
[image: cover-image]

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2016 Xamarin, Inc.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission of the publisher.

ISBN: 978-1-5093-0297-0

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you think of this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information expressed in this book, including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions and Project Editor: Devon Musgrave
Editorial production: John Pierce, Flying Squirrel Press
Cover illustration: Serena Zhang

Chapter 1. How does Xamarin.Forms fit in?

There is much joy in programming. There is joy in analyzing a problem, breaking it down into pieces, formulating a solution, mapping out a strategy, approaching it from different directions, and crafting the code. There is very much joy in seeing the program run for the first time, and then more joy in eagerly diving back into the code to make it better and faster.

There is also often joy in hunting down bugs, in ensuring that the program runs smoothly and predictably. Few occasions are quite as joyful as finally identifying a particularly recalcitrant bug and definitively stamping it out.

There is even joy in realizing that the original approach you took is not quite the best. Many developers discover that they’ve learned a lot while writing a program, including that there’s a better way to structure the code. Sometimes, a partial or even a total rewrite can result in a much better application, or simply one that is structurally more coherent and easier to maintain. The process is like standing on one’s own shoulders, and there is much joy in attaining that perspective and knowledge.

However, not all aspects of programming are quite so joyful. One of the nastier programming jobs is taking a working program and rewriting it in an entirely different programming language or porting it to another operating system with an entirely different application programming interface (API).

A job like that can be a real grind. Yet, such a rewrite may very well be necessary: an application that’s been so popular on the iPhone might be even more popular on Android devices, and there’s only one way to find out.

But here’s the problem: As you’re going through the original source code and moving it to the new platform, do you maintain the same program structure so that the two versions exist in parallel? Or do you try to make improvements and enhancements?

The temptation, of course, is to entirely rethink the application and make the new version better. But the further the two versions drift apart, the harder they will be to maintain in the future.

For this reason, a sense of dread pervades the forking of one application into two. With each line of code that you write, you realize that all the future maintenance work, all the future revisions and enhancements, have become two jobs rather than one.

This is not a new problem. For over half a century, developers have craved the ability to write a single program that runs on multiple machines. This is one of the reasons that high-level languages were invented in the first place, and this is why the concept of “cross-platform development” continues to exert such a powerful allure for programmers.

Cross-platform mobile development

The personal computer industry has experienced a massive shift in recent years. Desktop computers still exist, of course, and they remain vital for tasks that require keyboards and large screens: programming, writing, spread-sheeting, data tracking. But much of personal computing now occurs on smaller devices, particularly for quick information, media consumption, and social networking. Tablets and smartphones have a fundamentally different user-interaction paradigm based primarily on touch, with a keyboard that pops up only when necessary.

The mobile landscape

Although the mobile market has the potential for rapid change, currently two major phone and tablet platforms dominate:

• The Apple family of iPhones and iPads, all of which run the iOS operating system.

• The Android operating system, developed by Google based on the Linux kernel, which runs on a variety of phones and tablets.

How the world is divided between these two giants depends on how they are measured: there are more Android devices currently in use, but iPhone and iPad users are more devoted and spend more time with their devices.

There is also a third mobile development platform, which is not as popular as iOS and Android but involves a company with a strong history in the personal computer industry:

• Microsoft’s Windows Phone and Windows 10 Mobile.

In recent years, these platforms have become a more compelling alternative as Microsoft has been merging the APIs of its mobile, tablet, and desktop platforms. Both Windows 8.1 and Windows Phone 8.1 are based on a single API called the Windows Runtime (or WinRT), which is based on Microsoft .NET. This single API means that applications targeted for desktop machines, laptops, tablets, and phones can share very much of their code.

Even more compelling is the Universal Windows Platform (UWP), a version of the Windows Runtime that forms the basis for Windows 10 and Windows 10 Mobile. A single UWP application can target every form factor from the desktop to the phone.

For software developers, the optimum strategy is to target more than just one of these platforms. But that’s not easy. There are four big obstacles:

Problem 1: Different user-interface paradigms

All three platforms incorporate similar ways of presenting the graphical user interface (GUI) and interaction with the device through multitouch, but there are many differences in detail. Each platform has different ways to navigate around applications and pages, different conventions for the presentation of data, different ways to invoke and display menus, and even different approaches to touch.

Users become accustomed to interacting with applications on a particular platform and expect to leverage that knowledge with future applications as well. Each platform acquires its own associated culture, and these cultural conventions then influence developers.

Problem 2: Different development environments

Programmers today are accustomed to working in a sophisticated integrated development environment (IDE). Such IDEs exist for all three platforms, but of course they are different:

• For iOS development, Xcode on the Mac.

• For Android development, Android Studio on a variety of platforms.

• For Windows development, Visual Studio on the PC.

Problem 3: Different programming interfaces

All three of these platforms are based on different operating systems with different APIs. In many cases, the three platforms all implement similar types of user-interface objects but with different names.

For example, all three platforms have something that lets the user toggle a Boolean value:

• On the iPhone or iPad, it’s a “view” called UISwitch.

• On Android devices, it’s a “widget” called Switch.

• In the Windows Runtime API, it’s a “control” called ToggleSwitch.

Of course, the differences go far beyond the names into the programming interfaces themselves.

Problem 4: Different programming languages

Developers have some flexibility in choosing a programming language for each of these three platforms, but, in general, each platform is very closely associated with a particular programming language:

• Objective-C for the iPhone and iPad

• Java for Android devices

• C# for Windows

Objective-C, Java, and C# are cousins of sorts because they are all object-oriented descendants of C, but they have become rather distant cousins.

For these reasons, a company that wants to target multiple platforms might very well employ three different programmer teams, each team skilled and specialized in a particular language and API.

This language problem is particularly nasty, but it’s the problem that is the most tempting to solve: If you could use the same programming language for these three platforms, you could at least share some code between the platforms. This shared code likely wouldn’t be involved with the user interface because each platform has different APIs, but there might well be application code that doesn’t touch the user interface at all.

A single language for these three platforms would certainly be convenient. But what language would that be?

The C# and .NET solution

A roomful of programmers would come up with a variety of answers to the question just posed, but a good argument can be made in favor of C#. Unveiled by Microsoft in the year 2000, C# is a fairly new programming language, at least when compared with Objective-C and Java. At first, C# seemed to be a rather straightforward, strongly typed, imperative object-oriented language, certainly influenced by C++ (and Java as well), but with a much cleaner syntax than C++ and none of the historical baggage. In addition, the first version of C# had language-level support for properties and events, which turn out to be member types that are particularly suited for programming graphical user interfaces.

But C# has continued to grow and get better over the years. The support of generics, lambda functions, LINQ, and asynchronous operations has successfully transformed C# so that it is now properly classified as a multiparadigm programming language. C# code can be traditionally imperative, or the code can be flavored with declarative or functional programming paradigms.

Since its inception, C# has been closely associated with the Microsoft .NET Framework. At the lowest level, .NET provides an infrastructure for the C# basic data types (int, double, string, and so forth). But the extensive .NET Framework class library provides support for many common chores encountered in many different types of programming. These include:

• Math

• Debugging

• Reflection

• Collections

• Globalization

• File I/O

• Networking

• Security

• Threading

• Web services

• Data handling

• XML and JSON reading and writing

Here’s another big reason for C# and .NET to be regarded as a compelling cross-platform solution:

It’s not just hypothetical. It’s a reality.

Soon after Microsoft’s announcement of .NET way back in June 2000, the company Ximian (founded by Miguel de Icaza and Nat Friedman) initiated an open-source project called Mono to create an alternative implementation of the C# compiler and the .NET Framework that could run on Linux.

A decade later, in 2011, the founders of Ximian (which had been acquired by Novell) founded Xamarin, which still contributes to the open-source version of Mono but which has also adapted Mono to form the basis of cross-platform mobile solutions.

The year 2014 saw some developments in C# and .NET that bode well for its future. An open-source version of the C# compiler, called the .NET Compiler Platform (formerly known by its code name “Roslyn”) has been published. And the .NET Foundation was announced to serve as a steward for open-source .NET technologies, in which Xamarin plays a major part.

In March 2016, Microsoft acquired Xamarin with the goal of bringing cross-platform mobile development to the wider Microsoft developer community. Xamarin.Forms is now freely available to all users of Visual Studio.

A single language for all platforms

For the first three years of its existence, Xamarin focused mainly on compiler technologies and three basic sets of .NET libraries:

• Xamarin.Mac, which has evolved from the MonoMac project.

• Xamarin.iOS, which evolved from MonoTouch.

• Xamarin.Android, which evolved from Mono for Android or (more informally) MonoDroid.

Collectively, these libraries are known as the Xamarin platform. The libraries consist of .NET versions of the native Mac, IOS, and Android APIs. Programmers using these libraries can write applications in C# to target the native APIs of these three platforms, but also (as a bonus) with access to the .NET Framework class library.

Developers can use Visual Studio to build Xamarin applications, targeting iOS and Android as well as all the various Windows platforms. However, iPhone and iPad development also requires a Mac connected to the PC through a local network. This Mac must have Xcode installed as well as Xamarin Studio, an OS X–based integrated development environment that lets you develop iPhone, iPad, Mac OS X, and Android applications on the Mac. Xamarin Studio does not allow you to target Windows platforms.

Sharing code

The advantage of targeting multiple platforms with a single programming language comes from the ability to share code among the applications.

Before code can be shared, an application must be structured for that purpose. Particularly since the widespread use of graphical user interfaces, programmers have understood the importance of separating application code into functional layers. Perhaps the most useful division is between user-interface code and the underlying data models and algorithms. The popular MVC (Model-View-Controller) application architecture formalizes this code separation into a Model (the underlying data), the View (the visual representation of the data), and the Controller (which handles input from the user).

MVC originated in the 1980s. More recently, the MVVM (Model-View-ViewModel) architecture has effectively modernized MVC based on modern GUIs. MVVM separates code into the Model (the underlying data), the View (the user interface, including visuals and input), and the ViewModel (which manages data passing between the Model and the View).

When a programmer develops an application that targets multiple mobile platforms, the MVVM architecture helps guide the developer into separating code into the platform-specific View—the code that requires interacting with the platform APIs—and the platform-independent Model and ViewModel.

Often this platform-independent code needs to access files or the network or use collections or threading. Normally these jobs would be considered part of an operating system API, but they are also jobs that can make use of the .NET Framework class library, and if .NET is available on each platform, then this code is effectively platform independent.

The part of the application that is platform independent can then be isolated and—in the context of Visual Studio or Xamarin Studio—put into a separate project. This can be either a Shared Asset Project (SAP)—which simply consists of code and other asset files accessible from other projects—or a Portable Class Library (PCL), which encloses all the common code in a dynamic-link library (DLL) that can then be referenced from other projects.

Whichever method you use, this common code has access to the .NET Framework class library, so it can perform file I/O, handle globalization, access web services, decompose XML, and so forth.

This means that you can create a single Visual Studio solution that contains four C# projects to target the three major mobile platforms (all with access to a common PCL or SAP), or you can use Xamarin Studio to target iPhone and Android devices.

The following diagram illustrates the interrelationships between the Visual Studio or Xamarin Studio projects, the Xamarin libraries, and the platform APIs. The third column refers to any .NET-based Windows Platform regardless of the device:

[image: Image]

The boxes in the second row are the actual platform-specific applications. These apps make calls into the common project and also (with the iPhone and Android) the Xamarin libraries that implement the native platform APIs.

But the diagram is not quite complete: it doesn’t show the SAP or PCL making calls to the .NET Framework class library. Exactly what version of .NET this is depends on the common code: A PCL has access to its own version of .NET, while an SAP uses the version of .NET incorporated into each particular platform.

In this diagram, the Xamarin.iOS and Xamarin.Android libraries seem to be substantial, and while they are certainly important, they’re mostly just language bindings and do not significantly add any overhead to API calls.

When the iOS app is built, the Xamarin C# compiler generates C# Intermediate Language (IL) as usual, but it then makes use of the Apple compiler on the Mac to generate native iOS machine code just like the Objective-C compiler. The calls from the app to the iOS APIs are the same as though the application were written in Objective-C.

For the Android app, the Xamarin C# compiler generates IL, which runs on a version of Mono on the device alongside the Java engine, but the API calls from the app are pretty much the same as though the app were written in Java.

For mobile applications that have very platform-specific needs, but also a potentially shareable chunk of platform-independent code, Xamarin.iOS and Xamarin.Android provide excellent solutions. You have access to the entire platform API, with all the power (and responsibility) that implies.

But for applications that might not need quite so much platform specificity, there is an alternative that will simplify your life even more.

Introducing Xamarin.Forms

On May 28, 2014, Xamarin introduced Xamarin.Forms, which allows you to write user-interface code that can be compiled for the iOS, Android, and Windows devices.

The Xamarin.Forms option

Xamarin.Forms supports five distinct application platforms:

• iOS for programs that run on the iPhone, iPad, and iPod Touch.

• Android for programs that run on Android phones and tablets.

• The Universal Windows Platform (UWP) for applications that runs under Windows 10 or Windows 10 Mobile.

• The Windows Runtime API of Windows 8.1.

• The Windows Runtime API of Windows Phone 8.1.

In this book, “Windows” or “Windows Phone” will generally be used as a generic term to describe all three of the Microsoft platforms.

In the general case, a Xamarin.Forms application in Visual Studio consists of five separate projects for each of these five platforms, with a sixth project containing common code. But the five platform projects in a Xamarin.Forms application are typically quite small—often consisting of just stubs with a little boilerplate startup code. The PCL or SAP contains the bulk of the application, including the user-interface code. The following diagram shows just the iOS, Android, and Universal Windows Platform. The other two Windows platforms are similar to UWP:

[image: Image]

The Xamarin.Forms.Core and Xamarin.Forms.Xaml libraries implement the Xamarin.Forms API. Depending on the platform, Xamarin.Forms.Core then makes use of one of the Xamarin.Forms.Platform libraries. These libraries are mostly a collection of classes called renderers that transform the Xamarin.Forms user-interface objects into the platform-specific user interface.

The remainder of the diagram is the same as the one shown earlier.

For example, suppose you need the user-interface object discussed earlier that allows the user to toggle a Boolean value. When programming for Xamarin.Forms, this is called a Switch, and a class named Switch is implemented in the Xamarin.Forms.Core library. In the individual renderers for the three platforms, this Switch is mapped to a UISwitch on the iPhone, a Switch on Android, and a ToggleSwitch on Windows Phone.

Xamarin.Forms.Core also contains a class named Slider for displaying a horizontal bar that the user manipulates to choose a numeric value. In the renderers in the platform-specific libraries, this is mapped to a UISlider on the iPhone, a SeekBar on Android, and a Slider on Windows Phone.

This means that when you write a Xamarin.Forms program that has a Switch or a Slider, what’s actually displayed is the corresponding object implemented in each platform.

Here’s a little Xamarin.Forms program containing a Label reading “Hello, Xamarin.Forms!”, a Button saying “Click Me!”, a Switch, and a Slider. The program is running on (from left to right) the iPhone, an Android phone, and a Windows 10 Mobile device:

[image: Image]

The iPhone screenshot is of an iPhone 6 simulator running iOS 9.2. The Android phone is an LG Nexus 5 running Android version 6. The Windows 10 Mobile device is a Nokia Lumia 935 running a Windows 10 Technical Preview.

You’ll encounter triple screenshots like this one throughout this book. They’re always in the same order—iPhone, Android, and Windows 10 Mobile—and they’re always running the same program.

As you can see, the Button, Switch, and Slider all have different appearances on the three phones because they are all rendered with the object specific to each platform.

What’s even more interesting is the inclusion in this program of six ToolBarItem objects, three identified as primary items with icons, and three as secondary items without icons. On the iPhone these are rendered with UIBarButtonItem objects as the three icons and three buttons at the top of the page. On the Android, the first three are rendered as items on an ActionBar, also at the top of the page. On Windows 10 Mobile, they’re realized as items on the CommandBar at the page’s bottom.

The Android ActionBar has a vertical ellipsis and the Universal Windows Platform CommandBar has a horizontal ellipsis. Tapping this ellipsis causes the secondary items to be displayed in a manner appropriate to these two platforms:

[image: Image]

Xamarin.Forms was originally conceived as a platform-independent API for mobile devices. However, Xamarin.Forms is not limited to phones. Here’s the same program running on an iPad Air 2 simulator:

[image: Image]

Most of the programs in this book are fairly simple, and hence designed to look their best on a phone screen in portrait mode. But they will also run in landscape mode and on tablets.

Here’s the UWP project on a Microsoft Surface Pro 3 running Windows 10:

[image: Image]

Notice the toolbar at the top of the screen. The ellipsis has already been pressed to reveal the three secondary items.

The other two platforms supported by Xamarin.Forms are Windows 8.1 and Windows Phone 8.1. Here’s the Windows 8.1 program running in a window on the Windows 10 desktop, and the Windows 8.1 program running on the Windows 10 Mobile device:

[image: Image]

The Windows 8.1 screen has been left-clicked with the mouse to reveal the toolbar items at the bottom. On this screen, the secondary items are at the left, but the program neglectfully forgot to assign them icons. On the Windows Phone 8.1 screen, the ellipsis at the bottom has been pressed.

The various implementations of the toolbar reveals that, in one sense, Xamarin.Forms is an API that virtualizes not only the user-interface elements on each platform, but also the user-interface paradigms.

XAML support

Xamarin.Forms also supports XAML (pronounced “zammel” to rhyme with “camel”), the XML-based Extensible Application Markup Language developed at Microsoft as a general-purpose markup language for instantiating and initializing objects. XAML isn’t limited to defining initial layouts of user interfaces, but historically that’s how it’s been used the most, and that’s what it’s used for in Xamarin.Forms.

Here’s the XAML file for the program whose screenshots you’ve just seen:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PlatformVisuals.PlatformVisualsPage"

 Title="Visuals">

 <StackLayout Padding="10,0">

 <Label Text="Hello, Xamarin.Forms!"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 <Button Text = "Click Me!"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 <Switch VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 <Slider VerticalOptions="CenterAndExpand" />

 </StackLayout>

 <ContentPage.ToolbarItems>

 <ToolbarItem Text="edit" Order="Primary">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="edit.png"

 Android="ic_action_edit.png"

 WinPhone="Images/edit.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 <ToolbarItem Text="search" Order="Primary">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="search.png"

 Android="ic_action_search.png"

 WinPhone="Images/feature.search.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 <ToolbarItem Text="refresh" Order="Primary">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="reload.png"

 Android="ic_action_refresh.png"

 WinPhone="Images/refresh.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 <ToolbarItem Text="explore" Order="Secondary" />

 <ToolbarItem Text="discover" Order="Secondary" />

 <ToolbarItem Text="evolve" Order="Secondary" />

 </ContentPage.ToolbarItems>

</ContentPage>

Unless you have experience with XAML, some syntax details might be a little obscure. (Don’t worry; you’ll learn all about them later on in this book.) But even so, you can see the Label, Button, Switch, and Slider tags. In a real program, the Button, Switch, and Slider would probably have event handlers attached that would be implemented in a C# code file. Here they do not. The VerticalOptions and HorizontalOptions attributes assist in layout; they are discussed in the next chapter.

Platform specificity

In the section of that XAML file involving the ToolbarItem, you can also see a tag named OnPlatform. This is one of several techniques in Xamarin.Forms that allow introducing some platform specificity in otherwise platform-independent code or markup. It’s used here because each of the separate platforms has somewhat different image format and size requirements associated with these icons.

A similar facility exists in code with the Device class. It’s possible to determine what platform the code is running on and to choose values or objects based on the platform. For example, you can specify different font sizes for each platform or run different blocks of code based on the platform. You might want to let the user manipulate a Slider to select a value in one platform but pick a number from a set of explicit values in another platform.

In some applications, deeper platform specificities might be desired. For example, suppose your application requires the GPS coordinates of the user’s phone. This is not something that Xamarin.Forms provides, so you’d need to write your own code specific to each platform to obtain this information.

The DependencyService class provides a way to do this in a structured manner. You define an interface with the methods you need (for example, IGetCurrentLocation) and then implement that interface with a class in each of the platform projects. You can then call the methods in that interface from the Xamarin.Forms project almost as easily as if it were part of the API.

Each of the standard Xamarin.Forms visual objects—such as Label, Button, Switch, and Slider—are supported by a renderer class in the various Xamarin.Forms.Platform libraries. Each renderer class implements the platform-specific object that maps to the Xamarin.Forms object.

You can create your own custom visual objects with your own custom renderers. The custom visual object goes in the common code project, and the custom renderers go in the individual platform projects. To make it a bit easier, generally you’ll want to derive from an existing class. Within the individual Xamarin.Forms platform libraries, all the corresponding renderers are public classes, and you can derive from them as well.

Xamarin.Forms allows you to be as platform independent or as platform specific as you need to be. Xamarin.Forms doesn’t replace Xamarin.iOS and Xamarin.Android; rather, it integrates with them.

A cross-platform panacea?

For the most part, Xamarin.Forms defines its abstractions with a focus on areas of the mobile user interface that are common to the iOS, Android, and Windows Runtime APIs. These Xamarin.Forms visual objects are mapped to platform-specific objects, but Xamarin.Forms has tended to avoid implementing anything that is unique to a particular platform.

For this reason, despite the enormous help that Xamarin.Forms can offer in creating platform-independent applications, it is not a complete replacement for native API programming. If your application relies heavily on native API features such as particular types of controls or widgets, then you might want to stick with Xamarin.iOS, Xamarin.Android, and the native Windows Phone API.

You’ll probably also want to stick with the native APIs for applications that require vector graphics or complex touch interaction. The current version of Xamarin.Forms is not quite ready for these scenarios.

On the other hand, Xamarin.Forms is great for prototyping or making a quick proof-of-concept application. And after you’ve done that, you might just find that you can continue using Xamarin.Forms features to build the entire application. Xamarin.Forms is ideal for line-of-business applications.

Even if you begin building an application with Xamarin.Forms and then implement major parts of it with platform APIs, you’re doing so within a framework that allows you to share code and that offers structured ways to make platform-specific visuals.

Your development environment

How you set up your hardware and software depends on what mobile platforms you’re targeting and what computing environments are most comfortable for you.

The requirements for Xamarin.Forms are no different from the requirements for using Xamarin.iOS or Xamarin.Android or for programming for Windows Runtime platforms.

This means that nothing in this section (and the remainder of this chapter) is specific to Xamarin.Forms. There exists much documentation on the Xamarin website on setting up machines and software for Xamarin.iOS and Xamarin.Android programming, and on the Microsoft website about Windows Phone.

Machines and IDEs

If you want to target the iPhone, you’re going to need a Mac. Apple requires that a Mac be used for building iPhone and other iOS applications. You’ll need to install Xcode on this machine and, of course, the Xamarin platform that includes the necessary libraries and Xamarin Studio. You can then use Xamarin Studio and Xamarin.Forms on the Mac for your iPhone development.

Once you have a Mac with Xcode and the Xamarin platform installed, you can also install the Xamarin platform on a PC and program for the iPhone by using Visual Studio. The PC and Mac must be connected via a network (such as Wi-Fi). Visual Studio communicates with the Mac through a Secure Shell (SSH) interface, and uses the Mac to build the application and run the program on a device or simulator.

You can also do Android programming in Xamarin Studio on the Mac or in Visual Studio on the PC.

If you want to target the Windows platforms, you’ll need Visual Studio 2015. You can target all the platforms in a single IDE by running Visual Studio 2015 on a PC connected to the Mac via a network. (That’s how the sample programs in this book were created.) Another option is to run Visual Studio in a virtual machine on the Mac.

Devices and emulators

You can test your programs on real phones connected to the machines via a USB cable, or you can test your programs with onscreen emulators.

There are advantages and disadvantages to each approach. A real phone is essential for testing complex touch interaction or when getting a feel for startup or response time. However, emulators allow you to see how your application adapts to a variety of sizes and form factors.

The iPhone and iPad emulators run on the Mac. However, because Mac desktop machines don’t have touchscreens, you’ll need to use the mouse or trackpad to simulate touch. The touch gestures on the Mac touchpad do not translate to the emulator. You can also connect a real iPhone to the Mac, but you’ll need to provision it as a developer device.

Historically, Android emulators supplied by Google have tended to be slow and cranky, although they are often extremely versatile in emulating a vast array of actual Android devices. Fortunately, Visual Studio now has its own Android emulator that works rather better. It’s also very easy to connect a real Android phone to either a Mac or PC for testing. All you really need do is enable USB Debugging on the device.

The Windows Phone emulators are capable of several different screen resolutions and also tend to run fairly smoothly, albeit consuming lots of memory. If you run the Windows Phone emulator on a touchscreen, you can use touch on the emulator screen. Connecting a real Windows Phone to the PC is fairly easy but requires enabling the phone in the Settings section for developing. If you want to unlock more than one phone, you’ll need a developer account.

Installation

Before writing applications for Xamarin.Forms, you’ll need to install the Xamarin platform on your Mac, PC, or both (if you’re using that setup). See the articles on the Xamarin website at:

https://developer.xamarin.com/guides/cross-platform/getting_started/installation/

You’re probably eager to create your first Xamarin.Forms application, but before you do, you’ll want to try creating normal Xamarin projects for the iPhone and Android and normal Windows, Windows Phone, and Windows 10 Mobile projects.

This is important: if you’re experiencing a problem using Xamarin.iOS, Xamarin.Android, or Windows, that’s not a problem with Xamarin.Forms, and you’ll need to solve that problem before using Xamarin.Forms.

Creating an iOS app

If you’re interested in using Xamarin.Forms to target the iPhone, first become familiar with the appropriate Getting Started documents on the Xamarin website:

https://developer.xamarin.com/guides/ios/getting_started/

This will give you guidance on using the Xamarin.iOS library to develop an iPhone application in C#. All you really need to do is get to the point where you can build and deploy a simple iPhone application on either a real iPhone or the iPhone simulator.

If you’re using Visual Studio, and if everything is installed correctly, you should be able to select File > New > Project from the menu, and in the New Project dialog, from the left, select Visual C# and iOS and then Universal (which refers to targeting both iPhone and iPad), and from the template list in the center, select Blank App (iOS).

If you’re using Xamarin Studio, you should be able to select File > New > Solution from the menu, and in the New Project dialog, from the left, select iOS and then App, and from the template list in the center, select Single View App.

In either case, select a location and name for the solution. Build and deploy the skeleton application created in the project. If you’re having a problem with this, it’s not a Xamarin.Forms issue. You might want to check the Xamarin.iOS forums to see if anybody else has a similar problem:

http://forums.xamarin.com/categories/ios/

Creating an Android app

If you’re interested in using Xamarin.Forms to target Android devices, first become familiar with the Getting Started documents on the Xamarin website:

https://developer.xamarin.com/guides/android/getting_started/

If you’re using Visual Studio, and if everything is installed correctly, you should be able to select File > New > Project from the menu, and in the New Project dialog, from the left, select Visual C# and then Android, and from the template list in the center, select Blank App (Android).

If you’re using Xamarin Studio, you should be able to select File > New > Solution from the menu, and in the New Project dialog, from the left, select Android and App, and in the template list in the center, select Android App.

Give it a location and a name; build and deploy. If you can’t get this process to work, it’s not a Xamarin.Forms issue, and you might want to check the Xamarin.Android forums for a similar problem:

http://forums.xamarin.com/categories/android/

Creating a Windows app

If you’re interested in using Xamarin.Forms to target Windows, Windows Phone, or Windows 10 Mobile, you’ll need to become familiar with at least the rudiments of using Visual Studio to develop Windows applications:

http://dev.windows.com/

In Visual Studio 2015, if everything is installed correctly, you should be able select File > New > Project from the menu, and in the New Project dialog, at the left, select Visual C# and Windows. You’ll see a hierarchy under the Windows heading something like this:

[image: Image]

The first Universal heading under Windows is for creating a Universal Windows Platform application that can target either Windows 10 or Windows 10 Mobile. Select that, and from the center area select Blank App (Universal Windows) to create a UWP app.

The other two project types supported by Xamarin.Forms are under the Windows 8 header. The Universal item actually creates two projects—a Windows desktop application and a Windows Phone application with some shared code. For creating just a Windows application, choose Windows and then from the center section Blank App (Windows 8.1). For a Windows Phone application, choose Windows Phone and Blank App This creates a project that targets Windows Phone 8.1.

These are the three project types supported by Xamarin.Forms.

You should be able to build and deploy the skeleton application to the desktop or to a real phone or an emulator. If not, search the Microsoft website or online forums such as Stack Overflow.

All ready?

If you can build Xamarin.iOS, Xamarin.Android, and Windows applications (or some subset of those), then you’re ready to create your first Xamarin.Forms application. It’s time to say “Hello, Xamarin.Forms” to a new era in cross-platform mobile development.

Chapter 2. Anatomy of an app

The modern user interface is constructed from visual objects of various sorts. Depending on the operating system, these visual objects might go by different names—controls, elements, views, widgets—but they are all devoted to the jobs of presentation or interaction or both.

In Xamarin.Forms, the objects that appear on the screen are collectively called visual elements. They come in three main categories:

• page

• layout

• view

These are not abstract concepts! The Xamarin.Forms application programming interface (API) defines classes named VisualElement, Page, Layout, and View. These classes and their descendants form the backbone of the Xamarin.Forms user interface. VisualElement is an exceptionally important class in Xamarin.Forms. A VisualElement object is anything that occupies space on the screen.

A Xamarin.Forms application consists of one or more pages. A page usually occupies all (or at least a large area) of the screen. Some applications consist of only a single page, while others allow navigating between multiple pages. In many of the early chapters in this book, you’ll see just one type of page, called a ContentPage.

On each page, the visual elements are organized in a parent-child hierarchy. The child of a ContentPage is generally a layout of some sort to organize the visuals. Some layouts have a single child, but many layouts have multiple children that the layout arranges within itself. These children can be other layouts or views. Different types of layouts arrange children in a stack, in a two-dimensional grid, or in a more freeform manner. In this chapter, however, our pages will contain just a single child.

The term view in Xamarin.Forms denotes familiar types of presentation and interactive objects: text, bitmaps, buttons, text-entry fields, sliders, switches, progress bars, date and time pickers, and others of your own devising. These are often called controls or widgets in other programming environments. This book refers to them as views or elements. In this chapter, you’ll encounter the Label view for displaying text.

Say hello

Using either Microsoft Visual Studio or Xamarin Studio, let’s create a new Xamarin.Forms application by using a standard template. This process creates a solution that contains up to six projects: five platform projects—for iOS, Android, the Universal Windows Platform (UWP), Windows 8.1, and Windows Phone 8.1—and a common project for the greater part of your application code.

In Visual Studio, select the menu option File > New > Project. At the left of the New Project dialog, select Visual C# and then Cross-Platform. In the center part of the dialog you’ll see several available solution templates, including three for Xamarin.Forms:

• Blank App (Xamarin.Forms Portable)

• Blank App (Xamarin.Forms Shared)

• Class Library (Xamarin.Forms)

Now what? We definitely want to create a Blank App solution, but what kind?

Xamarin Studio presents a similar dilemma but in a different way. To create a new Xamarin.Forms solution in Xamarin Studio, select File > New > Solution from the menu, and at the left of the New Project dialog, under Multiplatform select App, pick Forms App, and press the Next button. Toward the bottom of the next screen are a pair of radio buttons labeled Shared Code. These buttons allow you to choose one of the following options:

• Use Portable Class Library

• Use Shared Library

The term “Portable” in this context refers to a Portable Class Library (PCL). All the common application code becomes a dynamic-link library (DLL) that is referenced by all the individual platform projects.

The term “Shared” in this context means a Shared Asset Project (SAP) containing loose code files (and perhaps other files) that are shared among the platform projects, essentially becoming part of each platform project.

For now, pick the first one: Blank App (Xamarin.Forms Portable) in Visual Studio or Use Portable Class Library in Xamarin Studio. Give the project a name—for example, Hello—and select a disk location for it in that dialog (in Visual Studio) or in the dialog that appears after pressing the Next button again in Xamarin Studio.

If you’re running Visual Studio, six projects are created: one common project (the PCL project) and five application projects. For a solution named Hello, these are:

• A Portable Class Library project named Hello that is referenced by all five application projects;

• An application project for Android, named Hello.Droid;

• An application project for iOS, named Hello.iOS;

• An application project for the Universal Windows Platform of Windows 10 and Windows Mobile 10, named Hello.UWP;

• An application project for Windows 8.1, named Hello.Windows; and

• An application project for Windows Phone 8.1, named Hello.WinPhone.

If you’re running Xamarin Studio on the Mac, the Windows and Windows Phone projects are not created.

When you create a new Xamarin.Forms solution, the Xamarin.Forms libraries (and various support libraries) are automatically downloaded from the NuGet package manager. Visual Studio and Xamarin Studio store these libraries in a directory named packages in the solution directory. However, the particular version of the Xamarin.Forms library that is downloaded is specified within the solution template, and a newer version might be available.

In Visual Studio, in the Solution Explorer at the far right of the screen, right-click the solution name and select Manage NuGet Packages for Solution. The dialog that appears contains selectable items at the upper left that let you see what NuGet packages are installed in the solution and let you install others. You can also select the Update item to update the Xamarin.Forms library.

In Xamarin.Studio, you can select the tool icon to the right of the solution name in the Solution list and select Update NuGet Packages.

Before continuing, check to be sure that the project configurations are okay. In Visual Studio, select the Build > Configuration Manager menu item. In the Configuration Manager dialog, you’ll see the PCL project and the five application projects. Make sure the Build box is checked for all the projects and the Deploy box is checked for all the application projects (unless the box is grayed out). Take note of the Platform column: If the Hello project is listed, it should be flagged as Any CPU. The Hello.Droid project should also be flagged as Any CPU. (For those two project types, Any CPU is the only option.) For the Hello.iOS project, choose either iPhone or iPhoneSimulator depending on how you’ll be testing the program.

For the Hello.UWP project, the project configuration must be x86 for deploying to the Windows desktop or an on-screen emulator, and ARM for deploying to a phone.

For the Hello.WinPhone project, you can select x86 if you’ll be using an on-screen emulator, ARM if you’ll be deploying to a real phone, or Any CPU for deploying to either. Regardless of your choice, Visual Studio generates the same code.

If a project doesn’t seem to be compiling or deploying in Visual Studio, recheck the settings in the Configuration Manager dialog. Sometimes a different configuration becomes active and might not include the PCL project.

In Xamarin Studio on the Mac, you can switch between deploying to the iPhone and iPhone simulator through the Project > Active Configuration menu item.

In Visual Studio, you’ll probably want to display the iOS and Android toolbars. These toolbars let you choose among emulators and devices and allow you to manage the emulators. From the main menu, make sure the View > Toolbars > iOS and View > Toolbars > Android items are checked.

Because the solution contains anywhere from two to six projects, you must designate which program starts up when you elect to run or debug an application.

In the Solution Explorer of Visual Studio, right-click any of the five application projects and select the Set As StartUp Project item from the menu. You can then select to deploy to either an emulator or a real device. To build and run the program, select the menu item Debug > Start Debugging.

In the Solution list in Xamarin Studio, click the little tool icon that appears to the right of a selected project and select Set As Startup Project from the menu. You can then pick Run > Start Debugging from the main menu.

If all goes well, the skeleton application created by the template will run and you’ll see a short message:

[image: Image]

As you can see, these platforms have different color schemes. The iOS and Windows 10 Mobile screens display dark text on a light background, while the Android device displays light text on a black background. By default, the Windows 8.1 and Windows Phone 8.1 platforms are like Android in displaying light text on a black background.

By default, all the platforms are enabled for orientation changes. Turn the phone sideways, and you’ll see the text adjust to the new center.

The app is not only run on the device or emulator but deployed. It appears with the other apps on the phone or emulator and can be run from there. If you don’t like the application icon or how the app name displays, you can change that in the individual platform projects.

Inside the files

Clearly, the program created by the Xamarin.Forms template is very simple, so this is an excellent opportunity to examine the generated code files and figure out their interrelationships and how they work.

Let’s begin with the code that’s responsible for drawing the text that you see on the screen. This is the App class in the Hello project. In a project created by Visual Studio, the App class is defined in the App.cs file, but in Xamarin Studio, the file is Hello.cs. If the project template hasn’t changed too much since this chapter was written, it probably looks something like this:

Click here to view code image

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Xamarin.Forms;

namespace Hello

{

 public class App : Application

 {

 public App()

 {

 // The root page of your application

 MainPage = new ContentPage

 {

 Content = new StackLayout

 {

 VerticalOptions = LayoutOptions.Center,

 Children = {

 new Label {

 HorizontalTextAlignment = TextAlignment.Center,

 Text = "Welcome to Xamarin Forms!"

 }

 }

 }

 };

 }

 protected override void OnStart()

 {

 // Handle when your app starts

 }

 protected override void OnSleep()

 {

 // Handle when your app sleeps

 }

 protected override void OnResume()

 {

 // Handle when your app resumes

 }

 }

}

Notice that the namespace is the same as the project name. This App class is defined as public and derives from the Xamarin.Forms Application class. The constructor really has just one responsibility: to set the MainPage property of the Application class to an object of type Page.

The code that the Xamarin.Forms template has generated here shows one very simple approach to defining this constructor: The ContentPage class derives from Page and is very common in single-page Xamarin.Forms applications. (You’ll see a lot of ContentPage throughout this book.) It occupies most of the phone’s screen with the exception of the status bar at the top of the Android screen, the buttons on the bottom of the Android screen, and the status bar at the top of the Windows Phone screen. (As you’ll discover, the iOS status bar is actually part of the ContentPage in single-page applications.)

The ContentPage class defines a property named Content that you set to the content of the page. Generally this content is a layout that in turn contains a bunch of views, and in this case it’s set to a StackLayout, which arranges its children in a stack.

This StackLayout has only one child, which is a Label. The Label class derives from View and is used in Xamarin.Forms applications to display up to a paragraph of text. The VerticalOptions and HorizontalTextAlignment properties are discussed in more detail later in this chapter.

For your own single-page Xamarin.Forms applications, you’ll generally be defining your own class that derives from ContentPage. The constructor of the App class then sets an instance of the class that you define to its MainPage property. You’ll see how this works shortly.

In the Hello solution, you’ll also see an AssemblyInfo.cs file for creating the PCL and a packages.config file that contains the NuGet packages required by the program. In the References section under Hello in the solution list, you’ll see at least the four libraries this PCL requires:

• .NET (displayed as .NET Portable Subset in Xamarin Studio)

• Xamarin.Forms.Core

• Xamarin.Forms.Xaml

• Xamarin.Forms.Platform

It is this PCL project that will receive the bulk of your attention as you’re writing a Xamarin.Forms application. In some circumstances the code in this project might require some tailoring for the various platforms, and you’ll see shortly how to do that. You can also include platform-specific code in the five application projects.

The five application projects have their own assets in the form of icons and metadata, and you must pay particular attention to these assets if you intend to bring the application to market. But during the time that you’re learning how to develop applications using Xamarin.Forms, these assets can generally be ignored. You’ll probably want to keep these application projects collapsed in the solution list because you don’t need to bother much with their contents.

But you really should know what’s in these application projects, so let’s take a closer look.

In the References section of each application project, you’ll see references to the common PCL project (Hello in this case), as well as various .NET assemblies, the Xamarin.Forms assembles listed above, and additional Xamarin.Forms assemblies applicable to each platform:

• Xamarin.Forms.Platform.Android

• Xamarin.Forms.Platform.iOS

• Xamarin.Forms.Platform.UAP (not explicitly displayed in the UWP project)

• Xamarin.Forms.Platform.WinRT

• Xamarin.Forms.Platform.WinRT.Tablet

• Xamarin.Forms.Platform.WinRT.Phone

Each of these libraries defines a static Forms. Init method in the Xamarin.Forms namespace that initializes the Xamarin.Forms system for that particular platform. The startup code in each platform must make a call to this method.

You’ve also just seen that the PCL project derives a public class named App that derives from Application. The startup code in each platform must also instantiate this App class.

If you’re familiar with iOS, Android, or Windows Phone development, you might be curious to see how the platform startup code handles these jobs.

The iOS project

An iOS project typically contains a class that derives from UIApplicationDelegate. However, the Xamarin.Forms.Platform.iOS library defines an alternative base class named FormsApplicationDelegate. In the Hello.iOS project, you’ll see this AppDelegate.cs file, here stripped of all extraneous using directives and comments:

Click here to view code image

using Foundation;

using UIKit;

namespace Hello.iOS

{

 [Register("AppDelegate")]

 public partial class AppDelegate :

 global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate

 {

 public override bool FinishedLaunching(UIApplication app, NSDictionary options)

 {

 global::Xamarin.Forms.Forms.Init();

 LoadApplication(new App());

 return base.FinishedLaunching(app, options);

 }

 }

}

The FinishedLaunching override begins by calling the Forms.Init method defined in the Xamarin.Forms.Platform.iOS assembly. It then calls a LoadApplication method (defined by the FormsApplicationDelegate), passing to it a new instance of the App class defined in the Hello namespace in the shared PCL. The page object set to the MainPage property of this App object can then be used to create an object of type UIViewController, which is responsible for rendering the page’s contents.

The Android project

In the Android application, the typical MainActivity class must be derived from a Xamarin.Forms class named FormsApplicationActivity, defined in the Xamarin.Forms.Platform.Android assembly, and the Forms.Init call requires some additional information:

Click here to view code image

using Android.App;

using Android.Content.PM;

using Android.OS;

namespace Hello.Droid

{

 [Activity(Label = "Hello", Icon = "@drawable/icon", MainLauncher = true,

 ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.Orientation)]

 public class MainActivity : global::Xamarin.Forms.Platform.Android.FormsApplicationActivity

 {

 protected override void OnCreate(Bundle bundle)

 {

 base.OnCreate(bundle);

 global::Xamarin.Forms.Forms.Init(this, bundle);

 LoadApplication(new App());

 }

 }

}

The new instance of the App class in the Hello namespace is then passed to a LoadApplication method defined by FormsApplicationActivity. The attribute set on the MainActivity class indicates that the activity is not re-created when the phone changes orientation (from portrait to landscape or back) or the screen changes size.

The Universal Windows Platform project

In the UWP project (or either of the two Windows projects), look first in the App.xaml.cs file tucked underneath the App.xaml file in the project file list. In the OnLaunched method you will see the call to Forms.Init using the event arguments:

Xamarin.Forms.Forms.Init(e);

Now look at the MainPage.xaml.cs file tucked underneath the MainPage.xaml file in the project file list. This file defines the customary MainPage class, but it actually derives from a Xamarin.Forms class specified as the root element in the MainPage.xaml file. A newly instantiated App class is passed to the LoadApplication method defined by this base class:

Click here to view code image

namespace Hello.UWP

{

 public sealed partial class MainPage

 {

 public MainPage()

 {

 this.InitializeComponent();

 LoadApplication(new Hello.App());

 }

 }

}

Nothing special!

If you’ve created a Xamarin.Forms solution under Visual Studio and don’t want to target one or more platforms, simply delete those projects.

If you later change your mind about those projects—or you originally created the solution in Xamarin Studio and want to move it to Visual Studio to target one of the Windows platforms—you can add new platform projects to the Xamarin.Forms solution. In the Add New Project dialog, you can create a Unified API (not Classic API) Xamarin.iOS project by selecting the iOS project Universal type and Blank App template. Create a Xamarin.Android project with the Android Blank App template, or a Windows project by selecting Universal under the Windows heading (for a UWP project), or Windows or Windows Phone under the Windows 8 heading, and then Blank App.

For these new projects, you can get the correct references and boilerplate code by consulting the projects generated by the standard Xamarin.Forms template.

To summarize: there’s really nothing all that special in a Xamarin.Forms app compared with normal Xamarin or Windows Phone projects—except the Xamarin.Forms libraries.

PCL or SAP?

When you first created the Hello solution in Visual Studio, you had a choice of two application templates:

• Blank App (Xamarin.Forms Portable)

• Blank App (Xamarin.Forms Shared)

In Xamarin Studio, the choice is embodied in a pair of radio buttons:

• Use Portable Class Library

• Use Shared Library

The first option creates a Portable Class Library (PCL), whereas the second creates a Shared Asset Project (SAP) consisting only of shared code files. The original Hello solution used the PCL template. Now let’s create a second solution named HelloSap with the SAP template.

As you’ll see, everything looks pretty much the same, except that the HelloSap project itself contains only one item: the App.cs file.

With both the PCL and SAP approaches, code is shared among the five applications, but in decidedly different ways: With the PCL approach, all the common code is bundled into a dynamic-link library that each application project references and binds to at run time. With the SAP approach, the common code files are effectively included with each of the five application projects at build time. By default, the SAP has only a single file named App.cs, but effectively it’s as if this HelloSap project did not exist and instead there were five different copies of this file in the five application projects.

Some subtle (and not-so-subtle) problems can manifest themselves with the shared library approach:

The iOS and Android projects have access to pretty much the same version of .NET, but it is not the same version of .NET that the Windows projects use. This means that any .NET classes accessed by the shared code might be somewhat different depending on the platform. As you’ll discover later in this book, this is the case for some file I/O classes in the System.IO namespace.

You can compensate for these differences by using C# preprocessor directives, particularly #if and #elif. In the projects generated by the Xamarin.Forms template, the various application projects define symbols that you can use with these directives.

What are these symbols?

In Visual Studio, right-click the project name in the Solution Explorer and select Properties. At the left of the properties screen, select Build, and look for the Conditional compilation symbols field.

In Xamarin Studio, select an application project in the Solution list, invoke the drop-down tools menu, and select Options. In the left of the Project Options dialog, select Build > Compiler, and look for the Define Symbols field.

Here are the symbols that you can use:

• iOS project: You’ll see the symbol __IOS__ (that’s two underscores before and after)

• Android project: You won’t see any symbols defined for indicating the platform, but the identifier __ANDROID__ is defined anyway, as well as multiple __ANDROID_nn__ identifiers, where nn is each Android API level supported.

• UWP project: The symbol WINDOWS_UWP

• Windows project: The symbol WINDOWS_APP

• Windows Phone project: The symbol WINDOWS_PHONE_APP

Your shared code file can include blocks like this:

Click here to view code image

#if __IOS__

 // iOS specific code

#elif __ANDROID__

 // Android specific code

#elif WINDOWS_UWP

 // Universal Windows Platform specific code

#elif WINDOWS_APP

 // Windows 8.1 specific code

#elif WINDOWS__PHONE_APP

 // Windows Phone 8.1 specific code

#endif

This allows your shared code files to run platform-specific code or access platform-specific classes, including classes in the individual platform projects. You can also define your own conditional compilation symbols if you’d like.

These preprocessor directives make no sense in a Portable Class Library project. The PCL is entirely independent of the five platforms, and these identifiers in the platform projects are not present when the PCL is compiled.

The concept of the PCL originally arose because every platform that uses .NET actually uses a some-what different subset of .NET. If you want to create a library that can be used among multiple .NET platforms, you need to use only the common parts of those .NET subsets.

The PCL is intended to help by containing code that is usable on multiple (but specific) .NET platforms. Consequently, any particular PCL contains some embedded flags that indicate what platforms it supports. A PCL used in a Xamarin.Forms application must support the following platforms:

• .NET Framework 4.5

• Windows 8

• Windows Phone 8.1

• Xamarin.Android

• Xamarin.iOS

• Xamarin.iOS (Classic)

This is known as PCL Profile 111.

If you need platform-specific behavior in the PCL, you can’t use the C# preprocessor directives because those work only at build time. You need something that works at run time, such as the Xamarin.Forms Device class. You’ll see an example shortly.

The Xamarin.Forms PCL can access other PCLs supporting the same platforms, but it cannot directly access classes defined in the individual application projects. However, if that’s something you need to do—and you’ll see an example in Chapter 9, “Platform-specific API calls”—Xamarin.Forms provides a class named DependencyService that allows you to access platform-specific code from the PCL in a methodical manner.

Most of the programs in this book use the PCL approach. This is the recommended approach for Xamarin.Forms and is preferred by many programmers who have been working with Xamarin.Forms for a while. However, the SAP approach is also supported and definitely has its advocates as well. Programs within these pages that demonstrate the SAP approach always contain the letters Sap at the end of their names, such as the HelloSap program.

But why choose? You can have both in the same solution. If you’ve created a Xamarin.Forms solution with a Shared Asset Project, you can add a new PCL project to the solution by selecting the Class Library (Xamarin.Forms Portable) template. The application projects can access both the SAP and PCL, and the SAP can access the PCL as well.

Labels for text

Let’s create a new Xamarin.Forms PCL solution, named Greetings, using the same process described above for creating the Hello solution. This new solution will be structured more like a typical Xamarin.Forms program, which means that it will define a new class that derives from ContentPage. Most of the time in this book, every class and structure defined by a program will get its own file. This means that a new file must be added to the Greetings project:

In Visual Studio, you can right-click the Greetings project in the Solution Explorer and select Add > New Item from the menu. At the left of the Add New Item dialog, select Visual C# and Cross-Platform, and in the center area, select Forms ContentPage. (Watch out: There’s also a Forms ContentView option. Don’t pick that one!)

In Xamarin Studio, from the tool icon on the Greetings project, select Add > New File from the menu. In the left of the New File dialog, select Forms, and in the central area, select Forms ContentPage. (Watch out: There are also Forms ContentView and Forms ContentPage Xaml options. Don’t pick those!)

In either case, give the new file a name of GreetingsPage.cs.

The GreetingsPage.cs file will be initialized with some skeleton code for a class named GreetingsPage that derives from ContentPage. Because ContentPage is in the Xamarin.Forms namespace, a using directive includes that namespace. The class is defined as public, but it need not be because it won’t be directly accessed from outside the Greetings project.

Let’s delete all the code in the GreetingsPage constructor and most of the using directives, so the file looks something like this:

Click here to view code image

using System;

using Xamarin.Forms;

namespace Greetings

{

 public class GreetingsPage : ContentPage

 {

 public GreetingsPage()

 {

 }

 }

}

In the constructor of the GreetingsPage class, instantiate a Label view, set its Text property, and set that Label instance to the Content property that GreetingsPage inherits from ContentPage:

Click here to view code image

using System;

using Xamarin.Forms;

namespace Greetings

{

 public class GreetingsPage : ContentPage

 {

 public GreetingsPage()

 {

 Label label = new Label();

 label.Text = "Greetings, Xamarin.Forms!";

 this.Content = label;

 }

 }

}

Now change the App class in App.cs to set the MainPage property to an instance of this GreetingsPage class:

Click here to view code image

using System;

using Xamarin.Forms;

namespace Greetings

{

 public class App : Application

 {

 public App()

 {

 MainPage = new GreetingsPage();

 }

 protected override void OnStart()

 {

 // Handle when your app starts

 }

 protected override void OnSleep()

 {

 // Handle when your app sleeps

 }

 protected override void OnResume()

 {

 // Handle when your app resumes

 }

 }

}

It’s easy to forget this step, and you’ll be puzzled that your program seems to completely ignore your page class and still says "Welcome to Xamarin Forms!"

It is in the GreetingsPage class (and others like it) where you’ll be spending most of your time in early Xamarin.Forms programming. For some single-page, UI-intensive programs, this class might contain the only application code that you’ll need to write. Of course, you can add additional classes to the project if you need them.

In many of the single-page sample programs in this book, the class that derives from ContentPage will have a name that is the same as the application but with Page appended. That naming convention should help you identify the code listings in this book from just the class or constructor name without seeing the entire file. In most cases, the code snippets in the pages of this book won’t include the using directives or the namespace definition.

Many Xamarin.Forms programmers prefer to use the C# 3.0 style of object creation and property initialization in their page constructors. You can do this for the Label object. Following the Label constructor, a pair of curly braces enclose one or more property settings separated by commas. Here’s an alternative (but functionally equivalent) GreetingsPage definition:

Click here to view code image

public class GreetingsPage : ContentPage

{

 public GreetingsPage()

 {

 Label label = new Label

 {

 Text = "Greetings, Xamarin.Forms!"

 };

 this.Content = label;

 }

}

This style of property initialization allows the Label instance to be set to the Content property directly, so that the Label doesn’t require a name, like so:

Click here to view code image

public class GreetingsPage : ContentPage

{

 public GreetingsPage()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!"

 };

 }

}

For more complex page layouts, this style of instantiation and initialization provides a better visual analogue of the organization of layouts and views on the page. However, it’s not always as simple as this example might indicate if you need to call methods on these objects or set event handlers.

Whichever way you do it, if you can successfully compile and run the program on the iOS, Android, and Windows 10 Mobile platforms on either an emulator or a device, here’s what you’ll see:

[image: Image]

The most disappointing version of this Greetings program is definitely the iPhone: Beginning in iOS 7, a single-page application shares the screen with the status bar at the top. Anything the application displays at the top of its page will occupy the same space as the status bar unless the application compensates for it.

This problem disappears in multipage-navigation applications discussed later in this book, but until that time, here are four ways (or five ways if you’re using an SAP) to solve this problem right away.

Solution 1. Include padding on the page

The Page class defines a property named Padding that marks an area around the interior perimeter of the page into which content cannot intrude. The Padding property is of type Thickness, a structure that defines four properties named Left, Top, Right, Bottom. (You might want to memorize that order because that’s the order you’ll define the properties in the Thickness constructor as well as in XAML.) The Thickness structure also defines constructors for setting the same amount of padding on all four sides or for setting the same amount on the left and right and on the top and bottom.

A little research in your favorite search engine will reveal that the iOS status bar has a height of 20. (Twenty what? you might ask. Twenty pixels? Actually, no. For now, just think of them as 20 “units.” For much of your Xamarin.Forms programming, you shouldn’t need to bother with numeric sizes, but Chapter 5, “Dealing with sizes,” will provide some guidance when you need to get down to the pixel level.)

You can accommodate the status bar like so:

Click here to view code image

namespace Greetings

{

 public class GreetingsPage : ContentPage

 {

 public GreetingsPage ()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!"

 };

 Padding = new Thickness(0, 20, 0, 0);

 }

 }

}

Now the greeting appears 20 units from the top of the page:

[image: Image]

Setting the Padding property on the ContentPage solves the problem of the text overwriting the iOS status bar, but it also sets the same padding on the Android and Windows Phone, where it’s not required. Is there a way to set this padding only on the iPhone?

Solution 2. Include padding just for iOS (SAP only)

One of the advantages of the Shared Asset Project (SAP) approach is that the classes in the project are extensions of the application projects, so you can use conditional compilation directives.

Let’s try this out. We’ll need a new solution named GreetingsSap based on the SAP template, and a new page class in the GreetingsSap project named GreetingsSapPage. To set the Padding in iOS only, that class looks like this:

Click here to view code image

namespace GreetingsSap

{

 public class GreetingsSapPage : ContentPage

 {

 public GreetingsSapPage ()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!"

 };

#if __IOS__

 Padding = new Thickness(0, 20, 0, 0);

#endif

 }

 }

}

The #if directive references the conditional compilation symbol __IOS__, so the Padding property is set only for the iOS project. The results look like this:

[image: Image]

However, these conditional compilation symbols affect only the compilation of the program, so they have no effect in a PCL. Is there a way for a PCL project to include different Padding for different platforms?

Solution 3. Include padding just for iOS (PCL or SAP)

Yes! The static Device class includes several properties and methods that allow your code to deal with device differences at run time in a very simple and straightforward manner:

• The Device.OS property returns a member of the TargetPlatform enumeration: iOS, Android, WinPhone, or Other. The WinPhone member refers to all the Windows and Windows Phone platforms.

• The Device.Idiom property returns a member of the TargetIdiom enumeration: Phone, Tablet, Desktop, or Unsupported.

You can use these two properties in if and else statements, or a switch and case block, to execute code specific to a particular platform.

Two methods named OnPlatform provide even more elegant solutions:

• The static generic method OnPlatform<T> takes three arguments of type T—the first for iOS, the second for Android, and the third for Windows Phone (encompassing all the Windows platforms)—and returns the argument for the running platform.

• The static method OnPlatform has four arguments of type Action (the .NET function delegate that has no arguments and returns void), also in the order iOS, Android, and Windows Phone, with a fourth for a default, and executes the argument for the running platform.

Rather than setting the same Padding property on all three platforms, you can restrict the Padding to just the iPhone by using the Device.OnPlatform generic method:

Click here to view code image

Padding = Device.OnPlatform<Thickness>(new Thickness(0, 20, 0, 0),

 new Thickness(0),

 new Thickness(0));

The first Thickness argument is for iOS, the second is for Android, and the third is for Windows Phone. Explicitly specifying the type of the Device.OnPlatform arguments within the angle brackets isn’t required if the compiler can figure it out from the arguments, so this works as well:

Click here to view code image

Padding = Device.OnPlatform(new Thickness(0, 20, 0, 0),

 new Thickness(0),

 new Thickness(0));

Or, you can have just one Thickness constructor and use Device.OnPlatform for the second argument:

Click here to view code image

Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

This is how the Padding will usually be set in the programs that follow when it’s required. Of course, you can substitute some other numbers for the zeroes if you want some additional padding on the page. Sometimes a little padding on the sides makes for a more attractive display.

However, if you just need to set Padding for iOS, you can use the version of Device.OnPlatform with Action arguments. These arguments are null by default, so you can just set the first for an action to be performed on iOS:

Click here to view code image

public class GreetingsPage : ContentPage

{

 public GreetingsPage()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!"

 };

 Device.OnPlatform(() =>

 {

 Padding = new Thickness(0, 20, 0, 0);

 });

 }

}

Now the statement to set the padding is executed only when the program is running on iOS. Of course, with just that one argument to Device.OnPlatform, it could be a little obscure to people who need to read your code, so you might want to include the parameter name preceding the argument to make it explicit that this statement executes just for iOS:

Click here to view code image

Device.OnPlatform(iOS: () =>

 {

 Padding = new Thickness(0, 20, 0, 0);

 });

Naming the argument like that is a feature introduced in C# 4.0.

The Device.OnPlatform method is very handy and has the advantage of working in both PCL and SAP projects. However, it can’t access APIs within the individual platforms. For that you’ll need DependencyService, which is discussed in Chapter 9.

Solution 4. Center the label within the page

The problem with the text overlapping the iOS status bar occurs only because the default display of the text is at the upper-left corner. Is it possible to center the text on the page?

Xamarin.Forms supports a number of facilities to ease layout without requiring the program to perform calculations involving sizes and coordinates. The View class defines two properties, named HorizontalOptions and VerticalOptions, that specify how a view is to be positioned relative to its parent (in this case the ContentPage). These two properties are of type LayoutOptions, an exceptionally important structure in Xamarin.Forms.

Generally you’ll use the LayoutOptions structure by specifying one of the eight public static read-only fields that it defines that return LayoutOptions values:

• Start

• Center

• End

• Fill

• StartAndExpand

• CenterAndExpand

• EndAndExpand

• FillAndExpand

However, you can also create a LayoutOptions value yourself. The LayoutOptions structure also defines two instance properties that let you create a value with these same combinations:

• An Alignment property of type LayoutAlignment, an enumeration with four members:

Start, Center, End, and Fill.

• An Expands property of type bool.

A fuller explanation of all these options awaits you in Chapter 4, “Scrolling the stack,” but for now you can set the HorizontalOptions and VerticalOptions properties of the Label to one of the static fields defined by LayoutOptions values. For HorizontalOptions, the word Start means left and End means right; for VerticalOptions, Start means top and End means bottom.

Mastering the use of the HorizontalOptions and VerticalOptions properties is a major part of acquiring skill in the Xamarin.Forms layout system, but here’s a simple example that positions the Label in the center of the page:

Click here to view code image

public class GreetingsPage : ContentPage

{

 public GreetingsPage()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!",

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 }

}

Here’s how it looks:

[image: Image]

This is the version of the Greetings program that is included in the sample code for this chapter. You can use various combinations of HorizontalOptions and VerticalOptions to position the text in any of nine places relative to the page.

Solution 5. Center the text within the label

The Label is intended to display text up to a paragraph in length. It is often desirable to control how the lines of text are horizontally aligned: left justified, right justified, or centered.

The Label view defines a HorizontalTextAlignment property for that purpose and also a VerticalTextAlignment property for positioning text vertically. Both properties are set to a member of the TextAlignment enumeration, which has members named Start, Center, and End to be versatile enough for text that runs from right to left or from top to bottom. For English and other European languages, Start means left or top and End means right or bottom.

For this final solution to the iOS status bar problem, set HorizontalTextAlignment and VerticalTextAlignment to TextAlignment.Center:

Click here to view code image

public class GreetingsPage : ContentPage

{

 public GreetingsPage()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!",

 HorizontalTextAlignment = TextAlignment.Center,

 VerticalTextAlignment = TextAlignment.Center

 };

 }

}

Visually, the result with this single line of text is the same as setting HorizontalOptions and VerticalOptions to Center, and you can also use various combinations of these properties to position the text in one of nine different locations around the page.

However, these two techniques to center the text are actually quite different, as you’ll see in the next chapter.

Chapter 3. Deeper into text

Despite how sophisticated graphical user interfaces have become, text remains the backbone of most applications. Yet text is potentially one of the most complex visual objects because it carries baggage of hundreds of years of typography. The primary consideration is that text must be readable. This requires that text not be too small, yet text mustn’t be so large that it hogs a lot of space on the screen.

For these reasons, the subject of text is continued in several subsequent chapters, most notably Chapter 5, “Dealing with sizes.” Very often, Xamarin.Forms programmers define font characteristics in styles, which are the subject of Chapter 12.

Wrapping paragraphs

Displaying a paragraph of text is as easy as displaying a single line of text. Just make the text long enough to wrap into multiple lines:

Click here to view code image

public class BaskervillesPage : ContentPage

{

 public BaskervillesPage()

 {

 Content = new Label

 {

 VerticalOptions = LayoutOptions.Center,

 Text =

 "Mr. Sherlock Holmes, who was usually very late in " +

 "the mornings, save upon those not infrequent " +

 "occasions when he was up all night, was seated at " +

 "the breakfast table. I stood upon the hearth-rug " +

 "and picked up the stick which our visitor had left " +

 "behind him the night before. It was a fine, thick " +

 "piece of wood, bulbous-headed, of the sort which " +

 "is known as a \u201CPenang lawyer.\u201D Just " +

 "under the head was a broad silver band, nearly an " +

 "inch across, \u201CTo James Mortimer, M.R.C.S., " +

 "from his friends of the C.C.H.,\u201D was engraved " +

 "upon it, with the date \u201C1884.\u201D It was " +

 "just such a stick as the old-fashioned family " +

 "practitioner used to carry\u2014dignified, solid, " +

 "and reassuring."

 };

 Padding = new Thickness(5, Device.OnPlatform(20, 5, 5), 5, 5);

 }

}

Notice the use of embedded Unicode codes for opened and closed “smart quotes” (\u201C and \u201D) and the em dash (\u2014). Padding has been set for 5 units around the page to avoid the text butting up against the edges of the screen, but the VerticalOptions property has been used as well to vertically center the entire paragraph on the page:

[image: Image]

For this paragraph of text, setting HorizontalOptions to Start, Center, or End on iOS or Windows Phone will shift the entire paragraph horizontally slightly to the left, center, or right. (Android works a little differently for multiple lines of text.) The shifting is only slight because the width of the paragraph is the width of the longest line of text. Since word wrapping is governed by the page width (minus the padding), the paragraph likely occupies just slightly less width than the width available for it on the page.

But setting the HorizontalTextAlignment property of the Label has a much more profound effect: Setting this property affects the alignment of the individual lines. A setting of TextAlignment.Center will center all the lines of the paragraph, and TextAlignment.Right aligns them all at the right. You can use HorizontalOptions in addition to HorizontalTextAlignment to shift the entire paragraph slightly to the center or the right.

However, after you’ve set VerticalOptions to Start, Center, or End, any setting of VerticalTextAlignment has no effect.

Label defines a LineBreakMode property that you can set to a member of the LineBreakMode enumeration if you don’t want the text to wrap or to select truncation options.

There is no property to specify a first-line indent for the paragraph, but you can add one of your own with space characters of various types, such as the em space (Unicode \u2003).

You can display multiple paragraphs with a single Label view by ending each paragraph with one or more line feed characters (\n). However, a better approach is to use the string returned from the Environment.NewLine static property. This property returns “\n” on iOS and Android devices and “\r\n” on all Windows and Windows Phone devices. But rather than embedding line feed characters to create paragraphs, it makes more sense to use a separate Label view for each paragraph, as will be demonstrated in Chapter 4, “Scrolling the stack.”

The Label class has lots of formatting flexibility. As you’ll see shortly, properties defined by Label allow you to specify a font size or bold or italic text, and you can also specify different text formatting within a single paragraph.

Label also allows specifying color, and a little experimentation with color will demonstrate the pro-found difference between the HorizontalOptions and VerticalOptions properties and the HorizontalTextAlignment and VerticalTextAlignment properties.

Text and background colors

As you’ve seen, the Label view displays text in a color appropriate for the device. You can override that behavior by setting two properties, named TextColor and BackgroundColor. Label itself defines TextColor, but it inherits BackgroundColor from VisualElement, which means that Page and Layout also have a BackgroundColor property.

You set TextColor and BackgroundColor to a value of type Color, which is a structure that defines 17 static fields for obtaining common colors. You can experiment with these properties with the Greetings program from the previous chapter. Here are two of these colors used in conjunction with HorizontalTextAlignment and VerticalTextAlignment to center the text:

Click here to view code image

public class GreetingsPage : ContentPage

{

 public GreetingsPage()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!",

 HorizontalTextAlignment = TextAlignment.Center,

 VerticalTextAlignment = TextAlignment.Center,

 BackgroundColor = Color.Yellow,

 TextColor = Color.Blue

 };

 }

}

The result might surprise you. As these screenshots illustrate, the Label actually occupies the entire area of the page (including underneath the iOS status bar), and the HorizontalTextAlignment and VerticalTextAlignment properties position the text within that area:

[image: Image]

In contrast, here’s some code that colors the text the same but instead centers the text using the HorizontalOptions and VerticalOptions properties:

Click here to view code image

public class GreetingsPage : ContentPage

{

 public GreetingsPage()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!",

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 BackgroundColor = Color.Yellow,

 TextColor = Color.Blue

 };

 }

}

Now the Label occupies only as much space as required for the text, and that’s what’s positioned in the center of the page:

[image: Image]

The default value of HorizontalOptions and VerticalOptions is not LayoutOptions.Start, as the default appearance of the text might suggest. The default value is instead LayoutOptions.Fill. This is the setting that causes the Label to fill the page. The default HorizontalTextAlignment and VerticalTextAlignment value of TextAlignment.Start is what caused the text to be positioned at the upper-left in the first version of the Greetings program in the previous chapter.

You can combine various settings of HorizontalOptions, VerticalOptions, HorizontalTextAlignment, and VerticalTextAlignment for different effects.

You might wonder: What are the default values of the TextColor and BackgroundColor properties, because the default values result in different colors for the different platforms?

The default value of TextColor and BackgroundColor is actually a special color value named Color.Default, which does not represent a real color but instead is used to reference the text and background colors appropriate for the particular platform.

Let’s explore color in more detail.

The Color structure

Internally, the Color structure stores colors in two different ways:

• As red, green, and blue (RGB) values of type double that range from 0 to 1. Read-only properties named R, G, and B expose these values.

• As hue, saturation, and luminosity values of type double, which also range from 0 to 1. These values are exposed with read-only properties named Hue, Saturation, and Luminosity.

The Color structure also supports an alpha channel for indicating degrees of opacity. A read-only property named A exposes this value, which ranges from 0 for transparent to 1 for opaque.

All the properties that define a color are read-only. In other words, once a Color value is created, it is immutable.

You can create a Color value in one of several ways. The three constructors are the easiest:

• new Color(double grayShade)

• new Color(double r, double g, double b)

• new Color(double r, double g, double b, double a)

Arguments can range from 0 to 1. Color also defines several static creation methods, including:

• Color.FromRgb(double r, double g, double b)

• Color.FromRgb(int r, int g, int b)

• Color.FromRgba(double r, double g, double b, double a)

• Color.FromRgba(int r, int g, int b, int a)

• Color.FromHsla(double h, double s, double l, double a)

The two static methods with integer arguments assume that the values range from 0 to 255, which is the customary representation of RGB colors. Internally, the constructor simply divides the integer values by 255.0 to convert to double.

Watch out! You might think that you’re creating a red color with this call:

Color.FromRgb(1, 0, 0)

However, the C# compiler will assume that these arguments are integers. The integer FromRgb method will be invoked, and the first argument will be divided by 255.0, with a result that is nearly zero. If you want to invoke the method that has double arguments, be explicit:

Color.FromRgb(1.0, 0, 0)

Color also defines static creation methods for a packed uint format and a hexadecimal format in a string, but these are used less frequently.

The Color structure also defines 17 public static read-only fields of type Color. In the table below, the integer RGB values that the Color structure uses internally to define these fields are shown together with the corresponding Hue, Saturation, and Luminosity values, somewhat rounded for purposes of clarity:

[image: Image]

With the exception of Pink, you might recognize these as the color names supported in HTML. An 18th public static read-only field is named Transparent, which has R, G, B, and A properties all set to zero.

When people are given an opportunity to interactively formulate a color, the HSL color model is often more intuitive than RGB. The Hue cycles through the colors of the visible spectrum (and the rainbow) beginning with red at 0, green at 0.33, blue at 0.67, and back to red at 1.

The Saturation indicates the degree of the hue in the color, ranging from 0, which is no hue at all and results in a gray shade, to 1 for full saturation.

The Luminosity is a measure of lightness, ranging from 0 for black to 1 for white.

Color-selection programs in Chapter 15, “The interactive interface,” let you explore the RGB and HSL models more interactively.

The Color structure includes several interesting instance methods that allow creating new colors that are modifications of existing colors:

• AddLuminosity(double delta)

• MultiplyAlpha(double alpha)

• WithHue(double newHue)

• WithLuminosity(double newLuminosity)

• WithSaturation(double newSaturation)

Finally, Color defines two special static read-only properties of type Color:

• Color.Default

• Color.Accent

The Color.Default property is used extensively within Xamarin.Forms to define the default color of views. The VisualElement class initializes its BackgroundColor property to Color.Default, and the Label class initializes its TextColor property as Color.Default.

However, Color.Default is a Color value with its R, G, B, and A properties all set to –1, which means that it’s a special “mock” value that means nothing in itself but indicates that the actual value is platform specific.

For Label and ContentPage (and most classes that derive from VisualElement), the BackgroundColor setting of Color.Default means transparent. The background color you see on the screen is the background color of the page. The BackgroundColor property of the page has a default setting of Color.Default, but that value means something different on the various platforms. The meaning of Color.Default for the TextColor property of Label is also device dependent.

Here are the default color schemes implied by the BackgroundColor of the page and the TextColor of the Label:

[image: Image]

On Android, Windows, and Windows Phone devices, you can change this color scheme for your application. See the next section.

You have a couple of possible strategies for working with color: You can choose to do your Xamarin.Forms programming in a very platform-independent manner and avoid making any assumptions about the default color scheme of any phone. Or, you can use your knowledge about the color schemes of the various platforms and use Device.OnPlatform to specify platform-specific colors.

But don’t try to just ignore all the platform defaults and explicitly set all the colors in your application to your own color scheme. This probably won’t work as well as you hope because many views use other colors that relate to the color theme of the operating system but that are not exposed through Xamarin.Forms properties.

One straightforward option is to use the Color.Accent property for an alternative text color. On the iPhone and Android platforms, this is a color that is visible against the default background but is not the default text color. On the Windows platforms, it’s a color selected by the user as part of the color theme.

You can make text semitransparent by setting TextColor to a Color value with an A property less than 1. However, if you want a semitransparent version of the default text color, use the Opacity property of the Label instead. This property is defined by the VisualElement class and has a default value of 1. Set it to values less than 1 for various degrees of transparency.

Changing the application color scheme

When targeting your application for Android, Windows, and Windows Phone, it is possible to change the color scheme for the application. In this case, the settings of Color.Default for the BackgroundColor of the ContentPage and the TextColor property of the Label will have different meanings.

There are several ways to set color schemes in Android, but the simplest requires only a single attribute setting in the AndroidManifest.xml file in the Properties folder of the Android project. That file normally looks like this:

Click here to view code image

<manifest xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-sdk android:minSdkVersion="15" />

 <application>

 </application>

</manifest>

Add the following attribute to the application tag:

Click here to view code image

<manifest xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-sdk android:minSdkVersion="15" />

 <application android:theme="@style/android:Theme.Holo.Light">

 </application>

</manifest>

Now your Android application will display dark text on a light background.

For the three Windows and Windows Phone projects, you’ll need to change the App.xaml file located in the particular project.

In the UWP project, the default App.xaml file looks like this:

Click here to view code image

<Application

 x:Class="Baskervilles.UWP.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:Baskervilles.UWP"

 RequestedTheme="Light">

</Application>

That RequestedTheme attribute is what gives the UWP application a color scheme of dark text on a light background. Change it to Dark for light text on a dark background. Remove the RequestedTheme attribute entirely to allow the user’s setting to determine the color scheme.

The App.xaml file for the Windows Phone 8.1 and Windows 8.1 projects is similar, but the RequestedTheme attribute is not included by default. Here’s the App.xaml file in the WinPhone project:

Click here to view code image

<Application

 x:Class="Baskervilles.WinPhone.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:Baskervilles.WinPhone">

</Application>

By default, the color scheme is determined by the user’s setting. You can include a RequestedTheme attribute and set it to Light or Dark to override the user’s preference and take control of the color scheme.

By setting RequestedTheme on your Windows Phone and Windows projects, your application should have complete knowledge of the underlying color schemes on all the platforms.

Font sizes and attributes

By default, the Label uses a system font defined by each platform, but Label also defines several properties that you can use to change this font. Label is one of only two classes with these font-related properties; Button is the other.

The properties that let you change this font are:

• FontFamily of type string

• FontSize of type double

• FontAttributes of type FontAttributes, an enumeration with three members: None, Bold, and Italic.

There is also a Font property and corresponding Font structure, but this is deprecated and should not be used.

The hardest of these to use is FontFamily. In theory you can set it to a font family name such as “Times Roman,” but it will work only if that particular font family is supported on the particular platform. For this reason, you’ll probably use FontFamily in connection with Device.OnPlatform, and you’ll need to know each platform’s supported font family names.

The FontSize property is a little awkward as well. You need a number that roughly indicates the height of the font, but what numbers should you use? This is a thorny issue, and for that reason, it’s relegated to Chapter 5, “Dealing with sizes,” when the tools to pick a good font size will become available.

Until then, however, the Device class helps out with a static method called GetNamedSize. This method requires a member of the NamedSize enumeration:

• Default

• Micro

• Small

• Medium

• Large

GetNamedSize also requires the type of the class that you’re sizing with this font size, and that argument will be either typeof(Label) or typeof(Button). You can also use an instance of Label or Button itself rather than the Type, but this option is often less convenient.

As you’ll see later in this chapter, the NamedSize.Medium member does not necessarily return the same size as NamedSize.Default.

FontAttributes is the least complicated of the three font-related properties to use. You can specify Bold or Italic or both, as this little snippet of code (adapted from the Greetings program from the previous chapter) demonstrates:

Click here to view code image

class GreetingsPage : ContentPage

{

 public GreetingsPage()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!",

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Bold | FontAttributes.Italic

 };

 }

}

Here it is on the three platforms:

[image: Image]

The Windows 10 Mobile screen is not quite wide enough to display the text in a single line.

Formatted text

As you’ve seen, Label has a Text property that you can set to a string. But Label also has an alternative FormattedText property that constructs a paragraph with nonuniform formatting.

The FormattedText property is of type FormattedString, which has a Spans property of type IList, a collection of Span objects. Each Span object is a uniformly formatted chunk of text that is governed by six properties:

• Text

• FontFamily

• FontSize

• FontAttributes

• ForegroundColor

• BackgroundColor

Here’s one way to instantiate a FormattedString object and then add Span instances to its Spans collection property:

Click here to view code image

public class VariableFormattedTextPage : ContentPage

{

 public VariableFormattedTextPage()

 {

 FormattedString formattedString = new FormattedString();

 formattedString.Spans.Add(new Span

 {

 Text = "I "

 });

 formattedString.Spans.Add(new Span

 {

 Text = "love",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Bold

 });

 formattedString.Spans.Add(new Span

 {

 Text = " Xamarin.Forms!"

 });

 Content = new Label

 {

 FormattedText = formattedString,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))

 };

 }

}

As each Span is created, it is directly passed to the Add method of the Spans collection. Notice that the Label is given a FontSize of NamedSize.Large, and the Span with the Bold setting is also explicitly given that same size. When a Span is given a FontAttributes setting, it does not inherit the FontSize setting of the Label.

Alternatively, it’s possible to initialize the contents of the Spans collection by following it with a pair of curly braces. Within these curly braces, the Span objects are instantiated. Because no method calls are required, the entire FormattedString initialization can occur within the Label initialization:

Click here to view code image

public class VariableFormattedTextPage : ContentPage

{

 public VariableFormattedTextPage()

 {

 Content = new Label

 {

 FormattedText = new FormattedString

 {

 Spans =

 {

 new Span

 {

 Text = "I "

 },

 new Span

 {

 Text = "love",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Bold

 },

 new Span

 {

 Text = " Xamarin.Forms!"

 }

 }

 },

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))

 };

 }

}

This is the version of the program that you’ll see in the collection of sample code for this chapter. Regardless of which approach you use, here’s what it looks like:

[image: Image]

You can also use the FormattedText property to embed italic or bold words within an entire paragraph, as the VariableFormattedParagraph program demonstrates:

Click here to view code image

public class VariableFormattedParagraphPage : ContentPage

{

 public VariableFormattedParagraphPage()

 {

 Content = new Label

 {

 FormattedText = new FormattedString

 {

 Spans =

 {

 new Span

 {

 Text = "\u2003There was nothing so "

 },

 new Span

 {

 Text = "very",

 FontAttributes = FontAttributes.Italic

 },

 new Span

 {

 Text = " remarkable in that; nor did Alice " +

 "think it so "

 },

 new Span

 {

 Text = "very",

 FontAttributes = FontAttributes.Italic

 },

 new Span

 {

 Text = " much out of the way to hear the " +

 "Rabbit say to itself \u2018Oh " +

 "dear! Oh dear! I shall be too late!" +

 "\u2019 (when she thought it over " +

 "afterwards, it occurred to her that " +

 "she ought to have wondered at this, " +

 "but at the time it all seemed quite " +

 "natural); but, when the Rabbit actually "

 },

 new Span

 {

 Text = "took a watch out of its waistcoat-pocket",

 FontAttributes = FontAttributes.Italic

 },

 new Span

 {

 Text = ", and looked at it, and then hurried on, " +

 "Alice started to her feet, for it flashed " +

 "across her mind that she had never before " +

 "seen a rabbit with either a waistcoat-" +

 "pocket, or a watch to take out of it, " +

 "and, burning with curiosity, she ran " +

 "across the field after it, and was just " +

 "in time to see it pop down a large " +

 "rabbit-hold under the hedge."

 }

 }

 },

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 }

}

The paragraph begins with an em space (Unicode \u2003) and contains so-called smart quotes (\u201C and \u201D), and several words are italicized:

[image: Image]

You can persuade a single Label to display multiple lines or paragraphs with the insertion of end-of-line characters. This is demonstrated in the NamedFontSizes program. Multiple Span objects are added to a FormattedString object in a foreach loop. Each Span object uses a different NamedFont value and also displays the actual size returned from Device.GetNamedSize:

Click here to view code image

public class NamedFontSizesPage : ContentPage

{

 public NamedFontSizesPage()

 {

 FormattedString formattedString = new FormattedString();

 NamedSize[] namedSizes =

 {

 NamedSize.Default, NamedSize.Micro, NamedSize.Small,

 NamedSize.Medium, NamedSize.Large

 };

 foreach (NamedSize namedSize in namedSizes)

 {

 double fontSize = Device.GetNamedSize(namedSize, typeof(Label));

 formattedString.Spans.Add(new Span

 {

 Text = String.Format("Named Size = {0} ({1:F2})",

 namedSize, fontSize),

 FontSize = fontSize

 });

 if (namedSize != namedSizes.Last())

 {

 formattedString.Spans.Add(new Span

 {

 Text = Environment.NewLine + Environment.NewLine

 });

 }

 }

 Content = new Label

 {

 FormattedText = formattedString,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 }

}

Notice that a separate Span contains the two platform-specific end-of-line strings to space the individual lines. This ensures that the line spacing is based on the default font size rather than the font size just displayed:

[image: Image]

These are not pixel sizes! As with the height of the iOS status bar, it’s best to refer to these sizes only vaguely as some kind of “units.” Some additional clarity is coming in Chapter 5.

The Default size is generally chosen by the operating system, but the other sizes were chosen by the Xamarin.Forms developers. On iOS, Default is the same as Medium, but on Android Default is the same as Small, and on Windows 10 Mobile, Default is smaller than Micro.

The sizes on the iPad and Windows 10 are the same as the iPhone and Windows 10 Mobile, respectively. However, the sizes on the Windows 8.1 and Windows Phone 8.1 platforms show more of discrepancy:

[image: Image]

Of course, the use of multiple Span objects in a single Label is not a good way to render multiple paragraphs of text. Moreover, text often has so many paragraphs that it must be scrolled. This is the job for the next chapter and its exploration of StackLayout and ScrollView.

Chapter 4. Scrolling the stack

If you’re like most programmers, as soon as you saw that list of static Color properties in the previous chapter, you wanted to write a program to display them all, perhaps using the Text property of Label to identify the color, and the TextColor property to show the actual color.

Although you could do this with a single Label using a FormattedString object, it’s much easier with multiple Label objects. Because multiple Label objects are involved, this job also requires some way to display all the Label objects on the screen.

The ContentPage class defines a Content property of type View that you can set to an object—but only one object. Displaying multiple views requires setting Content to an instance of a class that can have multiple children of type View. Such a class is Layout<T>, which defines a Children property of type IList<T>.

The Layout<T> class is abstract, but four classes derive from Layout<View>, a class that can have multiple children of type View. In alphabetical order, these four classes are:

• AbsoluteLayout

• Grid

• RelativeLayout

• StackLayout

Each of them arranges its children in a characteristic manner. This chapter focuses on StackLayout.

Stacks of views

The StackLayout class arranges its children in a stack. It defines only two properties on its own:

• Orientation of type StackOrientation, an enumeration with two members: Vertical (the default) and Horizontal.

• Spacing of type double, initialized to 6.0.

StackLayout seems ideal for the job of listing colors. You can use the Add method defined by IList<T> to add children to the Children collection of a StackLayout instance. Here’s some code that creates multiple Label objects from two arrays and then adds each Label to the Children collection of a StackLayout:

Click here to view code image

Color[] colors =

{

 Color.White, Color.Silver, Color.Gray, Color.Black, Color.Red,

 Color.Maroon, Color.Yellow, Color.Olive, Color.Lime, Color.Green,

 Color.Aqua, Color.Teal, Color.Blue, Color.Navy, Color.Pink,

 Color.Fuchsia, Color.Purple

};

string[] colorNames =

{

 "White", "Silver", "Gray", "Black", "Red",

 "Maroon", "Yellow", "Olive", "Lime", "Green",

 "Aqua", "Teal", "Blue", "Navy", "Pink",

 "Fuchsia", "Purple"

};

StackLayout stackLayout = new StackLayout();

for (int i = 0; i < colors.Length; i++)

{

 Label label = new Label

 {

 Text = colorNames[i],

 TextColor = colors[i],

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))

 };

 stackLayout.Children.Add(label);

}

The StackLayout object can then be set to the Content property of the page.

But the technique of using parallel arrays is rather perilous. What if they’re out of sync or have a different number of elements? A better approach is to keep the color and name together, perhaps in a tiny structure with Color and Name fields, or as an array of Tuple<Color, string> values, or as an anonymous type, as demonstrated in the ColorLoop program:

Click here to view code image

class ColorLoopPage : ContentPage

{

 public ColorLoopPage()

 {

 var colors = new[]

 {

 new { value = Color.White, name = "White" },

 new { value = Color.Silver, name = "Silver" },

 new { value = Color.Gray, name = "Gray" },

 new { value = Color.Black, name = "Black" },

 new { value = Color.Red, name = "Red" },

 new { value = Color.Maroon, name = "Maroon" },

 new { value = Color.Yellow, name = "Yellow" },

 new { value = Color.Olive, name = "Olive" },

 new { value = Color.Lime, name = "Lime" },

 new { value = Color.Green, name = "Green" },

 new { value = Color.Aqua, name = "Aqua" },

 new { value = Color.Teal, name = "Teal" },

 new { value = Color.Blue, name = "Blue" },

 new { value = Color.Navy, name = "Navy" },

 new { value = Color.Pink, name = "Pink" },

 new { value = Color.Fuchsia, name = "Fuchsia" },

 new { value = Color.Purple, name = "Purple" }

 };

 StackLayout stackLayout = new StackLayout();

 foreach (var color in colors)

 {

 stackLayout.Children.Add(

 new Label

 {

 Text = color.name,

 TextColor = color.value,

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))

 });

 }

 Padding = new Thickness(5, Device.OnPlatform(20, 5, 5), 5, 5);

 Content = stackLayout;

 }

}

Or you can initialize the Children property of StackLayout with an explicit collection of views (similar to the way the Spans collection of a FormattedString object was initialized in the previous chapter). The ColorList program sets the Content property of the page to a StackLayout object, which then has its Children property initialized with 17 Label views:

Click here to view code image

class ColorListPage : ContentPage

{

 public ColorListPage()

 {

 Padding = new Thickness (5, Device.OnPlatform (20, 5, 5), 5, 5);

 double fontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label));

 Content = new StackLayout

 {

 Children =

 {

 new Label

 {

 Text = "White",

 TextColor = Color.White,

 FontSize = fontSize

 },

 new Label

 {

 Text = "Silver",

 TextColor = Color.Silver,

 FontSize = fontSize

 },

 ...

 new Label

 {

 Text = "Fuchsia",

 TextColor = Color.Fuchsia,

 FontSize = fontSize

 },

 new Label

 {

 Text = "Purple",

 TextColor = Color.Purple,

 FontSize = fontSize

 }

 }

 };

 }

}

You don’t need to see the code for all 17 children to get the idea! Regardless of how you fill the Children collection, here’s the result:

[image: Image]

Obviously, this isn’t optimum. Some colors aren’t visible at all, and some of them are too faint to read well. Moreover, the list overflows the page on two platforms, and there’s no way to scroll it up.

One solution is to reduce the text size. Instead of using NamedSize.Large, try one of the smaller values.

Another partial solution can be found in StackLayout itself: StackLayout defines a Spacing property of type double that indicates how much space to leave between the children. By default, it’s 6.0, but you can set it to something smaller (for example, zero) to help ensure that all the items will fit:

Click here to view code image

Content = new StackLayout

{

 Spacing = 0,

 Children =

 {

 new Label

 {

 Text = "White",

 TextColor = Color.White,

 FontSize = fontSize

 },

 ...

Now all the Label views occupy only as much vertical space as required for the text. You can even set Spacing to negative values to make the items overlap!

But the best solution is scrolling. Scrolling is not automatically supported by StackLayout and must be added with another element called ScrollView, as you’ll see in the next section.

But there’s another issue with the color programs shown so far: they need to either explicitly create an array of colors and names, or explicitly create Label views for each color. To programmers, this is somewhat tedious, and hence somewhat distasteful. Might it be automated?

Scrolling content

Keep in mind that a Xamarin.Forms program has access to the .NET base class libraries and can use .NET reflection to obtain information about all the classes and structures defined in an assembly, such as Xamarin.Forms.Core. This suggests that obtaining the static fields and properties of the Color structure can be automated.

Most .NET reflection begins with a Type object. You can obtain a Type object for any class or structure by using the C# typeof operator. For example, the expression typeof(Color) returns a Type object for the Color structure.

In the version of .NET available in the PCL, an extension method for the Type class, named GetTypeInfo, returns a TypeInfo object from which additional information can be obtained. Although that’s not required in the program shown below; it needs other extension methods defined for the Type class, named GetRuntimeFields and GetRuntimeProperties. These return the fields and properties of the type in the form of collections of FieldInfo and PropertyInfo objects. From these, the names as well as the values of the properties can be obtained.

This is demonstrated by the ReflectedColors program. The ReflectedColorsPage.cs file requires a using directive for System.Reflection.

In two separate foreach statements, the ReflectedColorsPage class loops through all the fields and properties of the Color structure. For all the public static members that return Color values, the two loops call CreateColorLabel to create a Label with the Color value and name, and then add that Label to the StackLayout.

By including all the public static fields and properties, the program lists Color.Transparent, Color.Default, and Color.Accent along with the 17 static fields displayed in the earlier program. A separate CreateColorLabel method creates a Label view for each item. Here’s the complete listing of the ReflectedColorsPage class:

Click here to view code image

public class ReflectedColorsPage : ContentPage

{

 public ReflectedColorsPage()

 {

 StackLayout stackLayout = new StackLayout();

 // Loop through the Color structure fields.

 foreach (FieldInfo info in typeof(Color).GetRuntimeFields())

 {

 // Skip the obsolete (i.e. misspelled) colors.

 if (info.GetCustomAttribute<ObsoleteAttribute>() != null)

 continue;

 if (info.IsPublic &&

 info.IsStatic &&

 info.FieldType == typeof(Color))

 {

 stackLayout.Children.Add(

 CreateColorLabel((Color)info.GetValue(null), info.Name));

 }

 }

 // Loop through the Color structure properties.

 foreach (PropertyInfo info in typeof(Color).GetRuntimeProperties())

 {

 MethodInfo methodInfo = info.GetMethod;

 if (methodInfo.IsPublic &&

 methodInfo.IsStatic &&

 methodInfo.ReturnType == typeof(Color))

 {

 stackLayout.Children.Add(

 CreateColorLabel((Color)info.GetValue(null), info.Name));

 }

 }

 Padding = new Thickness(5, Device.OnPlatform(20, 5, 5), 5, 5);

 // Put the StackLayout in a ScrollView.

 Content = new ScrollView

 {

 Content = stackLayout

 };

 }

 Label CreateColorLabel(Color color, string name)

 {

 Color backgroundColor = Color.Default;

 if (color != Color.Default)

 {

 // Standard luminance calculation.

 double luminance = 0.30 * color.R +

 0.59 * color.G +

 0.11 * color.B;

 backgroundColor = luminance > 0.5 ? Color.Black : Color.White;

 }

 // Create the Label.

 return new Label

 {

 Text = name,

 TextColor = color,

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 BackgroundColor = backgroundColor

 };

 }

}

Toward the end of the constructor, the StackLayout is set to the Content property of a ScrollView, which is then set to the Content property of the page.

The CreateColorLabel method in the class attempts to make each color visible by setting a contrasting background. The method calculates a luminance value based on a standard weighted average of the red, green, and blue components and then selects a background of either white or black.

This technique won’t work for Transparent, so that item can’t be displayed at all, and the method treats Color.Default as a special case and displays that color (whatever it may be) against a Color.Default background.

Here are the results, which are still quite short of being aesthetically satisfying:

[image: Image]

But you can scroll the display because the StackLayout is the child of a ScrollView.

StackLayout and ScrollView are related in the class hierarchy. StackLayout derives from Layout<View>, and you’ll recall that the Layout<T> class defines the Children property that StackLayout inherits. The generic Layout<T> class derives from the nongeneric Layout class, and ScrollView also derives from this nongeneric Layout. Theoretically, ScrollView is a type of layout object—even though it has only one child.

As you can see from the screenshot, the background color of the Label extends to the full width of the StackLayout, which means that each Label is as wide as the StackLayout.

Let’s experiment a bit to get a better understanding of Xamarin.Forms layout. For these experiments, you might want to temporarily give the StackLayout and the ScrollView distinct background colors:

Click here to view code image

public ReflectedColorsPage()

{

 StackLayout stackLayout = new StackLayout

 {

 BackgroundColor = Color.Blue

 };

 ...

 Content = new ScrollView

 {

 BackgroundColor = Color.Red,

 Content = stackLayout

 };

}

Layout objects usually have transparent backgrounds by default. Although they occupy an area on the screen, they are not directly visible. Giving layout objects temporary colors is a great way to see exactly where they are on the screen. It’s a good debugging technique for complex layouts.

You will discover that the blue StackLayout peeks out in the space between the individual Label views. This is a result of the default Spacing property of StackLayout. The StackLayout is also visible through the Label for Color.Default, which has a transparent background.

Try setting the HorizontalOptions property of all the Label views to LayoutOptions.Start:

Click here to view code image

return new Label

{

 Text = name,

 TextColor = color,

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 BackgroundColor = backgroundColor,

 HorizontalOptions = LayoutOptions.Start

};

Now the blue background of the StackLayout is even more prominent because all the Label views occupy only as much horizontal space as the text requires, and they are all pushed over to the left side. Because each Label view is a different width, this display looks even uglier than the first version!

Now remove the HorizontalOptions setting from the Label, and instead set a HorizontalOptions on the StackLayout:

Click here to view code image

StackLayout stackLayout = new StackLayout

{

 BackgroundColor = Color.Blue,

 HorizontalOptions = LayoutOptions.Start

};

Now the StackLayout becomes only as wide as the widest Label (at least on iOS and Android) with the red background of the ScrollView now clearly in view.

As you begin constructing a tree of visual objects, these objects acquire a parent-child relationship. A parent object is sometimes referred to as the container of its child or children because the child’s location and size is contained within its parent.

By default, HorizontalOptions and VerticalOptions are set to LayoutOptions.Fill, which means that each child view attempts to fill the parent container. (At least with the containers encountered so far. As you’ll see, other layout classes have somewhat different behavior.) Even a Label fills its parent container by default, although without a background color, the Label appears to occupy only as much space as it requires.

Setting a view’s HorizontalOptions or VerticalOptions property to LayoutOptions.Start, Center, or End effectively forces the view to shrink down—either horizontally, vertically, or both—to only the size the view requires.

A StackLayout has this same effect on its child’s vertical size: every child in a StackLayout occupies only as much height as it requires. Setting the VerticalOptions property on a child of a StackLayout to Start, Center, or End has no effect! However, the child views still expand to fill the width of the StackLayout, except when the children are given a HorizontalOptions property other than LayoutOptions.Fill.

If a StackLayout is set to the Content property of a ContentPage, you can set HorizontalOptions or VerticalOptions on the StackLayout. These properties have two effects: first, they shrink the StackLayout width or height (or both) to the size of its children; and second, they govern where the StackLayout is positioned relative to the page.

If a StackLayout is in a ScrollView, the ScrollView causes the StackLayout to be only as tall as the sum of the heights of its children. This is how the ScrollView can determine how to vertically scroll the StackLayout. You can continue to set the HorizontalOptions property on the StackLayout to control the width and horizontal placement.

However, you should avoid setting VerticalOptions on the ScrollView to LayoutOptions.Start, Center, or End. The ScrollView must be able to scroll its child content, and the only way ScrollView can do that is by forcing its child (usually a StackLayout) to assume a height that reflects only what the child needs and then to use the height of this child and its own height to calculate how much to scroll that content. If you set VerticalOptions on the ScrollView to LayoutOptions.Start, Center, or End, you are effectively telling the ScrollView to be only as tall as it needs to be. But what is that height? Because ScrollView can scroll its contents, it doesn’t need to be any particular height, so in theory it will shrink down to nothing. Xamarin.Forms protects against this eventuality, but it’s best for you to avoid code that suggests something you don’t want to happen.

Although putting a StackLayout in a ScrollView is normal, putting a ScrollView in a StackLayout doesn’t seem quite right. In theory, the StackLayout will force the ScrollView to have a height of only what it requires, and that required height is basically zero. Again, Xamarin.Forms protects against this eventuality, but you should avoid such code.

There is a proper way to put a ScrollView in a StackLayout that is in complete accordance with Xamarin.Forms layout principles, and that will be demonstrated shortly.

The preceding discussion applies to vertically oriented StackLayout and ScrollView elements. StackLayout has a property named Orientation that you can set to a member of the StackOrientation enumeration—Vertical (the default) or Horizontal. Similarly, ScrollView also has an Orientation property that you set to a member of the ScrollOrientation enumeration. Try this:

Click here to view code image

public ReflectedColorsPage()

{

 StackLayout stackLayout = new StackLayout

 {

 Orientation = StackOrientation.Horizontal

 };

 ...

 Content = new ScrollView

 {

 Orientation = ScrollOrientation.Horizontal,

 Content = stackLayout

 };

}

Now the Label views are stacked horizontally, and the ScrollView fills the page vertically but allows horizontal scrolling of the StackLayout, which vertically fills the ScrollView:

[image: Image]

It looks pretty weird with the default vertical layout options, but those could be fixed to make it look a little better.

The Expands option

You probably noticed that the HorizontalOptions and VerticalOptions properties are plurals, as if there’s more than one option. These properties are generally set to a static field of the LayoutOptions structure—another plural.

The discussions so far have focused on the following static read-only LayoutOptions fields that returned predefined values of LayoutOptions:

• LayoutOptions.Start

• LayoutOptions.Center

• LayoutOptions.End

• LayoutOptions.Fill

The default—established by the View class—is LayoutOptions.Fill, which means that the view fills its container.

As you’ve seen, a VerticalOptions setting on a Label doesn’t make a difference when the Label is a child of a vertical StackLayout. The StackLayout itself constrains the height of its children to only the height they require, so the child has no freedom to move vertically within that slot.

Be prepared for this rule to be slightly amended!

The LayoutOptions structure has four additional static read-only fields not discussed yet:

• LayoutOptions.StartAndExpand

• LayoutOptions.CenterAndExpand

• LayoutOptions.EndAndExpand

• LayoutOptions.FillAndExpand

LayoutOptions also defines two instance properties, named Alignment and Expands. The four instances of LayoutOptions returned by the static fields ending with AndExpand all have the Expands property set to true.

This Expands property is recognized only by StackLayout. It can be very useful for managing the layout of the page, but it can be confusing on first encounter. Here are the requirements for Expands to play a role in a vertical StackLayout:

• The contents of the StackLayout must have a total height that is less than the height of the StackLayout itself. In other words, some extra unused vertical space must exist in the StackLayout.

• That first requirement implies that the vertical StackLayout cannot have its own VerticalOptions property set to Start, Center, or End because that would cause the StackLayout to have a height equal to the aggregate height of its children, and it would have no extra space.

• At least one child of the StackLayout must have a VerticalOptions setting with the Expands property set to true.

If these conditions are satisfied, the StackLayout allocates the extra vertical space equally among all the children that have a VerticalOptions setting with Expands equal to true. Each of these children gets a larger slot in the StackLayout than normal. How the child occupies that slot depends on the Alignment setting of the LayoutOptions value: Start, Center, End, or Fill.

Here’s a program, named VerticalOptionsDemo, that uses reflection to create Label objects with all the possible VerticalOptions settings in a vertical StackLayout. The background and foreground colors are alternated so that you can see exactly how much space each Label occupies. The program uses Language Integrated Query (LINQ) to sort the fields of the LayoutOptions structure in a visually more illuminating manner:

Click here to view code image

public class VerticalOptionsDemoPage : ContentPage

{

 public VerticalOptionsDemoPage()

 {

 Color[] colors = { Color.Yellow, Color.Blue };

 int flipFlopper = 0;

 // Create Labels sorted by LayoutAlignment property.

 IEnumerable<Label> labels =

 from field in typeof(LayoutOptions).GetRuntimeFields()

 where field.IsPublic && field.IsStatic

 orderby ((LayoutOptions)field.GetValue(null)).Alignment

 select new Label

 {

 Text = "VerticalOptions = " + field.Name,

 VerticalOptions = (LayoutOptions)field.GetValue(null),

 HorizontalTextAlignment = TextAlignment.Center,

 FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label)),

 TextColor = colors[flipFlopper],

 BackgroundColor = colors[flipFlopper = 1 - flipFlopper]

 };

 // Transfer to StackLayout.

 StackLayout stackLayout = new StackLayout();

 foreach (Label label in labels)

 {

 stackLayout.Children.Add(label);

 }

 Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

 Content = stackLayout;

 }

}

You might want to study the results a little:

[image: Image]

The Label views with yellow text on blue backgrounds are those with VerticalOptions properties set to LayoutOptions values without the Expands flag set. If the Expands flag is not set on the LayoutOptions value of an item in a vertical StackLayout, the VerticalOptions setting is ignored. As you can see, the Label occupies only as much vertical space as it needs in the vertical StackLayout.

The total height of the children in this StackLayout is less than the height of the StackLayout, so the StackLayout has extra space. It contains four children with their VerticalOptions properties set to LayoutOptions values with the Expands flag set, so this extra space is allocated equally among those four children.

In these four cases—the Label views with blue text on yellow backgrounds—the Alignment property of the LayoutOptions value indicates how the child is aligned within the area that includes the extra space. The first one—with the VerticalOptions property set to LayoutOptions.StartAndExpand—is above this extra space. The second (CenterAndExpand) is in the middle of the extra space. The third (EndAndExpand) is below the extra space. However, in all these three cases, the Label is getting only as much vertical space as it needs, as indicated by the background color. The rest of the space belongs to the StackLayout, which shows the background color of the page.

The last Label has its VerticalOptions property set to LayoutOptions.FillAndExpand. In this case, the Label occupies the entire slot including the extra space, as the large area of yellow background indicates. The text is at the top of this area; that’s because the default setting of VerticalTextAlignment is TextAlignment.Start. Set it to something else to position the text vertically within the area.

The Expands property of LayoutOptions plays a role only when the view is a child of a StackLayout. In other contexts, it’s ignored.

Frame and BoxView

Two simple rectangular views are often useful for presentation purposes:

The BoxView is a filled rectangle. It derives from View and defines a Color property with a default setting of Color.Default that’s transparent by default.

The Frame displays a rectangular border surrounding some content. Frame derives from Layout by way of ContentView, from which it inherits a Content property. The content of a Frame can be a single view or a layout containing a bunch of views. From VisualElement, Frame inherits a BackgroundColor property that’s white on the iPhone but transparent on Android and Windows Phone. From Layout, Frame inherits a Padding property that it initializes to 20 units on all sides to give the content a little breathing room. Frame itself defines a HasShadow property that is true by default (but the shadow shows up only on iOS devices) and an OutlineColor property that is transparent by default but doesn’t affect the iOS shadow, which is always black and always visible when HasShadow is set to true.

Both the Frame outline and the BoxView are transparent by default, so you might be a little uncertain how to color them without resorting to different colors for different platforms. One good choice is Color.Accent, which is guaranteed to show up regardless. Or, you can take control over coloring the background as well as the Frame outline and BoxView.

If the BoxView or Frame is not constrained in size in any way—that is, if it’s not in a StackLayout and has its HorizontalOptions and VerticalOptions set to default values of LayoutOptions.Fill—these views expand to fill their containers.

For example, here’s a program that has a centered Label set to the Content property of a Frame:

Click here to view code image

public class FramedTextPage : ContentPage

{

 public FramedTextPage()

 {

 Padding = new Thickness(20);

 Content = new Frame

 {

 OutlineColor = Color.Accent,

 Content = new Label

 {

 Text = "I've been framed!",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 }

 };

 }

}

The Label is centered in the Frame, but the Frame fills the whole page, and you might not even be able to see the Frame clearly if the page had not been given a Padding of 20 on all sides:

[image: Image]

To display centered framed text, you want to set the HorizontalOptions and VerticalOptions properties on the Frame (rather than the Label) to LayoutOptions.Center:

Click here to view code image

public class FramedTextPage : ContentPage

{

 public FramedTextPage()

 {

 Padding = new Thickness(20);

 Content = new Frame

 {

 OutlineColor = Color.Accent,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 Content = new Label

 {

 Text = "I've been framed!",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))

 }

 };

 }

}

Now the Frame hugs the text (but with the frame’s 20-unit default padding) in the center of the page:

[image: Image]

The version of FramedText included with the sample code for this chapter exercises the freedom to give everything a custom color:

Click here to view code image

public class FramedTextPage : ContentPage

{

 public FramedTextPage()

 {

 BackgroundColor = Color.Aqua;

 Content = new Frame

 {

 OutlineColor = Color.Black,

 BackgroundColor = Color.Yellow,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 Content = new Label

 {

 Text = "I've been framed!",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Italic,

 TextColor = Color.Blue

 }

 };

 }

}

The result looks roughly the same on all three platforms:

[image: Image]

Try setting a BoxView to the Content property of a ContentPage, like so:

Click here to view code image

public class SizedBoxViewPage : ContentPage

{

 public SizedBoxViewPage()

 {

 Content = new BoxView

 {

 Color = Color.Accent

 };

 }

}

Be sure to set the Color property so you can see it. The BoxView fills the whole area of its container, just as Label does with its default HorizontalOptions or VerticalOptions settings:

[image: Image]

It’s even underlying the iOS status bar!

Now try setting the HorizontalOptions and VerticalOptions properties of the BoxView to something other than Fill, as in this code sample:

Click here to view code image

public class SizedBoxViewPage : ContentPage

{

 public SizedBoxViewPage()

 {

 Content = new BoxView

 {

 Color = Color.Accent,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 }

}

In this case, the BoxView will assume its default dimensions of 40 units square:

[image: Image]

The BoxView is now 40 units square because the BoxView initializes its WidthRequest and HeightRequest properties to 40. These two properties require a little explanation:

VisualElement defines Width and Height properties, but these properties are read-only. VisualElement also defines WidthRequest and HeightRequest properties that are both settable and gettable. Normally, all these properties are initialized to –1 (which effectively means they are undefined), but some View derivatives, such as BoxView, set the WidthRequest and HeightRequest properties to specific values.

After a page has organized the layout of its children and rendered all the visuals, the Width and Height properties indicate actual dimensions of each view—the area that the view occupies on the screen. Because Width and Height are read-only, they are for informational purposes only. (Chapter 5, “Dealing with sizes,” describes how to work with these values.)

If you want a view to be a specific size, you can set the WidthRequest and HeightRequest properties. But these properties indicate (as their names suggest) a requested size or a preferred size. If the view is allowed to fill its container, these properties will be ignored.

BoxView sets its default size to values of 40 by overriding the OnSizeRequest method. You can think of these settings as a size that BoxView would like to be if nobody else has any opinions in the matter. You’ve already seen that WidthRequest and HeightRequest are ignored when the BoxView is allowed to fill the page. The WidthRequest kicks in if the HorizontalOptions is set to LayoutOptions.Left, Center, or Right, or if the BoxView is a child of a horizontal StackLayout. The HeightRequest behaves similarly.

Here’s the version of the SizedBoxView program included with the code for this chapter:

Click here to view code image

public class SizedBoxViewPage : ContentPage

{

 public SizedBoxViewPage()

 {

 BackgroundColor = Color.Pink;

 Content = new BoxView

 {

 Color = Color.Navy,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 WidthRequest = 200,

 HeightRequest = 100

 };

 }

}

Now we get a BoxView with that specific size and the colors explicitly set:

[image: Image]

Let’s use both Frame and BoxView in an enhanced color list. The ColorBlocks program has a page constructor that is virtually identical to the one in ReflectedColors, except that it calls a method named CreateColorView rather than CreateColorLabel. Here’s that method:

Click here to view code image

class ColorBlocksPage : ContentPage

{

 ...

 View CreateColorView(Color color, string name)

 {

 return new Frame

 {

 OutlineColor = Color.Accent,

 Padding = new Thickness(5),

 Content = new StackLayout

 {

 Orientation = StackOrientation.Horizontal,

 Spacing = 15,

 Children =

 {

 new BoxView

 {

 Color = color

 },

 new Label

 {

 Text = name,

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Bold,

 VerticalOptions = LayoutOptions.Center,

 HorizontalOptions = LayoutOptions.StartAndExpand

 },

 new StackLayout

 {

 Children =

 {

 new Label

 {

 Text = String.Format("{0:X2}-{1:X2}-{2:X2}",

 (int)(255 * color.R),

 (int)(255 * color.G),

 (int)(255 * color.B)),

 VerticalOptions = LayoutOptions.CenterAndExpand,

 IsVisible = color != Color.Default

 },

 new Label

 {

 Text = String.Format("{0:F2}, {1:F2}, {2:F2}",

 color.Hue,

 color.Saturation,

 color.Luminosity),

 VerticalOptions = LayoutOptions.CenterAndExpand,

 IsVisible = color != Color.Default

 }

 },

 HorizontalOptions = LayoutOptions.End

 }

 }

 }

 };

 }

}

The CreateColorView method returns a Frame containing a horizontal StackLayout with a BoxView indicating the color, a Label for the name of the color, and another StackLayout with two more Label views for the RGB composition and the Hue, Saturation, and Luminosity values. The RGB and HSL displays are meaningless for the Color.Default value, so that inner StackLayout has its IsVisible property set to false in that case. The StackLayout still exists, but it’s ignored when the page is rendered.

The program doesn’t know which element will determine the height of each color item—the BoxView, the Label with the color name, or the two Label views with the RGB and HSL values—so it centers all the Label views. As you can see, the BoxView expands in height to accommodate the height of the text:

[image: Image]

Now this is a scrollable color list that’s beginning to be something we can take a little pride in.

A ScrollView in a StackLayout?

It’s common to put a StackLayout in a ScrollView, but can you put a ScrollView in a StackLayout? And why would you even want to?

It’s a general rule in layout systems like the one in Xamarin.Forms that you can’t put a scroll in a stack. A ScrollView needs to have a specific height to compute the difference between the height of its content and its own height. That difference is the amount that the ScrollView can scroll its contents. If the ScrollView is in a StackLayout, it doesn’t get that specific height. The StackLayout wants the ScrollView to be as short as possible, and that’s either the height of the ScrollView contents or zero, and neither solution works.

So why would you want a ScrollView in a StackLayout anyway?

Sometimes it’s precisely what you need. Consider a primitive e-book reader that implements scrolling. You might want a Label at the top of the page always displaying the book’s title, followed by a ScrollView containing a StackLayout with the content of the book itself. It would be convenient for that Label and the ScrollView to be children of a StackLayout that fills the page.

With Xamarin.Forms, such a thing is possible. If you give the ScrollView a VerticalOptions setting of LayoutOptions.FillAndExpand, it can indeed be a child of a StackLayout. The StackLayout will give the ScrollView all the extra space not required by the other children, and the ScrollView will then have a specific height. Interestingly, Xamarin.Forms protects against other settings of that VerticalOptions property, so it works with whatever you set it to.

The BlackCat project displays the text of Edgar Allan Poe’s short story “The Black Cat,” which is stored in a text file named TheBlackCat.txt in a one-line-per-paragraph format.

How does the BlackCat program access the file with this short story? Perhaps the easiest approach is to embed the text file right in the program executable or—in the case of a Xamarin.Forms application—right in the Portable Class Library DLL. These files are known as embedded resources, and that’s what TheBlackCat.txt file is in this program.

To make an embedded resource in either Visual Studio or Xamarin Studio, you’ll probably first want to create a folder in the project by selecting the Add > New Folder option from the project menu. A folder for text files might be called Texts, for example. The folder is optional, but it helps organize program assets. Then, in that folder, you can select Add > Existing Item in Visual Studio or Add > Add Files in Xamarin Studio. Navigate to the file, select it, and click Add in Visual Studio or Open in Xamarin Studio.

Now here’s the important part: Once the file is part of the project, bring up the Properties dialog from the menu associated with the file. Specify that the Build Action for the file is EmbeddedResource. This is an easy step to forget, but it is essential.

This was done for the BlackCat project, and consequently the TheBlackCat.txt file becomes embedded in the BlackCat.dll file.

In code, the file can be retrieved by calling the GetManifestResourceStream method defined by the Assembly class in the System.Reflection namespace. To get the assembly of the PCL, all you need to do is get the Type of any class defined in the assembly. You can use typeof with the page type you’ve derived from ContentPage or GetType on the instance of that class. Then call GetTypeInfo on this Type object. Assembly is a property of the resultant TypeInfo object:

Click here to view code image

Assembly assembly = GetType().GetTypeInfo().Assembly;

In the GetManifestResourceStream method of Assembly, you’ll need to specify the name of the resource. For embedded resources, that name is not the filename of the resource but the resource ID. It’s easy to confuse these because that ID might look vaguely like a fully qualified filename.

The resource ID begins with the default namespace of the assembly. This is not the .NET namespace! To get the default namespace of the assembly in Visual Studio, select Properties from the project menu, and in the properties dialog, select Library at the left and look for the Default namespace field. In Xamarin Studio, select Options from the project menu, and in the Project Options dialog, select Main Settings at the left, and look for a field labeled Default Namespace.

For the BlackCat project, that default namespace is the same as the assembly: “BlackCat”. However, you can actually set that default namespace to whatever you want.

The resource ID begins with that default namespace, followed by a period, followed by the folder name you might have used, followed by another period and the filename. For this example, the resource ID is “BlackCat.Texts.TheBlackCat.txt”—and that’s what you’ll pass to the GetManifestResourceStream method in the code. The method returns a .NET Stream object, and from that a StreamReader can be created to read the lines of text.

It’s a good idea to use using statements with the Stream object returned from GetManifestResourceStream and the StreamReader object because that will properly dispose of the objects when they’re no longer needed or if they raise exceptions.

For layout purposes, the BlackCatPage constructor creates two StackLayout objects: mainStack and textStack. The first line from the file (containing the story’s title and author) becomes a bolded and centered Label in mainStack; all the subsequent lines go in textStack. The mainStack instance also contains a ScrollView with textStack.

Click here to view code image

class BlackCatPage : ContentPage

{

 public BlackCatPage()

 {

 StackLayout mainStack = new StackLayout();

 StackLayout textStack = new StackLayout

 {

 Padding = new Thickness(5),

 Spacing = 10

 };

 // Get access to the text resource.

 Assembly assembly = GetType().GetTypeInfo().Assembly;

 string resource = "BlackCat.Texts.TheBlackCat.txt";

 using (Stream stream = assembly.GetManifestResourceStream (resource))

 {

 using (StreamReader reader = new StreamReader (stream))

 {

 bool gotTitle = false;

 string line;

 // Read in a line (which is actually a paragraph).

 while (null != (line = reader.ReadLine()))

 {

 Label label = new Label

 {

 Text = line,

 // Black text for ebooks!

 TextColor = Color.Black

 };

 if (!gotTitle)

 {

 // Add first label (the title) to mainStack.

 label.HorizontalOptions = LayoutOptions.Center;

 label.FontSize = Device.GetNamedSize(NamedSize.Medium, label);

 label.FontAttributes = FontAttributes.Bold;

 mainStack.Children.Add(label);

 gotTitle = true;

 }

 else

 {

 // Add subsequent labels to textStack.

 textStack.Children.Add(label);

 }

 }

 }

 }

 // Put the textStack in a ScrollView with FillAndExpand.

 ScrollView scrollView = new ScrollView

 {

 Content = textStack,

 VerticalOptions = LayoutOptions.FillAndExpand,

 Padding = new Thickness(5, 0),

 };

 // Add the ScrollView as a second child of mainStack.

 mainStack.Children.Add(scrollView);

 // Set page content to mainStack.

 Content = mainStack;

 // White background for ebooks!

 BackgroundColor = Color.White;

 // Add some iOS padding for the page.

 Padding = new Thickness (0, Device.OnPlatform (20, 0, 0), 0, 0);

 }

}

Because this is basically an e-book reader, and humans have been reading black text on white paper for hundreds of years, the BackgroundColor of the page is set to white and the TextColor of each Label is set to black:

[image: Image]

BlackCat is a PCL application. It is also possible to write this program using a Shared Asset Project rather than a PCL. To prove it, a BlackCatSap project is included with the code for this chapter. However, because the resource actually becomes part of the application project, you’ll need the default namespace for the application, and that’s different for each platform. The code to set the resource variable looks like this:

Click here to view code image

#if __IOS__

 string resource = "BlackCatSap.iOS.Texts.TheBlackCat.txt";

#elif __ANDROID__

 string resource = "BlackCatSap.Droid.Texts.TheBlackCat.txt";

#elif WINDOWS_UWP

 string resource = "BlackCatSap.UWP.Texts.TheBlackCat.txt";

#elif WINDOWS_APP

 string resource = "BlackCatSap.Windows.Texts.TheBlackCat.txt";

#elif WINDOWS_PHONE_APP

 string resource = "BlackCatSap.WinPhone.Texts.TheBlackCat.txt";

#endif

If you’re having problems referencing an embedded resource, you might be using an incorrect name. Try calling GetManifestResourceNames on the Assembly object to get a list of the resource IDs of all embedded resources.

Chapter 5. Dealing with sizes

Already you’ve seen some references to sizes in connection with various visual elements:

• The iOS status bar has a height of 20, which you can adjust for with a Padding setting on the page.

• The BoxView sets its default width and height to 40.

• The default Padding within a Frame is 20.

• The default Spacing property on the StackLayout is 6.

And then there’s Device.GetNamedSize, which for various members of the NamedSize enumeration returns a platform-dependent number appropriate for FontSize values for a Label or Button.

What are these numbers? What are their units? And how do we intelligently set properties requiring sizes to other values?

Good questions. As you’ve seen, the various platforms have different screen sizes and different text sizes, and all display a different quantity of text on the screen. Is that quantity of text something that a Xamarin.Forms application can anticipate or control? And even if it’s possible, is it a proper programming practice? Should an application adjust font sizes to achieve a desired text density on the screen?

In general, when programming a Xamarin.Forms application, it’s best not to get too close to the actual numeric dimensions of visual objects. It’s preferable to trust Xamarin.Forms and the individual platforms to make the best default choices.

However, there are times when a programmer needs to know something about the size of particular visual objects and the size of the screen on which they appear.

Pixels, points, dps, DIPs, and DIUs

Video displays consist of a rectangular array of pixels. Any object displayed on the screen also has a pixel size. In the early days of personal computers, programmers sized and positioned visual objects in units of pixels. But as a greater variety of screen sizes and pixel densities became available, working with pixels became undesirable for programmers attempting to write applications that look roughly the same on many devices. Another solution was required.

These solutions began with operating systems for desktop computers and were then adapted for mobile devices. For this reason, it’s illuminating to begin this exploration with the desktop.

Desktop video displays have a wide range of pixel dimensions, from the nearly obsolete 640 × 480 on up into the thousands. The aspect ratio of 4:3 was once standard for computer displays—and for movies and television as well—but the high-definition aspect ratio of 16:9 (or the similar 16:10) is now more common.

Desktop video displays also have a physical dimension usually measured along the diagonal of the screen in inches or centimeters. The pixel dimension combined with the physical dimension allows you to calculate the video display’s resolution or pixel density in dots per inch (DPI), sometimes also referred to as pixels per inch (PPI). The display resolution can also be measured as a dot pitch, which is the distance between adjacent pixel centers, usually measured in millimeters.

For example, you can use the Pythagorean theorem to calculate that an ancient 800 × 600 display has a diagonal length of 1,000, the square root of 800 squared plus 600 squared. If this monitor has a 13-inch diagonal, that’s a pixel density of 77 DPI, or a dot pitch of 0.33 millimeters. However, a 13-inch screen on a modern laptop might have pixel dimensions of 2560 × 1600, which is a pixel density of about 230 DPI, or a dot pitch of about 0.11 millimeters. A 100-pixel square object on this screen is one-third the size of the same object on the older screen.

Programmers should have a fighting chance when attempting to size visual elements correctly. For this reason, both Apple and Microsoft devised systems for desktop computing that allow programmers to work with the video display in some form of device-independent units instead of pixels. Most of the dimensions that a programmer encounters and specifies are in these device-independent units. It is the responsibility of the operating system to convert back and forth between these units and pixels.

In the Apple world, desktop video displays were traditionally assumed to have a resolution of 72 units to the inch. This number comes from typography, where many measurements are in units of points. In classical typography, there are approximately 72 points to the inch, but in digital typography the point has been standardized to be exactly one seventy-second of an inch. By working with points rather than pixels, a programmer has an intuitive sense of the relationship between numeric sizes and the area that visual objects occupy on the screen.

In the Windows world, a similar technique was developed, called device-independent pixels (DIPs) or device-independent units (DIUs). To a Windows programmer, desktop video displays are assumed to have a resolution of 96 DIUs, which is exactly one-third higher than 72 DPI, although it can be adjusted by the user.

Mobile devices, however, have somewhat different rules: The pixel densities achieved on modern phones are typically much higher than on desktop displays. This higher pixel density allows text and other visual objects to shrink much more in size before becoming illegible.

Phones are also typically held much closer to the user’s face than is a desktop or laptop screen. This difference also implies that visual objects on the phone can be smaller than comparable objects on desktop or laptop screens. Because the physical dimensions of the phone are much smaller than desktop displays, shrinking down visual objects is very desirable because it allows much more to fit on the screen.

Apple continues to refer to the device-independent units on the iPhone as points. Until recently, all of Apple’s high-density displays—which Apple refers to by the brand name Retina—have a conversion of two pixels to the point. This was true for the MacBook Pro, iPad, and iPhone. The recent exception is the iPhone 6 Plus, which has three pixels to the point.

For example, the 640 × 960 pixel dimension of the 3.5-inch screen of the iPhone 4 has an actual pixel density of about 320 DPI. There are two pixels to the point, so to an application program running on the iPhone 4, the screen appears to have a dimension of 320 × 480 points. The iPhone 3 actually did have a pixel dimension of 320 × 480, and points equaled pixels, so to a program running on these two devices, the displays of the iPhone 3 and iPhone 4 appear to be the same size. Despite the same perceived sizes, graphical objects and text are displayed in greater resolution on the iPhone 4 than the iPhone 3.

For the iPhone 3 and iPhone 4, the relationship between the screen size and point dimensions implies a conversion factor of 160 points to the inch rather than the desktop standard of 72.

The iPhone 5 has a 4-inch screen, but the pixel dimension is 640 × 1136. The pixel density is about the same as the iPhone 4. To a program, this screen has a size of 320 × 768 points.

The iPhone 6 has a 4.7-inch screen and a pixel dimension of 750 × 1334. The pixel density is also about 320 DPI. There are two pixels to the point, so to a program, the screen appears to have a point size of 375 × 667.

However, the iPhone 6 Plus has a 5.5-inch screen and a pixel dimension of 1080 × 1920, which is a pixel density of 400 DPI. This higher pixel density implies more pixels to the point, and for the iPhone 6 Plus, Apple has set the point equal to three pixels. That would normally imply a perceived screen size of 360 × 640 points, but to a program, the iPhone 6 Plus screen has a point size of 414 × 736, so the perceived resolution is about 150 points to the inch.

This information is summarized in the following table:

[image: Image]

Android does something quite similar: Android devices have a wide variety of sizes and pixel dimensions, but an Android programmer generally works in units of density-independent pixels (dps). The relationship between pixels and dps is set assuming 160 dps to the inch, which means that Apple and Android device-independent units are very similar.

Microsoft took a different approach with Windows Phone 7. The original Windows Phone 7 devices had a screen dimension of 480 × 800 pixels, which is often referred to as WVGA (Wide Video Graphics Array). Applications worked with this display in units of pixels. If you assume an average screen size of 4 inches for a 480 × 800 Windows Phone 7 device, this means that Windows Phone 7 implicitly assumed a pixel density of about 240 DPI. That’s 1.5 times the assumed pixel density of iPhone and Android devices. Eventually, several larger screen sizes were allowed: 768 × 1280 (WXGA or Wide Extended Graphics Array), 720 × 1280 (referred to using high-definition television lingo as 720p), and 1080 × 1920 (called 1080p). For these additional display sizes, programmers worked in device-independent units. An internal scaling factor translated between pixels and device-independent units so that the width of the screen in portrait mode always appeared to be 480 pixels.

With the Windows Runtime API in Windows Phone 8.1, different scaling factors were introduced based on both the screen’s pixel size and the physical size of the screen. The following table was put together based on the Windows Phone 8.1 emulators using a program named WhatSize, which you’ll see shortly:

[image: Image]

The scaling factors were calculated from the width because the height in DIUs displayed by the WhatSize program excludes the Windows Phone status bar. The final DPI figures were calculated based on the full pixel size, the diagonal size of the screen in inches, and the scaling factor.

Aside from the WVGA outlier, the calculated DPI is close enough to the 160 DPI criterion associated with iOS and Android devices.

Windows 10 Mobile uses somewhat higher scaling factors, and in multiples of 0.25 rather than 0.2. The following table was put together based on the Windows 10 Mobile emulators:

[image: Image]

You might conclude from this that a good average DPI for Windows 10 Mobile is 144 (rounded to the nearest multiple of 16) rather than 160. Or you might say that it’s close enough to 160 to assume that it’s consistent with iOS and Windows Phone.

Xamarin.Forms has a philosophy of using the conventions of the underlying platforms as much as possible. In accordance with this philosophy, a Xamarin.Forms programmer works with sizes defined by each particular platform. All sizes that the programmer encounters through the Xamarin.Forms API are in these platform-specific, device-independent units.

Xamarin.Forms programmers can generally treat the phone display in a device-independent manner, with the following resolution:

• 160 units to the inch

• 64 units to the centimeter

The VisualElement class defines two properties, named Width and Height, that provide the rendered dimensions of views, layouts, and pages in these device-independent units. However, the initial settings of Width and Height are “mock” values of –1. The values of these properties become valid only when the layout system has positioned and sized everything on the page. Also, keep in mind that the default Fill setting for HorizontalOptions or VerticalOptions often causes a view to occupy more space than it would otherwise. The Width and Height values reflect this extra space. The Width and Height values also include any Padding that may be set on the element and are consistent with the area colored by the view’s BackgroundColor property.

VisualElement defines an event named SizeChanged that is fired whenever the Width or Height property of the visual element changes. This event is part of several notifications that occur when a page is laid out, a process that involves the various elements of the page being sized and positioned. This layout process occurs following the first definition of a page (generally in the page constructor), and a new layout pass takes place in response to any change that might affect layout—for example, when views are added to a ContentPage or a StackLayout, removed from these objects, or when properties are set on visual elements that might result in their sizes changing.

A new layout is also triggered when the screen size changes. This happens mostly when the phone is swiveled between portrait and landscape modes.

A full familiarity with the Xamarin.Forms layout system often accompanies the job of writing your own Layout<View> derivatives. This task awaits us in Chapter 26, “Custom layouts.” Until then, simply knowing when Width and Height properties change is helpful for working with sizes of visual objects. You can attach a SizeChanged handler to any visual object on the page, including the page itself. The WhatSize program demonstrates how to obtain the page’s size and display it:

Click here to view code image

public class WhatSizePage : ContentPage

{

 Label label;

 public WhatSizePage()

 {

 label = new Label

 {

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 Content = label;

 SizeChanged += OnPageSizeChanged;

 }

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 label.Text = String.Format("{0} \u00D7 {1}", Width, Height);

 }

}

This is the first example of event handling in this book, and you can see that events are handled in the normal C# and .NET manner. The code at the end of the constructor attaches the OnPageSizeChanged event handler to the SizeChanged event of the page. The first argument to the event handler (customarily named sender) is the object firing the event, in this case the instance of WhatSizePage, but the event handler doesn’t use that. Nor does the event handler use the second argument—the so-called event arguments—which sometimes provides more information about the event.

Instead, the event handler accesses the Label element (conveniently saved as a field) to display the Width and Height properties of the page. The Unicode character in the String.Format call is a times (×) symbol.

The SizeChanged event is not the only opportunity to obtain an element’s size. VisualElement also defines a protected virtual method named OnSizeAllocated that indicates when the visual element is assigned a size. You can override this method in your ContentPage derivative rather than handling the SizeChanged event, but OnSizeAllocated is sometimes called when the size isn’t actually changing.

Here’s the program running on the three standard platforms:

[image: Image]

For the record, these are the sources of the screens in these three images:

• The iPhone 6 simulator, with pixel dimensions of 750 × 1334.

• An LG Nexus 5 with a screen size of 1080 × 1920 pixels.

• A Nokia Lumia 925 with a screen size of 768 × 1280 pixels.

Notice that the vertical size perceived by the program on the Android does not include the area occupied by the status bar or bottom buttons; the vertical size on the Windows 10 Mobile device does not include the area occupied by the status bar.

By default, all three platforms respond to device orientation changes. If you turn the phones (or emulators) 90 degrees counterclockwise, the phones display the following sizes:

[image: Image]

The screenshots for this book are designed only for portrait mode, so you’ll need to turn this book sideways to see what the program looks like in landscape. The 598-pixel width on the Android excludes the area for the buttons; the 335-pixel height excludes the status bar, which always appears above the page. On the Windows 10 Mobile device, the 728-pixel width excludes the area for the status bar, which appears in the same place but with rotated icons to reflect the new orientation.

Here’s the program running on the iPad Air 2 simulator with a pixel dimension of 2048 × 1536.

[image: Image]

Obviously, the scaling factor is 2. The screen is 9.7 inches in diagonal for a resolution of 132 DPI.

The Surface Pro 3 has a pixel dimension of 2160 × 1440. The scaling factor is selectable by the user to make everything on the screen larger or smaller, but the recommended scaling factor is 1.5:

[image: Image]

The height displayed by WhatSize excludes the taskbar at the bottom of the screen. The screen is 12” in diagonal for a resolution of 144 DPI.

A few notes on the WhatSize program itself:

WhatSize creates a single Label in its constructor and sets the Text property in the event handler. That’s not the only way to write such a program. The program could use the SizeChanged handler to create a whole new Label with the new text and set that new Label as the content of the page, in which case the previous Label would become unreferenced and hence eligible for garbage collection. But creating new visual elements is unnecessary and wasteful in this program. It’s best for the program to create only one Label view and just set the Text property to indicate the page’s new size.

Monitoring size changes is the only way a Xamarin.Forms application can detect orientation changes without obtaining platform-specific information. Is the width greater than the height? That’s landscape. Otherwise, it’s portrait.

By default, the Visual Studio and Xamarin Studio templates for Xamarin.Forms solutions enable device orientation changes for all three platforms. If you want to disable orientation changes—for example, if you have an application that just doesn’t work well in portrait or landscape mode—you can do so.

For iOS, first display the contents of Info.plist in Visual Studio or Xamarin Studio. In the iPhone Deployment Info section, use the Supported Device Orientations area to specify which orientations are allowed.

For Android, in the Activity attribute on the MainActivity class in the MainActivity.cs file, add:

Click here to view code image

ScreenOrientation = ScreenOrientation.Landscape

or

Click here to view code image

ScreenOrientation = ScreenOrientation.Portrait

The Activity attribute generated by the solution template contains a ConfigurationChanges argument that also refers to screen orientation, but the purpose of ConfigurationChanges is to inhibit a restart of the activity when the phone’s orientation or screen size changes.

For the two Windows Phone projects, the class and enumeration to use is in the Windows.Graphics.Display namespace. In the MainPage constructor in the MainPage.xaml.cs file, set the static DisplayInformation.AutoRotationPreferences property to one or more members of the DisplayOrientations enumeration combined with the C# bitwise OR operation. To restrict the program to landscape or portrait, use:

Click here to view code image

DisplayInformation.AutoRotationPreferences = DisplayOrientations.Landscape

or:

Click here to view code image

DisplayInformation.AutoRotationPreferences = DisplayOrientations.Portrait;

Metrical sizes

Now that you know how sizes in a Xamarin.Forms application approximately correspond to metrical dimensions of inches and centimeters, you can size elements so that they are approximately the same size on various devices. Here’s a program called MetricalBoxView that displays a BoxView with a width of approximately one centimeter and a height of approximately one inch:

Click here to view code image

public class MetricalBoxViewPage : ContentPage

{

 public MetricalBoxViewPage()

 {

 Content = new BoxView

 {

 Color = Color.Accent,

 WidthRequest = 64,

 HeightRequest = 160,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 }

}

If you actually take a ruler to the object on your phone’s screen, you’ll find that it’s not exactly the desired size but certainly close to it, as these screenshots also confirm:

[image: Image]

This program is intended to run on phones. If you want to run it on tablets as well, you might use the Device.Idiom property to set a somewhat smaller factor for the iPad and Windows tablets.

Estimated font sizes

The FontSize property on Label and Button specifies the approximate height of font characters from the bottom of descenders to the top of ascenders, often (depending on the font) including diacritical marks as well. In most cases you’ll want to set this property to a value returned by the Device.GetNamedSize method. This allows you to specify a member of the NamedSize enumeration: Default, Micro, Small, Medium, or Large.

Alternatively, you can set the FontSize property to actual numeric font sizes, but there’s a little problem involved (to be discussed in detail shortly). For the most part, you specify font sizes in the same device-independent units used throughout Xamarin.Forms, which means that you can calculate device-independent font sizes based on the platform resolution.

For example, suppose you want to use a 12-point font in your program. The first thing you should know is that while a 12-point font might be a comfortable size for printed material or a desktop screen, on a phone it’s quite large. But let’s continue.

There are 72 points to the inch, so a 12-point font is one-sixth of an inch. Multiply by the DPI resolution of 160 and that’s about 27 device-independent units.

Let’s write a little program called FontSizes, which begins with a display similar to the NamedFontSizes program in Chapter 3 but then displays some text with numeric point sizes, converted to device-independent units using the device resolution:

Click here to view code image

public class FontSizesPage : ContentPage

{

 public FontSizesPage()

 {

 BackgroundColor = Color.White;

 StackLayout stackLayout = new StackLayout

 {

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 // Do the NamedSize values.

 NamedSize[] namedSizes =

 {

 NamedSize.Default, NamedSize.Micro, NamedSize.Small,

 NamedSize.Medium, NamedSize.Large

 };

 foreach (NamedSize namedSize in namedSizes)

 {

 double fontSize = Device.GetNamedSize(namedSize, typeof(Label));

 stackLayout.Children.Add(new Label

 {

 Text = String.Format("Named Size = {0} ({1:F2})",

 namedSize, fontSize),

 FontSize = fontSize,

 TextColor = Color.Black

 });

 }

 // Resolution in device-independent units per inch.

 double resolution = 160;

 // Draw horizontal separator line.

 stackLayout.Children.Add(

 new BoxView

 {

 Color = Color.Accent,

 HeightRequest = resolution / 80

 });

 // Do some numeric point sizes.

 int[] ptSizes = { 4, 6, 8, 10, 12 };

 foreach (double ptSize in ptSizes)

 {

 double fontSize = resolution * ptSize / 72;

 stackLayout.Children.Add(new Label

 {

 Text = String.Format("Point Size = {0} ({1:F2})",

 ptSize, fontSize),

 FontSize = fontSize,

 TextColor = Color.Black

 });

 }

 Content = stackLayout;

 }

}

To facilitate comparisons among the three screens, the backgrounds have been uniformly set to white and the labels to black. Notice the BoxView inserted into the StackLayout between the two foreach blocks: the HeightRequest setting gives it a device-independent height of approximately one-eightieth of an inch, and it resembles a horizontal rule.

Interestingly, the resultant visual sizes based on the calculation are more consistent among the platforms than the named sizes. The numbers in parentheses are the numeric FontSize values in device-independent units:

[image: Image]

Fitting text to available size

You might need to fit a block of text to a particular rectangular area. It’s possible to calculate a value for the FontSize property of Label based on the number of text characters, the size of the rectangular area, and just two numbers.

The first number is line spacing. This is the vertical height of a Label view per line of text. For the default fonts associated with the three platforms, it is roughly related to the FontSize property as follows:

• iOS: lineSpacing = 1.2 * label.FontSize

• Android: lineSpacing = 1.2 * label.FontSize

• Windows Phone: lineSpacing = 1.3 * label.FontSize

The second helpful number is average character width. For a normal mix of uppercase and lowercase letters for the default fonts, this average character width is about half of the font size, regardless of the platform:

• averageCharacterWidth = 0.5 * label.FontSize

For example, suppose you want to fit a text string containing 80 characters in a width of 320 units, and you’d like the font size to be as large as possible. Divide the width (320) by half the number of characters (40), and you get a font size of 8, which you can set to the FontSize property of Label. For text that’s somewhat indeterminate and can’t be tested beforehand, you might want to make this calculation a little more conservative to avoid surprises.

The following program uses both line spacing and average character width to fit a paragraph of text on the page, minus the area at the top of the iPhone occupied by the status bar. To make the exclusion of the iOS status bar a bit easier in this program, the program uses a ContentView.

ContentView derives from Layout but only adds a Content property to what it inherits from Layout. ContentView is also the base class to Frame. Although ContentView has no functionality other than occupying a rectangular area of space, it is useful for two purposes: Most often, ContentView can be a parent to other views to define a new custom view. But ContentView can also simulate a margin.

As you might have noticed, Xamarin.Forms has no concept of a margin, which traditionally is similar to padding except that padding is inside a view and a part of the view, while a margin is outside the view and actually part of the parent’s view. A ContentView lets us simulate this. If you find a need to set a margin on a view, put the view in a ContentView and set the Padding property on the ContentView. ContentView inherits a Padding property from Layout.

The EstimatedFontSize program uses ContentView in a slightly different manner: It sets the customary padding on the page to avoid the iOS status bar, but then it sets a ContentView as the content of that page. Hence, this ContentView is the same size as the page, but excluding the iOS status bar. It is on this ContentView that the SizeChanged event is attached, and it is the size of this ContentView that is used to calculate the text font size.

The SizeChanged handler uses the first argument to obtain the object firing the event (in this case the ContentView), which is the object in which the Label must fit. The calculation is described in comments:

Click here to view code image

public class EstimatedFontSizePage : ContentPage

{

 Label label;

 public EstimatedFontSizePage()

 {

 label = new Label();

 Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

 ContentView contentView = new ContentView

 {

 Content = label

 };

 contentView.SizeChanged += OnContentViewSizeChanged;

 Content = contentView;

 }

 void OnContentViewSizeChanged(object sender, EventArgs args)

 {

 string text =

 "A default system font with a font size of S " +

 "has a line height of about ({0:F1} * S) and an " +

 "average character width of about ({1:F1} * S). " +

 "On this page, which has a width of {2:F0} and a " +

 "height of {3:F0}, a font size of ?1 should " +

 "comfortably render the ??2 characters in this " +

 "paragraph with ?3 lines and about ?4 characters " +

 "per line. Does it work?";

 // Get View whose size is changing.

 View view = (View)sender;

 // Define two values as multiples of font size.

 double lineHeight = Device.OnPlatform(1.2, 1.2, 1.3);

 double charWidth = 0.5;

 // Format the text and get its character length.

 text = String.Format(text, lineHeight, charWidth, view.Width, view.Height);

 int charCount = text.Length;

 // Because:

 // lineCount = view.Height / (lineHeight * fontSize)

 // charsPerLine = view.Width / (charWidth * fontSize)

 // charCount = lineCount * charsPerLine

 // Hence, solving for fontSize:

 int fontSize = (int)Math.Sqrt(view.Width * view.Height /

 (charCount * lineHeight * charWidth));

 // Now these values can be calculated.

 int lineCount = (int)(view.Height / (lineHeight * fontSize));

 int charsPerLine = (int)(view.Width / (charWidth * fontSize));

 // Replace the placeholders with the values.

 text = text.Replace("?1", fontSize.ToString());

 text = text.Replace("??2", charCount.ToString());

 text = text.Replace("?3", lineCount.ToString());

 text = text.Replace("?4", charsPerLine.ToString());

 // Set the Label properties.

 label.Text = text;

 label.FontSize = fontSize;

 }

}

The text placeholders named “?1”, “??2”, “?3”, and “?4” were chosen to be unique but also to be the same number of characters as the numbers that replace them.

If the goal is to make the text as large as possible without the text spilling off the page, the results validate the approach:

[image: Image]

Not bad. Not bad at all. The text actually displays in one less line that indicated on all three platforms, but the technique seems sound. It’s not always the case that the same FontSize is calculated for landscape mode, but it happens sometimes:

[image: Image]

A fit-to-size clock

The Device class includes a static StartTimer method that lets you set a timer that fires a periodic event. The availability of a timer event means that a clock application is possible, even if it displays the time only in text.

The first argument to Device.StartTimer is an interval expressed as a TimeSpan value. The timer fires an event periodically based on that interval. (You can go down as low as 15 or 16 milliseconds, which is about the period of the frame rate of 60 frames per second common on video displays.) The event handler has no arguments but must return true to keep the timer going.

The FitToSizeClock program creates a Label for displaying the time and then sets two events: the SizeChanged event on the page for changing the font size, and the Device.StartTimer event for one-second intervals to change the Text property.

Many C# programmers these days like to define small event handlers as anonymous lambda functions. This allows the event-handling code to be very close to the instantiation and initialization of the object firing the event instead of somewhere else in the file. It also allows referencing objects within the event handler without storing those objects as fields.

In this program, both event handlers simply change a property of the Label, and they are both expressed as lambda functions so that they can access the Label without it being stored as a field:

Click here to view code image

public class FitToSizeClockPage : ContentPage

{

 public FitToSizeClockPage()

 {

 Label clockLabel = new Label

 {

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 Content = clockLabel;

 // Handle the SizeChanged event for the page.

 SizeChanged += (object sender, EventArgs args) =>

 {

 // Scale the font size to the page width

 // (based on 11 characters in the displayed string).

 if (this.Width > 0)

 clockLabel.FontSize = this.Width / 6;

 };

 // Start the timer going.

 Device.StartTimer(TimeSpan.FromSeconds(1), () =>

 {

 // Set the Text property of the Label.

 clockLabel.Text = DateTime.Now.ToString("h:mm:ss tt");

 return true;

 });

 }

}

The StartTimer handler specifies a custom formatting string for DateTime that results in 10 or 11 characters, but two of those are capital letters, and those are wider than average characters. The SizeChanged handler implicitly assumes that 12 characters are displayed by setting the font size to one-sixth of the page width:

[image: Image]

Of course, the text is much larger in landscape mode:

[image: Image]

This one-second timer doesn’t tick exactly at the beginning of every second, so the displayed time might not precisely agree with other time displays on the same device. You can make it more accurate by setting a more frequent timer tick. Performance won’t be impacted much because the display still changes only once per second and won’t require a new layout cycle until then.

Accessibility issues

The EstimatedFontSize program and the FitToSizeClock program both have a subtle flaw, but the problem might not be so subtle if you’re one of the many people who can’t comfortably read text on a mobile device and uses the device’s accessibility features to make the text larger.

On iOS, run the Settings app, and choose General, and Accessibility, and Larger Text. You can then use a slider to make text on the screen larger or smaller. The page indicates that text will only be adjusted in iOS applications that support the Dynamic Type feature.

On Android, run the Settings app, and choose Display and then Font size. You are presented with four radio buttons for selecting Small, Normal (the default), Large, or Huge.

On a Windows 10 Mobile device, run the Settings app, and choose Ease of Access and then More options. You can then move a slider labeled Text scaling from 100% to 200%.

Here’s what you will discover:

The iOS setting has no effect on Xamarin.Forms applications.

The Android setting affects the values returned from Device.GetNamedSize. If you select something other than Normal and run the FontSizes program again, you’ll see that for the NamedSize.Default argument, Device.GetNamedSize returns 14 when the setting is Normal (as the earlier screenshot shows), but returns 12 for a setting of Small, 16 for Large, and 18 1/3 for Huge.

Also, all the text displayed on the Android screen is a different size—either smaller or larger depending on what setting you selected—even for constant FontSize values.

On Windows 10 Mobile, the values returned from Device.GetNamedSize do not depend on the accessibility setting, but all the text is displayed larger.

This means that the EstimatedFontSize or FitToSizeClock programs do not run correctly on Android or Windows 10 Mobile with the accessibility setting for larger text. Part of the text is truncated.

Let’s explore this a little more. The AccessibilityTest program displays two Label elements on its page. The first has a constant FontSize of 20, and the second merely displays the size of the first Label when its size changes:

Click here to view code image

public class AccessibilityTestPage : ContentPage

{

 public AccessibilityTestPage()

 {

 Label testLabel = new Label

 {

 Text = "FontSize of 20" + Environment.NewLine + "20 characters across",

 FontSize = 20,

 HorizontalTextAlignment = TextAlignment.Center,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 Label displayLabel = new Label

 {

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 testLabel.SizeChanged += (sender, args) =>

 {

 displayLabel.Text = String.Format("{0:F0} \u00D7 {1:F0}", testLabel.Width,

 testLabel.Height);

 };

 Content = new StackLayout

 {

 Children =

 {

 testLabel,

 displayLabel

 }

 };

 }

}

Normally, the second Label displays a size that is roughly consistent with the assumptions described earlier:

[image: Image]

But now go into the accessibility settings and crank them all the way up. Both Android and Windows 10 Mobile display larger text:

[image: Image]

The character size assumptions described earlier are no longer valid, and that’s why the programs fail to fit the text.

But there is an alternative approach to sizing text to a rectangular area.

Empirically fitting text

Another approach to fitting text within a rectangle of a particular size involves empirically determining the size of the rendered text based on a particular font size and then adjusting that font size up or down. This approach has the advantage of working on all devices regardless of the accessibility settings.

But the process can be tricky: The first problem is that there is not a clean linear relationship between the font size and the height of the rendered text. As text gets larger relative to the width of its container, more line breaks result, with more wasted space. A calculation to find the optimum font size often involves a loop that narrows in on the value.

A second problem involves the actual mechanism of obtaining the size of a Label rendered with a particular font size. You can set a SizeChanged handler on the Label, but within that handler you don’t want to make any changes (such as setting a new FontSize property) that will cause recursive calls to that handler.

A better approach is calling the GetSizeRequest method defined by VisualElement and inherited by Label and all other views. GetSizeRequest requires two arguments—a width constraint and a height constraint. These values indicate the size of the rectangle in which you want to fit the element, and one or the other can be infinity. When using GetSizeRequest with a Label, generally you set the width constraint argument to the width of the container and the height constraint to Double.PositiveInfinity.

The GetSizeRequest method returns a value of type SizeRequest, a structure with two properties, named Request and Minimum, both of type Size. The Request property indicates the size of the rendered text. (More information on this and related methods can be found in Chapter 26.)

The EmpiricalFontSize project demonstrates this technique. For convenience, it defines a small structure named FontCalc whose constructor makes the call to GetSizeRequest for a particular Label (already initialized with text), a trial font size, and a text width:

Click here to view code image

struct FontCalc

{

 public FontCalc(Label label, double fontSize, double containerWidth)

 : this()

 {

 // Save the font size.

 FontSize = fontSize;

 // Recalculate the Label height.

 label.FontSize = fontSize;

 SizeRequest sizeRequest =

 label.GetSizeRequest(containerWidth, Double.PositiveInfinity);

 // Save that height.

 TextHeight = sizeRequest.Request.Height;

 }

 public double FontSize { private set; get; }

 public double TextHeight { private set; get; }

}

The resultant height of the rendered Label is saved in the TextHeight property.

When you make a call to GetSizeRequest on a page or a layout, the page or layout needs to obtain the sizes of all its children down through the visual tree. This has a performance penalty, of course, so you should avoid making calls like that unless necessary. But a Label has no children, so calling GetSizeRequest on a Label is not nearly as bad. However, you should still try to optimize the calls. Avoid looping through a sequential series of font size values to determine the maximum value that doesn’t result in text exceeding the container height. A process that algorithmically narrows in on an optimum value is better.

GetSizeRequest requires that the element be part of a visual tree and that the layout process has at least partially begun. Don’t call GetSizeRequest in the constructor of your page class. You won’t get information from it. The first reasonable opportunity is in an override of the page’s OnAppearing method. Of course, you might not have sufficient information at this time to pass arguments to the GetSizeRequest method.

However, calling GetSizeRequest doesn’t have any side effects. It doesn’t cause a new size to be set on the element, which means that it doesn’t cause a SizeChanged event to be fired, which means that it’s safe to call in a SizeChanged handler.

The EmpiricalFontSizePage class instantiates FontCalc values in the SizeChanged handler of the ContentView that hosts the Label. The constructor of each FontCalc value makes GetSizeRequest calls on the Label and saves the resultant TextHeight. The SizeChanged handler begins with trial font sizes of 10 and 100 under the assumption that the optimum value is somewhere between these two and that these represent lower and upper bounds. Hence the variable names lowerFontCalc and upperFontCalc:

Click here to view code image

public class EmpiricalFontSizePage : ContentPage

{

 Label label;

 public EmpiricalFontSizePage()

 {

 label = new Label();

 Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

 ContentView contentView = new ContentView

 {

 Content = label

 };

 contentView.SizeChanged += OnContentViewSizeChanged;

 Content = contentView;

 }

 void OnContentViewSizeChanged(object sender, EventArgs args)

 {

 // Get View whose size is changing.

 View view = (View)sender;

 if (view.Width <= 0 || view.Height <= 0)

 return;

 label.Text =

 "This is a paragraph of text displayed with " +

 "a FontSize value of ?? that is empirically " +

 "calculated in a loop within the SizeChanged " +

 "handler of the Label's container. This technique " +

 "can be tricky: You don't want to get into " +

 "an infinite loop by triggering a layout pass " +

 "with every calculation. Does it work?";

 // Calculate the height of the rendered text.

 FontCalc lowerFontCalc = new FontCalc(label, 10, view.Width);

 FontCalc upperFontCalc = new FontCalc(label, 100, view.Width);

 while (upperFontCalc.FontSize - lowerFontCalc.FontSize > 1)

 {

 // Get the average font size of the upper and lower bounds.

 double fontSize = (lowerFontCalc.FontSize + upperFontCalc.FontSize) / 2;

 // Check the new text height against the container height.

 FontCalc newFontCalc = new FontCalc(label, fontSize, view.Width);

 if (newFontCalc.TextHeight > view.Height)

 {

 upperFontCalc = newFontCalc;

 }

 else

 {

 lowerFontCalc = newFontCalc;

 }

 }

 // Set the final font size and the text with the embedded value.

 label.FontSize = lowerFontCalc.FontSize;

 label.Text = label.Text.Replace("??", label.FontSize.ToString("F0"));

 }

}

In each iteration of the while loop, the FontSize properties of those two FontCalc values are averaged and a new FontCalc is obtained. This becomes the new lowerFontCalc or upperFontCalc value depending on the height of the rendered text. The loop ends when the calculated font size is within one unit of the optimum value.

About seven iterations of the loop are sufficient to get a value that is clearly better than the estimated value calculated in the earlier program:

[image: Image]

Turning the phone sideways triggers another recalculation that results in a similar (though not necessarily the same) font size:

[image: Image]

It might seem that the algorithm could be improved beyond simply averaging the FontSize properties from the lower and upper FontCalc values. But the relationship between the font size and rendered text height is rather complex, and sometimes the easiest approach is just as good.

Chapter 6. Button clicks

The components of a graphical user interface can be divided roughly into views that are used for presentation, which display information to the user, and interaction, which obtain input from the user. While the Label is the most basic presentation view, the Button is probably the archetypal interactive view. The Button signals a command. It’s the user’s way of telling the program to initiate some action—to do something.

A Xamarin.Forms button displays text, with or without an accompanying image. (Only text buttons are described in this chapter; adding an image to a button is covered in Chapter 13, “Bitmaps.”) When the user’s finger presses on a button, the button changes its appearance somewhat to provide feedback to the user. When the finger is released, the button fires a Clicked event. The two arguments of the Clicked handler are typical of Xamarin.Forms event handlers:

• The first argument is the object firing the event. For the Clicked handler, this is the particular Button object that’s been tapped.

• The second argument sometimes provides more information about the event. For the Clicked event, the second argument is simply an EventArgs object that provides no additional information.

Once an application begins implementing user interaction, some special needs arise: The application should make an effort to save the results of that interaction if the program happens to be terminated before the user has finished working with it. For that reason, this chapter also discusses how an application can save transient data, particularly in the context of application lifecycle events. These are described in the section “Saving transient data.”

Processing the click

Here’s a program named ButtonLogger with a Button that shares a StackLayout with a ScrollView containing another StackLayout. Every time the Button is clicked, the program adds a new Label to the scrollable StackLayout, in effect logging all the button clicks:

Click here to view code image

public class ButtonLoggerPage : ContentPage

{

 StackLayout loggerLayout = new StackLayout();

 public ButtonLoggerPage()

 {

 // Create the Button and attach Clicked handler.

 Button button = new Button

 {

 Text = "Log the Click Time"

 };

 button.Clicked += OnButtonClicked;

 this.Padding = new Thickness(5, Device.OnPlatform(20, 0, 0), 5, 0);

 // Assemble the page.

 this.Content = new StackLayout

 {

 Children =

 {

 button,

 new ScrollView

 {

 VerticalOptions = LayoutOptions.FillAndExpand,

 Content = loggerLayout

 }

 }

 };

 }

 void OnButtonClicked(object sender, EventArgs args)

 {

 // Add Label to scrollable StackLayout.

 loggerLayout.Children.Add(new Label

 {

 Text = "Button clicked at " + DateTime.Now.ToString("T")

 });

 }

}

In the programs in this book, event handlers are given names beginning with the word On, followed by some kind of identification of the view firing the event (sometimes just the view type), followed by the event name. The resultant name in this case is OnButtonClicked.

The constructor attaches the Clicked handler to the Button right after the Button is created. The page is then assembled with a StackLayout containing the Button and a ScrollView with another StackLayout, named loggerLayout. Notice that the ScrollView has its VerticalOptions set to FillAndExpand so that it can share the StackLayout with the Button and still be visible and scrollable.

Here’s the display after several Button clicks:

[image: Image]

As you can see, the Button looks a little different on the three screens. That’s because the button is rendered natively on the individual platforms: on the iPhone it’s a UIButton, on Android it’s an Android Button, and on Windows 10 Mobile it’s a Windows Runtime Button. By default the button always fills the area available for it and centers the text inside.

Button defines several properties that let you customize its appearance:

• FontFamily of type string

• FontSize of type double

• FontAttributes of type FontAttributes

• TextColor of type Color (default is Color.Default)

• BorderColor of type Color (default is Color.Default)

• BorderWidth of type double (default is 0)

• BorderRadius of type double (default is 5)

• Image (to be discussed in Chapter 13)

Button also inherits the BackgroundColor property (and a bunch of other properties) from VisualElement and inherits HorizontalOptions and VerticalOptions from View.

Some Button properties might work a little differently on the various platforms. As you can see, none of the buttons in the screenshots has a border. (However, the Windows Phone 8.1 button has a visible white border by default.) If you set the BorderWidth property to a nonzero value, the border becomes visible only on the iPhone, and it’s black. If you set the BorderColor property to something other than Color.Default, the border is visible only on the Windows 10 Mobile device. If you want a visible border on both iOS and Windows 10 mobile devices, set both BorderWidth and BorderColor. But the border still won’t show up on Android devices unless you also set the BackgroundColor property. Customizing a button border is a good opportunity for using Device.OnPlatform (as you’ll see in Chapter 10, “XAML markup extensions”).

The BorderRadius property is intended to round off the sharp corners of the border, and it works on iOS and Android if the border is displayed, but it doesn’t work on Windows 10 and Windows 10 Mobile. The BorderRadius works on Windows 8.1 and Windows Phone 8.1, but if you use it with BackgroundColor, the background is not enclosed within the border.

Suppose you wrote a program similar to ButtonLogger but did not save the loggerLayout object as a field. Could you get access to that StackLayout object in the Clicked event handler?

Yes! It’s possible to obtain parent and child visual elements by a technique called walking the visual tree. The sender argument to the OnButtonClicked handler is the object firing the event, in this case the Button, so you can begin the Clicked handler by casting that argument:

Click here to view code image

Button button = (Button)sender;

You know that the Button is a child of a StackLayout, so that object is accessible from the Parent property. Again, some casting is required:

Click here to view code image

StackLayout outerLayout = (StackLayout)button.Parent;

The second child of this StackLayout is the ScrollView, so the Children property can be indexed to obtain that:

Click here to view code image

ScrollView scrollView = (ScrollView)outerLayout.Children[1];

The Content property of this ScrollView is exactly the StackLayout you were looking for:

Click here to view code image

StackLayout loggerLayout = (StackLayout)scrollView.Content;

Of course, the danger in doing something like this is that you might change the layout someday and forget to change your tree-walking code similarly. But the technique comes in handy if the code that assembles your page is separate from the code handling events from views on that page.

Sharing button clicks

If a program contains multiple Button views, each Button can have its own Clicked handler. But in some cases it might be more convenient for multiple Button views to share a common Clicked handler.

Consider a calculator program. Each of the buttons labeled 0 through 9 basically does the same thing, and having 10 separate Clicked handlers for these 10 buttons—even if they share some common code—simply wouldn’t make much sense.

You’ve seen how the first argument to the Clicked handler can be cast to an object of type Button. But how do you know which Button it is?

One approach is to store all the Button objects as fields and then compare the Button object firing the event with these fields.

The TwoButtons program demonstrates this technique. This program is similar to the previous program but with two buttons—one to add Label objects to the StackLayout, and the other to remove them. The two Button objects are stored as fields so that the Clicked handler can determine which one fired the event:

Click here to view code image

public class TwoButtonsPage : ContentPage

{

 Button addButton, removeButton;

 StackLayout loggerLayout = new StackLayout();

 public TwoButtonsPage()

 {

 // Create the Button views and attach Clicked handlers.

 addButton = new Button

 {

 Text = "Add",

 HorizontalOptions = LayoutOptions.CenterAndExpand

 };

 addButton.Clicked += OnButtonClicked;

 removeButton = new Button

 {

 Text = "Remove",

 HorizontalOptions = LayoutOptions.CenterAndExpand,

 IsEnabled = false

 };

 removeButton.Clicked += OnButtonClicked;

 this.Padding = new Thickness(5, Device.OnPlatform(20, 0, 0), 5, 0);

 // Assemble the page.

 this.Content = new StackLayout

 {

 Children =

 {

 new StackLayout

 {

 Orientation = StackOrientation.Horizontal,

 Children =

 {

 addButton,

 removeButton

 }

 },

 new ScrollView

 {

 VerticalOptions = LayoutOptions.FillAndExpand,

 Content = loggerLayout

 }

 }

 };

 }

 void OnButtonClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 if (button == addButton)

 {

 // Add Label to scrollable StackLayout.

 loggerLayout.Children.Add(new Label

 {

 Text = "Button clicked at " + DateTime.Now.ToString("T")

 });

 }

 else

 {

 // Remove topmost Label from StackLayout.

 loggerLayout.Children.RemoveAt(0);

 }

 // Enable "Remove" button only if children are present.

 removeButton.IsEnabled = loggerLayout.Children.Count > 0;

 }

}

Both buttons are given a HorizontalOptions value of CenterAndExpand so that they can be displayed side by side at the top of the screen by using a horizontal StackLayout:

[image: Image]

Notice that when the Clicked handler detects removeButton, it simply calls the RemoveAt method on the Children property:

Click here to view code image

loggerLayout.Children.RemoveAt(0);

But what happens if there are no children? Won’t RemoveAt raise an exception?

It can’t happen! When the TwoButtons program begins, the IsEnabled property of the removeButton is initialized to false. When a button is disabled in this way, a dim appearance signals to the user that it’s nonfunctional. It does not provide feedback to the user and it does not fire Clicked events. Toward the end of the Clicked handler, the IsEnabled property on removeButton is set to true only if the loggerLayout has at least one child.

This illustrates a good general rule: if your code needs to determine whether a button Clicked event is valid, it’s probably better to prevent invalid button clicks by disabling the button.

Anonymous event handlers

As with any event handler, you can define a Clicked handler as an anonymous lambda function. Here’s a program named ButtonLambdas that has a Label displaying a number and two buttons. One button doubles the number, and the other halves the number. Normally, the number and Label variables would be saved as fields. But because the anonymous event handlers are defined right in the constructor after these variables are defined, the event handlers have access to these local variables:

Click here to view code image

public class ButtonLambdasPage : ContentPage

{

 public ButtonLambdasPage()

 {

 // Number to manipulate.

 double number = 1;

 // Create the Label for display.

 Label label = new Label

 {

 Text = number.ToString(),

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 // Create the first Button and attach Clicked handler.

 Button timesButton = new Button

 {

 Text = "Double",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Button)),

 HorizontalOptions = LayoutOptions.CenterAndExpand

 };

 timesButton.Clicked += (sender, args) =>

 {

 number *= 2;

 label.Text = number.ToString();

 };

 // Create the second Button and attach Clicked handler.

 Button divideButton = new Button

 {

 Text = "Half",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Button)),

 HorizontalOptions = LayoutOptions.CenterAndExpand

 };

 divideButton.Clicked += (sender, args) =>

 {

 number /= 2;

 label.Text = number.ToString();

 };

 // Assemble the page.

 this.Content = new StackLayout

 {

 Children =

 {

 label,

 new StackLayout

 {

 Orientation = StackOrientation.Horizontal,

 VerticalOptions = LayoutOptions.CenterAndExpand,

 Children =

 {

 timesButton,

 divideButton

 }

 }

 }

 };

 }

}

Notice the use of Device.GetNamedSize to get large text for both the Label and the Button. When used with Label, the second argument of GetNamedSize should indicate a Label, and when used with the Button it should indicate a Button. The sizes for the two elements might be different.

Like the previous program, the two buttons share a horizontal StackLayout:

[image: Image]

The disadvantage of defining event handlers as anonymous lambda functions is that they can’t be shared among multiple views. (Actually they can, but some messy reflection code is involved.)

Distinguishing views with IDs

In the TwoButtons program, you saw a technique for sharing an event handler that distinguishes views by comparing objects. This works fine when there aren’t very many views to distinguish, but it would be a terrible approach for a calculator program.

The Element class defines a StyleId property of type string specifically for the purpose of identifying views. It’s not used for anything internal to Xamarin.Forms, so you can set it to whatever is convenient for the application. You can test the values by using if and else statements or in a switch and case block, or you can use a Parse method to convert the strings into numbers or enumeration members.

The following program isn’t a calculator, but it is a numeric keypad, which is certainly part of a calculator. The program is called SimplestKeypad and uses a StackLayout for organizing the rows and columns of keys. (One of the intents of this program is to demonstrate that StackLayout is not quite the right tool for this job!)

The program creates a total of five StackLayout instances. The mainStack is vertically oriented, and four horizontal StackLayout objects arrange the 10 digit buttons. To keep things simple, the keypad is arranged with telephone ordering rather than calculator ordering:

Click here to view code image

public class SimplestKeypadPage : ContentPage

{

 Label displayLabel;

 Button backspaceButton;

 public SimplestKeypadPage()

 {

 // Create a vertical stack for the entire keypad.

 StackLayout mainStack = new StackLayout

 {

 VerticalOptions = LayoutOptions.Center,

 HorizontalOptions = LayoutOptions.Center

 };

 // First row is the Label.

 displayLabel = new Label

 {

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 VerticalOptions = LayoutOptions.Center,

 HorizontalTextAlignment = TextAlignment.End

 };

 mainStack.Children.Add(displayLabel);

 // Second row is the backspace Button.

 backspaceButton = new Button

 {

 Text = "\u21E6",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Button)),

 IsEnabled = false

 };

 backspaceButton.Clicked += OnBackspaceButtonClicked;

 mainStack.Children.Add(backspaceButton);

 // Now do the 10 number keys.

 StackLayout rowStack = null;

 for (int num = 1; num <= 10; num++)

 {

 if ((num - 1) % 3 == 0)

 {

 rowStack = new StackLayout

 {

 Orientation = StackOrientation.Horizontal

 };

 mainStack.Children.Add(rowStack);

 }

 Button digitButton = new Button

 {

 Text = (num % 10).ToString(),

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Button)),

 StyleId = (num % 10).ToString()

 };

 digitButton.Clicked += OnDigitButtonClicked;

 // For the zero button, expand to fill horizontally.

 if (num == 10)

 {

 digitButton.HorizontalOptions = LayoutOptions.FillAndExpand;

 }

 rowStack.Children.Add(digitButton);

 }

 this.Content = mainStack;

 }

 void OnDigitButtonClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 displayLabel.Text += (string)button.StyleId;

 backspaceButton.IsEnabled = true;

 }

 void OnBackspaceButtonClicked(object sender, EventArgs args)

 {

 string text = displayLabel.Text;

 displayLabel.Text = text.Substring(0, text.Length - 1);

 backspaceButton.IsEnabled = displayLabel.Text.Length > 0;

 }

}

The 10 number keys share a single Clicked handler. The StyleId property indicates the number associated with the key, so the program can simply append that number to the string displayed by the Label. The StyleId happens to be identical to the Text property of the Button, and the Text property could be used instead, but in the general case, things aren’t always quite that convenient.

The backspace Button is sufficiently different in function to warrant its own Clicked handler, although it would surely be possible to combine the two methods into one to take advantage of any code they might have in common.

To give the keypad a slightly larger size, all the text is given a FontSize using NamedSize.Large. Here are the three renderings of the SimplestKeypad program:

[image: Image]

Of course, you’ll want to press the keys repeatedly until you see how the program responds to a really large string of digits, and you’ll discover that it doesn’t adequately anticipate such a thing. When the Label gets too wide, it begins to govern the overall width of the vertical StackLayout, and the buttons start shifting as well.

Moreover, if the buttons contain letters or symbols rather than numbers, the buttons will be misaligned because each button width is based on its content.

Can you fix this problem with the Expands flag on the HorizontalOptions property? No. The Expands flag causes extra space to be distributed equally among the views in the StackLayout. Each view will increase additively by the same amount, but the buttons start out with different widths, and they will always have different widths. For example, take a look at the two buttons in the TwoButtons or ButtonLambdas program. Those buttons have their HorizontalOptions properties set to FillAndExpand, but they are different widths because the width of the button content is different.

A better solution for these programs is the layout known as the Grid, coming up in Chapter 17.

Saving transient data

Suppose you’re entering an important number in the SimplestKeypad program and you’re interrupted—perhaps with a phone call. Later on, you shut off the phone, effectively terminating the program.

What should happen the next time you run SimplestKeypad? Should the long string of numbers you entered earlier be discarded? Or should it seem as though the program resumed from the state you last left it? Of course, it doesn’t matter for a simple demo program like SimplestKeypad, but in the general case, users expect mobile applications to remember exactly what they were doing the last time they interacted with the program.

For this reason, the Application class supports two facilities that help the program save and restore data:

• The Properties property of Application is a dictionary with string keys and object items. The contents of this dictionary are automatically saved prior to the application being terminated, and the saved contents become available the next time the application runs.

• The Application class defines three protected virtual methods, named OnStart, OnSleep, and OnResume, and the App class generated by the Xamarin.Forms template overrides these methods. These methods help an application deal with what are known as application lifecycle events.

To use these facilities, you need to identify what information your application needs to save so that it can restore its state after being terminated and restarted. In general, this is a combination of application settings—such as colors and font sizes that the user might be given an opportunity to set—and transient data, such as half-entered entry fields. Application settings usually apply to the entire application, while transient data is unique to each page in the application. If each item of this data is an entry in the Properties dictionary, each item needs a dictionary key. However, if a program needs to save a large file such as a word-processing document, it shouldn’t use the Properties dictionary, but instead should access the platform’s file system directly. (That’s a job for Chapter 20, “Async and file I/O.”)

Also, you should restrict the data types used with Properties to the basic data types supported by .NET and C#, such as string, int, and double.

The SimplestKeypad program needs to save only a single item of transient data, and the dictionary key “displayLabelText” seems reasonable.

Sometimes a program can use the Properties dictionary to save and retrieve data without getting involved with application lifecycle events. For example, the SimplestKeypad program knows exactly when the Text property of displayLabel changes. It happens only in the two Clicked event handlers for the number keys and the delete key. Those two event handlers could simply store the new value in the Properties dictionary.

But wait: Properties is a property of the Application class. Do we need to save the instance of the App class so that code in the SimplestKeypadPage can get access to the dictionary? No, it’s not necessary. Application defines a static property named Current that returns the current application’s instance of the Application class.

To store the Text property of the Label in the dictionary, simply add the following line at the bottom of the two Clicked event handlers in SimplestKeypad:

Click here to view code image

Application.Current.Properties["displayLabelText"] = displayLabel.Text;

Don’t worry if the displayLabelText key does not yet exist in the dictionary: The Properties dictionary implements the generic IDictionary interface, which explicitly defines the indexer to replace the previous item if the key already exists or to add a new item to the dictionary if the key does not exist. That behavior is exactly what you want here.

The SimplestKeypadPage constructor can then conclude by initializing the Text property of the Label with the following code, which retrieves the item from the dictionary:

Click here to view code image

IDictionary<string, object> properties = Application.Current.Properties;

if (properties.ContainsKey("displayLabelText"))

{

 displayLabel.Text = properties["displayLabelText"] as string;

 backspaceButton.IsEnabled = displayLabel.Text.Length > 0;

}

This is all your application needs to do: just save information in the Properties dictionary and retrieve it. Xamarin.Forms itself is responsible for the job of saving and loading the contents of the dictionary in platform-specific application storage.

In general, however, it’s better for an application to interact with the Properties dictionary in a more structured manner, and here’s where the application lifecycle events come into play. These are the three methods that appear in the App class generated by the Xamarin.Forms template:

Click here to view code image

public class App : Application

{

 public App()

 {

 ...

 }

 protected override void OnStart()

 {

 // Handle when your app starts

 }

 protected override void OnSleep()

 {

 // Handle when your app sleeps

 }

 protected override void OnResume()

 {

 // Handle when your app resumes

 }

}

The most important is the OnSleep call. In general, an application goes into sleep mode when it no longer commands the screen and has become inactive (apart from some background jobs it might have initiated). From this sleep mode, an application can be resumed (signaled by an OnResume call) or terminated. But this is important: After the OnSleep call, there is no further notification that an application is being terminated. The OnSleep call is as close as you get to a termination notification, and it always precedes a termination. For example, if your application is running and the user turns off the phone, the application gets an OnSleep call as the phone is shutting down.

Actually, there are some exceptions to the rule that a call to OnSleep always precedes program termination: a program that crashes does not get an OnSleep call first, but you probably expect that. But here’s a case that you might not anticipate: When you are debugging a Xamarin.Forms application, and use Visual Studio or Xamarin Studio to stop debugging, the program is terminated without a preceding OnSleep call. This means that when you are debugging code that uses these application lifecycle events, you should get into the habit of using the phone itself to put your program to sleep, to resume the program, and to terminate it.

When your Xamarin.Forms application is running, the easiest way to trigger an OnSleep call on a phone or simulator is by pressing the phone’s Home button. You can then bring the program back to the foreground and trigger an OnResume call by selecting the application from the home menu (on iOS devices or Android devices) or by pressing the Back button (on Android and Windows Phone devices).

If your Xamarin.Forms program is running and you invoke the phone’s application switcher—by pressing the Home button twice on iOS devices, by pressing the Multitask button on Android devices (or by holding down the Home button on older Android devices), or by holding down the Back button on a Windows Phone—the application gets an OnSleep call. If you then select that program, the application gets an OnResume call as it resumes execution. If you instead terminate the application—by swiping the application’s image upward on iOS devices or by tapping the X on the upper-right corner of the application’s image on Android and Windows Phone devices—the program stops executing with no further notification.

So here’s the basic rule: Whenever your application gets a call to OnSleep, you should ensure that the Properties dictionary contains all the information about the application you want to save.

If you’re using lifecycle events solely for saving and restoring program data, you don’t need to handle the OnResume method. When your program gets an OnResume call, the operating system has already automatically restored the program contents and state. If you want to, you can use OnResume as an opportunity to clear out the Properties dictionary because you are assured of getting another OnSleep call before your program terminates. However, if your program has established a connection with a web service—or is in the process of establishing such a connection—you might want to use OnResume to restore that connection. Perhaps the connection has timed out in the interval that the program was inactive. Or perhaps some fresh data is available.

You have some flexibility when you restore the data from the Properties dictionary to your application as your program starts running. When a Xamarin.Forms program starts up, the first opportunity you have to execute some code in the Portable Class Library is the constructor of the App class. At that time, the Properties dictionary has already been filled with the saved data from platform-specific storage. The next code that executes is generally the constructor of the first page in your application instantiated from the App constructor. The OnStart call in Application (and App) follows that, and then an overridable method called OnAppearing is called in the page class. You can retrieve the data at any time during this startup process.

The data that an application needs to save is usually in a page class, but the OnSleep override is in the App class. So somehow the page class and the App class must communicate. One approach is to define an OnSleep method in the page class that saves the data to the Properties dictionary and then call the page’s OnSleep method from the OnSleep method in App. This approach works fine for a single-page application—indeed, the Application class has a static property named MainPage that is set in the App constructor and which the OnSleep method can use to get access to that page—but it doesn’t work nearly as well for multipage applications.

Here’s a somewhat different approach: You first define all the data you need to save as public properties in the App class, for example:

Click here to view code image

public class App : Application

{

 public App()

 {

 ...

 }

 public string DisplayLabelText { set; get; }

 ...

}

The page class (or classes) can then set and retrieve those properties when convenient. The App class can restore any such properties from the Properties dictionary in its constructor prior to instantiating the page and can store the properties in the Properties dictionary in its OnSleep override.

That’s the approach taken by the PersistentKeypad project. This program is identical to SimplestKeypad except that it includes code to save and restore the contents of the keypad. Here’s the App class that maintains a public DisplayLabelText property that is saved in the OnSleep override and loaded in the App constructor:

Click here to view code image

namespace PersistentKeypad

{

 public class App : Application

 {

 const string displayLabelText = "displayLabelText";

 public App()

 {

 if (Properties.ContainsKey(displayLabelText))

 {

 DisplayLabelText = (string)Properties[displayLabelText];

 }

 MainPage = new PersistentKeypadPage();

 }

 public string DisplayLabelText { set; get; }

 protected override void OnStart()

 {

 // Handle when your app starts

 }

 protected override void OnSleep()

 {

 // Handle when your app sleeps

 Properties[displayLabelText] = DisplayLabelText;

 }

 protected override void OnResume()

 {

 // Handle when your app resumes

 }

 }

}

To avoid spelling errors, the App class defines the string dictionary key as a constant. It’s the same as the property name except that it begins with a lowercase letter. Notice that the DisplayLabelText property is set prior to instantiating PersistentKeypadPage so that it’s available in the PersistentKeypadPage constructor.

An application with many more items might want to consolidate them in a class named AppSettings (for example), serialize that class to an XML or a JSON string, and then save the string in the dictionary.

The PersistentKeypadPage class accesses that DisplayLabelText property in its constructor and sets the property in its two event handlers:

Click here to view code image

public class PersistentKeypadPage : ContentPage

{

 Label displayLabel;

 Button backspaceButton;

 public PersistentKeypadPage()

 {

 ...

 // New code for loading previous keypad text.

 App app = Application.Current as App;

 displayLabel.Text = app.DisplayLabelText;

 backspaceButton.IsEnabled = displayLabel.Text != null &&

 displayLabel.Text.Length > 0;

 }

 void OnDigitButtonClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 displayLabel.Text += (string)button.StyleId;

 backspaceButton.IsEnabled = true;

 // Save keypad text.

 App app = Application.Current as App;

 app.DisplayLabelText = displayLabel.Text;

 }

 void OnBackspaceButtonClicked(object sender, EventArgs args)

 {

 string text = displayLabel.Text;

 displayLabel.Text = text.Substring(0, text.Length - 1);

 backspaceButton.IsEnabled = displayLabel.Text.Length > 0;

 // Save keypad text.

 App app = Application.Current as App;

 app.DisplayLabelText = displayLabel.Text;

 }

}

When testing programs that use the Properties dictionary and application lifecycle events, you’ll want to occasionally uninstall the program from the phone or simulator. Uninstalling a program from a device also deletes any stored data, so the next time the program is deployed from Visual Studio or Xamarin Studio, the program encounters an empty dictionary, as though it were being run for the very first time.

Chapter 7. XAML vs. code

C# is undoubtedly one of the greatest programming languages the world has ever seen. You can write entire Xamarin.Forms applications in C#, and it’s conceivable that you’ve found C# to be so ideally suited for Xamarin.Forms that you haven’t even considered using anything else.

But keep an open mind. Xamarin.Forms provides an alternative to C# that has some distinct advantages for certain aspects of program development. This alternative is XAML (pronounced "zammel"), which stands for the Extensible Application Markup Language. Like C#, XAML was developed at Microsoft Corporation, and it is only a few years younger than C#.

As its name suggests, XAML adheres to the syntax of XML, the Extensible Markup Language. This book assumes that you have familiarity with the basic concepts and syntax of XML.

In the most general sense, XAML is a declarative markup language used for instantiating and initializing objects. That definition might seem excessively general, and XAML is indeed quite flexible. But most real-world XAML has been used for defining tree-structured visual user interfaces characteristic of graphical programming environments. The history of XAML-based user interfaces begins with the Windows Presentation Foundation (WPF) and continues with Silverlight, Windows Phone 7 and 8, and Windows 8 and 10. Each of these XAML implementations supports a somewhat different set of visual elements defined by the particular platform. Likewise, the XAML implementation in Xamarin.Forms supports the visual elements defined by Xamarin.Forms, such as Label, BoxView, Frame, Button, StackLayout, and ContentPage.

As you’ve seen, a Xamarin.Forms application written entirely in code generally defines the initial appearance of its user interface in the constructor of a class that derives from ContentPage. If you choose to use XAML, the markup generally replaces this constructor code. You will find that XAML provides a more succinct and elegant definition of the user interface and has a visual structure that better mimics the tree organization of the visual elements on the page.

XAML is also generally easier to maintain and modify than equivalent code. Because XAML is XML, it is also potentially toolable: XAML can more easily be parsed and edited by software tools than the equivalent C# code. Indeed, an early impetus behind XAML was to facilitate a collaboration between programmers and designers: Designers can use design tools that generate XAML, while programmers focus on the code that interacts with the markup. While this vision has perhaps only rarely been fulfilled to perfection, it certainly suggests how applications can be structured to accommodate XAML. You use XAML for the visuals and code for the underlying logic.

Yet, XAML goes beyond that simple division of labor. As you’ll see in a future chapter, it’s possible to define bindings right in the XAML that link user-interface objects with underlying data.

When creating XAML for Microsoft platforms, some developers use interactive design tools such as Microsoft Blend, but many others prefer to handwrite XAML. No design tools are available for Xamarin.Forms, so handwriting is the only option. Obviously, all the XAML examples in this book are hand-written. But even when design tools are available, the ability to handwrite XAML is an important skill.

The prospect of handwriting XAML might cause some consternation among developers for another reason: XML is notoriously verbose. Yet, you’ll see almost immediately that XAML is often more concise than the equivalent C# code. The real power of XAML becomes evident only incrementally, however, and won’t be fully apparent until Chapter 19, “Collection views,” when you use XAML for constructing templates for multiple items displayed in a ListView.

It is natural for programmers who prefer strongly typed languages such as C# to be skeptical of a markup language where everything is a text string. But you’ll see shortly how XAML is a very strict analog of programming code. Much of what’s allowed in your XAML files is defined by the classes and properties that make up the Xamarin.Forms application programming interface. For this reason, you might even begin to think of XAML as a "strongly typed" markup language. The XAML parser does its job in a very mechanical manner based on the underlying API infrastructure. One of the objectives of this chapter and the next is to demystify XAML and illuminate what happens when the XAML is parsed.

Yet, code and markup are very different: Code defines a process while markup defines a state. XAML has several deficiencies that are intrinsic to markup languages: XAML has no loops, no flow control, no algebraic calculation syntax, and no event handlers. However, XAML defines several features that help compensate for some of these deficiencies. You’ll see many of these features in future chapters.

If you do not want to use XAML, you don’t need to. Anything that can be done in XAML can be done in C#. But watch out: Sometimes developers get a little taste of XAML and get carried away and try to do everything in XAML! As usual, the best rule is “moderation in all things.” Many of the best techniques involve combining code and XAML in interactive ways.

Let’s begin this exploration with a few snippets of code and the equivalent XAML, and then see how XAML and code fit together in a Xamarin.Forms application.

Properties and attributes

Here is a Xamarin.Forms Label instantiated and initialized in code, much as it might appear in the constructor of a page class:

Click here to view code image

new Label

{

 Text = "Hello from Code!",

 IsVisible = true,

 Opacity = 0.75,

 HorizontalTextAlignment = TextAlignment.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand,

 TextColor = Color.Blue,

 BackgroundColor = Color.FromRgb(255, 128, 128),

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Bold | FontAttributes.Italic

};

Here is a very similar Label instantiated and initialized in XAML, which you can see immediately is more concise than the equivalent code:

Click here to view code image

<Label Text="Hello from XAML!"

 IsVisible="True"

 Opacity="0.75"

 HorizontalTextAlignment="Center"

 VerticalOptions="CenterAndExpand"

 TextColor="Blue"

 BackgroundColor="#FF8080"

 FontSize="Large"

 FontAttributes="Bold,Italic" />

Xamarin.Forms classes such as Label become XML elements in XAML. Properties such as Text, IsVisible, and the rest become XML attributes in XAML.

To be instantiated in XAML, a class such as Label must have a public parameterless constructor. (In the next chapter, you’ll see that there is a technique to pass arguments to a constructor in XAML, but it’s generally used for special purposes.) The properties set in XAML must have public set accessors. By convention, spaces surround an equal sign in code but not in XML (or XAML), but you can use as much white space as you want.

The concision of the XAML results mostly from the brevity of the attribute values—for example, the use of the word "Large" rather than a call to the Device.GetNamedSize method. These abbreviations are not built into the XAML parser. The XAML parser is instead assisted by various converter classes defined specifically for this purpose.

When the XAML parser encounters the Label element, it can use reflection to determine whether Xamarin.Forms has a class named Label, and if so, it can instantiate that class. Now it is ready to initialize that object. The Text property is of type string, and the attribute value is simply assigned to that property.

Because XAML is XML, you can include Unicode characters in the text by using the standard XML syntax. Precede the decimal Unicode value with &# (or the hexadecimal Unicode value with &#x) and follow it with a semicolon:

Click here to view code image

Text="Cost — €123.45"

Those are the Unicode values for the em dash and euro symbol. To force a line break, use the line-feed character
, or (because leading zeros aren’t required)
, or, in decimal,
.

Angle brackets, ampersands, and quotation marks have a special meaning in XML, so to include those characters in a text string, use one of the standard predefined entities:

• < for <

• > for >

• & for &

• ' for '

• " for "

The HTML predefined entities such as are not supported. For a nonbreaking space use instead.

In addition, in Chapter 10, “XAML markup extensions,” you’ll discover that curly braces ({ and }) have a special meaning in XAML. If you need to begin an attribute value with a left curly brace, begin it with a pair of curly braces ({}) and then the left curly brace.

Back to the example: The IsVisible and Opacity properties of Label are of type bool and double, respectively, and these are as simple as you might expect. The XAML parser uses the Boolean.Parse and Double.Parse methods to convert the attribute values. The Boolean.Parse method is case insensitive, but generally Boolean values are capitalized as “True” and “False” in XAML. The Double.Parse method is passed a CultureInfo.InvariantCulture argument, so the conversion doesn’t depend on the local culture of the programmer or user.

The HorizontalTextAlignment property of Label is of type TextAlignment, which is an enumeration. For any property that is an enumeration type, the XAML parser uses the Enum.Parse method to convert from the string to the value.

The VerticalOptions property is of type LayoutOptions, a structure. When the XAML parser references the LayoutOptions structure using reflection, it discovers that the structure has a C# attribute defined:

Click here to view code image

[TypeConverter (typeof(LayoutOptionsConverter))]

public struct LayoutOptions

{

 ...

}

(Watch out! This discussion involves two types of attributes: XML attributes such as HorizontalTextAlignment and C# attributes such as this TypeConverter.)

The TypeConverter attribute is supported by a class named TypeConverterAttribute. This particular TypeConverter attribute on LayoutOptions references a class named LayoutOptionsConverter, which derives from a public abstract class named TypeConverter that defines methods named CanConvertFrom and ConvertFrom. When the XAML parser encounters this TypeConverter attribute, it instantiates the LayoutOptionsConverter. The VerticalOptions attribute in the XAML is assigned the string “Center”, so the XAML parser passes that “Center” string to the ConvertFrom method of LayoutOptionsConverter, and out pops a LayoutOptions value. This is assigned to the VerticalOptions property of the Label object.

Similarly, when the XAML parser encounters the TextColor and BackgroundColor properties, it uses reflection to determine that those properties are of type Color. The Color structure is also adorned with a TypeConverter attribute:

Click here to view code image

[TypeConverter (typeof(ColorTypeConverter))]

public struct Color

{

 ...

}

You can create an instance of ColorTypeConverter and experiment with it in code if you’d like. It accepts color definitions in several formats: It can convert a string like “Blue” to the Color.Blue value, and the “Default” and “Accent” strings to the Color.Default and Color.Accent values. ColorTypeConverter can also parse strings that encode red-green-blue values, such as “#FF8080”, which is a red value of 0xFF, a green value of 0x80, and a blue value also of 0x80.

All numeric RGB values begin with a number-sign prefix, but that prefix can be followed with eight, six, four, or three hexadecimal digits for specifying color values with or without an alpha channel.
Here’s the most extensive syntax:

BackgroundColor="#aarrggbb"

Each of the letters represents a hexadecimal digit, in the order alpha (opacity), red, green, and blue. For the alpha channel, keep in mind that 0xFF is fully opaque and 0x00 is fully transparent. Here’s the syntax without an alpha channel:

BackgroundColor="#rrggbb"

In this case the alpha value is set to 0xFF for full opacity.

Two other formats allow you to specify only a single hexadecimal digit for each channel:

BackgroundColor="#argb"

BackgroundColor="#rgb"

In these cases, the digit is repeated to form the value. For example, #CF3 is the RGB color 0xCC-0xFF-0x33. These short formats are rarely used.

The FontSize property of Label is of type double. This is a little different from properties of type LayoutOptions and Color. The LayoutOptions and Color structures are part of Xamarin.Forms, so they can be flagged with the C# TypeConverter attribute, but it’s not possible to flag the .NET Double structure with a TypeConverter attribute just for font sizes!

Instead, the FontSize property within the Label class has the TypeConverter attribute:

Click here to view code image

public class Label : View, IFontElement

{

 ...

 [TypeConverter (typeof (FontSizeConverter))]

 public double FontSize

 {

 ...

 }

 ...

}

The FontSizeConverter class determines whether the string passed to it is one of the members of the NamedSize enumeration. If not, FontSizeConverter assumes the value is a double.

The last attribute set in the example is FontAttributes. The FontAttributes property is an enumeration named FontAttributes, and you already know that the XAML parser handles enumeration types automatically. However, the FontAttributes enumeration has a C# Flags attribute set like so:

[Flags]

public enum FontAttributes

{

 None = 0,

 Bold = 1,

 Italic = 2

}

The XAML parser therefore allows multiple members separated by commas:

FontAttributes="Bold,Italic"

This demonstration of the mechanical nature of the XAML parser should be very good news. It means that you can include custom classes in XAML, and these classes can have properties of custom types, or the properties can be of standard types but allow additional values. All you need is to flag these types or properties with a C# TypeConverter attribute and provide a class that derives from TypeConverter.

Property-element syntax

Here is some C# that is similar to the FramedText code in Chapter 4. In one statement it instantiates a Frame and a Label and sets the Label to the Content property of the Frame:

Click here to view code image

new Frame

{

 OutlineColor = Color.Accent,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!"

 }

};

But when you start to duplicate this in XAML, you might become a little stymied at the point where you set the Content attribute:

Click here to view code image

<Frame OutlineColor="Accent"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Content=" what goes here? " />

How can that Content attribute be set to an entire Label object?

The solution to this problem is the most fundamental feature of XAML syntax. The first step is to separate the Frame tag into start and end tags:

Click here to view code image

<Frame OutlineColor="Accent"

 HorizontalOptions="Center"

 VerticalOptions="Center">

</Frame>

Within those tags, add two more tags that consist of the element (Frame) and the property you want to set (Content) connected with a period:

Click here to view code image

<Frame OutlineColor="Accent"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <Frame.Content>

 </Frame.Content>

</Frame>

Now put the Label within those tags:

Click here to view code image

<Frame OutlineColor="Accent"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <Frame.Content>

 <Label Text="Greetings, Xamarin.Forms!" />

 </Frame.Content>

</Frame>

That syntax is how you set a Label to the Content property of the Frame.

You might wonder if this XAML feature violates XML syntax rules. It does not. The period has no special meaning in XML, so Frame.Content is a perfectly valid XML tag. However, XAML imposes its own rules about these tags: The Frame.Content tags must appear within Frame tags, and no attributes can be set in the Frame.Content tag. The object set to the Content property appears as the XML content of those tags.

Once this syntax is introduced, some terminology becomes necessary. In the final XAML snippet shown above:

• Frame and Label are C# objects expressed as XML elements. They are called object elements.

• OutlineColor, HorizontalOptions, VerticalOptions, and Text are C# properties expressed as XML attributes. They are called property attributes.

