructure that can cope with individual hardware failures, the 
configuration of each service in use affects overall throughput of applications. For example, careful configuration of 
IIS and a judicious choice of session state maintenance techniques will help to tune the performance of ASP.NET and 
Web Services. Meanwhile, the use of correct indexing of the data can greatly enhance the performance of SQL 
Server.  

The guide “Tuning .NET Application Performance” (http://msdn.microsoft.com/en-us/library/ms998583.aspx)   
discusses performance tuning in ASP.NET, and contains links to other documents concerned with performance 
tuning of IIS, and SQL Server indexing considerations. In particular, it discusses the technique of using stress testing 
and Windows performance counters to detect bottlenecks in the application. 

Performance Considerations for Web Services 

The use of Web Services offers numerous benefits, but also presents some additional challenges in terms of 
performance. In general, Web Services involve more processing work and network bandwidth than traditional 
integration methods like direct binary-format data access against a relational database. Serialization of data into 
XML at the boundary of a service introduces additional processing overhead. Using message-level security to Web 
Service calls (which is often required – as discussed in the section Message-Level Security earlier in this guide) also 
introduces additional overhead for calculating digital signatures, adding authentication information to outgoing 
messages, and validating these by the recipient Web Service. In order to minimize the performance impact while 
still benefiting from Web Services, the granularity of functionality exposed by services should consider the 
invocation models used and other best practices. 

The chapter Improving Web Services Performance from the guide referenced at the start of this section at focuses 
on providing design guidelines and demonstrating techniques such as state management, asynchronous invocation, 
serialization, and threading. A thorough understanding of these topics is necessary to develop efficient Web 
Services.  

Architecting e-Health Solutions for Performance and Scalability  

Good understanding of the general principles and techniques for the architecture and design of scalable, high-
performance systems (outlined in the previous section) is the essential foundation for a successful implementation 
of any large-scale system. In addition to these factors, there are some performance and scalability aspects specific 
to e-Health systems that may further influence their architecture. 

Higher Expectations and Requirements 

Typically, the performance and availability requirements and expectations for e-Health solutions are higher than for 
comparable commercial systems. E-Health solutions are often considered part of the critical national infrastructure, 
expected to be always available, responsive, and able to gracefully handle significant peaks of unexpected workload. 
Any failures such as delays or unavailability of services are highly embarrassing, and can affect very large numbers of 
users, which undermines public confidence and weakens one of the key drivers for using online services – the ability 
to conduct electronic interactions faster and easier than through traditional channels. 

http://msdn.microsoft.com/en-us/library/ms978391.aspx
http://msdn.microsoft.com/en-us/library/ms998583.aspx


 

 

© 2009 Microsoft Corporation 119 

| Knowledge Driven Health 
 
 

Size and Growth 

E-Health solutions often start on a small scale and then grow over time as the popularity of the online services and 
the number of active users increase. The three main dimensions of growth, the product of which determines the 
required capacity, are as follows: 

 Number of users (total and concurrently active) 

 Number of services available 

 Level of usage of each service, and complexity of the functionality offered 

With all these dimensions typically growing over time, the demand for handling increased workload requires careful 
planning, and architecture capable of scaling smoothly.  

It is rarely an option to design, procure, and deploy from the start a system sized to handle the expected workload 
many years ahead. It is more common to design in the capability for such growth, deploy a small starting 
configuration, and then add capacity as required. This ability to add more processing power with minimal disruption 
to the active production system is critical for e-Health services projects. 

It is important to have reliable estimates for the absolute maximum expectations in various dimensions: users (is it 1 
million, 100 million, 1 billion?), services (10, 100, 1,000?), transactions/requests per second (100, 1,000, 10,000?). 
The architecture of the solution and the technical options available can change significantly depending on these 
factors—for example, using a single directory for a billion, or even 100 million, users might not be the most 
appropriate option, and a more distributed or federated model should be considered. The benefits from 
concentrating certain services in a single central node, and their shared use by many service providers, may require 
evaluation against the resulting size and capacity necessary from that node, and a more distributed model adopted.  

Distributed Nature of e-Health Systems 

In addition to purely technical options and considerations for scaling up, scaling out, and geographic distribution, 
other factors often influence decisions on the distributed architecture that is appropriate. E-Health systems are 
often composed of a diverse web of departmental/agency, central, regional, and local systems, with their respective 
owners, funding, suppliers and partners, and project timelines. Synchronizing and optimizing all these into a 
coherent integrated architecture from a purely architectural and technology perspective is rarely possible—
consideration of various political, commercial, and legal factors often results in a technically suboptimal 
architecture.  