• Frame.Content is a C# property expressed as an XML element, and it is therefore called a property element.

Property elements are very common in real-life XAML. You’ll see numerous examples in this chapter and future chapters, and you’ll soon find property elements becoming second nature to your use of XAML. But watch out: Sometimes developers must remember so much that we forget the basics. Even after you’ve been using XAML for a while, you’ll probably encounter a situation where it doesn’t seem possible to set a particular object to a particular property. The solution is very often a property element.

You can also use property-element syntax for simpler properties, for example:

Click here to view code image

<Frame HorizontalOptions="Center">

 <Frame.VerticalOptions>

 Center

 </Frame.VerticalOptions>

 <Frame.OutlineColor>

 Accent

 </Frame.OutlineColor>

 <Frame.Content>

 <Label>

 <Label.Text>

 Greetings, Xamarin.Forms!

 </Label.Text>

 </Label>

 </Frame.Content>

</Frame>

Now the VerticalOptions and OutlineColor properties of Frame and the Text property of Label have all become property elements. The value of these attributes is always the content of the property element without quotation marks.

Of course, it doesn’t make much sense to define these properties as property elements. It’s unnecessarily verbose. But it works as it should.

Let’s go a little further: Instead of setting HorizontalOptions to “Center” (corresponding to the static property LayoutOptions.Center), you can express HorizontalOptions as a property element and set it to a LayoutOptions value with its individual properties set:

Click here to view code image

<Frame>

 <Frame.HorizontalOptions>

 <LayoutOptions Alignment="Center"

 Expands="False" />

 </Frame.HorizontalOptions>

 <Frame.VerticalOptions>

 Center

 </Frame.VerticalOptions>

 <Frame.OutlineColor>

 Accent

 </Frame.OutlineColor>

 <Frame.Content>

 <Label>

 <Label.Text>

 Greetings, Xamarin.Forms!

 </Label.Text>

 </Label>

 </Frame.Content>

</Frame>

And you can also express these properties of LayoutOptions as property elements:

Click here to view code image

<Frame>

 <Frame.HorizontalOptions>

 <LayoutOptions>

 <LayoutOptions.Alignment>

 Center

 </LayoutOptions.Alignment>

 <LayoutOptions.Expands>

 False

 </LayoutOptions.Expands>

 </LayoutOptions>

 </Frame.HorizontalOptions>

 ...

</Frame>

You can’t set the same property as a property attribute and a property element. That’s setting the property twice, and it’s not allowed. And remember that nothing else can appear in the propertyelement tags. The value being set to the property is always the XML content of those tags.

Now you should know how to use a StackLayout in XAML. First express the Children property as the property element StackLayout.Children, and then include the children of the StackLayout as XML content of the property-element tags. Here’s an example where each child of the first StackLayout is another StackLayout with a horizontal orientation:

Click here to view code image

<StackLayout>

 <StackLayout.Children>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

 <BoxView Color="Red" />

 <Label Text="Red"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

 <BoxView Color="Green" />

 <Label Text="Green"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

 <BoxView Color="Blue" />

 <Label Text="Blue"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 </StackLayout.Children>

</StackLayout>

Each horizontal StackLayout has a BoxView with a color and a Label with that color name.

Of course, the repetitive markup here looks rather scary! What if you wanted to display 16 colors? Or 140? You might succeed at first with a lot of copying and pasting, but if you then needed to refine the visuals a bit, you’d be in bad shape. In code you’d do this in a loop, but XAML has no such feature.

When markup threatens to be overly repetitious, you can always use code. Defining some of a user interface in XAML and the rest in code is perfectly reasonable. But there are other solutions, as you’ll see in later chapters.

Adding a XAML page to your project

Now that you’ve seen some snippets of XAML, let’s look at a whole XAML page in the context of a complete program. First, create a Xamarin.Forms solution named CodePlusXaml using the Portable Class Library solution template.

Now add a XAML ContentPage to the PCL. Here’s how: In Visual Studio, right-click the CodePlusXaml project in the Solution Explorer. Select Add > New Item from the menu. In the Add New Item dialog, select Visual C# and Cross-Platform at the left, and Forms Xaml Page from the central list. Name it CodePlusXamlPage.cs.

In Xamarin Studio, invoke the drop-down menu on the CodePlusXaml project in the Solution list, and select Add > New File. In the New File dialog, select Forms at the left and Forms ContentPage Xaml in the central list. (Watch out: There’s also a Forms ContentView Xaml in the list. You want a content page.) Name it CodePlusXamlPage.

In either case, two files are created:

• CodePlusXamlPage.xaml, the XAML file; and

• CodePlusXamlPage.xaml.cs, a C# file (despite the odd double extension on the filename).

In the file list, the second file is indented underneath the first, indicating their close relationship. The C# file is often referred to as the code-behind of the XAML file. It contains code that supports the markup. These two files both contribute to a class named CodePlusXamlPage that derives from ContentPage.

Let’s examine the code file first. Excluding the using directives, it looks like this:

Click here to view code image

namespace CodePlusXaml

{

 public partial class CodePlusXamlPage : ContentPage

 {

 public CodePlusXamlPage()

 {

 InitializeComponent();

 }

 }

}

It is indeed a class named CodePlusXamlPage that derives from ContentPage, just as anticipated. However, the class definition includes a partial keyword, which usually indicates that this is only part of the CodePlusXamlPage class definition. Somewhere else there should be another partial class definition for CodePlusXamlPage. So if it exists, where is it? It’s a mystery! (For now.)

Another mystery is the InitializeComponent method that the constructor calls. Judging solely from the syntax, it seems as though this method should be defined or inherited by ContentPage. Yet you won’t find InitializeComponent in the API documentation.

Let’s set those two mysteries aside temporarily and look at the XAML file. The Visual Studio and Xamarin Studio templates generate two somewhat different XAML files. If you’re using Visual Studio, delete the markup for the Label and replace it with ContentPage.Content property-element tags so that it looks like the version in Xamarin Studio:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="CodePlusXaml.CodePlusXamlPage">

 <ContentPage.Content>

 </ContentPage.Content>

</ContentPage>

The root element is ContentPage, which is the class that CodePlusXamlPage derives from. That tag begins with two XML namespace declarations, both of which are URIs. But don’t bother checking the web addresses! There’s nothing there. These URIs simply indicate who owns the namespace and what function it serves.

The default namespace belongs to Xamarin. This is the XML namespace for elements in the file with no prefix, such as the ContentPage tag. The URI includes the year that this namespace came into being and the word forms as an abbreviation for Xamarin.Forms.

The second namespace is associated with a prefix of x by convention, and it belongs to Microsoft. This namespace refers to elements and attributes that are intrinsic to XAML and are found in every XAML implementation. The word winfx refers to a name once used for the .NET Framework 3.0, which introduced WPF and XAML. The year 2009 refers to a particular XAML specification, which also implies a particular collection of elements and attributes that build upon the original XAML specification, which is dated 2006. However, Xamarin.Forms implements only a subset of the elements and attributes in the 2009 specification.

The next line is one of the attributes that is intrinsic to XAML, called Class. Because the x prefix is almost universally used for this namespace, this attribute is commonly referred to as x:Class and pronounced “x class.”

The x:Class attribute can appear only on the root element of a XAML file. It specifies the .NET namespace and name of a derived class. The base class of this derived class is the root element. In other words, this x:Class specification indicates that the CodePlusXamlPage class in the CodePlusXaml namespace derives from ContentPage. That’s exactly the same information as the CodePlusXamlPage class definition in the CodePlusXamlPage.xaml.cs file.

Let’s add some content to this ContentPage in the XAML file. This requires setting something to the Content property, which in the XAML file means putting something between ContentPage.Content property-element tags. Begin the content with a StackLayout, and then add a Label to the Children property:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="CodePlusXaml.CodePlusXamlPage">

 <ContentPage.Content>

 <StackLayout>

 <StackLayout.Children>

 <Label Text="Hello from XAML!"

 IsVisible="True"

 Opacity="0.75"

 HorizontalTextAlignment="Center"

 VerticalOptions="CenterAndExpand"

 TextColor="Blue"

 BackgroundColor="#FF8080"

 FontSize="Large"

 FontAttributes="Bold,Italic" />

 </StackLayout.Children>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

That’s the XAML Label you saw at the beginning of this chapter.

You’ll now need to change the App class to instantiate this page just like you do with a code-only derivative of ContentPage:

Click here to view code image

namespace CodePlusXaml

{

 public class App : Application

 {

 public App()

 {

 MainPage = new CodePlusXamlPage();

 }

 ...

 }

}

You can now build and deploy this program. After you do so, it’s possible to clear up a couple of mysteries encountered earlier in this section:

In Visual Studio, in the Solution Explorer, select the CodePlusXaml project, find the icon at the top with the tooltip Show All Files, and toggle that on.

In Xamarin Studio, in the Solution file list, invoke the drop-down menu for the whole solution, and select Display Options > Show All Files.

In the CodePlusXaml Portable Class Library project, find the obj folder and within that, the Debug folder. You’ll see a file named CodePlusXamlPage.xaml.g.cs. Notice the g in the filename. That stands for generated. Here it is, complete with the comment that tells you that this file is generated by a tool:

Click here to view code image

//--

// <auto-generated>

// This code was generated by a tool.

// Runtime Version:4.0.30319.42000

//

// Changes to this file may cause incorrect behavior and will be lost if

// the code is regenerated.

// </auto-generated>

//--

namespace CodePlusXaml {

 using System;

 using Xamarin.Forms;

 using Xamarin.Forms.Xaml;

 public partial class CodePlusXamlPage : global::Xamarin.Forms.ContentPage {

 [System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.XamlG",

 "0.0.0.0")]

 private void InitializeComponent() {

 this.LoadFromXaml(typeof(CodePlusXamlPage));

 }

 }

}

During the build process, the XAML file is parsed, and this code file is generated. Notice that it’s a partial class definition of CodePlusXamlPage, which derives from ContentPage, and the class contains a method named InitializeComponent.

In other words, it’s a perfect fit for the CodePlusXamlPage.xaml.cs code-behind file. After the CodePlusXamlPage.xaml.g.cs file is generated, the two files can be compiled together as if they were just normal C# partial class definitions.

At run time, the App class instantiates the CodePlusXamlPage class. The CodePlusXamlPage constructor (defined in the code-behind file) calls InitializeComponent (defined in the generated file), and InitializeComponent calls LoadFromXaml. This is an extension method for View defined in the Extensions class in the Xamarin.Forms.Xaml assembly. What LoadFromXaml does depends on whether you’ve chosen to compile the XAML or not (as discussed in the next section). But when the InitializeComponent method returns, the whole page is in place, just as though everything had been instantiated and initialized in code in the CodePlusXamlPage constructor.

It’s possible to continue adding content to the page in the constructor of the code-behind file, but only after the InitializeComponent call returns. Let’s take this opportunity to create another Label by using some code from earlier in this chapter:

Click here to view code image

namespace CodePlusXaml

{

 public partial class CodePlusXamlPage : ContentPage

 {

 public CodePlusXamlPage()

 {

 InitializeComponent();

 Label label = new Label

 {

 Text = "Hello from Code!",

 IsVisible = true,

 Opacity = 0.75,

 HorizontalTextAlignment = TextAlignment.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand,

 TextColor = Color.Blue,

 BackgroundColor = Color.FromRgb(255, 128, 128),

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Bold | FontAttributes.Italic

 };

 (Content as StackLayout).Children.Insert(0, label);

 }

 }

}

The constructor concludes by accessing the StackLayout that we know is set to the Content property of the page and inserting the Label at the top. (In the next chapter, you’ll see a much better way to reference objects in the XAML file by using the x:Name attribute.) You can create the Label prior to the InitializeComponent call, but you can’t add it to the StackLayout at that time because InitializeComponent is what causes the StackLayout (and all the other XAML elements) to be instantiated. Here’s the result:

[image: Image]

Aside from the text, the two buttons are identical.

You don’t have to spend much time examining the generated code file that the XAML parser creates, but it’s helpful to understand how the XAML file plays a role both in the build process and during run time. Also, sometimes an error in the XAML file raises a run-time exception at the LoadFromXaml call, so you will probably see the generated code file pop up frequently, and you should know what it is.

The XAML compiler

You have an option whether to compile the XAML during the build process. Compiling the XAML performs validity checks during the build process, reduces the size of the executable, and improves loading time, but it’s somewhat newer than the noncompilation approach, so there might be issues sometimes.

To indicate that you want to compile all the XAML files in your application, you can insert the following assembly attribute somewhere in a code file. The most convenient place is the Assembly.cs file in the Properties folder of the PCL project:

Click here to view code image

[assembly: XamlCompilation(XamlCompilationOptions.Compile)]

You can put it in another C# file, but because it’s an assembly attribute, it needs to be outside any namespace block. You’ll also need a using directive for Xamarin.Forms.Xaml.

You can alternatively specify that the XAML file for a particular class is compiled:

Click here to view code image

namespace CodePlusXaml

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class CodePlusXamlPage : ContentPage

 {

 public CodePlusXamlPage()

 {

 InitializeComponent();

 ...

 }

 }

}

The XamlCompilationOptions enumeration has two members, Compile and Skip, which means that you can use XamlCompilation as an assembly attribute to enable XAML compilation for all classes in the project, but skip XAML compilation for individual classes by using the Skip member.

When you do not choose to compile the XAML, the entire XAML file is bound into the executable as an embedded resource, just like the Edgar Allan Poe story in the BlackCat program in Chapter 4. Indeed, you can get access to the XAML file at run time by using the GetManifestResourceStream method. That’s similar to what the LoadFromXaml call in InitializeComponent does. It loads the XAML file and parses it for a second time, instantiating and initializing all the elements in the XAML file except for the root element, which already exists.

When you choose to compile the XAML, this process is streamlined somewhat, but the LoadFromXaml method still needs to instantiate all the elements and build a visual tree.

Platform specificity in the XAML file

Here is the XAML file for a program named ScaryColorList that’s similar to a snippet of XAML that you saw earlier. But now the repetition is even scarier because each color item is surrounded by a Frame:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ScaryColorList.ScaryColorListPage">

 <ContentPage.Content>

 <StackLayout>

 <StackLayout.Children>

 <Frame OutlineColor="Accent">

 <Frame.Content>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

 <BoxView Color="Red" />

 <Label Text="Red"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 </Frame.Content>

 </Frame>

 <Frame OutlineColor="Accent">

 <Frame.Content>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

 <BoxView Color="Green" />

 <Label Text="Green"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 </Frame.Content>

 </Frame>

 <Frame OutlineColor="Accent">

 <Frame.Content>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

 <BoxView Color="Blue" />

 <Label Text="Blue"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 </Frame.Content>

 </Frame>

 </StackLayout.Children>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

The code-behind file contains only the standard call to InitializeComponent.

Aside from the repetitious markup, this program has a more practical problem: When it runs on iOS, the top item overlaps the status bar. This problem can be fixed with a call to Device.OnPlatform in the page’s constructor (just as you saw in Chapter 2). Because Device.OnPlatform sets the Padding property on the page and doesn’t require anything in the XAML file, it could go either before or after the InitializeComponent call. Here’s one way to do it:

Click here to view code image

public partial class ScaryColorListPage : ContentPage

{

 public ScaryColorListPage()

 {

 Padding = Device.OnPlatform(new Thickness(0, 20, 0, 0),

 new Thickness(0),

 new Thickness(0));

 InitializeComponent();

 }

}

Or, you could set a uniform Padding value for all three platforms right in the root element of the XAML file:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ScaryColorList.ScaryColorListPage"

 Padding="0, 20, 0, 0">

 <ContentPage.Content>

 ...

 </ContentPage.Content>

</ContentPage>

That sets the Padding property for the page. The ThicknessTypeConverter class requires the values to be separated by commas, but you have the same flexibility as with the Thickness constructor. You can specify four values in the order left, top, right, and bottom; two values (the first for left and right, and the second for top and bottom); or one value.

However, you can also specify platform-specific values right in the XAML file by using the OnPlatform class, whose name suggests that it is similar in function to the Device.OnPlatform static method.

OnPlatform is a very interesting class, and it’s worthwhile to gain a sense of how it works. The class is generic, and it has three properties of type T, as well as an implicit conversion of itself to T that makes use of the Device.OS value:

Click here to view code image

public class OnPlatform<T>

{

 public T iOS { get; set; }

 public T Android { get; set; }

 public T WinPhone { get; set; }

 public static implicit operator T(OnPlatform<T> onPlatform)

 {

 // returns one of the three properties based on Device.OS

 }

}

In theory, you might use the OnPlatform<T> class in code, perhaps like this in the constructor of a ContentPage derivative:

Click here to view code image

Padding = new OnPlatform<Thickness>

{

 iOS = new Thickness(0, 20, 0, 0),

 Android = new Thickness(0),

 WinPhone = new Thickness(0)

};

You can set an instance of this OnPlatform class directly to the Padding property because the OnPlatform class defines an implicit conversion of itself to the generic argument (in this case Thickness).

However, you shouldn’t use OnPlatform in code. Use Device.OnPlatform instead. OnPlatform is designed for XAML, and the only really tricky part is figuring out how to specify the generic type argument.

Fortunately, the XAML 2009 specification includes an attribute designed specifically for generic classes, called TypeArguments. Because it’s part of XAML itself, it’s used with an x prefix, so it appears as x:TypeArguments. Here’s how OnPlatform is used in XAML to select among three Thickness values:

Click here to view code image

<OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0"

 Android="0"

 WinPhone="0" />

In this example (and in the previous code example), the Android and WinPhone settings aren’t required because they are the defaults. Notice that the Thickness strings can be set directly to the properties because those properties are of type Thickness, and hence the XAML parser will use the ThicknessTypeConverter for converting those strings.

Now that we have the OnPlatform markup, how do we set it to the Padding property of the Page? By expressing Padding using property-element syntax, of course!

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ScaryColorList.ScaryColorListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.Content>

 ...

 </ContentPage.Content>

</ContentPage>

This is how the ScaryColorList program appears in the collection of samples from this book and here’s how it looks:

[image: Image]

Similar to OnDevice, OnIdiom distinguishes between Phone and Tablet. For reasons that will become apparent in the next chapter, you should try to restrict the use of OnDevice and OnIdiom to small chunks of markup rather than large blocks. Their use shouldn’t become a structural element in your XAML files.

The content property attribute

The XAML file in the ScaryColorList program is actually somewhat longer than it needs to be. You can delete the ContentPage.Content tags, all the StackLayout.Children tags, and all the Frame.Content tags, and the program will work the same:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ScaryColorList.ScaryColorListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Frame OutlineColor="Accent">

 <StackLayout Orientation="Horizontal">

 <BoxView Color="Red" />

 <Label Text="Red"

 VerticalOptions="Center" />

 </StackLayout>

 </Frame>

 <Frame OutlineColor="Accent">

 <StackLayout Orientation="Horizontal">

 <BoxView Color="Green" />

 <Label Text="Green"

 VerticalOptions="Center" />

 </StackLayout>

 </Frame>

 <Frame OutlineColor="Accent">

 <StackLayout Orientation="Horizontal">

 <BoxView Color="Blue" />

 <Label Text="Blue"

 VerticalOptions="Center" />

 </StackLayout>

 </Frame>

 </StackLayout>

</ContentPage>

It looks a lot cleaner now. The only property element left is for the Padding property of ContentPage.

As with almost everything about XAML syntax, this elimination of some property elements is supported by the underlying classes. Every class used in XAML is allowed to define one property as a content property (sometimes also called the class’s default property). For this content property, the property-element tags are not required, and any XML content within the start and end tags is automatically assigned to this property. Very conveniently, the content property of ContentPage is Content, the content property of StackLayout is Children, and the content property of Frame is Content.

These content properties are documented, but you need to know where to look. A class specifies its content property by using the ContentPropertyAttribute. If this attribute is attached to a class, it appears in the online Xamarin.Forms API documentation along with the class declaration. Here’s how it appears in the documentation for ContentPage:

Click here to view code image

[Xamarin.Forms.ContentProperty("Content")]
public class ContentPage : TemplatedPage

If you say it aloud, it sounds a bit redundant: The Content property is the content property of ContentPage.

The declaration for the Frame class is similar:

Click here to view code image

[Xamarin.Forms.ContentProperty("Content")]
public class Frame : ContentView

StackLayout doesn’t have a ContentProperty attribute applied, but StackLayout derives from Layout<View>, and Layout<T> has a ContentProperty attribute:

Click here to view code image

[Xamarin.Forms.ContentProperty("Children")]
public abstract class Layout<T> : Layout, IViewContainer<T>
where T : View

The ContentProperty attribute is inherited by the classes that derive from Layout<T>, so Children is the content property of StackLayout.

Certainly, there’s no problem if you include the property elements when they’re not required, but in most cases they will no longer appear in the sample programs in this book.

Formatted text

Text displayed by a XAML file might involve just a word or two, but sometimes an entire paragraph is required, perhaps with some embedded character formatting. Specifying character formatting is not always as obvious, or as easy, in XAML as might be suggested by our familiarity with HTML.

The TextVariations solution has a XAML file that contains seven Label views in a scrollable StackLayout:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="TextVariations.TextVariationsPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ScrollView>

 <StackLayout>

 ...

 </StackLayout>

 </ScrollView>

</ContentPage>

Each of the seven Label views shows a somewhat different way of defining the displayed text. For reference purposes, here’s the program running on all three platforms:

[image: Image]

The simplest approach involves just setting a few words to the Text attribute of the Label element:

Click here to view code image

 <Label VerticalOptions="CenterAndExpand"

 Text="Single lines of text are easy." />

You can also set the Text property by breaking it out as a property element:

Click here to view code image

 <Label VerticalOptions="CenterAndExpand">

 <Label.Text>

 Text can also be content of the Text property.

 </Label.Text>

 </Label>

Text is the content property of Label, so you don’t need the Label.Text tags:

Click here to view code image

 <Label VerticalOptions="CenterAndExpand">

 Text is the content property of Label.

 </Label>

When you set text as the content of the Label (whether you use the Label.Text tags or not), the text is trimmed: all white space, including carriage returns, is removed from the beginning and end of the text. However, all embedded white space is retained, including end-of-line characters.

When you set the Text property as a property attribute, all white space within the quotation marks is retained, but if the text occupies more than one line in the XAML file, each end-of-line character (or character sequence) is converted to a single space.

As a result, displaying a whole paragraph of uniformly formatted text is somewhat problematic. The most foolproof approach is setting Text as a property attribute. You can put the whole paragraph as a single line in the XAML file, but if you prefer to use multiple lines, you should left justify the whole paragraph in the XAML file surrounded by quotation marks, like so:

Click here to view code image

 <Label VerticalOptions="CenterAndExpand"

 Text=

"Perhaps the best way to define a paragraph of

uniformly formatted text is by setting the Text

property as an attribute and left justifying

the block of text in the XAML file. End-of-line

characters are converted to a space character." />

The end-of-line characters are converted to space characters so the individual lines are properly concatenated. But watch out: Don’t leave any stray characters at the end or beginning of the individual lines. Those will show up as extraneous characters within the paragraph.

When multiple lines of text are specified as content of the Label, only white space at the beginning and end of the text is trimmed. All embedded white space is retained, including end-of-line characters:

Click here to view code image

 <Label VerticalOptions="CenterAndExpand">

Text as content has the curse

Of breaks at each line's close.

That's a format great for verse

But not the best for prose.

 </Label>

This text is rendered as four separate lines. If you’re displaying lists or poetry in your Xamarin.Forms application, that’s exactly what you want. Otherwise, probably not.

If your line or paragraph of text requires some nonuniform paragraph formatting, you’ll want to use the FormattedText property of Label. As you might recall, you set this to a FormattedString object and then set multiple Span objects to the Spans collection of the FormattedString. In XAML, you need property-element tags for Label.FormattedString, but Spans is the content property of FormattedString:

Click here to view code image

 <Label VerticalOptions="CenterAndExpand">

 <Label.FormattedText>

 <FormattedString>

 </FormattedString>

 </Label.FormattedText>

 </Label>

Notice that the Text properties of the nonformatted items have spaces at the end or beginning of the text string, or both, so that the items don’t run into each other.

In the general case, however, you might be working with an entire paragraph. You can set the Text attribute of Span to a long line, or you can wrap it on multiple lines. As with Label, keep the entire block left justified in the XAML file:

Click here to view code image

 <Label VerticalOptions="CenterAndExpand">

 <Label.FormattedText>

 <FormattedString>

 <Span Text=

"A paragraph of formatted text requires left justifying

it within the XAML file. But the text can include multiple

kinds of character formatting, including " />

 <Span Text=

" and whatever combinations you might desire to adorn

your glorious prose." />

 </FormattedString>

 </Label.FormattedText>

 </Label>

You’ll notice in the screenshot that the text with the large font size is aligned with the regular text on the baseline, which is the typographically proper approach, and the line spacing is adjusted to accommodate the larger text.

In most Xamarin.Forms programs, neither XAML nor code exist in isolation but work together. Elements in XAML can trigger events handled in code, and code can modify elements in XAML. In the next chapter you’ll see how this works.

Chapter 8. Code and XAML in harmony

A code file and a XAML file always exist as a pair. The two files complement each other. Despite being referred to as the “code-behind” file to the XAML, very often the code is prominent in taking on the more active and interactive parts of the application. This implies that the code-behind file must be able to refer to elements defined in XAML with as much ease as objects instantiated in code. Likewise, elements in XAML must be able to fire events that are handled in code-based event handlers. That’s what this chapter is all about.

But first, let’s explore a couple of unusual techniques for instantiating objects in a XAML file.

Passing arguments

When you run an application containing a XAML file, each element in the XAML file is instantiated with a call to the parameterless constructor of the corresponding class or structure. The load process continues with initialization of the resultant object by setting properties from attribute values. This seems reasonable. However, developers using XAML sometimes have a need to instantiate objects with constructors that require arguments or by calling a static creation method. These needs usually don’t involve the API itself, but instead involve external data classes referenced by the XAML file that interact with the API.

The 2009 XAML specification introduced an x:Arguments element and an x:FactoryMethod attribute for these cases, and Xamarin.Forms supports them. These techniques are not often used in ordinary circumstances, but you should see how they work in case the need arises.

Constructors with arguments

To pass arguments to a constructor of an element in XAML, the element must be separated into start and end tags. Follow the start tag of the element with x:Arguments start and end tags. Within those x:Arguments tags, include one or more constructor arguments.

But how do you specify multiple arguments of common types, such as double or int? Do you separate the arguments with commas?

No. Each argument must be delimited with start and end tags. Fortunately, the XAML 2009 specification defines XML elements for common basic types. You can use these tags to clarify the types of elements, to specify generic types in OnPlatform, or to delimit constructor arguments. Here’s the complete set supported by Xamarin.Forms. Notice that they duplicate the .NET type names rather than the C# type names:

• x:Object

• x:Boolean

• x:Byte

• x:Int16

• x:Int32

• x:Int64

• x:Single

• x:Double

• x:Decimal

• x:Char

• x:String

• x:TimeSpan

• x:Array

• x:DateTime (supported by Xamarin.Forms but not the XAML 2009 specification)

You’ll be hard-pressed to find a use for all of these, but you’ll certainly discover uses for some of them.

The ParameteredConstructorDemo sample demonstrates the use of x:Arguments with arguments delimited by x:Double tags using three different constructors of the Color structure. The constructor with three parameters requires red, green, and blue values ranging from 0 to 1. The constructor with four parameters adds an alpha channel as the fourth parameter (which is set here to 0.5), and the constructor with a single parameter indicates a gray shade from 0 (black) to 1 (white):

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ParameteredConstructorDemo.ParameteredConstructorDemoPage">

 <StackLayout>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color>

 <x:Arguments>

 <x:Double>1</x:Double>

 <x:Double>0</x:Double>

 <x:Double>0</x:Double>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color>

 <x:Arguments>

 <x:Double>0</x:Double>

 <x:Double>0</x:Double>

 <x:Double>1</x:Double>

 <x:Double>0.5</x:Double>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color>

 <x:Arguments>

 <x:Double>0.5</x:Double>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 </StackLayout>

</ContentPage>

The number of elements within the x:Arguments tags, and the types of these elements, must match one of the constructors of the class or structure. Here’s the result:

[image: Image]

The blue BoxView is light against the light background and dark against the dark background because it’s 50 percent transparent and lets the background show through.

Can I call methods from XAML?

At one time, the answer to this question was “Don’t be ridiculous,” but now it’s a qualified “Yes.” Don’t get too excited, though. The only methods you can call in XAML are those that return objects (or values) of the same type as the class (or structure) that defines the method. These methods must be public and static. They are sometimes called creation methods or factory methods. You can instantiate an element in XAML through a call to one of these methods by specifying the method’s name using the x:FactoryMethod attribute and its arguments using the x:Arguments element.

The Color structure defines seven static methods that return Color values, so these qualify. This XAML file makes use of three of them:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="FactoryMethodDemo.FactoryMethodDemoPage">

 <StackLayout>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color x:FactoryMethod="FromRgb">

 <x:Arguments>

 <x:Int32>255</x:Int32>

 <x:Int32>0</x:Int32>

 <x:Int32>0</x:Int32>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color x:FactoryMethod="FromRgb">

 <x:Arguments>

 <x:Double>0</x:Double>

 <x:Double>1.0</x:Double>

 <x:Double>0</x:Double>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color x:FactoryMethod="FromHsla">

 <x:Arguments>

 <x:Double>0.67</x:Double>

 <x:Double>1.0</x:Double>

 <x:Double>0.5</x:Double>

 <x:Double>1.0</x:Double>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 </StackLayout>

</ContentPage>

The first two static methods invoked here are both named Color.FromRgb, but the types of elements within the x:Arguments tags distinguish between int arguments that range from 0 to 255 and double arguments that range from 0 to 1. The third one is the Color.FromHsla method, which creates a Color value from hue, saturation, luminosity, and alpha components. Interestingly, this is the only way to define a Color value from HSL values in a XAML file by using the Xamarin.Forms API. Here’s the result:

[image: Image]

The x:Name attribute

In most real applications, the code-behind file needs to reference elements defined in the XAML file. You saw one way to do this in the CodePlusXaml program in the previous chapter: If the code-behind file has knowledge of the layout of the visual tree defined in the XAML file, it can start from the root element (the page itself) and locate specific elements within the tree. This process is called “walking the tree” and can be useful for locating particular elements on a page.

Generally, a better approach is to give elements in the XAML file a name similar to a variable name. To do this you use an attribute that is intrinsic to XAML, called Name. Because the prefix x is almost universally used for attributes intrinsic to XAML, this Name attribute is commonly referred to as x:Name.

The XamlClock project demonstrates the use of x:Name. Here is the XamlClockPage.xaml file containing two Label controls, named timeLabel and dateLabel:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="XamlClock.XamlClockPage">

 <StackLayout>

 <Label x:Name="timeLabel"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="EndAndExpand" />

 <Label x:Name="dateLabel"

 HorizontalOptions="Center"

 VerticalOptions="StartAndExpand" />

 </StackLayout>

</ContentPage>

The rules for x:Name are the same as for C# variable names. (You’ll see why shortly.) The name must begin with a letter or an underscore and can contain only letters, underscores, and numbers.

Like the clock program in Chapter 5, XamlClock uses Device.StartTimer to fire a periodic event for updating the time and date. Here’s the XamlClockPage code-behind file:

Click here to view code image

namespace XamlClock

{

 public partial class XamlClockPage

 {

 public XamlClockPage()

 {

 InitializeComponent();

 Device.StartTimer(TimeSpan.FromSeconds(1), OnTimerTick);

 }

 bool OnTimerTick()

 {

 DateTime dt = DateTime.Now;

 timeLabel.Text = dt.ToString("T");

 dateLabel.Text = dt.ToString("D");

 return true;

 }

 }

}

This timer callback method is called once per second. The method must return true to continue the timer. If it returns false, the timer stops and must be restarted with another call to Device.StartTimer.

The callback method references timeLabel and dateLabel as though they were normal variables and sets the Text properties of each:

[image: Image]

This is not a visually impressive clock, but it’s definitely functional.

How is it that the code-behind file can reference the elements identified with x:Name? Is it magic? Of course not. The mechanism is very evident when you examine the XamlClockPage.xaml.g.cs file that the XAML parser generates from the XAML file as the project is being built:

Click here to view code image

//--

// <auto-generated>

// This code was generated by a tool.

// Runtime Version:4.0.30319.42000

//

// Changes to this file may cause incorrect behavior and will be lost if

// the code is regenerated.

// </auto-generated>

//--

namespace XamlClock {

 using System;

 using Xamarin.Forms;

 using Xamarin.Forms.Xaml;

 public partial class XamlClockPage : global::Xamarin.Forms.ContentPage {

 [System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.XamlG",

 "0.0.0.0")]

 private global::Xamarin.Forms.Label timeLabel;

 [System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.XamlG",

 "0.0.0.0")]

 private global::Xamarin.Forms.Label dateLabel;

 [System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.XamlG",

 "0.0.0.0")]

 private void InitializeComponent() {

 this.LoadFromXaml(typeof(XamlClockPage));

 timeLabel = this.FindByName<global::Xamarin.Forms.Label>("timeLabel");

 dateLabel = this.FindByName<global::Xamarin.Forms.Label>("dateLabel");

 }

 }

}

It might be a little hard to see because of the attributes and fully qualified types, but as the build-time XAML parser chews through the XAML file, every x:Name attribute becomes a private field in this generated code file. This allows code in the code-behind file to reference these names as though they were normal fields—which they definitely are. However, the fields are initially null. Only when InitializeComponent is called at run time are the two fields set via the FindByName method, which is defined in the NameScopeExtensions class. If the constructor of your code-behind file tries to reference these two fields prior to the InitializeComponent call, they will have null values.

This generated code file also implies another rule for x:Name values that is now very obvious but rarely stated explicitly: the names cannot duplicate names of fields or properties defined in the code-behind file.

Because these are private fields, they can be accessed only from the code-behind file and not from other classes. If a ContentPage derivative needs to expose public fields or properties to other classes, you must define those yourself.

Obviously, x:Name values must be unique within a XAML page. This can sometimes be a problem if you’re using OnPlatform for platform-specific elements in the XAML file. For example, here’s a XAML file that expresses the iOS, Android, and WinPhone properties of OnPlatform as property elements to select one of three Label views:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

 <OnPlatform x:TypeArguments="View">

 <OnPlatform.iOS>

 <Label Text="This is an iOS device"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.iOS>

 <OnPlatform.Android>

 <Label Text="This is an Android device"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.Android>

 <OnPlatform.WinPhone>

 <Label Text="This is an Windows device"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.WinPhone>

 </OnPlatform>

</ContentPage>

The x:TypeArguments attribute of OnPlatform must match the type of the target property exactly. This OnPlatform element is implicitly being set to the Content property of ContentPage, and this Content property is of type View, so the x:TypeArguments attribute of OnPlatform must specify View. However, the properties of OnPlatform can be set to any class that derives from that type. The objects set to the iOS, Android, and WinPhone properties can in fact be different types just as long as they all derive from View.

Although that XAML file works, it’s not exactly optimum. All three Label views are instantiated and initialized, but only one is set to the Content property of the ContentPage. The problem with this approach arises if you need to refer to the Label from the code-behind file and you give each of them the same name, like so:

The following XAML file does not work!

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

 <OnPlatform x:TypeArguments="View">

 <OnPlatform.iOS>

 <Label x:Name="deviceLabel"

 Text="This is an iOS device"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.iOS>

 <OnPlatform.Android>

 <Label x:Name="deviceLabel"

 Text="This is an Android device"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.Android>

 <OnPlatform.WinPhone>

 <Label x:Name="deviceLabel"

 Text="This is a Windows device"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.WinPhone>

 </OnPlatform>

</ContentPage>

This will not work because multiple elements cannot have the same name.

You could give them different names and handle the three names in the code-behind file by using Device.OnPlatform, but a better solution is to keep the platform-specific markup as small as possible. In this example, all the Label properties are the same except for Text, so only the Text property needs to be platform specific. Here’s the version of the PlatformSpecificLabels program that is included with the sample code for this chapter. It has a single Label, and everything is platform independent except for the Text property:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

 <Label x:Name="deviceLabel"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <Label.Text>

 <OnPlatform x:TypeArguments="x:String"

 iOS="This is an iOS device"

 Android="This is an Android device"

 WinPhone="This is a Windows device" />

 </Label.Text>

 </Label>

</ContentPage>

Here’s what it looks like:

[image: Image]

The Text property is the content property for Label, so you don’t need the Label.Text tags in the previous example. This works as well:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

 <Label x:Name="deviceLabel"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <OnPlatform x:TypeArguments="x:String"

 iOS="This is an iOS device"

 Android="This is an Android device"

 WinPhone="This is a Windows device" />

 </Label>

</ContentPage>

Custom XAML-based views

The ScaryColorList program in the previous chapter listed a few colors in a StackLayout using Frame, BoxView, and Label. Even with just three colors, the repetitive markup was starting to look very ominous. Unfortunately there is no XAML markup that duplicates the C# for and while loops, so your choice is to use code for generating multiple similar items, or to find a better way to do it in markup.

In this book, you’ll see several ways to list colors in XAML, and eventually, a very clean and elegant way to do this job will become clear. But that requires a few more steps into learning Xamarin.Forms. Until then, we’ll be looking at some other approaches that you might find useful in similar circumstances.

One strategy is to create a custom view that has the sole purpose of displaying a color with a name and a colored box. And while we’re at it, let’s display the hexadecimal RGB values of the colors as well. You can then use that custom view in a XAML page file for the individual colors.

What might a reference to such a custom view look like in XAML?

Or the better question is: How would you like it to look?

If the markup looked something like this, the repetition is not bad at all, and not so much worse than explicitly defining an array of Color values in code:

Click here to view code image

<StackLayout>

 <MyColorView Color="Red" />

 <MyColorView Color="Green" />

 <MyColorView Color="Blue" />

 ...

</StackLayout>

Well, actually, it won’t look exactly like that. MyColorView is obviously a custom class and not part of the Xamarin.Forms API. Therefore, it cannot appear in the XAML file without a namespace prefix that is defined in an XML namespace declaration.

With this XML prefix applied, there won’t be any confusion about this custom view being part of the Xamarin.Forms API, so let’s give it a more dignified name of ColorView rather than MyColorView.

This hypothetical ColorView class is an example of a fairly easy custom view because it consists solely of existing views—specifically Label, Frame, and BoxView—arranged in a particular way using StackLayout. Xamarin.Forms defines a view designed specifically for the purpose of parenting such an arrangement of views, and it’s called ContentView. Like ContentPage, ContentView has a Content property that you can set to a visual tree of other views. You can define the contents of the ContentView in code, but it’s more fun to do it in XAML.

Let’s put together a solution named ColorViewList. This solution will have two sets of XAML and code-behind files, the first for a class named ColorViewListPage, which derives from ContentPage (as usual), and the second for a class named ColorView, which derives from ContentView.

To create the ColorView class in Visual Studio, use the same procedure as when adding a new XAML page to the ColorViewList project: Right-click the project name in the Solution Explorer, and select Add > New Item from the context menu. In the Add New Item dialog, select Visual C# > Cross-Platform at the left and then Forms Xaml Page. Enter the name ColorView.cs. But right away, before you forget, go into the ColorView.xaml file and change the ContentPage start and end tags to ContentView. In the ColorView.xaml.cs file, change the base class to ContentView.

The process is a little easier in Xamarin Studio. From the tool menu for the ColorViewList project, select Add > New File. In the New File dialog, select Forms at the left and Forms ContentView Xaml (not Forms ContentPage Xaml). Give it a name of ColorView.

You’ll also need to create a XAML file and code-behind file for the ColorViewListPage class, as usual.

The ColorView.xaml file describes the layout of the individual color items but without any actual color values. Instead, the BoxView and two Label views are given names:

Click here to view code image

<ContentView xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ColorViewList.ColorView">

 <Frame OutlineColor="Accent">

 <StackLayout Orientation="Horizontal">

 <BoxView x:Name="boxView"

 WidthRequest="70"

 HeightRequest="70" />

 <StackLayout>

 <Label x:Name="colorNameLabel"

 FontSize="Large"

 VerticalOptions="CenterAndExpand" />

 <Label x:Name="colorValueLabel"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

 </StackLayout>

 </Frame>

</ContentView>

In a real-life program, you’ll have plenty of time later to fine-tune the visuals. Initially, you’ll just want to get all the named views in there.

Besides the visuals, this ColorView class will need a new property to set the color. This property must be defined in the code-behind file. At first, it seems reasonable to give ColorView a property named Color of type Color (as the earlier XAML snippet with MyColorView seems to suggest). But the ColorView class needs to display the color name, and it can’t get the color name from a Color value.

Instead, it makes more sense to define a property named ColorName of type string. The code-behind file can then use reflection to obtain the static field of the Color class corresponding to that name.

But wait: Xamarin.Forms includes a public ColorTypeConverter class that the XAML parser uses to convert a text color name like “Red” or “Blue” into a Color value. Why not take advantage of that?

Here’s the code-behind file for ColorView. It defines a ColorName property with a set accessor that sets the Text property of the colorNameLabel to the color name, and then uses ColorTypeConverter to convert the name to a Color value. This Color value is then used to set the Color property of boxView and the Text property of the colorValueLabel to the RGB values:

Click here to view code image

public partial class ColorView : ContentView

{

 string colorName;

 ColorTypeConverter colorTypeConv = new ColorTypeConverter();

 public ColorView()

 {

 InitializeComponent();

 }

 public string ColorName

 {

 set

 {

 // Set the name.

 colorName = value;

 colorNameLabel.Text = value;

 // Get the actual Color and set the other views.

 Color color = (Color)colorTypeConv.ConvertFrom(colorName);

 boxView.Color = color;

 colorValueLabel.Text = String.Format("{0:X2}-{1:X2}-{2:X2}",

 (int)(255 * color.R),

 (int)(255 * color.G),

 (int)(255 * color.B));

 }

 get

 {

 return colorName;

 }

 }

}

The ColorView class is finished. Now let’s look at ColorViewListPage. The ColorViewListPage.xaml file must list multiple ColorView instances, so it needs a new XML namespace declaration with a new namespace prefix to reference the ColorView element.

The ColorView class is part of the same project as ColorViewListPage. Generally, programmers use an XML namespace prefix of local for such cases. The new namespace declaration appears in the root element of the XAML file (like the other two) with the following format:

Click here to view code image

xmlns:local="clr-namespace:ColorViewList;assembly=ColorViewList"

In the general case, a custom XML namespace declaration for XAML must specify a common language runtime (CLR) namespace—also known as the .NET namespace—and an assembly. The keywords to specify these are clr-namespace and assembly. Often the CLR namespace is the same as the assembly, as they are in this case, but they don’t need to be. The two parts are connected by a semicolon.

Notice that a colon follows clr-namespace, but an equal sign follows assembly. This apparent inconsistency is deliberate: the format of the namespace declaration is intended to mimic a URI found in conventional namespace declarations, in which a colon follows the URI scheme name.

You use the same syntax for referencing objects in external portable class libraries. The only difference in those cases is that the project also needs a reference to that external PCL. (You’ll see an example in Chapter 10, “XAML markup extensions.”).

The local prefix is common for code in the same assembly, and in that case the assembly part is not required:

Click here to view code image

xmlns:local="clr-namespace:ColorViewList"

For a XAML file in a PCL, you can include the assembly part to reference something in the same assembly if you want but it’s not necessary. For a XAML file in an SAP, however, you must not include the assembly part to reference a local class because there is no assembly associated with an SAP. The code in the SAP is actually part of the individual platform assemblies, and those all have different names.

Here’s the XAML for the ColorViewListPage class. The code-behind file contains nothing beyond the InitializeComponent call:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:ColorViewList"

 x:Class="ColorViewList.ColorViewListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ScrollView>

 <StackLayout Padding="6, 0">

 <local:ColorView ColorName="Aqua" />

 <local:ColorView ColorName="Black" />

 <local:ColorView ColorName="Blue" />

 <local:ColorView ColorName="Fuchsia" />

 <local:ColorView ColorName="Gray" />

 <local:ColorView ColorName="Green" />

 <local:ColorView ColorName="Lime" />

 <local:ColorView ColorName="Maroon" />

 <local:ColorView ColorName="Navy" />

 <local:ColorView ColorName="Olive" />

 <local:ColorView ColorName="Purple" />

 <local:ColorView ColorName="Pink" />

 <local:ColorView ColorName="Red" />

 <local:ColorView ColorName="Silver" />

 <local:ColorView ColorName="Teal" />

 <local:ColorView ColorName="White" />

 <local:ColorView ColorName="Yellow" />

 </StackLayout>

 </ScrollView>

</ContentPage>

This is not quite as odious as the earlier example seemed to suggest, and it demonstrates how you can encapsulate visuals in their own XAML-based classes. Notice that the StackLayout is the child of a ScrollView, so the list can be scrolled:

[image: Image]

However, there is one aspect of the ColorViewList project that does not qualify as a “best practice.” It is the definition of the ColorName property in ColorView. This should really be implemented as a BindableProperty object. Delving into bindable objects and bindable properties is a high priority and will be explored in Chapter 11, “The bindable infrastructure.”

Events and handlers

When you tap a Xamarin.Forms Button, it fires a Clicked event. You can instantiate a Button in XAML, but the Clicked event handler itself must reside in the code-behind file. The Button is only one of a bunch of views that exist primarily to generate events, so the process of handling events is crucial to coordinating XAML and code files.

Attaching an event handler to an event in XAML is as simple as setting a property; it is, in fact, visually indistinguishable from a property setting. The XamlKeypad project is a XAML version of the PersistentKeypad project from Chapter 6. It illustrates setting event handlers in XAML and handling these events in the code-behind file. It also includes logic to save keypad entries when the program is terminated.

If you take a look back at the constructor code of the SimplestKeypadPage or PersistentKeypadPage classes, you’ll see a couple of loops to create the buttons that make up the numeric part of the keypad. Of course, this is precisely the type of thing you can’t do in XAML, but look at how much cleaner the markup in XamlKeypadPage is when compared with that code:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="XamlKeypad.XamlKeypadPage">

 <StackLayout VerticalOptions="Center"

 HorizontalOptions="Center">

 <Label x:Name="displayLabel"

 Font="Large"

 VerticalOptions="Center"

 HorizontalTextAlignment="End" />

 <Button x:Name="backspaceButton"

 Text="⇦"

 Font="Large"

 IsEnabled="False"

 Clicked="OnBackspaceButtonClicked" />

 <StackLayout Orientation="Horizontal">

 <Button Text="7" StyleId="7" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="8" StyleId="8" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="9" StyleId="9" Font="Large"

 Clicked="OnDigitButtonClicked" />

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <Button Text="4" StyleId="4" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="5" StyleId="5" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="6" StyleId="6" Font="Large"

 Clicked="OnDigitButtonClicked" />

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <Button Text="1" StyleId="1" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="2" StyleId="2" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="3" StyleId="3" Font="Large"

 Clicked="OnDigitButtonClicked" />

 </StackLayout>

 <Button Text="0" StyleId="0" Font="Large"

 Clicked="OnDigitButtonClicked" />

 </StackLayout>

</ContentPage>

The file is a lot shorter than it would have been had the three properties on each numeric Button been formatted into three lines, but packing these all together makes the uniformity of the markup very obvious and provides clarity rather than obscurity.

The big question is this: Which would you rather maintain and modify? The code in the SimplestKeypadPage or PersistentKeypadPage constructors or the markup in the XamlKeypadPage XAML file?

Here’s the screenshot. You’ll see that these keys are now arranged in calculator order rather than telephone order:

[image: Image]

The backspace button has its Clicked event set to the OnBackspaceButtonClicked handler, while the digit buttons share the OnDigitButtonClicked handler. As you’ll recall, the StyleId property is often used to distinguish views sharing the same event handler, which means that the two event handlers can be implemented in the code-behind file exactly the same as in the code-only program:

Click here to view code image

public partial class XamlKeypadPage

{

 App app = Application.Current as App;

 public XamlKeypadPage()

 {

 InitializeComponent();

 displayLabel.Text = app.DisplayLabelText;

 backspaceButton.IsEnabled = displayLabel.Text != null &&

 displayLabel.Text.Length > 0;

 }

 void OnDigitButtonClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 displayLabel.Text += (string)button.StyleId;

 backspaceButton.IsEnabled = true;

 app.DisplayLabelText = displayLabel.Text;

 }

 void OnBackspaceButtonClicked(object sender, EventArgs args)

 {

 string text = displayLabel.Text;

 displayLabel.Text = text.Substring(0, text.Length - 1);

 backspaceButton.IsEnabled = displayLabel.Text.Length > 0;

 app.DisplayLabelText = displayLabel.Text;

 }

}

Part of the job of the LoadFromXaml method called by InitializeComponent involves attaching these event handlers to the objects instantiated from the XAML file.

The XamlKeypad project also includes the code that was added to the page and App classes in PersistentKeypad to save the keypad text when the program is terminated. The App class in XamlKeypad is basically the same as the one in PersistentKeypad.

Tap gestures

The Xamarin.Forms Button responds to finger taps, but you can actually get finger taps from any class that derives from View, including Label, BoxView, and Frame. These tap events are not built into the View class, but the View class defines a property named GestureRecognizers. Taps are enabled by adding an object to this GestureRecognizers collection. An instance of any class that derives from GestureRecognizer can be added to this collection, but undoubtedly the most useful is TapGestureRecognizer.

Here’s how to add a TapGestureRecognizer to a BoxView in code:

Click here to view code image

BoxView boxView = new BoxView

{

 Color = Color.Blue

};

TapGestureRecognizer tapGesture = new TapGestureRecognizer();

tapGesture.Tapped += OnBoxViewTapped;

boxView.GestureRecognizers.Add(tapGesture);

TapGestureRecognizer also defines a NumberOfTapsRequired property with a default value of 1. Set it to 2 to implement double taps.

To generate Tapped events, the View object must have its IsEnabled property set to true, its IsVisible property set to true (or it won’t be visible at all), and its InputTransparent property set to false. These are all default conditions.

The Tapped handler looks just like a Clicked handler for the Button:

Click here to view code image

void OnBoxViewTapped(object sender, EventArgs args)

{

 ...

}

As you know, the sender argument of an event handler is normally the object that fires the event, which in this case would be the TapGestureRecognizer object. That would not be of much use. Instead, the sender argument to the Tapped handler is the view being tapped, in this case the BoxView. That’s much more useful!

Like Button, TapGestureRecognizer also defines Command and CommandParameter properties; these are used when implementing the MVVM design pattern, and they are discussed in a later chapter.

TapGestureRecognizer also defines properties named TappedCallback and TappedCallbackParameter and a constructor that includes a TappedCallback argument. These are all deprecated and should not be used.

In XAML, you can attach a TapGestureRecognizer to a view by expressing the GestureRecognizers collection as a property element:

Click here to view code image

<BoxView Color="Blue">

 <BoxView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnBoxViewTapped" />

 </BoxView.GestureRecognizers>

</BoxView>

As usual, the XAML is a little shorter than the equivalent code.

Let’s make a program that’s inspired by one of the first standalone computer games.

The Xamarin.Forms version of this game is called MonkeyTap because it’s an imitation game. It contains four BoxView elements, colored red, blue, yellow, and green. When the game begins, one of the BoxView elements flashes, and you must then tap that BoxView. That BoxView flashes again followed by another one, and now you must tap both in sequence. Then those two flashes are followed by a third and so forth. (The original had sound as well, but MonkeyTap does not.) It’s a rather cruel game because there is no way to win. The game just keeps on getting harder and harder until you lose.

The MonkeyTapPage.xaml file instantiates the four BoxView elements and a Button in the center labeled “Begin”.

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MonkeyTap.MonkeyTapPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <BoxView x:Name="boxview0"

 VerticalOptions="FillAndExpand">

 <BoxView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnBoxViewTapped" />

 </BoxView.GestureRecognizers>

 </BoxView>

 <BoxView x:Name="boxview1"

 VerticalOptions="FillAndExpand">

 <BoxView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnBoxViewTapped" />

 </BoxView.GestureRecognizers>

 </BoxView>

 <Button x:Name="startGameButton"

 Text="Begin"

 Font="Large"

 HorizontalOptions="Center"

 Clicked="OnStartGameButtonClicked" />

 <BoxView x:Name="boxview2"

 VerticalOptions="FillAndExpand">

 <BoxView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnBoxViewTapped" />

 </BoxView.GestureRecognizers>

 </BoxView>

 <BoxView x:Name="boxview3"

 VerticalOptions="FillAndExpand">

 <BoxView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnBoxViewTapped" />

 </BoxView.GestureRecognizers>

 </BoxView>

 </StackLayout>

</ContentPage>

All four BoxView elements here have a TapGestureRecognizer attached, but they aren’t yet assigned colors. That’s handled in the code-behind file because the colors won’t stay constant. The colors need to be changed for the flashing effect.

The code-behind file begins with some constants and variable fields. (You’ll notice that one of them is flagged as protected; in the next chapter, a class will derive from this one and require access to this field. Some methods are defined as protected as well.)

Click here to view code image

public partial class MonkeyTapPage

{

 const int sequenceTime = 750; // in msec

 protected const int flashDuration = 250;

 const double offLuminosity = 0.4; // somewhat dimmer

 const double onLuminosity = 0.75; // much brighter

 BoxView[] boxViews;

 Color[] colors = { Color.Red, Color.Blue, Color.Yellow, Color.Green };

 List<int> sequence = new List<int>();

 int sequenceIndex;

 bool awaitingTaps;

 bool gameEnded;

 Random random = new Random();

 public MonkeyTapPage()

 {

 InitializeComponent();

 boxViews = new BoxView[] { boxview0, boxview1, boxview2, boxview3 };

 InitializeBoxViewColors();

 }

 void InitializeBoxViewColors()

 {

 for (int index = 0; index < 4; index++)

 boxViews[index].Color = colors[index].WithLuminosity(offLuminosity);

 }

 ...

}

The constructor puts all four BoxView elements in an array; this allows them to be referenced by a simple index that has values of 0, 1, 2, and 3. The InitializeBoxViewColors method sets all the BoxView elements to their slightly dimmed nonflashed state.

The program is now waiting for the user to press the Begin button to start the first game. The same Button handles replays, so it includes a redundant initialization of the BoxView colors. The Button handler also prepares for building the sequence of flashed BoxView elements by clearing the sequence list and calling StartSequence:

Click here to view code image

public partial class MonkeyTapPage

{

 ...

 protected void OnStartGameButtonClicked(object sender, EventArgs args)

 {

 gameEnded = false;

 startGameButton.IsVisible = false;

 InitializeBoxViewColors();

 sequence.Clear();

 StartSequence();

 }

 void StartSequence()

 {

 sequence.Add(random.Next(4));

 sequenceIndex = 0;

 Device.StartTimer(TimeSpan.FromMilliseconds(sequenceTime), OnTimerTick);

 }

 ...

}

StartSequence adds a new random integer to the sequence list, initializes sequenceIndex to 0, and starts the timer.

In the normal case, the timer tick handler is called for each index in the sequence list and causes the corresponding BoxView to flash with a call to FlashBoxView. The timer handler returns false when the sequence is at an end, also indicating by setting awaitingTaps that it’s time for the user to imitate the sequence:

Click here to view code image

public partial class MonkeyTapPage

{

 ...

 bool OnTimerTick()

 {

 if (gameEnded)

 return false;

 FlashBoxView(sequence[sequenceIndex]);

 sequenceIndex++;

 awaitingTaps = sequenceIndex == sequence.Count;

 sequenceIndex = awaitingTaps ? 0 : sequenceIndex;

 return !awaitingTaps;

 }

 protected virtual void FlashBoxView(int index)

 {

 boxViews[index].Color = colors[index].WithLuminosity(onLuminosity);

 Device.StartTimer(TimeSpan.FromMilliseconds(flashDuration), () =>

 {

 if (gameEnded)

 return false;

 boxViews[index].Color = colors[index].WithLuminosity(offLuminosity);

 return false;

 });

 }

 ...

}

The flash is just a quarter second in duration. The FlashBoxView method first sets the luminosity for a bright color and creates a “one-shot” timer, so called because the timer callback method (here expressed as a lambda function) returns false and shuts off the timer after restoring the color’s luminosity.

The Tapped handler for the BoxView elements ignores the tap if the game is already over (which only happens with a mistake by the user), and ends the game if the user taps prematurely without waiting for the program to go through the sequence. Otherwise, it just compares the tapped BoxView with the next one in the sequence, flashes that BoxView if correct, or ends the game if not:

Click here to view code image

public partial class MonkeyTapPage

{

 ...

 protected void OnBoxViewTapped(object sender, EventArgs args)

 {

 if (gameEnded)

 return;

 if (!awaitingTaps)

 {

 EndGame();

 return;

 }

 BoxView tappedBoxView = (BoxView)sender;

 int index = Array.IndexOf(boxViews, tappedBoxView);

 if (index != sequence[sequenceIndex])

 {

 EndGame();

 return;

 }

 FlashBoxView(index);

 sequenceIndex++;

 awaitingTaps = sequenceIndex < sequence.Count;

 if (!awaitingTaps)

 StartSequence();

 }

 protected virtual void EndGame()

 {

 gameEnded = true;

 for (int index = 0; index < 4; index++)

 boxViews[index].Color = Color.Gray;

 startGameButton.Text = "Try again?";

 startGameButton.IsVisible = true;

 }

}

If the user manages to “ape” the sequence all the way through, another call to StartSequence adds a new index to the sequence list and starts playing that new one. Eventually, though, there will be a call to EndGame, which colors all the boxes gray to emphasize the end, and reenables the Button for a chance to try it again.

Here’s the program after the Button has been clicked and hidden:

[image: Image]

I know, I know. The game is a real drag without sound.

Let’s take the opportunity in the next chapter to fix that.

Chapter 9. Platform-specific API calls

An emergency has arisen. Anyone playing with the MonkeyTap game from the previous chapter will quickly come to the conclusion that it desperately needs a very basic enhancement, and it simply cannot be allowed to exist without it.

MonkeyTap needs sound.

It doesn’t need very sophisticated sound—just little beeps to accompany the flashes of the four BoxView elements. But the Xamarin.Forms API doesn’t support sound, so sound is not something we can add to MonkeyTap with just a couple of API calls. Supporting sound requires going somewhat beyond Xamarin.Forms to make use of platform-specific sound-generation facilities. Figuring out how to make sounds in iOS, Android, and Windows Phone is hard enough. But how does a Xamarin.Forms program then make calls into the individual platforms?

Before tackling the complexities of sound, let’s examine the different approaches to making platform-specific API calls with a much simpler example. The first three short programs shown in this chapter are all functionally identical: They all display two tiny items of information supplied by the underlying platform’s operating system that reveal the model of the device running the program and the operating system version.

Preprocessing in the Shared Asset Project

As you learned in Chapter 2, “Anatomy of an app,” you can use either a Shared Asset Project (SAP) or a Portable Class Library (PCL) for the code that is common to all three platforms. An SAP contains code files that are shared among the platform projects, while a PCL encloses the common code in a library that is accessible only through public types.

Accessing platform APIs from a Shared Asset Project is a little more straightforward than from a Portable Class Library because it involves more traditional programming tools, so let’s try that approach first. You can create a Xamarin.Forms solution with an SAP using the process described in Chapter 2. You can then add a XAML-based ContentPage class to the SAP the same way you add one to a PCL.

Here’s the XAML file for a project that displays platform information, named PlatInfoSap1:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PlatInfoSap1.PlatInfoSap1Page">

 <StackLayout Padding="20">

 <StackLayout VerticalOptions="CenterAndExpand">

 <Label Text="Device Model:" />

 <ContentView Padding="50, 0, 0, 0">

 <Label x:Name="modelLabel"

 FontSize="Large"

 FontAttributes="Bold" />

 </ContentView>

 </StackLayout>

 <StackLayout VerticalOptions="CenterAndExpand">

 <Label Text="Operating System Version:" />

 <ContentView Padding="50, 0, 0, 0">

 <Label x:Name="versionLabel"

 FontSize="Large"

 FontAttributes="Bold" />

 </ContentView>

 </StackLayout>

 </StackLayout>

</ContentPage>

The code-behind file must set the Text properties for modelLabel and versionLabel.

Code files in a Shared Asset Project are extensions of the code in the individual platforms. This means that code in the SAP can make use of the C# preprocessor directives #if, #elif, #else, and #endif with conditional-compilation symbols defined for the three platforms, as demonstrated in Chapters 2 and 4. These symbols are:

• __IOS__ for iOS

• __ANDROID__ for Android

• WINDOWS_UWP for the Universal Windows Platform

• WINDOWS_APP for Windows 8.1

• WINDOWS_PHONE_APP for Windows Phone 8.1

The APIs involved in obtaining the model and version information are, of course, different for the three platforms:

• For iOS, use the UIDevice class in the UIKit namespace.

• For Android, use various properties of the Build class in the Android.OS namespace.

• For the Windows platforms, use the EasClientDeviceInformation class in the Windows.Security.ExchangeActiveSyncProvisioning namespace.

Here’s the PlatInfoSap1.xaml.cs code-behind file showing how modelLabel and versionLabel are set based on the conditional-compilation symbols:

Click here to view code image

using System;

using Xamarin.Forms;

#if __IOS__

using UIKit;

#elif __ANDROID__

using Android.OS;

#elif WINDOWS_APP || WINDOWS_PHONE_APP || WINDOWS_UWP

using Windows.Security.ExchangeActiveSyncProvisioning;

#endif

namespace PlatInfoSap1

{

 public partial class PlatInfoSap1Page : ContentPage

 {

 public PlatInfoSap1Page ()

 {

 InitializeComponent ();

#if __IOS__

 UIDevice device = new UIDevice();

 modelLabel.Text = device.Model.ToString();

 versionLabel.Text = String.Format("{0} {1}", device.SystemName,

 device.SystemVersion);

#elif __ANDROID__

 modelLabel.Text = String.Format("{0} {1}", Build.Manufacturer,

 Build.Model);

 versionLabel.Text = Build.VERSION.Release.ToString();

#elif WINDOWS_APP || WINDOWS_PHONE_APP || WINDOWS_UWP

 EasClientDeviceInformation devInfo = new EasClientDeviceInformation();

 modelLabel.Text = String.Format("{0} {1}", devInfo.SystemManufacturer,

 devInfo.SystemProductName);

 versionLabel.Text = devInfo.OperatingSystem;

#endif

 }

 }

}

Notice that these preprocessor directives are used to select different using directives as well as to make calls to platform-specific APIs. In a program as simple as this, you could simply include the namespaces with the class names, but for longer blocks of code, you’ll probably want those using directives.

And of course it works:

[image: Image]

The advantage of this approach is that you have all the code for the three platforms in one place. But the preprocessor directives in the code listing are—let’s face it—rather ugly, and they harken back to a much earlier era in programming. Using preprocessor directives might not seem so bad for short and less frequent calls such as this example, but in a larger program you’ll need to juggle blocks of platform-specific code and shared code, and the multitude of preprocessor directives can easily become confusing. Preprocessor directives should be used for little fixes and generally not as structural elements in the application.

Let’s try another approach.

Parallel classes and the Shared Asset Project

Although the Shared Asset Project is an extension of the platform projects, the relationship goes both ways: just as a platform project can make calls into code in a Shared Asset Project, the SAP can make calls into the individual platform projects.

This means that we can restrict the platform-specific API calls to classes in the individual platform projects. If the names and namespaces of these classes in the platform projects are the same, then code in the SAP can access these classes in a transparent, platform-independent manner.

In the PlatInfoSap2 solution, each of the five platform projects has a class named PlatformInfo that contains two methods that return string objects, named GetModel and GetVersion. Here’s the version of this class in the iOS project:

Click here to view code image

using System;

using UIKit;

namespace PlatInfoSap2

{

 public class PlatformInfo

 {

 UIDevice device = new UIDevice();

 public string GetModel()

 {

 return device.Model.ToString();

 }

 public string GetVersion()

 {

 return String.Format("{0} {1}", device.SystemName,

 device.SystemVersion);

 }

 }

}

Notice the namespace name. Although the other classes in this iOS project use the PlatInfoSap2.iOS namespace, the namespace for this class is just PlatInfoSap2. This allows the SAP to access this class directly without any platform specifics.

Here’s the parallel class in the Android project. Same namespace, same class name, and same method names, but different implementations of these methods using Android API calls:

Click here to view code image

using System;

using Android.OS;

namespace PlatInfoSap2

{

 public class PlatformInfo

 {

 public string GetModel()

 {

 return String.Format("{0} {1}", Build.Manufacturer,

 Build.Model);

 }

 public string GetVersion()

 {

 return Build.VERSION.Release.ToString();

 }

 }

}

And here’s the class that exists in three identical copies in the three Windows and Windows Phone projects:

Click here to view code image

using System;

using Windows.Security.ExchangeActiveSyncProvisioning;

namespace PlatInfoSap2

{

 public class PlatformInfo

 {

 EasClientDeviceInformation devInfo = new EasClientDeviceInformation();

 public string GetModel()

 {

 return String.Format("{0} {1}", devInfo.SystemManufacturer,

 devInfo.SystemProductName);

 }

 public string GetVersion()

 {

 return devInfo.OperatingSystem;

 }

 }

}

The XAML file in the PlatInfoSap2 project is basically the same as the one in PlatInfoSap1 project. The code-behind file is considerably simpler:

Click here to view code image

using System;

using Xamarin.Forms;

namespace PlatInfoSap2

{

 public partial class PlatInfoSap2Page : ContentPage

 {

 public PlatInfoSap2Page ()

 {

 InitializeComponent ();

 PlatformInfo platformInfo = new PlatformInfo();

 modelLabel.Text = platformInfo.GetModel();

 versionLabel.Text = platformInfo.GetVersion();

 }

 }

}

The particular version of PlatformInfo that is referenced by the class is the one in the compiled project. It’s almost as if we’ve defined a little extension to Xamarin.Forms that resides in the individual platform projects.

DependencyService and the Portable Class Library

Can the technique illustrated in the PlatInfoSap2 program be implemented in a solution with a Portable Class Library? At first, it doesn’t seem possible. Although application projects make calls to libraries all the time, libraries generally can’t make calls to applications except in the context of events or callback functions. The PCL is bundled with a device-independent version of .NET and closed up tight—capable only of executing code within itself or other PCLs it might reference.

But wait: When a Xamarin.Forms application is running, it can use .NET reflection to get access to its own assembly and any other assemblies in the program. This means that code in the PCL can use reflection to access classes that exist in the platform assembly from which the PCL is referenced. Those classes must be defined as public, of course, but that’s just about the only requirement.

Before you start writing code that exploits this technique, you should know that this solution already exists in the form of a Xamarin.Forms class named DependencyService. This class uses .NET reflection to search through all the other assemblies in the application—including the particular platform assembly itself—and provide access to platform-specific code.

The use of DependencyService is illustrated in the DisplayPlatformInfo solution, which uses a Portable Class Library for the shared code. You begin the process of using DependencyService by defining an interface type in the PCL project that declares the signatures of the methods you want to implement in the platform projects. Here’s IPlatformInfo:

Click here to view code image

namespace DisplayPlatformInfo

{

 public interface IPlatformInfo

 {

 string GetModel();

 string GetVersion();

 }

}

You’ve seen those two methods before. They’re the same two methods implemented in the PlatformInfo classes in the platform projects in PlatInfoSap2.

In a manner very similar to PlatInfoSap2, all three platform projects in DisplayPlatformInfo must now have a class that implements the IPlatformInfo interface. Here’s the class in the iOS project, named PlatformInfo:

Click here to view code image

using System;

using UIKit;

using Xamarin.Forms;

[assembly: Dependency(typeof(DisplayPlatformInfo.iOS.PlatformInfo))]

namespace DisplayPlatformInfo.iOS

{

 public class PlatformInfo : IPlatformInfo

 {

 UIDevice device = new UIDevice();

 public string GetModel()

 {

 return device.Model.ToString();

 }

 public string GetVersion()

 {

 return String.Format("{0} {1}", device.SystemName,

 device.SystemVersion);

 }

 }

}

This class is not referenced directly from the PCL, so the namespace name can be anything you want. Here it’s set to the same namespace as the other code in the iOS project. The class name can also be anything you want. Whatever you name it, however, the class must explicitly implement the IPlatformInfo interface defined in the PCL:

Click here to view code image

public class PlatformInfo : IPlatformInfo

Furthermore, this class must be referenced in a special attribute outside the namespace block. You’ll see it near the top of the file following the using directives:

Click here to view code image

[assembly: Dependency(typeof(DisplayPlatformInfo.iOS.PlatformInfo))]

The DependencyAttribute class that defines this Dependency attribute is part of Xamarin.Forms and used specifically in connection with DependencyService. The argument is a Type object of a class in the platform project that is available for access by the PCL. In this case, it’s this PlatformInfo class. This attribute is attached to the platform assembly itself, so code executing in the PCL doesn’t have to search all over the library to find it.

Here’s the Android version of PlatformInfo:

Click here to view code image

using System;

using Android.OS;

using Xamarin.Forms;

[assembly: Dependency(typeof(DisplayPlatformInfo.Droid.PlatformInfo))]

namespace DisplayPlatformInfo.Droid

{

 public class PlatformInfo : IPlatformInfo

 {

 public string GetModel()

 {

 return String.Format("{0} {1}", Build.Manufacturer,

 Build.Model);

 }

 public string GetVersion()

 {

 return Build.VERSION.Release.ToString();

 }

 }

}

And here’s the one for the UWP project:

Click here to view code image

using System;

using Windows.Security.ExchangeActiveSyncProvisioning;

using Xamarin.Forms;

[assembly: Dependency(typeof(DisplayPlatformInfo.UWP.PlatformInfo))]

namespace DisplayPlatformInfo.UWP

{

 public class PlatformInfo : IPlatformInfo

 {

 EasClientDeviceInformation devInfo = new EasClientDeviceInformation();

 public string GetModel()

 {

 return String.Format("{0} {1}", devInfo.SystemManufacturer,

 devInfo.SystemProductName);

 }

 public string GetVersion()

 {

 return devInfo.OperatingSystem;

 }

 }

}

The Windows 8.1 and Windows Phone 8.1 projects have similar files that differ only by the namespace.

Code in the PCL can then get access to the particular platform’s implementation of IPlatformInfo by using the DependencyService class. This is a static class with three public methods, the most important of which is named Get. Get is a generic method whose argument is the interface you’ve defined, in this case IPlatformInfo.

Click here to view code image

IPlatformInfo platformInfo = DependencyService.Get<IPlatformInfo>();

The Get method returns an instance of the platform-specific class that implements the IPlatformInfo interface. You can then use this object to make platform-specific calls. This is demonstrated in the code-behind file for the DisplayPlatformInfo project:

Click here to view code image

namespace DisplayPlatformInfo

{

 public partial class DisplayPlatformInfoPage : ContentPage

 {

 public DisplayPlatformInfoPage()

 {

 InitializeComponent();

 IPlatformInfo platformInfo = DependencyService.Get<IPlatformInfo>();

 modelLabel.Text = platformInfo.GetModel();

 versionLabel.Text = platformInfo.GetVersion();

 }

 }

}

DependencyService caches the instances of the objects that it obtains through the Get method. This speeds up subsequent uses of Get and also allows the platform implementations of the interface to maintain state: any fields and properties in the platform implementations will be preserved across multiple Get calls. These classes can also include events or implement callback methods.

DependencyService requires just a little more overhead than the approach shown in the PlatInfoSap2 project and is somewhat more structured because the individual platform classes implement an interface defined in shared code.

DependencyService is not the only way to implement platform-specific calls in a PCL. Adventurous developers might want to use dependency-injection techniques to configure the PCL to make calls into the platform projects. But DependencyService is very easy to use, and it eliminates most reasons to use a Shared Asset Project in a Xamarin.Forms application.

Platform-specific sound generation

Now for the real objective of this chapter: to give sound to MonkeyTap. All three platforms support APIs that allow a program to dynamically generate and play audio waveforms. This is the approach taken by the MonkeyTapWithSound program.

Commercial music files are often compressed in formats such as MP3. But when a program is algorithmically generating waveforms, an uncompressed format is much more convenient. The most basic technique—which is supported by all three platforms—is called pulse code modulation or PCM. Despite the fancy name, it’s quite simple, and it’s the technique used for storing sound on music CDs.

A PCM waveform is described by a series of samples at a constant rate, known as the sampling rate. Music CDs use a standard rate of 44,100 samples per second. Audio files generated by computer programs often use a sampling rate of half that (22,050) or one-quarter (11,025) if high audio quality is not required. The highest frequency that can be recorded and reproduced is one-half the sampling rate.

Each sample is a fixed size that defines the amplitude of the waveform at that point in time. The samples on a music CD are signed 16-bit values. Samples of 8 bits are common when sound quality doesn’t matter as much. Some environments support floating-point values. Multiple samples can accommodate stereo or any number of channels. For simple sound effects on mobile devices, monaural sound is often fine.

The sound generation algorithm in MonkeyTapWithSound is hard-coded for 16-bit monaural samples, but the sampling rate is specified by a constant and can easily be changed.

Now that you know how DependencyService works, let’s examine the code added to MonkeyTap to turn it into MonkeyTapWithSound, and let’s look at it from the top down. To avoid reproducing a lot of code, the new project contains links to the MonkeyTap.xaml and MonkeyTap.xaml.cs files in the MonkeyTap project.

In Visual Studio, you can add items to projects as links to existing files by selecting Add > Existing Item from the project menu. Then use the Add Existing Item dialog to navigate to the file. Choose Add as Link from the drop-down on the Add button.

In Xamarin Studio, select Add > Add Files from the project’s tool menu. After opening the file or files, an Add File to Folder alert box pops up. Choose Add a link to the file.

However, after taking these steps in Visual Studio, it was also necessary to manually edit the MonkeyTapWithSound.csproj file to change the MonkeyTapPage.xaml file to an EmbeddedResource and the Generator to MSBuild:UpdateDesignTimeXaml. Also, a DependentUpon tag was added to the MonkeyTapPage.xaml.cs file to reference the MonkeyTapPage.xaml file. This causes the code-behind file to be indented under the XAML file in the file list.

The MonkeyTapWithSoundPage class then derives from the MonkeyTapPage class. Although the MonkeyTapPage class is defined by a XAML file and a code-behind file, MonkeyTapWithSoundPage is code only. When a class is derived in this way, event handlers in the original code-behind file for events in the XAML file must be defined as protected, and this is the case.

The MonkeyTap class also defined a flashDuration constant as protected, and two methods were defined as protected and virtual. The MonkeyTapWithSoundPage overrides these two methods to call a static method named SoundPlayer.PlaySound:

Click here to view code image

namespace MonkeyTapWithSound

{

 class MonkeyTapWithSoundPage : MonkeyTap.MonkeyTapPage

 {

 const int errorDuration = 500;

 // Diminished 7th in 1st inversion: C, Eb, F#, A

 double[] frequencies = { 523.25, 622.25, 739.99, 880 };

 protected override void BlinkBoxView(int index)

 {

 SoundPlayer.PlaySound(frequencies[index], flashDuration);

 base.BlinkBoxView(index);

 }

 protected override void EndGame()

 {

 SoundPlayer.PlaySound(65.4, errorDuration);

 base.EndGame();

 }

 }

}

The SoundPlayer.PlaySound method accepts a frequency and a duration in milliseconds. Everything else—the volume, the harmonic makeup of the sound, and how the sound is generated—is the responsibility of the PlaySound method. However, this code makes an implicit assumption that SoundPlayer.PlaySound returns immediately and does not wait for the sound to complete playing. Fortunately, all three platforms support sound-generation APIs that behave in this way.

The SoundPlayer class with the PlaySound static method is part of the MonkeyTapWithSound PCL project. The responsibility of this method is to define an array of the PCM data for the sound. The size of this array is based on the sampling rate and the duration. The for loop calculates samples that define a triangle wave of the requested frequency:

Click here to view code image

namespace MonkeyTapWithSound

{

 class SoundPlayer

 {

 const int samplingRate = 22050;

 // Hard-coded for monaural, 16-bit-per-sample PCM

 public static void PlaySound(double frequency = 440, int duration = 250)

 {

 short[] shortBuffer = new short[samplingRate * duration / 1000];

 double angleIncrement = frequency / samplingRate;

 double angle = 0; // normalized 0 to 1

 for (int i = 0; i < shortBuffer.Length; i++)

 {

 // Define triangle wave

 double sample;

 // 0 to 1

 if (angle < 0.25)

 sample = 4 * angle;

 // 1 to -1

 else if (angle < 0.75)

 sample = 4 * (0.5 - angle);

 // -1 to 0

 else

 sample = 4 * (angle - 1);

 shortBuffer[i] = (short)(32767 * sample);

 angle += angleIncrement;

 while (angle > 1)

 angle -= 1;

 }

 byte[] byteBuffer = new byte[2 * shortBuffer.Length];

 Buffer.BlockCopy(shortBuffer, 0, byteBuffer, 0, byteBuffer.Length);

 DependencyService.Get<IPlatformSoundPlayer>().PlaySound(samplingRate, byteBuffer);

 }

 }

}

Although the samples are 16-bit integers, two of the platforms want the data in the form of an array of bytes, so a conversion occurs near the end with Buffer.BlockCopy. The last line of the method uses DependencyService to pass this byte array with the sampling rate to the individual platforms.

The DependencyService.Get method references the IPlatformSoundPlayer interface that defines the signature of the PlaySound method:

Click here to view code image

namespace MonkeyTapWithSound

{

 public interface IPlatformSoundPlayer

 {

 void PlaySound(int samplingRate, byte[] pcmData);

 }

}

Now comes the hard part: writing this PlaySound method for the three platforms!

The iOS version uses AVAudioPlayer, which requires data that includes the header used in Waveform Audio File Format (.wav) files. The code here assembles that data in a MemoryBuffer and then converts that to an NSData object:

Click here to view code image

using System;

using System.IO;

using System.Text;

using Xamarin.Forms;

using AVFoundation;

using Foundation;

[assembly: Dependency(typeof(MonkeyTapWithSound.iOS.PlatformSoundPlayer))]

namespace MonkeyTapWithSound.iOS

{

 public class PlatformSoundPlayer : IPlatformSoundPlayer

 {

 const int numChannels = 1;

 const int bitsPerSample = 16;

 public void PlaySound(int samplingRate, byte[] pcmData)

 {

 int numSamples = pcmData.Length / (bitsPerSample / 8);

 MemoryStream memoryStream = new MemoryStream();

 BinaryWriter writer = new BinaryWriter(memoryStream, Encoding.ASCII);

 // Construct WAVE header.

 writer.Write(new char[] { 'R', 'I', 'F', 'F' });

 writer.Write(36 + sizeof(short) * numSamples);

 writer.Write(new char[] { 'W', 'A', 'V', 'E' });

 writer.Write(new char[] { 'f', 'm', 't', ' ' }); // format chunk

 writer.Write(16); // PCM chunk size

 writer.Write((short)1); // PCM format flag

 writer.Write((short)numChannels);

 writer.Write(samplingRate);

 writer.Write(samplingRate * numChannels * bitsPerSample / 8); // byte rate

 writer.Write((short)(numChannels * bitsPerSample / 8)); // block align

 writer.Write((short)bitsPerSample);

 writer.Write(new char[] { 'd', 'a', 't', 'a' }); // data chunk

 writer.Write(numSamples * numChannels * bitsPerSample / 8);

 // Write data as well.

 writer.Write(pcmData, 0, pcmData.Length);

 memoryStream.Seek(0, SeekOrigin.Begin);

 NSData data = NSData.FromStream(memoryStream);

 AVAudioPlayer audioPlayer = AVAudioPlayer.FromData(data);

 audioPlayer.Play();

 }

 }

}

Notice the two essentials: PlatformSoundPlayer implements the IPlatformSoundPlayer interface, and the class is flagged with the Dependency attribute.

The Android version uses the AudioTrack class, and that turns out to be a little easier. However, AudioTrack objects can’t overlap, so it’s necessary to save the previous object and stop it playing before starting the next one:

Click here to view code image

using System;

using Android.Media;

using Xamarin.Forms;

[assembly: Dependency(typeof(MonkeyTapWithSound.Droid.PlatformSoundPlayer))]

namespace MonkeyTapWithSound.Droid

{

 public class PlatformSoundPlayer : IPlatformSoundPlayer

 {

 AudioTrack previousAudioTrack;

 public void PlaySound(int samplingRate, byte[] pcmData)

 {

 if (previousAudioTrack != null)

 {

 previousAudioTrack.Stop();

 previousAudioTrack.Release();

 }

 AudioTrack audioTrack = new AudioTrack(Stream.Music,

 samplingRate,

 ChannelOut.Mono,

 Android.Media.Encoding.Pcm16bit,

 pcmData.Length * sizeof(short),

 AudioTrackMode.Static);

 audioTrack.Write(pcmData, 0, pcmData.Length);

 audioTrack.Play();

 previousAudioTrack = audioTrack;

 }

 }

}

The three Windows and Windows Phone platforms can use MediaStreamSource. To avoid a lot of repetitive code, the MonkeyTapWithSound solution contains an additional SAP project named WinRuntimeShared consisting solely of a class that all three platforms can use:

Click here to view code image

using System;

using System.Runtime.InteropServices.WindowsRuntime;

using Windows.Media.Core;

using Windows.Media.MediaProperties;

using Windows.Storage.Streams;

using Windows.UI.Xaml.Controls;

namespace MonkeyTapWithSound.WinRuntimeShared

{

 public class SharedSoundPlayer

 {

 MediaElement mediaElement = new MediaElement();

 TimeSpan duration;

 public void PlaySound(int samplingRate, byte[] pcmData)

 {

 AudioEncodingProperties audioProps =

 AudioEncodingProperties.CreatePcm((uint)samplingRate, 1, 16);

 AudioStreamDescriptor audioDesc = new AudioStreamDescriptor(audioProps);

 MediaStreamSource mss = new MediaStreamSource(audioDesc);

 bool samplePlayed = false;

 mss.SampleRequested += (sender, args) =>

 {

 if (samplePlayed)

 return;

 IBuffer ibuffer = pcmData.AsBuffer();

 MediaStreamSample sample =

 MediaStreamSample.CreateFromBuffer(ibuffer, TimeSpan.Zero);

 sample.Duration = TimeSpan.FromSeconds(pcmData.Length / 2.0 / samplingRate);

 args.Request.Sample = sample;

 samplePlayed = true;

 };

 mediaElement.SetMediaStreamSource(mss);

 }

 }

}

This SAP project is referenced by the three Windows and Windows Phone projects, each of which contains an identical (except for the namespace) PlatformSoundPlayer class:

Click here to view code image

using System;

using Xamarin.Forms;

[assembly: Dependency(typeof(MonkeyTapWithSound.UWP.PlatformSoundPlayer))]

namespace MonkeyTapWithSound.UWP

{

 public class PlatformSoundPlayer : IPlatformSoundPlayer

 {

 WinRuntimeShared.SharedSoundPlayer sharedSoundPlayer;

 public void PlaySound(int samplingRate, byte[] pcmData)

 {

 if (sharedSoundPlayer == null)

 {

 sharedSoundPlayer = new WinRuntimeShared.SharedSoundPlayer();

 }

 sharedSoundPlayer.PlaySound(samplingRate, pcmData);

 }

 }

}

The use of DependencyService to perform platform-specific chores is very powerful, but this approach falls short when it comes to user-interface elements. If you need to expand the arsenal of views that adorn the pages of your Xamarin.Forms applications, that job involves creating platform-specific renderers, a process discussed in the final chapter of this book.

Chapter 10. XAML markup extensions

In code, you can set a property in a variety of different ways from a variety of different sources:

Click here to view code image

triangle.Angle1 = 45;

triangle.Angle1 = 180 * radians / Math.PI;

triangle.Angle1 = angles[i];

triangle.Angle1 = animator.GetCurrentAngle();

If this Angle1 property is a double, all that’s required is that the source be a double or otherwise provide a numeric value that is convertible to a double.

In markup, however, a property of type double usually can be set only from a string that qualifies as a valid argument to Double.Parse. The only exception you’ve seen so far is when the target property is flagged with a TypeConverter attribute, such as the FontSize property.

It might be desirable if XAML were more flexible—if you could set a property from sources other than explicit text strings. For example, suppose you want to define another way to set a property of type Color, perhaps using the Hue, Saturation, and Luminosity values but without the hassle of the x:FactoryMethod element. Just offhand, it doesn’t seem possible. The XAML parser expects that any value set to an attribute of type Color is a string acceptable to the ColorTypeConverter class.

The purpose of XAML markup extensions is to get around this apparent restriction. Rest assured that XAML markup extensions are not extensions to XML. XAML is always legal XML. XAML markup extensions are extensions only in the sense that they extend the possibilities of attribute settings in markup. A markup extension essentially provides a value of a particular type without necessarily being a text representation of a value.

The code infrastructure

Strictly speaking, a XAML markup extension is a class that implements IMarkupExtension, which is a public interface defined in the regular Xamarin.Forms.Core assembly but with the namespace Xamarin.Forms.Xaml:

Click here to view code image

public interface IMarkupExtension

{

 object ProvideValue(IServiceProvider serviceProvider);

}

As the name suggests, ProvideValue is the method that provides a value to a XAML attribute.
IServiceProvider is part of the base class libraries of .NET and defined in the System namespace:

Click here to view code image

public interface IServiceProvider

{

 object GetService(Type type);

}

Obviously, this information doesn’t provide much of a hint on writing custom markup extensions, and in truth, they can be tricky. (You’ll see an example shortly and other examples later in this book.) Fortunately, Xamarin.Forms provides several valuable markup extensions for you. These fall into three categories:

• Markup extensions that are part of the XAML 2009 specification. These appear in XAML files with the customary x prefix and are:

• x:Static

• x:Reference

• x:Type

• x:Null

• x:Array

These are implemented in classes that consist of the name of the markup extension with the word Extension appended—for example, the StaticExtension and ReferenceExtension classes. These classes are defined in the Xamarin.Forms.Xaml assembly.

• The following markup extensions originated in the Windows Presentation Foundation (WPF) and, with the exception of DynamicResource, are supported by Microsoft’s other implementations of XAML, including Silverlight, Windows Phone 7 and 8, and Windows 8 and 10:

• StaticResource

• DynamicResource

• Binding

These are implemented in the public StaticResourceExtension, DynamicResourceExtension, and BindingExtension classes.

• There is only one markup extension that is unique to Xamarin.Forms: the ConstraintExpression class used in connection with RelativeLayout.

Although it’s possible to play around with public markup-extension classes in code, they really only make sense in XAML.

Accessing static members

One of the simplest and most useful implementations of IMarkupExtension is encapsulated in the StaticExtension class. This is part of the original XAML specification, so it customarily appears in XAML with an x prefix. StaticExtension defines a single property named Member of type string that you set to a class and member name of a public constant, static property, static field, or enumeration member.

Let’s see how this works. Here’s a Label with six properties set as they would normally appear in XAML.

Click here to view code image

<Label Text="Just some text"

 BackgroundColor="Accent"

 TextColor="Black"

 FontAttributes="Italic"

 VerticalOptions="Center"

 HorizontalTextAlignment="Center" />

Five of these attributes are set to text strings that eventually reference various static properties, fields, and enumeration members, but the conversion of those text strings occurs through type converters and the standard XAML parsing of enumeration types.

If you want to be more explicit in setting these attributes to those various static properties, fields, and enumeration members, you can use x:StaticExtension within property element tags:

Click here to view code image

<Label Text="Just some text">

 <Label.BackgroundColor>

 <x:StaticExtension Member="Color.Accent" />

 </Label.BackgroundColor>

 <Label.TextColor>

 <x:StaticExtension Member="Color.Black" />

 </Label.TextColor>

 <Label.FontAttributes>

 <x:StaticExtension Member="FontAttributes.Italic" />

 </Label.FontAttributes>

 <Label.VerticalOptions>

 <x:StaticExtension Member="LayoutOptions.Center" />

 </Label.VerticalOptions>

 <Label.HorizontalTextAlignment>

 <x:StaticExtension Member="TextAlignment.Center" />

 </Label.HorizontalTextAlignment>

</Label>

Color.Accent is a static property. Color.Black and LayoutOptions.Center are static fields. FontAttributes.Italic and TextAlignment.Center are enumeration members.

Considering the ease with which these attributes are set with text strings, the approach using StaticExtension initially seems ridiculous, but notice that it’s a general-purpose mechanism. You can use any static property, field, or enumeration member in the StaticExtension tag if its type matches the type of the target property.

By convention, classes that implement IMarkupExtension incorporate the word Extension in their names, but you can leave that out in XAML, which is why this markup extension is usually called x:Static rather than x:StaticExtension. The following markup is marginally shorter than the previous block:

Click here to view code image

<Label Text="Just some text">

 <Label.BackgroundColor>

 <x:Static Member="Color.Accent" />

 </Label.BackgroundColor>

 <Label.TextColor>

 <x:Static Member="Color.Black" />

 </Label.TextColor>

 <Label.FontAttributes>

 <x:Static Member="FontAttributes.Italic" />

 </Label.FontAttributes>

 <Label.VerticalOptions>

 <x:Static Member="LayoutOptions.Center" />

 </Label.VerticalOptions>

 <Label.HorizontalTextAlignment>

 <x:Static Member="TextAlignment.Center" />

 </Label.HorizontalTextAlignment>

</Label>

And now for the really major markup reduction—a change in syntax that causes the property-element tags to disappear and the footprint to shrink considerably. XAML markup extensions almost always appear with the markup extension name and the arguments within a pair of curly braces:

Click here to view code image

<Label Text="Just some text"

 BackgroundColor="{x:Static Member=Color.Accent}"

 TextColor="{x:Static Member=Color.Black}"

 FontAttributes="{x:Static Member=FontAttributes.Italic}"

 VerticalOptions="{x:Static Member=LayoutOptions.Center}"

 HorizontalTextAlignment="{x:Static Member=TextAlignment.Center}" />

This syntax with the curly braces is so ubiquitously used in connection with XAML markup extensions that many developers consider markup extensions to be synonymous with the curly-brace syntax. And that’s nearly true: while curly braces always signal the presence of a XAML markup extension, in many cases a markup extension can appear in XAML without the curly braces (as demonstrated earlier) and it’s sometimes convenient to use them in that way.

Notice there are no quotation marks within the curly braces. Within those braces, very different syntax rules apply. The Member property of the StaticExtension class is no longer an XML attribute. In terms of XML, the entire expression delimited by the curly braces is the value of the attribute, and the arguments within the curly braces appear without quotation marks.

Just like elements, markup extensions can have a ContentProperty attribute. Markup extensions that have only one property—such as the StaticExtension class with its single Member property—invariably mark that sole property as the content property. For markup extensions using the curly-brace syntax, this means that the Member property name and the equal sign can be removed:

Click here to view code image

<Label Text="Just some text"

 BackgroundColor="{x:Static Color.Accent}"

 TextColor="{x:Static Color.Black}"

 FontAttributes="{x:Static FontAttributes.Italic}"

 VerticalOptions="{x:Static LayoutOptions.Center}"

 HorizontalTextAlignment="{x:Static TextAlignment.Center}" />

This is the common form of the x:Static markup extension.

Obviously, the use of x:Static for these particular properties is unnecessary, but you can define your own static members for implementing application-wide constants, and you can reference these in your XAML files. This is demonstrated in the SharedStatics project.

The SharedStatics project contains a class named AppConstants that defines some constants and static fields that might be of use for formatting text:

Click here to view code image

namespace SharedStatics

{

 static class AppConstants

 {

 public static Color LightBackground = Color.Yellow;

 public static Color DarkForeground = Color.Blue;

 public static double NormalFontSize = 18;

 public static double TitleFontSize = 1.4 * NormalFontSize;

 public static double ParagraphSpacing = 10;

 public const FontAttributes Emphasis = FontAttributes.Italic;

 public const FontAttributes TitleAttribute = FontAttributes.Bold;

 public const TextAlignment TitleAlignment = TextAlignment.Center;

 }

}

You could use Device.OnPlatform in these definitions if you need something different for each platform.

The XAML file then uses 18 x:Static markup extensions to reference these items. Notice the XML namespace declaration that associates the local prefix with the namespace of the project:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:SharedStatics"

 x:Class="SharedStatics.SharedStaticsPage"

 BackgroundColor="{x:Static local:AppConstants.LightBackground}">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout Padding="10, 0"

 Spacing="{x:Static local:AppConstants.ParagraphSpacing}">

 <Label Text="The SharedStatics Program"

 TextColor="{x:Static local:AppConstants.DarkForeground}"

 FontSize="{x:Static local:AppConstants.TitleFontSize}"

 FontAttributes="{x:Static local:AppConstants.TitleAttribute}"

 HorizontalTextAlignment="{x:Static local:AppConstants.TitleAlignment}" />

 <Label TextColor="{x:Static local:AppConstants.DarkForeground}"

 FontSize="{x:Static local:AppConstants.NormalFontSize}">

 <Label.FormattedText>

 <FormattedString>

 <Span Text="x:Static"

 FontSize="{x:Static local:AppConstants.NormalFontSize}"

 FontAttributes="{x:Static local:AppConstants.Emphasis}" />

 <Span Text=

" XAML markup extension, an application can maintain a collection of

common property settings defined as constants, static properties or fields,

or enumeration members in a separate code file. These can then be

referenced within the XAML file." />

 </FormattedString>

 </Label.FormattedText>

 </Label>

 <Label TextColor="{x:Static local:AppConstants.DarkForeground}"

 FontSize="{x:Static local:AppConstants.NormalFontSize}">

 <Label.FormattedText>

 <FormattedString>

 <Span Text=

"However, this is not the only technique to share property settings.

You'll soon discover that you can store objects in a " />

 <Span Text="ResourceDictionary"

 FontSize="{x:Static local:AppConstants.NormalFontSize}"

 FontAttributes="{x:Static local:AppConstants.Emphasis}" />

 <Span Text="StaticResource"

 FontSize="{x:Static local:AppConstants.NormalFontSize}"

 FontAttributes="{x:Static local:AppConstants.Emphasis}" />

 <Span Text=

" markup extension, and even encapsultate multiple property settings in a " />

 <Span Text="Style"

 FontSize="{x:Static local:AppConstants.NormalFontSize}"

 FontAttributes="{x:Static local:AppConstants.Emphasis}" />

 </FormattedString>

 </Label.FormattedText>

 </Label>

 </StackLayout>

</ContentPage>

Each of the Span objects with a FontAttributes setting repeats the FontSize setting that is set on the Label itself because Span objects do not inherit font-related settings from the Label when another font-related setting is applied.

And here it is:

[image: Image]

This technique allows you to use these common property settings on multiple pages, and if you ever need to change the values, you need only change the AppSettings file.

It is also possible to use x:Static with static properties and fields defined in classes in external libraries. The following example, named SystemStatics, is rather contrived—it sets the BorderWidth of a Button equal to the PI static field defined in the Math class and uses the static Environment.NewLine property for line breaks in text. But it demonstrates the technique.

The Math and Environment classes are both defined in the .NET System namespace, so a new XML namespace declaration is required to define a prefix named (for example) sys for System. Notice that this namespace declaration specifies the CLR namespace as System but the assembly as mscorlib, which originally stood for Microsoft Common Object Runtime Library but now stands for Multilanguage Standard Common Object Runtime Library:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:sys="clr-namespace:System;assembly=mscorlib"

 x:Class="SystemStatics.SystemStaticsPage">

 <StackLayout>

 <Button Text=" Button with π border width "

 BorderWidth="{x:Static sys:Math.PI}"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <Button.BackgroundColor>

 <OnPlatform x:TypeArguments="Color"

 Android="#404040" />

 </Button.BackgroundColor>

 <Button.BorderColor>

 <OnPlatform x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 </Button.BorderColor>

 </Button>

 <Label VerticalOptions="CenterAndExpand"

 HorizontalTextAlignment="Center"

 FontSize="Medium">

 <Label.FormattedText>

 <FormattedString>

 <Span Text="Environment.NewLine"

 FontSize="Medium"

 FontAttributes="Italic" />

 </FormattedString>

 </Label.FormattedText>

 </Label>

 </StackLayout>

</ContentPage>

The button border doesn’t show up in Android unless the background color is set, and on both Android and Windows Phone the border needs a nondefault color, so some additional markup takes care of those problems. On iOS platforms, a button border tends to crowd the button text, so the text is defined with spaces at the beginning and end.

Judging solely from the visuals, we really have to take it on trust that the button border width is about 3.14 units wide, but the line breaks definitely work:

[image: Image]

The use of curly braces for markup extensions implies that you can’t display text surrounded by curly braces. The curly braces in this text will be mistaken for a markup extension:

Click here to view code image

<Label Text="{Text in curly braces}" />

That won’t work. You can have curly braces elsewhere in the text string, but you can’t begin with a left curly brace.

If you really need to, however, you can ensure that text is not mistaken for a XAML markup extension by beginning the text with an escape sequence that consists of a pair of left and right curly braces:

Click here to view code image

<Label Text="{}{Text in curly braces}" />

That will display the text you want.

Resource dictionaries

Xamarin.Forms also supports a second approach to sharing objects and values, and while this approach has a little more overhead than the x:Static markup extension, it is somewhat more versatile because everything—the shared objects and the visual elements that use them—can be expressed in XAML.

VisualElement defines a property named Resources that is of type ResourceDictionary—a dictionary with string keys and values of type object. Items can be added to this dictionary right in XAML, and they can be accessed in XAML with the StaticResource and DynamicResource markup extensions.

Although x:Static and StaticResource have somewhat similar names, they are quite different: x:Static references a constant, a static field, a static property, or an enumeration member, while StaticResource retrieves an object from a ResourceDictionary.

While the x:Static markup extension is intrinsic to XAML (and hence appears in XAML with an x prefix), the StaticResource and DynamicResource markup extensions are not. They were part of the original XAML implementation in the Windows Presentation Foundation, and StaticResource is also supported in Silverlight, Windows Phone 7 and 8, and Windows 8 and 10.

You’ll use StaticResource for most purposes and reserve DynamicResource for some special applications, so let’s begin with StaticResource.

StaticResource for most purposes

Suppose you’ve defined three buttons in a StackLayout:

Click here to view code image

<StackLayout>

 <Button Text=" Carpe diem "

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 BorderWidth="3"

 TextColor="Red"

 FontSize="Large">

 <Button.BackgroundColor>

 <OnPlatform x:TypeArguments="Color"

 Android="#404040" />

 </Button.BackgroundColor>

 <Button.BorderColor>

 <OnPlatform x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 </Button.BorderColor>

 </Button>

 <Button Text=" Sapere aude "

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 BorderWidth="3"

 TextColor="Red"

 FontSize="Large">

 <Button.BackgroundColor>

 <OnPlatform x:TypeArguments="Color"

 Android="#404040" />

 </Button.BackgroundColor>

 <Button.BorderColor>

 <OnPlatform x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 </Button.BorderColor>

 </Button>

 <Button Text=" Discere faciendo "

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 BorderWidth="3"

 TextColor="Red"

 FontSize="Large">

 <Button.BackgroundColor>

 <OnPlatform x:TypeArguments="Color"

 Android="#404040" />

 </Button.BackgroundColor>

 <Button.BorderColor>

 <OnPlatform x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 </Button.BorderColor>

 </Button>

</StackLayout>

Of course, this is somewhat unrealistic. There are no Clicked events set for these buttons, and generally button text is not in Latin. But here’s what they look like:

[image: Image]

Aside from the text, all three buttons have the same properties set to the same values. Repetitious markup such as this tends to rub programmers the wrong way. It’s an affront to the eye and difficult to maintain and change.

Eventually you’ll see how to use styles to really cut down on the repetitious markup. For now, however, the goal is not to make the markup shorter but to consolidate the values in one place so that if you ever want to change the TextColor property from Red to Blue, you can do so with one edit rather than three.

Obviously, you can use x:Static for this job by defining the values in code. But let’s do the whole thing in XAML by storing the values in a resource dictionary. Every class that derives from VisualElement has a Resources property of type ResourceDictionary. Resources that are used throughout a page are customarily stored in the Resources collection of the ContentPage.

The first step is to express the Resources property of ContentPage as a property element:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ResourceSharing.ResourceSharingPage">

 <ContentPage.Resources>

 </ContentPage.Resources>

 ...

</ContentPage>

If you’re also defining a Padding property on the page by using property-element tags, the order doesn’t matter.

For performance purposes, the Resources property is null by default, so you need to explicitly instantiate the ResourceDictionary:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ResourceSharing.ResourceSharingPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 </ResourceDictionary>

 </ContentPage.Resources>

 ...

</ContentPage>

Between the ResourceDictionary tags, you define one or more objects or values. Each item in the dictionary must be identified with a dictionary key that you specify with the XAML x:Key attribute. For example, here’s the syntax for including a LayoutOptions value in the dictionary with a descriptive key that indicates that this value is defined for setting horizontal options:

Click here to view code image

<LayoutOptions x:Key="horzOptions">Center</LayoutOptions>

Because this is a LayoutOptions value, the XAML parser accesses the LayoutOptionsConverter class to convert the content of the tags, which is the text “Center”.

A second way to store a LayoutOptions value in the dictionary is to let the XAML parser instantiate the structure and set LayoutOptions properties from attributes you specify:

Click here to view code image

<LayoutOptions x:Key="vertOptions"

 Alignment="Center"

 Expands="True" />

The BorderWidth property is of type double, so the x:Double datatype element defined in the XAML 2009 specification is ideal:

Click here to view code image

<x:Double x:Key="borderWidth">3</x:Double>

You can store a Color value in the resource dictionary with a text representation of the color as content. The XAML parser uses the normal ColorTypeConverter for the text conversion:

Click here to view code image

<Color x:Key="textColor">Red</Color>

You can also specify hexadecimal ARGB values following a hash sign.

You can’t initialize a Color value by setting its R, G, and B properties because those are get-only. But you can invoke a Color constructor using x:Arguments or one of the Color factory methods using x:FactoryMethod and x:Arguments.

Click here to view code image

<Color x:Key="textColor"

 x:FactoryMethod="FromHsla">

 <x:Arguments>

 <x:Double>0</x:Double>

 <x:Double>1</x:Double>

 <x:Double>0.5</x:Double>

 <x:Double>1</x:Double>

 </x:Arguments>

</Color>

Notice both the x:Key and x:FactoryMethod attributes.

The BackgroundColor and BorderColor properties of the three buttons shown above are set to values from the OnPlatform class. Fortunately you can put OnPlatform objects right in the dictionary:

Click here to view code image

<OnPlatform x:Key="backgroundColor"

 x:TypeArguments="Color"

 Android="#404040" />

<OnPlatform x:Key="borderColor"

 x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

Notice both the x:Key and x:TypeArguments attributes.

A dictionary item for the FontSize property is somewhat problematic. The FontSize property is of type double, so if you’re storing an actual numeric value in the dictionary, that’s no problem. But you can’t store the word “Large” in the dictionary as if it were a double. Only when a “Large” string is set to a FontSize attribute does the XAML parser use the FontSizeConverter. For that reason, you’ll need to store the FontSize item as a string:

Click here to view code image

<x:String x:Key="fontSize">Large</x:String>

Here’s the complete dictionary at this point:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ResourceSharing.ResourceSharingPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <LayoutOptions x:Key="horzOptions">Center</LayoutOptions>

 <LayoutOptions x:Key="vertOptions"

 Alignment="Center"

 Expands="True" />

 <x:Double x:Key="borderWidth">3</x:Double>

 <Color x:Key="textColor">Red</Color>

 <OnPlatform x:Key="backgroundColor"

 x:TypeArguments="Color"

 Android="#404040" />

 <OnPlatform x:Key="borderColor"

 x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 <x:String x:Key="fontSize">Large</x:String>

 </ResourceDictionary>

 </ContentPage.Resources>

 ...

</ContentPage>

This is sometimes referred to as a resources section for the page. In real-life programming, very many XAML files begin with a resources section.

You can reference items in the dictionary by using the StaticResource markup extension, which is supported by StaticResourceExtension. The class defines a property named Key that you set to the dictionary key. You can use a StaticResourceExtension as an element within property-element tags, or you can use StaticResourceExtension or StaticResource in curly braces. If you’re using the curly-brace syntax, you can leave out the Key and equal sign because Key is the content property of StaticResourceExtension.

The following complete XAML file in the ResourceSharing project illustrates three of these options:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ResourceSharing.ResourceSharingPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <LayoutOptions x:Key="horzOptions">Center</LayoutOptions>

 <LayoutOptions x:Key="vertOptions"

 Alignment="Center"

 Expands="True" />

 <x:Double x:Key="borderWidth">3</x:Double>

 <Color x:Key="textColor">Red</Color>

 <OnPlatform x:Key="backgroundColor"

 x:TypeArguments="Color"

 Android="#404040" />

 <OnPlatform x:Key="borderColor"

 x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 <x:String x:Key="fontSize">Large</x:String>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Button Text=" Carpe diem ">

 <Button.HorizontalOptions>

 <StaticResourceExtension Key="horzOptions" />

 </Button.HorizontalOptions>

 <Button.VerticalOptions>

 <StaticResourceExtension Key="vertOptions" />

 </Button.VerticalOptions>

 <Button.BorderWidth>

 <StaticResourceExtension Key="borderWidth" />

 </Button.BorderWidth>

 <Button.TextColor>

 <StaticResourceExtension Key="textColor" />

 </Button.TextColor>

 <Button.BackgroundColor>

 <StaticResourceExtension Key="backgroundColor" />

 </Button.BackgroundColor>

 <Button.BorderColor>

 <StaticResourceExtension Key="borderColor" />

 </Button.BorderColor>

 <Button.FontSize>

 <StaticResourceExtension Key="fontSize" />

 </Button.FontSize>

 </Button>

 <Button Text=" Sapere aude "

 HorizontalOptions="{StaticResource Key=horzOptions}"

 VerticalOptions="{StaticResource Key=vertOptions}"

 BorderWidth="{StaticResource Key=borderWidth}"

 TextColor="{StaticResource Key=textColor}"

 BackgroundColor="{StaticResource Key=backgroundColor}"

 BorderColor="{StaticResource Key=borderColor}"

 FontSize="{StaticResource Key=fontSize}" />

 <Button Text=" Discere faciendo "

 HorizontalOptions="{StaticResource horzOptions}"

 VerticalOptions="{StaticResource vertOptions}"

 BorderWidth="{StaticResource borderWidth}"

 TextColor="{StaticResource textColor}"

 BackgroundColor="{StaticResource backgroundColor}"

 BorderColor="{StaticResource borderColor}"

 FontSize="{StaticResource fontSize}" />

 </StackLayout>

</ContentPage>

The simplest syntax in the third button is the most common, and indeed, that syntax is so ubiquitous that many longtime XAML developers might be entirely unfamiliar with the other variations. But if you use a version of StaticResource with the Key property, do not put an x prefix on it. The x:Key attribute is only for defining dictionary keys for items in the ResourceDictionary.

Objects and values in the dictionary are shared among all the StaticResource references. That’s not so clear in the preceding example, but it’s something to keep in mind. For example, suppose you store a Button object in the resource dictionary:

Click here to view code image

<ContentPage.Resources>

 <ResourceDictionary>

 <Button x:Key="button"

 Text="Shared Button?"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 FontSize="Large" />

 </ResourceDictionary>

</ContentPage.Resources>

You can certainly use that Button object on your page by adding it to the Children collection of a StackLayout with the StaticResourceExtension element syntax:

Click here to view code image

<StackLayout>

 <StaticResourceExtension Key="button" />

</StackLayout>

However, you can’t use that same dictionary item in hopes of putting another copy in the StackLayout:

Click here to view code image

<StackLayout>

 <StaticResourceExtension Key="button" />

 <StaticResourceExtension Key="button" />

</StackLayout>

That won’t work. Both these elements reference the same Button object, and a particular visual element can be in only one particular location on the screen. It can’t be in multiple locations.

For this reason, visual elements are not normally stored in a resource dictionary. If you need multiple elements on your page that have mostly the same properties, you’ll want to use a Style, which is explored in Chapter 12.

A tree of dictionaries

The ResourceDictionary class imposes the same rules as other dictionaries: all the items in the dictionary must have keys, but duplicate keys are not allowed.

However, because every instance of VisualElement potentially has its own resource dictionary, your page can contain multiple dictionaries, and you can use the same keys in different dictionaries just as long as all the keys within each dictionary are unique. Conceivably, every visual element in the visual tree can have its own dictionary, but it really only makes sense for a resource dictionary to apply to multiple elements, so resource dictionaries are only commonly found defined on Layout or Page objects.

Using this technique you can construct a tree of dictionaries with dictionary keys that effectively override the keys on other dictionaries. This is demonstrated in the ResourceTrees project. The XAML file for the ResourceTreesPage class shows a Resources dictionary for the ContentPage that defines resources with keys of horzOptions, vertOptions, and textColor.

A second Resources dictionary is attached to an inner StackLayout for resources named textColor and FontSize:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ResourceTrees.ResourceTreesPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <LayoutOptions x:Key="horzOptions">Center</LayoutOptions>

 <LayoutOptions x:Key="vertOptions"

 Alignment="Center"

 Expands="True" />

 <OnPlatform x:Key="textColor"

 x:TypeArguments="Color"

 iOS="Red"

 Android="Pink"

 WinPhone="Blue" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Button Text=" Carpe diem "

 HorizontalOptions="{StaticResource horzOptions}"

 VerticalOptions="{StaticResource vertOptions}"

 BorderWidth="{StaticResource borderWidth}"

 TextColor="{StaticResource textColor}"

 BackgroundColor="{StaticResource backgroundColor}"

 BorderColor="{StaticResource borderColor}"

 FontSize="{StaticResource fontSize}" />

 <StackLayout>

 <StackLayout.Resources>

 <ResourceDictionary>

 <Color x:Key="textColor">Default</Color>

 <x:String x:Key="fontSize">Default</x:String>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Label Text="The first of two labels"

 HorizontalOptions="{StaticResource horzOptions}"

 TextColor="{StaticResource textColor}"

 FontSize="{StaticResource fontSize}" />

 <Button Text=" Sapere aude "

 HorizontalOptions="{StaticResource horzOptions}"

 BorderWidth="{StaticResource borderWidth}"

 TextColor="{StaticResource textColor}"

 BackgroundColor="{StaticResource backgroundColor}"

 BorderColor="{StaticResource borderColor}"

 FontSize="{StaticResource fontSize}" />

 <Label Text="The second of two labels"

 HorizontalOptions="{StaticResource horzOptions}"

 TextColor="{StaticResource textColor}"

 FontSize="{StaticResource fontSize}" />

 </StackLayout>

 <Button Text=" Discere faciendo "

 HorizontalOptions="{StaticResource horzOptions}"

 VerticalOptions="{StaticResource vertOptions}"

 BorderWidth="{StaticResource borderWidth}"

 TextColor="{StaticResource textColor}"

 BackgroundColor="{StaticResource backgroundColor}"

 BorderColor="{StaticResource borderColor}"

 FontSize="{StaticResource fontSize}" />

 </StackLayout>

</ContentPage>

The Resources dictionary on the inner StackLayout applies only to items within that StackLayout, which are the items in the middle of this screenshot:

[image: Image]

Here’s how it works:

When the XAML parser encounters a StaticResource on an attribute of a visual element, it begins a search for that dictionary key. It first looks in the ResourceDictionary for that visual element, and if the key is not found, it looks for the key in the visual element’s parent’s ResourceDictionary, and up and up through the visual tree until it reaches the ResourceDictionary on the page.

But something’s missing here! Where are the entries in the page’s ResourceDictionary for borderWidth, backgroundColor, borderColor, and fontSize? They aren’t in the ResourceTreesPage.xaml file!

Those items are elsewhere. The Application class—from which every application’s App class derives—also defines a Resources property of type ResourceDictionary. This is handy for defining resources that apply to the entire application and not just to a particular page or layout. When the XAML parser searches up the visual tree for a matching resource key, and that key is not found in the ResourceDictionary for the page, it finally checks the ResourceDictionary defined by the Application class. Only if it’s not found there is a XamlParseException raised for the StaticResource key-not-found error.

You can add items to your App class’s ResourceDictionary object in two ways:

One approach is to add the items in code in the App constructor. Make sure you do this before instantiating the main ContentPage class:

Click here to view code image

public class App : Application

{

 public App()

 {

 Resources = new ResourceDictionary();

 Resources.Add("borderWidth", 3.0);

 Resources.Add("fontSize", "Large");

 Resources.Add("backgroundColor",

 Device.OnPlatform(Color.Default,

 Color.FromRgb(0x40, 0x40, 0x40),

 Color.Default));

 Resources.Add("borderColor",

 Device.OnPlatform(Color.Default,

 Color.White,

 Color.Black));

 MainPage = new ResourceTreesPage();

 }

 ...

}

However, the App class can also have a XAML file of its own, and the application-wide resources can be defined in the Resources collection in that XAML file. To do this, you’ll want to delete the App.cs file created by the Xamarin.Forms solution template. There’s no template item for an App class, so you’ll need to fake it. Add a new XAML page class—Forms Xaml Page in Visual Studio or Forms ContentPage Xaml in Xamarin Studio—to the project. Name it App. And immediately—before you forget—go into the App.xaml file and change the root tags to Application, and go into the App.xaml.cs file and change the base class to Application.

Now you have an App class that derives from Application and has its own XAML file. In the App.xaml file you can then instantiate a ResourceDictionary within Application.Resources property-element tags and add items to it:

Click here to view code image

<Application xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ResourceTrees.App">

 <Application.Resources>

 <ResourceDictionary>

 <x:Double x:Key="borderWidth">3</x:Double>

 <x:String x:Key="fontSize">Large</x:String>

 <OnPlatform x:Key="backgroundColor"

 x:TypeArguments="Color"

 Android="#404040" />

 <OnPlatform x:Key="borderColor"

 x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 </ResourceDictionary>

 </Application.Resources>

</Application>

The constructor in the code-behind file needs to call InitializeComponent to parse the App.xaml file at run time and add the items to the dictionary. This should be done prior to the normal job of instantiating the ResourceTreesPage class and setting it to the MainPage property:

Click here to view code image

public partial class App : Application

{

 public App()

 {

 InitializeComponent();

 MainPage = new ResourceTreesPage();

 }

 protected override void OnStart()

 {

 // Handle when your app starts

 }

 protected override void OnSleep()

 {

 // Handle when your app sleeps

 }

 protected override void OnResume()

 {

 // Handle when your app resumes

 }

}

Adding the lifecycle events is optional.

Be sure to call InitializeComponent before instantiating the page class. The constructor of the page class calls its own InitializeComponent to parse the XAML file for the page, and the StaticResource markup extensions need access to the Resources collection in the App class.

Every Resources dictionary has a particular scope: For the Resources dictionary on the App class, that scope is the entire application. A Resources dictionary on the ContentPage class applies to the whole page. A Resources dictionary on a StackLayout applies to all the children in the StackLayout. You should define and store your resources based on how you use them. Use the Resources dictionary in the App class for application-wide resources; use the Resources dictionary on the ContentPage for page-wide resources; but define additional Resources dictionaries deeper in the visual tree for resources required only in one part of the page.

As you’ll see in Chapter 12, the most important items in a Resources dictionary are usually objects of type Style. In the general case, you’ll have application-wide Style objects, Style objects for the page, and Style objects associated with smaller parts of the visual tree.

DynamicResource for special purposes

An alternative to StaticResource for referencing items from the Resources dictionary is DynamicResource, and if you just substitute DynamicResource for StaticResource in the example shown above, the program will seemingly run the same. However, the two markup extensions are very different. StaticResource accesses the item in the dictionary only once while the XAML is being parsed and the page is being built. But DynamicResource maintains a link between the dictionary key and the property set from that dictionary item. If the item in the resource dictionary referenced by the key changes, DynamicResource will detect that change and set the new value to the property.

Skeptical? Let’s try it out. The DynamicVsStatic project has a XAML file that defines a resource item of type string with a key of currentDateTime, even though the item in the dictionary is the string “Not actually a DateTime”!

This dictionary item is referenced four times in the XAML file, but one of the references is commented out. In the first two examples, the Text property of a Label is set using StaticResource and DynamicResource. In the second two examples, the Text property of a Span object is set similarly, but the use of DynamicResource on the Span object appears in comments:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="DynamicVsStatic.DynamicVsStaticPage"

 Padding="5, 0">

 <ContentPage.Resources>

 <ResourceDictionary>

 <x:String x:Key="currentDateTime">Not actually a DateTime</x:String>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Label Text="StaticResource on Label.Text:"

 VerticalOptions="EndAndExpand"

 FontSize="Medium" />

 <Label Text="{StaticResource currentDateTime}"

 VerticalOptions="StartAndExpand"

 HorizontalTextAlignment="Center"

 FontSize="Medium" />

 <Label Text="DynamicResource on Label.Text:"

 VerticalOptions="EndAndExpand"

 FontSize="Medium" />

 <Label Text="{DynamicResource currentDateTime}"

 VerticalOptions="StartAndExpand"

 HorizontalTextAlignment="Center"

 FontSize="Medium" />

 <Label Text="StaticResource on Span.Text:"

 VerticalOptions="EndAndExpand"

 FontSize="Medium" />

 <Label VerticalOptions="StartAndExpand"

 HorizontalTextAlignment="Center"

 FontSize="Medium">

 <Label.FormattedText>

 <FormattedString>

 </FormattedString>

 </Label.FormattedText>

 </Label>

 <!-- This raises a run-time exception! -->

 <!--<Label Text="DynamicResource on Span.Text:"

 VerticalOptions="EndAndExpand"

 FontSize="Medium" />

 <Label VerticalOptions="StartAndExpand"

 HorizontalTextAlignment="Center"

 FontSize="Medium">

 <Label.FormattedText>

 <FormattedString>

 </FormattedString>

 </Label.FormattedText>

 </Label>-->

 </StackLayout>

</ContentPage>

You’ll probably expect all three of the references to the currentDateTime dictionary item to result in the display of the text “Not actually a DateTime”. However, the code-behind file starts a timer going. Every second, the timer callback replaces that dictionary item with a new string representing an actual DateTime value:

Click here to view code image

public partial class DynamicVsStaticPage : ContentPage

{

 public DynamicVsStaticPage()

 {

 InitializeComponent();

 Device.StartTimer(TimeSpan.FromSeconds(1),

 () =>

 {

 Resources["currentDateTime"] = DateTime.Now.ToString();

 return true;

 });

 }

}

The result is that the Text properties set with StaticResource stay the same, while the one with DynamicResource changes every second to reflect the new item in the dictionary:

[image: Image]

Here’s another difference: if there is no item in the dictionary with the specified key name, StaticResource will raise a run-time exception, but DynamicResource will not.

You can try uncommenting the block of markup at the end of the DynamicVsStatic project, and you will indeed encounter a run-time exception to the effect that the Text property could not be found. Just offhand, that exception doesn’t sound quite right, but it’s referring to a very real difference.

The problem is that the Text properties in Label and Span are defined in significantly different ways, and that difference matters a lot for DynamicResource. This difference will be explored in the next chapter, “The bindable infrastructure.”

Lesser-used markup extensions

Three markup extensions are not used as much as the others. These are:

• x:Null

• x:Type

• x:Array

You use the x:Null extension to set a property to null. The syntax looks like this:

Click here to view code image

<SomeElement SomeProperty="{x:Null}" />

This doesn’t make much sense unless SomeProperty has a default value that is not null when it’s desirable to set the property to null. But as you’ll see in Chapter 12, sometimes a property can acquire a non-null value from a style, and x:Null is pretty much the only way to override that.

The x:Type markup extension is used to set a property of type Type, the .NET class describing the type of a class or structure. Here’s the syntax:

Click here to view code image

<AnotherElement TypeProperty="{x:Type Color}" />

You’ll also use x:Type in connection with x:Array. The x:Array markup extension is always used with regular element syntax rather than curly-brace syntax. It has a required argument named Type that you set with the x:Type markup extension. This indicates the type of the elements in the array. Here’s how an array might be defined in a resource dictionary:

Click here to view code image

<x:Array x:Key="array"

 Type="{x:Type x:String}">

 <x:String>One String</x:String>

 <x:String>Two String</x:String>

 <x:String>Red String</x:String>

 <x:String>Blue String</x:String>

</x:Array>

A custom markup extension

Let’s create our own markup extension named HslColorExtension. This will allow us to set any property of type Color by specifying values of hue, saturation, and luminosity, but in a manner much simpler than the use of the x:FactoryMethod tag demonstrated in Chapter 8, “Code and XAML in harmony.”

Moreover, let’s put this class in a separate Portable Class Library so that you can use it from multiple applications. Such a library can be found with the other source code for this book. It’s in a directory named Libraries that is parallel to the separate chapter directories. The name of this PCL (and the namespace of the classes within it) is Xamarin.FormsBook.Toolkit.

You can use this library yourself in your own applications by adding a reference to it. You can then add a new XML namespace declaration in your XAML files like so to specify this library:

Click here to view code image

xmlns:toolkit="clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

With this toolkit prefix you can then reference the HslColorExtension class in the same way you use other XAML markup extensions:

Click here to view code image

<BoxView Color="{toolkit:HslColor H=0.67, S=1, L=0.5}" />

Unlike other XAML markup extensions shown so far, this one has multiple properties, and if you’re setting them as arguments with the curly-brace syntax, they must be separated with commas.

Would something like that be useful? Let’s first see how to create such a library for classes that you’d like to share among applications:

In Visual Studio, from the File menu, select New and Project. In the New Project dialog, select Visual C# and Cross-Platform at the left, and Class Library (Xamarin.Forms) from the list. Find a location for the project and give it a name. For the PCL created for this example, the name is Xamarin.FormsBook.Toolkit. Click OK. Along with all the overhead for the project, the template creates a code file named Xamarin.FormsBook.Toolkit.cs containing a class named Xamarin.FormsBook.Toolkit. That’s not a valid class name, so just delete that file.

In Xamarin Studio, from the File menu, select New and Solution. In the New Project dialog, select Multiplatform and Library at the left, and Forms and Class Library from the list. Find a location for it and give it a name (Xamarin.FormsBook.Toolkit for this example). Click OK. The solution template creates several files, including a file named MyPage.cs. Delete that file.

You can now add classes to this project in the normal way:

In Visual Studio, right-click the project name, select Add and New Item. In the Add New Item dialog, if you’re just creating a code-only class, select Visual C# and Code at the left, and select Class from the list. Give it a name (HslColorExtension.cs for this example). Click the Add button.

In Xamarin Studio, in the tool menu for the project, select Add and New File. In the New File dialog, if you’re just creating a code-only class, select General at the left and Empty Class in the list. Give it a name (HslColorExtension.cs for this example). Click the New button.

The Xamarin.FormsBook.Toolkit library will be built up and accumulate useful classes during the course of this book. But the first class in this library is HslColorExtension. The HslColorExtension.cs file (including the required using directives) looks like this:

Click here to view code image

using System;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace Xamarin.FormsBook.Toolkit

{

 public class HslColorExtension : IMarkupExtension

 {

 public HslColorExtension()

 {

 A = 1;

 }

 public double H { set; get; }

 public double S { set; get; }

 public double L { set; get; }

 public double A { set; get; }

 public object ProvideValue(IServiceProvider serviceProvider)

 {

 return Color.FromHsla(H, S, L, A);

 }

 }

}

Notice that the class is public, so it’s visible from outside the library, and that it implements the IMarkupExtension interface, which means that it must include a ProvideValue method. However, the method doesn’t make use of the IServiceProvider argument at all, mainly because it doesn’t need to know about anything else external to itself. All it needs are the four properties to create a Color value, and if the A value isn’t set, a default value of 1 (fully opaque) is used.

This Xamarin.FormsBook.Toolkit solution contains only a PCL project. The project can be built to generate a PCL assembly, but it cannot be run without an application that uses this assembly.

There are two ways to access this library from an application solution:

• From the PCL project of your application solution, add a reference to the library PCL assembly, which is the dynamic-link library (DLL) generated from the library project.

• Include a link to the library project from your application solution, and add a reference to that library project from the applicationt’s PCL project.

The first option is necessary if you have only the DLL and not the project with source code. Perhaps you’re licensing the library and don’t have access to the source. But if you have access to the project, it’s usually best to include a link to the library project in your solution so that you can easily make changes to the library code and rebuild the library project.

The final project in this chapter is CustomExtensionDemo, which makes use of the HslColorExtension class in the new library. The CustomExtensionDemo solution contains a link to the Xamarin.FormsBook.Toolkit PCL project, and the References section in the CustomExtensionDemo project lists the Xamarin.FormsBook.Toolkit assembly.

Now the application project is seemingly ready to access the library project to use the HslColorExtension class within the application’s XAML file.

But first there’s another step. Unless you’ve enabled XAML compilation, a reference to an external library from XAML is insufficient to ensure that the library is included with the application. The library needs to be accessed from actual code. For this reason, Xamarin.FormsBook.Toolkit also contains a class and method that might seem from the name to be performing important initialization for the library:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public static class Toolkit

 {

 public static void Init()

 {

 }

 }

}

Whenever you use anything from this library, try to get into the habit of calling this Init method first thing in the App file:

Click here to view code image

namespace CustomExtensionDemo

{

 public class App : Application

 {

 public App()

 {

 Xamarin.FormsBook.Toolkit.Toolkit.Init();

 MainPage = new CustomExtensionDemoPage();

 }

 ...

 }

}

The following XAML file shows the XML namespace declaration for the Xamarin.FormsBook.Toolkit library and three ways to access the custom XAML markup extension—by using an HslColorExtension element set with property-element syntax on the Color property and by using both HslColorExtension and HslColor with the more common curly-brace syntax. Again, notice the use of commas to separate the arguments within the curly braces:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="CustomExtensionDemo.CustomExtensionDemoPage">

 <StackLayout>

 <!-- Red -->

 <BoxView HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <toolkit:HslColorExtension H="0" S="1" L="0.5" />

 </BoxView.Color>

 </BoxView>

 <!-- Green -->

 <BoxView HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <toolkit:HslColorExtension H="0.33" S="1" L="0.5" />

 </BoxView.Color>

 </BoxView>

 <!-- Blue -->

 <BoxView Color="{toolkit:HslColor H=0.67, S=1, L=0.5}"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <!-- Gray -->

 <BoxView Color="{toolkit:HslColor H=0, S=0, L=0.5}"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <!-- Semitransparent white -->

 <BoxView Color="{toolkit:HslColor H=0, S=0, L=1, A=0.5}"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <!-- Semitransparent black -->

 <BoxView Color="{toolkit:HslColor H=0, S=0, L=0, A=0.5}"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

The last two examples set the A property for 50 percent transparency, so the boxes show up as a shade of gray (or not at all) depending on the background:

[image: Image]

Two major uses of XAML markup extensions are yet to come. In Chapter 12, you’ll see the Style class, which is without a doubt the most popular item for including in resource dictionaries, and in Chapter 16, you’ll see the powerful markup extension named Binding.

Chapter 11. The bindable infrastructure

One of the most basic language constructs of C# is the class member known as the property. All of us very early on in our first encounters with C# learned the general routine of defining a property. The property is often backed by a private field and includes set and get accessors that reference the private field and do something with a new value:

Click here to view code image

public class MyClass

{

 ...

 double quality;

 public double Quality

 {

 set

 {

 quality = value;

 // Do something with the new value

 }

 get

 {

 return quality;

 }

 }

 ...

}

Properties are sometimes referred to as smart fields. Syntactically, code that accesses a property resembles code that accesses a field. Yet the property can execute some of its own code when the property is accessed.

Properties are also like methods. Indeed, C# code is compiled into intermediate language that implements a property such as Quality with a pair of methods named set_Quality and get_Quality. Yet despite the close functional resemblance between properties and a pair of set and get methods, the property syntax reveals itself to be much more suitable when moving from code to markup. It’s hard to imagine XAML built on an underlying API that is missing properties.

So you may be surprised to learn that Xamarin.Forms implements an enhanced property definition that builds upon C# properties. Or maybe you won’t be surprised. If you already have experience with Microsoft’s XAML-based platforms, you’ll encounter some familiar concepts in this chapter.

The property definition shown above is known as a CLR property because it’s supported by the .NET common language runtime. The enhanced property definition in Xamarin.Forms builds upon the CLR property and is called a bindable property, encapsulated by the BindableProperty class and supported by the BindableObject class.

The Xamarin.Forms class hierarchy

Before exploring the details of the important BindableObject class, let’s first discover how BindableObject fits into the overall Xamarin.Forms architecture by constructing a class hierarchy.

In an object-oriented programming framework such as Xamarin.Forms, a class hierarchy can often reveal important inner structures of the environment. The class hierarchy shows how various classes relate to one another and the properties, methods, and events that they share, including how bindable properties are supported.

You can construct such a class hierarchy by laboriously going through the online documentation and taking note of what classes derive from what other classes. Or you can write a Xamarin.Forms program to do the work for you and display the class hierarchy on the phone. Such a program makes use of .NET reflection to obtain all the public classes, structures, and enumerations in the Xamarin.Forms.Core and Xamarin.Forms.Xaml assemblies and arrange them in a tree. The ClassHierarchy application demonstrates this technique.

As usual, the ClassHierarchy project contains a class that derives from ContentPage, named ClassHierarchyPage, but it also contains two additional classes, named TypeInformation and ClassAndSubclasses.

The program creates one TypeInformation instance for every public class (and structure and enumeration) in the Xamarin.Forms.Core and Xamarin.Forms.Xaml assemblies, plus any .NET class that serves as a base class for any Xamarin.Forms class, with the exception of Object. (These .NET classes are Attribute, Delegate, Enum, EventArgs, Exception, MulticastDelegate, and ValueType.) The TypeInformation constructor requires a Type object identifying a type but also obtains some other information:

Click here to view code image

class TypeInformation

{

 bool isBaseGenericType;

 Type baseGenericTypeDef;

 public TypeInformation(Type type, bool isXamarinForms)

 {

 Type = type;

 IsXamarinForms = isXamarinForms;

 TypeInfo typeInfo = type.GetTypeInfo();

 BaseType = typeInfo.BaseType;

 if (BaseType != null)

 {

 TypeInfo baseTypeInfo = BaseType.GetTypeInfo();

 isBaseGenericType = baseTypeInfo.IsGenericType;

 if (isBaseGenericType)

 {

 baseGenericTypeDef = baseTypeInfo.GetGenericTypeDefinition();

 }

 }

 }

 public Type Type { private set; get; }

 public Type BaseType { private set; get; }

 public bool IsXamarinForms { private set; get; }

 public bool IsDerivedDirectlyFrom(Type parentType)

 {

 if (BaseType != null && isBaseGenericType)

 {

 if (baseGenericTypeDef == parentType)

 {

 return true;

 }

 }

 else if (BaseType == parentType)

 {

 return true;

 }

 return false;

 }

}

A very important part of this class is the IsDerivedDirectlyFrom method, which will return true if passed an argument that is this type’s base type. This determination is complicated if generic classes are involved, and that issue largely accounts for the complexity of the class.

The ClassAndSubclasses class is considerably shorter:

Click here to view code image

class ClassAndSubclasses

{

 public ClassAndSubclasses(Type parent, bool isXamarinForms)

 {

 Type = parent;

 IsXamarinForms = isXamarinForms;

 Subclasses = new List<ClassAndSubclasses>();

 }

 public Type Type { private set; get; }

 public bool IsXamarinForms { private set; get; }

 public List<ClassAndSubclasses> Subclasses { private set; get; }

}

The program creates one instance of this class for every Type displayed in the class hierarchy, including Object, so the program creates one more ClassAndSubclasses instance than the number of TypeInformation instances. The ClassAndSubclasses instance associated with Object contains a collection of all the classes that derive directly from Object, and each of those ClassAndSubclasses instances contains a collection of all the classes that derive from that one, and so forth for the remainder of the hierarchy tree.

The ClassHierarchyPage class consists of a XAML file and a code-behind file, but the XAML file contains little more than a scrollable StackLayout ready for some Label elements:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ClassHierarchy.ClassHierarchyPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="5, 20, 0, 0"

 Android="5, 0, 0, 0"

 WinPhone="5, 0, 0, 0" />

 </ContentPage.Padding>

 <ScrollView>

 <StackLayout x:Name="stackLayout"

 Spacing="0" />

 </ScrollView>

</ContentPage>

The code-behind file obtains references to the two Xamarin.Forms Assembly objects and then accumulates all the public classes, structures, and enumerations in the classList collection. It then checks for the necessity of including any base classes from the .NET assemblies, sorts the result, and then calls two recursive methods, AddChildrenToParent and AddItemToStackLayout:

Click here to view code image

public partial class ClassHierarchyPage : ContentPage

{

 public ClassHierarchyPage()

 {

 InitializeComponent();

 List<TypeInformation> classList = new List<TypeInformation>();

 // Get types in Xamarin.Forms.Core assembly.

 GetPublicTypes(typeof(View).GetTypeInfo().Assembly, classList);

 // Get types in Xamarin.Forms.Xaml assembly.

 GetPublicTypes(typeof(Extensions).GetTypeInfo().Assembly, classList);

 // Ensure that all classes have a base type in the list.

 // (i.e., add Attribute, ValueType, Enum, EventArgs, etc.)

 int index = 0;

 // Watch out! Loops through expanding classList!

 do

 {

 // Get a child type from the list.

 TypeInformation childType = classList[index];

 if (childType.Type != typeof(Object))

 {

 bool hasBaseType = false;

 // Loop through the list looking for a base type.

 foreach (TypeInformation parentType in classList)

 {

 if (childType.IsDerivedDirectlyFrom(parentType.Type))

 {

 hasBaseType = true;

 }

 }

 // If there's no base type, add it.

 if (!hasBaseType && childType.BaseType != typeof(Object))

 {

 classList.Add(new TypeInformation(childType.BaseType, false));

 }

 }

 index++;

 }

 while (index < classList.Count);

 // Now sort the list.

 classList.Sort((t1, t2) =>

 {

 return String.Compare(t1.Type.Name, t2.Type.Name);

 });

 // Start the display with System.Object.

 ClassAndSubclasses rootClass = new ClassAndSubclasses(typeof(Object), false);

 // Recursive method to build the hierarchy tree.

 AddChildrenToParent(rootClass, classList);

 // Recursive method for adding items to StackLayout.

 AddItemToStackLayout(rootClass, 0);

 }

 void GetPublicTypes(Assembly assembly,

 List<TypeInformation> classList)

 {

 // Loop through all the types.

 foreach (Type type in assembly.ExportedTypes)

 {

 TypeInfo typeInfo = type.GetTypeInfo();

 // Public types only but exclude interfaces.

 if (typeInfo.IsPublic && !typeInfo.IsInterface)

 {

 // Add type to list.

 classList.Add(new TypeInformation(type, true));

 }

 }

 }

 void AddChildrenToParent(ClassAndSubclasses parentClass,

 List<TypeInformation> classList)

 {

 foreach (TypeInformation typeInformation in classList)

 {

 if (typeInformation.IsDerivedDirectlyFrom(parentClass.Type))

 {

 ClassAndSubclasses subClass =

 new ClassAndSubclasses(typeInformation.Type,

 typeInformation.IsXamarinForms);

 parentClass.Subclasses.Add(subClass);

 AddChildrenToParent(subClass, classList);

 }

 }

 }

 void AddItemToStackLayout(ClassAndSubclasses parentClass, int level)

 {

 // If assembly is not Xamarin.Forms, display full name.

 string name = parentClass.IsXamarinForms ? parentClass.Type.Name :

 parentClass.Type.FullName;

 TypeInfo typeInfo = parentClass.Type.GetTypeInfo();

 // If generic, display angle brackets and parameters.

 if (typeInfo.IsGenericType)

 {

 Type[] parameters = typeInfo.GenericTypeParameters;

 name = name.Substring(0, name.Length - 2);

 name += "<";

 for (int i = 0; i < parameters.Length; i++)

 {

 name += parameters[i].Name;

 if (i < parameters.Length - 1)

 {

 name += ", ";

 }

 }

 name += ">";

 }

 // Create Label and add to StackLayout.

 Label label = new Label

 {

 Text = String.Format("{0}{1}", new string(' ', 4 * level), name),

 TextColor = parentClass.Type.GetTypeInfo().IsAbstract ?

 Color.Accent : Color.Default

 };

 stackLayout.Children.Add(label);

 // Now display nested types.

 foreach (ClassAndSubclasses subclass in parentClass.Subclasses)

 {

 AddItemToStackLayout(subclass, level + 1);

 }

 }

}

The recursive AddChildrenToParent method assembles the linked list of ClassAndSubclasses instances from the flat classList collection. The AddItemToStackLayout method is also recursive because it is responsible for adding the ClassesAndSubclasses linked list to the StackLayout object by creating a Label view for each class, with a little blank space at the beginning for the proper indentation. The method displays the Xamarin.Forms types with just the class names, but the .NET types include the fully qualified name to distinguish them. The method uses the platform accent color for classes that are not instantiable because they are abstract or static:

[image: Image]

Overall, you’ll see that the Xamarin.Forms visual elements have the following general hierarchy:

Click here to view code image

System.Object

 BindableObject

 Element

 VisualElement

 View

 ...

 Layout

 ...

 Layout<T>

 ...

 Page

 ...

Aside from Object, all the classes in this abbreviated class hierarchy are implemented in the Xamarin.Forms.Core.dll assembly and associated with a namespace of Xamarin.Forms.

Let’s examine some of these major classes in detail.

As the name of the BindableObject class implies, the primary function of this class is to support data binding—the linking of two properties of two objects so that they maintain the same value. But BindableObject also supports styles and the DynamicResource markup extension as well. It does this in two ways: through BindableObject property definitions in the form of BindableProperty objects and also by implementing the .NET INotifyPropertyChanged interface. All of this will be discussed in much more detail in this chapter and future chapters.

Let’s continue down the hierarchy: as you’ve seen, user-interface objects in Xamarin.Forms are often arranged on the page in a parent-child hierarchy, and the Element class includes support for parent and child relationships.

VisualElement is an exceptionally important class in Xamarin.Forms. A visual element is anything in Xamarin.Forms that occupies an area on the screen. The VisualElement class defines 28 public properties related to size, location, background color, and other visual and functional characteristics, such as IsEnabled and IsVisible.

In Xamarin.Forms the word view is often used to refer to individual visual objects such as buttons, sliders, and text-entry boxes, but you can see that the View class is the parent to the layout classes as well. Interestingly, View adds only three public members to what it inherits from VisualElement. These are HorizontalOptions and VerticalOptions—which make sense because these properties don’t apply to pages—and GestureRecognizers to support touch input.

The descendants of Layout are capable of having children views. A child view appears on the screen visually within the boundaries of its parent. Classes that derive from Layout can have only one child of type View, but the generic Layout<T> class defines a Children property, which is a collection of multiple child views, including other layouts. You’ve already seen the StackLayout, which arranges its children in a horizontal or vertical stack. Although the Layout class derives from View, layouts are so important in Xamarin.Forms that they are often considered a category in themselves.

ClassHierarchy lists all the public classes, structures, and enumerations defined in the Xamarin.Forms.Core and Xamarin.Forms.Xaml assemblies, but it does not list interfaces. Those are important as well, but you’ll just have to explore them on your own. (Or enhance the program to list them.)

Nor does ClassHierarchy list the many public classes that help implement Xamarin.Forms on the various platforms. In the final chapter of this book, you’ll see a version that does.

A peek into BindableObject and BindableProperty

The existence of classes named BindableObject and BindableProperty is likely to be a little confusing at first. Keep in mind that BindableObject is much like Object in that it serves as a base class to a large chunk of the Xamarin.Forms API, and particularly to Element and hence VisualElement.

BindableObject provides support for objects of type BindableProperty. A BindableProperty object extends a CLR property. The best insights into bindable properties come when you create a few of your own—as you’ll be doing before the end of this chapter—but you can also glean some understanding by exploring the existing bindable properties.

Toward the beginning of Chapter 7, “XAML vs. code,” two buttons were created with many of the same property settings, except that the properties of one button were set in code using the C# 3.0 object initialization syntax and the other button was instantiated and initialized in XAML.

Here’s a similar (but code-only) program named PropertySettings that also creates and initializes two buttons in two different ways. The properties of the first Label are set the old-fashioned way, while the properties of the second Label are set with a more verbose technique:

Click here to view code image

public class PropertySettingsPage : ContentPage

{

 public PropertySettingsPage()

 {

 Label label1 = new Label();

 label1.Text = "Text with CLR properties";

 label1.IsVisible = true;

 label1.Opacity = 0.75;

 label1.HorizontalTextAlignment = TextAlignment.Center;

 label1.VerticalOptions = LayoutOptions.CenterAndExpand;

 label1.TextColor = Color.Blue;

 label1.BackgroundColor = Color.FromRgb(255, 128, 128);

 label1.FontSize = Device.GetNamedSize(NamedSize.Medium, new Label());

 label1.FontAttributes = FontAttributes.Bold | FontAttributes.Italic;

 Label label2 = new Label();

 label2.SetValue(Label.TextProperty, "Text with bindable properties");

 label2.SetValue(Label.IsVisibleProperty, true);

 label2.SetValue(Label.OpacityProperty, 0.75);

 label2.SetValue(Label.HorizontalTextAlignmentProperty, TextAlignment.Center);

 label2.SetValue(Label.VerticalOptionsProperty, LayoutOptions.CenterAndExpand);

 label2.SetValue(Label.TextColorProperty, Color.Blue);

 label2.SetValue(Label.BackgroundColorProperty, Color.FromRgb(255, 128, 128));

 label2.SetValue(Label.FontSizeProperty,

 Device.GetNamedSize(NamedSize.Medium, new Label()));

 label2.SetValue(Label.FontAttributesProperty,

 FontAttributes.Bold | FontAttributes.Italic);

 Content = new StackLayout

 {

 Children =

 {

 label1,

 label2

 }

 };

 }

 }

These two ways to set properties are entirely consistent:

[image: Image]

Yet the alternative syntax seems very odd. For example:

Click here to view code image

label2.SetValue(Label.TextProperty, "Text with bindable properties");

What is that SetValue method? SetValue is defined by BindableObject, from which every visual object derives. BindableObject also defines a GetValue method.

That first argument to SetValue has the name Label.TextProperty, which indicates that TextProperty is static, but despite its name, it’s not a property at all. It’s a static field of the Label class. TextProperty is also read-only, and it’s defined in the Label class something like this:

Click here to view code image

public static readonly BindableProperty TextProperty;

That’s an object of type BindableProperty. Of course, it may seem a little disturbing that a field is named TextProperty, but there it is. Because it’s static, however, it exists independently of any Label objects that might or might not exist.

If you look in the documentation of the Label class, you’ll see that it defines 10 properties, including Text, TextColor, FontSize, FontAttributes, and others. You’ll also see 10 corresponding public static read-only fields of type BindableProperty with the names TextProperty, TextColorProperty, FontSizeProperty, FontAttributesProperty, and so forth.

These properties and fields are closely related. Indeed, internal to the Label class, the Text CLR property is defined like this to reference the corresponding TextProperty object:

Click here to view code image

public string Text

{

 set { SetValue(Label.TextProperty, value); }

 get { return (string)GetValue(Label.TextProperty); }

}

So you see why it is that your application calling SetValue with a Label.TextProperty argument is exactly equivalent to setting the Text property directly, and perhaps just a tinier bit faster!

The internal definition of the Text property in Label isn’t secret information. This is standard code. Although any class can define a BindableProperty object, only a class that derives from BindableObject can call the SetValue and GetValue methods that actually implement the property in the class. Casting is required for the GetValue method because it’s defined as returning object.

All the real work involved with maintaining the Text property is going on in those SetValue and GetValue calls. The BindableObject and BindableProperty objects effectively extend the functionality of standard CLR properties to provide systematic ways to:

• Define properties

• Give properties default values

• Store their current values

• Provide mechanisms for validating property values

• Maintain consistency among related properties in a single class

• Respond to property changes

• Trigger notifications when a property is about to change and has changed

• Support data binding

• Support styles

• Support dynamic resources

The close relationship of a property named Text with a BindableProperty named TextProperty is reflected in the way that programmers speak about these properties: Sometimes a programmer says that the Text property is “backed by” a BindableProperty named TextProperty because TextProperty provides infrastructure support for Text. But a common shortcut is to say that Text is itself a “bindable property,” and generally no one will be confused.

Not every Xamarin.Forms property is a bindable property. Neither the Content property of ContentPage nor the Children property of Layout<T> is a bindable property. Of the 28 properties defined by VisualElement, 26 are backed by bindable properties, but the Bounds property and the Resources properties are not.

The Span class used in connection with FormattedString does not derive from BindableObject. Therefore, Span does not inherit SetValue and GetValue methods, and it cannot implement BindableProperty objects.

This means that the Text property of Label is backed by a bindable property, but the Text property of Span is not. Does it make a difference?

Of course it makes a difference! If you recall the DynamicVsStatic program in the previous chapter, you discovered that DynamicResource worked on the Text property of Label but not the Text property of Span. Can it be that DynamicResource works only with bindable properties?

This supposition is pretty much confirmed by the definition of the following public method defined by Element:

Click here to view code image

public void SetDynamicResource(BindableProperty property, string key);

This is how a dictionary key is associated with a particular property of an element when that property is the target of a DynamicResource markup extension.

This SetDynamicResource method also allows you to set a dynamic resource link on a property in code. Here’s the page class from a code-only version of DynamicVsStatic called DynamicVsStaticCode. It’s somewhat simplified to exclude the use of a FormattedString and Span object, but otherwise it pretty accurately mimics how the previous XAML file is parsed and, in particular, how the Text properties of the Label elements are set by the XAML parser:

Click here to view code image

public class DynamicVsStaticCodePage : ContentPage

{

 public DynamicVsStaticCodePage()

 {

 Padding = new Thickness(5, 0);

 // Create resource dictionary and add item.

 Resources = new ResourceDictionary

 {

 { "currentDateTime", "Not actually a DateTime" }

 };

 Content = new StackLayout

 {

 Children =

 {

 new Label

 {

 Text = "StaticResource on Label.Text:",

 VerticalOptions = LayoutOptions.EndAndExpand,

 FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label))

 },

 new Label

 {

 Text = (string)Resources["currentDateTime"],

 VerticalOptions = LayoutOptions.StartAndExpand,

 HorizontalTextAlignment = TextAlignment.Center,

 FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label))

 },

 new Label

 {

 Text = "DynamicResource on Label.Text:",

 VerticalOptions = LayoutOptions.EndAndExpand,

 FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label))

 }

 }

 };

 // Create the final label with the dynamic resource.

 Label label = new Label

 {

 VerticalOptions = LayoutOptions.StartAndExpand,

 HorizontalTextAlignment = TextAlignment.Center,

 FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label))

 };

 label.SetDynamicResource(Label.TextProperty, "currentDateTime");

 ((StackLayout)Content).Children.Add(label);

 // Start the timer going.

 Device.StartTimer(TimeSpan.FromSeconds(1),

 () =>

 {

 Resources["currentDateTime"] = DateTime.Now.ToString();

 return true;

 });

 }

}

The Text property of the second Label is set directly from the dictionary entry and makes the use of the dictionary seem a little pointless in this context. But the Text property of the last Label is bound to the dictionary key through a call to SetDynamicResource, which allows the property to be updated when the dictionary contents change:

[image: Image]

Consider this: What would the signature of this SetDynamicResource method be if it could not refer to a property using the BindableProperty object? It’s easy to reference a property value in method calls, but not the property itself. There are a couple of ways, such as the PropertyInfo class in the System.Reflection namespace or the LINQ Expression object. But the BindableProperty object is designed specifically for this purpose, as well as the essential job of handling the underlying link between the property and the dictionary key.

Similarly, when we explore styles in the next chapter, you’ll encounter a Setter class used in connection with styles. Setter defines a property named Property of type BindableProperty, which mandates that any property targeted by a style must be backed by a bindable property. This allows a style to be defined prior to the elements targeted by the style.

Likewise for data bindings. The BindableObject class defines a SetBinding method that is very similar to the SetDynamicResource method defined on Element:

Click here to view code image

public void SetBinding(BindableProperty targetProperty, BindingBase binding);

Again, notice the type of the first argument. Any property targeted by a data binding must be backed by a bindable property.

For these reasons, whenever you create a custom view and need to define public properties, your default inclination should be to define them as bindable properties. Only if after careful consideration you conclude that it is not necessary or appropriate for the property to be targeted by a style or a data binding should you retreat and define an ordinary CLR property instead.

So whenever you create a class that derives from BindableObject, one of the first pieces of code you should be typing in that class begins “public static readonly BindableProperty”—perhaps the most characteristic sequence of four words in all of Xamarin.Forms programming.

Defining bindable properties

Suppose you’d like an enhanced Label class that lets you specify font sizes in units of points. Let’s call this class AltLabel for “alternative Label.” It derives from Label and includes a new property named PointSize.

Should PointSize be backed by a bindable property? Of course! (Although the real advantages of doing so won’t be demonstrated until upcoming chapters.)

The code-only AltLabel class is included in the Xamarin.FormsBook.Toolkit library, so it’s accessible to multiple applications. The new PointSize property is implemented with a BindableProperty object named PointSizeProperty and a CLR property named PointSize that references PointSizeProperty:

Click here to view code image

public class AltLabel : Label

{

 public static readonly BindableProperty PointSizeProperty ... ;

 ...

 public double PointSize

 {

 set { SetValue(PointSizeProperty, value); }

 get { return (double)GetValue(PointSizeProperty); }

 }

 ...

}

Both the field and the property definition must be public.

Because PointSizeProperty is defined as static and readonly, it must be assigned either in a static constructor or right in the field definition, after which it cannot be changed. Generally, a BindableProperty object is assigned in the field definition by using the static BindableProperty.Create method. Four arguments are required (shown here with the argument names):

• propertyName The text name of the property (in this case “PointSize”)

• returnType The type of the property (a double in this example)

• declaringType The type of the class defining the property (AltLabel)

• defaultValue A default value (let’s say 8 points)

The second and third arguments are generally defined with typeof expressions. Here’s the assignment statement with these four arguments passed to BindableProperty.Create:

Click here to view code image

public class AltLabel : Label

{

 public static readonly BindableProperty PointSizeProperty =

 BindableProperty.Create("PointSize", // propertyName

 typeof(double), // returnType

 typeof(AltLabel), // declaringType

 8.0, // defaultValue

 ...);

 ...

}

Notice that the default value is specified as 8.0 rather than just 8. Because BindableProperty.Create is designed to handle properties of any type, the defaultValue parameter is defined as object. When the C# compiler encounters just an 8 as that argument, it will assume that the 8 is an int and pass an int to the method. The problem won’t be revealed until run time, however, when the BindableProperty.Create method will be expecting the default value to be of type double and respond by raising a TypeInitializationException.

You must be explicit about the type of the value you’re specifying as the default. Not doing so is a very common error in defining bindable properties. A very common error.

BindableProperty.Create also has six optional arguments. Here they are with the argument names and their purpose:

• defaultBindingMode Used in connection with data binding

• validateValue A callback to check for a valid value

• propertyChanged A callback to indicate when the property has changed

• propertyChanging A callback to indicate when the property is about to change

• coerceValue A callback to coerce a set value to another value (for example, to restrict the values to a range)

• defaultValueCreator A callback to create a default value. This is generally used to instantiate a default object that can’t be shared among all instances of the class; for example, a collection object such as List or Dictionary.

Do not perform any validation, coercion, or property-changed handling in the CLR property. The CLR property should be restricted to SetValue and GetValue calls. Everything else should be done in the callbacks provided by the bindable property infrastructure.

It is very rare that a particular call to BindableProperty.Create would need all of these optional arguments. For that reason, these optional arguments are commonly indicated with the named argument feature introduced in C# 4.0. To specify a particular optional argument, use the argument name followed by a colon. For example:

Click here to view code image

public class AltLabel : Label

{

 public static readonly BindableProperty PointSizeProperty =

 BindableProperty.Create("PointSize", // propertyName

 typeof(double), // returnType

 typeof(AltLabel), // declaringType

 8.0, // defaultValue

 propertyChanged: OnPointSizeChanged);

 ...

}

Without a doubt, propertyChanged is the most important of the optional arguments because the class uses this callback to be notified when the property changes, either directly from a call to SetValue or through the CLR property.

In this example, the property-changed handler is called OnPointSizeChanged. It will be called only when the property truly changes and not when it’s simply set to the same value. However, because OnPointSizeChanged is referenced from a static field, the method itself must also be static. Here’s what it looks like:

Click here to view code image

public class AltLabel : Label

{

 ...

 static void OnPointSizeChanged(BindableObject bindable, object oldValue, object newValue)

 {

 ...

 }

 ...

}

This seems a little odd. We might have multiple AltLabel instances in a program, yet whenever the PointSize property changes in any one of these instances, this same static method is called. How does the method know exactly which AltLabel instance has changed?

The method can tell which instance’s property has changed because that instance is always the first argument to the property-changed handler. Although that first argument is defined as a BindableObject, in this case it’s actually of type AltLabel and indicates which AltLabel instance’s property has changed. This means that you can safely cast the first argument to an AltLabel instance:

Click here to view code image

static void OnPointSizeChanged(BindableObject bindable, object oldValue, object newValue)

{

 AltLabel altLabel = (AltLabel)bindable;

 ...

}

You can then reference anything in the particular instance of AltLabel whose property has changed. The second and third arguments are actually of type double for this example and indicate the previous value and the new value.

Often it’s convenient for this static method to call an instance method with the arguments converted to their actual types:

Click here to view code image

public class AltLabel : Label

{

 ...

 static void OnPointSizeChanged(BindableObject bindable, object oldValue, object newValue)

 {

 ((AltLabel)bindable).OnPointSizeChanged((double)oldValue, (double)newValue);

 }

 void OnPointSizeChanged(double oldValue, double newValue)

 {

 ...

 }

}

The instance method can then make use of any instance properties or methods of the underlying base class as it would normally.

For this class, this OnPointSizeChanged method needs to set the FontSize property based on the new point size and a conversion factor. In addition, the constructor needs to initialize the FontSize property based on the default PointSize value. This is done through a simple SetLabelFontSize method. Here’s the final complete class:

Click here to view code image

public class AltLabel : Label

{

 public static readonly BindableProperty PointSizeProperty =

 BindableProperty.Create("PointSize", // propertyName

 typeof(double), // returnType

 typeof(AltLabel), // declaringType

 8.0, // defaultValue

 propertyChanged: OnPointSizeChanged);

 public AltLabel()

 {

 SetLabelFontSize((double)PointSizeProperty.DefaultValue);

 }

 public double PointSize

 {

 set { SetValue(PointSizeProperty, value); }

 get { return (double)GetValue(PointSizeProperty); }

 }

 static void OnPointSizeChanged(BindableObject bindable, object oldValue, object newValue)

 {

 ((AltLabel)bindable).OnPointSizeChanged((double)oldValue, (double)newValue);

 }

 void OnPointSizeChanged(double oldValue, double newValue)

 {

 SetLabelFontSize(newValue);

 }

 void SetLabelFontSize(double pointSize)

 {

 FontSize = 160 * pointSize / 72;

 }

}

It is also possible for the instance OnPointSizeChanged property to access the PointSize property directly rather than use newValue. By the time the property-changed handler is called, the underlying property value has already been changed. However, you don’t have direct access to that underlying value, as you do when a private field backs a CLR property. That underlying value is private to BindableObject and accessible only through the GetValue call.

Of course, nothing prevents code that’s using AltLabel from setting the FontSize property and overriding the PointSize setting, but let’s hope such code is aware of that. Here’s some code that is—a program called PointSizedText, which uses AltLabel to display point sizes from 4 through 12:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="PointSizedText.PointSizedTextPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="5, 20, 0, 0"

 Android="5, 0, 0, 0"

 WinPhone="5, 0, 0, 0" />

 </ContentPage.Padding>

 <StackLayout x:Name="stackLayout">

 <toolkit:AltLabel Text="Text of 4 points" PointSize="4" />

 <toolkit:AltLabel Text="Text of 5 points" PointSize="5" />

 <toolkit:AltLabel Text="Text of 6 points" PointSize="6" />

 <toolkit:AltLabel Text="Text of 7 points" PointSize="7" />

 <toolkit:AltLabel Text="Text of 8 points" PointSize="8" />

 <toolkit:AltLabel Text="Text of 9 points" PointSize="9" />

 <toolkit:AltLabel Text="Text of 10 points" PointSize="10" />

 <toolkit:AltLabel Text="Text of 11 points" PointSize="11" />

 <toolkit:AltLabel Text="Text of 12 points" PointSize="12" />

 </StackLayout>

</ContentPage>

And here are the screenshots:

[image: Image]

The read-only bindable property

Suppose you’re working with an application in which it’s convenient to know the number of words in the text that is displayed by a Label element. Perhaps you’d like to build that facility right into a class that derives from Label. Let’s call this new class CountedLabel.

By now, your first thought should be to define a BindableProperty object named WordCountProperty and a corresponding CLR property named WordCount.

But wait: It only makes sense for this WordCount property to be set from within the CountedLabel class. That means the WordCount CLR property should not have a public set accessor. It should be defined this way:

Click here to view code image

public int WordCount

{

 private set { SetValue(WordCountProperty, value); }

 get { return (double)GetValue(WordCountProperty); }

}

The get accessor is still public, but the set accessor is private. Is that sufficient?

Not exactly. Despite the private set accessor in the CLR property, code external to CountedLabel can still call SetValue with the CountedLabel.WordCountProperty bindable property object. That type of property setting should be prohibited as well. But how can that work if the WordCountProperty object is public?

The solution is to make a read-only bindable property by using the BindableProperty.CreateReadOnly method. The Xamarin.Forms API itself defines several read-only bindable properties—for example, the Width and Height properties defined by VisualElement.

Here’s how you can make one of your own:

The first step is to call BindableProperty.CreateReadOnly with the same arguments as for BindableProperty.Create. However, the CreateReadOnly method returns an object of BindablePropertyKey rather than BindableProperty. Define this object as static and readonly, as with the BindableProperty, but make it be private to the class:

Click here to view code image

public class CountedLabel : Label

{

 static readonly BindablePropertyKey WordCountKey =

 BindableProperty.CreateReadOnly("WordCount", // propertyName

 typeof(int), // returnType

 typeof(CountedLabel), // declaringType

 0); // defaultValue

 ...

}

Don’t think of this BindablePropertyKey object as an encryption key or anything like that. It’s much simpler—really just an object that is private to the class.

The second step is to make a public BindableProperty object by using the BindableProperty property of the BindablePropertyKey:

Click here to view code image

public class CountedLabel : Label

{

 ...

 public static readonly BindableProperty WordCountProperty = WordCountKey.BindableProperty;

 ...

}

This BindableProperty object is public, but it’s a special kind of BindableProperty: It cannot be used in a SetValue call. Attempting to do so will raise an InvalidOperationException.

However, there is an overload of the SetValue method that accepts a BindablePropertyKey object. The CLR set accessor can call SetValue using this object, but this set accessor must be private to prevent the property from being set outside the class:

Click here to view code image

public class CountedLabel : Label

{

 ...

 public int WordCount

 {

 private set { SetValue(WordCountKey, value); }

 get { return (int)GetValue(WordCountProperty); }

 }

 ...

}

The WordCount property can now be set from within the CountedLabel class. But when should the class set it? This CountedLabel class derives from Label, but it needs to detect when the Text property has changed so that it can count up the words.

Does Label have a TextChanged event? No it does not. However, BindableObject implements the INotifyPropertyChanged interface. This is a very important .NET interface, particularly for applications that implement the Model-View-ViewModel (MVVM) architecture. In Chapter 18 you’ll see how to use it in your own data classes.

The INotifyPropertyChanged interface is defined in the System.ComponentModel namespace like so:

Click here to view code image

public interface INotifyPropertyChanged

{

 event PropertyChangedEventHandler PropertyChanged;

}

Every class that derives from BindableObject automatically fires this PropertyChanged event whenever any property backed by a BindableProperty changes. The PropertyChangedEventArgs object that accompanies this event includes a property named PropertyName of type string that identifies the property that has changed.

So all that’s necessary is for CountedLabel to attach a handler for the PropertyChanged event and check for a property name of “Text”. From there it can use whatever technique it wants for calculating a word count. The complete CountedLabel class uses a lambda function on the PropertyChanged event. The handler calls Split to break the string into words and see how many pieces result. The Split method splits the text based on spaces, dashes, and em dashes (Unicode \u2014):

Click here to view code image

public class CountedLabel : Label

{

 static readonly BindablePropertyKey WordCountKey =

 BindableProperty.CreateReadOnly("WordCount", // propertyName

 typeof(int), // returnType

 typeof(CountedLabel), // declaringType

 0); // defaultValue

 public static readonly BindableProperty WordCountProperty = WordCountKey.BindableProperty;

 public CountedLabel()

 {

 // Set the WordCount property when the Text property changes.

 PropertyChanged += (object sender, PropertyChangedEventArgs args) =>

 {

 if (args.PropertyName == "Text")

 {

 if (String.IsNullOrEmpty(Text))

 {

 WordCount = 0;

 }

 else

 {

 WordCount = Text.Split(' ', '-', '\u2014').Length;

 }

 }

 };

 }

 public int WordCount

 {

 private set { SetValue(WordCountKey, value); }

 get { return (int)GetValue(WordCountProperty); }

 }

}

The class includes a using directive for the System.ComponentModel namespace for the PropertyChangedEventArgs argument to the handler. Watch out: Xamarin.Forms defines a class named PropertyChangingEventArgs (present tense). That’s not what you want for the PropertyChanged handler. You want PropertyChangedEventArgs (past tense).

Because this call of the Split method splits the text at blank characters, dashes, and em dashes, you might assume that CountedLabel will be demonstrated with text that contains some dashes and em dashes. This is true. The BaskervillesCount program is a variation of the Baskervilles program from Chapter 3, but here the paragraph of text is displayed with a CountedLabel, and a regular Label is included to display the word count:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="BaskervillesCount.BaskervillesCountPage"

 Padding="5, 0">

 <StackLayout>

 <toolkit:CountedLabel x:Name="countedLabel"

 VerticalOptions="CenterAndExpand"

 Text=

"Mr. Sherlock Holmes, who was usually very late in

the mornings, save upon those not infrequent

occasions when he was up all night, was seated at

the breakfast table. I stood upon the hearth-rug

and picked up the stick which our visitor had left

behind him the night before. It was a fine, thick

piece of wood, bulbous-headed, of the sort which

is known as a “Penang lawyer.” Just

under the head was a broad silver band, nearly an

inch across, “To James Mortimer, M.R.C.S.,

from his friends of the C.C.H.,” was engraved

upon it, with the date “1884.” It was

just such a stick as the old-fashioned family

practitioner used to carry—dignified, solid,

and reassuring." />

 <Label x:Name="wordCountLabel"

 Text="???"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 </StackLayout>

</ContentPage>

That regular Label is set in the code-behind file:

Click here to view code image

public partial class BaskervillesCountPage : ContentPage

{

 public BaskervillesCountPage()

 {

 InitializeComponent();

 int wordCount = countedLabel.WordCount;

 wordCountLabel.Text = wordCount + " words";

 }

}

The word count that it calculates is based on the assumption that all hyphens in the text separate two words and that “hearth-rug” and “bulbous-headed” should be counted as two words each. That’s not always true, of course, but word counts are not quite as algorithmically simple as this code might imply:

[image: Image]

How would the program be structured if the text changed dynamically while the program was running? In that case, it would be necessary to update the word count whenever the WordCount property of the CountedLabel object changed. You could attach a PropertyChanged handler on the CountedLabel object and check for the property named “WordCount”.

However, exercise caution if you try to set such an event handler from XAML—for example, like so:

Click here to view code image

<toolkit:CountedLabel x:Name="countedLabel"

 VerticalOptions="CenterAndExpand"

 PropertyChanged="OnCountedLabelPropertyChanged"

 Text=" ... " />

You’ll probably want to code the event handler in the code-behind file like this:

Click here to view code image

void OnCountedLabelPropertyChanged(object sender,

 PropertyChangedEventArgs args)

{

 wordCountLabel.Text = countedLabel.WordCount + " words";

}

That handler will fire when the Text property is set by the XAML parser, but the event handler is trying to set the Text property of the second Label, which hasn’t been instantiated yet, which means that the wordCountLabel field is still set to null. This is an issue that will come up again in Chapter 15 when working with interactive controls, but it will be pretty much solved when we work with data binding in Chapter 16.

There is another variation of a bindable property coming up in Chapter 14 on the AbsoluteLayout: this is the attached bindable property, and it is very useful in implementing certain types of layouts, as you’ll also discover in Chapter 26, “Custom layouts.”

Meanwhile, let’s look at one of the most important applications of bindable properties: styles.

Chapter 12. Styles

Xamarin.Forms applications often contain multiple elements with identical property settings. For example, you might have several buttons with the same colors, font sizes, and layout options. In code, you can assign identical properties to multiple buttons in a loop, but loops aren’t available in XAML. If you want to avoid a lot of repetitious markup, another solution is required.

The solution is the Style class, which is a collection of property settings consolidated in one convenient object. You can set a Style object to the Style property of any class that derives from VisualElement. Generally, you’ll apply the same Style object to multiple elements, and the style is shared among these elements.

The Style is the primary tool for giving visual elements a consistent appearance in your Xamarin.Forms applications. Styles help reduce repetitious markup in XAML files and allow applications to be more easily changed and maintained.

Styles were designed primarily with XAML in mind, and they probably wouldn’t have been invented in a code-only environment. However, you’ll see in this chapter how to define and use styles in code and how to combine code and markup to change program styling dynamically at run time.

The basic Style

In Chapter 10, “XAML markup extensions,” you saw a trio of buttons that contained a lot of identical markup. Here they are again:

Click here to view code image

<StackLayout>

 <Button Text=" Carpe diem "

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 BorderWidth="3"

 TextColor="Red"

 FontSize="Large">

 <Button.BackgroundColor>

 <OnPlatform x:TypeArguments="Color"

 Android="#404040" />

 </Button.BackgroundColor>

 <Button.BorderColor>

 <OnPlatform x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 </Button.BorderColor>

 </Button>

 <Button Text=" Sapere aude "

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 BorderWidth="3"

 TextColor="Red"

 FontSize="Large">

 <Button.BackgroundColor>

 <OnPlatform x:TypeArguments="Color"

 Android="#404040" />

 </Button.BackgroundColor>

 <Button.BorderColor>

 <OnPlatform x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 </Button.BorderColor>

 </Button>

 <Button Text=" Discere faciendo "

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 BorderWidth="3"

 TextColor="Red"

 FontSize="Large">

 <Button.BackgroundColor>

 <OnPlatform x:TypeArguments="Color"

 Android="#404040" />

 </Button.BackgroundColor>

 <Button.BorderColor>

 <OnPlatform x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 </Button.BorderColor>

 </Button>

</StackLayout>

With the exception of the Text property, all three buttons have the same property settings.

One partial solution to this repetitious markup involves defining property values in a resource dictionary and referencing them with the StaticResource markup extension. As you saw in the ResourceSharing project in Chapter 10, this technique doesn’t reduce the markup bulk, but it does consolidate the values in one place.

To reduce the markup bulk, you’ll need a Style. A Style object is almost always defined in a ResourceDictionary. Generally, you’ll begin with a Resources section at the top of the page:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BasicStyle.BasicStylePage">

 <ContentPage.Resources>

 <ResourceDictionary>

 ...

 </ResourceDictionary>

 </ContentPage.Resources>

 ...

</ContentPage>

Instantiate a Style with separate start and end tags:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BasicStyle.BasicStylePage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="buttonStyle" TargetType="Button">

 ...

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 ...

</ContentPage>

Because the Style is an object in a ResourceDictionary, you’ll need an x:Key attribute to give it a descriptive dictionary key. You must also set the TargetType property. This is the type of the visual element that the style is designed for, which in this case is Button.

As you’ll see in the next section of this chapter, you can also define a Style in code, in which case the Style constructor requires an object of type Type for the TargetType property. The TargetType property does not have a public set accessor; hence the TargetType property cannot be changed after the Style is created.

Style also defines another important get-only property named Setters of type IList<Setter>, which is a collection of Setter objects. Each Setter is responsible for defining a property setting in the style. The Setter class defines just two properties:

• Property of type BindableProperty

• Value of type Object

Properties set in the Style must be backed by bindable properties! But when you set the Property property in XAML, don’t use the entire fully qualified bindable property name. Just specify the text name, which is the same as the name of the related CLR property. Here’s an example:

Click here to view code image

<Setter Property="HorizontalOptions" Value="Center" />

The XAML parser uses the familiar TypeConverter classes when parsing the Value settings of these Setter instances, so you can use the same property settings that you use normally.

Setters is the content property of Style, so you don’t need the Style.Setters tags to add Setter objects to the Style:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BasicStyle.BasicStylePage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="buttonStyle" TargetType="Button">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 <Setter Property="BorderWidth" Value="3" />

 <Setter Property="TextColor" Value="Red" />

 <Setter Property="FontSize" Value="Large" />

 ...

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 ...

</ContentPage>

Two more Setter objects are required for BackgroundColor and BorderColor. These involve OnPlatform and might at first seem to be impossible to express in markup. However, it’s possible to express the Value property of Setter as a property element, with the OnPlatform markup between the property element tags:

Click here to view code image

 <Setter Property="BackgroundColor">

 <Setter.Value>

 <OnPlatform x:TypeArguments="Color"

 Android="#404040" />

 </Setter.Value>

 </Setter>

 <Setter Property="BorderColor">

 <Setter.Value>

 <OnPlatform x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 </Setter.Value>

 </Setter>

The final step is to set this Style object to the Style property of each Button. Use the familiar StaticResource markup extension to reference the dictionary key. Here is the complete XAML file in the BasicStyle project:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BasicStyle.BasicStylePage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="buttonStyle" TargetType="Button">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 <Setter Property="BorderWidth" Value="3" />

 <Setter Property="TextColor" Value="Red" />

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="BackgroundColor">

 <Setter.Value>

 <OnPlatform x:TypeArguments="Color"

 Android="#404040" />

 </Setter.Value>

 </Setter>

 <Setter Property="BorderColor">

 <Setter.Value>

 <OnPlatform x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 </Setter.Value>

 </Setter>

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Button Text=" Carpe diem "

 Style="{StaticResource buttonStyle}" />

 <Button Text=" Sapere aude "

 Style="{StaticResource buttonStyle}" />

 <Button Text=" Discere faciendo "

 Style="{StaticResource buttonStyle}" />

 </StackLayout>

</ContentPage>

Now all these property settings are in one Style object that is shared among multiple Button elements:

[image: Image]

The visuals are the same as those in the ResourceSharing program in Chapter 10, but the markup is a lot more concise.

Even after working with Style objects in markup, it’s easy to be flummoxed with an unwieldy Value property. Suppose you’d like to define a Setter for the TextColor using the Color.FromHsla static method. You can define such a color by using the x:FactoryMethod attribute, but how can you possibly set such an unwieldy chunk of markup to the Value property of the Setter object? As you saw earlier, the solution is almost always property-element syntax:

Click here to view code image

<ResourceDictionary>

 <Style x:Key="buttonStyle" TargetType="Button">

 ...

 <Setter Property="TextColor">

 <Setter.Value>

 <Color x:FactoryMethod="FromHsla">

 <x:Arguments>

 <x:Double>0.83</x:Double>

 <x:Double>1</x:Double>

 <x:Double>0.75</x:Double>

 <x:Double>1</x:Double>

 </x:Arguments>

 </Color>

 </Setter.Value>

 </Setter>

 ...

 </Style>

</ResourceDictionary>

Here’s another way to do it: Define the Color value as a separate item in the resource dictionary, and then use StaticResource to set it to the Value property of the Setter:

Click here to view code image

<ResourceDictionary>

 <Color x:Key="btnTextColor"

 x:FactoryMethod="FromHsla">

 <x:Arguments>

 <x:Double>0.83</x:Double>

 <x:Double>1</x:Double>

 <x:Double>0.75</x:Double>

 <x:Double>1</x:Double>

 </x:Arguments>

 </Color>

 <Style x:Key="buttonStyle" TargetType="Button">

 ...

 <Setter Property="TextColor" Value="{StaticResource btnTextColor}" />

 ...

 </Style>

</ResourceDictionary>

This is a good technique if you’re sharing the same Color value among multiple styles or multiple setters.

You can override a property setting from a Style by setting a property directly in the visual element. Notice that the second Button has its TextColor property set to Maroon:

Click here to view code image

<StackLayout>

 <Button Text=" Carpe diem "

 Style="{StaticResource buttonStyle}" />

 <Button Text=" Sapere aude "

 TextColor="Maroon"

 Style="{StaticResource buttonStyle}" />

 <Button Text=" Discere faciendo "

 Style="{StaticResource buttonStyle}" />

</StackLayout>

The center Button will have maroon text while the other two buttons get their TextColor settings from the Style. A property directly set on the visual element is sometimes called a local setting or a manual setting, and it always overrides the property setting from the Style.

The Style object in the BasicStyle program is shared among the three buttons. The sharing of styles has an important implication for the Setter objects. Any object set to the Value property of a Setter must be shareable. Don’t try to do something like this:

Click here to view code image

<!-- Invalid XAML! -->

<Style x:Key="frameStyle" TargetType="Frame">

 <Setter Property="OutlineColor" Value="Accent" />

 <Setter Property="Content">

 <Setter.Value>

 <Label Text="Text in a Frame" />

 </Setter.Value>

 </Setter>

</Style>

This XAML doesn’t work for two reasons: Content is not backed by a BindableProperty and therefore cannot be used in a Setter. But the obvious intent here is for every Frame—or at least every Frame on which this style is applied—to get that same Label object as content. A single Label object can’t appear in multiple places on the page. A much better way to do something like this is to derive a class from Frame and set a Label as the Content property, or to derive a class from ContentView that includes a Frame and Label.

You might want to use a style to set an event handler for an event such as Clicked. That would be useful and convenient, but it is not supported. Event handlers must be set on the elements themselves. (However, the Style class does support objects called triggers, which can respond to events or property changes. Triggers are discussed in Chapter 23, “Triggers and behaviors.”)

You cannot set the GestureRecognizers property in a style. That would be useful as well, but GestureRecognizers is not backed by a bindable property.

If a bindable property is a reference type, and if the default value is null, you can use a style to set the property to a non-null object. But you might also want to override that style setting with a local setting that sets the property back to null. You can set a property to null in XAML with the {x:Null} markup extension.

Styles in code

Although styles are mostly defined and used in XAML, you should know what they look like when defined and used in code. Here’s the page class for the code-only BasicStyleCode project. The constructor of the BasicStyleCodePage class uses object-initialization syntax to mimic the XAML syntax in defining the Style object and applying it to three buttons:

Click here to view code image

public class BasicStyleCodePage : ContentPage

{

 public BasicStyleCodePage()

 {

 Resources = new ResourceDictionary

 {

 { "buttonStyle", new Style(typeof(Button))

 {

 Setters =

 {

 new Setter

 {

 Property = View.HorizontalOptionsProperty,

 Value = LayoutOptions.Center

 },

 new Setter

 {

 Property = View.VerticalOptionsProperty,

 Value = LayoutOptions.CenterAndExpand

 },

 new Setter

 {

 Property = Button.BorderWidthProperty,

 Value = 3

 },

 new Setter

 {

 Property = Button.TextColorProperty,

 Value = Color.Red

 },

 new Setter

 {

 Property = Button.FontSizeProperty,

 Value = Device.GetNamedSize(NamedSize.Large, typeof(Button))

 },

 new Setter

 {

 Property = VisualElement.BackgroundColorProperty,

 Value = Device.OnPlatform(Color.Default,

 Color.FromRgb(0x40, 0x40, 0x40),

 Color.Default)

 },

 new Setter

 {

 Property = Button.BorderColorProperty,

 Value = Device.OnPlatform(Color.Default,

 Color.White,

 Color.Black)

 }

 }

 }

 }

 };

 Content = new StackLayout

 {

 Children =

 {

 new Button

 {

 Text = " Carpe diem ",

 Style = (Style)Resources["buttonStyle"]

 },

 new Button

 {

 Text = " Sapere aude ",

 Style = (Style)Resources["buttonStyle"]

 },

 new Button

 {

 Text = " Discere faciendo ",

 Style = (Style)Resources["buttonStyle"]

 }

 }

 };

 }

}

It’s much more obvious in code than in XAML that the Property property of the Setter is of type BindableProperty.

The first two Setter objects in this example are initialized with the BindableProperties objects named View.HorizontalOptionsProperty and View.VerticalOptionsProperty. You could use Button.HorizontalOptionsProperty and Button.VerticalOptionsProperty instead because Button inherits these properties from View. Or you can change the class name to any other class that derives from View.

As usual, the use of a ResourceDictionary in code seems pointless. You could eliminate the dictionary and just assign the Style objects directly to the Style properties of the buttons. However, even in code, the Style is a convenient way to bundle all the property settings together into one compact package.

Style inheritance

The TargetType of the Style serves two different functions: One of these functions is described in the next section on implicit styles. The other function is for the benefit of the XAML parser. The XAML parser must be able to resolve the property names in the Setter objects, and for that it needs a class name provided by the TargetType.

All the properties in the style must be defined by or inherited by the class specified in the TargetType property. The type of the visual element on which the Style is set must be the same as the TargetType or a derived class of the TargetType.

If you need a Style only for properties defined by View, you can set the TargetType to View and still use the style on buttons or any other View derivative, as in this modified version of the BasicStyle program:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BasicStyle.BasicStylePage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="viewStyle" TargetType="View">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 <Setter Property="BackgroundColor" Value="Pink" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Button Text=" Carpe diem "

 Style="{StaticResource viewStyle}" />

 <Label Text ="A bit of text"

 Style="{StaticResource viewStyle}" />

 <Button Text=" Sapere aude "

 Style="{StaticResource viewStyle}" />

 <Label Text ="Another bit of text"

 Style="{StaticResource viewStyle}" />

 <Button Text=" Discere faciendo "

 Style="{StaticResource viewStyle}" />

 </StackLayout>

</ContentPage>

As you can see, the same style is applied to all the Button and Label children of the StackLayout:

[image: Image]

But suppose you now want to expand on this style, but differently for Button and Label. Is that possible?

Yes, it is. Styles can derive from other styles. The Style class includes a property named BasedOn of type Style. In code, you can set this BasedOn property directly to another Style object. In XAML you set the BasedOn attribute to a StaticResource markup extension that references a previously created Style. The new Style can include Setter objects for new properties or use them to override properties in the earlier Style. The BasedOn style must target the same class or an ancestor class of the new style’s TargetType.

Here’s the XAML file for a project named StyleInheritance. The application has a reference to the Xamarin.FormsBook.Toolkit assembly for two purposes: It uses the HslColor markup extension to demonstrate that markup extensions are legitimate value settings in Setter objects and to demonstrate that a style can be defined for a custom class, in this case AltLabel.

The ResourceDictionary contains four styles: The first has a dictionary key of “visualStyle”. The Style with the dictionary key of “baseStyle” derives from “visualStyle”. The styles with keys of “labelStyle” and “buttonStyle” derive from “baseStyle”:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="StyleInheritance.StyleInheritancePage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="visualStyle" TargetType="VisualElement">

 <Setter Property="BackgroundColor"

 Value="{toolkit:HslColor H=0, S=1, L=0.8}" />

 </Style>

 <Style x:Key="baseStyle" TargetType="View"

 BasedOn="{StaticResource visualStyle}">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 <Style x:Key="labelStyle" TargetType="toolkit:AltLabel"

 BasedOn="{StaticResource baseStyle}">

 <Setter Property="TextColor" Value="Black" />

 <Setter Property="PointSize" Value="12" />

 </Style>

 <Style x:Key="buttonStyle" TargetType="Button"

 BasedOn="{StaticResource baseStyle}">

 <Setter Property="TextColor" Value="Blue" />

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="BorderColor" Value="Blue" />

 <Setter Property="BorderWidth" Value="2" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <ContentPage.Style>

 <StaticResourceExtension Key="visualStyle" />

 </ContentPage.Style>

 <StackLayout>

 <Button Text=" Carpe diem "

 Style="{StaticResource buttonStyle}" />

 <toolkit:AltLabel Text ="A bit of text"

 Style="{StaticResource labelStyle}" />

 <Button Text=" Sapere aude "

 Style="{StaticResource buttonStyle}" />

 <toolkit:AltLabel Text ="Another bit of text"

 Style="{StaticResource labelStyle}" />

 <Button Text=" Discere faciendo "

 Style="{StaticResource buttonStyle}" />

 </StackLayout>

</ContentPage>

Immediately after the Resources section is some markup that sets the Style property of the page itself to the “visualStyle” Style:

Click here to view code image

 <ContentPage.Style>

 <StaticResourceExtension Key="visualStyle" />

 </ContentPage.Style>

Because Page derives from VisualElement but not View, this is the only style in the resource dictionary that can be applied to the page. However, the style can’t be applied to the page until after the Resources section, so using the element form of StaticResource is a good solution here. The entire background of the page is colored based on this style, and the style is also inherited by all the other styles:

[image: Image]

If the Style for the AltLabel only included Setter objects for properties defined by Label, the TargetType could be Label instead of AltLabel. But the Style has a Setter for the PointSize property. That property is defined by AltLabel, so the TargetType must be toolkit:AltLabel.

A Setter can be defined for the PointSize property because PointSize is backed by a bindable property. If you change the accessibility of the BindableProperty object in AltLabel from public to private, the property will still work for many routine uses of AltLabel, but now PointSize cannot be set in a style Setter. The XAML parser will complain that it cannot find PointSizeProperty, which is the bindable property that backs the PointSize property.

You discovered in Chapter 10 how StaticResource works: When the XAML parser encounters a StaticResource markup extension, it searches up the visual tree for a matching dictionary key. This process has implications for styles. You can define a style in one Resources section and then override it with another style with the same dictionary key in a different Resources section lower in the visual tree. When you set the BasedOn property to a StaticResource markup extension, the style you’re deriving from must be defined in the same Resources section (as demonstrated in the StyleInheritance program) or a Resources section higher in the visual tree.

This means that you can structure your styles in XAML in two hierarchical ways: You can use BasedOn to derive styles from other styles, and you can define styles at different levels in the visual tree that derive from styles higher in the visual tree or replace them entirely.

For larger applications with multiple pages and lots of markup, the recommendation for defining styles is very simple—define your styles as close as possible to the elements that use those styles.

Adhering to this recommendation aids in maintaining the program and becomes particularly important when working with implicit styles.

Implicit styles

Every entry in a ResourceDictionary requires a dictionary key. This is an indisputable fact. If you try to pass a null key to the Add method of a ResourceDictionary object, you’ll raise an ArgumentNullException.

However, there is one special case where a programmer is not required to supply this dictionary key. A dictionary key is instead generated automatically.

This special case is for a Style object added to a ResourceDictionary without an x:Key setting. The ResourceDictionary generates a key based on the TargetType, which is always required. (A little exploration will reveal that this special dictionary key is the fully qualified name associated with the TargetType of the Style. For a TargetType of Button, for example, the dictionary key is “Xamarin.Forms.Button”. But you don’t need to know that.)

You can also add a Style to a ResourceDictionary without a dictionary key in code: an overload of the Add method accepts an argument of type Style but doesn’t require anything else.

A Style object in a ResourceDictionary that has one of these generated keys is known as an implicit style, and the generated dictionary key is very special. You can’t refer to this key directly using StaticResource. However, if an element within the scope of the ResourceDictionary has the same type as the dictionary key, and if that element does not have its Style property explicitly set to another Style object, then this implicit style is automatically applied.

The following XAML from the ImplicitStyle project demonstrates this. It is the same as the BasicStyle XAML file except that the Style has no x:Key setting and the Style properties on the buttons aren’t set using StaticResource:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ImplicitStyle.ImplicitStylePage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Button">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 <Setter Property="BorderWidth" Value="3" />

 <Setter Property="TextColor" Value="Red" />

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="BackgroundColor">

 <Setter.Value>

 <OnPlatform x:TypeArguments="Color"

 Android="#404040" />

 </Setter.Value>

 </Setter>

 <Setter Property="BorderColor">

 <Setter.Value>

 <OnPlatform x:TypeArguments="Color"

 Android="White"

 WinPhone="Black" />

 </Setter.Value>

 </Setter>

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Button Text=" Carpe diem " />

 <Button Text=" Sapere aude " />

 <Button Text=" Discere faciendo " />

 </StackLayout>

</ContentPage>

Despite the absence of any explicit connection between the buttons and the style, the style is definitely applied:

[image: Image]

An implicit style is applied only when the class of the element matches the TargetType of the Style exactly. If you include an element that derives from Button in the StackLayout, it would not have the Style applied.

You can use local property settings to override properties set through the implicit style, just as you can override property settings in a style set with StaticResource.

You will find implicit styles to be very powerful and extremely useful. Whenever you have several views of the same type and you determine that you want them all to have an identical property setting or two, it’s very easy to quickly define an implicit style. You don’t have to touch the elements themselves.

However, with great power comes at least some programmer responsibility. Because no style is referenced in the elements themselves, it can be confusing when simply examining the XAML to determine whether some elements are styled or not. Sometimes the appearance of a page indicates that an implicit style is applied to some elements, but it’s not quite obvious where the implicit style is defined. If you then want to change that implicit style, you have to manually search for it up the visual tree.

For this reason, you should define implicit styles as close as possible to the elements they are applied to. If the views getting the implicit style are in a particular StackLayout, then define the implicit style in the Resources section on that StackLayout. A comment or two might help avoid confusion as well.

Interestingly, implicit styles have a built-in restriction that might persuade you to keep them close to the elements they are applied to. Here’s the restriction: You can derive an implicit style from a Style with an explicit dictionary key, but you can’t go the other way around. You can’t use BasedOn to reference an implicit style.

If you define a chain of styles that use BasedOn to derive from one another, the implicit style (if any) is always at the end of the chain. No further derivations are possible.

This implies that you can structure your styles with three types of hierarchies:

• From styles defined on the Application and Page down to styles defined on layouts lower in the visual tree.

• From styles defined for base classes such as VisualElement and View to styles defined for specific classes.

• From styles with explicit dictionary keys to implicit styles.

This is demonstrated in the StyleHierarchy project, which uses a similar (but somewhat simplified) set of styles as you saw earlier in the StyleInheritance project. However, these styles are now spread out over three Resources sections.

Using a technique you saw in the ResourceTrees program in Chapter 10, the StyleHierarchy project was given a XAML-based App class. The App.xaml class has a ResourceDictionary containing a style with just one property setter:

Click here to view code image

<Application xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleHierarchy.App">

 <Application.Resources>

 <ResourceDictionary>

 <Style x:Key="visualStyle" TargetType="VisualElement">

 <Setter Property="BackgroundColor" Value="Pink" />

 </Style>

 </ResourceDictionary>

 </Application.Resources>

</Application>

In a multipage application, this style would be used throughout the application.

The code-behind file for the App class calls InitializeComponent to process the XAML file and sets the MainPage property:

Click here to view code image

public partial class App : Application

{

 public App()

 {

 InitializeComponent();

 MainPage = new StyleHierarchyPage();

 }

 ...

}

The XAML file for the page class defines one Style for the whole page that derives from the style in the App class and also two implicit styles that derive from the Style for the page. Notice that the Style property of the page is set to the Style defined in the App class:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleHierarchy.StyleHierarchyPage"

 Style="{StaticResource visualStyle}">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="baseStyle" TargetType="View"

 BasedOn="{StaticResource visualStyle}">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Label"

 BasedOn="{StaticResource baseStyle}">

 <Setter Property="TextColor" Value="Black" />

 <Setter Property="FontSize" Value="Large" />

 </Style>

 <Style TargetType="Button"

 BasedOn="{StaticResource baseStyle}">

 <Setter Property="TextColor" Value="Blue" />

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="BorderColor" Value="Blue" />

 <Setter Property="BorderWidth" Value="2" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Button Text=" Carpe diem " />

 <Label Text ="A bit of text" />

 <Button Text=" Sapere aude " />

 <Label Text ="Another bit of text" />

 <Button Text=" Discere faciendo " />

 </StackLayout>

</ContentPage>

The implicit styles are defined as close to the target elements as possible.

Here’s the result:

[image: Image]

The incentive to separate Style objects into separate dictionaries doesn’t make a lot of sense for very tiny programs like this one, but for larger programs, it becomes just as important to have a structured hierarchy of style definitions as it is to have a structured hierarchy of class definitions.