The flexibility (or lack of) for rearrangement and rationalization of the existing distribution and topology of the 
participating systems is very important. Identification of possible constraints and limitations that may influence the 
shape of the solution is a prime necessity. 

Key principles driving the reference architecture for an e-Health integration solution are to provide maximum 
flexibility and to be able to accommodate a variety of requirements – including the diverse and distributed nature of 
e-Health systems.  

Some of the features of the architecture that provide such flexibility and help achieve performance and scalability 
are as follows: 



 

 

© 2009 Microsoft Corporation 120 

| Knowledge Driven Health 
 
 

 A federated approach to initial identification of users and subsequent authentication, allowing distribution 
of the reference data and credential stores (see the section Identity Management Services, and Federated 
Authentication in the Authentication and Authorization Services section earlier in this guide). Among other 
advantages, this also allows handling of a very large numbers of users, managed in a distributed fashion. 

 Support for a variety of topologies composed of many instances of the generic e-Health Services Node, 
allowing the distribution of functionality and workload to match the specific requirements and constraints 
(see the Deployment Options section earlier in this guide). 

Usage patterns 

Given the flexibility to implement some of the functionality as a cascading sequence of calls between autonomous, 
distributed services, it is very important to consider the performance impacts of such distribution. An authentication 
call to a node may require a call to an external authentication provider. The latency of the original call depends on 
not only the performance of the hub itself, but also on the availability and performance of the external to the hub 
service it relies on. While there are situations where such distribution is desirable or even inevitable, consider the 
impact on performance before making a decision. 

Another important aspect affecting performance is the choice between synchronous and asynchronous processing. 
While Web Services support both, the general recommendation is that the use of synchronous (RPC-style) calls 
should be restricted to cases where it is necessary, and the responsiveness of the target service is adequate. Making 
a synchronous call to a remote Web Service blocks the processing flow, and ties up resources throughout the whole 
chain. If the latency of that call is significant, a relatively small number of concurrent “calls in progress” can exhaust 
resources such as threads and memory on the server making the calls—in other words, the hub. It also affects 
overall performance, including making the whole service unavailable.  

In contrast, asynchronous calls complete the “request” part as soon as the call goes out, and release most of the 
resources used. Processing of responses takes place independently as they arrive, with only a little extra work 
required to reconcile them with the original requests. The time lag between the request and the response, while still 
important because it affects the overall latency for the original caller, has little impact on the performance of the 
hub. As a result, asynchronous processing can generally achieve higher throughput than synchronous processing, 
and should be preferred. 

The asynchronous model of communication also allows more graceful handling of bursts of activity by buffering the 
requests and processing them as quickly as the throughput capacity allows. This may occur implicitly (provided 
transparently by the platform) or explicitly (through implementation of queuing or store-and-forward mechanisms). 
As long as the total backlog of requests can be stored, and then processed within an acceptable timeframe, the 
usage model remains the same and provides the expected level of service. In contrast, synchronous calls have far 
less tolerance for peak loads. On reaching the processing capacity limit, further requests begin to fail and require 
resubmission by the caller.  


	Introduction to Part 3
	Addressing Common Architectural Challenges
	Flexibility and Agility
	Why Flexibility and Agility Are Essential
	Architecting for Flexibility

	User Experience and Acceptance
	Providing Safe and Intuitive User Interfaces
	Choice of Thin, Rich, or Smart Client
	Managing User Processes
	Using Mobile Devices

	Support for Multiplicity
	Growing Range of Capabilities
	Variety of Access Channels
	Broad Support for Different Client Platforms
	Multilingual Capability and Universal Accessibility
	Exposing e-Health Services in a Consistent and Secure Manner

	Handling Health Data
	Requirements Related to Data
	Types of Data
	By Volatility
	By Content
	By Scope

	Data Topologies
	Centralized Data Model
	Distributed (Federated) Data Model
	Hybrid Data Model
	Hierarchies and Combinations


	Identity and Access
	Multiplicity of…
	…User Types
	…Usage Scenarios
	…Authentication Methods
	…Identity Providers
	…Credentials

	Consistent Sign On and Single Sign On
	Identity Mapping
	Scale
	Scope
	Authorization
	Role-Based Access
	Legitimate Relationship
	Sealed Envelopes
	Emergency Override

	Identity Metasystem – Laws of Identity

	Interoperability
	Interoperability Layers
	Role of Standards and Interoperability Profiles
	Integrating Natively
	Adapters in the Hub
	Adapters in the Remote Spokes
	Isolating Common Functionality

	Securing the Solution
	Why It Is Important
	Architecting Secure Solutions

	Scalability and Performance
	Availability, Resilience, and Disaster Recovery
	Enabling Advanced e-Health Services
	Realizing the Value of Common Infrastructure
	The Need for an Owner and Sponsor
	Initial Investment with Delayed Future Benefits
	Common Conflicts with Individual Projects


	Reference Architecture
	Principles Guiding the Architecture
	Flexible and Agile
	Service Oriented
	Interfaces and Standards
	Service Discovery
	Federated Security
	Secure
	Scalable and Performant

	The Connected Health Services Node
	Client Interactions
	Interactions with External Services and Nodes

	Services Provided in the e-Health Reference Architecture
	Identity Management Services
	Core Identity Model and Principles
	Core Entities within the Identity Model
	The Identity Model
	Separation of Identity from Authentication Credentials
	Support for Federated Authentication
	Generic Pattern – Pluggable Providers
	Initial User Provisioning – Knowledge-Based Authentication
	Choosing Appropriate Information Items for KBA
	Verification Logic and Reference Data
	Obtaining Information Items for Knowledge-Based Authentication
	The Service-Centric Approach to User Provisioning
	Service Enrollment and Identity Mapping
	Activation of Registrations and Enrollments

	A Generic Credential and Authentication Provider

	Authentication and Authorization Services
	Authentication
	Levels of Authentication
	Presenting Credentials and Claims
	Federated Authentication

	Authorization
	Checking Service Enrollments
	Mapping Identity to Service-Specific Identifiers
	Delegation of Trust
	Granularity of Authorization

	Security Token Service
	Security Tokens
	Issuing Security Tokens
	Possible Scenarios


	Privacy Services
	Data Protection and Privacy
	Identifiers and Reference Data
	Indexes and Metadata
	Health Records Data

	Anonymization and Pseudonymization of Data
	Consent Management Service

	Service Publication and Discovery Services
	Service Directory Service
	UDDI
	Service Metadata
	Publishing a Service
	Finding a Service
	Replication


	e-Health Business Services
	Electronic Health Record Services
	Health Domain Services
	Health Registry Services
	Integration Services
	Submission Service
	The Role of a Submission Service
	Basic Architecture of the Message Submission Service
	Public Interface
	Asynchronous Communication
	Synchronous Communication
	Private Implementation


	Messaging Services
	Envelopes, Headers, and Payloads
	Message Attachments
	Securing the Messages
	Transport-Level Security
	Message-Level Security
	Privacy
	Integrity
	Authorization
	Message Validation
	Message Store
	Routing Service
	Addressing Web Services
	Message Paths and Intermediaries
	Peer Routing
	Metadata-Based Routing
	Content-Based Routing
	Transaction Service

	Mapping Service
	Orchestration Service
	Business Process in the e-Health Services Node

	Data Services
	Data Access Patterns and Practices

	Communication Services
	Utilizing Standards for Greater Interoperability
	Message Security
	Service Requirements
	How to Address Web Services
	Reliable Delivery
	Transactional Support
	Message Attachments
	Web Service Metadata


	Deployment Options
	Single Central Node
	Node as a Platform for Integration
	Peer-to-Peer Nodes
	Hierarchy of Nodes
	Cloud Services, SaaS, and Software + Services

	Securing the System
	Generic Approaches to a Secure Solution Architecture
	Security Patterns and Practices
	Security Best Practices

	Security Architecture Specifics for e-Health Systems
	Infrastructure and Networking
	Securing Hosts
	Denial of Service Attacks
	Countering the Registration of Bogus Users
	Countering Invalid Logon Attempts
	Countering Computationally Intensive Requests



	Performance and Scalability
	Capacity Planning
	Understanding System Performance Factors
	Scale Up or Scale Out?
	Performance Tuning of Windows Services
	Performance Considerations for Web Services

	Architecting e-Health Solutions for Performance and Scalability
	Higher Expectations and Requirements
	Size and Growth
	Distributed Nature of e-Health Systems
	Usage patterns