Sometimes you’ll have a Style with an explicit dictionary key (for example “myButtonStyle”), but you’ll want that same style to be implicit as well. Simply define a style based on that key with no key or setters of its own:

Click here to view code image

<Style TargetType="Button"

 BasedOn="{StaticResource myButtonStyle}" />

That’s an implicit style that is identical to myButtonStyle.

Dynamic styles

A Style is generally a static object that is created and initialized in XAML or code and then remains unchanged for the duration of the application. The Style class does not derive from BindableObject and does not internally respond to changes in its properties. For example, if you assign a Style object to an element and then modify one of the Setter objects by giving it a new value, the new value won’t show up in the element. Similarly, the target element won’t change if you add a Setter or remove a Setter from the Setters collection. For these new property setters to take effect, you need to use code to detach the style from the element by setting the Style property to null and then re-attach the style to the element.

However, your application can respond to style changes dynamically at run time through the use of DynamicResource. You’ll recall that DynamicResource is similar to StaticResource in that it uses a dictionary key to fetch an object or a value from a resource dictionary. The difference is that StaticResource is a one-time dictionary lookup while DynamicResource maintains a link to the actual dictionary key. If the dictionary entry associated with that key is replaced with a new object, that change is propagated to the element.

This facility allows an application to implement a feature sometimes called dynamic styles. For example, you might include a facility in your program for stylistic themes (involving fonts and colors, perhaps), and you might make these themes selectable by the user. The application can switch between these themes because they are implemented with styles.

There’s nothing in a style itself that indicates a dynamic style. A style becomes dynamic solely by being referenced using DynamicResource rather than StaticResource.

The DynamicStyles project demonstrates the mechanics of this process. Here is the XAML file for the DynamicStylesPage class:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="DynamicStyles.DynamicStylesPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0"

 Android="0"

 WinPhone="0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="baseButtonStyle" TargetType="Button">

 <Setter Property="FontSize" Value="Large" />

 </Style>

 <Style x:Key="buttonStyle1" TargetType="Button"

 BasedOn="{StaticResource baseButtonStyle}">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 <Setter Property="TextColor" Value="Red" />

 </Style>

 <Style x:Key="buttonStyle2" TargetType="Button"

 BasedOn="{StaticResource baseButtonStyle}">

 <Setter Property="HorizontalOptions" Value="Start" />

 <Setter Property="VerticalOptions" Value="EndAndExpand" />

 <Setter Property="TextColor" Value="Green" />

 <Setter Property="FontAttributes" Value="Italic" />

 </Style>

 <Style x:Key="buttonStyle3" TargetType="Button"

 BasedOn="{StaticResource baseButtonStyle}">

 <Setter Property="HorizontalOptions" Value="End" />

 <Setter Property="VerticalOptions" Value="StartAndExpand" />

 <Setter Property="TextColor" Value="Blue" />

 <Setter Property="FontAttributes" Value="Bold" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Button Text=" Switch to Style #1 "

 Style="{DynamicResource buttonStyle}"

 Clicked="OnButton1Clicked" />

 <Button Text=" Switch to Style #2 "

 Style="{DynamicResource buttonStyle}"

 Clicked="OnButton2Clicked" />

 <Button Text=" Switch to Style #3 "

 Style="{DynamicResource buttonStyle}"

 Clicked="OnButton3Clicked" />

 <Button Text=" Reset "

 Style="{DynamicResource buttonStyle}"

 Clicked="OnResetButtonClicked" />

 </StackLayout>

</ContentPage>

The Resources section defines four styles: a simple style with the key “baseButtonStyle”, and then three styles that derive from that style with the keys “buttonStyle1”, “buttonStyle2”, and “buttonStyle3”.

However, the four Button elements toward the bottom of the XAML file all use DynamicResource to reference a style with the simpler key “buttonStyle”. Where is the Style with that key? It does not exist. However, because the four button Style properties are set with DynamicResource, the missing dictionary key is not a problem. No exception is raised. But no Style is applied, which means that the buttons have a default appearance:

[image: Image]

Each of the four Button elements has a Clicked handler attached, and in the code-behind file, the first three handlers set a dictionary entry with the key “buttonStyle” to one of the three numbered styles already defined in the dictionary:

Click here to view code image

public partial class DynamicStylesPage : ContentPage

{

 public DynamicStylesPage()

 {

 InitializeComponent();

 }

 void OnButton1Clicked(object sender, EventArgs args)

 {

 Resources["buttonStyle"] = Resources["buttonStyle1"];

 }

 void OnButton2Clicked(object sender, EventArgs args)

 {

 Resources["buttonStyle"] = Resources["buttonStyle2"];

 }

 void OnButton3Clicked(object sender, EventArgs args)

 {

 Resources["buttonStyle"] = Resources["buttonStyle3"];

 }

 void OnResetButtonClicked(object sender, EventArgs args)

 {

 Resources["buttonStyle"] = null;

 }

}

When you press one of the first three buttons, all four buttons get the selected style. Here’s the program running on all three platforms showing the results (from left to right) when buttons 1, 2, and 3 are pressed:

[image: Image]

Pressing the fourth button returns everything to the initial conditions by setting the value associated with the “buttonStyle” key to null. (You might also consider calling Remove or Clear on the ResourceDictionary object to remove the key entirely, but that doesn’t work in the version of Xamarin.Forms used for this chapter.)

Suppose you want to derive another Style from the Style with the key “buttonStyle”. How do you do this in XAML, considering that the “buttonStyle” dictionary entry doesn’t exist until one of the first three buttons is pressed?

You can’t do it like this:

Click here to view code image

<!-- This won't work! -->

<Style x:Key="newButtonStyle" TargetType="Button"

 BasedOn="{StaticResource buttonStyle}">

 ...

</Style>

StaticResource will raise an exception if the “buttonStyle” key does not exist, and even if the key does exist, the use of StaticResource won’t allow changes in the dictionary entry to be reflected in this new style.

However, changing StaticResource to DynamicResource won’t work either:

Click here to view code image

<!-- This won't work either! -->

<Style x:Key="newButtonStyle" TargetType="Button"

 BasedOn="{DynamicResource buttonStyle}">

 ...

</Style>

DynamicResource works only with properties backed by bindable properties, and that is not the case here. Style doesn’t derive from BindableObject, so it can’t support bindable properties.

Instead, Style defines a property specifically for the purpose of inheriting dynamic styles. The property is BaseResourceKey, which is intended to be set directly to a dictionary key that might not yet exist or whose value might change dynamically, which is the case with the “buttonStyle” key:

Click here to view code image

<!-- This works!! -->

<Style x:Key="newButtonStyle" TargetType="Button"

 BaseResourceKey="buttonStyle">

 ...

</Style>

The use of BaseResourceKey is demonstrated by the DynamicStylesInheritance project, which is very similar to the DynamicStyles project. Indeed, the code-behind processing is identical. Toward the bottom of the Resources section, a new Style is defined with a key of “newButtonStyle” that uses BaseResourceKey to reference the “buttonStyle” entry and add a couple of properties, including one that uses OnPlatform:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="DynamicStylesInheritance.DynamicStylesInheritancePage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0"

 Android="0"

 WinPhone="0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="baseButtonStyle" TargetType="Button">

 <Setter Property="FontSize" Value="Large" />

 </Style>

 <Style x:Key="buttonStyle1" TargetType="Button"

 BasedOn="{StaticResource baseButtonStyle}">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 <Setter Property="TextColor" Value="Red" />

 </Style>

 <Style x:Key="buttonStyle2" TargetType="Button"

 BasedOn="{StaticResource baseButtonStyle}">

 <Setter Property="HorizontalOptions" Value="Start" />

 <Setter Property="VerticalOptions" Value="EndAndExpand" />

 <Setter Property="TextColor" Value="Green" />

 <Setter Property="FontAttributes" Value="Italic" />

 </Style>

 <Style x:Key="buttonStyle3" TargetType="Button"

 BasedOn="{StaticResource baseButtonStyle}">

 <Setter Property="HorizontalOptions" Value="End" />

 <Setter Property="VerticalOptions" Value="StartAndExpand" />

 <Setter Property="TextColor" Value="Blue" />

 <Setter Property="FontAttributes" Value="Bold" />

 </Style>

 <!-- New style definition. -->

 <Style x:Key="newButtonStyle" TargetType="Button"

 BaseResourceKey="buttonStyle">

 <Setter Property="BackgroundColor">

 <Setter.Value>

 <OnPlatform x:TypeArguments="Color"

 iOS="#C0C0C0"

 Android="#404040"

 WinPhone="Gray" />

 </Setter.Value>

 </Setter>

 <Setter Property="BorderColor" Value="Red" />

 <Setter Property="BorderWidth" Value="3" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Button Text=" Switch to Style #1 "

 Style="{StaticResource newButtonStyle}"

 Clicked="OnButton1Clicked" />

 <Button Text=" Switch to Style #2 "

 Style="{StaticResource newButtonStyle}"

 Clicked="OnButton2Clicked" />

 <Button Text=" Switch to Style #3 "

 Style="{StaticResource newButtonStyle}"

 Clicked="OnButton3Clicked" />

 <Button Text=" Reset "

 Style="{DynamicResource buttonStyle}"

 Clicked="OnResetButtonClicked" />

 </StackLayout>

</ContentPage>

Notice that the first three Button elements reference the “newButtonStyle” dictionary entry with StaticResource. DynamicResource is not needed here because the Style object associated with the “newButtonStyle” will not itself change except for the Style that it derives from. The Style with the key “newButtonStyle” maintains a link with “buttonStyle” and internally alters itself when that underlying style changes. When the program begins to run, only the properties defined in the “newButtonStyle” are applied to those three buttons:

[image: Image]

The Reset button continues to reference the “buttonStyle” entry.

As in the DynamicStyles program, the code-behind file sets that dictionary entry when you click one of the first three buttons, so all the buttons pick up the “buttonStyle” properties as well. Here are the results for (from left to right) clicks of buttons 3, 2, and 1:

[image: Image]

Device styles

Xamarin.Forms includes six built-in dynamic styles. These are known as device styles, and they are members of a nested class of Device named Styles. This Styles class defines 12 static and readonly fields that help reference these six styles in code:

• BodyStyle of type Style.

• BodyStyleKey of type string and equal to “BodyStyle.”

• TitleStyle of type Style.

• TitleStyleKey of type string and equal to “TitleStyle.”

• SubtitleStyle of type Style.

• SubtitleStyleKey of type string and equal to “SubtitleStyle.”

• CaptionStyle of type Style.

• CaptionStyleKey of type string and equal to “CaptionStyle.”

• ListItemTextStyle of type Style.

• ListItemTextStyleKey of type string and equal to “ListItemTextStyle.”

• ListItemDetailTextStyle of type Style.

• ListItemDetailTextStyleKey of type string and equal to “ListItemDetailTextStyle.”

All six styles have a TargetType of Label and are stored in a dictionary—but not a dictionary that application programs can access directly.

In code, you use the fields in this list for accessing the device styles. For example, you can set the Device.Styles.BodyStyle object directly to the Style property of a Label for text that might be appropriate for the body of a paragraph. If you’re defining a style in code that derives from one of these device styles, set the BaseResourceKey to Device.Styles.BodyStyleKey or simply “BodyStyle” if you’re not afraid of misspelling it.

In XAML, you’ll simply use the text key “BodyStyle” with DynamicResource for setting this style to the Style property of a Label or to set BaseResourceKey when deriving a style from Device.Styles.BodyStyle.

The DeviceStylesList program demonstrates how to access these styles—and to define a new style that inherits from SubtitleStyle—both in XAML and in code. Here’s the XAML file:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="DeviceStylesList.DeviceStylesListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="newSubtitleStyle" TargetType="Label"

 BaseResourceKey="SubtitleStyle">

 <Setter Property="TextColor" Value="Accent" />

 <Setter Property="FontAttributes" Value="Italic" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <ScrollView>

 <StackLayout Spacing="20">

 <!-- Device styles set with DynamicResource -->

 <StackLayout>

 <StackLayout HorizontalOptions="Start">

 <Label Text="Device styles set with DynamicResource" />

 <BoxView Color="Accent" HeightRequest="3" />

 </StackLayout>

 <Label Text="No Style whatsoever" />

 <Label Text="Body Style"

 Style="{DynamicResource BodyStyle}" />

 <Label Text="Title Style"

 Style="{DynamicResource TitleStyle}" />

 <Label Text="Subtitle Style"

 Style="{DynamicResource SubtitleStyle}" />

 <!-- Uses style derived from device style. -->

 <Label Text="New Subtitle Style"

 Style="{StaticResource newSubtitleStyle}" />

 <Label Text="Caption Style"

 Style="{DynamicResource CaptionStyle}" />

 <Label Text="List Item Text Style"

 Style="{DynamicResource ListItemTextStyle}" />

 <Label Text="List Item Detail Text Style"

 Style="{DynamicResource ListItemDetailTextStyle}" />

 </StackLayout>

 <!-- Device styles set in code -->

 <StackLayout x:Name="codeLabelStack">

 <StackLayout HorizontalOptions="Start">

 <Label Text="Device styles set in code:" />

 <BoxView Color="Accent" HeightRequest="3" />

 </StackLayout>

 </StackLayout>

 </StackLayout>

 </ScrollView>

 </ContentPage>

The StackLayout contains two Label and BoxView combinations (one at the top and one at the bottom) to display underlined headers. Following the first of these headers, Label elements reference the device styles with DynamicResource. The new subtitle style is defined in the Resources dictionary for the page.

The code-behind file accesses the device styles by using the properties in the Device.Styles class and creates a new style by deriving from SubtitleStyle:

Click here to view code image

public partial class DeviceStylesListPage : ContentPage

{

 public DeviceStylesListPage()

 {

 InitializeComponent();

 var styleItems = new[]

 {

 new { style = (Style)null, name = "No style whatsoever" },

 new { style = Device.Styles.BodyStyle, name = "Body Style" },

 new { style = Device.Styles.TitleStyle, name = "Title Style" },

 new { style = Device.Styles.SubtitleStyle, name = "Subtitle Style" },

 // Derived style

 new { style = new Style(typeof(Label))

 {

 BaseResourceKey = Device.Styles.SubtitleStyleKey,

 Setters =

 {

 new Setter

 {

 Property = Label.TextColorProperty,

 Value = Color.Accent

 },

 new Setter

 {

 Property = Label.FontAttributesProperty,

 Value = FontAttributes.Italic

 }

 }

 }, name = "New Subtitle Style" },

 new { style = Device.Styles.CaptionStyle, name = "Caption Style" },

 new { style = Device.Styles.ListItemTextStyle, name = "List Item Text Style" },

 new { style = Device.Styles.ListItemDetailTextStyle,

 name = "List Item Detail Text Style" },

 };

 foreach (var styleItem in styleItems)

 {

 codeLabelStack.Children.Add(new Label

 {

 Text = styleItem.name,

 Style = styleItem.style

 });

 }

 }

}

The code and XAML result in identical styles, of course, but each platform implements these device styles in a different way:

[image: Image]

The dynamic nature of these styles is easily demonstrated on iOS: While the DeviceStyles program is running, tap the Home button and run Settings. Pick the General item, then Accessibility, and Larger Text. A slider is available to make text smaller or larger. Change that slider, double tap the Home button to show the current applications, and select DeviceStyles again. You’ll see the text set from device styles (or the styles that derive from device styles) change size, but none of the unstyled text in the application changes size. New objects have replaced the device styles in the dictionary.

The dynamic nature of device styles is not quite as obvious on Android because changes to the Font size item of the Display section in Settings affect all font sizes in a Xamarin.Forms program.

On a Windows 10 Mobile device, the Text scaling item in the Ease of Access and More Options section of Settings also affects all text.

The next chapter includes a program that demonstrates how to make a little e-book reader that lets you read a chapter of Alice in Wonderland. This program uses device styles for controlling the formatting of all the text, including the book and chapter titles.

But what this little e-book reader also includes are illustrations, and that requires an exploration into the subject of bitmaps.

Chapter 13. Bitmaps

The visual elements of a graphical user interface can be roughly divided between elements used for presentation (such as text) and those capable of interaction with the user, such as buttons, sliders, and list boxes.

Text is essential for presentation, but pictures are often just as important as a way to supplement text and convey crucial information. The web, for example, would be inconceivable without pictures. These pictures are often in the form of rectangular arrays of picture elements (or pixels) known as bitmaps.

Just as a view named Label displays text, a view named Image displays bitmaps. The bitmap formats supported by iOS, Android, and the Windows Runtime are a little different, but if you stick to JPEG, PNG, GIF, and BMP in your Xamarin.Forms applications, you’ll probably not experience any problems.

Image defines a Source property that you set to an object of type ImageSource, which references the bitmap displayed by Image. Bitmaps can come from a variety of sources, so the ImageSource class defines four static creation methods that return an ImageSource object:

• ImageSource.FromUri for accessing a bitmap over the web.

• ImageSource.FromResource for a bitmap stored as an embedded resource in the application PCL.

• ImageSource.FromFile for a bitmap stored as content in an individual platform project.

• ImageSource.FromStream for loading a bitmap by using a .NET Stream object.

ImageSource also has three descendant classes, named UriImageSource, FileImageSource, and StreamImageSource, that you can use instead of the first, third, and fourth static creation methods. Generally, the static methods are easier to use in code, but the descendant classes are sometimes required in XAML.

In general, you’ll use the ImageSource.FromUri and ImageSource.FromResource methods to obtain platform-independent bitmaps for presentation purposes and ImageSource.FromFile to load platform-specific bitmaps for user-interface objects. Small bitmaps play a crucial role in MenuItem and ToolbarItem objects, and you can also add a bitmap to a Button.

This chapter begins with the use of platform-independent bitmaps obtained from the ImageSource.FromUri and ImageSource.FromResource methods. It then explores some uses of the ImageSource.FromStream method. The chapter concludes with the use of ImageSource.FromFile to obtain platform-specific bitmaps for toolbars and buttons.

Platform-independent bitmaps

Here’s a code-only program named WebBitmapCode with a page class that uses ImageSource.FromUri to access a bitmap from the Xamarin website:

Click here to view code image

public class WebBitmapCodePage : ContentPage

{

 public WebBitmapCodePage()

 {

 string uri = "https://developer.xamarin.com/demo/IMG_1415.JPG";

 Content = new Image

 {

 Source = ImageSource.FromUri(new Uri(uri))

 };

 }

}

If the URI passed to ImageSource.FromUri does not point to a valid bitmap, no exception is raised.

Even this tiny program can be simplified. ImageSource defines an implicit conversion from string or Uri to an ImageSource object, so you can set the string with the URI directly to the Source property of Image:

Click here to view code image

public class WebBitmapCodePage : ContentPage

{

 public WebBitmapCodePage()

 {

 Content = new Image

 {

 Source = "https://developer.xamarin.com/demo/IMG_1415.JPG"

 };

 }

}

Or, to make it more verbose, you can set the Source property of Image to a UriImageSource object with its Uri property set to a Uri object:

Click here to view code image

public class WebBitmapCodePage : ContentPage

{

 public WebBitmapCodePage()

 {

 Content = new Image

 {

 Source = new UriImageSource

 {

 Uri = new Uri("https://developer.xamarin.com/demo/IMG_1415.JPG")

 }

 };

 }

}

The UriImageSource class might be preferred if you want to control the caching of web-based images. The class implements its own caching that uses the application’s private storage area available on each platform. UriImageSource defines a CachingEnabled property that has a default value of true and a CachingValidity property of type TimeSpan that has a default value of one day. This means that if the image is reaccessed within a day, the cached image is used. You can disable caching entirely by setting CachingEnabled to false, or you can change the caching expiry time by setting the CachingValidity property to another TimeSpan value.

Regardless which way you do it, by default the bitmap displayed by the Image view is stretched to the size of its container—the ContentPage in this case—while respecting the bitmap’s aspect ratio:

[image: Image]

This bitmap is square, so blank areas appear above and below the image. As you turn your phone or emulator between portrait and landscape mode, a rendered bitmap can change size, and you’ll see some blank space at the top and bottom or the left and right, where the bitmap doesn’t reach. You can color that area by using the BackgroundColor property that Image inherits from VisualElement.

The bitmap referenced in the WebBitmapCode program is 4,096 pixels square, but a utility is installed on the Xamarin website that lets you download a much smaller bitmap file by specifying the URI like so:

Click here to view code image

Content = new Image

{

 Source = "https://developer.xamarin.com/demo/IMG_1415.JPG?width=25"

};

Now the downloaded bitmap is 25 pixels square, but it is again stretched to the size of its container. Each platform implements an interpolation algorithm in an attempt to smooth the pixels as the image is expanded to fit the page:

[image: Image]

However, if you now set HorizontalOptions and VerticalOptions on the Image to Center—or put the Image element in a StackLayout—this 25-pixel bitmap collapses into a very tiny image. This phenomenon is discussed in more detail later in this chapter.

You can also instantiate an Image element in XAML and load a bitmap from a URL by setting the Source property directly to a web address. Here’s the XAML file from the WebBitmapXaml program:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WebBitmapXaml.WebBitmapXamlPage">

 <Image Source="https://developer.xamarin.com/demo/IMG_3256.JPG" />

</ContentPage>

A more verbose approach involves explicitly instantiating a UriImageSource object and setting the Uri property:

Click here to view code image

<Image>

 <Image.Source>

 <UriImageSource Uri="https://developer.xamarin.com/demo/IMG_3256.JPG" />

 </Image.Source>

</Image>

Regardless, here’s how it looks on the screen:

[image: Image]

Fit and fill

If you set the BackgroundColor property of Image on any of the previous code and XAML examples, you’ll see that Image actually occupies the entire rectangular area of the page. Image defines an Aspect property that controls how the bitmap is rendered within this rectangle. You set this property to a member of the Aspect enumeration:

• AspectFit — the default

• Fill — stretches without preserving the aspect ratio

• AspectFill — preserves the aspect ratio but crops the image

The default setting is the enumeration member Aspect.AspectFit, meaning that the bitmap fits into its container’s boundaries while preserving the bitmap’s aspect ratio. As you’ve already seen, the relationship between the bitmap’s dimensions and the container’s dimensions can result in background areas at the top and bottom or at the right and left.

Try this in the WebBitmapXaml project:

Click here to view code image

<Image Source="https://developer.xamarin.com/demo/IMG_3256.JPG"

 Aspect="Fill" />

Now the bitmap is expanded to the dimensions of the page. This results in the picture being stretched vertically, so the car appears rather short and stocky:

[image: Image]

If you turn the phone sideways, the image is stretched horizontally, but the result isn’t quite as extreme because the picture’s aspect ratio is somewhat landscape to begin with.

The third option is AspectFill:

Click here to view code image

<Image Source="https://developer.xamarin.com/demo/IMG_3256.JPG"

 Aspect="AspectFill" />

With this option the bitmap completely fills the container, but the bitmap’s aspect ratio is maintained at the same time. The only way this is possible is by cropping part of the image, and you’ll see that the image is indeed cropped, but in a different way on the three platforms. On iOS and Android, the image is cropped on either the top and bottom or the left and right, leaving only the central part of the bitmap visible. On the Windows Runtime platforms, the image is cropped on the right or bottom, leaving the upper-left corner visible:

[image: Image]

Embedded resources

Accessing bitmaps over the Internet is convenient, but sometimes it’s not optimum. The process requires an Internet connection, an assurance that the bitmaps haven’t been moved, and some time for downloading. For fast and guaranteed access to bitmaps, they can be bound right into the application.

If you need access to images that are not platform specific, you can include bitmaps as embedded resources in the shared Portable Class Library project and access them with the ImageSource.FromResource method. The ResourceBitmapCode solution demonstrates how to do it.

The ResourceBitmapCode PCL project within this solution has a folder named Images that contains two bitmaps, named ModernUserInterface.jpg (a very large bitmap) and ModernUserInterface256.jpg (the same picture but with a 256-pixel width).

When adding any type of embedded resource to a PCL project, make sure to set the Build Action of the resource to EmbeddedResource. This is crucial.

In code, you set the Source property of an Image element to the ImageSource object returned from the static ImageSource.FromResource method. This method requires the resource ID. The resource ID consists of the assembly name followed by a period, then the folder name followed by another period, and then the filename, which contains another period for the filename extension. For this example, the resource ID for accessing the smaller of the two bitmaps in the ResourceBitmapCode program is:

Click here to view code image

ResourceBitmapCode.Images.ModernUserInterface256.jpg

The code in this program references that smaller bitmap and also sets the HorizontalOptions and VerticalOptions on the Image element to Center:

Click here to view code image

public class ResourceBitmapCodePage : ContentPage

{

 public ResourceBitmapCodePage()

 {

 Content = new Image

 {

 Source = ImageSource.FromResource(

 "ResourceBitmapCode.Images.ModernUserInterface256.jpg"),

 VerticalOptions = LayoutOptions.Center,

 HorizontalOptions = LayoutOptions.Center

 };

 }

}

As you can see, the bitmap in this instance is not stretched to fill the page:

[image: Image]

A bitmap is not stretched to fill its container if:

• it is smaller than the container, and

• the VerticalOptions and HorizontalOptions properties of the Image element are not set to Fill, or if Image is a child of a StackLayout.

If you comment out the VerticalOptions and HorizontalOptions settings, or if you reference the large bitmap (which does not have the “256” at the end of its filename), the image will again stretch to fill the container.

When a bitmap is not stretched to fit its container, it must be displayed in a particular size. What is that size?

On iOS and Android, the bitmap is displayed in its pixel size. In other words, the bitmap is rendered with a one-to-one mapping between the pixels of the bitmap and the pixels of the video display. The iPhone 6 simulator used for these screenshots has a screen width of 750 pixels, and you can see that the 256-pixel width of the bitmap is about one-third that width. The Android phone here is a Nexus 5, which has a pixel width of 1080, and the bitmap is about one-quarter that width.

On the Windows Runtime platforms, however, the bitmap is displayed in device-independent units—in this example, 256 device-independent units. The Nokia Lumia 925 used for these screenshots has a pixel width of 768, which is approximately the same as the iPhone 6. However, the screen width of this Windows 10 Mobile phone in device-independent units is 341, and you can see that the rendered bitmap is much wider than on the other platforms.

This discussion on sizing bitmaps continues in the next section.

How would you reference a bitmap stored as an embedded resource from XAML? Unfortunately, there is no ResourceImageSource class. If there were, you would probably try instantiating that class in XAML between Image.Source tags. But that’s not an option.

You might consider using x:FactoryMethod to call ImageSource.FromResource, but that won’t work. As currently implemented, the ImageSource.FromResource method requires that the bitmap resource be in the same assembly as the code that calls the method. When you use x:FactoryMethod to call ImageSource.FromResource, the call is made from the Xamarin.Forms.Xaml assembly.

What will work is a very simple XAML markup extension. Here’s one in a project named StackedBitmap:

Click here to view code image

namespace StackedBitmap

{

 [ContentProperty ("Source")]

 public class ImageResourceExtension : IMarkupExtension

 {

 public string Source { get; set; }

 public object ProvideValue (IServiceProvider serviceProvider)

 {

 if (Source == null)

 return null;

 return ImageSource.FromResource(Source);

 }

 }

}

ImageResourceExtension has a single property named Source that you set to the resource ID. The ProvideValue method simply calls ImageSource.FromResource with the Source property. As is common for single-property markup extensions, Source is also the content property of the class. That means that you don’t need to explicitly include “Source=” when you’re using the curly-braces syntax for XAML markup extensions.

But watch out: You cannot move this ImageResourceExtension class to a library such as Xamarin.FormsBook.Toolkit. The class must be part of the same assembly that contains the embedded resources you want to load, which is generally the application’s Portable Class Library.

Here’s the XAML file from the StackedBitmap project. An Image element shares a StackLayout with two Label elements:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:StackedBitmap "

 x:Class="StackedBitmap.StackedBitmapPage">

 <StackLayout>

 <Label Text="320 x 240 Pixel Bitmap"

 FontSize="Medium"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 <Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"

 BackgroundColor="Aqua"

 SizeChanged="OnImageSizeChanged" />

 <Label x:Name="label"

 FontSize="Medium"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 </StackLayout>

</ContentPage>

The local prefix refers to the StackedBitmap namespace in the StackedBitmap assembly. The Source property of the Image element is set to the ImageResource markup extension, which references a bitmap stored in the Images folder of the PCL project and flagged as an EmbeddedResource. The bitmap is 320 pixels wide and 240 pixels high. The Image also has its BackgroundColor property set; this will allow us to see the entire size of Image within the StackLayout.

The Image element has its SizeChanged event set to a handler in the code-behind file:

Click here to view code image

public partial class StackedBitmapPage : ContentPage

{

 public StackedBitmapPage()

 {

 InitializeComponent();

 }

 void OnImageSizeChanged(object sender, EventArgs args)

 {

 Image image = (Image)sender;

 label.Text = String.Format("Render size = {0:F0} x {1:F0}",

 image.Width, image.Height);

 }

}

The size of the Image element is constrained vertically by the StackLayout, so the bitmap is displayed in its pixel size (on iOS and Android) and in device-independent units on Windows Phone. The Label displays the size of the Image element in device-independent units, which differ on each platform:

[image: Image]

The width of the Image element displayed by the bottom Label includes the aqua background and equals the width of the page in device-independent units. You can use Aspect settings of Fill or AspectFill to make the bitmap fill that entire aqua area.

If you prefer that the size of the Image element be the same size as the rendered bitmap in device-independent units, you can set the HorizontalOptions property of the Image to something other than the default value of Fill:

Click here to view code image

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"

 HorizontalOptions="Center"

 BackgroundColor="Aqua"

 SizeChanged="OnImageSizeChanged" />

Now the bottom Label displays only the width of the rendered bitmap. Settings of the Aspect property have no effect:

[image: Image]

Let’s refer to this rendered Image size as its natural size because it is based on the size of the bitmap being displayed.

The iPhone 6 has a pixel width of 750 pixels, but as you discovered when running the WhatSize program in Chapter 5, applications perceive a screen width of 375. There are two pixels to the device-independent unit, so a bitmap with a width of 320 pixels is displayed with a width of 160 units.

The Nexus 5 has a pixel width of 1080, but applications perceive a width of 360, so there are three pixels to the device-independent unit, as the Image width of 107 units confirms.

On both iOS and Android devices, when a bitmap is displayed in its natural size, there is a one-to-one mapping between the pixels of the bitmap and the pixels of the display. On Windows Runtime devices, however, that’s not the case. The Nokia Lumia 925 used for these screenshots has a pixel width of 768. When running the Windows 10 Mobile operating system, there are 2.25 pixels to the device-independent unit, so applications perceive a screen width of 341. But the 320 × 240 pixel bitmap is displayed in a size of 320 × 240 device-independent units.

This inconsistency between the Windows Runtime and the other two platforms is actually beneficial when you’re accessing bitmaps from the individual platform projects. As you’ll see, iOS and Android include a feature that lets you supply different sizes of bitmaps for different device resolutions. In effect, this allows you to specify bitmap sizes in device-independent units, which means that Windows devices are consistent with those schemes.

But when using platform-independent bitmaps, you’ll probably want to size the bitmaps consistently on all three platforms, and that requires a deeper plunge into the subject.

More on sizing

So far, you’ve seen two ways to size Image elements:

If the Image element is not constrained in any way, it will fill its container while maintaining the bitmap’s aspect ratio, or fill the area entirely if you set the Aspect property to Fill or AspectFill.

If the bitmap is less than the size of its container and the Image is constrained horizontally or vertically by setting HorizontalOptions or VerticalOptions to something other than Fill, or if the Image is put in a StackLayout, the bitmap is displayed in its natural size. That’s the pixel size on iOS and Android devices, but the size in device-independent units on Windows devices.

You can also control size by setting WidthRequest or HeightRequest to an explicit dimension in device-independent units. However, there are some restrictions.

The following discussion is based on experimentation with the StackedBitmap sample. It pertains to Image elements that are vertically constrained by being a child of a vertical StackLayout or having the VerticalOptions property set to something other than Fill. The same principles apply to an Image element that is horizontally constrained.

If an Image element is vertically constrained, you can use WidthRequest to reduce the size of the bitmap from its natural size, but you cannot use it to increase the size. For example, try setting WidthRequest to 100:

Click here to view code image

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"

 WidthRequest="100"

 HorizontalOptions="Center"

 BackgroundColor="Aqua"

 SizeChanged="OnImageSizeChanged" />

The resultant height of the bitmap is governed by the specified width and the bitmap’s aspect ratio, so now the Image is displayed with a size of 100 × 75 device-independent units on all three platforms:

[image: Image]

The HorizontalOptions setting of Center does not affect the size of the rendered bitmap. If you remove that line, the Image element will be as wide as the screen (as the aqua background color will demonstrate), but the bitmap will remain the same size.

You cannot use WidthRequest to increase the size of the rendered bitmap beyond its natural size. For example, try setting WidthRequest to 1000:

Click here to view code image

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"

 WidthRequest="1000"

 HorizontalOptions="Center"

 BackgroundColor="Aqua"

 SizeChanged="OnImageSizeChanged" />

Even with HorizontalOptions set to Center, the resultant Image element is now wider than the rendered bitmap, as indicated by the background color:

[image: Image]

But the bitmap itself is displayed in its natural size. The vertical StackLayout is effectively preventing the height of the rendered bitmap from exceeding its natural height.

To overcome that constraint of the vertical StackLayout, you need to set HeightRequest. However, you’ll also want to leave HorizontalOptions at its default value of Fill. Otherwise, the HorizontalOptions setting will prevent the width of the rendered bitmap from exceeding its natural size.

Just as with WidthRequest, you can set HeightRequest to reduce the size of the rendered bitmap. The following code sets HeightRequest to 100 device-independent units:

Click here to view code image

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"

 HeightRequest="100"

 BackgroundColor="Aqua"

 SizeChanged="OnImageSizeChanged" />

Notice also that the HorizontalOptions setting has been removed.

The rendered bitmap is now 100 device-independent units high with a width governed by the aspect ratio. The Image element itself stretches to the sides of the StackLayout:

[image: Image]

In this particular case, you can set HorizontalOptions to Center without changing the size of the rendered bitmap. The Image element will then be the size of the bitmap (133 × 100), and the aqua background will disappear.

It’s important to leave HorizontalOptions at its default setting of Fill when setting the HeightRequest to a value greater than the bitmap’s natural height, for example 250:

Click here to view code image

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"

 HeightRequest="250"

 BackgroundColor="Aqua"

 SizeChanged="OnImageSizeChanged" />

Now the rendered bitmap is larger than its natural size:

[image: Image]

However, this technique has a built-in danger, which is revealed when you set the HeightRequest to 400:

Click here to view code image

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"

 HeightRequest="400"

 BackgroundColor="Aqua"

 SizeChanged="OnImageSizeChanged" />

Here’s what happens: The Image element does indeed get a height of 400 device-independent units. But the width of the rendered bitmap in that Image element is limited by the width of the screen, which means that the height of the rendered bitmap is less than the height of the Image element:

[image: Image]

In a real program you probably wouldn’t have the BackgroundColor property set, and instead a wasteland of blank screen will occupy the area at the top and bottom of the rendered bitmap.

What this implies is that you should not use HeightRequest to control the size of bitmaps in a vertical StackLayout unless you write code that ensures that HeightRequest is limited to the width of the StackLayout times the ratio of the bitmap’s height to width.

If you know the pixel size of the bitmap that you’ll be displaying, one easy approach is to set WidthRequest and HeightRequest to that size:

Click here to view code image

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"

 WidthRequest="320"

 HeightRequest="240"

 HorizontalOptions="Center"

 BackgroundColor="Aqua"

 SizeChanged="OnImageSizeChanged" />

Now the bitmap is displayed in that size in device-independent units on all the platforms:

[image: Image]

The problem here is that the bitmap is not being displayed at its optimal resolution. Each pixel of the bitmap occupies at least two pixels of the screen, depending on the device.

If you want to size bitmaps in a vertical StackLayout so that they look approximately the same size on a variety of devices, use WidthRequest rather than HeightRequest. You’ve seen that WidthRequest in a vertical StackLayout can only decrease the size of bitmaps. This means that you should use bitmaps that are larger than the size at which they will be rendered. This will give you a more optimal resolution when the image is sized in device-independent units. You can size the bitmap by using a desired metrical size in inches together with the number of device-independent units to the inch for the particular device, which we found to be 160 for these three devices.

Here’s a project very similar to StackedBitmap called DeviceIndBitmapSize. It’s the same bitmap but now 1200 × 900 pixels, which is wider than the portrait-mode width of even high-resolution 1920 × 1080 displays. The platform-specific requested width of the bitmap corresponds to 1.5 inches:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:DeviceIndBitmapSize"

 x:Class="DeviceIndBitmapSize.DeviceIndBitmapSizePage">

 <StackLayout>

 <Label Text="1200 x 900 Pixel Bitmap"

 FontSize="Medium"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 <!-- 1.5 inch image width -->

 <Image Source="{local:ImageResource DeviceIndBitmapSize.Images.Sculpture_1200x900.jpg}"

 WidthRequest="240"

 HorizontalOptions="Center"

 SizeChanged="OnImageSizeChanged" />

 </Image>

 <Label x:Name="label"

 FontSize="Medium"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 </StackLayout>

</ContentPage>

If the preceding analysis about sizing is correct and all goes well, this bitmap should look approximately the same size on all three platforms relative to the width of the screen, as well as provide higher fidelity resolution than the previous program:

[image: Image]

With this knowledge about sizing bitmaps, it is now possible to make a little e-book reader with pictures, because what is the use of a book without pictures?

This e-book reader displays a scrollable StackLayout with the complete text of Chapter 7 of Lewis Carroll’s Alice’s Adventures in Wonderland, including three of John Tenniel’s original illustrations. The text and illustrations were downloaded from the University of Adelaide’s website. The illustrations are included as embedded resources in the MadTeaParty project. They have the same names and sizes as those on the website. The names refer to page numbers in the original book:

• image113.jpg — 709 × 553

• image122.jpg — 485 × 545

• image129.jpg — 670 × 596

Recall that the use of WidthRequest for Image elements in a StackLayout can only shrink the size of rendered bitmaps. These bitmaps are not wide enough to ensure that they will all shrink to a proper size on all three platforms, but it’s worthwhile examining the results anyway because this is much closer to a real-life example.

The MadTeaParty program uses an implicit style for Image to set the WidthRequest property to a value corresponding to 1.5 inches. Just as in the previous example, this value is 240.

For the three devices used for these screenshots, this width corresponds to:

• 480 pixels on the iPhone 6

• 720 pixels on the Android Nexus 5

• 540 pixels on the Nokia Lumia 925 running Windows 10 Mobile

This means that all three images will shrink in size on the iPhone 6, and they will all have a rendered width of 240 device-independent units.

However, none of the three images will shrink in size on the Nexus 5 because they all have narrower pixel widths than the number of pixels in 1.5 inches. The three images will have a rendered width of (respectively) 236, 162, and 223 device-independent units on the Nexus 5. (That’s the pixel width divided by 3.)

On the Windows 10 Mobile device, two will shrink and one will not.

Let’s see if the predictions are correct. The XAML file includes a BackgroundColor setting on the root element that colors the entire page white, as is appropriate for a book. The Style definitions are confined to a Resources dictionary in the StackLayout. A style for the book title is based on the device TitleStyle but with black text and centered, and two implicit styles for Label and Image serve to style most of the Label elements and all three Image elements. Only the first and last paragraphs of the chapter’s text are shown in this listing of the XAML file:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:sys="clr-namespace:System;assembly=mscorlib"

 xmlns:local="clr-namespace:MadTeaParty"

 x:Class="MadTeaParty.MadTeaPartyPage"

 BackgroundColor="White">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="5, 20, 5, 0"

 Android="5, 0"

 WinPhone="5, 0" />

 </ContentPage.Padding>

 <ScrollView>

 <StackLayout Spacing="10">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style x:Key="titleLabel"

 TargetType="Label"

 BaseResourceKey="TitleStyle">

 <Setter Property="TextColor" Value="Black" />

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 <!-- Implicit styles -->

 <Style TargetType="Label"

 BaseResourceKey="BodyStyle">

 <Setter Property="TextColor" Value="Black" />

 </Style>

 <Style TargetType="Image">

 <Setter Property="WidthRequest" Value="240" />

 </Style>

 <!-- 1/4 inch indent for poetry -->

 <Thickness x:Key="poemIndent">40, 0, 0, 0</Thickness>

 </ResourceDictionary>

 </StackLayout.Resources>

 <!-- Text and images from http://ebooks.adelaide.edu.au/c/carroll/lewis/alice/ -->

 <StackLayout Spacing="0">

 <Label Text="Alice's Adventures in Wonderland"

 Style="{DynamicResource titleLabel}"

 FontAttributes="Italic" />

 <Label Text="by Lewis Carroll"

 Style="{DynamicResource titleLabel}" />

 </StackLayout>

 <Label Style="{DynamicResource SubtitleStyle}"

 TextColor="Black"

 HorizontalTextAlignment="Center">

 <Label.FormattedText>

 <FormattedString>

 </FormattedString>

 </Label.FormattedText>

 </Label>

 <Label Text=

"There was a table set out under a tree in front of the

house, and the March Hare and the Hatter were having tea at

it: a Dormouse was sitting between them, fast asleep, and

the other two were using it as a cushion, resting their

elbows on it, and talking over its head. 'Very uncomfortable

for the Dormouse,' thought Alice; 'only, as it's asleep, I

suppose it doesn't mind.'" />

 ...

 ...

 ...

 <Label>

 <Label.FormattedText>

 <FormattedString>

 <Span Text=

"Once more she found herself in the long hall, and close to

the little glass table. 'Now, I'll manage better this time,'

she said to herself, and began by taking the little golden

key, and unlocking the door that led into the garden. Then

she went to work nibbling at the mushroom (she had kept a

piece of it in her pocket) till she was about a foot high:

then she walked down the little passage: and " />

 <Span Text=

" – she found herself at last in the beautiful garden,

among the bright flower-beds and the cool fountains." />

 </FormattedString>

 </Label.FormattedText>

 </Label>

 </StackLayout>

 </ScrollView>

</ContentPage>

The three Image elements simply reference the three embedded resources and are given a setting of the WidthRequest property through the implicit style:

Click here to view code image

<Image Source="{local:ImageResource MadTeaParty.Images.image113.jpg}" />

...

<Image Source="{local:ImageResource MadTeaParty.Images.image122.jpg}" />

...

<Image Source="{local:ImageResource MadTeaParty.Images.image129.jpg}" />

Here’s the first picture:

[image: Image]

It’s fairly consistent among the three platforms, even though it’s displayed in its natural width of 709 pixels on the Nexus 5, but that’s very close to the 720 pixels that a width of 240 device-independent units implies.

The difference is much greater with the second image:

[image: Image]

This is displayed in its pixel size on the Nexus 5, which corresponds to 162 device-independent units, but is displayed with a width of 240 units on the iPhone 6 and the Nokia Lumia 925.

Although the pictures don’t look bad on any of the platforms, getting them all about the same size would require starting out with larger bitmaps.

Browsing and waiting

Another feature of Image is demonstrated in the ImageBrowser program, which lets you browse the stock photos used for some of the samples in this book. As you can see in the following XAML file, an Image element shares the screen with a Label and two Button views. Notice that a PropertyChanged handler is set on the Image. You learned in Chapter 11, “The bindable infrastructure,” that the PropertyChanged handler is implemented by BindableObject and is fired whenever a bindable property changes value.

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ImageBrowser.ImageBrowserPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Image x:Name="image"

 VerticalOptions="CenterAndExpand"

 PropertyChanged="OnImagePropertyChanged" />

 <Label x:Name="filenameLabel"

 HorizontalOptions="Center" />

 <ActivityIndicator x:Name="activityIndicator" />

 <StackLayout Orientation="Horizontal">

 <Button x:Name="prevButton"

 Text="Previous"

 IsEnabled="false"

 HorizontalOptions="CenterAndExpand"

 Clicked="OnPreviousButtonClicked" />

 <Button x:Name="nextButton"

 Text="Next"

 IsEnabled="false"

 HorizontalOptions="CenterAndExpand"

 Clicked="OnNextButtonClicked" />

 </StackLayout>

 </StackLayout>

</ContentPage>

Also on this page is an ActivityIndicator. You generally use this element when a program is waiting for a long operation to complete (such as downloading a bitmap) but can’t provide any information about the progress of the operation. If your program knows what fraction of the operation has completed, you can use a ProgressBar instead. (ProgressBar is demonstrated in the next chapter.)

The ActivityIndicator has a Boolean property named IsRunning. Normally, that property is false and the ActivityIndicator is invisible. Set the property to true to make the ActivityIndicator visible. All three platforms implement an animated visual to indicate that the program is working, but it looks a little different on each platform. On iOS it’s a spinning wheel, and on Android it’s a spinning partial circle. On Windows devices, a series of dots moves across the screen.

To provide browsing access to the stock images, the ImageBrowser needs to download a JSON file with a list of all the filenames. Over the years, various versions of .NET have introduced several classes capable of downloading objects over the web. However, not all of these are available in the version of .NET that is available in a Portable Class Library that has the profile compatible with Xamarin.Forms. A class that is available is WebRequest and its descendent class HttpWebRequest.

The WebRequest.Create method returns a WebRequest method based on a URI. (The return value is actually an HttpWebRequest object.) The BeginGetResponse method requires a callback function that is called when the Stream referencing the URI is available for access. The Stream is accessible from a call to EndGetResponse and GetResponseStream.

Once the program gets access to the Stream object in the following code, it uses the DataContractJsonSerializer class together with the embedded ImageList class defined near the top of the ImageBrowserPage class to convert the JSON file to an ImageList object:

Click here to view code image

public partial class ImageBrowserPage : ContentPage

{

 [DataContract]

 class ImageList

 {

 [DataMember(Name = "photos")]

 public List<string> Photos = null;

 }

 WebRequest request;

 ImageList imageList;

 int imageListIndex = 0;

 public ImageBrowserPage()

 {

 InitializeComponent();

 // Get list of stock photos.

 Uri uri = new Uri("https://developer.xamarin.com/demo/stock.json");

 request = WebRequest.Create(uri);

 request.BeginGetResponse(WebRequestCallback, null);

 }

 void WebRequestCallback(IAsyncResult result)

 {

 Device.BeginInvokeOnMainThread(() =>

 {

 try

 {

 Stream stream = request.EndGetResponse(result).GetResponseStream();

 // Deserialize the JSON into imageList;

 var jsonSerializer = new DataContractJsonSerializer(typeof(ImageList));

 imageList = (ImageList)jsonSerializer.ReadObject(stream);

 if (imageList.Photos.Count > 0)

 FetchPhoto();

 }

 catch (Exception exc)

 {

 filenameLabel.Text = exc.Message;

 }

 });

 }

 void OnPreviousButtonClicked(object sender, EventArgs args)

 {

 imageListIndex--;

 FetchPhoto();

 }

 void OnNextButtonClicked(object sender, EventArgs args)

 {

 imageListIndex++;

 FetchPhoto();

 }

 void FetchPhoto()

 {

 // Prepare for new image.

 image.Source = null;

 string url = imageList.Photos[imageListIndex];

 // Set the filename.

 filenameLabel.Text = url.Substring(url.LastIndexOf('/') + 1);

 // Create the UriImageSource.

 UriImageSource imageSource = new UriImageSource

 {

 Uri = new Uri(url + "?Width=1080"),

 CacheValidity = TimeSpan.FromDays(30)

 };

 // Set the Image source.

 image.Source = imageSource;

 // Enable or disable buttons.

 prevButton.IsEnabled = imageListIndex > 0;

 nextButton.IsEnabled = imageListIndex < imageList.Photos.Count - 1;

 }

 void OnImagePropertyChanged(object sender, PropertyChangedEventArgs args)

 {

 if (args.PropertyName == "IsLoading")

 {

 activityIndicator.IsRunning = ((Image)sender).IsLoading;

 }

 }

}

The entire body of the WebRequestCallback method is enclosed in a lambda function that is the argument to the Device.BeginInvokeOnMainThread method. WebRequest downloads the file referenced by the URI in a secondary thread of execution. This ensures that the operation doesn’t block the program’s main thread, which is handling the user interface. The callback method also executes in this secondary thread. However, user-interface objects in a Xamarin.Forms application can be accessed only from the main thread.

The purpose of the Device.BeginInvokeOnMainThread method is to get around this problem. The argument to this method is queued to run in the program’s main thread and can safely access user-interface objects.

As you click the two buttons, calls to FetchPhoto use UriImageSource to download a new bitmap. This might take a second or so. The Image class defines a Boolean property named IsLoading that is true when Image is in the process of loading (or downloading) a bitmap. IsLoading is backed by the bindable property IsLoadingProperty. That also means that whenever IsLoading changes value, a PropertyChanged event is fired. The program uses the PropertyChanged event handler—the OnImagePropertyChanged method at the very bottom of the class—to set the IsRunning property of the ActivityIndicator to the same value as the IsLoading property of Image.

You’ll see in Chapter 16, “Data binding,” how your applications can link properties like IsLoading and IsRunning so that they maintain the same value without any explicit event handlers.

Here’s ImageBrowser in action:

[image: Image]

Some of the images have an EXIF orientation flag set, and if the particular platform ignores that flag, the image is displayed sideways.

If you run this program in landscape mode, you’ll discover that the buttons disappear. A better layout option for this program is a Grid, which is demonstrated in Chapter 17.

Streaming bitmaps

If the ImageSource class didn’t have FromUri or FromResource methods, you would still be able to access bitmaps over the web or stored as resources in the PCL. You can do both of these jobs—as well as several others—with ImageSource.FromStream or the StreamImageSource class.

The ImageSource.FromStream method is somewhat easier to use than StreamImageSource, but both are a little odd. The argument to ImageSource.FromStream is not a Stream object but a Func object (a method with no arguments) that returns a Stream object. The Stream property of StreamImageSource is likewise not a Stream object but a Func object that has a CancellationToken argument and returns a Task<Stream> object.

Accessing the streams

The BitmapStreams program contains a XAML file with two Image elements waiting for bitmaps, each of which is set in the code-behind file by using ImageSource.FromStream:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BitmapStreams.BitmapStreamsPage">

 <StackLayout>

 <Image x:Name="image1"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <Image x:Name="image2"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

The first Image is set from an embedded resource in the PCL; the second is set from a bitmap accessed over the web.

In the BlackCat program in Chapter 4, “Scrolling the stack,” you saw how to obtain a Stream object for any resource stored with a Build Action of EmbeddedResource in the PCL. You can use this same technique for accessing a bitmap stored as an embedded resource:

Click here to view code image

public partial class BitmapStreamsPage : ContentPage

{

 public BitmapStreamsPage()

 {

 InitializeComponent();

 // Load embedded resource bitmap.

 string resourceID = "BitmapStreams.Images.IMG_0722_512.jpg";

 image1.Source = ImageSource.FromStream(() =>

 {

 Assembly assembly = GetType().GetTypeInfo().Assembly;

 Stream stream = assembly.GetManifestResourceStream(resourceID);

 return stream;

 });

 ...

 }

}

The argument to ImageSource.FromStream is defined as a function that returns a Stream object, so that argument is here expressed as a lambda function. The call to the GetType method returns the type of the BitmapStreamsPage class, and GetTypeInfo provides more information about that type, including the Assembly object containing the type. That’s the BitmapStream PCL assembly, which is the assembly with the embedded resource. GetManifestResourceStream returns a Stream object, which is the return value that ImageSource.FromStream wants.

If you ever need a little help with the names of these resources, the GetManifestResourceNames returns an array of string objects with all the resource IDs in the PCL. If you can’t figure out why your GetManifestResourceStream isn’t working, first check to make sure your resources have a Build Action of EmbeddedResource, and then call GetManifestResourceNames to get all the resource IDs.

To download a bitmap over the web, you can use the same WebRequest method demonstrated earlier in the ImageBrowser program. In this program, the BeginGetResponse callback is a lambda function:

Click here to view code image

public partial class BitmapStreamsPage : ContentPage

{

 public BitmapStreamsPage()

 {

 ...

 // Load web bitmap.

 Uri uri = new Uri("https://developer.xamarin.com/demo/IMG_0925.JPG?width=512");

 WebRequest request = WebRequest.Create (uri);

 request.BeginGetResponse((IAsyncResult arg) =>

 {

 Stream stream = request.EndGetResponse(arg).GetResponseStream();

 if (Device.OS == TargetPlatform.WinPhone ||

 Device.OS == TargetPlatform.Windows)

 {

 MemoryStream memStream = new MemoryStream();

 stream.CopyTo(memStream);

 memStream.Seek(0, SeekOrigin.Begin);

 stream = memStream;

 }

 ImageSource imageSource = ImageSource.FromStream(() => stream);

 Device.BeginInvokeOnMainThread(() => image2.Source = imageSource);

 }, null);

 }

}

The BeginGetResponse callback also contains two more embedded lambda functions! The first line of the callback obtains the Stream object for the bitmap. This Stream object is not quite suitable for Windows Runtime so the contents are copied to a MemoryStream.

The next statement uses a short lambda function as the argument to ImageSource.FromStream to define a function that returns that stream. The last line of the BeginGetResponse callback is a call to Device.BeginInvokeOnMainThread to set the ImageSource object to the Source property of the Image.

[image: Image]

It might seem as though you have more control over the downloading of images by using WebRequest and ImageSource.FromStream than with ImageSource.FromUri, but the ImageSource.FromUri method has a big advantage: it caches the downloaded bitmaps in a storage area private to the application. As you’ve seen, you can turn off the caching, but if you’re using ImageSource.FromStream instead of ImageSource.FromUri, you might find the need to cache the images, and that would be a much bigger job.

Generating bitmaps at run time

All three platforms support the BMP file format, which dates back to the very beginning of Microsoft Windows. Despite its ancient heritage, the BMP file format is now fairly standardized with more extensive header information.

Although there are some BMP options that allow some rudimentary compression, most BMP files are uncompressed. This lack of compression is usually regarded as a disadvantage of the BMP file format, but in some cases it’s not a disadvantage at all. For example, if you want to generate a bitmap algorithmically at run time, it’s much easier to generate an uncompressed bitmap instead of one of the compressed file formats. (Indeed, even if you had a library function to create a JPEG or PNG file, you’d apply that function to the uncompressed pixel data.)

You can create a bitmap algorithmically at run time by filling a MemoryStream with the BMP file headers and pixel data and then passing that MemoryStream to the ImageSource.FromStream method. The BmpMaker class in the Xamarin.FormsBook.Toolkit library demonstrates this. It creates a BMP in memory using a 32-bit pixel format—8 bits each for red, green, blue, and alpha (opacity) channels. The BmpMaker class was coded with performance in mind, in hopes that it might be used for animation. Maybe someday it will be, but in this chapter the only demonstration is a simple color gradient.

The constructor creates a byte array named buffer that stores the entire BMP file beginning with the header information and followed by the pixel bits. The constructor then uses a MemoryStream for writing the header information to the beginning of this buffer:

Click here to view code image

public class BmpMaker

{

 const int headerSize = 54;

 readonly byte[] buffer;

 public BmpMaker(int width, int height)

 {

 Width = width;

 Height = height;

 int numPixels = Width * Height;

 int numPixelBytes = 4 * numPixels;

 int fileSize = headerSize + numPixelBytes;

 buffer = new byte[fileSize];

 // Write headers in MemoryStream and hence the buffer.

 using (MemoryStream memoryStream = new MemoryStream(buffer))

 {

 using (BinaryWriter writer = new BinaryWriter(memoryStream, Encoding.UTF8))

 {

 // Construct BMP header (14 bytes).

 writer.Write(new char[] { 'B', 'M' }); // Signature

 writer.Write(fileSize); // File size

 writer.Write((short)0); // Reserved

 writer.Write((short)0); // Reserved

 writer.Write(headerSize); // Offset to pixels

 // Construct BitmapInfoHeader (40 bytes).

 writer.Write(40); // Header size

 writer.Write(Width); // Pixel width

 writer.Write(Height); // Pixel height

 writer.Write((short)1); // Planes

 writer.Write((short)32); // Bits per pixel

 writer.Write(0); // Compression

 writer.Write(numPixelBytes); // Image size in bytes

 writer.Write(0); // X pixels per meter

 writer.Write(0); // Y pixels per meter

 writer.Write(0); // Number colors in color table

 writer.Write(0); // Important color count

 }

 }

 }

 public int Width

 {

 private set;

 get;

 }

 public int Height

 {

 private set;

 get;

 }

 public void SetPixel(int row, int col, Color color)

 {

 SetPixel(row, col, (int)(255 * color.R),

 (int)(255 * color.G),

 (int)(255 * color.B),

 (int)(255 * color.A));

 }

 public void SetPixel(int row, int col, int r, int g, int b, int a = 255)

 {

 int index = (row * Width + col) * 4 + headerSize;

 buffer[index + 0] = (byte)b;

 buffer[index + 1] = (byte)g;

 buffer[index + 2] = (byte)r;

 buffer[index + 3] = (byte)a;

 }

 public ImageSource Generate()

 {

 // Create MemoryStream from buffer with bitmap.

 MemoryStream memoryStream = new MemoryStream(buffer);

 // Convert to StreamImageSource.

 ImageSource imageSource = ImageSource.FromStream(() =>

 {

 return memoryStream;

 });

 return imageSource;

 }

}

After creating a BmpMaker object, a program can then call one of the two SetPixel methods to set a color at a particular row and column. When making very many calls, the SetPixel call that uses a Color value is significantly slower than the one that accepts explicit red, green, and blue values.

The last step is to call the Generate method. This method instantiates another MemoryStream object based on the buffer array and uses it to create a FileImageSource object. You can call Generate multiple times after setting new pixel data. The method creates a new MemoryStream each time because ImageSource.FromStream closes the Stream object when it’s finished with it.

The DiyGradientBitmap program—“DIY” stands for “Do It Yourself”—demonstrates how to use BmpMaker to make a bitmap with a simple gradient and display it to fill the page. The XAML file includes the Image element:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="DiyGradientBitmap.DiyGradientBitmapPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <Image x:Name="image"

 Aspect="Fill" />

</ContentPage>

The code-behind file instantiates a BmpMaker and loops through the rows and columns of the bitmap to create a gradient that ranges from red at the top to blue at the bottom:

Click here to view code image

public partial class DiyGradientBitmapPage : ContentPage

{

 public DiyGradientBitmapPage()

 {

 InitializeComponent();

 int rows = 128;

 int cols = 64;

 BmpMaker bmpMaker = new BmpMaker(cols, rows);

 for (int row = 0; row < rows; row++)

 for (int col = 0; col < cols; col++)

 {

 bmpMaker.SetPixel(row, col, 2 * row, 0, 2 * (128 - row));

 }

 ImageSource imageSource = bmpMaker.Generate();

 image.Source = imageSource;

 }

}

Here’s the result:

[image: Image]

Now use your imagination and see what you can do with BmpMaker.

Platform-specific bitmaps

As you’ve seen, you can load bitmaps over the web or from the shared PCL project. You can also load bitmaps stored as resources in the individual platform projects. The tools for this job are the ImageSource.FromFile static method and the corresponding FileImageSource class.

You’ll probably use this facility mostly for bitmaps connected with user-interface elements. The Icon property in MenuItem and ToolBarItem is of type FileImageSource. The Image property in Button is also of type FileImageSource.

Two other uses of FileImageSource won’t be discussed in this chapter: the Page class defines an Icon property of type FileImageSource and a BackgroundImage property of type string, but which is assumed to be the name of a bitmap stored in the platform project.

The storage of bitmaps in the individual platform projects allows a high level of platform specificity. You might think you can get the same degree of platform specificity by storing bitmaps for each platform in the PCL project and using the Device.OnPlatform method or the OnPlatform class to select them. However, as you’ll soon discover, all three platforms have provisions for storing bitmaps of different pixel resolutions and then automatically accessing the optimum one. You can take advantage of this valuable feature only if the individual platforms themselves load the bitmaps, and this is the case only when you use ImageSource.FromFile and FileImageSource.

The platform projects in a newly created Xamarin.Forms solution already contain several bitmaps. In the iOS project, you’ll find these in the Resources folder. In the Android project, they’re in subfolders of the Resources folder. In the various Windows projects, they’re in the Assets folder and subfolders. These bitmaps are application icons and splash screens, and you’ll want to replace them when you prepare to bring an application to market.

Let’s write a small project called PlatformBitmaps that accesses an application icon from each platform project and displays the rendered size of the Image element. If you’re using FileImageSource to load the bitmap (as this program does), you need to set the File property to a string with the bitmap’s filename. Almost always, you’ll be using Device.OnPlatform in code or OnPlatform in XAML to specify the three filenames:

Click here to view code image

public class PlatformBitmapsPage : ContentPage

{

 public PlatformBitmapsPage()

 {

 Image image = new Image

 {

 Source = new FileImageSource

 {

 File = Device.OnPlatform(iOS: "Icon-Small-40.png",

 Android: "icon.png",

 WinPhone: "Assets/StoreLogo.png")

 },

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 Label label = new Label

 {

 FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label)),

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 image.SizeChanged += (sender, args) =>

 {

 label.Text = String.Format("Rendered size = {0} x {1}",

 image.Width, image.Height);

 };

 Content = new StackLayout

 {

 Children =

 {

 image,

 label

 }

 };

 }

}

When you access a bitmap stored in the Resources folder of the iOS project or the Resources folder (or subfolders) of the Android project, do not preface the filename with a folder name. These folders are the standard repositories for bitmaps on these platforms. But bitmaps can be anywhere in the Windows or Windows Phone project (including the project root), so the folder name (if any) is required.

In all three cases, the default icon is the famous hexagonal Xamarin logo (fondly known as the Xamagon), but each platform has different conventions for its icon size, so the rendered sizes are different:

[image: Image]

If you begin exploring the icon bitmaps in the iOS and Android projects, you might be a little confused: there seem to be multiple bitmaps with the same names (or similar names) in the iOS and Android projects.

It’s time to dive deeper into the subject of bitmap resolution.

Bitmap resolutions

The iOS bitmap filename specified in PlatformBitmaps is Icon-Small-40.png, but if you look in the Resources folder of the iOS project, you’ll see three files with variations of that name. They all have different sizes:

• Icon-Small-40.png — 40 pixels square

• Icon-Small-40@2x.png — 80 pixels square

• Icon-Small-40@3x.png — 120 pixels square

As you discovered earlier in this chapter, when an Image is a child of a StackLayout, iOS displays the bitmap in its pixel size with a one-to-one mapping between the pixels of the bitmap and the pixels of the screen. This is the optimum display of a bitmap.

However, on the iPhone 6 simulator used in the screenshot, the Image has a rendered size of 40 device-independent units. On the iPhone 6 there are two pixels per device-independent unit, which means that the actual bitmap being displayed in that screenshot is not Icon-Small-40.png but Icon-Small-40@2x.png, which is two times 40, or 80 pixels square.

If you instead run the program on the iPhone 6 Plus—which has a device-independent unit equal to three pixels—you’ll again see a rendered size of 40 pixels, which means that the Icon-Small-40@3x.png bitmap is displayed. Now try it on the iPad 2 simulator. The iPad 2 has a screen size of just 768 × 1024, and device-independent units are the same as pixels. Now the Icon-Small-40.png bitmap is displayed, and the rendered size is still 40 pixels.

This is what you want. You want to be able to control the rendered size of bitmaps in device-independent units because that’s how you can achieve perceptibly similar bitmap sizes on different devices and platforms. When you specify the Icon-Small-40.png bitmap, you want that bitmap to be rendered as 40 device-independent units—or about one-quarter inch—on all iOS devices. But if the program is running on an Apple Retina device, you don’t want a 40-pixel-square bitmap stretched to be 40 device-independent units. For maximum visual fidelity, you want a higher resolution bitmap displayed, with a one-to-one mapping of bitmap pixels to screen pixels.

If you look in the Android Resources directory, you’ll find four different versions of a bitmap named icon.png. These are stored in different subfolders of Resources:

• drawable/icon.png — 72 pixels square

• drawable-hdpi/icon.png — 72 pixels square

• drawable-xdpi/icon.png — 96 pixels square

• drawable-xxdpi/icon.png — 144 pixels square

Regardless of the Android device, the icon is rendered with a size of 48 device-independent units. On the Nexus 5 used in the screenshot, there are three pixels to the device-independent unit, which means that the bitmap actually displayed on that screen is the one in the drawable-xxdpi folder, which is 144 pixels square.

What’s nice about both iOS and Android is that you only need to supply bitmaps of various sizes—and give them the correct names or store them in the correct folders—and the operating system chooses the optimum image for the particular resolution of the device.

The Windows Runtime platform has a similar facility. In the UWP project you’ll see filenames that include scale-200; for example, Square150x150Logo.scale-200.png. The number after the word scale is a percentage, and although the filename seems to indicate that this is a 150×150 bitmap, the image is actually twice as large: 300×300. In the Windows project you’ll see filenames that include scale-100 and in the WinPhone project you’ll see scale-240.

However, you’ve seen that Xamarin.Forms on the Windows Runtime displays bitmaps in their device-independent sizes, and you’ll still need to treat the Windows platforms a little differently. But on all three platforms you can control the size of bitmaps in device-independent units.

When creating your own platform-specific images, follow the guidelines in the next three sections.

Device-independent bitmaps for iOS

The iOS naming scheme for bitmaps involves a suffix on the filename. The operating system fetches a particular bitmap with the underlying filename based on the approximate pixel resolution of the device:

• No suffix for 160 DPI devices (1 pixel to the device-independent unit)

• @2x suffix for 320 DPI devices (2 pixels to the DIU)

• @3x suffix: 480 DPI devices (3 pixels to the DIU)

For example, suppose you want a bitmap named MyImage.jpg to show up as about one inch square on the screen. You should supply three versions of this bitmap:

• MyImage.jpg — 160 pixels square

• MyImage@2x.jpg — 320 pixels square

• MyImage@3x.jpg — 480 pixels square

The bitmap will render as 160 device-independent units. For rendered sizes smaller than one inch, decrease the pixels proportionally.

When creating these bitmaps, start with the largest one. Then you can use any bitmap-editing utility to reduce the pixel size. For some images, you might want to fine-tune or completely redraw the smaller versions.

As you might have noticed when examining the various icon files that the Xamarin.Forms template includes with the iOS project, not every bitmap comes in all three resolutions. If iOS can’t find a bitmap with the particular suffix it wants, it will fall back and use one of the others, scaling the bitmap up or down in the process.

Device-independent bitmaps for Android

For Android, bitmaps are stored in various subfolders of Resources that correspond to a pixel resolution of the screen. Android defines six different directory names for six different levels of device resolution:

• drawable-ldpi (low DPI) for 120 DPI devices (0.75 pixels to the DIU)

• drawable-mdpi (medium) for 160 DPI devices (1 pixel to the DIU)

• drawable-hdpi (high) for 240 DPI devices (1.5 pixels to the DIU))

• drawable-xhdpi (extra high) for 320 DPI devices (2 pixels to the DIU)

• drawable-xxhdpi (extra extra high) for 480 DPI devices (3 pixels to the DIU)

• drawable-xxxhdpi (three extra highs) for 640 DPI devices (4 pixels to the DIU)

If you want a bitmap named MyImage.jpg to render as a one-inch square on the screen, you can supply up to six versions of this bitmap using the same name in all these directories. The size of this one-inch-square bitmap in pixels is equal to the DPI associated with that directory:

• drawable-ldpi/MyImage.jpg — 120 pixels square

• drawable-mdpi/MyImage.jpg — 160 pixels square

• drawable-hdpi/MyImage.jpg — 240 pixels square

• drawable-xhdpi/MyImage.jpg — 320 pixels square

• drawable-xxdpi/MyImage.jpg — 480 pixels square

• drawable-xxxhdpi/MyImage.jpg — 640 pixels square

The bitmap will render as 160 device-independent units.

You are not required to create bitmaps for all six resolutions. The Android project created by the Xamarin.Forms template includes only drawable-hdpi, drawable-xhdpi, and drawable-xxdpi, as well as an unnecessary drawable folder with no suffix. These encompass the most common devices. If the Android operating system does not find a bitmap of the desired resolution, it will fall back to a size that is available and scale it.

Device-independent bitmaps for Windows Runtime platforms

The Windows Runtime supports a bitmap naming scheme that lets you embed a scaling factor of pixels per device-independent unit expressed as a percentage. For example, for a one-inch-square bitmap targeted to a device that has two pixels to the unit, use the name:

• MyImage.scale-200.jpg — 320 pixels square

The Windows documentation is unclear about the actual percentages you can use. When building a program, sometimes you’ll see error messages in the Output window regarding percentages that are not supported on the particular platform.

However, given that Xamarin.Forms displays Windows Runtime bitmaps in their device-independent sizes, this facility is of limited use on these devices.

Let’s look at a program that actually does supply custom bitmaps of various sizes for the three platforms. These bitmaps are intended to be rendered about one inch square, which is approximately half the width of the phone’s screen in portrait mode.

This ImageTap program creates a pair of rudimentary, tappable button-like objects that display not text but a bitmap. The two buttons that ImageTap creates might substitute for traditional OK and Cancel buttons, but perhaps you want to use faces from famous paintings for the buttons. Perhaps you want the OK button to display the face of Botticelli’s Venus and the Cancel button to display the distressed man in Edvard Munch’s The Scream.

In the sample code for this chapter is a directory named Images that contains such images, named Venus_xxx.jpg and Scream_xxx.jpg, where the xxx indicates the pixel size. Each image is in eight different sizes: 60, 80, 120, 160, 240, 320, 480, and 640 pixels square. In addition, some of the files have names of Venus_xxx_id.jpg and Scream_xxx_id.jpg. These versions have the actual pixel size displayed in the lower-right corner of the image so that we can see on the screen exactly what bitmap the operating system has selected.

To avoid confusion, the bitmaps with the original names were added to the ImageTap project folders first, and then they were renamed within Visual Studio.

In the Resources folder of the iOS project, the following files were renamed:

• Venus_160_id.jpg became Venus.jpg

• Venus_320_id.jpg because Venus@2x.jpg

• Venus_480_id.jpg became Venus@3x.jpg

This was done similarly for the Scream.jpg bitmaps.

In the various subfolders of the Android project Resources folder, the following files were renamed:

• Venus_160_id.jpg became drawable-mdpi/Venus.jpg

• Venus_240_id.jpg became drawable-hdpi/Venus.jpg

• Venus_320_id.jpg became drawable-xhdpi/Venus.jpg

• Venus_480_id.jpg became drawable_xxhdpi/Venus.jpg

And similarly for the Scream.jpg bitmaps.

For the Windows Phone 8.1 project, the Venus_160_id.jpg and Scream_160_id.jpg files were copied to an Images folder and renamed Venus.jpg and Scream.jpg.

The Windows 8.1 project creates an executable that runs not on phones but on tablets and desktops. These devices have traditionally assumed a resolution of 96 units to the inch, so the Venus_100_id.jpg and Scream_100_id.jpg files were copied to an Images folder and renamed Venus.jpg and Scream.jpg.

The UWP project targets all the form factors, so several bitmaps were copied to an Images folder and renamed so that the 160-pixel square bitmaps would be used on phones, and the 100-pixel square bitmaps would be used on tablets and desktop screens:

• Venus_160_id.jpg became Venus.scale-200.jpg

• Venus_100_id.jpg became Venus.scale-100.jpg

And similarly for the Scream.jpg bitmaps.

Each of the projects requires a different Build Action for these bitmaps. This should be set automatically when you add the files to the projects, but you definitely want to double-check to make sure the Build Action is set correctly:

• iOS: BundleResource

• Android: AndroidResource

• Windows Runtime: Content

You don’t have to memorize these. When in doubt, just check the Build Action for the bitmaps included by the Xamarin.Forms solution template in the platform projects.

The XAML file for the ImageTap program puts each of the two Image elements on a ContentView that is colored white from an implicit style. This white ContentView is entirely covered by the Image, but (as you’ll see) it comes into play when the program flashes the picture to signal that it’s been tapped.

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ImageTap.ImageTapPage">

 <StackLayout>

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="ContentView">

 <Setter Property="BackgroundColor" Value="White" />

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <ContentView>

 <Image>

 <Image.Source>

 <OnPlatform x:TypeArguments="ImageSource"

 iOS="Venus.jpg"

 Android="Venus.jpg"

 WinPhone="Images/Venus.jpg" />

 </Image.Source>

 <Image.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnImageTapped" />

 </Image.GestureRecognizers>

 </Image>

 </ContentView>

 <ContentView>

 <Image>

 <Image.Source>

 <OnPlatform x:TypeArguments="ImageSource"

 iOS="Scream.jpg"

 Android="Scream.jpg"

 WinPhone="Images/Scream.jpg" />

 </Image.Source>

 <Image.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnImageTapped" />

 </Image.GestureRecognizers>

 </Image>

 </ContentView>

 <Label x:Name="label"

 FontSize="Medium"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

The XAML file uses OnPlatform to select the filenames of the platform resources. Notice that the x:TypeArguments attribute of OnPlatform is set to ImageSource because this type must exactly match the type of the target property, which is the Source property of Image. ImageSource defines an implicit conversion of string to itself, so specifying the filenames is sufficient. (The logic for this implicit conversion checks first whether the string has a URI prefix. If not, it assumes that the string is the name of an embedded file in the platform project.)

If you want to avoid using OnPlatform entirely in programs that use platform bitmaps, you can put the Windows bitmaps in the root directory of the project rather than in a folder.

Tapping one of these buttons does two things: The Tapped handler sets the Opacity property of the Image to 0.75, which results in partially revealing the white ContentView background and simulating a flash. A timer restores the Opacity to the default value of one-tenth of a second later. The Tapped handler also displays the rendered size of the Image element:

Click here to view code image

public partial class ImageTapPage : ContentPage

{

 public ImageTapPage()

 {

 InitializeComponent();

 }

 void OnImageTapped(object sender, EventArgs args)

 {

 Image image = (Image)sender;

 image.Opacity = 0.75;

 Device.StartTimer(TimeSpan.FromMilliseconds(100), () =>

 {

 image.Opacity = 1;

 return false;

 });

 label.Text = String.Format("Rendered Image is {0} x {1}",

 image.Width, image.Height);

 }

}

That rendered size compared with the pixel sizes on the bitmaps confirms that the three platforms have indeed selected the optimum bitmap:

[image: Image]

These buttons occupy roughly half the width of the screen on all three platforms. This sizing is based entirely on the size of the bitmaps themselves, without any additional sizing information in the code or markup.

Toolbars and their icons

One of the primary uses of bitmaps in the user interface is the Xamarin.Forms toolbar, which appears at the top of the page on iOS and Android devices and at the bottom of the page on Windows Phone devices. Toolbar items are tappable and fire Clicked events much like Button.

There is no class for toolbar itself. Instead, you add objects of type ToolbarItem to the ToolbarItems collection property defined by Page.

The ToolbarItem class does not derive from View like Label and Button. It instead derives from Element by way of MenuItemBase and MenuItem. (MenuItem is used only in connection with the TableView and won’t be discussed until Chapter 19.) To define the characteristics of a toolbar item, use the following properties:

• Text — the text that might appear (depending on the platform and Order)

• Icon — a FileImageSource object referencing a bitmap from the platform project

• Order — a member of the ToolbarItemOrder enumeration: Default, Primary, or Secondary

There is also a Name property, but it just duplicates the Text property and should be considered obsolete.

The Order property governs whether the ToolbarItem appears as an image (Primary) or text (Secondary). The Windows Phone and Windows 10 Mobile platforms are limited to four Primary items, and both the iPhone and Android devices start getting crowded with more than that, so that’s a reasonable limitation. Additional Secondary items are text only. On the iPhone they appear underneath the Primary items; on Android and Windows Phone they aren’t seen on the screen until the user taps a vertical or horizontal ellipsis.

The Icon property is crucial for Primary items, and the Text property is crucial for Secondary items, but the Windows Runtime also uses Text to display a short text hint underneath the icons for Primary items.

When the ToolbarItem is tapped, it fires a Clicked event. ToolbarItem also has Command and CommandParameter properties like the Button, but these are for data-binding purposes and will be demonstrated in a later chapter.

The ToolbarItems collection defined by Page is of type IList<ToolbarItem>. Once you add a ToolbarItem to this collection, the ToolbarItem properties cannot be changed. The property settings are instead used internally to construct platform-specific objects.

You can add ToolbarItem objects to a ContentPage in Windows Phone, but iOS and Android restrict toolbars to a NavigationPage or to a page navigated to from a NavigationPage. Fortunately, this requirement doesn’t mean that the whole topic of page navigation needs to be discussed before you can use the toolbar. Instantiating a NavigationPage instead of a ContentPage simply involves calling the NavigationPage constructor with the newly created ContentPage object in the App class.

The ToolbarDemo program reproduces the toolbar that you saw on the screenshots in Chapter 1. The ToolbarDemoPage derives from ContentPage, but the App class passes the ToolbarDemoPage object to a NavigationPage constructor:

Click here to view code image

public class App : Application

{

 public App()

 {

 MainPage = new NavigationPage(new ToolbarDemoPage());

 }

 ...

}

That’s all that’s necessary to get the toolbar to work on iOS and Android, and it has some other implications as well. A title that you can set with the Title property of Page is displayed at the top of the iOS and Android screens, and the application icon is also displayed on the Android screen. Another result of using NavigationPage is that you no longer need to set some padding at the top of the iOS screen. The status bar is now out of the range of the application’s page.

Perhaps the most difficult aspect of using ToolbarItem is assembling the bitmap images for the Icon property. Each platform has different requirements for the color composition and size of these icons, and each platform has somewhat different conventions for the imagery. The standard icon for Share, for example, is different on all three platforms.

For these reasons, it makes sense for each of the platform projects to have its own collection of toolbar icons, and that’s why Icon is of type FileImageSource.

Let’s begin with the two platforms that provide collections of icons suitable for ToolbarItem.

Icons for Android

The Android website has a downloadable collection of toolbar icons at this URL:

http://developer.android.com/design/downloads

Download the ZIP file identified as Action Bar Icon Pack.

The unzipped contents are organized into two main directories: Core_Icons (23 images) and Action Bar Icons (144 images). These are all PNG files, and the Action Bar Icons come in four different sizes, indicated by the directory name:

• drawable-mdpi (medium DPI) — 32 pixels square

• drawable-hdpi (high DPI) — 48 pixels square

• drawable-xhdpi (extra high DPI) — 64 pixels square

• drawable-xxhdpi (extra extra high DPI) — 96 pixels square

These directory names are the same as the Resources folders in your Android project and imply that the toolbar icons render at 32 device-independent units, or about one-fifth of an inch.

The Core_Icons folder also arranges its icons into four directories with the same four sizes, but these directories are named mdpi, hdpi, xdpi, and unscaled.

The Action Bar Icons folder has an additional directory organization using the names holo_dark and holo_light:

• holo_dark—white foreground image on a transparent background

• holo_light—black foreground image on a transparent background

The word “holo” stands for “holographic” and refers to the name Android uses for its color themes. Although the holo_light icons are much easier to see in Finder and Windows Explorer, for most purposes (and especially for toolbar items) you should use the holo_dark icons. (Of course, if you know how to change your application theme in the AndroidManifest.xml file, then you probably also know to use the other icon collection.)

The Core_Icons folder contains only icons with white foregrounds on a transparent background.

For the ToolbarDemo program, three icons were chosen from the holo_dark directory in all four resolutions. These were copied to the appropriate subfolders of the Resources directory in the Android project:

• From the 01_core_edit directory, the files named ic_action_edit.png

• From the 01_core_search directory, the files named ic_action_search.png

• From the 01_core_refresh directory, the files named ic_action_refresh.png

Check the properties of these PNG files. They must have a Build Action of AndroidResource.

Icons for Windows Runtime platforms

If you have a version of Visual Studio installed for Windows Phone 8, you can find a collection of PNG files suitable for ToolbarItem in the following directory on your hard drive:

C:\Program Files (x86)\Microsoft SDKs\Windows Phone\v8.0\Icons

You can use these for all the Windows Runtime platforms.

There are two subdirectories, Dark and Light, each containing the same 37 images. As with Android, the icons in the Dark directory have white foregrounds on transparent backgrounds, and the icons in the Light directory have black foregrounds on transparent backgrounds. You should use the ones in the Dark directory for Windows Phone 8.1 and the Light directory for Windows 10 Mobile.

The images are a uniform 76 pixels square but have been designed to appear inside a circle. Indeed, one of the files is named basecircle.png, which can serve as a guide if you’d like to design your own, so there are really only 36 usable icons in the collection and a couple of them are the same.

Generally, in a Windows Runtime project, files such as these are stored in the Assets folder (which already exists in the project) or a folder named Images. The following bitmaps were added to an Images folder in all three Windows platforms:

• edit.png

• feature.search.png

• refresh.png

For the Windows 8.1 platform (but not the Windows Phone 8.1 platform), icons are needed for all the toolbar items, so the following bitmaps were added to the Images folder of that project:

• Icon1F435.png

• Icon1F440.png

• Icon1F52D.png

These were generated in a Windows program from the Segoe UI Symbol font, which supports emoji characters. The five-digit hexadecimal number in the filename is the Unicode ID for those characters.

When you add icons to a Windows Runtime project, make sure the Build Action is Content.

Icons for iOS devices

This is the most problematic platform for ToolbarItem. If you’re programming directly for the native iOS API, a bunch of constants let you select an image for UIBarButtonItem, which is the underlying iOS implementation of ToolbarItem. But for the Xamarin.Forms ToolbarItem, you’ll need to obtain icons from another source—perhaps licensing a collection such as the one at glyphish.com—or make your own.

For best results, you should supply two or three image files for each toolbar item in the Resources folder. An image with a filename such as image.png should be 20 pixels square, while the same image should also be supplied in a 40-pixel-square dimension with the name image@2x.png and as a 60-pixel-square bitmap named image@3x.png.

Here’s a collection of free, unrestricted-use icons used for the program in Chapter 1 and for the ToolbarDemo program in this chapter:

http://www.smashingmagazine.com/2010/07/14/gcons-free-all-purpose-icons-for-designers-and-developers-100-icons-psd/

However, they are uniformly 32 pixels square, and some basic ones are missing. Regardless, the following three bitmaps were copied to the Resources folder in the iOS project under the assumption that they will be properly scaled:

• edit.png

• search.png

• reload.png

Another option is to use Android icons from the holo_light directory and scale the largest image for the various iOS sizes.

For toolbar icons in an iOS project, the Build Action must be BundleResource.

Here’s the ToolbarDemo XAML file showing the various ToolbarItem objects added to the ToolbarItems collection of the page. The x:TypeArguments attribute for OnPlatform must be FileImageSource in this case because that’s the type of the Icon property of ToolbarItem. The three items flagged as Secondary have only the Text property set and not the Icon property.

The root element has a Title property set on the page. This is displayed on the iOS and Android screens when the page is instantiated as a NavigationPage (or navigated to from a NavigationPage):

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ToolbarDemo.ToolbarDemoPage"

 Title="Toolbar Demo">

 <Label x:Name="label"

 FontSize="Medium"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 <ContentPage.ToolbarItems>

 <ToolbarItem Text="edit"

 Order="Primary"

 Clicked="OnToolbarItemClicked">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="edit.png"

 Android="ic_action_edit.png"

 WinPhone="Images/edit.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 <ToolbarItem Text="search"

 Order="Primary"

 Clicked="OnToolbarItemClicked">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="search.png"

 Android="ic_action_search.png"

 WinPhone="Images/feature.search.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 <ToolbarItem Text="refresh"

 Order="Primary"

 Clicked="OnToolbarItemClicked">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="reload.png"

 Android="ic_action_refresh.png"

 WinPhone="Images/refresh.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 <ToolbarItem Text="explore"

 Order="Secondary"

 Clicked="OnToolbarItemClicked">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 WinPhone="Images/Icon1F52D.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 <ToolbarItem Text="discover"

 Order="Secondary"

 Clicked="OnToolbarItemClicked">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 WinPhone="Images/Icon1F440.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 <ToolbarItem Text="evolve"

 Order="Secondary"

 Clicked="OnToolbarItemClicked">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 WinPhone="Images/Icon1F435.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 </ContentPage.ToolbarItems>

</ContentPage>

Although the OnPlatform element implies that the secondary icons exist for all the Windows Runtime platforms, they do not, but nothing bad happens if the particular icon file is missing from the project.

All the Clicked events have the same handler assigned. You can use unique handlers for the items, of course. This handler just displays the text of the ToolbarItem using the centered Label:

Click here to view code image

public partial class ToolbarDemoPage : ContentPage

{

 public ToolbarDemoPage()

 {

 InitializeComponent();

 }

 void OnToolbarItemClicked(object sender, EventArgs args)

 {

 ToolbarItem toolbarItem = (ToolbarItem)sender;

 label.Text = "ToolbarItem '" + toolbarItem.Text + "' clicked";

 }

}

The screenshots show the icon toolbar items (and for iOS, the text items) and the centered Label with the most recently clicked item:

[image: Image]

If you tap the ellipsis at the top of the Android screen or the ellipsis at the lower-right corner of the Windows 10 Mobile screen, the text items are displayed and, in addition, the text items associated with the icons are also displayed on Windows 10 Mobile:

[image: Image]

Regardless of the platform, the toolbar is the standard way to add common commands to a phone application.

Button images

Button defines an Image property of type FileImageSource that you can use to supply a small supplemental image that is displayed to the left of the button text. This feature is not intended for an image-only button; if that’s what you want, the ImageTap program in this chapter is a good starting point.

You want the images to be about one-fifth inch in size. That means you want them to render at 32 device-independent units and to show up against the background of the Button. For iOS and the UWP, that means a black image against a white or transparent background. For Android, Windows 8.1, and Windows Phone 8.1, you’ll want a white image against a transparent background.

All the bitmaps in the ButtonImage project are from the Action Bar directory of the Android Design Icons collection and the 03_rating_good and 03_rating_bad subdirectories. These are “thumbs up” and “thumbs down” images.

The iOS images are from the holo_light directory (black images on transparent backgrounds) with the following filename conversions:

• drawable-mdpi/ic_action_good.png not renamed

• drawable-xhdpi/ic_action_good.png renamed to ic_action_good@2x.png

And similarly for ic_action_bad.png.

The Android images are from the holo_dark directory (white images on transparent backgrounds) and include all four sizes from the subdirectories drawable-mdpi (32 pixels square), drawable-hdpi (48 pixels), drawable-xhdpi (64 pixels), and drawable-xxhdpi (96 pixels square).

The images for the various Windows Runtime projects are all uniformly the 32-pixel bitmaps from the drawable-mdpi directories.

Here’s the XAML file that sets the Icon property for two Button elements:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ButtonImage.ButtonImagePage">

 <StackLayout VerticalOptions="Center"

 Spacing="50">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Button">

 <Setter Property="HorizontalOptions" Value="Center" />

 </Setter.Value>

 </Setter>

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Button Text="Oh Yeah">

 <Button.Image>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="ic_action_good.png"

 Android="ic_action_good.png"

 WinPhone="Images/ic_action_good.png" />

 </Button.Image>

 </Button>

 <Button Text="No Way">

 <Button.Image>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="ic_action_bad.png"

 Android="ic_action_bad.png"

 WinPhone="Images/ic_action_bad.png" />

 </Button.Image>

 </Button>

 </StackLayout>

</ContentPage>

And here they are:

[image: Image]

It’s not much, but the bitmap adds a little panache to the normally text-only Button.

Another significant use for small bitmaps is the context menu available for items in the TableView. But a prerequisite for that is a deep exploration of the various views that contribute to the interactive interface of Xamarin.Forms. That’s coming up in Chapter 15.

But first let’s look at an alternative to StackLayout that lets you position child views in a completely flexible manner.

Chapter 14. Absolute layout

In Xamarin.Forms, the concept of layout encompasses all the ways that various views can be assembled on the screen. Here’s the class hierarchy showing all the classes that derive from Layout:

Click here to view code image

System.Object

 BindableObject

 Element

 VisualElement

 View

 Layout

 ContentView

 Frame

 ScrollView

 Layout<T>

 AbsoluteLayout

 Grid

 RelativeLayout

 StackLayout

You’ve already seen ContentView, Frame, and ScrollView (all of which have a Content property that you can set to one child), and you’ve seen StackLayout, which inherits a Children property from Layout<T> and displays its children in a vertical or horizontal stack. The Grid and RelativeLayout implement somewhat complex layout models and are explored in future chapters. AbsoluteLayout is the subject of this chapter.

At first, the AbsoluteLayout class seems to implement a rather primitive layout model—one that harks back to the not-so-good old days of graphical user interfaces when programmers were required to individually size and position every element on the screen. Yet, you’ll discover that AbsoluteLayout also incorporates a proportional positioning and sizing feature that helps brings this ancient layout model into the modern age.

With AbsoluteLayout, many of the rules about layout that you’ve learned so far no longer apply: the HorizontalOptions and VerticalOptions properties that are so important when a View is the child of a ContentPage or StackLayout have absolutely no effect when a View is a child of an AbsoluteLayout. A program must instead assign to each child of an AbsoluteLayout a specific location in device-independent coordinates. The child can also be assigned a specific size or allowed to size itself.

You can use AbsoluteLayout either in code or in XAML. Either way, you’ll encounter a feature you haven’t seen yet that is another part of the support provided by BindableObject and BindableProperty. This new feature is the attached bindable property. This is a special type of bindable property that is defined by one class (in this case the AbsoluteLayout) but which is set on other objects (the children of the AbsoluteLayout).

AbsoluteLayout in code

You can add a child view to the Children collection of an AbsoluteLayout the same way as with StackLayout:

Click here to view code image

absoluteLayout.Children.Add(child);

However, you also have other options. The AbsoluteLayout class redefines its Children property to be of type AbsoluteLayout.IAbsoluteList<View>, which includes two additional Add methods that allow you to specify the position of the child relative to the upper-left corner of the AbsoluteLayout. You can optionally specify the child’s size.

To specify both the position and size, you use a Rectangle value. Rectangle is a structure, and you can create a Rectangle value with a constructor that accepts Point and Size values:

Click here to view code image

Point point = new Point(x, y);

Size size = new Size(width, height);

Rectangle rect = new Rectangle(point, size);

Or you can pass the x, y, width, and height arguments directly to a Rectangle constructor:

Click here to view code image

Rectangle rect = new Rectangle(x, y, width, height);

You can then use an alternative Add method to add a view to the Children collection of the AbsoluteLayout:

Click here to view code image

absoluteLayout.Children.Add(child, rect);

The x and y values indicate the position of the upper-left corner of the child view relative to the upper-left corner of the AbsoluteLayout parent in device-independent coordinates. If you prefer the child to size itself, you can use just a Point value with no Size value:

Click here to view code image

absoluteLayout.Children.Add(child, point);

Here’s a little demo in a program named AbsoluteDemo:

Click here to view code image

public class AbsoluteDemoPage : ContentPage

{

 public AbsoluteDemoPage()

 {

 AbsoluteLayout absoluteLayout = new AbsoluteLayout

 {

 Padding = new Thickness(50)

 };

absoluteLayout.Children.Add(

 new BoxView

 {

 Color = Color.Accent

 },

 new Rectangle(0, 10, 200, 5));

absoluteLayout.Children.Add(

 new BoxView

 {

 Color = Color.Accent

 },

 new Rectangle(0, 20, 200, 5));

absoluteLayout.Children.Add(

 new BoxView

 {

 Color = Color.Accent

 },

 new Rectangle(10, 0, 5, 65));

absoluteLayout.Children.Add(

 new BoxView

 {

 Color = Color.Accent

 },

 new Rectangle(20, 0, 5, 65));

absoluteLayout.Children.Add(

 new Label

 {

 Text = "Stylish Header",

 FontSize = 24

 },

 new Point(30, 25));

absoluteLayout.Children.Add(

 new Label

 {

 FormattedText = new FormattedString

 {

 Spans =

 {

 new Span

 {

 Text = "Although the "

 },

 new Span

 {

 Text = "AbsoluteLayout",

 FontAttributes = FontAttributes.Italic

 },

 new Span

 {

 Text = " is usually employed for purposes other " +

 "than the display of text using "

 },

 new Span

 {

 Text = "Label",

 FontAttributes = FontAttributes.Italic

 },

 new Span

 {

 Text = ", obviously it can be used in that way. " +

 "The text continues to wrap nicely " +

 "within the bounds of the container " +

 "and any padding that might be applied."

 }

 }

 }

 },

 new Point(0, 80));

 this.Content = absoluteLayout;

 }

}

Four BoxView elements form an overlapping crisscross pattern on the top to set off a header, and then a paragraph of text follows. The program positions and sizes all the BoxView elements, while it merely positions the two Label views because they size themselves:

[image: Image]

A little trial and error was required to get the sizes of the four BoxView elements and the header text to be approximately the same size. But notice that the BoxView elements overlap: AbsoluteLayout allows you to overlap views in a very freeform way that’s simply impossible with StackLayout (or without using transforms, which are covered in a later chapter).

The big drawback of AbsoluteLayout is that you need to come up with the positioning coordinates yourself or calculate them at run time. Anything not explicitly sized—such as the two Label views—will calculate a size for itself when the page is laid out. But that size is not available until then. If you wanted to add another paragraph after the second Label, what coordinates would you use?

Actually, you can position multiple paragraphs of text by putting a StackLayout (or a StackLayout inside a ScrollView) in the AbsoluteLayout and then putting the Label views in that. Layouts can be nested.

As you can surmise, using AbsoluteLayout is more difficult than using StackLayout. In general it’s much easier to let Xamarin.Forms and the other Layout classes handle much of the complexity of layout for you. But for some special uses, AbsoluteLayout is ideal.

Like all visual elements, AbsoluteLayout has its HorizontalOptions and VerticalOptions properties set to Fill by default, which means that AbsoluteLayout fills its container. With other settings of HorizontalOptions and VerticalOptions, an AbsoluteLayout sizes itself to the size of its contents, but there are some exceptions: Try giving the AbsoluteLayout in the AbsoluteDemo program a BackgroundColor so that you can see exactly the space it occupies on the screen. It normally fills the whole page, but if you set the HorizontalOptions and VerticalOptions properties of the AbsoluteLayout to Center, you’ll see that the size that the AbsoluteLayout computes for itself includes the contents and padding but only one line of the paragraph of text.

Figuring out sizes for visual elements in an AbsoluteLayout can be tricky. One simple approach is demonstrated by the ChessboardFixed program below. The program name has the suffix Fixed because the position and size of all the squares within the chessboard are set in the constructor. The constructor cannot anticipate the size of the screen, so it arbitrarily sets the size of each square to 35 units, as indicated by the squareSize constant at the top of the class. This value should be sufficiently small for the chessboard to fit on the screen of any device supported by Xamarin.Forms.

Notice that the AbsoluteLayout is centered so it will have a size that accommodates all its children. The board itself is given a color of buff, which is a pale yellow-brown, and then 32 dark-green BoxView elements are displayed in every other square position:

Click here to view code image

public class ChessboardFixedPage : ContentPage

{

 public ChessboardFixedPage()

 {

 const double squareSize = 35;

 AbsoluteLayout absoluteLayout = new AbsoluteLayout

 {

 BackgroundColor = Color.FromRgb(240, 220, 130),

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 for (int row = 0; row < 8; row++)

 {

 for (int col = 0; col < 8; col++)

 {

 // Skip every other square.

 if (((row ^ col) & 1) == 0)

 continue;

 BoxView boxView = new BoxView

 {

 Color = Color.FromRgb(0, 64, 0)

 };

 Rectangle rect = new Rectangle(col * squareSize,

 row * squareSize,

 squareSize, squareSize);

 absoluteLayout.Children.Add(boxView, rect);

 }

 }

 this.Content = absoluteLayout;

 }

}

The exclusive-or calculation on the row and col variables causes a BoxView to be created only when either the row or col variable is odd but both are not odd. Here’s the result:

[image: Image]

Attached bindable properties

If we wanted this chessboard to be as large as possible within the confines of the screen, we’d need to add the BoxView elements to the AbsoluteLayout during the SizeChanged handler for the page, or the SizeChanged handler would need to find some way to change the position and size of the BoxView elements already in the Children collection.

Both options are possible, but the second one is preferred because we can fill the Children collection of the AbsoluteLayout only once in the program’s constructor and then adjust the sizes and position later.

At first encounter, the syntax that allows you to set the position and size of a child already in an AbsoluteLayout might seem somewhat odd. If view is an object of type View and rect is a Rectangle value, here’s the statement that gives view a location and size of rect:

Click here to view code image

AbsoluteLayout.SetLayoutBounds(view, rect);

That’s not an instance of AbsoluteLayout on which you’re making a SetLayoutBounds call. No. That’s a static method of the AbsoluteLayout class. You can call AbsoluteLayout.SetLayoutBounds either before or after you add the view child to the AbsoluteLayout children collection. Indeed, because it’s a static method, you can call the method before the AbsoluteLayout has even been instantiated! A particular instance of AbsoluteLayout is not involved at all in this SetLayoutBounds method.

Let’s look at some code that makes use of this mysterious AbsoluteLayout.SetLayoutBounds method and then examine how it works.

The ChessboardDynamic program page constructor uses the simple Add method without positioning or sizing to add 32 BoxView elements to the AbsoluteLayout in one for loop. To provide a little margin around the chessboard, the AbsoluteLayout is a child of a ContentView and padding is set on the page. This ContentView has a SizeChanged handler to position and size the AbsoluteLayout children based on the size of the container:

Click here to view code image

public class ChessboardDynamicPage : ContentPage

{

 AbsoluteLayout absoluteLayout;

 public ChessboardDynamicPage()

 {

 absoluteLayout = new AbsoluteLayout

 {

 BackgroundColor = Color.FromRgb(240, 220, 130),

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 for (int i = 0; i < 32; i++)

 {

 BoxView boxView = new BoxView

 {

 Color = Color.FromRgb(0, 64, 0)

 };

 absoluteLayout.Children.Add(boxView);

 }

 ContentView contentView = new ContentView

 {

 Content = absoluteLayout

 };

 contentView.SizeChanged += OnContentViewSizeChanged;

 this.Padding = new Thickness(5, Device.OnPlatform(25, 5, 5), 5, 5);

 this.Content = contentView;

 }

 void OnContentViewSizeChanged(object sender, EventArgs args)

 {

 ContentView contentView = (ContentView)sender;

 double squareSize = Math.Min(contentView.Width, contentView.Height) / 8;

 int index = 0;

 for (int row = 0; row < 8; row++)

 {

 for (int col = 0; col < 8; col++)

 {

 // Skip every other square.

 if (((row ^ col) & 1) == 0)

 continue;

 View view = absoluteLayout.Children[index];

 Rectangle rect = new Rectangle(col * squareSize,

 row * squareSize,

 squareSize, squareSize);

 AbsoluteLayout.SetLayoutBounds(view, rect);

 index++;

 }

 }

 }

}

The SizeChanged handler contains much the same logic as the constructor in ChessboardFixed except that the BoxView elements are already in the Children collection of the AbsoluteLayout. All that’s necessary is to position and size each BoxView when the size of the container changes—for example, during phone orientation changes. The for loop concludes with a call to the static AbsoluteLayout.SetLayoutBounds method for each BoxView with a calculated Rectangle value.

Now the chessboard is sized to fit the screen with a little margin:

[image: Image]

Obviously, the mysterious AbsoluteLayout.SetLayoutBounds method works, but how? What does it do? And how does it manage to do what it does without referencing a particular AbsoluteLayout object?

The AbsoluteLayout.SetLayoutBounds call that you’ve just seen looks like this:

Click here to view code image

AbsoluteLayout.SetLayoutBounds(view, rect);

That method call is exactly equivalent to the following call on the child view:

Click here to view code image

view.SetValue(AbsoluteLayout.LayoutBoundsProperty, rect);

This is a SetValue call on the child view. These two method calls are exactly equivalent because the second one is how AbsoluteLayout internally defines the SetLayoutBounds static method. AbsoluteLayout.SetLayoutBounds is merely a shortcut method, and the similar static AbsoluteLayout.GetLayoutBounds method is a shortcut for a GetValue call.

You’ll recall that SetValue and GetValue are defined by BindableObject and used to implement bindable properties. Judging solely from the name, AbsoluteLayout.LayoutBoundsProperty certainly appears to be a BindableProperty object, and that is so. However, it is a very special type of bindable property called an attached bindable property.

Normal bindable properties can be set only on instances of the class that defines the property or on instances of a derived class. Attached bindable properties can break that rule: Attached bindable properties are defined by one class—in this case AbsoluteLayout—but set on another object, in this case a child of the AbsoluteLayout. The property is sometimes said to be attached to the child, hence the name.

The child of the AbsoluteLayout is ignorant of the purpose of the attached bindable property passed to its SetValue method, and the child makes no use of that value in its own internal logic. The SetValue method of the child simply saves the Rectangle value in a dictionary maintained by BindableObject within the child, in effect attaching this value to the child to be possibly used at some point by the parent—the AbsoluteLayout object.

When the AbsoluteLayout is laying out its children, it can interrogate the value of this property on each child by calling the AbsoluteLayout.GetLayoutBounds static method on the child, which in turn calls GetValue on the child with the AbsoluteLayout.LayoutBoundsProperty attached bindable property. The call to GetValue fetches the Rectangle value from the dictionary stored within the child.

You might wonder: Why is such a roundabout process required to set positioning and sizing information on a child of the AbsoluteLayout? Wouldn’t it have been easier for View to define simple X, Y, Width, and Height properties that an application could set?

Maybe, but those properties would be suitable only for AbsoluteLayout. When using the Grid, an application needs to specify Row and Column values on the children of the Grid, and when using a layout class of your own devising, perhaps some other properties are required. Attached bindable properties can handle all these cases and more.

Attached bindable properties are a general-purpose mechanism that allows properties defined by one class to be stored in instances of another class. You can define your own attached bindable properties by using static creation methods of BindableObject named CreateAttached and CreateAttachedReadOnly. (You’ll see an example in Chapter 27, “Custom renderers.”)

Attached properties are mostly used with layout classes. As you’ll see, Grid defines attached bindable properties to specify the row and column of each child, and RelativeLayout also defines attached bindable properties.

Earlier you saw additional Add methods defined by the Children collection of AbsoluteLayout. These are actually implemented using these attached bindable properties. The call

Click here to view code image

absoluteLayout.Children.Add(view, rect);

is implemented like this:

Click here to view code image

AbsoluteLayout.SetLayoutBounds(view, rect);

absoluteLayout.Children.Add(view);

The Add call with only a Point argument merely sets the child’s position and lets the child size itself:

Click here to view code image

absoluteLayout.Children.Add(view, new Point(x, y));

This is implemented with the same static AbsoluteLayout.SetLayoutBounds calls but using a special constant for the view’s width and height:

Click here to view code image

AbsoluteLayout.SetLayoutBounds(view,

 new Rectangle(x, y, AbsoluteLayout.AutoSize, AbsoluteLayout.AutoSize));

absoluteLayout.Children.Add(view);

You can use that AbsoluteLayout.AutoSize constant in your own code.

Proportional sizing and positioning

As you saw, the ChessboardDynamic program repositions and resizes the BoxView children with calculations based on the size of the AbsoluteLayout itself. In other words, the size and position of each child is proportional to the size of the container. Interestingly, this is often the case with an AbsoluteLayout, and it might be nice if AbsoluteLayout accommodated such situations automatically.

It does!

AbsoluteLayout defines a second attached bindable property, named LayoutFlagsProperty, and two more static methods, named SetLayoutFlags and GetLayoutFlags. Setting this attached bindable property allows you to specify child position coordinates or sizes (or both) that are proportional to the size of the AbsoluteLayout. When laying out its children, AbsoluteLayout scales those coordinates and sizes appropriately.

You select how this feature works with one or more members of the AbsoluteLayoutFlags enumeration:

• None (equal to 0)

• XProportional (1)

• YProportional (2)

• PositionProportional (3)

• WidthProportional (4)

• HeightProportional (8)

• SizeProportional (12)

• All (\xFFFFFFFF)

You can set a proportional position and size on a child of AbsoluteLayout using the two static methods:

Click here to view code image

AbsoluteLayout.SetLayoutBounds(view, rect);

AbsoluteLayout.SetLayoutFlags(view, AbsoluteLayoutFlags.All);

Or you can use a version of the Add method on the Children collection that accepts an AbsoluteLayoutFlags enumeration member:

Click here to view code image

absoluteLayout.Children.Add(view, rect, AbsoluteLayoutFlags.All);

For example, if you use the SizeProportional flag and set the width of the child to 0.25 and the height to 0.10, the child will be one-quarter of the width of the AbsoluteLayout and one-tenth the height. Easy enough.

The PositionProportional flag is similar, but it takes the size of the child into account: a position of (0, 0) puts the child in the upper-left corner, a position of (1, 1) puts the child in the lower-right corner, and a position of (0.5, 0.5) centers the child within the AbsoluteLayout. Taking the size of the child into account is great for some tasks—such as centering a child in an AbsoluteLayout or displaying it against the right or bottom edge—but a bit awkward for other tasks.

Here’s ChessboardProportional. The bulk of the job of positioning and sizing has been moved back to the constructor. The SizeChanged handler now merely maintains the overall aspect ratio by setting the WidthRequest and HeightRequest properties of the AbsoluteLayout to the minimum of the width and height of the ContentView. Remove that SizeChanged handling and the chessboard expands to the size of the page less the padding.

Click here to view code image

public class ChessboardProportionalPage : ContentPage

{

 AbsoluteLayout absoluteLayout;

 public ChessboardProportionalPage()

 {

 absoluteLayout = new AbsoluteLayout

 {

 BackgroundColor = Color.FromRgb(240, 220, 130),

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 for (int row = 0; row < 8; row++)

 {

 for (int col = 0; col < 8; col++)

 {

 // Skip every other square.

 if (((row ^ col) & 1) == 0)

 continue;

 BoxView boxView = new BoxView

 {

 Color = Color.FromRgb(0, 64, 0)

 };

 Rectangle rect = new Rectangle(col / 7.0, // x

 row / 7.0, // y

 1 / 8.0, // width

 1 / 8.0); // height

 absoluteLayout.Children.Add(boxView, rect, AbsoluteLayoutFlags.All);

 }

 }

 ContentView contentView = new ContentView

 {

 Content = absoluteLayout

 };

 contentView.SizeChanged += OnContentViewSizeChanged;

 this.Padding = new Thickness(5, Device.OnPlatform(25, 5, 5), 5, 5);

 this.Content = contentView;

 }

 void OnContentViewSizeChanged(object sender, EventArgs args)

 {

 ContentView contentView = (ContentView)sender;

 double boardSize = Math.Min(contentView.Width, contentView.Height);

 absoluteLayout.WidthRequest = boardSize;

 absoluteLayout.HeightRequest = boardSize;

 }

}

The screen looks the same as the ChessboardDynamic program.

Each BoxView is added to the AbsoluteLayout with the following code. All the denominators are floating-point values, so the results of the divisions are converted to double:

Click here to view code image

Rectangle rect = new Rectangle(col / 7.0, // x

 row / 7.0, // y

 1 / 8.0, // width

 1 / 8.0); // height

absoluteLayout.Children.Add(boxView, rect, AbsoluteLayoutFlags.All);

The width and height are always equal to one-eighth the width and height of the AbsoluteLayout. That much is clear. But the row and col variables are divided by 7 (rather than 8) for the relative x and y coordinates. The row and col variables in the for loops range from 0 through 7. The row and col values of 0 correspond to left or top, but row and col values of 7 must map to x and y coordinates of 1 to position the child against the right or bottom edge.

If you think you might need some solid rules to derive proportional coordinates, read on.

Working with proportional coordinates

Working with proportional positioning in an AbsoluteLayout can be tricky. Sometimes you need to compensate for the internal calculation that takes the size into account. For example, you might prefer to specify coordinates so that an X value of 1 means that the left edge of the child is positioned at the right edge of the AbsoluteLayout, and you’ll need to convert that to a coordinate that AbsoluteLayout understands.

In the discussion that follows, a coordinate that does not take size into account—a coordinate in which 1 means that the child is positioned just outside the right or bottom edge of the AbsoluteLayout—is referred to as a fractional coordinate. The goal of this section is to develop rules for converting a fractional coordinate to a proportional coordinate that you can use with AbsoluteLayout. This conversion requires that you know the size of the child view.

Suppose you’re putting a view named child in an AbsoluteLayout named absoluteLayout, with a layout bounds rectangle for the child named layoutBounds. Let’s restrict this analysis to horizontal coordinates and sizes. The process is the same for vertical coordinates and sizes.

This child must first get a width in some way. The child might calculate its own width, or a width in device-independent units might be assigned to it via the LayoutBounds attached property. But let’s assume that the AbsoluteLayoutFlags.WidthProportional flag is set, which means that the width is calculated based on the Width field of the layout bounds and the width of the AbsoluteLayout:

child.Width = layoutBounds.Width * absoluteLayout.Width

If the AbsoluteLayoutFlags.XProportional flag is also set, then internally the AbsoluteLayout calculates a coordinate for the child relative to itself by taking the size of the child into account:

relativeChildCoordinate.X = (absoluteLayout.Width — child.Width layoutBounds.X

For example, if the AbsoluteLayout has a width of 400, and the child has a width of 100, and layoutBounds.X is 0.5, then relativeChildCoordinate.X is calculated as 150. This means that the left edge of the child is 150 pixels from the left edge of the parent. That causes the child to be horizontally centered within the AbsoluteLayout.

It’s also possible to calculate a fractional child coordinate:

[image: Image]

This is not the same as the proportional coordinate because a fractional child coordinate of 1 means that the child’s left edge is just outside the right edge of the AbsoluteLayout, and hence the child is outside the surface of the AbsoluteLayout. To continue the example, the fractional child coordinate is 150 divided by 400 or 0.375. The left of the child view is positioned at (0.375 * 400) or 150 units from the left edge of the AbsoluteLayout.

Let’s rearrange the terms of the formula that calculates the relative child coordinate to solve for layoutBounds.X:

[image: Image]

And let’s divide both the top and bottom of that ratio by the width of the AbsoluteLayout:

[image: Image]

If you’re also using proportional width, then that ratio in the denominator is layoutBounds.Width:

[image: Image]

And that is often a very handy formula, for it allows you to convert from a fractional child coordinate to a proportional coordinate for use in the layout bounds rectangle.

In the ChessboardProportional example, when col equals 7, the fractionalChildCoordinate.X is 7 divided by the number of columns (8), or 7/8. The denominator is 1 minus 1/8 (the proportional width of the square), or 7/8 again. The ratio is 1.

Let’s look at an example where the formula is applied in code to fractional coordinates. The ProportionalCoordinateCalc program attempts to reproduce this simple figure using eight blue BoxView elements on a pink AbsoluteLayout:

[image: Image]

The whole figure has a 2:1 aspect. You can think of the figure as comprising four horizontal rectangles and four vertical rectangles. The pairs of horizontal blue rectangles at the top and bottom have a height of 0.1 fractional units (relative to the height of the AbsoluteLayout) and are spaced 0.1 units from the top and bottom and between each other. The vertical blue rectangles appear to be spaced and sized similarly, but because the aspect ratio is 2:1, the vertical rectangles have a width of 0.05 units and are spaced with 0.05 units from the left and right and between each other.

The AbsoluteLayout is defined and centered in a XAML file and colored pink:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ProportionalCoordinateCalc.ProportionalCoordinateCalcPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="5, 25, 5, 5"

 Android="5"

 WinPhone="5" />

 </ContentPage.Padding>

 <ContentView SizeChanged="OnContentViewSizeChanged">

 <AbsoluteLayout x:Name="absoluteLayout"

 BackgroundColor="Pink"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </ContentView>

</ContentPage>

The code-behind file defines an array of Rectangle structures with the fractional coordinates for each of the eight BoxView elements. In a foreach loop, the program applies a slight variation of the final formula shown above. Rather than a denominator equal to 1 minus the value of layoutBounds.Width (or layoutBounds.Height), it uses the Width (or Height) of the fractional bounds, which is the same value.

Click here to view code image

public partial class ProportionalCoordinateCalcPage : ContentPage

{

 public ProportionalCoordinateCalcPage()

 {

 InitializeComponent();

 Rectangle[] fractionalRects =

 {

 new Rectangle(0.05, 0.1, 0.90, 0.1), // outer top

 new Rectangle(0.05, 0.8, 0.90, 0.1), // outer bottom

 new Rectangle(0.05, 0.1, 0.05, 0.8), // outer left

 new Rectangle(0.90, 0.1, 0.05, 0.8), // outer right

 new Rectangle(0.15, 0.3, 0.70, 0.1), // inner top

 new Rectangle(0.15, 0.6, 0.70, 0.1), // inner bottom

 new Rectangle(0.15, 0.3, 0.05, 0.4), // inner left

 new Rectangle(0.80, 0.3, 0.05, 0.4), // inner right

 };

 foreach (Rectangle fractionalRect in fractionalRects)

 {

 Rectangle layoutBounds = new Rectangle

 {

 // Proportional coordinate calculations.

 X = fractionalRect.X / (1 - fractionalRect.Width),

 Y = fractionalRect.Y / (1 - fractionalRect.Height),

 Width = fractionalRect.Width,

 Height = fractionalRect.Height

 };

 absoluteLayout.Children.Add(

 new BoxView

 {

 Color = Color.Blue

 },

 layoutBounds,

 AbsoluteLayoutFlags.All);

 }

 }

 void OnContentViewSizeChanged(object sender, EventArgs args)

 {

 ContentView contentView = (ContentView)sender;

 // Figure has an aspect ratio of 2:1.

 double height = Math.Min(contentView.Width / 2, contentView.Height);

 absoluteLayout.WidthRequest = 2 * height;

 absoluteLayout.HeightRequest = height;

 }

}

The SizeChanged handler simply fixes the aspect ratio.

Here’s the result:

[image: Image]

And, of course, you can turn the phone sideways and see a larger figure in landscape mode, which you’ll have to view by turning this book sideways:

[image: Image]

AbsoluteLayout and XAML

As you’ve seen, you can position and size a child of an AbsoluteLayout in code by using one of the Add methods available on the Children collection or by setting an attached property through a static method call.

But how on earth do you set the position and size of AbsoluteLayout children in XAML?

A very special syntax is involved. This syntax is illustrated by this XAML version of the earlier AbsoluteDemo program, called AbsoluteXamlDemo:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="AbsoluteXamlDemo.AbsoluteXamlDemoPage">

 <AbsoluteLayout Padding="50">

 <BoxView Color="Accent"

 AbsoluteLayout.LayoutBounds="0, 10, 200, 5" />

 <BoxView Color="Accent"

 AbsoluteLayout.LayoutBounds="0, 20, 200, 5" />

 <BoxView Color="Accent"

 AbsoluteLayout.LayoutBounds="10, 0, 5, 65" />

 <BoxView Color="Accent"

 AbsoluteLayout.LayoutBounds="20, 0, 5, 65" />

 <Label Text="Stylish Header"

 FontSize="24"

 AbsoluteLayout.LayoutBounds="30, 25, AutoSize, AutoSize" />

 <Label AbsoluteLayout.LayoutBounds="0, 80, AutoSize, AutoSize">

 <Label.FormattedText>

 <FormattedString>

 <Span Text="AbsoluteLayout"

 FontAttributes="Italic" />

 <Span Text=

" is usually employed for purposes other

than the display of text using " />

 <Span Text="Label"

 FontAttributes="Italic" />

 <Span Text=

", obviously it can be used in that way.

The text continues to wrap nicely

within the bounds of the container

and any padding that might be applied." />

 </FormattedString>

 </Label.FormattedText>

 </Label>

 </AbsoluteLayout>

</ContentPage>

The code-behind file contains only an InitializeComponent call.

Here’s the first BoxView:

Click here to view code image

<BoxView Color="Accent"

 AbsoluteLayout.LayoutBounds="0, 10, 200, 5" />

In XAML, an attached bindable property is expressed as an attribute that consists of a class name (AbsoluteLayout) and a property name (LayoutBounds) separated by a period. Whenever you see such an attribute, it’s always an attached bindable property. That’s the only application of this attribute syntax.

In summary, combinations of class names and property names only appear in XAML in three specific contexts: If they appear as elements, they are property elements. If they appear as attributes, they are attached bindable properties. And the only other context for a class name and property name is an argument to an x:Static markup extension.

The AbsoluteLayout.LayoutBounds attribute is commonly set to four numbers separated by commas. You can also express AbsoluteLayout.LayoutBounds as a property element:

Click here to view code image

<BoxView Color="Accent">

 <AbsoluteLayout.LayoutBounds>

 0, 10, 200, 5

 </AbsoluteLayout.LayoutBounds>

</BoxView>

Those four numbers are parsed by the BoundsTypeConverter and not the RectangleTypeConverter because the BoundsTypeConverter allows the use of AutoSize for the width and height parts. You can see the AutoSize arguments later in the AbsoluteXamlDemo XAML file:

Click here to view code image

<Label Text="Stylish Header"

 FontSize="24"

 AbsoluteLayout.LayoutBounds="30, 25, AutoSize, AutoSize" />

Or you can leave them out:

Click here to view code image

<Label Text="Stylish Header"

 FontSize="24"

 AbsoluteLayout.LayoutBounds="30, 25" />

The odd thing about attached bindable properties that you specify in XAML is that they don’t really exist! There is no field, property, or method in AbsoluteLayout called LayoutBounds. There is certainly a public static read-only field of type BindableProperty named LayoutBoundsProperty, and there are public static methods named SetLayoutBounds and GetLayoutBounds, but there is nothing named LayoutBounds. The XAML parser recognizes the syntax as referring to an attached bindable property and then looks for LayoutBoundsProperty in the AbsoluteLayout class. From there it can call SetValue on the target view with that BindableProperty object together with the value from the BoundsTypeConverter.

The Chessboard series of programs seems an unlikely candidate for duplicating in XAML because the file would need 32 instances of BoxView without the benefit of loops. However, the ChessboardXaml program shows how to specify two properties of BoxView in an implicit style, including the AbsoluteLayout.LayoutFlags attached bindable property:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ChessboardXaml.ChessboardXamlPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="5, 25, 5, 5"

 Android="5"

 WinPhone="5" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="BoxView">

 <Setter Property="Color" Value="#004000" />

 <Setter Property="AbsoluteLayout.LayoutFlags" Value="All" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <ContentView SizeChanged="OnContentViewSizeChanged">

 <AbsoluteLayout x:Name="absoluteLayout"

 BackgroundColor="#F0DC82"

 VerticalOptions="Center"

 HorizontalOptions="Center">

 <BoxView AbsoluteLayout.LayoutBounds="0.00, 0.00, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.29, 0.00, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.57, 0.00, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.86, 0.00, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.14, 0.14, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.43, 0.14, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.71, 0.14, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="1.00, 0.14, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.00, 0.29, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.29, 0.29, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.57, 0.29, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.86, 0.29, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.14, 0.43, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.43, 0.43, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.71, 0.43, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="1.00, 0.43, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.00, 0.57, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.29, 0.57, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.57, 0.57, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.86, 0.57, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.14, 0.71, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.43, 0.71, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.71, 0.71, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="1.00, 0.71, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.00, 0.86, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.29, 0.86, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.57, 0.86, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.86, 0.86, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.14, 1.00, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.43, 1.00, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="0.71, 1.00, 0.125, 0.125" />

 <BoxView AbsoluteLayout.LayoutBounds="1.00, 1.00, 0.125, 0.125" />

 </AbsoluteLayout>

 </ContentView>

</ContentPage>

Yes, it’s a lot of individual BoxView elements, but you can’t argue with the cleanliness of the file. The code-behind file simply adjusts the aspect ratio:

Click here to view code image

public partial class ChessboardXamlPage : ContentPage

{

 public ChessboardXamlPage()

 {

 InitializeComponent();

 }

 void OnContentViewSizeChanged(object sender, EventArgs args)

 {

 ContentView contentView = (ContentView)sender;

 double boardSize = Math.Min(contentView.Width, contentView.Height);

 absoluteLayout.WidthRequest = boardSize;

 absoluteLayout.HeightRequest = boardSize;

 }

}

Overlays

The ability to overlap children in the AbsoluteLayout has some interesting and useful applications, among them being the ability to cover up your entire user interface with something sometimes called an overlay. Perhaps your page is carrying out a lengthy job and you don’t want the user interacting with the page until the job is completed. You can place a semitransparent overlay over the page and perhaps display an ActivityIndicator or a ProgressBar.

Here’s a program called SimpleOverlay that demonstrates this technique. The XAML file begins with an AbsoluteLayout filling the entire page. The first child of that AbsoluteLayout is a StackLayout, which you want to fill the page as well. However, the default HorizontalOptions and VerticalOptions settings of Fill on the StackLayout don’t work for children of an AbsoluteLayout. Instead, the StackLayout fills the AbsoluteLayout through the use of the AbsoluteLayout.LayoutBounds and AbsoluteLayout.LayoutFlags attached bindable properties:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SimpleOverlay.SimpleOverlayPage">

 <AbsoluteLayout>

 <StackLayout AbsoluteLayout.LayoutBounds="0, 0, 1, 1"

 AbsoluteLayout.LayoutFlags="All">

 <Label Text=

"This might be a page full of user-interface objects except

that the only functional user-interface object on the page

is a Button."

 FontSize="Medium"

 VerticalOptions="CenterAndExpand"

 HorizontalTextAlignment="Center" />

 <Button Text="Run 5-Second Job"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 Clicked="OnButtonClicked" />

 <Button Text="A Do-Nothing Button"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 <Label Text=

"This continues the page full of user-interface objects except

that the only functional user-interface object on the page

is the Button."

 FontSize="Medium"

 VerticalOptions="CenterAndExpand"

 HorizontalTextAlignment="Center" />

 </StackLayout>

 <!-- Overlay -->

 <ContentView x:Name="overlay"

 AbsoluteLayout.LayoutBounds="0, 0, 1, 1"

 AbsoluteLayout.LayoutFlags="All"

 IsVisible="False"

 BackgroundColor="#C0808080"

 Padding="10, 0">

 <ProgressBar x:Name="progressBar"

 VerticalOptions="Center" />

 </ContentView>

 </AbsoluteLayout>

</ContentPage>

The second child of the AbsoluteLayout is a ContentView, which also fills the AbsoluteLayout and basically sits on top of the StackLayout. However, notice that the IsVisible property is set to False, which means that this ContentView and its children do not participate in the layout. The ContentView is still a child of the AbsoluteLayout, but it’s simply skipped when the layout system is sizing and rendering all the elements of the page.

This ContentView is the overlay. When IsVisible is set to True, it blocks user input to the views below it. The BackgroundColor is set to a semitransparent gray, and a ProgressBar is vertically centered within it.

A ProgressBar resembles a Slider without a thumb. A ProgressBar is always horizontally oriented. Do not set the HorizontalOptions property of a ProgressBar to Start, Center, or End unless you also set its WidthRequest property.

A program can indicate progress by setting the Progress property of the ProgressBar to a value between 0 and 1. This is demonstrated in the Clicked handler for the only functional Button in the program. This handler simulates a lengthy job being performed in code with a timer that determines when five seconds have elapsed:

Click here to view code image

public partial class SimpleOverlayPage : ContentPage

{

 public SimpleOverlayPage()

 {

 InitializeComponent();

 }

 void OnButtonClicked(object sender, EventArgs args)

 {

 // Show overlay with ProgressBar.

 overlay.IsVisible = true;

 TimeSpan duration = TimeSpan.FromSeconds(5);

 DateTime startTime = DateTime.Now;

 // Start timer.

 Device.StartTimer(TimeSpan.FromSeconds(0.1), () =>

 {

 double progress = (DateTime.Now - startTime).TotalMilliseconds /

 duration.TotalMilliseconds;

 progressBar.Progress = progress;

 bool continueTimer = progress < 1;

 if (!continueTimer)

 {

 // Hide overlay.

 overlay.IsVisible = false;

 }

 return continueTimer;

 });

 }

}

The Clicked handler begins by setting the IsVisible property of the overlay to true, which reveals the overlay and its child ProgressBar and prevents further interaction with the user interface underneath. The timer is set for one-tenth second and calculates a new Progress property for the ProgressBar based on the elapsed time. When the five seconds are up, the overlay is again hidden and the timer callback returns false.

Here’s what it looks like with the overlay covering the page and the lengthy job in progress:

[image: Image]

An overlay need not be restricted to a ProgressBar or an ActivityIndicator. You can include a Cancel button or other views.

Some fun

As you can probably see by now, the AbsoluteLayout is often used for some special purposes that wouldn’t be easy otherwise. Some of these might actually be classified as “fun.”

DotMatrixClock displays the digits of the current time using a simulated 5 × 7 dot matrix display. Each dot is a BoxView, individually sized and positioned on the screen and colored either red or light-gray depending on whether the dot is on or off. Conceivably, the dots of this clock could be organized in nested StackLayout elements or a Grid, but each BoxView needs to be given a size anyway. The sheer quantity and regularity of these views suggests that the programmer knows better than a layout class how to arrange them on the screen, because StackLayout and Grid need to perform the location calculations in a more generalized manner. For that reason, this is an ideal job for AbsoluteLayout.

A XAML file sets a little padding on the page and prepares an AbsoluteLayout for filling by code:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="DotMatrixClock.DotMatrixClockPage"

 Padding="10"

 SizeChanged="OnPageSizeChanged">

 <AbsoluteLayout x:Name="absoluteLayout"

 VerticalOptions="Center" />

</ContentPage>

The code-behind file contains several fields, including two arrays, named numberPatterns and colonPattern, that define the dot matrix patterns for the 10 digits and a colon separator:

Click here to view code image

public partial class DotMatrixClockPage : ContentPage

{

 // Total dots horizontally and vertically.

 const int horzDots = 41;

 const int vertDots = 7;

 // 5 x 7 dot matrix patterns for 0 through 9.

 static readonly int[,,] numberPatterns = new int[10,7,5]

 {

 {

 { 0, 1, 1, 1, 0}, { 1, 0, 0, 0, 1}, { 1, 0, 0, 1, 1}, { 1, 0, 1, 0, 1},

 { 1, 1, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0}

 },

 {

 { 0, 0, 1, 0, 0}, { 0, 1, 1, 0, 0}, { 0, 0, 1, 0, 0}, { 0, 0, 1, 0, 0},

 { 0, 0, 1, 0, 0}, { 0, 0, 1, 0, 0}, { 0, 1, 1, 1, 0}

 },

 {

 { 0, 1, 1, 1, 0}, { 1, 0, 0, 0, 1}, { 0, 0, 0, 0, 1}, { 0, 0, 0, 1, 0},

 { 0, 0, 1, 0, 0}, { 0, 1, 0, 0, 0}, { 1, 1, 1, 1, 1}

 },

 {

 { 1, 1, 1, 1, 1}, { 0, 0, 0, 1, 0}, { 0, 0, 1, 0, 0}, { 0, 0, 0, 1, 0},

 { 0, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0}

 },

 {

 { 0, 0, 0, 1, 0}, { 0, 0, 1, 1, 0}, { 0, 1, 0, 1, 0}, { 1, 0, 0, 1, 0},

 { 1, 1, 1, 1, 1}, { 0, 0, 0, 1, 0}, { 0, 0, 0, 1, 0}

 },

 {

 { 1, 1, 1, 1, 1}, { 1, 0, 0, 0, 0}, { 1, 1, 1, 1, 0}, { 0, 0, 0, 0, 1},

 { 0, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0}

 },

 {

 { 0, 0, 1, 1, 0}, { 0, 1, 0, 0, 0}, { 1, 0, 0, 0, 0}, { 1, 1, 1, 1, 0},

 { 1, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0}

 },

 {

 { 1, 1, 1, 1, 1}, { 0, 0, 0, 0, 1}, { 0, 0, 0, 1, 0}, { 0, 0, 1, 0, 0},

 { 0, 1, 0, 0, 0}, { 0, 1, 0, 0, 0}, { 0, 1, 0, 0, 0}

 },

 {

 { 0, 1, 1, 1, 0}, { 1, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0},

 { 1, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0}

 },

 {

 { 0, 1, 1, 1, 0}, { 1, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 1},

 { 0, 0, 0, 0, 1}, { 0, 0, 0, 1, 0}, { 0, 1, 1, 0, 0}

 },

 };

 // Dot matrix pattern for a colon.

 static readonly int[,] colonPattern = new int[7, 2]

 {

 { 0, 0 }, { 1, 1 }, { 1, 1 }, { 0, 0 }, { 1, 1 }, { 1, 1 }, { 0, 0 }

 };

 // BoxView colors for on and off.

 static readonly Color colorOn = Color.Red;

 static readonly Color colorOff = new Color(0.5, 0.5, 0.5, 0.25);

 // Box views for 6 digits, 7 rows, 5 columns.

 BoxView[,,] digitBoxViews = new BoxView[6, 7, 5];

 ...

}

Fields are also defined for an array of BoxView objects for the six digits of the time—two digits each for hour, minutes, and seconds. The total number of dots horizontally (set as horzDots) includes five dots for each of the six digits, four dots for the colon between the hour and minutes, four for the colon between the minutes and seconds, and a one dot width between the digits otherwise.

The program’s constructor (shown below) creates a total of 238 BoxView objects and adds them to an AbsoluteLayout, but it also saves the BoxView objects for the digits in the digitBoxViews array. (In theory, the BoxView objects can be referenced later by indexing the Children collection of the AbsoluteLayout. But in that collection, they appear simply as a linear list. Storing them also in a multidimensional array allows them to be more easily identified and referenced.) All the positioning and sizing is proportional based on an AbsoluteLayout that is assumed to have an aspect ratio of 41 to 7, which encompasses the 41 BoxView widths and 7 BoxView heights.

Click here to view code image

public partial class DotMatrixClockPage : ContentPage

{

 ...

 public DotMatrixClockPage()

 {

 InitializeComponent();

 // BoxView dot dimensions.

 double height = 0.85 / vertDots;

 double width = 0.85 / horzDots;

 // Create and assemble the BoxViews.

 double xIncrement = 1.0 / (horzDots - 1);

 double yIncrement = 1.0 / (vertDots - 1);

 double x = 0;

 for (int digit = 0; digit < 6; digit++)

 {

 for (int col = 0; col < 5; col++)

 {

 double y = 0;

 for (int row = 0; row < 7; row++)

 {

 // Create the digit BoxView and add to layout.

 BoxView boxView = new BoxView();

 digitBoxViews[digit, row, col] = boxView;

 absoluteLayout.Children.Add(boxView,

 new Rectangle(x, y, width, height),

 AbsoluteLayoutFlags.All);

 y += yIncrement;

 }

 x += xIncrement;

 }

 x += xIncrement;

 // Colons between the hour, minutes, and seconds.

 if (digit == 1 || digit == 3)

 {

 int colon = digit / 2;

 for (int col = 0; col < 2; col++)

 {

 double y = 0;

 for (int row = 0; row < 7; row++)

 {

 // Create the BoxView and set the color.

 BoxView boxView = new BoxView

 {

 Color = colonPattern[row, col] == 1 ?

 colorOn : colorOff

 };

 absoluteLayout.Children.Add(boxView,

 new Rectangle(x, y, width, height),

 AbsoluteLayoutFlags.All);

 y += yIncrement;

 }

 x += xIncrement;

 }

 x += xIncrement;

 }

 }

 // Set the timer and initialize with a manual call.

 Device.StartTimer(TimeSpan.FromSeconds(1), OnTimer);

 OnTimer();

 }

 ...

}

As you’ll recall, the horzDots and vertDots constants are set to 41 and 7, respectively. To fill up the AbsoluteLayout, each BoxView needs to occupy a fraction of the width equal to 1 / horzDots and a fraction of the height equal to 1 / vertDots. The height and width set to each BoxView is 85 percent of that value to separate the dots enough so that they don’t run into each other:

Click here to view code image

double height = 0.85 / vertDots;

double width = 0.85 / horzDots;

To position each BoxView, the constructor calculates proportional xIncrement and yIncrement values like so:

Click here to view code image

double xIncrement = 1.0 / (horzDots - 1);

double yIncrement = 1.0 / (vertDots - 1);

The denominators here are 40 and 6 so that the final X and Y positional coordinates are values of 1.

The BoxView objects for the time digits are not colored at all in the constructor, but those for the two colons are given a Color property based on the colonPattern array. The DotMatrixClockPage constructor concludes by a one-second timer.

The SizeChanged handler for the page is set from the XAML file. The AbsoluteLayout is automatically stretched horizontally to fill the width of the page (minus the padding), so the HeightRequest really just sets the aspect ratio:

Click here to view code image

public partial class DotMatrixClockPage : ContentPage

{

 ...

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 // No chance a display will have an aspect ratio > 41:7

 absoluteLayout.HeightRequest = vertDots * Width / horzDots;

 }

 ...

}

It seems that the Device.StartTimer event handler should be rather complex because it is responsible for setting the Color property of each BoxView based on the digits of the current time. However, the similarity between the definitions of the numberPatterns array and the digitBoxViews array makes it surprisingly straightforward:

Click here to view code image

public partial class DotMatrixClockPage : ContentPage

{

 ...

 bool OnTimer()

 {

 DateTime dateTime = DateTime.Now;

 // Convert 24-hour clock to 12-hour clock.

 int hour = (dateTime.Hour + 11) % 12 + 1;

 // Set the dot colors for each digit separately.

 SetDotMatrix(0, hour / 10);

 SetDotMatrix(1, hour % 10);

 SetDotMatrix(2, dateTime.Minute / 10);

 SetDotMatrix(3, dateTime.Minute % 10);

 SetDotMatrix(4, dateTime.Second / 10);

 SetDotMatrix(5, dateTime.Second % 10);

 return true;

 }

 void SetDotMatrix(int index, int digit)

 {

 for (int row = 0; row < 7; row++)

 for (int col = 0; col < 5; col++)

 {

 bool isOn = numberPatterns[digit, row, col] == 1;

 Color color = isOn ? colorOn : colorOff;

 digitBoxViews[index, row, col].Color = color;

 }

 }

}

And here’s the result:

[image: Image]

Of course, bigger is better, so you’ll probably want to turn the phone (or the book) sideways for something large enough to read from across the room:

[image: Image]

Another special type of application suitable for AbsoluteLayout is animation. The BouncingText program use its XAML file to instantiate two Label elements:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BouncingText.BouncingTextPage">

 <AbsoluteLayout>

 <Label x:Name="label1"

 Text="BOUNCE"

 FontSize="Large"

 AbsoluteLayout.LayoutFlags="PositionProportional" />

 <Label x:Name="label2"

 Text="BOUNCE"

 FontSize="Large"

 AbsoluteLayout.LayoutFlags="PositionProportional" />

 </AbsoluteLayout>

</ContentPage>

Notice that the AbsoluteLayout.LayoutFlags attributes are set to PositionProportional. The Label calculates its own size, but the positioning is proportional. Values between 0 and 1 can position the two Label elements anywhere within the page.

The code-behind file starts a timer going with a 15-millisecond duration. This is equivalent to approximately 60 ticks per second, which is generally the refresh rate of video displays. A 15-millisecond timer duration is ideal for performing animations:

Click here to view code image

public partial class BouncingTextPage : ContentPage

{

 const double period = 2000; // in milliseconds

 readonly DateTime startTime = DateTime.Now;

 public BouncingTextPage()

 {

 InitializeComponent();

 Device.StartTimer(TimeSpan.FromMilliseconds(15), OnTimerTick);

 }

 bool OnTimerTick()

 {

 TimeSpan elapsed = DateTime.Now - startTime;

 double t = (elapsed.TotalMilliseconds % period) / period; // 0 to 1

 t = 2 * (t < 0.5 ? t : 1 - t); // 0 to 1 to 0

 AbsoluteLayout.SetLayoutBounds(label1,

 new Rectangle(t, 0.5, AbsoluteLayout.AutoSize, AbsoluteLayout.AutoSize));

 AbsoluteLayout.SetLayoutBounds(label2,

 new Rectangle(0.5, 1 - t, AbsoluteLayout.AutoSize, AbsoluteLayout.AutoSize));

 return true;

 }

}

The OnTimerTick handler computes an elapsed time since the program started and converts that to a value t (for time) that goes from 0 to 1 every two seconds. The second calculation of t makes it increase from 0 to 1 and then decrease back down to 0 every two seconds. This value is passed directly to the Rectangle constructor in the two AbsoluteLayout.SetLayoutBounds calls. The result is that the first Label moves horizontally across the center of the screen and seems to bounce off the left and right sides. The second Label moves vertically up and down the center of the screen and seems to bounce off the top and bottom:

[image: Image]

The two Label views meet briefly in the center every second, as the Windows 10 Mobile screenshot confirms.

From here on out, the pages of our Xamarin.Forms applications will become more active and animated and dynamic. In the next chapter, you’ll see how the interactive views of Xamarin.Forms establish a means of communication between the user and the app.

Chapter 15. The interactive interface

Interactivity is the defining feature of modern computing. The many interactive views that Xamarin.Forms implements respond to touch gestures such as tapping and dragging, and a few even read keystrokes from the phone’s virtual keyboard.

These interactive views incorporate paradigms that are familiar to users, and even have names that are familiar to programmers: users can trigger commands with Button, specify a number from a range of values with Slider and Stepper, enter text from the phone’s keyboard using Entry and Editor, and select items from a collection with Picker, ListView, and TableView.

This chapter is devoted to demonstrating many of these interactive views.

View overview

Xamarin.Forms defines 20 instantiable classes that derive from View but not from Layout. You’ve already seen six of these classes in previous chapters: Label, BoxView, Button, Image, ActivityIndicator, and ProgressBar.

This chapter focuses on eight views that allow the user to select or interact with basic .NET data types:

[image: Image]

These views are often the visual representations of underlying data items. In the next chapter, you’ll begin to explore data binding, which is a feature of Xamarin.Forms that links properties of views with properties of other classes so that these views and underlying data can be structured in correspondences.

Four of the remaining six views are discussed in later chapters. In Chapter 16, “Data binding,” you’ll see:

• WebView, to display webpages or HTML.

Chapter 19, “Collection views” covers these three views:

• Picker, selectable strings for program options.

• ListView, a scrollable list of data items of the same type.

• TableView, a list of items separated into categories, which is flexible enough to be used for data, forms, menus, or settings.

Two views are not covered in this edition of this book:

• Map, an interactive map display.

• OpenGLView, which allows a program to display 2-D and 3-D graphics by using the Open Graphics Library.

Slider and Stepper

Both Slider and Stepper let the user select a numeric value from a range. They have nearly identical programming interfaces but incorporate very different visual and interactive paradigms.

Slider basics

The Xamarin.Forms Slider is a horizontal bar that represents a range of values between a minimum at the left and a maximum at the right. (The Xamarin.Forms Slider does not support a vertical orientation.) The user selects a value on the Slider a little differently on the three platforms: On iOS devices, the user drags a round “thumb” along the horizontal bar. The Android and Windows 10 Mobile Slider views also have thumbs, but they are too small for a touch target, and the user can simply tap on the horizontal bar, or drag a finger to a specific location.

The Slider defines three public properties of type double, named Minimum, Maximum, and Value. Whenever the Value property changes, the Slider fires a ValueChanged event indicating the new value.

When displaying a Slider you’ll want a little padding at the left and right to prevent the Slider from extending to the edges of the screen. The XAML file in the SliderDemo program applies the Padding to the StackLayout, which is parent to both a Slider and a Label that is intended to display the current value of the Slider:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SliderDemo.SliderDemoPage">

 <StackLayout Padding="10, 0">

 <Slider VerticalOptions="CenterAndExpand"

 ValueChanged="OnSliderValueChanged" />

 <Label x:Name="label"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

When the program starts up, the Label displays nothing, and the Slider thumb is positioned at the far left:

[image: Image]

Do not set HorizontalOptions on the Slider to Start, Center, or End without also setting WidthRequest to an explicit value, or the Slider will collapse into a very small or even unusable width.

The Slider notifies code of changes to the Value property by firing the ValueChanged event. The event is fired if Value is changed programmatically or by user manipulation. Here’s the SliderDemo code-behind file with the event handler:

Click here to view code image

public partial class SliderDemoPage : ContentPage

{

 public SliderDemoPage()

 {

 InitializeComponent();

 }

 void OnSliderValueChanged(object sender, ValueChangedEventArgs args)

 {

 label.Text = String.Format("Slider = {0}", args.NewValue);

 }

}

As usual, the first argument to the event handler is the object firing the event, in this case the Slider, and the second argument provides more information about this event. The handler for ValueChanged is of type EventHandler<ValueChangedEventArgs>, which means that the second argument to the handler is a ValueChangedEventArgs object. ValueChangedEventArgs defines two properties of type double named OldValue and NewValue. This particular handler simply uses NewValue in a string that it sets to the Text property of the Label:

[image: Image]

A little experimentation reveals that the default Minimum and Maximum settings for Slider are 0 and 1. At the time this chapter is being written, the Slider on the Windows platforms has a default increment of 0.1. For other settings of Minimum and Maximum, the Slider is restricted to 10 increments or steps of 1, whichever is less. (A more flexible Slider is presented in Chapter 27, “Custom renderers.”)

If you’re not happy with the excessive number of decimal points displayed on the iOS screen, you can reduce the number of decimal places with a formatting specification in String.Format:

Click here to view code image

void OnSliderValueChanged(object sender, ValueChangedEventArgs args)

{

 label.Text = String.Format("Slider = {0:F2}", args.NewValue);

}

This is not the only way to write the ValueChanged handler. An alternative implementation involves casting the first argument to a Slider object and then accessing the Value property directly:

Click here to view code image

void OnSliderValueChanged(object sender, ValueChangedEventArgs args)

{

 Slider slider = (Slider)sender;

 label.Text = String.Format("Slider = {0}", slider.Value);

}

Using the sender argument is a good approach if you’re sharing the event handler among multiple Slider views. By the time the ValueChanged event handler is called, the Value property already has its new value.

You can set the Minimum and Maximum properties of the Slider to any negative or positive value, with the stipulation that Maximum is always greater than Minimum. For example, try this:

Click here to view code image

<Slider ValueChanged="OnSliderValueChanged"

 Maximum="100"

 VerticalOptions="CenterAndExpand" />

Now the Slider value ranges from 0 to 100.

Common pitfalls

Suppose you want the Slider value to range from 1 to 100. You can set both Minimum and Maximum like this:

Click here to view code image

<Slider ValueChanged="OnSliderValueChanged"

 Minimum="1"

 Maximum="100"

 VerticalOptions="CenterAndExpand" />

However, when you run the new version of the program, an ArgumentException is raised with the text explanation “Value was an invalid value for Minimum.” What does that mean?

When the XAML parser encounters the Slider tag, a Slider is instantiated, and then the properties and events are set in the order in which they appear in the Slider tag. But when the Minimum property is set to 1, the Maximum value now equals the Minimum value. That can’t be. The Maximum property must be greater than the Minimum. The Slider signals this problem by raising an exception.

Internal to the Slider class, the Minimum and Maximum values are compared in a callback method set to the validateValue argument to the BindableProperty.Create method calls that create the Minimum and Maximum bindable properties. The validateValue callback returns true if Minimum is less than Maximum, indicating that the values are valid. A return value of false from this callback triggers the exception. This is the standard way that bindable properties implement validity checks.

This isn’t a problem specific to XAML. It also happens if you instantiate and initialize the Slider properties in this order in code. The solution is to reverse the order that Minimum and Maximum are set. First set the Maximum property to 100. That’s legal because now the range is between 0 and 100. Then set the Minimum property to 1:

Click here to view code image

<Slider ValueChanged="OnSliderValueChanged"

 Maximum="100"

 Minimum="1"

 VerticalOptions="CenterAndExpand" />

However, this results in another run-time error. Now it’s a NullReferenceException in the ValueChanged handler. Why is that?

The Value property of the Slider must be within the range of Minimum and Maximum values, so when the Minimum property is set to 1, the Slider automatically adjust its Value property to 1.

Internally, Value is adjusted in a callback method set to the coerceValue argument of the BindableProperty.Create method calls for the Minimum, Maximum, and Value properties. The callback method returns an adjusted value of the property being set after being subjected to this coercion. In this example, when Minimum is set to 1, the coerceValue method sets the slider’s Value property to 1, and the coerceValue callback returns the new value of Minimum, which remains at the value 1.

However, as a result of the coercion, the Value property has changed, and this causes the ValueChanged event to fire. The ValueChanged handler in the code-behind file attempts to set the Text property of the Label, but the XAML parser has not yet instantiated the Label element. The label field is null.

There are a couple of solutions to this problem. The safest and most general solution is to check for a null value for label right in the event handler:

Click here to view code image

void OnSliderValueChanged(object sender, ValueChangedEventArgs args)

{

 if (label != null)

 {

 label.Text = String.Format("Slider = {0}", args.NewValue);

 }

}

However, you can also fix the problem by moving the assignment of the ValueChanged event in the tag to after the Maximum and Minimum properties have been set:

Click here to view code image

<Slider Maximum="100"

 Minimum="1"

 ValueChanged="OnSliderValueChanged"

 VerticalOptions="CenterAndExpand" />

The Value property is still coerced to 1 after the Minimum property is set, but the ValueChanged event handler has not yet been assigned, so no event is fired.

Let’s assume that the Slider has the default range of 0 to 1. You might want the Label to display the initial value of the Slider when the program first starts up. You could initialize the Text property of the Label to “Slider = 0” in the XAML file, but if you ever wanted to change the text to something a little different, you’d need to change it in two places.

You might try giving the Slider a name of slider in the XAML file and then add some code to the constructor:

public SliderDemoPage()

{

 InitializeComponent();

 slider.Value = 0;

}

All the elements in the XAML file have been created and initialized when InitializeComponent returns, so if this code causes the Slider to fire a ValueChanged event, that shouldn’t be a problem.

But it won’t work. The value of the Slider is already 0, so setting it to 0 again does nothing. You could try this:

public SliderDemoPage()

{

 InitializeComponent();

 slider.Value = 1;

 slider.Value = 0;

}

That will work. But you might want to add a comment to the code so that another programmer doesn’t later remove the statement that sets Value to 1 because it appears to be unnecessary.

Or you could simulate an event by calling the handler directly. The two arguments to the ValueChangedEventArgs constructor are the old value and the new value (in that order), but the OnSliderValueChanged handler uses only the NewValue property, so it doesn’t matter what the other argument is or whether they’re equal:

Click here to view code image

public partial class SliderDemoPage : ContentPage

{

 public SliderDemoPage()

 {

 InitializeComponent();

 OnSliderValueChanged(null, new ValueChangedEventArgs(0, 0));

 }

 void OnSliderValueChanged(object sender, ValueChangedEventArgs args)

 {

 label.Text = String.Format("Slider = {0}", args.NewValue);

 }

}

That works as well. But remember to set the arguments to the call to OnSliderValueChanged so that they agree with what the handler expects. If you replaced the handler body with code that casts the sender argument to the Slider object, you then need a valid first argument in the OnSliderValueChanged call.

The problems involving the event handler disappear when you connect the Label with the Slider by using data bindings, which you’ll learn about in the next chapter. You’ll still need to set the properties of the Slider in the correct order, but you’ll experience none of the problems with the event handler because the event handler will be gone.

Slider color selection

Here’s a program named RgbSliders that contains three Slider elements for selecting red, green, and blue components of a Color. An implicit style for Slider sets the Maximum value to 255:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="RgbSliders.RgbSlidersPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 10"

 Android="10, 0, 10, 10"

 WinPhone="10, 0, 10, 10" />

 </ContentPage.Padding>

 <StackLayout>

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Slider">

 <Setter Property="Maximum" Value="255" />

 </Style>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Slider x:Name="redSlider"

 ValueChanged="OnSliderValueChanged" />

 <Label x:Name="redLabel" />

 <Slider x:Name="greenSlider"

 ValueChanged="OnSliderValueChanged" />

 <Label x:Name="greenLabel" />

 <Slider x:Name="blueSlider"

 ValueChanged="OnSliderValueChanged" />

 <Label x:Name="blueLabel" />

 <BoxView x:Name="boxView"

 VerticalOptions="FillAndExpand" />

 </StackLayout>

</ContentPage>

The Slider elements alternate with three Label elements to display their values, and the StackLayout concludes with a BoxView to show the resultant color.

The constructor of the code-behind file initializes the Slider settings to 128 for a medium gray. The shared ValueChanged handler checks to see which Slider has changed, and hence which Label needs to be updated, and then computes a new color for the BoxView:

Click here to view code image

public partial class RgbSlidersPage : ContentPage

{

 public RgbSlidersPage()

 {

 InitializeComponent();

 redSlider.Value = 128;

 greenSlider.Value = 128;

 blueSlider.Value = 128;

 }

 void OnSliderValueChanged(object sender, ValueChangedEventArgs args)

 {

 if (sender == redSlider)

 {

 redLabel.Text = String.Format("Red = {0:X2}", (int)redSlider.Value);

 }

 else if (sender == greenSlider)

 {

 greenLabel.Text = String.Format("Green = {0:X2}", (int)greenSlider.Value);

 }

 else if (sender == blueSlider)

 {

 blueLabel.Text = String.Format("Blue = {0:X2}", (int)blueSlider.Value);

 }

 boxView.Color = Color.FromRgb((int)redSlider.Value,

 (int)greenSlider.Value,

 (int)blueSlider.Value);

 }

}

Strictly speaking, the if and else statements here are not required. The code can simply set all three labels regardless of which slider is changing. The event handler accesses all three sliders anyway for setting a new color:

[image: Image]

You can turn the phone sideways, but the BoxView becomes much shorter, particularly on the Windows 10 Mobile device, where the Slider seems to have a vertical height beyond what’s required. Once the Grid is introduced in Chapter 18, you’ll see how it becomes easier for applications to respond to orientation changes.

The following TextFade program uses a single Slider to control the Opacity and horizontal position of two Label elements in an AbsoluteLayout. In the initial layout, both Label elements are positioned at the left center of the AbsoluteLayout, but the second one has its Opacity set to 0:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="TextFade.TextFadePage"

 Padding="10, 0, 10, 20">

 <StackLayout>

 <AbsoluteLayout VerticalOptions="CenterAndExpand">

 <Label x:Name="label1"

 Text="TEXT"

 FontSize="Large"

 AbsoluteLayout.LayoutBounds="0, 0.5"

 AbsoluteLayout.LayoutFlags="PositionProportional" />

 <Label x:Name="label2"

 Text="FADE"

 FontSize="Large"

 Opacity="0"

 AbsoluteLayout.LayoutBounds="0, 0.5"

 AbsoluteLayout.LayoutFlags="PositionProportional" />

 </AbsoluteLayout>

 <Slider ValueChanged="OnSliderValueChanged" />

 </StackLayout>

</ContentPage>

The Slider event handler moves both Label elements from left to right across the screen. The proportional positioning helps a lot here because the Slider values range from 0 to 1, which results in the Label elements being positioned progressively from the far left to the far right of the screen:

Click here to view code image

public partial class TextFadePage : ContentPage

{

 public TextFadePage()

 {

 InitializeComponent();

 }

 void OnSliderValueChanged(object sender, ValueChangedEventArgs args)

 {

 AbsoluteLayout.SetLayoutBounds(label1,

 new Rectangle(args.NewValue, 0.5, AbsoluteLayout.AutoSize,

 AbsoluteLayout.AutoSize));

 AbsoluteLayout.SetLayoutBounds(label2,

 new Rectangle(args.NewValue, 0.5, AbsoluteLayout.AutoSize,

 AbsoluteLayout.AutoSize));

 label1.Opacity = 1 - args.NewValue;

 label2.Opacity = args.NewValue;

 }

}

At the same time, the Opacity values are set so that one Label seems to fade into the other as both labels move across the screen:

[image: Image]

The Stepper difference

The Stepper view has very nearly the same programming interface as the Slider: It has Minimum, Maximum, and Value properties of type double and fires a ValueChanged event handler.

However, the Maximum property of Stepper has a default value of 100, and Stepper also adds an Increment property with a default value of 1. The Stepper visuals consist solely of two buttons labeled with minus and plus signs. Presses of those two buttons change the value incrementally between Minimum to Maximum based on the Increment property.

Although Value and other properties of Stepper are of type double, Stepper is often used for the selection of integral values. You probably don’t want the value of ((Maximum – Minimum) ÷ Increment) to be as high as 100, as the default values suggest. If you press and hold your finger on one of the buttons, you’ll trigger a typematic repeat on iOS, but not on Android or Windows 10 Mobile. Unless your program provides another way for the user to change the Stepper value (perhaps with a text Entry view), you don’t want to force the user to press a button 100 times to get from Minimum to Maximum.

The StepperDemo program sets the Maximum property of the Stepper to 10 and uses the Stepper as a rudimentary design aid in determining an optimum border width for a Button border. The Button at the top of the StackLayout is solely for display purposes and has the necessary property settings of BackgroundColor and BorderColor to enable the border display on Android and Windows 10 Mobile.

The Stepper is the last child in the following StackLayout. Between the Button and Stepper are a pair of Label elements for displaying the current Stepper value:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StepperDemo.StepperDemoPage">

 <StackLayout>

 <Button x:Name="button"

 Text=" Sample Button "

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <Button.BackgroundColor>

 <OnPlatform x:TypeArguments="Color"

 Android="#404040" />

 </Button.BackgroundColor>

 <Button.BorderColor>

 <OnPlatform x:TypeArguments="Color"

 Android="#C0C0C0"

 WinPhone="Black" />

 </Button.BorderColor>

 </Button>

 <StackLayout VerticalOptions="CenterAndExpand">

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Medium" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Label Text="Button Border Width =" />

 <Label x:Name="label" />

 </StackLayout>

 <Stepper x:Name="stepper"

 Maximum="10"

 ValueChanged="OnStepperValueChanged"

 HorizontalOptions="Center" />

 </StackLayout>

 </StackLayout>

</ContentPage>

The Label displaying the Stepper value is initialized from the constructor of the code-behind file. With each change in the Value property of the Stepper, the event handler displays the new value and sets the Button border width:

Click here to view code image

public partial class StepperDemoPage : ContentPage

{

 public StepperDemoPage()

 {

 InitializeComponent();

 // Initialize display.

 OnStepperValueChanged(stepper, null);

 }

 void OnStepperValueChanged(object sender, ValueChangedEventArgs args)

 {

 Stepper stepper = (Stepper)sender;

 button.BorderWidth = stepper.Value;

 label.Text = stepper.Value.ToString("F0");

 }

}

[image: Image]

Switch and CheckBox

Application programs often need Boolean input from the user, which requires some way for the user to toggle a program option to On or Off, Yes or No, True or False, or however you want to think of it. In Xamarin.Forms, this is a view called the Switch.

Switch basics

Switch defines just one property on its own, named IsToggled of type bool, and it fires the Toggled event to indicate a change in this property. In code, you might be inclined to give a Switch a name of switch, but that’s a C# keyword, so you’ll want to pick something else. In XAML, however, you can set the x:Name attribute to switch, and the XAML parser will smartly create a field named @switch, which is how C# allows you to define a variable name using a C# keyword.

The SwitchDemo program creates two Switch elements with two identifying labels: “Italic” and “Boldface”. Each Switch has its own event handler, which formats the larger Label at the bottom of the StackLayout:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SwitchDemo.SwitchDemoPage">

 <StackLayout Padding="10, 0">

 <StackLayout HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="End">

 <Label Text="Italic: "

 VerticalOptions="Center" />

 <Switch Toggled="OnItalicSwitchToggled"

 VerticalOptions="Center" />

 </StackLayout>

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="End">

 <Label Text="Boldface: "

 VerticalOptions="Center" />

 <Switch Toggled="OnBoldSwitchToggled"

 VerticalOptions="Center" />

 </StackLayout>

 </StackLayout>

 <Label x:Name="label"

 Text=

"Just a little passage of some sample text that can be formatted

in italic or boldface by toggling the two Switch elements."

 FontSize="Large"

 HorizontalTextAlignment="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

The Toggled event handler has a second argument of ToggledEventArgs, which has a Value property of type bool that indicates the new state of the IsToggled property. The event handlers in SwitchDemo use this value to set or clear the particular FontAttributes flag in the FontAttributes property of the long Label:

Click here to view code image

public partial class SwitchDemoPage : ContentPage

{

 public SwitchDemoPage()

 {

 InitializeComponent();

 }

 void OnItalicSwitchToggled(object sender, ToggledEventArgs args)

 {

 if (args.Value)

 {

 label.FontAttributes |= FontAttributes.Italic;

 }

 else

 {

 label.FontAttributes &= ~FontAttributes.Italic;

 }

 }

 void OnBoldSwitchToggled(object sender, ToggledEventArgs args)

 {

 if (args.Value)

 {

 label.FontAttributes |= FontAttributes.Bold;

 }

 else

 {

 label.FontAttributes &= ~FontAttributes.Bold;

 }

 }

}

The Switch has a different appearance on the three platforms:

[image: Image]

Notice that the program aligns the two Switch views, which gives it a more attractive look, but which also means that the text labels are necessarily somewhat misaligned. To accomplish this formatting, the XAML file puts each of the pair of Label and Switch elements in a horizontal StackLayout. Each horizontal StackLayout has its HorizontalOptions set to End, which aligns each StackLayout at the right, and a parent StackLayout centers the collection of labels and switches on the screen with a HorizontalOptions setting of Center. Within the horizontal StackLayout, both views have their VerticalOptions properties set to Center. If the Switch is taller than the Label, then the Label is vertically centered relative to the Switch. But if the Label is taller than the Switch, the Switch is also vertically centered relative to the Label.

A traditional CheckBox

In more traditional graphical environments, the user-interface object that allows users to choose a Boolean value is called a CheckBox, usually featuring some text with a box that can be empty or filled with an X or a check mark. One advantage of the CheckBox over the Switch is that the text identifier is part of the visual and doesn’t need to be added with a separate Label.

One way to create custom views in Xamarin.Forms is by writing special classes called renderers that are specific to each platform and that reference views in each platform. That is demonstrated in Chapter 27.

However, it’s also possible to create custom views right in Xamarin.Forms by assembling a view from other views. You first derive a class from ContentView, set its Content property to a StackLayout (for example), and then add one or more views on that. (You saw an example of this technique in the ColorView class in Chapter 8.) You’ll probably also need to define one or more properties, and possibly some events, but you’ll want to take advantage of the bindable infrastructure established by the BindableObject and BindableProperty classes. That allows your properties to be styled and to be targets of data bindings.

A CheckBox consists of just two Label elements on a ContentView: one Label displays the text associated with the CheckBox, while the other displays a box. A TapGestureRecognizer detects when the CheckBox is tapped.

A CheckBox class has already been added to the Xamarin.FormsBook.Toolkit library that is included in the downloadable code for this book. Here’s how you would do it on your own:

In Visual Studio, you can select Forms Xaml Page from the Add New Item dialog box. However, this creates a class that derives from ContentPage when you really want a class that derives from ContentView. Simply change the root element of the XAML file from ContentPage to ContentView, and change the base class in the code-behind file from ContentPage to ContentView.

In Xamarin Studio, however, you can simply choose Forms ContentView Xaml from the New File dialog.

Here’s the CheckBox.xaml file:

Click here to view code image

<ContentView xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="Xamarin.FormsBook.Toolkit.CheckBox">

 <StackLayout Orientation="Horizontal">

 <Label x:Name="boxLabel" Text="☐" />

 <Label x:Name="textLabel" />

 </StackLayout>

 <ContentView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnCheckBoxTapped" />

 </ContentView.GestureRecognizers>

</ContentView>

That Unicode character \u2610 is called the Ballot Box character, and it’s just an empty square. Character \u2611 is a Ballot Box with Check, while \u2612 is a Ballot Box with X. To indicate a checked state, this CheckBox code-behind file sets the Text property of boxLabel to \u2611 (as you’ll see shortly).

The code-behind file of CheckBox defines three properties:

• Text

• FontSize

• IsChecked

CheckBox also defines an event named IsCheckedChanged.

Should CheckBox also define FontAttributes and FontFamily properties like Label and Button do? Perhaps, but these additional properties are not quite as crucial for views devoted to user interaction.

All three of the properties that CheckBox defines are backed by bindable properties. The code-behind file creates all three BindableProperty objects, and the property-changed handlers are defined as lambda functions within these methods.

Keep in mind that the property-changed handlers are static, so they need to cast the first argument to a CheckBox object to reference the instance properties and events in the class. The property-changed handler for IsChecked is responsible for changing the character representing the checked and unchecked state and firing the IsCheckedChanged event:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public partial class CheckBox : ContentView

 {

 public static readonly BindableProperty TextProperty =

 BindableProperty.Create(

 "Text",

 typeof(string),

 typeof(CheckBox),

 null,

 propertyChanged: (bindable, oldValue, newValue) =>

 {

 ((CheckBox)bindable).textLabel.Text = (string)newValue;

 });

 public static readonly BindableProperty FontSizeProperty =

 BindableProperty.Create(

 "FontSize",

 typeof(double),

 typeof(CheckBox),

 Device.GetNamedSize(NamedSize.Default, typeof(Label)),

 propertyChanged: (bindable, oldValue, newValue) =>

 {

 CheckBox checkbox = (CheckBox)bindable;

 checkbox.boxLabel.FontSize = (double)newValue;

 checkbox.textLabel.FontSize = (double)newValue;

 });

 public static readonly BindableProperty IsCheckedProperty =

 BindableProperty.Create(

 "IsChecked",

 typeof(bool),

 typeof(CheckBox),

 false,

 propertyChanged: (bindable, oldValue, newValue) =>

 {

 // Set the graphic.

 CheckBox checkbox = (CheckBox)bindable;

 checkbox.boxLabel.Text = (bool)newValue ? "\u2611" : "\u2610";

 // Fire the event.

 EventHandler<bool> eventHandler = checkbox.CheckedChanged;

 if (eventHandler != null)

 {

 eventHandler(checkbox, (bool)newValue);

 }

 });

 public event EventHandler<bool> CheckedChanged;

 public CheckBox()

 {

 InitializeComponent();

 }

 public string Text

 {

 set { SetValue(TextProperty, value); }

 get { return (string)GetValue(TextProperty); }

 }

 [TypeConverter(typeof(FontSizeConverter))]

 public double FontSize

 {

 set { SetValue(FontSizeProperty, value); }

 get { return (double)GetValue(FontSizeProperty); }

 }

 public bool IsChecked

 {

 set { SetValue(IsCheckedProperty, value); }

 get { return (bool)GetValue(IsCheckedProperty); }

 }

 // TapGestureRecognizer handler.

 void OnCheckBoxTapped(object sender, EventArgs args)

 {

 IsChecked = !IsChecked;

 }

 }

}

Notice the TypeConverter on the FontSize property. That allows the property to be set in XAML with attribute values such as “Small” and “Large”.

The Tapped handler for the TapGestureRecognizer is at the bottom of the class and simply toggles the IsChecked property by using the C# logical negation operator. An even shorter statement to toggle a Boolean variable uses the exclusive-OR assignment operator:

IsChecked ^= true;

The CheckBoxDemo program is very similar to the SwitchDemo program except that the markup is considerably simplified because the CheckBox includes its own Text property:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="CheckBoxDemo.CheckBoxDemoPage">

 <StackLayout Padding="10, 0">

 <StackLayout HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <toolkit:CheckBox Text="Italic"

 FontSize="Large"

 CheckedChanged="OnItalicCheckBoxChanged" />

 <toolkit:CheckBox Text="Boldface"

 FontSize="Large"

 CheckedChanged="OnBoldCheckBoxChanged" />

 </StackLayout>

 <Label x:Name="label"

 Text=

"Just a little passage of some sample text that can be formatted

in italic or boldface by toggling the two custom CheckBox views."

 FontSize="Large"

 HorizontalTextAlignment="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

The code-behind file is also very similar to the earlier program:

Click here to view code image

public partial class CheckBoxDemoPage : ContentPage

{

 public CheckBoxDemoPage()

 {

 InitializeComponent();

 }

 void OnItalicCheckBoxChanged(object sender, bool IsChecked)

 {

 if (ischecked)

 {

 label.FontAttributes |= FontAttributes.Italic;

 }

 else

 {

 label.FontAttributes &= ~FontAttributes.Italic;

 }

 }

 void OnBoldCheckBoxChanged(object sender, bool IsChecked)

 {

 if (ischecked)

 {

 label.FontAttributes |= FontAttributes.Bold;

 }

 else

 {

 label.FontAttributes &= ~FontAttributes.Bold;

 }

 }

}

Interestingly, the character for the checked box shows up in color on the Android and Windows platforms:

[image: Image]

Typing text

Xamarin.Forms defines three views for obtaining text input from the user:

• Entry for a single line of text.

• Editor for multiple lines of text.

• SearchBar for a single line of text specifically for search operations.

Both Entry and Editor derive from InputView, which derives from View. SearchBar derives directly from View.

Both Entry and SearchBar implement horizontal scrolling if the entered text exceeds the width of the view. The Editor implements word wrapping and is capable of vertical scrolling for text that exceeds its height.

Keyboard and focus

Entry, Editor, and SearchBar are different from all the other views in that they make use of the phone’s onscreen keyboard, sometimes called the virtual keyboard. From the user’s perspective, tapping the Entry, Editor, or SearchBar view invokes the onscreen keyboard, which slides in from the bottom. Tapping anywhere else on the screen (except another Entry, Editor, or SearchBar view) often makes the keyboard go away, and sometimes the keyboard can be dismissed in other ways.

From the program’s perspective, the presence of the keyboard is closely related to input focus, a concept that originated in desktop graphical user interface environments. On both desktop environments and mobile devices, input from the keyboard can be directed to only one user-interface object at a time, and that object must be clearly selectable and identifiable by the user. The object that receives keyboard input is known as the object with keyboard input focus, or more simply, just input focus or focus.

The VisualElement class defines several methods, properties, and events related to input focus:

• The Focus method attempts to set input focus to a visual element and returns true if successful.

• The Unfocus method removes input focus from a visual element.

• The IsFocused get-only property is true if a visual element currently has input focus.

• The Focused event is fired when a visual element acquires input focus.

• The Unfocused event is fired when a visual element loses input focus.

As you know, mobile environments make far less use of the keyboard than desktop environments do, and most mobile views (such as the Slider, Stepper, and Switch that you’ve already seen) don’t make use of the keyboard at all. Although these five focus-related members of the VisualElement class appear to implement a generalized system for passing input focus between visual elements, they really only pertain to Entry, Editor, and SearchBar.

These views signal that they have input focus with a flashing caret showing the text input point, and they trigger the keyboard to slide up. When the view loses input focus, the keyboard slides back down.

A view must have its IsEnabled property set to true (the default state) to acquire input focus, and of course the IsVisible property must also be true or the view won’t be on the screen at all.

Choosing the keyboard

Entry and Editor are different from SearchBar in that they both derive from InputView. Interestingly, although Entry and Editor define similar properties and events, InputView defines just one property: Keyboard. This property allows a program to select the type of keyboard that is displayed. For example, a keyboard for typing a URL should be different from a keyboard for entering a phone number. All three platforms have various styles of virtual keyboards appropriate for different types of text input. A program cannot select the keyboard used for SearchBar.

This Keyboard property is of type Keyboard, a class that defines seven static read-only properties of type Keyboard appropriate for different keyboard uses:

• Default

• Text

• Chat

• Url

• Email

• Telephone

• Numeric

On all three platforms, the Numeric keyboard allows typing decimal points but does not allow typing a negative sign, so it’s limited to positive numbers.

The following program creates seven Entry views that let you see how these keyboards are implemented in the three platforms. The particular keyboard attached to each Entry is identified by a property defined by Entry named Placeholder. This is the text that appears in the Entry prior to anything the user types as a hint for the nature of the text the program is expecting. Placeholder text is commonly a short phrase such as “First Name” or “Email Address”:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="EntryKeyboards.EntryKeyboardsPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <ScrollView>

 <StackLayout>

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Entry">

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Entry Placeholder="Default"

 Keyboard="Default" />

 <Entry Placeholder="Text"

 Keyboard="Text" />

 <Entry Placeholder="Chat"

 Keyboard="Chat" />

 <Entry Placeholder="Url"

 Keyboard="Url" />

 <Entry Placeholder="Email"

 Keyboard="Email" />

 <Entry Placeholder="Telephone"

 Keyboard="Telephone" />

 <Entry Placeholder="Numeric"

 Keyboard="Numeric" />

 </StackLayout>

 </ScrollView>

</ContentPage>

The placeholders appear as gray text. Here’s how the display looks when the program first begins to run:

[image: Image]

Just as with the Slider, you don’t want to set HorizontalOptions on an Entry to Left, Center, or Right unless you also set the WidthRequest property. If you do so, the Entry collapses to a very small width. It can still be used—the Entry automatically provides horizontal scrolling for text longer than the Entry can display—but you should really try to provide an adequate size. In this program each Entry is as wide as the screen minus a 10-unit padding on the left and right.

You can estimate an adequate WidthRequest through experimentation with different text lengths. The next program in this chapter sets the Entry width to a value equivalent to one inch.

The EntryKeyboards program evenly spaces the seven Entry views vertically using a VerticalOptions value of CenterAndExpand set through an implicit style. Clearly there is enough vertical room for all seven Entry views, so you might be puzzled about the use of the ScrollView in the XAML file.

The ScrollView is specifically for iOS. If you tap an Entry close to the bottom of the Android or Windows 10 Mobile screen, the operating system will automatically move up the contents of the page when the keyboard pops up, so the Entry is still visible while you are typing. But iOS doesn’t do that unless a ScrollView is provided.

Here’s how each screen looks when text is being typed in one of the Entry views toward the bottom of the screen:

[image: Image]

Entry properties and events

Besides inheriting the Keyboard property from InputView, Entry defines four more properties, only one of which you saw in the previous program:

• Text — the string that appears in the Entry

• TextColor — a Color value

• IsPassword — a Boolean that causes characters to be masked right after they’re typed

• Placeholder — light-colored text that appears in the Entry but disappears as soon as the user begins typing.

Generally, a program obtains what the user typed by accessing the Text property, but the program can also initialize the Text property. Perhaps the program wishes to suggest some text input.

The Entry also defines two events:

• TextChanged

• Completed

The TextChanged event is fired for every change in the Text property, which generally corresponds to every keystroke (except shift and some special keys). A program can monitor this event to perform validity checks. For example, you might check for valid numbers or valid email addresses to enable a Calculate or Send button.

The Completed event is fired when the user presses a particular key on the keyboard to indicate that the text is completed. This key is platform specific:

• iOS: The key is labeled return, which is not on the Telephone or Numeric keyboard.

• Android: The key is a green check mark in the lower-right corner of the keyboard.

• Windows Phone: The key is an enter (or return) symbol ([image: Image]) on most keyboards but is a go symbol (→) on the Url keyboard. Such a key is not present on the Telephone and Numeric keyboards.

On iOS and Android, the completed key dismisses the keyboard in addition to generating the Completed event. On Windows 10 Mobile it does not.

Android and Windows users can also dismiss the keyboard by using the phone’s Back button at the bottom left of the portrait screen. This causes the Entry to lose input focus but does not cause the Completed event to fire.

Let’s write a program named QuadraticEquations that solves quadratic equations, which are equations of the form:

ax2 + bx + c = 0

For any three constants a, b, and c, the program uses the quadratic equation to solve for x:

[image: Image]

You enter a, b, and c in three Entry views and then press a Button labeled Solve for x.

Here’s the XAML file. Unfortunately, the Numeric keyboard is not suitable for this program because on all three platforms it does not allow entering negative numbers. For that reason, no particular keyboard is specified:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="QuadaticEquations.QuadraticEquationsPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Medium" />

 <Setter Property="VerticalOptions" Value="Center" />

 </Style>

 <Style TargetType="Entry">

 <Setter Property="WidthRequest" Value="180" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <!-- Entry section -->

 <StackLayout Padding="20, 0, 0, 0"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <StackLayout Orientation="Horizontal">

 <Entry x:Name="entryA"

 TextChanged="OnEntryTextChanged"

 Completed="OnEntryCompleted" />

 <Label Text=" x² +" />

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <Entry x:Name="entryB"

 TextChanged="OnEntryTextChanged"

 Completed="OnEntryCompleted" />

 <Label Text=" x +" />

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <Entry x:Name="entryC"

 TextChanged="OnEntryTextChanged"

 Completed="OnEntryCompleted" />

 <Label Text=" = 0" />

 </StackLayout>

 </StackLayout>

 <!-- Button -->

 <Button x:Name="solveButton"

 Text="Solve for x"

 FontSize="Large"

 IsEnabled="False"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 Clicked="OnSolveButtonClicked" />

 <!-- Results section -->

 <StackLayout VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Label x:Name="solution1Label"

 HorizontalTextAlignment="Center" />

 <Label x:Name="solution2Label"

 HorizontalTextAlignment="Center" />

 </StackLayout>

 </StackLayout>

</ContentPage>

The Label, Entry, and Button views are divided into three sections: data input at the top, the Button in the middle, and the results at the bottom. Notice the platform-specific WidthRequest setting in the implicit Style for the Entry. This gives each Entry a one-inch width.

The program provides two ways to trigger a calculation: by pressing the completion key on the keyboard, or by pressing the Button in the middle of the page. Another option in a program such as this would be to perform the calculation for every keystroke (or to be more accurate, every TextChanged event). That would work here because the recalculation is very quick. However, in the present design the results are near the bottom of the screen and are covered when the virtual keyboard is active, so the page would have to be reorganized for such a scheme to make sense.

The QuadraticEquations program uses the TextChanged event but solely to determine the validity of the text typed into each Entry. The text is passed to Double.TryParse, and if the method returns false, the Entry text is displayed in red. (On Windows 10 Mobile, the red text coloring shows up only when the Entry loses input focus.) Also, the Button is enabled only if all three Entry views contain valid double values. Here’s the first half of the code-behind file that shows all the program interaction:

Click here to view code image

public partial class QuadraticEquationsPage : ContentPage

{

 public QuadraticEquationsPage()

 {

 InitializeComponent();

 // Initialize Entry views.

 entryA.Text = "1";

 entryB.Text = "-1";

 entryC.Text = "-1";

 }

 void OnEntryTextChanged(object sender, TextChangedEventArgs args)

 {

 // Clear out solutions.

 solution1Label.Text = " ";

 solution2Label.Text = " ";

 // Color current entry text based on validity.

 Entry entry = (Entry)sender;

 double result;

 entry.TextColor = Double.TryParse(entry.Text, out result) ? Color.Default : Color.Red;

 // Enable the button based on validity.

 solveButton.IsEnabled = Double.TryParse(entryA.Text, out result) &&

 Double.TryParse(entryB.Text, out result) &&

 Double.TryParse(entryC.Text, out result);

 }

 void OnEntryCompleted(object sender, EventArgs args)

 {

 if (solveButton.IsEnabled)

 {

 Solve();

 }

 }

 void OnSolveButtonClicked(object sender, EventArgs args)

 {

 Solve();

 }

 ...

}

The Completed handler for the Entry calls the Solve method only when the Button is enabled, which (as you’ve seen) indicates that all three Entry views contain valid values. Therefore, the Solve method can safely assume that all three Entry views contain valid numbers that won’t cause Double.Parse to raise an exception.

The Solve method is necessarily complicated because the quadratic equation might have one or two solutions, and each solution might have an imaginary part as well as a real part. The method initializes the real part of the second solution to Double.NaN (“not a number”) and displays the second result only if that’s no longer the case. The imaginary parts are displayed only if they’re nonzero, and either a plus sign or an en dash (Unicode \u2013) connects the real and imaginary parts:

Click here to view code image

public partial class QuadraticEquationsPage : ContentPage

{

 ...

 void Solve()

 {

 double a = Double.Parse(entryA.Text);

 double b = Double.Parse(entryB.Text);

 double c = Double.Parse(entryC.Text);

 double solution1Real = 0;

 double solution1Imag = 0;

 double solution2Real = Double.NaN;

 double solution2Imag = 0;

 string str1 = " ";

 string str2 = " ";

 if (a == 0 && b == 0 && c == 0)

 {

 str1 = "x = anything";

 }

 else if (a == 0 && b == 0)

 {

 str1 = "x = nothing";

 }

 else

 {

 if (a == 0)

 {

 solution1Real = -c / b;

 }

 else

 {

 double discriminant = b * b - 4 * a * c;

 if (discriminant == 0)

 {

 solution1Real = -b / (2 * a);

 }

 else if (discriminant > 0)

 {

 solution1Real = (-b + Math.Sqrt(discriminant)) / (2 * a);

 solution2Real = (-b - Math.Sqrt(discriminant)) / (2 * a);

 }

 else

 {

 solution1Real = -b / (2 * a);

 solution2Real = solution1Real;

 solution1Imag = Math.Sqrt(-discriminant) / (2 * a);

 solution2Imag = -solution1Imag;

 }

 }

 str1 = Format(solution1Real, solution1Imag);

 str2 = Format(solution2Real, solution2Imag);

 }

 solution1Label.Text = str1;

 solution2Label.Text = str2;

 }

 string Format(double real, double imag)

 {

 string str = " ";

 if (!Double.IsNaN(real))

 {

 str = String.Format("x = {0:F5}", real);

 if (imag != 0)

 {

 str += String.Format(" {0} {1:F5} i",

 Math.Sign(imag) == 1 ? "+" : "\u2013",

 Math.Abs(imag));

 }

 }

 return str;

 }

}

Here are a couple of solutions:

[image: Image]

The Editor difference

You might assume that the Editor has a more extensive API than the Entry because it can handle multiple lines and even paragraphs of text. But in Xamarin.Forms, the API for Editor is actually somewhat simpler. Besides inheriting the Keyboard property from InputView, Editor defines just one property on its own: the essential Text property. Editor also defines the same two events as Entry:

• TextChanged

• Completed

However, the Completed event is of necessity a little different. While a return or enter key can signal completion on an Entry, these same keys used with the Editor instead mark the end of a paragraph.

The Completed event for Editor works a little differently on the three platforms: For iOS, Xamarin.Forms displays a special Done button above the keyboard that dismisses the keyboard and causes a Completed event to fire. On Android and Windows 10 Mobile, the system Back button—the button at the lower-left corner of the phone in portrait mode—dismisses the keyboard and fires the Completed event. This Back button does not fire the Completed event for an Entry view, but it does dismiss the keyboard.

It is likely that what users type into an Editor is not telephone numbers and URLs but actual words, sentences, and paragraphs. In most cases, you’ll want to use the Text keyboard for Editor because it provides spelling checks, suggestions, and automatic capitalization of the first word of sentences. If you don’t want these features, the Keyboard class provides an alternative means of specifying a keyboard by using a static Create method and the following members of the KeyboardFlags enumeration:

• CapitalizeSentence (equal to 1)

• Spellcheck (2)

• Suggestions (4)

• All (\xFFFFFFFF)

The Text keyboard is equivalent to creating the keyboard with KeyboardFlags.All. The Default keyboard is equivalent to creating the keyboard with (KeyboardFlags)0. You can’t create a keyboard in XAML using these flags. It must be done in code.

The JustNotes program is intended as a freeform note-taking program that automatically saves and restores the contents of an Editor view by using the Properties collection of the Application class. The page basically consists of a large Editor, but to give the user some clue about what the program does, the name of the program is displayed at the top. On iOS and Android, such text can be set by the Title property of the page, but to display that property, the ContentPage must be wrapped in an ApplicationPage (as you discovered with the ToolbarDemo program in Chapter 13). That’s done in the constructor of the App class:

Click here to view code image

public class App : Application

{

 public App()

 {

 MainPage = new NavigationPage(new JustNotesPage());

 }

 protected override void OnStart()

 {

 // Handle when your app starts

 }

 protected override void OnSleep()

 {

 // Handle when your app sleeps

 ((JustNotesPage)(((NavigationPage)MainPage).CurrentPage)).OnSleep();

 }

 protected override void OnResume()

 {

 // Handle when your app resumes

 }

}

The OnSleep method in App calls a method also named OnSleep defined in the JustNotesPage code-behind file. This is how the contents of the Editor are saved in application memory.

The root element of the XAML page sets the Title property. The remainder of the page is occupied by an AbsoluteLayout filled with the Editor:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="JustNotes.JustNotesPage"

 Title="Just Notes">

 <StackLayout>

 <AbsoluteLayout VerticalOptions="FillAndExpand">

 <Editor x:Name="editor"

 Keyboard="Text"

 AbsoluteLayout.LayoutBounds="0, 0, 1, 1"

 AbsoluteLayout.LayoutFlags="All"

 Focused="OnEditorFocused"

 Unfocused="OnEditorUnfocused" />

 </AbsoluteLayout>

 </StackLayout>

</ContentPage>

So why does the program use an AbsoluteLayout to host the Editor?

The JustNotes program is a work in progress. It doesn’t quite work right for iOS. As you’ll recall, when an Entry view is positioned toward the bottom of the screen, you want to put it in a ScrollView so that it scrolls up when the iOS virtual keyboard is displayed. However, because Editor implements its own scrolling, you can’t put it in a ScrollView.

For that reason, the code-behind file sets the height of the Editor to one-half the height of the AbsoluteLayout when the Editor gets input focus so that the keyboard doesn’t overlap it, and it restores the Editor height when it loses input focus:

Click here to view code image

public partial class JustNotesPage : ContentPage

{

 public JustNotesPage()

 {

 InitializeComponent();

 // Retrieve last saved Editor text.

 IDictionary<string, object> properties = Application.Current.Properties;

 if (properties.ContainsKey("text"))

 {

 editor.Text = (string)properties["text"];

 }

 }

 void OnEditorFocused(object sender, FocusEventArgs args)

 {

 if (Device.OS == TargetPlatform.iOS)

 {

 AbsoluteLayout.SetLayoutBounds(editor, new Rectangle(0, 0, 1, 0.5));

 }

 }

 void OnEditorUnfocused(object sender, FocusEventArgs args)

 {

 if (Device.OS == TargetPlatform.iOS)

 {

 AbsoluteLayout.SetLayoutBounds(editor, new Rectangle(0, 0, 1, 1));

 }

 }

 public void OnSleep()

 {

 // Save Editor text.

 Application.Current.Properties["text"] = editor.Text;

 }

}

That adjustment is only approximate, of course. It varies by device, and it varies by portrait and landscape mode, but sufficient information is not currently available in Xamarin.Forms to do it more accurately. For now, you should probably restrict your use of Editor views to the top area of the page.

The code for saving and restoring the Editor contents is rather prosaic in comparison with the Editor manipulation. The OnSleep method (called from the App class) saves the text in the Properties dictionary with a key of “text” and the constructor restores it.

Here’s the program running on all three platforms with the Text keyboard in view with word suggestions. On the Windows 10 Mobile screen, a word has been selected and might be copied to the clipboard for a later paste operation:

[image: Image]

The SearchBar

The SearchBar doesn’t derive from InputView like Entry and Editor, and it doesn’t have a Keyboard property. The keyboard that SearchBar displays when it acquires input focus is platform specific and appropriate for a search command. The SearchBar itself is similar to an Entry view, but depending on the platform, it might be adorned with some other graphics and contain a button that erases the typed text.

SearchBar defines two events:

• TextChanged

• SearchButtonPressed

The TextChanged event allows your program to access a text entry in progress. Perhaps your program can actually begin a search or offer context-specific suggestions before the user completes typing. The SearchButtonPressed event is equivalent to the Completed event fired by Entry. It is triggered by a particular button on the keyboard in the same location as the completed button for Entry but possibly labeled differently.

SearchBar defines five properties:

• Text — the text entered by the user

• Placeholder — hint text displayed before the user begins typing

• CancelButtonColor — of type Color

• SearchCommand — for use with data binding

• SearchCommandParameter — for use with data binding

The SearchBarDemo program uses only Text and Placeholder, but the XAML file attaches handlers for both events:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SearchBarDemo.SearchBarDemoPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <SearchBar x:Name="searchBar"

 Placeholder="Search text"

 TextChanged="OnSearchBarTextChanged"

 SearchButtonPressed="OnSearchBarButtonPressed" />

 <ScrollView x:Name="resultsScroll"

 VerticalOptions="FillAndExpand">

 <StackLayout x:Name="resultsStack" />

 </ScrollView>

 </StackLayout>

</ContentPage>

The program uses the scrollable StackLayout named resultsStack to display the results of the search.

Here’s the SearchBar and keyboard for the three platforms. Notice the search icon and a delete button on all three platforms, and the special search keys on the iOS and Android keyboards:

[image: Image]

You might guess from the entries in the three SearchBar views that the program allows searching through the text of Herman Melville’s Moby-Dick. That is true! The entire novel is stored as an embedded resource in the Texts folder of the Portable Class Library project with the name MobyDick.txt. The file is a plain-text, one-line-per-paragraph format that originated with a file on the Gutenberg.net website.

The constructor of the code-behind file reads that whole file into a string field named bookText. The TextChanged handler clears the resultsStack of any previous search results so that there’s no discrepancy between the text being typed into the SearchBar and this list. The SearchButtonPressed event initiates the search:

Click here to view code image

public partial class SearchBarDemoPage : ContentPage

{

 const double MaxMatches = 100;

 string bookText;

 public SearchBarDemoPage()

 {

 InitializeComponent();

 // Load embedded resource bitmap.

 string resourceID = "SearchBarDemo.Texts.MobyDick.txt";

 Assembly assembly = GetType().GetTypeInfo().Assembly;

 using (Stream stream = assembly.GetManifestResourceStream(resourceID))

 {

 using (StreamReader reader = new StreamReader(stream))

 {

 bookText = reader.ReadToEnd();

 }

 }

}

void OnSearchBarTextChanged(object sender, TextChangedEventArgs args)

{

 resultsStack.Children.Clear();

}

void OnSearchBarButtonPressed(object sender, EventArgs args)

{

 // Detach resultsStack from layout.

 resultsScroll.Content = null;

 resultsStack.Children.Clear();

 SearchBookForText(searchBar.Text);

 // Reattach resultsStack to layout.

 resultsScroll.Content = resultsStack;

}

void SearchBookForText(string searchText)

{

 int count = 0;

 bool isTruncated = false;

 using (StringReader reader = new StringReader(bookText))

 {

 int lineNumber = 0;

 string line;

 while (null != (line = reader.ReadLine()))

 {

 lineNumber++;

 int index = 0;

 while (-1 != (index = (line.IndexOf(searchText, index,

 StringComparison.OrdinalIgnoreCase))))

 {

 if (count == MaxMatches)

 {

 isTruncated = true;

 break;

 }

 index += 1;

 // Add the information to the StackLayout.

 resultsStack.Children.Add(

 new Label

 {

 Text = String.Format("Found at line {0}, offset {1}",

 lineNumber, index)

 });

 count++;

 }

 if (isTruncated)

 {

 break;

 }

 }

 }

 // Add final count to the StackLayout.

 resultsStack.Children.Add(

 new Label

 {

 Text = String.Format("{0} match{1} found{2}",

 count,

 count == 1 ? "" : "es",

 isTruncated ? " - stopped" : "")

 });

 }

}

The SearchBookForText method uses the search text with the IndexOf method applied to each line of the book for case-insensitive comparison and adds a Label to resultsStack for each match. However, this process has performance problems because each Label that is added to the StackLayout potentially triggers a new layout calculation. That’s unnecessary. For this reason, before beginning the search, the program detaches the StackLayout from the visual tree by setting the Content property of its parent (the ScrollView) to null:

Click here to view code image

resultsScroll.Content = null;

After all the Label views have been added to the StackLayout, the StackLayout is added back to the visual tree:

Click here to view code image

resultsScroll.Content = resultsStack;

But even that’s not a sufficient performance improvement for some searches, and that is why the program limits itself to the first 100 matches. (Notice the MaxMatches constant defined at the top of the class.) Here’s the program showing the results of the searches you saw entered earlier:

[image: Image]

You’ll need to reference the actual file to see what those matches are.

Would running the search in a second thread of execution speed things up? No. The actual text search is very fast. The performance issues involve the user interface. If the SearchBookForText method were run in a secondary thread, then it would need to use Device.BeginInvokeOnMainThread to add each Label to the StackLayout. If that StackLayout is attached to the visual tree, this would make the program operate more dynamically—the individual items would appear on the screen following each item added to the list—but the switching back and forth between threads would slow down the overall operation.

Date and time selection

A Xamarin.Forms application that needs a date or time from the user can use the DatePicker or TimePicker view.

These are very similar: The two views simply display a date or time in a box similar to an Entry view. Tapping the view invokes the platform-specific date or time selector. The user then selects (or dials in) a new date or time and signals completion.

The DatePicker

DatePicker has three properties of type DateTime:

• MinimumDate, initialized to January 1, 1900

• MaximumDate, initialized to December 31, 2100

• Date, initialized to DateTime.Today

A program can set these properties to whatever it wants as long as MinimumDate is prior to MaximumDate. The Date property reflects the user’s selection.

If you’d like to set those properties in XAML, you can do so using the x:DateTime element. Use a format that is acceptable to the DateTime.Parse method with a second argument of CultureInfo.InvariantCulture. Probably the easiest is the short-date format, which is a two-digit month, a two-digit day, and a four-digit year, separated by slashes:

<DatePicker ... >

 <DatePicker.MinimumDate>

 03/01/2016

 </DatePicker.MinimumDate>

 <DatePicker.MaximumDate>

 10/31/2016

 </DatePicker.MaximumDate>

 <DatePicker.Date>

 04/24/2016

 </DatePicker.Date>

</DatePicker>

The DatePicker displays the selected date by using the normal ToString method, but you can set the Format property of the view to a custom .NET formatting string. The initial value is “d”—the short-date format.

Here’s the XAML file from a program called DaysBetweenDates that lets you select two dates and then calculates the number of days between them. It contains two DatePicker views labeled To and From:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="DaysBetweenDates.DaysBetweenDatesPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 30, 10, 0"

 Android="10, 10, 10, 0"

 WinPhone="10, 10, 10, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="DatePicker">

 <Setter Property="Format" Value="D" />

 <Setter Property="VerticalOptions" Value="Center" />

 <Setter Property="HorizontalOptions" Value="FillAndExpand" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <!-- Underlined text header -->

 <StackLayout Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Label Text="Days between Dates"

 FontSize="Large"

 FontAttributes="Bold"

 TextColor="Accent" />

 <BoxView Color="Accent"

 HeightRequest="3" />

 </StackLayout>

 <StackLayout Orientation="Horizontal"

 VerticalOptions="CenterAndExpand">

 <Label Text="From:"

 VerticalOptions="Center" />

 <DatePicker x:Name="fromDatePicker"

 DateSelected="OnDateSelected" />

 </StackLayout>

 <StackLayout Orientation="Horizontal"

 VerticalOptions="CenterAndExpand">

 <Label Text=" To:"

 VerticalOptions="Center" />

 <DatePicker x:Name="toDatePicker"

 DateSelected="OnDateSelected" />

 </StackLayout>

 <Label x:Name="resultLabel"

 FontSize="Medium"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

An implicit style sets the Format property of the two DatePicker views to “D”, which is the longdate format, to include the text day of the week and month name. The XAML file uses two horizontal StackLayout objects for displaying a Label and DatePicker side by side.

Watch out: If you use the long-date format, you’ll want to avoid setting the HorizontalOptions property of the DatePicker to Start, Center, or End. If you put the DatePicker in a horizontal StackLayout (as in this program), set the HorizontalOptions to FillAndExpand. Otherwise, if the user selects a date with a longer text string than the original date, the result is not formatted well. The DaysBetweenDates program uses an implicit style to give the DatePicker a HorizontalOptions value of FillAndExpand so that it occupies the entire width of the horizontal StackLayout except for what’s occupied by the Label.

When you tap one of the DatePicker fields, a platform-specific panel comes up. On iOS, it occupies just the bottom part of the screen, but on Android and Windows 10 Mobile, it pretty much takes over the screen:

[image: Image]

Notice the Done button on iOS, the OK button on Android, and the check-mark toolbar button on Windows Phone. All three of these buttons dismiss the date-picking panel and return to the program with a firing of the DateSelected event. The event handler in the DaysBetweenDates code-behind file accesses both DatePicker views and calculates the number of days between the two dates:

Click here to view code image

public partial class DaysBetweenDatesPage : ContentPage

{

 public DaysBetweenDatesPage()

 {

 InitializeComponent();

 // Initialize.

 OnDateSelected(null, null);

 }

 void OnDateSelected(object sender, DateChangedEventArgs args)

 {

 int days = (toDatePicker.Date - fromDatePicker.Date).Days;

 resultLabel.Text = String.Format("{0} day{1} between dates",

 days, days == 1 ? "" : "s");

 }

}

Here’s the result:

[image: Image]

The TimePicker (or is it a TimeSpanPicker?)

The TimePicker is somewhat simpler than DatePicker. It defines only Time and Format properties, and it doesn’t include an event to indicate a new selected Time value. If you need to be notified, you can install a handler for the PropertyChanged event.

Although TimePicker displays the selected time by using the ToString method of DateTime, the Time property is actually of type TimeSpan, indicating a duration of time since midnight.

The SetTimer program includes a TimePicker. The program assumes that the time picked from the TimePicker is within the next 24 hours and then notifies you when that time has come. The XAML file puts a TimePicker, a Switch, and an Entry on the page.

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SetTimer.SetTimerPage"

 Padding="50">

 <StackLayout Spacing="20"

 VerticalOptions="Center">

 <TimePicker x:Name="timePicker"

 PropertyChanged="OnTimePickerPropertyChanged" />

 <Switch x:Name="switch"

 HorizontalOptions="End"

 Toggled="OnSwitchToggled" />

 <Entry x:Name="entry"

 Text="Sample Timer"

 Placeholder="label" />

 </StackLayout>

</ContentPage>

The TimePicker has a PropertyChanged event handler attached. The Entry lets you remind yourself what the timer is supposed to remind you of.

When you tap the TimePicker, a platform-specific panel pops up. As with the DatePicker, the Android and Windows 10 Mobile panels obscure much of the screen underneath, but you can see the SetTimer user interface in the center of the iPhone screen:

[image: Image]

In a real timer program—a timer program that is actually useful and not just a demonstration of the TimePicker view—the code-behind file would access the platform-specific notification interfaces so that the user would be notified even if the program were no longer active.

SetTimer doesn’t do that. SetTimer instead uses a platform-specific alert box that a program can invoke by calling the DisplayAlert method that is defined by Page and inherited by ContentPage.

The SetTriggerTime method at the bottom of the code-behind file (shown below) calculates the timer time based on DateTime.Today—a property that returns a DateTime indicating the current date, but with a time of midnight—and the TimeSpan returned from the TimePicker. If that time has already passed today, then it’s assumed to be tomorrow.

The timer, however, is set for one second. Every second the timer handler checks whether the Switch is on and whether the current time is greater than or equal to the timer time:

Click here to view code image

public partial class SetTimerPage : ContentPage

{

 DateTime triggerTime;

 public SetTimerPage()

 {

 InitializeComponent();

 Device.StartTimer(TimeSpan.FromSeconds(1), OnTimerTick);

 }

 bool OnTimerTick()

 {

 if (@switch.IsToggled && DateTime.Now >= triggerTime)

 {

 @switch.IsToggled = false;

 DisplayAlert("Timer Alert",

 "The '" + entry.Text + "' timer has elapsed",

 "OK");

 }

 return true;

 }

 void OnTimePickerPropertyChanged(object obj, PropertyChangedEventArgs args)

 {

 if (args.PropertyName == "Time")

 {

 SetTriggerTime();

 }

 }

 void OnSwitchToggled(object obj, ToggledEventArgs args)

 {

 SetTriggerTime();

 }

 void SetTriggerTime()

 {

 if (@switch.IsToggled)

 {

 triggerTime = DateTime.Today + timePicker.Time;

 if (triggerTime < DateTime.Now)

 {

 triggerTime += TimeSpan.FromDays(1);

 }

 }

 }

}

When the timer time has come, the program uses DisplayAlert to signal a reminder to the user. Here’s how this alert appears on the three platforms:

[image: Image]

Throughout this chapter, you’ve seen interactive views that define events, and you’ve seen application programs that implement event handlers. Often these event handlers access a property of the view and set a property of another view.

In the next chapter, you’ll see how these event handlers can be eliminated and how properties of different views can be linked, either in code or markup. This is the exciting feature of data binding.

Chapter 16. Data binding

Events and event handlers are a vital part of the interactive interface of Xamarin.Forms, but often event handlers perform very rudimentary jobs. They transfer values between properties of different objects and in some cases simply update a Label to show the new value of a view.

You can automate such connections between properties of two objects with a powerful feature of Xamarin.Forms called data binding. Under the covers, a data binding installs event handlers and handles the transfer of values from one property to another so that you don’t have to. In most cases you define these data bindings in the XAML file, so there’s no code (or very little code) involved. The use of data bindings helps reduce the number of “moving parts” in the application.

Data bindings also play a crucial role in the Model-View-ViewModel (MVVM) application architecture. As you’ll see in Chapter 18, “MVVM,” data bindings provide the link between the View (the user interface often implemented in XAML) and the underlying data of the ViewModel and Model. This means that the connections between the user interface and underlying data can be represented in XAML along with the user interface.

Binding basics

Several properties, methods, and classes are involved in data bindings:

• The Binding class (which derives from BindingBase) defines many characteristics of a data binding.

• The BindingContext property is defined by the BindableObject class.

• The SetBinding method is also defined by the BindableObject class.

• The BindableObjectExtensions class defines two additional overloads of SetBinding.

Two classes support XAML markup extensions for bindings:

• The BindingExtension class, which is private to Xamarin.Forms, provides support for the Binding markup extension that you use to define a data binding in XAML.

• The ReferenceExtension class is also crucial to bindings.

Two interfaces also get involved in data binding. These are:

• INotifyPropertyChanged (defined in the System.ComponentModel namespace) is the standard interface that classes use when notifying external classes that a property has changed.

This interface plays a major role in MVVM.

• IValueConverter (defined in the Xamarin.Forms namespace) is used to define small classes that aid data binding by converting values from one type to another.

The most fundamental concept of data bindings is this: Data bindings always have a source and a target. The source is a property of an object, usually one that changes dynamically at run time. When that property changes, the data binding automatically updates the target, which is a property of another object.

Target → Source

But as you’ll see, sometimes the data flow between the source and target isn’t in a constant direction. Even in those cases, however, the distinction between source and target is important because of one basic fact:

The target of a data binding must be backed by a BindableProperty object.

As you know, the VisualElement class derives from BindableObject by way of Element, and all the visual elements in Xamarin.Forms define most of their properties as bindable properties. For this reason, data-binding targets are almost always visual elements or—as you’ll see in Chapter 19, “Collection views”—objects called cells that are translated to visual elements.

Although the target of a data binding must be backed by a BindableProperty object, there is no such requirement for a data-binding source. The source can be a plain old C# property. However, in all but the most trivial data bindings, a change in the source property causes a corresponding change in the target property. This means that the source object must implement some kind of notification mechanism to signal when the property changes. This notification mechanism is the INotifyPropertyChanged interface, which is a standard .NET interface involved in data bindings and used extensively for implementing the MVVM architecture.

The rule for a nontrivial data-binding source—that is, a data-binding source that can dynamically change value—is therefore:

The source of a nontrivial data binding must implement INotifyPropertyChanged.

Despite its importance, the INotifyPropertyChanged interface has the virtue of being very simple: it consists solely of one event, called PropertyChanged, which a class fires when a property has changed.

Very conveniently for our purposes, BindableObject implements INotifyPropertyChanged. Any property that is backed by a bindable property automatically fires a PropertyChanged event when that property changes. This automatic firing of the event extends to bindable properties you might define in your own classes.

This means that you can define data bindings between properties of visual objects. In the grand scheme of things, most data bindings probably link visual objects with underlying data, but for purposes of learning about data bindings and experimenting with them, it’s nice to simply link properties of two views without defining data classes.

For the first few examples in this chapter, you’ll see data bindings in which the source is the Value property of a Slider and the target is the Opacity property of a Label. As you manipulate the Slider, the Label changes from transparent to opaque. Both properties are of type double and range from 0 to 1, so they are a perfect match.

You already know how to do this little job with a simple event handler. Let’s see how to do it with a data binding.

Code and XAML

Although most data bindings are defined in XAML, you should know how to do one in code. Here’s one way (but not the only way) to set a data binding in code:

• Set the BindingContext property on the target object to refer to the source object.

• Call SetBinding on the target object to specify both the target and source properties.

The BindingContext property is defined by BindableObject. (It’s the only property defined by BindableObject.) The SetBinding method is also defined by BindableObject, but there are two additional overloads of the SetBinding method in the BindableObjectExtensions class. The target property is specified as a BindableProperty; the source property is often specified as a string.

The OpacityBindingCode program creates two elements, a Label and a Slider, and defines a data binding that targets the Opacity property of the Label from the Value property of the Slider:

Click here to view code image

public class OpacityBindingCodePage : ContentPage

{

 public OpacityBindingCodePage()

 {

 Label label = new Label

 {

 Text = "Opacity Binding Demo",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 VerticalOptions = LayoutOptions.CenterAndExpand,

 HorizontalOptions = LayoutOptions.Center

 };

 Slider slider = new Slider

 {

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 // Set the binding context: target is Label; source is Slider.

 label.BindingContext = slider;

 // Bind the properties: target is Opacity; source is Value.

 label.SetBinding(Label.OpacityProperty, "Value");

 // Construct the page.

 Padding = new Thickness(10, 0);

 Content = new StackLayout

 {

 Children = { label, slider }

 };

 }

}

Here’s the property setting that connects the two objects:

Click here to view code image

label.BindingContext = slider;

The label object is the target and the slider object is the source. Here’s the method call that links the two properties:

Click here to view code image

label.SetBinding(Label.OpacityProperty, "Value");

The first argument to SetBinding is of type BindableProperty, and that’s the requirement for the target property. But the source property is merely specified as a string. It can be any type of property.

The screenshot demonstrates that you don’t need to set an event handler to use the Slider for controlling other elements on the page:

[image: Image]

Of course, somebody is setting an event handler. Under the covers, when the binding initializes itself, it also performs initialization on the target by setting the Opacity property of the Label from the Value property of the Slider. (As you discovered in the previous chapter, when you set an event handler yourself, this initialization doesn’t happen automatically.) Then the internal binding code checks whether the source object (in this case the Slider) implements the INotifyPropertyChanged interface. If so, a PropertyChanged handler is set on the Slider. Whenever the Value property changes, the binding sets the new value to the Opacity property of the Label.

Reproducing the binding in XAML involves two markup extensions that you haven’t seen yet:

• x:Reference, which is part of the XAML 2009 specification.

• Binding, which is part of Microsoft’s XAML-based user interfaces.

The x:Reference binding extension is very simple, but the Binding markup extension is the most extensive and complex markup extension in all of Xamarin.Forms. It will be introduced incrementally over the course of this chapter.

Here’s how you set the data binding in XAML:

• Set the BindingContext property of the target element (the Label) to an x:Reference markup extension that references the source element (the Slider).

• Set the target property (the Opacity property of the Label) to a Binding markup extension that references the source property (the Value property of the Slider).

The OpacityBindingXaml project shows the complete markup:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="OpacityBindingXaml.OpacityBindingXamlPage"

 Padding="10, 0">

 <StackLayout>

 <Label Text="Opacity Binding Demo"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 BindingContext="{x:Reference Name=slider}"

 Opacity="{Binding Path=Value}" />

 <Slider x:Name="slider"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

The two markup extensions for the binding are the last two attribute settings in the Label. The code-behind file contains nothing except the standard call to InitializeComponent.

When setting the BindingContext in markup, it is very easy to forget the x:Reference markup extension and simply specify the source name, but that doesn’t work.

The Path argument of the Binding markup expression specifies the source property. Why is this argument called Path rather than Property? You’ll see why later in this chapter.

You can make the markup a little shorter. The public class that provides support for Reference is ReferenceExtension, which defines its content property to be Name. The content property of BindingExtension (which is not a public class) is Path, so you don’t need the Name and Path arguments and equal signs:

Click here to view code image

<Label Text="Opacity Binding Demo"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 BindingContext="{x:Reference slider}"

 Opacity="{Binding Value}" />

Or if you’d like to make the markup longer, you can break out the BindingContext and Opacity properties as property elements and set them by using regular element syntax for x:Reference and Binding:

Click here to view code image

<Label Text="Opacity Binding Demo"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Label.BindingContext>

 <x:Reference Name="slider" />

 </Label.BindingContext>

 <Label.Opacity>

 <Binding Path="Value" />

 </Label.Opacity>

</Label>

As you’ll see, the use of property elements for bindings is sometimes convenient in connection with the data binding.

Source and BindingContext

The BindingContext property is actually one of two ways to link the source and target objects. You can alternatively dispense with BindingContext and include a reference to the source object within the binding expression itself.

The BindingSourceCode project has a page class that is identical to the one in OpacityBindingCode except that the binding is defined in two statements that don’t involve the BindingContext property:

Click here to view code image

public class BindingSourceCodePage : ContentPage

{

 public BindingSourceCodePage()

 {

 Label label = new Label

 {

 Text = "Opacity Binding Demo",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 VerticalOptions = LayoutOptions.CenterAndExpand,

 HorizontalOptions = LayoutOptions.Center

 };

 Slider slider = new Slider

 {

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 // Define Binding object with source object and property.

 Binding binding = new Binding

 {

 Source = slider,

 Path = "Value"

 };

 // Bind the Opacity property of the Label to the source.

 label.SetBinding(Label.OpacityProperty, binding);

 // Construct the page.

 Padding = new Thickness(10, 0);

 Content = new StackLayout

 {

 Children = { label, slider }

 };

 }

}

The target object and property are still specified in the call to the SetBinding method:

Click here to view code image

label.SetBinding(Label.OpacityProperty, binding);

However, the second argument references a Binding object that specifies the source object and property:

Click here to view code image

Binding binding = new Binding

{

 Source = slider,

 Path = "Value"

};

That is not the only way to instantiate and initialize a Binding object. An extensive Binding constructor allows for specifying many Binding properties. Here’s how it could be used in the BindingSourceCode program:

Click here to view code image

Binding binding = new Binding("Value", BindingMode.Default, null, null, null, slider);

Or you can use a named argument to reference the slider object:

Click here to view code image

Binding binding = new Binding("Value", source: slider);

Binding also has a generic Create method that lets you specify the Path property as a Func object rather than as a string so that it’s more immune from misspellings or changes in the property name. However, this Create method doesn’t include an argument for the Source property, so you need to set it separately:

Click here to view code image

Binding binding = Binding.Create<Slider>(src => src.Value);

binding.Source = slider;

The BindableObjectExtensions class defines two overloads of SetBinding that allow you to avoid explicitly instantiating a Binding object. However, neither of these overloads includes the Source property, so they are restricted to cases where you’re using the BindingContext.

The BindingSourceXaml program demonstrates how both the source object and source property can be specified in the Binding markup extension:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BindingSourceXaml.BindingSourceXamlPage"

 Padding="10, 0">

 <StackLayout>

 <Label Text="Binding Source Demo"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 Opacity="{Binding Source={x:Reference Name=slider},

 Path=Value}" />

 <Slider x:Name="slider"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

The Binding markup extension now has two arguments, one of which is another markup extension for x:Reference, so a pair of curly braces are nested within the main curly braces:

Click here to view code image

Opacity="{Binding Source={x:Reference Name=slider},

 Path=Value}" />

For visual clarity, the two Binding arguments are vertically aligned within the markup extension, but that’s not required. Arguments must be separated by a comma (here at the end of the first line), and no quotation marks must appear within the curly braces. You’re not dealing with XML attributes within the markup extension. These are markup extension arguments.

You can simplify the nested markup extension by eliminating the Name argument name and equals sign in x:Reference because Name is the content property of the ReferenceExtension class:

Click here to view code image

Opacity="{Binding Source={x:Reference slider},

 Path=Value}" />

However, you cannot similarly remove the Path argument name and equals sign. Even though BindingExtension defines Path as its content property, the argument name can be eliminated only when that argument is the first among multiple arguments. You need to switch around the arguments like so:

Click here to view code image

Opacity="{Binding Path=Value,

 Source={x:Reference slider}}" />

And then you can eliminate the Path argument name, and perhaps move everything to one line:

Click here to view code image

Opacity="{Binding Value, Source={x:Reference slider}}" />

However, because the first argument is missing an argument name and the second argument has an argument name, the whole expression looks a bit peculiar, and it might be difficult to grasp the Binding arguments at first sight. Also, it makes sense for the Source to be specified before the Path because the particular property specified by the Path makes sense only for a particular type of object, and that’s specified by the Source.

In this book, whenever the Binding markup extension includes a Source argument, it will be first, followed by the Path. Otherwise, the Path will be the first argument, and often the Path argument name will be eliminated.

You can avoid the issue entirely by expressing Binding in element form:

Click here to view code image

<Label Text="Binding Source Demo"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Label.Opacity>

 <Binding Source="{x:Reference slider}"

 Path="Value" />

 </Label.Opacity>

</Label>

The x:Reference markup extension still exists, but you can also express that in element form as well:

Click here to view code image

<Label Text="Binding Source Demo"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Label.Opacity>

 <Binding Path="Value">

 <Binding.Source>

 <x:Reference Name="slider" />

 </Binding.Source>

 </Binding>

 </Label.Opacity>

</Label>

You have now seen two ways to specify the link between the source object with the target object:

• Use the BindingContext to reference the source object.

• Use the Source property of the Binding class or the Binding markup extension.

If you specify both, the Source property takes precedence over the BindingContext.

In the examples you’ve seen so far, these two techniques have been pretty much interchangeable. However, they have some significant differences. For example, suppose you have one object with two properties that are targets of two different data bindings involving two different source objects—for example, a Label with the Opacity property bound to a Slider and the IsVisible property bound to a Switch. You can’t use BindingContext for both bindings because BindingContext applies to the whole target object and can only specify a single source. You must use the Source property of Binding for at least one of these bindings.

BindingContext is itself backed by a bindable property. This means that BindingContext can be set from a Binding markup extension. In contrast, you can’t set the Source property of Binding to another Binding because Binding does not derive from BindableObject, which means Source is not backed by a bindable property and hence can’t be the target of a data binding.

In this variation of the BindingSourceXaml markup, the BindingContext property of the Label is set to a Binding markup extension that includes a Source and Path.

Click here to view code image

<Label Text="Binding Source Demo"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 BindingContext="{Binding Source={x:Reference Name=slider},

 Path=Value}"

 Opacity="{Binding}" />

This means that the BindingContext for this Label is not the slider object as in previous examples but the double that is the Value property of the Slider. To bind the Opacity property to this double, all that’s required is an empty Binding markup extension that basically says “use the BindingContext for the entire data-binding source.”

Perhaps the most important difference between BindingContext and Source is a very special characteristic that makes BindingContext unlike any other property in all of Xamarin.Forms:

The binding context is propagated through the visual tree.

In other words, if you set BindingContext on a StackLayout, it applies to all the children of that StackLayout and their children as well. The data bindings within that StackLayout don’t have to specify BindingContext or the Source argument to Binding. They inherit BindingContext from the StackLayout. Or the children of the StackLayout can override that inherited BindingContext with BindingContext settings of their own or with a Source setting in their bindings.

This feature turns out to be exceptionally useful. Suppose a StackLayout contains a bunch of visuals with data bindings set to various properties of a particular class. Set the BindingContext property of that StackLayout. Then, the individual data bindings on the children of the StackLayout don’t require either a Source specification or a BindingContext setting. You could then set the BindingContext of the StackLayout to different instances of that class to display the properties for each instance. You’ll see examples of this technique and other data-binding marvels in the chapters ahead, and particularly in Chapter 19.

Meanwhile, let’s look at a much simpler example of BindingContext propagation through the visual tree.

The WebView is intended to embed a web browser inside your application. Alternatively, you can use WebView in conjunction with the HtmlWebViewSource class to display a chunk of HTML, perhaps saved as an embedded resource in the PCL.

For displaying webpages, you use WebView with the UrlWebViewSource class to specify an initial URL. However, UrlWebViewSource and HtmlWebViewSource both derive from the abstract class WebViewSource, and that class defines an implicit conversion of string and Uri to itself, so all you really need to do is set a string with a web address to the Source property of WebView to direct WebView to present that webpage.

WebView also defines two methods, named GoBack and GoForward, that internally implement the Back and Forward buttons typically found on web browsers. Your program needs to know when it can enable these buttons, so WebView also defines two get-only Boolean properties, named CanGoBack and CanGoForward. These two properties are backed by bindable properties, which means that any changes to these properties result in PropertyChanged events being fired, which further means that they can be used as data binding sources to enable and disable two buttons.

Here’s the XAML file for WebViewDemo. Notice that the nested StackLayout containing the two Button elements has its BindingContext property set to the WebView. The two Button children in that StackLayout inherit the BindingContext, so the buttons can have very simple Binding expressions on their IsEnabled properties that reference only the CanGoBack and CanGoForward properties:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WebViewDemo.WebViewDemoPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Entry Keyboard="Url"

 Placeholder="web address"

 Completed="OnEntryCompleted" />

 <StackLayout Orientation="Horizontal"

 BindingContext="{x:Reference webView}">

 <Button Text="⇐"

 FontSize="Large"

 HorizontalOptions="FillAndExpand"

 IsEnabled="{Binding CanGoBack}"

 Clicked="OnGoBackClicked" />

 <Button Text="⇒"

 FontSize="Large"

 HorizontalOptions="FillAndExpand"

 IsEnabled="{Binding CanGoForward}"

 Clicked="OnGoForwardClicked" />

 </StackLayout>

 <WebView x:Name="webView"

 VerticalOptions="FillAndExpand"

 Source="https://xamarin.com" />

 </StackLayout>

</ContentPage>

The code-behind file needs to handle the Clicked events for the Back and Forward buttons as well as the Completed event for the Entry that lets you enter a web address of your own:

Click here to view code image

public partial class WebViewDemoPage : ContentPage

{

 public WebViewDemoPage()

 {

 InitializeComponent();

 }

 void OnEntryCompleted(object sender, EventArgs args)

 {

 webView.Source = ((Entry)sender).Text;

 }

 void OnGoBackClicked(object sender, EventArgs args)

 {

 webView.GoBack();

 }

 void OnGoForwardClicked(object sender, EventArgs args)

 {

 webView.GoForward();

 }

}

You don’t need to enter a web address when the program starts up because the XAML file is hard-coded to go to your favorite website, and you can navigate around from there:

[image: Image]

The binding mode

Here is a Label whose FontSize property is bound to the Value property of a Slider:

Click here to view code image

<Label FontSize="{Binding Source={x:Reference slider},

 Path=Value}" />

<Slider x:Name="slider"

 Maximum="100" />

That should work, and if you try it, it will work. You’ll be able to change the FontSize of the Label by manipulating the Slider.

But here’s a Label and Slider with the binding reversed. Instead of the FontSize property of the Label being the target, now FontSize is the source of the data binding, and the target is the Value property of the Slider:

Click here to view code image

<Label x:Name="label" />

<Slider Maximum="100"

 Value="{Binding Source={x:Reference label},

 Path=FontSize}" />

That doesn’t seem to make any sense. But if you try it, it will work just fine. Once again, the Slider will manipulate the FontSize property of the Label.

The second binding works because of something called the binding mode.

You’ve learned that a data binding sets the value of a target property from the value of a source property, but sometimes the data flow is not so clear cut. The relationship between target and source is defined by members of the BindingMode enumeration:

• Default

• OneWay — changes in the source affect the target (normal).

• OneWayToSource — changes in the target affect the source.

• TwoWay — changes in the source and target affect each other.

This BindingMode enumeration plays a role in two different classes:

When you create a BindableProperty object by using one of the static Create or CreateReadOnly static methods, you can specify a default BindingMode value to use when that property is the target of a data binding.

If you don’t specify anything, the default binding mode is OneWay for bindable properties that are readable and writeable, and OneWayToSource for read-only bindable properties. If you specify BindingMode.Default when creating a bindable property, the default binding mode for the property is set to OneWay. (In other words, the BindingMode.Default member is not intended for defining bindable properties.)

You can override that default binding mode for the target property when you define a binding either in code or XAML. You override the default binding mode by setting the Mode property of Binding to one of the members of the BindingMode enumeration. The Default member means that you want to use the default binding mode defined for the target property.

When you set the Mode property to OneWayToSource you are not switching the target and the source. The target is still the object on which you’ve set the BindingContext and the property on which you’ve called SetBinding or applied the Binding markup extension. But the data flows in a different direction—from target to source.

Most bindable properties have a default binding mode of OneWay. However, there are some exceptions. Of the views you’ve encountered so far in this book, the following properties have a default mode of TwoWay:

[image: Image]

The properties that have a default binding mode of TwoWay are those most likely to be used with underlying data models in an MVVM scenario. With MVVM, the binding targets are visual objects and the binding sources are data objects. In general, you want the data to flow both ways. You want the visual objects to display the underlying data values (from source to target), and you want the interactive visual objects to cause changes in the underlying data (target to source).

The BindingModes program connects four Label elements and four Slider elements with “normal” bindings, meaning that the target is the FontSize property of the Label and the source is the Value property of the Slider:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BindingModes.BindingModesPage"

 Padding="10, 0">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="StackLayout">

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 <Style TargetType="Label">

 <Setter Property="HorizontalOptions" Value="Center" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout VerticalOptions="Fill">

 <StackLayout>

 <Label Text="Default"

 FontSize="{Binding Source={x:Reference slider1},

 Path=Value}" />

 <Slider x:Name="slider1"

 Maximum="50" />

 </StackLayout>

 <StackLayout>

 <Label Text="OneWay"

 FontSize="{Binding Source={x:Reference slider2},

 Path=Value,

 Mode=OneWay}" />

 <Slider x:Name="slider2"

 Maximum="50" />

 </StackLayout>

 <StackLayout>

 <Label Text="OneWayToSource"

 FontSize="{Binding Source={x:Reference slider3},

 Path=Value,

 Mode=OneWayToSource}" />

 <Slider x:Name="slider3"

 Maximum="50" />

 </StackLayout>

 <StackLayout>

 <Label Text="TwoWay"

 FontSize="{Binding Source={x:Reference slider4},

 Path=Value,

 Mode=TwoWay}" />

 <Slider x:Name="slider4"

 Maximum="50" />

 </StackLayout>

 </StackLayout>

</ContentPage>

The Text of the Label indicates the binding mode. When you first run this program, all the Slider elements are initialized at zero, except for the third one, which is slightly nonzero:

[image: Image]

By manipulating each Slider, you can change the FontSize of the Label, but it doesn’t work for the third one because the OneWayToSource mode indicates that changes in the target (the FontSize property of the Label) affect the source (the Value property of the Slider):

[image: Image]

Although it’s not quite evident here, the default binding mode is OneWay because the binding is set on the FontSize property of the Label, and that’s the default binding mode for the FontSize property.

The ReverseBinding program sets the bindings on the Value property of the Slider:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ReverseBinding.ReverseBindingPage"

 Padding="10, 0">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="StackLayout">

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 <Style TargetType="Label">

 <Setter Property="HorizontalOptions" Value="Center" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout VerticalOptions="Fill">

 <StackLayout>

 <Label x:Name="label1"

 Text="Default" />

 <Slider Maximum="50"

 Value="{Binding Source={x:Reference label1},

 Path=FontSize}" />

 </StackLayout>

 <StackLayout>

 <Label x:Name="label2"

 Text="OneWay" />

 <Slider Maximum="50"

 Value="{Binding Source={x:Reference label2},

 Path=FontSize,

 Mode=OneWay}" />

 </StackLayout>

 <StackLayout>

 <Label x:Name="label3"

 Text="OneWayToSource" />

 <Slider Maximum="50"

 Value="{Binding Source={x:Reference label3},

 Path=FontSize,

 Mode=OneWayToSource}" />

 </StackLayout>

 <StackLayout>

 <Label x:Name="label4"

 Text="TwoWay" />

 <Slider Maximum="50"

 Value="{Binding Source={x:Reference label4},

 Path=FontSize,

 Mode=TwoWay}" />

 </StackLayout>

 </StackLayout>

</ContentPage>

The default binding mode on these bindings is TwoWay because that’s the mode set in the BindableProperty.Create method for the Value property of the Slider.

What’s interesting about this approach is that for three of the cases here, the Value property of the Slider is initialized from the FontSize property of the Label:

[image: Image]

It doesn’t happen for OneWayToSource because for that mode, changes to the Value property of the Slider affect the FontSize property of the Label but not the other way around.

Now let’s start manipulating these sliders:

[image: Image]

Now the OneWayToSource binding works because changes to the Value property of the Slider affect the FontSize property of the Label, but the OneWay binding does not work because that indicates that the Value property of the Slider is only affected by changes in the FontSize property of the Label.

Which binding works the best? Which binding initializes the Value property of the Slider to the FontSize property of the Label, but also allows Slider manipulations to change the FontSize? It’s the reverse binding set on the Slider with a mode of TwoWay, which is the default mode.

This is exactly the type of initialization you want to see when a Slider is bound to some data. For that reason, when using a Slider with MVVM, the binding is set on the Slider to both display the data value and to manipulate the data value.

String formatting

Some of the sample programs in the previous chapter used event handlers to display the current values of the Slider and Stepper views. If you try defining a data binding that targets the Text property of a Label from the Value property of a Slider, you’ll discover that it works, but you don’t have much control over it. In general, you’ll want to control any type conversion or value conversion required in data bindings. That’s discussed later in this chapter.

String formatting is special, however. The Binding class has a StringFormat property that allows you to include an entire .NET formatting string. Almost always, the target of such a binding is the Text property of a Label, but the binding source can be of any type.

The .NET formatting string that you supply to StringFormat must be suitable for a call to the String.Format static method, which means that it should contain a placeholder of “{0}” with or without a formatting specification suitable for the source data type—for example “{0:F3}” to display a double with three decimal places.

In XAML, this placeholder is a bit of a problem because the curly braces can be mistaken for the curly braces used to delimit markup extensions. The easiest solution is to put the entire formatting string in single quotation marks.

The ShowViewValues program contains four examples that display the current values of a Slider, Entry, Stepper, and Switch. The hexadecimal codes in the formatting string used for displaying the Entry contents are Unicode IDs for “smart quotes”:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ShowViewValues.ShowViewValuesPage"

 Padding="10, 0">

 <StackLayout>

 <StackLayout VerticalOptions="CenterAndExpand">

 <Label Text="{Binding Source={x:Reference slider},

 Path=Value,

 StringFormat='The Slider value is {0:F3}'}" />

 <Slider x:Name="slider" />

 </StackLayout>

 <StackLayout VerticalOptions="CenterAndExpand">

 <Label Text="{Binding Source={x:Reference entry},

 Path=Text,

 StringFormat='The Entry text is “{0}”'}" />

 <Entry x:Name="entry" />

 </StackLayout>

 <StackLayout VerticalOptions="CenterAndExpand">

 <Label Text="{Binding Source={x:Reference stepper},

 Path=Value,

 StringFormat='The Stepper value is {0}'}" />

 <Stepper x:Name="stepper" />

 </StackLayout>

 <StackLayout VerticalOptions="CenterAndExpand">

 <Label Text="{Binding Source={x:Reference switch},

 Path=IsToggled,

 StringFormat='The Switch value is {0}'}" />

 <Switch x:Name="switch" />

 </StackLayout>

 </StackLayout>

</ContentPage>

When using StringFormat you need to pay particular attention to the placement of commas, single quotation marks, and curly braces.

Here’s the result:

[image: Image]

You might recall the WhatSize program from Chapter 5, “Dealing with sizes.” That program used a SizeChanged event handler on the page to display the current width and height of the screen in device-independent units.

The WhatSizeBindings program does the whole job in XAML. First it adds an x:Name attribute to the root tag to give the WhatSizeBindingsPage object a name of page. Three Label views share a horizontal StackLayout in the center of the page, and two of them have bindings to the Width and Height properties. The Width and Height properties are get-only, but they are backed by bindable properties, so they fire PropertyChanged events when they change:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WhatSizeBindings.WhatSizeBindingsPage"

 x:Name="page">

 <StackLayout Orientation="Horizontal"

 Spacing="0"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Label Text="{Binding Source={x:Reference page},

 Path=Width,

 StringFormat='{0:F0}'}" />

 <!-- Multiplication sign. -->

 <Label Text=" × " />

 <Label Text="{Binding Source={x:Reference page},

 Path=Height,

 StringFormat='{0:F0}'}" />

 </StackLayout>

</ContentPage>

Here’s the result for the devices used for this book:

[image: Image]

The display changes as you turn the phone between portrait and landscape modes.

Alternatively, the BindingContext on the StackLayout could be set to an x:Reference markup extension referencing the page object, and the Source settings on the bindings wouldn’t be necessary.

Why is it called “Path”?

The Binding class defines a property named Path that you use to set the source property name. But why is it called Path? Why isn’t it called Property?

The Path property is called what it’s called because it doesn’t need to be one property. It can be a stack of properties, subproperties, and even indexers connected with periods.

Using Path in this way can be tricky, so here’s a program called BindingPathDemos that has four Binding markup extensions, each of which sets the Path argument to a string of property names and indexers:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:globe="clr-namespace:System.Globalization;assembly=mscorlib"

 x:Class="BindingPathDemos.BindingPathDemosPage"

 x:Name="page">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="baseStyle" TargetType="View">

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 <Style TargetType="Label" BasedOn="{StaticResource baseStyle}">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 <Style TargetType="Slider" BasedOn="{StaticResource baseStyle}" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout BindingContext="{x:Reference page}">

 <Label Text="{Binding Path=Padding.Top,

 StringFormat='The top padding is {0}'}" />

 <Label Text="{Binding Path=Content.Children[4].Value,

 StringFormat='The Slider value is {0:F2}'}" />

 <Label Text="{Binding Source={x:Static globe:CultureInfo.CurrentCulture},

 Path=DateTimeFormat.DayNames[3],

 StringFormat='The middle day of the week is {0}'}" />

 <Label Text="{Binding Path=Content.Children[2].Text.Length,

 StringFormat='The preceding Label has {0} characters'}" />

 <Slider />

 </StackLayout>

</ContentPage>

Only one element here has an x:Name, and that’s the page itself. The BindingContext of the StackLayout is that page, so all the bindings within the StackLayout are relative to the page (except for the binding that has an explicit Source property set).

The first Binding looks like this:

Click here to view code image

<Label Text="{Binding Path=Padding.Top,

 StringFormat='The top padding is {0}'}" />

The Path begins with the Padding property of the page. That property is of type Thickness, so it’s possible to access a property of the Thickness structure with a property name such as Top. Of course, Thickness is a structure and therefore does not derive from BindableObject, so Top can’t be a BindableProperty. The binding infrastructure can’t set a PropertyChanged handler on that property, but it will set a PropertyChanged handler on the Padding property of the page, and if that changes, the binding will update the target.

The second Binding references the Content property of the page, which is the StackLayout. That StackLayout has a Children property, which is a collection, so it can be indexed:

Click here to view code image

<Label Text="{Binding Path=Content.Children[4].Value,

 StringFormat='The Slider value is {0:F2}'}" />

The view at index 4 of the Children collection is a Slider (down at the bottom of the markup, with no attributes set), which has a Value property, and that’s what’s displayed here.

The third Binding overrides its inherited BindingContext by setting the Source argument to a static property using x:Static. The globe prefix is defined in the root tag to refer to the .NET System.Globalization namespace, and the Source is set to the CultureInfo object that encapsulates the culture of the user’s phone:

Click here to view code image

<Label Text="{Binding Source={x:Static globe:CultureInfo.CurrentCulture},

 Path=DateTimeFormat.DayNames[3],

 StringFormat='The middle day of the week is {0}'}" />

One of the properties of CultureInfo is DateTimeFormat, which is a DateTimeFormatInfo object that contains information about date and time formatting, including a property named DayNames that is an array of the seven days of the week. The index 3 picks out the middle one.

None of the classes in the System.Globalization namespace implement INotifyPropertyChanged, but that’s okay because the values of these properties don’t change at run time.

The final Binding references the child of the StackLayout with a child index of 2. That’s the previous Label. It has a Text property, which is of type string, and string has a Length property:

Click here to view code image

<Label Text="{Binding Path=Content.Children[2].Text.Length,

 StringFormat='The preceding Label has {0} characters'}" />

The binding system installs a property-changed handler for the Text property of the Label, so if it changes, the binding will get the new length.

For the following screenshots, the iOS phone was switched to French, and the Android phone was switched to German. This affects the formatting of the Slider value—notice the comma rather than a period for the decimal divider—and the name of the middle day of the week:

[image: Image]

These Path specifications can be hard to configure and debug. Keep in mind that class names do not appear in the Path specifications—only property names and indexers. Also keep in mind that you can build up a Path specification incrementally, testing each new piece with a placeholder of “{0}” in StringFormat. This will often display the fully qualified class name of the type of the value set to the last property in the Path specification, and that can be very useful information.

You’ll also want to keep an eye on the Output window in Visual Studio or Xamarin Studio when running your program under the debugger. You’ll see messages there relating to run-time errors encountered by the binding infrastructure.

Binding value converters

You now know how to convert any binding source object to a string by using StringFormat. But what about other data conversions? Perhaps you’re using a Slider for a binding source but the target is expecting an integer rather than a double. Or maybe you want to display the value of a Switch as text, but you want “Yes” and “No” rather than “True” and “False”.

The tool for this job is a class—often a very tiny class—informally called a value converter or (sometimes) a binding converter. More formally, such a class implements the IValueConverter interface. This interface is defined in the Xamarin.Forms namespace, but it is similar to an interface available in Microsoft’s XAML-based environments.

An example: Sometimes applications need to enable or disable a Button based on the presence of text in an Entry. Perhaps the Button is labeled Save and the Entry is a filename. Or the Button is labeled Send and the Entry contains a mail recipient. The Button shouldn’t be enabled unless the Entry contains at least one character of text.

There are a couple of ways to do this job. In a later chapter, you’ll see how a data trigger can do it (and can also perform validity checks of the text in the Entry). But for this chapter, let’s do it with a value converter.

The data-binding target is the IsEnabled property of the Button. That property is of type bool. The binding source is the Text property of an Entry, or rather the Length property of that Text property. That Length property is of type int. The value converter needs to convert an int equal to 0 to a bool of false and a positive int to a bool of true. The code is trivial. We just need to wrap it in a class that implements IValueConverter.

Here is that class in the Xamarin.FormsBook.Toolkit library, complete with using directives. The IValueConverter interface consists of two methods, named Convert and ConvertBack, with identical parameters. You can make the class as generalized or as specialized as you want:

Click here to view code image

using System;

using System.Globalization;

using Xamarin.Forms;

namespace Xamarin.FormsBook.Toolkit

{

 public class IntToBoolConverter : IValueConverter

 {

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return (int)value != 0;

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return (bool)value ? 1 : 0;

 }

 }

}

When you include this class in a data binding—and you’ll see how to do that shortly—the Convert method is called whenever a value passes from the source to the target.

The value argument to Convert is the value from the data binding source to be converted. You can use GetType to determine its type, or you can assume that it’s always a particular type. In this example, the value argument is assumed to be of type int, so casting to an int won’t raise an exception. More sophisticated value converters can perform more validity checks.

The targetType is the type of the data-binding target property. Versatile value converters can use this argument to tailor the conversion for different target types. The Convert method should return an object or value that matches this targetType. This particular Convert method assumes that targetType is bool.

The parameter argument is an optional conversion parameter that you can specify as a property to the Binding class. (You’ll see an example in Chapter 18, “MVVM.”)

Finally, if you need to perform a culture-specific conversion, the last argument is the CultureInfo object that you should use.

The body of this particular Convert method assumes that value is an int, and the method returns a bool that is true if that integer is nonzero.

The ConvertBack method is called only for TwoWay or OneWayToSource bindings. For the ConvertBack method, the value argument is the value from the target and the targetType argument is actually the type of the source property. If you know that the ConvertBack method will never be called, you can simply ignore all the arguments and return null or 0 from it. With some value converters, implementing a ConvertBack body is virtually impossible, but sometimes it’s fairly simple (as in this case).

When you use a value converter in code, you set an instance of the converter to the Converter property of Binding. You can optionally pass an argument to the value converter by setting the ConverterParameter property of Binding.

If the binding also has a StringFormat, the value that is returned by the value converter is the value that is formatted as a string.

Generally, in a XAML file you’ll want to instantiate the value converter in a Resources dictionary and then reference it in the Binding expression by using StaticResource. The value converter shouldn’t maintain state and can thus be shared among multiple bindings.

Here’s the ButtonEnabler program that uses the value converter:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="ButtonEnabler.ButtonEnablerPage"

 Padding="10, 50, 10, 0">

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:IntToBoolConverter x:Key="intToBool" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout Spacing="20">

 <Entry x:Name="entry"

 Text=""

 Placeholder="text to enable button" />

 <Button Text="Save or Send (or something)"

 FontSize="Medium"

 HorizontalOptions="Center"

 IsEnabled="{Binding Source={x:Reference entry},

 Path=Text.Length,

 Converter={StaticResource intToBool}}" />

 </StackLayout>

</ContentPage>

The IntToBoolConverter is instantiated in the Resources dictionary and referenced as a nested markup extension in the Binding that is set on the IsEnabled property of the Button.

Notice that the Text property is explicitly initialized in the Entry tag to an empty string. By default, the Text property is null, which means that the binding Path setting of Text.Length doesn’t result in a valid value.

You might remember from previous chapters that a class in the Xamarin.FormsBook.Toolkit library that is referenced only in XAML is not sufficient to establish a link from the application to the library. For that reason, the App constructor in ButtonEnabler calls Toolkit.Init:

Click here to view code image

public class App : Application

{

 public App()

 {

 Xamarin.FormsBook.Toolkit.Toolkit.Init();

 MainPage = new ButtonEnablerPage();

 }

 ...

}

Similar code appears in all the programs in this chapter that use the Xamarin.FormsBook.Toolkit library.

The screenshots confirm that the Button is not enabled unless the Entry contains some text:

[image: Image]

If you’re using only one instance of a value converter, you don’t need to store it in the Resources dictionary. You can instantiate it right in the Binding tag with the use of property-element tags for the target property and for the Converter property of Binding:

Click here to view code image

<Button Text="Save or Send (or something)"

 FontSize="Large"

 HorizontalOptions="Center">

 <Button.IsEnabled>

 <Binding Source="{x:Reference entry}"

 Path="Text.Length">

 <Binding.Converter>

 <toolkit:IntToBoolConverter />

 </Binding.Converter>

 </Binding>

 </Button.IsEnabled>

</Button>

Sometimes it’s convenient for a value converter to define a couple of simple properties. For example, suppose you want to display some text for the two settings of a Switch but you don’t want to use “True” and “False”, and you don’t want to hard-code alternatives into the value converter. Here’s a BoolToStringConverter with a pair of public properties for two text strings:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class BoolToStringConverter : IValueConverter

 {

 public string TrueText { set; get; }

 public string FalseText { set; get; }

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return (bool)value ? TrueText : FalseText;

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return false;

 }

 }

}

The body of the Convert method is trivial: it just selects between the two strings based on the Boolean value argument.

A similar value converter converts a Boolean to one of two colors:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class BoolToColorConverter : IValueConverter

 {

 public Color TrueColor { set; get; }

 public Color FalseColor { set; get; }

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return (bool)value ? TrueColor : FalseColor;

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return false;

 }

 }

}

The SwitchText program instantiates the BoolToStringConverter converter twice for two different pairs of strings: once in the Resources dictionary, and then within Binding.Converter property-element tags. Two properties of the final Label are subjected to the BoolToStringConverter and the BoolToColorConverter based on the same IsToggled property from the Switch:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="SwitchText.SwitchTextPage"

 Padding="10, 0">

<ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:BoolToStringConverter x:Key="boolToString"

 TrueText="Let's do it"

 FalseText="Not now" />

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Medium" />

 <Setter Property="VerticalOptions" Value="Center" />

 </Style>

 </ResourceDictionary>

</ContentPage.Resources>

<StackLayout>

 <!-- First Switch with text. -->

 <StackLayout Orientation="Horizontal"

 VerticalOptions="CenterAndExpand">

 <Label Text="Learn more?" />

 <Switch x:Name="switch1"

 VerticalOptions="Center" />

 <Label Text="{Binding Source={x:Reference switch1},

 Path=IsToggled,

 Converter={StaticResource boolToString}}"

 HorizontalOptions="FillAndExpand" />

 </StackLayout>

 <!-- Second Switch with text. -->

 <StackLayout Orientation="Horizontal"

 VerticalOptions="CenterAndExpand">

 <Label Text="Subscribe?" />

 <Switch x:Name="switch2"

 VerticalOptions="Center" />

 <Label Text="{Binding Source={x:Reference switch2},

 Path=IsToggled,

 Converter={StaticResource boolToString}}"

 HorizontalOptions="FillAndExpand" />

 </StackLayout>

 <!-- Third Switch with text and color. -->

 <StackLayout Orientation="Horizontal"

 VerticalOptions="CenterAndExpand">

 <Label Text="Leave page?" />

 <Switch x:Name="switch3"

 VerticalOptions="Center" />

 <Label HorizontalOptions="FillAndExpand">

 <Label.Text>

 <Binding Source="{x:Reference switch3}"

 Path="IsToggled">

 <Binding.Converter>

 <toolkit:BoolToStringConverter TrueText="Yes"

 FalseText="No" />

 </Binding.Converter>

 </Binding>

 </Label.Text>

 <Label.TextColor>

 <Binding Source="{x:Reference switch3}"

 Path="IsToggled">

 <Binding.Converter>

 <toolkit:BoolToColorConverter TrueColor="Green"

 FalseColor="Red" />

 </Binding.Converter>

 </Binding>

 </Label.TextColor>

 </Label>

 </StackLayout>

 </StackLayout>

</ContentPage>

With the two fairly trivial binding converters, the Switch can now display whatever text you want for the two states and can color that text with custom colors:

[image: Image]

Now that you’ve seen a BoolToStringConverter and a BoolToColorConverter, can you generalize the technique to objects of any type? Here is a generic BoolToObjectConverter also in the Xamarin.FormsBook.Toolkit library:

Click here to view code image

public class BoolToObjectConverter<T> : IValueConverter

{

 public T TrueObject { set; get; }

 public T FalseObject { set; get; }

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return (bool)value ? this.TrueObject : this.FalseObject;

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return ((T)value).Equals(this.TrueObject);

 }

}

The next sample uses this class.

Bindings and custom views

In Chapter 15, “The interactive interface,” you saw a custom view named CheckBox. This view defines a Text property for setting the text of the CheckBox as well as a FontSize property. It could also have defined all the other text-related properties—TextColor, FontAttributes, and FontFamily—but it did not, mostly because of the work involved. Each property requires a BindableProperty definition, a CLR property definition, and a property-changed handler that transfers the new setting of the property to the Label views that comprise the visuals of the CheckBox.

Data bindings can help simplify this process for some properties by eliminating the property-changed handlers. Here’s the code-behind file for a new version of CheckBox called NewCheckBox. Like the earlier class, it’s part of the Xamarin.FormsBook.Toolkit library. The file has been reorganized a bit so that each BindableProperty definition is paired with its corresponding CLR property definition. You might prefer this type of source-code organization of the properties, or perhaps not.

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public partial class NewCheckBox : ContentView

 {

 public event EventHandler<bool> CheckedChanged;

 public NewCheckBox()

 {

 InitializeComponent();

 }

 // Text property.

 public static readonly BindableProperty TextProperty =

 BindableProperty.Create(

 "Text",

 typeof(string),

 typeof(NewCheckBox),

 null);

public string Text

{

 set { SetValue(TextProperty, value); }

 get { return (string)GetValue(TextProperty); }

}

// TextColor property.

public static readonly BindableProperty TextColorProperty =

 BindableProperty.Create(

 "TextColor",

 typeof(Color),

 typeof(NewCheckBox),

 Color.Default);

public Color TextColor

{

 set { SetValue(TextColorProperty, value); }

 get { return (Color)GetValue(TextColorProperty); }

}

// FontSize property.

public static readonly BindableProperty FontSizeProperty =

 BindableProperty.Create(

 "FontSize",

 typeof(double),

 typeof(NewCheckBox),

 Device.GetNamedSize(NamedSize.Default, typeof(Label)));

[TypeConverter(typeof(FontSizeConverter))]

public double FontSize

{

 set { SetValue(FontSizeProperty, value); }

 get { return (double)GetValue(FontSizeProperty); }

}

// FontAttributes property.

public static readonly BindableProperty FontAttributesProperty =

 BindableProperty.Create(

 "FontAttributes",

 typeof(FontAttributes),

 typeof(NewCheckBox),

 FontAttributes.None);

public FontAttributes FontAttributes

{

 set { SetValue(FontAttributesProperty, value); }

 get { return (FontAttributes)GetValue(FontAttributesProperty); }

}

// IsChecked property.

public static readonly BindableProperty IsCheckedProperty =

 BindableProperty.Create(

 "IsChecked",

 typeof(bool),

 typeof(NewCheckBox),

 false,

 propertyChanged: (bindable, oldValue, newValue) =>

 {

 // Fire the event.

 NewCheckBox checkbox = (NewCheckBox)bindable;

 EventHandler<bool> eventHandler = checkbox.CheckedChanged;

 if (eventHandler != null)

 {

 eventHandler(checkbox, (bool)newValue);

 }

 });

 public bool IsChecked

 {

 set { SetValue(IsCheckedProperty, value); }

 get { return (bool)GetValue(IsCheckedProperty); }

 }

 // TapGestureRecognizer handler.

 void OnCheckBoxTapped(object sender, EventArgs args)

 {

 IsChecked = !IsChecked;

 }

 }

}

Besides the earlier Text and FontSize properties, this code file now also defines TextColor and FontAttributes properties. However, the only property-changed handler is for the IsChecked handler to fire the CheckedChanged event. Everything else is handled by data bindings in the XAML file:

Click here to view code image

<ContentView xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit="clr-namespace:Xamarin.FormsBook.Toolkit"

 x:Class="Xamarin.FormsBook.Toolkit.NewCheckBox"

 x:Name="checkbox">

 <StackLayout Orientation="Horizontal"

 BindingContext="{x:Reference checkbox}">

 <Label x:Name="boxLabel" Text="☐"

 TextColor="{Binding TextColor}"

 FontSize="{Binding FontSize}">

 <Label.Text>

 <Binding Path="IsChecked">

 <Binding.Converter>

 <toolkit:BoolToStringConverter TrueText="☑"

 FalseText="☐" />

 </Binding.Converter>

 </Binding>

 </Label.Text>

 </Label>

 <Label x:Name="textLabel" Text="{Binding Path=Text}"

 TextColor="{Binding TextColor}"

 FontSize="{Binding FontSize}"

 FontAttributes="{Binding FontAttributes}" />

 </StackLayout>

 <ContentView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnCheckBoxTapped" />

 </ContentView.GestureRecognizers>

</ContentView>

The root element is given a name of checkbox, and the StackLayout sets that as its BindingContext. All the data bindings within that StackLayout can then refer to properties defined by the code-behind file. The first Label that displays the box has its TextColor and FontSize properties bound to the values of the underlying properties, while the Text property is targeted by a binding that uses a BoolToStringConverter to display an empty box or a checked box based on the IsChecked property. The second Label is more straightforward: the Text, TextColor, FontSize, and FontAttributes properties are all bound to the corresponding properties defined in the code-behind file.

If you’ll be creating several custom views that include Text elements and you need definitions of all the text-related properties, you’ll probably want to first create a code-only class (named CustomViewBase, for example) that derives from ContentView and includes only those text-based property definitions. You can then derive other classes from CustomViewBase and have Text and all the text- related properties readily available.

Let’s write a little program called NewCheckBoxDemo that demonstrates the NewCheckBox view. Like the earlier CheckBoxDemo program, these check boxes control the bold and italic formatting of a paragraph of text. But to demonstrate the new properties, these check boxes are given colors and font attributes, and to demonstrate the BoolToObjectConverter, one of the check boxes controls the horizontal alignment of that paragraph:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="NewCheckBoxDemo.NewCheckBoxDemoPage">

 <StackLayout Padding="10, 0">

 <StackLayout HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="toolkit:NewCheckBox">

 <Setter Property="FontSize" Value="Large" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <toolkit:NewCheckBox Text="Italic"

 TextColor="Aqua"

 FontSize="Large"

 FontAttributes="Italic"

 CheckedChanged="OnItalicCheckBoxChanged" />

 <toolkit:NewCheckBox Text="Boldface"

 FontSize="Large"

 TextColor="Green"

 FontAttributes="Bold"

 CheckedChanged="OnBoldCheckBoxChanged" />

 <toolkit:NewCheckBox x:Name="centerCheckBox"

 Text="Center Text" />

 </StackLayout>

 <Label x:Name="label"

 Text=

"Just a little passage of some sample text that can be formatted

in italic or boldface by toggling the two custom CheckBox views."

 FontSize="Large"

 VerticalOptions="CenterAndExpand">

 <Label.HorizontalTextAlignment>

 <Binding Source="{x:Reference centerCheckBox}"

 Path="IsChecked">

 <Binding.Converter>

 <toolkit:BoolToObjectConverter x:TypeArguments="TextAlignment"

 TrueObject="Center"

 FalseObject="Start" />

 </Binding.Converter>

 </Binding>

 </Label.HorizontalTextAlignment>

 </Label>

 </StackLayout>

</ContentPage>

Notice the BoolToObjectConverter between the Binding.Converter tags. Because it’s a generic class, it requires an x:TypeArguments attribute that indicates the type of the TrueObject and FalseObject properties and the type of the return value of the Convert method. Both TrueObject and FalseObject are set to members of the TextAlignment enumeration, and the converter selects one to be set to the HorizontalTextAlignment property of the Label, as the following screenshots demonstrate:

[image: Image]

However, this program still needs a code-behind file to manage applying the italic and boldface attributes to the block of text. These methods are identical to those in the early CheckBoxDemo program:

Click here to view code image

public partial class NewCheckBoxDemoPage : ContentPage

{

 public NewCheckBoxDemoPage()

 {

 InitializeComponent();

 }

 void OnItalicCheckBoxChanged(object sender, bool IsChecked)

 {

 if (IsChecked)

 {

 label.FontAttributes |= FontAttributes.Italic;

 }

 else

 {

 label.FontAttributes &= ~FontAttributes.Italic;

 }

 }

 void OnBoldCheckBoxChanged(object sender, bool IsChecked)

 {

 if (IsChecked)

 {

 label.FontAttributes |= FontAttributes.Bold;

 }

 else

 {

 label.FontAttributes &= ~FontAttributes.Bold;

 }

 }

}

Xamarin.Forms does not support a “multi-binding” that might allow multiple binding sources to be combined to change a single binding target. Bindings can do a lot, but without some additional code support, they can’t do everything.

There’s still a role for code.

Chapter 17. Mastering the Grid

The Grid is a powerful layout mechanism that organizes its children into rows and columns of cells. At first, the Grid seems to resemble the HTML table, but there is a very important distinction: The HTML table is designed for presentation purposes, while the Grid is solely for layout. There is no concept of a heading in a Grid, for example, and no built-in feature to draw boxes around the cells or to separate rows and columns with divider lines. The strengths of the Grid are in specifying cell dimensions with three options of height and width settings.

As you’ve seen, the StackLayout is ideal for one-dimensional collections of children. Although it’s possible to nest a StackLayout within a StackLayout to accommodate a second dimension and mimic a table, often the result can exhibit alignment problems. The Grid, however, is designed specifically for two-dimensional arrays of children. As you’ll see toward the end of this chapter, the Grid can also be very useful for managing layouts that adapt to both portrait and landscape modes.

The basic Grid

A Grid can be defined and filled with children in either code or XAML, but the XAML approach is easier and clearer, and hence by far the more common.

The Grid in XAML

When defined in XAML, a Grid almost always has a fixed number of rows and columns. The Grid definition generally begins with two important properties, named RowDefinitions (which is a collection of RowDefinition objects) and ColumnDefinitions (a collection of ColumnDefinition objects). These collections contain one RowDefinition for every row in the Grid and one ColumnDefinition for every column, and they define the row and column characteristics of the Grid.

A Grid can consist of a single row or single column (in which case it doesn’t need one of the two Definitions collections), or even just a single cell.

RowDefinition has a Height property of type GridLength, and ColumnDefinition has a Width property, also of type GridLength. The GridLength structure specifies a row height or a column width in terms of the GridUnitType enumeration, which has three members:

• Absolute—the width or height is a value in device-independent units (a number in XAML)

• Auto—the width or height is autosized based on the cell contents (“Auto” in XAML)

• Star—leftover width or height is allocated proportionally (a number with “*” in XAML)

Here’s the first half of the XAML file in the SimpleGridDemo project:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SimpleGridDemo.SimpleGridDemoPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="100" />

 <RowDefinition Height="2*" />

 <RowDefinition Height="1*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 ...

 </Grid>

</ContentPage>

This Grid has four rows and two columns. The height of the first row is “Auto”—meaning that the height is calculated based on the maximum height of all the elements occupying that first row. The second row is 100 device-independent units in height.

The two Height settings using “*” (pronounced “star”) require some additional explanation: This particular Grid has an overall height that is the height of the page minus the Padding setting on iOS. Internally, the Grid determines the height of the first row based on the contents of that row, and it knows that the height of the second row is 100. It subtracts those two heights from its own height and allocates the remaining height proportionally among the third and fourth rows based on the number in the star setting. The third row is twice the height of the fourth row.

The two ColumnDefinition objects both set the Width equal to “*,” which is the same as “1*,” which means that the width of the screen is divided equally between the two columns.

You’ll recall from Chapter 14, “Absolute layout,” that the AbsoluteLayout class defines two attached bindable properties and four static Set and Get methods that allow a program to specify the position and size of a child of the AbsoluteLayout in code or XAML.

The Grid is quite similar. The Grid class defines four attached bindable properties for specifying the cell or cells that a child of the Grid occupies:

• Grid.RowProperty—the zero-based row; default value is 0

• Grid.ColumnProperty—the zero-based column; default value is 0

• Grid.RowSpanProperty—the number of rows that the child spans; default value is 1

• Grid.ColumnSpanProperty—the number of columns that the child spans; default value is 1

All four properties are defined to be of type int.

For example, to specify in code that a Grid child named view resides in a particular row and column, you can call:

Click here to view code image

view.SetValue(Grid.RowProperty, 2);

view.SetValue(Grid.ColumnProperty, 1);

Those are zero-based row and column numbers, so the child is assigned to the third row and the second column.

The Grid class also defines eight static methods for streamlining the setting and getting of these properties in code:

• Grid.SetRow and Grid.GetRow

• Grid.SetColumn and Grid.GetColumn

• Grid.SetRowSpan and Grid.GetRowSpan

• Grid.SetColumnSpan and Grid.GetColumnSpan

Here’s the equivalent of the two SetValue calls you just saw:

Grid.SetRow(view, 2);

Grid.SetColumn(view, 1);

As you learned in connection with AbsoluteLayout, such static Set and Get methods are implemented with SetValue and GetValue calls on the child of Grid. For example, here’s how SetRow is very likely defined within the Grid class:

Click here to view code image

public static void SetRow(BindableObject bindable, int value)

{

 bindable.SetValue(Grid.RowProperty, value);

}

You cannot call these methods in XAML, so instead you use the following attributes for setting the attached bindable properties on a child of the Grid:

• Grid.Row

• Grid.Column

• Grid.RowSpan

• Grid.ColumnSpan

These XAML attributes are not actually defined by the Grid class, but the XAML parser knows that it must reference the associated attached bindable properties defined by Grid.

You don’t need to set all these properties on every child of the Grid. If the child occupies just one cell, then don’t set Grid.RowSpan or Grid.ColumnSpan because the default value is 1. The Grid.Row and Grid.Column properties have a default value of 0, so you don’t need to set the values if the child occupies the first row or first column. However, for purposes of clarity, the code in this book will usually show the settings of these two properties. To save space, often these attributes will appear on the same line in the XAML listing.

Here’s the complete XAML file for SimpleGridDemo:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SimpleGridDemo.SimpleGridDemoPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="100" />

 <RowDefinition Height="2*" />

 <RowDefinition Height="1*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Label Text="Grid Demo"

 Grid.Row="0" Grid.Column="0"

 FontSize="Large"

 HorizontalOptions="End" />

 <Label Text="Demo the Grid"

 Grid.Row="0" Grid.Column="1"

 FontSize="Small"

 HorizontalOptions="End"

 VerticalOptions="End" />

 <Image BackgroundColor="Gray"

 Grid.Row="1" Grid.Column="0" Grid.ColumnSpan="2">

 <Image.Source>

 <OnPlatform x:TypeArguments="ImageSource"

 iOS="Icon-60.png"

 Android="icon.png"

 WinPhone="Assets/StoreLogo.png" />

 </Image.Source>

 </Image>

 <BoxView Color="Green"

 Grid.Row="2" Grid.Column="0" />

 <BoxView Color="Red"

 Grid.Row="2" Grid.Column="1" Grid.RowSpan="2" />

 <BoxView Color="Blue"

 Opacity="0.5"

 Grid.Row="3" Grid.Column="0" Grid.ColumnSpan="2" />

 </Grid>

</ContentPage>

Two Label elements with different FontSize settings occupy the two columns of the first row. The height of that row is governed by the tallest element. Settings of HorizontalOptions and VerticalOptions can position a child within the cell.

The second row has a height of 100 device-independent units. That row is occupied by an Image element displaying an application icon with a gray background. The Image element spans both columns of that row.

The bottom two rows are occupied by three BoxView elements, one that spans two rows, and another that spans two columns, and these overlap in the bottom right cell:

[image: Image]

The screenshots confirm that the first row is sized to the height of the large Label; the second row is 100 device-independent units tall; and the third and fourth rows occupy all the remaining space. The third row is twice as tall as the fourth. The two columns are equal in width and divide the entire Grid in half. The red and blue BoxView elements overlap in the bottom right cell, but the blue BoxView is obviously sitting on top of the red one because it has an Opacity setting of 0.5 and the result is purple.

The left half of the blue semitransparent BoxView is lighter on the iPhone and Windows 10 Mobile device than on the Android phone because of the white background.

As you can see, children of the Grid can share cells. The order that the children appear in the XAML file is the order that the children are put into the Grid, with later children seemingly sitting on top of (and obscuring) earlier children.

You’ll notice that a little gap seems to separate the rows and columns where the background peeks through. This is governed by two Grid properties:

• RowSpacing—default value of 6

• ColumnSpacing—default value of 6

You can set these properties to 0 if you want to close up that space, and you can set the BackgroundColor property of the Grid if you want the color peeking through to be something different. You can also add space on the inside of the Grid around its perimeter with a Padding setting on the Grid.

You have now been introduced to all the public properties and methods defined by Grid.

Before moving on, let’s perform a couple of experiments with SimpleGridDemo. First, comment out or delete the entire RowDefinitions and ColumnDefinitions section near the top of the Grid, and then redeploy the program. Here’s what you’ll see:

[image: Image]

When you don’t define your own RowDefinition and ColumnDefinition objects, the Grid generates them automatically as views are added to the Children collection. However, the default RowDefinition and ColumnDefinition is “*” (star), meaning that the four rows now equally divide the screen in quarters, and each cell is one-eighth of the total Grid.

Here’s another experiment. Restore the RowDefinitions and ColumnDefinitions sections and set the HorizontalOptions and VerticalOptions properties on the Grid itself to Center. By default these two properties are Fill, which means that the Grid fills its container. Here’s what happens with Center:

[image: Image]

The third row is still twice the height of the bottom row, but now the bottom row’s height is based on the default HeightRequest of BoxView, which is 40.

You’ll see a similar effect when you put a Grid in a StackLayout. You can also put a StackLayout in a Grid cell, or another Grid in a Grid cell, but don’t get carried away with this technique: The deeper you nest Grid and other layouts, the more the nested layouts will impact performance.

The Grid in code

It is also possible to define a Grid entirely in code, but usually without the clarity or orderliness of the XAML definition. The GridCodeDemo program demonstrates the code approach by reproducing the layout of SimpleGridDemo.

To specify the height of a RowDefinition and the width of the ColumnDefinition, you use values of the GridLength structure, often in combination with the GridUnitType enumeration. The row definitions toward the top of the GridCodeDemoPage class demonstrate the variations of GridLength. The column definitions aren’t included because they are the same as those generated by default:

Click here to view code image

public class GridCodeDemoPage : ContentPage

{

 public GridCodeDemoPage()

 {

 Grid grid = new Grid

 {

 RowDefinitions =

 {

 new RowDefinition { Height = GridLength.Auto },

 new RowDefinition { Height = new GridLength(100) },

 new RowDefinition { Height = new GridLength(2, GridUnitType.Star) },

 new RowDefinition { Height = new GridLength(1, GridUnitType.Star) }

 }

 };

 // First Label (row 0 and column 0).

 grid.Children.Add(new Label

 {

 Text = "Grid Demo",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 HorizontalOptions = LayoutOptions.End

 });

 // Second Label.

 grid.Children.Add(new Label

 {

 Text = "Demo the Grid",

 FontSize = Device.GetNamedSize(NamedSize.Small, typeof(Label)),

 HorizontalOptions = LayoutOptions.End,

 VerticalOptions = LayoutOptions.End

 },

 1, // left

 0); // top

 // Image element.

 grid.Children.Add(new Image

 {

 BackgroundColor = Color.Gray,

 Source = Device.OnPlatform("Icon-60.png",

 "icon.png",

 "Assets/StoreLogo.png")

 },

 0, // left

 2, // right

 1, // top

 2); // bottom

 // Three BoxView elements.

 BoxView boxView1 = new BoxView { Color = Color.Green };

 Grid.SetRow(boxView1, 2);

 Grid.SetColumn(boxView1, 0);

 grid.Children.Add(boxView1);

 BoxView boxView2 = new BoxView { Color = Color.Red };

 Grid.SetRow(boxView2, 2);

 Grid.SetColumn(boxView2, 1);

 Grid.SetRowSpan(boxView2, 2);

 grid.Children.Add(boxView2);

 BoxView boxView3 = new BoxView

 {

 Color = Color.Blue,

 Opacity = 0.5

 };

 Grid.SetRow(boxView3, 3);

 Grid.SetColumn(boxView3, 0);

 Grid.SetColumnSpan(boxView3, 2);

 grid.Children.Add(boxView3);

 Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

 Content = grid;

 }

}

The program shows several different ways to add children to the Grid and specify the cells in which they reside. The first Label is in row 0 and column 0, so it only needs to be added to the Children collection of the Grid to get default row and column settings:

grid.Children.Add(new Label

{

 ...

});

The Grid redefines its Children collection to be of type IGridList<View>, which includes several additional Add methods. One of these Add methods lets you specify the row and column:

grid.Children.Add(new Label

 {

 ...

 },

 1, // left

 0); // top

As the comments indicate, the arguments are actually named left and top rather than column and row. These names make more sense when you see the syntax for specifying row and column spans:

grid.Children.Add(new Image

 {

 ...

 },

 0, // left

 2, // right

 1, // top

 2); // bottom

What this means is that the child element goes in the column starting at left but ending before right—in other words, columns 0 and 1. It occupies the row starting at top but ending before bottom, which is row 1. The right argument must always be greater than left, and the bottom argument must be greater than top. If not, the Grid throws an ArgumentOutOfRangeException.

The IGridList<View> interface also defines AddHorizontal and AddVertical methods to add children to a single row or single column Grid. The Grid expands in columns or rows as these calls are made, as well as automatically assigning Grid.Column or Grid.Row settings on the children. You’ll see a use for this facility in the next section.

When adding children to a Grid in code, it’s also possible to make explicit calls to Grid.SetRow, Grid.SetColumn, Grid.SetRowSpan, and Grid.SetColumnSpan. It doesn’t matter whether you make these calls before or after you add the child to the Children collection of the Grid:

Click here to view code image

BoxView boxView1 = new BoxView { ... };

Grid.SetRow(boxView1, 2);

Grid.SetColumn(boxView1, 0);

grid.Children.Add(boxView1);

BoxView boxView2 = new BoxView { ... };

Grid.SetRow(boxView2, 2);

Grid.SetColumn(boxView2, 1);

Grid.SetRowSpan(boxView2, 2);

grid.Children.Add(boxView2);

BoxView boxView3 = new BoxView

{

 ...

};

Grid.SetRow(boxView3, 3);

Grid.SetColumn(boxView3, 0);

Grid.SetColumnSpan(boxView3, 2);

grid.Children.Add(boxView3);

The Grid bar chart

The AddVertical and AddHorizontal methods defined by the Children collection of the Grid have the capability to add an entire collection of views to the Grid in one shot. By default, the new rows or columns get a height or width of “*” (star), so the resultant Grid consists of multiple rows or columns, each with the same size.

Let’s use the AddHorizontal method to make a little bar chart that consists of 50 BoxView elements with random heights. The XAML file for the GridBarChart program defines an AbsoluteLayout that is parent to both a Grid and a Frame. This Frame serves as an overlay to display information about a particular bar in the bar chart. It has its Opacity set to 0, so it is initially invisible:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="GridBarChart.GridBarChartPage">

 <AbsoluteLayout>

 <!-- Grid occupying entire page. -->

 <Grid x:Name="grid"

 ColumnSpacing="1"

 AbsoluteLayout.LayoutBounds="0, 0, 1, 1"

 AbsoluteLayout.LayoutFlags="All" />

 <!-- Overlay in center of screen. -->

 <Frame x:Name="overlay"

 OutlineColor="Accent"

 BackgroundColor="#404040"

 Opacity="0"

 AbsoluteLayout.LayoutBounds="0.5, 0.5, AutoSize, AutoSize"

 AbsoluteLayout.LayoutFlags="PositionProportional">

 <Label x:Name="label"

 TextColor="White"

 FontSize="Large" />

 </Frame>

 </AbsoluteLayout>

</ContentPage>

The code-behind file creates 50 BoxView elements with a random HeightRequest property between 0 and 300. In addition, the StyleId property of each BoxView is assigned a string that consists of alternated random consonants and vowels to resemble a name (perhaps of someone from another planet). All these BoxView elements are accumulated in a generic List collection and then added to the Grid. That job is the bulk of the code in the constructor:

Click here to view code image

public partial class GridBarChartPage : ContentPage

{

 const int COUNT = 50;

 Random random = new Random();

 public GridBarChartPage()

 {

 InitializeComponent();

 List<View> views = new List<View>();

 TapGestureRecognizer tapGesture = new TapGestureRecognizer();

 tapGesture.Tapped += OnBoxViewTapped;

 // Create BoxView elements and add to List.

 for (int i = 0; i < COUNT; i++)

 {

 BoxView boxView = new BoxView

 {

 Color = Color.Accent,

 HeightRequest = 300 * random.NextDouble(),

 VerticalOptions = LayoutOptions.End,

 StyleId = RandomNameGenerator()

 };

 boxView.GestureRecognizers.Add(tapGesture);

 views.Add(boxView);

 }

 // Add whole List of BoxView elements to Grid.

 grid.Children.AddHorizontal(views);

 // Start a timer at the frame rate.

 Device.StartTimer(TimeSpan.FromMilliseconds(15), OnTimerTick);

 }

 // Arrays for Random Name Generator.

 string[] vowels = { "a", "e", "i", "o", "u", "ai", "ei", "ie", "ou", "oo" };

 string[] consonants = { "b", "c", "d", "f", "g", "h", "j", "k", "l", "m",

 "n", "p", "q", "r", "s", "t", "v", "w", "x", "z" };

 string RandomNameGenerator()

 {

 int numPieces = 1 + 2 * random.Next(1, 4);

 StringBuilder name = new StringBuilder();

 for (int i = 0; i < numPieces; i++)

 {

 name.Append(i % 2 == 0 ?

 consonants[random.Next(consonants.Length)] :

 vowels[random.Next(vowels.Length)]);

 }

 name[0] = Char.ToUpper(name[0]);

 return name.ToString();

 }

 // Set text to overlay Label and make it visible.

 void OnBoxViewTapped(object sender, EventArgs args)

 {

 BoxView boxView = (BoxView)sender;

 label.Text = String.Format("The individual known as {0} " +

 "has a height of {1} centimeters.",

 boxView.StyleId, (int)boxView.HeightRequest);

 overlay.Opacity = 1;

 }

 // Decrease visibility of overlay.

 bool OnTimerTick()

 {

 overlay.Opacity = Math.Max(0, overlay.Opacity - 0.0025);

 return true;

 }

}

The AddHorizontal method of the Children collection adds the multiple BoxView elements to the Grid and gives them sequential Grid.Column settings. Each column by default has a width of “*” (star), so the width of each BoxView is the same while the height is governed by the HeightRequest settings. The Spacing value of 1 set to the Grid in the XAML file provides a little separation between the bars of the bar chart:

[image: Image]

The bars are more distinct when you turn the phone sideways to give them more width:

[image: Image]

This program has another feature: When you tap on one of the bars, the overlay is made visible and displays information about that tapped bar—specifically, the interplanetary visitor’s name from the StyleId and the height of the bar. But a timer set in the constructor continuously decreases the Opacity value on the overlay, so this information gradually fades from view:

[image: Image]

Even without a native graphics system, Xamarin.Forms is able to display something that looks quite a lot like graphics.

Alignment in the Grid

A Grid row with a Height property of Auto constrains the height of elements in that row in the same way as a vertical StackLayout. Similarly, a column with a Width of Auto works much like a horizontal StackLayout.

As you’ve seen earlier in this chapter, you can set the HorizontalOptions and VerticalOptions properties of children of the Grid to position them within the cell. Here’s a program called GridAlignment that creates a Grid with nine equal-size cells and then puts six Label elements all in the center cell but with different alignment settings:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="GridAlignment.GridAlignmentPage">

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Label Text="Upper Left"

 Grid.Row="1" Grid.Column="1"

 VerticalOptions="Start"

 HorizontalOptions="Start" />

 <Label Text="Upper Right"

 Grid.Row="1" Grid.Column="1"

 VerticalOptions="Start"

 HorizontalOptions="End" />

 <Label Text="Center Left"

 Grid.Row="1" Grid.Column="1"

 VerticalOptions="Center"

 HorizontalOptions="Start" />

 <Label Text="Center Right"

 Grid.Row="1" Grid.Column="1"

 VerticalOptions="Center"

 HorizontalOptions="End" />

 <Label Text="Lower Left"

 Grid.Row="1" Grid.Column="1"

 VerticalOptions="End"

 HorizontalOptions="Start" />

 <Label Text="Lower Right"

 Grid.Row="1" Grid.Column="1"

 VerticalOptions="End"

 HorizontalOptions="End" />

 </Grid>

</ContentPage>

As you can see, some of the text overlaps:

[image: Image]

But if you turn the phone sideways, the cells resize and the text doesn’t overlap:

[image: Image]

Although you can use HorizontalOptions and VerticalOptions on children of a Grid to set the child’s alignment, you cannot use the Expands flag. Strictly speaking, you actually can use the Expands flag, but it has no effect on children of a Grid. The Expands flag only affects children of a StackLayout.

Often you’ve seen programs that use the Expands flag for children of a StackLayout to provide extra space to surround elements within the layout. For example, if two Label children of a StackLayout both have their VerticalOptions properties set to CenterAndExpand, then all the extra space is divided equally between the two slots in the StackLayout allocated for these children.

In a Grid, you can perform similar layout tricks by using cells sized with the “*” (star) specification together with HorizontalOptions and VerticalOptions settings on the children. You can even create empty rows or empty columns just for spacing purposes.

The SpacingButtons program equally spaces three vertical buttons and three horizontal buttons. The first three buttons occupy a three-row Grid that takes up much of the page, and the three horizontal buttons are in a three-column Grid down at the bottom of the page. The two grids are in a StackLayout:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SpacingButtons.SpacingButtonsPage">

 <StackLayout>

 <Grid VerticalOptions="FillAndExpand">

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Button Text="Button 1"

 Grid.Row="0"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

 <Button Text="Button 2"

 Grid.Row="1"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

 <Button Text="Button 3"

 Grid.Row="2"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

 </Grid>

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Button Text="Button 4"

 Grid.Column="0"

 HorizontalOptions="Center" />

 <Button Text="Button 5"

 Grid.Column="1"

 HorizontalOptions="Center" />

 <Button Text="Button 6"

 Grid.Column="2"

 HorizontalOptions="Center" />

 </Grid>

 </StackLayout>

</ContentPage>

The second Grid has a default VerticalOptions value of Fill, while the first Grid has an explicit setting for VerticalOptions to FillAndExpand. This means that the first Grid will occupy all the area of the screen not occupied by the second Grid. The three RowDefinition objects of the first Grid divide that area into thirds. Within each cell, the Button is horizontal and vertically centered:

[image: Image]

The second Grid divides its area into three equally spaced columns, and each Button is horizontally centered within that area.

Although the Expands flag of LayoutOptions can assist in equally spacing visual objects within a StackLayout, the technique breaks down when the visual objects are not a uniform size. The Expands option allocates leftover space equally among all the slots in the StackLayout, but the total size of each slot depends on the size of the individual visual objects. The Grid, however, allocates space equally to the cells, and then the visual objects are aligned within that space.

Cell dividers and borders

The Grid doesn’t have any built-in cell dividers or borders. But if you’d like some, you can add them yourself. The GridCellDividers program defines a GridLength value in its Resources dictionary named dividerThickness. This is used for the height and width of every other row and column in the Grid. The idea here is that these rows and columns are for the dividers, while the other rows and columns are for regular content:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="GridCellDividers.GridCellDividersPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0"

 Android="0"

 WinPhone="0" />

 </ContentPage.Padding>

 <Grid>

 <Grid.Resources>

 <ResourceDictionary>

 <GridLength x:Key="dividerThickness">2</GridLength>

 <Style TargetType="BoxView">

 <Setter Property="Color" Value="Accent" />

 </Style>

 <Style TargetType="Label">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="Center" />

 </Style>

 </ResourceDictionary>

 </Grid.Resources>

 <Grid.RowDefinitions>

 <RowDefinition Height="{StaticResource dividerThickness}" />

 <RowDefinition Height="*" />

 <RowDefinition Height="{StaticResource dividerThickness}" />

 <RowDefinition Height="*" />

 <RowDefinition Height="{StaticResource dividerThickness}" />

 <RowDefinition Height="*" />

 <RowDefinition Height="{StaticResource dividerThickness}" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="{StaticResource dividerThickness}" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="{StaticResource dividerThickness}" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="{StaticResource dividerThickness}" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="{StaticResource dividerThickness}" />

 </Grid.ColumnDefinitions>

 <BoxView Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="7" />

 <BoxView Grid.Row="2" Grid.Column="0" Grid.ColumnSpan="7" />

 <BoxView Grid.Row="4" Grid.Column="0" Grid.ColumnSpan="7" />

 <BoxView Grid.Row="6" Grid.Column="0" Grid.ColumnSpan="7" />

 <BoxView Grid.Row="0" Grid.Column="0" Grid.RowSpan="7" />

 <BoxView Grid.Row="0" Grid.Column="2" Grid.RowSpan="7" />

 <BoxView Grid.Row="0" Grid.Column="4" Grid.RowSpan="7" />

 <BoxView Grid.Row="0" Grid.Column="6" Grid.RowSpan="7" />

 <Label Text="Grid"

 Grid.Row="1" Grid.Column="1" />

 <Label Text="Cell"

 Grid.Row="3" Grid.Column="3" />

 <Label Text="Dividers"

 Grid.Row="5" Grid.Column="5" />

 </Grid>

</ContentPage>

Each row and column for the dividers is occupied by a BoxView colored with the Accent color from an implicit style. For the horizontal dividers, the height is set by the RowDefinition and the width is governed by the Grid.ColumnSpan attached bindable property; a similar approach is applied for the vertical dividers.

The Grid also contains three Label elements just to demonstrate how regular content fits in with these dividers:

[image: Image]

It is not necessary to allocate entire rows and columns to these dividers. Keep in mind that visual objects can share cells, so it’s possible to add a BoxView (or two or three or four) to a cell and set the horizontal and vertical options so that it hugs the wall of the cell and resembles a border.

Here’s a similar program, called GridCellBorders, that displays content in the same three cells as GridCellDividers, but those three cells are also adorned with borders.

The Resources dictionary contains no fewer than seven styles that target BoxView! The base style sets the color, two more styles set the HeightRequest and WidthRequest for the horizontal and vertical borders, and then four more styles set the VerticalOptions to Start or End for the top and bottom borders and HorizontalOptions to Start and End for the left and right borders. The borderThickness dictionary entry is a double because it’s used to set WidthRequest and HeightRequest properties of the BoxView elements:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="GridCellBorders.GridCellBordersPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 10"

 Android="10"

 WinPhone="10" />

 </ContentPage.Padding>

 <Grid>

 <Grid.Resources>

 <ResourceDictionary>

 <x:Double x:Key="borderThickness">1</x:Double>

 <Style x:Key="baseBorderStyle" TargetType="BoxView">

 <Setter Property="Color" Value="Accent" />

 </Style>

 <Style x:Key="horzBorderStyle" TargetType="BoxView"

 BasedOn="{StaticResource baseBorderStyle}">

 <Setter Property="HeightRequest" Value="{StaticResource borderThickness}" />

 </Style>

 <Style x:Key="topBorderStyle" TargetType="BoxView"

 BasedOn="{StaticResource horzBorderStyle}">

 <Setter Property="VerticalOptions" Value="Start" />

 </Style>

 <Style x:Key="bottomBorderStyle" TargetType="BoxView"

 BasedOn="{StaticResource horzBorderStyle}">

 <Setter Property="VerticalOptions" Value="End" />

 </Style>

 <Style x:Key="vertBorderStyle" TargetType="BoxView"

 BasedOn="{StaticResource baseBorderStyle}">

 <Setter Property="WidthRequest" Value="{StaticResource borderThickness}" />

 </Style>

 <Style x:Key="leftBorderStyle" TargetType="BoxView"

 BasedOn="{StaticResource vertBorderStyle}">

 <Setter Property="HorizontalOptions" Value="Start" />

 </Style>

 <Style x:Key="rightBorderStyle" TargetType="BoxView"

 BasedOn="{StaticResource vertBorderStyle}">

 <Setter Property="HorizontalOptions" Value="End" />

 </Style>

 <Style TargetType="Label">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="Center" />

 </Style>

 </ResourceDictionary>

</Grid.Resources>

<Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Label Text="Grid"

 Grid.Row="0" Grid.Column="0" />

<BoxView Style="{StaticResource topBorderStyle}"

 Grid.Row="0" Grid.Column="0" />

<BoxView Style="{StaticResource bottomBorderStyle}"

 Grid.Row="0" Grid.Column="0" />

<BoxView Style="{StaticResource leftBorderStyle}"

 Grid.Row="0" Grid.Column="0" />

<BoxView Style="{StaticResource rightBorderStyle}"

 Grid.Row="0" Grid.Column="0" />

<Grid Grid.Row="1" Grid.Column="1">

 <Label Text="Cell" />

 <BoxView Style="{StaticResource topBorderStyle}" />

 <BoxView Style="{StaticResource bottomBorderStyle}" />

 <BoxView Style="{StaticResource leftBorderStyle}" />

 <BoxView Style="{StaticResource rightBorderStyle}" />

</Grid>

<Grid Grid.Row="2" Grid.Column="2">

 <Label Text="Borders" />

 <BoxView Style="{StaticResource topBorderStyle}" />

 <BoxView Style="{StaticResource bottomBorderStyle}" />

 <BoxView Style="{StaticResource leftBorderStyle}" />

 <BoxView Style="{StaticResource rightBorderStyle}" />

 </Grid>

 </Grid>

</ContentPage>

In the cell in the upper-left corner, the Label and four BoxView elements each gets its Grid.Row and Grid.Column attributes set to 0. However, for the middle Grid and the bottom-right Grid, a rather easier approach is taken: Another Grid with a single cell occupies the cell, and that single-cell Grid contains the Label and four BoxView elements. The simplicity results from setting Grid.Row and Grid.Column only on the single-cell Grid:

Click here to view code image

<Grid Grid.Row="1" Grid.Column="1">

 <Label Text="Cell" />

 <BoxView Style="{StaticResource topBorderStyle}" />

 <BoxView Style="{StaticResource bottomBorderStyle}" />

 <BoxView Style="{StaticResource leftBorderStyle}" />

 <BoxView Style="{StaticResource rightBorderStyle}" />

</Grid>

When nesting a Grid inside another Grid, the use of the Grid.Row and Grid.Column attributes can be confusing. This single-cell Grid occupies the second row and second column of its parent, which is the Grid that occupies the entire page.

Also, keep in mind that when a Grid is laying itself out, it looks only at the Grid.Row and Grid.Column settings of its children, and never its grandchildren or other descendants in the visual tree.

Here’s the result:

[image: Image]

It might be a little disconcerting that the corners of the borders don’t meet, but that’s due to the default row and column spacing of the Grid. Set the RowSpacing and ColumnSpacing attributes to 0, and the corners will meet although the lines will still seem somewhat discontinuous because the borders are in different cells. If this is unacceptable, use the technique shown in GridCellDividers.

If you want all the rows and columns shown with dividers as in GridCellDividers, another technique is to set the BackgroundColor property of the Grid and use the RowSpacing and ColumnSpacing properties to let that color peek through the spaces between the cells. But all the cells must contain content that has an opaque background for this technique to be visually convincing.

Almost real-life Grid examples

We are now ready to rewrite the XamlKeypad program from Chapter 8 to use a Grid. The new version is called KeypadGrid. The use of a Grid not only forces the Button elements that make up the keypad to be all the same size, but also allows components of the keypad to span cells.

The Grid that makes up the keypad is centered on the page with HorizontalOptions and VerticalOptions settings. It has five rows and three columns but the RowDefinitions and ColumnDefinitions collections don’t need to be explicitly constructed because every cell has a “*” (star) height and width.

Moreover, the entire Grid is given a platform-specific WidthRequest and HeightRequest, where the width is three-fifths of the height. (The difference for Windows Phone is based on the somewhat larger size of the Large font size used for the Button.) This causes every cell in the Grid to be square:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="KeypadGrid.KeypadGridPage">

 <Grid RowSpacing="2"

 ColumnSpacing="2"

 VerticalOptions="Center"

 HorizontalOptions="Center">

 <Grid.WidthRequest>

 <OnPlatform x:TypeArguments="x:Double"

 iOS="180"

 Android="180"

 WinPhone="240" />

 </Grid.WidthRequest>

 <Grid.HeightRequest>

 <OnPlatform x:TypeArguments="x:Double"

 iOS="300"

 Android="300"

 WinPhone="400" />

 </Grid.HeightRequest>

 <Grid.Resources>

 <ResourceDictionary>

 <Style TargetType="Button">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="BorderWidth" Value="1" />

 </Style>

 </ResourceDictionary>

</Grid.Resources>

<Label x:Name="displayLabel"

 Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2"

 FontSize="Large"

 LineBreakMode="HeadTruncation"

 VerticalOptions="Center"

 HorizontalTextAlignment="End" />

<Button x:Name="backspaceButton"

 Text="⇦"

 Grid.Row="0" Grid.Column="2"

 IsEnabled="False"

 Clicked="OnBackspaceButtonClicked" />

<Button Text="7" StyleId="7"

 Grid.Row="1" Grid.Column="0"

 Clicked="OnDigitButtonClicked" />

<Button Text="8" StyleId="8"

 Grid.Row="1" Grid.Column="1"

 Clicked="OnDigitButtonClicked" />

<Button Text="9" StyleId="9"

 Grid.Row="1" Grid.Column="2"

 Clicked="OnDigitButtonClicked" />

<Button Text="4" StyleId="4"

 Grid.Row="2" Grid.Column="0"

 Clicked="OnDigitButtonClicked" />

<Button Text="5" StyleId="5"

 Grid.Row="2" Grid.Column="1"

 Clicked="OnDigitButtonClicked" />

<Button Text="6" StyleId="6"

 Grid.Row="2" Grid.Column="2"

 Clicked="OnDigitButtonClicked" />

<Button Text="1" StyleId="1"

 Grid.Row="3" Grid.Column="0"

 Clicked="OnDigitButtonClicked" />

<Button Text="2" StyleId="2"

 Grid.Row="3" Grid.Column="1"

 Clicked="OnDigitButtonClicked" />

<Button Text="3" StyleId="3"

 Grid.Row="3" Grid.Column="2"

 Clicked="OnDigitButtonClicked" />

 <Button Text="0" StyleId="0"

 Grid.Row="4" Grid.Column="0" Grid.ColumnSpan="2"

 Clicked="OnDigitButtonClicked" />

 <Button Text="." StyleId="."

 Grid.Row="4" Grid.Column="2"

 Clicked="OnDigitButtonClicked" />

 </Grid>

</ContentPage>

The Label and the backspace button occupy the top row, but the Label spans two columns and the backspace button is in the third column. Similarly, the bottom row of the Grid contains the zero button and the decimal-point button, but the zero button spans two columns as is typical on computer keypads.

The code-behind file is the same as the XamlKeypad program. In addition, the program saves entries when the program is put to sleep and then restores them when the program starts up again. A border has been added to the Button in an implicit style so that it looks more like a real keypad on iOS:

[image: Image]

As you might recall, the OnDigitButtonClicked handler in the code-behind file uses the StyleId property to append a new character to the text string. But as you can see in the XAML file, for each of the buttons with this event handler, the StyleId is set to the same character as the Text property of the Button. Can’t the event handler use that instead?

Yes, it can. But suppose you decide that the decimal point in the Button doesn’t show up very well. You might prefer to use a heavier and more central dot, such as \u00B7 (called Middle Dot) or \u22C5 (the mathematical Dot Operator) or even \u2022 (the Bullet). Perhaps you’d also like different styles of numbers for these other buttons, such as the set of encircled numbers that begin at \u2460 in the Unicode standard, or the Roman numerals that begin at \u2160. You can replace the Text property in the XAML file without touching the code-behind file:

[image: Image]

The StyleId is one of the tools to keep the visuals and mechanics of the user interface restricted to markup and separated from your code. You’ll see more tools to structure your program in the next chapter, which covers the Model-View-ViewModel application architecture. That chapter also presents a variation of the keypad program turned into an adding machine.

Responding to orientation changes

The layout of an application’s page is usually tied fairly closely to a particular form factor and aspect ratio. Sometimes, an application will require that it be used only in portrait or landscape mode. But usually an application will attempt to move things around on the screen when the phone changes orientation.

A Grid can help an application accommodate itself to orientation changes. The Grid can be defined in XAML with certain allowances for both portrait and landscape modes, and then a little code can make the proper adjustments within a SizeChanged handler for the page.

This job is easiest if you can divide the entire layout of your application into two large areas that can be arranged vertically when the phone is oriented in portrait mode or horizontally for landscape mode. Put each of these areas in separate cells of a Grid. When the phone is in portrait mode, the Grid has two rows, and when it’s in landscape mode, it has two columns. In the following diagram, the first area is always at the top or the left. The second area can be in either the second row for portrait mode or the second column for landscape mode:

[image: Image]

To keep things reasonably simple, you’ll want to define the Grid in XAML with two rows and two columns, but in portrait mode, the second column has a width of zero, and in landscape mode the second row has a zero height.

The GridRgbSliders program demonstrates this technique. It is similar to the RgbSliders program from Chapter 15, “The interactive interface,” except that the layout uses a combination of a Grid and a StackLayout, and the Label elements display the current values of the Slider elements by using data bindings with a value converter and a value converter parameter. (More on this later.) Setting the Color property of the BoxView based on the three Slider elements still requires code because the R, G, and B properties of the Color struct are not backed by bindable properties, and these properties cannot be individually changed anyway because they do not have public set accessors. (However, in the next chapter, on MVVM, you’ll see a way to eliminate this logic in the code-behind file.)

As you can see in the following listing, the Grid named mainGrid does indeed have two rows and two columns. However, it is initialized for portrait mode, so the second column has a width of zero. The top row of the Grid contains the BoxView, and that’s made as large as possible with a “*” (star) setting, while the bottom row contains a StackLayout with all the interactive controls. This is given a height of Auto:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="GridRgbSliders.GridRgbSlidersPage"

 SizeChanged="OnPageSizeChanged">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

</ContentPage.Padding>

<ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:DoubleToIntConverter x:Key="doubleToInt" />

 <Style TargetType="Label">

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 </ResourceDictionary>

</ContentPage.Resources>

<Grid x:Name="mainGrid">

 <!-- Initialized for portrait mode. -->

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="0" />

 </Grid.ColumnDefinitions>

 <BoxView x:Name="boxView"

 Grid.Row="0" Grid.Column="0" />

 <StackLayout x:Name="controlPanelStack"

 Grid.Row="1" Grid.Column="0"

 Padding="10, 5">

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider x:Name="redSlider"

 ValueChanged="OnSliderValueChanged" />

 <Label Text="{Binding Source={x:Reference redSlider},

 Path=Value,

 Converter={StaticResource doubleToInt},

 ConverterParameter=255,

 StringFormat='Red = {0:X2}'}" />

 </StackLayout>

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider x:Name="greenSlider"

 ValueChanged="OnSliderValueChanged" />

 <Label Text="{Binding Source={x:Reference greenSlider},

 Path=Value,

 Converter={StaticResource doubleToInt},

 ConverterParameter=255,

 StringFormat='Green = {0:X2}'}" />

 </StackLayout>

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider x:Name="blueSlider"

 ValueChanged="OnSliderValueChanged" />

 <Label Text="{Binding Source={x:Reference blueSlider},

 Path=Value,

 Converter={StaticResource doubleToInt},

 ConverterParameter=255,

 StringFormat='Blue = {0:X2}'}" />

 </StackLayout>

 </StackLayout>

 </Grid>

</ContentPage>

And here’s the portrait view:

[image: Image]

The layout in the XAML file is prepared for landscape mode in a couple of ways. First, the Grid already has a second column. This means that to switch to landscape mode, the code-behind file needs to change the height of the second row to zero and the width of the second column to a nonzero value.

Secondly, the StackLayout containing all the Slider and Label elements is accessible from code because it has a name, specifically controlPanelStack. The code-behind file can then make Grid.SetRow and Grid.SetColumn calls on this StackLayout to move it from row 1 and column 0 to row 0 and column 1.

In portrait mode, the BoxView has a height of “*” (star) and the StackLayout has a height of Auto. Does this mean that the width of the StackLayout should be Auto in landscape mode? That wouldn’t be wise because it would shrink the widths of the Slider elements. A better solution for landscape mode is to give both the BoxView and the StackLayout a width of “*” (star) to divide the screen in half.

Here’s the code-behind file showing the SizeChanged handler on the page responsible for switching between portrait and landscape mode, as well as the ValueChanged handler for the Slider elements that sets the BoxView color:

Click here to view code image

public partial class GridRgbSlidersPage : ContentPage

{

 public GridRgbSlidersPage()

 {

 // Ensure link to Toolkit library.

 new Xamarin.FormsBook.Toolkit.DoubleToIntConverter();

 InitializeComponent();

 }

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 // Portrait mode.

 if (Width < Height)

 {

 mainGrid.RowDefinitions[1].Height = GridLength.Auto;

 mainGrid.ColumnDefinitions[1].Width = new GridLength(0, GridUnitType.Absolute);

 Grid.SetRow(controlPanelStack, 1);

 Grid.SetColumn(controlPanelStack, 0);

 }

 // Landscape mode.

 else

 {

 mainGrid.RowDefinitions[1].Height = new GridLength(0, GridUnitType.Absolute);

 mainGrid.ColumnDefinitions[1].Width = new GridLength(1, GridUnitType.Star);

 Grid.SetRow(controlPanelStack, 0);

 Grid.SetColumn(controlPanelStack, 1);

 }

 }

 void OnSliderValueChanged(object sender, ValueChangedEventArgs args)

 {

 boxView.Color = new Color(redSlider.Value, greenSlider.Value, blueSlider.Value);

 }

}

And here’s the landscape layout, displayed sideways as usual:

[image: Image]

Notice, particularly on the iOS and Android displays, how each pair of Slider and Label elements is grouped together. This results from a third way that the XAML file is prepared to accommodate landscape mode. Each pair of Slider and Label elements is grouped in a nested StackLayout. This is given a VerticalOptions setting of CenterAndExpand to perform this spacing.

A little thought was given to arranging the BoxView and the control panel: In portrait mode, the fingers manipulating the Slider elements won’t obscure the result in the BoxView, and in landscape mode, the fingers of right-handed users won’t obscure the BoxView either. (Of course, left-handed users will probably insist on a program option to swap the locations!)

The screenshots show the Slider values displayed in hexadecimal. This is done with a data binding, and that would normally be a problem. The Value property of the Slider is of type double, and if you attempt to format a double with “X2” for hexadecimal, an exception will be raised. A type converter (named DoubleToIntConverter, for example) must convert the source double to an int for the string formatting. However, the Slider elements are set up for a range of 0 to 1, while integer values formatted as hexadecimal must range from 0 to 255.

A solution is to make use of the ConverterParameter property of Binding. Whatever is set to this property is passed as the third argument to the Convert and ConvertBack methods in the value converter. Here’s the DoubleToIntConverter class in the Xamarin.FormsBook.Toolkit library:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class DoubleToIntConverter : IValueConverter

 {

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 string strParam = parameter as string;

 double multiplier = 1;

 if (!String.IsNullOrEmpty(strParam))

 {

 Double.TryParse(strParam, out multiplier);

 }

 return (int)Math.Round((double)value * multiplier);

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 string strParam = parameter as string;

 double divider = 1;

 if (!String.IsNullOrEmpty(strParam))

 {

 Double.TryParse(strParam, out divider);

 }

 return (int)value / divider;

 }

 }

}

The Convert and ConvertBack methods assume that the parameter argument is a string and, if so, attempt to convert it to a double. This value is then multiplied by the double value being converted, and then the product is cast to an int.

The combination of the value converter, the converter parameter, and the string formatting converts values ranging from 0 to 1 coming from the Slider to integers in the range of 0 to 255 that are then formatted as two hexadecimal digits:

Click here to view code image

<Label Text="{Binding Source={x:Reference redSlider},

 Path=Value,

 Converter={StaticResource doubleToInt},

 ConverterParameter=255,

 StringFormat='Red = {0:X2}'}" />

Of course, if you were defining the Binding in code, you would probably set the ConverterParameter property to the numeric value of 255 rather than a string of “255”, and the logic in the DoubleToIntConverter would fail. Simple value converters are usually simpler than they should be for complete bulletproofing.

Can a program like GridRgbSliders be entirely realized without the Slider event handlers in the code-behind file? Code will certainly still be required, but some of it will be moved away from the user-interface logic. That’s the main objective of the Model-View-ViewModel architecture explored in the next chapter.

Chapter 18. MVVM

Can you remember your earliest experiences with programming? It’s likely that your main goal was just getting the program working, and then getting it working correctly. You probably didn’t think much about the organization or structure of the program. That was something that came later.

The computer industry as a whole has gone through a similar evolution. As developers, we all now realize that once an application begins growing in size, it’s usually a good idea to impose some kind of structure or architecture on the code. Experience with this process suggests that it’s often best to start thinking about this architecture perhaps before any code is written at all. In most cases, a desirable program structure strives for a “separation of concerns” through which different pieces of the program focus on different sorts of tasks.

In a graphically interactive program, one obvious technique is to separate the user interface from underlying non-user-interface logic, sometimes called business logic. The first formal description of such an architecture for graphical user interfaces was called Model-View-Controller (MVC), but this architecture has since given rise to others derived from it.

To some extent, the nature of the programming interface itself influences the application architecture. For example, a programming interface that includes a markup language with data bindings might suggest a particular way to structure an application.

There is indeed an architectural model that was designed specifically with XAML in mind. This is known as Model-View-ViewModel or MVVM. This chapter covers the basics of MVVM (including the command interface), but you’ll see more about MVVM in the next chapter, which covers collection views. Also, some other features of Xamarin.Forms are often used in conjunction with MVVM; these features include triggers and behaviors, and they are the subject of Chapter 23.

MVVM interrelationships

MVVM divides an application into three layers:

• The Model provides underlying data, sometimes involving file or web accesses.

• The ViewModel connects the Model and the View. It helps to manage the data from the Model to make it more amenable to the View, and vice versa.

• The View is the user interface or presentation layer, generally implemented in XAML.

The Model is ignorant of the ViewModel. In other words, the Model knows nothing about the public properties and methods of the ViewModel, and certainly nothing about its internal workings. Similarly, the ViewModel is ignorant of the View. If all the communication between the three layers occurs through method calls and property accesses, then calls in only one direction are allowed. The View only makes calls into the ViewModel or accesses properties of the ViewModel, and the ViewModel similarly only makes calls into the Model or accesses Model properties:

[image: Image]

These method calls allow the View to get information from the ViewModel, which in turn gets information from the Model.

In modern environments, however, data is often dynamic. Often the Model will obtain more or newer data that must be communicated to the ViewModel and eventually to the View. For this reason, the View can attach handlers to events that are implemented in the ViewModel, and the ViewModel can attach handlers to events defined by the Model. This allows two-way communication while continuing to hide the View from the ViewModel, and the ViewModel from the Model:

[image: Image]

MVVM was designed to take advantage of XAML and particularly XAML-based data bindings. Generally, the View is a page class that uses XAML to construct the user interface. Therefore, the connection between the View and the ViewModel consists largely—and perhaps exclusively—of XAML-based data bindings:

[image: Image]

Programmers who are very passionate about MVVM often have an informal goal of expressing all interactions between the View and the ViewModel in a page class with XAML-based data bindings, and in the process reducing the code in the page’s code-behind file to a simple InitializeComponent call. This goal is difficult to achieve in real-life programming, but it’s a pleasure when it happens.

Small programs—such as those in a book like this—often become larger when MVVM is introduced. Do not let this discourage your use of MVVM! Use the examples here to help you determine how MVVM can be used in a larger program, and you’ll eventually see that it helps enormously in architecting your applications.

ViewModels and data binding

In many fairly simple demonstrations of MVVM, the Model is absent or only implied, and the ViewModel contains all the business logic. The View and the ViewModel communicate through XAML-based data bindings. The visual elements in the View are data-binding targets, and properties in the ViewModel are data-binding sources.

Ideally, a ViewModel should be independent of any particular platform. This independence allows ViewModels to be shared among other XAML-based environments (such as Windows) in addition to Xamarin.Forms. For this reason, you should try to avoid using the following statement in your ViewModels:

using Xamarin.Forms;

That rule is frequently broken in this chapter! One of the ViewModels is based on the Xamarin.Forms Color structure, and another uses Device.StartTimer. So let’s call the avoidance of anything specific to Xamarin.Forms in the ViewModel a “suggestion” rather than a “rule.”

Visual elements in the View qualify as data-binding targets because the properties of these visual elements are backed by bindable properties. To be a data-binding source, a ViewModel must implement a notification protocol to signal when a property in the ViewModel has changed. This notification protocol is the INotifyPropertyChanged interface, which is defined in the System.ComponentModel namespace very simply with just one event:

Click here to view code image

public interface INotifyPropertyChanged

{

 event PropertyChangedEventHandler PropertyChanged;

}

The INotifyPropertyChanged interface is so central to MVVM that in informal discussions the interface is often abbreviated INPC.

The PropertyChanged event in the INotifyPropertyChanged interface is of type PropertyChangedEventHandler. A handler for this PropertyChanged event handler gets an instance of the PropertyChangedEventArgs class, which defines a single property named PropertyName of type string indicating what property in the ViewModel has changed. The event handler can then access that property.

A class that implements INotifyPropertyChanged should fire a PropertyChanged event whenever a public property changes, but the class should not fire the event when the property is merely set but not changed.

Some classes define immutable properties—properties that are initialized in the constructor and then never change. Those properties do not need to fire PropertyChanged events because a PropertyChanged handler can be attached only after the code in the constructor finishes, and the immutable properties never change after that time.

In theory, a ViewModel class can be derived from BindableObject and implement its public properties as BindableProperty objects. BindableObject implements INotifyPropertyChanged and automatically fires a PropertyChanged event when any property backed by a BindableProperty changes. But deriving from BindableObject is overkill for a ViewModel. Because BindableObject and BindableProperty are specific to Xamarin.Forms, such a ViewModel is no longer platform independent, and the technique provides no real advantages over a simpler implementation of INotifyPropertyChanged.

A ViewModel clock

Suppose you are writing a program that needs access to the current date and time, and you’d like to use that information through data bindings. The .NET base class library provides date and time information through the DateTime structure. To get the current date and time, just access the DateTime.Now property. That’s the customary way to write a clock application.

But for data-binding purposes, DateTime has a severe flaw: It provides just static information with no notification when the date or time has changed.

In the context of MVVM, the DateTime structure perhaps qualifies as a Model in the sense that DateTime provides all the data we need but not in a form that’s conducive to data bindings. It’s necessary to write a ViewModel that makes use of DateTime but provides notifications when the date or time has changed.

The Xamarin.FormsBook.Toolkit library contains the DateTimeViewModel class shown below. The class has only one property, which is named DateTime of type DateTime, but this property dynamically changes as a result of frequent calls to DateTime.Now in a Device.StartTimer callback.

Notice that the DateTimeViewModel class is based on the INotifyPropertyChanged interface and includes a using directive for the System.ComponentModel namespace that defines this interface. To implement this interface, the class defines a public event named PropertyChanged.

Watch out: It is very easy to define a PropertyChanged event in your class without explicitly specifying that the class implements INotifyPropertyChanged! The notifications will be ignored if you don’t explicitly specify that the class is based on the INotifyPropertyChanged interface:

Click here to view code image

using System;

using System.ComponentModel;

using Xamarin.Forms;

namespace Xamarin.FormsBook.Toolkit

{

 public class DateTimeViewModel : INotifyPropertyChanged

 {

 DateTime dateTime = DateTime.Now;

 public event PropertyChangedEventHandler PropertyChanged;

 public DateTimeViewModel()

 {

 Device.StartTimer(TimeSpan.FromMilliseconds(15), OnTimerTick);

 }

 bool OnTimerTick()

 {

 DateTime = DateTime.Now;

 return true;

 }

 public DateTime DateTime

 {

 private set

 {

 if (dateTime != value)

 {

 dateTime = value;

 // Fire the event.

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 handler(this, new PropertyChangedEventArgs("DateTime"));

 }

 }

 }

 get

 {

 return dateTime;

 }

 }

 }

}

The only public property in this class is called DateTime of type DateTime, and it is associated with a private backing field named dateTime. Public properties in ViewModels usually have private backing fields. The set accessor of the DateTime property is private to the class, and it’s updated every 15 milliseconds from the timer callback.

Other than that, the set accessor is constructed in a very standard way for ViewModels: It first checks whether the value being set to the property is different from the dateTime backing field. If not, it sets that backing field from the incoming value and fires the PropertyChanged handler with the name of the property. It is considered very bad practice to fire the PropertyChanged handler if the property is merely being set to its existing value, and it might even lead to problems involving infinite cycles of recursive property settings in two-way bindings.

This is the code in the set accessor that fires the event:

Click here to view code image

PropertyChangedEventHandler handler = PropertyChanged;

if (handler != null)

{

 handler(this, new PropertyChangedEventArgs("DateTime"));

}

That form is preferable to code such as this, which doesn’t save the handler in a separate variable:

Click here to view code image

if (PropertyChanged != null)

{

 PropertyChanged(this, new PropertyChangedEventArgs("DateTime"));

}

In a multithreaded environment, a PropertyChanged handler might be detached between the if statement that checks for a null value and the actual firing of the event. Saving the handler in a separate variable prevents that from causing a problem, so it’s a good habit to adopt even if you’re not yet working in a multithreaded environment.

The get accessor simply returns the dateTime backing field.

The MvvmClock program demonstrates how the DateTimeViewModel class is capable of providing updated date and time information to the user interface through data bindings:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:sys="clr-namespace:System;assembly=mscorlib"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="MvvmClock.MvvmClockPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:DateTimeViewModel x:Key="dateTimeViewModel" />

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout VerticalOptions="Center">

 <Label Text="{Binding Source={x:Static sys:DateTime.Now},

 StringFormat='This program started at {0:F}'}" />

 <Label Text="But now..." />

 <Label Text="{Binding Source={StaticResource dateTimeViewModel},

 Path=DateTime.Hour,

 StringFormat='The hour is {0}'}" />

 <Label Text="{Binding Source={StaticResource dateTimeViewModel},

 Path=DateTime.Minute,

 StringFormat='The minute is {0}'}" />

 <Label Text="{Binding Source={StaticResource dateTimeViewModel},

 Path=DateTime.Second,

 StringFormat='The seconds are {0}'}" />

 <Label Text="{Binding Source={StaticResource dateTimeViewModel},

 Path=DateTime.Millisecond,

 StringFormat='The milliseconds are {0}'}" />

 </StackLayout>

</ContentPage>

The Resources section for the page instantiates the DateTimeViewModel and also defines an implicit Style for the Label.

The first of the six Label elements sets its Text property to a Binding object that involves the actual .NET DateTime structure. The Source property of that binding is an x:Static markup extension that references the static DateTime.Now property to obtain the date and time when the program first starts running. No Path is required in this binding. The “F” formatting specification is for the full date/time pattern, with long versions of the date and time strings. Although this Label displays the date and time when the program starts up, it will never get updated.

The final four data bindings will be updated. In these data bindings, the Source property is set to a StaticResource markup extension that references the DateTimeViewModel object. The Path is set to various subproperties of the DateTime property of that ViewModel. Behind the scenes, the binding infrastructure attaches a handler on the PropertyChanged event in the DateTimeViewModel. This handler checks for a change in the DateTime property and updates the Text property of the Label whenever that property changes.

The code-behind file is empty except for an InitializeComponent call. The data bindings of the final four labels display an updated time that changes as fast as the video refresh rate:

[image: Image]

The markup in this XAML file can be simplified by setting the BindingContext property of the StackLayout to a StaticResource markup extension that references the ViewModel. That BindingContext is propagated through the visual tree so that you can remove the Source settings on the final four Label elements:

Click here to view code image

<StackLayout VerticalOptions="Center"

 BindingContext="{StaticResource dateTimeViewModel}">

 <Label Text="{Binding Source={x:Static sys:DateTime.Now},

 StringFormat='This program started at {0:F}'}" />

 <Label Text="But now..." />

 <Label Text="{Binding Path=DateTime.Hour,

 StringFormat='The hour is {0}'}" />

 <Label Text="{Binding Path=DateTime.Minute,

 StringFormat='The minute is {0}'}" />

 <Label Text="{Binding Path=DateTime.Second,

 StringFormat='The seconds are {0}'}" />

 <Label Text="{Binding Path=DateTime.Millisecond,

 StringFormat='The milliseconds are {0}'}" />

</StackLayout>

The Binding on the first Label overrides that BindingContext with its own Source setting.

You can even remove the DateTimeViewModel item from the ResourceDictionary and instantiate it right in the StackLayout between BindingContext property-element tags:

Click here to view code image

<StackLayout VerticalOptions="Center">

 <StackLayout.BindingContext>

 <toolkit:DateTimeViewModel />

 </StackLayout.BindingContext>

 <Label Text="{Binding Source={x:Static sys:DateTime.Now},

 StringFormat='This program started at {0:F}'}" />

 <Label Text="But now..." />

 <Label Text="{Binding Path=DateTime.Hour,

 StringFormat='The hour is {0}'}" />

 <Label Text="{Binding Path=DateTime.Minute,

 StringFormat='The minute is {0}'}" />

 <Label Text="{Binding Path=DateTime.Second,

 StringFormat='The seconds are {0}'}" />

 <Label Text="{Binding Path=DateTime.Millisecond,

 StringFormat='The milliseconds are {0}'}" />

</StackLayout>

Or, you can set the BindingContext property of the StackLayout to a Binding that includes the DateTime property. The BindingContext then becomes the DateTime value, which allows the individual bindings to simply reference properties of the .NET DateTime structure:

Click here to view code image

<StackLayout VerticalOptions="Center"

 BindingContext="{Binding Source={StaticResource dateTimeViewModel},

 Path=DateTime}">

 <Label Text="{Binding Source={x:Static sys:DateTime.Now},

 StringFormat='This program started at {0:F}'}" />

 <Label Text="But now..." />

 <Label Text="{Binding Path=Hour,

 StringFormat='The hour is {0}'}" />

 <Label Text="{Binding Path=Minute,

 StringFormat='The minute is {0}'}" />

 <Label Text="{Binding Path=Second,

 StringFormat='The seconds are {0}'}" />

 <Label Text="{Binding Path=Millisecond,

 StringFormat='The milliseconds are {0}'}" />

</StackLayout>

You might have doubts that this will work! Behind the scenes, a data binding normally installs a PropertyChanged event handler and watches for particular properties being changed, but it can’t in this case because the source of the data binding is a DateTime value, and DateTime doesn’t implement INotifyPropertyChanged. However, the BindingContext of these Label elements changes with each change to the DateTime property in the ViewModel, so the binding infrastructure accesses new values of these properties at that time.

As the individual bindings on the Text properties decrease in length and complexity, you can remove the Path attribute name and put everything on one line and nobody will be confused:

Click here to view code image

<StackLayout VerticalOptions="Center">

 <StackLayout.BindingContext>

 <Binding Path="DateTime">

 <Binding.Source>

 <toolkit:DateTimeViewModel />

 </Binding.Source>

 </Binding>

 </StackLayout.BindingContext>

 <Label Text="{Binding Source={x:Static sys:DateTime.Now},

 StringFormat='This program started at {0:F}'}" />

 <Label Text="But now..." />

 <Label Text="{Binding Hour, StringFormat='The hour is {0}'}" />

 <Label Text="{Binding Minute, StringFormat='The minute is {0}'}" />

 <Label Text="{Binding Second, StringFormat='The seconds are {0}'}" />

 <Label Text="{Binding Millisecond, StringFormat='The milliseconds are {0}'}" />

</StackLayout>

In future programs in this book, the individual bindings will mostly be as short and as elegant as possible.

Interactive properties in a ViewModel

The second example of a ViewModel does something so basic that you’d never write a ViewModel for this purpose. The SimpleMultiplierViewModel class simply multiplies two numbers together. But it’s a good example for demonstrating the overhead and mechanics of a ViewModel that has multiple interactive properties. (And although you’d never write a ViewModel for multiplying two numbers together, you might write a ViewModel for solving quadratic equations or something much more complex.)

The SimpleMultiplierViewModel class is part of the SimpleMultiplier project:

Click here to view code image

using System;

using System.ComponentModel;

namespace SimpleMultiplier

{

 class SimpleMultiplierViewModel : INotifyPropertyChanged

 {

 double multiplicand, multiplier, product;

 public event PropertyChangedEventHandler PropertyChanged;

 public double Multiplicand

 {

 set

 {

 if (multiplicand != value)

 {

 multiplicand = value;

 OnPropertyChanged("Multiplicand");

 UpdateProduct();

 }

 }

 get

 {

 return multiplicand;

 }

 }

 public double Multiplier

 {

 set

 {

 if (multiplier != value)

 {

 multiplier = value;

 OnPropertyChanged("Multiplier");

 UpdateProduct();

 }

 }

 get

 {

 return multiplier;

 }

 }

 public double Product

 {

 protected set

 {

 if (product != value)

 {

 product = value;

 OnPropertyChanged("Product");

 }

 }

 get

 {

 return product;

 }

 }

 void UpdateProduct()

 {

 Product = Multiplicand * Multiplier;

 }

 protected void OnPropertyChanged(string propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

}

The class defines three public properties of type double, named Multiplicand, Multiplier, and Product. Each property is backed by a private field. The set and get accessors of the first two properties are public, but the set accessor of the Product property is protected to prevent it from being set outside the class while still allowing a descendant class to change it.

The set accessor of each property begins by checking whether the property value is actually changing, and if so, it sets the backing field to that value and calls a method named OnPropertyChanged with that property name.

The INotifyPropertyChanged interface does not require an OnPropertyChanged method, but ViewModel classes often include one to cut down the code repetition. It’s usually defined as protected in case you need to derive one ViewModel from another and fire the event in the derived class. Later in this chapter, you’ll see techniques to cut down the code repetition in INotifyPropertyChanged classes even more.

The set accessors for both the Multiplicand and Multiplier properties conclude by calling the UpdateProduct method. This is the method that performs the job of multiplying the values of the two properties and setting a new value for the Product property, which then fires its own PropertyChanged event.

Here’s the XAML file that makes use of this ViewModel:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:SimpleMultiplier"

 x:Class="SimpleMultiplier.SimpleMultiplierPage"

 Padding="10, 0">

 <ContentPage.Resources>

 <ResourceDictionary>

 <local:SimpleMultiplierViewModel x:Key="viewModel" />

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout BindingContext="{StaticResource viewModel}">

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Multiplicand}" />

 <Slider Value="{Binding Multiplier}" />

 </StackLayout>

 <StackLayout Orientation="Horizontal"

 Spacing="0"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Label Text="{Binding Multiplicand, StringFormat='{0:F3}'}" />

 <Label Text="{Binding Multiplier, StringFormat=' x {0:F3}'}" />

 <Label Text="{Binding Product, StringFormat=' = {0:F3}'}" />

 </StackLayout>

 </StackLayout>

</ContentPage>

The SimpleMultiplierViewModel is instantiated in the Resources dictionary and set to the BindingContext property of the StackLayout by using a StaticResource markup extension. That BindingContext is inherited by all the children and grandchildren of the StackLayout, which includes two Slider and three Label elements. The use of the BindingContext allows these bindings to be as simple as possible.

The default binding mode of the Value property of the Slider is TwoWay. Changes in the Value property of each Slider cause changes to the properties of the ViewModel.

The three Label elements display the values of all three properties of the ViewModel with some formatting that inserts times and equals signs with the numbers:

Click here to view code image

<Label Text="{Binding Multiplicand, StringFormat='{0:F3}'}" />

<Label Text="{Binding Multiplier, StringFormat=' x {0:F3}'}" />

<Label Text="{Binding Product, StringFormat=' = {0:F3}'}" />

For the first two, you can alternatively bind the Text property of the Label elements directly to the Value property of the corresponding Slider, but that would require that you give each Slider a name with x:Name and reference that name in a Source argument by using the x:Reference markup extension. The approach used in this program is much cleaner and verifies that data is making a full trip through the ViewModel from each Slider to each Label.

There is nothing in the code-behind file except a call to InitializeComponent in the constructor. All the business logic is in the ViewModel, and the whole user interface is defined in XAML:

[image: Image]

If you’d like to, you can initialize the ViewModel as it is instantiated in the Resources dictionary:

Click here to view code image

<local:SimpleMultiplierViewModel x:Key="viewModel"

 Multiplicand="0.5"

 Multiplier="0.5" />

The Slider elements will get these initial values as a result of the two-way binding.

The advantage to separating the user interface from the underlying business logic becomes evident when you want to change the user interface somewhat, perhaps by substituting a Stepper for the Slider for one or both numbers:

Click here to view code image

<StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Multiplicand}" />

 <Stepper Value="{Binding Multiplier}" />

</StackLayout>

Aside from the different ranges of the two elements, the functionality is identical:

[image: Image]

You could also substitute an Entry:

Click here to view code image

<StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Multiplicand}" />

 <Entry Text="{Binding Multiplier}" />

</StackLayout>

The default binding mode for the Text property of the Entry is also TwoWay, so all you need to worry about is the conversion between the source property double and target property string. Fortunately, this conversion is automatically handled by the binding infrastructure:

[image: Image]

If you type a series of characters that cannot be converted to a double, the binding will maintain the last valid value. If you want more sophisticated validation, you’ll have to implement your own (such as with a trigger, which will be discussed in Chapter 23).

One interesting experiment is to type 1E-1, which is scientific notation that is convertible to a double. You’ll see it immediately change to “0.1” in the Entry. This is the effect of the TwoWay binding: The Multiplier property is set to 1E-1 from the Entry but the ToString method that the binding infrastructure calls when the value comes back to the Entry returns the text “0.1.” Because that is different from the existing Entry text, the new text is set. To prevent that from happening, you can set the binding mode to OneWayToSource:

Click here to view code image

<StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Multiplicand}" />

 <Entry Text="{Binding Multiplier, Mode=OneWayToSource}" />

</StackLayout>

Now the Multiplier property of the ViewModel is set from the Text property of the Entry, but not the other way around. If you don’t need these two views to be updated from the ViewModel, you can set both of them to OneWayToSource. But generally you’ll want MVVM bindings to be TwoWay.

Should you worry about infinite cycles in two-way bindings? Usually not, because PropertyChanged events are fired only when the property actually changes and not when it’s merely set to the same value. Generally the source and target will stop updating each other after a bounce or two. However, it is possible to write a “pathological” value converter that doesn’t provide for round-trip conversions, and that could indeed cause infinite update cycles in two-way bindings.

A Color ViewModel

Color always provides a good means of exploring the features of a graphical user interface, so you probably won’t be surprised to learn that the Xamarin.FormsBook.Toolkit library contains a class called ColorViewModel.

The ColorViewModel class exposes a Color property but also Red, Green, Blue, Alpha, Hue, Saturation, and Luminosity properties, all of which are individually settable. This is not a feature that the Xamarin.Form Color structure provides. Once a Color value is created from a Color constructor or one of the methods in Color beginning with the words Add, From, Multiply, or With, it is immutable.

This ColorViewModel class is complicated by the interrelationship of its Color property and all the component properties. For example, suppose the Color property is set. The class should fire a PropertyChanged handler not only for Color but also for any component (such as Red or Hue) that also changes. Similarly, if the Red property changes, then the class should fire a PropertyChanged event for both Red and Color, and probably Hue, Saturation, and Luminosity as well.

The ColorViewModel class solves this problem by storing a backing field for the Color property only. All the set accessors for the individual components create a new Color by using the incoming value with a call to Color.FromRgba or Color.FromHsla. This new Color value is set to the Color property rather than the color field, which means that the new Color value is subjected to processing in the set accessor of the Color property:

Click here to view code image

public class ColorViewModel : INotifyPropertyChanged

{

 Color color;

 public event PropertyChangedEventHandler PropertyChanged;

 public double Red

 {

 set

 {

 if (Round(color.R) != value)

 Color = Color.FromRgba(value, color.G, color.B, color.A);

 }

 get

 {

 return Round(color.R);

 }

 }

 public double Green

 {

 set

 {

 if (Round(color.G) != value)

 Color = Color.FromRgba(color.R, value, color.B, color.A);

 }

 get

 {

 return Round(color.G);

 }

 }

 public double Blue

 {

 set

 {

 if (Round(color.B) != value)

 Color = Color.FromRgba(color.R, color.G, value, color.A);

 }

 get

 {

 return Round(color.B);

 }

 }

 public double Alpha

 {

 set

 {

 if (Round(color.A) != value)

 Color = Color.FromRgba(color.R, color.G, color.B, value);

 }

 get

 {

 return Round(color.A);

 }

 }

 public double Hue

 {

 set

 {

 if (Round(color.Hue) != value)

 Color = Color.FromHsla(value, color.Saturation, color.Luminosity, color.A);

 }

 get

 {

 return Round(color.Hue);

 }

}

public double Saturation

{

 set

 {

 if (Round(color.Saturation) != value)

 Color = Color.FromHsla(color.Hue, value, color.Luminosity, color.A);

 }

 get

 {

 return Round(color.Saturation);

 }

}

public double Luminosity

{

 set

 {

 if (Round(color.Luminosity) != value)

 Color = Color.FromHsla(color.Hue, color.Saturation, value, color.A);

 }

 get

 {

 return Round(color.Luminosity);

 }

}

public Color Color

{

 set

 {

 Color oldColor = color;

 if (color != value)

 {

 color = value;

 OnPropertyChanged("Color");

 }

 if (color.R != oldColor.R)

 OnPropertyChanged("Red");

 if (color.G != oldColor.G)

 OnPropertyChanged("Green");

 if (color.B != oldColor.B)

 OnPropertyChanged("Blue");

 if (color.A != oldColor.A)

 OnPropertyChanged("Alpha");

 if (color.Hue != oldColor.Hue)

 OnPropertyChanged("Hue");

 if (color.Saturation != oldColor.Saturation)

 OnPropertyChanged("Saturation");

 if (color.Luminosity != oldColor.Luminosity)

 OnPropertyChanged("Luminosity");

 }

 get

 {

 return color;

 }

 }

 protected void OnPropertyChanged(string propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 double Round(double value)

 {

 return Device.OnPlatform(value, Math.Round(value, 3), value);

 }

}

The set accessor for the Color property is responsible for the firings of all PropertyChanged events based on changes to the properties.

Notice the device-dependent Round method at the bottom of the class and its use in the set and get accessors of the first seven properties. This was added when the MultiColorSliders sample in Chapter 23, “Triggers and behaviors,” revealed a problem. Android seemed to be internally rounding the color components, causing inconsistencies between the properties being passed to the Color.FromRgba and Color.FromHsla methods and the properties of the resultant Color value, which lead to infinite set and get loops.

The HslSliders program instantiates the ColorViewModel between Grid.BindingContext tags so that it becomes the BindingContext for all the Slider and Label elements within the Grid:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="HslSliders.HslSlidersPage"

 SizeChanged="OnPageSizeChanged">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <Grid x:Name="mainGrid">

 <Grid.BindingContext>

 <toolkit:ColorViewModel Color="Gray" />

 </Grid.BindingContext>

 <Grid.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 </ResourceDictionary>

 </Grid.Resources>

 <!-- Initialized for portrait mode. -->

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="0" />

 </Grid.ColumnDefinitions>

 <BoxView Color="{Binding Color}"

 Grid.Row="0" Grid.Column="0" />

 <StackLayout x:Name="controlPanelStack"

 Grid.Row="1" Grid.Column="0"

 Padding="10, 5">

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Hue}" />

 <Label Text="{Binding Hue, StringFormat='Hue = {0:F2}'}" />

 </StackLayout>

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Saturation}" />

 <Label Text="{Binding Saturation, StringFormat='Saturation = {0:F2}'}" />

 </StackLayout>

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Luminosity}" />

 <Label Text="{Binding Luminosity, StringFormat='Luminosity = {0:F2}'}" />

 </StackLayout>

 </StackLayout>

 </Grid>

</ContentPage>

Notice that the Color property of ColorViewModel is initialized when ColorViewModel is instantiated. The two-way bindings of the sliders then pick up the resultant values of the Hue, Saturation, and Luminosity properties.

If you instead want to implement a display of hexadecimal values of Red, Green, and Blue, you can use the DoubleToIntConverter class demonstrated in connection with the GridRgbSliders program in the previous chapter.

The HslSliders program implements the same technique for switching between portrait and landscape modes as that GridRgbSliders program. The code-behind file handles the mechanics of this switch:

Click here to view code image

public partial class HslSlidersPage : ContentPage

{

 public HslSlidersPage()

 {

 InitializeComponent();

 }

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 // Portrait mode.

 if (Width < Height)

 {

 mainGrid.RowDefinitions[1].Height = GridLength.Auto;

 mainGrid.ColumnDefinitions[1].Width = new GridLength(0, GridUnitType.Absolute);

 Grid.SetRow(controlPanelStack, 1);

 Grid.SetColumn(controlPanelStack, 0);

 }

 // Landscape mode.

 else

 {

 mainGrid.RowDefinitions[1].Height = new GridLength(0, GridUnitType.Absolute);

 mainGrid.ColumnDefinitions[1].Width = new GridLength(1, GridUnitType.Star);

 Grid.SetRow(controlPanelStack, 0);

 Grid.SetColumn(controlPanelStack, 1);

 }

 }

}

This code-behind file isn’t quite as pretty as a file that merely calls InitializeComponent, but even in the context of MVVM, switching between portrait and landscape modes is a legitimate use of the code-behind file because it is solely devoted to the user interface rather than underlying business logic.

Here’s the HslSliders program in action:

[image: Image]

Streamlining the ViewModel

A typical implementation of INotifyPropertyChanged has a private backing field for every public property defined by the class, for example:

double number;

It also has an OnPropertyChanged method responsible for firing the PropertyChanged event:

Click here to view code image

protected void OnPropertyChanged(string propertyName)

{

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

}

A typical property definition looks like this:

Click here to view code image

public double Number

{

 set

 {

 if (number != value)

 {

 number = value;

 OnPropertyChanged("Number");

 // Do something with the new value.

 }

 }

 get

 {

 return number;

 }

}

A potential problem involves the text string you pass to the OnPropertyChanged method. If you misspell it, you won’t get any type of error message, and yet bindings involving that property won’t work. Also, the backing field appears three times within this single property. If you had several similar properties and defined them through copy-and-paste operations, it’s possible to omit the renaming of one of the three appearances of the backing field, and that bug might be very difficult to track down.

You can solve the first problem with a feature introduced in C# 5.0. The CallerMemberNameAttribute class allows you to replace an optional method argument with the name of the calling method or property.

You can make use of this feature by redefining the OnPropertyChanged method. Make the argument optional by assigning null to it and preceding it with the CallerMemberName attribute in square brackets. You’ll also need a using directive for System.Runtime.CompilerServices:

Click here to view code image

protected void OnPropertyChanged([CallerMemberName] string propertyName = null)

{

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

}

Now the Number property can call the OnPropertyChanged method without the argument that indicates the property name. That argument will be automatically set to the property name “Number” because that’s where the call to OnPropertyChanged is originating:

Click here to view code image

public double Number

{

 set

 {

 if (number != value)

 {

 number = value;

 OnPropertyChanged();

 // Do something with the new value.

 }

 }

 get

 {

 return number;

 }

}

This approach avoids a misspelled text property name and also allows property names to be changed during program development without worrying about also changing the text strings. Indeed, one of the primary reasons that the CallerMemberName attribute was invented was to simplify classes that implement INotifyPropertyChanged.

However, this works only when OnPropertyChanged is called from the property whose value is changing. In the earlier ColorViewModel, explicit property names would still be required in all but one of the calls to OnPropertyChanged.

It’s possible to go even further to simplify the set accessor logic: You’ll need to define a generic method, probably named SetProperty or something similar. This SetProperty method is also defined with the CallerMemberName attribute:

Click here to view code image

bool SetProperty<T>(ref T storage, T value, [CallerMemberName] string propertyName = null)

{

 if (Object.Equals(storage, value))

 return false;

 storage = value;

 OnPropertyChanged(propertyName);

 return true;

}

protected void OnPropertyChanged([CallerMemberName] string propertyName = null)

{

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

}

The first argument to SetProperty is a reference to the backing field, and the second argument is the value being set to the property. SetProperty automates the checking and setting of the backing field. Notice that it explicitly includes the propertyName argument when calling OnPropertyChanged. (Otherwise the propertyName argument would become the string “SetProperty”!) The method returns true if the property was changed. You can use this return value to perform additional processing with the new value.

Now the Number property looks like this:

Click here to view code image

public double Number

{

 set

 {

 if (SetProperty(ref number, value))

 {

 // Do something with the new value.

 }

 }

 get

 {

 return number;

 }

}

Although SetProperty is a generic method, the C# compiler can deduce the type from the arguments. If you don’t need to do anything with the new value in the property set accessor, you can even reduce the two accessors to single lines without obscuring the operations:

Click here to view code image

public double Number

{

 set { SetProperty(ref number, value); }

 get { return number; }

}

You might like this streamlining so much that you’ll want to put the SetProperty and OnPropertyChanged methods in their own class and derive from that class when creating your own ViewModels. Such a class, called ViewModelBase, is already in the Xamarin.FormsBook.Toolkit library:

Click here to view code image

using System;

using System.ComponentModel;

using System.Runtime.CompilerServices;

namespace Xamarin.FormsBook.Toolkit

{

 public class ViewModelBase : INotifyPropertyChanged

 {

 public event PropertyChangedEventHandler PropertyChanged;

 protected bool SetProperty<T>(ref T storage, T value,

 [CallerMemberName] string propertyName = null)

 {

 if (Object.Equals(storage, value))

 return false;

 storage = value;

 OnPropertyChanged(propertyName);

 return true;

 }

 protected void OnPropertyChanged([CallerMemberName] string propertyName = null)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

}

This class is used in the two remaining examples in this chapter.

The Command interface

Data bindings are very powerful. Data bindings connect properties of visual elements in the View with properties of data in the ViewModel, and allow the direct manipulation of data items through the user interface.

But not everything is a property. Sometimes ViewModels expose public methods that must be called from the View based on a user’s interaction with a visual element. Without MVVM, you’d probably call such a method from a Clicked event handler of a Button or a Tapped event handler of a TapGestureRecognizer. When considering these needs, the whole concept of data bindings and MVVM might start to seem hopelessly flawed. How can the code-behind file of a page class be stripped down to an InitializeComponent call if it must still make method calls from the View to the ViewModel?

Don’t give up on MVVM so quickly! Xamarin.Forms supports a feature that allows data bindings to make method calls in the ViewModel directly from Button and TapGestureRecognizer and a few other elements. This is a protocol called the command interface or the commanding interface.

The command interface is supported by eight classes:

• Button

• MenuItem (covered in Chapter 19, “Collection views”), and hence also ToolbarItem

• SearchBar

• TextCell, and hence also ImageCell (also to be covered in Chapter 19)

• ListView (also to be covered in Chapter 19)

• TapGestureRecognizer

It is also possible to implement commanding in your own custom classes.

The command interface is likely to be a little confusing at first. Let’s focus on Button.

Button defines two ways for code to be notified when the element is clicked. The first is the Clicked event. But you can also use the button’s command interface as an alternative to (or in addition to) the Clicked event. This interface consists of two public properties that Button defines:

• Command of type System.Windows.Input.ICommand.

• CommandParameter of type Object.

To support commanding, a ViewModel must define a public property of type ICommand that is then connected to the Command property of the Button through a normal data binding.

Like INotifyPropertyChanged, the ICommand interface is not a part of Xamarin.Forms. It’s defined in the System.Windows.Input namespace and implemented in the System.ObjectModel assembly, which is one of the .NET assemblies linked to a Xamarin.Forms application. ICommand is the only type in the System.Windows.Input namespace that Xamarin.Forms supports. Indeed it’s the only type in any System.Windows namespace supported by Xamarin.Forms.

Is it a coincidence that INotifyPropertyChanged and ICommand are both defined in .NET assemblies rather than Xamarin.Forms? No. These interfaces are often used in ViewModels, and some developers might already have ViewModels developed for one or more of Microsoft’s XAML-based environments. It’s easiest for developers to incorporate these existing ViewModels into Xamarin.Forms if INotifyPropertyChanged and ICommand are defined in standard .NET namespaces and assemblies rather than in Xamarin.Forms.

The ICommand interface defines two methods and one event:

Click here to view code image

public interface ICommand

{

 void Execute(object arg);

 bool CanExecute(object arg);

 event EventHandler CanExecuteChanged;

}

To implement commanding, the ViewModel defines one or more properties of type ICommand, meaning that the property is a type that implements these two methods and the event. A property in the ViewModel that implements ICommand can then be bound to the Command property of a Button. When the Button is clicked, the Button fires its normal Clicked event as usual, but it also calls the Execute method of the object bound to its Command property. The argument to the Execute method is the object set to the CommandParameter property of the Button.

That’s the basic technique. However, it could be that certain conditions in the ViewModel prohibit a Button click at the current time. In that case, the Button should be disabled. This is the purpose of the CanExecute method and the CanExecuteChanged event in ICommand. The Button calls CanExecute when its Command property is first set. If CanExecute returns false, the Button disables itself and doesn’t generate Execute calls. The Button also installs a handler for the CanExecuteChanged event. Thereafter, whenever the ViewModel fires the CanExecuteChanged event, the button calls CanExecute again to determine whether the button should be enabled.

A ViewModel that supports the command interface defines one or more properties of type ICommand and internally sets this property to a class that implements the ICommand interface. What is this class, and how does it work?

If you were implementing the commanding protocol in one of Microsoft’s XAML-based environments, you would be writing your own class that implements ICommand, or perhaps using one that you found on the web, or one that was included with some MVVM tools. Sometimes such classes are named CommandDelegate or something similar.

You can use that same class in the ViewModels of your Xamarin.Forms applications. However, for your convenience, Xamarin.Forms includes two classes that implement ICommand that you can use instead. These two classes are named simply Command and Command<T>, where T is the type of the arguments to Execute and CanExecute.

If you are indeed sharing a ViewModel between Microsoft environments and Xamarin.Forms, you can’t use the Command classes defined by Xamarin.Forms. However, you’ll be using something similar to these Command classes, so the following discussion will certainly be applicable regardless.

The Command class includes the two methods and event of the ICommand interface and also defines a ChangeCanExecute method. This method causes the Command object to fire the CanExecuteChanged event, and that facility turns out to be very handy.

Within the ViewModel, you’ll probably create an object of type Command or Command<T> for every public property in the ViewModel of type ICommand. The Command or Command<T> constructor requires a callback method in the form of an Action object that is called when the Button calls the Execute method of the ICommand interface. The CanExecute method is optional but takes the form of a Func object that returns bool.

In many cases, the properties of type ICommand are set in the ViewModel’s constructor and do not change thereafter. For that reason, these ICommand properties do not generally need to fire PropertyChanged events.

Simple method executions

Let’s look at a simple example. A program called PowersOfThree lets you use two buttons to explore various powers of 3. One button increases the exponent and the other button decreases the exponent.

The PowersViewModel class derives from the ViewModelBase class in the Xamarin.FormsBook.Toolkit library, but the ViewModel itself is in the PowersOfThree application project. It is not restricted to powers of 3, but the constructor requires an argument that the class uses as a base value for the power calculation, and which it exposes as the BaseValue property. Because this property has a private set accessor and doesn’t change after the constructor concludes, the property does not fire a PropertyChanged event.

Two other properties, named Exponent and Power, do fire PropertyChanged events, but both properties also have private set accessors. The Exponent property is increased and decreased only from external button clicks.

To implement the response to Button taps, the PowersViewModel class defines two properties of type ICommand, named IncreaseExponentCommand and DecreaseExponentCommand. Again, both properties have private set accessors. As you can see, the constructor sets these two properties by instantiating Command objects that reference little private methods immediately following the constructor. These two little methods are called when the Execute method of Command is called. The ViewModel uses the Command class rather than Command<T> because the program doesn’t make use of any argument to the Execute methods:

Click here to view code image

class PowersViewModel : ViewModelBase

{

 double exponent, power;

 public PowersViewModel(double baseValue)

 {

 // Initialize properties.

 BaseValue = baseValue;

 Exponent = 0;

 // Initialize ICommand properties.

 IncreaseExponentCommand = new Command(ExecuteIncreaseExponent);

 DecreaseExponentCommand = new Command(ExecuteDecreaseExponent);

 }

 void ExecuteIncreaseExponent()

 {

 Exponent += 1;

 }

 void ExecuteDecreaseExponent()

 {

 Exponent -= 1;

 }

 public double BaseValue { private set; get; }

 public double Exponent

 {

 private set

 {

 if (SetProperty(ref exponent, value))

 {

 Power = Math.Pow(BaseValue, exponent);

 }

 }

 get

 {

 return exponent;

 }

 }

 public double Power

 {

 private set { SetProperty(ref power, value); }

 get { return power; }

 }

 public ICommand IncreaseExponentCommand { private set; get; }

 public ICommand DecreaseExponentCommand { private set; get; }

}

The ExecuteIncreaseExponent and ExecuteDecreaseExponent methods both make a change to the Exponent property (which fires a PropertyChanged event), and the Exponent property recalculates the Power property, which also fires a PropertyChanged event.

Very often a ViewModel will instantiate its Command objects by passing lambda functions to the Command constructor. This approach allows these methods to be defined right in the ViewModel constructor, like so:

Click here to view code image

IncreaseExponentCommand = new Command(() =>

 {

 Exponent += 1;

 });

DecreaseExponentCommand = new Command(() =>

 {

 Exponent -= 1;

 });

The PowersOfThreePage XAML file binds the Text properties of three Label elements to the BaseValue, Exponent, and Power properties of the PowersViewModel class, and binds the Command properties of the two Button elements to the IncreaseExponentCommand and DecreaseExponentCommand properties of the ViewModel.

Notice how an argument of 3 is passed to the constructor of PowersViewModel as it is instantiated in the Resources dictionary. Passing arguments to ViewModel constructors is the primary reason for the existence of the x:Arguments tag:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:PowersOfThree"

 x:Class="PowersOfThree.PowersOfThreePage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <local:PowersViewModel x:Key="viewModel">

 <x:Arguments>

 <x:Double>3</x:Double>

 </x:Arguments>

 </local:PowersViewModel>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout BindingContext="{StaticResource viewModel}">

 <StackLayout Orientation="Horizontal"

 Spacing="0"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <Label FontSize="Large"

 Text="{Binding BaseValue, StringFormat='{0}'}" />

 <Label FontSize="Small"

 Text="{Binding Exponent, StringFormat='{0}'}" />

 <Label FontSize="Large"

 Text="{Binding Power, StringFormat=' = {0}'}" />

 </StackLayout>

 <StackLayout Orientation="Horizontal"

 VerticalOptions="CenterAndExpand">

 <Button Text="Increase"

 Command="{Binding IncreaseExponentCommand}"

 HorizontalOptions="CenterAndExpand" />

 <Button Text="Decrease"

 Command="{Binding DecreaseExponentCommand}"

 HorizontalOptions="CenterAndExpand" />

 </StackLayout>

 </StackLayout>

</ContentPage>

Here’s what it looks like after several presses of one button or the other:

[image: Image]

Once again, the wisdom of separating the user interface from the underlying business logic is revealed when the time comes to change the View. For example, suppose you want to replace the buttons with an element with a TapGestureRecognizer. Fortunately, TapGestureRecognizer has a Command property:

Click here to view code image

<StackLayout Orientation="Horizontal"

 VerticalOptions="CenterAndExpand">

 <Frame OutlineColor="Accent"

 BackgroundColor="Transparent"

 Padding="20, 40"

 HorizontalOptions="CenterAndExpand">

 <Frame.GestureRecognizers>

 <TapGestureRecognizer Command="{Binding IncreaseExponentCommand}" />

 </Frame.GestureRecognizers>

 <Label Text="Increase"

 FontSize="Large" />

 </Frame>

 <Frame OutlineColor="Accent"

 BackgroundColor="Transparent"

 Padding="20, 40"

 HorizontalOptions="CenterAndExpand">

 <Frame.GestureRecognizers>

 <TapGestureRecognizer Command="{Binding DecreaseExponentCommand}" />

 </Frame.GestureRecognizers>

 <Label Text="Decrease"

 FontSize="Large" />

 </Frame>

</StackLayout>

Without touching the ViewModel or even renaming an event handler so that it applies to a tap rather than a button, the program works the same, but with a different look:

[image: Image]

A calculator, almost

Now it’s time to make a more sophisticated ViewModel with ICommand objects that have both Execute and CanExecute methods. The next program is almost like a calculator except that it only adds a series of numbers together. The ViewModel is named AdderViewModel, and the program is called AddingMachine.

Let’s look at the screenshots first:

[image: Image]

At the top of the page you can see a history of the series of numbers that have already been entered and added. This is a Label in a ScrollView, so it can get rather long.

The sum of those numbers is displayed in the Entry view above the keypad. Normally, that Entry view contains the number that you’re typing in, but after you hit the big plus sign at the right of the keypad, the Entry displays the accumulated sum and the plus sign button becomes disabled. You need to begin typing another number for the accumulated sum to disappear and for the button with the plus sign to be enabled. Similarly, the backspace button is enabled as soon as you begin to type.

These are not the only keys that can be disabled. The decimal point is disabled when the number you’re typing already has a decimal point, and all the number keys become disabled when the number contains 16 characters. This is to avoid the number in the Entry from becoming too long to display.

The disabling of these buttons is the result of implementing the CanExecute method in the ICommand interface.

The AdderViewModel class is in the Xamarin.FormsBook.Toolkit library and derives from ViewModelBase. Here is the part of the class with all the public properties and their backing fields:

Click here to view code image

public class AdderViewModel : ViewModelBase

{

 string currentEntry = "0";

 string historyString = "";

 ...

 public string CurrentEntry

 {

 private set { SetProperty(ref currentEntry, value); }

 get { return currentEntry; }

 }

 public string HistoryString

 {

 private set { SetProperty(ref historyString, value); }

 get { return historyString; }

 }

 public ICommand ClearCommand { private set; get; }

 public ICommand ClearEntryCommand { private set; get; }

 public ICommand BackspaceCommand { private set; get; }

 public ICommand NumericCommand { private set; get; }

 public ICommand DecimalPointCommand { private set; get; }

 public ICommand AddCommand { private set; get; }

 ...

}

All the properties have private set accessors. The two properties of type string are only set internally based on the key taps, and the properties of type ICommand are set in the AdderViewModel constructor (which you’ll see shortly).

These eight public properties are the only part of AdderViewModel that the XAML file in the AddingMachine project needs to know about. Here is that XAML file. It contains a two-row and two-column main Grid for switching between portrait and landscape mode, and a Label, Entry, and 15 Button elements, all of which are bound to one of the eight public properties of the AdderViewModel. Notice that the Command properties of all 10 digit buttons are bound to the NumericCommand property and that the buttons are differentiated by the CommandParameter property. The setting of this CommandParameter property is passed as an argument to the Execute and CanExecute methods:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="AddingMachine.AddingMachinePage"

 SizeChanged="OnPageSizeChanged">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 10"

 Android="10"

 WinPhone="10" />

 </ContentPage.Padding>

 <Grid x:Name="mainGrid">

 <!-- Initialized for Portrait mode. -->

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="0" />

 </Grid.ColumnDefinitions>

 <!-- History display. -->

 <ScrollView Grid.Row="0" Grid.Column="0"

 Padding="5, 0">

 <Label Text="{Binding HistoryString}" />

 </ScrollView>

 <!-- Keypad. -->

 <Grid x:Name="keypadGrid"

 Grid.Row="1" Grid.Column="0"

 RowSpacing="2"

 ColumnSpacing="2"

 WidthRequest="240"

 HeightRequest="360"

 VerticalOptions="Center"

 HorizontalOptions="Center">

 <Grid.Resources>

 <ResourceDictionary>

 <Style TargetType="Button">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="BorderWidth" Value="1" />

 </Style>

 </ResourceDictionary>

 </Grid.Resources>

 <Label Text="{Binding CurrentEntry}"

 Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="4"

 FontSize="Large"

 LineBreakMode="HeadTruncation"

 VerticalOptions="Center"

 HorizontalTextAlignment="End" />

 <Button Text="C"

 Grid.Row="1" Grid.Column="0"

 Command="{Binding ClearCommand}" />

 <Button Text="CE"

 Grid.Row="1" Grid.Column="1"

 Command="{Binding ClearEntryCommand}" />

 <Button Text="⇦"

 Grid.Row="1" Grid.Column="2"

 Command="{Binding BackspaceCommand}" />

 <Button Text="+"

 Grid.Row="1" Grid.Column="3" Grid.RowSpan="5"

 Command="{Binding AddCommand}" />

 <Button Text="7"

 Grid.Row="2" Grid.Column="0"

 Command="{Binding NumericCommand}"

 CommandParameter="7" />

 <Button Text="8"

 Grid.Row="2" Grid.Column="1"

 Command="{Binding NumericCommand}"

 CommandParameter="8" />

 <Button Text="9"

 Grid.Row="2" Grid.Column="2"

 Command="{Binding NumericCommand}"

 CommandParameter="9" />

 <Button Text="4"

 Grid.Row="3" Grid.Column="0"

 Command="{Binding NumericCommand}"

 CommandParameter="4" />

 <Button Text="5"

 Grid.Row="3" Grid.Column="1"

 Command="{Binding NumericCommand}"

 CommandParameter="5" />

 <Button Text="6"

 Grid.Row="3" Grid.Column="2"

 Command="{Binding NumericCommand}"

 CommandParameter="6" />

 <Button Text="1"

 Grid.Row="4" Grid.Column="0"

 Command="{Binding NumericCommand}"

 CommandParameter="1" />

 <Button Text="2"

 Grid.Row="4" Grid.Column="1"

 Command="{Binding NumericCommand}"

 CommandParameter="2" />

 <Button Text="3"

 Grid.Row="4" Grid.Column="2"

 Command="{Binding NumericCommand}"

 CommandParameter="3" />

 <Button Text="0"

 Grid.Row="5" Grid.Column="0" Grid.ColumnSpan="2"

 Command="{Binding NumericCommand}"

 CommandParameter="0" />

 <Button Text="·"

 Grid.Row="5" Grid.Column="2"

 Command="{Binding DecimalPointCommand}" />

 </Grid>

 </Grid>

</ContentPage>

What you won’t find in the XAML file is a reference to AdderViewModel. For reasons you’ll see shortly, AdderViewModel is instantiated in code.

The core of the adding-machine logic is in the Execute and CanExecute methods of the six ICommand properties. These properties are all initialized in the AdderViewModel constructor shown below, and the Execute and CanExecute methods are all lambda functions.

When only one lambda function appears in the Command constructor, that’s the Execute method (as the parameter name indicates), and the Button is always enabled. This is the case for ClearCommand and ClearEntryCommand.

All the other Command constructors have two lambda functions. The first is the Execute method, and the second is the CanExecute method. The CanExecute method returns true if the Button should be enabled and false otherwise.

All the ICommand properties are set with the nongeneric form of the Command class except for NumericCommand, which requires an argument to the Execute and CanExecute methods to identify which key has been tapped:

Click here to view code image

public class AdderViewModel : ViewModelBase

{

 ...

 bool isSumDisplayed = false;

 double accumulatedSum = 0;

 public AdderViewModel()

 {

 ClearCommand = new Command(

 execute: () =>

 {

 HistoryString = "";

 accumulatedSum = 0;

 CurrentEntry = "0";

 isSumDisplayed = false;

 RefreshCanExecutes();

 });

 ClearEntryCommand = new Command(

 execute: () =>

 {

 CurrentEntry = "0";

 isSumDisplayed = false;

 RefreshCanExecutes();

 });

 BackspaceCommand = new Command(

 execute: () =>

 {

 CurrentEntry = CurrentEntry.Substring(0, CurrentEntry.Length - 1);

 if (CurrentEntry.Length == 0)

 {

 CurrentEntry = "0";

 }

 RefreshCanExecutes();

 },

 canExecute: () =>

 {

 return !isSumDisplayed && (CurrentEntry.Length > 1 || CurrentEntry[0] != '0');

 });

 NumericCommand = new Command<string>(

 execute: (string parameter) =>

 {

 if (isSumDisplayed || CurrentEntry == "0")

 CurrentEntry = parameter;

 else

 CurrentEntry += parameter;

 isSumDisplayed = false;

 RefreshCanExecutes();

 },

 canExecute: (string parameter) =>

 {

 return isSumDisplayed || CurrentEntry.Length < 16;

 });

 DecimalPointCommand = new Command(

 execute: () =>

 {

 if (isSumDisplayed)

 CurrentEntry = "0.";

 else

 CurrentEntry += ".";

 isSumDisplayed = false;

 RefreshCanExecutes();

 },

 canExecute: () =>

 {

 return isSumDisplayed || !CurrentEntry.Contains(".");

 });

 AddCommand = new Command(

 execute: () =>

 {

 double value = Double.Parse(CurrentEntry);

 HistoryString += value.ToString() + " + ";

 accumulatedSum += value;

 CurrentEntry = accumulatedSum.ToString();

 isSumDisplayed = true;

 RefreshCanExecutes();

 },

 canExecute: () =>

 {

 return !isSumDisplayed;

 });

 }

 void RefreshCanExecutes()

 {

 ((Command)BackspaceCommand).ChangeCanExecute();

 ((Command)NumericCommand).ChangeCanExecute();

 ((Command)DecimalPointCommand).ChangeCanExecute();

 ((Command)AddCommand).ChangeCanExecute();

 }

 ...

}

All the Execute methods conclude by calling a method named RefreshCanExecute following the constructor. This method calls the ChangeCanExecute method of each of the four Command objects that implement CanExecute methods. That method call causes the Command object to fire a ChangeCanExecute event. Each Button responds to that event by making another call to the CanExecute method to determine if the Button should be enabled or not.

It is not necessary for every Execute method to conclude with a call to all four ChangeCanExecute methods. For example, the ChangeCanExecute method for the DecimalPointCommand need not be called when the Execute method for NumericCommand executes. However, it turned out to be easier—both in terms of logic and code consolidation—to simply call them all after every key tap.

You might be more comfortable implementing these Execute and CanExecute methods as regular methods rather than lambda functions. Or you might be more comfortable having just one Command object that handles all the keys. Each key could have an identifying CommandParameter string and you could distinguish between them with a switch and case statement.

There are lots of ways to implement the commanding logic, but it should be clear that the use of commanding tends to structure the code in a flexible and ideal way.

Once the adding logic is in place, why not add a couple of more buttons for subtraction, multiplication, and division?

Well, it’s not quite so easy to enhance the logic to accept multiple operations rather than just one operation. If the program supports multiple operations, then when the user types one of the operation keys, that operation needs to be saved to await the next number. Only after the next number is completed (signaled by the press of another operation key or the equals key) is that saved operation applied.

An easier approach would be to write a Reverse Polish Notation (RPN) calculator, where the operation follows the entry of the second number. The simplicity of RPN logic is one big reason why RPN calculators appeal to programmers so much!

ViewModels and the application lifecycle

In a real calculator program on a mobile device, one important feature involves saving the entire state of the calculator when the program is terminated, and restoring it when the program starts up again.

And once again, the concept of the ViewModel seems to break down.

Sure, it’s possible to write some application code that accesses the public properties of the ViewModel and saves them, but the state of the calculator depends on private fields as well. The isSumDisplayed and accumulatedSum fields of AdderViewModel are essential for restoring the calculator’s state.

It’s obvious that code external to the AdderViewModel can’t save and restore the AdderViewModel state without the ViewModel exposing more public properties. There’s only one class that knows what’s necessary to represent the entire internal state of a ViewModel, and that’s the ViewModel itself.

The solution is for the ViewModel to define public methods that save and restore its internal state. But because a ViewModel should strive to be platform independent, these methods shouldn’t use anything specific to a particular platform. For example, they shouldn’t access the Xamarin.Forms Application object and then add items to (or retrieve items from) the Properties dictionary of that Application object. That is much too specific to Xamarin.Forms.

However, working with a generic IDictionary object in methods named SaveState and RestoreState is possible in any .NET environment, and that’s how AdderViewModel implements these methods:

Click here to view code image

public class AdderViewModel : ViewModelBase

{

 ...

 public void SaveState(IDictionary<string, object> dictionary)

 {

 dictionary["CurrentEntry"] = CurrentEntry;

 dictionary["HistoryString"] = HistoryString;

 dictionary["isSumDisplayed"] = isSumDisplayed;

 dictionary["accumulatedSum"] = accumulatedSum;

 }

 public void RestoreState(IDictionary<string, object> dictionary)

 {

 CurrentEntry = GetDictionaryEntry(dictionary, "CurrentEntry", "0");

 HistoryString = GetDictionaryEntry(dictionary, "HistoryString", "");

 isSumDisplayed = GetDictionaryEntry(dictionary, "isSumDisplayed", false);

 accumulatedSum = GetDictionaryEntry(dictionary, "accumulatedSum", 0.0);

 RefreshCanExecutes();

 }

 public T GetDictionaryEntry<T>(IDictionary<string, object> dictionary,

 string key, T defaultValue)

 {

 if (dictionary.ContainsKey(key))

 return (T)dictionary[key];

 return defaultValue;

 }

}

The code in AddingMachine involved in saving and restoring this state is mostly implemented in the App class. The App class instantiates the AdderViewModel and calls RestoreState using the Properties dictionary of the current Application class. That AdderViewModel is then passed as an argument to the AddingMachinePage constructor:

Click here to view code image

public class App : Application

{

 AdderViewModel adderViewModel;

 public App()

 {

 // Instantiate and initialize ViewModel for page.

 adderViewModel = new AdderViewModel();

 adderViewModel.RestoreState(Current.Properties);

 MainPage = new AddingMachinePage(adderViewModel);

 }

 protected override void OnStart()

 {

 // Handle when your app starts.

 }

 protected override void OnSleep()

 {

 // Handle when your app sleeps.

 adderViewModel.SaveState(Current.Properties);

 }

 protected override void OnResume()

 {

 // Handle when your app resumes.

 }

}

The App class is also responsible for calling SaveState on AdderViewModel during processing of the OnSleep method.

The AddingMachinePage constructor merely needs to set the instance of AdderViewModel to the page’s BindingContext property. The code-behind file also manages the switch between portrait and landscape layouts:

Click here to view code image

public partial class AddingMachinePage : ContentPage

{

 public AddingMachinePage(AdderViewModel viewModel)

 {

 InitializeComponent();

 // Set ViewModel as BindingContext.

 BindingContext = viewModel;

 }

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 // Portrait mode.

 if (Width < Height)

 {

 mainGrid.RowDefinitions[1].Height = GridLength.Auto;

 mainGrid.ColumnDefinitions[1].Width = new GridLength(0, GridUnitType.Absolute);

 Grid.SetRow(keypadGrid, 1);

 Grid.SetColumn(keypadGrid, 0);

 }

 // Landscape mode.

 else

 {

 mainGrid.RowDefinitions[1].Height = new GridLength(0, GridUnitType.Absolute);

 mainGrid.ColumnDefinitions[1].Width = GridLength.Auto;

 Grid.SetRow(keypadGrid, 0);

 Grid.SetColumn(keypadGrid, 1);

 }

 }

}

The AddingMachine program demonstrates one way to handle the ViewModel, but it’s not the only way. Alternatively, it’s possible for App to instantiate the AdderViewModel but define a property of type AdderViewModel that the constructor of AddingMachinePage can access.

Or, if you want the page to have full control over the ViewModel, you can do that as well. AddingMachinePage can define its own OnSleep method that is called from the OnSleep method in the App class, and the page class can also handle the instantiation of AdderViewModel and the calling of the RestoreState and SaveState methods. However, this approach might become somewhat clumsy for multipage applications.

In a multipage application, you might have separate ViewModels for each page, perhaps deriving from a ViewModel with properties applicable to the entire application. In such a case, you’ll want to avoid properties with the same name using the same dictionary keys for saving each ViewModel’s state. You can use more extensive dictionary keys that include the class name, for example, “AdderViewModel.CurrentEntry”.

Although the power and advantages of data binding and ViewModels should be apparent by now, these features really blossom when used with the Xamarin.Forms ListView. That’s up in the next chapter.

Chapter 19. Collection views

Many of the views in Xamarin.Forms correspond to basic C# and .NET data types: The Slider and Stepper are visual representations of a double, the Switch is a bool, and an Entry allows the user to edit text exposed as a string. But can this correspondence also apply to collection types in C# and .NET?

Collections of various sorts have always been essential in digital computing. Even the oldest of high-level programming languages support both arrays and structures. These two archetypal collections complement each other: An array is a collection of values or objects generally of the same type, while a structure is an assemblage of related data items generally of a variety of types.

To supplement these basic collection types, .NET added several useful classes in the System.Collections and System.Collections.Generic namespaces, most notably List and List<T>, which are expandable collections of objects of the same type. Underlying these collection classes are three important interfaces that you’ll encounter in this chapter:

• IEnumerable allows iterating through the items in a collection.

• ICollection derives from IEnumerable and adds a count of the items in the collection.

• IList derives from ICollection and supports indexing as well as adding and removing items.

Xamarin.Forms defines three views that maintain collections of various sorts, sometimes also allowing the user to select an item from the collection or interact with the item. The three views discussed in this chapter are:

• Picker: A list of text items that lets the user choose one. The Picker usually maintains a short list of items, generally no more than a dozen or so.

• ListView: Very often a long list of data items of the same type rendered in a uniform (or nearly uniform) manner that is specified by a visual tree described by an object called a cell.

• TableView: A collection of cells, usually of various sorts, to display data or to manage user input. A TableView might take the form of a menu, or a fill-out form, or a collection of application settings.

All three of these views provide built-in scrolling.

At first encounter these three views might seem somewhat similar. The purpose of this chapter is to provide enough examples of how these views are used so that you shouldn’t have any difficulty choosing the right tool for the job.

Both Picker and ListView allow selection, but Picker is restricted to strings, while ListView can display any object rendered in whatever way you want. Picker is generally a short list, while ListView can maintain must longer lists.

The relationship between ListView and TableView is potentially confusing because both involve the use of cells, which are derivatives of the Cell class. Cell derives from Element but not VisualElement. A cell is not a visual element itself, but instead provides a description of a visual element. These cells are used by ListView and TableView in two different ways: ListView generally displays a list of objects of the same type, the display of which is specified by a single cell. A TableView is a collection of multiple cells, each of which displays an individual item in a collection of related items.

If you like to equate Xamarin.Forms views with C# and .NET data types, then:

• Picker is a visual representation of an array of string.

• ListView is a more generalized array of objects, often a List<T> collection. The individual items in this collection often implement the INotifyPropertyChanged interface.

• TableView could be a structure, but it is more likely a class, and possibly a class that implements INotifyPropertyChanged, otherwise known as a ViewModel.

Let’s begin with the simplest of these three, which is the Picker.

Program options with Picker

Picker is a good choice when you need a view that allows the user to choose one item among a small collection of several items. Picker is implemented in a platform-specific manner and has the limitation that each item is identified solely by a text string.

The Picker and event handling

Here’s a program named PickerDemo that implements a Picker to allow you to choose a specialized keyboard for an Entry view. In the XAML file, the Entry and the Picker are children of a StackLayout, and the Picker is initialized to contain a list of the various keyboard types supported by the Keyboard class:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PickerDemo.PickerDemoPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout Padding="20"

 Spacing="50">

 <Entry x:Name="entry"

 Placeholder="Type something, type anything" />

 <Picker Title="Keyboard Type"

 SelectedIndexChanged="OnPickerSelectedIndexChanged">

 <Picker.Items>

 <x:String>Default</x:String>

 <x:String>Text</x:String>

 <x:String>Chat</x:String>

 <x:String>Url</x:String>

 <x:String>Email</x:String>

 <x:String>Telephone</x:String>

 <x:String>Numeric</x:String>

 </Picker.Items>

 </Picker>

 </StackLayout>

</ContentPage>

The program sets two properties of Picker: The Title property is a string that identifies the function of the Picker. The Items property is of type IList<string>, and generally you initialize it with a list of x:String tags in the XAML file. (Picker has no content property attribute, so the explicit Picker.Items tags are required.) In code, you can use the Add or Insert method defined by IList<string> to put string items into the collection.

Here’s what you’ll see when you first run the program:

[image: Image]

The visual representation of the Picker is quite similar to the Entry but with the Title property displayed. Tapping the Picker invokes a platform-specific scrollable list of items:

[image: Image]

When you press Done on the iOS screen, or OK on the Android screen, or just tap an item on the Windows list, the Picker fires a SelectedIndexChanged event. The SelectedIndex property of Picker is a zero-based number indicating the particular item the user selected. If no item is selected—which is the case when the Picker is first created and initialized—SelectedIndex equals –1.

The PickerDemo program handles the SelectedIndexChanged event in the code-behind file. It obtains the SelectedIndex from the Picker, uses that number to index the Items collection of the Picker, and then uses reflection to obtain the corresponding Keyboard object, which it sets to the Keyboard property of the Entry:

Click here to view code image

public partial class PickerDemoPage : ContentPage

{

 public PickerDemoPage()

 {

 InitializeComponent();

 }

 void OnPickerSelectedIndexChanged(object sender, EventArgs args)

 {

 if (entry == null)

 return;

 Picker picker = (Picker)sender;

 int selectedIndex = picker.SelectedIndex;

 if (selectedIndex == -1)

 return;

 string selectedItem = picker.Items[selectedIndex];

 PropertyInfo propertyInfo = typeof(Keyboard).GetRuntimeProperty(selectedItem);

 entry.Keyboard = (Keyboard)propertyInfo.GetValue(null);

 }

}

At the same time, the interactive Picker display is dismissed, and the Picker now displays the selected item:

[image: Image]

On iOS and Android, the selection replaces the Title property, so in a real-life program you might want to provide a simple Label on these two platforms to remind the user of the function of the Picker.

You can initialize the Picker to display a particular item by setting the SelectedIndex property. However, you must set SelectedIndex after filling the Items collection, so you’ll probably do it from code or use property-element syntax:

Click here to view code image

<Picker Title="Keyboard Type"

 SelectedIndexChanged="OnPickerSelectedIndexChanged">

 <Picker.Items>

 <x:String>Default</x:String>

 <x:String>Text</x:String>

 <x:String>Chat</x:String>

 <x:String>Url</x:String>

 <x:String>Email</x:String>

 <x:String>Telephone</x:String>

 <x:String>Numeric</x:String>

 </Picker.Items>

 <Picker.SelectedIndex>

 6

 </Picker.SelectedIndex>

</Picker>

Data binding the Picker

The Items property of Picker is not backed by a bindable property; hence, it cannot be the target of a data binding. You cannot bind a collection to a Picker. If you need that facility, you’ll probably want to use ListView instead.

On the other hand, the SelectedIndex property of the Picker is backed by a BindableProperty and has a default binding mode of TwoWay. This seems to suggest that you can use SelectedIndex in a data binding, and that is true. However, an integer index is usually not what you want in a data binding.

Even if Picker had a SelectedItem property that provided the actual item rather than the index of the item, that wouldn’t be optimum either. This hypothetical SelectedItem property would be of type string, and usually that’s not very useful in data bindings either.

After contemplating this problem—and perhaps being exposed to the ListView coming up next—you might try to create a class named BindablePicker that derives from Picker. Such a class could have an ObjectItems property of type IList<object> and a SelectedItem property of type object. However, without any additional information, this BindablePicker class would be forced to convert each object in the collection to a string for the underlying Picker, and the only generalized way to convert an object to a string is with the object’s ToString method. Perhaps the string obtained from ToString is useful; perhaps not. (You’ll see shortly how the ListView solves this problem in a very flexible manner.)

Perhaps a better solution for data binding a Picker is a value converter that converts between the SelectedIndex property of the Picker and an object corresponding to each text string in the Items collection. To accomplish this conversion, the value converter can maintain its own collection of objects that correspond to the strings displayed by the Picker. This means that you’ll have two lists associated with the Picker—one list of strings displayed by the Picker and another list of objects associated with these strings. These two lists must be in exact correspondence, of course, but if the two lists are defined close to each other in the XAML file, there shouldn’t be much confusion, and the scheme will have the advantage of being very flexible.

Such a value converter might be called IndexToObjectConverter.

Or maybe not. In the general case, you’ll want the SelectedIndex property of the Picker to be the target of the data binding. If SelectedIndex is the data-binding target, then the Picker can be used with a ViewModel as the data-binding source. For that reason, the value converter is better named ObjectToIndexConverter. Here’s the class in the Xamarin.FormsBook.Toolkit library:

Click here to view code image

using System;

using System.Collections.Generic;

using System.Globalization;

using Xamarin.Forms;

namespace Xamarin.FormsBook.Toolkit

{

 [ContentProperty("Items")]

 public class ObjectToIndexConverter<T> : IValueConverter

 {

 public IList<T> Items { set; get; }

 public ObjectToIndexConverter()

 {

 Items = new List<T>();

 }

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 if (value == null || !(value is T) || Items == null)

 return -1;

 return Items.IndexOf((T)value);

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 int index = (int)value;

 if (index < 0 || Items == null || index >= Items.Count)

 return null;

 return Items[index];

 }

 }

}

This is a generic class, and it defines a public Items property of type IList<T>, which is also defined as the content property of the converter. The Convert method assumes that the value parameter is an object of type T and returns the index of that object within the collection. The ConvertBack method assumes that the value parameter is an index into the Items collection and returns that object.

The PickerBinding program uses the ObjectToIndexConverter to define a binding that allows a Picker to be used for selecting a font size for a Label. The Picker is the data-binding target and the FontSize property of the Label is the source. The Binding object is instantiated in element tags to allow the ObjectToIndexConverter to be instantiated and initialized locally and provide an easy visual confirmation that the two lists correspond to the same values:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="PickerBinding.PickerBindingPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout Padding="20"

 Spacing="50">

 <Label x:Name="label"

 Text="Sample Text"

 FontSize="16" />

 <Picker Title="Font Size">

 <Picker.Items>

 <x:String>Font Size = 8</x:String>

 <x:String>Font Size = 10</x:String>

 <x:String>Font Size = 12</x:String>

 <x:String>Font Size = 14</x:String>

 <x:String>Font Size = 16</x:String>

 <x:String>Font Size = 20</x:String>

 <x:String>Font Size = 24</x:String>

 <x:String>Font Size = 30</x:String>

 </Picker.Items>

 <Picker.SelectedIndex>

 <Binding Source="{x:Reference label}"

 Path="FontSize">

 <Binding.Converter>

 <toolkit:ObjectToIndexConverter x:TypeArguments="x:Double">

 <x:Double>8</x:Double>

 <x:Double>10</x:Double>

 <x:Double>12</x:Double>

 <x:Double>14</x:Double>

 <x:Double>16</x:Double>

 <x:Double>20</x:Double>

 <x:Double>24</x:Double>

 <x:Double>30</x:Double>

 </toolkit:ObjectToIndexConverter>

 </Binding.Converter>

 </Binding>

 </Picker.SelectedIndex>

 </Picker>

 </StackLayout>

</ContentPage>

By maintaining separate lists of strings and objects, you can make the strings whatever you want. In this case, they include some text to indicate what the number actually means. The Label itself is initialized with a FontSize setting of 16, and the binding picks up that value to display the corresponding string in the Picker when the program first starts up:

[image: Image]

The implementations of Picker on these three platforms should make it obvious that you don’t want to use the Picker for more than (say) a dozen items. It’s convenient and easy to use, but for lots of items, you want a view made for the job—a view that is designed to display objects not just as simple text strings but with whatever visuals you want.

Rendering data with ListView

Let’s move to ListView, which is the primary view for displaying collections of items, usually of the same type. The ListView always displays the items in a vertical list and implements scrolling if necessary.

ListView is the only class that derives from ItemsView<T>, but from that class it inherits its most important property: ItemsSource of type IEnumerable. To this property a program sets an enumerable collection of data, and it can be any type of data. For that reason, ListView is one of the backbones of the View part of the Model-View-ViewModel architectural pattern.

ListView also supports single-item selection. The ListView highlights the selected item and makes it available as the SelectedItem property. Notice that this property is named SelectedItem rather than SelectedIndex. The property is of type object. If no item is currently selected in the ListView, the property is null. ListView fires an ItemSelected event when the selected item changes, but often you’ll be using data binding in connection with the SelectedItem property.

ListView defines more properties by far than any other single view in Xamarin.Forms. The discussion in this chapter begins with the most important properties and then progressively covers the more obscure and less common properties.

Collections and selections

The ListViewList program defines a ListView that displays 17 Xamarin.Forms Color values. The XAML file instantiates the ListView but leaves the initialization to the code-behind file:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ListViewList.ListViewListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <ListView x:Name="listView" />

</ContentPage>

The bulk of this XAML file is devoted to setting a Padding so that the ListView doesn’t extend to the left and right edges of the screen. In some cases, you might want to set an explicit WidthRequest for the ListView based on the width of the widest item that you anticipate.

The ItemsSource property of ListView is of type IEnumerable, an interface implemented by arrays and the List class, but the property is null by default. Unlike the Picker, the ListView does not provide its own collection object. That’s your responsibility. The code-behind file of ListViewList sets the ItemsSource property to an instance of List<Color> that is initialized with Color values:

Click here to view code image

public partial class ListViewListPage : ContentPage

{

 public ListViewListPage()

 {

 InitializeComponent();

 listView.ItemsSource = new List<Color>

 {

 Color.Aqua, Color.Black, Color.Blue, Color.Fuchsia,

 Color.Gray, Color.Green, Color.Lime, Color.Maroon,

 Color.Navy, Color.Olive, Color.Pink, Color.Purple,

 Color.Red, Color.Silver, Color.Teal, Color.White, Color.Yellow

 };

 }

}

When you run this program, you’ll discover that you can scroll through the items and select one item by tapping it. These screenshots show how the selected item is highlighted on the three platforms:

[image: Image]

Tapping an item also causes the ListView to fire both an ItemTapped and an ItemSelected event. If you tap the same item again, the ItemTapped event is fired again but not the ItemSelected event. The ItemSelected event is fired only if the SelectedItem property changes.

Of course, the items themselves aren’t very attractive. By default, the ListView displays each item by calling the item’s ToString method, and that’s what you see in this ListView. But do not fret: Much of the discussion about the ListView in this chapter focuses on making the items appear exactly how you’d like!

The row separator

Look closely at the iOS and Android displays and you’ll see a thin line separating the rows. You can suppress the display of that row by setting the SeparatorVisibility property to the enumeration member SeparatorVisibility.None. The default is SeparatorVisibility.Default, which means that a separator line is displayed on the iOS and Android screens but not Windows Phone.

For performance reasons, you should set the SeparatorVisibility property before adding items to the ListView. You can try this in the ListViewList program by setting the property in the XAML file:

Click here to view code image

<ListView x:Name="listView"

 SeparatorVisibility="None" />

Here’s how it looks:

[image: Image]

You can also set the separator line to a different color with the SeparatorColor property; for example:

Click here to view code image

<ListView x:Name="listView"

 SeparatorColor="Red" />

Now it shows up in red:

[image: Image]

The line is rendered in a platform-specific manner. On iOS, that means it doesn’t extend fully to the left edge of the ListView, and on the Windows platforms, that means that there’s no separator line at all.

Data binding the selected item

One approach to working with the selected item involves handling the ItemSelected event of the ListView in the code-behind file and using the SelectedItem property to obtain the new selected item. (An example is shown later in this chapter.) But in many cases you’ll want to use a data binding with the SelectedItem property. The ListViewArray program defines a data binding between the SelectedItem property of the ListView with the Color property of a BoxView:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ListViewArray.ListViewArrayPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <ListView x:Name="listView"

 SelectedItem="{Binding Source={x:Reference boxView},

 Path=Color,

 Mode=TwoWay}">

 <ListView.ItemsSource>

 <x:Array Type="{x:Type Color}">

 <x:Static Member="Color.Aqua" />

 <x:Static Member="Color.Black" />

 <x:Static Member="Color.Blue" />

 <x:Static Member="Color.Fuchsia" />

 <x:Static Member="Color.Gray" />

 <x:Static Member="Color.Green" />

 <x:Static Member="Color.Lime" />

 <x:Static Member="Color.Maroon" />

 <Color>Navy</Color>

 <Color>Olive</Color>

 <Color>Pink</Color>

 <Color>Purple</Color>

 <Color>Red</Color>

 <Color>Silver</Color>

 <Color>Teal</Color>

 <Color>White</Color>

 <Color>Yellow</Color>

 </x:Array>

 </ListView.ItemsSource>

 </ListView>

 <BoxView x:Name="boxView"

 Color="Lime"

 HeightRequest="100" />

 </StackLayout>

</ContentPage>

This XAML file sets the ItemsSource property of the ListView directly from an array of items. ItemsSource is not the content property of ListView (in fact, ListView has no content property at all), so you’ll need explicit ListView.ItemsSource tags. The x:Array element requires a Type attribute indicating the type of the items in the array. For the sake of variety, two different approaches of specifying a Color value are shown. You can use anything that results in a value of type Color.

The ItemsSource property of ListView is always populated with objects rather than visual elements. For example, if you want to display strings in the ListView, use string objects from code or x:String elements in the XAML file. Do not fill the ItemsSource collection with Label elements!

The ListView is scrollable, and normally when a scrollable view is a child of a StackLayout, a VerticalOptions setting of FillAndExpand is required. However, the ListView itself sets its HorizontalOptions and VerticalOptions properties to FillAndExpand.

The data binding targets the SelectedItem property of the ListView from the Color property of the BoxView. You might be more inclined to reverse the source and target property of that binding like this:

Click here to view code image

<BoxView x:Name="boxView"

 Color="{Binding Source={x:Reference listView},

 Path=SelectedItem}"

 HeightRequest="100" />

However, the SelectedItem property of the ListView is null by default, which indicates that nothing is selected, and the binding will fail with a NullReferenceException. To make the binding on the BoxView work, you would need to initialize the SelectedItem property of the ListView after the items have been added:

Click here to view code image

<ListView x:Name="listView">

 <ListView.ItemsSource>

 <x:Array Type="{x:Type Color}">

 ...

 </x:Array>

 </ListView.ItemsSource>

 <ListView.SelectedItem>

 <Color>Lime</Color>

 </ListView.SelectedItem>

</ListView>

A better approach—and one that you’ll be using in conjunction with MVVM—is to set the binding on the SelectedItem property of the ListView. The default binding mode for SelectedItem is OneWayToSource, which means that the following binding sets the Color of the BoxView to whatever item is selected in the ListView:

Click here to view code image

<ListView x:Name="listView"

 SelectedItem="{Binding Source={x:Reference boxView},

 Path=Color}">

 ...

</ListView>

However, if you also want to initialize the SelectedItem property from the binding source, use a TwoWay binding as shown in the XAML file in the ListViewArray program:

Click here to view code image

<StackLayout>

 <ListView x:Name="listView"

 SelectedItem="{Binding Source={x:Reference boxView},

 Path=Color,

 Mode=TwoWay}">

 ...

 </ListView>

 <BoxView x:Name="boxView"

 Color="Lime"

 HeightRequest="100" />

</StackLayout>

You’ll see that the “Lime” entry in the ListView is selected when the program starts up:

[image: Image]

Actually, it’s hard to tell whether that really is the “Lime” entry without examining the RGB values. Although the Color structure defines a bunch of static fields with color names, Color values themselves are not identifiable by name. When the data binding sets a Lime color value to the SelectedItem property of the ListView, the ListView probably finds a match among its contents using the Equals method of the Color structure, which compares the components of the two colors.

The improvement of the ListView display is certainly a high priority!

If you examine the ListViewArray screen very closely, you’ll discover that the Color items are not displayed in the same order in which they are defined in the array. The ListViewArray program has another purpose: to demonstrate that the ListView does not make a copy of the collection set to its ItemsSource property. Instead, it uses that collection object directly as a source of the items. In the code-behind file, after the InitializeComponent call returns, the constructor of ListViewArrayPage performs an in-place array sort to order the items by Hue:

Click here to view code image

public partial class ListViewArrayPage : ContentPage

{

 public ListViewArrayPage()

 {

 InitializeComponent();

 Array.Sort<Color>((Color[])listView.ItemsSource,

 (Color color1, Color color2) =>

 {

 if (color1.Hue == color2.Hue)

 return Math.Sign(color1.Luminosity - color2.Luminosity);

 return Math.Sign(color1.Hue - color2.Hue);

 });

 }

}

This sorting occurs after the ItemsSource property is set, which occurs when the XAML is parsed by the InitializeComponent call, but before the ListView actually displays its contents during the layout process.

This code implies that you can change the collection used by the ListView dynamically. However, if you want a ListView to change its display when the collection changes, the ListView must somehow be notified that changes have occurred in the collection that is referenced by its ItemsSource property.

Let’s examine this problem in more detail.

The ObservableCollection difference

The ItemsSource property of ListView is of type IEnumerable. Arrays implement the IEnumerable interface, and so do the List and List<T> classes. The List and List<T> collections are particularly popular for ListView because these classes can dynamically reallocate memory to accommodate a collection of almost any size.

You’ve seen that a collection can be modified after it’s been assigned to the ItemsSource property of a ListView. It should be possible to add items or remove items from the collection referenced by ItemsSource, and for the ListView to update itself to reflect those changes.

Let’s try it. This ListViewLogger program instantiates a ListView in its XAML file:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ListViewLogger.ListViewLoggerPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <ListView x:Name="listView" />

</ContentPage>

The code-behind file sets the ItemsSource property of the ListView to a List<DateTime> object and adds a DateTime value to this collection every second:

Click here to view code image

public partial class ListViewLoggerPage : ContentPage

{

 public ListViewLoggerPage()

 {

 InitializeComponent();

 List<DateTime> list = new List<DateTime>();

 listView.ItemsSource = list;

 Device.StartTimer(TimeSpan.FromSeconds(1), () =>

 {

 list.Add(DateTime.Now);

 return true;

 });

 }

}

When you first run this program, it will seem as if nothing is happening. But if you turn the phone or emulator sideways, all the items that have been added to the collection since the program started will be displayed. But you won’t see any more until you turn the phone’s orientation again.

What’s happening? When the ListView needs to redraw itself—which is the case when you change the orientation of the phone or emulator—it will use the current IEnumerable collection. (This is how the ListViewArray program displayed the sorted array. The array was sorted before the ListView displayed itself for the first time.)

However, if the ListView does not need to redraw itself, there is no way for the ListView to know when an item has been added to or removed from the collection. This is not the fault of ListView. It’s really the fault of the List class. The List and List<T> classes don’t implement a notification mechanism that signals the ListView when the collection has changed.

To persuade a ListView to keep its display updated with newly added data, we need a class very much like List<T>, but which includes a notification mechanism.

We need a class exactly like ObservableCollection.

ObservableCollection is a .NET class. It is defined in the System.Collections.ObjectModel namespace, and it implements an interface called INotifyCollectionChanged, which is defined in the System.Collections.Specialized namespace. In implementing this interface, an ObservableCollection fires a CollectionChanged event whenever items are added to or removed from the collection, or when items are replaced or reordered.

How does ListView know that an ObservableCollection object is set to its ItemsSource property? When the ItemsSource property is set, the ListView checks whether the object set to the property implements INotifyCollectionChanged. If so, the ListView attaches a CollectionChanged handler to the collection to be notified of changes. Whenever the collection changes, the ListView updates itself.

The ObservableLogger program is identical to the ListViewLogger program except that it uses an ObservableCollection<DateTime> rather than a List<DateTime> to maintain the collection:

Click here to view code image

public partial class ObservableLoggerPage : ContentPage

{

 public ObservableLoggerPage()

 {

 InitializeComponent();

 ObservableCollection<DateTime> list = new ObservableCollection<DateTime>();

 listView.ItemsSource = list;

 Device.StartTimer(TimeSpan.FromSeconds(1), () =>

 {

 list.Add(DateTime.Now);

 return true;

 });

 }

}

Now the ListView updates itself every second.

Of course, not every application needs this facility, and ObservableCollection is overkill for those that don’t. But it’s an essential part of versatile ListView usage.

Sometimes you’ll be working with a collection of data items, and the collection itself does not change dynamically—in other words, it always contains the same objects—but properties of the individual items change. Can the ListView respond to changes of that sort?

Yes it can, and you’ll see an example later in this chapter. Enabling a ListView to respond to property changes in the individual items does not require ObservableCollection or INotifyCollectionChanged. But the data items must implement INotifyPropertyChanged, and the ListView must display the items using an object called a cell.

Templates and cells

The purpose of ListView is to display data. In the real world, data is everywhere, and we are compelled to write computer programs to deal with this data. In programming tutorials such as this book, however, data is harder to come by. So let’s invent a little bit of data to explore ListView in more depth, and if the data turns out to be otherwise useful, so much the better!

As you know, the colors supported by the Xamarin.Forms Color structure are based on the 16 colors defined in the HTML 4.01 standard. Another popular collection of colors is defined in the Cascading Style Sheets (CSS) 3.0 standard. That collection contains 147 named colors (seven of which are duplicates for variant spellings) that were originally derived from color names in the X11 windowing system but converted to camel case.

The NamedColor class included in the Xamarin.FormsBook.Toolkit library lets your Xamarin.Forms program get access to those 147 colors. The bulk of NamedColor is the definition of 147 public static read-only fields of type Color. Only a few are shown in an abbreviated list toward the end of the class:

Click here to view code image

public class NamedColor

{

 // Instance members.

 private NamedColor()

 {

}

public string Name { private set; get; }

public string FriendlyName { private set; get; }

public Color Color { private set; get; }

public string RgbDisplay { private set; get; }

// Static members.

static NamedColor()

{

 List<NamedColor> all = new List<NamedColor>();

 StringBuilder stringBuilder = new StringBuilder();

 // Loop through the public static fields of type Color.

 foreach (FieldInfo fieldInfo in typeof(NamedColor).GetRuntimeFields ())

 {

 if (fieldInfo.IsPublic &&

 fieldInfo.IsStatic &&

 fieldInfo.FieldType == typeof (Color))

 {

 // Convert the name to a friendly name.

 string name = fieldInfo.Name;

 stringBuilder.Clear();

 int index = 0;

 foreach (char ch in name)

 {

 if (index != 0 && Char.IsUpper(ch))

 {

 stringBuilder.Append(' ');

 }

 stringBuilder.Append(ch);

 index++;

 }

 // Instantiate a NamedColor object.

 Color color = (Color)fieldInfo.GetValue(null);

 NamedColor namedColor = new NamedColor

 {

 Name = name,

 FriendlyName = stringBuilder.ToString(),

 Color = color,

 RgbDisplay = String.Format("{0:X2}-{1:X2}-{2:X2}",

 (int)(255 * color.R),

 (int)(255 * color.G),

 (int)(255 * color.B))

 };

 // Add it to the collection.

 all.Add(namedColor);

 }

 }

 all.TrimExcess();

 All = all;

 }

 public static IList<NamedColor> All { private set; get; }

 // Color names and definitions from http://www.w3.org/TR/css3-color/

 // (but with color names converted to camel case).

 public static readonly Color AliceBlue = Color.FromRgb(240, 248, 255);

 public static readonly Color AntiqueWhite = Color.FromRgb(250, 235, 215);

 public static readonly Color Aqua = Color.FromRgb(0, 255, 255);

 ...

 public static readonly Color WhiteSmoke = Color.FromRgb(245, 245, 245);

 public static readonly Color Yellow = Color.FromRgb(255, 255, 0);

 public static readonly Color YellowGreen = Color.FromRgb(154, 205, 50);

}

If your application has a reference to Xamarin.FormsBook.Toolkit and a using directive for the Xamarin.FormsBook.Toolkit namespace, you can use these fields just like the static fields in the Color structure. For example:

Click here to view code image

BoxView boxView = new BoxView

{

 Color = NamedColor.Chocolate

};

You can also use them in XAML without too much more difficulty. If you have an XML namespace declaration for the Xamarin.FormsBook.Toolkit assembly, you can reference NamedColor in an x:Static markup extension:

Click here to view code image

<BoxView Color="{x:Static toolkit:NamedColor.CornflowerBlue}" />

But that’s not all: In its static constructor, NamedColor uses reflection to create 147 instances of the NamedColor class that it stores in a list that is publicly available from the static All property. Each instance of the NamedColor class has a Name property, a Color property of type Color, a FriendlyName property that is the same as the Name except with some spaces inserted, and an RgbDisplay property that formats the hexadecimal color values.

The NamedColor class does not derive from BindableObject and does not implement INotifyPropertyChanged. Regardless, you can use this class as a binding source. That’s because these properties remain constant after each NamedColor object is instantiated. Only if these properties later changed would the class need to implement INotifyPropertyChanged to serve as a successful binding source.

The NamedColor.All property is defined to be of type IList<NamedColor>, so we can set it to the ItemsSource property of a ListView. This is demonstrated by the NaiveNamedColorList program:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="NaiveNamedColorList.NaiveNamedColorListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <ListView ItemsSource="{x:Static toolkit:NamedColor.All}" />

</ContentPage>

Because this program accesses the NamedColor class solely from the XAML file, the program calls Toolkit.Init from its App constructor.

You’ll discover that you can scroll this list and select items, but the items themselves might be a little disappointing, for what you’ll see is a list of 147 fully qualified class names:

[image: Image]

This might seem disappointing, but in your future real-life programming work involving ListView, you’ll probably cheer when you see something like this display because it means that you’ve successfully set ItemsSource to a valid collection. The objects are there. You just need to display them a little better.

This particular ListView displays the fully qualified class name of NamedColor because NamedColor does not define its own ToString method, and the default implementation of ToString displays the class name. One simple solution is to add a ToString method to NamedColor:

Click here to view code image

public override string ToString()

{

 return FriendlyName;

}

Now the ListView displays the friendly names of all the colors. Simple enough.

However, in real-life programming, you might not have the option to add code to your data classes because you might not have access to the source code. So let’s pursue solutions that are independent of the actual implementation of the data.

ListView derives from ItemsView, and besides defining the ItemsSource property, ItemsView also defines a property named ItemTemplate of type DataTemplate. The DataTemplate object gives you (the programmer) the power to display the items of your ListView in whatever way you want.

When used in connection with ListView, the DataTemplate references a Cell class to render the items. The Cell class derives from Element, from which it picks up support for parent/child relationships. But unlike View, Cell does not derive from VisualElement. A Cell is more like a description of a tree of visual elements rather than a visual element itself.

Here’s the class hierarchy showing the five classes that derive from Cell:

Object

 BindableObject

 Element

 Cell

 TextCell — two Label views

 ImageCell — derives from TextCell and adds an Image view

 EntryCell — an Entry view with a Label

 SwitchCell — a Switch with a Label

 ViewCell — any View (likely with children)

The descriptions of Cell types are conceptual only: For performance reasons, the actual composition of a Cell is defined within each platform.

As you begin exploring these Cell classes and contemplating their use in connection with ListView, you might question the relevance of a couple of them. But they’re not all intended solely for ListView. As you’ll see later in this chapter, the Cell classes also play a major role in the TableView, where they are used in somewhat different ways.

The Cell derivatives that have the most applicability to ListView are probably TextCell, ImageCell, and the powerful ViewCell, which lets you define your own visuals for the items.

Let’s look at TextCell first, which defines six properties backed by bindable properties:

• Text of type string

• TextColor of type Color

• Detail of type string

• DetailColor of type Color

• Command of type ICommand

• CommandParameter of type Object

The TextCell incorporates two Label views that you can set to two different strings and colors. The font characteristics are fixed in a platform-dependent way.

The TextCellListCode program contains no XAML. Instead, it demonstrates how to use a TextCell in code to display properties of all the NamedColor objects:

Click here to view code image

public class TextCellListCodePage : ContentPage

{

 public TextCellListCodePage()

 {

 // Define the DataTemplate.

 DataTemplate dataTemplate = new DataTemplate(typeof(TextCell));

 dataTemplate.SetBinding(TextCell.TextProperty, "FriendlyName");

 dataTemplate.SetBinding(TextCell.DetailProperty,

 new Binding(path: "RgbDisplay", stringFormat: "RGB = {0}"));

 // Build the page.

 Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 0);

 Content = new ListView

 {

 ItemsSource = NamedColor.All,

 ItemTemplate = dataTemplate

 };

 }

}

The first step in using a Cell in a ListView is to create an object of type DataTemplate:

Click here to view code image

DataTemplate dataTemplate = new DataTemplate(typeof(TextCell));

Notice that the argument to the constructor is not an instance of TextCell but the type of TextCell.

The second step is to call a SetBinding method on the DataTemplate object, but notice how these SetBinding calls actually target bindable properties of the TextCell:

Click here to view code image

dataTemplate.SetBinding(TextCell.TextProperty, "FriendlyName");

dataTemplate.SetBinding(TextCell.DetailProperty,

 new Binding(path: "RgbDisplay", stringFormat: "RGB = {0}"));

These SetBinding calls are identical to bindings that you might set on a TextCell object, but at the time of these calls, there are no instances of TextCell on which to set the bindings!

If you’d like, you can also set some properties of the TextCell to constant values by calling the SetValue method of the DataTemplate class:

Click here to view code image

dataTemplate.SetValue(TextCell.TextColorProperty, Color.Blue);

dataTemplate.SetValue(TextCell.DetailColorProperty, Color.Red);

These SetValue calls are similar to calls you might make on visual elements instead of setting properties directly.

The SetBinding and SetValue methods should be very familiar to you because they are defined by BindableObject and inherited by very many classes in Xamarin.Forms. However, DataTemplate does not derive from BindableObject and instead defines its own SetBinding and SetValue methods. The purpose of these methods is not to bind or set properties of the DataTemplate instance. Because DataTemplate doesn’t derive from BindableObject, it has no bindable properties of its own. Instead, DataTemplate simply saves these settings in two internal dictionaries that are publicly accessible through two properties that DataTemplate defines, named Bindings and Values.

The third step in using a Cell with ListView is to set the DataTemplate object to the ItemTemplate property of the ListView:

Click here to view code image

Content = new ListView

{

 ItemsSource = NamedColor.All,

 ItemTemplate = dataTemplate

};

Here’s what happens (conceptually anyway):

When the ListView needs to display a particular item (in this case, a NamedColor object), it instantiates the type passed to the DataTemplate constructor, in this case a TextCell. Any bindings or values that have been set on the DataTemplate are then transferred to this TextCell. The BindingContext of each TextCell is set to the particular item being displayed, which in this case is a particular NamedColor object, and that’s how each item in the ListView displays properties of a particular NamedColor object. Each TextCell is a visual tree with identical data bindings, but with a unique BindingContext setting. Here’s the result:

[image: Image]

In general, the ListView will not create all the visual trees at once. For performance purposes, it will create them only as necessary as the user scrolls new items into view. You can get some sense of this if you install handlers for the ItemAppearing and ItemDisappearing events defined by ListView. You’ll discover that these events don’t exactly track the visuals—items are reported as appearing before they scroll into view, and are reported as disappearing after they scroll out of view—but the exercise is instructive nevertheless.

You can also get a sense of what’s going on with an alternative constructor for DataTemplate that takes a Func object:

Click here to view code image

DataTemplate dataTemplate = new DataTemplate(() =>

{

 return new TextCell();

});

The Func object is called only as the TextCell objects are required for the items, although these calls actually are made somewhat in advance of the items scrolling into view.

You might want to include code that actually counts the number of TextCell instances being created and displays the result in the Output window of Visual Studio or Xamarin Studio:

Click here to view code image

int count = 0;

DataTemplate dataTemplate = new DataTemplate(() =>

 {

 System.Diagnostics.Debug.WriteLine("Text Cell Number " + (++count));

 return new TextCell();

 });

As you scroll down to the bottom, you’ll discover that a maximum of 147 TextCell objects are created for the 147 items in the ListView. The TextCell objects are cached, but not reused as items scroll in and out of view. However, on a lower level—in particular, involving the platform-specific TextCellRenderer objects and the underlying platform-specific visuals created by these renderers—the visuals are reused.

This alternative DataTemplate constructor with the Func argument might be handy if you need to set some properties on the cell object that you can’t set using data bindings. Perhaps you’ve created a ViewCell derivative that requires an argument in its constructor. In general, however, use the constructor with the Type argument or define the data template in XAML.

In XAML, the binding syntax somewhat distorts the actual mechanics used to generate visual trees for the ListView items, but at the same time the syntax is conceptually clearer and visually more elegant. Here’s the XAML file from the TextCellListXaml program that is functionally identical to the TextCellListCode program:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="TextCellListXaml.TextCellListXamlPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <ListView ItemsSource="{x:Static toolkit:NamedColor.All}">

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding FriendlyName}"

 Detail="{Binding RgbDisplay, StringFormat='RGB = {0}'}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

In XAML, set a DataTemplate to the ItemTemplate property of the ListView and define TextCell as a child of DataTemplate. Then simply set the data bindings on the TextCell properties as if the TextCell were a normal visual element. These bindings don’t need Source settings because a BindingContext has been set on each item by the ListView.

You’ll appreciate this syntax even more when you define your own custom cells.

Custom cells

One of the classes that derives from Cell is named ViewCell, which defines a single property named View that lets you define a custom visual tree for the display of items in a ListView.

There are several ways to define a custom cell, but some are less pleasant than others. Perhaps the greatest amount of work involves mimicking the existing Cell classes, which doesn’t involve ViewCell at all but instead requires that you create platform-specific cell renderers. You can alternatively derive a class from ViewCell, define several bindable properties of that class similar to the bindable properties of TextCell and the other Cell derivatives, and define a visual tree for the cell in either XAML or code, much as you would do for a custom view derived from ContentView. You can then use that custom cell in code or XAML just like TextCell.

If you want to do the job entirely in code, you can use the DataTemplate constructor with the Func argument and build the visual tree in code as each item is requested. This approach allows you to define the data bindings as the visual tree is being built instead of setting bindings on the DataTemplate.

But certainly the easiest approach is defining the visual tree and bindings of the cell right in XAML within the ListView element. The CustomNamedColorList program demonstrates this technique. Everything is in the XAML file:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="CustomNamedColorList.CustomNamedColorListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <ListView SeparatorVisibility="None"

 ItemsSource="{x:Static toolkit:NamedColor.All}">

 <ListView.RowHeight>

 <OnPlatform x:TypeArguments="x:Int32"

 iOS="80"

 Android="80"

 WinPhone="90" />

 </ListView.RowHeight>

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <ContentView Padding="5">

 <Frame OutlineColor="Accent"

 Padding="10">

 <StackLayout Orientation="Horizontal">

 <BoxView x:Name="boxView"

 Color="{Binding Color}"

 WidthRequest="50"

 HeightRequest="50" />

 <StackLayout>

 <Label Text="{Binding FriendlyName}"

 FontSize="22"

 VerticalOptions="StartAndExpand" />

 <Label Text="{Binding RgbDisplay, StringFormat='RGB = {0}'}"

 FontSize="16"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

 </StackLayout>

 </Frame>

 </ContentView>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

Within the DataTemplate property-element tags is a ViewCell. The content property of ViewCell is View, so you don’t need ViewCell.View tags. Instead, a visual tree within the ViewCell tags is implicitly set to the View property. The visual tree begins with a ContentView to add a little padding, then a Frame and a pair of nested StackLayout elements with a BoxView and two Label elements. When the ListView renders its items, the BindingContext for each displayed item is the item itself, so the Binding markup extensions are generally very simple.

Notice that the RowHeight property of the ListView is set with property element tags for platform-dependent values. These values here were obtained empirically by trial and error, and result in the following displays:

[image: Image]

Throughout this book, you have seen several scrollable lists of colors, such as the ColorBlocks program in Chapter 4, “Scrolling the stack,” and the ColorViewList program in Chapter 8, “Code and XAML in harmony,” but I think you’ll agree that this is the most elegant solution to the problem.

Explicitly setting the RowHeight property of the ListView is one of two ways to set the height of the rows. You can experiment with another approach by removing the RowHeight setting and instead setting the HasUnevenRows property to True. Here’s a variation of the CustomNamedColorList program:

Click here to view code image

<ListView SeparatorVisibility="None"

 ItemsSource="{x:Static toolkit:NamedColor.All}"

 HasUnevenRows="True">

 <ListView.ItemTemplate>

 ...

 </ListView.ItemTemplate>

</ListView>

The HasUnevenRows property is designed specifically to handle cases when the heights of the cells in the ListView are not uniform. However, you can also use it for cases when all the cells are the same height but you don’t know precisely what that height is. With this setting, the heights of the individual rows are calculated based on the visual tree, and that height is used to space the rows. In this example, the heights of the cells are governed by the heights of the two Label elements. The rows are just a little different than the heights explicitly set from the RowHeight property:

[image: Image]

Although the HasUnevenRows property seems to provide an easier approach to sizing cell heights than RowHeight, it does have a performance penalty and you should avoid it unless you need it.

But for iOS and Android, you must use one or the other of the two properties when defining a custom cell. Here’s what happens when neither property is set:

[image: Image]

Only the Windows platforms automatically use the rendered size of the visual tree to determine the row height.

In summary, for best ListView performance, use one of the predefined Cell classes. If you can’t, use ViewCell and define your own visual tree. Try your best to supply a specific RowHeight property setting with ViewCell. Use HasUnevenRows only when that is not possible.

Grouping the ListView items

It’s sometimes convenient for the items in a ListView to be grouped in some way. For example, a ListView that lists the names of a user’s friends or contacts is easily navigable if the items are in alphabetical order, but it’s even more navigable if all the A’s, B’s, C’s, and so forth are in separate groups, and a few taps are all that’s necessary to navigate to a particular group.

The ListView supports such grouping and navigation.

As you’ve discovered, the object you set to the ItemsSource property of ListView must implement IEnumerable. This IEnumerable object is a collection of items.

When using ListView with the grouping feature, the IEnumerable collection you set to ItemsSource contains one item for each group, and these items themselves implement IEnumerable and contain the objects in that group. In other words, you set the ItemsSource property of ListView to a collection of collections.

One easy way for the group class to implement IEnumerable is to derive from List or ObservableCollection, depending on whether items can be dynamically added to or removed from the collection. However, you’ll want to add a couple of other properties to this class: One property (typically called Title) should be a text description of the group. Another property is a shorter text description that’s used to navigate the list. Based on how this text description is used on Windows 10 Mobile, you should keep this short text description to three letters or fewer.

For example, suppose you want to display a list of colors but divided into groups indicating the dominant hue (or lack of hue). Here are seven such groups: grays, reds, yellows, greens, cyans, blues, and magentas.

The NamedColorGroup class in the Xamarin.FormsBook.Toolkit library derives from List<NamedColor> and hence is a collection of NamedColor objects. It also defines text Title and ShortName properties and a ColorShade property intended to serve as a pastel-like representative color of the group:

Click here to view code image

public class NamedColorGroup : List<NamedColor>

{

 // Instance members.

 private NamedColorGroup(string title, string shortName, Color colorShade)

 {

 this.Title = title;

 this.ShortName = shortName;

 this.ColorShade = colorShade;

 }

 public string Title { private set; get; }

 public string ShortName { private set; get; }

 public Color ColorShade { private set; get; }

 // Static members.

 static NamedColorGroup()

 {

 // Create all the groups.

 List<NamedColorGroup> groups = new List<NamedColorGroup>

 {

 new NamedColorGroup("Grays", "Gry", new Color(0.75, 0.75, 0.75)),

 new NamedColorGroup("Reds", "Red", new Color(1, 0.75, 0.75)),

 new NamedColorGroup("Yellows", "Yel", new Color(1, 1, 0.75)),

 new NamedColorGroup("Greens", "Grn", new Color(0.75, 1, 0.75)),

 new NamedColorGroup("Cyans", "Cyn", new Color(0.75, 1, 1)),

 new NamedColorGroup("Blues", "Blu", new Color(0.75, 0.75, 1)),

 new NamedColorGroup("Magentas", "Mag", new Color(1, 0.75, 1))

 };

 foreach (NamedColor namedColor in NamedColor.All)

 {

 Color color = namedColor.Color;

 int index = 0;

 if (color.Saturation != 0)

 {

 index = 1 + (int)((12 * color.Hue + 1) / 2) % 6;

 }

 groups[index].Add(namedColor);

 }

 foreach (NamedColorGroup group in groups)

 {

 group.TrimExcess();

 }

 All = groups;

 }

 public static IList<NamedColorGroup> All { private set; get; }

}

A static constructor assembles seven NamedColorGroup instances and sets the static All property to the collection of these seven objects.

The ColorGroupList program uses this new class for its ListView. Notice that the ItemsSource is set to NamedColorGroup.All (a collection of seven items) rather than NamedColor.All (a collection of 147 items).

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="ColorGroupList.ColorGroupListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <ListView ItemsSource="{x:Static toolkit:NamedColorGroup.All}"

 IsGroupingEnabled="True"

 GroupDisplayBinding="{Binding Title}"

 GroupShortNameBinding="{Binding ShortName}">

 <ListView.RowHeight>

 <OnPlatform x:TypeArguments="x:Int32"

 iOS="80"

 Android="80"

 WinPhone="90" />

 </ListView.RowHeight>

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <ContentView Padding="5">

 <Frame OutlineColor="Accent"

 Padding="10">

 <StackLayout Orientation="Horizontal">

 <BoxView x:Name="boxView"

 Color="{Binding Color}"

 WidthRequest="50"

 HeightRequest="50" />

 <StackLayout>

 <Label Text="{Binding FriendlyName}"

 FontSize="22"

 VerticalOptions="StartAndExpand" />

 <Label Text="{Binding RgbDisplay, StringFormat='RGB = {0}'}"

 FontSize="16"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

 </StackLayout>

 </Frame>

 </ContentView>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

Setting IsGroupingEnabled to True is very important. Remove that (as well as the ItemTemplate setting), and the ListView displays seven items identified by the fully qualified class name “Xamarin.FormsBook.Toolkit.NamedColorGroup”.

The GroupDisplayBinding property is a Binding referencing the name of a property in the group items that contains a heading or title for the group. This is displayed in the ListView to identify each group:

[image: Image]

The GroupShortNameBinding property is bound to another property in the group objects that displays a condensed version of the header. If the group headings are just the letters A, B, C, and so forth, you can use the same property for the short names.

On the iPhone screen, you can see the short names at the right side of the screen. In iOS terminology, this is called an index for the list, and tapping one moves to that part of the list.

On the Windows 10 Mobile screen, the headings incorrectly use the ShortName rather than the Title property. Tapping a heading goes to a navigation screen (called a jump list) where all the short names are arranged in a grid. Tapping one goes back to the ListView with the corresponding header at the top of the screen.

Android provides no navigation.

Even though the ListView is now really a collection of NamedColorGroup objects, SelectedItem is still a NamedColor object.

In general, if an ItemSelected handler needs to determine the group of a selected item, you can do that “manually” by accessing the collection set to the ItemsSource property and using one of the Find methods defined by List. Or you can store a group identifier within each item. The Tapped handler provides the group as well as the item.

Custom group headers

If you don’t like the particular style of the group headers that Xamarin.Forms supplies, there’s something you can do about it. Rather than setting a binding to the GroupDisplayBinding property, set a DataTemplate to the GroupHeaderTemplate property:

Click here to view code image

<ListView ItemsSource="{x:Static toolkit:NamedColorGroup.All}"

 IsGroupingEnabled="True"

 GroupShortNameBinding="{Binding ShortName}">

 ...

 <ListView.GroupHeaderTemplate>

 <DataTemplate>

 <ViewCell>

 <Label Text="{Binding Title}"

 BackgroundColor="{Binding ColorShade}"

 TextColor="Black"

 FontAttributes="Bold,Italic"

 HorizontalTextAlignment="Center"

 VerticalTextAlignment="Center">

 <Label.FontSize>

 <OnPlatform x:TypeArguments="x:Double"

 iOS="30"

 Android="30"

 WinPhone="45" />

 </Label.FontSize>

 </Label>

 </ViewCell>

 </DataTemplate>

 </ListView.GroupHeaderTemplate>

</ListView>

Notice that the Label has a fixed text color of black, so the BackgroundColor property should be set to something light that provides a good contrast with the text. Such a color is available from the NamedColorGroup class as the ColorShade property. This allows the background of the header to reflect the dominant hue associated with the group:

[image: Image]

Notice how the header for the topmost item remains fixed at the top on iOS and Windows 10 Mobile and scrolls off the top of the screen only when another header replaces it.

ListView and interactivity

An application can interact with its ListView in a variety of ways: If the user taps an item, the ListView fires an ItemTapped event and, if the item is previously not selected, also an ItemSelected event. A program can also define a data binding by using the SelectedItem property. The ListView has a ScrollTo method that lets a program scroll the ListView to make a particular item visible. Later in this chapter you’ll see a refresh facility implemented by ListView.

Cell itself defines a Tapped event, but you’ll probably use that event in connection with TableView rather than ListView. TextCell defines the same Command and CommandParameter properties as Button and ToolbarItem, but you’ll probably use those properties in connection with TableView as well. You can also define a context menu on a cell; this is demonstrated in the section “Context menus” later in this chapter.

It is also possible for a Cell derivative to contain some interactive views. The EntryCell and SwitchCell allow the user to interact with an Entry or a Switch. You can also include interactive views in a ViewCell.

The InteractiveListView program contains in its XAML file a ListView named listView. The code-behind file sets the ItemsSource property of that ListView to a collection of type List<ColorViewModel>, containing 100 instances of ColorViewModel—a class described in Chapter 18, “MVVM,” and which can be found in the Xamarin.FormsBook.Toolkit library. Each instance of ColorViewModel is initialized to a random color:

Click here to view code image

public partial class InteractiveListViewPage : ContentPage

{

 public InteractiveListViewPage()

 {

 InitializeComponent();

 const int count = 100;

 List<ColorViewModel> colorList = new List<ColorViewModel>(count);

 Random random = new Random();

 for (int i = 0; i < count; i++)

 {

 ColorViewModel colorViewModel = new ColorViewModel();

 colorViewModel.Color = new Color(random.NextDouble(),

 random.NextDouble(),

 random.NextDouble());

 colorList.Add(colorViewModel);

 }

 listView.ItemsSource = colorList;

 }

}

The ListView in the XAML file contains a data template using a ViewCell that contains three Slider views, a BoxView, and a few Label elements to display the hue, saturation, and luminosity values, all of which are bound to properties of the ColorViewModel class:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="InteractiveListView.InteractiveListViewPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:ColorToContrastColorConverter x:Key="contrastColor" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <ListView x:Name="listView"

 HasUnevenRows="True">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <Grid Padding="0, 5">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 <Slider Value="{Binding Hue, Mode=TwoWay}"

 Grid.Row="0" Grid.Column="0" />

 <Slider Value="{Binding Saturation, Mode=TwoWay}"

 Grid.Row="1" Grid.Column="0" />

 <Slider Value="{Binding Luminosity, Mode=TwoWay}"

 Grid.Row="2" Grid.Column="0" />

 <ContentView BackgroundColor="{Binding Color}"

 Grid.Row="0" Grid.Column="1" Grid.RowSpan="3"

 Padding="10">

 <StackLayout Orientation="Horizontal"

 VerticalOptions="Center">

 <Label Text="{Binding Hue, StringFormat='{0:F2}, '}"

 TextColor="{Binding Color,

 Converter={StaticResource contrastColor}" />

 <Label Text="{Binding Saturation, StringFormat='{0:F2}, '}"

 TextColor="{Binding Color,

 Converter={StaticResource contrastColor}" />

 <Label Text="{Binding Luminosity, StringFormat='{0:F2}'}"

 TextColor="{Binding Color,

 Converter={StaticResource contrastColor}" />

 </StackLayout>

 </ContentView>

 </Grid>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

The Label elements sit on top of the BoxView, so they should be made a color that contrasts with the background. This is accomplished with the ColorToContrastColorConverter class (also in Xamarin.FormsBook.Toolkit), which calculates the luminance of the color by using a standard formula and then converts to Color.Black for a light color and Color.White for a dark color:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class ColorToContrastColorConverter : IValueConverter

 {

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return ColorToContrastColor((Color)value);

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return ColorToContrastColor((Color)value);

 }

 Color ColorToContrastColor(Color color)

 {

 // Standard luminance calculation.

 double luminance = 0.30 * color.R +

 0.59 * color.G +

 0.11 * color.B;

 return luminance > 0.5 ? Color.Black : Color.White;

 }

 }

}

Here’s the result:

[image: Image]

Each of the items independently lets you manipulate the three Slider elements to select a new color, and while this example might seem a little artificial, a real-life example involving a collection of identical visual trees is not inconceivable. Even if there are just a few items in the collection, it might make sense to use a ListView that displays all the items on the screen and doesn’t scroll. ListView is one of the most powerful tools that XAML provides to compensate for its lack of programming loops.

ListView and MVVM

ListView is one of the major players in the View part of the Model-View-ViewModel architecture. Whenever a ViewModel contains a collection, a ListView generally displays the items.

A collection of ViewModels

Let’s explore the use of ListView in MVVM with some data that more closely approximates a real-life example. This is a collection of information about 65 fictitious students of the fictitious School of Fine Art, including images of their overly spherical heads. These images and an XML file containing the student names and references to the bitmaps are in a website at http://xamarin.github.io/xamarin-forms-book-samples/SchoolOfFineArt. This website is hosted from the same GitHub repository as the source code for this book, and the contents of the site can be found in the gh-pages branch of that repository.

The Students.xml file at that site contains information about the school and students. Here’s the beginning and the end with abbreviated URLs of the photos.

Click here to view code image

<StudentBody xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <School>School of Fine Art</School>

 <Students>

 <Student>

 <FullName>Adam Harmetz</FullName>

 <FirstName>Adam</FirstName>

 <MiddleName />

 <LastName>Harmetz</LastName>

 <Sex>Male</Sex>

 <PhotoFilename>http://xamarin.github.io/.../.../AdamHarmetz.png</PhotoFilename>

 <GradePointAverage>3.01</GradePointAverage>

 </Student>

 <Student>

 <FullName>Alan Brewer</FullName>

 <FirstName>Alan</FirstName>

 <MiddleName />

 <LastName>Brewer</LastName>

 <Sex>Male</Sex>

 <PhotoFilename>http://xamarin.github.io/.../.../AlanBrewer.png</PhotoFilename>

 <GradePointAverage>1.17</GradePointAverage>

 </Student>

 ...

 <Student>

 <FullName>Tzipi Butnaru</FullName>

 <FirstName>Tzipi</FirstName>

 <MiddleName />

 <LastName>Butnaru</LastName>

 <Sex>Female</Sex>

 <PhotoFilename>http://xamarin.github.io/.../.../TzipiButnaru.png</PhotoFilename>

 <GradePointAverage>3.76</GradePointAverage>

 </Student>

 <Student>

 <FullName>Zrinka Makovac</FullName>

 <FirstName>Zrinka</FirstName>

 <MiddleName />

 <LastName>Makovac</LastName>

 <Sex>Female</Sex>

 <PhotoFilename>http://xamarin.github.io/.../.../ZrinkaMakovac.png</PhotoFilename>

 <GradePointAverage>2.73</GradePointAverage>

 </Student>

 </Students>

</StudentBody>

The grade point averages were randomly generated when this file was created.

In the Libraries directory among the source code for this book, you’ll find a library project named SchoolOfFineArt that accesses this XML file and uses XML deserialization to convert it into classes named Student, StudentBody, and SchoolViewModel. Although the Student and StudentBody classes don’t have the words ViewModel in their names, they qualify as ViewModels regardless.

The Student class derives from ViewModelBase (a copy of which is included in the SchoolOfFineArt library) and defines the seven properties associated with each Student element in the XML file. An eighth property is used in a future chapter. The class also defines four additional properties of type ICommand and a final property named StudentBody. These final five properties are not set from the XML deserialization, as the XmlIgnore attributes indicate:

Click here to view code image

namespace SchoolOfFineArt

{

 public class Student : ViewModelBase

 {

 string fullName, firstName, middleName;

 string lastName, sex, photoFilename;

 double gradePointAverage;

 string notes;

 public Student()

 {

 ResetGpaCommand = new Command(() => GradePointAverage = 2.5m);

 MoveToTopCommand = new Command(() => StudentBody.MoveStudentToTop(this));

 MoveToBottomCommand = new Command(() => StudentBody.MoveStudentToBottom(this));

 RemoveCommand = new Command(() => StudentBody.RemoveStudent(this));

 }

 public string FullName

 {

 set { SetProperty(ref fullName, value); }

 get { return fullName; }

 }

 public string FirstName

 {

 set { SetProperty(ref firstName, value); }

 get { return firstName; }

 }

 public string MiddleName

 {

 set { SetProperty(ref middleName, value); }

 get { return middleName; }

 }

 public string LastName

 {

 set { SetProperty(ref lastName, value); }

 get { return lastName; }

 }

 public string Sex

 {

 set { SetProperty(ref sex, value); }

 get { return sex; }

 }

 public string PhotoFilename

 {

 set { SetProperty(ref photoFilename, value); }

 get { return photoFilename; }

 }

 public double GradePointAverage

 {

 set { SetProperty(ref gradePointAverage, value); }

 get { return gradePointAverage; }

 }

 // For program in Chapter 25.

 public string Notes

 {

 set { SetProperty(ref notes, value); }

 get { return notes; }

 }

 // Properties for implementing commands.

 [XmlIgnore]

 public ICommand ResetGpaCommand { private set; get; }

 [XmlIgnore]

 public ICommand MoveToTopCommand { private set; get; }

 [XmlIgnore]

 public ICommand MoveToBottomCommand { private set; get; }

 [XmlIgnore]

 public ICommand RemoveCommand { private set; get; }

 [XmlIgnore]

 public StudentBody StudentBody { set; get; }

 }

}

The four properties of type ICommand are set in the Student constructor and associated with short methods, three of which call methods in the StudentBody class. These will be discussed in more detail later.

The StudentBody class defines the School and Students properties. The constructor initializes the Students property as an ObservableCollection<Student> object. In addition, StudentBody defines three methods called from the Student class that can remove a student from the list or move a student to the top or bottom of the list:

Click here to view code image

namespace SchoolOfFineArt

{

 public class StudentBody : ViewModelBase

 {

 string school;

 ObservableCollection<Student> students = new ObservableCollection<Student>();

 public string School

 {

 set { SetProperty(ref school, value); }

 get { return school; }

 }

 public ObservableCollection<Student> Students

 {

 set { SetProperty(ref students, value); }

 get { return students; }

 }

 // Methods to implement commands to move and remove students.

 public void MoveStudentToTop(Student student)

 {

 Students.Move(Students.IndexOf(student), 0);

 }

 public void MoveStudentToBottom(Student student)

 {

 Students.Move(Students.IndexOf(student), Students.Count - 1);

 }

 public void RemoveStudent(Student student)

 {

 Students.Remove(student);

 }

 }

}

The SchoolViewModel class is responsible for loading the XML file and deserializing it. It contains a single property named StudentBody, which corresponds to the root tag of the XAML file. This property is set to the StudentBody object obtained from the Deserialize method of the XmlSerializer class.

Click here to view code image

namespace SchoolOfFineArt

{

 public class SchoolViewModel : ViewModelBase

 {

 StudentBody studentBody;

 Random rand = new Random();

 public SchoolViewModel() : this(null)

 {

 }

 public SchoolViewModel(IDictionary<string, object> properties)

 {

 // Avoid problems with a null or empty collection.

 StudentBody = new StudentBody();

 StudentBody.Students.Add(new Student());

 string uri = "http://xamarin.github.io/xamarin-forms-book-samples" +

 "/SchoolOfFineArt/students.xml";

 HttpWebRequest request = WebRequest.CreateHttp(uri);

 request.BeginGetResponse((arg) =>

 {

 // Deserialize XML file.

 Stream stream = request.EndGetResponse(arg).GetResponseStream();

 StreamReader reader = new StreamReader(stream);

 XmlSerializer xml = new XmlSerializer(typeof(StudentBody));

 StudentBody = xml.Deserialize(reader) as StudentBody;

 // Enumerate through all the students

 foreach (Student student in StudentBody.Students)

 {

 // Set StudentBody property in each Student object.

 student.StudentBody = StudentBody;

 // Load possible Notes from properties dictionary

 // (for program in Chapter 25).

 if (properties != null && properties.ContainsKey(student.FullName))

 {

 student.Notes = (string)properties[student.FullName];

 }

 }

 }, null);

 // Adjust GradePointAverage randomly.

 Device.StartTimer(TimeSpan.FromSeconds(0.1),

 () =>

 {

 if (studentBody != null)

 {

 int index = rand.Next(studentBody.Students.Count);

 Student student = studentBody.Students[index];

 double factor = 1 + (rand.NextDouble() - 0.5) / 5;

 student.GradePointAverage = Math.Round(

 Math.Max(0, Math.Min(5, factor * student.GradePointAverage)), 2);

 }

 return true;

 });

 }

 // Save Notes in properties dictionary for program in Chapter 25.

 public void SaveNotes(IDictionary<string, object> properties)

 {

 foreach (Student student in StudentBody.Students)

 {

 properties[student.FullName] = student.Notes;

 }

 }

 public StudentBody StudentBody

 {

 protected set { SetProperty(ref studentBody, value); }

 get { return studentBody; }

 }

 }

}

Notice that the data is obtained asynchronously. The properties of the various classes are not set until sometime after the constructor of this class completes. But the implementation of the INotifyPropertyChanged interface should allow a user interface to react to data that is acquired sometime after the program starts up.

The callback to BeginGetResponse runs in the same secondary thread of execution that is used to download the data in the background. This callback sets some properties that cause PropertyChanged events to fire, which result in updates to data bindings and changes to user-interface objects. Doesn’t this mean that user-interface objects are being accessed from a second thread of execution? Shouldn’t Device.BeginInvokeOnMainThread be used to avoid that?

Actually, it’s not necessary. Changes in ViewModel properties that are linked to properties of user-interface objects via data bindings don’t need to be marshalled to the user-interface thread.

The SchoolViewModel class is also responsible for randomly modifying the GradePointAverage property of the students, in effect simulating dynamic data. Because Student implements INotifyPropertyChanged (by virtue of deriving from ViewModelBase), we should be able to see these values change dynamically when displayed by the ListView.

The SchoolOfFineArt library also has a static Library.Init method that your program should call if it’s referring to the library only from XAML to ensure that the assembly is properly bound to the application.

You might want to play around with the StudentViewModel class to get a feel for the nested properties and how they are expressed in data bindings. You can create a new Xamarin.Forms project (named Tryout, for example), include the SchoolOfFineArt project in the solution, and add a reference from Tryout to the SchoolOfFineArt library. Then create a ContentPage that looks something like this:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:school="clr-namespace:SchoolOfFineArt;assembly=SchoolOfFineArt"

 x:Class="Tryout.TryoutListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.BindingContext>

 <school:SchoolViewModel />

 </ContentPage.BindingContext>

 <Label />

</ContentPage>

The BindingContext of the page is set to the SchoolViewModel instance, and you can experiment with bindings on the Text property of the Label. For example, here’s an empty binding:

Click here to view code image

<Label Text="{Binding StringFormat='{0}'}" />

That displays the fully qualified class name of the inherited BindingContext:

SchoolOfFineArt.SchoolViewModel

The SchoolViewModel class has one property named StudentBody, so set the Path of the Binding to that:

Click here to view code image

<Label Text="{Binding Path=StudentBody, StringFormat='{0}'}" />

Now you’ll see the fully-qualified name of the StudentBody class:

SchoolOfFineArt.StudentBody

The StudentBody class has two properties, named School and Students. Try the School property:

Click here to view code image

<Label Text="{Binding Path=StudentBody.School,

 StringFormat='{0}'}" />

Finally, some actual data is displayed rather than just a class name. It’s the string from the XML file set to the School property:

School of Fine Art

The StringFormat isn’t required in the Binding expression because the property is of type string. Now try the Students property:

Click here to view code image

<Label Text="{Binding Path=StudentBody.Students,

 StringFormat='{0}'}" />

This displays the fully qualified class name of ObservableCollection with a collection of Student objects:

System.Collections.ObjectModel.ObservableCollection’1[SchoolOfFineArt.Student]

It should be possible to index this collection, like so:

Click here to view code image

<Label Text="{Binding Path=StudentBody.Students[0],

 StringFormat='{0}'}" />

That is an object of type Student:

SchoolOfFineArt.Student

If the entire Students collection is loaded at the time of this binding, you should be able to specify any index on the Students collection, but an index of 0 is always safe.

You can then access a property of that Student, for example:

Click here to view code image

<Label Text="{Binding Path=StudentBody.Students[0].FullName,

 StringFormat='{0}'}" />

And you’ll see that student’s name:

Adam Harmetz

Or, try the GradePointAverage property:

Click here to view code image

<Label Text="{Binding Path=StudentBody.Students[0].GradePointAverage,

 StringFormat='{0}'}" />

Initially you’ll see the randomly generated value stored in the XML file:

3.01

But wait a little while and you should see it change.

Would you like to see a picture of Adam Harmetz? Just change the Label to an Image, and change the target property to Source and the source path to PhotoFilename:

Click here to view code image

<Image Source="{Binding Path=StudentBody.Students[0].PhotoFilename}" />

And there he is, from the class of 2019:

[image: Image]

With that understanding of data-binding paths, it should be possible to construct a page that contains both a Label that displays the name of the school and a ListView that displays all the students with their full names, grade-point averages, and photos. Each item in the ListView must display two pieces of text and an image. This is ideal for an ImageCell, which derives from TextCell and adds an image to the two text items. Here is the StudentList program:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:school="clr-namespace:SchoolOfFineArt;assembly=SchoolOfFineArt"

 x:Class="StudentList.StudentListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.BindingContext>

 <school:SchoolViewModel />

 </ContentPage.BindingContext>

 <StackLayout BindingContext="{Binding StudentBody}">

 <Label Text="{Binding School}"

 FontSize="Large"

 FontAttributes="Bold"

 HorizontalTextAlignment="Center" />

 <ListView ItemsSource="{Binding Students}">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ImageCell ImageSource="{Binding PhotoFilename}"

 Text="{Binding FullName}"

 Detail="{Binding GradePointAverage,

 StringFormat='G.P.A. = {0:F2}'}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </StackLayout>

</ContentPage>

As in the experimental XAML file, the BindingContext of the ContentPage is the SchoolViewModel object. The StackLayout inherits that BindingContext but sets its own BindingContext to the StudentBody property, and that’s the BindingContext inherited by the children of the StackLayout. The Text property of the Label is bound to the School property of the StudentBody class, and the ItemsSource property of the ListView is bound to the Students collection.

This means that the BindingContext for each of the items in the ListView is a Student object, and the ImageCell properties can be bound to properties of the Student class. The result is scrollable and selectable, although the selection is displayed in a platform-specific manner:

[image: Image]

Unfortunately, the Windows Runtime version of the ImageCell works a little differently from those on the other two platforms. If you don’t like the default size of these rows, you might be tempted to set the RowHeight property, but it doesn’t work in the same way across the platforms, and the only consistent solution is to switch to a custom ViewCell derivative, perhaps one much like the one in CustomNamedColorList but with an Image rather than a BoxView.

The Label at the top of the page shares the StackLayout with the ListView so that the Label stays in place as the ListView is scrolled. However, you might want such a header to scroll with the contents of the ListView, and you might want to add a footer as well. The ListView has Header and Footer properties of type object that you can set to a string or an object of any type (in which case the header will display the results of that object’s ToString method) or to a binding.

Here’s one approach: The BindingContext of the page is set to the SchoolViewModel as before, but the BindingContext of the ListView is set to the StudentBody property. This means that the ItemsSource property can reference the Students collection in a binding, and the Header can be bound to the School property:

Click here to view code image

<ContentPage ... >

 ...

 <ContentPage.BindingContext>

 <school:SchoolViewModel />

 </ContentPage.BindingContext>

 <ListView BindingContext="{Binding StudentBody}"

 ItemsSource="{Binding Students}"

 Header="{Binding School}">

 ...

 </ListView>

</ContentPage>

That displays the text “School of Fine Art” in a header that scrolls with the ListView content.

If you’d like to format that header, you can do that as well. Set the HeaderTemplate property of the ListView to a DataTemplate, and within the DataTemplate tags define a visual tree. The BindingContext for that visual tree is the object set to the Header property (in this example, the string with the name of the school).

In the ListViewHeader program shown below, the Header property is bound to the School property. Within the HeaderTemplate is a visual tree consisting solely of a Label. This Label has an empty binding so the Text property of that Label is bound to the text set to the Header property:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:school="clr-namespace:SchoolOfFineArt;assembly=SchoolOfFineArt"

 x:Class="ListViewHeader.ListViewHeaderPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.BindingContext>

 <school:SchoolViewModel />

 </ContentPage.BindingContext>

 <ListView BindingContext="{Binding StudentBody}"

 ItemsSource="{Binding Students}"

 Header="{Binding School}">

 <ListView.HeaderTemplate>

 <DataTemplate>

 <Label Text="{Binding}"

 FontSize="Large"

 FontAttributes="Bold, Italic"

 HorizontalTextAlignment="Center" />

 </DataTemplate>

 </ListView.HeaderTemplate>

 <ListView.ItemTemplate>

 <DataTemplate>

 <ImageCell ImageSource="{Binding PhotoFilename}"

 Text="{Binding FullName}"

 Detail="{Binding GradePointAverage,

 StringFormat='G.P.A. = {0:F2}'}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

The header shows up only on the Android platform:

[image: Image]

Selection and the binding context

The StudentBody class doesn’t have a property for the selected student. If it did, you could create a data binding between the SelectedItem property of the ListView and that selected-student property in StudentBody. As usual with MVVM, the property of the view is the data-binding target and the property in the ViewModel is the data-binding source.

However, if you want a detailed view of a student directly, without the intermediary of a ViewModel, then the SelectedItem property of the ListView can be the binding source. The SelectedStudentDetail program shows how this might be done. The ListView now shares the screen with a StackLayout that contains the detail view. To accommodate landscape and portrait orientations, the ListView and StackLayout are children of a Grid that is manipulated in the code-behind file. The code-behind file also sets the BindingContext of the page to an instance of the SchoolViewModel class.

The BindingContext of the StackLayout named “detailLayout” is bound to the SelectedItem property of the ListView. Because the SelectedItem property is of type Student, bindings within the StackLayout can simply refer to properties of the Student class:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SelectedStudentDetail.SelectedStudentDetailPage"

 SizeChanged="OnPageSizeChanged">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

</ContentPage.Padding>

<Grid x:Name="mainGrid">

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="0" />

 </Grid.ColumnDefinitions>

 <ListView x:Name="listView"

 Grid.Row="0"

 Grid.Column="0"

 ItemsSource="{Binding StudentBody.Students}">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ImageCell ImageSource="{Binding PhotoFilename}"

 Text="{Binding FullName}"

 Detail="{Binding GradePointAverage,

 StringFormat='G.P.A. = {0:F2}'}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 <StackLayout x:Name="detailLayout"

 Grid.Row="1"

 Grid.Column="0"

 BindingContext="{Binding Source={x:Reference listView},

 Path=SelectedItem}">

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center"

 Spacing="0">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="FontAttributes" Value="Bold" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Label Text="{Binding LastName}" />

 <Label Text="{Binding FirstName, StringFormat=', {0}'}" />

 <Label Text="{Binding MiddleName, StringFormat=' {0}'}" />

 </StackLayout>

 <Image Source="{Binding PhotoFilename}"

 VerticalOptions="FillAndExpand" />

 <Label Text="{Binding Sex, StringFormat='Sex = {0}'}"

 HorizontalOptions="Center" />

 <Label Text="{Binding GradePointAverage, StringFormat='G.P.A. = {0:F2}'}"

 HorizontalOptions="Center" />

 </StackLayout>

 </Grid>

</ContentPage>

When you first run the program, the ListView occupies the top half of the page and the entire bottom half of the page is empty. When you select one of the students, the bottom half displays a different formatting of the name, a larger photo (except on the Windows Phone), and additional information:

[image: Image]

Notice that all the Label elements in the StackLayout named “detailLayout” have their Text properties set to bindings of properties of the Student class. For example, here are the three Label elements that display the full name in a horizontal StackLayout:

Click here to view code image

<Label Text="{Binding LastName}" />

<Label Text="{Binding FirstName, StringFormat=', {0}'}" />

<Label Text="{Binding MiddleName, StringFormat=' {0}'}" />

An alternative approach is to use separate Label elements for the text that separate the last name and first name and the first name and middle name:

Click here to view code image

<Label Text="{Binding LastName}" />

<Label Text=", " />

<Label Text="{Binding FirstName}" />

<Label Text=" " />

<Label Text="{Binding MiddleName}" />

Ostensibly, these two approaches seem visually identical. However, if no student is currently selected, the second approach displays a stray comma that looks like an odd speck on the screen. The advantages of using a binding with StringFormat is that the Label doesn’t appear at all if the BindingContext is null.

Sometimes it’s unavoidable that some spurious text appears in a detail view when the detail view isn’t displaying anything otherwise. In such a case you might want to bind the IsVisible property of the detail Layout object to the SelectedItem property of the ListView with a binding converter that converts null to false and non-null to true.

The code-behind file in the SelectedStudentDetail program is responsible for setting the BindingContext for the page and also for handling the SizeChanged event for the page to adjust the Grid and the detailLayout object for a landscape orientation:

Click here to view code image

public partial class SelectedStudentDetailPage : ContentPage

{

 public SelectedStudentDetailPage()

 {

 InitializeComponent();

 // Set BindingContext.

 BindingContext = new SchoolViewModel();

 }

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 // Portrait mode.

 if (Width < Height)

 {

 mainGrid.ColumnDefinitions[0].Width = new GridLength(1, GridUnitType.Star);

 mainGrid.ColumnDefinitions[1].Width = new GridLength(0);

 mainGrid.RowDefinitions[0].Height = new GridLength(1, GridUnitType.Star);

 mainGrid.RowDefinitions[1].Height = new GridLength(1, GridUnitType.Star);

 Grid.SetRow(detailLayout, 1);

 Grid.SetColumn(detailLayout, 0);

 }

 // Landscape mode.

 else

 {

 mainGrid.ColumnDefinitions[0].Width = new GridLength(1, GridUnitType.Star);

 mainGrid.ColumnDefinitions[1].Width = new GridLength(1, GridUnitType.Star);

 mainGrid.RowDefinitions[0].Height = new GridLength(1, GridUnitType.Star);

 mainGrid.RowDefinitions[1].Height = new GridLength(0);

 Grid.SetRow(detailLayout, 0);

 Grid.SetColumn(detailLayout, 1);

 }

 }

}

Here’s a landscape view:

[image: Image]

Unfortunately, the large image in the ListView on Windows 10 Mobile crowds out the text.

Dividing a page into a ListView and detail view is not the only approach. When the user selects an item in the ListView, your program could navigate to a separate page to display the detail view. Or you could make use of a MasterDetailPage designed specifically for scenarios such as this. You’ll see examples with these solutions in the chapters ahead.

Context menus

A cell can define a context menu that is invoked in a platform-specific manner. Such a context menu generally allows a user to perform an operation on a specific item in the ListView. When used with a ListView displaying students, for example, such a context menu allows the user to perform actions on a specific student.

The CellContextMenu program demonstrates this technique. It defines a context menu with four items:

• Reset GPA (which sets the grade point average of the student to 2.5)

• Move to Top (which moves the student to the top of the list)

• Move to Bottom (which similarly moves the student to the bottom)

• Remove (which removes the student from the list)

On iOS, the context menu is invoked by sliding the item to the left. On Android and Windows 10 Mobile, you press your finger to the item and hold it until the menu appears. Here’s the result:

[image: Image]

Only one menu item appears on the iOS screen, and that’s the item that removes the student from the list. A menu item that removes an entry from the ListView must be specially flagged for iOS. The Android screen lists the first two menu items at the top of the screen. Only the Windows Runtime lists them all.

To see the other menu items, you tap the More button on iOS and the vertical ellipsis on Android. The other items appear in a list at the bottom of the iOS screen and in a drop-down list at the top right of the Android screen:

[image: Image]

Tapping one of the menu items carries out that operation.

To create a context menu for a cell, you add objects of type MenuItem to the ContextActions collection defined by the Cell class. You’ve already encountered MenuItem. It is the base class for the ToolbarItem class described in Chapter 13, “Bitmaps.”

MenuItem defines five properties:

• Text of type string

• Icon of type FileImageSource to access a bitmap from a platform project

• IsDestructive of type bool

• Command of type ICommand

• CommandParameter of type object

In addition, MenuItem defines a Clicked event. You can handle menu actions either in a Clicked handler or—if the menu actions are implemented in a ViewModel—an ICommand object.

Here’s how the ContextActions collection is initialized in the CellContextMenu program:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:school="clr-namespace:SchoolOfFineArt;assembly=SchoolOfFineArt"

 x:Class="CellContextMenu.CellContextMenuPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.BindingContext>

 <school:SchoolViewModel />

 </ContentPage.BindingContext>

 <StackLayout BindingContext="{Binding StudentBody}">

 <Label Text="{Binding School}"

 FontSize="Large"

 FontAttributes="Bold"

 HorizontalTextAlignment="Center" />

 <ListView ItemsSource="{Binding Students}">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ImageCell ImageSource="{Binding PhotoFilename}"

 Text="{Binding FullName}"

 Detail="{Binding GradePointAverage,

 StringFormat='G.P.A. = {0:F2}'}">

 <ImageCell.ContextActions>

 <MenuItem Text="Reset GPA"

 Command="{Binding ResetGpaCommand}" />

 <MenuItem Text="Move to top"

 Command="{Binding MoveToTopCommand}" />

 <MenuItem Text="Move to bottom"

 Command="{Binding MoveToBottomCommand}" />

 <MenuItem Text="Remove"

 IsDestructive="True"

 Command="{Binding RemoveCommand}" />

 </ImageCell.ContextActions>

 </ImageCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </StackLayout>

</ContentPage>

Notice that the IsDestructive property is set to True for the Remove item. This is the property that causes the item to be displayed in red on the iOS screen, and which by convention deletes the item from the collection.

MenuItem defines an Icon property that you can set to a bitmap stored in a platform project (much like the icons used with ToolbarItem), but it works only on Android, and the bitmap replaces the Text description.

The Command properties of all four MenuItem objects are bound to properties in the Student class. A Student object is the binding context for the cell, so it’s also the binding context for these MenuItem objects. Here’s how the properties are defined and initialized in Student:

Click here to view code image

public class Student : ViewModelBase

{

 ...

 public Student()

 {

 ResetGpaCommand = new Command(() => GradePointAverage = 2.5);

 MoveToTopCommand = new Command(() => StudentBody.MoveStudentToTop(this));

 MoveToBottomCommand = new Command(() => StudentBody.MoveStudentToBottom(this));

 RemoveCommand = new Command(() => StudentBody.RemoveStudent(this));

 }

 ...

 // Properties for implementing commands.

 [XmlIgnore]

 public ICommand ResetGpaCommand { private set; get; }

 [XmlIgnore]

 public ICommand MoveToTopCommand { private set; get; }

 [XmlIgnore]

 public ICommand MoveToBottomCommand { private set; get; }

 [XmlIgnore]

 public ICommand RemoveCommand { private set; get; }

 [XmlIgnore]

 public StudentBody StudentBody { set; get; }

}

Only the ResetGpaCommand can be handled entirely within the Student class. The other three commands require access to the collection of students in the StudentBody class. For that reason, when first loading in the data, the SchoolViewModel sets the StudentBody property in each Student object to the StudentBody object with the collection of students. This allows the Move and Remove commands to be implemented with calls to the following methods in StudentBody:

Click here to view code image

public class StudentBody : ViewModelBase

{

 ...

 public void MoveStudentToTop(Student student)

 {

 Students.Move(Students.IndexOf(student), 0);

 }

 public void MoveStudentToBottom(Student student)

 {

 Students.Move(Students.IndexOf(student), Students.Count - 1);

 }

 public void RemoveStudent(Student student)

 {

 Students.Remove(student);

 }

}

Because the Students collection is an ObservableCollection, the ListView redraws itself to reflect the new number or new ordering of the students.

Varying the visuals

Sometimes you don’t want every item displayed by the ListView to be formatted identically. You might want a little different formatting based on the values of some properties. This is generally a job for triggers, which you’ll be exploring in Chapter 23. However, you can also vary the visuals of items in a ListView by using a value converter.

Here’s a view of the ColorCodedStudents screen. Every student with a grade-point average less than 2.0 is flagged in red, perhaps to highlight the need for some special attention:

[image: Image]

In one sense, this is very simple: The TextColor property of the ImageCell is bound to the GradePointAverage property of Student. But that’s a property of type Color bound to a property of type double, so a value converter is required, and one that’s capable of performing a test on the GradePointAverage property to convert to the proper color.

Here is the ThresholdToObjectConverter in the Xamarin.FormsBook.Toolkit library:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class ThresholdToObjectConverter<T> : IValueConverter

 {

 public T TrueObject { set; get; }

 public T FalseObject { set; get; }

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 // Code assumes that all input is valid!

 double number = (double)value;

 string arg = parameter as string;

 char op = arg[0];

 double criterion = Double.Parse(arg.Substring(1).Trim());

 switch (op)

 {

 case '<': return number < criterion ? TrueObject : FalseObject;

 case '>': return number > criterion ? TrueObject : FalseObject;

 case '=': return number == criterion ? TrueObject : FalseObject;

 }

 return FalseObject;

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return 0;

 }

 }

}

Like the BoolToObjectConverter described in Chapter 16, “Data binding,” the ThresholdToObjectConverter is a generic class that defines two properties of type T, named TrueObject and FalseObject. But the choice is based on a comparison of the value argument (which is assumed to be of type double) and the parameter argument, which is specified as the ConverterParameter in the binding. This parameter argument is assumed to be a string that contains a one-character comparison operator and a number. For purposes of simplicity and clarity, there is no input validation.

Once the value converter is created, the markup is fairly easy:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:school="clr-namespace:SchoolOfFineArt;assembly=SchoolOfFineArt"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="ColorCodedStudents.ColorCodedStudentsPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:ThresholdToObjectConverter x:Key="thresholdConverter"

 x:TypeArguments="Color"

 TrueObject="Default"

 FalseObject="Red" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <ContentPage.BindingContext>

 <school:SchoolViewModel />

 </ContentPage.BindingContext>

 <ListView ItemsSource="{Binding StudentBody.Students}">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ImageCell ImageSource="{Binding PhotoFilename}"

 Text="{Binding FullName}"

 TextColor="{Binding GradePointAverage,

 Converter={StaticResource thresholdConverter},

 ConverterParameter=>2}"

 Detail="{Binding GradePointAverage,

 StringFormat='G.P.A. = {0:F2}'}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

When the GPA is greater than or equal to 2, the text is displayed in its default color; otherwise the text is displayed in red.

Refreshing the content

As you’ve seen, if you use an ObservableCollection as a source for ListView, any change to the collection causes ObservableCollection to fire a CollectionChanged event and the ListView responds by refreshing the display of items.

Sometimes this type of refreshing must be supplemented with something controlled by the user. For example, consider an email client or RSS reader. Such an application might be configured to look for new email or an update to the RSS file every 15 minutes or so, but the user might be somewhat impatient and might want the program to check right away for new data.

For this purpose a convention has developed that is supported by ListView. If the ListView has its IsPullToRefresh property set to true, and if the user swipes down on the ListView, the ListView will respond by calling the Execute method of the ICommand object bound to its RefreshCommand property. The ListView will also set its IsRefreshing property to true and display some kind of animation indicating that it’s busy.

In reality, the ListView is not busy. It’s just waiting to be notified that new data is available. You’ve probably written the code invoked by the Execute method of the ICommand object to perform an asynchronous operation such as a web access. It must notify the ListView that it’s finished by setting the IsRefreshing property of the ListView back to false. At that time, the ListView displays the new data and the refresh is complete.

This sounds somewhat complicated, but it gets a lot easier if you build this feature into the ViewModel that supplies the data. The whole process is demonstrated with a program called RssFeed that accesses an RSS feed from NASA.

The RssFeedViewModel class is responsible for downloading the XML with the RSS feed and parsing it. This first happens when the Url property is set and the set accessor calls the LoadRssFeed method:

Click here to view code image

public class RssFeedViewModel : ViewModelBase

{

 string url, title;

 IList<RssItemViewModel> items;

 bool isRefreshing = true;

 public RssFeedViewModel()

 {

 RefreshCommand = new Command(

 execute: () =>

 {

 LoadRssFeed(url);

 },

 canExecute: () =>

 {

 return !IsRefreshing;

 });

 }

 public string Url

 {

 set

 {

 if (SetProperty(ref url, value) && !String.IsNullOrEmpty(url))

 {

 LoadRssFeed(url);

 }

 }

 get

 {

 return url;

 }

 }

 public string Title

 {

 set { SetProperty(ref title, value); }

 get { return title; }

 }

 public IList<RssItemViewModel> Items

 {

 set { SetProperty(ref items, value); }

 get { return items; }

 }

 public ICommand RefreshCommand { private set; get; }

 public bool IsRefreshing

 {

 set { SetProperty(ref isRefreshing, value); }

 get { return isRefreshing; }

 }

 public void LoadRssFeed(string url)

 {

 WebRequest request = WebRequest.Create(url);

 request.BeginGetResponse((args) =>

 {

 // Download XML.

 Stream stream = request.EndGetResponse(args).GetResponseStream();

 StreamReader reader = new StreamReader(stream);

 string xml = reader.ReadToEnd();

 // Parse XML to extract data from RSS feed.

 XDocument doc = XDocument.Parse(xml);

 XElement rss = doc.Element(XName.Get("rss"));

 XElement channel = rss.Element(XName.Get("channel"));

 // Set Title property.

 Title = channel.Element(XName.Get("title")).Value;

 // Set Items property.

 List<RssItemViewModel> list =

 channel.Elements(XName.Get("item")).Select((XElement element) =>

 {

 // Instantiate RssItemViewModel for each item.

 return new RssItemViewModel(element);

 }).ToList();

 Items = list;

 // Set IsRefreshing to false to stop the 'wait' icon.

 IsRefreshing = false;

 }, null);

 }

}

The LoadRssFeed method uses the LINQ-to-XML interface in the System.Xml.Linq namespace to parse the XML file and set both the Title property and the Items property of the class. The Items property is a collection of RssItemViewModel objects that define five properties associated with each item in the RSS feed. For each item element in the XML file, the LoadRssFeed method instantiates an RssItemViewModel object:

Click here to view code image

public class RssItemViewModel

{

 public RssItemViewModel(XElement element)

 {

 // Although this code might appear to be generalized, it is

 // actually based on desired elements from the particular

 // RSS feed set in the RssFeedPage.xaml file.

 Title = element.Element(XName.Get("title")).Value;

 Description = element.Element(XName.Get("description")).Value;

 Link = element.Element(XName.Get("link")).Value;

 PubDate = element.Element(XName.Get("pubDate")).Value;

 // Sometimes there's no thumbnail, so check for its presence.

 XElement thumbnailElement = element.Element(

 XName.Get("thumbnail", "http://search.yahoo.com/mrss/"));

 if (thumbnailElement != null)

 {

 Thumbnail = thumbnailElement.Attribute(XName.Get("url")).Value;

 }

 }

 public string Title { protected set; get; }

 public string Description { protected set; get; }

 public string Link { protected set; get; }

 public string PubDate { protected set; get; }

 public string Thumbnail { protected set; get; }

}

The constructor of RssFeedViewModel also sets its RefreshCommand property equal to a Command object with an Execute method that also calls LoadRssFeed, which finishes by setting the IsRefreshing property of the class to false. To avoid overlapping web accesses, the CanExecute method of RefreshCommand returns true only if IsRefreshing is false.

Notice that it’s not necessary for the Items property in RssFeedViewModel to be an ObservableCollection because once the Items collection is created, the items in the collection never change. When the LoadRssFeed method gets new data, it creates a whole new List object that it sets to the Items property, which results in the firing of a PropertyChanged event.

The RssFeedPage class shown below instantiates the RssFeedViewModel and assigns the Url property. This object becomes the BindingContext for a StackLayout that contains a Label to display the Title property and a ListView. The ItemsSource, RefreshCommand, and IsRefreshing properties of the ListView are all bound to properties in the RssFeedViewModel:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:RssFeed"

 x:Class="RssFeed.RssFeedPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 0"

 Android="10, 0"

 WinPhone="10, 0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <local:RssFeedViewModel x:Key="rssFeed"

 Url="http://earthobservatory.nasa.gov/Feeds/rss/eo_iotd.rss" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <Grid>

 <StackLayout x:Name="rssLayout"

 BindingContext="{StaticResource rssFeed}">

 <Label Text="{Binding Title}"

 FontAttributes="Bold"

 HorizontalTextAlignment="Center" />

 <ListView x:Name="listView"

 ItemsSource="{Binding Items}"

 ItemSelected="OnListViewItemSelected"

 IsPullToRefreshEnabled="True"

 RefreshCommand="{Binding RefreshCommand}"

 IsRefreshing="{Binding IsRefreshing}">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ImageCell Text="{Binding Title}"

 Detail="{Binding PubDate}"

 ImageSource="{Binding Thumbnail}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </StackLayout>

 <StackLayout x:Name="webLayout"

 IsVisible="False">

 <WebView x:Name="webView"

 VerticalOptions="FillAndExpand" />

 <Button Text="< Back to List"

 HorizontalOptions="Center"

 Clicked="OnBackButtonClicked" />

 </StackLayout>

 </Grid>

</ContentPage>

The items are ideally suited for an ImageCell, but perhaps not on the Windows 10 Mobile device:

[image: Image]

When you swipe your finger down this list, the ListView will go into refresh mode by calling the Execute method of the RefreshCommand object and displaying an animation indicating that it’s busy. When the IsRefreshing property is set back to false by RssFeedViewModel, the ListView displays the new data. (This is not implemented on the Windows Runtime platforms.)

In addition, the page contains another StackLayout toward the bottom of the XAML file that has its IsVisible property set to false. The first StackLayout with the ListView and this second, hidden StackLayout share a single-cell Grid, so they both essentially occupy the entire page.

When the user selects an item in the ListView, the ItemSelected event handler in the code-behind file hides the StackLayout with the ListView and makes the second StackLayout visible:

Click here to view code image

public partial class RssFeedPage : ContentPage

{

 public RssFeedPage()

 {

 InitializeComponent();

 }

 void OnListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem != null)

 {

 // Deselect item.

 ((ListView)sender).SelectedItem = null;

 // Set WebView source to RSS item

 RssItemViewModel rssItem = (RssItemViewModel)args.SelectedItem;

 // For iOS 9, a NSAppTransportSecurity key was added to

 // Info.plist to allow accesses to EarthObservatory.nasa.gov sites.

 webView.Source = rssItem.Link;

 // Hide and make visible.

 rssLayout.IsVisible = false;

 webLayout.IsVisible = true;

 }

 }

 void OnBackButtonClicked(object sender, EventArgs args)

 {

 // Hide and make visible.

 webLayout.IsVisible = false;

 rssLayout.IsVisible = true;

 }

}

This second StackLayout contains a WebView for a display of the item referenced by the RSS feed item and a button to go back to the ListView:

[image: Image]

Notice how the ItemSelected event handler sets the SelectedItem property of the ListView to null, effectively deselecting the item. (However, the selected item is still available in the SelectedItem property of the event arguments.) This is a common technique when using the ListView for navigational purposes. When the user returns to the ListView, you don’t want the item to be still selected. Setting the SelectedItem property of the ListView to null causes another call to the ItemSelected event handler, of course, but if the handler begins by ignoring cases when SelectedItem is null, the second call shouldn’t be a problem.

A more sophisticated program would navigate to a second page or use the detail part of a MasterDetailPage for displaying the item. Those techniques will be demonstrated in future chapters.

The TableView and its intents

The third of the three collection views in Xamarin.Forms is TableView, and the name might be a little deceptive. When we hear the word “table” in programming contexts, we usually think of a two-dimensional grid, such as an HTML table. The Xamarin.Forms TableView is instead a vertical, scrollable list of items that are visually generated from Cell classes. This might sound very similar to a ListView, but the ListView and TableView are quite different in use:

The ListView generally displays a list of items of the same type, usually instances of a particular data class. These items are in an IEnumerable collection. The ListView specifies a single Cell derivative for rendering these data objects. Items are selectable.

The TableView displays a list of items of different types. In real-life programming, often these items are properties of a single class. Each item is associated with its own Cell to display the property and often to allow the user to interact with the property. In the general case, the TableView displays more than one type of cell.

Properties and hierarchies

ListView and ItemsView together define 18 properties, while TableView has only four:

• Intent of type TableIntent.

• Root of type TableRoot. (This is the content property of TableView.)

• RowHeight of type int.

• HasUnevenRows of type bool.

The RowHeight and HasUnevenRows properties play the same role in the TableView as in the ListView.

Perhaps the most revealing property of the TableView class is a property that is not guaranteed to have any effect on functionality and appearance. This property is named Intent, and it indicates how you’re using the particular TableView in your program. You can set this property (or not) to a member of the TableIntent enumeration:

• Data

• Form

• Settings

• Menu

These members suggest the various ways that you can use TableView. When used for Data, the TableView usually displays related items, but items of different types. A Form is a series of items that the user interacts with to enter information. A TableView used for program Settings is sometimes known as a dialog. This use is similar to Form, except that settings usually have default values. You can also use a TableView for a Menu, in which case the items are generally displayed using text or bitmaps and initiate an action when tapped.

The Root property defines the root of the hierarchy of items displayed by the TableView. Each item in a TableView is associated with a single Cell derivative, and the various cells can be organized into sections. To support this hierarchy of items, several classes are defined:

• TableSectionBase is an abstract class that derives from BindableObject and defines a Title property.

• TableSectionBase<T> is an abstract class that derives from TableSectionBase and implements the IList<T> interface, and hence also the ICollection<T> and IEnumerable<T> interfaces. The class also implements the INotifyCollectionChanged interface; internally it maintains an ObservableCollection<T> for this collection. This allows items to be dynamically added to or removed from the TableView.

• TableSection derives from TableSectionBase<Cell>.

• TableRoot derives from TableSectionBase<TableSection>.

In summary, TableView has a Root property that you set to a TableRoot object, which is a collection of TableSection objects, each of which is a collection of Cell objects.

Notice that both TableSection and TableRoot inherit a Title property from TableSectionBase. Depending on the derived class, this is either a title for the section or a title for the entire table. Both TableSection and TableRoot have constructors that let you set this Title property when creating the object.

The TableSectionBase<T> class defines two Add methods for adding items to the collection. The first Add method is required by the ICollection interface; the second is not:

• public void Add(T item)

• public void Add(IEnumerable<T> items)

This second Add method seems to allow you to add one TableSection to another TableSection, and one TableRoot to another TableRoot, and that process might seem to imply that you can have a nested series of TableRoot or TableSection instances. But that is not so. This Add method just transfers the items from one collection to another. The hierarchy never gets any deeper than a TableRoot that is a collection of TableSection objects, which are collections of Cell objects.

Although the TableView makes use of Cell objects, it does not use DataTemplate. Whether you define a TableView in code or in XAML, you always set data bindings directly on the Cell objects. Generally these bindings are very simple because you set a BindingContext on the TableView that is inherited by the individual items.

Visually and functionally, the TableView is not very different from a StackLayout in a ScrollView, where the StackLayout contains a collection of short visual trees with bindings. But generally the TableView is more convenient in organizing and arranging the information.

A prosaic form

Let’s make a data-entry form that lets the program’s user enter a person’s name and some other information. When you first run the EntryForm program, it looks like this:

[image: Image]

The TableView consists of everything on the page except the Submit button. This TableView has one TableSection consisting of five cells—four EntryCell elements and one SwitchCell. (Those are the only two Cell derivatives you haven’t seen yet.) The text “Data Form” is the Title property of the TableRoot object, and it shows up only on the Windows 10 Mobile screen. The text “Personal Information” is the Title property for the TableSection.

The five cells correspond to five properties of this little class named PersonalInformation. Although the class name doesn’t explicitly identify this as a ViewModel, the class derives from ViewModelBase:

Click here to view code image

class PersonalInformation : ViewModelBase

{

 string name, emailAddress, phoneNumber;

 int age;

 bool isProgrammer;

 public string Name

 {

 set { SetProperty(ref name, value); }

 get { return name; }

 }

 public string EmailAddress

 {

 set { SetProperty(ref emailAddress, value); }

 get { return emailAddress; }

 }

 public string PhoneNumber

 {

 set { SetProperty(ref phoneNumber, value); }

 get { return phoneNumber; }

 }

 public int Age

 {

 set { SetProperty(ref age, value); }

 get { return age; }

 }

 public bool IsProgrammer

 {

 set { SetProperty(ref isProgrammer, value); }

 get { return isProgrammer; }

 }

}

When you fill in the information in the form and press the Submit button, the program displays the information from the PersonalInformation instance in a little paragraph at the bottom of the screen:

[image: Image]

This program maintains just a single instance of PersonalInformation. A real application would perhaps create a new instance for each person whose information the user is supplying, and then store each instance in an ObservableCollection<PersonalInformation> for display by a ListView.

The EntryForm XAML file instantiates PersonalInformation as the BindingContext of the TableView. You can see here the TableRoot, the TableSection, and the five Cell objects:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:EntryForm"

 x:Class="EntryForm.EntryFormPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <TableView x:Name="tableView"

 Intent="Form">

 <TableView.BindingContext>

 <local:PersonalInformation />

 </TableView.BindingContext>

 <TableRoot Title="Data Form">

 <TableSection Title="Personal Information">

 <EntryCell Label="Name:"

 Text="{Binding Name}"

 Placeholder="Enter name"

 Keyboard="Text" />

 <EntryCell Label="Email:"

 Text="{Binding EmailAddress}"

 Placeholder="Enter email address"

 Keyboard="Email" />

 <EntryCell Label="Phone:"

 Text="{Binding PhoneNumber}"

 Placeholder="Enter phone number"

 Keyboard="Telephone" />

 <EntryCell Label="Age:"

 Text="{Binding Age}"

 Placeholder="Enter age"

 Keyboard="Numeric" />

 <SwitchCell Text="Are you a programmer?"

 On="{Binding IsProgrammer}" />

 </TableSection>

 </TableRoot>

 </TableView>

 <Label x:Name="summaryLabel"

 VerticalOptions="CenterAndExpand" />

 <Button Text="Submit"

 HorizontalOptions="Center"

 Clicked="OnSubmitButtonClicked" />

 </StackLayout>

</ContentPage>

Each of the properties of the PersonalInformation class corresponds to a Cell. For four of these properties, this is an EntryCell that consists (at least conceptually) of an identifying Label and an Entry view. (In reality, the EntryCell consists of platform-specific visual objects, but it’s convenient to speak of these objects using Xamarin.Forms names.) The Label property specifies the text that appears at the left; the Placeholder and Keyboard properties of EntryView duplicate the same properties in Entry. A Text property indicates the text in the Entry view.

The fifth cell is a SwitchCell for the Boolean property IsProgrammer. In this case, the Text property specifies the text at the left of the cell, and the On property indicates the state of the Switch.

Because the BindingContext of the TableView is PersonalInformation, the bindings in the Cell objects can simply reference the properties of PersonalInformation. The binding modes of the Text property of the EntryCell and the On property of the SwitchCell are both TwoWay. If you only need to transfer data from the view to the data class, this mode can be OneWayToSource, but in general you might want to initialize the views from the data class. For example, you can instantiate the PersonalInformation instance in the XAML file like this:

Click here to view code image

<TableView.BindingContext>

 <local:PersonalInformation Name="Naomi Name"

 EmailAddress="naomi@xamarin.com"

 PhoneNumber="555-1212"

 Age="29"

 IsProgrammer="True" />

</TableView.BindingContext>

The cells will then be initialized with that information when the program starts up.

Both EntryCell and SwitchCell fire events if you prefer obtaining information through event handling rather than data binding.

The code-behind file simply processes the Clicked event of the Submit button by creating a text string with the information from the PersonalInformation instance and displaying it with the Label:

Click here to view code image

public partial class EntryFormPage : ContentPage

{

 public EntryFormPage()

 {

 InitializeComponent();

 }

 void OnSubmitButtonClicked(object sender, EventArgs args)

 {

 PersonalInformation personalInfo = (PersonalInformation)tableView.BindingContext;

 summaryLabel.Text = String.Format(

 "{0} is {1} years old, and has an email address " +

 "of {2}, and a phone number of {3}, and is {4}" +

 "a programmer.",

 personalInfo.Name, personalInfo.Age,

 personalInfo.EmailAddress, personalInfo.PhoneNumber,

 personalInfo.IsProgrammer ? "" : "not ");

 }

}

Custom cells

Of course, few people are entirely happy with the first version of an application, and perhaps that is true for the simple EntryForm program. Perhaps the revised design requirements eliminate the integer Age property from PersonalInformation and substitute a text AgeRange property with some fixed ranges. Two more properties are added to the class that pertain only to programmers: These are properties of type string that indicate the programmer’s preferred computer language and platform, choosable from lists of languages and platforms.

Here’s the revised ViewModel class, now called ProgrammerInformation:

Click here to view code image

class ProgrammerInformation : ViewModelBase

{

 string name, emailAddress, phoneNumber, ageRange;

 bool isProgrammer;

 string language, platform;

 public string Name

 {

 set { SetProperty(ref name, value); }

 get { return name; }

 }

 public string EmailAddress

 {

 set { SetProperty(ref emailAddress, value); }

 get { return emailAddress; }

 }

 public string PhoneNumber

 {

 set { SetProperty(ref phoneNumber, value); }

 get { return phoneNumber; }

 }

 public string AgeRange

 {

 set { SetProperty(ref ageRange, value); }

 get { return ageRange; }

 }

 public bool IsProgrammer

 {

 set { SetProperty(ref isProgrammer, value); }

 get { return isProgrammer; }

 }

 public string Language

 {

 set { SetProperty(ref language, value); }

 get { return language; }

 }

 public string Platform

 {

 set { SetProperty(ref platform, value); }

 get { return platform; }

 }

}

The AgeRange, Language, and Platform properties seem ideally suited for Picker, but using a Picker inside a TableView requires that the Picker be part of a ViewCell. How do we do this?

When working with a ListView, the simplest way to create a custom cell involves defining a visual tree in a ViewCell within a DataTemplate right in XAML. This approach makes sense because the visual tree that you define is probably tailored specifically to the items in the ListView and is probably not going to be reused somewhere else.

You can use that same technique with a TableView, but with a TableView it’s more likely that you’ll be reusing particular types of interactive cells. For example, the ProgrammerInformation class has three properties that are suitable for Picker. This implies that it makes more sense to create a custom PickerCell class that you can use here and elsewhere.

The Xamarin.FormsBook.Toolkit library contains a PickerCell class that derives from ViewCell and is basically a wrapper around a Picker view. The class consists of a XAML file and a code-behind file. The code-behind file defines three properties backed by bindable properties: Label (which identifies the cell just like the Label property in EntryCell), Title (which corresponds to the Title property of Picker), and SelectedValue, which is the actual string selected in the Picker. In addition, a get-only Items property exposes the Items collection of the Picker:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 [ContentProperty("Items")]

 public partial class PickerCell : ViewCell

 {

 public static readonly BindableProperty LabelProperty =

 BindableProperty.Create(

 "Label", typeof(string), typeof(PickerCell), default(string));

 public static readonly BindableProperty TitleProperty =

 BindableProperty.Create(

 "Title", typeof(string), typeof(PickerCell), default(string));

 public static readonly BindableProperty SelectedValueProperty =

 BindableProperty.Create(

 "SelectedValue", typeof(string), typeof(PickerCell), null,

 BindingMode.TwoWay,

 propertyChanged: (sender, oldValue, newValue) =>

 {

 PickerCell pickerCell = (PickerCell)sender;

 if (String.IsNullOrEmpty(newValue))

 {

 pickerCell.picker.SelectedIndex = -1;

 }

 else

 {

 pickerCell.picker.SelectedIndex =

 pickerCell.Items.IndexOf(newValue);

 }

 });

 public PickerCell()

 {

 InitializeComponent();

 }

 public string Label

 {

 set { SetValue(LabelProperty, value); }

 get { return (string)GetValue(LabelProperty); }

 }

 public string Title

 {

 get { return (string)GetValue(TitleProperty); }

 set { SetValue(TitleProperty, value); }

 }

 public string SelectedValue

 {

 get { return (string)GetValue(SelectedValueProperty); }

 set { SetValue(SelectedValueProperty, value); }

 }

 // Items property.

 public IList<string> Items

 {

 get { return picker.Items; }

 }

 void OnPickerSelectedIndexChanged(object sender, EventArgs args)

 {

 if (picker.SelectedIndex == -1)

 {

 SelectedValue = null;

 }

 else

 {

 SelectedValue = Items[picker.SelectedIndex];

 }

 }

 }

}

The XAML file defines the visual tree of PickerCell, which simply consists of an identifying Label and the Picker itself. Notice that the root element of the XAML file is ViewCell, which is the class that PickerCell derives from:

Click here to view code image

<ViewCell xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="Xamarin.FormsBook.Toolkit.PickerCell"

 x:Name="cell">

 <ViewCell.View>

 <StackLayout Orientation="Horizontal"

 BindingContext="{x:Reference cell}"

 Padding="16, 0">

 <Label Text="{Binding Label}"

 VerticalOptions="Center" />

 <Picker x:Name="picker"

 Title="{Binding Title}"

 VerticalOptions="Center"

 HorizontalOptions="FillAndExpand"

 SelectedIndexChanged="OnPickerSelectedIndexChanged" />

 </StackLayout>

 </ViewCell.View>

</ViewCell>

The Padding value set on the StackLayout was chosen empirically to be visually consistent with the Xamarin.Forms EntryCell.

Normally the ViewCell.View property element tags wouldn’t be required in this XAML file because View is the content property of ViewCell. However, the code-behind file defines the content property of PickerCell to be the Items collection, which means that the content property is no longer View and the ViewCell.View tags are necessary.

The root element of the XAML file has an x:Name attribute that gives the object a name of “cell,” and the StackLayout sets its BindingContext to that object, which means that the BindingContext for the children of the StackLayout is the PickerCell instance itself. This allows the Label and Picker to contain bindings to the Label and Title properties defined by PickerCell in the code-behind file.

The Picker fires a SelectedIndexChanged event that is handled in the code-behind file so that the code-behind file can convert the SelectedIndex of the Picker to a SelectedValue of the PickerCell.

This is not the only way to create a custom PickerCell class. You can also create it by defining individual PickerCellRenderer classes for each platform.

The TableView in the ConditionalCells program uses this PickerCell for three of the properties in the ProgrammerInformation class and initializes each PickerCell with a collection of strings:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:ConditionalCells"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="ConditionalCells.ConditionalCellsPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <TableView Intent="Form">

 <TableView.BindingContext>

 <local:ProgrammerInformation />

 </TableView.BindingContext>

 <TableRoot Title="Data Form">

 <TableSection Title="Personal Information">

 <EntryCell Label="Name:"

 Text="{Binding Name}"

 Placeholder="Enter name"

 Keyboard="Text" />

 <EntryCell Label="Email:"

 Text="{Binding EmailAddress}"

 Placeholder="Enter email address"

 Keyboard="Email" />

 <EntryCell Label="Phone:"

 Text="{Binding PhoneNumber}"

 Placeholder="Enter phone number"

 Keyboard="Telephone" />

 <toolkit:PickerCell Label="Age Range:"

 Title="Age Range"

 SelectedValue="{Binding AgeRange}">

 <x:String>10 - 19</x:String>

 <x:String>20 - 29</x:String>

 <x:String>30 - 39</x:String>

 <x:String>40 - 49</x:String>

 <x:String>50 - 59</x:String>

 <x:String>60 - 99</x:String>

 </toolkit:PickerCell>

 <SwitchCell Text="Are you a programmer?"

 On="{Binding IsProgrammer}" />

 <toolkit:PickerCell Label="Language:"

 Title="Language"

 IsEnabled="{Binding IsProgrammer}"

 SelectedValue="{Binding Language}">

 <x:String>C</x:String>

 <x:String>C++</x:String>

 <x:String>C#</x:String>

 <x:String>Objective C</x:String>

 <x:String>Java</x:String>

 <x:String>Other</x:String>

 </toolkit:PickerCell>

 <toolkit:PickerCell Label="Platform:"

 Title="Platform"

 IsEnabled="{Binding IsProgrammer}"

 SelectedValue="{Binding Platform}">

 <x:String>iPhone</x:String>

 <x:String>Android</x:String>

 <x:String>Windows Phone</x:String>

 <x:String>Other</x:String>

 </toolkit:PickerCell>

 </TableSection>

 </TableRoot>

 </TableView>

 </StackLayout>

</ContentPage>

Notice how the IsEnabled properties of the PickerCell for both the Platform and Language properties are bound to the IsProgrammer property, which means that these cells should be disabled unless the SwitchCell is flipped on and the IsProgrammer property is true. That’s why this program is called ConditionalCells.

However, it doesn’t seem to work, as this screenshot verifies:

[image: Image]

Even though the IsProgrammer switch is off, and the IsEnabled property of each of the last two PickerCell elements is set to false, those elements still respond and allow selecting a value. Moreover, the PickerCell doesn’t look or work very well on the Windows 10 Mobile platform.

So let’s try another approach.

Conditional sections

A TableView can have multiple sections, and you might want a section to be entirely invisible if it doesn’t currently apply. In the previous example, a second section, titled “Programmer Information,” might contain the two PickerCell elements for the Language and Platform properties. To make the section visible or hidden, the section can be added to or removed from the TableRoot based on the setting of the IsProgrammer property. (Recall that the internal collections in TableView are of type ObservableCollection, so the TableView should respond to items added or removed dynamically from these collections.) Unfortunately, this can’t be handled entirely in XAML, but the code support is fairly easy.

Here is the XAML file in the ConditionalSection program. It is the same as the XAML file in the previous program except that the BindingContext is no longer set on the TableView (that happens in the code-behind file) and the last two PickerCell elements have been moved into a second section with the heading “Programmer Information”:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:ConditionalSection"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="ConditionalSection.ConditionalSectionPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <TableView x:Name="tableView"

 Intent="Form">

 <TableRoot Title="Data Form">

 <TableSection Title="Personal Information">

 <EntryCell Label="Name:"

 Text="{Binding Name}"

 Placeholder="Enter name"

 Keyboard="Text" />

 <EntryCell Label="Email:"

 Text="{Binding EmailAddress}"

 Placeholder="Enter email address"

 Keyboard="Email" />

 <EntryCell Label="Phone:"

 Text="{Binding PhoneNumber}"

 Placeholder="Enter phone number"

 Keyboard="Telephone" />

 <toolkit:PickerCell Label="Age Range:"

 Title="Age Range"

 SelectedValue="{Binding AgeRange}">

 <x:String>10 - 19</x:String>

 <x:String>20 - 29</x:String>

 <x:String>30 - 39</x:String>

 <x:String>40 - 49</x:String>

 <x:String>50 - 59</x:String>

 <x:String>60 - 99</x:String>

 </toolkit:PickerCell>

 <SwitchCell x:Name="isProgrammerSwitch"

 Text="Are you a programmer?"

 On="{Binding IsProgrammer}" />

 </TableSection>

 <TableSection x:Name="programmerInfoSection"

 Title="Programmer Information">

 <toolkit:PickerCell Label="Language:"

 Title="Language"

 SelectedValue="{Binding Language}">

 <x:String>C</x:String>

 <x:String>C++</x:String>

 <x:String>C#</x:String>

 <x:String>Objective C</x:String>

 <x:String>Java</x:String>

 <x:String>Other</x:String>

 </toolkit:PickerCell>

 <toolkit:PickerCell Label="Platform:"

 Title="Platform"

 SelectedValue="{Binding Platform}">

 <x:String>iPhone</x:String>

 <x:String>Android</x:String>

 <x:String>Windows Phone</x:String>

 <x:String>Other</x:String>

 </toolkit:PickerCell>

 </TableSection>

 </TableRoot>

 </TableView>

 </StackLayout>

</ContentPage>

The constructor in the code-behind file handles the rest. It creates the ProgrammerInformation object to set to the BindingContext of the TableView and then removes the second TableSection from the TableRoot. The page constructor then sets a handler for the PropertyChanged event of ProgrammerInformation and waits for changes to the IsProgrammer property:

Click here to view code image

public partial class ConditionalSectionPage : ContentPage

{

 public ConditionalSectionPage()

 {

 InitializeComponent();

 // Set BindingContext of TableView.

 ProgrammerInformation programmerInfo = new ProgrammerInformation();

 tableView.BindingContext = programmerInfo;

 // Remove programmer-information section!

 tableView.Root.Remove(programmerInfoSection);

 // Watch for changes in IsProgrammer property in ProgrammerInformation.

 programmerInfo.PropertyChanged += (sender, args) =>

 {

 if (args.PropertyName == "IsProgrammer")

 {

 if (programmerInfo.IsProgrammer &&

 tableView.Root.IndexOf(programmerInfoSection) == -1)

 {

 tableView.Root.Add(programmerInfoSection);

 }

 if (!programmerInfo.IsProgrammer &&

 tableView.Root.IndexOf(programmerInfoSection) != -1)

 {

 tableView.Root.Remove(programmerInfoSection);

 }

 }

 };

 }

}

In theory, the PropertyChanged handler doesn’t need to check if the TableSection is already part of the TableRoot collection before adding it, or check if it’s not part of the collection before attempting to remove it, but the checks don’t hurt.

Here’s the program when it first starts up with only one section visible:

[image: Image]

Toggling the SwitchCell on brings the two additional properties into view:

[image: Image]

But not on the Windows 10 Mobile screen.

You don’t need to have a single BindingContext for the whole TableView. Each TableSection can have its own BindingContext, which means that you can divide your ViewModels to coordinate more closely with the TableView layout.

A TableView menu

Besides displaying data or serving as a form or settings dialog, a TableView can also be a menu. Functionally, a menu is a collection of buttons, although they might not look like traditional buttons. Each menu item is a command that triggers a program operation.

This is why TextCell and ImageCell have Command and CommandParameter properties. These cells can trigger commands defined in a ViewModel, or simply some other property of type ICommand.

The XAML file in the MenuCommands program binds the Command properties of four TextCell elements with a property named MoveCommand, and passes to that MoveCommand arguments named “left”, “up”, “right”, and “down”:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MenuCommands.MenuCommandsPage"

 x:Name="page">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <TableView Intent="Menu"

 VerticalOptions="Fill"

 BindingContext="{x:Reference page}">

 <TableRoot>

 <TableSection Title="Move the Box">

 <TextCell Text="Left"

 Command="{Binding MoveCommand}"

 CommandParameter="left" />

 <TextCell Text="Up"

 Command="{Binding MoveCommand}"

 CommandParameter="up" />

 <TextCell Text="Right"

 Command="{Binding MoveCommand}"

 CommandParameter="right" />

 <TextCell Text="Down"

 Command="{Binding MoveCommand}"

 CommandParameter="down" />

 </TableSection>

 </TableRoot>

 </TableView>

 <AbsoluteLayout BackgroundColor="Maroon"

 VerticalOptions="FillAndExpand">

 <BoxView x:Name="boxView"

 Color="Blue"

 AbsoluteLayout.LayoutFlags="All"

 AbsoluteLayout.LayoutBounds="0.5, 0.5, 0.2, 0.2" />

 </AbsoluteLayout>

 </StackLayout>

</ContentPage>

But where is that MoveCommand property? If you look at the BindingContext of the TableView, you’ll see that it references the root element of the XAML file, which means that MoveCommand property can probably be found as a property in the code-behind file.

And there it is:

Click here to view code image

public partial class MenuCommandsPage : ContentPage

{

 int xOffset = 0; // ranges from -2 to 2

 int yOffset = 0; // ranges from -2 to 2

 public MenuCommandsPage()

 {

 // Initialize ICommand property before parsing XAML.

 MoveCommand = new Command<string>(ExecuteMove, CanExecuteMove);

 InitializeComponent();

 }

 public ICommand MoveCommand { private set; get; }

 void ExecuteMove(string direction)

 {

 switch (direction)

 {

 case "left": xOffset--; break;

 case "right": xOffset++; break;

 case "up": yOffset--; break;

 case "down": yOffset++; break;

 }

 ((Command)MoveCommand).ChangeCanExecute();

 AbsoluteLayout.SetLayoutBounds(boxView,

 new Rectangle((xOffset + 2) / 4.0,

 (yOffset + 2) / 4.0, 0.2, 0.2));

 }

 bool CanExecuteMove(string direction)

 {

 switch (direction)

 {

 case "left": return xOffset > -2;

 case "right": return xOffset < 2;

 case "up": return yOffset > -2;

 case "down": return yOffset < 2;

 }

 return false;

 }

}

The Execute method manipulates the layout bounds of a BoxView in the XAML file so that it moves around the AbsoluteLayout. The CanExecute method disables an operation if the BoxView has been moved to one of the edges.

Only on iOS does the disabled TextCell actually appear with a typical gray coloring, but on both the iOS and Android platforms the TextCell is no longer functional if the CanExecute method returns false:

[image: Image]

You can also use TableView as a menu for page navigation or working with master/detail pages, and for these particular applications you might wonder whether a ListView or TableView is the right tool for the job. Generally it’s ListView if you have a collection of items that should all be displayed in the same way, or TableView for fewer items that might require individual attention.

What is certain is that you’ll definitely see more examples in the chapters ahead.

Chapter 20. Async and file I/O

Graphical user interfaces have a little peculiarity that has far-reaching consequences: User input to an application must be processed sequentially. Regardless of whether user-input events come from a keyboard, a mouse, or touch, each event must be completely processed by an application—either directly or through user-interface objects such as buttons or sliders—before the application obtains the next user-input event from the operating system.

The rationale behind this restriction becomes clear after a little reflection and perhaps an example: Suppose a page contains two buttons, and the user quickly taps one and then the other. Might it be possible for the two buttons to process those two taps concurrently in two separate threads of execution? No, that would not work. It could be that the first button changes the meaning of the second button, perhaps disabling it entirely. For this reason, the first button must be allowed to completely finish processing its tap before the second button begins processing its own tap.

The consequences of this restriction are severe: All user input to a particular application must be processed in a single thread of execution. Moreover, user-interface objects are generally not threadsafe. They cannot be modified from a secondary thread of execution. All code connected with an application’s user interface is therefore restricted to a single thread. This thread is known as the main thread or the user-interface thread or the UI thread.

As we users have become more accustomed to graphical user interfaces over the decades, we’ve become increasingly intolerant of even the slightest lapse in responsiveness. As application programmers, we therefore try our best to keep the user interface responsive to achieve maximum user satisfaction. This means that anything running on the UI thread must perform its processing as quickly as possible and return control back to the operating system. If an event handler running in the UI thread gets bogged down in a long processing job, the entire user interface will seem to freeze and certainly annoy the user.

For this reason, any lengthy jobs that an application must perform should be relegated to secondary threads of execution, often called worker threads. These worker threads are said to run “in the background” and do not interfere with the responsiveness of the UI thread.

You’ve already seen some examples in this book. Several sample programs—the ImageBrowser and BitmapStreams programs in Chapter 13, “Bitmaps,” and the SchoolOfFineArt library and RssFeed program in Chapter 19, “Collection views”—use the WebRequest class to download files over the Internet. A call to the BeginGetResponse method of WebRequest starts a worker thread that accesses the web resource asynchronously. The WebRequest call returns quickly, and the program can handle other user input while the file is being downloaded. An argument to BeginGetResponse is a callback method that is invoked when the background process completes. Within this callback method the program calls EndGetResponse to get access to the downloaded data.

But the callback method passed to BeginGetResponse has a little problem. The callback method runs in the same worker thread that downloads the file, and in the general case, you can’t access user-interface objects from anything other than the UI thread. Usually, this means that the callback method must access the UI thread. Each of the three platforms supported by Xamarin.Forms has its own native method for running code from a secondary thread on the UI thread, but in Xamarin.Forms these are all available through the Device.BeginInvokeOnMainThread method. (As you’ll recall, however, there are some exceptions generally related to ViewModels: Although a secondary thread can’t access a user-interface object directly, the secondary thread can set a property that is bound to a user-interface object through a data binding.)

In recent years, asynchronous processing has become more ubiquitous at the same time that it’s become easier for programmers. This is an ongoing trend: The future of computing will undoubtedly involve a lot more asynchronous computing and parallel processing, particularly with the increasing use of multicore processor chips. Developers will need good operating-system support and language tools to work with asynchronous operations, and fortunately .NET and C# have been in the forefront of this support.

This chapter will explore some of the basics of working with asynchronous processing in Xamarin.Forms applications, including using the .NET Task class to help you define and work with asynchronous methods. The customary hassle of dealing with callback functions has been alleviated greatly with two keywords introduced in C# 5.0: async and await. The await operator has revolutionized asynchronous programming by simplifying the syntax of asynchronous calls, by clarifying program flow surrounding asynchronous calls, by easing the access of user-interface objects, by simplifying the handling of exceptions raised by worker threads, and by unifying the handling of these exceptions and cancellations of background jobs.

This chapter primarily demonstrates how to work with asynchronous processing to perform file input and output, and how to create your own worker threads for performing lengthy jobs.

But Xamarin.Forms itself contains several asynchronous methods.

From callbacks to await

The Page class defines three methods that let you display a visual object sometimes called an alert or a message box. Such a box pops up on the screen with some information or a question for the user. The alert box is modal, meaning that the rest of the application is unavailable while the alert is displayed. The user must dismiss it with the press of a button before returning to interact with the application.

Two of these three methods of the Page class are named DisplayAlert. The first simply displays some text with a single button to dismiss the box, while the second contains two buttons for yes or no responses. The DisplayActionSheet method is similar but displays any number of buttons.

In iOS, Android, and the Windows Runtime, these methods are implemented with platform-specific objects that use events or callback methods to inform the application that the alert box has been dismissed and what button the user pressed to dismiss it. However, Xamarin.Forms has wrapped these objects with an asynchronous interface.

These three methods of the Page class are defined like this:

Click here to view code image

Task DisplayAlert (string title, string message, string cancel)

Task<bool> DisplayAlert (string title, string message, string accept, string cancel)

Task<string> DisplayActionSheet (string title, string cancel, string destruction,

 params string[] buttons)

They all return Task objects. The Task and Task<T> classes are defined in the System.Threading.Tasks namespace and they form the core of the Task-based Asynchronous Pattern, known as TAP. TAP is the recommended approach to handling asynchronous operations in .NET. The Task Parallel Library (TPL) builds on TAP.

In contrast, the BeginGetResponse and EndGetResponse methods of WebRequest represent an older approach to asynchronous operations involving IAsyncResult. This older approach is called the Asynchronous Programming Model or APM. You might also encounter code that uses the Event-based Asynchronous Model (EAP) to return information from asynchronous jobs through events.

You’ve already seen the simplest form of DisplayAlert in the SetTimer program in Chapter 15, “The interactive interface.” SetTimer used an alert to indicate when a timer elapsed. The program didn’t seem to care that DisplayAlert returned a Task object because the alert box was used strictly for notification purposes. It was not necessary to obtain a response from the user. However, the methods that return Task<bool> and Task<string> need to convey actual information back to the application indicating which button the user pressed to dismiss the alert.

A return value of Task<T> is sometimes referred to as a “promise.” The actual value or object isn’t available just yet, but it will be available in the future if nothing goes awry.

You can work with a Task<T> object in a few different ways. These approaches are fundamentally equivalent, but the C# syntax is quite different.

An alert with callbacks

The intended use of the DisplayAlert method that returns a Task<bool> is to ask the user a question with a yes or no answer. Obviously the answer isn’t available until the user presses a button and the alert is dismissed, at which time a true value means Yes and false value means No.

One way to work with a Task<T> object is with callback methods. The AlertCallbacks program demonstrates that approach. It has a XAML file with a Button to invoke an alert and a Label for the program to display some information:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="AlertCallbacks.AlertCallbacksPage">

 <StackLayout>

 <Button Text="Invoke Alert"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnButtonClicked" />

 <Label x:Name="label"

 Text="Tap button to invoke alert"

 FontSize="Large"

 HorizontalTextAlignment="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

Here’s the code-behind file with the Clicked event handler and two callback methods:

Click here to view code image

public partial class AlertCallbacksPage : ContentPage

{

 bool result;

 public AlertCallbacksPage()

 {

 InitializeComponent();

 }

 void OnButtonClicked(object sender, EventArgs args)

 {

 Task<bool> task = DisplayAlert("Simple Alert", "Decide on an option",

 "yes or ok", "no or cancel");

 task.ContinueWith(AlertDismissedCallback);

 label.Text = "Alert is currently displayed";

 }

 void AlertDismissedCallback(Task<bool> task)

 {

 result = task.Result;

 Device.BeginInvokeOnMainThread(DisplayResultCallback);

 }

 void DisplayResultCallback()

 {

 label.Text = String.Format("Alert {0} button was pressed",

 result ? "OK" : "Cancel");

 }

}

The Clicked handler calls DisplayAlert with arguments indicating a title, a question or statement, and the text for the two buttons. Generally, these two buttons are labeled “yes” and “no,” or “ok” and “cancel,” but you can put anything you want in those buttons as this program demonstrates.

If DisplayAlert were designed to be a synchronous method, the method would return a bool indicating which button the user pressed to dismiss the alert. However, DisplayAlert would not be able to return that value until the alert were dismissed, which means that the application would be stuck in the DisplayAlert call during the entire time the alert is displayed. Depending on how the operating system handles user-input events, being stuck in the DisplayAlert call might not actually block other event handling by the user-interface thread during this time, but it might be a little strange for the UI thread to be seemingly in the DisplayAlert call while also handling other events.

Instead of returning a bool when the alert is dismissed, DisplayAlert returns a Task<bool> object that promises a bool result sometime in the future. To obtain that value, the OnButtonClicked handler in the AlertCallbacks program calls the ContinueWith method defined by Task. This method allows the program to specify a method that is called when the alert is dismissed. The Clicked handler concludes by setting some text to the Label, and then returns control back to the operating system.

The alert is then displayed:

[image: Image]

Of course, the alert essentially disables the user interface of the application, but the application could still be doing some work while the alert is displayed. For example, the program could be using a timer, and that timer would continue to run. You can prove this to yourself by adding the following code to the constructor of the AlertCallbacks code-behind file:

Click here to view code image

Device.StartTimer(TimeSpan.FromSeconds(1), () =>

 {

 label.Text = DateTime.Now.ToString();

 return true;

 });

When the user dismisses the alert by tapping one of the buttons, the AlertDismissedCallback method is called:

Click here to view code image

void AlertDismissedCallback(Task<bool> task)

{

 result = task.Result;

 Device.BeginInvokeOnMainThread(DisplayResultCallback);

}

The argument is the same Task object originally returned from the DisplayAlert method. But now the Result property of the Task object has been set to true or false depending on what button the user pressed to dismiss the alert. The program wants to display that value, but unfortunately it cannot because this AlertDismissedCallback method is running in a secondary thread that Xamarin.Forms has created. This thread is not allowed to access any user-interface objects of the program. For that reason, the AlertDismissedCallback method saves the bool result in a field and calls Device.BeginInvokeOnMainThread with a second callback method. That callback method runs in the UI thread:

Click here to view code image

void DisplayResultCallback()

{

 label.Text = String.Format("Alert {0} button was pressed",

 result ? "OK" : "Cancel");

}

The Label then displays that text:

[image: Image]

The AlertCallbacks program demonstrates one traditional way to handle asynchronous methods, but it has a distinct drawback: There are simply too many callbacks, and in one case, data must be passed from one callback to another by using a field.

An alert with lambdas

An obvious approach to simplify callbacks is with lambda functions. This is demonstrated with the AlertLambdas program. The XAML file is the same as in the AlertCallbacks method, but everything that happens in response to the button click is now inside that Clicked handler:

Click here to view code image

public partial class AlertLambdasPage : ContentPage

{

 public AlertLambdasPage()

 {

 InitializeComponent();

 }

 void OnButtonClicked(object sender, EventArgs args)

 {

 Task<bool> task = DisplayAlert("Simple Alert", "Decide on an option",

 "yes or ok", "no or cancel");

 task.ContinueWith((Task<bool> taskResult) =>

 {

 Device.BeginInvokeOnMainThread(() =>

 {

 label.Text = String.Format("Alert {0} button was pressed",

 taskResult.Result ? "OK" : "Cancel");

 });

 });

 label.Text = "Alert is currently displayed";

 }

}

There is really no difference between this program and the previous one except that the callback methods have no name. They are anonymous. But sometimes lambda functions have the tendency to obscure program flow, and that is certainly the case here. The Text property of the Label is set to the text “Alert is currently displayed” right after the ContinueWith method is called and before the callback passed to ContinueWith executes, but that statement appears at the bottom of the method.

There should be a better way to denote what you want to happen without distorting program flow. That better way is called await.

An alert with await

The AlertAwait program has the same XAML file as AlertCallbacks and AlertLambdas, but the OnButtonClicked method is considerably simplified:

Click here to view code image

public partial class AlertAwaitPage : ContentPage

{

 public AlertAwaitPage()

 {

 InitializeComponent();

 }

 async void OnButtonClicked(object sender, EventArgs args)

 {

 Task<bool> task = DisplayAlert("Simple Alert", "Decide on an option",

 "yes or ok", "no or cancel");

 label.Text = "Alert is currently displayed";

 bool result = await task;

 label.Text = String.Format("Alert {0} button was pressed",

 result ? "OK" : "Cancel");

 }

}

The key statement is this one:

bool result = await task;

That task variable is the Task<bool> object returned from DisplayAlert, but the await keyword seems to magically extract the Boolean result without any callbacks or lambdas.

The first thing you should know is that await doesn’t actually wait for the alert to be dismissed! Instead, the C# compiler has performed a lot of surgery on the OnButtonClicked method. The method has basically been turned into a state machine. Part of the method is executed when the button is clicked, and part of the method is executed later. When the flow of execution hits the await keyword, the remainder of the OnButtonClicked method is skipped over for the moment. The OnButtonClicked method exits and returns control back to the operating system. From the perspective of the Button, the event handler has completed.

When the user dismisses the alert box, the remainder of the OnButtonClicked method resumes execution beginning with the assignment of the Boolean value to the result variable. In some circumstances, some optimizations can take place behind the scenes. For example, the flow of execution can just continue normally if the asynchronous operation completes immediately.

The await operator has another bonus: Notice that there’s no use of Device.BeginInvokeOnMainThead. When the user dismisses the alert, the OnButtonClicked method automatically resumes execution in the user-interface thread, which means that it can access the Label. (In some cases, you might want to continue running in the background thread for performance reasons. If so, you can use the ConfigureAwait method of Task to do that. You’ll see an example later in this chapter.)

The await keyword essentially converts asynchronous code into something that appears to be normal sequential imperative code. Of course, behind the scenes, there is really not much difference between this program and the two previous programs. In all three cases, the OnButtonClicked handler returns control back to the operating system when it displays the alert, and resumes execution when the alert is dismissed.

Simply for illustrative purposes, the three programs display some text immediately after the DisplayAlert method is called. If that isn’t necessary, then the DisplayAlert call can be combined with the await operator to get rid of the explicit Task<bool> variable entirely:

Click here to view code image

bool result = await DisplayAlert("Simple Alert", "Decide on an option",

 "yes or ok", "no or cancel");

This is how await commonly appears in code. DisplayAlert returns Task<bool> but the await operator effectively extracts the bool result after the background task has completed.

Indeed, you can use await much like you can any other operator, and it can appear inside a more complex expression. For example, if you don’t need the statement that displays the text after the DisplayAlert call, you can actually put both the await operator and DisplayAlert inside the final String.Format call:

Click here to view code image

async void OnButtonClicked(object sender, EventArgs args)

{

 label.Text = String.Format("Alert {0} button was pressed",

 await DisplayAlert("Simple Alert", "Decide on an option",

 "yes or ok", "no or cancel") ? "OK" : "Cancel");

}

That might be a little difficult to read, but think of the combination of the await operator and the DisplayAlert method as a bool and the statement makes perfect sense.

You might have noticed that the OnButtonClicked method is marked with the async keyword. Any method in which you use await must be marked as async. However, the async keyword does not change the signature of the method. OnButtonClicked still qualifies as an event handler for the Clicked event.

But not every method can be an async method.

An alert with nothing

The simpler of the two DisplayAlert methods returns a Task object. It is intended to display some information to the user that doesn’t require a response:

Click here to view code image

Task DisplayAlert (string title, string message, string cancel)

Generally, you’ll want to use await with this simpler DisplayAlert method even though it doesn’t return any information, and particularly if you need to perform some processing after it has been dismissed. The NothingAlert program has the same XAML file as the previous samples but displays this simpler alert box:

Click here to view code image

public partial class NothingAlertPage : ContentPage

{

 public NothingAlertPage()

 {

 InitializeComponent();

 }

 async void OnButtonClicked(object sender, EventArgs args)

 {

 label.Text = "Displaying alert box";

 await DisplayAlert("Simple Alert", "Click 'dismiss' to dismiss", "dismiss");

 label.Text = "Alert has been dismissed";

 }

}

Nothing appears to the left of the await operator because the return value of DisplayAlert is Task rather than Task<T> and no information is returned.

The first program in this book that used this simpler form of DisplayAlert was the SetTimer program in Chapter 15. Here’s the timer callback method from that program (with the oddly named @switch variable so that it doesn’t conflict with the switch keyword):

Click here to view code image

bool OnTimerTick()

{

 if (@switch.IsToggled && DateTime.Now >= triggerTime)

 {

 @switch.IsToggled = false;

 DisplayAlert("Timer Alert",

 "The '" + entry.Text + "' timer has elapsed",

 "OK");

 }

 return true;

}

The DisplayAlert call returns quickly, and the method continues to execute when the alert box is displayed. The OnTimerTick method then returns true, and a second later OnTimerTick is called again. Fortunately, the Switch is no longer toggled, so the program doesn’t attempt to call DisplayAlert a second time. When the alert is dismissed, the user can again interact with the user interface, but no additional code is executed on its return.

What if you wanted to execute a little code after the alert box was dismissed? Try to put an await operator in front of DisplayAlert and identify the method with the async keyword:

Click here to view code image

// Will not compile!

async bool OnTimerTick()

{

 if (@switch.IsToggled && DateTime.Now >= triggerTime)

 {

 @switch.IsToggled = false;

 await DisplayAlert("Timer Alert",

 "The '" + entry.Text + "' timer has elapsed",

 "OK");

 // Some code to execute after the alert box is dismissed.

 }

 return true;

}

But as the comment says, this code will not compile.

Why not?

When the C# compiler encounters the await keyword, it constructs code so that the OnTimerTick callback returns to its caller. The remainder of the method then resumes execution when the alert box is dismissed. However, the Device.StartTimer method that invokes this callback is expecting the timer callback to return a Boolean value to determine whether it should call the callback again, and the C# compiler cannot construct code that returns a Boolean value because it doesn’t know what that Boolean value should be!

For this reason, methods that contain await operators are restricted to return types of void, Task, or Task<T>.

Event handlers usually have void return types. This is why the Clicked handler of a Button can contain await operators and be flagged with the async keyword. But the timer callback method returns a bool, and to use await within this method, the return value of the OnTimerTick method must be Task<bool>:

Click here to view code image

// Method compiles but Device.StartTimer does not!

async Task<bool> OnTimerTick()

{

 if (@switch.IsToggled && DateTime.Now >= triggerTime)

 {

 @switch.IsToggled = false;

 await DisplayAlert("Timer Alert",

 "The '" + entry.Text + "' timer has elapsed",

 "OK");

 }

 return true;

}

This method now contains entirely legal compilable code. When a method is defined to return Task<T>, the body of the method returns an object of type T and the compiler does the rest.

However, because the method now returns a Task<bool> object, code that calls this method must use await with the method (or call ContinueWith on the Task object) to obtain the Boolean value when the method completes execution. That’s a problem for the Device.StartTimer call, which is not expecting the callback method to be asynchronous; it’s expecting the callback method to return bool rather than Task<bool>.

If you really did want to execute some code after the alert is dismissed in the SetTimer program, you should use ContinueWith for that code. The await operator is very useful, but it is not a panacea for every asynchronous programming problem.

The await operator can only be used in a method, and the method must have a return type of void, Task, or Task<T>. That’s it. The get accessors of properties cannot use await, and they shouldn’t be performing asynchronous operations anyway. Constructors cannot use await because constructors are not methods and have no return type. You cannot use await in the body of a lock statement. C# 5 also prohibits using await in the catch or finally blocks of a try-catch-finally statement, but C# 6 lifts that restriction.

These restrictions turn out to be most severe for constructors. A constructor should complete promptly because nothing can really be done with an instance of a class until the constructor finishes. Although a constructor can call an asynchronous method that returns Task, the constructor can’t use await with that call. The constructor finishes while the asynchronous method is still processing. (You’ll see some examples in this chapter and the next.)

A constructor cannot call an asynchronous method that returns a value required by the constructor to complete. If a constructor needs to obtain an object from an asynchronous operation, it can use ContinueWith, in which case the constructor will finish before the object from the asynchronous operation is available. But that’s unavoidable.

Saving program settings asynchronously

As you discovered in Chapter 6, “Button clicks,” you can save program settings in a dictionary named Properties maintained by the Application class. Anything you put in the Properties dictionary is saved when the program goes into a sleep state and is restored when the program resumes or starts up again. Sometimes it’s convenient to save settings in this dictionary as they are changed, and sometimes it’s convenient to wait until the OnSleep method is called in your App class.

There’s also another option: The Application class has a method named SavePropertiesAsync that lets your program take a more proactive role in saving program settings. This allows a program to save program settings whenever it wants to. If the program later crashes or is terminated through the Visual Studio or Xamarin Studio debugger, the settings are saved.

In conformance with recommended practice, the Async suffix on the SavePropertiesAsync method name identifies this as an asynchronous method. It returns quickly with a Task object and saves the settings in a secondary thread of execution.

A program named SaveProgramSettings demonstrates this technique. The XAML file contains four Switch views and four Label views that treat the Switch views as digits of a binary number:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="SaveProgramSettings.SaveProgramSettingsPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:BoolToStringConverter x:Key="boolToString"

 FalseText="Zero"

 TrueText="One" />

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 <Style TargetType="Switch">

 <Setter Property="HorizontalOptions" Value="Center" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Grid VerticalOptions="CenterAndExpand">

 <Label Text="{Binding Source={x:Reference s3},

 Path=IsToggled,

 Converter={StaticResource boolToString}"

 Grid.Column="0" />

 <Label Text="{Binding Source={x:Reference s2},

 Path=IsToggled,

 Converter={StaticResource boolToString}"

 Grid.Column="1" />

 <Label Text="{Binding Source={x:Reference s1},

 Path=IsToggled,

 Converter={StaticResource boolToString}"

 Grid.Column="2" />

 <Label Text="{Binding Source={x:Reference s0},

 Path=IsToggled,

 Converter={StaticResource boolToString}"

 Grid.Column="3" />

 </Grid>

 <Grid x:Name="switchGrid"

 VerticalOptions="CenterAndExpand">

 <Switch x:Name="s3" Grid.Column="0"

 Toggled="OnSwitchToggled" />

 <Switch x:Name="s2" Grid.Column="1"

 Toggled="OnSwitchToggled" />

 <Switch x:Name="s1" Grid.Column="2"

 Toggled="OnSwitchToggled" />

 <Switch x:Name="s0" Grid.Column="3"

 Toggled="OnSwitchToggled" />

 </Grid>

 </StackLayout>

</ContentPage>

The data bindings on the Label elements allow them to track the values of the Switch views:

[image: Image]

The saving and retrieving of program settings is handled in the code-behind file. Notice the handler assigned to the Toggled events of the Switch elements. The sole purpose of that handler is to store the settings in the Properties dictionary—and to save the Properties dictionary itself by using SavePropertiesAsync—whenever one of the Switch elements changes state. The dictionary key is the index of the Switch within the Children collection of the Grid:

Click here to view code image

public partial class SaveProgramSettingsPage : ContentPage

{

 bool isInitialized = false;

 public SaveProgramSettingsPage()

 {

 InitializeComponent();

 // Retrieve settings.

 IDictionary<string, object> properties = Application.Current.Properties;

 for (int index = 0; index < 4; index++)

 {

 Switch switcher = (Switch)(switchGrid.Children[index]);

 string key = index.ToString();

 if (properties.ContainsKey(key))

 switcher.IsToggled = (bool)(properties[key]);

 }

 isInitialized = true;

 }

 async void OnSwitchToggled(object sender, EventArgs args)

 {

 if (!isInitialized)

 return;

 Switch switcher = (Switch)sender;

 string key = switchGrid.Children.IndexOf(switcher).ToString();

 Application.Current.Properties[key] = switcher.IsToggled;

 // Save settings.

 foreach (View view in switchGrid.Children)

 view.IsEnabled = false;

 await Application.Current.SavePropertiesAsync();

 foreach (View view in switchGrid.Children)

 view.IsEnabled = true;

 }

}

One of the purposes of this exercise is to emphasize first, that using await doesn’t completely solve problems involved with asynchronous operations, but second, that using await can help deal with those potential problems.

Here’s the problem: The Toggled event handler is called every time a Switch changes state. It could be that a user toggles a couple of the Switch views in succession very quickly. And it could also be the case that the SavePropertiesAsync method is slow. Perhaps it saves much more information than four Boolean values. Because this method is asynchronous, there is a danger that it could be called again while it’s still working to save the previous collection of settings.

Is SavePropertiesAsync reentrant? Can it safely be called again while it’s still working? We don’t know, and it’s better to assume that it’s not. For that reason, the handler disables all the Switch elements before calling SavePropertiesAsync and then reenables them after it’s finished. Because SavePropertiesAsync returns Task rather than Task<T>, it’s not necessary to use await (or ContinueWith) to get a value from the method, but it is necessary if you want to execute some code after the method has completed.

In reality, SavePropertiesAsync works so fast in this case that it’s hard to tell whether this disabling and enabling of the Switch views is even working! For testing code such as this, a static method of the Task class is very useful. Try inserting this statement right after the SavePropertiesAsync call:

await Task.Delay(3000);

The Switch elements are disabled for another 3,000 milliseconds. Of course, if an asynchronous operation really took this long to complete and the user interface is disabled during this time, you’d want to display an ActivityIndicator or a ProgressBar if possible.

The Task.Delay method might seem reminiscent of the Thread.Sleep method that you possibly used in some .NET code many years ago. But the two static methods are very different. The Thread.Sleep method suspends the current thread, which in this case would be the user-interface thread. That’s precisely what you don’t want. The Task.Delay call, however, simulates a do-nothing secondary thread that runs for a specified period of time. The user-interface thread isn’t blocked. If you omit the await operator, Task.Delay would seemingly have no effect on the program at all. When used with the await operator, the code in the method that calls Task.Delay resumes after the specified period of time.

A platform-independent timer

So far in this book you’ve seen two ViewModels that have required timers: These are the DateTimeViewModel class used in the MvvmClock program in Chapter 18, “MVVM,” and the SchoolViewModel class in the SchoolOfFineArt library, which used the timer to randomly alter the students’ grade-point averages for several programs in Chapter 19, “Collection views.”

These ViewModels used Device.StartTimer, but that’s not a good practice. A ViewModel is supposed to be platform independent and usable in any .NET application, but Device.StartTimer is specific to Xamarin.Forms.

You can alternatively create your own timer by using Task.Delay. Because Task.Delay is part of .NET and can be used within Portable Class Libraries, it is much more platform independent than Device.StartTimer.

The TaskDelayClock demonstrates how to use Task.Delay for a timer. The XAML file consists of a Label in an AbsoluteLayout:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="TaskDelayClock.TaskDelayClockPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <AbsoluteLayout>

 <Label x:Name="label"

 FontSize="Large"

 AbsoluteLayout.LayoutFlags="PositionProportional" />

 </AbsoluteLayout>

</ContentPage>

The code-behind file contains a method called InfiniteLoop. Generally, infinite loops are avoided in programming, but this one runs in the user-interface thread for only a very brief period of time four times per second. For the bulk of the time, a Task.Delay call allows the user-interface thread to continue to interact with the user:

Click here to view code image

public partial class TaskDelayClockPage : ContentPage

{

 Random random = new Random();

 public TaskDelayClockPage()

 {

 InitializeComponent();

 InfiniteLoop();

 }

 async void InfiniteLoop()

 {

 while (true)

 {

 label.Text = DateTime.Now.ToString("T");

 label.FontSize = random.Next(12, 49);

 AbsoluteLayout.SetLayoutBounds(label, new Rectangle(random.NextDouble(),

 random.NextDouble(),

 AbsoluteLayout.AutoSize,

 AbsoluteLayout.AutoSize));

 await Task.Delay(250);

 }

 }

}

Every 250 milliseconds, the code in the while loop runs to give the Label the current time, but also to randomly change its font size and its location within the AbsoluteLayout:

[image: Image]

Yes, it’s a rather annoying clock.

This is not truly an “infinite” loop, of course, but it will keep going until the application terminates. If you prefer, you can use a Boolean field as the while conditional and exit from the loop by just setting the field to false.

Notice how the InfiniteLoop method is simply called from the constructor as if it were a normal method. If this method used Thread.Sleep rather than Task.Delay, it would never return back to the constructor, and the constructor would never finish, and that would not be good at all. This particular InfiniteLoop method returns back to the constructor when execution hits the await operator for the first time, and the constructor can finish execution. The program can do anything else it wants, but the user-interface thread will be required every 250 milliseconds when InfiniteLoop resumes.

Although the Task.Delay call simulates a do-nothing secondary thread, it’s actually implemented using the Timer class from the System.Threading namespace. Curiously enough, that Timer class is not available in a Xamarin.Forms Portable Class Library, and if it were, it would be a little more difficult to use because the timer callback doesn’t run in the user-interface thread.

File input/output

Traditionally, file input/output is one of the most basic programming tasks, but file I/O on mobile devices is a little different from that on the desktop. On the desktop, users and applications generally have access to an entire disk and perhaps additional drives, all of which are organized into directory structures. On mobile devices, several standard folders exist—for pictures or music, for example—but application-specific data is generally restricted to a storage area that is private to each application.

Programmers familiar with .NET know that the System.IO namespace contains the bulk of standard file I/O support. This is where you’ll find the crucial Stream class that provides the basis of reading and writing data organized as a stream of bytes. Building upon this are several Reader and Writer classes and other classes that allow accessing files and directories. Perhaps the handiest of the file classes is File itself, which not only provides a collection of methods to create new files and open existing files but also includes several static methods capable of performing an entire file-read or file-write operation in a single method call.

Particularly if you’re working with text files, these static methods of the File class can be very convenient. For example, the File.WriteAllText method has two arguments of type string—a filename and the file contents. The method creates the file (replacing an existing file with the same name if necessary), writes the contents to the file, and then closes it. The File.ReadAllText method is similar but returns the contents of the file in one big string object. These methods are ideal for writing and reading text files with a minimum of fuss.

At first, file I/O doesn’t seem to require asynchronous operations, and in practice, sometimes you have a choice, and sometimes you can avoid asynchronous operations if you want to.

However, other times you do not have a choice. Some platforms require asynchronous functions for file I/O, and even when they’re not required, it makes sense to avoid doing file I/O in the user-interface thread.

Good news and bad news

The Xamarin.iOS and Xamarin.Android libraries referenced by your Xamarin.Forms applications include a version of .NET that Xamarin has expressly tailored for these two mobile platforms. The methods in the File class in the System.IO namespace map to appropriate file I/O functions in the iOS and Android platforms, and the static Environment.GetFolderPath method, when used with the MyDocuments enumeration member, returns a directory for the application’s local storage. This means that you can use simple methods in the File class—including the static methods that perform entire file writing or reading operations in a single call—in your iOS and Android applications.

To verify the availability of these classes, let’s experiment a little: Go into Visual Studio or Xamarin Studio and load any Xamarin.Forms solution created so far. Bring up one of the code files in the iOS or Android project. In a constructor or method, type the System.IO namespace name and then a period. You’ll get a list of all the available types in the namespace. If you then type File and a period, you’ll get all the static methods in the File class, including WriteAllText and ReadAllText.

In the Windows 8.1 and Windows Phone 8.1 projects, however, you’re working with a version of .NET created by Microsoft specifically for these platforms. If you type System.IO and a period, you won’t even see the File class at all! It doesn’t exist! (However, you’ll discover that it does exist in the UWP project.)

Now go into any code file in a Xamarin.Forms Portable Class Library project. As you’ll recall, a PCL for Xamarin.Forms targets the following platforms:

• .NET Framework 4.5

• Windows 8

• Windows Phone 8.1

• Xamarin.Android

• Xamarin.iOS

• Xamarin.iOS (Classic)

As you might have already anticipated, the System.IO namespace in a PCL is also missing the File class. PCLs are configured to support multiple target platforms. Consequently, the APIs implemented within the PCL are necessarily an intersection of the APIs in these target platforms.

Beginning with Windows 8 and the Windows Runtime API, Microsoft completely revamped file I/O and created a whole new set of classes. Your Windows 8.1, Windows Phone 8.1, and UWP applications instead use classes in the Windows.Storage namespace for file I/O.

If you are targeting only iOS and Android in your Xamarin.Forms applications, you can share file I/O code between the two platforms. You can use the static File methods and everything else in System.IO.

If you also want to target one of the Windows or Windows Phone platforms, you’ll want to make use of DependencyService (discussed in Chapter 9, “Platform-specific API calls”) for different file I/O logic for each of the platforms.

A first shot at cross-platform file I/O

In the general case, you’ll use DependencyService to give your Xamarin.Forms applications access to file I/O functions. As you know from the previous explorations into DependencyService, you can define the functions you want in an interface in the Portable Class Library project, while the code to implement these functions resides in separate classes in the individual platforms.

The file I/O functions developed in this chapter will be put to a good use in the NoteTaker application in Chapter 24, “Page navigation.” For a first shot at file I/O, let’s work with a much simpler solution, named TextFileTryout, that implements several functions to work with text files. Let’s also restrict ourselves to getting this program running on iOS and Android and forget about the Windows platforms for the moment.

The first step in making use of DependencyService is creating an interface in the PCL that defines all the methods you’ll need. Here is such an interface in the TextFileTryout project, named IFileHelper:

Click here to view code image

namespace TextFileTryout

{

 public interface IFileHelper

 {

 bool Exists(string filename);

 void WriteText(string filename, string text);

 string ReadText(string filename);

 IEnumerable<string> GetFiles();

 void Delete(string filename);

 }

}

The interface defines functions to determine whether a file exists, to write and read entire text files in one shot, to enumerate all the files created by the application, and to delete a file. In each platform implementation, these functions are restricted to the private file area associated with the application.

You then implement this interface in each of the platforms. Here’s the FileHelper class in the iOS project, complete with using directives and the required Dependency attribute:

Click here to view code image

using System;

using System.Collections.Generic;

using System.IO;

using Xamarin.Forms;

[assembly: Dependency(typeof(TextFileTryout.iOS.FileHelper))]

namespace TextFileTryout.iOS

{

 class FileHelper : IFileHelper

 {

 public bool Exists(string filename)

 {

 string filepath = GetFilePath(filename);

 return File.Exists(filepath);

 }

 public void WriteText(string filename, string text)

 {

 string filepath = GetFilePath(filename);

 File.WriteAllText(filepath, text);

 }

 public string ReadText(string filename)

 {

 string filepath = GetFilePath(filename);

 return File.ReadAllText(filepath);

 }

 public IEnumerable<string> GetFiles()

 {

 return Directory.GetFiles(GetDocsPath());

 }

 public void Delete(string filename)

 {

 File.Delete(GetFilePath(filename));

 }

 // Private methods.

 string GetFilePath(string filename)

 {

 return Path.Combine(GetDocsPath(), filename);

 }

 string GetDocsPath()

 {

 return Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);

 }

 }

}

It is essential that this class explicitly implements the IFileHelper interface and includes a Dependency attribute with the name of the class. These allow the DependencyService class in Xamarin.Forms to find this implementation of IFileHelper in the platform project. Two private methods at the bottom allow the program to construct a fully qualified filename using the directory of the application’s private storage available from the Environment.GetFolderPath method.

In both Xamarin.iOS and Xamarin.Android, the implementation of Environment.GetFolderPath obtains the platform-specific area of the application’s local storage, although the directory names that the method returns for the two platforms are very different.

As a result, the FileHelper class in the Android project is exactly the same as the one in the iOS project apart from the different namespace names.

The iOS and Android versions of FileHelper make use of the static shortcut methods in the File class and a simple static method of Directory for obtaining all the files stored with the application. However, the implementation of IFileHelper in the Windows 8.1 and Windows Phone 8.1 projects can’t use the shortcut methods in the File class because they are not available, and the Environment.GetFolderPath method isn’t available in the UWP project.

Moreover, applications written for these Windows platforms should instead use file I/O functions implemented in the Windows Runtime API. Because the file I/O functions in the Windows Runtime are asynchronous, they do not fit into the interface established by the IFileHelper interface. For that reason, the version of FileHelper in the three Windows projects is forced to leave the crucial methods unimplemented. Here’s the version in the UWP project:

Click here to view code image

using System;

using System.Collections.Generic;

using Xamarin.Forms;

[assembly: Dependency(typeof(TextFileTryout.UWP.FileHelper))]

namespace TextFileTryout.UWP

{

 class FileHelper : IFileHelper

 {

 public bool Exists(string filename)

 {

 return false;

 }

 public void WriteText(string filename, string text)

 {

 throw new NotImplementedException("Writing files is not implemented");

 }

 public string ReadText(string filename)

 {

 throw new NotImplementedException("Reading files is not implemented");

 }

 public IEnumerable<string> GetFiles()

 {

 return new string[0];

 }

 public void Delete(string filename)

 {

 }

 }

}

The version of FileHelper in the Windows 8.1 and Windows Phone 8.1 projects is identical except for the namespace name.

Normally, an application needs to reference the methods in each platform by using the DependencyService.Get method. However, the TextFileTryout program has made things easy for itself by defining a class named FileHelper in the PCL project that also implements IFileHelper, but incorporates the call to the Get method of DependencyService to call the platform versions of these methods:

Click here to view code image

namespace TextFileTryout

{

 class FileHelper : IFileHelper

 {

 IFileHelper fileHelper = DependencyService.Get<IFileHelper>();

 public bool Exists(string filename)

 {

 return fileHelper.Exists(filename);

 }

 public void WriteText(string filename, string text)

 {

 fileHelper.WriteText(filename, text);

 }

 public string ReadText(string filename)

 {

 return fileHelper.ReadText(filename);

 }

 public IEnumerable<string> GetFiles()

 {

 IEnumerable<string> filepaths = fileHelper.GetFiles();

 List<string> filenames = new List<string>();

 foreach (string filepath in filepaths)

 {

 filenames.Add(Path.GetFileName(filepath));

 }

 return filenames;

 }

 public void Delete(string filename)

 {

 fileHelper.Delete(filename);

 }

 }

}

Notice that the GetFiles method performs a little surgery on the filenames returned from the platform implementation. The filenames that are obtained from the platform implementations of GetFiles are fully qualified, and while it might be interesting to see the folder names that iOS and Android use for application local storage, those filenames are going to be displayed in a ListView where the folder names will just be a distraction, so this GetFiles method strips off the file path.

The TextFileTryoutPage class tests these functions. The XAML file includes an Entry for a filename, an Editor for the file contents, a Button labeled “Save”, and a ListView with all the previously saved filenames:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="TextFileTryout.TextFileTryoutPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Entry x:Name="filenameEntry"

 Grid.Row="0"

 Placeholder="filename" />

 <Editor x:Name="fileEditor"

 Grid.Row="1">

 <Editor.BackgroundColor>

 <OnPlatform x:TypeArguments="Color"

 WinPhone="#D0D0D0" />

 </Editor.BackgroundColor>

 </Editor>

 <Button x:Name="saveButton"

 Text="Save"

 Grid.Row="2"

 HorizontalOptions="Center"

 Clicked="OnSaveButtonClicked" />

 <ListView x:Name="fileListView"

 Grid.Row="3"

 ItemSelected="OnFileListViewItemSelected">

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding}">

 <TextCell.ContextActions>

 <MenuItem Text="Delete"

 IsDestructive="True"

 Clicked="OnDeleteMenuItemClicked" />

 </TextCell.ContextActions>

 </TextCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </Grid>

</ContentPage>

Just to keep things simple, all processing is performed in the code-behind file without a ViewModel. The code-behind file implements all the event handlers from the XAML file. The Save button checks whether the file exists first and displays an alert box if it does. Selecting one of the files in the ListView loads it in. In addition, the ListView implements a context menu to delete a file. All the file I/O functions are methods of the FileHelper class defined in the PCL and instantiated as a field at the top of the class:

Click here to view code image

public partial class TextFileTryoutPage : ContentPage

{

 FileHelper fileHelper = new FileHelper();

 public TextFileTryoutPage()

 {

 InitializeComponent();

 RefreshListView();

 }

 async void OnSaveButtonClicked(object sender, EventArgs args)

 {

 string filename = filenameEntry.Text;

 if (fileHelper.Exists(filename))

 {

 bool okResponse = await DisplayAlert("TextFileTryout",

 "File " + filename +

 " already exists. Replace it?",

 "Yes", "No");

 if (!okResponse)

 return;

 }

 string errorMessage = null;

 try

 {

 fileHelper.WriteText(filenameEntry.Text, fileEditor.Text);

 }

 catch (Exception exc)

 {

 errorMessage = exc.Message;

 }

 if (errorMessage == null)

 {

 filenameEntry.Text = "";

 fileEditor.Text = "";

 RefreshListView();

 }

 else

 {

 await DisplayAlert("TextFileTryout", errorMessage, "OK");

 }

 }

 async void OnFileListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem == null)

 return;

 string filename = (string)args.SelectedItem;

 string errorMessage = null;

 try

 {

 fileEditor.Text = fileHelper.ReadText((string)args.SelectedItem);

 filenameEntry.Text = filename;

 }

 catch (Exception exc)

 {

 errorMessage = exc.Message;

 }

 if (errorMessage != null)

 {

 await DisplayAlert("TextFileTryout", errorMessage, "OK");

 }

 }

 void OnDeleteMenuItemClicked(object sender, EventArgs args)

 {

 string filename = (string)((MenuItem)sender).BindingContext;

 fileHelper.Delete(filename);

 RefreshListView();

 }

 void RefreshListView()

 {

 fileListView.ItemsSource = fileHelper.GetFiles();

 fileListView.SelectedItem = null;

 }

}

The code-behind file calls DisplayAlert with the await operator on three occasions: The Save button uses DisplayAlert if the filename you specify already exists. This confirms that your real intention is to replace an existing file. The other two uses are for notification purposes for errors that occur when files are saved or loaded. The file save and file load operations are in try and catch blocks to catch any errors that might occur. The file save operation will fail for an illegal filename, for example. It is less likely that an error will be encountered on reading a file, but the program checks anyway.

The alerts that notify the user of an error could conceivably be displayed without the await operator, but they use await anyway to demonstrate a basic principle involved in exception handling: Although C# 6 allows using await in a catch block, C# 5 does not. To get around this restriction, the catch block simply saves the error message in a variable called errorMessage, and then the code following the catch block uses DisplayAlert to display that text if it exists. This structure allows these event handlers to conclude with different processing depending on successful completion or an error.

Notice also that the constructor concludes with a call to RefreshListView to display all the existing files in the ListView, and the code-behind file also calls that method when a new file has been saved or a file has been deleted.

However, this program does not work on the Windows platforms. Let’s fix that.

Accommodating Windows Runtime file I/O

The Windows Runtime API defined a whole new array of file I/O classes. Part of the impetus for this was the recognition of an industry-wide transition away from the relatively unconstrained file access of desktop applications toward a more sandboxed environment.

Much of the new file I/O API can be found in the Windows Runtime namespaces Windows.Storage and Windows.Storage.Streams. To store data that is private to an application, a Windows Runtime program first gets a special StorageFolder object:

Click here to view code image

StorageFolder localFolder = ApplicationData.Current.LocalFolder;

ApplicationData defines a static property named Current that returns the ApplicationData object for the application. LocalFolder is an instance property of ApplicationData.

StorageFolder defines methods named CreateFileAsync to create a new file and GetFileAsync to open an existing file. These two methods obtain objects of type StorageFile. With that object, a program can open the file for writing or reading with OpenAsync or OpenReadAsync. These methods obtain an IRandomAccessStream object. From this, DataWriter or DataReader objects are created to perform write or read operations.

This sounds a bit lengthy, and it is. Rather simpler approaches involve static methods of the FileIO class, which are similar to the static methods of the .NET File class. For text files, for example, FileIO.ReadTextAsync and FileIO.WriteTextAsync open a file, perform the read or write access, and close the file in one shot. The first argument to these methods is a StorageFile object.

At any rate, by this time you’ve undoubtedly noticed the frequent Async suffixes on these method names. Internally, all these methods spin off secondary threads of execution for doing the actual work and return quickly to the caller. The work takes place in the background, and the caller is notified of completion (or error) through callback functions.

Why is this?

When Windows 8 was first being created, the Microsoft developers took a good, hard look at timing and decided that any function call that requires more than 50 milliseconds to execute should be made asynchronous so that it would not interfere with the responsiveness of the user interface. APIs that require more than 50 milliseconds obviously include the file I/O functions, which often need to access potentially slow pieces of hardware like disk drives or a network. Any Windows Runtime file I/O method that could possibly cause a physical storage device to be accessed was made asynchronous and given an Async suffix.

However, these asynchronous methods do not return Task objects. In the Windows Runtime, methods that return data have return types of IAsyncOperation<TResult>, while methods that do not return information have return types of IAsyncAction. These interfaces can all be found in the System.Foundations namespace.

Although these interfaces are not the same as Task and Task<T>, they are similar, and you can use await with them. You can also convert between the two asynchronous protocols. The System.Runtime.WindowsRuntime assembly includes a System namespace with a WindowsRuntimeSystemExtensions class that has extension methods named AsAsyncAction, AsAsyncOpertion, and AsTask that perform these conversions.

Let’s rework the TextFileTryout program to accommodate asynchronous file I/O. The revised program is called TextFileAsync and is developed in the next section. Because asynchronous file I/O functions in the Windows projects will be accessed, all the file functions in the IFileHelper interface are defined to return Task or Task<T> objects.

Platform-specific libraries

Every programmer knows that potentially reusable code should be put in a library, and this is also the case for code used with dependency services. The asynchronous file I/O functions developed here will be reused in the NoteTaker program in Chapter 24, and you might want to use these functions in your own applications or perhaps develop your own functions.

However, these file I/O classes can’t be put in just one library. Each of the various platform implementations of FileHelper must be in a library for that specific platform. This requires separate libraries for each platform.

The Libraries directory of the downloadable code for this book contains a solution named Xamarin.FormsBook.Platform. The Platform part of the name was inspired by the various Xamarin.Forms.Platform libraries. Each of the various platforms is a separate library in this solution.

The Xamarin.FormsBook.Platform solution contains no fewer than seven library projects, each of which was created somewhat differently:

• Xamarin.FormsBook.Platform is a normal Xamarin.Forms Portable Class Library with a profile of 111, which means that it can be accessed by all the platforms. You can create such a library in Visual Studio by selecting Cross Platform at the left of the Add New Project dialog, and Class Library (Xamarin.Forms) in the central area. In the Xamarin Studio New Project dialog, select Multiplatform and Library at the left, and Xamarin.Forms and Class Library in the central area.

• Xamarin.FormsBook.Platform.iOS was created in Visual Studio by selecting iOS in the left column of the Add New Project dialog, and Class Library (iOS) in the central section. In Xamarin Studio select iOS and Library in the New Project dialog, and Class Library in the central area.

• Xamarin.FormsBook.Platform.Android was created in Visual Studio by selecting Android at the left of the Add New Project dialog and Class Library (Android) in the central section. In Xamarin.Studio, select Android and Library at the left and Class Library in the central section.

• Xamarin.FormsBook.Platform.UWP is a library for Windows 10 and Windows 10 Mobile. It was created in Visual Studio by selecting Windows and Universal at the left, and then Class Library (Universal Windows).

• Xamarin.FormsBook.Platform.Windows is a Portable Class Library just for Windows 8.1. It was created in Visual Studio by selecting Windows, Windows 8, and Windows at the left, and then Class Library (Windows 8.1).

• Xamarin.FormsBook.Platform.WinPhone is a Portable Class Library just for Windows Phone 8.1. It was created in Visual Studio by selecting Windows, Windows 8, and Windows Phone at the left, and then Class Library (Windows Phone).

• You’ll often find that the three Windows platforms can share code because they all use variants of the Windows Runtime API. For this reason, a seventh project was created named Xamarin.FormsBook.Platform.WinRT. This is a shared project, and it was created in Visual Studio by searching for “Shared” in the Add New Project dialog, and selecting the Shared Project for C#.

If you’re creating such a solution yourself, you’ll also need to use the Manage Packages for Solution dialog to install the appropriate Xamarin.Forms NuGet packages for all these libraries.

You’ll also need to establish references between the various projects in the solution. All the individual platform projects (with the exception of Xamarin.FormsBook.Platform.WinRT) need a reference to Xamarin.FormsBook.Platform. You set these references in the Reference Manager dialog by selecting Solution at the left. In addition, the three Windows projects (UWP, Windows, and WinPhone) all need references to the shared Xamarin.FormsBook.Platform.WinRT project. You set these references in the Reference Manager dialog by selecting Shared Projects at the left.

All the projects have a static Toolkit.Init method. Here’s the one in the Xamarin.FormsBook.Platform library:

Click here to view code image

namespace Xamarin.FormsBook.Platform

{

 public static class Toolkit

 {

 public static void Init()

 {

 }

 }

}

Most of the others are similar except that the version in the Android library actually saves some information that might be useful to classes implemented in this library:

Click here to view code image

namespace Xamarin.FormsBook.Platform.Android

{

 public static class Toolkit

 {

 public static void Init(Activity activity, Bundle bundle)

 {

 Activity = activity;

 }

 public static Activity Activity { private set; get; }

 }

}

The Toolkit.Init method in each of the Windows platforms calls a do-nothing Toolkit.Init method in the shared Xamarin.FormsBook.Platform.WinRT project:

Click here to view code image

namespace Xamarin.FormsBook.Platform.UWP

{

 public static class Toolkit

 {

 public static void Init()

 {

 Xamarin.FormsBook.Platform.WinRT.Toolkit.Init();

 }

 }

}

The purpose of these methods is to ensure that the libraries are bound to the application even if the application does not directly access anything in the library. It is very often the case when you’re working with dependency services and custom renderers that the application does not directly call any library function. However, if you later discover that you really do need to perform some library initialization, the method already exists for you to do so.

You’ll discover that the version of the Xamarin.FormsBook.Platform libraries included with the downloadable code for this book already includes the PlatformSoundPlayer classes from Chapter 9, “Platform-specific API calls.” You’ll also see some classes beginning with the words Ellipse and StepSlider. These are discussed in Chapter 27, “Custom renderers.”

Let’s focus on the new asynchronous FileHelper classes. The Xamarin.FormsBook.Platform library contains the new IFileHelper interface:

Click here to view code image

using System.Collections.Generic;

using System.Threading.Tasks;

namespace Xamarin.FormsBook.Platform

{

 public interface IFileHelper

 {

 Task<bool> ExistsAsync(string filename);

 Task WriteTextAsync(string filename, string text);

 Task<string> ReadTextAsync(string filename);

 Task<IEnumerable<string>> GetFilesAsync();

 Task DeleteAsync(string filename);

 }

}

By convention, methods that return Task objects have a suffix of Async.

All three Windows platforms can share the same FileHelper class, so this shared class is implemented in the shared Xamarin.FormsBook.Platform.WinRT project. Each of the five methods in the FileHelper class begins with a call to obtain the StorageFolder associated with the application’s local storage area. Each of them makes asynchronous calls using await and is flagged with the async keyword:

Click here to view code image

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Windows.Storage;

using Xamarin.Forms;

[assembly: Dependency(typeof(Xamarin.FormsBook.Platform.WinRT.FileHelper))]

namespace Xamarin.FormsBook.Platform.WinRT

{

 class FileHelper : IFileHelper

 {

 public async Task<bool> ExistsAsync(string filename)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 try

 {

 await localFolder.GetFileAsync(filename);

 }

 catch

 {

 return false;

 }

 return true;

 }

 public async Task WriteTextAsync(string filename, string text)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.CreateFileAsync(filename,

 CreationCollisionOption.ReplaceExisting);

 await FileIO.WriteTextAsync(storageFile, text);

 }

 public async Task<string> ReadTextAsync(string filename)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.GetFileAsync(filename);

 return await FileIO.ReadTextAsync(storageFile);

 }

 public async Task<IEnumerable<string>> GetFilesAsync()

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IEnumerable<string> filenames =

 from storageFile in await localFolder.GetFilesAsync()

 select storageFile.Name;

 return filenames;

 }

 public async Task DeleteAsync(string filename)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 StorageFile storageFile = await localFolder.GetFileAsync(filename);

 await storageFile.DeleteAsync();

 }

 }

}

Although each of the methods is defined as returning a Task or a Task<T> object, the bodies of the methods don’t have any reference to Task or Task<T>. Instead, the methods that return a Task object simply do some work and then end the method with an implicit return statement. The ExistsAsync method is defined as returning a Task<bool> but returns either true or false. (There is no Exists method in the StorageFolder class, so a workaround with try and catch is necessary.)

Similarly, the ReadTextAsync method is defined as returning a Task<string>, but the body returns a string, which is obtained from applying the await operator to the IAsyncOperation<string> return value of File.ReadTextAsync. The C# compiler performs the necessary conversions.

When a program calls this ReadTextAsync method, the method executes until the first await operator, and then it returns a Task<string> object to the caller. The caller can use either ContinueWith or await to obtain the string when the FileIO.ReadTextAsync method has completed.

For iOS and Android, however, we now have a problem. All the methods in IFileHelper are now defined as asynchronous methods that return Task or Task<T> objects, but we’ve already seen that the methods in the System.IO namespace are not asynchronous. What do we do?

The FileHelper class in the iOS namespace uses two strategies. In some cases, the System.IO classes do include asynchronous methods. This is the case for the WriteAsync method of StreamWriter and the ReadAsync method of StreamReader. For the other methods, however, a static FromResult method of Task<T> is used to convert an object or value to a Task<T> object for the method return value. This does not actually convert the method to an asynchronous method, but simply allows the method to have the signature of an asynchronous method:

Click here to view code image

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Threading.Tasks;

using Xamarin.Forms;

[assembly: Dependency(typeof(Xamarin.FormsBook.Platform.iOS.FileHelper))]

namespace Xamarin.FormsBook.Platform.iOS

{

 class FileHelper : IFileHelper

 {

 public Task<bool> ExistsAsync(string filename)

 {

 string filepath = GetFilePath(filename);

 bool exists = File.Exists(filepath);

 return Task<bool>.FromResult(exists);

 }

 public async Task WriteTextAsync(string filename, string text)

 {

 string filepath = GetFilePath(filename);

 using (StreamWriter writer = File.CreateText(filepath))

 {

 await writer.WriteAsync(text);

 }

 }

 public async Task<string> ReadTextAsync(string filename)

 {

 string filepath = GetFilePath(filename);

 using (StreamReader reader = File.OpenText(filepath))

 {

 return await reader.ReadToEndAsync();

 }

 }

 public Task<IEnumerable<string>> GetFilesAsync()

 {

 // Sort the filenames.

 IEnumerable<string> filenames =

 from filepath in Directory.EnumerateFiles(GetDocsFolder())

 select Path.GetFileName(filepath);

 return Task<IEnumerable<string>>.FromResult(filenames);

 }

 public Task DeleteAsync(string filename)

 {

 File.Delete(GetFilePath(filename));

 return Task.FromResult(true);

 }

 string GetDocsFolder()

 {

 return Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);

 }

 string GetFilePath(string filename)

 {

 return Path.Combine(GetDocsFolder(), filename);

 }

 }

}

The Android FileHelper class is the same as the iOS class but with a different namespace.

Notice that the only error checking within these platform implementations is for the ExistsAsync method in the Windows Runtime platforms, which uses the exception to determine whether the file exists or not. None of the other methods—and particularly the WriteTextAsync and ReadTextAsync methods—is performing any error checking. One of the nice features of using await is that any exception can be caught at a later time when you’re actually calling these methods.

You might also have noticed that the individual GetFilesAsync methods are now removing the path from the fully qualified filename, so that job doesn’t need to be performed by the FileHelper class in the Xamarin.FormsBook.Platform project:

Click here to view code image

namespace Xamarin.FormsBook.Platform

{

 class FileHelper

 {

 IFileHelper fileHelper = DependencyService.Get<IFileHelper>();

 public Task<bool> ExistsAsync(string filename)

 {

 return fileHelper.ExistsAsync(filename);

 }

 public Task WriteTextAsync(string filename, string text)

 {

 return fileHelper.WriteTextAsync(filename, text);

 }

 public Task<string> ReadTextAsync(string filename)

 {

 return fileHelper.ReadTextAsync(filename);

 }

 public Task<IEnumerable<string>> GetFilesAsync()

 {

 return fileHelper.GetFilesAsync();

 }

 public Task DeleteAsync(string filename)

 {

 return fileHelper.DeleteAsync(filename);

 }

 }

}

Now that we have a library, we need to access this library from an application. The TextFileAsync solution was created normally. Then, all seven projects in the Xamarin.FormsBook.Platform solution were added to this solution. These projects must be added separately by using the Add and Existing Project menu item for the solution. There is no Add All Projects from Solution menu item, but if you use these libraries in your own projects, you’ll wish there were!

At this point, the TextFileAsync solution contains 13 projects: Five application projects, a shared PCL with the application code, and seven library projects.

References must be established between these projects by using the Reference Manager for the following relationships:

• TextFileAsync has a reference to Xamarin.FormsBook.Platform.

• TextFileAsync.iOS has a reference to Xamarin.FormsBook.Platform.iOS.

• TextFileAsync.Droid has a reference to Xamarin.FormsBook.Platform.Android.

• TextFileAsync.UWP has a reference to Xamarin.FormsBook.Platform.UWP.

• TextFileAsync.Windows has a reference to Xamarin.FormsBook.Platform.Windows.

• TextFileAsync.WinPhone has a reference to Xamarin.FormsBook.Platform.WinPhone.

Of course, all the application projects have normal references to the TextFileAsync PCL, and, as you’ll recall, the Xamarin.FormsBook.Platform.UWP, Windows, and WinPhone projects all have references to the shared Xamarin.FormsBook.Platform.WinRT project.

Also, all the TextFileAsync projects should make calls to the various Toolkit.Init methods in the libraries. In the TextFileAsync project itself, make the call in the constructor of the App class:

Click here to view code image

namespace TextFileAsync

{

 public class App : Application

 {

 public App()

 {

 Xamarin.FormsBook.Platform.Toolkit.Init();

 ...

 }

 ...

 }

}

In the iOS project, make the call after the normal Forms.Init call in the AppDelegate class:

Click here to view code image

namespace TextFileAsync.iOS

{

 ...

 public partial class AppDelegate :

 global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate

 {

 ...

 public override bool FinishedLaunching(UIApplication app, NSDictionary options)

 {

 global::Xamarin.Forms.Forms.Init();

 Xamarin.FormsBook.Platform.iOS.Toolkit.Init();

 LoadApplication(new App());

 ...

 }

 }

}

In the Android project, call Toolkit.Init with the MainActivity and Bundle objects in the MainActivity class after the normal Forms.Init call:

Click here to view code image

namespace TextFileAsync.Droid

{

 ...

 public class MainActivity : global::Xamarin.Forms.Platform.Android.FormsApplicationActivity

 {

 protected override void OnCreate(Bundle bundle)

 {

 ...

 global::Xamarin.Forms.Forms.Init(this, bundle);

 Xamarin.FormsBook.Platform.Android.Toolkit.Init(this, bundle);

 LoadApplication(new App());

 }

 }

}

In the three Windows platforms, call Toolkit.Init right after Forms.Init in the App.xaml.cs file:

Click here to view code image

namespace TextFileAsync.UWP

{

 ...

 sealed partial class App : Application

 {

 ...

 Xamarin.Forms.Forms.Init(e);

 Xamarin.FormsBook.Platform.UWP.Toolkit.Init();

 ...

 }

}

With that overhead out of the way, the actual writing of the application can begin. The XAML file for TextFileAsyncPage is the same as TextFileTryoutPage, but the code-behind file must be fashioned to work with the asynchronous file I/O methods. Any exceptions that might occur in the file I/O functions must be caught here, which means that any method that can throw an exception must be in a try block along with the await operator:

Click here to view code image

public partial class TextFileAsyncPage : ContentPage

{

 FileHelper fileHelper = new FileHelper();

 public TextFileAsyncPage()

 {

 InitializeComponent();

 RefreshListView();

 }

 async void OnSaveButtonClicked(object sender, EventArgs args)

 {

 saveButton.IsEnabled = false;

 string filename = filenameEntry.Text;

 if (await fileHelper.ExistsAsync(filename))

 {

 bool okResponse = await DisplayAlert("TextFileTryout",

 "File " + filename +

 " already exists. Replace it?",

 "Yes", "No");

 if (!okResponse)

 return;

 }

 string errorMessage = null;

 try

 {

 await fileHelper.WriteTextAsync(filenameEntry.Text, fileEditor.Text);

 }

 catch (Exception exc)

 {

 errorMessage = exc.Message;

 }

 if (errorMessage == null)

 {

 filenameEntry.Text = "";

 fileEditor.Text = "";

 RefreshListView();

 }

 else

 {

 await DisplayAlert("TextFileTryout", errorMessage, "OK");

 }

 saveButton.IsEnabled = true;

 }

 async void OnFileListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem == null)

 return;

 string filename = (string)args.SelectedItem;

 string errorMessage = null;

 try

 {

 fileEditor.Text = await fileHelper.ReadTextAsync((string)args.SelectedItem);

 filenameEntry.Text = filename;

 }

 catch (Exception exc)

 {

 errorMessage = exc.Message;

 }

 if (errorMessage != null)

 {

 await DisplayAlert("TextFileTryout", errorMessage, "OK");

 }

 }

 async void OnDeleteMenuItemClicked(object sender, EventArgs args)

 {

 string filename = (string)((MenuItem)sender).BindingContext;

 await fileHelper.DeleteAsync(filename);

 RefreshListView();

 }

 async void RefreshListView()

 {

 fileListView.ItemsSource = await fileHelper.GetFilesAsync();

 fileListView.SelectedItem = null;

 }

}

The result is that this code is structured very much like the previous code that used the synchronous file I/O functions. One difference, however, is that the OnSaveButtonClicked method disables the Save button when beginning processing and then reenables it when everything is finished. This is simply to prevent multiple presses of the Save button that might cause multiple overlapping calls to FileIO.WriteFileAsync.

Here’s the program running on the three platforms:

[image: Image]

Keeping it in the background

Some of the FileHelper methods in the Windows Runtime implementation have multiple await operators to deal with a series of asynchronous calls. This makes sense: Each step in the process must complete before the next step executes. However, one of the characteristics of await is that it resumes execution on the same thread that it was invoked on rather than the background thread. This is often convenient when you are obtaining a result to update the user interface. However, within the methods in the FileHelper implementations, this isn’t necessary. Everything within the body of the WriteTextAsync and ReadTextAsync methods can occur in a secondary thread.

The Task class has a method named ConfigureAwait that can control which thread await resumes on. If you pass a false argument to ConfigureAwait, the completed task will resume on the same worker thread used to implement the function. If you’d like to use this in the FileHelper code, you’ll need to convert the IAsyncAction and IAsyncOperation objects returned by the Windows Runtime methods to tasks by using AsTask and then call ConfigureAwait on that Task object.

For example, here’s how the WriteTextAsync and ReadTextAsync methods are implemented in the existing Xamarin.FormsBook.Platform.WinRT project:

Click here to view code image

namespace Xamarin.FormsBook.Platform.WinRT

{

 class FileHelper : IFileHelper

 {

 ...

 public async Task WriteTextAsync(string filename, string text)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.CreateFileAsync(filename,

 CreationCollisionOption.ReplaceExisting);

 await FileIO.WriteTextAsync(storageFile, text);

 }

 public async Task<string> ReadTextAsync(string filename)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.GetFileAsync(filename);

 return await FileIO.ReadTextAsync(storageFile);

 }

 ...

 }

}

These methods have two await operators each. To make these methods slightly more efficient, you can use AsTask and ConfigureAwait to change them to these:

Click here to view code image

namespace Xamarin.FormsBook.Platform.WinRT

{

 class FileHelper : IFileHelper

 {

 ...

 public async Task WriteTextAsync(string filename, string text)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.CreateFileAsync(filename,

 CreationCollisionOption.ReplaceExisting).

 AsTask().ConfigureAwait(false);

 await FileIO.WriteTextAsync(storageFile, text).AsTask().ConfigureAwait(false);

 }

 public async Task<string> ReadTextAsync(string filename)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.GetFileAsync(filename).

 AsTask().ConfigureAwait(false);

 return await FileIO.ReadTextAsync(storageFile).AsTask().ConfigureAwait(false);

 }

 ...

 }

}

Now the methods following the first await operator run in worker threads, and await doesn’t need to switch back to the user-interface thread just to continue with the method. The switch back to the user-interface thread occurs when await is used to call these methods from TextFileAsyncPage.

You probably want to restrict this technique to underlying library functions, or for code in your page classes that contain a series of await operators that don’t access user-interface objects. The technique doesn’t make as much sense for functions that contain just one await operator that are called from the user-interface thread, because the switch back to the user-interface thread has to occur at some time, and if it doesn’t occur in the library function, it will occur in the code that calls the library function.

Don’t block the UI thread!

Sometimes, there’s a temptation to avoid the hassle of ContinueWith or even the lesser hassle of await simply by blocking the user-interface thread until a background process completes. Perhaps you know that the background process will complete very quickly and there’s nothing much the user can do anyway until it finishes. What’s the harm?

Don’t do it! Not only is it impolite to the user, but it can introduce subtle bugs into your application.

Let’s take an example: In the code-behind file of TextFileAsyncPage, the OnFileListViewItemSelected handler has the following code to read the file and set the contents in the Editor:

Click here to view code image

fileEditor.Text = await fileHelper.ReadTextAsync((string)args.SelectedItem);

You might have discovered, perhaps accidentally or perhaps by experiment, that in a statement like this, you can leave out the await operator and just access the Result property of the Task<string> object returned from ReadTextAsync. That Result property is the content of the file being read:

Click here to view code image

fileEditor.Text = fileHelper.ReadTextAsync((string)args.SelectedItem).Result;

The code seems fine, and it might even work. But the way it works is not good. This statement will block the user-interface thread until the ReadTextAsync method has completed and Result is available. The user interface will be unresponsive during this time.

Moreover, if you haven’t used ConfigureAwait(false) in the implementation of ReadTextAsync in FileHelper, then that ReadTextAsync method will require switching to the user-interface thread for resuming execution after each await operator. But when it tries to switch back to the user-interface thread, the UI thread will not be available because it’s being blocked in the ReadTextAsync call in TextFileAsyncPage, and a classic deadlock results. The program will simply stop executing entirely.

The rule is simple: Use ContinueWith or await with every asynchronous method.

Your own awaitable methods

Aside from accessing files over the web or from the local file system, applications sometimes have the need to perform lengthy operations of their own. These operations should be run in the background on secondary threads of execution. While there are now several ways to do this, it’s best (and certainly easiest) to use the same Task-based Asynchronous Pattern that is used within Xamarin.Forms and other .NET graphical environments and define your own asynchronous methods just like the others in these environments.

The easiest way to run some code on a worker thread is with the Task.Run and Task.Run<T> static methods. The argument is an Action object, generally expressed as a lambda function, and the return value is a Task. The body of the lambda function is run on a worker thread from the thread pool, which (if you want to use the thread pool yourself) is accessible via the ThreadPool class. You can use the await operator directly with Task.Run:

Click here to view code image

await Task.Run(() =>

{

 // The code that runs in a background thread.

});

Although you can use Task.Run by itself with other code, generally it’s used to construct asynchronous methods. By convention, an asynchronous method has a suffix of Async. The method returns either a Task object (if the method does not return any value or object) or a Task<T> object (if it does return something).

Here’s how you can create an asynchronous method that returns Task:

Click here to view code image

Task MyMethodAsync(...)

{

 // Perhaps some initialization code.

 return Task.Run(() =>

 {

 // The code that runs in a background thread.

 });

}

The Task.Run method returns a Task object that your method also returns. The Action argument to Task.Run can use any arguments passed to the MyMethodAsync, but you shouldn’t define any arguments using ref or out. Also, watch out for any reference types you pass to MyMethodAsync. These can be accessed both from inside the asynchronous code and from outside the method, so you might need to implement synchronization so that the object isn’t accessed simultaneously from two threads.

The code within the Task.Run call can itself call asynchronous methods using await, but in that case you’ll need to flag the lambda function passed to Task.Run with async:

Click here to view code image

return Task.Run(async () =>

{

 // The code that runs in a background thread.

});

If the asynchronous method returns something, you’ll define the method using the generic form of Task and the generic form of Task.Run:

Click here to view code image

Task<SomeType> MyMethodAsync(...)

{

 // Perhaps some initialization code.

 return Task.Run<SomeType>(() =>

 {

 // The code that runs in a background thread.

 return anInstanceOfSomeType;

 });

}

The value or object returned from the lambda function becomes the Result property of the Task<T> object returned from Task.Run and from your method.

If you need to have more control over the background process, you can use TaskFactory.StartNew rather than Task.Run to define the asynchronous method.

There are some variations on the basic Task.Run patterns, as you’ll see in the following several programs. These programs compute and display the famous Mandelbrot set.

The basic Mandelbrot set

The Polish-born French and American mathematician Benoit Mandelbrot (1924-2010) is best known for his work connected with complex self-similar surfaces that he called fractals. Among his work involving fractals was an investigation into a recursive formula that generates a fractal image that is now known as the Mandelbrot set.

The Mandelbrot set is graphed on the complex plane, where each coordinate is a complex number of the form:

c = x +yi

The real part x is graphed along the horizontal axis with negative values to the left and positive values to the right. The imaginary part y is graphed along the vertical axis, increasing from negative values on the bottom to positive values going up.

To calculate the Mandelbrot set, begin by taking any point on this plane and call it c, and initialize z to zero:

c = x+yi

z = 0

Now perform the following recursive operation:

z → z2 + c

The result will either diverge to infinity or it will not. If z does not diverge to infinity, then c is said to be a member of the Mandelbrot set. Otherwise, it is not a member of the Mandelbrot set.

You need to perform this calculation for every point of interest in the complex plane. Generally, the results are drawn on a bitmap, which means that each pixel in the bitmap corresponds to a particular complex coordinate. In its simplest rendition, points that belong to the Mandelbrot set are colored black and other pixels are colored white.

For some complex numbers, it’s easy to determine whether the point belongs to the Mandelbrot set. For example, the complex number (0 + 0i) obviously belongs to the Mandelbrot set, and you can quickly establish that (1 + 0i) does not. But in general, you need to perform the recursive calculation. And because this is a fractal, you can’t take shortcuts. For example, if you know that two values c1 and c2 belong to the Mandelbrot set, you can’t assume that all points between those two points belong to the Mandelbrot set as well. It is a fundamental characteristic of a fractal to defy interpolation.

How many iterations of the recursive calculation do you need to perform before you can assure yourself that the particular complex number does or does not belong to the Mandelbrot set? It turns out that if the absolute value of z in the recursive calculation ever becomes 2 or greater, then the values will eventually diverge to infinity and the point does not belong to the Mandelbrot set. (The absolute value of a complex number is also referred to as the magnitude of the number; it can be calculated as the square root of the sum of the squares of the x and y values, which is the Pythagorean theorem.)

However, if after a certain number of iterations the recursive calculation hasn’t yet reached a magnitude of 2, there’s no guarantee that it will not diverge with repeated iterations. For this reason, Mandelbrot sets are notoriously computation-intensive, and ideal for secondary threads of execution.

The MandelbrotSet program demonstrates how this is done. To render the image, the program makes use of the BmpMaker class (introduced in Chapter 13, “Bitmaps”) from the Xamarin.FormsBook.Toolkit library. That library also contains the following structure to represent a complex number:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 // Mostly a subset of System.Numerics.Complex.

 public struct Complex : IEquatable<Complex>, IFormattable

 {

 bool gotMagnitude, gotMagnitudeSquared;

 double magnitude, magnitudeSquared;

 public Complex(double real, double imaginary) : this()

 {

 Real = real;

 Imaginary = imaginary;

 }

 public double Real { private set; get; }

 public double Imaginary { private set; get; }

 // MagnitudeSquare and Magnitude calculated on demand and saved.

 public double MagnitudeSquared

 {

 get

 {

 if (gotMagnitudeSquared)

 {

 return magnitudeSquared;

 }

 magnitudeSquared = Real * Real + Imaginary * Imaginary;

 gotMagnitudeSquared = true;

 return magnitudeSquared;

 }

 }

 public double Magnitude

 {

 get

 {

 if (gotMagnitude)

 {

 return magnitude;

 }

 magnitude = Math.Sqrt(magnitudeSquared);

 gotMagnitude = true;

 return magnitude;

 }

 }

 public static Complex operator +(Complex left, Complex right)

 {

 return new Complex(left.Real + right.Real, left.Imaginary + right.Imaginary);

 }

 public static Complex operator -(Complex left, Complex right)

 {

 return new Complex(left.Real - right.Real, left.Imaginary - right.Imaginary);

 }

 public static Complex operator *(Complex left, Complex right)

 {

 return new Complex(left.Real * right.Real - left.Imaginary * right.Imaginary,

 left.Real * right.Imaginary + left.Imaginary * right.Real);

 }

 public static bool operator ==(Complex left, Complex right)

 {

 return left.Real == right.Real && left.Imaginary == right.Imaginary;

 }

 public static bool operator !=(Complex left, Complex right)

 {

 return !(left == right);

 }

 public static implicit operator Complex(double value)

 {

 return new Complex(value, 0);

 }

 public static implicit operator Complex(int value)

 {

 return new Complex(value, 0);

 }

 public override int GetHashCode()

 {

 return Real.GetHashCode() + Imaginary.GetHashCode();

 }

 public override bool Equals(Object value)

 {

 return Real.Equals(((Complex)value).Real) &&

 Imaginary.Equals(((Complex)value).Imaginary);

 }

 public bool Equals(Complex value)

 {

 return Real.Equals(value) && Imaginary.Equals(value);

 }

 public override string ToString()

 {

 return String.Format("{0} {1} {2}i", Real,

 RealImaginaryConnector(Imaginary),

 Math.Abs(Imaginary));

 }

 public string ToString(string format)

 {

 return String.Format("{0} {1} {2}i", Real.ToString(format),

 RealImaginaryConnector(Imaginary),

 Math.Abs(Imaginary).ToString(format));

 }

 public string ToString(IFormatProvider formatProvider)

 {

 return String.Format("{0} {1} {2}i", Real.ToString(formatProvider),

 RealImaginaryConnector(Imaginary),

 Math.Abs(Imaginary).ToString(formatProvider));

 }

 public string ToString(string format, IFormatProvider formatProvider)

 {

 return String.Format("{0} {1} {2}i", Real.ToString(format, formatProvider),

 RealImaginaryConnector(Imaginary),

 Math.Abs(Imaginary).ToString(format, formatProvider));

 }

 string RealImaginaryConnector(double value)

 {

 return Math.Sign(value) > 0 ? "+" : "\u2013";

 }

 }

}

As the comment at the top indicates, this is mostly a subset of the Complex structure in the .NET System.Numerics namespace, which unfortunately is not available to a Portable Class Library in a Xamarin.Forms project. The ToString methods in this Complex structure work a little differently, however, and the original Complex structure does not have a MagnitudeSquared property. A MagnitudeSquared property is handy for a Mandelbrot calculation: Checking if the Magnitude property is less than 2 is the same as checking if the MagnitudeSquared property is less than 4, but without the square root calculation.

The MandelbrotSet program has the following XAML file:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MandelbrotSet.MandelbrotSetPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Grid VerticalOptions="FillAndExpand">

 <ContentView Padding="10, 0"

 VerticalOptions="Center">

 <ActivityIndicator x:Name="activityIndicator" />

 </ContentView>

 <Image x:Name="image" />

 </Grid>

 <Button x:Name="calculateButton"

 Text="Calculate"

 FontSize="Large"

 HorizontalOptions="Center"

 Clicked="OnCalculateButtonClicked" />

 </StackLayout>

</ContentPage>

The ActivityIndicator informs the user that the program is busy with the background job. The Image element and that ActivityIndicator share a single-cell Grid so that the ActivityIndicator can be more toward the vertical center of the screen and then become covered when the bitmap appears. At the bottom is a Button to begin the calculation.

The code-behind file below begins by defining several constants. The first four constants relate to the bitmap that the program constructs to display the image of the Mandelbrot set. Throughout this exercise, these bitmaps will always be square, but the code itself is more generalized and should be able to accommodate rectangular dimensions.

The center field is the Complex point that corresponds to the center of the bitmap, while the size field indicates the extent of the real and imaginary coordinates on the bitmaps. These particular center and size fields imply that the real coordinates range from –2 on the left of the bitmap to 0.5 on the right, and the imaginary coordinates range from –1.25 on the bottom to 1.25 on the top. The pixelWidth and pixelHeight values indicate the width and height of the bitmap in pixels. The iterations field is the maximum number of iterations of the recursive formula before the program assumes that the point belongs to the Mandelbrot set:

Click here to view code image

public partial class MandelbrotSetPage : ContentPage

{

 static readonly Complex center = new Complex(-0.75, 0);

 static readonly Size size = new Size(2.5, 2.5);

 const int pixelWidth = 1000;

 const int pixelHeight = 1000;

 const int iterations = 100;

 public MandelbrotSetPage()

 {

 InitializeComponent();

 }

 async void OnCalculateButtonClicked(object sender, EventArgs args)

 {

 calculateButton.IsEnabled = false;

 activityIndicator.IsRunning = true;

 BmpMaker bmpMaker = new BmpMaker(pixelWidth, pixelHeight);

 await CalculateMandelbrotAsync(bmpMaker);

 image.Source = bmpMaker.Generate();

 activityIndicator.IsRunning = false;

 }

 Task CalculateMandelbrotAsync(BmpMaker bmpMaker)

 {

 return Task.Run(() =>

 {

 for (int row = 0; row < pixelHeight; row++)

 {

 double y = center.Imaginary - size.Height / 2 + row * size.Height / pixelHeight;

 for (int col = 0; col < pixelWidth; col++)

 {

 double x = center.Real - size.Width / 2 + col * size.Width / pixelWidth;

 Complex c = new Complex(x, y);

 Complex z = 0;

 int iteration = 0;

 do

 {

 z = z * z + c;

 iteration++;

 }

 while (iteration < iterations && z.MagnitudeSquared < 4);

 bool isMandelbrotSet = iteration == iterations;

 bmpMaker.SetPixel(row, col, isMandelbrotSet ? Color.Black : Color.White);

 }

 }

 });

 }

}

The OnCalculateButtonClicked handler is flagged as async. It begins by disabling the Button to avoid multiple simultaneous calculations and starts the ActivityIndicator display. It then creates a BmpMaker object with the desired pixel size and passes it to CalculateMandelbrotAsync. When that method is finished, the Clicked handler continues by setting the bitmap to the Image object and turning off the ActivityIndicator. The Button is not reenabled.

The lambda function passed to the Task.Run method loops through the rows and columns of the bitmap created by BmpMaker, and for each pixel, it calculates a complex number c from the x and y coordinate values. The little do-while loop continues until the maximum number of iterations is reached or the magnitude is 2 or greater. At that point, a pixel can be set to black or white.

After you press the button, your phone might take a minute or so to loop through all the pixels, but then you’ll see the classic image:

[image: Image]

There’s a little danger in the way the CalculateMandelbrotAsync method is structured. It is passed a BmpMaker object that the background thread fills with pixels, but the main thread also has access to this BmpMaker object. If this object were saved as a field, the main thread might contain some code that alters or sets pixels as the background thread is working. That would probably be a bug, of course, but in general you can make your asynchronous methods more bulletproof if arguments are restricted to value types rather than reference types. Don’t worry too much if that’s not quite possible or convenient, but in the next version of the program, the CalculateMandelbrotAsync method will itself create the BmpMaker object and return it.

Marking progress

As you’ve undoubtedly discovered, it’s somewhat disconcerting to press the Calculate button in MandelbrotSet and wait for the bitmap to show up. There’s no indication at all how far along the program has gotten in completing the job, or how much longer you need to wait.

If possible, asynchronous methods should report progress. I’m sure you can rig something up yourself to do the job, but there is a standard way of reporting progress for methods that return Task objects. This involves the IProgress<T> interface and the Progress<T> class that implements that interface, both of which are defined in the System namespace. IProgress is defined like so:

public interface IProgress<T>

{

 void Report(T value);

}

To make use of this facility, you define an argument to your asynchronous method of type IProgress. The asynchronous method then periodically calls Report as it’s doing the background job. Generally, T is either int, in which case the values passed to Report usually range from 1 to 100, or double, for values ranging from 0 to 1. It’s your choice. For consistency with the Xamarin.Forms ProgressBar, double values from 0 to 1 are ideal.

The code that calls the asynchronous method instantiates a Progress object and passes to its constructor a lambda function that is called whenever the asynchronous method calls Report. (Or you can attach a handler to the Progress object’s ProgressChanged event.) Although Report is called on a background thread, the lambda function or event handler is called on the thread that instantiated the Progress object, which means that the lambda function or event handler can safely access user-interface objects.

The XAML file for the MandelbrotProgress program is the same as the previous XAML file except that a ProgressBar has replaced the ActivityIndicator:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MandelbrotProgress.MandelbrotProgressPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Grid VerticalOptions="FillAndExpand">

 <ContentView Padding="10, 0"

 VerticalOptions="Center">

 <ProgressBar x:Name="progressBar" />

 </ContentView>

 <Image x:Name="image" />

 </Grid>

 <Button x:Name="calculateButton"

 Text="Calculate"

 FontSize="Large"

 HorizontalOptions="Center"

 Clicked="OnCalculateButtonClicked" />

 </StackLayout>

</ContentPage>

The code-behind file is very similar, except that a Progress object named progressReporter is defined as a field and the constructor instantiates it with a lambda function that simply sets the argument to the Progress property of the ProgressBar. This Progress object is passed to the CalculateMandelbrotAsync method, which in this new version now takes over the responsibility of creating and returning the BmpMaker object:

Click here to view code image

public partial class MandelbrotProgressPage : ContentPage

{

 static readonly Complex center = new Complex(-0.75, 0);

 static readonly Size size = new Size(2.5, 2.5);

 const int pixelWidth = 1000;

 const int pixelHeight = 1000;

 const int iterations = 100;

 Progress<double> progressReporter;

 public MandelbrotProgressPage()

 {

 InitializeComponent();

 progressReporter = new Progress<double>((double value) =>

 {

 progressBar.Progress = value;

 });

 }

 async void OnCalculateButtonClicked(object sender, EventArgs args)

 {

 // Configure the UI for a background process.

 calculateButton.IsEnabled = false;

 // Render the Mandelbrot set on a bitmap.

 BmpMaker bmpMaker = await CalculateMandelbrotAsync(progressReporter);

 image.Source = bmpMaker.Generate();

 }

 Task<BmpMaker> CalculateMandelbrotAsync(IProgress<double> progress)

 {

 return Task.Run<BmpMaker>(() =>

 {

 BmpMaker bmpMaker = new BmpMaker(pixelWidth, pixelHeight);

 for (int row = 0; row < pixelHeight; row++)

 {

 double y = center.Imaginary - size.Height / 2 + row * size.Height / pixelHeight;

 // Report the progress.

 progress.Report((double)row / pixelHeight);

 for (int col = 0; col < pixelWidth; col++)

 {

 double x = center.Real - size.Width / 2 + col * size.Width / pixelWidth;

 Complex c = new Complex(x, y);

 Complex z = 0;

 int iteration = 0;

 bool isMandelbrotSet = false;

 if ((c - new Complex(-1, 0)).MagnitudeSquared < 1.0 / 16)

 {

 isMandelbrotSet = true;

 }

 else

 {

 do

 {

 z = z * z + c;

 iteration++;

 }

 while (iteration < iterations && z.MagnitudeSquared < 4);

 isMandelbrotSet = iteration == iterations;

 }

 bmpMaker.SetPixel(row, col, isMandelbrotSet ? Color.Black : Color.White);

 }

 }

 return bmpMaker;

 });

 }

}

The asynchronous method reports its progress with every new row:

Click here to view code image

progress.Report((double)row / pixelHeight);

Watch out: You don’t want to report progress so frequently that you slow down the method! A hundred calls to the Report method during the whole operation is plenty, and you can probably reduce that number considerably before the ProgressBar begins looking jittery.

If you pay close attention to the ProgressBar in MandelbrotProgress, you’ll see that it moves fast at the start and then slows down. The problem area is the large cardioid—and to a lesser extent, the circle to its left—that makes up the bulk of the Mandelbrot set. For points within these areas, the recursive calculation must run to the maximum iteration count before the point is identified as a member of the set. This new method attempts to reduce the work somewhat by detecting when the point is within the circle. The center of this circle is the complex point –1, and the radius is 1/4:

Click here to view code image

if ((c - new Complex(-1, 0)).MagnitudeSquared < 1.0 / 16)

{

 isMandelbrotSet = true;

}

But the cardioid is a more complex object (although that too can be identified, as the next version of the program demonstrates).

When the asynchronous method creates and returns that BmpMaker object, the code to obtain that object and set the bitmap to the Image object reduces to just two statements:

Click here to view code image

BmpMaker bmpMaker = await CalculateMandelbrotAsync(progressReporter);

image.Source = bmpMaker.Generate();

But if two statements are too many, keep in mind that await is pretty much just an ordinary operator and can be part of a more complex statement:

Click here to view code image

image.Source = (await CalculateMandelbrotAsync(progressReporter)).Generate();

Cancelling the job

The two Mandelbrot programs shown so far exist for the sole purpose of generating a single image, so it’s unlikely that you would want to cancel that job once it’s started. However, in the general case, you’ll want to provide a facility for the user to bail out of lengthy background jobs.

Although you can probably put together a little cancellation system of your own, the System.Threading namespace already has you covered with a class named CancellationTokenSource and a structure named CancellationToken.

Here’s how it works:

A program creates a CancellationTokenSource for use with a particular asynchronous method. The CancellationTokenSource class defines a property named Token that returns a CancellationToken. This CancellationToken value is passed to the asynchronous method. The asynchronous method periodically calls the IsCancellationRequested method of the CancellationToken. This method usually returns false.

When the program wants to cancel the asynchronous operation (probably in response to some user input), it calls the Cancel method of the CancellationTokenSource. The next time the asynchronous method calls the IsCancellationRequested method of the CancellationToken, the method returns true because a cancellation has been requested. The asynchronous method can choose how to stop running, perhaps with a simple return statement.

Usually, however, a different approach is taken. Rather than calling the IsCancellationRequested method of CancellationToken, the asynchronous method can instead simply call the ThrowIfCancellationRequested method. If a cancellation has been requested, the asynchronous method stops executing by raising an OperationCanceledException.

This means that the await operator must be part of a try block, but as you’ve seen, this is generally the case when working with files, so it doesn’t add much additional code, and the program can process a cancellation as simply another form of exception.

The MandelbrotCancellation program demonstrates this technique. The XAML file now has a second button, labeled “Cancel”, which is initially disabled:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MandelbrotCancellation.MandelbrotCancellationPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Grid VerticalOptions="FillAndExpand">

 <ContentView Padding="10, 0"

 VerticalOptions="Center">

 <ProgressBar x:Name="progressBar" />

 </ContentView>

 <Image x:Name="image" />

 </Grid>

 <Grid>

 <Button x:Name="calculateButton"

 Grid.Column="0"

 Text="Calculate"

 FontSize="Large"

 HorizontalOptions="Center"

 Clicked="OnCalculateButtonClicked" />

 <Button x:Name="cancelButton"

 Grid.Column="1"

 Text="Cancel"

 FontSize="Large"

 IsEnabled="False"

 HorizontalOptions="Center"

 Clicked="OnCancelButtonClicked" />

 </Grid>

 </StackLayout>

</ContentPage>

The code-behind file now has a more extensive OnCalculateButtonClicked method. It begins by disabling the Calculate button and enabling the Cancel button. It creates a new CancellationTokenSource object and passes the Token property to CalculateMandelbrotAsync. The OnCancelButtonClicked method is responsible for calling Cancel on the CancellationTokenSource object. The CalculateMandelbrotAsync method calls the ThrowIfCancellationRequested method at the same rate that it reports progress. The exception is caught by the OnCalculateButtonClicked method, which responds by reenabling the Calculate button for another try:

Click here to view code image

public partial class MandelbrotCancellationPage : ContentPage

{

 static readonly Complex center = new Complex(-0.75, 0);

 static readonly Size size = new Size(2.5, 2.5);

 const int pixelWidth = 1000;

 const int pixelHeight = 1000;

 const int iterations = 100;

 Progress<double> progressReporter;

 CancellationTokenSource cancelTokenSource;

 public MandelbrotCancellationPage()

 {

 InitializeComponent();

 progressReporter = new Progress<double>((double value) =>

 {

 progressBar.Progress = value;

 });

 }

 async void OnCalculateButtonClicked(object sender, EventArgs args)

 {

 // Configure the UI for a background process.

 calculateButton.IsEnabled = false;

 cancelButton.IsEnabled = true;

 cancelTokenSource = new CancellationTokenSource();

 try

 {

 // Render the Mandelbrot set on a bitmap.

 BmpMaker bmpMaker = await CalculateMandelbrotAsync(progressReporter,

 cancelTokenSource.Token);

 image.Source = bmpMaker.Generate();

 }

 catch (OperationCanceledException)

 {

 calculateButton.IsEnabled = true;

 progressBar.Progress = 0;

 }

 catch (Exception)

 {

 // Shouldn't occur in this case.

 }

 cancelButton.IsEnabled = false;

 }

 void OnCancelButtonClicked(object sender, EventArgs args)

 {

 cancelTokenSource.Cancel();

 }

 Task<BmpMaker> CalculateMandelbrotAsync(IProgress<double> progress,

 CancellationToken cancelToken)

 {

 return Task.Run<BmpMaker>(() =>

 {

 BmpMaker bmpMaker = new BmpMaker(pixelWidth, pixelHeight);

 for (int row = 0; row < pixelHeight; row++)

 {

 double y = center.Imaginary - size.Height / 2 + row * size.Height / pixelHeight;

 // Report the progress.

 progress.Report((double)row / pixelHeight);

 // Possibly cancel.

 cancelToken.ThrowIfCancellationRequested();

 for (int col = 0; col < pixelWidth; col++)

 {

 double x = center.Real - size.Width / 2 + col * size.Width / pixelWidth;

 Complex c = new Complex(x, y);

 Complex z = 0;

 int iteration = 0;

 bool isMandelbrotSet = false;

 if ((c - new Complex(-1, 0)).MagnitudeSquared < 1.0 / 16)

 {

 isMandelbrotSet = true;

 }

 // http://www.reenigne.org/blog/algorithm-for-mandelbrot-cardioid/

 else if (c.MagnitudeSquared * (8 * c.MagnitudeSquared - 3) <

 3.0 / 32 - c.Real)

 {

 isMandelbrotSet = true;

 }

 else

 {

 do

 {

 z = z * z + c;

 iteration++;

 }

 while (iteration < iterations && z.MagnitudeSquared < 4);

 isMandelbrotSet = iteration == iterations;

 }

 bmpMaker.SetPixel(row, col, isMandelbrotSet ? Color.Black : Color.White);

 }

 }

 return bmpMaker;

 }, cancelToken);

 }

}

The CancellationToken is also passed as the second argument to Task.Run. This isn’t required, but it allows the Task.Run method to skip a lot of work if cancellation has already been requested before it even gets started.

Also notice that the code now skips the large cardioid. A comment references a web page that derives the formula in case you want to check the math.

An MVVM Mandelbrot

Although the black-and-white Mandelbrot set is the classic image, most Mandelbrot programs color pixels that are not in the Mandelbrot set based on the number of iterations required for that determination. The penultimate program in this chapter is called MandelbrotXF—the XF prefix stands for Xamarin.Forms—and colors the pixels in that way. The program also allows zooming in on specific locations. It is a characteristic of a Mandelbrot set that the image remains interesting no matter how far you zoom. Unfortunately, there is a practical limit to zooming based on the resolution of double-precision floating-point numbers.

The program is architected using MVVM principles, although after seeing the somewhat odd user interface—and how the ViewModel deals with that user interface—you might question the wisdom of that decision.

The odd user interface of MandelbrotXF results from a decision to avoid any platform-specific code. At the time this program was originally written, Xamarin.Forms did not support touch operations such as dragging and pinching that might have been helpful in zooming into a particular location. Instead, the program’s entire user interface is implemented with two Slider elements, two Stepper elements, two Button elements, a ProgessBar, and visuals implemented with BoxView.

When you first run the program, here’s what you’ll see:

[image: Image]

The white crosshairs—which don’t show up against the white background of the blank iOS and Windows 10 Mobile screens—fade out over the course of 10 seconds so that they won’t obscure the pretty pictures that you’ll soon be admiring, but you can bring them back by manipulating either of the sliders or the steppers.

But the first thing you’ll want to do is press the Go button. The button is replaced with a Cancel button and the ProgressBar indicates progress. When it’s finished, you’ll see a colored Mandelbrot set:

[image: Image]

It finishes quickly because the maximum iteration count (indicated by the bottom Stepper labeled loop) is only 2 to the third power, or 8. As a result, the outline of the black Mandelbrot set is not nearly as sharp as the earlier programs. Many more points are flagged as being a member of the set than would be with a higher maximum iteration count. You can increase that iteration count by powers of 2. Here’s a sharper image with a maximum iteration count of 64:

[image: Image]

The two Slider views allow you to select a new center, which is displayed as a complex number right below the sliders. The first Stepper element (labeled zoom) allows you to select a magnification factor, also in powers of 2. As you manipulate these three elements, you’ll see a box with crosshairs constructed with six thin BoxView elements. That box marks the area that will be magnified the next time you press the Go button:

[image: Image]

Now press the Go button again and wait. Now that previously boxed area fills the bitmap:

[image: Image]

After the new image is calculated, the crosshairs are recentered, and you can reposition the center and zoom in again, and again, and again.

[image: Image]

However, generally the more you zoom in, the greater the maximum iterations you’ll need to see all the detail. For each device, the image in the previous screenshots acquires visibly more detail with four times as many iterations:

[image: Image]

It is a characteristic of the Mandelbrot set that you can just keep zooming in as much as you want and you’ll still see just as much detail. However, generally you will need to keep increasing the maximum iteration count as well, and by the time you hit a magnification factor of 2 to the forty-eighth power or so, you’ve hit a ceiling involving the resolution of double-precision floating-point numbers. Adjacent pixels are no longer associated with distinct complex numbers, and the image begins looking blocky:

[image: Image]

That’s not an easy obstacle to transcend. There exist implementations of variable-precision floating-point numbers, but because they are not directly handled by the computer’s math coprocessor, calculations involving these numbers are necessarily much slower than float or double types, and it’s likely you’re not going to want the Mandelbrot calculation to go any slower.

The MandelbrotXF program has both a ViewModel and an underlying Model. The Model does the actual number crunching and returns an object of type BitmapInfo, which indicates a pixel width and height and an array of integers. The size of the integer array is the product of the pixel width and height, and the elements of the array are iteration counts. A value of –1 indicates a member of the Mandelbrot set:

Click here to view code image

namespace MandelbrotXF

{

 class BitmapInfo

 {

 public BitmapInfo(int pixelWidth, int pixelHeight, int[] iterationCounts)

 {

 PixelWidth = pixelWidth;

 PixelHeight = pixelHeight;

 IterationCounts = iterationCounts;

 }

 public int PixelWidth { private set; get; }

 public int PixelHeight { private set; get; }

 public int[] IterationCounts { private set; get; }

 }

}

The MandelbrotModel class contains a single asynchronous method. Aside from the IProgress object, all the arguments are value types, so there is no danger of any argument changing while the calculation is in progress:

Click here to view code image

namespace MandelbrotXF

{

 class MandelbrotModel

 {

 public Task<BitmapInfo> CalculateAsync(Complex Center,

 double width, double height,

 int pixelWidth, int pixelHeight,

 int iterations,

 IProgress<double> progress,

 CancellationToken cancelToken)

 {

 return Task.Run(() =>

 {

 int[] iterationCounts = new int[pixelWidth * pixelHeight];

 int index = 0;

 for (int row = 0; row < pixelHeight; row++)

 {

 progress.Report((double)row / pixelHeight);

 cancelToken.ThrowIfCancellationRequested();

 double y = Center.Imaginary - height / 2 + row * height / pixelHeight;

 for (int col = 0; col < pixelWidth; col++)

 {

 double x = Center.Real - width / 2 + col * width / pixelWidth;

 Complex c = new Complex(x, y);

 if ((c - new Complex(-1, 0)).MagnitudeSquared < 1.0 / 16)

 {

 iterationCounts[index++] = -1;

 }

 // http://www.reenigne.org/blog/algorithm-for-mandelbrot-cardioid/

 else if (c.MagnitudeSquared * (8 * c.MagnitudeSquared - 3) <

 3.0 / 32 - c.Real)

 {

 iterationCounts[index++] = -1;

 }

 else

 {

 Complex z = 0;

 int iteration = 0;

 do

 {

 z = z * z + c;

 iteration++;

 }

 while (iteration < iterations && z.MagnitudeSquared < 4);

 if (iteration == iterations)

 {

 iterationCounts[index++] = -1;

 }

 else

 {

 iterationCounts[index++] = iteration;

 }

 }

 }

 }

 return new BitmapInfo(pixelWidth, pixelHeight, iterationCounts);

 }, cancelToken);

 }

 }

}

This CalculateAsync method is called only from the ViewModel. The ViewModel is also intended to provide data-binding sources for the XAML file and to assist the code-behind file in performing those jobs that the XAML data bindings cannot handle. (Drawing the crosshairs and magnification box is a job for that code-behind file.)

For this reason, the MandelbrotViewModel class has many properties, but probably not the same properties you’d define if you weren’t thinking about the user interface. The CurrentCenter property is the complex number for the center of the image currently displayed by the program, and the CurrentMagnification also applies to that image. But the TargetMagnification is bound to the current setting of the Stepper, which will apply to the next calculated image. The RealOffset and ImaginaryOffset properties are bound to the two Slider elements and can range from 0 to 1. From the CurrentCenter, CurrentMagnification, RealOffset, and ImaginaryOffset properties, the ViewModel can calculate the TargetCenter property. This is the center for the next calculated image. As you’ll see, that TargetCenter property is used to display the complex number below the two sliders:

Click here to view code image

namespace MandelbrotXF

{

 class MandelbrotViewModel : ViewModelBase

 {

 // Set via constructor arguments.

 readonly double baseWidth;

 readonly double baseHeight;

 // Backing fields for properties.

 Complex currentCenter, targetCenter;

 int pixelWidth, pixelHeight;

 double currentMagnification, targetMagnification;

 int iterations;

 double realOffset, imaginaryOffset;

 bool isBusy;

 double progress;

 BitmapInfo bitmapInfo;

 public MandelbrotViewModel(double baseWidth, double baseHeight)

 {

 this.baseWidth = baseWidth;

 this.baseHeight = baseHeight;

 // Create MandelbrotModel object.

 MandelbrotModel model = new MandelbrotModel();

 // Progress reporter

 Progress<double> progressReporter = new Progress<double>((double progress) =>

 {

 Progress = progress;

 });

 CancellationTokenSource cancelTokenSource = null;

 // Define CalculateCommand and CancelCommand.

 CalculateCommand = new Command(

 execute: async () =>

 {

 // Disable this button and enable Cancel button.

 IsBusy = true;

 ((Command)CalculateCommand).ChangeCanExecute();

 ((Command)CancelCommand).ChangeCanExecute();

 // Create CancellationToken.

 cancelTokenSource = new CancellationTokenSource();

 CancellationToken cancelToken = cancelTokenSource.Token;

 try

 {

 // Perform the calculation.

 BitmapInfo = await model.CalculateAsync(TargetCenter,

 baseWidth / TargetMagnification,

 baseHeight / TargetMagnification,

 PixelWidth, PixelHeight,

 Iterations,

 progressReporter,

 cancelToken);

 // Processing only for a successful completion.

 CurrentCenter = TargetCenter;

 CurrentMagnification = TargetMagnification;

 RealOffset = 0.5;

 ImaginaryOffset = 0.5;

 }

 catch (OperationCanceledException)

 {

 // Operation cancelled!

 }

 catch

 {

 // Another type of exception? This should not occur.

 }

 // Processing regardless of success or cancellation.

 Progress = 0;

 IsBusy = false;

 // Disable Cancel button and enable this button.

 ((Command)CalculateCommand).ChangeCanExecute();

 ((Command)CancelCommand).ChangeCanExecute();

 },

 canExecute: () =>

 {

 return !IsBusy;

 });

 CancelCommand = new Command(

 execute: () =>

 {

 cancelTokenSource.Cancel();

 },

 canExecute: () =>

 {

 return IsBusy;

 });

 }

 public int PixelWidth

 {

 set { SetProperty(ref pixelWidth, value); }

 get { return pixelWidth; }

 }

 public int PixelHeight

 {

 set { SetProperty(ref pixelHeight, value); }

 get { return pixelHeight; }

 }

 public Complex CurrentCenter

 {

 set

 {

 if (SetProperty(ref currentCenter, value))

 CalculateTargetCenter();

 }

 get { return currentCenter; }

 }

 public Complex TargetCenter

 {

 private set { SetProperty(ref targetCenter, value); }

 get { return targetCenter; }

 }

 public double CurrentMagnification

 {

 set { SetProperty(ref currentMagnification, value); }

 get { return currentMagnification; }

 }

 public double TargetMagnification

 {

 set { SetProperty(ref targetMagnification, value); }

 get { return targetMagnification; }

 }

 public int Iterations

 {

 set { SetProperty(ref iterations, value); }

 get { return iterations; }

 }

 // These two properties range from 0 to 1.

 // They indicate a new center relative to the

 // current width and height, which is the baseWidth

 // and baseHeight divided by CurrentMagnification.

 public double RealOffset

 {

 set

 {

 if (SetProperty(ref realOffset, value))

 CalculateTargetCenter();

 }

 get { return realOffset; }

 }

 public double ImaginaryOffset

 {

 set

 {

 if (SetProperty(ref imaginaryOffset, value))

 CalculateTargetCenter();

 }

 get { return imaginaryOffset; }

 }

 void CalculateTargetCenter()

 {

 double width = baseWidth / CurrentMagnification;

 double height = baseHeight / CurrentMagnification;

 TargetCenter = new Complex(CurrentCenter.Real + (RealOffset - 0.5) * width,

 CurrentCenter.Imaginary + (ImaginaryOffset - 0.5) *

 height);

 }

 public bool IsBusy

 {

 private set { SetProperty(ref isBusy, value); }

 get { return isBusy; }

 }

 public double Progress

 {

 private set { SetProperty(ref progress, value); }

 get { return progress; }

 }

 public BitmapInfo BitmapInfo

 {

 private set { SetProperty(ref bitmapInfo, value); }

 get { return bitmapInfo; }

 }

 public ICommand CalculateCommand { private set; get; }

 public ICommand CancelCommand { private set; get; }

 }

}

MandelbrotViewModel also defines two properties of type ICommand for the Calculate and Cancel buttons, a Progress property, and an IsBusy property. As you’ll see, the IsBusy property is used to display one of those two buttons and hide the other and to disable the rest of the user interface during the calculations. The two ICommand properties are implemented with lambda functions in the class’s constructor.

The data bindings in the XAML file to the properties in MandelbrotViewModel require two new binding converters in the Xamarin.FormsBook.Toolkit library. The first simply negates a bool value:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class BooleanNegationConverter : IValueConverter

 {

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return !(bool)value;

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return !(bool)value;

 }

 }

}

This is used in conjunction with the IsBusy property of the ViewModel. When IsBusy is true, the IsEnabled properties of several elements and the IsVisible property of the Go button need to be set to false.

Both Stepper elements actually control an exponent of a value in the ViewModel. A Stepper value of 8, for example, corresponds to an Iterations or TargetMagnification value of 256. That conversion requires a base-2 logarithm converter:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class BaseTwoLogConverter : IValueConverter

 {

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 if (value is int)

 {

 return Math.Log((int)value) / Math.Log(2);

 }

 return Math.Log((double)value) / Math.Log(2);

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 double returnValue = Math.Pow(2, (double)value);

 if (targetType == typeof(int))

 {

 return (int) returnValue;

 }

 return returnValue;

 }

 }

}

Here’s the XAML file, with bindings to the Progress, RealOffset, ImaginaryOffset, TargetCenter, TargetMagnification, Iterations, IsBusy, CalculateCommand, and CancelCommand properties of the ViewModel:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="MandelbrotXF.MandelbrotXFPage"

 SizeChanged="OnPageSizeChanged">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:BooleanNegationConverter x:Key="negate" />

 <toolkit:BaseTwoLogConverter x:Key="base2log" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <Grid x:Name="mainGrid">

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="0" />

 </Grid.ColumnDefinitions>

 <!-- Image for determining pixels per unit. -->

 <Image x:Name="testImage"

 Grid.Row="0" Grid.Column="0"

 Opacity="0"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 <!-- Image for Mandelbrot Set. -->

 <Image x:Name="image"

 Grid.Row="0" Grid.Column="0"

 HorizontalOptions="FillAndExpand"

 VerticalOptions="FillAndExpand"

 SizeChanged="OnImageSizeChanged" />

 <AbsoluteLayout x:Name="crossHairLayout"

 Grid.Row="0" Grid.Column="0"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 SizeChanged="OnCrossHairLayoutSizeChanged">

 <AbsoluteLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="BoxView">

 <Setter Property="Color" Value="White" />

 <Setter Property="AbsoluteLayout.LayoutBounds" Value="0,0,0,0" />

 </Style>

 </ResourceDictionary>

 </AbsoluteLayout.Resources>

 <BoxView x:Name="realCrossHair" />

 <BoxView x:Name="imagCrossHair" />

 <BoxView x:Name="topBox" />

 <BoxView x:Name="bottomBox" />

 <BoxView x:Name="leftBox" />

 <BoxView x:Name="rightBox" />

 </AbsoluteLayout>

 <StackLayout x:Name="controlPanelStack"

 Grid.Row="1" Grid.Column="0"

 Padding="10">

 <ProgressBar Progress="{Binding Progress}"

 VerticalOptions="CenterAndExpand" />

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding RealOffset, Mode=TwoWay}"

 IsEnabled="{Binding IsBusy, Converter={StaticResource negate}}" />

 <Slider Value="{Binding ImaginaryOffset, Mode=TwoWay}"

 IsEnabled="{Binding IsBusy, Converter={StaticResource negate}}" />

 <Label Text="{Binding TargetCenter, StringFormat='{0}'}"

 FontSize="Small"

 HorizontalTextAlignment="Center" />

 </StackLayout>

 <Grid VerticalOptions="CenterAndExpand">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <!-- Magnification factor stepper and display. -->

 <Stepper x:Name="magnificationStepper"

 Grid.Row="0" Grid.Column="0"

 Value="{Binding TargetMagnification,

 Converter={StaticResource base2log}}"

 IsEnabled="{Binding IsBusy, Converter={StaticResource negate}}"

 VerticalOptions="Center" />

 <StackLayout Grid.Row="0" Grid.Column="1"

 Orientation="Horizontal"

 Spacing="0"

 VerticalOptions="Start">

 <Label Text="zoom 2"

 FontSize="Medium" />

 <Label Text="{Binding Source={x:Reference magnificationStepper},

 Path=Value,

 StringFormat='{0}'}"

 FontSize="Micro" />

 </StackLayout>

 <!-- Iterations factor stepper and display. -->

 <Stepper x:Name="iterationsStepper"

 Grid.Row="1" Grid.Column="0"

 Value="{Binding Iterations, Converter={StaticResource base2log}}"

 IsEnabled="{Binding IsBusy, Converter={StaticResource negate}}"

 VerticalOptions="Center" />

 <StackLayout Grid.Row="1" Grid.Column="1"

 Orientation="Horizontal"

 Spacing="0"

 VerticalOptions="End">

 <Label Text="loop 2"

 FontSize="Medium" />

 <Label Text="{Binding Source={x:Reference iterationsStepper},

 Path=Value,

 StringFormat='{0}'}"

 FontSize="Micro" />

 </StackLayout>

 <!-- Go / Cancel buttons. -->

 <Grid Grid.Row="0" Grid.Column="1" Grid.RowSpan="2"

 HorizontalOptions="End"

 VerticalOptions="Center">

 <Button Text="Go"

 Command="{Binding CalculateCommand}"

 IsVisible="{Binding IsBusy, Converter={StaticResource negate}}" />

 <Button Text="Cancel"

 Command="{Binding CancelCommand}"

 IsVisible="{Binding IsBusy}" />

 </Grid>

 </Grid>

 </StackLayout>

 </Grid>

</ContentPage>

This XAML file only installs three event handlers, and they are all SizeChanged handlers.

The first SizeChanged handler is on the page itself. This handler is used by the code-behind file to adapt mainGrid and its children for portrait or landscape mode using techniques you’ve seen in previous samples.

The second SizeChanged handler is on the Image element. The code-behind file uses this to size the AbsoluteLayout that displays the crosshairs and magnification box. This AbsoluteLayout must be made the same size as the bitmap displayed by the Image under the assumption that the Image will display a square bitmap.

The third SizeChanged handler is on that AbsoluteLayout, so the crosshairs and magnification box can be redrawn for a change in size.

The MandelbrotXF program also performs a little trick of sorts to ensure that the bitmap contains the optimum number of pixels, which happens when there is a one-to-one mapping between the pixels of the bitmap and the pixels of the display. The XAML file contains a second Image element named testImage. This Image is invisible because the Opacity is set to zero, and it is horizontally and vertically centered, which means that it will be displayed with a one-to-one pixel mapping. The code-behind file creates a 120-pixel square bitmap that is set to this Image. The resultant size of the Image lets the program know how many pixels there are to the device-independent unit, and it can use that to calculate an optimum pixel size for the Mandelbrot bitmap. (Unfortunately it doesn’t work for the Windows Runtime platforms.)

Here’s roughly the first half of the code-behind file for MandelbrotXFPage, showing mostly the instantiation of the MandelbrotViewModel class and the interaction of these SizeChanged handlers:

Click here to view code image

namespace MandelbrotXF

{

 public partial class MandelbrotXFPage : ContentPage

 {

 MandelbrotViewModel mandelbrotViewModel;

 double pixelsPerUnit = 1;

 public MandelbrotXFPage()

 {

 InitializeComponent();

 // Instantiate ViewModel and get saved values.

 mandelbrotViewModel = new MandelbrotViewModel(2.5, 2.5)

 {

 PixelWidth = 1000,

 PixelHeight = 1000,

 CurrentCenter = new Complex(GetProperty("CenterReal", -0.75),

 GetProperty("CenterImaginary", 0.0)),

 CurrentMagnification = GetProperty("Magnification", 1.0),

 TargetMagnification = GetProperty("Magnification", 1.0),

 Iterations = GetProperty("Iterations", 8),

 RealOffset = 0.5,

 ImaginaryOffset = 0.5

 };

 // Set BindingContext on page.

 BindingContext = mandelbrotViewModel;

 // Set PropertyChanged handler on ViewModel for "manual" processing.

 mandelbrotViewModel.PropertyChanged += OnMandelbrotViewModelPropertyChanged;

 // Create test image to obtain pixels per device-independent unit.

 BmpMaker bmpMaker = new BmpMaker(120, 120);

 testImage.SizeChanged += (sender, args) =>

 {

 pixelsPerUnit = bmpMaker.Width / testImage.Width;

 SetPixelWidthAndHeight();

 };

 testImage.Source = bmpMaker.Generate();

 // Gradually reduce opacity of crosshairs.

 Device.StartTimer(TimeSpan.FromMilliseconds(100), () =>

 {

 realCrossHair.Opacity -= 0.01;

 imagCrossHair.Opacity -= 0.01;

 return true;

 });

 }

 // Method for accessing Properties dictionary if key is not yet present.

 T GetProperty<T>(string key, T defaultValue)

 {

 IDictionary<string, object> properties = Application.Current.Properties;

 if (properties.ContainsKey(key))

 {

 return (T)properties[key];

 }

 return defaultValue;

 }

 // Switch between portrait and landscape mode.

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 if (Width == -1 || Height == -1)

 return;

 // Portrait mode.

 if (Width < Height)

 {

 mainGrid.RowDefinitions[1].Height = GridLength.Auto;

 mainGrid.ColumnDefinitions[1].Width = new GridLength(0, GridUnitType.Absolute);

 Grid.SetRow(controlPanelStack, 1);

 Grid.SetColumn(controlPanelStack, 0);

 }

 // Landscape mode.

 else

 {

 mainGrid.RowDefinitions[1].Height = new GridLength(0, GridUnitType.Absolute);

 mainGrid.ColumnDefinitions[1].Width = new GridLength(1, GridUnitType.Star);

 Grid.SetRow(controlPanelStack, 0);

 Grid.SetColumn(controlPanelStack, 1);

 }

 }

 void OnImageSizeChanged(object sender, EventArgs args)

 {

 // Assure that crosshair layout is same size as Image.

 double size = Math.Min(image.Width, image.Height);

 crossHairLayout.WidthRequest = size;

 crossHairLayout.HeightRequest = size;

 // Calculate the pixel size of the Image element.

 SetPixelWidthAndHeight();

 }

 // Sets the Mandelbrot bitmap to optimum pixel width and height.

 void SetPixelWidthAndHeight()

 {

 int pixels = (int)(pixelsPerUnit * Math.Min(image.Width, image.Height));

 mandelbrotViewModel.PixelWidth = pixels;

 mandelbrotViewModel.PixelHeight = pixels;

 }

 // Redraw crosshairs if the crosshair layout changes size.

 void OnCrossHairLayoutSizeChanged(object sender, EventArgs args)

 {

 SetCrossHairs();

 }

 ...

 }

}

Rather than attach a bunch of event handlers to user-interface elements in the XAML file, the constructor of the code-behind file instead attaches a PropertyChanged handler to the MandelbrotViewModel instance. Changes to several properties require that the crosshairs and sizing box be redrawn, and any change to any property brings the crosshairs back into view:

Click here to view code image

namespace MandelbrotXF

{

 {

 ...

 async void OnMandelbrotViewModelPropertyChanged(object sender,

 PropertyChangedEventArgs args)

 {

 // Set opacity back to 1.

 realCrossHair.Opacity = 1;

 imagCrossHair.Opacity = 1;

 switch (args.PropertyName)

 {

 case "RealOffset":

 case "ImaginaryOffset":

 case "CurrentMagnification":

 case "TargetMagnification":

 // Redraw crosshairs if these properties change

 SetCrossHairs();

 break;

 case "BitmapInfo":

 // Create bitmap based on the iteration counts.

 DisplayNewBitmap(mandelbrotViewModel.BitmapInfo);

 // Save properties for the next time program is run.

 IDictionary<string, object> properties = Application.Current.Properties;

 properties["CenterReal"] = mandelbrotViewModel.TargetCenter.Real;

 properties["CenterImaginary"] = mandelbrotViewModel.TargetCenter.Imaginary;

 properties["Magnification"] = mandelbrotViewModel.TargetMagnification;

 properties["Iterations"] = mandelbrotViewModel.Iterations;

 await Application.Current.SavePropertiesAsync();

 break;

 }

 }

 void SetCrossHairs()

 {

 // Size of the layout for the crosshairs and zoom box.

 Size layoutSize = new Size(crossHairLayout.Width, crossHairLayout.Height);

 // Fractional position of center of crosshair.

 double xCenter = mandelbrotViewModel.RealOffset;

 double yCenter = 1 - mandelbrotViewModel.ImaginaryOffset;

 // Calculate dimension of zoom box.

 double boxSize = mandelbrotViewModel.CurrentMagnification /

 mandelbrotViewModel.TargetMagnification;

 // Fractional positions of zoom box corners.

 double xLeft = xCenter - boxSize / 2;

 double xRight = xCenter + boxSize / 2;

 double yTop = yCenter - boxSize / 2;

 double yBottom = yCenter + boxSize / 2;

 // Set all the layout bounds.

 SetLayoutBounds(realCrossHair,

 new Rectangle(xCenter, yTop, 0, boxSize),

 layoutSize);

 SetLayoutBounds(imagCrossHair,

 new Rectangle(xLeft, yCenter, boxSize, 0),

 layoutSize);

 SetLayoutBounds(topBox, new Rectangle(xLeft, yTop, boxSize, 0), layoutSize);

 SetLayoutBounds(bottomBox, new Rectangle(xLeft, yBottom, boxSize, 0), layoutSize);

 SetLayoutBounds(leftBox, new Rectangle(xLeft, yTop, 0, boxSize), layoutSize);

 SetLayoutBounds(rightBox, new Rectangle(xRight, yTop, 0, boxSize), layoutSize);

 }

 void SetLayoutBounds(View view, Rectangle fractionalRect, Size layoutSize)

 {

 if (layoutSize.Width == -1 || layoutSize.Height == -1)

 {

 AbsoluteLayout.SetLayoutBounds(view, new Rectangle());

 return;

 }

 const double thickness = 1;

 Rectangle absoluteRect = new Rectangle();

 // Horizontal lines.

 if (fractionalRect.Height == 0 && fractionalRect.Y > 0 && fractionalRect.Y < 1)

 {

 double xLeft = Math.Max(0, fractionalRect.Left);

 double xRight = Math.Min(1, fractionalRect.Right);

 absoluteRect = new Rectangle(layoutSize.Width * xLeft,

 layoutSize.Height * fractionalRect.Y,

 layoutSize.Width * (xRight - xLeft),

 thickness);

 }

 // Vertical lines.

 else if (fractionalRect.Width == 0 && fractionalRect.X > 0 && fractionalRect.X < 1)

 {

 double yTop = Math.Max(0, fractionalRect.Top);

 double yBottom = Math.Min(1, fractionalRect.Bottom);

 absoluteRect = new Rectangle(layoutSize.Width * fractionalRect.X,

 layoutSize.Height * yTop,

 thickness,

 layoutSize.Height * (yBottom - yTop));

 }

 AbsoluteLayout.SetLayoutBounds(view, absoluteRect);

 }

 ...

 }

}

Early versions of the program attempted to use the proportional sizing and positioning facility of AbsoluteLayout for the six BoxView elements, but it became too difficult. Fractional values are passed to the SetLayoutBounds method, but those are used to calculate coordinates based on the size of the AbsoluteLayout.

Because Models and ViewModels are supposed to be platform independent, neither MandelbrotModel nor MandelbrotViewModel get involved with creating the actual bitmap. These classes express the image as a BitmapInfo value, which is simply a pixel width and height and an array of integers that correspond to iteration counts. Creating and displaying that bitmap mostly involves using BmpMaker and applying a color scheme based on the iteration count:

Click here to view code image

namespace MandelbrotXF

{

 {

 ...

 void DisplayNewBitmap(BitmapInfo bitmapInfo)

 {

 // Create the bitmap.

 BmpMaker bmpMaker = new BmpMaker(bitmapInfo.PixelWidth, bitmapInfo.PixelHeight);

 // Set the colors.

 int index = 0;

 for (int row = 0; row < bitmapInfo.PixelHeight; row++)

 {

 for (int col = 0; col < bitmapInfo.PixelWidth; col++)

 {

 int iterationCount = bitmapInfo.IterationCounts[index++];

 // In the Mandelbrot set: Color black.

 if (iterationCount == -1)

 {

 bmpMaker.SetPixel(row, col, 0, 0, 0);

 }

 // Not in the Mandelbrot set: Pick a color based on count.

 else

 {

 double proportion = (iterationCount / 32.0) % 1;

 if (proportion < 0.5)

 {

 bmpMaker.SetPixel(row, col, (int)(255 * (1 - 2 * proportion)),

 0,

 (int)(255 * 2 * proportion));

 }

 else

 {

 proportion = 2 * (proportion - 0.5);

 bmpMaker.SetPixel(row, col, 0,

 (int)(255 * proportion),

 (int)(255 * (1 - proportion)));

 }

 }

 }

 }

 image.Source = bmpMaker.Generate();

 }

 }

}

Feel free to experiment with the color scheme. One easy alternative is to vary the hue of an HSL color with the iteration count:

Click here to view code image

double hue = (iterationCount / 64.0) % 1;

bmpMaker.SetPixel(row, col, Color.FromHsla(hue, 1, 0.5));

Back to the web

Prior to this chapter, the only asynchronous code in this book involved web accesses using the only reasonable class available for that purpose in the Portable Class Library, WebRequest. The WebRequest class uses an older asynchronous protocol called the Asynchronous Programming Model or APM. APM involves two methods, in the case of WebRequest, these are called BeginGetResponse and EndGetResponse.

You can convert this pair of method calls into the Task-based Asynchronous Pattern (TAP) by using the FromAsync method of TaskFactory, and the ApmToTap program demonstrates how. The program uses a web access and ImageSource.FromStream to load a bitmap and display it. This technique was shown in Chapter 13 as an alternative to ImageSource.FromUri.

The XAML file contains an Image element awaiting a bitmap, an ActivityIndicator that runs when the bitmap is loading, a Label to display a possible error message, and a Button to start the download:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ApmToTap.ApmToTapPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Grid VerticalOptions="FillAndExpand">

 <Label x:Name="errorLabel"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 <ActivityIndicator IsRunning="{Binding Source={x:Reference image},

 Path=IsLoading}" />

 <Image x:Name="image" />

 </Grid>

 <Button Text="Load Bitmap"

 HorizontalOptions="Center"

 Clicked="OnLoadButtonClicked" />

 </StackLayout>

</ContentPage>

The code-behind file consolidates all the WebRequest code in an asynchronous method named GetStreamAsync. After the TaskFactory and WebRequest objects are instantiated, the method passes the BeginGetResponse and EndGetResponse methods to the FromAsync method of TaskFactory, which then returns a WebResponse object from which a Stream is available:

Click here to view code image

public partial class ApmToTapPage : ContentPage

{

 public ApmToTapPage()

 {

 InitializeComponent();

 }

 async void OnLoadButtonClicked(object sender, EventArgs args)

 {

 try

 {

 Stream stream =

 await GetStreamAsync("https://developer.xamarin.com/demo/IMG_1996.JPG");

 image.Source = ImageSource.FromStream(() => stream);

 }

 catch (Exception exc)

 {

 errorLabel.Text = exc.Message;

 }

 }

 async Task<Stream> GetStreamAsync(string uri)

 {

 TaskFactory factory = new TaskFactory();

 WebRequest request = WebRequest.Create(uri);

 WebResponse response = await factory.FromAsync<WebResponse>(request.BeginGetResponse,

 request.EndGetResponse,

 null);

 return response.GetResponseStream();

 }

}

The Clicked handler for the Button can then get that Stream object by calling GetStreamAsync with a URI. As usual, the code with the await operator is in a try block to catch any possible errors. You can experiment a bit by deliberately misspelling the domain or filename to see what kind of errors you get.

Another option for web accesses is a class named HttpClient in the System.Net.Http namespace. This class is not available in the version of .NET included in the Portable Class Library in a Xamarin.Forms solution, but Microsoft has made the class available as a NuGet package:

https://www.nuget.org/packages/Microsoft.Net.Http

From the NuGet manager in Visual Studio or Xamarin Studio, just search for “HttpClient”.

HttpClient is based on TAP. The asynchronous methods return Task and Task<T> objects, and some of the methods also have CancellationToken arguments.

None of the methods report progress, however, which suggests that a first-rate modern class for web accesses is still not yet available to Portable Class Libraries.

In the next chapter you’ll see many more uses of await and explore some other features of the Task-based Asynchronous Pattern in connection with the exciting Xamarin.Forms implementation of animation.

Chapter 21. Transforms

With the help of StackLayout and Grid, Xamarin.Forms does a good job of sizing and positioning visual elements on the page. Sometimes, however, it’s necessary (or convenient) for the application to make some adjustments. You might want to offset the position of elements somewhat, change their size, or even rotate them.

Such changes in location, size, or orientation are possible using a feature of Xamarin.Forms known as transforms. The concept of the transform originated in geometry. The transform is a formula that maps points to other points. For example, if you want to shift a geometric object on a Cartesian coordinate system, you can add constant offset factors to all the coordinates that define that object.

These mathematical, geometric transforms play a vital role in computer graphics programming, where they are sometimes known as matrix transforms because they are easiest to express mathematically using matrix algebra. Without transforms, there can be no 3D graphics. But over the years, transforms have migrated from graphics programming to user-interface programming. All the platforms supported by Xamarin.Forms support basic transforms that can be applied to user-interface elements such as text, bitmaps, and buttons.

Xamarin.Forms supports three basic types of transforms:

• Translation—shifting an element horizontally or vertically or both.

• Scale—changing the size of an element.

• Rotation—turning an element around a point or axis.

The scaling supported by Xamarin.Forms is uniform in all directions, technically known as isotropic scaling. You cannot use scaling to change the aspect ratio of a visual element. Rotation is supported for both the two-dimensional surface of the screen and in 3D space. Xamarin.Forms does not support a skewing transform or a generalized matrix transform.

Xamarin.Forms supports these transforms with eight properties of the VisualElement class. These properties are all of type double:

• TranslationX

• TranslationY

• Scale

• Rotation

• RotationX

• RotationY

• AnchorX

• AnchorY

As you’ll see in the next chapter, Xamarin.Forms also has an extensive and extensible animation system that can target these properties. But you can also perform transform animations on your own by using Device.StartTimer or Task.Delay. This chapter demonstrates some animation techniques and perhaps will help get you into an animation frame of mind in preparation for Chapter 22.

The translation transform

An application uses one of the layout classes—StackLayout, Grid, AbsoluteLayout, or RelativeLayout—to position a visual element on the screen. Let’s call the position established by the layout system the “layout position.”

Nonzero values of the TranslationX and TranslationY properties change the position of a visual element relative to that layout position. Positive values of TranslationX shift the element to the right, and positive values of TranslationY shift the element down.

The TranslationDemo program lets you experiment with these two properties. Everything is in the XAML file:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="TranslationDemo.TranslationDemoPage">

 <StackLayout Padding="20, 10">

 <Frame x:Name="frame"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 OutlineColor="Accent">

 <Label Text="TEXT"

 FontSize="Large" />

 </Frame>

 <Slider x:Name="xSlider"

 Minimum="-200"

 Maximum="200"

 Value="{Binding Source={x:Reference frame},

 Path=TranslationX}" />

 <Label Text="{Binding Source={x:Reference xSlider},

 Path=Value,

 StringFormat='TranslationX = {0:F0}'}"

 HorizontalTextAlignment="Center" />

 <Slider x:Name="ySlider"

 Minimum="-200"

 Maximum="200"

 Value="{Binding Source={x:Reference frame},

 Path=TranslationY }" />

 <Label Text="{Binding Source={x:Reference ySlider},

 Path=Value,

 StringFormat='TranslationY = {0:F0}'}"

 HorizontalTextAlignment="Center" />

 </StackLayout>

</ContentPage>

A Frame encloses a Label and is centered in the upper part of the StackLayout. Two Slider elements have bindings to the TranslationX and TranslationY properties of the Frame, and they are initialized for a range of –200 to 200. When you first run the program, the two sliders are set to the default values of TranslationX and TranslationY, which are zero:

[image: Image]

You can manipulate the sliders to move the Frame around the screen. The values of TranslationX and TranslationY specify an offset of the element relative to its original layout position:

[image: Image]

If the values are large enough, the element can be translated to overlap other visuals, or to move off the screen entirely.

A translation of an element such as a Frame also affects all the children of that element, which in this case is just the Label. You can set the TranslationX and TranslationY properties on any VisualElement, and that includes StackLayout, Grid, and even Page and its derivatives. The transform is applied to the element and all the children of that element.

What might not be so evident without a little investigation is that TranslationX and TranslationY affect only how the element is rendered. These properties do not affect how the element is perceived within the layout system.

For example, VisualElement defines get-only properties named X and Y that indicate where an element is located relative to its parent. The X and Y properties are set when an element is positioned by its parent, and in this example, the X and Y properties of Frame indicate the location of the upper-left corner of the Frame relative to the upper-left corner of the StackLayout. The X and Y properties do not change when TranslationX and TranslationY are set. Also, the get-only Bounds property—which combines X and Y along with Width and Height in a single Rectangle—does not change either. The layout system does not get involved when TranslationX and TranslationY are modified.

What happens if you use TranslationX and TranslationY to move a Button from its original position? Does the Button respond to taps at its original layout position or the new rendered position? You’ll be happy to know that it’s the latter. TranslationX and TranslationY affect both how the element is rendered and how it responds to taps. You’ll see this shortly in a sample program called ButtonJump.

If you need to do some extensive movement of elements around the page, you might wonder whether to use AbsoluteLayout and specify coordinates explicitly or use TranslationX and TranslationY to specify offsets. In terms of performance, there’s really not much difference. The advantage of TranslationX and TranslationY is that you can start with a position established by StackLayout or Grid and then move the elements relative to that position.

Text effects

One common application of TranslationX and TranslationY is to apply little offsets to elements that shift them slightly from their layout position. This is sometimes useful if you have multiple overlapping elements in a single-cell Grid and need to shift one so that it peeks out from under another.

You can even use this technique for common text effects. The XAML-only TextOffsets program puts three pairs of Label elements in three single-cell Grid layouts. The pair of Label elements in each Grid are the same size and display the same text:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="TextOffsets.TextOffsetsPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <Color x:Key="backgroundColor">White</Color>

 <Color x:Key="foregroundColor">Black</Color>

 <Style TargetType="Grid">

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="72" />

 <Setter Property="FontAttributes" Value="Bold" />

 <Setter Property="HorizontalOptions" Value="Center" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout BackgroundColor="{StaticResource backgroundColor}">

 <Grid>

 <Label Text="Shadow"

 TextColor="{StaticResource foregroundColor}"

 Opacity="0.5"

 TranslationX="5"

 TranslationY="5" />

 <Label Text="Shadow"

 TextColor="{StaticResource foregroundColor}" />

 </Grid>

 <Grid>

 <Label Text="Emboss"

 TextColor="{StaticResource foregroundColor}"

 TranslationX="2"

 TranslationY="2" />

 <Label Text="Emboss"

 TextColor="{StaticResource backgroundColor}" />

 </Grid>

 <Grid>

 <Label Text="Engrave"

 TextColor="{StaticResource foregroundColor}"

 TranslationX="-2"

 TranslationY="-2" />

 <Label Text="Engrave"

 TextColor="{StaticResource backgroundColor}" />

 </Grid>

 </StackLayout>

</ContentPage>

Normally, the first Label in the Children collection of the Grid would be obscured by the second Label, but TranslationX and TranslationY values applied on the first Label allow it to be partially visible. The same basic technique results in three different text effects: a drop shadow, text that appears to be raised up from the surface of the screen, and text that looks like it’s chiseled into the screen:

[image: Image]

These effects give a somewhat 3D appearance to otherwise flat images. The optical illusion is based on a convention that light illuminates the screen from the upper-left corner. Therefore, shadows are thrown below and to the right of raised objects. The difference between the embossed and engraved effects is entirely due to the relative positions of the obscured black text and the white text on top. If the black text is a little below and to the right, it becomes the shadow of raised white text. If the black text is above and to the left of the white text, it becomes a shadow of text sunk below the surface.

The next example is not something you’ll want to use on a regular basis because it requires multiple Label elements, but the technique illustrated in the BlockText program is useful if you want to supply a little “depth” to your text:

[image: Image]

The BlockText XAML file uses a single-cell Grid to display black text on a white background. The implicit (and extensive) Style defined for Label, however, specifies a TextColor property of Gray:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BlockText.BlockTextPage">

 <Grid x:Name="grid"

 BackgroundColor="White">

 <Grid.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="Text" Value="DEPTH" />

 <Setter Property="FontSize" Value="72" />

 <Setter Property="FontAttributes" Value="Bold" />

 <Setter Property="TextColor" Value="Gray" />

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="Center" />

 </Style>

 </ResourceDictionary>

 </Grid.Resources>

 <Label TextColor="Black" />

 </Grid>

</ContentPage>

The constructor in the code-behind file adds several more Label elements to the Grid. The Style ensures that they all get the same properties (including being colored gray), but each of these is offset from the Label in the XAML file:

Click here to view code image

public partial class BlockTextPage : ContentPage

{

 public BlockTextPage()

 {

 InitializeComponent();

 for (int i = 0; i < Device.OnPlatform(12, 12, 18); i++)

 {

 grid.Children.Insert(0, new Label

 {

 TranslationX = i,

 TranslationY = -i

 });

 }

 }

}

Here’s another case where Label elements overlap each other in the single-cell Grid, but now there are many more of them. The black Label in the XAML file must be the last child in the Children collection so that it’s on top of all the others. The element with the maximum TranslationX and TranslationY offset must be the first child in the Children collection, so it must be on the very bottom of the pile. That’s why each successive Label is inserted at the beginning of the Children collection.

Jumps and animations

The ButtonJump program is mostly intended to demonstrate that no matter where you move a Button on the screen by using translation, the Button still responds to taps in the normal manner. The XAML file centers the Button in the middle of the page (less the iOS padding at the top):

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ButtonJump.ButtonJumpPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentView>

 <Button Text="Tap me!"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Clicked="OnButtonClicked" />

 </ContentView>

</ContentPage>

For each call to the OnButtonClicked handler, the code-behind file sets the TranslationX and TranslationY properties to new values. The new values are randomly calculated but restricted so that the Button always remains within the edges of the screen:

Click here to view code image

public partial class ButtonJumpPage : ContentPage

{

 Random random = new Random();

 public ButtonJumpPage()

 {

 InitializeComponent();

 }

 void OnButtonClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 View container = (View)button.Parent;

 button.TranslationX = (random.NextDouble() - 0.5) * (container.Width - button.Width);

 button.TranslationY = (random.NextDouble() - 0.5) * (container.Height - button.Height);

 }

}

For example, if the Button is 80 units wide and the ContentView is 320 units wide, the difference is 240 units, which is 120 units on each side of the Button when it’s in the center of the ContentView. The NextDouble method of Random returns a number between 0 and 1, and subtracting 0.5 yields a number between –0.5 and 0.5, which means that TranslationX is set to a random value between –120 and 120. Those values potentially position the Button up to the edge of the screen but not beyond.

Keep in mind that TranslationX and TranslationY are properties rather than methods. They are not cumulative. If you set TranslationX to 100 and then to 200, the visual element isn’t offset by a total of 300 units from its layout position. The second TranslationX value of 200 replaces rather than adds to the initial value of 100.

A few seconds playing with the ButtonJump program probably raises a question: Can this be animated? Can the Button glide to the new point rather than simply jump there?

Of course. There are several ways to do it, including the Xamarin.Forms animation methods discussed in the next chapter. The XAML file in the ButtonGlide program is the same as the one in ButtonJump, except that the Button now has a name so that the program can easily reference it outside the Clicked handler:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ButtonGlide.ButtonGlidePage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentView>

 <Button x:Name="button"

 Text="Tap me!"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Clicked="OnButtonClicked" />

 </ContentView>

</ContentPage>

The code-behind file processes the button click by saving several essential pieces of information as fields: a Point indicating the starting location obtained from the current values of TranslationX and TranslationY; a vector (which is also a Point value) calculated by subtracting this starting point from a random destination point; and the current DateTime when the Button is clicked:

Click here to view code image

public partial class ButtonGlidePage : ContentPage

{

 static readonly TimeSpan duration = TimeSpan.FromSeconds(1);

 Random random = new Random();

 Point startPoint;

 Point animationVector;

 DateTime startTime;

 public ButtonGlidePage()

 {

 InitializeComponent();

 Device.StartTimer(TimeSpan.FromMilliseconds(16), OnTimerTick);

 }

 void OnButtonClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 View container = (View)button.Parent;

 // The start of the animation is the current Translation properties.

 startPoint = new Point(button.TranslationX, button.TranslationY);

 // The end of the animation is a random point.

 double endX = (random.NextDouble() - 0.5) * (container.Width - button.Width);

 double endY = (random.NextDouble() - 0.5) * (container.Height - button.Height);

 // Create a vector from start point to end point.

 animationVector = new Point(endX - startPoint.X, endY - startPoint.Y);

 // Save the animation start time.

 startTime = DateTime.Now;

 }

 bool OnTimerTick()

 {

 // Get the elapsed time from the beginning of the animation.

 TimeSpan elapsedTime = DateTime.Now - startTime;

 // Normalize the elapsed time from 0 to 1.

 double t = Math.Max(0, Math.Min(1, elapsedTime.TotalMilliseconds /

 duration.TotalMilliseconds));

 // Calculate the new translation based on the animation vector.

 button.TranslationX = startPoint.X + t * animationVector.X;

 button.TranslationY = startPoint.Y + t * animationVector.Y;

 return true;

 }

}

The timer callback is called every 16 milliseconds. That’s not an arbitrary number! Video displays commonly have a hardware refresh rate of 60 times per second. Hence, every frame is active for about 16 milliseconds. Pacing the animation at this rate is optimum. Once every 16 milliseconds, the callback calculates an elapsed time from the beginning of the animation and divides it by the duration. That’s a value typically called t (for time) that ranges from 0 to 1 over the course of the animation. This value is multiplied by the vector, and the result is added to startPoint. That’s the new value of TranslationX and TranslationY.

Although the timer callback is called continuously while the application is running, the TranslationX and TranslationY properties remain constant when the animation has completed. However, you don’t have to wait until the Button has stopped moving before you can tap it again. (You need to be quick, or you can change the duration property to something longer.) The new animation starts from the current position of the Button and entirely replaces the previous animation.

One of the advantages of calculating a normalized value of t is that it becomes fairly easy to modify that value so that the animation doesn’t have a constant velocity. For example, try adding this statement after the initial calculation of t:

Click here to view code image

t = Math.Sin(t * Math.PI / 2);

When the original value of t is 0 at the beginning of the animation, the argument to Math.Sin is 0 and the result is 0. When the original value of t is 1, the argument to Math.Sin is π/2, and the result is 1. However, the values between those two points are not linear. When the initial value of t is 0.5, this statement recalculates t as the sine of 45 degrees, which is 0.707. So by the time the animation is half over, the Button has already moved 70 percent of the distance to its destination. Overall, you’ll see an animation that is faster at the beginning and slower toward the end.

You’ll see a couple of different approaches to animation in this chapter. Even when you’ve become familiar with the animation system that Xamarin.Forms provides, sometimes it’s useful to do it yourself.

The scale transform

The VisualElement class defines a property named Scale that you can use to change the rendered size of an element. The Scale property does not affect layout (as will be demonstrated in the ButtonScaler program). It does not affect the get-only Width and Height properties of the element, or the get-only Bounds property that incorporates those Width and Height values. Changes to the Scale property do not cause a SizeChanged event to be triggered.

Scale affects the coordinates of a rendered visual element, but in a very different way from TranslationX and TranslationY. The two translation properties add values to coordinates, while the Scale property is multiplicative. The default value of Scale is 1. Values greater than 1 increase the size of the element. For example, a value of 3 makes the element three times its normal size. Values less than 1 decrease the size. A Scale value of 0 is legal but causes the element to be invisible. If you’re working with Scale and your element seems to have disappeared, check whether it’s somehow getting a Scale value of 0.

Values less than 0 are also legal and cause the element to be rotated 180 degrees besides being altered in size.

You can experiment with Scale settings using the SimpleScaleDemo program. (The program has a Simple prefix because it doesn’t include the effect of the AnchorX and AnchorY properties, which will be discussed shortly.) The XAML is similar to the TranslationDemo program:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SimpleScaleDemo.SimpleScaleDemoPage">

 <StackLayout Padding="20, 10">

 <Frame x:Name="frame"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 OutlineColor="Accent">

 <Label Text="TEXT"

 FontSize="Large" />

 </Frame>

 <Slider x:Name="scaleSlider"

 Minimum="-10"

 Maximum="10"

 Value="{Binding Source={x:Reference frame},

 Path=Scale}" />

 <Label Text="{Binding Source={x:Reference scaleSlider},

 Path=Value,

 StringFormat='Scale = {0:F1}'}"

 HorizontalTextAlignment="Center" />

 </StackLayout>

</ContentPage>

Here it is in action. Notice the negative Scale setting on the Android phone:

[image: Image]

On the Windows 10 Mobile display, the Frame has been scaled so large that you can’t see its left and right sides.

In real-life programming, you might want to use Scale to provide a little feedback to a user when a Button is clicked. The Button can briefly expand in size and go back down to normal again. However, Scale is not the only way to change the size of a Button. You can also change the Button size by increasing and decreasing the FontSize property. These two techniques are very different, however: The Scale property doesn’t affect layout, but the FontSize property does.

This difference is illustrated in the ButtonScaler program. The XAML file consists of two Button elements sandwiched between two pairs of BoxView elements:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ButtonScaler.ButtonScalerPage">

 <StackLayout>

 <!-- "Animate Scale" Button between two BoxViews. -->

 <BoxView Color="Accent"

 HeightRequest="4"

 VerticalOptions="EndAndExpand" />

 <Button Text="Animate Scale"

 FontSize="Large"

 BorderWidth="1"

 HorizontalOptions="Center"

 Clicked="OnAnimateScaleClicked" />

 <BoxView Color="Accent"

 HeightRequest="4"

 VerticalOptions="StartAndExpand" />

 <!-- "Animate FontSize" Button between two BoxViews. -->

 <BoxView Color="Accent"

 HeightRequest="4"

 VerticalOptions="EndAndExpand" />

 <Button Text="Animate FontSize"

 FontSize="Large"

 BorderWidth="1"

 HorizontalOptions="Center"

 Clicked="OnAnimateFontSizeClicked" />

 <BoxView Color="Accent"

 HeightRequest="4"

 VerticalOptions="StartAndExpand" />

 </StackLayout>

</ContentPage>

Here’s what the page looks like normally:

[image: Image]

The code-behind file implements a somewhat generalized animation method. It’s generalized in the sense that the parameters include two values indicating the starting value and the ending value of the animation. These two values are often called a from value and a to value. The animation arguments also include the duration of the animation and a callback method. The argument to the callback method is a value between the “from” value and the “to” value, and the calling method can use that value to do whatever it needs to implement the animation.

However, this animation method is not entirely generalized. It actually calculates a value from the from value to the to value during the first half of the animation, and then calculates a value from the to value back to the from value during the second half of the animation. This is sometimes called a reversing animation.

The method is called AnimateAndBack, and it uses a Task.Delay call to pace the animation and a .NET Stopwach object to determine elapsed time:

Click here to view code image

public partial class ButtonScalerPage : ContentPage

{

 public ButtonScalerPage()

 {

 InitializeComponent();

 }

 void OnAnimateScaleClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 AnimateAndBack(1, 5, TimeSpan.FromSeconds(3), (double value) =>

 {

 button.Scale = value;

 });

 }

 void OnAnimateFontSizeClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 AnimateAndBack(button.FontSize, 5 * button.FontSize,

 TimeSpan.FromSeconds(3), (double value) =>

 {

 button.FontSize = value;

 });

 }

 async void AnimateAndBack(double fromValue, double toValue,

 TimeSpan duration, Action<double> callback)

 {

 Stopwatch stopWatch = new Stopwatch();

 double t = 0;

 stopWatch.Start();

 while (t < 1)

 {

 double tReversing = 2 * (t < 0.5 ? t : 1 - t);

 callback(fromValue + (toValue - fromValue) * tReversing);

 await Task.Delay(16);

 t = stopWatch.ElapsedMilliseconds / duration.TotalMilliseconds;

 }

 stopWatch.Stop();

 callback(fromValue);

 }

}

The Clicked handlers for the two buttons each start an independent animation. The Clicked handler for the first Button animates its Scale property from 1 to 5 and back again, while the Clicked handler for the second Button animates its FontSize property with a scaling factor from 1 to 5 and back again.

Here’s the animation of the Scale property about midway through:

[image: Image]

As you can see, the scaling of the Button takes no regard of anything else that might be on the screen, and on the iOS and Windows 10 Mobile screens you can actually see through transparent areas of the Button to the top BoxView elements, while the opaque Android Button entirely hides that top BoxView. The BoxView below that top Button actually sits on top of the Button and is visible on all three platforms.

An animated increase of the FontSize property is handled a little differently on the three platforms:

[image: Image]

On iOS, the Button text is truncated in the middle and the Button remains the same height. On Android, the Button text wraps and the enlarged Button pushes the two BoxView elements aside. The Windows Runtime Button also truncates the text but in a different way than iOS, and like Android, the increased Button height also pushes the two BoxView elements away.

Animating the Scale property does not affect layout, but animating the FontSize property obviously does affect layout.

The little animation system implemented in ButtonScaler can animate the two buttons independently and simultaneously, but it nevertheless has a severe flaw. Try tapping a Button while that Button is currently being animated. A new animation will start up for that Button, and the two animations will interfere with each other.

There are a couple of ways to fix this. One possibility is to include a CancellationToken value as an argument to the AnimateAndBack method so that the method can be cancelled. (You can pass this same CancellationToken value to the Task.Delay call.) This would allow the Clicked handler for the Button to cancel any ongoing animations before it begins a new one.

Another option is for AnimateAndBack to return a Task object. This allows the Clicked handler for the buttons to use the await operator with AnimateAndBack. The Button can easily disable itself before calling AnimateAndBack and reenable itself when AnimateAndBack has completed the animation.

At any rate, if you want to implement feedback to the user with a brief increase and decrease in Button size, it’s safer and more efficient to animate Scale rather than FontSize. You’ll see other techniques to do this in the next chapter on animation, and in Chapter 23, “Triggers and behaviors.”

Another use of the Scale property is sizing an element to fit the available space. You might recall the FitToSizeClock program toward the end of Chapter 5, “Dealing with sizes.” You can do something very similar with the Scale property, but you won’t need to make estimations or recursive calculations.

The XAML file of the ScaleToSize program contains a Label missing some text and also missing a Scale setting to make the Label larger:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ScaleToSize.ScaleToSizePage"

 SizeChanged="OnSizeChanged">

 <Label x:Name="label"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 SizeChanged="OnSizeChanged" />

</ContentPage>

Both the ContentPage and the Label have SizeChanged handlers installed, and they both use the same handler. This handler simply sets the Scale property of the Label to the minimum of the width and height of the page divided by the width and height of the Label:

Click here to view code image

public partial class ScaleToSizePage : ContentPage

{

 public ScaleToSizePage()

 {

 InitializeComponent();

 UpdateLoop();

 }

 async void UpdateLoop()

 {

 while (true)

 {

 label.Text = DateTime.Now.ToString("T");

 await Task.Delay(1000);

 }

 }

 void OnSizeChanged(object sender, EventArgs args)

 {

 label.Scale = Math.Min(Width / label.Width, Height / label.Height);

 }

}

Because setting the Scale property doesn’t trigger another SizeChanged event, there’s no danger of triggering an endless recursive loop. But an actual infinite loop using Task.Delay keeps the Label updated with the current time:

[image: Image]

Of course, turning the phone sideways makes the Label larger:

[image: Image]

And here you can detect a little difference in the implementation of the Scale property in iOS compared with Android and the Windows Runtime. On Android and Windows, the resultant text looks as though it were drawn with a large font. However, the text on the iOS screen looks a little fuzzy. This fuzziness occurs when the operating system rasterizes the prescaled Label, which means that the operating system turns it into a bitmap. The bitmap is then expanded based on the Scale setting.

Anchoring the scale

As you’ve experimented with the Scale property, you’ve probably noticed that any expansion of the visual element occurs outward from the center of the element, and if you shrink a visual element down to nothing, it contracts toward the center as well.

Here’s another way to think about it: The point in the very center of the visual element remains in the same location regardless of the setting of the Scale property.

If you’re using the Scale property to expand a Button for visual feedback, or to fit a visual element within a particular space, that’s probably precisely what you want. However, for some other applications, you might instead prefer that another point remains in the same location with changes to the Scale property. Perhaps you want the upper-left corner of the visual element to remain in the same spot and for expansion of the object to occur toward the right and bottom.

You can control the scaling center with the AnchorX and AnchorY properties. These properties are of type double and are relative to the element being transformed. An AnchorX value of 0 indicates the left side of the element, and a value of 1 is the right side of the element. An AnchorY value of 0 is the top and 1 is the bottom. The default values are 0.5, which is the center. Setting both properties to 0 allows scaling to be relative to the upper-left corner of the element.

You can also set the properties to values less than 0 or greater than 1, in which case the center of scaling is outside the bounds of the element.

As you’ll see, the AnchorX and AnchorY properties also affect rotation. Rotation occurs around a particular point called the center of rotation, and these two properties set that point relative to the element being rotated.

The AnchoredScaleDemo program lets you experiment with AnchorX and AnchorY as they affect the Scale property. The XAML files contains two Stepper views that let you change the AnchorX and AnchorY properties from –1 to 2 in increments of 0.25:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="AnchoredScaleDemo.AnchoredScaleDemoPage">

 <StackLayout Padding="20, 10">

 <Frame x:Name="frame"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 OutlineColor="Accent">

 <Label Text="TEXT"

 FontSize="Large" />

 </Frame>

 <Slider x:Name="scaleSlider"

 Minimum="-10"

 Maximum="10"

 Value="{Binding Source={x:Reference frame},

 Path=Scale}" />

 <Label Text="{Binding Source={x:Reference scaleSlider},

 Path=Value,

 StringFormat='Scale = {0:F1}'}"

 HorizontalTextAlignment="Center" />

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center">

 <Stepper x:Name="anchorXStepper"

 Minimum="-1"

 Maximum="2"

 Increment="0.25"

 Value="{Binding Source={x:Reference frame},

 Path=AnchorX}" />

 <Label Text="{Binding Source={x:Reference anchorXStepper},

 Path=Value,

 StringFormat='AnchorX = {0:F2}'}"

 VerticalOptions="Center"/>

 </StackLayout>

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center">

 <Stepper x:Name="anchorYStepper"

 Minimum="-1"

 Maximum="2"

 Increment="0.25"

 Value="{Binding Source={x:Reference frame},

 Path=AnchorY}" />

 <Label Text="{Binding Source={x:Reference anchorYStepper},

 Path=Value,

 StringFormat='AnchorY = {0:F2}'}"

 VerticalOptions="Center"/>

 </StackLayout>

 </StackLayout>

</ContentPage>

Here are some screenshots showing (from left to right) scaling that is relative to the upper-left corner, relative to the lower-right corner, and relative to the center bottom:

[image: Image]

If you are familiar with iOS programming, you know about the similar anchorPoint property. In iOS, this property affects both positioning and the transform center. In Xamarin.Forms, the AnchorX and AnchorY properties specify only the transform center.

This means that the iOS implementation of Xamarin.Forms must compensate for the difference between anchorPoint and the AnchorX and AnchorY properties, and in the latest version of Xamarin.Forms available as this edition was going to print, that compensation is not working quite right.

To see the problem, deploy the AnchoredScaleDemo program to an iPhone or iPhone simulator. Leave Scale set at its default value of 1, but set both AnchorX and AnchorY to 1. The Frame with the Label should not move from the center of its slot in the StackLayout because the AnchorX and AnchorY properties should only affect the center of scaling and rotation.

Now change the orientation of the phone or simulator from portrait to landscape. The Frame is no longer centered. Now change it back to portrait. It doesn’t return to its original centered position.

This problem affects every program in this chapter (and the next chapter) that use nondefault values of AnchorX and AnchorY. Sometimes the sample programs in these chapters set AnchorX and AnchorY after an element has been resized to try to avoid the problem, but as long as the phone can change orientation from portrait to landscape, the problem cannot be circumvented, and there’s nothing an application can do to compensate for the problem.

The rotation transform

The Rotation property rotates a visual element on the surface of the screen. Set the Rotation property to an angle in degrees (not radians). Positive angles rotate the element clockwise. You can set Rotation to angles less than 0 or greater than 360. The actual rotation angle is the value of the Rotation property modulo 360. The element is rotated around a point relative to itself specified with the AnchorX and AnchorY properties.

The PlaneRotationDemo program lets you experiment with these three properties. The XAML file is very similar to the AnchoredScaleDemo program:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PlaneRotationDemo.PlaneRotationDemoPage">

 <StackLayout Padding="20, 10">

 <Frame x:Name="frame"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 OutlineColor="Accent">

 <Label Text="TEXT"

 FontSize="Large" />

 </Frame>

 <Slider x:Name="rotationSlider"

 Maximum="360"

 Value="{Binding Source={x:Reference frame},

 Path=Rotation}" />

 <Label Text="{Binding Source={x:Reference rotationSlider},

 Path=Value,

 StringFormat='Rotation = {0:F0}'}"

 HorizontalTextAlignment="Center" />

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center">

 <Stepper x:Name="anchorXStepper"

 Minimum="-1"

 Maximum="2"

 Increment="0.25"

 Value="{Binding Source={x:Reference frame},

 Path=AnchorX}" />

 <Label Text="{Binding Source={x:Reference anchorXStepper},

 Path=Value,

 StringFormat='AnchorX = {0:F2}'}"

 VerticalOptions="Center"/>

 </StackLayout>

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center">

 <Stepper x:Name="anchorYStepper"

 Minimum="-1"

 Maximum="2"

 Increment="0.25"

 Value="{Binding Source={x:Reference frame},

 Path=AnchorY}" />

 <Label Text="{Binding Source={x:Reference anchorYStepper},

 Path=Value,

 StringFormat='AnchorY = {0:F2}'}"

 VerticalOptions="Center"/>

 </StackLayout>

 </StackLayout>

</ContentPage>

Here are several combinations of Rotation angles and rotation centers:

[image: Image]

The iOS screen shows rotation around the center of the element (which is always safe on iOS despite the AnchorX and AnchorY bug), while the rotation on the Android screen is around the upper-left corner, and the rotation on the Windows 10 Mobile screen is centered on the bottom-right corner.

Rotated text effects

Rotation is fun. It’s more fun when rotation is animated (as you’ll see in the next chapter), but it’s fun even with static images.

Several of the rotation examples in this chapter and the next involve arranging visual elements in a circle, so let’s begin by attempting to display a simple circle. Of course, without an actual graphics system in Xamarin.Forms, we’ll need to be inventive and construct this circle with BoxView. If you use many small BoxView elements and arrange them properly, it should be possible to create something that looks like a smooth round circle, like this:

[image: Image]

Each circle is composed of 64 BoxView elements, each of which is 4 units in thickness. These two values are defined as constants in the code-only BoxViewCircle program:

Click here to view code image

public class BoxViewClockPage : ContentPage

{

 const int COUNT = 64;

 const double THICKNESS = 4;

 public BoxViewClockPage()

 {

 AbsoluteLayout absoluteLayout = new AbsoluteLayout();

 Content = absoluteLayout;

 for (int index = 0; index < COUNT; index++)

 {

 absoluteLayout.Children.Add(new BoxView

 {

 Color = Color.Accent,

 });

 }

 absoluteLayout.SizeChanged += (sender, args) =>

 {

 Point center = new Point(absoluteLayout.Width / 2, absoluteLayout.Height / 2);

 double radius = Math.Min(absoluteLayout.Width, absoluteLayout.Height) / 2;

 double circumference = 2 * Math.PI * radius;

 double length = circumference / COUNT;

 for (int index = 0; index < absoluteLayout.Children.Count; index++)

 {

 BoxView boxView = (BoxView)absoluteLayout.Children[index];

 // Position every BoxView at the top.

 AbsoluteLayout.SetLayoutBounds(boxView,

 new Rectangle(center.X - length / 2,

 center.Y - radius,

 length,

 THICKNESS));

 // Set the AnchorX and AnchorY properties so rotation is

 // around the center of the AbsoluteLayout.

 boxView.AnchorX = 0.5;

 boxView.AnchorY = radius / THICKNESS;

 // Set a unique Rotation for each BoxView.

 boxView.Rotation = index * 360.0 / COUNT;

 }

 };

 }

}

All the calculations occur in the SizeChanged handler of the AbsoluteLayout. The minimum of the width and height of the AbsoluteLayout is the radius of a circle. Knowing that radius allows calculating a circumference, and hence a length for each individual BoxView.

The for loop positions each BoxView in the same location: at the center top of the circle. Each BoxView must then be rotated around the center of the circle. This requires setting an AnchorY property that corresponds to the distance from the top of the BoxView to the center of the circle. That distance is the radius value, but it must be in units of the BoxView height, which means that radius must be divided by THICKNESS.

There’s an alternative way to position and rotate each BoxView that doesn’t require setting the AnchorX and AnchorY properties. This approach is better for iOS. The for loop begins by calculating x and y values corresponding to the center of each BoxView around the perimeter of the circle. These calculations require using sine and cosine functions with a radius value that compensates for the thickness of the BoxView:

Click here to view code image

for (int index = 0; index < absoluteLayout.Children.Count; index++)

{

 BoxView boxView = (BoxView)absoluteLayout.Children[index];

 // Find point in center of each positioned BoxView.

 double radians = index * 2 * Math.PI / COUNT;

 double x = center.X + (radius - THICKNESS / 2) * Math.Sin(radians);

 double y = center.Y - (radius - THICKNESS / 2) * Math.Cos(radians);

 // Position each BoxView at that point.

 AbsoluteLayout.SetLayoutBounds(boxView,

 new Rectangle(x - length / 2,

 y - THICKNESS / 2,

 length,

 THICKNESS));

 // Set a unique Rotation for each BoxView.

 boxView.Rotation = index * 360.0 / COUNT;

}

The x and y values indicate the position desired for the center of each BoxView, while AbsoluteLayout.SetLayoutBounds requires the location of the top-left corner of each BoxView, so these x and y values are adjusted for that difference when used with SetLayoutBounds. Each BoxView is then rotated around its own center.

Now let’s rotate some text. The RotatedText program is implemented entirely in XAML:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="RotatedText.RotatedTextPage">

 <Grid>

 <Grid.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="Text" Value=" ROTATE" />

 <Setter Property="FontSize" Value="32" />

 <Setter Property="Grid.Column" Value="1" />

 <Setter Property="VerticalOptions" Value="Center" />

 <Setter Property="HorizontalOptions" Value="Start" />

 <Setter Property="AnchorX" Value="0" />

 </Style>

 </ResourceDictionary>

 </Grid.Resources>

 <Label Rotation="0" />

 <Label Rotation="22.5" />

 <Label Rotation="45" />

 <Label Rotation="67.5" />

 <Label Rotation="90" />

 <Label Rotation="112.5" />

 <Label Rotation="135" />

 <Label Rotation="157.5" />

 <Label Rotation="180" />

 <Label Rotation="202.5" />

 <Label Rotation="225" />

 <Label Rotation="246.5" />

 <Label Rotation="270" />

 <Label Rotation="292.5" />

 <Label Rotation="315" />

 <Label Rotation="337.5" />

 </Grid>

</ContentPage>

The program consists of 16 Label elements in a Grid with an implicit Style setting six properties, including the Text and FontSize. Although this Grid might seem to be only a single cell, it’s actually a two-column Grid because the Style sets the Grid.Column property of each Label to 1, which is the second column. The Style centers each Label vertically within the second column and starts it at the left of that column, which is the center of the page. However, the text begins with several blank spaces, so it seems to start a bit to the right of the center of the page.

The Style concludes by setting the AnchorX value to 0, which sets the center of rotation to the vertical center of the left edge of each Label. Each Label then gets a unique Rotation setting:

[image: Image]

Obviously, the spaces preceding the “ROTATE” string were chosen so that the vertical bars of the R combine to form a 16-sided polygon that seems almost like a circle.

You can also rotate individual letters in a text string if each letter is a separate Label element. You begin by positioning these Label elements in an AbsoluteLayout and then apply a Rotation property to make it appear as if the letters follow a particular nonlinear path. The CircularText program arranges these letters in a circle.

CircularText is a code-only program and is similar to the alternate BoxViewCircle algorithm. The constructor is responsible for creating all the individual Label elements and adding them to the Children collection of the AbsoluteLayout. No positioning or rotating is performed during the constructor because the program doesn’t yet know how large these individual Label elements are, or how large the AbsoluteLayout is:

Click here to view code image

public class CircularTextPage : ContentPage

{

 AbsoluteLayout absoluteLayout;

 Label[] labels;

 public CircularTextPage()

 {

 // Create the AbsoluteLayout.

 absoluteLayout = new AbsoluteLayout();

 absoluteLayout.SizeChanged += (sender, args) =>

 {

 LayOutLabels();

 };

 Content = absoluteLayout;

 // Create the Labels.

 string text = "Xamarin.Forms makes me want to code more with ";

 labels = new Label[text.Length];

 double fontSize = 32;

 int countSized = 0;

 for (int index = 0; index < text.Length; index++)

 {

 char ch = text[index];

 Label label = new Label

 {

 Text = ch == ' ' ? "-" : ch.ToString(),

 Opacity = ch == ' ' ? 0 : 1,

 FontSize = fontSize,

 };

 label.SizeChanged += (sender, args) =>

 {

 if (++countSized >= labels.Length)

 LayOutLabels();

 };

 labels[index] = label;

 absoluteLayout.Children.Add(label);

 }

 }

 void LayOutLabels()

 {

 // Calculate the total width of the Labels.

 double totalWidth = 0;

 foreach (Label label in labels)

 {

 totalWidth += label.Width;

 }

 // From that, get a radius of the circle to center of Labels.

 double radius = totalWidth / 2 / Math.PI + labels[0].Height / 2;

 Point center = new Point(absoluteLayout.Width / 2, absoluteLayout.Height / 2);

 double angle = 0;

 for (int index = 0; index < labels.Length; index++)

 {

 Label label = labels[index];

 // Set the position of the Label.

 double x = center.X + radius * Math.Sin(angle) - label.Width / 2;

 double y = center.Y - radius * Math.Cos(angle) - label.Height / 2;

 AbsoluteLayout.SetLayoutBounds(label, new Rectangle(x, y, AbsoluteLayout.AutoSize,

 AbsoluteLayout.AutoSize));

 // Set the rotation of the Label.

 label.Rotation = 360 * angle / 2 / Math.PI;

 // Increment the rotation angle.

 if (index < labels.Length - 1)

 {

 angle += 2 * Math.PI * (label.Width + labels[index + 1].Width) / 2 / totalWidth;

 }

 }

 }

}

Notice the code that creates each Label element: If the character in the original text string is a space, the Text property of the Label is assigned a dash, but the Opacity property is set to 0 so that the dash is invisible. This is a little trick to fix a problem that showed up on the Windows Runtime platforms: If the Label contains only a space, then the width of the Label is calculated as zero and all the words run together.

All the action happens in the LayOutLabels method. This method is called from two SizeChanged handlers expressed as lambda functions in the constructor. The SizeChanged handler for the AbsoluteLayout is called soon after the program starts up or when the phone changes orientation. The SizeChanged handler for the Label elements keeps track of how many have been sized so far, and only calls LayOutLabels when they are all ready.

The LayOutLabels method calculates the total width of all the Label elements. If that’s assumed to be the circumference of a circle, then the method can easily compute a radius of that circle. But that radius is actually extended by half the height of each Label. The endpoint of that radius thus coincides with the center of each Label. The Label is positioned within the AbsoluteLayout by subtracting half the Label width and height from that point.

An accumulated angle is used both for finding the endpoint of the radius for the next Label and for rotating the Label. Because the endpoint of each radius coincides with the center of each Label, the angle is incremented based on half the width of the current Label and half the width of the next Label.

Although the math is a bit tricky, the result is worth it:

[image: Image]

This program does not set nondefault values of AnchorX and AnchorY, so there is no problem changing the phone orientation on iOS.

An analog clock

One of the classic sample programs for a graphical user interface is an analog clock. Once again, BoxView comes to the rescue for the hands of the clock. These BoxView elements must be rotated based on the hours, minutes, and seconds of the current time.

Let’s first take care of the rotation mathematics with a class named AnalogClockViewModel, which is included in the Xamarin.FormsBook.Toolkit library:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class AnalogClockViewModel : ViewModelBase

 {

 double hourAngle, minuteAngle, secondAngle;

 public AnalogClockViewModel()

 {

 UpdateLoop();

 }

 async void UpdateLoop()

 {

 while (true)

 {

 DateTime dateTime = DateTime.Now;

 HourAngle = 30 * (dateTime.Hour % 12) + 0.5 * dateTime.Minute;

 MinuteAngle = 6 * dateTime.Minute + 0.1 * dateTime.Second;

 SecondAngle = 6 * dateTime.Second + 0.006 * dateTime.Millisecond;

 await Task.Delay(16);

 }

 }

 public double HourAngle

 {

 private set { SetProperty(ref hourAngle, value); }

 get { return hourAngle; }

 }

 public double MinuteAngle

 {

 private set { SetProperty(ref minuteAngle, value); }

 get { return minuteAngle; }

 }

 public double SecondAngle

 {

 private set { SetProperty(ref secondAngle, value); }

 get { return secondAngle; }

 }

 }

}

Each of the three properties is updated 60 times per second in a loop paced by a Task.Delay call. Of course, the hour hand rotation angle is based not only on the hour, but on a fractional part of that hour available from the Minute part of the DateTime value. Similarly, the angle of the minute hand is based on the Minute and Second properties, and the second hand is based on the Second and Millisecond properties.

These three properties of the ViewModel can be bound to the Rotation properties of the three hands of the analog clock.

As you know, some clocks have a smoothly gliding second hand, while the second hand of other clocks moves in discrete ticks. The AnalogClockViewModel class seems to impose a smooth second hand, but if you want discrete ticks, you can supply a value converter for that purpose:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class SecondTickConverter : IValueConverter

 {

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return 6.0 * (int)((double)value / 6);

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return (double)value;

 }

 }

}

The name of this class and even the tiny code might be obscure if you didn’t know what it was supposed to do: The Convert method converts an angle of type double ranging from 0 to 360 degrees with fractional parts into discrete angle values of 0, 6, 12, 18, 24, and so forth. These angles correspond to the discrete positions of the second hand.

The MinimalBoxViewClock program instantiates three BoxView elements in its XAML file and binds the Rotation properties to the three properties of AnalogClockViewModel:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="MinimalBoxViewClock.MinimalBoxViewClockPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:SecondTickConverter x:Key="secondTick" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <AbsoluteLayout BackgroundColor="White"

 SizeChanged="OnAbsoluteLayoutSizeChanged">

 <AbsoluteLayout.BindingContext>

 <toolkit:AnalogClockViewModel />

 </AbsoluteLayout.BindingContext>

 <BoxView x:Name="hourHand"

 Color="Black"

 Rotation="{Binding HourAngle}" />

 <BoxView x:Name="minuteHand"

 Color="Black"

 Rotation="{Binding MinuteAngle}" />

 <BoxView x:Name="secondHand"

 Color="Black"

 Rotation="{Binding SecondAngle, Converter={StaticResource secondTick}" />

 </AbsoluteLayout>

</ContentPage>

The code-behind file sets the sizes of these BoxView clock hands based on the size of the AbsoluteLayout, and it sets the locations so that all hands point up from the center of the clock in the 12:00 position:

Click here to view code image

public partial class MinimalBoxViewClockPage : ContentPage

{

 public MinimalBoxViewClockPage()

 {

 InitializeComponent();

 }

 void OnAbsoluteLayoutSizeChanged(object sender, EventArgs args)

 {

 AbsoluteLayout absoluteLayout = (AbsoluteLayout)sender;

 // Calculate a center and radius for the clock.

 Point center = new Point(absoluteLayout.Width / 2, absoluteLayout.Height / 2);

 double radius = Math.Min(absoluteLayout.Width, absoluteLayout.Height) / 2;

 // Position all hands pointing up from center.

 AbsoluteLayout.SetLayoutBounds(hourHand,

 new Rectangle(center.X - radius * 0.05,

 center.Y - radius * 0.6,

 radius * 0.10, radius * 0.6));

 AbsoluteLayout.SetLayoutBounds(minuteHand,

 new Rectangle(center.X - radius * 0.025,

 center.Y - radius * 0.7,

 radius * 0.05, radius * 0.7));

 AbsoluteLayout.SetLayoutBounds(secondHand,

 new Rectangle(center.X - radius * 0.01,

 center.Y - radius * 0.9,

 radius * 0.02, radius * 0.9));

 // Set the anchor to bottom center of BoxView.

 hourHand.AnchorY = 1;

 minuteHand.AnchorY = 1;

 secondHand.AnchorY = 1;

 }

}

For example, the hour hand is given a length of 0.60 of the clock’s radius and a width of 0.10 of the clock’s radius. This means that the horizontal position of the hour hand’s top-left corner must be set to half its width (0.05 times the radius) to the left of the clock’s center. The vertical position of the hour hand is the hand’s height above the clock’s center. The settings of AnchorY ensure that all rotations are relative to the center bottom of each clock hand:

[image: Image]

Of course, this program is called MinimalBoxViewClock for a reason. It doesn’t have convenient tick marks around the circumference, so it’s a little hard to discern the actual time. Also, the clock hands should more properly overlap the center of the clock face so that they at least seem to be attached to a rotating pin or tube.

Both these problems are addressed in the nonminimal BoxViewClock. The XAML file is very similar to MinimalBoxViewClock, but the code-behind file is more extensive. It begins with a small structure named HandParams, which defines the size of each hand relative to the radius but also includes an Offset value. This is a fraction of the total length of the hand, indicating where it aligns with the center of the clock face. It also becomes the AnchorY value for rotations:

Click here to view code image

public partial class BoxViewClockPage : ContentPage

{

 // Structure for storing information about the three hands.

 struct HandParams

 {

 public HandParams(double width, double height, double offset) : this()

 {

 Width = width;

 Height = height;

 Offset = offset;

 }

 public double Width { private set; get; } // fraction of radius

 public double Height { private set; get; } // ditto

 public double Offset { private set; get; } // relative to center pivot

 }

 static readonly HandParams secondParams = new HandParams(0.02, 1.1, 0.85);

 static readonly HandParams minuteParams = new HandParams(0.05, 0.8, 0.9);

 static readonly HandParams hourParams = new HandParams(0.125, 0.65, 0.9);

 BoxView[] tickMarks = new BoxView[60];

 public BoxViewClockPage()

 {

 InitializeComponent();

 // Create the tick marks (to be sized and positioned later).

 for (int i = 0; i < tickMarks.Length; i++)

 {

 tickMarks[i] = new BoxView { Color = Color.Black };

 absoluteLayout.Children.Add(tickMarks[i]);

 }

 }

 void OnAbsoluteLayoutSizeChanged(object sender, EventArgs args)

 {

 // Get the center and radius of the AbsoluteLayout.

 Point center = new Point(absoluteLayout.Width / 2, absoluteLayout.Height / 2);

 double radius = 0.45 * Math.Min(absoluteLayout.Width, absoluteLayout.Height);

 // Position, size, and rotate the 60 tick marks.

 for (int index = 0; index < tickMarks.Length; index++)

 {

 double size = radius / (index % 5 == 0 ? 15 : 30);

 double radians = index * 2 * Math.PI / tickMarks.Length;

 double x = center.X + radius * Math.Sin(radians) - size / 2;

 double y = center.Y - radius * Math.Cos(radians) - size / 2;

 AbsoluteLayout.SetLayoutBounds(tickMarks[index], new Rectangle(x, y, size, size));

 tickMarks[index].Rotation = 180 * radians / Math.PI;

 }

 // Position and size the three hands.

 LayoutHand(secondHand, secondParams, center, radius);

 LayoutHand(minuteHand, minuteParams, center, radius);

 LayoutHand(hourHand, hourParams, center, radius);

 }

 void LayoutHand(BoxView boxView, HandParams handParams, Point center, double radius)

 {

 double width = handParams.Width * radius;

 double height = handParams.Height * radius;

 double offset = handParams.Offset;

 AbsoluteLayout.SetLayoutBounds(boxView,

 new Rectangle(center.X - 0.5 * width,

 center.Y - offset * height,

 width, height));

 // Set the AnchorY property for rotations.

 boxView.AnchorY = handParams.Offset;

 }

}

The tick marks around the circumference of the clock face are also BoxView elements, but there are 60 of them with two different sizes, and they are positioned using techniques you’ve already seen. The visuals are surprisingly good considering the absence of a Xamarin.Forms graphics system:

[image: Image]

Best of all, you can actually tell the time.

This clock has another interesting feature that makes the movement of the hands quite mesmerizing. The second hand neither glides from second to second or makes discrete jumps; instead it has a more complex movement. It pulls back slightly, then jumps ahead but slightly overshooting its mark, and then backs up and comes to rest. How is this done?

In the next chapter, you’ll see that Xamarin.Forms implements several easing functions that can add realism to an animation by changing the animation’s velocity—by speeding it up and slowing it down—over the course of the animation. Such easing functions have become fairly standard throughout the computer industry, and Xamarin.FormsBook.Toolkit contains a value converter that implements an easing function called the back ease:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class SecondBackEaseConverter : IValueConverter

 {

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 int seconds = (int)((double)value / 6); // 0, 1, 2, ... 60

 double t = (double)value / 6 % 1; // 0 --> 1

 double v = 0; // 0 --> 1

 // Back-ease in and out functions from http://robertpenner.com/easing/

 if (t < 0.5)

 {

 t *= 2;

 v = 0.5 * t * t * ((1.7 + 1) * t - 1.7);

 }

 else

 {

 t = 2 * (t - 0.5);

 v = 0.5 * (1 + ((t - 1) * (t - 1) * ((1.7 + 1) * (t - 1) + 1.7) + 1));

 }

 return 6 * (seconds + v);

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return (double)value;

 }

 }

}

This converter is referenced in the BoxViewClock XAML file:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="BoxViewClock.BoxViewClockPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:SecondBackEaseConverter x:Key="secondBackEase" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <AbsoluteLayout x:Name="absoluteLayout"

 BackgroundColor="White"

 SizeChanged="OnAbsoluteLayoutSizeChanged">

 <AbsoluteLayout.BindingContext>

 <toolkit:AnalogClockViewModel />

 </AbsoluteLayout.BindingContext>

 <BoxView x:Name="hourHand"

 Color="Black"

 Rotation="{Binding HourAngle}" />

 <BoxView x:Name="minuteHand"

 Color="Black"

 Rotation="{Binding MinuteAngle}" />

 <BoxView x:Name="secondHand"

 Color="Black"

 Rotation="{Binding SecondAngle, Converter={StaticResource secondBackEase}}" />

 </AbsoluteLayout>

</ContentPage>

You’ll see more easing functions in the next chapter.

Vertical sliders?

Can certain views be rotated and still work as they should? More specifically, can the normal horizontal Slider elements of Xamarin.Forms be rotated to become vertical sliders?

Let’s try it. The VerticalSliders program contains three sliders in a StackLayout, and the StackLayout itself is rotated 90 degrees counterclockwise:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="VerticalSliders.VerticalSlidersPage">

 <StackLayout VerticalOptions="Center"

 Spacing="50"

 Rotation="-90">

 <Slider Value="0.25" />

 <Slider Value="0.5" />

 <Slider Value="0.75" />

 </StackLayout>

</ContentPage>

Sure enough, all three sliders are now oriented vertically:

[image: Image]

And they work! You can manipulate these vertical sliders just as though they had been designed for that purpose. The Minimum value corresponds to a thumb position at the bottom, and the Maximum value corresponds to the top.

However, the Xamarin.Forms layout system is completely unaware of the new locations of these sliders. For example, if you turn the phone to landscape mode, the sliders are resized for the width of the portrait screen and are much too large to be rotated into a vertical position. You’ll need to spend some extra effort in getting rotated sliders positioned and sized intelligently.

But it does work.

3D-ish rotations

Even though computer screens are flat and two-dimensional, it’s possible to draw visual objects on these screens that give the appearance of a third dimension. Earlier in this chapter you saw some text effects that give the hint of a third dimension, and Xamarin.Forms supports two additional rotations, named RotationX and RotationY, that also seem to break through the inherent two-dimensional flatness of the screen.

When dealing with 3D graphics, it’s convenient to think of the screen as part of a 3D coordinate system. The X axis is horizontal and the Y axis is vertical, as usual. But there is also an implicit Z axis that is orthogonal to the screen. This Z axis sticks out from the screen and extends through the back of the screen.

In 2D space, rotation occurs around a point. In 3D space, rotation occurs around an axis. The RotationX property is rotation around the X axis. The top and bottom of a visual object seem to move toward the viewer or away from the viewer. Similarly, RotationY is rotation around the Y axis. The left and right sides of a visual object seem to move toward the viewer or away from the viewer. By extension, the basic Rotation property is rotation around the Z axis. For consistency, the Rotation property should probably be named RotationZ, but that might confuse people who are thinking only in two dimensions.

The ThreeDeeRotationDemo program allows you to experiment with combinations of RotationX, RotationY, and Rotation, as well as explore how the AnchorX and AnchorY affect these two additional rotation properties:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ThreeDeeRotationDemo.ThreeDeeRotationDemoPage">

 <StackLayout Padding="20, 10">

 <Frame x:Name="frame"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 OutlineColor="Accent">

 <Label Text="TEXT"

 FontSize="72" />

 </Frame>

 <Slider x:Name="rotationXSlider"

 Maximum="360"

 Value="{Binding Source={x:Reference frame},

 Path=RotationX}" />

 <Label Text="{Binding Source={x:Reference rotationXSlider},

 Path=Value,

 StringFormat='RotationX = {0:F0}'}"

 HorizontalTextAlignment="Center" />

 <Slider x:Name="rotationYSlider"

 Maximum="360"

 Value="{Binding Source={x:Reference frame},

 Path=RotationY}" />

 <Label Text="{Binding Source={x:Reference rotationYSlider},

 Path=Value,

 StringFormat='RotationY = {0:F0}'}"

 HorizontalTextAlignment="Center" />

 <Slider x:Name="rotationZSlider"

 Maximum="360"

 Value="{Binding Source={x:Reference frame},

 Path=Rotation}" />

 <Label Text="{Binding Source={x:Reference rotationZSlider},

 Path=Value,

 StringFormat='Rotation(Z) = {0:F0}'}"

 HorizontalTextAlignment="Center" />

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center">

 <Stepper x:Name="anchorXStepper"

 Minimum="-1"

 Maximum="2"

 Increment="0.25"

 Value="{Binding Source={x:Reference frame},

 Path=AnchorX}" />

 <Label Text="{Binding Source={x:Reference anchorXStepper},

 Path=Value,

 StringFormat='AnchorX = {0:F2}'}"

 VerticalOptions="Center"/>

 </StackLayout>

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center">

 <Stepper x:Name="anchorYStepper"

 Minimum="-1"

 Maximum="2"

 Increment="0.25"

 Value="{Binding Source={x:Reference frame},

 Path=AnchorY}" />

 <Label Text="{Binding Source={x:Reference anchorYStepper},

 Path=Value,

 StringFormat='AnchorY = {0:F2}'}"

 VerticalOptions="Center"/>

 </StackLayout>

 </StackLayout>

</ContentPage>

Here’s a sample screen showing combinations of all three rotations:

[image: Image]

You’ll discover that the AnchorY property affects RotationX but not RotationY. For the default AnchorY value of 0.5, RotationX causes rotation to occur around the horizontal center of the visual object. When you set AnchorY to 0, rotation is around the top of the object, and for a value of 1, rotation is around the bottom.

Similarly, the AnchorX property affects RotationY but not RotationX. An AnchorX value of 0 causes RotationY to rotate the visual object around its left edge, while a value of 1 causes rotation around the right edge.

The directions of rotation are consistent among the three platforms, but they are best described in connection with conventions of 3D coordinate systems:

You might think there are many ways to arrange orthogonal X, Y, and Z axes. For example, increasing values of X might increase corresponding to leftward or rightward movement on the X axis, and increasing values of Y might correspond with up or down movement on the Y axis. However, many of these variations become equivalent when the axes are viewed from different directions. In reality, there are only two different ways to arrange X, Y, and Z axes. These two ways are known as right-hand and left-hand coordinate systems.

The 3D coordinate system implied by the three Rotation properties in Xamarin.Forms is left-handed: If you point the forefinger of your left hand in the direction of increasing X coordinates (which is to the right), and your middle finger in the direction of increasing Y coordinates (which is down), then your thumb points in the direction of increasing Z coordinates, which are coming out of the screen.

Your left hand can also be used to predict the direction of rotation: For rotation around a particular axis, first point your thumb in the direction of increasing values on that axis. For rotation around the X axis, point your left thumb right. For rotation around the Y axis, point your left thumb down. For rotation around the Z axis, point your left thumb coming out of the screen. The curl of the other fingers of your left hand indicates the direction of rotation for positive angles.

In summary:

• For increasing angles of RotationX, the top goes back and the bottom comes out.

• For increasing angles of RotationY, the right side goes back and the left side comes out.

• For increasing angles of Rotation, the rotation is clockwise.

Aside from these conventions, RotationX and RotationY do not exhibit much visual consistency among the three platforms. Although all three platforms implement perspective—that is, the part of the object seemingly closest to the view is larger than the part of the object farther away—the amount of perspective you’ll see is platform specific. There is no AnchorZ property that might allow fine-tuning these visuals.

But what’s perhaps most obvious is that these various Rotation properties would be very fun to animate.

Chapter 22. Animation

Animation is life, action, vitality, and on computers we try to imitate those qualities despite being restricted to manipulating tiny pixels on a flat screen.

Computer animation usually refers to any type of dynamic visual change. A Button that simply appears on a page is not animation. But a Button that fades into view, or moves into place, or grows in size from a dot—that’s animation. Very often, visual elements respond to user input with a change in appearance, such as a Button flash, a Stepper increment, or a ListView scroll. That, too, is animation.

It’s sometimes desirable for an application to go beyond those automatic and conventional animations and add its own. That’s what this chapter is all about.

You started seeing some of this in the previous chapter. You saw how to set transforms on visual elements and then use the timer or Task.Delay to animate them. Xamarin.Forms also includes its own animation infrastructure that exists in three levels of programming interfaces corresponding to the classes ViewExtensions, Animation, and AnimationExtensions. This animation system is versatile enough for complex jobs but exceptionally easy for simple jobs. This chapter begins with the easy high-level class (ViewExtensions) and then drills down to the more versatile lower levels.

The Xamarin.Forms animation classes are generally used to target properties of visual elements. A typical animation progressively changes a property from one value to another value over a period of time. The properties that are targeted by animations should be backed by bindable properties. This is not a requirement, but bindable properties are generally designed to respond to dynamic changes through the implementation of a property-changed handler. It does no good to animate a property of an object if the object doesn’t even realize that the property is being changed!

There is no XAML interface for the Xamarin.Forms animation system. Consequently, all the animations in this chapter are realized in code. However, as you’ll see in the next chapter, you can encapsulate animations in classes called trigger actions and behaviors, and then reference them from XAML files. Triggers and behaviors are generally the easiest way (and the recommended way) to incorporate animations within MVVM applications.

Exploring basic animations

Let’s dive in with a tiny program called AnimationTryout. The XAML file contains nothing but a centered Button:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="AnimationTryout.AnimationTryoutPage">

 <Button x:Name="button"

 Text="Tap Me!"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Clicked="OnButtonClicked" />

</ContentPage>

For this exercise, let’s ignore the actual essential function that the Button presumably performs within the application. In addition to wanting the button to carry out that function, suppose you’d like to spin it around in a circle when the user taps it. The Clicked handler in the code-behind file can do that by calling a method named RotateTo with an argument of 360 for the number of degrees to rotate:

Click here to view code image

public partial class AnimationTryoutPage : ContentPage

{

 public AnimationTryoutPage()

 {

 InitializeComponent();

 }

 void OnButtonClicked(object sender, EventArgs args)

 {

 button.RotateTo(360);

 }

}

The RotateTo method is an animation that targets the Rotation property of Button. However, the RotateTo method is not defined in the VisualElement class like the Rotation property. It is, instead, an extension method defined in the ViewExtensions class.

When you run this program and tap the button, the RotateTo method animates the button to spin around in a full 360 degree circle. Here it is in progress:

[image: Image]

The complete trip takes 250 milliseconds (one quarter of a second), which is the default duration of this RotateTo animation.

However, this program has a flaw. After you’ve watched the button spin around, try tapping it again. It does not rotate.

That program flaw reveals a little bit about what’s going on internally: On the first call to OnButtonClicked, the RotateTo method obtains the current Rotation property, which is 0, and then defines an animation of the Rotation property from that value to the argument of RotateTo, which is 360. When the animation concludes after a quarter second, the Rotation property is left at 360.

The next time the button is pressed, the current value is 360 and the argument to RotateTo is also 360. Internally, the animation still occurs, but the Rotation property doesn’t budge. It’s stuck at 360.

Setting the animation duration

Here’s a little variation of the Clicked handler in AnimationTryout. It doesn’t fix the problem with multiple taps of the Button, but it does extend the animation to two seconds so you can enjoy the animation longer. The duration is specified in milliseconds as the second argument to RotateTo. That second argument is optional and has a default value of 250:

Click here to view code image

void OnButtonClicked(object sender, EventArgs args)

{

 button.RotateTo(360, 2000);

}

With this variation, try tapping the Button and then tapping it again several times as it’s rotating. You’ll discover that repeated taps of the button do not send the Rotation property back to zero. Instead, the previous animation is cancelled and a new animation starts. But this new animation begins at whatever the Rotation property happens to be at the time of the tap. Each new animation still has a duration of 2 seconds, but the current Rotation property is closer to the end value of 360 degrees, so each new animation seems to be slower than the one before it. After the Rotation property finally reaches 360, however, further taps do nothing.

Relative animations

One solution to the problem of subsequent taps is to use RelRotateTo (“relative rotate to”), which obtains the current Rotation property for the start of the animation and then adds its argument to that value for the end of the animation. Here’s an example:

Click here to view code image

void OnButtonClicked(object sender, EventArgs args)

{

 button.RelRotateTo(90, 1000);

}

Each tap starts an animation that rotates the button an additional 90 degrees over the course of one second. If you happen to tap the button while an animation is in progress, a new animation starts from that position, so it might end at a position that is not an increment of 90 degrees. There is no change in velocity with multiple taps because the animation is always going at the rate of 90 degrees per second.

Both RotateTo and RelRotateTo have a common underlying structure. During the course of the animation, a value is calculated—often called t (for time) or, sometimes, progress. This value is based on elapsed time and the animation’s duration:

[image: Image]

Values of t range from 0 at the beginning of the animation to 1 at the end of the animation. The animation is also defined by two values (often the values of a property), one for the start of the animation and one for the end. These are often called start and end values, or from and to values. The animation calculates a value between from and to based on a simple interpolation formula:

value = fromValue + t · (toValue – fromValue)

When t equals 0, value equals fromValue and when t equals 1, value equals toValue.

Both RotateTo and RelRotateTo obtain fromValue from the current value of the Rotation property at the time the method is called. RotateTo sets toValue equal to its argument, while RelRotateTo sets toValue equal to fromValue plus its argument.

Awaiting animations

Another way to fix the problem with subsequent taps is to initialize the Rotation property prior to the call to RotateTo:

Click here to view code image

void OnButtonClicked(object sender, EventArgs args)

{

 button.Rotation = 0;

 button.RotateTo(360, 2000);

}

Now you can tap the Button again after it’s stopped and it will begin the animation from the beginning. Repeated taps while the Button is rotating also behave differently: They start over from 0 degrees.

Interestingly, this slight variation in the code does not allow subsequent taps:

Click here to view code image

void OnButtonClicked(object sender, EventArgs args)

{

 button.RotateTo(360, 2000);

 button.Rotation = 0;

}

This version behaves just like the version with only the RotateTo method. It seems as if setting the Rotation property to 0 after that call does nothing.

Why doesn’t it work? It doesn’t work because the RotateTo method is asynchronous. The method returns quickly after initiating the animation, but the animation itself occurs in the background. Setting the Rotation property to 0 at the time the RotateTo method returns has no apparent effect because the setting is very quickly superseded by the background RotateTo animation.

Because the method is asynchronous, RotateTo returns a Task object—more specifically, a Task<bool> object—and that means that you can call ContinueWith to specify a callback function that is invoked when the animation terminates. The callback can then set the Rotation property back to 0 after the animation has completed:

Click here to view code image

void OnButtonClicked(object sender, EventArgs args)

{

 button.RotateTo(360, 2000).ContinueWith((task) =>

 {

 button.Rotation = 0;

 });

}

The task object passed to ContinueWith is of type Task<bool>, and the ContinueWith callback can use the Result property to obtain that Boolean value. The value is true if the animation was cancelled and false if it ran to completion. You can easily confirm this by displaying the return value using a Debug.WriteLine call and looking at the results in the Output window of Visual Studio or Xamarin Studio:

Click here to view code image

void OnButtonClicked(object sender, EventArgs args)

{

 button.RotateTo(360, 2000).ContinueWith((task) =>

 {

 System.Diagnostics.Debug.WriteLine("Cancelled? " + task.Result);

 button.Rotation = 0;

 });

}

If you tap the Button while it’s being animated, you’ll see true values returned. Every new call to RotateTo cancels the previous animation. If you let the animation run to completion, you’ll see a false value returned.

It’s more likely that you’ll use await with the RotateTo method than ContinueWith:

Click here to view code image

async void OnButtonClicked(object sender, EventArgs args)

{

 bool wasCancelled = await button.RotateTo(360, 2000);

 button.Rotation = 0;

}

Or, if you don’t care about the return value:

Click here to view code image

async void OnButtonClicked(object sender, EventArgs args)

{

 await button.RotateTo(360, 2000);

 button.Rotation = 0;

}

Notice the async modifier on the handler, which is required for any method that contains await operators.

If you’ve used other animation systems, it’s very likely that you were required to define a callback method if you wanted the application to be notified when an animation is completed. With await, determining when an animation is completed—perhaps to execute some other code—becomes trivial. In this particular example the code that is executed is fairly simple, but of course it could be more complex.

Sometimes you’ll want to let your animations just run to completion in the background—in which case it’s not necessary to use await with them—and sometimes you’ll want to do something when the animation has completed. But watch out: If the Button is also triggering some actual application function, you might not want to wait until the animation finishes before carrying that out.

RotateTo and RelRotateTo are two of several similar methods defined in the ViewExtensions class. Others that you’ll see in this chapter include ScaleTo, TranslateTo, FadeTo, and LayoutTo. They all return Task<bool> objects—false if the animation completed without interruption and true if it was cancelled.

Your application can cancel one or more of these animations with a call to the static method ViewExtensions.CancelAnimations. Unlike all the other methods in ViewExtensions, this is not an extension method. You need to call it like so:

Click here to view code image

ViewExtensions.CancelAnimations(button);

That will immediately cancel all animations initiated by the extension methods in the ViewExtensions class that are currently running on the button object.

Using await is particularly useful for stacking sequential animations:

Click here to view code image

async void OnButtonClicked(object sender, EventArgs args)

{

 await button.RotateTo(90, 250);

 await button.RotateTo(-90, 500);

 await button.RotateTo(0, 250);

}

The total animation defined here requires one second. The Button swings 90 degrees clockwise in the first quarter second, then 180 degrees counterclockwise in the next half second, and then 90 degrees clockwise to end up at 0 degrees again. You need await on the first two so that they’re sequential, but you don’t need it on the third if there’s nothing else to execute in the Clicked handler after the third animation has completed.

A composite animation like this is often known as a key-frame animation. You are specifying a series of rotation angles and times, and the overall animation is interpolating between those. In most animation systems, key-frame animations are often more difficult to use than simple animations. But with await, key-frame animations become trivial.

The return value of Task<bool> does not necessarily indicate that the animation is running in a secondary thread. In fact, at least part of the animation—the part that actually sets the Rotation property—must run in the user-interface thread. It is theoretically possible for the entire animation to run in the user-interface thread. As you saw in the previous chapter, animations that you create with Device.StartTimer or Task.Delay run entirely in the user-interface thread, although the underlying timer mechanism might involve a secondary thread.

You’ll see later in this chapter how an animation method can still return a Task object but run entirely in the user-interface thread. This technique allows code to use timers for pacing animations but still provide a structured Task-based notification when the code has completed.

Composite animations

You can mix awaited and nonawaited calls to create composite animations. For example, suppose you want the button to spin around 360 degrees at the same time it expands in size and then contracts.

The ViewExtensions class defines a method name ScaleTo that animates the Scale property just as RotateTo animates the Rotate property. The expansion and contraction of the Button size requires two sequential animations, but these should occur at the same time as the rotation, which only requires one call. For that reason, the RotateTo call can execute without an await, and while that animation is running in the background, the method can make two sequential calls to ScaleTo. Try this in AnimationTryout:

Click here to view code image

async void OnButtonClicked(object sender, EventArgs args)

{

 button.Rotation = 0;

 button.RotateTo(360, 2000);

 await button.ScaleTo(5, 1000);

 await button.ScaleTo(1, 1000);

}

The durations are made somewhat longer than they would be normally so that you can see what’s happening. The RotateTo method returns immediately, and the first ScaleTo animation begins at that time. But that await operator on the first ScaleTo delays the call of the second ScaleTo until the first ScaleTo has completed. At that time, the RotateTo animation is only half finished and the Button has rotated 180 degrees. During the next 1,000 milliseconds, that RotateTo completes at about the same time the second ScaleTo animation completes.

Here’s the Button as it’s making its way through the animation:

[image: Image]

Because the OnButtonClicked method is flagged with the async keyword and the first RotateTo does not have an await operator, you’ll get a warning message from the compiler that states: “Because this call is not awaited, execution of the current method continues before the call is completed. Consider applying the ′await′ operator to the result of the call.”

If you prefer not to see that warning message, you can turn it off with a #pragma statement that disables that particular warning:

#pragma warning disable 4014

You could place that statement at the top of your source code file to disable warnings throughout the file. Or you can place it before the offending call and reenable those warnings after the call by using:

#pragma warning restore 4014

Task.WhenAll and Task.WhenAny

Another powerful option is available that lets you combine animations in a very structured way without worrying about compiler warnings. The static Task.WhenAll and Task.WhenAny methods of the Task class are intended to run multiple asynchronous methods concurrently. Each of these methods can accept an array or other collection of multiple arguments, each of which is a method that returns a Task object. The Task.WhenAll and Task.WhenAny methods also return Task objects. The WhenAll method completes when all the methods in its collection have completed. The WhenAny method completes when any method in its collection completes execution while the other methods in the WhenAny collection continue to run.

Watch out: The Task class also includes static methods named WaitAll and WaitAny. You don’t want to use those methods. They block the user-interface thread until the task or tasks have completed.

Because the Task.WhenAll and Task.WhenAny methods themselves return Task objects, you can use await with them. Here’s one way to implement the composite animation shown above without any compiler warnings: The Task.WhenAny call contains two tasks, the first of which runs for two seconds and the second runs for one second. When that second task completes, the Task.WhenAny call also completes. The RotateTo method is still running, but now the second ScaleTo method can start:

Click here to view code image

async void OnButtonClicked(object sender, EventArgs args)

{

 button.Rotation = 0;

 await Task.WhenAny<bool>

 (

 button.RotateTo(360, 2000),

 button.ScaleTo(5, 1000)

);

 await button.ScaleTo(1, 1000);

}

You can also use Task.Delay with these methods to introduce little delays into the composite animation.

Rotation and anchors

The AnchorX and AnchorY properties set the center of scaling or rotation for the Scale and Rotation properties, so they also affect the ScaleTo and RotateTo animations.

The CircleButton program rotates a Button in a circle, but not like the code you’ve seen previously. This program rotates a Button around the center of the screen, and for that it requires AnchorX and AnchorY.

The XAML file puts the Button in an AbsoluteLayout:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="CircleButton.CircleButtonPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <AbsoluteLayout x:Name="absoluteLayout"

 SizeChanged="OnSizeChanged">

 <Button x:Name="button"

 Text="Tap Me!"

 FontSize="Large"

 SizeChanged="OnSizeChanged"

 Clicked="OnButtonClicked" />

 </AbsoluteLayout>

</ContentPage>

The only reason this program uses an AbsoluteLayout for the Button is to place the Button precisely at a particular location on the screen. The XAML file sets the same SizeChanged handler on both the AbsoluteLayout and the Button. That event handler saves the center of the AbsoluteLayout as the Point field named center and also saves the distance from that center to the nearest edge as the radius field:

Click here to view code image

public partial class CircleButtonPage : ContentPage

{

 Point center;

 double radius;

 public CircleButtonPage()

 {

 InitializeComponent();

 }

 void OnSizeChanged(object sender, EventArgs args)

 {

 center = new Point(absoluteLayout.Width / 2, absoluteLayout.Height / 2);

 radius = Math.Min(absoluteLayout.Width, absoluteLayout.Height) / 2;

 AbsoluteLayout.SetLayoutBounds(button,

 new Rectangle(center.X - button.Width / 2, center.Y - radius,

 AbsoluteLayout.AutoSize,

 AbsoluteLayout.AutoSize));

 }

 ...

}

The OnSizeChanged handler concludes by positioning the Button in the horizontal center of the page, but with its top edge a distance of radius above the center of the AbsoluteLayout:

[image: Image]

Recall that the AnchorX and AnchorY properties must be set to numbers that are relative to the width and height of the Button. An AnchorX value of 0 refers to the left edge of the Button and a value of 1 refers to the right edge. Similarly, an AnchorY value of 0 refers to the top of the Button and a value of 1 refers to the bottom.

To rotate this Button around the point saved as center, AnchorX and AnchorY must be set to values based on the center point. The center of the Button is directly above the center of the page, so the default 0.5 value of AnchorX is fine. AnchorY, however, needs a value from the top of the Button to the center point, but in units of the button’s height:

Click here to view code image

public partial class CircleButtonPage : ContentPage

{

 ...

 async void OnButtonClicked(object sender, EventArgs args)

 {

 button.Rotation = 0;

 button.AnchorY = radius / button.Height;

 await button.RotateTo(360, 1000);

 }

}

The Button then makes a full rotation of 360 degrees around the center of the page. Here it is in progress:

[image: Image]

Easing functions

You’ve already seen the following key-frame animation that swings the Button one way and then the other:

Click here to view code image

async void OnButtonClicked(object sender, EventArgs args)

{

 await button.RotateTo(90, 250);

 await button.RotateTo(-90, 500);

 await button.RotateTo(0, 250);

}

But the animation doesn’t quite look right. The movement seems very mechanical and robotic because the rotations have a constant angular velocity. Shouldn’t the Button at least slow down as it reverses direction and then speed up again?

You can control velocity changes in animations with the use of easing functions. You already saw a couple of homemade easing functions in Chapter 21, “Transforms.” Xamarin.Forms includes an Easing class that allows you to specify a simple transfer function that controls how animations speed up or slow down as they’re running.

You’ll recall that animations generally involve a variable named t or progress that increases from 0 to 1 over the course of the animation. This t variable is then used in an interpolation between from and to values:

value = fromValue + t · (toValue (toValue – fromValue)

The easing function introduces a little transfer function into this calculation:

value = fromValue + EasingFunc(t) · (toValue – fromValue)

The Easing class defines a method named Ease that performs this job. For an input of 0, the Ease method returns 0, and for an input of 1, Ease returns 1. Between those two values, some mathematics—often a rather tiny chunk of mathematics—gives the animation a nonconstant velocity. (As you’ll see later, it’s not entirely necessary that the Ease method maps 0 to 0 and 1 to 1, but that’s certainly the normal case.)

You can define your own easing functions, but the Easing class defines 11 static read-only fields of type Easing for your convenience:

• Linear (the default)

• SinIn, SinOut, and SinInOut

• CubicIn, CubicOut, and CubicInOut

• BounceIn and BounceOut

• SpringIn and SpringOut

The In and Out suffixes indicate whether the effect is prominent at the beginning of the animation, at the end, or both.

The SinIn, SinOut, and SinInOut easing functions are based on sine and cosine functions:

[image: Image]

In each of these graphs, the horizontal axis is linear time, left to right from 0 to 1. The vertical axis shows the output of the Ease method, 0 to 1 from bottom to top. A steeper, more vertical slope is faster, while a more horizontal slope is slower.

The SinIn is the first quadrant of a cosine curve but subtracted from 1 so it goes from 0 to 1; it starts off slow but gets faster. The SinOut is the first quadrant of a sine curve, starting off somewhat faster than a linear animation but slowing down toward the end. The SinInOut is the first half of a cosine curve (again adjusted to go from 0 to 1); it’s slow at the beginning and the end.

Because harmonic motion is best described by sine curves, these easing functions are ideal for a Button swinging to and fro. You can specify an object of type Easing as the last argument to the RotateTo methods:

Click here to view code image

async void OnButtonClicked(object sender, EventArgs args)

{

 await button.RotateTo(90, 250, Easing.SinOut);

 await button.RotateTo(-90, 500, Easing.SinInOut);

 await button.RotateTo(0, 250, Easing.SinIn);

}

And now the movement is much more natural. The Button slows down as it approaches the point when it reverses movement and then speeds up again.

The CubicIn easing function is simply the input raised to the third power. The CubicOut is the reverse of that, and CubicInOut combines the two effects:

[image: Image]

The difference in velocity is more accentuated than the sine easing.

The BounceIn and BounceOut bounce at the beginning or end, respectively:

[image: Image]

As you might imagine, the BounceOut is great for animating transforms that seem to come up against an obstacle.

The output of the SpringIn and SpringOut functions actually go beyond the range of 0 to 1. The SpringIn has an output that drops below 0 initially, and the SpringOut output goes beyond the value of 1:

[image: Image]

In other animation systems, these SpringIn and SpringOut patterns are usually known as back-ease functions, and you saw the underlying mathematics in the BoxViewClock sample in the previous chapter. In fact, you can rewrite the Convert method in SecondBackEaseConverter like this and it will work the same:

Click here to view code image

public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

{

 int seconds = (int)((double)value / 6); // 0, 1, 2, ... 60

 double t = (double)value / 6 % 1; // 0 --> 1

 double v = 0; // 0 --> 1

 if (t < 0.5)

 {

 v = 0.5 * Easing.SpringIn.Ease(2 * t);

 }

 else

 {

 v = 0.5 * (1 + Easing.SpringOut.Ease(2 * (t - 0.5)));

 }

 return 6 * (seconds + v);

}

There is no SpringInOut object, so the Convert method must break each second into two halves. When t is less than 0.5, the SpringIn object is applied. However, the input to the Ease method needs to be doubled to range from 0 to 1, and the output needs to be halved to range from 0 to 0.5. The SpringOut call must be adjusted likewise: When t ranges from 0.5 to 1, the input to the Ease method needs to range from 0 to 1, and the output needs to be adjusted to range from 0.5 to 1.

Let’s try some more easing functions. The BounceButton program has a XAML file that is the same as AnimationTryout, and the Clicked handler for the Button has just three statements:

Click here to view code image

public partial class BounceButtonPage : ContentPage

{

 public BounceButtonPage()

 {

 InitializeComponent();

 }

 async void OnButtonClicked(object sender, EventArgs args)

 {

 await button.TranslateTo(0, (Height - button.Height) / 2, 1000, Easing.BounceOut);

 await Task.Delay(2000);

 await button.TranslateTo(0, 0, 1000, Easing.SpringOut);

 }

}

The TranslateTo method animates the TranslationX and TranslationY properties. The first two arguments are named x and y, and they indicate the final values to be set to TranslationX and TranslationY. The first TranslateTo call here does not move the Button horizontally, so the first argument is 0. The second argument is the distance between the bottom of the Button and the bottom of the page. The Button is vertically centered on the page, so that distance is half the height of the page minus half the height of the Button.

That first animation is performed in 1,000 milliseconds. Then there’s a two-second delay, and the Button is translated back to its original position with x and y arguments of 0. The second TranslateTo animation uses the Easing.SpringOut function, so you probably expect the Button to over-shoot its mark and then settle back into its final position.

However, the TranslateTo method clamps the output of any easing function that goes outside the range of 0 to 1. Later on in this chapter you’ll see a fix for that flaw in the TranslateTo method.

Your own easing functions

It’s easy to make your own easing functions. All that’s required is a method of type Func<double, double>, which is a function with a double argument and a double return value. This is a transfer function: It should return 0 for an argument of 0, and 1 for an argument of 1. But between those two values, anything goes.

Generally you’ll define a custom easing function as the argument to the Easing constructor. That’s the only constructor Easing defines, but the Easing class also defines an implicit conversion from a Func<double, double> to Easing.

The Xamarin.Forms animation functions call the Ease method of the Easing object. That Ease method also has a double argument and a double return value, and it basically provides public access to the easing function you specify in the Easing constructor. (The graphs earlier in this chapter that showed the various predefined easing functions were generated by a program that accessed the Ease methods of the various predefined Easing objects.)

Here’s a program that incorporates two custom easing functions to control the scaling of a Button. These functions somewhat contradict the meaning of the word “ease,” which is why the program is called UneasyScale. The first of these two easing functions truncates the incoming value to the discrete values 0, 0.2, 0.4, 0.6, 0.8, and 1, so the Button increases in size in jumps. The Button is then decreased in size with another easing function that applies a little random variation to the incoming value.

The first of these easing functions is specified as a lambda function argument to the Easing constructor. The second is a method cast to an Easing object:

Click here to view code image

public partial class UneasyScalePage : ContentPage

{

 Random random = new Random();

 public UneasyScalePage()

 {

 InitializeComponent();

 }

 async void OnButtonClicked(object sender, EventArgs args)

 {

 double scale = Math.Min(Width / button.Width, Height / button.Height);

 await button.ScaleTo(scale, 1000, new Easing(t => (int)(5 * t) / 5.0));

 await button.ScaleTo(1, 1000, (Easing)RandomEase);

 }

 double RandomEase(double t)

 {

 return t == 0 || t == 1 ? t : t + 0.25 * (random.NextDouble() - 0.5);

 }

}

Unfortunately, it’s easier to make disjointed functions like these rather than smoother and more interesting transfer functions. Those tend to be necessarily a bit more complex.

For example, suppose you want an easing function that looks like this:

[image: Image]

It starts off fast, then slows down and reverses course, but then reverses course again to rise quickly into the final stretch.

You might guess that this is a polynomial equation, or at least that it can be approximated by a polynomial equation. It has two points where the slope is zero, which further suggests that this is a cubic and can be represented like this:

f(t) = a · t3 + b · t2 + c · t + d

Now all we need to find are values of a, b, c, and d that will cause the transfer function to behave as we want.

For the endpoints, we know that:

f(0) = 0
f(1) = 1

This means that:

d = 0

and:

1 = a + b + c

If we say further that the two dips in the curve are at t equal to 1/3 and 2/3, and the values of f(t) at those points are 2/3 and 1/3, respectively, then:

[image: Image]

Those two equations are somewhat more readable and manipulable if they are converted to integer coefficients, so what we have are three equations with three unknowns:

1 = a + b + c

18 = a + 3 · b + 9 · c

9 = 8 · a + 12 · b + B 18 · c

And with a little manipulation and combination and work, you can find a, b, and c:

[image: Image]

Let’s see if it does what we think it will do. The CustomCubicEase program has a XAML file that is the same as the previous projects. The easing function is here expressed directly as a Func<double, double> object so that it can be conveniently used in two ScaleTo calls. The Button is first scaled up in size, and then after a one-second pause, the Button is scaled back to normal:

Click here to view code image

public partial class CustomCubicEasePage : ContentPage

{

 public CustomCubicEasePage()

 {

 InitializeComponent();

 }

 async void OnButtonClicked(object sender, EventArgs args)

 {

 Func<double, double> customEase = t => 9 * t * t * t - 13.5 * t * t + 5.5 * t;

 double scale = Math.Min(Width / button.Width, Height / button.Height);

 await button.ScaleTo(scale, 1000, customEase);

 await Task.Delay(1000);

 await button.ScaleTo(1, 1000, customEase);

 }

}

If you don’t consider the job of making your own easing functions to be “fun and relaxing,” one good source for many standard easing functions is the website http://robertpenner.com/easing/.

It’s also possible to construct easing functions from Math.Sin and Math.Cos if you need simple harmonic motion and to combine those with Math.Exp for exponential increases or decay.

Let’s take an example: Suppose you want a Button that, when clicked, swings down from its lower-left corner, almost as if the Button were a picture attached to a wall with a couple of nails, and one of the nails falls out, so the picture slips down and hangs by a single nail in its lower-left corner.

You can follow along with this exercise in the AnimationTryout program. In the Clicked handler for the Button, let’s begin by setting the AnchorX and AnchorY properties and then call RotateTo for a 90-degree swing:

Click here to view code image

button.AnchorX = 0;

button.AnchorY = 1;

await button.RotateTo(90, 3000);

Here’s the result when that animation has completed:

[image: Image]

But this really cries out for an easing function so that the Button swings back and forth a bit from that corner before settling. To begin, let’s first add a do-nothing linear easing function to the RotateTo call:

Click here to view code image

await button.RotateTo(90, 3000, new Easing(t => t));

Let’s now add some sinusoidal behavior. That’s either a sine or a cosine. We want the swing to be slow at the beginning, so that would imply a cosine rather than a sine. Let’s set the argument to the Math.Cos method so that as t goes from 0 to 1, the angle is 0 through 10π. That’s five complete cycles of the cosine curve, which means that the Button swings five times back and forth:

Click here to view code image

await button.RotateTo(90, 3000, new Easing(t => Math.Cos(10 * Math.PI * t)));

Of course, this is not right at all. When t is zero, the Math.Cos method returns 1, so the animation starts off by jumping to a value of 90 degrees. For subsequent values of t, the Math.Cos function returns values ranging from 1 through –1, so the Button swings five times from 90 degrees to –90 degrees and back to 90 degrees, finally coming to a rest at 90 degrees. That is indeed where we want the animation to end, but we want the animation to start at 0 degrees

Nevertheless, let’s ignore that problem for a moment. Let’s instead tackle what initially seems to be the more complex problem. We don’t want the Button to swing a full 180 degrees five times. We want the swings of the Button to decay over time before it comes to rest.

There’s an easy way to do that. We can multiply the Math.Cos method by a Math.Exp call with a negative argument based on t:

Math.Exp(-5 * t)

The Math.Exp method raises the mathematical constant e (approximately 2.7) to the specified power. When t is 0 at the beginning of the animation, e to the 0 power is 1. And when t is 1, e to the negative fifth power is less than .01, which is very close to zero. (You don’t need to use -5 in this call; you can experiment to find a value that seems best.)

Let’s multiply the Math.Cos result by the Math.Exp result:

Click here to view code image

await button.RotateTo(90, 3000, new Easing(t => Math.Cos(10 * Math.PI * t) * Math.Exp(-5 * t)));

We are very very close. The Math.Exp does indeed damp the Math.Cos call, but the product is backward The product is 1 when t is 0 and nearly 0 when t is 1. Can we fix this by simply subtracting the whole expression from 1? Let’s try it:

Click here to view code image

await button.RotateTo(90, 3000,

 new Easing(t => 1 - Math.Cos(10 * Math.PI * t) * Math.Exp(-5 * t)));

Now the easing function properly returns 0 when t is 0, and close enough to 1 when t is 1.

And, what’s more important, the easing function is now visually satisfactory as well. It really looks as if the Button drops from its mooring and swings several times before coming to rest.

Let’s now call TranslateTo to make the Button drop off and fall to the bottom of the page. How far does the Button need to drop?

The Button was originally positioned in the center of the page. That means that the distance between the bottom of the Button and the page was half the height of the page minus the height of the Button:

(Height - button.Height) / 2

But now the Button has swung 90 degrees from its lower-left corner, so the Button is closer to the bottom of the page by its width. Here’s the full call to TranslateTo to drop the Button to the bottom of the page and make it bounce a little:

Click here to view code image

await button.TranslateTo(0, (Height - button.Height) / 2 - button.Width,

 1000, Easing.BounceOut);

The Button comes to rest like this:

[image: Image]

Now let’s make the Button keel over and land upside down, which means that we want to rotate the Button around the upper-right corner. This requires a change in the AnchorX and AnchorY properties:

button.AnchorX = 1;

button.AnchorY = 0;

But that’s a problem—a big problem—because a change in the AnchorX and AnchorY properties actually changes the location of the Button. Try it! The Button suddenly leaps up and to the right. Where the Button jumps to is exactly the position it would be if the first RotateTo had been based on these new AnchorX and AnchorY values—a rotation around its upper-right corner rather than its lower-left corner.

Can you visualize that? Here’s a little mockup that shows the original position of the Button, the Button rotated 90 degrees clockwise from its lower-left corner, and the Button rotated 90 degrees clockwise from its upper-right corner:

[image: Image]

When we set new values of AnchorX and AnchorY, we need to adjust the TranslationX and TranslationY properties so that the Button essentially moves from the rotated position in the upper-right to the rotated position in the lower-left. TranslationX needs to be decreased by the width of the Button and then increased by its height. TranslationY needs to be increased by both the height of the Button and the width of the Button. Let’s try that:

Click here to view code image

button.TranslationX -= button.Width - button.Height;

button.TranslationY += button.Width + button.Height;

And that preserves the position of the Button when the AnchorX and AnchorY properties are changed to the button’s upper-right corner.

Now the Button can be rotated around its upper-right corner as it falls over, with another little bounce, of course:

Click here to view code image

await button.RotateTo(180, 1000, Easing.BounceOut);

And now the Button can ascend up the screen and simultaneously fade out:

Click here to view code image

await Task.WhenAll

 (

 button.FadeTo(0, 4000),

 button.TranslateTo(0, -Height, 5000, Easing.CubicIn)

);

The FadeTo method animates the Opacity property, in this case from its default value of 1 to the value 0 specified as the first argument.

Here’s the complete program, called SwingButton (referring to the first animation) and concluding with a restoration of the Button to its original position so that you can try it again:

Click here to view code image

public partial class SwingButtonPage : ContentPage

{

 public SwingButtonPage()

 {

 InitializeComponent();

 }

 async void OnButtonClicked(object sender, EventArgs args)

 {

 // Swing down from lower-left corner.

 button.AnchorX = 0;

 button.AnchorY = 1;

 await button.RotateTo(90, 3000,

 new Easing(t => 1 - Math.Cos(10 * Math.PI * t) * Math.Exp(-5 * t)));

 // Drop to the bottom of the screen.

 await button.TranslateTo(0, (Height - button.Height) / 2 - button.Width,

 1000, Easing.BounceOut);

 // Prepare AnchorX and AnchorY for next rotation.

 button.AnchorX = 1;

 button.AnchorY = 0;

 // Compensate for the change in AnchorX and AnchorY.

 button.TranslationX -= button.Width - button.Height;

 button.TranslationY += button.Width + button.Height;

 // Fall over.

 await button.RotateTo(180, 1000, Easing.BounceOut);

 // Fade out while ascending to the top of the screen.

 await Task.WhenAll

 (

 button.FadeTo(0, 4000),

 button.TranslateTo(0, -Height, 5000, Easing.CubicIn)

);

 // After three seconds, return the Button to normal.

 await Task.Delay(3000);

 button.TranslationX = 0;

 button.TranslationY = 0;

 button.Rotation = 0;

 button.Opacity = 1;

 }

}

An easing function is supposed to return 0 when the input is 0 and 1 when the input is 1, but it’s possible to break these rules, and sometimes that makes sense. For example, suppose you want an animation that moves an element a little—perhaps it vibrates it in some way—but the animation should return the element to its original position at the end. For something like this it makes sense for the easing function to return 0 when the input is both 0 and 1, but something other than 0 between those values.

This is the idea behind JiggleButton, which is in the Xamarin.FormsBook.Toolkit library. JiggleButton derives from Button and installs a Clicked handler for the sole purpose of jiggling the button when you click it:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class JiggleButton : Button

 {

 bool isJiggling;

 public JiggleButton()

 {

 Clicked += async (sender, args) =>

 {

 if (isJiggling)

 return;

 isJiggling = true;

 await this.RotateTo(15, 1000, new Easing(t =>

 Math.Sin(Math.PI * t) *

 Math.Sin(Math.PI * 20 * t)));

 isJiggling = false;

 };

 }

 }

}

The RotateTo method seems to rotate the button by 15 degrees over the course of one second. However, the custom Easing object has a different idea. It consists solely of the product of two sine functions. As t goes from 0 to 1, the first Math.Sin function sweeps the first half of a sine curve, so it goes from 0 when t is 0, to 1 when t is 0.5, and back to 0 when t is 1.

The second Math.Sin call is the jiggle part. As t goes from 0 to 1, this call goes through 10 cycles of a sine curve. Without the first Math.Sin call, this would rotate the button from 0 to 15 degrees, then to –15 degrees, and back to 0 ten times. But the first Math.Sin call dampens that rotation at the beginning and end of the animation, allowing only a full 15 and –15 degree rotation in the middle.

A little code involving the isJiggling field protects the Clicked handler from starting a new animation when one is already in progress. This is an advantage of using await with the animation methods: You know exactly when the animation is completed.

The JiggleButtonDemo XAML file creates three JiggleButton objects so that you can play with them:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="JiggleButtonDemo.JiggleButtonDemoPage">

 <StackLayout>

 <toolkit:JiggleButton Text="Tap Me!"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <toolkit:JiggleButton Text="Tap Me!"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <toolkit:JiggleButton Text="Tap Me!"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

Entrance animations

One common type of animation in real-life programming occurs when a page is first made visible. The various elements on the page can be animated briefly before settling into their final states. This is often called an entrance animation and can involve:

• Translation, to move elements into their final positions.

• Scale, to enlarge or shrink elements to their final sizes.

• Changes in Opacity to fade elements into view.

• 3D rotation to make it seem as if a whole page swings into view.

Generally you’ll want the elements on the page to come to rest with default values of these properties: TranslationX and TranslationY values of 0, Scale and Opacity values of 1, and all Rotation properties set to 0.

In other words, the entrance animations should end at each property’s default value, which means that they begin at nondefault values. This approach also allows the program to apply other transforms to these elements at a later time without taking the entrance animations into account.

When designing the layout in XAML you’ll want to simply ignore these animations. As an example, here is a page with several elements solely for demonstration purposes. The program is called FadingEntrance:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="FadingEntrance.FadingEntrancePage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 10"

 Android="10"

 WinPhone="10" />

 </ContentPage.Padding>

 <StackLayout x:Name="stackLayout">

 <Label Text="The App"

 Style="{DynamicResource TitleStyle}"

 FontAttributes="Italic"

 HorizontalOptions="Center" />

 <Button Text="Countdown"

 FontSize="Large"

 HorizontalOptions="Center" />

 <Label Text="Primary Slider"

 HorizontalOptions="Center" />

 <Slider Value="0.5" />

 <ListView HorizontalOptions="Center"

 WidthRequest="200">

 <ListView.ItemsSource>

 <x:Array Type="{x:Type Color}">

 <Color>Red</Color>

 <Color>Green</Color>

 <Color>Blue</Color>

 <Color>Aqua</Color>

 <Color>Purple</Color>

 <Color>Yellow</Color>

 </x:Array>

 </ListView.ItemsSource>

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <BoxView Color="{Binding}" />

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 <Label Text="Secondary Slider"

 HorizontalOptions="Center" />

 <Slider Value="0.5" />

 <Button Text="Launch"

 FontSize="Large"

 HorizontalOptions="Center" />

 </StackLayout>

</ContentPage>

The code-behind file overrides the OnAppearing method. The OnAppearing method is called after the page is laid out but before the page becomes visible. All the elements on the page have been sized and positioned, so if you need to obtain that information you can do so during this method. In the FadingEntrance program, the OnAppearing override sets the Opacity property of the StackLayout to 0 (thus making everything within the StackLayout invisible) and then animates it to 1:

Click here to view code image

public partial class FadingEntrancePage : ContentPage

{

 public FadingEntrancePage()

 {

 InitializeComponent();

 }

 protected override void OnAppearing()

 {

 base.OnAppearing();

 stackLayout.Opacity = 0;

 stackLayout.FadeTo(1, 3000);

 }

}

Here’s the page in the process of fading into view:

[image: Image]

Let’s try another. The XAML file in the SlidingEntrance program is the same as FadingEntrance, but the OnAppearing override begins by setting all the TranslationX properties of the children of the StackLayout to alternating values of 1000 and –1000:

Click here to view code image

public partial class SlidingEntrancePage : ContentPage

{

 public SlidingEntrancePage()

 {

 InitializeComponent();

 }

 async protected override void OnAppearing()

 {

 base.OnAppearing();

 double offset = 1000;

 foreach (View view in stackLayout.Children)

 {

 view.TranslationX = offset;

 offset *= -1;

 }

 foreach (View view in stackLayout.Children)

 {

 await Task.WhenAny(view.TranslateTo(0, 0, 1000, Easing.SpringOut),

 Task.Delay(100));

 }

 }

}

The second foreach loop then animates these children back to the default settings of TranslationX and TranslationY. However, the animations are staggered and overlapped. Here’s how: The first call to Task.WhenAny starts the first TranslateTo animation, which completes after one second. However, the second argument to Task.WhenAny is Task.Delay, which completes in one-tenth of a second, and that’s when Task.WhenAny also completes. The foreach loop fetches the next child, which then begins its own one-second animation. Every animation begins one-tenth of a second after the previous one.

Here’s the result in process:

[image: Image]

The TranslateTo call uses the Easing.SpringOut function, which means that each animated element should overshoot its destination and then move backward to come at rest in the center of the page. However, you won’t see this happen. As you’ve already discovered, the TranslateTo method stops working when an easing function has an output that exceeds 1.

You’ll see a solution for this—and a version of this program with elements that do overshoot their destinations—later in this chapter.

Finally, here’s a SwingingEntrance animation:

Click here to view code image

public partial class SwingingEntrancePage : ContentPage

{

 public SwingingEntrancePage()

 {

 InitializeComponent();

 }

 async protected override void OnAppearing()

 {

 base.OnAppearing();

 stackLayout.AnchorX = 0;

 stackLayout.RotationY = 180;

 await stackLayout.RotateYTo(0, 1000, Easing.CubicOut);

 stackLayout.AnchorX = 0.5;

 }

}

The RotateYTo method rotates the entire StackLayout and its children around the Y axis from 180 degrees to 0 degrees. With an AnchorX setting of 0, the rotation is actually around the left edge of the StackLayout. The StackLayout won’t be visible until the RotationY value is less than 90 degrees, but the result looks a little better if the rotation starts before the page actually becomes visible. The CubicOut easing function causes the animation to slow down as it nears completion. Here it is in progress:

[image: Image]

After the animation has completed, the OnAppearing method returns AnchorX to its original value so that everything has default values for any future animations that the program might want to implement.

Forever animations

At the opposite extreme from entrance animations are forever animations. An application can implement an animation that goes on “forever,” or at least until the program ends. Often the sole purpose of such animations is to demonstrate the capabilities of an animation system, but preferably in a delightful or amusing manner.

The first example is called FadingTextAnimation and uses FadeTo to fade two Label elements in and out. The XAML file puts both Label elements in a single-cell Grid so that they overlap. The second one has its Opacity property set to 0:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="FadingTextAnimation.FadingTextAnimationPage"

 BackgroundColor="White"

 SizeChanged="OnPageSizeChanged">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 <Setter Property="VerticalTextAlignment" Value="Center" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <Grid>

 <Label x:Name="label1"

 Text="MORE"

 TextColor="Blue" />

 <Label x:Name="label2"

 Text="CODE"

 TextColor="Red"

 Opacity="0" />

 </Grid>

</ContentPage>

One simple way to create an animation that runs “forever” is to put all your animation code—using await of course—within a while loop with a condition of true. Then call that method from the constructor:

Click here to view code image

public partial class FadingTextAnimationPage : ContentPage

{

 public FadingTextAnimationPage()

 {

 InitializeComponent();

 // Start the animation going.

 AnimationLoop();

 }

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 if (Width > 0)

 {

 double fontSize = 0.3 * Width;

 label1.FontSize = fontSize;

 label2.FontSize = fontSize;

 }

 }

 async void AnimationLoop()

 {

 while (true)

 {

 await Task.WhenAll(label1.FadeTo(0, 1000),

 label2.FadeTo(1, 1000));

 await Task.WhenAll(label1.FadeTo(1, 1000),

 label2.FadeTo(0, 1000));

 }

 }

}

Infinite loops are usually dangerous, but this one executes very briefly once every second when the Task.WhenAll method signals a completion of the two animations—the first fading out one Label and the second fading in the other Label. The SizeChanged handler for the page sets the FontSize of the text, so the text approaches the width of the page:

[image: Image]

Does it mean “More code” or “Code more”? Perhaps both.

Here’s another animation that targets text. The PalindromeAnimation program spins individual characters 180 degress to turn them upside down. Fortunately, the characters comprise a palindrome that reads the same forward and backward:

[image: Image]

When all the characters are flipped upside down, the whole collection of characters is flipped, and the animation starts again.

The XAML file simply contains a horizontal StackLayout, without any children just yet:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PalindromeAnimation.PalindromeAnimationPage"

 SizeChanged="OnPageSizeChanged">

 <StackLayout x:Name="stackLayout"

 Orientation="Horizontal"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Spacing="0" />

</ContentPage>

The constructor of the code-behind file fills this StackLayout with 17 Label elements to spell out the palindromic phrase “NEVER ODD OR EVEN.” As in the previous program, the SizeChanged handler for the page adjusts the size of these labels. Each Label is given a uniform WidthRequest and a FontSize based on that width. Each character in the text string must occupy the same width so that they are still spaced the same when they flip upside down:

Click here to view code image

public partial class PalindromeAnimationPage : ContentPage

{

 string text = "NEVER ODD OR EVEN";

 double[] anchorX = { 0.5, 0.5, 0.5, 0.5, 1, 0,

 0.5, 1, 1, -1,

 0.5, 1, 0,

 0.5, 0.5, 0.5, 0.5 };

 public PalindromeAnimationPage()

 {

 InitializeComponent();

 // Add a Label to the StackLayout for each character.

 for (int i = 0; i < text.Length; i++)

 {

 Label label = new Label

 {

 Text = text[i].ToString(),

 HorizontalTextAlignment = TextAlignment.Center

 };

 stackLayout.Children.Add(label);

 }

 // Start the animation.

 AnimationLoop();

 }

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 // Adjust the size and font based on the display width.

 double width = 0.8 * this.Width / stackLayout.Children.Count;

 foreach (Label label in stackLayout.Children.OfType<Label>())

 {

 label.FontSize = 1.4 * width;

 label.WidthRequest = width;

 }

 }

 async void AnimationLoop()

 {

 bool backwards = false;

 while (true)

 {

 // Let's just sit here a second.

 await Task.Delay(1000);

 // Prepare for overlapping rotations.

 Label previousLabel = null;

 // Loop through all the labels.

 IEnumerable<Label> labels = stackLayout.Children.OfType<Label>();

 foreach (Label label in backwards ? labels.Reverse() : labels)

 {

 uint flipTime = 250;

 // Set the AnchorX and AnchorY properties.

 int index = stackLayout.Children.IndexOf(label);

 label.AnchorX = anchorX[index];

 label.AnchorY = 1;

 if (previousLabel == null)

 {

 // For the first Label in the sequence, rotate it 90 degrees.

 await label.RelRotateTo(90, flipTime / 2);

 }

 else

 {

 // For the second and subsequent, also finish the previous flip.

 await Task.WhenAll(label.RelRotateTo(90, flipTime / 2),

 previousLabel.RelRotateTo(90, flipTime / 2));

 }

 // If it's the last one, finish the flip.

 if (label == (backwards ? labels.First() : labels.Last()))

 {

 await label.RelRotateTo(90, flipTime / 2);

 }

 previousLabel = label;

 }

 // Rotate the entire stack.

 stackLayout.AnchorY = 1;

 await stackLayout.RelRotateTo(180, 1000);

 // Flip the backwards flag.

 backwards ^= true;

 }

 }

}

Much of the complexity of the AnimationLoop method results from overlapping animations. Each letter needs to rotate by 180 degrees. However, the final 90 degrees of each letter rotation overlaps with the first 90 degrees of the next letter. This requires that the first letter and the last letter be handled differently.

The letter rotations are further complicated by the settings of the AnchorX and AnchorY properties. For each rotation, AnchorY is set to 1 and the rotation occurs around the bottom of the Label. But the setting of the AnchorX property depends on where the letter occurs in the phrase. The first four letters of “NEVER” can spin around the bottom center of the letter because they form the word “EVEN” when inverted. But the “R” needs to spin around its lower-right corner so that it becomes the end of the word “OR”. The space after “NEVER” needs to spin around its lower-left corner so that it becomes the space between “OR” and “EVEN”. Essentially, the “R” of “NEVER” and the space swap places. The rest of the phrase continues similarly. The various AnchorX values for each letter are stored in the anchorX array at the top of the class.

When all the letters have been individually rotated, then the whole StackLayout is rotated by 180 degrees. Although that rotated StackLayout looks the same as the StackLayout when the program started running, it is not the same. The last letter of the phrase is now the first child in the StackLayout and the first letter is now the last child in the StackLayout. That’s the reason for the backwards variable. The foreach statement uses that to enumerate through the StackLayout children in a forward or backward direction.

You’ll notice that all the AnchorX and AnchorY properties are set in the AnimationLoop right before the animation is started, even though they never change over the course of the program. This is to accommodate the problem with iOS. The properties must be set after the element has been sized, and setting those properties within this loop is simply convenient.

If that problem with iOS did not exist, all the AnchorX and AnchorY properties could be set in the program’s constructor or even in the XAML file. It’s not unreasonable to define all 17 Label elements in the XAML file with unique AnchorX settings on each Label and the common AnchorY setting in a Style.

As it is, on iOS devices, the PalindromeAnimation program cannot survive a change in orientation from portrait to landscape and back. After the Label elements are resized, there is nothing the application can do to fix the internal use of the AnchorX and AnchorY properties.

The CopterAnimation program simulates a little helicopter flying in a circle around the page. The simulation, however, is very simple: The helicopter is simply two BoxView elements sized and arranged to look like wings:

[image: Image]

The program has two continuous rotations. The fast one spins the helicopter’s blades around its center. A slower rotation moves the wing assemblage in a circle around the center of the page. Both rotations use the default AnchorX and AnchorY settings of 0.5, so there’s no problem on iOS.

However, the program implicitly uses the width of the phone for the circumference of the circle that the copter wings fly around. If you turn the phone sideways to landscape mode, the copter will actually fly outside the bounds of the phone.

The secret to the simplicity of CopterAnimation is the XAML file:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="CopterAnimation.CopterAnimationPage">

 <ContentView x:Name="revolveTarget"

 HorizontalOptions="Fill"

 VerticalOptions="Center">

 <ContentView x:Name="copterView"

 HorizontalOptions="End">

 <AbsoluteLayout>

 <BoxView AbsoluteLayout.LayoutBounds="20, 0, 20, 60"

 Color="Accent" />

 <BoxView AbsoluteLayout.LayoutBounds="0, 20, 60, 20"

 Color="Accent" />

 </AbsoluteLayout>

 </ContentView>

 </ContentView>

</ContentPage>

The entire layout consists of two nested ContentView elements, with an AbsoluteLayout in the inner ContentView for the two BoxView wings. The outer ContentView (named revolveTarget) extends to the width of the phone and is vertically centered on the page, but it is only as tall as the inner ContentView. The inner ContentView (named copterView) is positioned at the far right of the outer ContentView.

You can probably visualize this more easily if you turn off the animation and give the two ContentView elements different background colors, for example, blue and red:

[image: Image]

Now you can see fairly easily that both these ContentView elements can be rotated around their centers to achieve the effect of rotating wings flying in a circle:

Click here to view code image

public partial class CopterAnimationPage : ContentPage

{

 public CopterAnimationPage()

 {

 InitializeComponent();

 AnimationLoop();

 }

 async void AnimationLoop()

 {

 while (true)

 {

 revolveTarget.Rotation = 0;

 copterView.Rotation = 0;

 await Task.WhenAll(revolveTarget.RotateTo(360, 5000),

 copterView.RotateTo(360 * 5, 5000));

 }

 }

}

Both animations have a duration of five seconds, but during that time, the outer ContentView rotates only once around its center while the copter wing assembly rotates five times around its center.

The RotatingSpokes program draws 24 spokes emanating from the center of the page with a length based on the lesser of the height and width of the page. Of course, each of the spokes is a thin BoxView element:

[image: Image]

After three seconds, the assemblage of spokes begins to rotate around the center. That goes on for a little while, and then each individual spoke begins rotating around its center, making an interesting changing pattern:

[image: Image]

As with CopterAnimation, the RotatingSpokes program uses default values of AnchorX and AnchorY for all the rotations, so there’s no problem changing the phone orientation on iOS devices.

But the XAML file in RotatingSpokes consists solely of an AbsoluteLayout and suggests nothing about how the program works:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="RotatingSpokes.RotatingSpokesPage"

 BackgroundColor="White"

 SizeChanged="OnPageSizeChanged">

 <AbsoluteLayout x:Name="absoluteLayout"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

</ContentPage>

Everything else is done in code. The constructor adds 24 black BoxView elements to the AbsoluteLayout, and the SizeChanged handler for the page positions them in the spoke pattern:

Click here to view code image

public partial class RotatingSpokesPage : ContentPage

{

 const int numSpokes = 24;

 BoxView[] boxViews = new BoxView[numSpokes];

 public RotatingSpokesPage()

 {

 InitializeComponent();

 // Create all the BoxView elements.

 for (int i = 0; i < numSpokes; i++)

 {

 BoxView boxView = new BoxView

 {

 Color = Color.Black

 };

 boxViews[i] = boxView;

 absoluteLayout.Children.Add(boxView);

 }

 AnimationLoop();

 }

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 // Set AbsoluteLayout to a square dimension.

 double dimension = Math.Min(this.Width, this.Height);

 absoluteLayout.WidthRequest = dimension;

 absoluteLayout.HeightRequest = dimension;

 // Find the center and a size for the BoxView.

 Point center = new Point(dimension / 2, dimension / 2);

 Size boxViewSize = new Size(dimension / 2, 3);

 for (int i = 0; i < numSpokes; i++)

 {

 // Find an angle for each spoke.

 double degrees = i * 360 / numSpokes;

 double radians = Math.PI * degrees / 180;

 // Find the point of the center of each BoxView spoke.

 Point boxViewCenter =

 new Point(center.X + boxViewSize.Width / 2 * Math.Cos(radians),

 center.Y + boxViewSize.Width / 2 * Math.Sin(radians));

 // Find the upper-left corner of the BoxView and position it.

 Point boxViewOrigin = boxViewCenter - boxViewSize * 0.5;

 AbsoluteLayout.SetLayoutBounds(boxViews[i],

 new Rectangle(boxViewOrigin, boxViewSize));

 // Rotate the BoxView around its center.

 boxViews[i].Rotation = degrees;

 }

 }

 ...

}

Certainly the easiest way to render these spokes would be to position all 24 thin BoxView elements extending straight up from the center of the AbsoluteLayout—much like the initial 12:00 position of the hands of the BoxViewClock in the previous chapter—and then to rotate each of them around its bottom edge by an increment of 15 degrees. However, that requires that the AnchorY properties of these BoxView elements be set to 1 for that bottom edge rotation. That wouldn’t work for this program because each of the BoxView elements must later be animated to rotate around its center.

The solution is to first calculate a position within the AbsoluteLayout for the center of each BoxView. This is the Point value in the SizeChanged handler called boxViewCenter. The boxViewOrigin is then the upper-left corner of the BoxView if the center of the BoxView is positioned at boxViewCenter. If you comment out the last statement in the for loop that sets the Rotation property of each BoxView, you’ll see the spokes positioned like this:

[image: Image]

All the horizontal lines (except for the top and bottom ones) are actually two aligned spokes. The center of each spoke is half the length of the spoke from the center of the page. Rotating each of the spokes around its center then creates the initial pattern you saw earlier.

Here’s the AnimationLoop method:

Click here to view code image

public partial class RotatingSpokesPage : ContentPage

{

 ...

 async void AnimationLoop()

 {

 // Keep still for 3 seconds.

 await Task.Delay(3000);

 // Rotate the configuration of spokes 3 times.

 uint count = 3;

 await absoluteLayout.RotateTo(360 * count, 3000 * count);

 // Prepare for creating Task objects.

 List<Task<bool>> taskList = new List<Task<bool>>(numSpokes + 1);

 while (true)

 {

 foreach (BoxView boxView in boxViews)

 {

 // Task to rotate each spoke.

 taskList.Add(boxView.RelRotateTo(360, 3000));

 }

 // Task to rotate the whole configuration.

 taskList.Add(absoluteLayout.RelRotateTo(360, 3000));

 // Run all the animations; continue in 3 seconds.

 await Task.WhenAll(taskList);

 // Clear the List.

 taskList.Clear();

 }

 }

}

After the preliminary rotation of only the AbsoluteLayout itself, the while block executes forever in rotating both the spokes and the AbsoluteLayout. Notice that a List<Task<bool>> is created for storing 25 simultaneous tasks. The foreach loop adds a Task to this List that calls RelRotateTo for each BoxView to rotate the spoke 360 degrees over three seconds. The final Task is another RelRotateTo on the AbsoluteLayout itself.

When using RelRotateTo in an animation that runs forever, the target Rotation property keeps getting larger and larger and larger. The actual rotation angle is the value of the Rotation property modulo 360.

Is the ever-increasing value of the Rotation property a potential problem?

In theory, no. Even if the underlying platform used a single-precision floating-point number to represent Rotation values, a problem wouldn’t arise until the value exceeds 3.4 × 1038. Even if you’re increasing the Rotation property by 360 degrees every second, and you started the animation at the time of the Big Bang (13.8 billion years ago), the Rotation value would be only 4.4 × 1017.

However, in reality, a problem can creep up, and much sooner than you might think. A Rotation angle of 36,000,000—just 100,000 rotations of 360 degrees—causes an object to be rendered a little differently than a Rotation angle of 0, and the deviation gets larger for higher Rotation angles.

If you’d like to explore this, you’ll find a program named RotationBreakdown among the source code for this chapter. The program spins two BoxView elements at the same pace, one with RotateTo from 0 to 360 degrees, and the other with RelRotateTo with an argument of 36000. The BoxView rotated with RotateTo normally obscures the BoxView rotated with RelRotateTo, but that underlying BoxView is colored red, and within a minute you’ll start seeing the red BoxView peek through. The deviation becomes greater the longer the program runs.

Often when you’re combining animations, you want them all to start and end at the same time. But other times—and particularly with animations that run forever—you want several animations to run independently of each other, or at least seeming to run independently.

This is the case with the SpinningImage program. The program displays a bitmap using the Image element:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SpinningImage.SpinningImagePage">

 <Image x:Name="image"

 Source="https://developer.xamarin.com/demo/IMG_0563.JPG"

 Scale="0.5" />

</ContentPage>

Normally, the Image would render the bitmap to fit within the screen while maintaining the bitmap’s aspect ratio. In portrait mode, the width of the rendered bitmap would be the same as the width of the phone. However, with a Scale setting of 0.5, the Image is half that size.

The code-behind file then animates it by using RotateTo, RotateXTo, and RotateYTo to make it twist and turn almost randomly in space:

[image: Image]

However, you probably don’t want the RotateTo, RotateXTo, and RotateYTo to be synchronized in any way because that would result in repetitive patterns.

The solution here actually does create a repetitive pattern, but one that is five minutes in length. This is the duration for the three animations in the Task.WhenAll method:

Click here to view code image

public partial class SpinningImagePage : ContentPage

{

 public SpinningImagePage()

 {

 InitializeComponent();

 AnimationLoop();

 }

 async void AnimationLoop()

 {

 uint duration = 5 * 60 * 1000; // 5 minutes

 while (true)

 {

 await Task.WhenAll(

 image.RotateTo(307 * 360, duration),

 image.RotateXTo(251 * 360, duration),

 image.RotateYTo(199 * 360, duration));

 image.Rotation = 0;

 image.RotationX = 0;

 image.RotationY = 0;

 }

 }

}

During this five-minute period, the three separate animations each makes a different number of 360 degree rotations: 307 rotations for RotateTo, 251 for RotateXTo, and 199 for RotateYTo. Those are all prime numbers. They have no common factors. So never during that five-minute period will any two of these rotations coincide with each other in the same way.

There’s another way to create simultaneous but autonomous animations, but it requires going deeper into the animation system. That will be coming up soon.

Animating the Bounds property

Perhaps the most curious extension method in ViewExtensions class is LayoutTo. The argument is a Rectangle value, and the first question might be: What property is this method animating? The only property of type Rectangle defined by VisualElement is the Bounds property. This property indicates the position of an element relative to its parent and its size, but the property is get-only.

The LayoutTo animation does indeed animate the Bounds property, but it does so indirectly by calling the Layout method. The Layout method is not something that applications normally call. As the name suggests, it’s commonly used within the layout system to position and size children relative to their parents. The only time you’ll probably have an occasion to call Layout is when you write a custom layout class that derives from Layout<View>, as you’ll see in Chapter 26, “Custom layouts.”

You probably don’t want to use the LayoutTo animation for children of a StackLayout or Grid because the animation overrides the position and size set by the parent. As soon as you turn the phone sideways, the page undergoes another layout pass that causes the StackLayout or Grid to move and size the child based on the normal layout process, and that will override your animation.

You’ll have the same problem with a child of an AbsoluteLayout. After the LayoutTo animation completes, if you turn the phone sideways, the AbsoluteLayout then moves and sizes the child based on the child’s LayoutBounds attached bindable property. But with AbsoluteLayout you also have a solution to this problem: After the LayoutTo animation concludes, the program can set the child’s LayoutBounds attached bindable property to the same rectangle specified in the animation, perhaps using the final setting of the Bounds property set by the animation.

Keep in mind, however, that the Layout method and the LayoutTo animation have no knowledge of the proportional positioning and sizing feature in AbsoluteLayout. If you use proportional positioning and sizing, you might need to translate between proportional and absolute coordinates and sizes. The Bounds property always reports position and size in absolute coordinates.

The BouncingBox program uses LayoutTo to methodically bounce a BoxView around the interior of a square Frame. The BoxView starts at the center of the top edge, then moves in an arc to the center of the right edge, and then to the center of the bottom edge, the center of the left edge, and back up to the top, from where the journey continues. As the BoxView hits each edge, it realistically compresses and then expands like a rubber ball:

[image: Image]

The code-behind file uses AbsoluteLayout.SetLayoutBounds to position the BoxView against each of the four edges, LayoutTo for the compression and decompression against the edge, and RotateTo to move the BoxView in an arc to the next edge.

The XAML file creates the Frame, the AbsoluteLayout, and the BoxView:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BouncingBox.BouncingBoxPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentView SizeChanged="OnContentViewSizeChanged">

 <Frame x:Name="frame"

 OutlineColor="Accent"

 BackgroundColor="White"

 Padding="0"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <AbsoluteLayout SizeChanged="OnAbsoluteLayoutSizeChanged">

 <BoxView x:Name="boxView"

 Color="Accent"

 IsVisible="False" />

 </AbsoluteLayout>

 </Frame>

 </ContentView>

</ContentPage>

In the code-behind file, the SizeChanged handler for the ContentView adjusts the size of the Frame to be square, while the SizeChanged handler for the AbsoluteLayout saves its size for the animation calculations and starts the animation going if the size appears to be legitimate. (Without this check, the animation begins too early, and it uses an invalid size of the AbsoluteLayout.)

Click here to view code image

public partial class BouncingBoxPage : ContentPage

{

 static readonly uint arcDuration = 1000;

 static readonly uint bounceDuration = 250;

 static readonly double boxSize = 50;

 double layoutSize;

 bool animationGoing;

 public BouncingBoxPage()

 {

 InitializeComponent();

 }

 void OnContentViewSizeChanged(object sender, EventArgs args)

 {

 ContentView contentView = (ContentView)sender;

 double size = Math.Min(contentView.Width, contentView.Height);

 frame.WidthRequest = size;

 frame.HeightRequest = size;

 }

 void OnAbsoluteLayoutSizeChanged(object sender, EventArgs args)

 {

 AbsoluteLayout absoluteLayout = (AbsoluteLayout)sender;

 layoutSize = Math.Min(absoluteLayout.Width, absoluteLayout.Height);

 // Only start the animation with a valid size.

 if (!animationGoing && layoutSize > 100)

 {

 animationGoing = true;

 AnimationLoop();

 }

 }

 ...

}

The AnimationLoop method is lengthy, but that’s only because it uses separate logic for each of the four sides and the transitions between those sides. For each side, the first step is to position the BoxView by using AbsoluteLayout.SetLayoutBounds. Then the BoxView is rotated in an arc to the next side. This requires setting the AnchorX and AnchorY properties so that the center of animation is close to the corner of the Frame but expressed in units of the BoxView size.

Then come the two calls to LayoutTo to animate the compression of the BoxView as it hits the inside of the Frame, and the subsequent expansion of BoxView as it bounces off:

Click here to view code image

public partial class BouncingBoxPage : ContentPage

{

 ...

 async void AnimationLoop()

 {

 while (true)

 {

 // Initial position at top.

 AbsoluteLayout.SetLayoutBounds(boxView,

 new Rectangle((layoutSize - boxSize) / 2, 0, boxSize, boxSize));

 // Arc from top to right.

 boxView.AnchorX = layoutSize / 2 / boxSize;

 boxView.AnchorY = 0.5;

 await boxView.RotateTo(-90, arcDuration);

 // Bounce on right.

 Rectangle rectNormal = new Rectangle(layoutSize - boxSize,

 (layoutSize - boxSize) / 2,

 boxSize, boxSize);

 Rectangle rectSquashed = new Rectangle(rectNormal.X + boxSize / 2,

 rectNormal.Y - boxSize / 2,

 boxSize / 2, 2 * boxSize);

 boxView.BatchBegin();

 boxView.Rotation = 0;

 boxView.AnchorX = 0.5;

 boxView.AnchorY = 0.5;

 AbsoluteLayout.SetLayoutBounds(boxView, rectNormal);

 boxView.BatchCommit();

 await boxView.LayoutTo(rectSquashed, bounceDuration, Easing.SinOut);

 await boxView.LayoutTo(rectNormal, bounceDuration, Easing.SinIn);

 // Arc from right to bottom.

 boxView.AnchorX = 0.5;

 boxView.AnchorY = layoutSize / 2 / boxSize;

 await boxView.RotateTo(-90, arcDuration);

 // Bounce at bottom.

 rectNormal = new Rectangle((layoutSize - boxSize) / 2,

 layoutSize - boxSize,

 boxSize, boxSize);

 rectSquashed = new Rectangle(rectNormal.X - boxSize / 2,

 rectNormal.Y + boxSize / 2,

 2 * boxSize, boxSize / 2);

 boxView.BatchBegin();

 boxView.Rotation = 0;

 boxView.AnchorX = 0.5;

 boxView.AnchorY = 0.5;

 AbsoluteLayout.SetLayoutBounds(boxView, rectNormal);

 boxView.BatchCommit();

 await boxView.LayoutTo(rectSquashed, bounceDuration, Easing.SinOut);

 await boxView.LayoutTo(rectNormal, bounceDuration, Easing.SinIn);

 // Arc from bottom to left.

 boxView.AnchorX = 1 - layoutSize / 2 / boxSize;

 boxView.AnchorY = 0.5;

 await boxView.RotateTo(-90, arcDuration);

 // Bounce at left.

 rectNormal = new Rectangle(0, (layoutSize - boxSize) / 2,

 boxSize, boxSize);

 rectSquashed = new Rectangle(rectNormal.X,

 rectNormal.Y - boxSize / 2,

 boxSize / 2, 2 * boxSize);

 boxView.BatchBegin();

 boxView.Rotation = 0;

 boxView.AnchorX = 0.5;

 boxView.AnchorY = 0.5;

 AbsoluteLayout.SetLayoutBounds(boxView, rectNormal);

 boxView.BatchCommit();

 await boxView.LayoutTo(rectSquashed, bounceDuration, Easing.SinOut);

 await boxView.LayoutTo(rectNormal, bounceDuration, Easing.SinIn);

 // Arc from left to top.

 boxView.AnchorX = 0.5;

 boxView.AnchorY = 1 - layoutSize / 2 / boxSize;

 await boxView.RotateTo(-90, arcDuration);

 // Bounce on top.

 rectNormal = new Rectangle((layoutSize - boxSize) / 2, 0,

 boxSize, boxSize);

 rectSquashed = new Rectangle(rectNormal.X - boxSize / 2, 0,

 2 * boxSize, boxSize / 2);

 boxView.BatchBegin();

 boxView.Rotation = 0;

 boxView.AnchorX = 0.5;

 boxView.AnchorY = 0.5;

 AbsoluteLayout.SetLayoutBounds(boxView, rectNormal);

 boxView.BatchCommit();

 await boxView.LayoutTo(rectSquashed, bounceDuration, Easing.SinOut);

 await boxView.LayoutTo(rectNormal, bounceDuration, Easing.SinIn);

 }

 }

}

The SinOut and SinIn easing functions provide a little realism for the compression to slow down as it’s ending, and for the expansion to speed up after it’s started.

Notice the calls to BatchBegin and BatchCommit that surround a number of property settings that accompany the positioning of the BoxView at one of the edges. These were added because there seemed to be a little flickering on the iPhone simulator, as if the properties were not being set simultaneously. However, the flickering remained even with these calls.

The LayoutTo animation is also used in one of the first games that was written for Xamarin.Forms. It’s a version of the famous 15-Puzzle that consists of 15 tiles and one empty square in a four-by-four grid. The tiles can be shifted around but only by moving a tile into the empty spot.

On the early Apple Macintosh, this puzzle was named Puzzle. In the first Windows Software Development Kit, it was the only sample program using Microsoft Pascal, and it had the name Muzzle (for “Microsoft puzzle”). The version for Xamarin.Forms is thus called Xuzzle.

The original version of Xuzzle is here:

https://developer.xamarin.com/samples/xamarin-forms/Xuzzle/

The somewhat simplified version presented in this chapter doesn’t include the animation that awards you for successfully completing the puzzle. However, rather than displaying letters or numbers, the tiles in this new version display 15/16 of the beloved Xamarin logo, called the Xamagon, and hence this new version is called XamagonXuzzle. Here’s the startup screen:

[image: Image]

When you press the Randomize button, the tiles are shifted around:

[image: Image]

Your job is to shift the tiles back into their original configuration. You do this by tapping any tile adjacent to the empty square. The program applies an animation to shift the tapped tile into that empty square, and the empty square now replaces the tile you tapped.

You can also move multiple tiles with one tap. For example, suppose you tap the rightmost tile in the third row of the Android screen. The second tile in that row moves left, followed by the third and fourth tiles also moving left, again leaving the empty square replacing the tile you tapped.

The bitmaps for the 15 tiles were created especially for this program, and the XamagonXuzzle project contains them in the Images folder of the Portable Class Library, all with a Build Action of Embedded Resource.

Each tile is a ContentView that simply contains an Image with a little Padding applied for the gaps between the tiles that you see in the screenshots:

Click here to view code image

class XamagonXuzzleTile : ContentView

{

 public XamagonXuzzleTile (int row, int col, ImageSource imageSource)

 {

 Row = row;

 Col = col;

 Padding = new Thickness(1);

 Content = new Image

 {

 Source = imageSource

 };

 }

 public int Row { set; get; }

 public int Col { set; get; }

}

Each tile has an initial row and column, but the Row and Col properties are public, so the program can change them as the tiles are moved around. Also supplied to the constructor of the XamagonXuzzleTile class is an ImageSource object that references one of the bitmap resources.

The XAML file instantiates the Button and an AbsoluteLayout for the tiles:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="XamagonXuzzle.XamagonXuzzlePage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentView SizeChanged="OnContentViewSizeChanged">

 <StackLayout x:Name="stackLayout">

 <Button Text="Randomize"

 Clicked="OnRandomizeButtonClicked"

 HorizontalOptions="CenterAndExpand"

 VerticalOptions="CenterAndExpand" />

 <AbsoluteLayout x:Name="absoluteLayout"

 BackgroundColor="Black" />

 <!-- Balance out layout with invisible button. -->

 <Button Text="Randomize"

 Opacity="0"

 HorizontalOptions="CenterAndExpand"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

 </ContentView>

</ContentPage>

As you’ll see, the SizeChanged handler for the ContentView changes the orientation of the StackLayout to accommodate portrait and landscape modes.

The constructor of the code-behind file instantiates all 15 tiles and gives each one an ImageSource based on one of the 15 bitmaps.

Click here to view code image

public partial class XamagonXuzzlePage : ContentPage

{

 // Number of tiles horizontally and vertically,

 // but if you change it, some code will break.

 static readonly int NUM = 4;

 // Array of tiles, and empty row & column.

 XamagonXuzzleTile[,] tiles = new XamagonXuzzleTile[NUM, NUM];

 int emptyRow = NUM - 1;

 int emptyCol = NUM - 1;

 double tileSize;

 bool isBusy;

 public XamagonXuzzlePage()

 {

 InitializeComponent();

 // Loop through the rows and columns.

 for (int row = 0; row < NUM; row++)

 {

 for (int col = 0; col < NUM; col++)

 {

 // But skip the last one!

 if (row == NUM - 1 && col == NUM - 1)

 break;

 // Get the bitmap for each tile and instantiate it.

 ImageSource imageSource =

 ImageSource.FromResource("XamagonXuzzle.Images.Bitmap" +

 row + col + ".png");

 XamagonXuzzleTile tile = new XamagonXuzzleTile(row, col, imageSource);

 // Add tap recognition.

 TapGestureRecognizer tapGestureRecognizer = new TapGestureRecognizer

 {

 Command = new Command(OnTileTapped),

 CommandParameter = tile

 };

 tile.GestureRecognizers.Add(tapGestureRecognizer);

 // Add it to the array and the AbsoluteLayout.

 tiles[row, col] = tile;

 absoluteLayout.Children.Add(tile);

 }

 }

 }

 ...

}

The SizeChanged handler for the ContentView has the responsibility of setting the Orientation property of the StackLayout, sizing the AbsoluteLayout, and sizing and positioning all the tiles within the AbsoluteLayout. Notice that each tile’s position is calculated based on the Row and Col properties of that tile:

Click here to view code image

public partial class XamagonXuzzlePage : ContentPage

{

 ...

 void OnContentViewSizeChanged(object sender, EventArgs args)

 {

 ContentView contentView = (ContentView)sender;

 double width = contentView.Width;

 double height = contentView.Height;

 if (width <= 0 || height <= 0)

 return;

 // Orient StackLayout based on portrait/landscape mode.

 stackLayout.Orientation = (width < height) ? StackOrientation.Vertical :

 StackOrientation.Horizontal;

 // Calculate tile size and position based on ContentView size.

 tileSize = Math.Min(width, height) / NUM;

 absoluteLayout.WidthRequest = NUM * tileSize;

 absoluteLayout.HeightRequest = NUM * tileSize;

 foreach (View view in absoluteLayout.Children)

 {

 XamagonXuzzleTile tile = (XamagonXuzzleTile)view;

 // Set tile bounds.

 AbsoluteLayout.SetLayoutBounds(tile, new Rectangle(tile.Col * tileSize,

 tile.Row * tileSize,

 tileSize,

 tileSize));

 }

 }

 ...

}

The constructor has set a TapGestureRecognizer on each tile, and that’s handled by the OnTileTapped method. It’s possible for a single tap to result in up to three tiles being shifted. That job is handled by the ShiftIntoEmpty method, which loops through all the shifted tiles and calls AnimateTile for each one. That method defines the Rectangle value for the call to LayoutTo—which is the one and only animation method in this entire program—and then other variables are adjusted for the new configuration:

Click here to view code image

public partial class XamagonXuzzlePage : ContentPage

{

 ...

 async void OnTileTapped(object parameter)

 {

 if (isBusy)

 return;

 isBusy = true;

 XamagonXuzzleTile tappedTile = (XamagonXuzzleTile)parameter;

 await ShiftIntoEmpty(tappedTile.Row, tappedTile.Col);

 isBusy = false;

 }

 async Task ShiftIntoEmpty(int tappedRow, int tappedCol, uint length = 100)

 {

 // Shift columns.

 if (tappedRow == emptyRow && tappedCol != emptyCol)

 {

 int inc = Math.Sign(tappedCol - emptyCol);

 int begCol = emptyCol + inc;

 int endCol = tappedCol + inc;

 for (int col = begCol; col != endCol; col += inc)

 {

 await AnimateTile(emptyRow, col, emptyRow, emptyCol, length);

 }

 }

 // Shift rows.

 else if (tappedCol == emptyCol && tappedRow != emptyRow)

 {

 int inc = Math.Sign(tappedRow - emptyRow);

 int begRow = emptyRow + inc;

 int endRow = tappedRow + inc;

 for (int row = begRow; row != endRow; row += inc)

 {

 await AnimateTile(row, emptyCol, emptyRow, emptyCol, length);

 }

 }

 }

 async Task AnimateTile(int row, int col, int newRow, int newCol, uint length)

 {

 // The tile to be animated.

 XamagonXuzzleTile animaTile = tiles[row, col];

 // The destination rectangle.

 Rectangle rect = new Rectangle(emptyCol * tileSize,

 emptyRow * tileSize,

 tileSize,

 tileSize);

 // Animate it!

 await animaTile.LayoutTo(rect, length);

 // Set layout bounds to same Rectangle.

 AbsoluteLayout.SetLayoutBounds(animaTile, rect);

 // Set several variables and properties for new layout.

 tiles[newRow, newCol] = animaTile;

 animaTile.Row = newRow;

 animaTile.Col = newCol;

 tiles[row, col] = null;

 emptyRow = row;

 emptyCol = col;

 }

 ...

}

The AnimateTile method uses await for the LayoutTo call. If it did not use await—if it let the LayoutTo animation run in the background while it proceeded with its other work—then the program would not know when the LayoutTo animation concluded. That means that if ShiftIntoEmpty were shifting two or three tiles, those animations would occur simultaneously instead of sequentially.

Because AnimateTile uses await, the method must have the async modifier. However, if the method returned void, then the AnimateTile method would return when the LayoutTo animation begins, and again the ShiftIntoEmpty method would not know when the animation completes. For this reason, AnimateTile returns a Task object. The AnimateTile method still returns when the LayoutTo animation begins, but it returns a Task object that can signal when the AnimateTile method completes. This means that ShiftIntoEmpty can call AnimateTile using await and move the tiles sequentially.

ShiftIntoEmpty uses await, so it must also be defined with the async modifier, but it could return void. If so, then ShiftIntoEmpty would return at the time it makes its first call to AnimateTile, which means that the OnTileTapped method would not know when the entire animation has completed. But OnTileTapped needs to prevent tiles from being tapped and animated if they are already in the process of being animated, which requires that ShiftIntoEmpty return Task. This means that OnTileTapped can use await with ShiftIntoEmpty, which means that OnTileTapped must also include the async modifier.

The OnTileTapped handler is called from the Button itself, so it cannot return Task. It must return void, just as the method is defined. But you can see how the use of await and async seems to ripple up the chain of method calls.

Once the code exists for handling taps, implementing the Randomize button becomes fairly trivial. It simply makes multiple calls to ShiftIntoEmpty with a faster animation speed:

Click here to view code image

public partial class XamagonXuzzlePage : ContentPage

{

 ...

 async void OnRandomizeButtonClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 button.IsEnabled = false;

 Random rand = new Random();

 isBusy = true;

 // Simulate some fast crazy taps.

 for (int i = 0; i < 100; i++)

 {

 await ShiftIntoEmpty(rand.Next(NUM), emptyCol, 25);

 await ShiftIntoEmpty(emptyRow, rand.Next(NUM), 25);

 }

 button.IsEnabled = true;

 isBusy = false;

 }

}

Again, using await with the ShiftIntoEmpty calls allows the calls to be executed sequentially (which is exciting to watch) and allows the OnRandomizeButtonClicked handler to know when everything is completed so it can reenable the Button and allow taps on the tiles.

Your own awaitable animations

In the next section of this chapter, you’ll see the underlying animation infrastructure that Xamarin.Forms implements. These underlying methods allow you to define your own animation functions that return Task objects and which can be used with await.

In Chapter 20, “Async and file I/O,” you saw how to use the static Task.Run method to create a secondary thread of execution for carrying out an intensive background job like a Mandelbrot computation. The Task.Run method returns a Task object that can signal when the background job has completed.

But animation is not quite like that. An animation doesn’t need to spend a lot of time crunching numbers. It merely needs to do something very brief and simple—such as setting a Rotation property—once every 16 milliseconds. That job can run in the user-interface thread—in fact, the actual property access must run in the user-interface thread—and the timing can be handled by using Device.StartTimer or Task.Delay.

You shouldn’t use Task.Run for implementing animations, because a secondary thread of execution is unnecessary and wasteful. However, when you actually sit down to write an animation method similar to the Xamarin.Forms animation methods such as RotateTo, you might encounter an obstacle. The method must return a Task object and perhaps use Device.StartTimer for the timing, but that doesn’t seem possible.

Here’s a first stab at writing such a method. The parameters include the target VisualElement, from and to values, and a duration. It uses Device.StartTimer and a Stopwatch to calculate the current setting of the Rotation property, and it exits the Device.StartTimer callback when the animation has completed:

Click here to view code image

Task MyRotate(VisualElement visual, double fromValue, double toValue, uint duration)

{

 Stopwatch stopwatch = new Stopwatch();

 stopwatch.Start();

 Device.StartTimer(TimeSpan.FromMilliseconds(16), () =>

 {

 double t = Math.Min(1, stopwatch.ElapsedMilliseconds / (double)duration);

 double value = fromValue + t * (toValue - fromValue);

 visual.Rotation = value;

 bool completed = t == 1;

 if (completed)

 {

 // Need to signal that the Task has completed. But how?

 }

 return !completed;

 });

 // Need to return a Task object here but where does it come from?

}

At two crucial points the method doesn’t know what to do. After the method calls Device.StartTimer, it needs to exit and return a Task object to the caller. But where does this Task object come from? The Task class has a constructor, but like Task.Run, that constructor creates a second thread of execution, and there’s no reason to create that thread. Moreover, when the animation has finished, the method somehow needs to signal that the Task has completed.

Fortunately, there exists a class that does exactly what you want. It’s called TaskCreationSource. It’s a generic class in which the type parameter is the same as the type parameter of the Task object that you want to create. The Task property of the TaskCreationSource object provides the Task object you need. This is what your asynchronous method returns. When your method has completed processing the background job, it can call SetResult on the TaskCreationSource object, signaling that the job is finished.

The following TryAwaitableAnimation program shows how to use TaskCreationSource in a MyRotateTo method that is called from the Clicked handler of a Button:

Click here to view code image

public partial class TryAwaitableAnimationPage : ContentPage

{

 public TryAwaitableAnimationPage()

 {

 InitializeComponent();

 }

 async void OnButtonClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 uint milliseconds = UInt32.Parse((string)button.StyleId);

 await MyRotate(button, 0, 360, milliseconds);

 }

 Task MyRotate(VisualElement visual, double fromValue, double toValue, uint duration)

 {

 TaskCompletionSource<object> taskCompletionSource = new TaskCompletionSource<object>();

 Stopwatch stopwatch = new Stopwatch();

 stopwatch.Start();

 Device.StartTimer(TimeSpan.FromMilliseconds(16), () =>

 {

 double t = Math.Min(1, stopwatch.ElapsedMilliseconds / (double)duration);

 double value = fromValue + t * (toValue - fromValue);

 visual.Rotation = value;

 bool completed = t == 1;

 if (completed)

 {

 taskCompletionSource.SetResult(null);

 }

 return !completed;

 });

 return taskCompletionSource.Task;

 }

}

Notice the instantiation of TaskCreationSource, the return value of the Task property of that object, and the call to SetResult within the Device.StartTimer callback when the animation has finished.

There is no nongeneric form of TaskCreationSource, so if your method just returns a Task object rather than a Task<T> object, you’ll need to specify a type when defining the TaskCreationSource instance. By convention, you can use object for this purpose, in which case your method calls SetResult with a null argument.

The TryAwaitableAnimation XAML file instantiates three Button elements that share this Clicked handler. Each of them defines its own animation duration as the StyleId property. (As you’ll recall, StyleId is not used within Xamarin.Forms and exists solely to be used by an application programmer as a convenient way to attach arbitrary data to an element.)

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="TryAwaitableAnimation.TryAwaitableAnimationPage">

 <StackLayout>

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Button">

 <Setter Property="Text" Value="Tap Me!" />

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Button Clicked="OnButtonClicked" StyleId="5000" />

 <Button Clicked="OnButtonClicked" StyleId="2500" />

 <Button Clicked="OnButtonClicked" StyleId="1000" />

 </StackLayout>

</ContentPage>

Even though each of these Button elements is animating itself by a call to MyRotate, you can have all buttons spinning at the same time. Each call to MyRotate gets its own set of local variables, and these local variables are used in each Device.StartTimer callback.

However, if you tap a Button while it’s still spinning, then a second animation is applied to that Button and the two animations battle each other. What the code requires is a way to cancel the previous animation when a new animation is applied.

One approach is for the MyRotate method to maintain a dictionary of type Dictionary<VisualElement,bool> defined as a field. Whenever it begins an animation, MyRotate adds the target VisualElement as a key to this dictionary with a value of false. When the animation ends, it removes this entry from the dictionary. A separate method (named CancelMyRotate, perhaps) can set the value in the dictionary to true, meaning to cancel the animation. The Device.StartTimer callback can begin by checking the value of the dictionary for the particular VisualElement and return false from the callback if the animation has been cancelled. But you’ll discover in the discussion that follows how to do it with less code.

Now that you’ve seen the high-level animation functions implemented in the ViewExtensions class, let’s explore how the rest of the Xamarin.Forms animation system implements these functions and allows you to start, control, and cancel animations.

Deeper into animation

On first encounter, the complete Xamarin.Forms animation system can be a little confusing. Let’s begin with a global view of the three public classes that you can use to define animations.

Sorting out the classes

In addition to the Easing class, the Xamarin.Forms animation system comprises three public classes. Here they are in hierarchical order from high level to low level:

ViewExtensions class

This is the class you’ve already seen. ViewExtensions is a static class that contains several extension methods for VisualElement, which is the parent class to View and Page:

• TranslateTo animates the TranslationX and TranslationY properties

• ScaleTo animates the Scale property

• RelScaleTo applies an animated incremental increase or decrease to the Scale property

• RotateTo animates the Rotation property

• RelRotateTo applies an animated incremental increase or decrease to the Rotation property

• RotateXTo animates the RotationX property

• RotateYTo animates the RotationY property

• FadeTo animates the Opacity property

• LayoutTo animates the get-only Bounds property by calling the Layout method

As you can see, the first seven methods target transform properties. These properties do not cause any change to how the element is perceived in layout. Although the animated view can move, change size, and rotate, none of the other views on the page are affected, except possibly being obscured by the new location or size.

The FadeTo animation changes only the Opacity property, so that doesn’t cause layout changes either.

As you’ve seen, the LayoutTo animation is a little different. The argument is a Rectangle value, and the method essentially overrides the location and size assigned to the view by the element’s parent Layout or Layout<T> object. LayoutTo is most useful for animating children of an AbsoluteLayout because you can call AbsoluteLayout.SetLayoutBounds with the same Rectangle object after the animation has completed. In Chapter 26, you’ll learn how to use LayoutTo in a class that derives from Layout<View>.

These are all asynchronous methods that return Task<bool>. The Boolean return value is true if the animation was cancelled and false if it ran to completion.

In addition, ViewExtensions also contains a static ViewExtensions.CancelAnimations method (not an extension method) that has a single argument of type VisualElement. This method cancels any and all animations started with this class on that VisualElement object.

All the extension methods in ViewExtensions work by creating one or more Animation objects and then calling the Commit method defined by that Animation class.

The Animation class

The Animation class has two constructors: a parameterless constructor and another with five parameters, although only one of the arguments is required:

Click here to view code image

public Animation (Action<double> callback,

 double start = 0.0f,

 double end = 1.0f,

 Easing easing = null,

 Action finished = null)

This defines an animation of a double value that begins at start and ends at end. Often, these two arguments will have their default values of 0 and 1, respectively. The animated value is passed to the callback method as an argument, where it is generally named t or progress. The callback can do whatever it wants with this value, but generally it’s used to change a value of a property. If the target property is of type double, then start and end values can define the start and end values of the animated property directly.

Animation implements the IEnumerable interface. It can maintain a collection of child animations that can then be uniformly started and remain synchronized. To allow a program to add items to this collection, Animation defines four methods:

• Add

• Insert

• WithConcurrent (two versions)

These are all fundamentally the same in that they all add a child Animation object to an internal collection maintained by Animation. You’ll see examples shortly.

Starting the animation (which might or might not include child animations) requires a call to the Commit method. The Commit method specifies the duration of the animation and also includes two more callbacks:

Click here to view code image

animation.Commit(IAnimatable owner,

 string name,

 uint rate = 16,

 uint length = 250,

 Easing easing = null,

 Action<double, bool> finished = null,

 Func<bool> repeat = null);

Notice the first argument is IAnimatable. The IAnimatable interface defines just two methods, named BatchBegin and BatchCommit. The only class that implements IAnimatable is VisualElement, which is the class associated with the ViewExtensions methods.

The name argument identifies the animation. You can use methods in the AnimationExtensions class (coming up) to determine if an animation of that name is running or to cancel it. You don’t need to use unique names for every animation that you’re running, but if you’re making multiple overlapping Commit calls on the same visual object, then those names should be unique.

In theory, the rate argument indicates the number of milliseconds between each call to the callback method defined in the Animation constructor. It is set at 16 for an animation speed of 60 frames per second, but changing it has no effect.

The repeat callback allows the animation to be repeated. It’s called at the end of the animation, and if the callback returns true, that signals that the animation should be repeated. As you’ll see, it works in some configurations but not others.

The Commit method in the Animation class works by calling an Animate method in the AnimationExtensions class.

AnimationExtensions class

Like ViewExtensions, AnimationExtentions is a static class containing mostly extension methods. But while the first parameter in the ViewExtensions methods is a VisualElement, the first parameter in the AnimationExtensions methods is an IAnimatable to be consistent with the Commit method in the Animation class.

AnimationExtensions defines several overloads of the Animate method with callbacks and other information. The most extensive version of Animate is this generic method:

Click here to view code image

public static void Animate<T>(this IAnimatable self,

 string name,

 Func<double, T> transform,

 Action<T> callback,

 uint rate = 16,

 uint length = 250,

 Easing easing = null,

 Action<T, bool> finished = null,

 Func<bool> repeat = null);

In one sense, this is the only animation method you need. By now many of these parameters should be recognizable. But notice the transform method that can help structure the logic of animations that target properties that are not of type double.

For example, suppose you want to animate a property of type Color. You first write a little transform method that accepts a double argument ranging from 0 to 1 (and often named t or progress) and returns a Color value corresponding to that value. The callback method obtains that Color value and can then set it to a particular property of a particular object. You’ll see this precise application at the end of this chapter.

Other public methods in the AnimationExtensions class are AnimationIsRunning to determine if a particular animation on a particular VisualElement instance is running, and AbortAnimation to cancel an animation. Both are extension methods for IAnimatable and require a name consistent with the name passed to the Animate method or the Commit method of Animation.

Working with the Animation class

Let’s experiment a bit with the Animation class. This involves instantiating objects of type Animation and then calling Commit, which actually starts the animation going. The Commit method does not return a Task object; instead, the Animation class provides notifications entirely through callbacks.

There are several different ways to configure an Animation object, and some of these might involve child animations, which is why the project that demonstrates the Animation class is called ConcurrentAnimations. But not all the demonstrations in this program involve child animations.

The XAML file defines mostly a bunch of buttons that serve both to trigger animations and to be the targets of these animations:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ConcurrentAnimations.ConcurrentAnimationsPage">

 <StackLayout>

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Button">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Button Text="Animation 1 (Scale)"

 Clicked="OnButton1Clicked" />

 <Button Text="Animation 2 (Repeated)"

 Clicked="OnButton2Clicked" />

 <Button Text="Stop Animation 2"

 Clicked="OnStop2Clicked" />

 <Button Text="Animation 3 (Scale up & down)"

 Clicked="OnButton3Clicked" />

 <Button Text="Animation 4 (Scale & Rotate)"

 Clicked="OnButton4Clicked" />

 <Button Text="Animation 5 (Dots)"

 Clicked="OnButton5Clicked" />

 <Label x:Name="waitLabel"

 FontSize="Large"

 WidthRequest="100" />

 <Button Text="Turn off dots"

 Clicked="OnTurnOffButtonClicked" />

 <Button Text="Animation 6 (Color)"

 Clicked="OnButton6Clicked" />

 </StackLayout>

</ContentPage>

The code-behind file contains the event handlers for each of these buttons.

The code in the Clicked handler for the first Button uses comments to identify all the arguments for the Animation constructor and the Commit call. There are a total of four callback methods, each of which are expressed here as a lambda function but not with the most concise syntax:

Click here to view code image

public partial class ConcurrentAnimationsPage : ContentPage

{

 ...

 public ConcurrentAnimationsPage()

 {

 InitializeComponent();

 }

 void OnButton1Clicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 Animation animation = new Animation(

 (double value) =>

 {

 button.Scale = value;

 }, // callback

 1, // start

 5, // end

 Easing.Linear, // easing

 () =>

 {

 Debug.WriteLine("finished");

 } // finished (but doesn't fire in this configuration)

);

 animation.Commit(

 this, // owner

 "Animation1", // name

 16, // rate (but has no effect here)

 1000, // length (in milliseconds)

 Easing.Linear,

 (double finalValue, bool wasCancelled) =>

 {

 Debug.WriteLine("finished: {0} {1}", finalValue, wasCancelled);

 button.Scale = 1;

 }, // finished

 () =>

 {

 Debug.WriteLine("repeat");

 return false;

 } // repeat

);

 }

 ...

}

The callback in the Animation constructor sets the Scale property of the Button to the value passed to that callback. This value ranges from 1 to 5 as the next two arguments indicate.

The Commit method assigns an owner to the animation. This can be the visual element on which the animation is applied or another visual element, such as the page. The name is combined with the owner to uniquely identify the animation if it must be cancelled. The same owner should be used for calls to AnimationIsRunning or AbortAnimation in the AnimationExtensions class. (You’ll see how to cancel an animation shortly.)

The last argument to the Animation constructor is named finished, and it’s a callback that is supposed to be invoked when the animation completes, but in this configuration it is not called. Fortunately, the Commit method also has a finished callback with two arguments. The first should indicate a final value (but in this configuration that value is always 1), and the second argument is a bool that is set to true if the animation was cancelled.

In this example, both finished callbacks make calls to Debug.WriteLine so that you can confirm that one is called but not the other. The finished callback included with the Commit call sets the Scale property back to 1, so the Button snaps back to its original size.

If you want to apply an easing function, you can specify it either in the constructor or in the Commit method call.

The Clicked handler for the second Button is very similar to the first except that the syntax is considerably more concise. Many of the parameters to the constructor and the Commit method have default values, and the constructor has taken advantage of those. The syntax for the lambda functions has also been simplified:

Click here to view code image

public partial class ConcurrentAnimationsPage : ContentPage

{

 ...

 void OnButton2Clicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 Animation animation = new Animation(v => button.Scale = v, 1, 5);

 animation.Commit(this, "Animation2", 16, 1000, Easing.Linear,

 (v, c) => button.Scale = 1,

 () => true);

 }

 void OnStop2Clicked(object sender, EventArgs args)

 {

 this.AbortAnimation("Animation2");

 }

 ...

}

The only functional difference between the code for this Button and the previous Button involves the repeat callback. When the animation completes—that is, after a value of 5 is passed to the callback method—both the repeat and finished callbacks passed to the Commit method are called. If repeat returns true, then the animation starts over from the beginning, and at the end of that, repeat and finished are called again.

Fortunately, the XAML file includes another Button that calls AbortAnimation to terminate the animation. AbortAnimation is an extension method, so it must be called on the same element passed as the first argument to the Commit method, which in this case is the page object.

If you want several concurrent forever animations that run independently of each other, you can create an Animation object for each of them and then call Commit on each one with a repeat callback that returns true.

Child animations

Those first two examples in ConcurrentAnimations are single animations. The Animation class also supports child animations, and that’s what the handler for the Button labeled “Animation 3” demonstrates. It first creates a parent Animation object with the parameterless constructor. It then creates two additional Animation objects and adds them to the parent Animation object with the Add and Insert methods:

Click here to view code image

public partial class ConcurrentAnimationsPage : ContentPage

{

 ...

 void OnButton3Clicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 // Create parent animation object.

 Animation parentAnimation = new Animation();

 // Create "up" animation and add to parent.

 Animation upAnimation = new Animation(

 v => button.Scale = v,

 1, 5, Easing.SpringIn,

 () => Debug.WriteLine("up finished"));

 parentAnimation.Add(0, 0.5, upAnimation);

 // Create "down" animation and add to parent.

 Animation downAnimation = new Animation(

 v => button.Scale = v,

 5, 1, Easing.SpringOut,

 () => Debug.WriteLine("down finished"));

 parentAnimation.Insert(0.5, 1, downAnimation);

 // Commit parent animation.

 parentAnimation.Commit(

 this, "Animation3", 16, 5000, null,

 (v, c) => Debug.WriteLine("parent finished: {0} {1}", v, c));

 }

 ...

}

These Add and Insert methods are basically the same, and in practical use are interchangeable. The only difference is that Insert returns the parent Animation object while Add does not.

Both methods require two arguments of type double with the names beginAt and finishAt. These two arguments must be between 0 and 1, and finishAt must be greater than beginAt. These two arguments indicate the relative period within the total animation that these particular child animations are active.

The total animation is five seconds long. That’s the argument of 5000 in the Commit method. The first child animation animates the Scale property from 1 to 5. The beginAt and finishAt arguments are 0 and 0.5, respectively, which means that this child animation is active during the first half of the overall animation—that is, during the first 2.5 seconds. The second child animation takes the Scale property from 5 back down to 1. The beginAt and finishAt arguments are 0.5 and 1, respectively, which means that this animation occurs in the second half of the overall five-second animation.

The result is that the Button is scaled to five times its size over 2.5 seconds and then scaled back down to 1 over the final 2.5 seconds. But notice the two Easing functions set on the two child animations. The Easing.SpringIn object causes the Button to initially shrink in size before getting larger, and the Easing.SpringOut function also causes the Button to become smaller than its actual size toward the end of the complete animation.

As you’ll see when you click the button to run this code, all the finished callbacks are now called. That is one difference between using the Animation class for a single animation and using it with child animations. The finished callback on the child animations indicates when that particular child has completed, and the finished callback passed to the Commit method indicates when the entire animation has finished.

There are two more differences when using child animations:

• When using child animations, returning true from the repeat callback on the Commit method doesn’t cause the animation to repeat, but the animation will nevertheless continue to run with no new values.

• If you include an Easing function in the Commit method, and the Easing function returns a value greater than 1, the animation will be terminated at that point. If the Easing function returns a value less than 0, the value is clamped to equal 0.

If you want to use an Easing function that returns a value less than 0 or greater than 1 (for example, the Easing.SpringIn or Easing.SpringOut function), specify it in one or more of the child animations, as the example demonstrates, rather than the Commit method.

The C# compiler recognizes the Add method of a class that implements IEnumerable as a collection initializer. To keep the animation syntax to a minimum, you can follow the new operator on the parent Animation object with a pair of curly braces to initialize the contents with children. Each pair of curly braces within those outer curly braces encloses the arguments to the Add method. Here is an animation with three children:

Click here to view code image

public partial class ConcurrentAnimationsPage : ContentPage

{

 ...

 void OnButton4Clicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 new Animation

 {

 { 0, 0.5, new Animation(v => button.Scale = v, 1, 5) },

 { 0.25, 0.75, new Animation(v => button.Rotation = v, 0, 360) },

 { 0.5, 1, new Animation(v => button.Scale = v, 5, 1) }

 }.Commit(this, "Animation4", 16, 5000);

 }

 ...

}

Notice also that Commit is called directly on the Animation constructor. This is as concise as you can make this code.

The first two arguments to these implicit Add methods indicate where within the entire parent animation the child is active. The first child animates the Scale property and is active during the first half of the parent animation, and the last child also animates the Scale property and is active for the last half of the parent animation. That’s the same as the previous example. But now there’s also an animation of the Rotation property with start and end values of 0.25 and 0.75. This Rotation animation begins halfway through the first Scale animation and ends halfway through the second Scale animation. This is how child animations can be overlapped.

The Animation class also includes two methods named WithConcurrent to add child animations to a parent Animation object. These are similar to the Add and Insert methods, except that the beginAt and finishAt arguments (or start and end as they’re called in one of the WithConcurrent methods) are not restricted to the range of 0 through 1. However, only that part of the child animation that corresponds to a range of 0 through 1 will be active.

For example, suppose you call WithConcurrent to define a child animation that targets a Scale property from 1 to 4, but with a beginAt argument of –1 and a finishAt argument of 2. The beginAt value of –1 corresponds to a Scale value of 1, and the finishAt value of 2 corresponds to a Scale value of 4, but values outside the range of 0 and 1 don’t play a role in the animation, so the Scale property will only be animated from 2 to 3.

Beyond the high-level animation methods

The examples in ConcurrentAnimations that you’ve seen so far have restricted themselves to animations of the Scale and Rotate properties, so they haven’t shown anything you can’t do with the methods in the ViewExtensions class. But because you have access to the actual callback method, you can do anything you want during that callback.

Here’s an animation that you might use to indicate that your application is performing an operation that might take some time to complete. Rather than displaying an ActivityIndicator, you’ve chosen to display a string of periods that repetitively increases in length from 0 to 10. Those two values are specified as arguments to the Animation constructor. The callback method casts the current value to an integer for use with one of the lesser-known string constructors to construct a string with that number of dots:

Click here to view code image

public partial class ConcurrentAnimationsPage : ContentPage

{

 bool keepAnimation5Running = false;

 ...

 void OnButton5Clicked(object sender, EventArgs args)

 {

 Animation animation =

 new Animation(v => dotLabel.Text = new string('.', (int)v), 0, 10);

 animation.Commit(this, "Animation5", 16, 3000, null,

 (v, cancelled) => dotLabel.Text = "",

 () => keepAnimation5Running);

 keepAnimation5Running = true;

 }

 void OnTurnOffButtonClicked(object sender, EventArgs args)

 {

 keepAnimation5Running = false;

 }

 ...

}

The OnButton5Clicked method concludes by setting the keepAnimation5Running field to true, and the repeat callback in the Commit method returns that value. The animation will keep running until keepAnimation5Running is set to false, which is what the next Button does.

The difference between this technique and cancelling the animation is that this technique does not immediately end the animation. The repeat callback is only called after the animation reaches its end value (which is 10 in this case), so the animation could continue to run for almost another three seconds after keepAnimation5Running is set to false.

The final example in the ConcurrentAnimations program animates the BackgroundColor property of the page by setting it to Color values created by the Color.FromHsla method with hue values ranging from 0 through 1. This animation gives the effect of sweeping through the colors of the rainbow:

Click here to view code image

public partial class ConcurrentAnimationsPage : ContentPage

{

 ...

 void OnButton6Clicked(object sender, EventArgs args)

 {

 new Animation(callback: v => BackgroundColor = Color.FromHsla(v, 1, 0.5),

 start: 0,

 end: 1).Commit(owner: this,

 name: "Animation6",

 length: 5000,

 finished: (v, c) => BackgroundColor = Color.Default);

 }

}

This code uses named arguments and hence illustrates yet another syntax variation for instantiating an Animation object and calling Commit on it.

More of your own awaitable methods

Earlier, you saw how to use TaskCompletionSource together with Device.StartTimer to write your own asynchronous animation methods. You can also combine TaskCompletionSource with the Animation class to write you own asynchronous animation methods similar to those in the ViewExtensions class.

Suppose you like the idea of the SlidingEntrance program, but you are dissatisfied that the Easing.SpringOut function doesn’t work with the TranslateTo method. You can write your own translation animation method. If you only need to animate the TranslationX property, you can call it TranslateXTo:

Click here to view code image

public static Task<bool> TranslateXTo(this VisualElement view, double x,

 uint length = 250, Easing easing = null)

{

 easing = easing ?? Easing.Linear;

 TaskCompletionSource<bool> taskCompletionSource = new TaskCompletionSource<bool>();

 Animation animation = new Animation(

 (value) => view.TranslationX = value, // callback

 view.TranslationX, // start

 x, // end

 easing); // easing

 animation.Commit(

 view, // owner

 "TranslateXTo", // name

 16, // rate

 length, // length

 null, // easing

 (finalValue, cancelled) => taskCompletionSource.SetResult(cancelled)); // finished

 return taskCompletionSource.Task;

}

Notice that the current value of the TranslationX property is passed to the Animation constructor for the start argument, and the x parameter to TranslateXTo is passed as the end argument. The TaskCompletionSource has a type argument of bool so that the method can indicate if it’s been cancelled or not. The method returns the Task property of the TaskCompletionSource object and calls SetResult in the finished callback of the Commit method.

However, there is a subtle flaw in this TranslateXTo method. What happens if the visual element being animated is removed from the visual tree during the course of the animation? In theory, if there are no other references to that object, it should become eligible for garbage collection. However, there will be a reference to that object in the animation method. The element will continue to be animated—and prevented from being garbage collected—even though there are no other references to that element!

You can avoid this peculiar situation if the animation method creates a WeakReference object to the animated element. The WeakReference allows the animation method to refer to the element but does not increase the reference count for purposes of garbage collection. While this is something you don’t need to bother with for animation methods in your own application—because you’re probably aware when elements are removed from visual trees—it’s something you should probably do in any animation method that appears in a library.

The TranslateXTo method is in the Xamarin.FormsBook.Toolkit library, so it includes the use of WeakReference. Because the element could be gone when the callback method is called, the method must get a reference to the element with the TryGetTarget method. That method returns false if the object is no longer available:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public static class MoreViewExtensions

 {

 public static Task<bool> TranslateXTo(this VisualElement view, double x,

 uint length = 250, Easing easing = null)

 {

 easing = easing ?? Easing.Linear;

 TaskCompletionSource<bool> taskCompletionSource = new TaskCompletionSource<bool>();

 WeakReference<VisualElement> weakViewRef = new WeakReference<VisualElement>(view);

 Animation animation = new Animation(

 (value) =>

 {

 VisualElement viewRef;

 if (weakViewRef.TryGetTarget(out viewRef))

 {

 viewRef.TranslationX = value;

 }

 }, // callback

 view.TranslationX, // start

 x, // end

 easing); // easing

 animation.Commit(

 view, // owner

 "TranslateXTo", // name

 16, // rate

 length, // length

 null, // easing

 (finalValue, cancelled) =>

 taskCompletionSource.SetResult(cancelled)); // finished

 return taskCompletionSource.Task;

 }

 public static void CancelTranslateXTo(VisualElement view)

 {

 view.AbortAnimation("TranslateXTo");

 }

 ...

}

Notice that a method to cancel the animation named “TranslateX” is also included.

This TranslateXTo method is demonstrated in the SpringSlidingEntrance program, which is the same as SlidingEntrance except that it has a reference to the Xamarin.FormsBook.Toolkit library and the OnAppearing override calls TranslateXTo:

Click here to view code image

public partial class SpringSlidingEntrancePage : ContentPage

{

 public SpringSlidingEntrancePage()

 {

 InitializeComponent();

 }

 async protected override void OnAppearing()

 {

 base.OnAppearing();

 double offset = 1000;

 foreach (View view in stackLayout.Children)

 {

 view.TranslationX = offset;

 offset *= -1;

 }

 foreach (View view in stackLayout.Children)

 {

 await Task.WhenAny(view.TranslateXTo(0, 1000, Easing.SpringOut),

 Task.Delay(100));

 }

 }

}

The difference is, I’m sure you’ll agree, well worth the effort. The elements on the page slide in and overshoot their destinations before settling into a well-ordered page.

The Xamarin.FormsBook.Toolkit library also has a TranslateYTo method that is basically the same as TranslateXTo, but with more concise syntax:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public static class MoreViewExtensions

 {

 ...

 public static Task<bool> TranslateYTo(this VisualElement view, double y,

 uint length = 250, Easing easing = null)

 {

 easing = easing ?? Easing.Linear;

 TaskCompletionSource<bool> taskCompletionSource = new TaskCompletionSource<bool>();

 WeakReference<VisualElement> weakViewRef = new WeakReference<VisualElement>(view);

 Animation animation = new Animation((value) =>

 {

 VisualElement viewRef;

 if (weakViewRef.TryGetTarget(out viewRef))

 {

 viewRef.TranslationY = value;

 }

 }, view.TranslationY, y, easing);

 animation.Commit(view, "TranslateYTo", 16, length, null,

 (v, c) => taskCompletionSource.SetResult(c));

 return taskCompletionSource.Task;

 }

 public static void CancelTranslateYTo(VisualElement view)

 {

 view.AbortAnimation("TranslateYTo");

 }

 ...

}

As a replacement for TranslateTo, you can use TranslateXYTo. As you learned earlier in this chapter, an Easing function that returns values less than 0 or greater than 1 shouldn’t be passed to the Commit method for an animation with children. Instead, the Easing function should be passed to the Animation constructors of the children. This is what TranslateXYTo does:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public static class MoreViewExtensions

 {

 ...

 public static Task<bool> TranslateXYTo(this VisualElement view, double x, double y,

 uint length = 250, Easing easing = null)

 {

 easing = easing ?? Easing.Linear;

 TaskCompletionSource<bool> taskCompletionSource = new TaskCompletionSource<bool>();

 WeakReference<VisualElement> weakViewRef = new WeakReference<VisualElement>(view);

 Action<double> callbackX = value =>

 {

 VisualElement viewRef;

 if (weakViewRef.TryGetTarget(out viewRef))

 {

 viewRef.TranslationX = value;

 }

 };

 Action<double> callbackY = value =>

 {

 VisualElement viewRef;

 if (weakViewRef.TryGetTarget(out viewRef))

 {

 viewRef.TranslationY = value;

 }

 };

 Animation animation = new Animation

 {

 { 0, 1, new Animation(callbackX, view.TranslationX, x, easing) },

 { 0, 1, new Animation(callbackY, view.TranslationY, y, easing) }

 };

 animation.Commit(view, "TranslateXYTo", 16, length, null,

 (v, c) => taskCompletionSource.SetResult(c));

 return taskCompletionSource.Task;

 }

 public static void CancelTranslateXYTo(VisualElement view)

 {

 view.AbortAnimation("TranslateXYTo");

 }

 ...

 }

}

Implementing a Bezier animation

Some graphics systems implement an animation that moves a visual object along a Bezier curve and even (optionally) rotates the visual object so it remains tangent to the curve.

The Bezier curve is named after Pierre Bézier, a French engineer and mathematician who developed the use of the curve in interactive computer-aided designs of automobile bodies while working at Renault. The curve is a type of spline defined by a start point and an end point and two control points. The curve passes through the start and end points but usually not the two control points. Instead, the control points function like “magnets” to pull the curve toward them.

In its two-dimensional form, the Bezier curve is represented mathematically as a pair of parametric cubic equations. Here is a BezierSpline structure in the Xamarin.FormsBook.Toolkit library:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public struct BezierSpline

 {

 public BezierSpline(Point point0, Point point1, Point point2, Point point3)

 : this()

 {

 Point0 = point0;

 Point1 = point1;

 Point2 = point2;

 Point3 = point3;

 }

 public Point Point0 { private set; get; }

 public Point Point1 { private set; get; }

 public Point Point2 { private set; get; }

 public Point Point3 { private set; get; }

 public Point GetPointAtFractionLength(double t, out Point tangent)

 {

 // Calculate point on curve.

 double x = (1 - t) * (1 - t) * (1 - t) * Point0.X +

 3 * t * (1 - t) * (1 - t) * Point1.X +

 3 * t * t * (1 - t) * Point2.X +

 t * t * t * Point3.X;

 double y = (1 - t) * (1 - t) * (1 - t) * Point0.Y +

 3 * t * (1 - t) * (1 - t) * Point1.Y +

 3 * t * t * (1 - t) * Point2.Y +

 t * t * t * Point3.Y;

 Point point = new Point(x, y);

 // Calculate tangent to curve.

 x = 3 * (1 - t) * (1 - t) * (Point1.X - Point0.X) +

 6 * t * (1 - t) * (Point2.X - Point1.X) +

 3 * t * t * (Point3.X - Point2.X);

 y = 3 * (1 - t) * (1 - t) * (Point1.Y - Point0.Y) +

 6 * t * (1 - t) * (Point2.Y - Point1.Y) +

 3 * t * t * (Point3.Y - Point2.Y);

 tangent = new Point(x, y);

 return point;

 }

 }

}

The Point0 and Point3 points are the start and end points, while Point1 and Point2 are the two control points.

The GetPointAtFractionLength method returns the point on the curve corresponding to values of t ranging from 0 to 1. The first calculations of x and y in this method involve the standard parametric equations of the Bezier curve. When t is 0, the point on the curve is Point0, and when t is 1, the point on the curve is Point3.

GetPointAtFractionLength also has a second calculation of x and y based on the first derivative of the curve, so these values indicate the tangent of the curve at that point. Generally, we think of the tangent as a straight line that touches the curve but does not intersect it, so it might seem peculiar to express the tangent as another point. But this is not really a point. It’s a vector in the direction from the point (0, 0) to the point (x, y). That vector can be turned into a rotation angle by using the inverse tangent function, also known as the arctangent, and available most conveniently to the .NET programmers as Math.Atan2, which has two arguments, y and x in that order, and returns an angle in radians. You’ll need to convert to degrees for setting the Rotation property.

The BezierPathTo method in the Xamarin.FormsBook.Toolkit library moves the target visual element by calling the Layout method, which means that BezierPathTo is similar to LayoutTo. The method also optionally rotates the element by setting its Rotation property. Rather than splitting the job into two child animations, BezierPathTo does everything in the callback method of a single animation.

The start point of the Bezier curve is assumed to be the center of the visual element that the animation targets. The BezierPathTo method requires two control points and an end point. All points generated from the Bezier curve are also assumed to refer to the center of the visual element, so the points must be adjusted by half the element’s width and height:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public static class MoreViewExtensions

 {

 ...

 public static Task<bool> BezierPathTo(this VisualElement view,

 Point pt1, Point pt2, Point pt3,

 uint length = 250,

 BezierTangent bezierTangent = BezierTangent.None,

 Easing easing = null)

 {

 easing = easing ?? Easing.Linear;

 TaskCompletionSource<bool> taskCompletionSource = new TaskCompletionSource<bool>();

 WeakReference<VisualElement> weakViewRef = new WeakReference<VisualElement>(view);

 Rectangle bounds = view.Bounds;

 BezierSpline bezierSpline = new BezierSpline(bounds.Center, pt1, pt2, pt3);

 Action<double> callback = t =>

 {

 VisualElement viewRef;

 if (weakViewRef.TryGetTarget(out viewRef))

 {

 Point tangent;

 Point point = bezierSpline.GetPointAtFractionLength(t, out tangent);

 double x = point.X - bounds.Width / 2;

 double y = point.Y - bounds.Height / 2;

 viewRef.Layout(new Rectangle(new Point(x, y), bounds.Size));

 if (bezierTangent != BezierTangent.None)

 {

 viewRef.Rotation = 180 * Math.Atan2(tangent.Y, tangent.X) / Math.PI;

 if (bezierTangent == BezierTangent.Reversed)

 {

 viewRef.Rotation += 180;

 }

 }

 }

 };

 Animation animation = new Animation(callback, 0, 1, easing);

 animation.Commit(view, "BezierPathTo", 16, length,

 finished: (value, cancelled) => taskCompletionSource.SetResult(cancelled));

 return taskCompletionSource.Task;

 }

 public static void CancelBezierPathTo(VisualElement view)

 {

 view.AbortAnimation("BezierPathTo");

 }

 ...

 }

}

Applying the Rotation angle is still a bit tricky, however. If the points of a Bezier curve are defined so that the curve goes roughly from left to right across the screen, then the tangent is a vector that also goes from left to right, and the rotation of the animated element should preserve its orientation. But if the points of the Bezier curve go from right to left, then the tangent is also from right to left, and the mathematics dictate that the element should be flipped 180 degrees.

To control the orientation of the target element, a tiny enumeration is defined:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public enum BezierTangent

 {

 None,

 Normal,

 Reversed

 }

}

The BezierPathTo animation uses this to control how the tangent angle is applied to the Rotation property.

The BezierLoop program demonstrates the use of BezierPathTo. A Button sits in the upper-left corner of an AbsoluteLayout:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BezierLoop.BezierLoopPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <AbsoluteLayout>

 <Button Text="Click for Loop"

 Clicked="OnButtonClicked" />

 </AbsoluteLayout>

</ContentPage>

The Clicked handler for the Button begins by calculating the start and end points of the Bezier curve and the two control points. The start point is the upper-left corner where the Button initially sits. The end point is the upper-right corner. The two control points are the lower-right corner and the lower-left corner, respectively. This type of configuration actually creates a loop in the Bezier curve:

Click here to view code image

public partial class BezierLoopPage : ContentPage

{

 public BezierLoopPage()

 {

 InitializeComponent();

 }

 async void OnButtonClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 Layout parent = (Layout)button.Parent;

 // Center of Button in upper-left corner.

 Point point0 = new Point(button.Width / 2, button.Height / 2);

 // Lower-right corner of page.

 Point point1 = new Point(parent.Width, parent.Height);

 // Lower-left corner of page.

 Point point2 = new Point(0, parent.Height);

 // Center of Button in upper-right corner.

 Point point3 = new Point(parent.Width - button.Width / 2, button.Height / 2);

 // Initial angle of Bezier curve (vector from Point0 to Point1).

 double angle = 180 / Math.PI * Math.Atan2(point1.Y - point0.Y,

 point1.X - point0.X);

 await button.RotateTo(angle, 1000, Easing.SinIn);

 await button.BezierPathTo(point1, point2, point3, 5000,

 BezierTangent.Normal, Easing.SinOut);

 await button.BezierPathTo(point2, point1, point0, 5000,

 BezierTangent.Reversed, Easing.SinIn);

 await button.RotateTo(0, 1000, Easing.SinOut);

 }

}

The tangent to the Bezier curve at its very beginning is the line from point0 to point1. This is the angle variable that the method calculates so it can first use RotateTo to rotate the Button to avoid a jump when the BezierPathTo animation begins. The first BezierPathTo moves the Button from the upper-left corner to the upper-right corner with a loop near the bottom of the screen:

[image: Image]

A second BezierPathTo then reverses the trip back to the upper-left corner. (This is where the BezierTangent enumeration comes into play. Without it, the Button suddenly flips upside down as the second BezierPathTo begins.) A final RotateTo restores it to its original orientation.

Working with AnimationExtensions

Why does ViewExtensions not include a ColorTo animation? There are three plausible reasons why such a method isn’t as obvious as you might initially assume:

Firstly, the only Color property defined by VisualElement is BackgroundColor, but that’s usually not the Color property you want to animate. It’s more likely you want to animate the TextColor property of Label or the Color property of BoxView.

Secondly, all the methods in ViewExtensions animate a property from its current value to a specified value. But often the current value of a property of type Color is Color.Default, which is not a real color and which cannot be used in an interpolation calculation.

Thirdly, the interpolation between two Color values can be calculated in a variety of different ways, but two stand out as the most likely: You might want to interpolate the red-green-blue values or the hue-saturation-luminosity values. The intermediate values will be different in these two cases.

Let’s take care of these three problems with three different solutions:

Firstly, let’s not have the color-animation method target a particular property. Let’s write the method with a callback method that passes the interpolated Color value back to the caller.

Secondly, let’s require that both a start Color value and an end Color value be supplied to the animation method.

Thirdly, let’s write two different methods, RgbColorAnimation and HslColorAnimation.

You could certainly use the Animation class and Commit for this job, but let’s instead dive deeper into the Xamarin.Forms animation system and use a method in the AnimationExtensions class.

AnimationExtensions has four different methods named Animate, as well as an AnimateKinetic method. The AnimateKinetic method is intended to apply a “drag” value to an animation so that it slows down as if by friction. However, it’s not yet working in a way that allows the results to be easily predicted, and it is not demonstrated in this chapter.

Of the four Animate methods, the generic form is the most versatile:

Click here to view code image

public static void Animate<T>(this IAnimatable self,

 string name,

 Func<double, T> transform,

 Action<T> callback,

 uint rate = 16,

 uint length = 250,

 Easing easing = null,

 Action<T, bool> finished = null,

 Func<bool> repeat = null);

The generic type is the type of the property you want to animate—for example, Color. By this time you should recognize all these parameters except for the callback method named transform. The input to that callback is always a t or progress value ranging from 0 to 1. The output is a value of the generic type—for example, Color. That value is then passed to the callback method for application to a particular property.

Here are RgbColorAnimation and HslColorAnimation in the MoreViewExtensions class of the Xamarin.FormsBook.Toolkit library:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public static class MoreViewExtensions

 {

 ...

 public static Task<bool> RgbColorAnimation(this VisualElement view,

 Color fromColor, Color toColor,

 Action<Color> callback,

 uint length = 250,

 Easing easing = null)

 {

 Func<double, Color> transform = (t) =>

 {

 return Color.FromRgba(fromColor.R + t * (toColor.R - fromColor.R),

 fromColor.G + t * (toColor.G - fromColor.G),

 fromColor.B + t * (toColor.B - fromColor.B),

 fromColor.A + t * (toColor.A - fromColor.A));

 };

 return ColorAnimation(view, "RgbColorAnimation", transform,

 callback, length, easing);

 }

 public static void CancelRgbColorAnimation(VisualElement view)

 {

 view.AbortAnimation("RgbColorAnimation");

 }

 public static Task<bool> HslColorAnimation(this VisualElement view,

 Color fromColor, Color toColor,

 Action<Color> callback,

 uint length = 250,

 Easing easing = null)

 {

 Func<double, Color> transform = (t) =>

 {

 return Color.FromHsla(

 fromColor.Hue + t * (toColor.Hue - fromColor.Hue),

 fromColor.Saturation + t * (toColor.Saturation - fromColor.Saturation),

 fromColor.Luminosity + t * (toColor.Luminosity - fromColor.Luminosity),

 fromColor.A + t * (toColor.A - fromColor.A));

 };

 return ColorAnimation(view, "HslColorAnimation", transform,

 callback, length, easing);

 }

 public static void CancelHslColorAnimation(VisualElement view)

 {

 view.AbortAnimation("HslColorAnimation");

 }

 static Task<bool> ColorAnimation(VisualElement view,

 string name,

 Func<double, Color> transform,

 Action<Color> callback,

 uint length,

 Easing easing)

 {

 easing = easing ?? Easing.Linear;

 TaskCompletionSource<bool> taskCompletionSource = new TaskCompletionSource<bool>();

 view.Animate<Color>(name, transform, callback, 16,

 length, easing, (value, canceled) =>

 {

 taskCompletionSource.SetResult(canceled);

 });

 return taskCompletionSource.Task;

 }

 }

}

The two methods define their own transform functions and then make use of the private ColorAnimation method to actually make the call to the Animate method in AnimationExtensions. Because these methods don’t explicitly target a particular visual element, there is no need for the WeakReference class.

The ColorAnimations program demonstrates these methods for animating various color properties in various ways. The XAML file as a Label, two Button elements, and two BoxView elements:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ColorAnimations.ColorAnimationsPage">

 <StackLayout>

 <Label x:Name="label"

 Text="TEXT"

 FontSize="48"

 FontAttributes="Bold"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <Button Text="Rainbow Background"

 Clicked="OnRainbowBackgroundButtonClicked"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <Button Text="BoxView Color"

 Clicked="OnBoxViewColorButtonClicked"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <StackLayout Orientation="Horizontal">

 <BoxView x:Name="boxView1"

 Color="Blue"

 HeightRequest="100"

 HorizontalOptions="FillAndExpand" />

 <BoxView x:Name="boxView2"

 Color="Blue"

 HeightRequest="100"

 HorizontalOptions="FillAndExpand" />

 </StackLayout>

 </StackLayout>

</ContentPage>

The code-behind file uses a mix of RgbColorAnimation and HslColorAnimation to animate the colors of the Label text and its background, the background of the page, and the two BoxView elements.

The Label text and its background are continuously animated oppositely between black and white. Only midway through the animations—when both the text and the background are medium gray—is the text invisible:

Click here to view code image

public partial class ColorAnimationsPage : ContentPage

{

 public ColorAnimationsPage()

 {

 InitializeComponent();

 AnimationLoop();

 }

 async void AnimationLoop()

 {

 while (true)

 {

 Action<Color> textCallback = color => label.TextColor = color;

 Action<Color> backCallback = color => label.BackgroundColor = color;

 await Task.WhenAll(

 label.RgbColorAnimation(Color.White, Color.Black, textCallback, 1000),

 label.HslColorAnimation(Color.Black, Color.White, backCallback, 1000));

 await Task.WhenAll(

 label.RgbColorAnimation(Color.Black, Color.White, textCallback, 1000),

 label.HslColorAnimation(Color.White, Color.Black, backCallback, 1000));

 }

 }

 ...

}

When animating between Color.Black and Color.White, it doesn’t matter whether you use RgbColorAnimation or HslColorAnimation. The result is the same. Black is represented in RGB as (0, 0, 0) and in HSL as (0, 0, 0). White is (1, 1, 1) in RGB and (0, 0, 1) in HSL. At the midway point, the RGB color (0.5, 0.5, 0.5) is the same as the HSL color (0, 0, 0.5).

The HslColorAnimation is great for animating through all the hues, which roughly correspond to the colors of the rainbow, traditionally red, orange, yellow, green, blue, indigo, and violet. In color animations, a final animation back to red usually occurs at the end. Animating RGB colors through this sequence requires first animating from Color.Red to Color.Yellow, then Color.Yellow to Color.Green, then Color.Green to Color.Aqua, then Color.Aqua to Color.Blue, then Color.Blue to Color.Fuchsia, and finally Color.Fuchsia to Color.Red.

With HslColorAnimation, all that’s necessary is to animate between two representations of red, one with the Hue set to 0 and the other with the Hue set to 1:

Click here to view code image

public partial class ColorAnimationsPage : ContentPage

{

 ...

 async void OnRainbowBackgroundButtonClicked(object sender, EventArgs args)

 {

 // Animate from Red to Red.

 await this.HslColorAnimation(Color.FromHsla(0, 1, 0.5),

 Color.FromHsla(1, 1, 0.5),

 color => BackgroundColor = color,

 10000);

 BackgroundColor = Color.Default;

 }

 ...

}

Even with simple animations between two primary colors, RgbColorAnimation and HslColorAnimation can produce different results. Consider an animation from blue to red. The ColorAnimations program demonstrates the difference by animating the colors of two BoxView elements with the two animation methods:

Click here to view code image

public partial class ColorAnimationsPage : ContentPage

{

 ...

 async void OnBoxViewColorButtonClicked(object sender, EventArgs args)

 {

 Action<Color> callback1 = color => boxView1.Color = color;

 Action<Color> callback2 = color => boxView2.Color = color;

 await Task.WhenAll(boxView1.RgbColorAnimation(Color.Blue, Color.Red, callback1, 2000),

 boxView2.HslColorAnimation(Color.Blue, Color.Red, callback2, 2000));

 await Task.WhenAll(boxView1.RgbColorAnimation(Color.Red, Color.Blue, callback1, 2000),

 boxView2.HslColorAnimation(Color.Red, Color.Blue, callback2, 2000));

 }

}

Blue has an RGB representation of (0, 0, 1) and an HSL representation of (0.67, 1, 0.5). Red has an RGB representation of (1, 0, 0) and in HSL is (1, 0, 0.5). Halfway through the RGB animation, the interpolated color is (0.5, 0, 0.5), which is known in Xamarin.Forms as Color.Magenta. However, midway through the HslColorAnimation, the interpolated color is (0.83, 1, 0.5), which is the lighter Color.Fuchsia, which has an RGB representation of (1, 0, 1).

This screenshot shows the progress (from left to right) of the animation of the two BoxView elements from blue to red:

[image: Image]

Neither is “right” or “wrong.” It’s just two different ways of interpolating between two colors, and the reason why a simple ColorAnimation method is inadequate.

Structuring your animations

There is no XAML representation of animations, so much of the focus of this chapter has necessarily been on code rather than markup.

However, when you’re using animations in conjunction with styles, and with MVVM and data binding, you’ll probably want a way to refer to animations in XAML. This is possible, and you’ll see in the next chapter how you can encapsulate animations within classes called trigger actions and behaviors, and then make them part of the styling and data binding of your application’s visuals.

Chapter 23. Triggers and behaviors

The introduction of a markup language such as XAML into a graphical programming environment might seem at first to be merely an alternative way to construct an assemblage of user-interface elements. But we’ve seen that the markup language tends to have much more profound consequences. The markup language induces us to divide the program more decisively between the interactive visuals and the underlying business logic. This further suggests that we might benefit from formalizing such a separation in an application architecture such as MVVM, and that turns out to be quite valuable.

At the same time, markup languages like XAML tend to have some intrinsic deficiencies in comparison with code. While code generally defines a dynamic process, markup languages are usually restricted to describing a fixed state. Several features have been added to Xamarin.Forms to help compensate for these deficiencies. These features include markup extensions, the resource dictionary, styles, and data binding.

In this chapter, you’ll see two more of these features, called triggers and behaviors. Triggers cause changes to the user interface in response to events or property changes, while behaviors are more open-ended, allowing entire chunks of functionality to be added to existing visual elements. Both triggers and behaviors can be part of a Style definition. Often triggers and behaviors are supported by code that can contain animations.

It is unlikely that triggers and behaviors would have even been conceived or invented in a code-only programming environment. However, like the resource dictionary, styles, and data binding, these features help developers structure their applications more productively by suggesting additional ways to conceptualize the various pieces and components of these programs—and additional ways to reuse and share code.

Triggers and behaviors are implemented with several classes that will be introduced in the course of this chapter. You’ll make use of these triggers and behaviors with two collection properties that are defined by both VisualElement and Style:

• Triggers property of type IList<TriggerBase>

• Behaviors property of type IList<Behavior>

Let’s begin with triggers.

Triggers

In the most general (and vaguest) sense, a trigger is a condition that results in a response. More specifically, a trigger responds to a property change or the firing of an event by setting another property or running some code. Almost always, the properties that are set, or the code that is run, involve the user interface and are represented in XAML.

Both VisualElement and Style define a Triggers property of type IList<TriggerBase>. The abstract TriggerBase class derives from BindableObject. Four sealed classes derive from TriggerBase:

• Trigger for setting properties (or running code) in response to a property change.

• EventTrigger for running code in response to an event.

• DataTrigger for setting properties (or running code) in response to a property change referenced in a data binding.

• MultiTrigger for setting properties (or running code) when multiple triggers occur.

The differences between these will become much clearer in practice.

The simplest trigger

In its usual form, the Trigger class checks for a property change of an element and responds by setting another property of the same element.

For example, suppose you’ve designed a page that contains several Entry views. You’ve decided that when a particular Entry gets the input focus, you want the Entry to become larger. You want to make the Entry stand out, including the text that the user types.

Much more specifically, when the IsFocused property of the Entry becomes True, you want the Scale property of the Entry to be set to 1.5. When the IsFocused property reverts back to False, you want the Scale property to also revert to its previous value.

To accommodate this concept, Trigger defines three properties:

• Property of type BindableProperty.

• Value of type Object.

• Setters of type IList<Setter>. This is the content property of Trigger.

All these properties must be set for the Trigger to work. From TriggerBase, Trigger inherits another essential property:

• TargetType of type Type.

This is the type of the element on which the Trigger is attached.

The Property and Value properties of Trigger are sometimes said to constitute a condition. When the value of the property referenced by Property equals Value, the condition is true, and the collection of Setter objects are applied to the element.

As you’ll recall from Chapter 12, “Styles,” Setter defines two properties that happen to be the same as the first two Trigger properties:

• Property of type BindableProperty.

• Value of type Object.

With triggers we’re only dealing with bindable properties. The Trigger condition property must be backed by a BindableProperty as well as the property set by the Setter.

When the condition becomes false, the Setter objects are “un-applied,” meaning that the property referenced by the Setter reverts to what its value would be without the Setter, which might be the default value of the property, a value set directly on the element, or a value applied through a Style.

Here’s the XAML file for the EntryPop program. Each of the three Entry views on the page has a single Trigger object added to its Triggers collection using the Entry.Triggers property-element tag. Each of the Trigger objects has a single Setter added to its Setters collection. Because Setters is the content property of Trigger, the Trigger.Setters property-element tags are not required:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="EntryPop.EntryPopPage"

 Padding="20, 50, 120, 0">

 <StackLayout Spacing="20">

 <Entry Placeholder="enter name"

 AnchorX="0">

 <Entry.Triggers>

 <Trigger TargetType="Entry" Property="IsFocused" Value="True">

 <Setter Property="Scale" Value="1.5" />

 </Trigger>

 </Entry.Triggers>

 </Entry>

 <Entry Placeholder="enter address"

 AnchorX="0">

 <Entry.Triggers>

 <Trigger TargetType="Entry" Property="IsFocused" Value="True">

 <Setter Property="Scale" Value="1.5" />

 </Trigger>

 </Entry.Triggers>

 </Entry>

 <Entry Placeholder="enter city and state"

 AnchorX="0">

 <Entry.Triggers>

 <Trigger TargetType="Entry" Property="IsFocused" Value="True">

 <Setter Property="Scale" Value="1.5" />

 </Trigger>

 </Entry.Triggers>

 </Entry>

 </StackLayout>

</ContentPage>

Each Trigger object must have its TargetType set, and in this case that’s an Entry. Internally, the Trigger uses a PropertyChanged handler to monitor the value of the IsFocused property. When that property equals True, then the single Setter object sets the Scale property to 1.5. The AnchorX setting of zero directs the scaling to occur from the left side of the Entry. (The nondefault value of AnchorX means that the Entry views won’t be positioned correctly if you change the orientation of the iOS screen.)

When the Entry loses input focus and the IsFocused property becomes False again, the Trigger automatically removes the application of the Setter, in which case the Scale property reverts to its pre-Trigger value, which isn’t necessarily its default value.

Here are the enlarged Entry views with input focus:

[image: Image]

Each Entry view in this example has only one Trigger, and each Trigger has only one Setter, but in the general case, a visual element can have multiple Trigger objects in its Triggers collection, and each Trigger can have multiple Setter objects in its Setters collection.

If you were to do something like this in code, you’d attach a PropertyChanged event handler to each Entry and respond to changes in the IsFocused property by setting the Scale property. The advantage of the Trigger is that you can do the entire job in markup right where the element is defined, leaving code for jobs presumably more important than increasing the size of an Entry element!

For this reason, it’s unlikely that you will have the need to create Trigger objects in code. Nevertheless, the EntryPopCode program demonstrates how you’d do it. The code has been fashioned to resemble the XAML as much as possible:

Click here to view code image

public class EntryPopCodePage : ContentPage

{

 public EntryPopCodePage()

 {

 Padding = new Thickness(20, 50, 120, 0);

 Content = new StackLayout

 {

 Spacing = 20,

 Children =

 {

 new Entry

 {

 Placeholder = "enter name",

 AnchorX = 0,

 Triggers =

 {

 new Trigger(typeof(Entry))

 {

 Property = Entry.IsFocusedProperty,

 Value = true,

 Setters =

 {

 new Setter

 {

 Property = Entry.ScaleProperty,

 Value = 1.5

 }

 }

 }

 }

 },

 new Entry

 {

 Placeholder = "enter addresss",

 AnchorX = 0,

 Triggers =

 {

 new Trigger(typeof(Entry))

 {

 Property = Entry.IsFocusedProperty,

 Value = true,

 Setters =

 {

 new Setter

 {

 Property = Entry.ScaleProperty,

 Value = 1.5

 }

 }

 }

 }

 },

 new Entry

 {

 Placeholder = "enter city and state",

 AnchorX = 0,

 Triggers =

 {

 new Trigger(typeof(Entry))

 {

 Property = Entry.IsFocusedProperty,

 Value = true,

 Setters =

 {

 new Setter

 {

 Property = Entry.ScaleProperty,

 Value = 1.5

 }

 }

 }

 }

 }

 }

 };

 }

}

The only real difference between the XAML and the code is the treatment of the TargetType property. In XAML, the TargetType property is set to “Entry” in each of the three Trigger definitions. In code, however, typeof(Entry) must be passed as an argument to the Trigger constructor. If you check the documentation of the Trigger class, you’ll find that the TargetType property is get-only. The XAML parser uses the TargetType attribute setting to instantiate the Trigger object.

The Style class also defines a Triggers property of type IList<TriggerBase>, which means that you can use a Style to share Trigger objects among multiple elements. The StyledTriggers program shows how. Notice that both the Style and the Trigger tags contain a TargetType property setting. The Style contains one Setter object and uses Style.Triggers property-element tags for the single Trigger object, which also contains a Setter object:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyledTriggers.StyledTriggersPage"

 Padding="20, 50, 120, 0">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Entry">

 <Setter Property="AnchorX" Value="0" />

 <Style.Triggers>

 <Trigger TargetType="Entry" Property="IsFocused" Value="True">

 <Setter Property="Scale" Value="1.5" />

 </Trigger>

 </Style.Triggers>

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout Spacing="20">

 <Entry Placeholder="enter name" />

 <Entry Placeholder="enter address" />

 <Entry Placeholder="enter city and state" />

 </StackLayout>

</ContentPage>

Because the Style has no dictionary key, it is an implicit style that is automatically applied to all the elements of type Entry. The individual Entry elements need only contain what is unique to each element.

Perhaps after experimenting with the EntryPop program (or the two variations), you decide that you don’t want the Scale property to simply “pop” to a value of 1.5. You want an animation. You want it to “swell” in size when it gains input focus, and to be animated back down to normal when it loses input focus.

That, too, is possible.

Trigger actions and animations

Although some triggers can be realized entirely in XAML, others require a little support from code. As you know, Xamarin.Forms has no direct support for implementing animations in XAML, so if you want to use a trigger to animate an element, you’ll need some code.

There are a couple of ways to invoke an animation from XAML. The most obvious way is to use EventTrigger, which defines two properties:

• Event of type string.

• Actions of type IList<TriggerAction>.

When the element on which you’ve attached the trigger fires that particular event, the EventTrigger invokes all the TriggerAction objects in the Actions collection.

For example, VisualElement defines two events related to input focus: Focused and Unfocused. You can set those event names to the Event property of two different EventTrigger objects. When the element fires the event, the objects of type TriggerAction are invoked. Your job is to supply a class that derives from TriggerAction. This derived class overrides a method named Invoke to respond to the event.

Xamarin.Forms defines both a TriggerAction class and a TriggerAction<T> class, but both classes are abstract. Generally you’ll derive from TriggerAction<T> and set the type parameter to the most generalized class the trigger action can support.

For example, suppose you want to derive from TriggerAction<T> for a class that calls ScaleTo to animate the Scale property. Set the type parameter to VisualElement because that’s the class that is referenced by the ScaleTo extension method. An object of that type is also passed to Invoke.

By convention, a class that derives from TriggerAction has an Action suffix in its name. Such a class can be as simple as this:

Click here to view code image

public class ScaleAction : TriggerAction<VisualElement>

{

 protected override void Invoke(VisualElement visual)

 {

 visual.ScaleTo(1.5);

 }

}

When you include this class in an EventTrigger that is attached to an Entry view, the particular Entry object is passed as an argument to the Invoke method, which animates that Entry object using ScaleTo. The Entry expands to 150 percent of its original size in a default duration of a quarter second.

Of course, you probably don’t want to make the class that specific. That simple ScaleAction class would work fine for the Focused event, but you would need a different one for the Unfocused event to animate the Scale property back down to 1.

Your Action<T> derivative can include properties to make the class very generalized. You can even make the ScaleAction class so generalized that it essentially becomes a wrapper for the ScaleTo method. Here’s the version of ScaleAction in the Xamarin.FormsBook.Toolkit library:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class ScaleAction : TriggerAction<VisualElement>

 {

 public ScaleAction()

 {

 // Set defaults.

 Anchor = new Point (0.5, 0.5);

 Scale = 1;

 Length = 250;

 Easing = Easing.Linear;

 }

 public Point Anchor { set; get; }

 public double Scale { set; get; }

 public int Length { set; get; }

 [TypeConverter(typeof(EasingConverter))]

 public Easing Easing { set; get; }

 protected override void Invoke(VisualElement visual)

 {

 visual.AnchorX = Anchor.X;

 visual.AnchorY = Anchor.Y;

 visual.ScaleTo(Scale, (uint)Length, Easing);

 }

 }

}

You might wonder whether you should back these properties with bindable properties so that they can be targets of data bindings. You can’t do that, however, because TriggerAction derives from Object rather than BindableObject. Keep the properties simple.

Notice the TypeConverter attribute on the Easing property. This Easing property will probably be set in XAML, but the XAML parser doesn’t know how to convert text strings like “SpringIn” and “SinOut” to objects of type Easing. The following custom type converter (also in Xamarin.FormsBook.Toolkit) assists the XAML parser in converting text strings into Easing objects:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class EasingConverter : TypeConverter

 {

 public override bool CanConvertFrom(Type sourceType)

 {

 if (sourceType == null)

 throw new ArgumentNullException("EasingConverter.CanConvertFrom: sourceType");

 return (sourceType == typeof(string));

 }

 public override object ConvertFrom(CultureInfo culture, object value)

 {

 if (value == null || !(value is string))

 return null;

 string name = ((string)value).Trim();

 if (name.StartsWith("Easing"))

 {

 name = name.Substring(7);

 }

 FieldInfo field = typeof(Easing).GetRuntimeField(name);

 if (field != null && field.IsStatic)

 {

 return (Easing)field.GetValue(null);

 }

 throw new InvalidOperationException(

 String.Format("Cannot convert \"{0}\" into Xamarin.Forms.Easing", value));

 }

 }

}

The EntrySwell program defines an implicit Style for Entry in its Resources dictionary. That Style has two EventTrigger objects in its Triggers collection, one for Focused and the other for Unfocused. Both invoke a ScaleAction but with different property settings:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="EntrySwell.EntrySwellPage"

 Padding="20, 50, 120, 0">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Entry">

 <Style.Triggers>

 <EventTrigger Event="Focused">

 <toolkit:ScaleAction Anchor="0, 0.5"

 Scale="1.5"

 Easing="SpringOut" />

 </EventTrigger>

 <EventTrigger Event="Unfocused">

 <toolkit:ScaleAction Anchor="0, 0.5"

 Scale="1" />

 </EventTrigger>

 </Style.Triggers>

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout Spacing="20">

 <Entry Placeholder="enter name" />

 <Entry Placeholder="enter address" />

 <Entry Placeholder="enter city and state" />

 </StackLayout>

</ContentPage>

Notice that EventTrigger does not require the TargetType property. The only constructor that EventTrigger defines has no parameters.

As each Entry gets input focus, you’ll see it grow larger and then briefly overshoot the 1.5 Scale value. That’s the effect of the SpringOut easing function.

What if you wanted to use a custom easing function? You would need to define such an easing function in code, of course, and you can do that in the code-behind file. But how would you reference that easing function in XAML? Here’s how:

First, remove the ResourceDictionary tags from the XAML file. Those tags instantiate the ResourceDictionary and set it to the Resources property.

Second, in the constructor of the code-behind file, instantiate the ResourceDictionary and set it to the Resources property. Do this before InitializeComponent so that it exists when the XAML file is parsed:

Click here to view code image

Resources = new ResourceDictionary();

InitializeComponent();

Third, between those two statements, add an Easing object with a custom easing function to the Resources dictionary:

Click here to view code image

Resources = new ResourceDictionary();

Resources.Add("customEase", new Easing(t => -6 * t * t + 7 * t));

InitializeComponent();

This quadratic formula maps 0 to 0 and 1 to 1, but 0.5 to 2, so it will be obvious if this easing function is correctly used by the animation.

Finally, reference that dictionary entry using StaticResource in the EventTrigger definition:

Click here to view code image

<EventTrigger Event="Focused">

 <toolkit:ScaleAction Anchor="0, 0.5"

 Scale="1.5"

 Easing="{StaticResource customEase}" />

</EventTrigger>

Because the object in the Resources dictionary is of type Easing, the XAML parser will assign it directly to the Easing property of ScaleAction and bypass the TypeConverter.

Among the code samples for this chapter is a solution named CustomEasingSwell that demonstrates this technique.

Do not use DynamicResource to set the custom Easing object to the Easing property, perhaps in hopes of defining the easing function in code at a later time. DynamicResource requires the target property to be backed by a bindable property; StaticResource does not.

You’ve seen how you can use Trigger to set a property in response to a property change, and EventTrigger to invoke a TriggerAction object in response to an event firing.

But what if you wanted to invoke a TriggerAction in response to a property change? Perhaps you want to invoke an animation from XAML but there is no appropriate event for an EventTrigger.

There is a second way to invoke a TriggerAction derivative that involves the regular Trigger class rather than EventTrigger. If you look at the documentation of TriggerBase (the class from which all the other trigger classes derive), you’ll see the following two properties:

• EnterActions of type IList<TriggerAction>

• ExitActions of type IList<TriggerAction>

When used with Trigger, all the TriggerAction objects in the EnterActions collection are invoked when the Trigger condition becomes true, and all the objects in the ExitActions collection are invoked when the condition becomes false again.

The EnterExitSwell program demonstrates this technique. It uses Trigger to monitor the IsFocused property and invokes two instances of ScaleAction to increase the size of the Entry when IsFocused becomes True and to decrease the size of the Entry when IsFocused stops being True:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="EnterExitSwell.EnterExitSwellPage"

 Padding="20, 50, 120, 0">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Entry">

 <Style.Triggers>

 <Trigger TargetType="Entry" Property="IsFocused" Value="True">

 <Trigger.EnterActions>

 <toolkit:ScaleAction Anchor="0, 0.5"

 Scale="1.5"

 Easing="SpringOut" />

 </Trigger.EnterActions>

 <Trigger.ExitActions>

 <toolkit:ScaleAction Anchor="0, 0.5"

 Scale="1" />

 </Trigger.ExitActions>

 </Trigger>

 </Style.Triggers>

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout Spacing="20">

 <Entry Placeholder="enter name" />

 <Entry Placeholder="enter address" />

 <Entry Placeholder="enter city and state" />

 </StackLayout>

</ContentPage>

In summary, you can invoke a class derived from TriggerAction<T> either with a change in a property by using Trigger or with an event firing by using EventTrigger.

But don’t use EnterActions and ExitActions with EventTrigger. EventTrigger invokes only the TriggerAction objects in its Actions collection.

More event triggers

The previous chapter on animation showed several examples of a Button that rotated or scaled itself when it was clicked. While most of those animation examples were taken to extremes for purposes of making amusing demonstrations, it’s not unreasonable for a Button to respond to a click with a little animation. This is a perfect job for EventTrigger.

Here’s another TriggerAction derivative. It’s similar to ScaleAction but includes two calls to ScaleTo rather than just one and hence is named ScaleUpAndDownAction:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class ScaleUpAndDownAction : TriggerAction<VisualElement>

 {

 public ScaleUpAndDownAction()

 {

 Anchor = new Point(0.5, 0.5);

 Scale = 2;

 Length = 500;

 }

 public Point Anchor { set; get; }

 public double Scale { set; get; }

 public int Length { set; get; }

 protected override async void Invoke(VisualElement visual)

 {

 visual.AnchorX = Anchor.X;

 visual.AnchorY = Anchor.Y;

 await visual.ScaleTo(Scale, (uint)Length / 2, Easing.SinOut);

 await visual.ScaleTo(1, (uint)Length / 2, Easing.SinIn);

 }

 }

}

This class hard-codes the Easing functions to keep the code simple.

The ButtonGrowth program defines an intrinsic Style that sets three Button properties and includes an EventTrigger that invokes ScaleUpAndDownAction with default parameters in response to the Clicked event:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="ButtonGrowth.ButtonGrowthPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Button">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 <Setter Property="FontSize" Value="Large" />

 <Style.Triggers>

 <EventTrigger Event="Clicked">

 <toolkit:ScaleUpAndDownAction />

 </EventTrigger>

 </Style.Triggers>

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Button Text="Button #1" />

 <Button Text="Button #2" />

 <Button Text="Button #3" />

 </StackLayout>

</ContentPage>

Here are three buttons as they’ve grown in size in response to clicks:

[image: Image]

Would it have been possible to use two instances of ScaleAction here instead of ScaleUpAndDownAction—one instance that scaled the Button up in size and the other that scaled it down? No. We’re only dealing with one event—the Clicked event—and everything has to be invoked when that event is fired. An EventTrigger can certainly invoke multiple actions, but these actions occur simultaneously. Two ScaleAction instances running simultaneously would battle each other.

However, there is a solution. Here’s a DelayedScaleAction class that derives from ScaleAction but includes a Task.Delay call prior to the ScaleTo call:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class DelayedScaleAction : ScaleAction

 {

 public DelayedScaleAction() : base()

 {

 // Set defaults.

 Delay = 0;

 }

 public int Delay { set; get; }

 async protected override void Invoke(VisualElement visual)

 {

 visual.AnchorX = Anchor.X;

 visual.AnchorY = Anchor.Y;

 await Task.Delay(Delay);

 await visual.ScaleTo(Scale, (uint)Length, Easing);

 }

 }

}

You can now modify the ButtonGrowth XAML file to include two DelayedScaleAction objects triggered by the Clicked event. These are both invoked simultaneously, but the second has its Delay property set to the same value as the Length property of the first, so the first ScaleTo ends as the second ScaleTo begins:

Click here to view code image

<Style TargetType="Button">

 ...

 <Style.Triggers>

 <EventTrigger Event="Clicked">

 <toolkit:DelayedScaleAction Scale="2"

 Length="250"

 Easing="SinOut" />

 <toolkit:DelayedScaleAction Delay="250"

 Scale="1"

 Length="250"

 Easing="SinIn" />

 </EventTrigger>

 </Style.Triggers>

</Style>

DelayedScaleAction is a little more difficult to use than ScaleUpAndDownAction, but it’s more flexible, and you can also define classes named DelayedTranslateAction and DelayedRotateAction to add to the mix.

In the previous chapter you saw a Button derivative named JiggleButton that runs a brief animation when the Button is clicked. This is a type of animation that you can alternatively implement using a TriggerAction. The advantage is that you can use it with the normal Button class, and potentially separate the effect from a particular type of view and a particular event so it could be used with other views and other events.

Here’s a TriggerAction derivative that implements the same type of animation as JiggleButton but with three properties to make it more flexible. To more clearly distinguish it from the earlier code, the name of this class is ShiverAction:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class ShiverAction : TriggerAction<VisualElement>

 {

 public ShiverAction()

 {

 Length = 1000;

 Angle = 15;

 Vibrations = 10;

 }

 public int Length { set; get; }

 public double Angle { set; get; }

 public int Vibrations { set; get; }

 protected override void Invoke(VisualElement visual)

 {

 visual.Rotation = 0;

 visual.AnchorX = 0.5;

 visual.AnchorY = 0.5;

 visual.RotateTo(Angle, (uint)Length,

 new Easing(t => Math.Sin(Math.PI * t) *

 Math.Sin(Math.PI * 2 * Vibrations * t)));

 }

 }

}

Notice that Invoke initializes the Rotation property of the target visual element to zero. This is to avoid problems when the Button is pressed twice in succession and Invoke is called while the previous animation is still running.

The XAML file of the ShiverButtonDemo program defines an implicit Style that includes the ShiverAction with rather extreme values set to its three properties:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="ShiverButtonDemo.ShiverButtonDemoPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Button">

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 <Setter Property="FontSize" Value="Large" />

 <Style.Triggers>

 <EventTrigger Event="Clicked">

 <toolkit:ShiverAction Length="3000"

 Angle="45"

 Vibrations="25" />

 </EventTrigger>

 </Style.Triggers>

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Button Text="Button #1" />

 <Button Text="Button #2" />

 <Button Text="Button #3" />

 </StackLayout>

</ContentPage>

The three Button elements share the same instance of ShiverAction, but each call to the Invoke method is for a specific Button object. Each button’s shivering is independent of the others.

But what if you want to use ShiverAction to respond to Tapped events on an element rather than Clicked events on a Button—for example, to vibrate a Frame with some content, or an Image? The Tapped event is only defined by TapGestureRecognizer, but you can’t attach an EventTrigger to a TapGestureRecognizer because TapGestureRecognizer does not have a Triggers collection. Nor can you attach an EventTrigger to a View object and specify the Tapped event. That Tapped event won’t be found on the View object.

The solution is to use a behavior, as will be demonstrated later in this chapter.

It’s also possible to use EventTrigger objects for entry validation. Here’s a TriggerAction derivative named NumericValidationAction with a generic argument of Entry, so it applies only to Entry views. When Invoke is called, the argument is an Entry object, so it can access properties specific to Entry, in this case Text and TextColor. The method checks whether the Text property of the Entry can be parsed into a valid double. If not, the text is colored red to alert the user:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class NumericValidationAction : TriggerAction<Entry>

 {

 protected override void Invoke(Entry entry)

 {

 double result;

 bool isValid = Double.TryParse(entry.Text, out result);

 entry.TextColor = isValid ? Color.Default : Color.Red;

 }

 }

}

You can attach this code to an Entry with an EventTrigger for the TextChanged event, as demonstrated in the TriggerEntryValidation program:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="TriggerEntryValidation.TriggerEntryValidationPage"

 Padding="50">

 <StackLayout>

 <Entry Placeholder="Enter a System.Double">

 <Entry.Triggers>

 <EventTrigger Event="TextChanged">

 <toolkit:NumericValidationAction />

 </EventTrigger>

 </Entry.Triggers>

 </Entry>

 </StackLayout>

</ContentPage>

Whenever the text changes, the Invoke method of NumericValidationAction is called.

The screenshot shows valid numeric entries for the iOS and Windows 10 Mobile devices, but an invalid number in the Android device:

[image: Image]

Unfortunately, this doesn’t work quite right on the Universal Windows Platform: If an invalid number is typed in the Entry, the text turns red only when the Entry loses input focus. However, it works fine on the other Windows Runtime platforms (Windows 8.1 and Windows Phone 8.1).

Data triggers

So far, you’ve only seen triggers that operate within the context of a particular object. A Trigger responds to a change in a property of an object by changing another property of that same object, or by invoking an Action that affects that object. The EventTrigger similarly responds to an event fired by an object to invoke an Action on that same object.

The DataTrigger is different. Like the other TriggerBase derivatives, the DataTrigger is attached to a visual element or defined in a Style. However, the DataTrigger can detect a property change in another object through a data binding, and either change a property in the object that it’s attached to or (by using the EnterActions and ExitActions collection inherited from TriggerBase) invoke a TriggerAction on that object.

DataTrigger defines the following three properties.

• Binding of type BindingBase.

• Value of type Object.

• Setters of type IList<Setter>. This is the content property of DataTrigger.

From the perspective of an application program, the DataTrigger is very similar to Trigger except that the property of Trigger named Property is replaced with the Binding property. Both Trigger and DataTrigger require the TargetType property to be set.

What is the other object that the Binding property of DataTrigger references? It can be part of a ViewModel in an MVVM scenario or another element on the page.

You might recall the SchoolOfFineArt library from Chapter 19, “Collection views.” The Student class in that library defines a property named Sex of type string that is set to either “Male” or “Female”. The GenderColors program presented below uses that property in conjunction with a DataTrigger to set a blue or pink color for the student (regardless how hopelessly old-fashioned that color scheme might seem).

A ListView displays all the students of the high school, and a ViewCell formats each student to display the student’s photo, full name, and the current grade-point average:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:school="clr-namespace:SchoolOfFineArt;assembly=SchoolOfFineArt"

 x:Class="GenderColors.GenderColorsPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.BindingContext>

 <school:SchoolViewModel />

 </ContentPage.BindingContext>

 <StackLayout BindingContext="{Binding StudentBody}">

 <Label Text="{Binding School}"

 FontSize="Large"

 FontAttributes="Bold"

 HorizontalTextAlignment="Center" />

 <ListView ItemsSource="{Binding Students}"

 VerticalOptions="FillAndExpand">

 <ListView.RowHeight>

 <OnPlatform x:TypeArguments="x:Int32"

 iOS="70"

 Android="70"

 WinPhone="100" />

 </ListView.RowHeight>

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <Grid Padding="0, 5">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="80" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Image Grid.Column="0"

 Source="{Binding PhotoFilename}"

 VerticalOptions="Center" />

 <StackLayout Grid.Column="1"

 VerticalOptions="Center">

 <Label Text="{Binding FullName}"

 FontSize="22"

 TextColor="Pink">

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Sex}"

 Value="Male">

 <Setter Property="TextColor" Value="#8080FF" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="{Binding GradePointAverage,

 StringFormat='G.P.A. = {0:F2}'}"

 FontSize="16" />

 </StackLayout>

 </Grid>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </StackLayout>

</ContentPage>

The program uses ViewCell rather than ImageCell, so it has access to a Label onto which it can attach a DataTrigger. A trigger cannot be attached directly to a Cell or Cell derivative because there’s no Triggers collection defined for these classes.

The Label displays the FullName property of the Student object and the TextColor is set to Pink. But a DataTrigger checks whether the Sex property of the Student object equals “Male”, and if so it uses a Setter to set the TextColor to a light blue. Here is that Label isolated from the rest of the cell:

Click here to view code image

<Label Text="{Binding FullName}"

 FontSize="Large"

 TextColor="Pink">

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Sex}"

 Value="Male">

 <Setter Property="TextColor" Value="#8080FF" />

 </DataTrigger>

 </Label.Triggers>

</Label>

The BindingContext of the DataTrigger is the same as the BindingContext of the Label to which it is attached. That BindingContext is a particular Student object, so the Binding on the DataTrigger only needs to specify the Sex property.

Here it is in action:

[image: Image]

Something quite similar can be done with a data binding directly from the Sex property of the Student object to the TextColor property of the Label (or the ImageCell), but it would require a binding converter. The DataTrigger does the job without any additional code.

However, by itself the DataTrigger cannot mimic the ColorCodedStudents program in Chapter 19. That program displays a student in red if that student’s grade-point average falls dangerously below a 2.0 criterion. The less-than numeric comparison requires some code. This too is a job for a behavior, and once you learn about behaviors later in this chapter, you should be able to code something like this yourself.

It’s also possible for DataTrigger to reference another element on the page to monitor a property of that element.

For example, one of the classic tasks in graphical environments is to disable a button if nothing has been typed into a text-entry field. Perhaps the text-entry field is a filename, and the button executes some code to load or save that file. It doesn’t make any sense for the button to be enabled if the filename is blank.

You can do that job entirely in XAML with a DataTrigger. Here’s the markup in the ButtonEnabler project:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ButtonEnabler.ButtonEnablerPage"

 Padding="20, 50">

 <StackLayout Spacing="20">

 <Entry x:Name="entry"

 Text=""

 Keyboard="Url"

 Placeholder="enter filename" />

 <Button Text="Save"

 FontSize="Large"

 HorizontalOptions="Center">

 <Button.Triggers>

 <DataTrigger TargetType="Button"

 Binding="{Binding Source={x:Reference entry},

 Path=Text.Length}"

 Value="0">

 <Setter Property="IsEnabled" Value="False" />

 </DataTrigger>

 </Button.Triggers>

 </Button>

 </StackLayout>

</ContentPage>

The DataTrigger on the Button sets its Binding property with a Source referencing the Entry element. The Path is set to Text.Length. The Text property of the Entry element is of type string, and Length is a property of string, so this binding refers to the number of characters entered in the Entry element. The Value property of DataTrigger is set to zero, so when there are zero characters entered into the Entry, the Setter property is invoked, which sets the IsEnabled property of the Button to False.

Based on the input in the Entry element, the Button is disabled on the iPhone and Windows 10 Mobile screens shown here but enabled on the Android screen:

[image: Image]

Although this represents a tiny enhancement to the user interface, if you didn’t have a DataTrigger you’d need to implement this enhancement in code in a TextChanged handler of the Entry, or you’d need to write a binding converter for a Binding between the IsEnabled property of the Button and the Text.Length property of the Entry.

The XAML file in ButtonEnabler contains a crucial property setting that you might not have noticed:

<Entry ... Text="" ... />

When an Entry is first created, the Text property is not an empty string but null, which means that the data binding in the DataTrigger is trying to reference the Length property of a null string object, and it will fail. Because the binding fails, the Button will be enabled when the program first starts up. It only becomes disabled after the user types a character and backspaces.

Initializing the Text property to an empty string has no other effect but to allow the DataTrigger to work when the program starts up.

Combining conditions in the MultiTrigger

Both the Trigger and the DataTrigger effectively monitor a property to determine if it’s equal to a particular value. That’s called the trigger’s condition, and if the condition is true, then a collection of Setter objects are invoked.

As a programmer, you might begin wondering whether you can have multiple conditions in a trigger. But once you start talking about multiple conditions, you need to determine whether you want to combine conditions with a logical OR operation or an AND operation—whether the trigger is invoked if any of the conditions are true, or if it requires that all the conditions be true.

If you want a trigger invoked when multiple conditions are all true—the logical AND case—that’s the last of the four classes that derive from TriggerBase. The MultiTrigger defines two collection properties:

• Conditions of type IList<Condition>

• Setters of type IList<Setter>

Condition is an abstract class and has two descendent classes:

• PropertyCondition, which has Property and Value properties like Trigger

• BindingCondition, which has Binding and Value properties like DataTrigger

You can mix multiple PropertyCondition and BindingCondition objects in the same Conditions collection of the MultiTrigger. When all the conditions are true, all the Setter objects in the Setters collection are applied.

Let’s look at a simple example: In the AndConditions program, four Switch elements share the page with a blue BoxView. When all the Switch elements are turned on, the BoxView turns red:

[image: Image]

The XAML file shows how this is done. The Triggers collection of the BoxView contains a MultiTrigger. The TargetType property is required. The Conditions collection contains four BindingCondition objects, each of which references the IsToggled property of one of the four Switch elements and checks for a True value. If all the conditions are true, the MultiTrigger sets the Color property of the BoxView to Red:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="AndConditions.AndConditionsPage">

 <StackLayout>

 <Grid VerticalOptions="CenterAndExpand">

 <Switch x:Name="switch1" Grid.Column="0"

 HorizontalOptions="Center" />

 <Switch x:Name="switch2" Grid.Column="1"

 HorizontalOptions="Center" />

 <Switch x:Name="switch3" Grid.Column="2"

 HorizontalOptions="Center" />

 <Switch x:Name="switch4" Grid.Column="3"

 HorizontalOptions="Center" />

 </Grid>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 Color="Blue">

 <BoxView.Triggers>

 <MultiTrigger TargetType="BoxView">

 <MultiTrigger.Conditions>

 <BindingCondition Binding="{Binding Source={x:Reference switch1},

 Path=IsToggled}"

 Value="True" />

 <BindingCondition Binding="{Binding Source={x:Reference switch2},

 Path=IsToggled}"

 Value="True" />

 <BindingCondition Binding="{Binding Source={x:Reference switch3},

 Path=IsToggled}"

 Value="True" />

 <BindingCondition Binding="{Binding Source={x:Reference switch4},

 Path=IsToggled}"

 Value="True" />

 </MultiTrigger.Conditions>

 <Setter Property="Color" Value="Red" />

 </MultiTrigger>

 </BoxView.Triggers>

 </BoxView>

 </StackLayout>

</ContentPage>

That’s the AND combination. What about an OR combination?

Because the Triggers collection can accommodate multiple DataTrigger objects, you might think that this would work:

Click here to view code image

<BoxView WidthRequest="100"

 HeightRequest="100"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 Color="Blue">

 <BoxView.Triggers>

 <DataTrigger TargetType="BoxView"

 Binding="{Binding Source={x:Reference switch1}, Path=IsToggled}"

 Value="True">

 <Setter Property="Color" Value="Red" />

 </DataTrigger>

 <DataTrigger TargetType="BoxView"

 Binding="{Binding Source={x:Reference switch2}, Path=IsToggled}"

 Value="True">

 <Setter Property="Color" Value="Red" />

 </DataTrigger>

 <DataTrigger TargetType="BoxView"

 Binding="{Binding Source={x:Reference switch3}, Path=IsToggled}"

 Value="True">

 <Setter Property="Color" Value="Red" />

 </DataTrigger>

 <DataTrigger TargetType="BoxView"

 Binding="{Binding Source={x:Reference switch4}, Path=IsToggled}"

 Value="True">

 <Setter Property="Color" Value="Red" />

 </DataTrigger>

 </BoxView.Triggers>

</BoxView>

And if you try it, you might find that it does seem to work at first. But as you further experiment with turning various Switch elements on and off, you’ll find that it really does not work.

Whether it should work or shouldn’t work is open to debate. The four DataTrigger objects all target the same Color property, and if each DataTrigger works independently to determine whether that Setter should be applied or not, then this really shouldn’t work as a logical OR.

However, keep in mind Victorian mathematician Augustus De Morgan’s laws of logic, which state (using C# syntax for AND, OR, logical negation, and equivalence):

A | B == ! (!A & !B)

A & B == ! (!A | !B)

This means you can use MultiTrigger to perform a logical OR as the OrConditions program demonstrates:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="OrConditions.OrConditionsPage">

 <StackLayout>

 <Grid VerticalOptions="CenterAndExpand">

 <Switch x:Name="switch1" Grid.Column="0"

 HorizontalOptions="Center" />

 <Switch x:Name="switch2" Grid.Column="1"

 HorizontalOptions="Center" />

 <Switch x:Name="switch3" Grid.Column="2"

 HorizontalOptions="Center" />

 <Switch x:Name="switch4" Grid.Column="3"

 HorizontalOptions="Center" />

 </Grid>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 Color="Red">

 <BoxView.Triggers>

 <MultiTrigger TargetType="BoxView">

 <MultiTrigger.Conditions>

 <BindingCondition Binding="{Binding Source={x:Reference switch1},

 Path=IsToggled}"

 Value="False" />

 <BindingCondition Binding="{Binding Source={x:Reference switch2},

 Path=IsToggled}"

 Value="False" />

 <BindingCondition Binding="{Binding Source={x:Reference switch3},

 Path=IsToggled}"

 Value="False" />

 <BindingCondition Binding="{Binding Source={x:Reference switch4},

 Path=IsToggled}"

 Value="False" />

 </MultiTrigger.Conditions>

 <Setter Property="Color" Value="Blue" />

 </MultiTrigger>

 </BoxView.Triggers>

 </BoxView>

 </StackLayout>

</ContentPage>

It’s the same as AndConditions except all the logic is flipped around. All the BindingCondition objects check for a False value of the IsToggled property, and if all the conditions are satisfied, the normally red BoxView is colored blue:

[image: Image]

Here’s another way you can think of these two programs: In AndConditions, the BoxView is always blue unless all the Switch elements are toggled on. In OrConditions, the BoxView is always red unless all the Switch elements are off.

Suppose you have a scenario involving two Entry fields and a Button. You want to enable the Button if either Entry field contains some text.

Flip the logic upside down: You really want to disable the Button if both Entry fields contain no text. That’s fairly easy:

Click here to view code image

<StackLayout>

 <Entry x:Name="entry1"

 Text="" />

 <Entry x:Name="entry2"

 Text="" />

 <Button Text="Send">

 <Button.Triggers>

 <MultiTrigger TargetType="Button">

 <MultiTrigger.Conditions>

 <BindingCondition Binding="{Binding Source={x:Reference entry1},

 Path=Text.Length}"

 Value="0" />

 <BindingCondition Binding="{Binding Source={x:Reference entry2},

 Path=Text.Length}"

 Value="0" />

 </MultiTrigger.Conditions>

 <Setter Property="IsEnabled" Value="False" />

 </MultiTrigger>

 </Button.Triggers>

 </Button>

</StackLayout>

Notice that the two Entry fields initialize the Text property to an empty string so that the property isn’t equal to null. If both Text properties have a length of zero, then the two BindingConditions are satisfied and the IsEnabled property of the Button is set to False.

However, it’s not so easy to adapt this to enable the Button only if both Entry views have some text. If you try to flip the logic around, you must change the BindingCondition objects so that they check for a Text property with a length not equal to zero, and that’s not an option.

To help realize the logic, you can use some intermediary invisible Switch elements:

Click here to view code image

<StackLayout>

 <Entry x:Name="entry1"

 Text="" />

 <Switch x:Name="switch1"

 IsVisible="False">

 <Switch.Triggers>

 <DataTrigger TargetType="Switch"

 Binding="{Binding Source={x:Reference entry1},

 Path=Text.Length}"

 Value="0">

 <Setter Property="IsToggled" Value="True" />

 </DataTrigger>

 </Switch.Triggers>

 </Switch>

 <Entry x:Name="entry2"

 Text="" />

 <Switch x:Name="switch2"

 IsVisible="False">

 <Switch.Triggers>

 <DataTrigger TargetType="Switch"

 Binding="{Binding Source={x:Reference entry2},

 Path=Text.Length}"

 Value="0">

 <Setter Property="IsToggled" Value="True" />

 </DataTrigger>

 </Switch.Triggers>

 </Switch>

 <Button Text="Send"

 IsEnabled="False">

 <Button.Triggers>

 <MultiTrigger TargetType="Button">

 <MultiTrigger.Conditions>

 <BindingCondition Binding="{Binding Source={x:Reference switch1},

 Path=IsToggled}"

 Value="False" />

 <BindingCondition Binding="{Binding Source={x:Reference switch2},

 Path=IsToggled}"

 Value="False" />

 </MultiTrigger.Conditions>

 <Setter Property="IsEnabled" Value="True" />

 </MultiTrigger>

 </Button.Triggers>

 </Button>

</StackLayout>

Each Entry now has a companion Switch that uses a DataTrigger to set its IsToggled property to True if the length of the Text property of the Entry is zero. The two Switch elements can then be used in the MultiTrigger. If both Switch elements have their IsToggled properties set to True, then both Entry fields contain some text, and the IsEnabled property of the Button can be set to True.

If you want to actually combine AND and OR operations, you’ll need to engage in some deeper levels of logic.

For example, suppose you have a scenario with two Entry views and a Button, and the Button should be enabled only if either of the two Entry views contains some text, but not if both Entry views contain some text:

[image: Image]

Perhaps (as this screenshot suggests) one of the Entry views is for a filename and the other is for a URL, and the program needs one and only one of these two text strings.

What you need is an exclusive-OR (XOR) operation, and it’s a combination of AND, OR, and negation operators:

A ^ B == (A | B) & !(A & B)

This can be done with three MultiTrigger objects, two of which are on intermediary invisible Switch elements and the final one is on the Button itself. Here’s the XorConditions XAML file with comments describing the various pieces of the logic:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="XorConditions.XorConditionsPage"

 Padding="50, 20">

 <StackLayout>

 <Label Text="Enter:" />

 <Entry x:Name="entry1"

 Text=""

 Placeholder="filename" />

 <!-- IsToggled is true if entry1 has no text -->

 <Switch x:Name="switch1"

 IsVisible="False">

 <Switch.Triggers>

 <DataTrigger TargetType="Switch"

 Binding="{Binding Source={x:Reference entry1},

 Path=Text.Length}"

 Value="0">

 <Setter Property="IsToggled" Value="True" />

 </DataTrigger>

 </Switch.Triggers>

 </Switch>

 <Label Text="Or:" />

 <Entry x:Name="entry2"

 Text=""

 Placeholder="url" />

 <!-- IsToggled is true if entry2 has no text -->

 <Switch x:Name="switch2"

 IsVisible="False">

 <Switch.Triggers>

 <DataTrigger TargetType="Switch"

 Binding="{Binding Source={x:Reference entry2},

 Path=Text.Length}"

 Value="0">

 <Setter Property="IsToggled" Value="True" />

 </DataTrigger>

 </Switch.Triggers>

 </Switch>

 <!-- IsToggled is true if either Entry has some text (OR operation) -->

<Switch x:Name="switch3"

 <Switch x:Name="switch3"

 IsToggled="True"

 IsVisible="False">

 <Switch.Triggers>

 <MultiTrigger TargetType="Switch">

 <MultiTrigger.Conditions>

 <BindingCondition Binding="{Binding Source={x:Reference switch1},

 Path=IsToggled}"

 Value="True" />

 <BindingCondition Binding="{Binding Source={x:Reference switch2},

 Path=IsToggled}"

 Value="True" />

 </MultiTrigger.Conditions>

 <Setter Property="IsToggled" Value="False" />

 </MultiTrigger>

 </Switch.Triggers>

 </Switch>

 <!-- IsToggled is true if both Entry's have some text (AND operation) -->

 <Switch x:Name="switch4"

 IsVisible="False">

 <Switch.Triggers>

 <MultiTrigger TargetType="Switch">

 <MultiTrigger.Conditions>

 <BindingCondition Binding="{Binding Source={x:Reference switch1},

 Path=IsToggled}"

 Value="False" />

 <BindingCondition Binding="{Binding Source={x:Reference switch2},

 Path=IsToggled}"

 Value="False" />

 </MultiTrigger.Conditions>

 <Setter Property="IsToggled" Value="True" />

 </MultiTrigger>

 </Switch.Triggers>

 </Switch>

 <!-- Button is enabled if either Entry has some text but not both (XOR operation) -->

 <Button Text="Load"

 IsEnabled="False"

 FontSize="Large">

 <Button.Triggers>

 <MultiTrigger TargetType="Button">

 <MultiTrigger.Conditions>

 <BindingCondition Binding="{Binding Source={x:Reference switch3},

 Path=IsToggled}"

 Value="True" />

 <BindingCondition Binding="{Binding Source={x:Reference switch4},

 Path=IsToggled}"

 Value="False" />

 </MultiTrigger.Conditions>

 <Setter Property="IsEnabled" Value="True" />

 </MultiTrigger>

 </Button.Triggers>

 </Button>

 </StackLayout>

</ContentPage>

Of course, once the XAML gets this extravagant, nobody will fault you if you simply decide to enable or disable the Button in code!

Behaviors

Triggers and behaviors are generally discussed in tandem because they have some applicational overlap. Sometimes you’ll be puzzled whether to use a trigger or behavior because either seems to do the job.

Anything you can do with a trigger you can also do with a behavior. However, a behavior always involves some code, which is a class that derives from Behavior<T>. Triggers only involve code if you’re writing an Action<T> derivative for an EventTrigger or for EnterActions or ExitActions collections of the other triggers.

Obviously, if you can do what you need using one of the triggers without writing any code, then don’t use a behavior. But sometimes it’s not so clear.

Let’s compare a trigger and behavior that do the same job.

The TriggerEntryValidation program shown earlier in this chapter uses a class named NumericEntryAction that checks whether a number typed into an Entry view qualifies as a valid double value and colors the text red if it doesn’t:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class NumericValidationAction : TriggerAction<Entry>

 {

 protected override void Invoke(Entry entry)

 {

 double result;

 bool isValid = Double.TryParse(entry.Text, out result);

 entry.TextColor = isValid ? Color.Default : Color.Red;

 }

 }

}

This is referenced in an EventTrigger attached to an Entry:

Click here to view code image

<Entry Placeholder="Enter a System.Double">

 <Entry.Triggers>

 <EventTrigger Event="TextChanged">

 <toolkit:NumericValidationAction />

 </EventTrigger>

 </Entry.Triggers>

</Entry>

You can use a behavior for this same job. The first step is to derive a class from Behavior<T>. The generic argument is the most generalized base class that the behavior can handle. In this example, that’s an Entry view. Then, override two virtual methods, named OnAttachedTo and OnDetachingFrom. The OnAttachedTo method is called when the behavior is attached to a particular visual object, and it gives your behavior a chance to initialize itself. Often this involves attaching some event handlers to the object. The OnDetachingFrom method is called when the behavior is removed from the visual object. Even if this occurs only when the program is terminating, you should undo anything the OnAttachedTo method does.

Here’s the NumericValidationBehavior class:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class NumericValidationBehavior : Behavior<Entry>

 {

 protected override void OnAttachedTo(Entry entry)

 {

 base.OnAttachedTo(entry);

 entry.TextChanged += OnEntryTextChanged;

 }

 protected override void OnDetachingFrom(Entry entry)

 {

 base.OnDetachingFrom(entry);

 entry.TextChanged -= OnEntryTextChanged;

 }

 void OnEntryTextChanged(object sender, TextChangedEventArgs args)

 {

 double result;

 bool isValid = Double.TryParse(args.NewTextValue, out result);

 ((Entry)sender).TextColor = isValid ? Color.Default : Color.Red;

 }

 }

}

The OnAttachedTo method attaches a handler for the TextChanged event of the Entry, and the OnDetachingFrom method detaches that handler. The handler itself does the same job as the Invoke method in NumericValidationAction.

Because the NumericValidationBehavior class installs the handler for the TextChanged event, the behavior can be used without specifying anything beyond the class name. Here’s the XAML file for the BehaviorEntryValidation program, which differs from the earlier program that used an EventTrigger by specifying the behavior in an implicit style that is applied to four Entry views:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="BehaviorEntryValidation.BehaviorEntryValidationPage"

 Padding="50">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Entry">

 <Style.Behaviors>

 <toolkit:NumericValidationBehavior />

 </Style.Behaviors>

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Entry Placeholder="Enter a System.Double" />

 <Entry Placeholder="Enter a System.Double" />

 <Entry Placeholder="Enter a System.Double" />

 <Entry Placeholder="Enter a System.Double" />

 </StackLayout>

</ContentPage>

This Style object is shared among the four Entry views, so only a single NumericValidationBehavior object is instantiated. As this single object is attached to each of the four Entry views, it attaches a TextChanged handler on each one so that the single NumericValidationBehavior object operates independently on the four views:

[image: Image]

In this particular example, the TriggerAction would be preferred over the Behavior because it’s less code and the code doesn’t refer to a particular event, so it’s more generalized.

But a behavior can be as generalized or as specific as you want, and behaviors also have the ability to participate more fully within the XAML file through data bindings.

Behaviors with properties

The Behavior<T> class derives from the Behavior class, which derives from BindableObject. This suggests that your Behavior<T> derivative can define its own bindable properties.

Earlier you saw some Action<T> derivatives such as ScaleAction and ShiverAction that defined some properties to give them more flexibility. But a Behavior<T> derivative can define bindable properties that can serve as source properties for data bindings. This means that you don’t have to hard-code the behavior to modify a particular property, such as setting the TextColor property of an Entry to Red. You can instead decide later how you want the behavior to affect the user interface, and implement that right in the XAML file. This gives the behavior a greater amount of flexibility and allows the XAML to play a greater role in the aspect of the behavior that pertains to the user interface.

Here is a class in the Xamarin.FormsBook.Toolkit library called ValidEmailBehavior, which is similar to NumericValidationBehavior except that it uses a regular expression to determine whether the Text property of an Entry is a valid email address:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class ValidEmailBehavior : Behavior<Entry>

 {

 static readonly BindablePropertyKey IsValidPropertyKey =

 BindableProperty.CreateReadOnly("IsValid",

 typeof(bool),

 typeof(ValidEmailBehavior),

 false);

 public static readonly BindableProperty IsValidProperty =

 IsValidPropertyKey.BindableProperty;

 public bool IsValid

 {

 private set { SetValue(IsValidPropertyKey, value); }

 get { return (bool)GetValue(IsValidProperty); }

 }

 protected override void OnAttachedTo(Entry entry)

 {

 entry.TextChanged += OnEntryTextChanged;

 base.OnAttachedTo(entry);

 }

 protected override void OnDetachingFrom(Entry entry)

 {

 entry.TextChanged -= OnEntryTextChanged;

 base.OnDetachingFrom(entry);

 }

 void OnEntryTextChanged(object sender, TextChangedEventArgs args)

 {

 Entry entry = (Entry)sender;

 IsValid = IsValidEmail(entry.Text);

 }

 bool IsValidEmail(string strIn)

 {

 if (String.IsNullOrEmpty(strIn))

 return false;

 try

 {

 // from https://msdn.microsoft.com/en-us/library/01escwtf(v=vs.110).aspx

 return Regex.IsMatch(strIn,

 @"^(?("")("".+?(?<!\\)""@)|(([0-9a-z]((\.(?!\.))|" +

 @"[-!#\$%&'*\+/=\?\^`\{\}\|~\w])*)" +

 @"(?<=[0-9a-z])@))(?(\[)(\[(\d{1,3}\.){3}\d{1,3}\])|" +

 @"(([0-9a-z][-\w]*[0-9a-z]*\.)+[a-z0-9][\-a-z0-9]{0,22}[a-z0-9]))$",

 RegexOptions.IgnoreCase, TimeSpan.FromMilliseconds(250));

 }

 catch (RegexMatchTimeoutException)

 {

 return false;

 }

 }

 }

}

Instead of setting the Text property of the Entry to Red, ValidEmailBehavior defines an IsValid property that is backed by a bindable property. Because it makes no sense for code external to this class to set the IsValid property, it is a read-only bindable property. The Bindable.CreateReadOnly call creates a private bindable-property key that is used by the SetValue call in the private set accessor of IsValid. The public IsValidProperty bindable property is referenced by the GetValue call as usual.

How you use that IsValid property is entirely up to you.

For example, the EmailValidationDemo program binds that IsValid property to the IsVisible property of an Image displaying a “thumb up” picture. That “thumb up” bitmap sits on top of another Image element with a “thumb down” to indicate when a valid email address has been typed. That IsValid property is also bound to the IsEnabled property of a Send button. Notice that the Source of both data bindings is the ValidEmailBehavior object:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:EmailValidationDemo"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="EmailValidationDemo.EmailValidationDemoPage"

 Padding="20, 50">

 <StackLayout>

 <StackLayout Orientation="Horizontal">

 <Entry Placeholder="Enter email address"

 Keyboard="Email"

 HorizontalOptions="FillAndExpand">

 <Entry.Behaviors>

 <toolkit:ValidEmailBehavior x:Name="validEmail" />

 </Entry.Behaviors>

 </Entry>

 <Grid HeightRequest="40">

 <Image Source=

 "{local:ImageResource EmailValidationDemo.Images.ThumbsDown.png}" />

 <Image Source="{local:ImageResource EmailValidationDemo.Images.ThumbsUp.png}"

 IsVisible="{Binding Source={x:Reference validEmail},

 Path=IsValid}"/>

 </Grid>

 </StackLayout>

 <Button Text="Send!"

 FontSize="Large"

 HorizontalOptions="Center"

 IsEnabled="{Binding Source={x:Reference validEmail},

 Path=IsValid}" />

 </StackLayout>

</ContentPage>

As you’re typing an email address, it’s not considered valid until it has at least a two-character top-level domain:

[image: Image]

The two bitmaps are part of the common EmailValidationDemo project. The ImageResource markup extension class used to reference the bitmaps was discussed in Chapter 13, “Bitmaps,” and it must be part of the same assembly that contains the bitmaps:

Click here to view code image

namespace EmailValidationDemo

{

 [ContentProperty ("Source")]

 public class ImageResourceExtension : IMarkupExtension

 {

 public string Source { get; set; }

 public object ProvideValue (IServiceProvider serviceProvider)

 {

 if (Source == null)

 return null;

 return ImageSource.FromResource(Source);

 }

 }

}

What if you have multiple Entry views on the same page that need to check for valid email addresses. Could you include the ValidEmailBehavior class in a Behaviors collection of a Style?

No you cannot. The ValidEmailBehavior class defines a property named IsValid. This means that a particular instance of ValidEmailBehavior always has a particular state, which is the value of this property. This has a significant implication:

A behavior that maintains state—such as a field or a property—cannot be shared, which means it shouldn’t be included in a Style.

If you need to use ValidEmailBehavior for multiple Entry views on the same page, don’t put it in a Style. Add a separate instance to the Behaviors collections of each of the Entry views.

The advantage of this IsValid property outweighs the disadvantages, however, because you can use the property in a variety of ways. Here’s a program called EmailValidationConverter that uses the IsValid property with a binding converter already in the Xamarin.FormsBook.Toolkit library to choose between two text strings:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="EmailValidationConverter.EmailValidationConverterPage"

 Padding="50">

 <StackLayout>

 <StackLayout Orientation="Horizontal">

 <Entry Placeholder="Enter email address"

 HorizontalOptions="FillAndExpand">

 <Entry.Behaviors>

 <toolkit:ValidEmailBehavior x:Name="validEmail" />

 </Entry.Behaviors>

 </Entry>

 <Label HorizontalTextAlignment="Center"

 VerticalTextAlignment="Center">

 <Label.Text>

 <Binding Source="{x:Reference validEmail}"

 Path="IsValid">

 <Binding.Converter>

 <toolkit:BoolToObjectConverter x:TypeArguments="x:String"

 FalseObject="Not yet!"

 TrueObject="OK!" />

 </Binding.Converter>

 </Binding>

 </Label.Text>

 </Label>

 </StackLayout>

 <Button Text="Send!"

 FontSize="Large"

 HorizontalOptions="Center"

 IsEnabled="{Binding Source={x:Reference validEmail},

 Path=IsValid}" />

 </StackLayout>

</ContentPage>

The BoolToObjectConverter chooses between the two text strings “Not yet!” and “OK!”.

However, you can do this same thing with a little more straightforward logic and no binding converter by using a DataTrigger, as the EmailValidationTrigger program demonstrates. The “Not yet!” text is assigned to the Text property of the Label, while a DataTrigger on the Label contains a binding to the IsValid property to set the “OK!” text:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="EmailValidationTrigger.EmailValidationTriggerPage"

 Padding="50">

 <StackLayout>

 <StackLayout Orientation="Horizontal">

 <Entry Placeholder="Enter email address"

 HorizontalOptions="FillAndExpand">

 <Entry.Behaviors>

 <toolkit:ValidEmailBehavior x:Name="validEmail" />

 </Entry.Behaviors>

 </Entry>

 <Label Text="Not yet!"

 HorizontalTextAlignment="Center"

 VerticalTextAlignment="Center">

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference validEmail},

 Path=IsValid}"

 Value="True">

 <Setter Property="Text" Value="OK!" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 </StackLayout>

 <Button Text="Send!"

 FontSize="Large"

 HorizontalOptions="Center"

 IsEnabled="{Binding Source={x:Reference validEmail},

 Path=IsValid}" />

 </StackLayout>

</ContentPage>

Referencing a behavior from a data binding in a DataTrigger is a powerful technique.

Toggles and check boxes

In Chapter 15, “The interactive interface,” and Chapter 16, “Data binding,” you saw how to construct traditional CheckBox views. However, another approach to custom views is to incorporate the interactive logic of the view in a behavior and then realize the visuals entirely in XAML. This approach gives you the flexibility of customizing the visuals with markup rather than code. Because the visual appearance is not part of the underlying logic, you can create ad hoc visuals whenever you use the behavior.

Here is a class in the Xamarin.FormsBook.Toolkit library named ToggleBehavior. Like the Xamarin.Forms Switch element, it defines a property named IsToggled that is backed by a bindable property. ToggleBehavior simply installs a TapGestureRecognizer to the visual that it’s attached to and toggles the state of the IsToggled property whenever a tap is detected:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class ToggleBehavior : Behavior<View>

 {

 TapGestureRecognizer tapRecognizer;

 public static readonly BindableProperty IsToggledProperty =

 BindableProperty.Create<ToggleBehavior, bool>(tb => tb.IsToggled, false);

 public bool IsToggled

 {

 set { SetValue(IsToggledProperty, value); }

 get { return (bool)GetValue(IsToggledProperty); }

 }

 protected override void OnAttachedTo(View view)

 {

 base.OnAttachedTo(view);

 tapRecognizer = new TapGestureRecognizer ();

 tapRecognizer.Tapped += OnTapped;

 view.GestureRecognizers.Add(tapRecognizer);

 }

 protected override void OnDetachingFrom(View view)

 {

 base.OnDetachingFrom(view);

 view.GestureRecognizers.Remove(tapRecognizer);

 tapRecognizer.Tapped -= OnTapped;

 }

 void OnTapped(object sender, EventArgs args)

 {

 IsToggled = !IsToggled;

 }

 }

}

The ToggleBehavior class defines a property, which means that you cannot share a ToggleBehavior in a Style.

Here’s a simple application. The ToggleLabel program attaches ToggleBehavior to a Label and uses the IsToggled property with a DataTrigger to switch the text of the Label between “Paused” and “Playing,” perhaps for a music application:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="ToggleLabel.ToggleLabelPage">

 <Label Text="Paused"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <Label.Behaviors>

 <toolkit:ToggleBehavior x:Name="toggleBehavior" />

 </Label.Behaviors>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference toggleBehavior},

 Path=IsToggled}"

 Value="True">

 <Setter Property="Text" Value="Playing" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

</ContentPage>

Of course, such a program would probably need to run some code when the Label is toggled. Keep in mind that Behavior derives from BindableObject, which means that any BindableProperty that you define in a behavior automatically generates a PropertyChanged event when the property changes.

This means that you can attach a handler to the PropertyChanged event of ToggleBehavior and check for changes in the IsToggled property. This is demonstrated in the FormattedTextToggle program, which expands the ToggleLabel program to include a Frame and some formatted text that more clearly indicates the two options that the tap switches between:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="FormattedTextToggle.FormattedTextTogglePage">

 <StackLayout>

 <Frame HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 OutlineColor="Accent"

 BackgroundColor="Transparent">

 <Frame.Behaviors>

 <toolkit:ToggleBehavior x:Name="toggleBehavior"

 PropertyChanged="OnBehaviorPropertyChanged" />

 </Frame.Behaviors>

 <Label>

 <Label.FormattedText>

 <FormattedString>

 <FormattedString.Spans>

 <Span Text="Paused / "

 FontSize="Large"

 FontAttributes="Bold" />

 <Span Text="Playing"

 FontSize="Small" />

 </FormattedString.Spans>

 </FormattedString>

 </Label.FormattedText>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference toggleBehavior},

 Path=IsToggled}"

 Value="True">

 <Setter Property="FormattedText">

 <Setter.Value>

 <FormattedString>

 <FormattedString.Spans>

 <Span Text="Paused"

 FontSize="Small" />

 <Span Text=" / Playing"

 FontSize="Large"

 FontAttributes="Bold" />

 </FormattedString.Spans>

 </FormattedString>

 </Setter.Value>

 </Setter>

 </DataTrigger>

 </Label.Triggers>

 </Label>

 </Frame>

 <Label x:Name="eventLabel"

 Text=""

 FontSize="Large"

 Opacity="0"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

The ToggleBehavior is attached to the Frame, and the Frame contains a Label. (Notice that the BackgroundColor of the Frame is set to Transparent rather than the default value of null. This is necessary to trap the tap events on the Windows Runtime platforms.)

This program demonstrates one way to solve a common problem with toggle buttons: Does the text (or icon) refer to a state or an action? The Label here makes it clear by displaying the text “Paused / Playing” but with the word “Paused” larger than the word “Playing”. When the IsToggled property is True, the DataTrigger changes that display so that the word “Playing” is larger than the word “Paused”.

The PropertyChanged event on the ToggleBehavior is handled in the code-behind file:

Click here to view code image

public partial class FormattedTextTogglePage : ContentPage

{

 public FormattedTextTogglePage()

 {

 InitializeComponent();

 }

 void OnBehaviorPropertyChanged(object sender, PropertyChangedEventArgs args)

 {

 if (args.PropertyName == "IsToggled")

 {

 eventLabel.Text = "IsToggled = " + ((ToggleBehavior)sender).IsToggled;

 eventLabel.Opacity = 1;

 eventLabel.FadeTo(0, 1000);

 }

 }

}

The OnBehaviorPropertyChanged handler checks for a change in the property named “IsToggled”. Keep in mind that the sender argument to the event handler is not the visual element whose taps are being detected (which is the Frame) but the ToggleBehavior itself. The code sets the Text property of the Label at the bottom of the page and sets the Opacity to 1, but then fades it out over the course of a second to give a sense of an event firing:

[image: Image]

If you like the idea of defining the visuals of a toggle view in XAML but prefer a little more structure, the Xamarin.FormsBook.Toolkit library has a class named ToggleBase that derives from ContentView and incorporates ToggleBehavior. The constructor adds the ToggleBehavior to the Behaviors collection of the class and then attaches an event handler to it. The class also defines a Toggled event and its own IsToggled property that fires that event:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class ToggleBase : ContentView

 {

 public event EventHandler<ToggledEventArgs> Toggled;

 public static readonly BindableProperty IsToggledProperty =

 BindableProperty.Create("IsToggled", typeof(bool), typeof(ToggleBase), false,

 BindingMode.TwoWay,

 propertyChanged: (bindable, oldValue, newValue) =>

 {

 EventHandler<ToggledEventArgs> handler = ((ToggleBase)bindable).Toggled;

 if (handler != null)

 handler(bindable, new ToggledEventArgs((bool)newValue));

 });

 public ToggleBase()

 {

 ToggleBehavior toggleBehavior = new ToggleBehavior();

 toggleBehavior.PropertyChanged += OnToggleBehaviorPropertyChanged;

 Behaviors.Add(toggleBehavior);

 }

 public bool IsToggled

 {

 set { SetValue(IsToggledProperty, value); }

 get { return (bool)GetValue(IsToggledProperty); }

 }

 protected void OnToggleBehaviorPropertyChanged(object sender,

 PropertyChangedEventArgs args)

 {

 if (args.PropertyName == "IsToggled")

 {

 IsToggled = ((ToggleBehavior)sender).IsToggled;

 }

 }

 }

}

The ToggleBase class defines all the logic of a toggle view without the visuals. In truth, it doesn’t require the ToggleBehaviors class. It could install its own TapGestureRecognizer, but the result would be basically the same.

You can instantiate the ToggleBase class in a XAML file and supply the visuals as content of the ToggleBase. Here’s a program called TraditionalCheckBox that uses two Unicode characters for an unchecked box and a checked box, similar to the CheckBox views in Chapters 15 and 16:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="TraditionalCheckBox.TraditionalCheckBoxPage">

 <StackLayout>

 <toolkit:ToggleBase x:Name="checkbox"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Toggled="OnToggleBaseToggled">

 <StackLayout Orientation="Horizontal">

 <Label Text="☐"

 FontSize="Large">

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference checkbox},

 Path=IsToggled}"

 Value="True">

 <Setter Property="Text" Value="☑" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="Italicize Text"

 FontSize="Large" />

 </StackLayout>

 </toolkit:ToggleBase>

 <Label Text="Sample text to italicize"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference checkbox},

 Path=IsToggled}"

 Value="True">

 <Setter Property="FontAttributes" Value="Italic" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label x:Name="eventLabel"

 Text=""

 FontSize="Large"

 Opacity="0"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

The XAML file uses the IsToggled property as the source of two very similar data bindings, each within a DataTrigger. In both cases the Source property is set to the ToggleBase instance, and the Path property is set to the IsToggled property of ToggleBase. The first DataTrigger switches between the empty box and the checked box to indicate the state of the toggle, and the second DataTrigger italicizes some text when the CheckBox is toggled on.

In addition, the Toggled event of ToggleBase is handled in the code-behind file with a fade-out Label:

Click here to view code image

public partial class TraditionalCheckBoxPage : ContentPage

{

 public TraditionalCheckBoxPage()

 {

 InitializeComponent();

 }

 void OnToggleBaseToggled(object sender, ToggledEventArgs args)

 {

 eventLabel.Text = "IsToggled = " + args.Value;

 eventLabel.Opacity = 1;

 eventLabel.FadeTo(0, 1000);

 }

}

Here’s the result:

[image: Image]

If you need multiple instances of a particular type of toggle view, you can encapsulate the visuals in a class that derives from ToggleBase.

The next example derives from ToggleBase to make a view that is very much like the Xamarin.Forms Switch, except with visuals created entirely in XAML. This “switch clone” is realized with a little BoxView that moves back and forth in a Frame. For implementing the animation, the Xamarin.FormsBook.Toolkit library includes a TranslateAction class with properties that provide arguments for a call to TranslateTo:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class TranslateAction : TriggerAction<VisualElement>

 {

 public TranslateAction()

 {

 // Set defaults.

 Length = 250;

 Easing = Easing.Linear;

 }

 public double X { set; get; }

 public double Y { set; get; }

 public int Length { set; get; }

 [TypeConverter(typeof(EasingConverter))]

 public Easing Easing { set; get; }

 protected override void Invoke(VisualElement visual)

 {

 visual.TranslateXYTo(X, Y, (uint)Length, Easing);

 }

 }

}

The SwitchClone class that mimics the Switch is part of the SwitchCloneDemo project. It’s entirely done in XAML. The root element is the base class of ToggleBase, and the x:Class attribute indicates the derived class of SwitchClone. The Resources dictionary defines several constants that allow for visuals that are not too large, but still big enough to be a proper touch target:

Click here to view code image

<toolkit:ToggleBase

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="SwitchCloneDemo.SwitchClone"

 x:Name="toggle">

 <toolkit:ToggleBase.Resources>

 <ResourceDictionary>

 <x:Double x:Key="height">20</x:Double>

 <x:Double x:Key="width">50</x:Double>

 <x:Double x:Key="halfWidth">25</x:Double>

 </ResourceDictionary>

 </toolkit:ToggleBase.Resources>

 <Frame Padding="2"

 OutlineColor="Accent"

 BackgroundColor="Transparent">

 <AbsoluteLayout WidthRequest="{StaticResource width}">

 <BoxView Color="Accent"

 WidthRequest="{StaticResource halfWidth}"

 HeightRequest="{StaticResource height}">

 <BoxView.Triggers>

 <DataTrigger TargetType="BoxView"

 Binding="{Binding Source={x:Reference toggle},

 Path=IsToggled}"

 Value="True">

 <DataTrigger.EnterActions>

 <toolkit:TranslateAction X="{StaticResource halfWidth}"

 Length="100" />

 </DataTrigger.EnterActions>

 <DataTrigger.ExitActions>

 <toolkit:TranslateAction Length="100" />

 </DataTrigger.ExitActions>

 </DataTrigger>

 </BoxView.Triggers>

 </BoxView>

 </AbsoluteLayout>

 </Frame>

</toolkit:ToggleBase>

Notice that the root element has a name of “toggle.” This allows the data binding in the DataTrigger on the BoxView to reference the IsToggled property defined by the ToggleBase class. The DataTrigger does not include a Setter but instead uses EnterActions and ExitActions to invoke the TranslateAction for shifting the BoxView back and forth.

The code-behind file for SwitchClone has nothing but an InitializeComponent call, but if you need other properties (for example, for color or some accompanying text) you can define them there.

At least that’s the way it was originally coded. Later on, the program refused to build on the Windows Runtime platforms. Perhaps the problem had something to do with the root element in the XAML file referencing a class in a library. Regardless, a code-only version of the class did work, and this is the one included with the sample code for this chapter:

Click here to view code image

class SwitchClone : ToggleBase

{

 const double height = 20;

 const double width = 50;

 const double halfWidth = 25;

 public SwitchClone()

 {

 BoxView boxView = new BoxView

 {

 Color = Color.Accent,

 WidthRequest = halfWidth,

 HeightRequest = height

 };

 DataTrigger dataTrigger = new DataTrigger(typeof(BoxView))

 {

 Binding = new Binding("IsToggled", source: this),

 Value = true,

 };

 dataTrigger.EnterActions.Add(new TranslateAction

 {

 X = halfWidth,

 Length = 100

 });

 dataTrigger.ExitActions.Add(new TranslateAction

 {

 Length = 100

 });

 boxView.Triggers.Add(dataTrigger);

 Content = new Frame

 {

 Padding = 2,

 OutlineColor = Color.Accent,

 BackgroundColor = Color.Transparent,

 Content = new AbsoluteLayout

 {

 WidthRequest = width,

 Children =

 {

 boxView

 }

 }

 };

 }

}

The SwitchCloneDemoPage class displays four of these switch clones in a row:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:SwitchCloneDemo"

 x:Class="SwitchCloneDemo.SwitchCloneDemoPage">

 <Grid VerticalOptions="Center">

 <local:SwitchClone Grid.Column="0"

 HorizontalOptions="Center" />

 <local:SwitchClone Grid.Column="1"

 HorizontalOptions="Center" />

 <local:SwitchClone Grid.Column="2"

 HorizontalOptions="Center" />

 <local:SwitchClone Grid.Column="3"

 HorizontalOptions="Center" />

 </Grid>

</ContentPage>

And here they are:

[image: Image]

Of course, once you start thinking about using animations, you might start getting some interesting (or perhaps downright odd) ideas of what a toggle view might look like. To give you a few more options, here’s a RotateAction class:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class RotateAction : TriggerAction<VisualElement>

 {

 public RotateAction()

 {

 // Set defaults.

 Anchor = new Point (0.5, 0.5);

 Rotation = 0;

 Length = 250;

 Easing = Easing.Linear;

 }

 public Point Anchor { set; get; }

 public double Rotation { set; get; }

 public int Length { set; get; }

 [TypeConverter(typeof(EasingConverter))]

 public Easing Easing { set; get; }

 protected override void Invoke(VisualElement visual)

 {

 visual.AnchorX = Anchor.X;

 visual.AnchorY = Anchor.Y;

 visual.RotateTo(Rotation, (uint)Length, Easing);

 }

 }

}

The LeverToggle program has a XAML file that is devoted to a single toggle switch constructed from two BoxView elements. The first BoxView resembles a base for the second, which functions like a lever. Notice that the DataTrigger on the second BoxView contains a Setter to change the color of the BoxView as well as EnterActions and ExitActions to invoke animations that move the lever back and forth:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="LeverToggle.LeverTogglePage">

 <toolkit:ToggleBase x:Name="toggle"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <AbsoluteLayout>

 <BoxView Color="Gray"

 AbsoluteLayout.LayoutBounds="0, 75, 100, 25">

 <BoxView.Triggers>

 <DataTrigger TargetType="BoxView"

 Binding="{Binding Source={x:Reference toggle},

 Path=IsToggled}"

 Value="True">

 <Setter Property="Color" Value="Lime" />

 </DataTrigger>

 </BoxView.Triggers>

 </BoxView>

 <BoxView Color="Gray"

 AbsoluteLayout.LayoutBounds="45, 0, 10, 100"

 AnchorX="0.5"

 AnchorY="1"

 Rotation="-30">

 <BoxView.Triggers>

 <DataTrigger TargetType="BoxView"

 Binding="{Binding Source={x:Reference toggle},

 Path=IsToggled}"

 Value="True">

 <Setter Property="Color" Value="Lime" />

 <DataTrigger.EnterActions>

 <toolkit:RotateAction Anchor="0.5, 1" Rotation="30" />

 </DataTrigger.EnterActions>

 <DataTrigger.ExitActions>

 <toolkit:RotateAction Anchor="0.5, 1" Rotation="-30" />

 </DataTrigger.ExitActions>

 </DataTrigger>

 </BoxView.Triggers>

 </BoxView>

 </AbsoluteLayout>

 </toolkit:ToggleBase>

</ContentPage>

The untoggled state is shown on the Android screen, while the iOS and Windows 10 Mobile screens show the toggled state:

[image: Image]

Responding to taps

The various manifestations of toggle views demonstrate one way to respond to taps within a XAML file. If tap events were integrated into the VisualElement class, you could get at them more directly and with greater ease using EventTrigger. But you can’t attach an EventTrigger to a TapGestureRecognizer.

Getting around that little restriction is the purpose of a behavior devoted solely to a tap. This is called TapBehavior:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class TapBehavior : Behavior<View>

 {

 TapGestureRecognizer tapGesture;

 static readonly BindablePropertyKey IsTriggeredKey =

 BindableProperty.CreateReadOnly("IsTriggered", typeof(bool),

 typeof(TapBehavior), false);

 public static readonly BindableProperty IsTriggeredProperty =

 IsTriggeredKey.BindableProperty;

 public bool IsTriggered

 {

 private set { SetValue(IsTriggeredKey, value); }

 get { return (bool)GetValue(IsTriggeredProperty); }

 }

 protected override void OnAttachedTo(View view)

 {

 base.OnAttachedTo(view);

 tapGesture = new TapGestureRecognizer();

 tapGesture.Tapped += OnTapped;

 view.GestureRecognizers.Add(tapGesture);

 }

 protected override void OnDetachingFrom(View view)

 {

 base.OnDetachingFrom(view);

 view.GestureRecognizers.Remove(tapGesture);

 tapGesture.Tapped -= OnTapped;

 }

 async void OnTapped(object sender, EventArgs args)

 {

 IsTriggered = true;

 await Task.Delay(100);

 IsTriggered = false;

 }

 }

}

The TapBehavior class defines a Boolean property named IsTriggered, but it doesn’t function exactly like a normal property. For one thing, it’s backed by a read-only bindable property. This means that the IsTriggered property can be set only within the TapBehavior class, and the only time the class sets IsTriggered is in the event handler for the TapGestureRecognizer, when the IsTriggered property becomes true for a mere one-tenth of a second.

In other words, the Tapped event is converted into a very brief spike of a property value—somewhat reminiscent of how events are triggered in digital hardware. But the IsTriggered property can then be referenced in a DataTrigger.

Suppose you like the idea of the ShiverButton, but you’d like to apply the concept to something other than a Button, which means you need to respond to Tapped events. You can’t use an EventTrigger, but the TapBehavior lets you use a DataTrigger instead.

To demonstrate, here’s BoxViewTapShiver, which attaches TapBehavior objects to three BoxView elements, each of which also includes a DataTrigger that references the behavior and invokes a ShiverAction in its EnterActions collection:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="BoxViewTapShiver.BoxViewTapShiverPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="BoxView">

 <Setter Property="WidthRequest" Value="200" />

 <Setter Property="HeightRequest" Value="50" />

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <BoxView Color="Red">

 <BoxView.Behaviors>

 <toolkit:TapBehavior x:Name="tapBehavior1" />

 </BoxView.Behaviors>

 <BoxView.Triggers>

 <DataTrigger TargetType="BoxView"

 Binding="{Binding Source={x:Reference tapBehavior1},

 Path=IsTriggered}"

 Value="True">

 <DataTrigger.EnterActions>

 <toolkit:ShiverAction />

 </DataTrigger.EnterActions>

 </DataTrigger>

 </BoxView.Triggers>

 </BoxView>

 <BoxView Color="Green">

 <BoxView.Behaviors>

 <toolkit:TapBehavior x:Name="tapBehavior2" />

 </BoxView.Behaviors>

 <BoxView.Triggers>

 <DataTrigger TargetType="BoxView"

 Binding="{Binding Source={x:Reference tapBehavior2},

 Path=IsTriggered}"

 Value="True">

 <DataTrigger.EnterActions>

 <toolkit:ShiverAction />

 </DataTrigger.EnterActions>

 </DataTrigger>

 </BoxView.Triggers>

 </BoxView>

 <BoxView Color="Blue">

 <BoxView.Behaviors>

 <toolkit:TapBehavior x:Name="tapBehavior3" />

 </BoxView.Behaviors>

 <BoxView.Triggers>

 <DataTrigger TargetType="BoxView"

 Binding="{Binding Source={x:Reference tapBehavior3},

 Path=IsTriggered}"

 Value="True">

 <DataTrigger.EnterActions>

 <toolkit:ShiverAction />

 </DataTrigger.EnterActions>

 </DataTrigger>

 </BoxView.Triggers>

 </BoxView>

 </StackLayout>

</ContentPage>

Each of the three TapBehavior objects has a unique name, which is referenced by the corresponding DataTrigger. When you tap a BoxView, it shivers, and they all work independently.

It is very tempting to put the TapBehavior and DataTrigger objects in a Style to cut down on the repetitive markup, but that won’t work. That would cause a single TapBehavior to be shared among the three BoxView elements. Moreover, each DataTrigger refers to a corresponding TapBehavior by name.

If you want to cut down on the markup in this case, you’ll once again need to define a new class. The ShiverViews program demonstrates this. It first defines a class named ShiverView that derives from BoxView and adds the TapBehavior and DataTrigger:

Click here to view code image

<BoxView xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="ShiverViews.ShiverView">

 <BoxView.Behaviors>

 <toolkit:TapBehavior x:Name="tapBehavior" />

 </BoxView.Behaviors>

 <BoxView.Triggers>

 <DataTrigger TargetType="BoxView"

 Binding="{Binding Source={x:Reference tapBehavior},

 Path=IsTriggered}"

 Value="True">

 <DataTrigger.EnterActions>

 <toolkit:ShiverAction />

 </DataTrigger.EnterActions>

 </DataTrigger>

 </BoxView.Triggers>

</BoxView>

As with the SwitchClone class, you could also add some properties in the code-behind file and reference them in the XAML file.

The ShiverViewsPage XAML file can then just instantiate three independent ShiverView objects with an implicit style:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:ShiverViews"

 x:Class="ShiverViews.ShiverViewsPage">

 <StackLayout>

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="local:ShiverView">

 <Setter Property="WidthRequest" Value="200" />

 <Setter Property="HeightRequest" Value="50" />

 <Setter Property="HorizontalOptions" Value="Center" />

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <local:ShiverView Color="Red" />

 <local:ShiverView Color="Green" />

 <local:ShiverView Color="Blue" />

 </StackLayout>

</ContentPage>

Radio buttons

The radios built into the dashboards of old automobiles often featured a row of half a dozen (or so) buttons that could be “programmed” for various radio stations. Pushing in one of these buttons caused the radio to jump to that preselected station, and also caused the button for the previous selection to pop out.

Those old car radios are now antiques, but mutually exclusive options on our computer screens are still represented by visual objects we call radio buttons.

Radio buttons are somewhat similar to toggles or check boxes. But radio buttons are always found in a group of two or more. Selecting or checking any button in that group causes the others to become unchecked.

The logic behind radio buttons is complicated because an application might feature several groups of radio buttons on the same page, and these groups should function independently. Pressing a button in one group should only affect the other buttons within that group, and not the buttons in any other group.

Traditionally, radio buttons were grouped with a common parent. In Xamarin.Forms terminology, radio buttons that are children of one StackLayout are considered to be in the same group, while radio buttons that are children of another StackLayout are in another independent group.

However, there is a more generalized way to distinguish groups of radio buttons, and that is by giving each group a unique name, which really means that each radio button within that group references the same name.

The problem with these names is that they add some extra overhead, particularly when you need only one group of radio buttons. For that reason, there should be an allowance for a group of radio buttons that is not identified by a name. This is called the default group.

Here is a RadioBehavior class in the Xamarin.FormsBook.Toolkit library that is based on those principles. You attach this behavior to every view that you want to convert into a radio button. Like the ToggleBehavior class, RadioBehavior sets a TapGestureRecognizer on the visual element to which it’s attached. It doesn’t define an IsToggled property like ToggleBehavior, but it does define an IsChecked property that is quite similar and indicates whether the radio button is checked or unchecked. The RadioBehavior class also defines a GroupName property of type string to identify the group; a null value or an empty string indicates the default group.

The RadioBehavior class needs to store all the instantiated radio buttons by group, so it defines two static collections, one of which is a simple List<RadioBehavior> for all the objects in the default group, and the other is a Dictionary with a key corresponding to the group name that references a List<RadioBehavior> collection for all the objects in that named group:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class RadioBehavior : Behavior<View>

 {

 TapGestureRecognizer tapRecognizer;

 static List<RadioBehavior> defaultGroup = new List<RadioBehavior>();

 static Dictionary<string, List<RadioBehavior>> radioGroups =

 new Dictionary<string, List<RadioBehavior>>();

 public RadioBehavior()

 {

 defaultGroup.Add(this);

 }

 public static readonly BindableProperty IsCheckedProperty =

 BindableProperty.Create("IsChecked",

 typeof(bool),

 typeof(RadioBehavior),

 false,

 propertyChanged: OnIsCheckedChanged);

 public bool IsChecked

 {

 set { SetValue(IsCheckedProperty, value); }

 get { return (bool)GetValue(IsCheckedProperty); }

 }

 static void OnIsCheckedChanged(BindableObject bindable, object oldValue,

 object newValue)

 {

 RadioBehavior behavior = (RadioBehavior)bindable;

 if ((bool)newValue)

 {

 string groupName = behavior.GroupName;

 List<RadioBehavior> behaviors = null;

 if (String.IsNullOrEmpty(groupName))

 {

 behaviors = defaultGroup;

 }

 else

 {

 behaviors = radioGroups[groupName];

 }

 foreach (RadioBehavior otherBehavior in behaviors)

 {

 if (otherBehavior != behavior)

 {

 otherBehavior.IsChecked = false;

 }

 }

 }

 }

 public static readonly BindableProperty GroupNameProperty =

 BindableProperty.Create("GroupName",

 typeof(string),

 typeof(RadioBehavior),

 null,

 propertyChanged: OnGroupNameChanged);

 public string GroupName

 {

 set { SetValue(GroupNameProperty, value); }

 get { return (string)GetValue(GroupNameProperty); }

 }

 static void OnGroupNameChanged(BindableObject bindable, object oldValue,

 object newValue)

 {

 RadioBehavior behavior = (RadioBehavior)bindable;

 string oldGroupName = (string)oldValue;

 string newGroupName = (string)newValue;

 if (String.IsNullOrEmpty(oldGroupName))

 {

 // Remove the Behavior from the default group.

 defaultGroup.Remove(behavior);

 }

 else

 {

 // Remove the RadioBehavior from the radioGroups collection.

 List<RadioBehavior> behaviors = radioGroups[oldGroupName];

 behaviors.Remove(behavior);

 // Get rid of the collection if it's empty.

 if (behaviors.Count == 0)

 {

 radioGroups.Remove(oldGroupName);

 }

 }

 if (String.IsNullOrEmpty(newGroupName))

 {

 // Add the new Behavior to the default group.

 defaultGroup.Add(behavior);

 }

 else

 {

 List<RadioBehavior> behaviors = null;

 if (radioGroups.ContainsKey(newGroupName))

 {

 // Get the named group.

 behaviors = radioGroups[newGroupName];

 }

 else

 {

 // If that group doesn't exist, create it.

 behaviors = new List<RadioBehavior>();

 radioGroups.Add(newGroupName, behaviors);

 }

 // Add the Behavior to the group.

 behaviors.Add(behavior);

 }

 }

 protected override void OnAttachedTo(View view)

 {

 base.OnAttachedTo(view);

 tapRecognizer = new TapGestureRecognizer ();

 tapRecognizer.Tapped += OnTapRecognizerTapped;

 view.GestureRecognizers.Add(tapRecognizer);

 }

 protected override void OnDetachingFrom(View view)

 {

 base.OnDetachingFrom(view);

 view.GestureRecognizers.Remove(tapRecognizer);

 tapRecognizer.Tapped -= OnTapRecognizerTapped;

 }

 void OnTapRecognizerTapped(object sender, EventArgs args)

 {

 IsChecked = true;

 }

 }

}

The TapGestureRecognizer handler at the bottom of the listing is very simple: When the visual object is tapped, the RadioBehavior object attached to that visual object sets its IsChecked property to true. If the IsChecked property was previously false, that change causes a call to the OnIsCheckedChanged method, which sets the IsChecked property of all the RadioBehavior objects in the same group to false.

Here’s a simple demonstration of some interactive logic for selecting the size of a T-shirt. The three radio buttons are simple Label elements with text properties of “Small”, “Medium”, and “Large”, and that’s why the program is called RadioLabels. Each Label has a RadioBehavior in its Behaviors collection. Each RadioBehavior is given an x:Name for data bindings, but all the RadioBehavior objects have a default GroupName property setting of null. Each Label also has a DataTrigger in its Triggers collection that is bound to the corresponding RadioBehavior to turn the TextColor of the Label to green when the IsChecked property is true.

Notice that the IsChecked property for the middle RadioBehavior property is initialized to true to select that object when the program starts up:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 xmlns:local="clr-namespace:RadioLabels"

 x:Class="RadioLabels.RadioLabelsPage"

 Padding="0, 50, 0, 0">

 <StackLayout>

 <Grid>

 <Grid.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Medium" />

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 </ResourceDictionary>

 </Grid.Resources>

 <Label Text="Small"

 TextColor="Gray"

 Grid.Column="0">

 <Label.Behaviors>

 <toolkit:RadioBehavior x:Name="smallRadio" />

 </Label.Behaviors>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference smallRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="TextColor" Value="Green" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="Medium"

 TextColor="Gray"

 Grid.Column="1">

 <Label.Behaviors>

 <toolkit:RadioBehavior x:Name="mediumRadio"

 IsChecked="True" />

 </Label.Behaviors>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference mediumRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="TextColor" Value="Green" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="Large"

 TextColor="Gray"

 Grid.Column="2">

 <Label.Behaviors>

 <toolkit:RadioBehavior x:Name="largeRadio" />

 </Label.Behaviors>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference largeRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="TextColor" Value="Green" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

</Grid>

<Grid VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Image Source="{local:ImageResource RadioLabels.Images.tee200.png}"

 IsVisible="{Binding Source={x:Reference smallRadio},

 Path=IsChecked}" />

 <Image Source="{local:ImageResource RadioLabels.Images.tee250.png}"

 IsVisible="{Binding Source={x:Reference mediumRadio},

 Path=IsChecked}" />

 <Image Source="{local:ImageResource RadioLabels.Images.tee300.png}"

 IsVisible="{Binding Source={x:Reference largeRadio},

 Path=IsChecked}" />

 </Grid>

 </StackLayout>

</ContentPage>

Another complication intrinsic to radio buttons involves making use of the selected item. In some cases you want each radio button within a group to be represented by a particular enumeration member. (In this example, such an enumeration might have three members, named Small, Medium, and Large.) Consolidating a group of radio buttons into an enumeration value obviously involves more code.

The RadioLabels program avoids those issues and simply binds the IsChecked properties of the three RadioBehavior objects to the IsVisible properties of three Image elements sharing a single-cell Grid at the bottom of the XAML file. These display a different size bitmap depending on the selection.

The relative sizes of these bitmaps is not so obvious in these screenshots because each platform displays the bitmaps in somewhat different sizes:

[image: Image]

The DataTrigger attached to each Label changes the TextColor from its styled color of Gray to Green when that item is selected.

If you want to change multiple properties of each Label when that item is selected, you can add more Setter objects to the DataTrigger. But a better approach is to consolidate the Setter objects in a Style, and then to reference the Style in the DataTrigger.

This is demonstrated in the RadioStyle program. The Resources dictionary for the page defines a Style with the key of “baseStyle” that defines the appearance of an unchecked Label, and a Style with the key of “selectedStyle” that is based on “baseStyle” but defines the appearance of a checked Label. The Resources collection concludes with an implicit style for Label that is the same as “baseStyle”:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:RadioStyle"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="RadioStyle.RadioStylePage"

 Padding="0, 50, 0, 0">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="baseStyle" TargetType="Label">

 <Setter Property="TextColor" Value="Gray" />

 <Setter Property="FontSize" Value="Small" />

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 <Setter Property="VerticalTextAlignment" Value="Center" />

 </Style>

 <Style x:Key="selectedStyle" TargetType="Label"

 BasedOn="{StaticResource baseStyle}">

 <Setter Property="TextColor" Value="Green" />

 <Setter Property="FontSize" Value="Medium" />

 <Setter Property="FontAttributes" Value="Bold,Italic" />

 </Style>

 <!-- Implicit style -->

 <Style TargetType="Label" BasedOn="{StaticResource baseStyle}" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Grid>

 <Label Text="Small"

 Grid.Column="0">

 <Label.Behaviors>

 <toolkit:RadioBehavior x:Name="smallRadio" />

 </Label.Behaviors>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference smallRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Style" Value="{StaticResource selectedStyle}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="Medium"

 Grid.Column="1">

 <Label.Behaviors>

 <toolkit:RadioBehavior x:Name="mediumRadio"

 IsChecked="True" />

 </Label.Behaviors>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference mediumRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Style" Value="{StaticResource selectedStyle}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="Large"

 Grid.Column="2">

 <Label.Behaviors>

 <toolkit:RadioBehavior x:Name="largeRadio" />

 </Label.Behaviors>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference largeRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Style" Value="{StaticResource selectedStyle}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 </Grid>

 <Grid VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Image Source="{local:ImageResource RadioStyle.Images.tee200.png}"

 IsVisible="{Binding Source={x:Reference smallRadio},

 Path=IsChecked}" />

 <Image Source="{local:ImageResource RadioStyle.Images.tee250.png}"

 IsVisible="{Binding Source={x:Reference mediumRadio},

 Path=IsChecked}" />

 <Image Source="{local:ImageResource RadioStyle.Images.tee300.png}"

 IsVisible="{Binding Source={x:Reference largeRadio},

 Path=IsChecked}" />

 </Grid>

 </StackLayout>

</ContentPage>

Prior to this chapter, Setter objects were only found in Style definitions, so it might seem a little odd to see a Setter object in the DataTrigger that sets the Style property for the Label. But the screenshots demonstrate that it works fine. Now the selected item is in a larger font with bold and italic in addition to a different color:

[image: Image]

You might also have fun creating new types of visuals to identify the selected item in a group of radio buttons. The RadioImages program contains four bitmaps indicating different modes of transportation. The Image elements that reference these bitmaps are each a child of a ContentView to which is attached the RadioBehavior and a DataTrigger that changes the color of the ContentView:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:RadioImages"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="RadioImages.RadioImagesPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="ContentView">

 <Setter Property="WidthRequest" Value="75" />

 <Setter Property="HeightRequest" Value="75" />

 <Setter Property="Padding" Value="10" />

 </Style>

 <Color x:Key="selectedColor">#80C0FF</Color>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout HorizontalOptions="Start"

 VerticalOptions="Center"

 Padding="20, 0"

 Spacing="0">

<ContentView>

 <ContentView.Behaviors>

 <toolkit:RadioBehavior x:Name="pedestrianRadio" />

 </ContentView.Behaviors>

 <ContentView.Triggers>

 <DataTrigger TargetType="ContentView"

 Binding="{Binding Source={x:Reference pedestrianRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="BackgroundColor" Value="{StaticResource selectedColor}" />

 </DataTrigger>

 </ContentView.Triggers>

 <Image Source="{local:ImageResource RadioImages.Images.pedestrian.png}" />

</ContentView>

<ContentView>

 <ContentView.Behaviors>

 <toolkit:RadioBehavior x:Name="carRadio" />

 </ContentView.Behaviors>

 <ContentView.Triggers>

 <DataTrigger TargetType="ContentView"

 Binding="{Binding Source={x:Reference carRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="BackgroundColor" Value="{StaticResource selectedColor}" />

 </DataTrigger>

 </ContentView.Triggers>

 <Image Source="{local:ImageResource RadioImages.Images.car.png}" />

</ContentView>

<ContentView>

 <ContentView.Behaviors>

 <toolkit:RadioBehavior x:Name="trainRadio" />

 </ContentView.Behaviors>

 <ContentView.Triggers>

 <DataTrigger TargetType="ContentView"

 Binding="{Binding Source={x:Reference trainRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="BackgroundColor" Value="{StaticResource selectedColor}" />

 </DataTrigger>

 </ContentView.Triggers>

 <Image Source="{local:ImageResource RadioImages.Images.train.png}" />

</ContentView>

 <ContentView>

 <ContentView.Behaviors>

 <toolkit:RadioBehavior x:Name="busRadio" />

 </ContentView.Behaviors>

 <ContentView.Triggers>

 <DataTrigger TargetType="ContentView"

 Binding="{Binding Source={x:Reference busRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="BackgroundColor" Value="{StaticResource selectedColor}" />

 </DataTrigger>

 </ContentView.Triggers>

 <Image Source="{local:ImageResource RadioImages.Images.bus.png}" />

 </ContentView>

 </StackLayout>

</ContentPage>

Sometimes, you’ll want to set an initial selected item by setting the IsChecked property on one of the RadioBehavior objects to true, and sometimes not. This program leaves them all unchecked at program startup, but once the user selects one of the items, there is no way to unselect them all.

The crucial factor in this scheme is that the ContentView is given a significant Padding value so it seems to surround the Image element when that item is selected:

[image: Image]

Of course, even with just four items, the repetitive markup looks a bit ominous. You could derive a class from ContentView to consolidate the RadioBehavior and DataTrigger interaction, but you’d need to define a property on this derived class to specify the particular bitmap associated with the button, and very likely another property or an event to indicate when that item has been selected. Generally, it’s easier to keep the markup for each radio button to a minimum by defining common properties using a Style or other resources.

If you want to create more traditional radio button visuals, that’s possible as well. The Unicode characters \u25CB and \u25C9 resemble the traditional unchecked and checked radio button circles and dots.

The TraditionalRadios program has six radio buttons, but they are divided into two groups of three buttons each, so the GroupName properties need to be set for at least one of the two groups. The program chooses to set the GroupName for all the radio buttons to either “platformGroup” or “languageGroup”. Each RadioBehavior is attached to a horizontal StackLayout that contains one Label with a DataTrigger that switches between the “○” and “◉” strings, and a second Label that displays the text to the right of that symbol:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="TraditionalRadios.TraditionalRadiosPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <x:String x:Key="uncheckedRadio">○</x:String>

 <x:String x:Key="checkedRadio">◉</x:String>

 </ResourceDictionary>

 </ContentPage.Resources>

 <Grid VerticalOptions="Center" Padding="5, 0">

 <!-- Left column -->

 <StackLayout Grid.Column="0" Spacing="24">

 <!-- Header -->

 <StackLayout HorizontalOptions="Start" Spacing="0">

 <Label Text="Choose Platform" />

 <BoxView Color="Accent" HeightRequest="1" />

 </StackLayout>

 <!-- Stack of radio buttons -->

 <StackLayout Spacing="12">

 <StackLayout Orientation="Horizontal">

 <StackLayout.Behaviors>

 <toolkit:RadioBehavior x:Name="iosRadio"

 GroupName="platformGroup" />

 </StackLayout.Behaviors>

 <Label Text="{StaticResource uncheckedRadio}">

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference iosRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Text" Value="{StaticResource checkedRadio}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="iOS" />

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Behaviors>

 <toolkit:RadioBehavior x:Name="androidRadio"

 GroupName="platformGroup" />

 </StackLayout.Behaviors>

 <Label Text="{StaticResource uncheckedRadio}">

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference androidRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Text" Value="{StaticResource checkedRadio}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="Android" />

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Behaviors>

 <toolkit:RadioBehavior x:Name="winPhoneRadio"

 GroupName="platformGroup" />

 </StackLayout.Behaviors>

 <Label Text="{StaticResource uncheckedRadio}">

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference winPhoneRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Text" Value="{StaticResource checkedRadio}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="Windows Phone" />

 </StackLayout>

 </StackLayout>

 </StackLayout>

 <!-- Left column -->

 <StackLayout Grid.Column="1" Spacing="24">

 <!-- Header -->

 <StackLayout HorizontalOptions="Start" Spacing="0">

 <Label Text="Choose Language" />

 <BoxView Color="Accent" HeightRequest="1" />

 </StackLayout>

 <!-- Stack of radio buttons -->

 <StackLayout Spacing="12">

 <StackLayout Orientation="Horizontal">

 <StackLayout.Behaviors>

 <toolkit:RadioBehavior x:Name="objectiveCRadio"

 GroupName="languageGroup" />

 </StackLayout.Behaviors>

 <Label Text="{StaticResource uncheckedRadio}">

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference objectiveCRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Text" Value="{StaticResource checkedRadio}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="Objective-C" />

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Behaviors>

 <toolkit:RadioBehavior x:Name="javaRadio"

 GroupName="languageGroup" />

 </StackLayout.Behaviors>

 <Label Text="{StaticResource uncheckedRadio}">

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference javaRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Text" Value="{StaticResource checkedRadio}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="Java" />

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Behaviors>

 <toolkit:RadioBehavior x:Name="cSharpRadio"

 GroupName="languageGroup" />

 </StackLayout.Behaviors>

 <Label Text="{StaticResource uncheckedRadio}">

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference cSharpRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Text" Value="{StaticResource checkedRadio}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="C♯" />

 </StackLayout>

 </StackLayout>

 </StackLayout>

 </Grid>

</ContentPage>

In the context of modern user interfaces, these radio buttons look very quaint and old-fashioned, but at the same time quite authentic:

[image: Image]

Fades and orientation

Already in this book, you’ve seen a couple of color-selection programs that let you interactively form a color by using three Slider elements. The final sample in this chapter is yet another color-selection program, but this one gives you options: It contains three radio buttons (actually, simple Label elements) labeled “RGB Hex”, “RGB Float”, and “HSL”. These allow you to select a color in three different ways:

• As red, green, and blue hexadecimal values ranging from 00 to FF.

• As red, green, and blue floating-point values ranging from 0 to 1.

• As hue, saturation, and luminosity floating-point values ranging from 0 to 1.

It might at first seem complex to switch between these three options. You might imagine that code is required to redefine the range of the Slider elements and to reformat the text that is displayed to show the values. However, you can actually define the entire user interface in XAML.

The first trick is that the XAML file actually contains nine Slider elements with accompanying Label elements to display the values. Each set of three Slider and Label elements occupies a StackLayout with its IsVisible property bound to one of the RadioBehavior objects attached to the three radio buttons. The three StackLayout elements occupy a single-cell Grid, much like the pictures of the T-shirts in the RadioLabels and RadioStyle programs.

But let’s make it more challenging: When you select one of the radio buttons, you probably expect one set of three Slider and Label elements to be replaced by another. Let’s instead have the former set fade out and the new set fade in.

How can this be done?

Let’s build the markup. If you just wanted to replace one StackLayout with another, you would bind the IsVisible property of the StackLayout to the IsChecked property of the corresponding RadioBehavior:

Click here to view code image

<StackLayout IsVisible="{Binding Source={x:Reference hexRadio},

 Path=IsChecked}">

 <!-- Trio of Slider and Label elements -->

</StackLayout>

To instead fade out the old and fade in the new, you would first need to initialize the IsVisible property of the StackLayout to False and attach a DataTrigger that references the IsChecked property of the RadioBehavior:

Click here to view code image

<StackLayout IsVisible="False">

 <StackLayout.Triggers>

 <DataTrigger TargetType="StackLayout"

 Binding="{Binding Source={x:Reference hexRadio},

 Path=IsChecked}"

 Value="True">

 ...

 </DataTrigger>

 </StackLayout.Triggers>

 <!-- Trio of Slider and Label elements -->

</StackLayout>

Then, instead of adding a Setter or two to the DataTrigger, you need to add an Action derivative to the EnterActions and ExitActions collections:

Click here to view code image

<StackLayout IsVisible="False">

 <StackLayout.Triggers>

 <DataTrigger TargetType="StackLayout"

 Binding="{Binding Source={x:Reference hexRadio},

 Path=IsChecked}"

 Value="True">

 <DataTrigger.EnterActions>

 <toolkit:FadeEnableAction Enable="True" />

 </DataTrigger.EnterActions>

 <DataTrigger.ExitActions>

 <toolkit:FadeEnableAction Enable="False" />

 </DataTrigger.ExitActions>

 </DataTrigger>

 </StackLayout.Triggers>

 <!-- Trio of Slider and Label elements -->

</StackLayout>

As you’ll recall, the EnterActions are invoked when the condition becomes true (which in this case is when the IsChecked property of the corresponding RadioBehavior is True), and the ExitActions are invoked when the condition becomes false.

This hypothetical FadeEnableAction class has a Boolean property named Enable. When the Enable property is True, we want FadeEnableAction to use the FadeTo extension method to animate the Opacity property from 0 (invisible) to 1 (fully visible). When Enable is False, we want FadeTo to animate the Opacity from 1 to 0. Keep in mind that as one StackLayout (and its children) fades out, another one simultaneously fades in.

However, the StackLayout won’t be visible at all unless FadeEnableAction begins by setting IsVisible to true when Enable is set to True. Similarly, when Enable is set to False, FadeEnableAction must conclude by setting IsVisible back to false.

During the transition between two sets of Slider and Label elements, you probably don’t want both sets responding to user input. For this reason, FadeEnableAction must also manipulate the IsEnabled property of the StackLayout, which enables or disables all its children. Since two animations will be going on simultaneously—as one StackLayout fades out and the other fades in—it makes sense to change the IsEnabled property halfway through the animation.

Here is a FadeEnableAction class in Xamarin.FormsBook.Toolkit that satisfies all these criteria:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class FadeEnableAction : TriggerAction<VisualElement>

 {

 public FadeEnableAction()

 {

 Length = 500;

 }

 public bool Enable { set; get; }

 public int Length { set; get; }

 async protected override void Invoke(VisualElement view)

 {

 if (Enable)

 {

 // Transition to visible and enabled.

 view.IsVisible = true;

 view.Opacity = 0;

 await view.FadeTo(0.5, (uint)Length / 2);

 view.IsEnabled = true;

 await view.FadeTo(1, (uint)Length / 2);

 }

 else

 {

 // Transition to invisible and disabled.

 view.Opacity = 1;

 await view.FadeTo(0.5, (uint)Length / 2);

 view.IsEnabled = false;

 await view.FadeTo(0, (uint)Length / 2);

 view.IsVisible = false;

 }

 }

 }

}

Let’s give ourselves yet another challenge. In Chapter 17, “Mastering the Grid,” in the section “Responding to orientation changes,” you saw how to use the Grid to change your layout between portrait and landscape modes. Basically, all the layout on the page is divided roughly in half, and becomes two children of a Grid. In portrait mode, those two children go in two rows of the Grid, and in landscape mode, they go into two columns.

Can something like this be handled by a behavior? Accommodating a generalized response to orientation would be hard, but a simple approach might be to assume that in portrait mode, the second row should be autosized while the first row uses the rest of the available space. In landscape mode, the screen is simply divided equally in half. This is how the GridRgbSliders program in Chapter 17 worked, and also the MandelbrotXF program in Chapter 20.

The following GridOrientationBehavior can be attached only to a Grid. The Grid must not have any row definitions or column definitions defined—the behavior takes care of that—and it must contain only two children. The behavior monitors the SizeChanged event of the Grid. When that size changes, the Behavior sets the row and column definitions of the Grid and the row and column settings of the two children of the Grid:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 // Assumes Grid with two children without any

 // row or column definitions set.

 public class GridOrientationBehavior : Behavior<Grid>

 {

 protected override void OnAttachedTo(Grid grid)

 {

 base.OnAttachedTo(grid);

 // Add row and column definitions.

 grid.RowDefinitions.Add(new RowDefinition());

 grid.RowDefinitions.Add(new RowDefinition());

 grid.ColumnDefinitions.Add(new ColumnDefinition());

 grid.ColumnDefinitions.Add(new ColumnDefinition());

 grid.SizeChanged += OnGridSizeChanged;

 }

 protected override void OnDetachingFrom(Grid grid)

 {

 base.OnDetachingFrom(grid);

 grid.SizeChanged -= OnGridSizeChanged;

 }

 private void OnGridSizeChanged(object sender, EventArgs args)

 {

 Grid grid = (Grid)sender;

 if (grid.Width <= 0 || grid.Height <= 0)

 return;

 // Portrait mode

 if (grid.Height > grid.Width)

 {

 // Set row definitions.

 grid.RowDefinitions[0].Height = new GridLength(1, GridUnitType.Star);

 grid.RowDefinitions[1].Height = GridLength.Auto;

 // Set column definitions.

 grid.ColumnDefinitions[0].Width = new GridLength(1, GridUnitType.Star);

 grid.ColumnDefinitions[1].Width = new GridLength(0);

 //Position first child.

 Grid.SetRow(grid.Children[0], 0);

 Grid.SetColumn(grid.Children[0], 0);

 // Position second child.

 Grid.SetRow(grid.Children[1], 1);

 Grid.SetColumn(grid.Children[1], 0);

 }

 // Landscape mode

 else

 {

 // Set row definitions.

 grid.RowDefinitions[0].Height = new GridLength(1, GridUnitType.Star);

 grid.RowDefinitions[1].Height = new GridLength(0);

 // Set column definitions.

 grid.ColumnDefinitions[0].Width = new GridLength(1, GridUnitType.Star);

 grid.ColumnDefinitions[1].Width = new GridLength(1, GridUnitType.Star);

 //Position first child.

 Grid.SetRow(grid.Children[0], 0);

 Grid.SetColumn(grid.Children[0], 0);

 // Position second child.

 Grid.SetRow(grid.Children[1], 0);

 Grid.SetColumn(grid.Children[1], 1);

 }

 }

 }

}

Now let’s put it all together in a program call MultiColorSliders. The backbone of the program is the ColorViewModel introduced in Chapter 18, “MVVM,” and can be found in the Xamarin.FormsBook.Toolkit library. An instance of ColorViewModel is set as the BindingContext of the Grid that contains all the content of the page. The three sets of Slider and Label elements all contain bindings to the Red, Green, Blue, Hue, Saturation, and Luminosity properties of that ViewModel. For the hexadecimal option, the DoubleToIntConverter introduced in Chapter 17 converts from the double values of the Red, Green, and Blue properties to integers with a multiplication by 255 for display by each Label.

Here is the XAML file. It’s rather long because it contains three sets of three Slider and Label elements, but several comments help to guide you through the various sections:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="MultiColorSliders.MultiColorSlidersPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:ColorViewModel x:Key="colorViewModel" />

 <toolkit:DoubleToIntConverter x:Key="doubleToInt" />

 <Style x:Key="baseStyle" TargetType="Label">

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 <Style x:Key="unselectedStyle" TargetType="Label"

 BasedOn="{StaticResource baseStyle}">

 <Setter Property="TextColor" Value="Gray" />

 </Style>

 <Style x:Key="selectedStyle" TargetType="Label"

 BasedOn="{StaticResource baseStyle}">

 <Setter Property="TextColor" Value="Accent" />

 <Setter Property="Scale" Value="1.5" />

 </Style>

 <!-- Implicit style for labels underneath sliders -->

 <Style TargetType="Label" BasedOn="{StaticResource baseStyle}" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <Grid>

 <Grid.BindingContext>

 <toolkit:ColorViewModel Alpha="1" />

 </Grid.BindingContext>

 <!-- The GridOrientationBehavior takes care of the row and

 column definitions, and the row and column settings

 of the two Grid children. -->

 <Grid.Behaviors>

 <toolkit:GridOrientationBehavior />

 </Grid.Behaviors>

 <!-- First child of Grid is on top or at left. -->

 <BoxView Color="{Binding Color}" />

 <!-- Second child of Grid is on bottom or at right. -->

 <StackLayout Padding="10">

 <!-- Three-column Grid for radio labels -->

 <Grid>

 <Label Text="RGB Hex" Grid.Column="0"

 Style="{StaticResource unselectedStyle}">

 <Label.Behaviors>

 <toolkit:RadioBehavior x:Name="hexRadio"

 IsChecked="true" />

 </Label.Behaviors>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference hexRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Style" Value="{StaticResource selectedStyle}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="RGB Float" Grid.Column="1"

 Style="{StaticResource unselectedStyle}">

 <Label.Behaviors>

 <toolkit:RadioBehavior x:Name="floatRadio" />

 </Label.Behaviors>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference floatRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Style" Value="{StaticResource selectedStyle}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 <Label Text="HSL" Grid.Column="2"

 Style="{StaticResource unselectedStyle}">

 <Label.Behaviors>

 <toolkit:RadioBehavior x:Name="hslRadio" />

 </Label.Behaviors>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding Source={x:Reference hslRadio},

 Path=IsChecked}"

 Value="True">

 <Setter Property="Style" Value="{StaticResource selectedStyle}" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

 </Grid>

 <!-- Single-cell Grid for three sets of sliders and labels -->

 <Grid>

 <!-- StackLayout for RGB Hex sliders and labels -->

 <StackLayout>

 <StackLayout.Triggers>

 <DataTrigger TargetType="StackLayout"

 Binding="{Binding Source={x:Reference hexRadio},

 Path=IsChecked}"

 Value="True">

 <DataTrigger.EnterActions>

 <toolkit:FadeEnableAction Enable="True" />

 </DataTrigger.EnterActions>

 <DataTrigger.ExitActions>

 <toolkit:FadeEnableAction Enable="False" />

 </DataTrigger.ExitActions>

 </DataTrigger>

 </StackLayout.Triggers>

 <Slider Value="{Binding Red, Mode=TwoWay}" />

 <Label Text="{Binding Red, StringFormat='Red = {0:X2}',

 Converter={StaticResource doubleToInt},

 ConverterParameter=255}" />

 <Slider Value="{Binding Green, Mode=TwoWay}" />

 <Label Text="{Binding Green, StringFormat='Green = {0:X2}',

 Converter={StaticResource doubleToInt},

 ConverterParameter=255}" />

 <Slider Value="{Binding Blue, Mode=TwoWay}" />

 <Label Text="{Binding Blue, StringFormat='Blue = {0:X2}',

 Converter={StaticResource doubleToInt},

 ConverterParameter=255}" />

 </StackLayout>

 <!-- StackLayout for RGB float sliders and labels -->

 <StackLayout IsVisible="False">

 <StackLayout.Triggers>

 <DataTrigger TargetType="StackLayout"

 Binding="{Binding Source={x:Reference floatRadio},

 Path=IsChecked}"

 Value="True">

 <DataTrigger.EnterActions>

 <toolkit:FadeEnableAction Enable="True" />

 </DataTrigger.EnterActions>

 <DataTrigger.ExitActions>

 <toolkit:FadeEnableAction Enable="False" />

 </DataTrigger.ExitActions>

 </DataTrigger>

 </StackLayout.Triggers>

 <Slider Value="{Binding Red, Mode=TwoWay}" />

 <Label Text="{Binding Red, StringFormat='Red = {0:F2}'}" />

 <Slider Value="{Binding Green, Mode=TwoWay}" />

 <Label Text="{Binding Green, StringFormat='Green = {0:F2}'}" />

 <Slider Value="{Binding Blue, Mode=TwoWay}" />

 <Label Text="{Binding Blue, StringFormat='Blue = {0:F2}'}" />

 </StackLayout>

 <!-- StackLayout for HSL sliders and labels -->

 <StackLayout IsVisible="False">

 <StackLayout.Triggers>

 <DataTrigger TargetType="StackLayout"

 Binding="{Binding Source={x:Reference hslRadio},

 Path=IsChecked}"

 Value="True">

 <DataTrigger.EnterActions>

 <toolkit:FadeEnableAction Enable="True" />

 </DataTrigger.EnterActions>

 <DataTrigger.ExitActions>

 <toolkit:FadeEnableAction Enable="False" />

 </DataTrigger.ExitActions>

 </DataTrigger>

 </StackLayout.Triggers>

 <!-- Trio of Slider and Label elements -->

 <Slider Value="{Binding Hue, Mode=TwoWay}" />

 <Label Text="{Binding Hue, StringFormat='Hue = {0:F2}'}" />

 <Slider Value="{Binding Saturation, Mode=TwoWay}" />

 <Label Text="{Binding Saturation, StringFormat='Saturation = {0:F2}'}" />

 <Slider Value="{Binding Luminosity, Mode=TwoWay}" />

 <Label Text="{Binding Luminosity, StringFormat='Luminosity = {0:F2}'}" />

 </StackLayout>

 </Grid>

 </StackLayout>

 </Grid>

</ContentPage>

You might recall that the ColorViewModel class introduced in Chapter 18 rounded the color components, both coming into and going out of the ViewModel. MultiColorSliders happens to be the program that revealed a problem with the unrounded values. Here’s the problem:

For Android, Xamarin.Forms implements the Slider using a SeekBar, and the Android SeekBar only has integer Progress values ranging from 0 to the integer Max property. To convert to the floating-point Value property of the Slider, Xamarin.Forms sets the Max property of the SeekBar to 1000 and then performs a calculation based on the Minimum and Maximum properties of the Slider. This means that when Minimum and Maximum have their default values of 0 and 1, respectively, the Value property only increases in increments of 0.001, and is always representable with three decimal places.

However, the ColorViewModel uses the Color structure to convert between RGB and HSL representations, and in this particular program all the properties representing RGB and HSL values are bound to Slider elements. Even if the values of the Red, Green, and Blue properties set by the Slider elements are rounded to the nearest 0.001, the resultant Hue, Saturation, and Luminosity values will have more than three decimal places. If these values are not rounded by the ViewModel, that’s an issue. When the Value properties of the Slider elements are set from these values, the Slider effectively rounds them to three decimal places and then triggers a PropertyChanged event that the ColorViewModel responds to by creating a new Color, which results in new Red, Green, and Blue properties, and an infinite loop ensues.

The solution—as you saw in Chapter 18—was to add rounding to the ColorViewModel. That avoids the infinite loop.

Here’s the program running in portrait mode. Each platform shows a different option selected, but you’ll have to run the program yourself to see the fading animation:

[image: Image]

Turn this book (or your computer screen or perhaps your head) sideways, and you’ll see how the program responds to landscape mode:

[image: Image]

Perhaps the best part of the MultiColorSliders program is the code-behind file, which contains merely a call to InitializeComponent:

Click here to view code image

namespace MultiColorSliders

{

 public partial class MultiColorSlidersPage : ContentPage

 {

 public MultiColorSlidersPage()

 {

 InitializeComponent();

 }

 }

}

There is, of course, a considerable amount of code support in MultiColorSliders, consisting of two Behavior<T> derivatives, an Action<T> derivative, an IValueConverter implementation, and an INotifyPropertyChanged implementation that functions as a ViewModel.

However, all this code is isolated in reusable components, which makes this program a model of MVVM design philosophy.

Chapter 24. Page navigation

Different types of computing environments tend to develop different metaphors for presenting information to the user. Sometimes a metaphor developed within one environment is so good that it influences other environments.

Such is the case with the page and navigation metaphor that evolved on the World Wide Web. Prior to that, desktop computer applications simply were not organized around the concept of navigable pages. But the web demonstrated the power and convenience of the page metaphor, and now mobile and desktop operating systems generally support a page-based architecture, and many applications have taken advantage of that.

A page architecture is particularly popular in mobile applications, and for that reason such an architecture is supported by Xamarin.Forms. A Xamarin.Forms application can contain multiple classes that derive from ContentPage, and the user can navigate between these pages. (In the next chapter, you’ll see several alternatives to ContentPage. Those other page types can also participate in navigation.)

Generally, a page will include a Button (or perhaps a Label or an Image with a TapGestureRecognizer) that the user taps to navigate to another page. Sometimes, that second page will allow further navigation to other pages.

But there also must be a way for the user to return to the previous page, and here’s where platform differences begin manifesting themselves: Android and Windows Phone devices incorporate a standard Back button (symbolized as a left-pointing arrow or triangle) at the bottom of the screen; iOS devices do not, and neither does Windows running on the desktop or a tablet.

Also, as you’ll see, standard software Back buttons are provided at the top of some (but not all) navigable pages as part of the standard user interface by iOS and Android, and also by the Windows Runtime when running on desktop computers or tablets.

From the programmer’s perspective, page navigation is implemented with the familiar concept of a stack. When one page navigates to another, the new page is pushed on the stack and becomes the active page. When the second page returns back to the first page, a page is popped from the stack, and the new topmost page then becomes active. The application has access to the navigation stack that Xamarin.Forms maintains for the application and supports methods to manipulate the stack by inserting pages or removing them.

An application that is structured around multiple pages always has one page that is special because it’s the starting point of the application. This is often called the main page, or the home page, or the start page.

All the other pages in the application are intrinsically different from that start page, however, because they fall into two different categories: modal pages and modeless pages.

Modal pages and modeless pages

In user interface design, “modal” refers to something that requires user interaction before the application can continue. Computer applications on the desktop sometimes display modal windows or modal dialogs. When one of these modal objects is displayed, the user can’t simply use the mouse to switch to the application’s main window. The modal object demands more attention from the user before it goes away.

A window or dialog that is not modal is often called modeless when it’s necessary to distinguish between the two types.

The Xamarin.Forms page-navigation system likewise implements modal and modeless pages by defining two different methods that a page can call to navigate to another page:

Click here to view code image

Task PushAsync(Page page)

Task PushModalAsync(Page page)

The page to navigate to is passed as the argument. As the name of the second method implies, it navigates to a modal page. The simple PushAsync method navigates to a modeless page, which in real-life programming is the more common page type.

Two other methods are defined to go back to the previous page:

Task<Page> PopAsync()

Task<Page> PopModalAsync()

In many cases an application does not need to call PopAsync directly if it relies on the back navigation provided by the phone or operating system.

The Task return value and the Async suffix on these Push and Pop method names indicate that they are asynchronous, but this does not mean that a navigated page runs in a different thread of execution! What the completion of the task indicates is discussed later in this chapter.

These four methods—as well as other navigation methods and properties—are defined in the INavigation interface. The object that implements this interface is internal to Xamarin.Forms, but VisualElement defines a read-only property named Navigation of type INavigation, and this gives you access to the navigation methods and properties.

This means that you can use these navigation methods from an instance of any class that derives from VisualElement. Generally, however, you’ll use the Navigation property of the page object, so the code to navigate to a new page often looks like this:

Click here to view code image

await Navigation.PushAsync(new MyNewPage());

or this:

Click here to view code image

await Navigation.PushModalAsync(new MyNewModalPage());

The difference between modal and modeless pages mostly involves the user interface that the operating system provides on the page to return back to the previous page. This difference varies by platform. A greater difference in the user interface between modeless and modal pages exists on iOS and the Windows desktop or tablets; somewhat less difference is found on Android and the Windows phone platforms.

Generally, you’ll use modal pages when your application needs some information from the user and you don’t want the user to return to the previous page until that information is provided. To work across all platforms, a modal page must provide its own user-interface for navigating back to the previous page.

Let’s begin by exploring the difference between modeless and modal pages in more detail. The ModelessAndModal program contains three pages with the class names MainPage, ModalPage, and ModelessPage. The pages themselves are rather simple, so to keep the file bulk to a minimum, these are code-only pages. In a real application, pages can be implemented with XAML or—at the other extreme—generated dynamically by code. (You’ll see examples of both options later in this chapter.)

MainPage creates two Button elements, one that navigates to a modeless page and the other that navigates to a modal page. Notice the Title property set at the top of the constructor. This Title property has no effect in a single-page application but plays an important role in multipage applications:

Click here to view code image

public class MainPage : ContentPage

{

 public MainPage()

 {

 Title = "Main Page";

 Button gotoModelessButton = new Button

 {

 Text = "Go to Modeless Page",

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 gotoModelessButton.Clicked += async (sender, args) =>

 {

 await Navigation.PushAsync(new ModelessPage());

 };

 Button gotoModalButton = new Button

 {

 Text = "Go to Modal Page",

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 gotoModalButton.Clicked += async (sender, args) =>

 {

 await Navigation.PushModalAsync(new ModalPage());

 };

 Content = new StackLayout

 {

 Children =

 {

 gotoModelessButton,

 gotoModalButton

 }

 };

 }

}

The Clicked handler for the first Button calls PushAsync with a new instance of ModelessPage, and the second calls PushModalAsync with a new instance of ModalPage. The Clicked handlers are flagged with the async keyword and call the Push methods with await.

A program that makes calls to PushAsync or PushModalAsync must have slightly different startup code in the constructor of the App class. Rather than setting the MainPage property of App to an instance of the application’s sole page, an instance of the application’s startup page is generally passed to the NavigationPage constructor, and this is set to the MainPage property.

Here’s how the constructor of your App class usually looks when the application incorporates page navigation:

Click here to view code image

public class App : Application

{

 public App()

 {

 MainPage = new NavigationPage(new MainPage());

 }

 ...

}

Most of the App classes in all the programs in this chapter contain similar code. As an alternative you can instantiate NavigationPage by using its parameterless constructor and then call the PushAsync method of the NavigationPage to go to the home page.

The use of NavigationPage results in a visible difference in the page. The Title property is displayed at the top of MainPage, and it is accompanied by the application icon on the Android screen:

[image: Image]

Another big difference is that you no longer need to set Padding on the iOS page to avoid overwriting the status bar at the top of the screen.

The title is also displayed at the top of the Windows 10 program running in tablet mode:

[image: Image]

A rather larger title is displayed on the Windows 8.1 and Windows Phone 8.1 platforms:

[image: Image]

Clicking the Go to Modeless Page button causes the following code to execute:

Click here to view code image

await Navigation.PushAsync(new ModelessPage());

This code instantiates a new ModelessPage and navigates to that page.

The ModelessPage class defines a Title property with the text “Modeless Page” and a Button element labeled Back to Main with a Clicked handler that calls PopAsync:

Click here to view code image

public class ModelessPage : ContentPage

{

 public ModelessPage()

 {

 Title = "Modeless Page";

 Button goBackButton = new Button

 {

 Text = "Back to Main",

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 goBackButton.Clicked += async (sender, args) =>

 {

 await Navigation.PopAsync();

 };

 Content = goBackButton;

 }

}

You don’t actually need the Back to Main button on the iOS and Android pages because a left-pointing arrow at the top of the page performs that same function. The Windows Phone doesn’t need that Button either because it has a Back button at the bottom of the screen, as does the Android device:

[image: Image]

That top area on the iOS and Android pages is called the navigation bar. In that navigation bar, both the iOS and Android pages show the Title property of the current page, and the iOS page also displays the Title property of the previous page in another color.

A program running in tablet mode under Windows 10 contains a Back button in the lower-left corner, directly to the right of the Windows logo:

[image: Image]

In contrast, the Windows 8.1 program displays a button in the form of a circled arrow to navigate back to the previous page. The Windows Phone 8.1 screen doesn’t need that button because it has a Back button on the bottom of the screen:

[image: Image]

In summary, you don’t need to include your own Back to Main button (or its equivalent) on a modeless page. Either the navigation interface or the device itself provides a Back button.

Let’s go back to MainPage. When you click the Go to Modal Page button on the main page, the Clicked handler executes the following code:

Click here to view code image

await Navigation.PushModalAsync(new ModalPage(), true);

The ModalPage class is nearly identical to the ModelessPage except for the different Title setting and the call to PopModalAsync in the Clicked handler:

Click here to view code image

public class ModalPage : ContentPage

{

 public ModalPage()

 {

 Title = "Modal Page";

 Button goBackButton = new Button

 {

 Text = "Back to Main",

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 goBackButton.Clicked += async (sender, args) =>

 {

 await Navigation.PopModalAsync();

 };

 Content = goBackButton;

 }

}

Despite the Title property setting in the class, none of the three platforms displays the Title or any other page-navigation interface:

[image: Image]

These screens now look like typical single-page applications. Although it’s not quite obvious, you’ll once again need to be careful to avoid overwriting the status bar on the iOS page.

You don’t need the Back to Main button on the Android and Windows Phone pages because you can use the Back button on the bottom of the phone, but you definitely need it on the iOS page: That Back to Main button on the iPhone is the only path back to MainPage.

The UWP application running under Windows 10 in tablet mode doesn’t display a title, but the Back button in the lower-left corner still works to navigate back to MainPage.

[image: Image]

However, the Windows 8.1 page needs the Back to Main button, while the Windows Phone 8.1 page does not because it has a Back button on the bottom of the phone:

[image: Image]

Nothing internal to the page definition distinguishes a modeless page and a modal page. It depends on how the page is invoked—whether through PushAsync or PushModalAsync. However, a particular page must know how it was invoked so that it can call either PopAsync or PopModalAsync to navigate back.

Throughout the time this program is running, there is only one instance of MainPage. It continues to remain in existence when ModelessPage and ModalPage are active. This is always the case in a multipage application. A page that calls PushAsync or PushModalAsync does not cease to exist when the next page is active.

However, in this program, each time you navigate to ModelessPage or ModalPage, a new instance of that page is created. When that page returns back to MainPage, there are no further references to that instance of ModelessPage or ModalPage, and that object becomes eligible for garbage collection. This is not the only way to manage navigable pages, and you’ll see alternatives later in this chapter, but in general it is best to instantiate a page right before navigating to it.

A page always occupies the full screen. Sometimes it’s desirable for a modal page to occupy only part of the screen, and for the previous page to be visible (but disabled) underneath that popup. You can’t do this with Xamarin.Forms pages. If you want something like that, look at the SimpleOverlay program in Chapter 14, “Absolute layout.”

Animated page transitions

All four of the methods you’ve seen are also available with an overload that has an additional argument of type bool:

Click here to view code image

Task PushAsync(Page page, bool animated)

Task PushModalAsync(Page page, bool animated)

Task<Page> PopAsync(bool animated)

Task<Page> PopModalAsync(bool animated)

Setting this argument to true enables a page-transition animation if such an animation is supported by the underlying platform. However, the simpler Push and Pop methods enable this animation by default, so you’ll only need these four overloads if you want to suppress the animation, in which case you set the Boolean argument to false.

Toward the end of this chapter, you’ll see some code that saves and restores the entire page navigation stack when a multipage application is terminated. To restore the navigation stack, these pages must be created and navigated to during program startup. In this case, the animations should be suppressed, and these overloads are handy for that.

You’ll also want to suppress the animation if you provide one of your own page-entrance animations, such as demonstrated in Chapter 22, “Animation.”

In general, however, you’ll want to use the simpler forms of the Push and Pop methods.

Visual and functional variations

NavigationPage defines several properties—and several attached bindable properties—that have the power to change the appearance of the navigation bar and even to eliminate it altogether.

You can set the BarBackgroundColor and BarTextColor properties when you instantiate the NavigationPage in the App class. Try this in the ModalAndModeless program:

Click here to view code image

public class App : Application

{

 public App()

 {

 MainPage = new NavigationPage(new MainPage())

 {

 BarBackgroundColor = Color.Blue,

 BarTextColor = Color.Pink

 };

 }

The various platforms use these colors in different ways. The iOS navigation bar is affected by both colors, but on the Android screen, only the background color appears. All these screenshots show ModelessPage, but the top area of MainPage is colored in the same way:

[image: Image]

The Windows 10 application in tablet mode looks quite similar to the Windows 10 Mobile screen:

[image: Image]

The other two Windows Runtime platforms also make use of the BarTextColor, and the Windows 8.1 page uses BarBackgroundColor as well:

[image: Image]

The NavigationPage class also defines a Tint property, but that property is deprecated and should be considered obsolete.

NavigationPage also defines four attached bindable properties that affect the particular Page class on which they are set. For example, suppose you don’t want the Back button to appear on a modeless page. Here’s how you set the NavigationPage.HasBackButton attached bindable property in code in the ModelessPage constructor:

Click here to view code image

public class ModelessPage : ContentPage

{

 public ModelessPage()

 {

 Title = "Modeless Page";

 NavigationPage.SetHasBackButton(this, false);

 ...

 }

}

In XAML, you would do it like so:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ModelessAndModal.ModelessPage"

 Title="Modeless Page"

 NavigationPage.HasBackButton="False">

 ...

</ContentPage>

And sure enough, when you navigate to ModelessPage, the Back button in the navigation bar is gone:

[image: Image]

However, a functional Back button continues to exist on Windows 10:

[image: Image]

The Back button is also gone from the Windows 8.1 screen:

[image: Image]

A more extreme attached bindable property of NavigationPage eliminates the navigation bar entirely and renders the page visually indistinguishable from a modal page:

Click here to view code image

public class ModelessPage : ContentPage

{

 public ModelessPage()

 {

 Title = "Modeless Page";

 NavigationPage.SetHasNavigationBar(this, false);

 ...

 }

}

Two more attached bindable properties affect the text and the icon in the navigation bar. As you’ve seen, all the platforms display the Title property at the top of the main page and a modeless page. However, on a modeless page, the iOS screen also displays the Title property of the previous page—the page from which you navigated to the modeless page. The NavigationPage.BackButtonTitle attached bindable property can change that text on the iOS page. You need to set it on the page from which you navigate to the modeless page. In the ModelessAndModal program, you can set the property on MainPage like so:

Click here to view code image

public class MainPage : ContentPage

{

 public MainPage()

 {

 Title = "Main Page";

 NavigationPage.SetBackButtonTitle(this, "go back");

 ...

 }

}

This does not affect the title on MainPage itself, but only the text that accompanies the Back button on the navigation bar on ModelessPage, and then only on iOS. You’ll see a screenshot shortly.

The second attached bindable property is NavigationPage.TitleIcon, which replaces the application icon on the Android navigation bar and replaces the title with an icon on the iOS page. The property is of type FileImageSource, which refers to a bitmap file in the platform project. In use, it’s similar to the Icon property of MenuItem and ToolbarItem.

To let you experiment with this, some appropriate icons have been added to the iOS and Android projects in the ModelessAndModal solution. These icons come from the Android Action Bar Icon Pack discussed in Chapter 13, “Bitmaps.” (In Chapter 13, look for the section “Platform-specific bitmaps,” and then “Toolbars and their icons,” and finally “Icons for Android.”)

For iOS, the icons are from the ActionBarIcons/holo_light/08_camera_flash_on directory. These icons display a lightning bolt. The images in the mdpi, xdpi, and xxdpi directories are 32, 64, and 96 pixels square, respectively. Within the Resources folder of the iOS project, the 32-pixel square bitmap has the original name of ic_action_flash_on.png, and the two larger files were renamed with @2 and @3 suffixes, respectively.

For Android, the icons are from the ActionBarIcons/holo_dark/08_camera_flash_on directory; these are white foregrounds on transparent backgrounds. The files in the mdpi, hdpi, xdpi, and xxdpi directories were added to the Android project.

You can display these icons on the modeless page by adding the following code to the ModelessPage constructor:

Click here to view code image

public class ModelessPage : ContentPage

{

 public ModelessPage()

 {

 Title = "Modeless Page";

 if (Device.OS == TargetPlatform.iOS || Device.OS == TargetPlatform.Android)

 NavigationPage.SetTitleIcon(this, "ic_action_flash_on.png");

 ...

 }

}

Here is ModelessPage with both the alternate Back button text of “go back” set on MainPage and the icons set on ModelessPage:

[image: Image]

As you can see, the icon replaces the normal Title text on the iOS page.

Neither the NavigationPage.BackButtonTitle nor the NavigationPage.TitleIcon attached bindable property affect any of the Windows or Windows Phone platforms.

Programmers familiar with Android architecture are sometimes curious how Xamarin.Forms page navigation integrates with the aspect of Android application architecture known as the activity. A Xamarin.Forms application running on an Android device comprises only one activity, and the page navigation is built on top of that. A ContentPage is a Xamarin.Forms object; it is not an Android activity, or a fragment of an activity.

Exploring the mechanics

As you’ve seen, the Push and Pop methods return Task objects. Generally you’ll use await when calling those methods. Here’s the call to PushAsync in the MainPage class of ModelessAndModal:

Click here to view code image

await Navigation.PushAsync(new ModelessPage());

Suppose you have some code following this statement. When does that code get executed? We know it executes when the PushAsync task completes, but when is that? Is it after the user has tapped a Back button on ModelessPage to return back to MainPage?

No, that is not the case. The PushAsync task completes rather quickly. The completion of this task doesn’t indicate that the process of page navigation has completed, but it does indicate when it is safe to obtain the current status of the page-navigation stack.

Following a PushAsync or PushModalAsync call, the following events occur. However, the precise order in which these events occur is platform dependent:

• The page calling PushAsync or PushModalAsync generally gets a call to its OnDisappearing override.

• The page being navigated to gets a call to its OnAppearing override.

• The PushAsync or PushModalAsync task completes.

To repeat: The order in which these events occur is dependent on the platform and also on whether navigation is to a modeless page or a modal page.

Following a PopAsync or PopModalAsync call, the following events occur, again in an order that is platform dependent:

• The page calling PopAsync or PopModalAsync gets a call to its OnDisappearing override.

• The page being returned to generally gets a call to its OnAppearing override.

• The PopAsync or PopModalAsync task returns.

You’ll notice two uses of the word “generally” in those descriptions. This word refers to an exception to these rules when an Android device navigates to a modal page. The page that calls PushModalAsync does not get a call to its OnDisappearing override, and that same page does not get a call to its OnAppearing override when the modal page calls PopModalAsync.

Also, calls to the OnDisappearing and OnAppearing overrides do not necessarily indicate page navigation. On iOS, the OnDisappearing override is called on the active page when the program terminates. On the Windows Phone Silverlight platform (which is no longer supported by Xamarin.Forms), a page received OnDisappearing calls when the user invokes a Picker, DatePicker, or TimePicker on the page. For these reasons, the OnDisappearing and OnAppearing overrides cannot be treated as guaranteed indications of page navigation, although there are times when they must be used for that purpose.

The INavigation interface that defines these Push and Pop calls also defines two properties that provide access to the actual navigation stack:

• NavigationStack, which contains the modeless pages

• ModalStack, which contains the modal pages

The set accessors of these two properties are not public, and the properties themselves are of type IReadOnlyList<Page>, so you cannot directly modify them. (As you’ll see, methods are available to modify the page stack in a more structured manner.) Although these properties are not implemented with Stack<T> classes, they function like a stack anyway. The item in the IReadOnlyList with an index of zero is the oldest page, and the last item is the most recent page.

The existence of these two collections for modeless and modal pages suggests that modeless and modal page navigation cannot be intermixed, and this is true: A modeless page can navigate to a modal page, but a modal page cannot navigate to a modeless page.

Some experimentation reveals that the Navigation property of different page instances retains different collections of the navigation stack. (In particular, after navigation to a modal page, the NavigationStack associated with that modal page is empty.) The most foolproof approach is to work with the instances of these collections maintained by the Navigation property of the NavigationPage instance set to the MainPage property of the App class.

With each call to PushAsync or PopAsync, the contents of the NavigationStack change—either a new page is added to the collection or a page is removed from the collection. Similarly, with each call to PushModalAsync or PopModalAsync, the contents of the ModalStack change.

Experimentation reveals that it is not safe to use the contents of the NavigationStack or ModalStack during calls to the OnAppearing or OnDisappearing overrides while the page navigation is in progress. The only approach that works for all the platforms is to wait until the PushAsync, PushModalAsync, PopAsync, or PopModalAsync task completes. That’s your indication that these stack collections are stable and accurate.

The NavigationPage class also defines a get-only property named CurrentPage. This page instance is the same as the last item in the NavigationStack collections available from NavigationPage. However, when a modal page is active, CurrentPage continues to indicate the last modeless page that was active before navigation to a modal page.

Let’s explore the details and mechanics of page navigation with a program called SinglePageNavigation, so called because the program contains only one page class, named SinglePageNavigationPage. The program navigates between various instances of this one class.

One of the purposes of the SinglePageNavigation program is to prepare you for writing an application that saves the navigation stack when the application is suspended or terminated, and to restore the stack when the application is restarted. Doing this depends on your application’s ability to extract trustworthy information from the NavigationStack and ModalStack properties.

Here’s the XAML file for the SinglePageNavigationPage class:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SinglePageNavigation.SinglePageNavigationPage"

 x:Name="page">

 <StackLayout>

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style x:Key="baseStyle" TargetType="View">

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 <Style TargetType="Button" BasedOn="{StaticResource baseStyle}">

 <Setter Property="HorizontalOptions" Value="Center" />

 </Style>

 <Style TargetType="Label" BasedOn="{StaticResource baseStyle}">

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Label Text="{Binding Source={x:Reference page}, Path=Title}" />

 <Button x:Name="modelessGoToButton"

 Text="Go to Modeless Page"

 Clicked="OnGoToModelessClicked" />

 <Button x:Name="modelessBackButton"

 Text="Back from Modeless Page"

 Clicked="OnGoBackModelessClicked" />

 <Button x:Name="modalGoToButton"

 Text="Go to Modal Page"

 Clicked="OnGoToModalClicked" />

 <Button x:Name="modalBackButton"

 Text="Back from Modal Page"

 Clicked="OnGoBackModalClicked" />

 <Label x:Name="currentPageLabel"

 Text=" " />

 <Label x:Name="modelessStackLabel"

 Text=" " />

 <Label x:Name="modalStackLabel"

 Text=" " />

 </StackLayout>

</ContentPage>

The XAML file instantiates four Button and four Label elements. The first Label has a data binding to display the page’s Title property so that the title is visible regardless of the platform and whether the page is modal or modeless. The four buttons are for navigating to and from modeless or modal pages. The remaining three labels display other information set from code.

Here’s roughly the first half of the code-behind file. Notice the constructor code that sets the Title property to the text “Page #,” where the hash sign indicates a number starting at zero for the first instantiated page. Each time this class is instantiated, that number is increased:

Click here to view code image

public partial class SinglePageNavigationPage : ContentPage

{

 static int count = 0;

 static bool firstPageAppeared = false;

 static readonly string separator = new string('-', 20);

 public SinglePageNavigationPage()

 {

 InitializeComponent();

 // Set Title to zero-based instance of this class.

 Title = "Page " + count++;

 }

 async void OnGoToModelessClicked(object sender, EventArgs args)

 {

 SinglePageNavigationPage newPage = new SinglePageNavigationPage();

 Debug.WriteLine(separator);

 Debug.WriteLine("Calling PushAsync from {0} to {1}", this, newPage);

 await Navigation.PushAsync(newPage);

 Debug.WriteLine("PushAsync completed");

 // Display the page stack information on this page.

 newPage.DisplayInfo();

 }

 async void OnGoToModalClicked(object sender, EventArgs args)

 {

 SinglePageNavigationPage newPage = new SinglePageNavigationPage();

 Debug.WriteLine(separator);

 Debug.WriteLine("Calling PushModalAsync from {0} to {1}", this, newPage);

 await Navigation.PushModalAsync(newPage);

 Debug.WriteLine("PushModalAsync completed");

 // Display the page stack information on this page.

 newPage.DisplayInfo();

 }

 async void OnGoBackModelessClicked(object sender, EventArgs args)

 {

 Debug.WriteLine(separator);

 Debug.WriteLine("Calling PopAsync from {0}", this);

 Page page = await Navigation.PopAsync();

 Debug.WriteLine("PopAsync completed and returned {0}", page);

 // Display the page stack information on the page being returned to.

 NavigationPage navPage = (NavigationPage)App.Current.MainPage;

 ((SinglePageNavigationPage)navPage.CurrentPage).DisplayInfo();

 }

 async void OnGoBackModalClicked(object sender, EventArgs args)

 {

 Debug.WriteLine(separator);

 Debug.WriteLine("Calling PopModalAsync from {0}", this);

 Page page = await Navigation.PopModalAsync();

 Debug.WriteLine("PopModalAsync completed and returned {0}", page);

 // Display the page stack information on the page being returned to.

 NavigationPage navPage = (NavigationPage)App.Current.MainPage;

 ((SinglePageNavigationPage)navPage.CurrentPage).DisplayInfo();

 }

 protected override void OnAppearing()

 {

 base.OnAppearing();

 Debug.WriteLine("{0} OnAppearing", Title);

 if (!firstPageAppeared)

 {

 DisplayInfo();

 firstPageAppeared = true;

 }

 }

 protected override void OnDisappearing()

 }

 base.OnDisappearing();

 Debug.WriteLine("{0} OnDisappearing", Title);

 }

 // Identify each instance by its Title.

 public override string ToString()

 {

 return Title;

 }

 ...

}

Each of the Clicked handlers for the four buttons displays some information using Debug.WriteLine. When you run the program under the debugger in Visual Studio or Xamarin Studio, this text appears in the Output window.

The code-behind file also overrides the OnAppearing and OnDisappearing methods. These are important, for they generally tell you when the page is being navigated to (OnAppearing) or navigated from (OnDisappearing).

But, as mentioned earlier, Android is a little different: An Android page that calls PushModalAsync does not get a call to its OnDisappearing method, and when the modal page returns to that page, the original page does not get a corresponding call to its OnAppearing method. It’s as if the page stays in the background while the modal page is displayed, and that’s very much the case: If you go back to ModelessAndModal and set the BackgroundColor of the modal page to Color.FromRgba(0, 0, 0, 0.5), you can see the previous page behind the modal page. But this is only the case for Android.

All the Clicked handlers in SinglePageNavigationPage make a call to a method named DisplayInfo. This method is shown below and displays information about the NavigationStack and ModalStack—including the pages in the stacks—and the CurrentPage property maintained by the NavigationPage object.

However, these Clicked handlers do not call the DisplayInfo method in the current instance of the page because the Clicked handlers are effecting a transition to another page. The Clicked handlers must call the DisplayInfo method in the page instance to which they are navigating.

The calls to DisplayInfo in the Clicked handlers that call PushAsync and PushModalAsync are easy because each Clicked handler already has the new page instance being navigated to. The calls to DisplayInfo in the Clicked handlers that call PopAsync and PopModalAsync are a little more difficult because they need to obtain the page being returned to. This is not the Page instance returned from the PopAsync and PopModalAsync tasks. That Page instance turns out to be the same page that calls these methods.

Instead, the Clicked handlers that call PopAsync and PopModalAsync obtain the page being returned to from the CurrentPage property of NavigationPage:

Click here to view code image

NavigationPage navPage = (NavigationPage)App.Current.MainPage;

((SinglePageNavigationPage)navPage.CurrentPage).DisplayInfo();

What’s crucial is that the code to obtain this new CurrentPage property and the calls to DisplayInfo all occur after the asynchronous Push or Pop task has completed. That’s when this information becomes valid.

However, the DisplayInfo method must also be called when the program first starts up. As you’ll see, DisplayInfo makes use of the MainPage property of the App class to obtain the NavigationPage instantiated in the App constructor. However, that MainPage property has not yet been set in the App constructor when the SinglePageNavigationPage constructor executes, so the page constructor cannot call DisplayInfo. Instead, the OnAppearing override makes that call, but only for the first page instance:

if (!firstPageAppeared)

{

 DisplayInfo();

 firstPageAppeared = true;

}

Besides displaying the value of CurrentPage and the NavigationStack and ModalStack collections, the DisplayInfo method also enables and disables the four Button elements on the page so that it’s always legal to press an enabled Button.

Here’s DisplayInfo and the two methods it uses to display the stack collections:

Click here to view code image

public partial class SinglePageNavigationPage : ContentPage

{

 ...

 public void DisplayInfo()

 {

 // Get the NavigationPage and display its CurrentPage property.

 NavigationPage navPage = (NavigationPage)App.Current.MainPage;

 currentPageLabel.Text = String.Format("NavigationPage.CurrentPage = {0}",

 navPage.CurrentPage);

 // Get the navigation stacks from the NavigationPage.

 IReadOnlyList<Page> navStack = navPage.Navigation.NavigationStack;

 IReadOnlyList<Page> modStack = navPage.Navigation.ModalStack;

 // Display the counts and contents of these stacks.

 int modelessCount = navStack.Count;

 int modalCount = modStack.Count;

 modelessStackLabel.Text = String.Format("NavigationStack has {0} page{1}{2}",

 modelessCount,

 modelessCount == 1 ? "" : "s",

 ShowStack(navStack));

 modalStackLabel.Text = String.Format("ModalStack has {0} page{1}{2}",

 modalCount,

 modalCount == 1 ? "" : "s",

 ShowStack(modStack));

 // Enable and disable buttons based on the counts.

 bool noModals = modalCount == 0 || (modalCount == 1 && modStack[0] is NavigationPage);

 modelessGoToButton.IsEnabled = noModals;

 modelessBackButton.IsEnabled = modelessCount > 1 && noModals;

 modalBackButton.IsEnabled = !noModals;

 }

 string ShowStack(IReadOnlyList<Page> pageStack)

 {

 if (pageStack.Count == 0)

 return "";

 StringBuilder builder = new StringBuilder();

 foreach (Page page in pageStack)

 {

 builder.Append(builder.Length == 0 ? " (" : ", ");

 builder.Append(StripNamespace(page));

 }

 builder.Append(")");

 return builder.ToString();

 }

 string StripNamespace(Page page)

 {

 string pageString = page.ToString();

 if (pageString.Contains("."))

 pageString = pageString.Substring(pageString.LastIndexOf('.') + 1);

 return pageString;

 }

}

Some of the logic involving the enabling and disabling of the Button elements will become apparent when you see some of the screens that the program displays. You can always comment out that enabling and disabling code to explore what happens when you press an invalid Button.

The general rules are these:

• A modeless page can navigate to another modeless page or a modal page.

• A modal page can navigate only to another modal page.

When you first run the program, you’ll see the following. The XAML includes a display of the Title property at the top, so it’s visible on all the pages:

[image: Image]

The three Label elements on the bottom of the page display the CurrentPage property of the NavigationPage object and the NavigationStack and ModalStack, both obtained from the Navigation property of the NavigationPage.

On all three platforms, the NavigationStack contains one item, which is the home page. The contents of the ModalStack, however, vary by platform. On the Android and Windows Runtime platforms, the modal stack contains one item (the NavigationPage object), but the modal stack is empty on iOS.

This is why the DisplayInfo method sets the noModals Boolean variable to true if either the modal stack has a count of zero or if it contains one item but that item is NavigationPage:

Click here to view code image

bool noModals = modalCount == 0 || (modalCount == 1 && modStack[0] is NavigationPage);

Notice that the CurrentPage property and the item in NavigationStack are not instances of NavigationPage, but instead are instances of SinglePageNavigationPage, which derives from ContentPage. It is SinglePageNavigationPage that defines its ToString method to display the page title.

Now press the Go to Modeless Page button five times and here’s what you’ll see. The screens are consistent aside from the modal stack on the iOS screen:

[image: Image]

As soon as you press the Go to Modeless Page button once, the Back from Modeless Page button is enabled. The logic is this:

Click here to view code image

modelessBackButton.IsEnabled = modelessCount > 1 && noModals;

In plain English, the Back from Modeless Page button should be enabled if there are at least two items in the modeless stack (the original page and the current page) and if the current page is not a modal page.

If you press that Back from ModelessPage button at this point, you’ll see the NavigationStack shrink in size until you get back to Page 0. Throughout, the CurrentPage property continues to indicate the last item in NavigationStack.

If you then press Go to Modeless Page again, you will see more items added to the NavigationStack with ever-increasing page numbers because new SinglePageNavigationPage objects are being instantiated.

Instead, try pressing the Go to Modal Page button:

[image: Image]

Now ModalStack contains that new page, but CurrentPage still refers to the last modeless page. The iOS modal stack is still missing that initial NavigationPage object present in the other platforms.

If you then press Back from Modal Page, the modal stack is properly restored to its initial state.

Multipage applications usually try to save the navigation stack when they are suspended or terminated, and then restore that stack when they start up again. Toward the end of this chapter, you’ll see code that uses NavigationStack and ModalStack to do that job.

Enforcing modality

In general, your applications will probably use modeless pages except for special circumstances when the application needs to obtain crucial information from the user. The application can then display a modal page that the user cannot dismiss until this crucial information has been entered.

One little problem, however, is that an Android or Windows Phone user can always return to the previous page by pressing the standard Back button on the device. To enforce modality—to make sure that the user enters the desired information before leaving the page—the application must disable that button.

This technique is demonstrated in the ModalEnforcement program. The home page consists solely of a Button:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ModalEnforcement.ModalEnforcementHomePage"

 Title="Main Page">

 <Button Text="Go to Modal Page"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Clicked="OnGoToButtonClicked" />

</ContentPage>

The code-behind file handles the Clicked event of the button by navigating to a modal page:

Click here to view code image

public partial class ModalEnforcementHomePage : ContentPage

{

 public ModalEnforcementHomePage()

 {

 InitializeComponent();

 }

 async void OnGoToButtonClicked(object sender, EventArgs args)

 {

 await Navigation.PushModalAsync(new ModalEnforcementModalPage());

 }

}

The XAML file for the ModalEnforcementModalPage contains two Entry elements, a Picker element, and a Button labeled Done. The markup is more extensive than you might anticipate because it contains a MultiTrigger to set the IsEnabled property of the button to True only if something has been typed into the two Entry elements and something has also been entered into the Picker. This MultiTrigger requires three hidden Switch elements, using a technique discussed in Chapter 23, “Triggers and behaviors”:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ModalEnforcement.ModalEnforcementModalPage"

 Title="Modal Page">

 <StackLayout Padding="20, 0">

 <Entry x:Name="entry1"

 Text=""

 Placeholder="Enter Name"

 VerticalOptions="CenterAndExpand" />

 <!-- Invisible Switch to help with MultiTrigger logic -->

 <Switch x:Name="switch1" IsVisible="False">

 <Switch.Triggers>

 <DataTrigger TargetType="Switch"

 Binding="{Binding Source={x:Reference entry1}, Path=Text.Length}"

 Value="0">

 <Setter Property="IsToggled" Value="True" />

 </DataTrigger>

 </Switch.Triggers>

 </Switch>

 <Entry x:Name="entry2"

 Text=""

 Placeholder="Enter Email Address"

 VerticalOptions="CenterAndExpand" />

<!-- Invisible Switch to help with MultiTrigger logic -->

<Switch x:Name="switch2" IsVisible="False">

 <Switch.Triggers>

 <DataTrigger TargetType="Switch"

 Binding="{Binding Source={x:Reference entry2}, Path=Text.Length}"

 Value="0">

 <Setter Property="IsToggled"
Value="True" />

 </DataTrigger>

 </Switch.Triggers>

</Switch>

<Picker x:Name="picker"

 Title="Favorite Programming Language"

 VerticalOptions="CenterAndExpand">

 <Picker.Items>

 <x:String>C#</x:String>

 <x:String>F#</x:String>

 <x:String>Objective C</x:String>

 <x:String>Swift</x:String>

 <x:String>Java</x:String>

 </Picker.Items>

</Picker>

<!-- Invisible Switch to help with MultiTrigger logic -->

<Switch x:Name="switch3" IsVisible="False">

 <Switch.Triggers>

 <DataTrigger TargetType="Switch"

 Binding="{Binding Source={x:Reference picker}, Path=SelectedIndex}"

 Value="-1">

 <Setter Property="IsToggled" Value="True" />

 </DataTrigger>

 </Switch.Triggers>

</Switch>

<Button x:Name="doneButton"

 Text="Done"

 IsEnabled="False"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnDoneButtonClicked">

 <Button.Triggers>

 <MultiTrigger TargetType="Button">

 <MultiTrigger.Conditions>

 <BindingCondition Binding="{Binding Source={x:Reference switch1},

 Path=IsToggled}"

 Value="False" />

 <BindingCondition Binding="{Binding Source={x:Reference switch2},

 Path=IsToggled}"

 Value="False" />

 <BindingCondition Binding="{Binding Source={x:Reference switch3},

 Path=IsToggled}"

 Value="False" />

 </MultiTrigger.Conditions>

 <Setter Property="IsEnabled" Value="True" />

 </MultiTrigger>

 </Button.Triggers>

 </Button>

 </StackLayout>

</ContentPage>

In a real-life program, there would probably also be a check that the email address is valid. The simple logic in the XAML file simply checks for the presence of at least one character.

Here’s the modal page as it first appears, when nothing has yet been entered. Notice that the Done button is disabled:

[image: Image]

Normally the user can still press the standard Back button at the bottom left of the Android and Windows Phone screens to return back to the main page. To inhibit the normal behavior of the Back button, the modal page must override the virtual OnBackButtonPressed method. You can supply your own Back button processing in this override and return true. To entirely disable the Back button, simply return true without doing anything else. To allow the default Back button processing to occur, call the base class implementation. Here’s how the code-behind file of ModalEnforcementModalPage does it:

Click here to view code image

public partial class ModalEnforcementModalPage : ContentPage

{

 public ModalEnforcementModalPage()

 {

 InitializeComponent();

 }

 protected override bool OnBackButtonPressed()

 {

 if (doneButton.IsEnabled)

 {

 return base.OnBackButtonPressed();

 }

 return true;

 }

 async void OnDoneButtonClicked(object sender, EventArgs args)

 {

 await Navigation.PopModalAsync();

 }

}

Only if the Done button in the XAML file is enabled will the OnBackButtonPressed override call the base class implementation of the method and return the value that is returned from that implementation. This causes the modal page to return to the page that invoked it. If the Done button is disabled, then the override returns true indicating that it is finished performing all the handling that it desires for the Back button.

The Clicked handler for the Done button simply calls PopModalAsync, as usual.

The Page class also defines a SendBackButtonPressed that causes the OnBackButtonPressed method to be called. It should be possible to implement the Clicked handler for the Done button by calling this method:

Click here to view code image

void OnDoneButtonClicked(object sender, EventArgs args)

{

 SendBackButtonPressed();

}

Although this works on iOS and Android, it currently does not work on the Windows Runtime platforms.

In real-world programming, it’s more likely that you’ll be using a ViewModel to accumulate the information that the user enters into the modal page. In that case, the ViewModel itself can contain a property that indicates whether all the information entered is valid.

The MvvmEnforcement program uses this technique, and includes a little ViewModel—appropriately named LittleViewModel:

Click here to view code image

namespace MvvmEnforcement

{

 public class LittleViewModel : INotifyPropertyChanged

 {

 string name, email;

 string[] languages = { "C#", "F#", "Objective C", "Swift", "Java" };

 int languageIndex = -1;

 bool isValid;

 public event PropertyChangedEventHandler PropertyChanged;

 public string Name

 {

 set

 {

 if (name != value)

 {

 name = value;

 OnPropertyChanged("Name");

 TestIfValid();

 }

 }

 get { return name; }

 }

 public string Email

 {

 set

 {

 if (email != value)

 {

 email = value;

 OnPropertyChanged("Email");

 TestIfValid();

 }

 }

 get { return email; }

 }

 public IEnumerable<string> Languages

 {

 get { return languages; }

 }

 public int LanguageIndex

 {

 set

 {

 if (languageIndex != value)

 {

 languageIndex = value;

 OnPropertyChanged("LanguageIndex");

 if (languageIndex >= 0 && languageIndex < languages.Length)

 {

 Language = languages[languageIndex];

 OnPropertyChanged("Language");

 }

 TestIfValid();

 }

 }

 get { return languageIndex; }

 }

 public string Language { private set; get; }

 public bool IsValid

 {

 private set

 {

 if (isValid != value)

 {

 isValid = value;

 OnPropertyChanged("IsValid");

 }

 }

 get { return isValid; }

 }

 void TestIfValid()

 {

 IsValid = !String.IsNullOrWhiteSpace(Name) &&

 !String.IsNullOrWhiteSpace(Email) &&

 !String.IsNullOrWhiteSpace(Language);

 }

 void OnPropertyChanged(string propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

}

The Name and Email properties are of type string for the purpose of binding with the Text properties of an Entry element. The LanguageIndex property is intended to be bound to the SelectedIndex property of the Picker. But the set accessor for LanguageIndex uses that value to set the Language property of type string from an array of strings in the Languages collection.

Whenever the Name, Email, or LanguageIndex property changes, the TestIfValid method is called to set the IsValid property. This property can be bound to the IsEnabled property of the Button.

The home page in MvvmEnforcement is the same as the one in ModalEnforcement, but of course the XAML file for the modal page is quite a bit simpler and implements all the data bindings:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MvvmEnforcement.MvvmEnforcementModalPage"

 Title="Modal Page">

 <StackLayout Padding="20, 0">

 <Entry Text="{Binding Name}"

 Placeholder="Enter Name"

 VerticalOptions="CenterAndExpand" />

 <Entry Text="{Binding Email}"

 Placeholder="Enter Email Address"

 VerticalOptions="CenterAndExpand" />

 <Picker x:Name="picker"

 Title="Favorite Programming Language"

 SelectedIndex="{Binding LanguageIndex}"

 VerticalOptions="CenterAndExpand" />

 <Button Text="Done"

 IsEnabled="{Binding IsValid}"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnDoneButtonClicked" />

 </StackLayout>

</ContentPage>

The markup contains four bindings to properties in the ViewModel.

The modal page’s code-behind file is responsible for instantiating LittleViewModel and setting the object to the BindingContext property of the page, which it does in the constructor. The constructor also accesses the Languages collection of the ViewModel to set the Items property of the Picker. (Unfortunately the Items property is not backed by a bindable property and hence is not bindable.)

The remainder of the file is fairly similar to the modal page in ModalEnforcement except that the OnBackButtonPressed override accesses the IsValid property of LittleViewModel to determine whether to call the base class implementation or return true:

Click here to view code image

public partial class MvvmEnforcementModalPage : ContentPage

{

 public MvvmEnforcementModalPage()

 {

 InitializeComponent();

 LittleViewModel viewModel = new LittleViewModel();

 BindingContext = viewModel;

 // Populate Picker Items list.

 foreach (string language in viewModel.Languages)

 {

 picker.Items.Add(language);

 }

 }

 protected override bool OnBackButtonPressed()

 {

 LittleViewModel viewModel = (LittleViewModel)BindingContext;

 return viewModel.IsValid ? base.OnBackButtonPressed() : true;

 }

 async void OnDoneButtonClicked(object sender, EventArgs args)

 {

 await Navigation.PopModalAsync();

 }

}

Navigation variations

As you’ve experimented with the ModalEnforcement and MvvmEnforcement programs, you might have felt disconcerted by the failure of the modal pages to retain any information. We’ve all encountered programs and websites that navigate to a page used to enter information, but when you leave that page and then later return, all the information you entered is gone! Such pages can be very annoying.

Even in simple demonstration samples like ModalEnforcement and MvvmEnforcement, it’s possible to fix that problem very easily by creating only a single instance of the modal page—perhaps when the program starts up—and then using that single instance throughout.

Despite the apparent ease of this solution, it is not a good generalized approach to the problem of retaining page information. This technique should probably be avoided except for the simplest of cases. Keeping a lot of pages active could result in memory issues, and you must be careful to avoid having the same page instance in the navigation stack more than once.

Nevertheless, here’s how you can modify the ModalEnforcementHomePage code-behind file for this technique:

Click here to view code image

public partial class ModalEnforcementHomePage : ContentPage

{

 ModalEnforcementModalPage modalPage = new ModalEnforcementModalPage();

 public ModalEnforcementHomePage()

 {

 InitializeComponent();

 }

 async void OnGoToButtonClicked(object sender, EventArgs args)

 {

 await Navigation.PushModalAsync(modalPage);

 }

}

The ModalEnforcementHomePage saves an instance of ModalEnforcementModalPage as a field and then always passes that single instance to PushModalAsync.

In less-simple applications, this technique can easily go wrong: Sometimes a particular type of page in an application can be navigated to from several different pages, and that might result in two separate, inconsistent instances of ModalPage.

This technique collapses entirely if you need to save the state of the program when it terminates and restore it when it executes again. You can’t save and restore the page instances themselves. It’s generally the data associated with the page that must be saved.

In real-life programming, ViewModels often form the backbone of page types in a multipage application, and the best way that an application can retain page data is through the ViewModel rather than the page.

A much better way to maintain page state when a modal page is invoked several times in succession can be demonstrated using MvvmEnforcement. First, add a property to the App page for LittleViewModel and instantiate that class in the App constructor:

Click here to view code image

namespace MvvmEnforcement

{

 public class App : Application

 {

 public App()

 {

 ModalPageViewModel = new LittleViewModel();

 MainPage = new NavigationPage(new MvvmEnforcementHomePage());

 }

 public LittleViewModel ModalPageViewModel { private set; get; }

 ...

 }

}

Because the LittleViewModel is instantiated just once, it maintains the information for the duration of the application. Each new instance of MvvmEnforcementModalPage can then simply access this property and set the ViewModel object to its BindingContext:

Click here to view code image

public partial class MvvmEnforcementModalPage : ContentPage

{

 public MvvmEnforcementModalPage()

 {

 InitializeComponent();

 LittleViewModel viewModel = ((App)Application.Current).ModalPageViewModel;

 BindingContext = viewModel;

 // Populate Picker Items list.

 foreach (string language in viewModel.Languages)

 {

 picker.Items.Add(language);

 }

 }

 ...

}

Of course, once the program terminates, the information is lost, but the App class can also save that information in the Properties property of Application—a technique first demonstrated in the PersistentKeypad program toward the end of Chapter 6, “Button clicks”—and then retrieve it when the application starts up again.

The problems of retaining data—and passing data between pages—will occupy much of the focus of the later sections of this chapter.

Making a navigation menu

If your application consists of a variety of different but architecturally identical pages, all of which are navigable from the home page, you might be interested in constructing what is sometimes called a navigation menu. This is a menu in which each entry is a particular page type.

The ViewGalleryType program is intended to demonstrate all the View classes in Xamarin.Forms. It contains a home page and one page for every instantiable class in Xamarin.Forms that derives from View—but not Layout—with the exception of Map and OpenGLView. That’s 18 classes and 18 ContentPage derivatives, plus the home page. (The reason for the Type suffix on the project name will become apparent shortly.)

These 18 page classes are all stored in a folder named ViewPages in the Portable Class Library. Here is one example: SliderPage.xaml. It’s just a Slider with a Label bound to the Value property:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ViewGalleryType.SliderPage"

 Title="Slider">

 <StackLayout Padding="10, 0">

 <Slider x:Name="slider"

 VerticalOptions="CenterAndExpand" />

 <Label Text="{Binding Source={x:Reference slider},

 Path=Value,

 StringFormat='The Slider value is {0}'}"

 VerticalOptions="CenterAndExpand"

 HorizontalAlignment="Center" />

 </StackLayout>

</ContentPage>

The other 17 are similar. Some of the pages have a little code in the code-behind file, but most of them simply have a call to InitializeComponent.

In addition, the ViewGalleryType project has a folder named Images that contains 18 bitmaps with the name of each View derivative stretched out to nearly fill the bitmap’s surface. These bitmaps were generated by a Windows Presentation Foundation program and are flagged as EmbeddedResource in the project. The project also contains an ImageResourceExtension class described in Chapter 13, in the section “Embedded resources,” to reference the bitmaps from the XAML file.

The home page is named ViewGalleryTypePage. It assembles 18 ImageCell elements in six different sections of a Table:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:ViewGalleryType;assembly=ViewGalleryType"

 x:Class="ViewGalleryType.ViewGalleryTypePage"

 Title="View Gallery">

 <TableView Intent="Menu">

 <TableRoot>

 <TableSection Title="Presentation Views">

 <ImageCell ImageSource="{local:ImageResource ViewGalleryType.Images.Label.png}"

 Text="Display text"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:LabelPage}" />

 <ImageCell ImageSource="{local:ImageResource ViewGalleryType.Images.Image.png}"

 Text="Display a bitmap"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:ImagePage}" />

 <ImageCell ImageSource=

 "{local:ImageResource ViewGalleryType.Images.BoxView.png}"

 Text="Display a block"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:BoxViewPage}" />

 <ImageCell ImageSource=

 "{local:ImageResource ViewGalleryType.Images.WebView.png}"

 Text="Display a web site"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:WebViewPage}" />

 </TableSection>

 <TableSection Title="Command Views">

 <ImageCell ImageSource="{local:ImageResource ViewGalleryType.Images.Button.png}"

 Text="Initiate a command"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:ButtonPage}" />

 <ImageCell ImageSource=

 "{local:ImageResource ViewGalleryType.Images.SearchBar.png}"

 Text="Initiate a text search"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:SearchBarPage}" />

 </TableSection>

 <TableSection Title="Data-Type Views">

 <ImageCell ImageSource="{local:ImageResource ViewGalleryType.Images.Slider.png}"

 Text="Range of doubles"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:SliderPage}" />

 <ImageCell ImageSource=

 "{local:ImageResource ViewGalleryType.Images.Stepper.png}"

 Text="Discrete doubles"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:StepperPage}" />

 <ImageCell ImageSource="{local:ImageResource ViewGalleryType.Images.Switch.png}"

 Text="Select true or false"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:SwitchPage}" />

 <ImageCell ImageSource=

 "{local:ImageResource ViewGalleryType.Images.DatePicker.png}"

 Text="Select a date"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:DatePickerPage}" />

 <ImageCell ImageSource=

 "{local:ImageResource ViewGalleryType.Images.TimePicker.png}"

 Text="Select a time"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:TimePickerPage}" />

 </TableSection>

 <TableSection Title="Text-Editing Views">

 <ImageCell ImageSource="{local:ImageResource ViewGalleryType.Images.Entry.png}"

 Text="Edit a single line"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:EntryPage}" />

 <ImageCell ImageSource="{local:ImageResource ViewGalleryType.Images.Editor.png}"

 Text="Edit a paragraph"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:EditorPage}" />

 </TableSection>

 <TableSection Title="Activity Indicator Views">

 <ImageCell ImageSource=

 "{local:ImageResource ViewGalleryType.Images.ActivityIndicator.png}"

 Text="Show activity"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:ActivityIndicatorPage}" />

 <ImageCell ImageSource=

 "{local:ImageResource ViewGalleryType.Images.ProgressBar.png}"

 Text="Show progress"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:ProgressBarPage}" />

 </TableSection>

 <TableSection Title="Collection Views">

 <ImageCell ImageSource="{local:ImageResource ViewGalleryType.Images.Picker.png}"

 Text="Pick item from list"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:PickerPage}" />

 <ImageCell ImageSource=

 "{local:ImageResource ViewGalleryType.Images.ListView.png}"

 Text="Show a collection"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:ListViewPage}" />

 <ImageCell ImageSource=

 "{local:ImageResource ViewGalleryType.Images.TableView.png}"

 Text="Show form or menu"

 Command="{Binding NavigateCommand}"

 CommandParameter="{x:Type local:TableViewPage}" />

 </TableSection>

 </TableRoot>

 </TableView>

</ContentPage>

Each ImageCell has a reference to a bitmap indicating the view’s name and a Text property that briefly describes the view. The Command property of ImageCell is bound to an ICommand object that is implemented in the code-behind file, and the CommandParameter is an x:Type markup extension that references one of the page classes. As you’ll recall, the x:Type markup extension is the XAML equivalent of the C# typeof operator and results in each CommandParameter being of type Type.

Here’s what the home page looks like on the three platforms:

[image: Image]

The code-behind file defines the NavigateCommand property that each ImageCell references in a binding. The Execute method is implemented as a lambda function: It passes the Type argument (set from the CommandParameter in the XAML file) to Activator.CreateInstance to instantiate the page and then navigates to that page:

Click here to view code image

public partial class ViewGalleryTypePage : ContentPage

{

 public ViewGalleryTypePage()

 {

 InitializeComponent();

 NavigateCommand = new Command<Type>(async (Type pageType) =>

 {

 Page page = (Page)Activator.CreateInstance(pageType);

 await Navigation.PushAsync(page);

 });

 BindingContext = this;

 }

 public ICommand NavigateCommand { private set; get; }

}

The constructor concludes by setting its BindingContext property to itself, so each ImageCell in the XAML file can reference the NavigateCommand property with a simple Binding.

Taping the Slider entry (for example) navigates to SliderPage:

[image: Image]

Returning to the home page requires using the navigation bar on the iOS and Android screens or the Back button on the Android and Windows 10 Mobile screens.

A new instance of each page is created each time you navigate to that page, so of course these different instances of SliderPage won’t retain the value of the Slider you might have previously set.

Is it possible to create just a single instance of each of these 18 pages? Yes, and that is demonstrated in ViewGalleryInst. The Inst suffix stands for “instance” to distinguish the program from the use of a page type in ViewGalleryType.

The 18 page classes for each view are the same, as are the bitmaps. The home page, however, now expresses the CommandParameter property of each ImageCell as a property element to instantiate each page class. Here is an excerpt:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:ViewGalleryInst;assembly=ViewGalleryInst"

 x:Class="ViewGalleryInst.ViewGalleryInstPage"

 Title="View Gallery">

 <TableView Intent="Menu">

 <TableRoot>

 <TableSection Title="Presentation Views">

 <ImageCell ImageSource="{local:ImageResource ViewGalleryInst.Images.Label.png}"

 Text="Display text"

 Command="{Binding NavigateCommand}">

 <ImageCell.CommandParameter>

 <local:LabelPage />

 </ImageCell.CommandParameter>

 </ImageCell>

 ...

 <ImageCell ImageSource=

 "{local:ImageResource ViewGalleryInst.Images.TableView.png}"

 Text="Show form or menu"

 Command="{Binding NavigateCommand}">

 <ImageCell.CommandParameter>

 <local:TableViewPage />

 </ImageCell.CommandParameter>

 </ImageCell>

 </TableSection>

 </TableRoot>

 </TableView>

</ContentPage>

Now when you manipulate the Slider on the SliderPage, and then return back to home and navigate to the SliderPage again, the Slider will be the same because it’s the same page instance.

Keep in mind that with this configuration, a total of 19 page classes are instantiated when your program starts up, and that means 19 XAML files are being parsed, and that might affect the startup performance, and occupy a lot of memory as well.

Moreover, any errors in the XAML files that are found during this run-time parsing will also manifest themselves at program startup. It might be difficult to discover exactly which XAML file has the problem! When building a program that instantiates many page classes in one shot, you’ll want to add new classes incrementally to make sure everything works well before proceeding.

Better yet, avoid this technique entirely. Instantiate each page as you need it, and retain data associated with the page by using a ViewModel.

Manipulating the navigation stack

Sometimes it’s necessary to alter the normal stack-oriented flow of navigation. For example, suppose a page needs some information from the user, but first it navigates to a page that provides some instructions or a disclaimer, and then from there navigates to the page that actually obtains the information. When the user is finished and goes back, you’ll want to skip that page with the instructions or disclaimer. That page should be removed from the navigation stack.

Here’s a similar example: Suppose the user is interacting with a page that obtains some information and then wants to go back to the previous page. However, the program detects that something is wrong with this information that requires an extended discussion on a separate page. The program could insert a new page into the navigation stack to provide that discussion.

Or a certain sequence of pages might end with a Button labeled Go to Home, and all the pages in between can simply be skipped when navigating back to the home page.

The INavigation interface defines methods for all three of these cases. They are named RemovePage, InsertPageBefore, and PopToRootAsync.

The StackManipulation program demonstrates these three methods, but in a very abstract manner. The program consists of five code-only pages, named PageA, PageB, PageBAlternative, PageC, and PageD. Each page sets its Title property to identify itself.

PageA has a Button to navigate to PageB:

Click here to view code image

public class PageA : ContentPage

{

 public PageA()

 {

 Button button = new Button

 {

 Text = "Go to Page B",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Button)),

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 button.Clicked += async (sender, args) =>

 {

 await Navigation.PushAsync(new PageB());

 };

 Title = "Page A";

 Content = new button;

 }

}

PageB is similar, except that it navigates to PageC. PageBAlternative is the same as PageB except that it identifies itself as “Page B Alt”. PageC has a Button to navigate to PageD, and PageD has two buttons:

Click here to view code image

public class PageD : ContentPage

{

 public PageD()

 {

 // Create Button to go directly to PageA.

 Button homeButton = new Button

 {

 Text = "Go Directly to Home",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Button)),

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 homeButton.Clicked += async (sender, args) =>

 {

 await Navigation.PopToRootAsync();

 };

 // Create Button to swap pages.

 Button swapButton = new Button

 {

 Text = "Swap B and Alt B",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Button)),

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 swapButton.Clicked += (sender, args) =>

 {

 IReadOnlyList<Page> navStack = Navigation.NavigationStack;

 Page pageC = navStack[navStack.Count - 2];

 Page existingPageB = navStack[navStack.Count - 3];

 bool isOriginal = existingPageB is PageB;

 Page newPageB = isOriginal ? (Page)new PageBAlternative() : new PageB();

 // Swap the pages.

 Navigation.RemovePage(existingPageB);

 Navigation.InsertPageBefore(newPageB, pageC);

 // Finished: Disable the Button.

 swapButton.IsEnabled = false;

 };

 Title = "Page D";

 Content = new StackLayout

 {

 Children =

 {

 homeButton,

 swapButton

 }

 };

 }

}

The button labeled Go Directly to Home has a Clicked handler that calls PopToRootAsync. This causes the program to jump back to PageA and effectively clears the navigation stack of all intermediary pages.

The button labeled Swap B and Alt B is a little more complex. The Clicked handler for this button replaces PageB with PageBAlternative in the navigation stack (or vice versa), so when you go back through the pages, you’ll encounter a different page B. Here’s how the Clicked handler does it:

At the time the Button is clicked, the NavigationStack has four items with indices 0, 1, 2, and 3. These four indices correspond to objects in the stack of type PageA, PageB (or PageBAlternative), PageC, and PageD. The handler accesses the NavigationStack to obtain these actual instances:

Click here to view code image

IReadOnlyList<Page> navStack = Navigation.NavigationStack;

Page pageC = navStack[navStack.Count - 2];

Page existingPageB = navStack[navStack.Count - 3];

That existingPageB object might be of type PageB or PageBAlternative, so a newPageB object is created of the other type:

Click here to view code image

bool isOriginal = existingPageB is PageB;

Page newPageB = isOriginal ? (Page)new PageBAlternative() : new PageB();

The next two statements remove the existingPageB object from the navigation stack and then insert the newPageB object in the slot before pageC, effectively swapping the pages:

Click here to view code image

// Swap the pages.

Navigation.RemovePage(existingPageB);

Navigation.InsertPageBefore(newPageB, pageC);

Obviously, the first time you click this button, existingPageB will be a PageB object and newPageB will be a PageBAlternative object, but you can then go back to PageC or PageBAlternative, and navigate forward again to PageD. Clicking the button again will replace the PageBAlternative object with a PageB object.

Dynamic page generation

The BuildAPage program is a multipage application, but the BuildAPage project contains only a single page class named BuildAPageHomePage. As the name suggests, the program constructs a new page from code and then navigates to it.

The XAML file lets you specify what you want on this constructed page:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="BuildAPage.BuildAPageHomePage"

 Title="Build-a-Page"

 Padding="10, 5">

 <StackLayout>

 <Label Text="Enter page title:" />

 <Entry x:Name="titleEntry"

 Placeholder="page title" />

 <Grid VerticalOptions="FillAndExpand">

 <ContentView Grid.Row="0">

 <StackLayout>

 <Label Text="Tap to add to generated page:" />

 <ListView x:Name="viewList"

 ItemSelected="OnViewListItemSelected">

 <ListView.ItemsSource>

 <x:Array Type="{x:Type x:String}">

 <x:String>BoxView</x:String>

 <x:String>Button</x:String>

 <x:String>DatePicker</x:String>

 <x:String>Entry</x:String>

 <x:String>Slider</x:String>

 <x:String>Stepper</x:String>

 <x:String>Switch</x:String>

 <x:String>TimePicker</x:String>

 </x:Array>

 </ListView.ItemsSource>

 </ListView>

 </StackLayout>

 </ContentView>

 <ContentView Grid.Row="1">

 <StackLayout>

 <Label Text="Tap to remove from generated page:" />

 <ListView x:Name="pageList"

 ItemSelected="OnPageListItemSelected" />

 </StackLayout>

 </ContentView>

 </Grid>

 <Button x:Name="generateButton"

 Text="Generate the Page!"

 IsEnabled="False"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Clicked="OnGenerateButtonClicked" />

 </StackLayout>

</ContentPage>

Use the Entry at the top of the page to specify a Title property for the constructed page. A ListView then lists eight common views that you might want on your page. As you select these views, they are transferred to the second ListView. If you want to delete one of them from the page, just tap it in this second ListView.

Here’s how it might look after you’ve selected a few elements for the page. Notice that you can select multiple elements of the same type and each is given a unique number:

[image: Image]

When you’re all finished “designing” your page, simply tap the Generate the Page! button on the bottom, and the program builds that page and navigates to it:

[image: Image]

The code-behind file has ItemSelected handlers for the two ListView elements to add items and remove items from the second ListView, but the more interesting processing occurs in the Clicked handler for the Button:

Click here to view code image

public partial class BuildAPageHomePage : ContentPage

{

 ObservableCollection<string> viewCollection = new ObservableCollection<string>();

 Assembly xamarinForms = typeof(Label).GetTypeInfo().Assembly;

 public BuildAPageHomePage()

 {

 InitializeComponent();

 pageList.ItemsSource = viewCollection;

 }

 void OnViewListItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem != null)

 {

 viewList.SelectedItem = null;

 int number = 1;

 string item = null;

 while (-1 != viewCollection.IndexOf(

 item = ((string)args.SelectedItem) + ' ' + number))

 {

 number++;

 }

 viewCollection.Add(item);

 generateButton.IsEnabled = true;

 }

 }

 void OnPageListItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem != null)

 {

 pageList.SelectedItem = null;

 viewCollection.Remove((string)args.SelectedItem);

 generateButton.IsEnabled = viewCollection.Count > 0;

 }

 }

 async void OnGenerateButtonClicked(object sender, EventArgs args)

 {

 ContentPage contentPage = new ContentPage

 {

 Title = titleEntry.Text,

 Padding = new Thickness(10, 0)

 };

 StackLayout stackLayout = new StackLayout();

 contentPage.Content = stackLayout;

 foreach (string item in viewCollection)

 {

 string viewString = item.Substring(0, item.IndexOf(' '));

 Type viewType = xamarinForms.GetType("Xamarin.Forms." + viewString);

 View view = (View)Activator.CreateInstance(viewType);

 view.VerticalOptions = LayoutOptions.CenterAndExpand;

 switch (viewString)

 {

 case "BoxView":

 ((BoxView)view).Color = Color.Accent;

 goto case "Stepper";

 case "Button":

 ((Button)view).Text = item;

 goto case "Stepper";

 case "Stepper":

 case "Switch":

 view.HorizontalOptions = LayoutOptions.Center;

 break;

 }

 stackLayout.Children.Add(view);

 }

 await Navigation.PushAsync(contentPage);

 }

}

This Clicked handler creates a ContentPage and a StackLayout and then simply loops through the strings in the second ListView, finding a corresponding Type object by using the GetType method defined by the Assembly class. (Notice the Assembly object named xamarinForms defined as a field.) A call to Activator.CreateInstance creates the actual element, which can then be tailored slightly for the final layout.

Creating a ContentPage object in code and adding elements to it isn’t new. In fact, the standard Xamarin.Forms project template includes an App class with a constructor that instantiates ContentPage and adds a Label to it, so you were introduced to this technique way back in Chapter 2. But that approach was quickly abandoned in favor of the more flexible technique of deriving a class from ContentPage. Deriving a class is more powerful because the derived class has access to protected methods such as OnAppearing and OnDisappearing.

Sometimes, however, it’s helpful to go back to basics.

Patterns of data transfer

It’s often necessary for pages within a multipage application to share data, and particularly for one page to pass information to another page. Sometimes this process resembles a function call: When HomePage displays a list of items and navigates to DetailPage to display a detailed view of one of these items, HomePage must pass that particular item to DetailPage. Or when the user enters information into FillOutFormPage, that information must be returned back to the page that invoked FillOutFormPage.

Several techniques are available to transfer data between pages. Which one you use depends on the particular application. Keep in mind throughout this discussion that you’ll probably also need to save the contents of the page when the application terminates, and restore the contents when the program starts up again. Some of the data-sharing techniques are more conducive to saving and restoring page state than others. This issue is explored in more detail later in this chapter.

Constructor arguments

When one page navigates to another page and needs to pass data to that page, one obvious way to pass that data is through the second page’s constructor.

The SchoolAndStudents program illustrates this technique. The program makes use of the SchoolOfFineArt library introduced in Chapter 19, “Collection views.” The program consists of two pages named SchoolPage and StudentPage. The SchoolPage class uses a ListView to display a scrollable list of all the students in the school. When the user selects one, the program navigates to a StudentPage that displays details about the individual student. The program is similar to the SelectedStudentDetail program in Chapter 19, except that the list and detail have been separated into two pages.

Here’s SchoolPage. To keep things as simple as possible, the ListView uses an ImageCell to display each student in the school:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SchoolAndStudents.SchoolPage"

 Title="School">

 <StackLayout BindingContext="{Binding StudentBody}">

 <Label Text="{Binding School}"

 FontSize="Large"

 FontAttributes="Bold"

 HorizontalTextAlignment="Center" />

 <ListView x:Name="listView"

 ItemsSource="{Binding Students}"

 ItemSelected="OnListViewItemSelected">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ImageCell ImageSource="{Binding PhotoFilename}"

 Text="{Binding FullName}"

 Detail="{Binding GradePointAverage,

 StringFormat='G.P.A. = {0:F2}'}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </StackLayout>

</ContentPage>

The data bindings in this XAML file assume that the BindingContext for the page is set to an object of type SchoolViewModel defined in the SchoolOfFineArt Library. The SchoolViewModel has a property of type StudentBody, which is set to the BindingContext of the StackLayout. The Label is bound to the School property of StudentBody, and the ItemsSource of the ListView is bound to the Students collection property of StudentBody. This means that each item in the ListView has a BindingContext of type Student. The ImageCell references the PhotoFilename, FullName, and GradePointAverage properties of that Student object.

Here’s that ListView running on iOS, Android, and Windows 10 Mobile:

[image: Image]

The constructor in the code-behind file is responsible for setting the BindingContext of the page from an instance of SchoolViewModel. The code-behind file also contains a handler for the ItemSelected event of the ListView. This event is fired when the user taps one of the students:

Click here to view code image

public partial class SchoolPage : ContentPage

{

 public SchoolPage()

 {

 InitializeComponent();

 // Set BindingContext.

 BindingContext = new SchoolViewModel();

 }

 async void OnListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 // The selected item is null or of type Student.

 Student student = args.SelectedItem as Student;

 // Make sure that an item is actually selected.

 if (student != null)

 {

 // Deselect the item.

 listView.SelectedItem = null;

 // Navigate to StudentPage with Student argument.

 await Navigation.PushAsync(new StudentPage(student));

 }

 }

}

The SelectedItem property of the event arguments is the Student object that is tapped, and the handler uses that as an argument to the StudentPage class in the PushAsync call.

Notice also that the handler sets the SelectedItem property of the ListView to null. This deselects the item so that it won’t still be selected when the user returns to the SchoolPage, and the user can tap it again. But setting that SelectedItem property to null also causes another call to the ItemSelected event handler. Fortunately, the handler ignores the event if the SelectedItem is null.

The code-behind file for StudentPage simply uses that constructor argument to set the BindingContext of the page:

Click here to view code image

public partial class StudentPage : ContentPage

{

 public StudentPage(Student student)

 {

 InitializeComponent();

 BindingContext = student;

 }

}

The XAML file for the StudentPage class contains bindings to various properties of the Student class:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SchoolAndStudents.StudentPage"

 Title="Student">

 <StackLayout>

 <!-- Name -->

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center"

 Spacing="0">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="FontAttributes" Value="Bold" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Label Text="{Binding LastName}" />

 <Label Text="{Binding FirstName, StringFormat=', {0}'}" />

 <Label Text="{Binding MiddleName, StringFormat=' {0}'}" />

 </StackLayout>

 <!-- Photo -->

 <Image Source="{Binding PhotoFilename}"

 VerticalOptions="FillAndExpand" />

 <!-- Sex -->

 <Label Text="{Binding Sex, StringFormat='Sex = {0}'}"

 HorizontalOptions="Center" />

 <!-- GPA -->

 <Label Text="{Binding GradePointAverage, StringFormat='G.P.A. = {0:F2}'}"

 HorizontalOptions="Center" />

 </StackLayout>

</ContentPage>

The XAML file doesn’t require a button or any other user-interface object to return back to SchoolPage because that’s provided automatically, either as part of the standard navigation user interface for the platform or as part of the phone itself:

[image: Image]

Passing information to the navigated page through the constructor is versatile, but for this particular example, it’s unnecessary. StudentPage could have a parameterless constructor, and the SchoolPage could set the BindingContext of the newly created StudentPage right in the PushAsync call:

Click here to view code image

await Navigation.PushAsync(new StudentPage { BindingContext = student });

One of the problems with either approach is preserving the application state when the program is suspended. If you want StudentPage to save the current student when the program terminates, it needs to save all the properties of the Student object. But when that Student object is re-created when the program starts up again, it’s a different object from the particular Student object for the same student in the Students collection even though all the properties are the same.

If the Students collection is known to be constant, it makes more sense for StudentPage to save only an index into the Students collection that references this particular Student object. But in this example, StudentPage does not have access to that index or to the Students collection.

Properties and method calls

A page calling PushAsync or PushModalAsync obviously has direct access to the class that it’s navigating to, so it can set properties or call methods in that page object to pass information to it. A page calling PopAsync or PopModalAsync, however, has some more work to do to determine the page that it’s returning to. In the general case, a page can’t always be expected to be familiar with the page type of the page that navigated to it.

You’ll need to exercise caution when setting properties or calling methods from one page to another. You can’t make any assumptions about the sequence of calls to the OnAppearing and OnDisappearing overrides and the completion of the PushAsync, PopAsync, PushModalAsync, and PopModalAsync tasks.

Let’s assume you have pages named HomePage and InfoPage. As the names suggest, HomePage uses PushAsync to navigate to InfoPage to obtain some information from the user, and somehow InfoPage must transfer that information to HomePage.

Here are some ways that HomePage and InfoPage can interact (or not interact):

HomePage can access a property in InfoPage or call a method in InfoPage after instantiating InfoPage or after the PushAsync task completes. This is straightforward, and you already saw an example in the SinglePageNavigation program.

InfoPage can access a property in HomePage or call a method in HomePage at any time during its existence. Most conveniently, InfoPage can perform these operations during its OnAppearing override (for initialization) or the OnDisappearing override (to prepare final values). For the duration of its existence, InfoPage can obtain the HomePage instance from the NavigationStack collection. However, depending on the order of the OnAppearing and OnDisappearing calls relative to the completion of the PushAsync or PopAsync tasks, HomePage might be the last item in the NavigationStack, or InfoPage might be the last item in the NavigationStack, in which case HomePage is the next to last item.

HomePage can be informed that InfoPage has returned control back to HomePage by overriding its OnAppearing method. (But keep in mind that this method is not called on Android devices when a modal page has returned back to the page that invoked it.) However, during the OnAppearing override of HomePage, HomePage cannot be entirely certain that the instance of InfoPage is still in the NavigationStack collection, or even that it exists at all. HomePage can save the instance of InfoPage when it navigates to InfoPage, but that creates problems if the application needs to save the page state when it terminates.

Let’s examine a program named DataTransfer1 that uses a second page to obtain information from the user and then adds that information as an item to a ListView. The user can add multiple items to the ListView or edit an existing item by tapping it. To focus entirely on the mechanism of interpage communication, the program uses no data bindings, and the class that stores the information does not implement INotifyPropertyChanged:

Click here to view code image

public class Information

{

 public string Name { set; get; }

 public string Email { set; get; }

 public string Language { set; get; }

 public DateTime Date { set; get; }

 public override string ToString()

 {

 return String.Format("{0} / {1} / {2} / {3:d}",

 String.IsNullOrWhiteSpace(Name) ? "???" : Name,

 String.IsNullOrWhiteSpace(Email) ? "???" : Email,

 String.IsNullOrWhiteSpace(Language) ? "???" : Language,

 Date);

 }

}

The ToString method allows the ListView to display the items with minimum fuss.

The DataTransfer1 program has two pages, named DataTransfer1HomePage and DataTransfer1InfoPage, that communicate to each other by calling public methods. The DataTransfer1HomePage has a XAML file with a Button for invoking a page to obtain information and a ListView for displaying each item and allowing an item to be edited:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="DataTransfer1.DataTransfer1HomePage"

 Title="Home Page">

 <Grid>

 <Button Text="Add New Item"

 Grid.Row="0"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Clicked="OnGetInfoButtonClicked" />

 <ListView x:Name="listView"

 Grid.Row="1"

 ItemSelected="OnListViewItemSelected" />

 </Grid>

</ContentPage>

Let’s bounce back and forth between the two classes to examine the transfer of data. Here’s the portion of the code-behind file showing the initialization of the ListView with an ObservableCollection so that the ListView updates its display whenever the collection changes:

Click here to view code image

public partial class DataTransfer1HomePage : ContentPage

{

 ObservableCollection<Information> list = new ObservableCollection<Information>();

 public DataTransfer1HomePage()

 {

 InitializeComponent();

 // Set collection to ListView.

 listView.ItemsSource = list;

 }

 // Button Clicked handler.

 async void OnGetInfoButtonClicked(object sender, EventArgs args)

 {

 await Navigation.PushAsync(new DataTransfer1InfoPage());

 }

 ...

}

This code also implements the Clicked handler for the Button simply by instantiating the DataTransfer1InfoPage and navigating to it.

The XAML file of DataTransfer1InfoPage has two Entry elements, a Picker, and a DatePicker corresponding to the properties of Information. This page relies on each platform’s standard user interface for returning to the home page:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="DataTransfer1.DataTransfer1InfoPage"

 Title="Info Page">

 <StackLayout Padding="20, 0"

 Spacing="20">

 <Entry x:Name="nameEntry"

 Placeholder="Enter Name" />

 <Entry x:Name="emailEntry"

 Placeholder="Enter Email Address" />

 <Picker x:Name="languagePicker"

 Title="Favorite Programming Language">

 <Picker.Items>

 <x:String>C#</x:String>

 <x:String>F#</x:String>

 <x:String>Objective C</x:String>

 <x:String>Swift</x:String>

 <x:String>Java</x:String>

 </Picker.Items>

 </Picker>

 <DatePicker x:Name="datePicker" />

 </StackLayout>

</ContentPage>

The code-behind file of the info page instantiates an Information object that is associated with this page instance:

Click here to view code image

public partial class DataTransfer1InfoPage : ContentPage

{

 // Instantiate an Information object for this page instance.

 Information info = new Information();

 public DataTransfer1InfoPage()

 {

 InitializeComponent();

 }

 ...

}

The user interacts with the elements on the page by entering some information:

[image: Image]

Nothing else happens in the class until DataTransfer1InfoPage gets a call to its OnDisappearing override. This usually indicates that the user has pressed the Back button that is either part of the navigation bar (on iOS and Android) or below the screen (on Android and Windows Phone).

However, you might be aware that in a platform no longer supported by Xamarin.Forms (Windows Phone Silverlight), OnDisappearing was called when the user invoked the Picker or DatePicker, and you might be nervous about it being called in other circumstances on the current platforms. This implies that nothing should be done in the OnDisappearing override that can’t be undone when OnDisappearing is called as part of the normal navigation back to the home page. This is why DataTransfer1InfoPage instantiates its Information object when the page is first created and not during the OnDisappearing override.

The OnDisappearing override sets the properties of the Information object from the four views and then obtains the instance of DataTransfer1HomePage that invoked it from the NavigationStack collection. It then calls a method named InformationReady in that home page:

Click here to view code image

public partial class DataTransfer1InfoPage : ContentPage

{

 ...

 protected override void OnDisappearing()

 {

 base.OnDisappearing();

 // Set properties of Information object.

 info.Name = nameEntry.Text;

 info.Email = emailEntry.Text;

 int index = languagePicker.SelectedIndex;

 info.Language = index == -1 ? null : languagePicker.Items[index];

 info.Date = datePicker.Date;

 // Get the DataTransfer1HomePage that invoked this page.

 NavigationPage navPage = (NavigationPage)Application.Current.MainPage;

 IReadOnlyList<Page> navStack = navPage.Navigation.NavigationStack;

 int lastIndex = navStack.Count - 1;

 DataTransfer1HomePage homePage = navStack[lastIndex] as DataTransfer1HomePage;

 if (homePage == null)

 {

 homePage = navStack[lastIndex - 1] as DataTransfer1HomePage;

 }

 // Transfer Information object to DataTransfer1HomePage.

 homePage.InformationReady(info);

 }

}

The InformationReady method in DataTransfer1HomePage checks whether the Information object is already in the ObservableCollection set to the ListView, and if so, it replaces it. Otherwise, it adds the object to that collection:

Click here to view code image

public partial class DataTransfer1HomePage : ContentPage

{

 ...

 // Called from InfoPage.

 public void InformationReady(Information info)

 {

 // If the object has already been added, replace it.

 int index = list.IndexOf(info);

 if (index != -1)

 {

 list[index] = info;

 }

 // Otherwise, add it.

 else

 {

 list.Add(info);

 }

 }

}

There are two reasons for checking whether the Information object is already in the ListView collection. It might be there already if the info page received an earlier call to its OnDisappearing override, which then results in a call to InformationReady in the home page. Also—as you’ll see—existing items in the ListView can be edited.

The code that replaces the Information object with itself in the ObservableCollection might seem superfluous. However, the act of replacing the item causes the ObservableCollection to fire a CollectionChanged event, and the ListView redraws itself. Another solution would be for Information to implement INotifyPropertyChanged, in which case the change in the values of a property would cause the ListView to update the display of that item.

At this point, we’re back on the home page, and the ListView displays the newly added item:

[image: Image]

You can now tap the Button again to create a new item, or you can tap an existing item in the ListView. The ItemSelected handler for the ListView also navigates to DataTransfer1InfoPage:

Click here to view code image

public partial class DataTransfer1HomePage : ContentPage

{

 ...

 // ListView ItemSelected handler.

 async void OnListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem != null)

 {

 // Deselect the item.

 listView.SelectedItem = null;

 DataTransfer1InfoPage infoPage = new DataTransfer1InfoPage();

 await Navigation.PushAsync(infoPage);

 infoPage.InitializeInfo((Information)args.SelectedItem);

 }

 }

 ...

}

However, after the PushAsync task completes, the handler calls a method in DataTransfer1InfoPage named InitializeInfo with the selected item.

The InitializeInfo method in DataTransfer1InfoPage replaces the Information object it originally created as a field with this existing instance and initializes the views on the page with the properties of the object:

Click here to view code image

public partial class DataTransfer1InfoPage : ContentPage

{

 ...

 public void InitializeInfo(Information info)

 {

 // Replace the instance.

 this.info = info;

 // Initialize the views.

 nameEntry.Text = info.Name ?? "";

 emailEntry.Text = info.Email ?? "";

 if (!String.IsNullOrWhiteSpace(info.Language))

 {

 languagePicker.SelectedIndex = languagePicker.Items.IndexOf(info.Language);

 }

 datePicker.Date = info.Date;

 }

 ...

}

Now the user is editing an existing item instead of a new instance.

Generally, a program that allows editing of existing items will also give the user an opportunity to abandon any changes already made to the item. To allow that, the DataTransfer1InfoPage would need to differentiate between returning back to the home page with changes and cancelling the edit operation. At least one Button or ToolbarItem is required, and that should probably be a Cancel button so that the standard Back button saves the changes.

Such a program should also have a facility to delete items. Later on in this chapter, you’ll see such a program.

The messaging center

You might not like the idea of the two page classes making method calls directly to each other. It seems to work well for a small sample, but for a larger program with lots of interclass communication, you might prefer something a little more flexible that doesn’t require actual page instances.

Such a facility is the Xamarin.Forms MessagingCenter class. This is a static class with three methods, named Subscribe, Unsubscribe, and Send. Messages are identified with a text string and can be accompanied by any object. The Send method broadcasts a message that is received by any subscriber to that message.

The DataTransfer2 program has the same Information class and the same XAML files as DataTransfer1, but it uses the MessagingCenter class rather than direct method calls.

The constructor of the home page subscribes to a message identified by the text string “InformationReady.” The generic arguments to Subscribe indicate what object type sends this message—an object of type DataTransfer2InfoPage—and the type of the data, which is Information. The Subscribe method arguments indicate the object receiving the message (this), the message name, and a lambda function. The body of this lambda function is the same as the body of the InformationReady method in the previous program:

Click here to view code image

public partial class DataTransfer2HomePage : ContentPage

{

 ObservableCollection<Information> list = new ObservableCollection<Information>();

 public DataTransfer2HomePage()

 {

 InitializeComponent();

 // Set collection to ListView.

 listView.ItemsSource = list;

 // Subscribe to "InformationReady" message.

 MessagingCenter.Subscribe<DataTransfer2InfoPage, Information>

 (this, "InformationReady", (sender, info) =>

 {

 // If the object has already been added, replace it.

 int index = list.IndexOf(info);

 if (index != -1)

 {

 list[index] = info;

 }

 // Otherwise, add it.

 else

 {

 list.Add(info);

 }

 });

 }

 // Button Clicked handler.

 async void OnGetInfoButtonClicked(object sender, EventArgs args)

 {

 await Navigation.PushAsync(new DataTransfer2InfoPage());

 }

 // ListView ItemSelected handler.

 async void OnListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem != null)

 {

 // Deselect the item.

 listView.SelectedItem = null;

 DataTransfer2InfoPage infoPage = new DataTransfer2InfoPage();

 await Navigation.PushAsync(infoPage);

 // Send "InitializeInfo" message to info page.

 MessagingCenter.Send<DataTransfer2HomePage, Information>

 (this, "InitializeInfo", (Information)args.SelectedItem);

 }

 }

}

The ItemSelected handler of the ListView contains a call to MessagingCenter.Send. The generic arguments indicate the type of the message sender and the type of the data. The arguments to the method indicate the object sending the message, the message name, and the data, which is the SelectedItem of the ListView.

The DataTransfer2InfoPage code-behind file contains complementary calls to MessagingCenter.Subscribe and MessageCenter.Send. The info page constructor subscribes to the “InitializeInfo” message; the body of the lambda function is the same as the InitializeInfo method in the previous program except that it ends with a call to unsubscribe from the message. Unsubscribing ensures that there is no longer a reference to the info page object and allows the info page object to be garbage collected. Strictly speaking, however, unsubscribing shouldn’t be necessary because the MessagingCenter maintains WeakReference objects for subscribers:

Click here to view code image

public partial class DataTransfer2InfoPage : ContentPage

{

 // Instantiate an Information object for this page instance.

 Information info = new Information();

 public DataTransfer2InfoPage()

 {

 InitializeComponent();

 // Subscribe to "InitializeInfo" message.

 MessagingCenter.Subscribe<DataTransfer2HomePage, Information>

 (this, "InitializeInfo", (sender, info) =>

 {

 // Replace the instance.

 this.info = info;

 // Initialize the views.

 nameEntry.Text = info.Name ?? "";

 emailEntry.Text = info.Email ?? "";

 if (!String.IsNullOrWhiteSpace(info.Language))

 {

 languagePicker.SelectedIndex = languagePicker.Items.IndexOf(info.Language);

 }

 datePicker.Date = info.Date;

 // Don't need "InitializeInfo" any more so unsubscribe.

 MessagingCenter.Unsubscribe<DataTransfer2HomePage, Information>

 (this, "InitializeInfo");

 });

 }

 protected override void OnDisappearing()

 {

 base.OnDisappearing();

 // Set properties of Information object.

 info.Name = nameEntry.Text;

 info.Email = emailEntry.Text;

 int index = languagePicker.SelectedIndex;

 info.Language = index == -1 ? null : languagePicker.Items[index];

 info.Date = datePicker.Date;

 // Send "InformationReady" message back to home page.

 MessagingCenter.Send<DataTransfer2InfoPage, Information>

 (this, "InformationReady", info);

 }

}

The OnDisappearing override is considerably shorter than the version in the previous program. To call a method in the home page, the previous program had to go into the NavigationStack collection. In this version, all that’s necessary is to use MessagingCenter.Send to send an “InformationReady” message to whoever has subscribed to it, and that happens to be the home page.

Events

In both the method-call approach and the messaging-center approach to interclass communication, the info page needs to know the type of the home page. This is sometimes undesirable if the same info page can be called from different types of pages.

One solution to this problem is for the info class to implement an event, and that’s the approach taken in DataTransfer3. The Information class and XAML files are the same as the previous programs, but DataTransfer3InfoPage now implements a public event named InformationReady:

Click here to view code image

public partial class DataTransfer3InfoPage : ContentPage

{

 // Define a public event for transferring data.

 public EventHandler<Information> InformationReady;

 // Instantiate an Information object for this page instance.

 Information info = new Information();

 public DataTransfer3InfoPage()

 {

 InitializeComponent();

 }

 public void InitializeInfo(Information info)

 {

 // Replace the instance.

 this.info = info;

 // Initialize the views.

 nameEntry.Text = info.Name ?? "";

 emailEntry.Text = info.Email ?? "";

 if (!String.IsNullOrWhiteSpace(info.Language))

 {

 languagePicker.SelectedIndex = languagePicker.Items.IndexOf(info.Language);

 }

 datePicker.Date = info.Date;

 }

 protected override void OnDisappearing()

 {

 base.OnDisappearing();

 // Set properties of Information object.

 info.Name = nameEntry.Text;

 info.Email = emailEntry.Text;

 int index = languagePicker.SelectedIndex;

 info.Language = index == -1 ? null : languagePicker.Items[index];

 info.Date = datePicker.Date;

 // Raise the InformationReady event.

 EventHandler<Information> handler = InformationReady;

 if (handler != null)

 handler(this, info);

 }

}

During the OnDisappearing override, the class sets the Information properties from the elements and raises an InformationReady event with the Information object.

The home page can set a handler for the InformationReady event either after it instantiates the info page or after it navigates to the page. The event handler adds the Information object to the ListView or replaces an existing item:

Click here to view code image

public partial class DataTransfer3HomePage : ContentPage

{

 ObservableCollection<Information> list = new ObservableCollection<Information>();

 public DataTransfer3HomePage()

 {

 InitializeComponent();

 // Set collection to ListView.

 listView.ItemsSource = list;

 }

 // Button Clicked handler.

 async void OnGetInfoButtonClicked(object sender, EventArgs args)

 {

 DataTransfer3InfoPage infoPage = new DataTransfer3InfoPage();

 await Navigation.PushAsync(infoPage);

 // Set event handler for obtaining information.

 infoPage.InformationReady += OnInfoPageInformationReady;

 }

 // ListView ItemSelected handler.

 async void OnListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem != null)

 {

 // Deselect the item.

 listView.SelectedItem = null;

 DataTransfer3InfoPage infoPage = new DataTransfer3InfoPage();

 await Navigation.PushAsync(infoPage);

 infoPage.InitializeInfo((Information)args.SelectedItem);

 // Set event handler for obtaining information.

 infoPage.InformationReady += OnInfoPageInformationReady;

 }

 }

 void OnInfoPageInformationReady(object sender, Information info)

 {

 // If the object has already been added, replace it.

 int index = list.IndexOf(info);

 if (index != -1)

 {

 list[index] = info;

 }

 // Otherwise, add it.

 else

 {

 list.Add(info);

 }

 }

}

There are a couple of problems with this approach. The first problem is that there is no convenient place to detach the event handler. The info page raises the event in its OnDisappearing override. If you are not confident that OnDisappearing is called only when navigation is occurring, then the home page can’t detach the event hander in the handler itself.

Nor can the home page detach the event handler in its OnAppearing override because when the info page returns back to the home page, the order in which the OnAppearing and OnDisappearing overrides are called is platform dependent.

If the home page can’t detach the handler from the info page, then each instance of info page will continue to maintain a reference to the home page and can’t be garbage collected.

The event-handler approach is also not good when an application needs to save and restore page state. The info page cannot save the state of the event to restore it when the program executes again.

The App class intermediary

In a Xamarin.Forms application, the first code that executes in the common code project is the constructor of a class customarily named App that derives from Application. This App object remains constant until the program terminates, and it is always available to any code in the program through the static Application.Current property. The return value of that property is of type Application, but it’s simple to cast it to App.

This implies that the App class is a great place to store data that must be accessed throughout the application, including data that is transferred from one page to another.

The Information class in the DataTransfer4 version of the program is just a little different from the version you’ve seen previously:

Click here to view code image

public class Information

{

 public Information()

 {

 Date = DateTime.Today;

 }

 public string Name { set; get; }

 public string Email { set; get; }

 public string Language { set; get; }

 public DateTime Date { set; get; }

 public override string ToString()

 {

 return String.Format("{0} / {1} / {2} / {3:d}",

 String.IsNullOrWhiteSpace(Name) ? "???" : Name,

 String.IsNullOrWhiteSpace(Email) ? "???" : Email,

 String.IsNullOrWhiteSpace(Language) ? "???" : Language,

 Date);

 }

}

The constructor of this version sets the Date property to today’s date. In previous versions of the program, the properties of an Information instance are set from the various elements on the info page. In that case, the Date property is set from the DatePicker, which by default sets its Date property to the current date. In DataTransfer4, as you’ll see, the elements on the info page are initialized from the properties in the Information object, so setting the Date property in the Information class merely keeps the functionality of the programs consistent.

Here’s the App class in DataTransfer4. Notice the public properties named InfoCollection and CurrentInfoItem. The constructor initializes InfoCollection to an ObservableCollection<Information> object before creating DataTransfer4HomePage:

Click here to view code image

public class App : Application

{

 public App()

 {

 // Create the ObservableCollection for the Information items.

 InfoCollection = new ObservableCollection<Information>();

 MainPage = new NavigationPage(new DataTransfer4HomePage());

 }

 public IList<Information> InfoCollection { private set; get; }

 public Information CurrentInfoItem { set; get; }

 ...

}

The availability of the InfoCollection property in App allows DataTransfer4HomePage to set it directly to the ItemsSource property of the ListView:

Click here to view code image

public partial class DataTransfer4HomePage : ContentPage

{

 App app = (App)Application.Current;

 public DataTransfer4HomePage()

 {

 InitializeComponent();

 // Set collection to ListView.

 listView.ItemsSource = app.InfoCollection;

 }

 // Button Clicked handler.

 async void OnGetInfoButtonClicked(object sender, EventArgs args)

 {

 // Create new Information item.

 app.CurrentInfoItem = new Information();

 // Navigate to info page.

 await Navigation.PushAsync(new DataTransfer4InfoPage());

 }

 // ListView ItemSelected handler.

 async void OnListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem != null)

 {

 // Deselect the item.

 listView.SelectedItem = null;

 // Get existing Information item.

 app.CurrentInfoItem = (Information)args.SelectedItem;

 // Navigate to info page.

 await Navigation.PushAsync(new DataTransfer4InfoPage());

 }

 }

}

Notice the two different but similar ways that the Clicked handler for the Button and the ItemSelected handler for the ListView are implemented. Before navigating to DataTransfer4InfoPage, both handlers set the CurrentInfoItem property of the App class to an instance of Information. But the Clicked handler sets the CurrentInfoItem property to a new instance, whereas the ItemSelected handler sets it to the selected item in the ListView.

Everything else is handled by DataTransfer4InfoPage. The info page can initialize the elements on the page from the Information object stored in the CurrentInfoItem property of the App class:

Click here to view code image

public partial class DataTransfer4InfoPage : ContentPage

{

 App app = (App)Application.Current;

 public DataTransfer4InfoPage()

 {

 InitializeComponent();

 // Initialize the views.

 Information info = app.CurrentInfoItem;

 nameEntry.Text = info.Name ?? "";

 emailEntry.Text = info.Email ?? "";

 if (!String.IsNullOrWhiteSpace(info.Language))

 {

 languagePicker.SelectedIndex = languagePicker.Items.IndexOf(info.Language);

 }

 datePicker.Date = info.Date;

 }

 protected override void OnDisappearing()

 {

 base.OnDisappearing();

 // Set properties of Information object.

 Information info = app.CurrentInfoItem;

 info.Name = nameEntry.Text;

 info.Email = emailEntry.Text;

 int index = languagePicker.SelectedIndex;

 info.Language = index == -1 ? null : languagePicker.Items[index];

 info.Date = datePicker.Date;

 // If the object has already been added to the collection, replace it.

 IList<Information> list = app.InfoCollection;

 index = list.IndexOf(info);

 if (index != -1)

 {

 list[index] = info;

 }

 // Otherwise, add it.

 else

 {

 list.Add(info);

 }

 }

}

The info page still needs to override its OnDisappearing method to set the properties of the Information object and possibly add it to the ListView collection or replace the same object to trigger a redraw. But the info page doesn’t need to directly access the ListView because it can obtain the ObservableCollection from the InfoCollection property of the App class.

Moreover, if you need to save and restore page state, everything is available right in the App class.

Let’s see how that might work.

Switching to a ViewModel

At this point it should be obvious that the Information class should really implement INotifyPropertyChanged. In DataTransfer5, the Information class has become an InformationViewModel class. It derives from ViewModelBase in the Xamarin.FormsBook.Toolkit library to reduce the overhead:

Click here to view code image

public class InformationViewModel : ViewModelBase

{

 string name, email, language;

 DateTime date = DateTime.Today;

 public string Name

 {

 set { SetProperty(ref name, value); }

 get { return name; }

 }

 public string Email

 {

 set { SetProperty(ref email, value); }

 get { return email; }

 }

 public string Language

 {

 set { SetProperty(ref language, value); }

 get { return language; }

 }

 public DateTime Date

 {

 set { SetProperty(ref date, value); }

 get { return date; }

 }

}

A new class has been added to DataTransfer5 called AppData. This class includes an ObservableCollection of Information objects for the ListView as well as a separate Information instance for the info page:

Click here to view code image

public class AppData

{

 public AppData()

 {

 InfoCollection = new ObservableCollection<InformationViewModel>();

 }

 public IList<InformationViewModel> InfoCollection { private set; get; }

 public InformationViewModel CurrentInfo { set; get; }

}

The App class instantiates AppData before instantiating the home page and makes it available as a public property:

Click here to view code image

public class App : Application

{

 public App()

 {

 // Ensure link to Toolkit library.

 new Xamarin.FormsBook.Toolkit.ObjectToIndexConverter<object>();

 // Instantiate AppData and set property.

 AppData = new AppData();

 // Go to the home page.

 MainPage = new NavigationPage(new DataTransfer5HomePage());

 }

 public AppData AppData { private set; get; }

 ...

}

The XAML file of DataTransfer5HomePage sets the BindingContext for the page with a binding that incorporates the static Application.Current property (which returns the App object) and the AppData instance. This means that the ListView can bind its ItemsSource property to the InfoCollection property of AppData:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="DataTransfer5.DataTransfer5HomePage"

 Title="Home Page"

 BindingContext="{Binding Source={x:Static Application.Current},

 Path=AppData}">

 <Grid>

 <Button Text="Add New Item"

 Grid.Row="0"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Clicked="OnGetInfoButtonClicked" />

 <ListView x:Name="listView"

 Grid.Row="1"

 ItemsSource="{Binding InfoCollection}"

 ItemSelected="OnListViewItemSelected">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <StackLayout Orientation="Horizontal">

 <Label Text="{Binding Name}" />

 <Label Text=" / " />

 <Label Text="{Binding Email}" />

 <Label Text=" / " />

 <Label Text="{Binding Language}" />

 <Label Text=" / " />

 <Label Text="{Binding Date, StringFormat='{0:d}'}" />

 </StackLayout>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </Grid>

</ContentPage>

Previous versions of the program relied upon the ToString override in Information to display the items. Now that Information has been replaced with InformationViewModel, the ToString method isn’t adequate because there’s no notification that the ToString method might return something different. Instead, the ListView uses a ViewCell containing elements with bindings to properties of InformationViewModel.

The code-behind file continues to implement the Clicked handler for the Button and the ItemSelected handler for the ListView, but they are now so similar they can make use of a common method named GoToInfoPage:

Click here to view code image

public partial class DataTransfer5HomePage : ContentPage

{

 public DataTransfer5HomePage()

 {

 InitializeComponent();

 }

 // Button Clicked handler.

 void OnGetInfoButtonClicked(object sender, EventArgs args)

 {

 // Navigate to the info page.

 GoToInfoPage(new InformationViewModel(), true);

 }

 // ListView ItemSelected handler.

 void OnListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem != null)

 {

 // Deselect the item.

 listView.SelectedItem = null;

 // Navigate to the info page.

 GoToInfoPage((InformationViewModel)args.SelectedItem, false);

 }

 }

 async void GoToInfoPage(InformationViewModel info, bool isNewItem)

 {

 // Get AppData object (set to BindingContext in XAML file).

 AppData appData = (AppData)BindingContext;

 // Set info item to CurrentInfo property of AppData.

 appData.CurrentInfo = info;

 // Navigate to the info page.

 await Navigation.PushAsync(new DataTransfer5InfoPage());

 // Add new info item to the collection.

 if (isNewItem)

 {

 appData.InfoCollection.Add(info);

 }

 }

}

For both cases, the GoToInfoPage method sets the CurrentInfo property of AppData. For a Clicked event, it’s set to a new InformationViewModel object. For the ItemSelected event, it’s set to an existing InformationViewModel from the ListView collection. The isNewItem parameter of the GoToInfoPage method indicates whether this InformationViewModel object should also be added to the InfoCollection of AppData.

Notice that the new item is added to the InfoCollection after the PushAsync task completes. If the item is added prior to the PushAsync call, then—depending on the platform—you might notice this new item suddenly appearing in the ListView immediately before the page transition. That could be a bit disturbing!

The XAML file for the DataTransfer5InfoPage sets the BindingContext for the page to the CurrentInfo property of AppData. (The home page sets the CurrentInfo property of AppData prior to instantiating the info page, so it’s not necessary for AppData to implement INotifyPropertyChanged.) The setting of the BindingContext allows all the visual elements on the page to be bound to properties in the InformationViewModel class:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="DataTransfer5.DataTransfer5InfoPage"

 Title="Info Page"

 BindingContext="{Binding Source={x:Static Application.Current},

 Path=AppData.CurrentInfo}">

 <StackLayout Padding="20, 0"

 Spacing="20">

 <Entry Text="{Binding Name}"

 Placeholder="Enter Name" />

 <Entry Text="{Binding Email}"

 Placeholder="Enter Email Address" />

 <Picker x:Name="languagePicker"

 Title="Favorite Programming Language">

 <Picker.Items>

 <x:String>C#</x:String>

 <x:String>F#</x:String>

 <x:String>Objective C</x:String>

 <x:String>Swift</x:String>

 <x:String>Java</x:String>

 </Picker.Items>

 <Picker.SelectedIndex>

 <Binding Path="Language">

 <Binding.Converter>

 <toolkit:ObjectToIndexConverter x:TypeArguments="x:String">

 <x:String>C#</x:String>

 <x:String>F#</x:String>

 <x:String>Objective C</x:String>

 <x:String>Swift</x:String>

 <x:String>Java</x:String>

 </toolkit:ObjectToIndexConverter>

 </Binding.Converter>

 </Binding>

 </Picker.SelectedIndex>

 </Picker>

 <DatePicker Date="{Binding Date}" />

 </StackLayout>

</ContentPage>

Notice the use of the ObjectToIndexConverter in the binding between the SelectedIndex property of the Picker and the string Language property of InformationViewModel. This binding converter was introduced in Chapter 19, “Collection views,” in the section “Data binding the Picker.”

The code-behind file of DataTransfer5InfoPage achieves the MVVM goal of being nothing but a call to InitializeComponent:

Click here to view code image

public partial class DataTransfer5InfoPage : ContentPage

{

 public DataTransfer5InfoPage()

 {

 InitializeComponent();

 }

}

The other convenient aspect of DataTransfer5 is that there is no longer a need to override the OnAppearing and OnDisappearing methods, and no need to wonder about the order of these method calls during page navigation.

But what’s really nice is that it’s easy to migrate DataTransfer5 to a version that saves application data when the program is terminated and restores it the next time the program is run.

Saving and restoring page state

Particularly as you begin working more with multipage applications, it’s very beneficial to treat the pages of your application not as the primary repositories of data, but merely as temporary visual and interactive views of underlying data. The key word here is temporary. If you keep the underlying data up to date as the user interacts with it, then pages can appear and disappear without worry.

The final program in this series is DataTransfer6, which saves the contents of AppData (and some other information) in application local storage when the program is suspended—and hence when the program is terminated—and then retrieves that data the next time the program starts up.

Besides saving data that the user has painstakingly entered, you’ll probably also want to save the state of the page navigation stack. This means that if the user is entering data on the info page and the program terminates, then the next time the program runs, it navigates to that info page with the partially entered data restored.

As you’ll recall, the Application class defines a property named Properties that is a dictionary with string keys and object values. You can set items in the Properties dictionary either before or during the OnSleep override in your App class. The items will then be available the next time the App constructor executes.

The underlying platform serializes objects in the Properties dictionary by converting the objects to a form in which they can be saved to a file. It doesn’t matter to the application programmer whether this is a binary form or a string form, perhaps XML or JSON.

For integer or floating-point numbers, for DateTime values, or for strings, the serialization is straightforward. On some platforms, it might be possible to save an instance of a more complex class, such as InformationViewModel, directly to the Properties collection. However, this doesn’t work on all the platforms. It’s much safer to serialize classes yourself to XML or JSON strings and then save the resultant strings in the Properties collection. With the version of .NET available to Xamarin.Forms Portable Class Libraries, XML serialization is a bit easier than JSON serialization, and that’s what DataTransfer6 uses.

When performing serialization and deserialization, you need to watch out for object references. Serialization does not preserve object equality. Let’s see how this can be an issue:

The version of AppData introduced in DataTransfer5 has two properties: InfoCollection, which is a collection of InformationViewModel objects, and CurrentInfo, which is an InformationViewModel object that is currently being edited.

The program relies on the fact that the CurrentInfo object is also an item in the InfoCollection. The CurrentInfo becomes the BindingContext for the info page, and the properties of that InformationViewModel instance are interactively altered by the user. But only because that same object is part of InfoCollection will the new values show up in the ListView.

What happens when you serialize the InfoCollection and CurrentInfo properties of AppData and then deserialize to create a new AppData?

In the deserialized version, the CurrentInfo object will have the exact same properties as one of the items in the InfoCollection, but it won’t be the same instance. If the program is restored to allow the user to continue editing an item on the info page, none of those edits will be reflected in the object in the ListView collection.

With that mental preparation, it is now time to look at the version of AppData in DataTransfer6.

Click here to view code image

public class AppData

{

 public AppData()

 {

 InfoCollection = new ObservableCollection<InformationViewModel>();

 CurrentInfoIndex = -1;

 }

 public ObservableCollection<InformationViewModel> InfoCollection { private set; get; }

 [XmlIgnore]

 public InformationViewModel CurrentInfo { set; get; }

 public int CurrentInfoIndex { set; get; }

 public string Serialize()

 {

 // If the CurrentInfo is valid, set the CurrentInfoIndex.

 if (CurrentInfo != null)

 {

 CurrentInfoIndex = InfoCollection.IndexOf(CurrentInfo);

 }

 XmlSerializer serializer = new XmlSerializer(typeof(AppData));

 using (StringWriter stringWriter = new StringWriter())

 {

 serializer.Serialize(stringWriter, this);

 return stringWriter.GetStringBuilder().ToString();

 }

 }

 public static AppData Deserialize(string strAppData)

 {

 XmlSerializer serializer = new XmlSerializer(typeof(AppData));

 using (StringReader stringReader = new StringReader(strAppData))

 {

 AppData appData = (AppData)serializer.Deserialize(stringReader);

 // If the CurrentInfoIndex is valid, set the CurrentInfo.

 if (appData.CurrentInfoIndex != -1)

 {

 appData.CurrentInfo = appData.InfoCollection[appData.CurrentInfoIndex];

 }

 return appData;

 }

 }

}

This version has an InfoCollection property and a CurrentInfo property like the previous version, but it also includes a CurrentInfoIndex property of type int, and the CurrentInfo property is flagged with the XmlIgnore attribute, which means that it won’t be serialized.

The class also has two methods, named Serialize and Deserialize. Serialize begins by setting the CurrentInfoIndex property to the index of CurrentInfo within the InfoCollection. It then converts the instance of the class to an XML string and returns that string.

Deserialize does the opposite. It is a static method with a string argument. The string is assumed to be the XML representation of an AppData object. After it’s converted into an AppData instance, the method sets the CurrentInfo property based on the CurrentInfoIndex property. Now CurrentInfo is once again the identical object to one of the members of the InfoCollection. The method returns that AppData instance.

The only other change from DataTransfer5 to DataTransfer6 is the App class. The OnSleep override serializes the AppData object and saves it in the Properties dictionary with a key of “appData”. But it also saves a Boolean value with the key “isInfoPageActive” if the user has navigated to DataTransfer6InfoPage and is possibly in the process of entering or editing information.

The App constructor deserializes the string available from the “appData” Properties entry or sets the AppData property to a new instance if that dictionary entry doesn’t exist. If the “isInfoPageActive” entry is true, it must not only instantiate DataTransfer6MainPage as the argument to the NavigationPage constructor (as usual), but must also navigate to DataTransfer6InfoPage:

Click here to view code image

public class App : Application

{

 public App()

 {

 // Ensure link to Toolkit library.

 Xamarin.FormsBook.Toolkit.Toolkit.Init;

 // Load previous AppData if it exists.

 if (Properties.ContainsKey("appData"))

 {

 AppData = AppData.Deserialize((string)Properties["appData"]);

 }

 else

 {

 AppData = new AppData();

 }

 // Launch home page.

 Page homePage = new DataTransfer6HomePage();

 MainPage = new NavigationPage(homePage);

 // Possibly navigate to info page.

 if (Properties.ContainsKey("isInfoPageActive") &&

 (bool)Properties["isInfoPageActive"])

 {

 homePage.Navigation.PushAsync(new DataTransfer6InfoPage(), false);

 }

 }

 public AppData AppData { private set; get; }

 protected override void OnStart()

 {

 // Handle when your app starts

 }

 protected override void OnSleep()

 {

 // Save AppData serialized into string.

 Properties["appData"] = AppData.Serialize();

 // Save Boolean for info page active.

 Properties["isInfoPageActive"] =

 MainPage.Navigation.NavigationStack.Last() is DataTransfer6InfoPage;

 }

 protected override void OnResume()

 {

 // Handle when your app resumes

 }

}

To test this program, it is necessary to terminate the program in such a way that the App class gets a call to its OnSleep method. If you’re running the program under the Visual Studio or Xamarin Studio debugger, do not terminate the program from the debugger. Instead, terminate the application on the phone.

Perhaps the best way of terminating a program on phones and phone emulators is to first display all the currently running programs:

• On iOS, double tap the Home button.

• On Android, tap the (rightmost) MultiTask button.

• On Windows Phone, hold down the (leftmost) Back button.

This action causes the OnSleep method to be called. You can then terminate the program:

• On iOS, swipe the application up.

• On Android, swipe it to the side.

• On Windows Phone, swipe it down.

When running the Windows program in a window, you can terminate the program simply by clicking the Close button. In tablet mode, swipe the program down from the top.

You can then use Visual Studio or Xamarin Studio to stop debugging the application (if necessary). Then run the program again to see whether it “remembers” where it left off.

Saving and restoring the navigation stack

Many multipage applications have a page architecture that is more complex than DataTransfer6, and you’ll want a generalized way to save and restore the entire navigation stack. Moreover, you’ll probably want to integrate the preservation of the navigation stack with a systematic way to save and restore the state of each page, particularly if you’re not using MVVM.

In an MVVM application, generally a ViewModel is responsible for saving the data that underlies the various pages of an application. But in the absence of a ViewModel, that job is left up to each individual page, generally involving the Properties dictionary implemented by the Application class. However, you need to be careful not to have duplicate dictionary keys in two or more pages. Duplicate keys are particularly likely if a particular page type might have multiple instances in the navigation stack.

The problem of duplicate dictionary keys can be avoided if each page in the navigation stack uses a unique prefix for its dictionary keys. For example, the home page might use a prefix of “0” for all its dictionary keys, the next page in the navigation stack might use a prefix of “1” and so forth.

The Xamarin.FormsBook.Toolkit library has an interface and a class that work together to help you with saving and restoring the navigation stack, and saving and restoring page state using unique dictionary key prefixes. This interface and class do not preclude the use of MVVM with your application.

The interface is called IPersistentPage, and it has methods named Save and Restore that include the dictionary-key prefix as an argument:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public interface IPersistentPage

 {

 void Save(string prefix);

 void Restore(string prefix);

 }

}

Any page in your application can implement IPersistentPage. The Save and Restore methods are responsible for using the prefix parameter when adding items to the Properties dictionary or accessing those items. You’ll see examples shortly.

These Save and Restore methods are called from a class named MultiPageRestorableApp, which derives from Application and is intended to be a base class for the App class. When you derive App from MultiPageRestorableApp, you have two responsibilities:

• From the App class’s constructor, call the Startup method of MultiPageRestorableApp with the type of the application’s home page.

• Call the base class’s OnSleep method from the OnSleep override of the App class.

There are also two requirements when using MultiPageRestoreableApp:

• Each page in the application must have a parameterless constructor.

• When you derive App from MultiPageRestorableApp, this base class becomes a public type exposed from the application’s Portable Class Library. This means that all the individual platform projects also require a reference to the Xamarin.FormsBook.Toolkit library.

MultiPageRestorableApp implements its OnSleep method by looping through the contents of NavigationStack and ModalStack. Each page is given a unique index starting at 0, and each page is reduced to a short string that includes the page type, the page’s index, and a Boolean indicating whether the page is modal:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 // Derived classes must call Startup(typeof(YourStartPage));

 // Derived classes must call base.OnSleep() in override

 public class MultiPageRestorableApp : Application

 {

 ...

 protected override void OnSleep()

 {

 StringBuilder pageStack = new StringBuilder();

 int index = 0;

 // Accumulate the modeless pages in pageStack.

 IReadOnlyList<Page> stack = (MainPage as NavigationPage).Navigation.NavigationStack;

 LoopThroughStack(pageStack, stack, ref index, false);

 // Accumulate the modal pages in pageStack.

 stack = (MainPage as NavigationPage).Navigation.ModalStack;

 LoopThroughStack(pageStack, stack, ref index, true);

 // Save the list of pages.

 Properties["pageStack"] = pageStack.ToString();

 }

 void LoopThroughStack(StringBuilder pageStack, IReadOnlyList<Page> stack,

 ref int index, bool isModal)

 {

 foreach (Page page in stack)

 {

 // Skip the NavigationPage that's often at the bottom of the modal stack.

 if (page is NavigationPage)

 continue;

 pageStack.AppendFormat("{0} {1} {2}", page.GetType().ToString(),

 index, isModal);

 pageStack.AppendLine();

 if (page is IPersistentPage)

 {

 string prefix = index.ToString() + ' ';

 ((IPersistentPage)page).Save(prefix);

 }

 index++;

 }

 }

 }

}

In addition, each page that implements IPersistentPage gets a call to its Save method with the integer prefix converted to a string.

The OnSleep method concludes by saving the composite string containing one line per page to the Properties dictionary with the key “pageStack”.

An App class that derives from MultiPageRestorableApp must call the Startup method from its constructor. The Startup method accesses the “pageStack” entry in the Properties dictionary. For each line, it instantiates a page of that type. If the page implements IPersistentPage, then the Restore method is called. Each page is added to the navigation stack with a call to PushAsync or PushModalAsync. Notice the second argument to PushAsync and PushModalAsync is set to false to suppress any page-transition animation the platform might implement:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 // Derived classes must call Startup(typeof(YourStartPage));

 // Derived classes must call base.OnSleep() in override

 public class MultiPageRestorableApp : Application

 {

 protected void Startup(Type startPageType)

 {

 object value;

 if (Properties.TryGetValue("pageStack", out value))

 {

 MainPage = new NavigationPage();

 RestorePageStack((string)value);

 }

 else

 {

 // First time the program is run.

 Assembly assembly = this.GetType().GetTypeInfo().Assembly;

 Page page = (Page)Activator.CreateInstance(startPageType);

 MainPage = new NavigationPage(page);

 }

 }

 async void RestorePageStack(string pageStack)

 {

 Assembly assembly = GetType().GetTypeInfo().Assembly;

 StringReader reader = new StringReader(pageStack);

 string line = null;

 // Each line is a page in the navigation stack.

 while (null != (line = reader.ReadLine()))

 {

 string[] split = line.Split(' ');

 string pageTypeName = split[0];

 string prefix = split[1] + ' ';

 bool isModal = Boolean.Parse(split[2]);

 // Instantiate the page.

 Type pageType = assembly.GetType(pageTypeName);

 Page page = (Page)Activator.CreateInstance(pageType);

 // Call Restore on the page if it's available.

 if (page is IPersistentPage)

 {

 ((IPersistentPage)page).Restore(prefix);

 }

 if (!isModal)

 {

 // Navigate to the next modeless page.

 await MainPage.Navigation.PushAsync(page, false);

 // HACK: to allow page navigation to complete!

 if (Device.OS == TargetPlatform.Windows &&

 Device.Idiom != TargetIdiom.Phone)

 await Task.Delay(250);

 }

 else

 {

 // Navigate to the next modal page.

 await MainPage.Navigation.PushModalAsync(page, false);

 // HACK: to allow page navigation to complete!

 if (Device.OS == TargetPlatform.iOS)

 await Task.Delay(100);

 }

 }

 }

 ...

 }

}

This code contains two comments that begin with the word “HACK”. These indicate statements that are intended to fix two problems encountered in Xamarin.Forms:

• On iOS, nested modal pages don’t properly restore unless a little time separates the PushModalAsync calls.

• On Windows 8.1, modeless pages do not contain left arrow Back buttons unless a little time separates the calls to PushAsync.

Let’s try it out!

The StackRestoreDemo program has three pages, named DemoMainPage, DemoModelessPage, and DemoModalPage, each of which contains a Stepper and implements IPersistentPage to save and restore the Value property associated with that Stepper. You can set different Stepper values on each page and then check whether they’re restored correctly.

The App class derives from MultiPageRestorableApp. It calls Startup from its constructor and calls the base class OnSleep method from its OnSleep override:

Click here to view code image

public class App : Xamarin.FormsBook.Toolkit.MultiPageRestorableApp

{

 public App()

 {

 // Must call Startup with type of start page!

 Startup(typeof(DemoMainPage));

 }

 protected override void OnSleep()

 {

 // Must call base implementation!

 base.OnSleep();

 }

}

The XAML for DemoMainPage instantiates a Stepper, a Label showing the value of that Stepper, and two Button elements:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StackRestoreDemo.DemoMainPage"

 Title="Main Page">

 <StackLayout>

 <Label Text="Main Page"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 <Grid VerticalOptions="CenterAndExpand">

 <Stepper x:Name="stepper"

 Grid.Column="0"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

 <Label Grid.Column="1"

 Text="{Binding Source={x:Reference stepper},

 Path=Value,

 StringFormat='{0:F0}'}"

 FontSize="Large"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

 </Grid>

 <Button Text="Go to Modeless Page"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 Clicked="OnGoToModelessPageClicked" />

 <Button Text="Go to Modal Page"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 Clicked="OnGoToModalPageClicked" />

 </StackLayout>

</ContentPage>

The event handlers for the two Button elements navigate to DemoModelessPage and DemoModalPage. The implementation of IPersistentPage saves and restores the Value property of the Stepper element by using the Properties dictionary. Notice the use of the prefix parameter in defining the dictionary key:

Click here to view code image

public partial class DemoMainPage : ContentPage, IPersistentPage

{

 public DemoMainPage()

 {

 InitializeComponent();

 }

 async void OnGoToModelessPageClicked(object sender, EventArgs args)

 {

 await Navigation.PushAsync(new DemoModelessPage());

 }

 async void OnGoToModalPageClicked(object sender, EventArgs args)

 {

 await Navigation.PushModalAsync(new DemoModalPage());

 }

 public void Save(string prefix)

 {

 App.Current.Properties[prefix + "stepperValue"] = stepper.Value;

 }

 public void Restore(string prefix)

 {

 object value;

 if (App.Current.Properties.TryGetValue(prefix + "stepperValue", out value))

 stepper.Value = (double)value;

 }

}

The DemoModelessPage class is essentially the same as DemoMainPage except for the Title property and the Label that displays the same text as the Title.

The DemoModalPage is somewhat different. It also has a Stepper and a Label that displays the value of the Stepper, but one Button returns to the previous page and the other Button navigates to another modal page:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StackRestoreDemo.DemoModalPage"

 Title="Modal Page">

 <StackLayout>

 <Label Text="Modal Page"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 <Grid VerticalOptions="CenterAndExpand">

 <Stepper x:Name="stepper"

 Grid.Column="0"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

 <Label Grid.Column="1"

 Text="{Binding Source={x:Reference stepper},

 Path=Value,

 StringFormat='{0:F0}'}"

 FontSize="Large"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

 </Grid>

 <Button Text="Go Back"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 Clicked="OnGoBackClicked" />

 <Button x:Name="gotoModalButton"

 Text="Go to Modal Page"

 FontSize="Large"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center"

 Clicked="OnGoToModalPageClicked" />

 </StackLayout>

</ContentPage>

The code-behind file contains handlers for those two buttons and also implements IPersistantPage:

Click here to view code image

public partial class DemoModalPage : ContentPage, IPersistentPage

{

 public DemoModalPage()

 {

 InitializeComponent();

 }

 async void OnGoBackClicked(object sender, EventArgs args)

 {

 await Navigation.PopModalAsync();

 }

 async void OnGoToModalPageClicked(object sender, EventArgs args)

 {

 await Navigation.PushModalAsync(new DemoModalPage());

 }

 public void Save(string prefix)

 {

 App.Current.Properties[prefix + "stepperValue"] = stepper.Value;

 }

 public void Restore(string prefix)

 {

 object value;

 if (App.Current.Properties.TryGetValue(prefix + "stepperValue", out value))

 stepper.Value = (double)value;

 }

}

One easy way to test the program is to progressively navigate to several modeless and then modal pages, setting a different value on the Stepper on each page. Then terminate the application from the phone or emulator (as described earlier) and start it up again. You should be on the same page as the page you left and see the same Stepper values as you go back through the pages.

Something like a real-life app

Ideally, users should not be aware when an application is terminated and restarted. The application experience should be continuous and seamless. A half-entered Entry that was never completed should still be in the same state a week later even if the program hasn’t been running all that time.

The NoteTaker program allows a user to take notes consisting of a title and some text. Because there may be quite a few of these notes, and they have the potential of becoming quite long, they are not stored in the Properties dictionary. Instead, the program makes use of the IFileHelper interface and FileHelper classes demonstrated in the TextFileAsync program in Chapter 20, “Async and file I/O.” Each note is a separate file. Like TextFileAsync, the NoteTaker solution also contains all the projects in the Xamarin.FormsBook.Platform solution and references to those library projects.

NoteTaker is structured much like the DataTransfer programs earlier in this chapter, with pages named NoteTakerHomePage and NoteTakerNotePage.

The home page consists of an ItemsView that dominates the page and an Add button. This Add button is a ToolbarItem that takes the form of a plus sign in the upper-right corner of the iOS, Android, and Windows Phone screens:

[image: Image]

Pressing that button causes the program to navigate to the NoteTakerNotePage. At the top is an Entry for a title, but most of the page is occupied by an Editor for the text of the note itself. You can now type in a title and note:

[image: Image]

It is not necessary to enter a title. If there is none, an identifier is constructed that consists of the beginning of the text. Nor is it necessary to enter the note text. A note can consist solely of a title. (At the time this chapter was written, the Windows Runtime Editor didn’t properly wrap text.)

If either the title or note isn’t blank, the note is considered to be a valid note. When you go back to the home page by using the standard Back button either in the navigation bar or at the bottom of the screen, the new note is added to the ListView:

[image: Image]

You can now add more new notes or edit an existing note by tapping the entry in the ListView. The ListView tap navigates to the same page as the Add button, but notice that the Title property on the second page is now “Edit Note” rather than “New Note”:

[image: Image]

You can now make changes to the note and return back to the home page. Two toolbar items are also available on this page: The first is a Cancel button that allows you to abandon any edits you’ve made. An alert asks whether you’re sure. You can also tap the Delete item to delete the note, also with an alert for confirmation.

One of the tricky aspects of this program involves the Cancel button. Suppose you’re in the middle of editing a note and you get distracted, and eventually the program is terminated. The next time you start up the program, you should return to the edit screen and see your edits. If you then invoke the Cancel command, your edits should be abandoned.

This means that when the application is suspended while a note is being edited, the note must essentially be saved in two different forms: The pre-edit note and the note with the edits. The program handles this by saving each note to a file only when NoteTakerNotePage gets a call to its OnDisappearing override. (However, some special consideration needs to accommodate the case in iOS when the page gets a call to OnDisappearing when the program terminates.) The file version of the Note object is the one without the edits. The edited version is reflected by the current contents of the Entry and Editor; NoteTakerNotePage saves those two text strings in the Save method of its IPersistantPage implementation.

The Note class implements INotifyPropertyChanged by virtue of deriving from ViewModelBase in the Xamarin.FormsBook.Toolkit library. The class defines four public properties: Filename, Title, Text, and Identifier, which is either the same as Title or the first 30 characters of Text, truncated to display complete words only. The Filename property is set from the constructor and never changes:

Click here to view code image

public class Note : ViewModelBase, IEquatable<Note>

{

 string title, text, identifier;

 FileHelper fileHelper = new FileHelper();

 public Note(string filename)

 {

 Filename = filename;

 }

 public string Filename { private set; get; }

 public string Title

 {

 set

 {

 if (SetProperty(ref title, value))

 {

 Identifier = MakeIdentifier();

 }

 }

 get { return title; }

 }

 public string Text

 {

 set

 {

 if (SetProperty(ref text, value) && String.IsNullOrWhiteSpace(Title))

 {

 Identifier = MakeIdentifier();

 }

 }

 get { return text; }

 }

 public string Identifier

 {

 private set { SetProperty(ref identifier, value); }

 get { return identifier; }

 }

 string MakeIdentifier()

 {

 if (!String.IsNullOrWhiteSpace(this.Title))

 return Title;

 int truncationLength = 30;

 if (Text == null || Text.Length <= truncationLength)

 {

 return Text;

 }

 string truncated = Text.Substring(0, truncationLength);

 int index = truncated.LastIndexOf(' ');

 if (index != -1)

 truncated = truncated.Substring(0, index);

 return truncated;

 }

 public Task SaveAsync()

 {

 string text = Title + Environment.NewLine + Text;

 return fileHelper.WriteTextAsync(Filename, text);

 }

 public async Task LoadAsync()

 {

 string text = await fileHelper.ReadTextAsync(Filename);

 // Break string into Title and Text.

 int index = text.IndexOf(Environment.NewLine);

 Title = text.Substring(0, index);

 Text = text.Substring(index + Environment.NewLine.Length);

 }

 public async Task DeleteAsync()

 {

 await fileHelper.DeleteAsync(Filename);

 }

 public bool Equals(Note other)

 {

 return other == null ? false : Filename == other.Filename;

 }

}

The Note class also defines methods to save, load, or delete the file associated with the particular instance of the class. The first line of the file is the Title property, and the remainder of the file is the Text property.

In most cases, there is a one-to-one correspondence between Note files and instances of the Note class. However, if the DeleteAsync method is called, then the Note object still exists, but the file does not. (However, as you’ll see, all references to a Note object whose DeleteAsync method is called are quickly detached and the object become eligible for garbage collection.)

The program does not maintain a list of these files when the program isn’t running. Instead, the NoteFolder class obtains all the files in the application’s local storage with a filename extension of “.note” and creates a collection of Note objects from these files:

Click here to view code image

public class NoteFolder

{

 public NoteFolder()

 {

 this.Notes = new ObservableCollection<Note>();

 GetFilesAsync();

 }

 public ObservableCollection<Note> Notes { private set; get; }

 async void GetFilesAsync()

 {

 FileHelper fileHelper = new FileHelper();

 // Sort the filenames.

 IEnumerable<string> filenames =

 from filename in await fileHelper.GetFilesAsync()

 where filename.EndsWith(".note")

 orderby (filename)

 select filename;

 // Store them in the Notes collection.

 foreach (string filename in filenames)

 {

 Note note = new Note(filename);

 await note.LoadAsync();

 Notes.Add(note);

 }

 }

}

As you’ll see, the filename is constructed from a DateTime object at the time the note is first created, consisting of the year followed by the month, day, and time, which means that when these Note files are sorted by filename, they appear in the collection in the same order in which they are created.

The App class instantiates NoteFolder and makes it available as a public property. App derives from MultiPageRestorableApp, so it calls Startup with the NoteTakerHomePage type, and also implements the OnSleep override by calling the base class implementation:

Click here to view code image

public class App : MultiPageRestorableApp

{

 public App()

 {

 // This loads all the existing .note files.

 NoteFolder = new NoteFolder();

 // Make call to method in MultiPageRestorableApp.

 Startup(typeof(NoteTakerHomePage));

 }

 public NoteFolder NoteFolder { private set; get; }

 protected override void OnSleep()

 {

 // Required call when deriving from MultiPageRestorableApp.

 base.OnSleep();

 }

 // Special processing for iOS.

 protected override void OnResume()

 {

 NoteTakerNotePage notePage =

 ((NavigationPage)MainPage).CurrentPage as NoteTakerNotePage;

 if (notePage != null)

 notePage.OnResume();

 }

}

The App class also overrides the OnResume method. If NoteTakerNotePage is currently active, the method calls an OnResume method in the note page. This is some special processing for iOS. As you’ll see, NoteTakerNotePage saves a Note object to a file during its OnDisappearing override, but it shouldn’t do that if the OnDisappearing override indicates that the application is terminating.

The XAML file for the NoteTakerHomePage instantiates the ListView for displaying all the Note objects. The ItemsSource is bound to the Notes collection of the NoteFolder that is stored in the App class. Each Note object is displayed in the ListView with its Identifier property:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="NoteTaker.NoteTakerHomePage"

 Title="Note Taker">

 <ListView ItemsSource="{Binding Source={x:Static Application.Current},

 Path=NoteFolder.Notes}"

 ItemSelected="OnListViewItemSelected"

 VerticalOptions="FillAndExpand">

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Identifier}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 <ContentPage.ToolbarItems>

 <ToolbarItem Name="Add Note"

 Order="Primary"

 Activated="OnAddNoteActivated">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="new.png"

 Android="ic_action_new.png"

 WinPhone="Images/add.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 </ContentPage.ToolbarItems>

</ContentPage>

The code-behind file is dedicated to handling just two events: The ItemSelected event of the ListView for editing an existing Note, and the Activated event of the ToolbarItem for creating a new Note:

Click here to view code image

partial class NoteTakerHomePage : ContentPage

{

 public NoteTakerHomePage()

 {

 InitializeComponent();

 }

 async void OnListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem != null)

 {

 // Deselect the item.

 ListView listView = (ListView)sender;

 listView.SelectedItem = null;

 // Navigate to NotePage.

 await Navigation.PushAsync(new NoteTakerNotePage

 {

 Note = (Note)args.SelectedItem,

 IsNoteEdit = true

 });

 }

 }

 async void OnAddNoteActivated(object sender, EventArgs args)

 {

 // Create unique filename.

 DateTime dateTime = DateTime.UtcNow;

 string filename = dateTime.ToString("yyyyMMddHHmmssfff") + ".note";

 // Navigate to NotePage.

 await Navigation.PushAsync(new NoteTakerNotePage

 {

 Note = new Note(filename),

 IsNoteEdit = false

 });

 }

}

In both cases, the event handler instantiates NoteTakerNotePage, sets two properties, and navigates to that page. For a new note, a filename is constructed and a Note object is instantiated. For an existing note, the Note object is simply the selected item from the ListView. Notice that the new note has a filename but is not yet saved to a file or made part of the Notes collection in NoteFolder.

The XAML file for NoteTakerNotePage has an Entry and Editor for entering a note’s title and text. The data bindings on the Text properties of these elements imply that the BindingContext for the page is a Note object:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="NoteTaker.NoteTakerNotePage"

 Title="New Note">

 <StackLayout>

 <Label Text="Title:" />

 <Entry Text="{Binding Title}"

 Placeholder="Title (optional)" />

 <Label Text="Note:" />

 <Editor Text="{Binding Text}"

 Keyboard="Text"

 VerticalOptions="FillAndExpand" />

 </StackLayout>

 <ContentPage.ToolbarItems>

 <ToolbarItem Name="Cancel"

 Order="Primary"

 Activated="OnCancelActivated">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="cancel.png"

 Android="ic_action_cancel.png"

 WinPhone="Images/cancel.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 <ToolbarItem Name="Delete"

 Order="Primary"

 Activated="OnDeleteActivated">

 <ToolbarItem.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="discard.png"

 Android="ic_action_discard.png"

 WinPhone="Images/delete.png" />

 </ToolbarItem.Icon>

 </ToolbarItem>

 </ContentPage.ToolbarItems>

</ContentPage>

The two ToolbarItem elements toward the bottom should be visible only when an existing note is being edited. The removal of these toolbar items occurs in the code-behind file when the IsNoteEdit property is set from the home page. That code also changes the Title property for the page. The set accessor for the Note property is responsible for setting the page’s BindingContext:

Click here to view code image

public partial class NoteTakerNotePage : ContentPage, IPersistentPage

{

 Note note;

 bool isNoteEdit;

 ...

 public NoteTakerNotePage()

 {

 InitializeComponent();

 }

 public Note Note

 {

 set

 {

 note = value;

 BindingContext = note;

 }

 get { return note; }

 }

 public bool IsNoteEdit

 {

 set

 {

 isNoteEdit = value;

 Title = IsNoteEdit ? "Edit Note" : "New Note";

 // No toolbar items if it's a new Note!

 if (!IsNoteEdit)

 {

 ToolbarItems.Clear();

 }

 }

 get { return isNoteEdit; }

 }

 ...

}

The NoteTakerNotePage class implements the IPersistentPage interface, which means that it has methods named Save and Restore for saving and restoring the page state. These methods use the Properties dictionary to save and restore the three properties of Note that define a Note object—the Filename, Title, and Text properties—and the IsNoteEdit property of NoteTakerNotePage. This is the Note object in its current edited state:

Click here to view code image

public partial class NoteTakerNotePage : ContentPage, IPersistentPage

{

 ...

 // Special field for iOS.

 bool isInSleepState;

 ...

 // IPersistent implementation

 public void Save(string prefix)

 {

 // Special code for iOS.

 isInSleepState = true;

 Application app = Application.Current;

 app.Properties["fileName"] = Note.Filename;

 app.Properties["title"] = Note.Title;

 app.Properties["text"] = Note.Text;

 app.Properties["isNoteEdit"] = IsNoteEdit;

 }

 public void Restore(string prefix)

 {

 Application app = Application.Current;

 // Create a new Note object.

 Note note = new Note((string)app.Properties["fileName"])

 {

 Title = (string)app.Properties["title"],

 Text = (string)app.Properties["text"]

 };

 // Set the properties of this class.

 Note = note;

 IsNoteEdit = (bool)app.Properties["isNoteEdit"];

 }

 // Special code for iOS.

 public void OnResume()

 {

 isInSleepState = false;

 }

 ...

}

The class also defines a method named OnResume that is called from the App class. Thus, the isInSleepState field is true when the application has been suspended.

The purpose of the isInSleepState field is to avoid saving the Note to a file when the OnDisappearing override is called as the application is being terminated under iOS. Saving this Note object to a file would not allow the user to later abandon edits of the Note by pressing the Cancel button on this page.

If the OnDisappearing override indicates that the user is returning back to the home page—as it otherwise does in this application—then the Note object can be saved to a file, and possibly added to the Notes collection in NoteFolder:

Click here to view code image

public partial class NoteTakerNotePage : ContentPage, IPersistentPage

{

 ...

 async protected override void OnDisappearing()

 {

 base.OnDisappearing();

 // Special code for iOS:

 // Do not save note when program is terminating.

 if (isInSleepState)

 return;

 // Only save the note if there's some text somewhere.

 if (!String.IsNullOrWhiteSpace(Note.Title) ||

 !String.IsNullOrWhiteSpace(Note.Text))

 {

 // Save the note to a file.

 await Note.SaveAsync();

 // Add it to the collection if it's a new note.

 NoteFolder noteFolder = ((App)App.Current).NoteFolder;

 // IndexOf method finds match based on Filename property

 // based on implementation of IEquatable in Note.

 int index = noteFolder.Notes.IndexOf(note);

 if (index == -1)

 {

 // No match -- add it.

 noteFolder.Notes.Add(note);

 }

 else

 {

 // Match -- replace it.

 noteFolder.Notes[index] = note;

 }

 }

 }

 ...

}

The Note class implements the IEquatable interface and defines two Note objects to be equal if their Filename properties are the same. The OnDisappearing override relies on that definition of equality to avoid adding a Note object to the collection if another one already exists with the same Filename property.

Finally, the NoteTakerNotePage code-behind file has handlers for the two ToolbarItem elements. In both cases, the processing begins with a call to DisplayAlert to get user confirmation, and either reloads the Note object from the file (effectively overwriting any edits), or deletes the file and removes it from the Notes collection:

Click here to view code image

public partial class NoteTakerNotePage : ContentPage, IPersistentPage

{

 ...

 async void OnCancelActivated(object sender, EventArgs args)

 {

 if (await DisplayAlert("Note Taker", "Cancel note edit?",

 "Yes", "No"))

 {

 // Reload note.

 await Note.LoadAsync();

 // Return to home page.

 await Navigation.PopAsync();

 }

 }

 async void OnDeleteActivated(object sender, EventArgs args)

 {

 if (await DisplayAlert("Note Taker", "Delete this note?",

 "Yes", "No"))

 {

 // Delete Note file and remove from collection.

 await Note.DeleteAsync();

 ((App)App.Current).NoteFolder.Notes.Remove(Note);

 // Wipe out Entry and Editor so the Note

 // won't be saved during OnDisappearing.

 Note.Title = "";

 Note.Text = "";

 // Return to home page.

 await Navigation.PopAsync();

 }

 }

}

Of course, this is not the only way to write a program like this. It’s possible to move a lot of the logic for creating, editing, and deleting notes into AppData and make it a proper ViewModel. AppData would probably need a new property of type Note called CurrentNote, and several properties of type ICommand for binding to the Command property of each of the ToolbarItem elements.

Some programmers even try to move page-navigation logic into ViewModels, but not everyone agrees that this is a proper approach to MVVM. Is a page part of the user interface and hence part of the View? Or are pages really more like a collection of related data items?

Philosophical questions such as those might become even more vexing as the varieties of page types in Xamarin.Forms are explored in the next chapter.

Chapter 25. Page varieties

If you think of a Xamarin.Forms application as a building, then you construct this building from bricks that take the form of views and elements. You arrange them into walls using layout classes, and then form them into rooms with ContentPage, with passages from room to room made possible with navigational functions structured around NavigationPage.

This visual architecture can be enhanced a bit more with other instantiable classes that derive from Page. Here’s the complete hierarchy:

Page

 TemplatedPage

 ContentPage

 NavigationPage

 MasterDetailPage

 MultiPage<T>

 TabbedPage

 CarouselPage

This chapter is devoted to these additional Page derivatives, which are similar in that they serve as parents to manage the visual presentation of two or more other pages:

• MasterDetailPage manages two pages: The master is generally a collection of data or a list of items, and the detail generally displays a particular item from the collection.

• TabbedPage consists of multiple child pages identified by tabs. You can populate TabbedPage with a collection of discrete pages or automatically generate tabs and pages based on a collection of data in much the same way that a ListView generates items based on a data collection. With this second option, each tab is associated with a member of the collection, formatted with a template, but this option is not suitable for iOS platforms.

The CarouselPage is slated for deprecation in favor of a forthcoming CarouselView, so it will not be discussed in this chapter. MultiPage<T> is abstract and cannot be instantiated itself, but it defines most of the properties and events for TabbedPage.

Master and Detail

The MasterDetailPage defines two properties, named Master and Detail of type Page. Generally, you’ll set these two properties to objects of type ContentPage, but currently, to get MasterDetailPage to work on the Universal Windows Platform, the detail page must be a NavigationPage.

How the MasterDetailPage displays and switches between these two pages depends on several factors: the underlying operating system, whether you’re running the program on a phone or tablet, the portrait or landscape orientation of the device, and the setting of a property of MasterDetailPage named MasterBehavior. Several behaviors are possible:

• split: The master and detail pages are displayed side by side, the master on the left and the detail on the right.

• popover: The detail page is animated to cover, or partially cover, the master page. There are three possibilities:

[image: Image] slide: The detail and master page slide back and forth.

[image: Image] overlap: The detail page partially covers the master page.

[image: Image] swap: The detail page entirely obscures the master page.

In theory, the MasterBehavior property of MasterDetailPage allows you to choose between the split and popover behaviors. You set this property to one of the five members of the MasterBehavior enumeration:

• Default

• Split

• SplitOnLandscape

• SplitOnPortrait

• Popover

As you’ll see, however, the setting of the MasterBehavior property has no effect for applications running on phones. It only affects applications running on a tablet or the desktop. Phones always exhibit a popover behavior. Whether this behavior results in a slide, overlap, or swap depends on the platform.

Exploring the behaviors

Let’s explore these behaviors with a program named MasterDetailBehaviors. The program defines three pages, named DemoPage (which derives from MasterDetailPage), and two ContentPage derivatives that are children of the MasterDetailPage. These are named MasterPage and DetailPage.

MasterPage and DetailPage are very similar. Here’s MasterPage:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MasterDetailBehaviors.MasterPage"

 Title="Master Page"

 Padding="10"

 x:Name="masterPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <Frame OutlineColor="Accent">

 <StackLayout Orientation="Horizontal"

 Spacing="0"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <Label Text="{Binding Source={x:Reference masterPage},

 Path=Width,

 StringFormat='Master: {0:F0}'}"

 FontSize="Large" />

 <Label Text="{Binding Source={x:Reference masterPage},

 Path=Height,

 StringFormat=' × {0:F0}'}"

 FontSize="Large" />

 </StackLayout>

 </Frame>

</ContentPage>

It contains a Frame with a pair of Label elements to display the width and height of the page. Notice that a Title property is set and the page contains the standard Padding to avoid overlapping the status bar on the iPhone.

The DetailPage does not contain that Padding. You’ll see that it’s unnecessary. But like MasterPage, this page also sets the Title property and contains a Frame with a pair of Label elements to display the width and height:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MasterDetailBehaviors.DetailPage"

 Title="Detail Page"

 Padding="10"

 x:Name="detailPage">

 <Frame OutlineColor="Accent">

 <StackLayout Orientation="Horizontal"

 Spacing="0"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Label Text="{Binding Source={x:Reference detailPage},

 Path=Width,

 StringFormat='Detail: {0:F0}'}"

 FontSize="Large"/>

 <Label Text="{Binding Source={x:Reference detailPage},

 Path=Height,

 StringFormat=' × {0:F0}'}"

 FontSize="Large" />

 </StackLayout>

 </Frame>

</ContentPage>

You’ll also need a page that derives from MasterDetailPage. To add such a page in Visual Studio, add a new item to the project by using the Forms Xaml Page template; in Xamarin Studio, add a new file to the project by using the Forms ContentPage Xaml template. This creates a page that derives from ContentPage, but you can then simply change ContentPage to MasterDetailPage in both the XAML file and C# code-behind file.

Here’s the XAML file for DemoPage with MasterDetailPage as the root element:

Click here to view code image

<MasterDetailPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:MasterDetailBehaviors"

 x:Class="MasterDetailBehaviors.DemoPage"

 Title="Demo Page"

 MasterBehavior="Default">

 <MasterDetailPage.Master>

 <local:MasterPage />

 </MasterDetailPage.Master>

 <MasterDetailPage.Detail>

 <NavigationPage>

 <x:Arguments>

 <local:DetailPage />

 </x:Arguments>

 </NavigationPage>

 </MasterDetailPage.Detail>

</MasterDetailPage>

The MasterDetailPage.Master and MasterDetailPage.Detail property elements are set to instances of MasterPage and DetailPage, respectively, but with a little difference: The Detail property is set to a NavigationPage, and the x:Arguments tags specify the DetailPage as the constructor argument. This is necessary to enable the user interface that lets the user switch between the master and detail pages on the Universal Windows Platform.

Also notice that the MasterBehavior property is set to Default in the root tag. You can experiment with different settings.

The App constructor sets the MainPage property to DemoPage. A Xamarin.Forms program should not navigate to a MasterDetailPage:

Click here to view code image

namespace MasterDetailBehaviors

{

 public class App : Application

 {

 public App()

 {

 MainPage = new DemoPage();

 }

 ...

 }

}

When you first run the program, by default the detail page is initially displayed:

[image: Image]

On all three platforms, the heading identifies this as the detail page by displaying the Title property of DetailPage. The iPhone also displays the Title of the MasterPage.

The operation to switch from the detail page to the master is different on the three platforms:

• On iOS, swipe the detail page to the right, or tap the Master Page text in the heading.

• On Android, swipe right from the left edge of the phone, or tap the arrow in the upper-left corner.

• On Windows 10 Mobile, tap the menu icon in the upper-left corner.

Here’s the result after the switch:

[image: Image]

The master page is now visible. In terms of the MasterBehavior enumeration, the master page becomes visible with a Popover behavior, but the three screenshots illustrate differences between the platforms:

• The behavior on iOS is a slide. The detail page slides to the right as the master page slides in from the left; you can still see the left part of the detail page.

• The Android is an overlay. It’s hard to tell because the detail page is faded out, but look closely, and you can see the Frame in the DetailPage at the far right of the screen.

• Windows 10 Mobile is also a slide. You can see the detail page behind the master page.

On both iOS and Android, the width of the master page is somewhat less than the width of the screen.

To return to the detail page on iOS, swipe to the left. On Android, swipe the master page to the left, tap the visible part of the detail page at the far right of the screen, or tap the Back triangle at the bottom of the screen. On Windows Phone, tap the menu icon again or the Back arrow.

You’ll see similar behavior for these three platforms in landscape mode, except that master page has a similar width as the master page in portrait mode, which results in much more of the detail page being visible:

[image: Image]

If you experiment with different settings of the MasterBehavior property of MasterDetailPage, you’ll discover that this property has no effect on phones. Phones always have a popover behavior. Only on the iPad and on Windows tablets and the desktop will you see a split behavior.

On the iPad in landscape mode, the MasterBehavior.Default setting results in a split behavior:

[image: Image]

However, you can control the behavior. If you set the MasterBehavior property to Popover, you’ll get a master page that overlays the detail page much like on the iPhone.

For an iPad in portrait mode, the default setting is the same as Popover, and you’ll need to select Split or SplitOnPortrait to get a split screen in portrait mode.

The SplitOnLandscape and SplitOnPortrait options allow you to have a different behavior for portrait and landscape modes. The SplitOnLandscape setting makes the most sense, and that is why it’s the same as Default for tablets and the desktop: The master and detail views share the screen in landscape mode, but when the tablet is turned to portrait mode, the detail view occupies the full screen and the master page overlays it.

Here’s the program running on the Surface Pro 3 in tablet mode:

[image: Image]

This is a split behavior. You’ll see a popover behavior if you start the program with the tablet in portrait mode, and you can control the behavior with different settings of the MasterBehavior property.

The user interface to switch between master and detail is a bit different on Windows 8.1 and Windows Phone 8.1. A toolbar item is automatically provided to switch between master and detail:

[image: Image]

The Windows 8.1 screen shows the split behavior, but if you set it for popover, you’ll need to right-click the screen to display the toolbar. The Windows Phone 8.1 screen displays the toolbar normally. You are responsible for setting the toolbar button image and the associated text. The image and text are the same regardless of whether the master or detail view is visible. The text is set from the Title property of the master page., which in this case is “Master Page”.

The bitmap for the button is set from the Icon property of the master page. (This Icon property is actually defined by Page and inherited by all the other page derivatives.) The Windows 8.1 and Windows Phone 8.1 projects were both given a folder named Images. The content of this folder is a PNG file. The constructor in the code-behind file for MasterPage sets that bitmap to the Icon property:

Click here to view code image

public partial class MasterPage : ContentPage

{

 public MasterPage()

 {

 InitializeComponent();

 if (Device.OS == TargetPlatform.WinPhone ||

 Device.OS == TargetPlatform.Windows)

 {

 Icon = new FileImageSource

 {

 File = "Images/ApplicationBar.Select.png"

 };

 }

 }

}

If you do not set that Icon property—either in the code-behind file or in the XAML file—the toolbar button will be displayed on the Windows 8.1 and Windows Phone 8.1 platforms without an image.

Tapping that toolbar icon switches between detail and master:

[image: Image]

Back to school

So far in this book you’ve seen a couple of programs that use a ListView to display the students of the School of Fine Art. These programs all have different approaches for displaying a detailed look at one of the students. The SelectedStudentDetail program in Chapter 19, “Collection views,” displayed the ListView in the top half of the screen and the detail in the bottom half. The SchoolAndStudents program in Chapter 24, “Page navigation,” used page navigation to display the student from the ListView. Now let’s use a MasterDetailPage for this job and call it SchoolAndDetail.

One major difference between the SchoolAndDetail program and MasterDetailBehaviors involves how the program is constructed. Rather than having separate classes for the master and detail page, everything is consolidated in one class that derives from MasterDetailPage.

This single class (shown below) is named SchoolAndDetailPage. The layout of the master and detail pages are defined within the MasterDetailPage.Master and MasterDetailPage.Detail property-element tags.

The root tag sets a property of MasterDetailPage named IsPresented. This property allows a program to switch between master and detail views programmatically or declaratively in XAML. The default value is false, which means to display the detail page, but the root element of this XAML file sets it to True to display the master page at startup:

Click here to view code image

<MasterDetailPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:school="clr-namespace:SchoolOfFineArt;assembly=SchoolOfFineArt"

 x:Class="SchoolAndDetail.SchoolAndDetailPage"

 IsPresented="True">

 <MasterDetailPage.Master>

 <ContentPage Title="School">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 WinPhone="Images/refresh.png" />

 </ContentPage.Icon>

 <ContentPage.BindingContext>

 <school:SchoolViewModel />

 </ContentPage.BindingContext>

 <StackLayout BindingContext="{Binding StudentBody}">

 <Label Text="{Binding School}"

 FontSize="Large"

 FontAttributes="Bold"

 HorizontalTextAlignment="Center" />

 <ListView x:Name="listView"

 ItemsSource="{Binding Students}"

 ItemTapped="OnListViewItemTapped">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ImageCell ImageSource="{Binding PhotoFilename}"

 Text="{Binding FullName}"

 Detail="{Binding GradePointAverage,

 StringFormat='G.P.A. = {0:F2}'}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </StackLayout>

 </ContentPage>

 </MasterDetailPage.Master>

 <!-- Detail Page -->

 <MasterDetailPage.Detail>

 <NavigationPage>

 <x:Arguments>

 <ContentPage Title="{Binding FirstName}"

 BindingContext="{Binding Source={x:Reference listView},

 Path=SelectedItem}">

 <StackLayout>

 <!-- Name -->

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center"

 Spacing="0">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="FontAttributes" Value="Bold" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Label Text="{Binding LastName}" />

 <Label Text="{Binding FirstName, StringFormat=', {0}'}" />

 <Label Text="{Binding MiddleName, StringFormat=' {0}'}" />

 </StackLayout>

 <!-- Photo -->

 <Image Source="{Binding PhotoFilename}"

 VerticalOptions="FillAndExpand" />

 <!-- Sex -->

 <Label Text="{Binding Sex, StringFormat='Sex = {0}'}"

 HorizontalOptions="Center" />

 <!-- GPA -->

 <Label Text="{Binding GradePointAverage, StringFormat='G.P.A. =

 {0:F2}'}"

 HorizontalOptions="Center" />

 </StackLayout>

 </ContentPage>

 </x:Arguments>

 </NavigationPage>

 </MasterDetailPage.Detail>

 </MasterDetailPage>

Notice also that the Title and Icon properties are set on the master page. The Windows 8.1 and Windows Phone 8.1 projects contain an Images directory with a Refresh icon that might also suggest a toggle operation. The master page also instantiates SchoolViewModel as an object in the MasterPageBase.BindingContext property-element tags.

One advantage of putting everything within a single XAML file is that you can establish a data binding between the master and detail pages. The BindingContext of the ContentPage that serves as the detail page is bound to the SelectedItem property of the ListView.

Other than those differences, the page definitions themselves are quite similar to the SchoolAndStudents program in the previous chapter.

The program starts up displaying the master page, which includes the ListView with the students:

[image: Image]

This program has another way to switch from the master page to the detail page. The code-behind file contains a simple handler for the ItemTapped event of the ListView:

Click here to view code image

public partial class SchoolAndDetailPage : MasterDetailPage

{

 public SchoolAndDetailPage()

 {

 InitializeComponent();

 }

 void OnListViewItemTapped(object sender, ItemTappedEventArgs args)

 {

 // Show the detail page.

 IsPresented = false;

 }

}

The difference between ItemTapped and ItemSelected is that ItemTapped works even if the item is already selected. The ItemTapped handler doesn’t deselect the item. This maintains a consistency between the selected item in the ListView and the contents of the detail page.

Here’s the detail page that you’ll see after a tap:

[image: Image]

To return to the master page on iOS, swipe right. On Android, swipe right from the left edge or tap the arrow at the top. On Windows 10 Mobile, tap the menu icon in the upper-left corner.

On both Android and Windows Phone, tapping the Back arrow at the bottom of the screen will exit the program. That Back arrow will switch from master to detail, but not from detail to master.

Here’s the program running on the iPad Air 2 simulator showing the side-by-side display of the master and detail:

[image: Image]

Your own user interface

If you’d like to supply your own user interface for switching between the master and detail views, you’ll probably also want to disable the interface automatically provided by the MasterDetailPage. You can do this in two ways:

• Set the IsGestureEnabled property to false to disable the swipe gesture support on iOS and Android.

• Override the protected ShouldShowToolbarButton method and return false to hide the toolbar buttons on Windows 8.1 and Windows Phone 8.1.

However, you won’t be able to disable the interface entirely. Setting the IsGestureEnabled property to false means you can no longer use swipes to switch between master and detail on iOS and Android. The property does not affect taps, however. For both iOS and Android, when the display has a popover behavior and the master page is overlaying the detail page, you can dismiss the master page with a tap on the detail page at the right. IsGestureEnabled does not disable those taps.

If you set the IsGestureEnabled property to false, you’ll need to supply your own user interface for displaying the master view from the detail page on iOS and Android.

The toolbar button that accompanies the MasterDetailPage on Windows 8.1 and Windows Phone 8.1 platforms is attached to the underlying native page. It cannot be accessed from the ToolbarItems collections of the MasterDetailPage or of the two pages set to the Master and Detail properties. Overriding the ShouldShowToolbarButton and returning false suppresses that toolbar button. Again, if you do that, you must supply you own user interface for switching between master and detail views.

Another problem is that you don’t need an interface at all to switch between the views when the MasterDetailPage is using a split mode. You know that you only get a split mode on iPad and Windows Runtime tablets, but if you specify a MasterBehavior as Default or SplitOnLandscape, how can you tell when the screen is in a split mode or overlay mode?

On the Windows Runtime tablets, a call to the base implementation of ShouldShowToolbarButton will tell you. This method returns true for phones and for tablets in an overlay mode, but it returns false for tablets in a split mode. However, this method is only implemented on Windows 8.1 and Windows Phone 8.1.

For iOS, you can determine whether the iPad is in an overlay or split mode by checking the dimensions of the page. If the page is in portrait mode, it’s overlay; for landscape mode, it’s split.

Let’s put all this knowledge to use. The ColorsDetails program displays all the colors in the NamedColor collection in a ListView in the master page and provides detailed information about the selected color in its detail page. Here’s the master page definition first:

Click here to view code image

<MasterDetailPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="ColorsDetails.ColorDetailsPage"

 IsPresented="True"

 x:Name="page">

 <MasterDetailPage.Master>

 <ContentPage Title="Colors">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ListView x:Name="listView"

 SeparatorVisibility="None"

 ItemsSource="{x:Static toolkit:NamedColor.All}"

 ItemTapped="OnListViewItemTapped">

 <ListView.RowHeight>

 <OnPlatform x:TypeArguments="x:Int32"

 iOS="80"

 Android="80"

 WinPhone="90" />

 </ListView.RowHeight>

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <ContentView Padding="5">

 <Frame OutlineColor="Accent"

 Padding="10">

 <StackLayout Orientation="Horizontal">

 <BoxView x:Name="boxView"

 Color="{Binding Color}"

 WidthRequest="50"

 HeightRequest="50" />

 <StackLayout>

 <Label Text="{Binding Name}"

 FontSize="Medium"

 VerticalOptions="StartAndExpand" />

 <Label Text="{Binding RgbDisplay,

 StringFormat='RGB = {0}'}"

 FontSize="Small"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

 </StackLayout>

 </Frame>

 </ContentView>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </ContentPage>

 </MasterDetailPage.Master>

 ...

</MasterDetailPage>

The markup for this ListView is quite similar to that in the CustomNamedColorList program in Chapter 19. In this new version, however, the ItemTapped event of the ListView is handled in the code-behind file. (You’ll see that code shortly.)

Here’s the list of colors on the three platforms:

[image: Image]

The ContentPage that serves as the detail view has its BindingContext set to the SelectedItem property of the ListView. Most of the contents—which include a BoxView of the color; the red, green, and blue values; and the hue, saturation, and luminosity values—are in a ScrollView. This is for the benefit of phones in landscape mode. The only elements not in this ScrollView are a Label with the color name at the top of the page and a Button on the bottom:

Click here to view code image

<MasterDetailPage ... >

 ...

 <MasterDetailPage.Detail>

 <NavigationPage>

 <x:Arguments>

 <ContentPage Title="Color"

 BindingContext="{Binding Source={x:Reference listView},

 Path=SelectedItem}">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Label Text="{Binding FriendlyName}"

 Style="{DynamicResource TitleStyle}"

 HorizontalTextAlignment="Center" />

 <ScrollView VerticalOptions="FillAndExpand">

 <StackLayout>

 <BoxView Color="{Binding Color}"

 WidthRequest="144"

 HeightRequest="144"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 <StackLayout VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="HorizontalTextAlignment"

 Value="End" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Label Text="{Binding Color.R,

 StringFormat='Red = {0:F2}'}" />

 <Label Text="{Binding Color.G,

 StringFormat='Green = {0:F2}'}" />

 <Label Text="{Binding Color.B,

 StringFormat='Blue = {0:F2}'}" />

 <Label Text="{Binding Color.A,

 StringFormat='Alpha = {0:F2}'}" />

 <Label Text=" " />

 <Label Text="{Binding Color.Hue,

 StringFormat='Hue = {0:F2}'}" />

 <Label Text="{Binding Color.Saturation,

 StringFormat='Saturation = {0:F2}'}"

/>

 <Label Text="{Binding Color.Luminosity,

 StringFormat='Luminosity = {0:F2}'}"

/>

 </StackLayout>

 </StackLayout>

 </ScrollView>

 <Button x:Name="returnButton"

 Text="Return to list"

 HorizontalOptions="Center"

 Clicked="OnReturnButtonClicked">

 <Button.IsEnabled>

 <Binding Source="{x:Reference page}"

 Path="IsPresented">

 <Binding.Converter>

 <toolkit:BooleanNegationConverter />

 </Binding.Converter>

 </Binding>

 </Button.IsEnabled>

 </Button>

 </StackLayout>

 </ContentPage>

 </x:Arguments>

 </NavigationPage>

 </MasterDetailPage.Detail>

</MasterDetailPage>

The Button on the bottom has a Clicked event handler in the code-behind file, of course, but also notice the data binding to its IsEnabled property. The source of the data binding is the IsPresented property of the MasterDetailPage. If IsPresented is true—which means that master view is displayed—then the Button is disabled. (If you’d like to do something similar in code, MasterDetailPage defines an IsPresentedChanged event.)

You can see the Button at the bottom of the detail view for returning to the master view:

[image: Image]

The code-behind file handles the event handlers for the ListView and Button (toward the bottom of the file). These merely set the IsPresented property to false and true, respectively, and have no effect when the MasterDetailPage is in split mode:

Click here to view code image

public partial class ColorDetailsPage : MasterDetailPage

{

 public ColorDetailsPage()

 {

 InitializeComponent();

 IsGestureEnabled = false;

 // Special processing for iPads.

 if (Device.OS == TargetPlatform.iOS &&

 Device.Idiom == TargetIdiom.Tablet)

 {

 SizeChanged += (sender, args) =>

 {

 // Enable button for portrait mode.

 returnButton.IsVisible = Height > Width;

 };

 }

 }

 public override bool ShouldShowToolbarButton()

 {

 // Only works for Windows and Windows Phone platforms.

 returnButton.IsVisible = base.ShouldShowToolbarButton();

 return false;

 }

 void OnListViewItemTapped(object sender, ItemTappedEventArgs args)

 {

 IsPresented = false;

 }

 void OnReturnButtonClicked(object sender, EventArgs args)

 {

 IsPresented = true;

 }

}

The more interesting parts of the code-behind file are in the constructor and the override of the ShouldShowToolbarButton. These sections of code attempt two jobs:

First, they disable the existing user interface for switching between master and detail views by setting IsGestureEnabled to false and returning false from ShouldShowToolbarButton. This means that no toolbar item is displayed on the Windows 8.1 and Windows Phone 8.1 platforms. The MasterDetailPage still requires that a Title be set on the ContentPage that serves as the master view, but that Title is not used anywhere on these platforms.

The second job is to hide that Button entirely when the MasterDetailPage is in split view. The SizeChanged handler for the page is set in the constructor when the program is running on an iPad, and it sets the IsVisible property to true only if the page dimensions indicate portrait mode. The ShouldShowToolbarButton override handles Windows tablets by showing the Button if the base implementation of ShouldShowToolbarButton returns true.

That’s one way to implement your own user interface for switching between master and detail views. The MasterDetailTaps program shows another approach. This program is similar to the MasterDetailBehavior program that began this chapter, but with the definitions of the master and detail views consolidated in one XAML file. This new program disables the existing UI for transitioning between master and detail views and replaces it with simple taps.

MasterDetailTapsPage derives from MasterDetailPage and includes similar Frame and Label elements as the earlier program:

Click here to view code image

<MasterDetailPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MasterDetailTaps.MasterDetailTapsPage"

 Title="Demo Page">

 <MasterDetailPage.Master>

 <ContentPage Title="Master"

 Padding="10"

 x:Name="masterPage">

 <Frame OutlineColor="Accent"

 BackgroundColor="Transparent">

 <Frame.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnMasterTapped" />

 </Frame.GestureRecognizers>

 <StackLayout Orientation="Horizontal"

 Spacing="0"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <Label Text="{Binding Source={x:Reference masterPage},

 Path=Width,

 StringFormat='Master: {0:F0}'}"

 FontSize="Large" />

 <Label Text="{Binding Source={x:Reference masterPage},

 Path=Height,

 StringFormat=' × {0:F0}'}"

 FontSize="Large" />

 </StackLayout>

 </Frame>

 </ContentPage>

 </MasterDetailPage.Master>

 <MasterDetailPage.Detail>

 <NavigationPage>

 <x:Arguments>

 <ContentPage Title="Detail"

 Padding="10"

 x:Name="detailPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <Frame OutlineColor="Accent"

 BackgroundColor="Transparent">

 <Frame.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnDetailTapped" />

 </Frame.GestureRecognizers>

 <StackLayout Orientation="Horizontal"

 Spacing="0"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Label Text="{Binding Source={x:Reference detailPage},

 Path=Width,

 StringFormat='Detail: {0:F0}'}"

 FontSize="Large"/>

 <Label Text="{Binding Source={x:Reference detailPage},

 Path=Height,

 StringFormat=' × {0:F0}'}"

 FontSize="Large" />

 </StackLayout>

 </Frame>

 </ContentPage>

 </x:Arguments>

 </NavigationPage>

 </MasterDetailPage.Detail>

</MasterDetailPage>

Notice the TapGestureRecognizer attached to the Frame element on both the master and detail pages.

Notice also that the BackgroundColor of each Frame is set to Transparent. This is for the benefit of the Windows platforms. The default background of a Frame in these platforms is null, which lets taps fall through to the underlying element. Setting the background to Transparent doesn’t change the appearance but captures the taps.

The Tapped handlers simply set IsPresented:

Click here to view code image

public partial class MasterDetailTapsPage : MasterDetailPage

{

 public MasterDetailTapsPage()

 {

 InitializeComponent();

 // Disable swipe interface.

 IsGestureEnabled = false;

 }

 public override bool ShouldShowToolbarButton()

 {

 // Hide toolbar button on Windows platforms.

 return false;

 }

 void OnMasterTapped(object sender, EventArgs args)

 {

 // Catch exceptions when setting IsPresented in split mode.

 try

 {

 IsPresented = false;

 }

 catch

 {

 }

 }

 void OnDetailTapped(object sender, EventArgs args)

 {

 IsPresented = true;

 }

}

The normal user interface is disabled as in the previous program but no logic is required to hide the new user interface in split mode.

The try and catch block in the OnMasterTapped method is used to avoid an InvalidOperationException that occurs on both Windows and iPads in split mode. The error message that accompanies the exception states “Can’t change IsPresented when setting Split.”

TabbedPage

TabbedPage derives from the abstract class MultiPage<Page>. It maintains a collection of children of type Page, only one of which is fully visible at a time. TabbedPage identifies each child by a series of tabs across the top or bottom of the page. An iOS application that uses a TabbedPage must include an icon for each tab; otherwise, Apple will not accept the program for the App Store. This icon is set via each page’s Icon property.

MultiPage<T> defines all the important properties and events for TabbedPage, the most important of which is:

• Children property of type IList<T>.

Normally, you fill this Children collection with page objects.

However, you can use TabbedPage in a somewhat different way by observing that MultiPage<T> is quite similar to ItemsView<T>, the base class of ListView, in that it defines:

• the ItemsSource property of type IEnumerable, and

• the ItemTemplate property of type DataTemplate.

If you supply an IEnumerable collection of objects with public properties suitable for data bindings, and a template with a page type as the root element, then the children are generated dynamically. The BindingContext of each generated page is set equal to the particular object from ItemsSource.

MultiPage<T> defines two properties that can help your application keep track of which page in the Children collection the user is currently viewing:

• CurrentPage of type T (Page for TabbedPage).

• SelectedItem of type object, referring to an object in the ItemsSource collection.

Both properties are gettable and settable.

MultiPage<T> also defines two events:

• PagesChanged is fired when the ItemsSource collection changes

• CurrentPageChanged is fired when the viewed page changes.

Most commonly, you’ll add ContentPage derivatives directly to the Children collection. If you want to use TabbedPage for displaying a collection of similar pages based on a collection of data, you can alternatively set the ItemsSource property to that collection and define a page by using ItemTemplate, but this approach should be avoided on iOS.

Discrete tab pages

The most common use of TabbedPage is to navigate between different functions within an app, which typically means each tab presents a different type of page. It is common for these pages to be related in some way—perhaps multiple pages for application settings—even if they don’t look the same.

The DiscreteTabbedColors program has three tabs: the first displaying a list of the built-in Xamarin.Forms colors, the second displaying a list of colors from the NamedColor class in the Xamarin.FormsBook.Toolkit (introduced in earlier chapters), and the third containing a color-tester (with which you can select arbitrary RGB values to preview).

The DiscreteTabbedColors program begins with three ContentPage derivatives. The first is code-only and consists of a simple list of the standard Xamarin.Forms colors.

Click here to view code image

class BuiltInColorsPage : ContentPage

{

 public BuiltInColorsPage()

 {

 Title = "Built-in";

 Icon = Device.OnPlatform("ic_action_computer.png", null, null);

 Padding = new Thickness(5, Device.OnPlatform(20, 5, 5), 5, 5);

 double fontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label));

 Content = new ScrollView

 {

 Content = new StackLayout

 {

 Spacing = 0,

 Children =

 {

 new Label

 {

 Text = "White",

 TextColor = Color.White,

 FontSize = fontSize

 },

 ...

 new Label

 {

 Text = "Purple",

 TextColor = Color.Purple,

 FontSize = fontSize

 }

 }

 }

 };

 }

}

Notice that the Title property is set. This is essential for the tab text on all the platforms. The code also sets the Icon property for iOS. The particular icon is part of the Android set of icons described in Chapter 13, “Bitmaps,” and is 32-pixels square.

The NamedColorsPage consists of a ListView of all the NamedColor objects. Notice again the Title property and Icon property for iOS:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="DiscreteTabbedColors.NamedColorsPage"

 Title="Toolkit">

 <ContentPage.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="ic_action_storage.png" />

 </ContentPage.Icon>

 <ListView ItemsSource="{x:Static toolkit:NamedColor.All}">

 <ListView.RowHeight>

 <OnPlatform x:TypeArguments="x:Int32"

 iOS="80"

 Android="80"

 WinPhone="90" />

 </ListView.RowHeight>

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <ContentView Padding="5">

 <StackLayout Orientation="Horizontal">

 <BoxView x:Name="boxView"

 Color="{Binding Color}"

 WidthRequest="50"

 HeightRequest="50" />

 <StackLayout>

 <Label Text="{Binding Name}"

 FontSize="Medium"

 VerticalOptions="StartAndExpand" />

 <Label Text="{Binding RgbDisplay, StringFormat='RGB = {0}'}"

 FontSize="Small"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

 </StackLayout>

 </ContentView>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

The third page contains a trio of Slider elements to select a color, such as you’ve seen before:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="DiscreteTabbedColors.ColorTestPage"

 Title="Test">

 <ContentPage.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="ic_action_gamepad.png" />

 </ContentPage.Icon>

 <StackLayout Padding="20, 40">

 <StackLayout.BindingContext>

 <toolkit:ColorViewModel Color="Gray" />

 </StackLayout.BindingContext>

 <Label Text="{Binding Red, StringFormat='Red = {0:F2}'}"

 HorizontalOptions="Center" />

 <Slider Value="{Binding Red}" />

 <Label Text="{Binding Green, StringFormat='Green = {0:F2}'}"

 HorizontalOptions="Center" />

 <Slider Value="{Binding Green}" />

 <Label Text="{Binding Blue, StringFormat='Blue = {0:F2}'}"

 HorizontalOptions="Center" />

 <Slider Value="{Binding Blue}" />

 <BoxView Color="{Binding Color}"

 VerticalOptions="FillAndExpand" />

 </StackLayout>

</ContentPage>

Here’s the DiscreteTabbedColorsPage. Notice the root element of TabbedPage. This XAML file simply adds instances of these three page types to the Children collection of the TabbedPage:

Click here to view code image

<TabbedPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:DiscreteTabbedColors"

 x:Class="DiscreteTabbedColors.DiscreteTabbedColorsPage">

 <local:BuiltInColorsPage />

 <local:NamedColorsPage />

 <local:ColorTestPage />

</TabbedPage>

Here are the three tabs on the three platforms:

[image: Image]

On iOS, the tabs are at the bottom, identified with text and icons, and the selected tab is highlighted. Both Android and Windows 10 Mobile display the tabs at the top of the screen but highlight the selected tab in different ways.

The StudentNotes program has a home page that lists all the students in a ListView, but selecting a student from this list causes the program to navigate to a TabbedPage. The page has three tabs: the first displays textual information about the student, the second displays the photograph of the student, and the third displays an Editor that allows a teacher or other school administrator to enter some notes about the student. (This feature makes use of the Notes property in the Student class in the SchoolOfFineArt library.)

The App class in the StudentNotes program passes the Properties dictionary defined by Application to the SchoolViewModel constructor, and also passes the Properties dictionary to the SaveNotes method of the ViewModel when the program goes to sleep, possibly in preparation for being terminated:

Click here to view code image

public class App : Application

{

 public App()

 {

 ViewModel = new SchoolViewModel(Properties);

 MainPage = new NavigationPage(new StudentNotesHomePage());

 }

 public SchoolViewModel ViewModel

 {

 private set; get;

 }

 protected override void OnStart()

 {

 // Handle when your app starts

 }

 protected override void OnSleep()

 {

 ViewModel.SaveNotes(Properties);

 }

 protected override void OnResume()

 {

 // Handle when your app resumes

 }

}

The home page should look familiar by now. It simply displays all the students in a ListView:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:StudentNotes;assembly=StudentNotes"

 x:Class="StudentNotes.StudentNotesHomePage"

 Title="Students"

 BindingContext="{Binding Source={x:Static Application.Current},

 Path=ViewModel}">

 <StackLayout BindingContext="{Binding StudentBody}">

 <Label Text="{Binding School}"

 FontSize="Large"

 FontAttributes="Bold"

 HorizontalTextAlignment="Center" />

 <ListView x:Name="listView"

 ItemsSource="{Binding Students}"

 ItemSelected="OnListViewItemSelected">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ImageCell ImageSource="{Binding PhotoFilename}"

 Text="{Binding FullName}"

 Detail="{Binding GradePointAverage,

 StringFormat='G.P.A. = {0:F2}'}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </StackLayout>

</ContentPage>

The code-behind file contains the ItemSelected handler for the ListView to navigate to StudentNotesDataPage, setting the page’s BindingContext to the selected Student object:

Click here to view code image

public partial class StudentNotesHomePage : ContentPage

{

 public StudentNotesHomePage()

 {

 InitializeComponent();

 }

 async void OnListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem != null)

 {

 listView.SelectedItem = null;

 await Navigation.PushAsync(new StudentNotesDataPage

 {

 BindingContext = args.SelectedItem

 });

 }

 }

}

The StudentNotesDataPage derives from TabbedPage. Within the start and end tags of the TabbedPage, three ContentPage definitions are added to the Children property of TabbedPage. Each has its Title property set to the text to use in the tab, and Icon definitions are included for iOS:

Click here to view code image

<TabbedPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StudentNotes.StudentNotesDataPage"

 Title="Student Data">

 <ContentPage Title="Info">

 <ContentPage.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="ic_action_about.png" />

 </ContentPage.Icon>

 <StackLayout>

 <Label Text="{Binding FullName}"

 FontSize="Large"

 HorizontalOptions="Center" />

 <StackLayout Spacing="12"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Label Text="{Binding LastName,

 StringFormat='Last name: {0}'}" />

 <Label Text="{Binding FirstName,

 StringFormat='First name: {0}'}" />

 <Label Text="{Binding MiddleName,

 StringFormat='Middle name: {0}'}" />

 <Label Text="{Binding Sex,

 StringFormat='Sex: {0}'}" />

 <Label Text="{Binding GradePointAverage,

 StringFormat='G.P.A. = {0:F2}'}" />

 </StackLayout>

 </StackLayout>

</ContentPage>

<ContentPage Title="Photo">

 <ContentPage.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="ic_action_person.png" />

 </ContentPage.Icon>

 <StackLayout>

 <Label Text="{Binding FullName}"

 FontSize="Large"

 HorizontalOptions="Center" />

 <Image Source="{Binding PhotoFilename}"

 VerticalOptions="FillAndExpand" />

 </StackLayout>

 </ContentPage>

 <ContentPage Title="Notes">

 <ContentPage.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 iOS="ic_action_edit.png" />

 </ContentPage.Icon>

 <StackLayout>

 <Label Text="{Binding FullName}"

 FontSize="Large"

 HorizontalOptions="Center" />

 <Editor Text="{Binding Notes}"

 Keyboard="Text"

 VerticalOptions="FillAndExpand" />

 </StackLayout>

 </ContentPage>

</TabbedPage>

This is perhaps not enough information to spread over three pages, but you can easily imagine situations where this approach would be ideal.

Here’s how the three tabs look on the three platforms:

[image: Image]

You can navigate back to the list of students in the normal way: By tapping the left arrow at the top of the screen on iOS and Android, or by pressing the Back arrow at the bottom of the screen on Android and Windows 10 Mobile.

Using an ItemTemplate

The TabbedPage can also be used to present a small data set, each item of which is a separate page identified by a tab. You do this by setting the ItemsSource property of TabbedPage and specifying an ItemTemplate for rendering each page.

The MultiTabbedColors project contains a single page class that was added to the project as a ContentPage, but which was then modified to be a TabbedPage. The project also has a reference to the Xamarin.FormsBook.Toolkit library.

Notice that the root element of the XAML file sets the ItemsSource property of TabbedPage to the collection available from the NamedColor.All static property. The remainder of the file defines the ItemTemplate property. The TabbedPage.ItemTemplate property-element tags enclose a pair of DataTemplate tags, in which a page definition appears, beginning with ContentPage. The data bindings reference properties of the objects in the ItemsSource collection, in this case properties of NamedColor:

Click here to view code image

<TabbedPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="MultiTabbedColors.MultiTabbedColorsPage"

 ItemsSource="{x:Static toolkit:NamedColor.All}">

 <TabbedPage.ItemTemplate>

 <DataTemplate>

 <ContentPage Title="{Binding Name}">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Label Text="{Binding FriendlyName}"

 Style="{DynamicResource TitleStyle}"

 HorizontalTextAlignment="Center" />

 <ScrollView VerticalOptions="FillAndExpand">

 <StackLayout>

 <BoxView Color="{Binding Color}"

 WidthRequest="144"

 HeightRequest="144"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center" />

 <StackLayout VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="HorizontalTextAlignment"

 Value="End" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <Label Text="{Binding Color.R,

 StringFormat='Red = {0:F2}'}" />

 <Label Text="{Binding Color.G,

 StringFormat='Green = {0:F2}'}" />

 <Label Text="{Binding Color.B,

 StringFormat='Blue = {0:F2}'}" />

 <Label Text="{Binding Color.A,

 StringFormat='Alpha = {0:F2}'}" />

 <Label Text=" " />

 <Label Text="{Binding Color.Hue,

 StringFormat='Hue = {0:F2}'}" />

 <Label Text="{Binding Color.Saturation,

 StringFormat='Saturation = {0:F2}'}" />

 <Label Text="{Binding Color.Luminosity,

 StringFormat='Luminosity = {0:F2}'}" />

 </StackLayout>

 </StackLayout>

 </ScrollView>

 </StackLayout>

 </ContentPage>

 </DataTemplate>

 </TabbedPage.ItemTemplate>

</TabbedPage>

To avoid overwriting the status bar at the top of the iOS screen, set Padding on the ContentPage template rather than on the TabbedPage itself.

Set the Title property of this ContentPage template to the text you want to appear in the tabs to identify each page. Notice that the Title is bound to the Name property of NamedColor, but the contents of the page also include a Label with a TitleStyle to display the FriendlyName property, which is similar to the Name property but includes spaces if the color name consists of multiple words.

Here is TabbedColors running on the three standard platforms:

[image: Image]

The tabs function like a menu that allow you to select a particular page.

The good news is that this works great on Android and Windows 10 Mobile. You can scroll quickly through the headers on the top of the Android screen, and swipe the actual pages on Windows 10 Mobile. On iOS, however, only four items are displayed, and the more button and the ellipsis do not work. Moreover, there are no icons, and you need icons on a TabbedPage for Apple to approve the app for the App Store. While this facility of TabbedPage appears to be quite an interesting way to generate pages, it’s not suitable for a cross-platform application. More suitable would be the CarouselView, which unfortunately was not quite ready by the time this book went to print.

Chapter 26. Custom layouts

Customization is a crucial aspect of any graphical programming environment. Has the system been designed for flexibility? Can you create new types of user-interface elements? How well do these new elements integrate into the system?

Xamarin.Forms has several features that facilitate customization. You’ve already seen the dependency service (first discussed in Chapter 9, “Platform-specific API calls”), which allows your application to execute platform-specific code from the common Portable Class Library.

In the next chapter, you’ll see how to create specialized user-interface elements in the form of new View derivatives. You create these new elements by coding custom renderers that implement the element in the individual platforms.

This chapter focuses instead on those powerful classes that typically inhabit the visual tree between the page and the individual user-interface objects. These classes are known as layouts because they derive from Layout<View>. Xamarin.Forms defines four such classes—StackLayout, AbsoluteLayout, RelativeLayout, and Grid—each of which arranges its children in a different way. As you’ve seen throughout this book, these Layout<View> derivatives are vital for defining the visual organization of your page.

The classes that derive from Layout<View> are somewhat unusual in Xamarin.Forms in that they make use of no platform-specific code. They are instead implemented entirely within Xamarin.Forms.

This chapter describes how to derive a class from Layout<View> to write your own custom layouts. This is a very useful skill that comes to the rescue whenever you need to organize your page in a manner that’s not handled by the standard layout classes. For example, suppose you want to present data by using a card-file metaphor with overlapping cards, or as items that wrap in both columns and scrollable rows, or that pan from side to side with finger swipes. This chapter will show you how to write such classes.

Writing custom layouts also provides you with the best insights into how the layout system in Xamarin.Forms works. This knowledge will help you design your own pages even if you restrict yourself to the standard layout classes.

An overview of layout

In Xamarin.Forms, there is no centralized system that handles layout. Instead, the process is very decentralized. Layout is handled by the elements themselves, or within the classes they derive from. For example, every visual element is responsible for determining its own preferred size. This is known as a requested size because there might not be enough room to fit the whole element, or there might be more than enough room for the element.

The elements that get most involved in layout have a single child or multiple children. These are the Page derivatives, Layout derivatives (ContentView, Frame, and ScrollView), and Layout<View> derivatives. These elements are responsible for determining the location and size of their child or children relative to themselves. The child location and size is usually based on the child’s requested size, so layout often involves a give-and-take relationship between parents and children. Children have requests, but parents lay down the law.

Let’s look at a few simple examples.

Parents and children

Consider the following markup:

Click here to view code image

<ContentPage ... >

 <Frame OutlineColor="Accent" >

 <Label Text="Sample text" />

 </Frame>

</ContentPage>

It’s a Label in a Frame in a ContentPage. Like most View derivatives, the Frame has default HorizontalOptions and VerticalOptions property settings of LayoutOptions.Fill, which means that the Frame fills the page except for a possible Padding setting on the page. The size of the Frame is based on the size of the page and not on the size of the text displayed by the Label.

Now set the HorizontalOptions and VerticalOptions properties on the Frame:

Click here to view code image

<ContentPage ... >

 <Frame OutlineColor="Accent"

 VerticalOptions="Center"

 HorizontalOptions="Center">

 <Label Text="Sample text" />

 </Frame>

</ContentPage>

The Frame now hugs the rendered text of the Label, which means that the size of the Frame is based on the size of the Label rather than on the size of the page.

But not entirely! If you add more and more text to the Label, the Frame will grow, but it won’t ever get larger than the page. Instead, the text will be truncated. With more text than can fit on the page, the Label becomes limited by the maximum size of the Frame, which is limited by the size of the ContentPage.

But now put the Frame in a ScrollView:

Click here to view code image

<ContentPage ... >

 <ScrollView>

 <Frame OutlineColor="Accent">

 <Label Text="Very long text ... " />

 </Frame>

 </ScrollView>

</ContentPage>

Now the ScrollView is the size of the page, but the Frame can grow larger than the ScrollView. The ScrollView allows the user to scroll the bottom of the Frame into view.

The Frame can also extend past the bottom of the page if it’s in a StackLayout:

Click here to view code image

<ContentPage ... >

 <StackLayout>

 <Frame OutlineColor="Accent">

 <Label Text="Very long text ... " />

 </Frame>

 </StackLayout>

</ContentPage>

Ultimately, it is the parent that determines what the size of its children should be, and imposes that size on its children, but often the parent will base that size on the requested size of the child.

Sizing and positioning

The process of layout begins at the top of the visual tree with the page, and it then proceeds through all the branches of the visual tree to encompass every visual element on the page. Elements that are parents to other elements are responsible for sizing and positioning their children relative to themselves. This requires that parent elements call certain public methods in the child elements. These public methods often result in calls to other methods within each element, for properties to be set, and for events to be fired.

Perhaps the most important public method involved in layout is named (quite appropriately) Layout. This method is defined by VisualElement and inherited by every class that derives from VisualElement:

Click here to view code image

public void Layout(Rectangle bounds)

The Layout method specifies two characteristics of the element:

• the rectangular area in which the element is rendered (indicated by the Width and Height properties of the Rectangle value); and

• the position of the element’s upper-left corner relative to its parent’s upper-left corner (the X and Y properties).

When an application starts up and the first page needs to be displayed, the first Layout call is to a Page object, and the Width and Height properties indicate the size of the screen, or the area of the screen that the page occupies. Beginning with that first Layout call, the Layout calls are effectively propagated through the visual tree: Every element that is a parent to other elements—Page, Layout, and Layout<View> derivatives—is responsible for calling the Layout method on its children, resulting in every visual element on the page getting a call to its Layout method. (You’ll see how this works shortly.)

This whole process is known as a layout cycle, and if you turn the phone sideways, the layout cycle starts again from the beginning at the top of the visual tree with the Page object. Layout cycles can also occur on a subset of the visual tree if something changes to affect the layout. These changes include items being added or removed from a collection such as that in a ListView or a StackLayout or another Layout class, a change in the IsVisible property of an element, or a change in the size of an element (for one reason or another).

Internal to VisualElement, the Layout method causes five properties of the element to be set. These properties are all defined by VisualElement:

• Bounds of type Rectangle

• X of type double

• Y of type double

• Width of type double

• Height of type double

These properties are all synchronized. The X, Y, Width, and Height properties of VisualElement are always the same values as the X, Y, Width, and Height properties of the Bounds rectangle. These properties indicate the element’s actual rendered size and its position relative to the upper-left corner of its parent.

None of these five properties have public set accessors. To external code, these properties are getonly.

Prior to an element’s first Layout call, the X and Y properties have values of 0, but the Width and Height properties have “mock” values of –1, which indicates that the properties have not yet been set. Valid values of these properties are available only after a layout cycle has occurred. Valid values are not available during execution of the constructors of the elements that make up the visual tree.

The X, Y, Width, and Height properties are all backed by bindable properties, so they can be sources of data bindings. The Bounds property is not backed by a bindable property and does not fire a PropertyChanged event. Do not use Bounds as a data-binding source.

A call to Layout also triggers a call to the SizeAllocated method, which is defined by VisualElement like so:

Click here to view code image

protected void SizeAllocated(double width, double height)

The two arguments are the same as the Width and Height properties of the Bounds rectangle. The SizeAllocated method calls a protected virtual method name OnSizeAllocated:

Click here to view code image

protected virtual void OnSizeAllocated(double width, double height)

After the OnSizeAllocated method returns, and the size has changed from its previous value, VisualElement fires a SizeChanged event, defined like so:

Click here to view code image

public event EventHandler SizeChanged;

This indicates that the element’s size has been set or has subsequently changed. As you’ve seen in previous chapters, when you need to implement some size-specific handling, the SizeChanged event is an excellent opportunity to access the Bounds property or the Width and Height properties to obtain a valid size of the page or any element on the page. The call to the Layout method is completed with the firing of the SizeChanged event.

As an alternative to the SizeChanged event, it is possible for an application to override OnSizeAllocated in a ContentPage derivative to obtain the new size of the page. (If you do so, be sure to call the base class implementation of OnSizeAllocated.) You’ll find that OnSizeAllocated is sometimes called when the element’s size doesn’t actually change. The SizeChanged event is fired only when the size changes, and it’s better for size-specific handling on the application level.

The OnSizeAllocated method is not defined as virtual so that applications can override it, but to allow classes within Xamarin.Forms to override it. Only two classes override OnSizeAllocated to perform their own specialized processing, but they are exceptionally important classes:

• Page

• Layout

These are the base classes for all the Xamarin.Forms elements that serve as parents to other elements within a Xamarin.Forms visual tree. (Although ListView and TableView seem to have children as well, the layout of those children are handled within the platform implementations of these views.)

Some of the classes that derive from Page and Layout have a Content property of type View. These classes are ContentPage, ContentView, Frame, and ScrollView. The Content property is a single child. The other classes that derive from Page (MasterDetailPage, TabbedPage, and CarouselPage) have multiple children. The classes that derive from Layout<View> have a Children property of type IList<View>; these classes are StackLayout, AbsoluteLayout, RelativeLayout, and Grid.

The Page and Layout classes have a parallel structure beginning with an override of the OnSizeAllocated method. Both classes define the following method that is called from the OnSizeAllocated override:

Click here to view code image

protected void UpdateChildrenLayout()

Both versions of UpdateChildrenLayout call a method named LayoutChildren. This method is defined just a little differently in Page and Layout. In Page, the LayoutChildren method is defined as virtual:

Click here to view code image

protected virtual void LayoutChildren(double x, double y, double width, double height)

In Layout it’s defined as abstract:

Click here to view code image

protected abstract void LayoutChildren(double x, double y, double width, double height);

Every Xamarin.Forms class that has a Content or a Children property also has an overridable LayoutChildren method. When you write your own class that derives from Layout<View> (which is the primary objective of this chapter), you’ll override LayoutChildren to provide a custom organization of the layout’s children.

The responsibility of a LayoutChildren override is to call the Layout method on all the element’s children, which is usually the View object set to the element’s Content property or the View objects in the element’s Children collection. This is the most important part of layout.

As you’ll recall, a call to the Layout method results in the Bounds, X, Y, Width, and Height properties being set and in calls to SizeAllocated and OnSizeAllocated. If the element is a Layout derivative, then OnSizeAllocated calls UpdateChildrenLayout and LayoutChildren. LayoutChildren then calls Layout on its children. This is how the Layout calls propagate from the top of the visual tree through all the branches and every element on the page.

Both Page and Layout also define a LayoutChanged event:

Click here to view code image

public event EventHandler LayoutChanged;

The UpdateChildrenLayout method concludes by firing this event, but only if at least one child has a new Bounds property.

You’ve seen that the Page and Layout classes both override the OnSizeAllocated method, and both define UpdateChildrenLayout and LayoutChildren methods and a LayoutChanged event. The Page and Layout classes have yet another similarity: They both define a Padding property. This padding is automatically reflected in the arguments to LayoutChildren.

For example, consider the following page definition:

Click here to view code image

<ContentPage ... Padding="20">

 <ContentView Padding="15">

 <Label Text="Sample text" />

 </ContentView>

</ContentPage>

Suppose the screen in portrait mode measures 360 by 640. The ContentPage gets a call to its Layout method with a bounds rectangle equal to (0, 0, 360, 640). This kicks off the layout cycle.

Although the Layout method in ContentPage has an argument of (0, 0, 360, 640), the LayoutChildren call in that page is adjusted for the Padding property of 20. Both the width and height are decreased by 40 (20 on each side) and the x and y arguments are increased by 20, so the LayoutChildren arguments are (20, 20, 320, 600). This is the rectangle relative to the page in which ContentPage can position its child.

The LayoutChildren method in ContentPage calls the Layout method in its child (the ContentView) to give the ContentView the entire space available to the page minus the padding on the page. The bounds rectangle argument to this Layout call is (20, 20, 320, 600), which positions the upper-left corner of the ContentView 20 units to the right and below the upper-left corner of the ContentPage.

The call to the LayoutChildren override in ContentView reflects that layout area, but decreased by the Padding setting of 15, so the arguments to the LayoutChildren override in ContentView are (15, 15, 290, 570). This LayoutChildren method calls the Layout method in Label with that value.

Now let’s make a little change:

Click here to view code image

<ContentPage ... Padding="20">

 <ContentView Padding="15"

 VerticalOptions="Center">

 <Label Text="Sample text" />

 </ContentView>

</ContentPage>

The LayoutChildren override in ContentPage now needs to do things a little differently. It can’t simply call Layout on the ContentView with its own size minus the padding. It must call the Layout method in ContentView to vertically center the ContentView within the space it has available.

But how? To vertically center the ContentView relative to itself, the ContentPage must know the height of the ContentView. But the height of the ContentView depends on the height of the Label, and that height depends on the text and perhaps on various font properties that might be set on the Label. Moreover, the Label is capable of wrapping text to multiple rows, and the Label can’t figure how many rows it requires without also knowing the horizontal space that’s available to it.

This problem implies that more steps are involved.

Constraints and size requests

You just saw how, in some cases, a LayoutChildren override can call Layout on its child or children based solely on the LayoutChildren arguments. But in the more general case, LayoutChildren needs to know the size of its children before calling those children’s Layout methods. For this reason, a LayoutChildren override generally calls two public methods in this order on each of its children:

• GetSizeRequest

• Layout

Why does a parent need to call GetSizeRequest on its child? Why can’t the parent simply obtain the child’s size by accessing the child’s Bounds property or its Width and Height properties?

Because, in the general case, those properties have not been set yet! Recall that these properties are set by a call to Layout, and the Layout call hasn’t yet occurred. In the general case, the Layout call can’t occur until the parent knows the child’s requested size. In the general case, the GetSizeRequest call is a prerequisite for the Layout call.

The information that GetSizeRequest returns is entirely independent of any information that might be set by Layout. Instead, the argument to Layout usually depends on the information returned from GetSizeRequest.

The GetSizeRequest call obtains what is sometimes called a desired size of an element. This is often related to the element’s native size, and that generally depends on the particular platform. In contrast, the Layout call imposes a particular size on the element. Sometimes these two sizes are the same and sometimes not. These two sizes are usually not the same if the element’s HorizontalOptions and VerticalOptions settings are LayoutOptions.Fill. In that case, the size that the element occupies is usually based on the area available to the element’s parent rather than the size that the element needs.

The native size of some elements is fixed and inflexible. For example, in any particular platform, a Switch is always a fixed size determined by its implementation in that platform. But that’s not always the case for other types of elements. Sometimes one dimension of the size is fixed but the other dimension is more flexible. The height of a horizontal Slider is fixed by the platform implementation, but the width of the Slider can be as wide as its parent.

Sometimes the size of an element depends on its property settings. The size of a Button or Label is dependent on the text displayed by the element and the font size. Because the text displayed by a Label can wrap to multiple lines, the height of a Label depends on how many rows are displayed, and that’s governed by the width available for the Label. Sometimes the height or width of an element depends on the height or width of its children. Such is the case with StackLayout.

These complications require that an element determine its size based on constraints, which generally indicate how much space is available within the element’s parent for that element.

Like Layout, the GetSizeRequest method is defined by VisualElement. This is a public method that a parent element calls to obtain the size of each of its children:

Click here to view code image

public virtual SizeRequest GetSizeRequest(double widthConstraint, double heightConstraint)

The widthConstraint and heightConstraint arguments generally indicate the size that the parent has available for the child; the child is responsible for implementing this method to determine an appropriate size for itself based on those constraints. For example, a Label determines how many lines it needs for its text based on a particular width.

VisualElement also defines a very similar protected method named OnSizeRequest:

Click here to view code image

protected virtual SizeRequest OnSizeRequest(double widthConstraint, double heightConstraint)

Obviously these two methods are related and easily confused. Both methods are defined as virtual, but throughout all of Xamarin.Forms, only one class overrides the GetSizeRequest method, and that’s the Layout class, which marks the method as sealed.

On the other hand, every class that derives from Layout or Layout<View> overrides OnSizeRequest. This is where a layout class determines the size that it needs to be by making calls to the GetSizeRequest methods of its children.

For View derivatives (but not Layout derivatives), the public GetSizeRequest method calls the protected OnSizeRequest method which is responsible for obtaining the native size of the element from the platform-specific implementation.

The SizeRequest structure returned from GetSizeRequest and OnSizeRequest has two properties:

• Request of type Size

• Minimum of type Size

It’s tempting to try to call GetSizeRequest on newly created objects, such as Label and BoxView and Slider, and examine what sizes are returned. However, the GetSizeRequest call will not work unless the element is part of an actual visual tree because only then is the Xamarin.Forms element implemented with an underlying platform object.

Most elements return SizeRequest values with identical Request and Minimum sizes. The only elements for which they’re uniformly different is ListView and TableView, where the Minimum size is (40, 40), perhaps to allow some portion of the ListView or TableView to be displayed even if there isn’t enough room for the whole thing.

In general, however, the Minimum size does not seem to play much of a role in the Xamarin.Forms layout system, and you don’t need to go to extraordinary lengths to accommodate it. The SizeRequest structure has a constructor that lets you set both properties to the same Size value.

You might recall that VisualElement defines four properties that have the word Request as part of their names:

• WidthRequest of type double

• HeightRequest of type double

• MinimumWidthRequest of type double

• MinimumHeightRequest of type double

Unlike the Width and Height properties, these four properties have public set accessors. Your application can set the WidthRequest and HeightRequest properties of an element to override its customary size. This is particularly useful for a BoxView, which initializes its WidthRequest and HeightRequest values to 40. You can set these properties to different values to make a BoxView whatever size you want.

By default, these four properties have “mock” values of -1. If they are set to actual values, here’s how GetSizeRequest and OnSizeRequest interact with them:

First, GetSizeRequest finds the minimum of its widthConstraint argument and the element’s WidthRequest property and the minimum of heightConstraint and HeightRequest. These are the values passed to OnSizeRequest. In essence, the element is being offered only as much size as the WidthRequest and HeightRequest properties indicate.

Based on those constraints, OnSizeRequest returns a SizeRequest value back to GetSizeRequest. That SizeRequest value has Request and Minimum properties. GetSizeRequest then finds the minimum of the Width and Height properties of the Request property and the WidthRequest and HeightRequest properties set on the element. It also finds the minimum of the Width and Height properties of the Minimum property, and the MinimumWidthRequest and MinimumHeightRequest properties set on the element. GetSizeRequest then returns a new SizeRequest value based on these minimums.

Here’s some simple markup:

Click here to view code image

<ContentPage ... Padding="20">

 <Label Text="Sample text"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

</ContentPage>

Suppose the screen in portrait mode is 360 by 640. The layout cycle begins with a call to the Layout method of ContentPage with a bounds rectangle of (0, 0, 360, 640). The arguments to the LayoutChildren override in ContentPage are adjusted for the padding, so the arguments are (20, 20, 320, 600).

Because Label has its HorizontalOptions and VerticalOptions properties not set to LayoutOptions.Fill, the page must determine the size of the Label by calling GetSizeRequest with constraints of (320, 600). The information that Label returns depends on the platform, but let’s assume the Label returns a size of (100, 24). The ContentPage must then position that Label in the center of the (320, 600) area available for its child. From the width of 320, it subtracts the Label width of 100 and divides by 2. That’s 110, but that’s relative to the area available for the child, and not relative to the upper-left corner of the page, which includes the margin of 20. So the horizontal offset of the Label from the ContentPage is actually 130.

The ContentPage performs a similar calculation for the height: 600 minus 24, divided by 2, plus 20, or 308. The ContentPage then calls the Layout method of the Label with the bounds rectangle (130, 308, 100, 24) to position and size the Label relative to itself.

How do WidthRequest and HeightRequest settings on the Label affect this? Here’s a WidthRequest that is more than what the Label needs but a HeightRequest that is less:

Click here to view code image

<Label Text="Sample text"

 WidthRequest="200"

 HeightRequest="12"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

The ContentPage still calls the GetSizeRequest method of the Label with constraints of (320, 600), but the GetSizeRequest modifies those constraints to be (200, 12), and that’s what is passed to the OnSizeRequest override. The Label still returns a requested size of (100, 24), but GetSizeRequest again adjusts those for the Width and Height request and returns (200, 12) back to the ContentPage.

The ContentPage then calls the Layout method of Label based on Label dimensions of (200, 12) rather than (100, 24). The Layout call on the Label now has a bounds rectangle of (80, 314, 200, 12). The Label is displayed with twice as much width as is necessary for the text, but with half as much height. The text is cropped off at the bottom.

If instead the WidthRequest setting on the Label is set to be less than 100—for example, 50—then the OnSizeRequest method is called with a widthConstraint argument of 50, and the Label calculates a height for the text that results in wrapping the text into multiple lines.

Infinite constraints

Now here’s some markup that at first seems very similar to the earlier example but with quite a profound difference:

Click here to view code image

<ContentPage ... Padding="20">

 <StackLayout>

 <Label Text="Sample text" />

 ...

 </StackLayout>

</ContentPage>

The ContentPage still gets an initial Layout call with the arguments (0, 0, 360, 640), and the arguments to the LayoutChildren override are (20, 20, 320, 600). It has one child, the StackLayout. The StackLayout has default settings of HorizontalOptions and VerticalOptions of LayoutOptions.Fill, which means that the StackLayout can be positioned relative to ContentPage with a Layout call of (20, 20, 320, 600).

This results in StackLayout getting a LayoutChildren call with arguments of (0, 0, 320, 600). How does StackLayout size and position its children?

As we know from working with StackLayout since Chapter 4, a vertical StackLayout gives its children the same horizontal size as itself, but a vertical size based on what the child needs. This means that StackLayout must call GetSizeRequest on all its children prior to calling Layout. But what constraints should it specify with those GetSizeRequest calls?

The initial impulse might be that StackLayout calls GetSizeRequest on its children with constraints that reflect its own size of (320, 600). But that’s not right. The StackLayout doesn’t limit its children to its own height. It allows its children to be any height they need to be. This implies that the height constraint should actually be infinite.

And this is true. StackLayout calls GetSizeRequest on its children with a height of (320, ∞), or, in terms of .NET, (320, Double.PositiveInfinity).

This is important: Constraints passed to GetSizeRequest and OnSizeRequest can range from 0 through Double.PositiveInfinity. However, GetSizeRequest and OnSizeRequest can never themselves request an infinite dimension by returning a SizeRequest value with a property set to Double.PositiveInfinity.

Let’s try another common layout pattern:

Click here to view code image

<ContentPage ... Padding="20">

 <ScrollView>

 <StackLayout>

 <Label Text="Sample text" />

 ...

 </StackLayout>

 </ScrollView>

</ContentPage>

As usual, ContentPage gets a call to Layout with a bounds rectangle of (0, 0, 360, 640) and a call to its LayoutChildren method with arguments of (20, 20, 320, 600). The ScrollView has default HorizontalOptions and VerticalOptions settings of LayoutOptions.Fill, so the page doesn’t need to know what size the ScrollView is. The page simply calls the Layout method of ScrollView with a bounds rectangle of (20, 20, 320, 600).

ScrollView then gets a call to its LayoutChildren method with arguments of (0, 0, 320, 600). It needs to determine the size of its child (the StackLayout), so it calls the GetSizeRequest method of StackLayout. What should the constraints be?

In the general case, the StackLayout will have a height greater than the height of ScrollView. That’s why you’re including a ScrollView in the visual tree! ScrollView needs to know that height if it is to successfully scroll its child. Therefore, ScrollView calls the GetSizeRequest method of StackLayout with constraints of (320, Double.PositiveInfinity). This translates into a call to OnSizeRequest with the same constraint arguments, which StackLayout overrides and handles.

You can also think of an infinite constraint as an autosize indication. A vertical StackLayout requests a child size with an infinite height constraint to obtain the child’s requested height. Similarly, a child of a Grid cell whose row height or column width is GridLength.Auto will see an infinite heightConstraint or widthConstraint, or both. A child of an AbsoluteLayout with a LayoutBounds height or width of Auto will also see an infinite heightConstraint or widthConstraint.

Sometimes the words constrained and unconstrained are used to refer to these differences. An element is constrained when it receives a call to its GetSizeRequest method with noninfinite arguments. The element is constrained to a particular size. An element is unconstrained when it gets a call to GetSizeRequest with one or both arguments equal to Double.PositiveInfinity. Sometimes the term partially constrained is used to refer to a GetSizeRequest call with one Double.PositiveInfinity argument, and the term fully constrained makes it clear that neither argument is infinite.

When you write your own custom layout classes by deriving from Layout<View>, you must override both the OnSizeRequest and LayoutChildren methods, and you must be aware that under certain circumstances, one or both of the constraints arguments to OnSizeRequest will be Double.PositiveInfinity. However, OnSizeRequest must never request an infinite size.

Peeking inside the process

Much of the information presented so far in this chapter has been assembled from test programs that contain classes that derive from various elements (such as StackLayout, ScrollView, and Label), override virtual methods (such as GetSizeRequest, OnSizeRequest, OnSizeAllocated, and LayoutChildren), and simply display information in the Output window of Visual Studio or Xamarin Studio by using the Debug.WriteLine method from the System.Diagnostics namespace.

A little bit of that exploratory process—but using the phone itself to display this information—is shown in the ExploreChildSizes sample.

ExploreChildSizes uses a MasterDetailPage to display a bunch of radio buttons on the Master page and a visual tree on the Detail part. The radio buttons make use of the RadioButtonManager and RadioButtonItem classes presented in Chapter 25, “Page varieties.” Here’s the Master page with radio buttons to select HorizontalOptions and VerticalOptions properties for the child views on the Detail page:

Click here to view code image

<MasterDetailPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:ExploreChildSizes;assembly=ExploreChildSizes"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="ExploreChildSizes.ExploreChildSizesPage">

 <MasterDetailPage.Master>

 <ContentPage Title="swap">

 <ContentPage.Icon>

 <OnPlatform x:TypeArguments="FileImageSource"

 WinPhone="Images/refresh.png" />

 </ContentPage.Icon>

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ScrollView>

 <StackLayout Padding="20"

 Spacing="20">

 <StackLayout>

 <StackLayout.BindingContext>

 <toolkit:RadioButtonManager x:Name="vertRadios"

 x:TypeArguments="LayoutOptions" />

 </StackLayout.BindingContext>

 <StackLayout HorizontalOptions="Start">

 <Label Text="Child VerticalOptions"

 FontSize="Medium" />

 <BoxView Color="Accent"

 HeightRequest="3" />

 </StackLayout>

 <local:RadioButton BindingContext="{Binding Items[0]}" />

 <local:RadioButton BindingContext="{Binding Items[1]}" />

 <local:RadioButton BindingContext="{Binding Items[2]}" />

 <local:RadioButton BindingContext="{Binding Items[3]}" />

 <local:RadioButton BindingContext="{Binding Items[4]}" />

 <local:RadioButton BindingContext="{Binding Items[5]}" />

 <local:RadioButton BindingContext="{Binding Items[6]}" />

 <local:RadioButton BindingContext="{Binding Items[7]}" />

 </StackLayout>

 <StackLayout>

 <StackLayout.BindingContext>

 <toolkit:RadioButtonManager x:Name="horzRadios"

 x:TypeArguments="LayoutOptions" />

 </StackLayout.BindingContext>

 <StackLayout HorizontalOptions="Start">

 <Label Text="Child HorizontalOptions"

 FontSize="Medium" />

 <BoxView Color="Accent"

 HeightRequest="3" />

 </StackLayout>

 <local:RadioButton BindingContext="{Binding Items[0]}" />

 <local:RadioButton BindingContext="{Binding Items[1]}" />

 <local:RadioButton BindingContext="{Binding Items[2]}" />

 <local:RadioButton BindingContext="{Binding Items[3]}" />

 <local:RadioButton BindingContext="{Binding Items[4]}" />

 <local:RadioButton BindingContext="{Binding Items[5]}" />

 <local:RadioButton BindingContext="{Binding Items[6]}" />

 <local:RadioButton BindingContext="{Binding Items[7]}" />

 </StackLayout>

 </StackLayout>

 </ScrollView>

 </ContentPage>

 </MasterDetailPage.Master>

 ...

</MasterDetailPage>

This page uses a class named RadioButtonManager in the Xamarin.FormsBook.Toolkit library, which you can peruse at your leisure. It allows for being a binding source for an item associated with the selected button. The RadioButton class uses the Accent color and the Bold attribute to indicate the selected item:

Click here to view code image

<ContentView xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ExploreChildSizes.RadioButton">

 <Label Text="{Binding Name}"

 FontSize="Medium">

 <Label.GestureRecognizers>

 <TapGestureRecognizer Command="{Binding Command}"

 CommandParameter="{Binding Value}"/>

 </Label.GestureRecognizers>

 <Label.Triggers>

 <DataTrigger TargetType="Label"

 Binding="{Binding IsSelected}"

 Value="True">

 <Setter Property="TextColor" Value="Accent" />

 <Setter Property="FontAttributes" Value="Bold" />

 </DataTrigger>

 </Label.Triggers>

 </Label>

</ContentView>

Here’s the Master page on the three platforms. On the right side of all three screens, you can see a slice of the Detail page with a yellow background of a StackLayout:

[image: Image]

The Detail page (shown below) is divided by a grid into two rows of equal height. The top row is a simple visual tree consisting of a StackLayout with a Label and BoxView. However, the classes in this visual tree are actually derived from StackLayout, Label, and BoxView and are called OpenStackLayout, OpenLabel, and OpenBoxView. Notice that the VerticalOptions and HorizontalOptions properties of OpenLabel and OpenBoxView are bound to the two RadioButtonManager objects on the Master page:

Click here to view code image

<MasterDetailPage ... >

 ...

 <MasterDetailPage.Detail>

 <ContentPage>

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <Grid>

 <local:OpenStackLayout x:Name="openStackLayout"

 Grid.Row="0"

 BackgroundColor="Yellow"

 Padding="15">

 <local:OpenLabel

 x:Name="openLabel"

 Text="This is a label with text sufficiently long enough to wrap"

 FontSize="Large"

 BackgroundColor="Gray"

 VerticalOptions="{Binding Source={x:Reference vertRadios},

 Path=SelectedValue}"

 HorizontalOptions="{Binding Source={x:Reference horzRadios},

 Path=SelectedValue}" />

 <local:OpenBoxView

 x:Name="openBoxView"

 Color="Pink"

 VerticalOptions="{Binding Source={x:Reference vertRadios},

 Path=SelectedValue}"

 HorizontalOptions="{Binding Source={x:Reference horzRadios},

 Path=SelectedValue}" />

 </local:OpenStackLayout>

 ...

 </Grid>

 </ContentPage>

 </MasterDetailPage.Detail>

</MasterDetailPage>

The Open prefix in this context means that these classes define public properties that reveal the arguments and return values of the GetSizeRequest calls and (in the case of OpenStackLayout) the arguments to LayoutChildren. All these properties are backed by read-only bindable properties so that they can serve as sources for data bindings. In addition, the Bounds property is mirrored in a property named ElementBounds, also backed by a read-only bindable property:

Here’s the OpenLabel class. The other two are similar:

Click here to view code image

class OpenLabel : Label

{

 static readonly BindablePropertyKey ConstraintKey =

 BindableProperty.CreateReadOnly(

 "Constraint",

 typeof(Size),

 typeof(OpenLabel),

 new Size());

 public static readonly BindableProperty ConstraintProperty =

 ConstraintKey.BindableProperty;

 static readonly BindablePropertyKey SizeRequestKey =

 BindableProperty.CreateReadOnly(

 "SizeRequest",

 typeof(SizeRequest),

 typeof(OpenLabel),

 new SizeRequest());

 public static readonly BindableProperty SizeRequestProperty =

 SizeRequestKey.BindableProperty;

 static readonly BindablePropertyKey ElementBoundsKey =

 BindableProperty.CreateReadOnly(

 "ElementBounds",

 typeof(Rectangle),

 typeof(OpenLabel),

 new Rectangle());

 public static readonly BindableProperty ElementBoundsProperty =

 ElementBoundsKey.BindableProperty;

 public OpenLabel()

 {

 SizeChanged += (sender, args) =>

 {

 ElementBounds = Bounds;

 };

 }

 public Size Constraint

 {

 private set { SetValue(ConstraintKey, value); }

 get { return (Size)GetValue(ConstraintProperty); }

 }

 public SizeRequest SizeRequest

 {

 private set { SetValue(SizeRequestKey, value); }

 get { return (SizeRequest)GetValue(SizeRequestProperty); }

 }

 public Rectangle ElementBounds

 {

 private set { SetValue(ElementBoundsKey, value); }

 get { return (Rectangle)GetValue(ElementBoundsProperty); }

 }

 public override SizeRequest GetSizeRequest(double widthConstraint, double heightConstraint)

 {

 Constraint = new Size(widthConstraint, heightConstraint);

 SizeRequest sizeRequest = base.GetSizeRequest(widthConstraint, heightConstraint);

 SizeRequest = sizeRequest;

 return sizeRequest;

 }

}

The bottom half of the Grid on the Detail page contains a scrollable StackLayout with data bindings to display these properties:

Click here to view code image

<MasterDetailPage ... >

 ...

 <MasterDetailPage.Detail>

 <ContentPage>

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <Grid>

 ...

 <ScrollView Grid.Row="1"

 Padding="10, 0">

 <StackLayout>

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Small" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <StackLayout

 BindingContext="{Binding Source={x:Reference openStackLayout}">

 <Label Text="StackLayout:"

 FontAttributes="Bold" />

 <Label Text="{Binding Path=Constraint,

 StringFormat='Constraint = {0}'}" />

 <Label Text="{Binding Path=SizeRequest.Request,

 StringFormat='Request = {0}'}" />

 <Label Text="{Binding Path=SizeRequest.Minimum,

 StringFormat='Minimum = {0}'}" />

 <Label Text="{Binding Path=ElementBounds,

 StringFormat='Bounds = {0}'}" />

 <Label Text="{Binding Path=LayoutBounds,

 StringFormat='Layout = {0}'}" />

 </StackLayout>

 <StackLayout BindingContext="{Binding Source={x:Reference openLabel}">

 <Label Text="Label:"

 FontAttributes="Bold" />

 <Label Text="{Binding Path=Constraint,

 StringFormat='Constraint = {0}'}" />

 <Label Text="{Binding Path=SizeRequest.Request,

 StringFormat='Request = {0}'}" />

 <Label Text="{Binding Path=SizeRequest.Minimum,

 StringFormat='Minimum = {0}'}" />

 <Label Text="{Binding Path=ElementBounds,

 StringFormat='Bounds = {0}'}" />

 </StackLayout>

 <StackLayout BindingContext="{Binding Source={x:Reference openBoxView}">

 <Label Text="BoxView:"

 FontAttributes="Bold" />

 <Label Text="{Binding Path=Constraint,

 StringFormat='Constraint = {0}'}" />

 <Label Text="{Binding Path=SizeRequest.Request,

 StringFormat='Request = {0}'}" />

 <Label Text="{Binding Path=SizeRequest.Minimum,

 StringFormat='Minimum = {0}'}" />

 <Label Text="{Binding Path=ElementBounds,

 StringFormat='Bounds = {0}'}" />

 </StackLayout>

 </StackLayout>

 </ScrollView>

 </Grid>

 </ContentPage>

 </MasterDetailPage.Detail>

</MasterDetailPage>

You can then set various combinations of VerticalOptions and HorizontalOptions on the Label and BoxView and see how these affect the arguments and return values from the GetSizeRequest method and the arguments to the Layout method (which are reflected in the Bounds property):

[image: Image]

The VerticalOptions settings on the Label and BoxView have no effect except when the Expands flag is true. The HorizontalOptions settings position the items at the left, center, or right.

You might notice a couple of oddities: First, the OpenStackLayout does not get a call to its GetSizeRequest method. This is why the top three items in the bottom half of the screen are all zero. This GetSizeRequest call would normally come from the Grid, which is its parent. However, the Grid has a size based on the size of the screen, and the Grid contains two rows of equal size. The OpenStackLayout has its VerticalOptions and HorizontalOptions properties set to LayoutOptions.Fill, so it will have a size that is based on the Grid and not its contents.

If you’d like to investigate this behavior further, you’ll need to change the VerticalOptions or HorizontalOptions properties of the OpenStackLayout in the markup on the Detail page. In that case, the Grid will call the GetSizeRequest method of OpenStackLayout—and OpenStackLayout then makes GetSizeRequest calls to Label and BoxView—because it needs to know the OpenStackLayout size to position it.

Both OpenLabel and OpenBoxView get calls to their GetSizeRequest methods with height constraints of Double.PositiveInfinity, but the Label shows some inconsistencies among the platforms.

On the various Windows platforms, it appears from the displayed values that the constraint width of the Label does not equal the layout width of the StackLayout. But further exploration reveals that the GetSizeRequest method is called more than once—the first time with the layout width, and then with the requested width of the Label.

The Android Label returns the width constraint as its requested width, which means that the HorizontalOptions setting on the Label has no effect on its horizontal position. This difference in the Android implementation disappears when the text occupies just one line.

Deriving from Layout<View>

We are now armed with sufficient knowledge to create our own layout classes.

Most of the public and protected methods involved in layout are defined by the nongeneric Layout class. The Layout<T> class derives from Layout and constrains the generic type to View and its derivatives. Layout<T> defines a single public property named Children of type IList<T> and a couple of protected methods described shortly.

A custom layout class almost always derives from Layout<View>. If you want to restrict the children to certain types, you can derive from Layout<Label> or Layout<BoxView>, but that is not common. (You’ll see an example toward the end of this chapter.)

A custom layout class has just two responsibilities:

• Override OnSizeRequest to call GetSizeRequest on all the layout’s children. Return a requested size for the layout itself.

• Override LayoutChildren to call Layout on all the layout’s children.

Both methods typically use foreach or for to enumerate through all the children in the custom layout’s Children collection.

It is particularly important for your layout class to call Layout on each child. Otherwise, the child never gets a proper size or position and will not be visible.

However, the enumeration of children in the OnSizeRequest and LayoutChildren overrides should skip any child whose IsVisible property is set to false. Such children will not be visible anyway, but if you don’t deliberately skip those children, it’s likely that your layout class will leave room for these invisible children, and that’s not correct behavior.

As you’ve seen, it is not guaranteed that the OnSizeRequest override will be called. The method doesn’t need to be called if the size of the layout is governed by its parent rather than its children. The method definitely will be called if one or both of the constraints are infinite, or if the layout class has nondefault settings of VerticalOptions or HorizontalOptions. Otherwise, a call to OnSizeRequest is not guaranteed and you shouldn’t rely on it.

You’ve also seen that the OnSizeRequest call might have constraint arguments set to Double.PositiveInfinity. However, OnSizeRequest cannot return a requested size with infinite dimensions. There is sometimes a temptation to implement OnSizeRequest in a very simple manner like this:

Click here to view code image

[image: Image]

// This is very bad code!

protected override SizeRequest OnSizeRequest(double widthConstraint, double heightConstraint)

{

 return new SizeRequest(new Size(widthConstraint, heightConstraint));

}

Don’t do it! If your Layout<View> derivative can’t deal with infinite constraints for some reason—and you’ll see an example later in this chapter—then raise an exception indicating that.

Very often, the LayoutChildren override will also require knowing the size of the children. The LayoutChildren method can also call GetSizeRequest on all the children before calling Layout. It is possible to cache the size of the children obtained in the OnSizeRequest override to avoid later GetSizeRequest calls in the LayoutChildren override, but the layout class will need to know when the sizes need to be obtained again. You’ll see some guidelines shortly.

An easy example

A good technique for learning how to write custom layouts is to duplicate the functionality of an existing layout but simplify it somewhat.

The VerticalStack class described below is intended to mimic a StackLayout with an Orientation setting of Vertical. The VerticalStack class therefore does not have an Orientation property, and to keep things simple, VerticalStack doesn’t have a Spacing property either. Moreover, VerticalStack does not recognize the Expands flag on the HorizontalOptions and VerticalOptions settings of its children. Ignoring the Expands flag simplifies the stacking logic enormously.

VerticalStack therefore defines just two members: overrides of the OnSizeRequest and LayoutChildren methods. Typically, both methods enumerate through the Children property defined by Layout<T>, and generally both methods make calls to the GetSizeRequest of the children. Any child with an IsVisible property set to false should be skipped.

The OnSizeRequest override in VerticalStack calls GetSizeRequest on each child with a constraint width equal to the widthConstraint argument to the override and a constraint height equal to Double.PositiveInfinity. This constrains the width of the child to the width of the VerticalStack, but allows each child to be as tall as it wants. That’s the fundamental characteristic of a vertical stack:

Click here to view code image

[image: Image]

public class VerticalStack : Layout<View>

{

 protected override SizeRequest OnSizeRequest(double widthConstraint,

 double heightConstraint)

 {

 Size reqSize = new Size();

 Size minSize = new Size();

 // Enumerate through all the children.

 foreach (View child in Children)

 {

 // Skip the invisible children.

 if (!child.IsVisible)

 continue;

 // Get the child's requested size.

 SizeRequest childSizeRequest = child.GetSizeRequest(widthConstraint,

 Double.PositiveInfinity);

 // Find the maximum width and accumulate the height.

 reqSize.Width = Math.Max(reqSize.Width, childSizeRequest.Request.Width);

 reqSize.Height += childSizeRequest.Request.Height;

 // Do the same for the minimum size request.

 minSize.Width = Math.Max(minSize.Width, childSizeRequest.Minimum.Width);

 minSize.Height += childSizeRequest.Minimum.Height;

 }

 return new SizeRequest(reqSize, minSize);

 }

 ...

}

The foreach loop over the Children collection accumulates the size of the children separately for the Request and Minimum properties of the SizeRequest object returned from the child. These accumulations involve two Size values, named reqSize and minSize. Because this is a vertical stack, the reqSize.Width and minSize.Width values are set to the maximum of the child widths, while the reqSize.Height and minSize.Height values are set to the sum of the child heights.

It is possible that the widthConstraint argument to OnSizeRequest is Double.PositiveInfinity, in which case the arguments to the GetSizeRequest call of the child are both infinite. (For example, the VerticalStack could be a child of a StackLayout with a horizontal orientation.) Generally, the body of the OnSizeRequest doesn’t need to worry about situations like that because the SizeRequest value returned from GetSizeRequest never contains infinite values.

The second method in a custom layout—an override of LayoutChildren—is shown below. This is generally called as a consequence of a call to the parent’s Layout method.

The width and height arguments to LayoutChildren indicate the size of the layout’s area available for its children. Both values are finite. If an argument to OnSizeRequest was infinite, the corresponding argument to LayoutChildren will be the width or height returned from the OnSizeRequest override. Otherwise, it depends on the HorizontalOptions and VerticalOptions settings. For Fill, the argument to LayoutChildren is the same as the corresponding argument to OnSizeRequest. Otherwise, it’s the requested width or height returned from the OnSizeRequest.

LayoutChildren also has x and y arguments that reflect the Padding property set on the layout. For example, if the left padding is 20 and the top padding is 50, then x is 20 and y is 50. These generally indicate a starting position for the children of the layout:

Click here to view code image

[image: Image]

[image: Image]

public class VerticalStack : Layout<View>

{

 ...

 protected override void LayoutChildren(double x, double y, double width, double height)

 {

 // Enumerate through all the children.

 foreach (View child in Children)

 {

 // Skip the invisible children.

 if (!child.IsVisible)

 continue;

 // Get the child's requested size.

 SizeRequest childSizeRequest = child.GetSizeRequest(width, Double.PositiveInfinity);

 // Initialize child position and size.

 double xChild = x;

 double yChild = y;

 double childWidth = childSizeRequest.Request.Width;

 double childHeight = childSizeRequest.Request.Height;

 // Adjust position and size based on HorizontalOptions.

 switch (child.HorizontalOptions.Alignment)

 {

 case LayoutAlignment.Start:

 break;

 case LayoutAlignment.Center:

 xChild += (width - childWidth) / 2;

 break;

 case LayoutAlignment.End:

 xChild += (width - childWidth);

 break;

 case LayoutAlignment.Fill:

 childWidth = width;

 break;

 }

 // Layout the child.

 child.Layout(new Rectangle(xChild, yChild, childWidth, childHeight));

 // Get the next child's vertical position.

 y += childHeight;

 }

 }

}

This is a vertical stack, so LayoutChildren needs to vertically position each child based on the child’s requested height. If the child has a HorizontalOptions setting of Fill, then the width of each child is the same as the width of the VerticalStack (minus the padding). Otherwise, the child’s width is its requested width, and the stack must position that child within its own width.

To perform these calculations, LayoutChildren calls GetSizeRequest on its children again, but this time with the actual width and height arguments to LayoutChildren rather than the constraint arguments used in OnSizeRequest. Then it calls Layout on each child. The height argument to the Rectangle constructor is always the height of the child. The width argument could be either the width of the child or the width of the VerticalStack passed to the LayoutChildren override, depending on the HorizontalOptions setting on the child. Notice that each child is positioned x units from the left of the VerticalStack, and the first child is positioned y units from the top of the VerticalStack. That y variable is then increased at the bottom of the loop based on the child’s height. That creates the stack.

The VerticalStack class is part of the VerticalStackDemo program, which contains a home page that navigates to two pages to test it out. Of course, you can add more test pages (which is something you should do for any Layout<View> classes that you develop).

The two test pages are instantiated in the home page:

Click here to view code image

[image: Image]

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:sys="clr-namespace:System;assembly=mscorlib"

 xmlns:local="clr-namespace:VerticalStackDemo;assembly=VerticalStackDemo"

 x:Class="VerticalStackDemo.VerticalStackDemoHomePage"

 Title="VerticalStack Demo">

 <ListView ItemSelected="OnListViewItemSelected">

 <ListView.ItemsSource>

 <x:Array Type="{x:Type Page}">

 <local:LayoutOptionsTestPage />

 <local:ScrollTestPage />

 </x:Array>

 </ListView.ItemsSource>

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

The code-behind file navigates to the selected page:

Click here to view code image

[image: Image]

public partial class VerticalStackDemoHomePage : ContentPage

{

 public VerticalStackDemoHomePage()

 {

 InitializeComponent();

 }

 async void OnListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 ((ListView)sender).SelectedItem = null;

 if (args.SelectedItem != null)

 {

 Page page = (Page)args.SelectedItem;

 await Navigation.PushAsync(page);

 }

 }

}

The first of the test pages uses VerticalStack to display five Button elements with different HorizontalOptions settings. The VerticalStack itself is given a VerticalOptions setting that should position it in the middle of the page:

Click here to view code image

[image: Image]

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:VerticalStackDemo;assembly=VerticalStackDemo"

 x:Class="VerticalStackDemo.LayoutOptionsTestPage"

 Title="Test Layout Options">

 <local:VerticalStack Padding="50, 0"

 VerticalOptions="Center">

 <Button Text="Default" />

 <Button Text="Start"

 HorizontalOptions="Start" />

 <Button Text="Center"

 HorizontalOptions="Center" />

 <Button Text="End"

 HorizontalOptions="End" />

 <Button Text="Fill"

 HorizontalOptions="Fill" />

 </local:VerticalStack>

</ContentPage>

Sure enough, the logic for the various HorizontalOptions settings on the children of VerticalStack seems to work:

[image: Image]

Obviously, the Windows 10 Mobile platform would benefit from some spacing between the buttons!

If you remove the VerticalOptions setting on the VerticalStack, the VerticalStack will not get a call at all to its OnSizeRequest override. There is no need for it. The arguments to LayoutChildren will reflect the whole size of the page less the Padding, and the page does not need to know how much space the VerticalStack requires.

The second test program puts the VerticalStack in a ScrollView:

Click here to view code image

[image: Image]

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:VerticalStackDemo;assembly=VerticalStackDemo"

 x:Class="VerticalStackDemo.ScrollTestPage"

 Title="Test Scrolling">

 <ScrollView>

 <local:VerticalStack x:Name="stack" />

 </ScrollView>

</ContentPage>

The code-behind file fills the VerticalStack with 125 instances of a regular StackLayout, each one containing a BoxView, and another VerticalStack with three Label elements:

Click here to view code image

[image: Image]

[image: Image]

public partial class ScrollTestPage : ContentPage

{

 public ScrollTestPage()

 {

 InitializeComponent();

 for (double r = 0; r <= 1.0; r += 0.25)

 for (double g = 0; g <= 1.0; g += 0.25)

 for (double b = 0; b <= 1.0; b += 0.25)

 {

 stack.Children.Add(new StackLayout

 {

 Orientation = StackOrientation.Horizontal,

 Padding = 6,

 Children =

 {

 new BoxView

 {

 Color = Color.FromRgb(r, g, b),

 WidthRequest = 100,

 HeightRequest = 100

 },

 new VerticalStack

 {

 VerticalOptions = LayoutOptions.Center,

 Children =

 {

 new Label { Text = "Red = " + r.ToString("F2") },

 new Label { Text = "Green = " + g.ToString("F2") },

 new Label { Text = "Blue = " + b.ToString("F2") }

 }

 }

 }

 });

 }

 }

}

The VerticalStack is a child of a ScrollView with a vertical scrolling orientation, so it receives an OnSizeRequest call with a height of Double.PositiveInfinity. The VerticalStack responds with a height that encompasses all its children. The ScrollView uses that height together with its own height (which is based on the size of the screen) to scroll its contents:

[image: Image]

Vertical and horizontal positioning simplified

Toward the end of the LayoutChildren override in VerticalStack is a switch statement that assists in positioning each child horizontally based on the child’s HorizontalOptions property setting. Here’s that whole method again:

Click here to view code image

public class VerticalStack : Layout<View>

{

 ...

 protected override void LayoutChildren(double x, double y, double width, double height)

 {

 // Enumerate through all the children.

 foreach (View child in Children)

 {

 // Skip the invisible children.

 if (!child.IsVisible)

 continue;

 // Get the child's requested size.

 SizeRequest childSizeRequest = child.GetSizeRequest(width, Double.PositiveInfinity);

 // Initialize child position and size.

 double xChild = x;

 double yChild = y;

 double childWidth = childSizeRequest.Request.Width;

 double childHeight = childSizeRequest.Request.Height;

 // Adjust position and size based on HorizontalOptions.

 switch (child.HorizontalOptions.Alignment)

 {

 case LayoutAlignment.Start:

 break;

 case LayoutAlignment.Center:

 xChild += (width - childWidth) / 2;

 break;

 case LayoutAlignment.End:

 xChild += (width - childWidth);

 break;

 case LayoutAlignment.Fill:

 childWidth = width;

 break;

 }

 // Layout the child.

 child.Layout(new Rectangle(xChild, yChild, childWidth, childHeight));

 // Get the next child's vertical position.

 y += childHeight;

 }

 }

}

Positioning a child within a rectangle based on its HorizontalOptions and VerticalOptions settings is something that comes up fairly frequently when writing layouts. For that reason, the Layout<T> class includes a public static method that does it for you:

Click here to view code image

public static void LayoutChildIntoBoundingRegion(VisualElement child, Rectangle region)

You can rewrite the LayoutChildren method to use this helper method like so:

Click here to view code image

protected override void LayoutChildren(double x, double y, double width, double height)

{

 // Enumerate through all the children.

 foreach (View child in Children)

 {

 // Skip the invisible children.

 if (!child.IsVisible)

 continue;

 // Get the child's requested size.

 SizeRequest childSizeRequest = child.GetSizeRequest(width, Double.PositiveInfinity);

 double childHeight = childSizeRequest.Request.Height;

 // Layout the child.

 LayoutChildIntoBoundingRegion(child, new Rectangle(x, y, width, childHeight));

 // Calculate the next child vertical position.

 y += childHeight;

 }

}

That’s a considerable simplification! But as this call is used in other layout classes in this chapter, keep in mind that it is equivalent to making a call to the child’s Layout method.

Notice that the rectangle you pass to LayoutChildIntoBoundingRegion encompasses the whole area in which the child can reside. In this case, the width argument to the Rectangle constructor is the width argument passed to LayoutChildren, which is the width of the VerticalLayout itself. But the height argument to the Rectangle constructor is the height the specific child requires, which is available from GetSizeRequest.

Unless the child has default HorizontalOptions and VerticalOptions settings of Fill, the LayoutChildIntoBoundingRegion method itself needs to call GetSizeRequest on the child using the Width and Height properties of that Rectangle value. That’s the only way it knows how to position the child within the area provided in that Rectangle passed to the method call.

That means that when using the LayoutChildIntoBoundingRegion method, the VerticalLayout class could very well call GetSizeRequest three times on every child in each layout cycle.

Moreover, just as VerticalLayout calls GetSizeRequest on its children multiple times, and sometimes with different arguments, the parent of VerticalLayout might call GetSizeRequest on the VerticalLayout more than once with different arguments, which then results in more OnSizeRequest calls.

Calls to GetSizeRequest should not have any side effects. The calls don’t result in any other properties being set, and should merely retrieve information based on particular width and height constraints. GetSizeRequest may therefore be called more freely than Layout, which actually affects how the element is sized and positioned.

But don’t call GetSizeRequest if you don’t need to. A call to GetSizeRequest is not required for an element to be displayed on the screen. Only Layout is required.

In your own layout classes, it’s best to handle OnSizeRequest calls “blindly” without trying to figure out where the call is coming from, or why the arguments are what they are, or what it means to get several calls with different arguments.

However, it is possible for your layout class to cache the result of the OnSizeRequest call so that you can streamline subsequent calls. But doing this properly requires knowing about the process of invalidation.

Invalidation

Suppose you’ve assembled some layouts and views on a page, and for some reason the code-behind file (or perhaps a trigger or behavior) changes the text of a Button, or maybe just a font size or attribute. That change might affect the size of the button, which might potentially have a ripple effect of changes in layout through the rest of the page.

The process by which a change in an element on the page triggers a new layout is referred to as invalidation. When something on the page is invalid, it’s means that it no longer has a correct size or position. A new layout cycle is required.

The process of invalidation begins with a protected virtual method defined by VisualElement:

Click here to view code image

protected virtual void InvalidateMeasure()

This method is protected. You can’t invalidate an element from external code. Elements must invalidate themselves, generally when a property of the element changes. This commonly happens in the implementations of bindable properties. Whenever there’s a change in one of the element’s bindable properties that might result in a new size of the element, the property-changed handler usually calls InvalidateMeasure.

The InvalidateMeasure method fires an event so that any object external to the element might be informed when the element no longer has a correct size:

Click here to view code image

public event EventHandler MeasureInvalidated;

The element’s parent generally handles this MeasureInvalidated event. However, the element doesn’t do anything beyond firing this event. It doesn’t change its own layout size. That’s the responsibility of the element’s parent. But any future call to GetSizeRequest will reflect the new size.

VisualElement itself defines 28 public properties, but only a few of them trigger calls to InvalidateMeasure and a subsequent firing of the MeasureInvalidated event. These properties are:

• IsVisible

• WidthRequest and MinimumWidthRequest

• HeightRequest and MinimumHeightRequest

These are the only properties that VisualElement defines that cause a change to the layout size of the element.

VisualElement defines some properties that might cause a change in the appearance of the element but not a change to the layout size. These are BackgroundColor, IsEnabled, IsFocused, and Opacity. Changes to these properties do not cause calls to InvalidateMeasure.

In addition, VisualElement defines eight transform properties that change the size of a rendered element but do not change the size of the element as perceived in layout. These are AnchorX, AnchorY, Rotation, RotationX, RotationY, Scale, TranslationX, and TranslationY.

The Behaviors, Style, and Triggers properties might indirectly affect layout size, but changes to these properties (or the collections that these properties maintain) do not themselves cause InvalidateMeasure to be called. In addition, changes to the InputTransparent, Navigation, and Resources properties do not affect layout size.

And then there are the five properties that are set by a call to Layout. These are Bounds, X, Y, Width, and Height. These properties definitely should not—and do not—cause a call to InvalidateMeasure.

The View class adds three more properties to those defined by VisualElement. The GestureRecognizers property doesn’t affect layout size, but changes to the following two properties cause a call to InvalidateMeasure:

• HorizontalOptions

• VerticalOptions

The classes that derive from View also make calls to InvalidateMeasure whenever a property changes that might cause a change in the element’s size. For example, Label calls InvalidateMeasure whenever any of the following properties change:

• Text and FormattedText

• FontFamily, FontSize, and FontAttributes

• LineBreakMode

Label does not call InvalidateMeasure when the TextColor property changes. That affects the appearance of the text but not its size. Label also does not call InvalidateMeasure when the HorizontalTextAlignment and VerticalTextAlignment properties change. These properties govern the alignment of the text within the total size of the Label, but they do not affect the size of the Label itself.

The Layout class builds on the invalidation infrastructure in several crucial ways. First, Layout defines a method similar to InvalidateMeasure called InvalidateLayout:

Click here to view code image

protected virtual void InvalidateLayout()

A Layout derivative class should call InvalidateLayout whenever a change is made that affects how the layout class positions and sizes its children.

The Layout class itself calls InvalidateLayout whenever a child is added or removed from its Content property (in the case of ContentView, Frame, and ScrollView) or its Children collection (in the case of Layout<View> derivatives).

If you do not want your layout class to call InvalidateLayout when a child is added or removed, you can override the ShouldInvalidateOnChildAdded and ShouldInvalidateOnChildRemoved methods and simply return false instead of true. Your class can then implement a custom process when children are added or removed. The Layout<T> class overrides the virtual methods named OnChildAdded and OnChildRemoved defined by the Element class, but your class should instead override the OnAdded and OnRemoved methods for custom processing.

In addition, the Layout class sets a handler for the MeasureInvalidated event on every child added to its Content property or Children collection, and detaches the handler when the child is removed. The Page class does something similar. Both the Page and Layout classes expose overridable OnChildMeasureInvalidated methods if you want to be notified when these events are fired.

These MeasureInvalidated event handlers are really the crucial part of the process because every element in the visual tree that has children is alerted whenever one of its children changes size. This is how a change in the size of an element very deep in the visual tree can cause changes that ripple up the tree.

The Layout class, however, attempts to restrict the impact of a change in a child’s size on the total layout of the page. If the particular layout is constrained in size, then a change in the size of a child need not affect anything higher than this layout in the visual tree.

In most cases, a change in the size of a layout affects how the layout arranges its children. For this reason, any change in a layout’s size will precipitate a layout cycle for the layout. The layout will get calls to its OnSizeRequested and LayoutChildren methods.

However, the opposite is not always true. The way in which a layout arranges its children might affect the layout’s size, or it might not. Most obviously, the layout’s size will not be affected by how the layout arranges its children if the layout’s size is fully constrained.

This difference becomes important when the layout defines its own properties such as the Spacing and Orientation properties defined by StackLayout. When such a property changes value, the layout must invalidate itself to cause a new layout cycle to occur. Should the layout call InvalidateMeasure or InvalidateLayout?

In most cases, the layout should call InvalidateLayout. This guarantees that the layout gets a call to its LayoutChildren method even if the layout is fully constrained in size. If the layout calls InvalidateMeasure, then a new layout pass will be generated only if the layout is not fully constrained in size. If the layout is constrained in size, then a call to InvalidateMeasure will do nothing.

Some rules for coding layouts

From the discussion above, you can formulate several rules for your own Layout<View> derivatives:

Rule 1: If your layout class defines properties such as Spacing or Orientation, these properties should be backed by bindable properties. In most cases, the property-changed handlers of these bindable properties should call InvalidateLayout. Calling InvalidateMeasure should be restricted to cases where a property change affects the size of the layout only and not how it arranges its children, but a real-life example is hard to imagine.

Rule 2: Your layout class might define attached bindable properties for its children similar to the Row, Column, RowSpan, and ColumnSpan properties defined by Grid. As you know, these properties are defined by the layout class, but they are intended to be set on the children of the layout. In this case, your layout class should override the OnAdded method to add a PropertyChanged handler to each child of the layout, and override OnRemoved to remove that handler. The PropertyChanged handler should check whether the property being changed on the child is one of the attached bindable properties that your class has defined, and if so, your layout should usually respond by calling InvalidateLayout.

Rule 3: If you want to implement a cache (or retain other information) to minimize repetitive processing of calls to the GetSizeRequest methods of the layout’s children, then you should also override the InvalidateLayout method to be notified when children are added to or removed from the layout, and the OnChildMeasureInvalidated method to be notified when one of the layout’s children changes size. In both cases, your layout class should respond by clearing that cache or discarding the retained information.

It’s possible for the layout to also clear the cache or discard retained information when the layout gets a call to its invalidateMeasure method. However, generally the cache is a dictionary based on sizes passed to the OnSizeRequest and LayoutChildren override, so those sizes will be different anyway.

All these techniques will be demonstrated in the pages ahead.

A layout with properties

The StackLayout is certainly handy, but it’s only a single row or column of children. If you want multiple rows and columns, you can use the Grid, but the application must explicitly set the number of rows and columns, and that requires having a good idea of the size of the children.

A more useful layout to accommodate an indefinite number of children would begin positioning children in a row much like a horizontal StackLayout, but then go to a second row if necessary, and to a third, continuing for however many rows are necessary. If the number of rows is expected to exceed the height of the screen, then the layout could be made a child of a ScrollView.

This is the idea behind WrapLayout. It arranges its children in columns horizontally across the screen until it gets to the edge, at which point it wraps the display of subsequent children to the next row, and so forth.

But let’s make it a little more versatile: Let’s give it an Orientation property like StackLayout. This allows a program using WrapLayout to specify that it begin by arranging its children in rows down the screen, and should then go to a second column if necessary. With this alternative orientation, the WrapLayout could be horizontally scrolled.

Let’s also give WrapLayout two properties, named ColumnSpacing and RowSpacing, just like Grid.

The WrapLayout has the potential of being algorithmically rather complex if it really allows for children of a variety of different sizes. The first row might have four children, then three children in the second row, and so forth.

Let’s instead make a simple assumption that all the children have the same size—or more precisely, that the same amount of space is allocated for each child based on the maximum size of the children. This is sometimes called a cell size, and WrapLayout will calculate a cell size that is large enough for every child. Children smaller than the cell size can be positioned within that cell based on their HorizontalOptions and VerticalOptions settings.

WrapLayout is useful enough to justify its inclusion in the Xamarin.FormsBook.Toolkit library. The following enumeration contains the two orientation options with wordy but unambiguous descriptions:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public enum WrapOrientation

 {

 HorizontalThenVertical,

 VerticalThenHorizontal

 }

}

WrapLayout defines three properties backed by bindable properties. The property-changed handler of each bindable property simply calls InvalidateLayout to trigger a new layout pass on the layout:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class WrapLayout : Layout<View>

 {

 ...

 public static readonly BindableProperty OrientationProperty =

 BindableProperty.Create(

 "Orientation",

 typeof(WrapOrientation),

 typeof(WrapLayout),

 WrapOrientation.HorizontalThenVertical,

 propertyChanged: (bindable, oldValue, newValue) =>

 {

 ((WrapLayout)bindable).InvalidateLayout();

 });

 public static readonly BindableProperty ColumnSpacingProperty =

 BindableProperty.Create(

 "ColumnSpacing",

 typeof(double),

 typeof(WrapLayout),

 6.0,

 propertyChanged: (bindable, oldvalue, newvalue) =>

 {

 ((WrapLayout)bindable).InvalidateLayout();

 });

 public static readonly BindableProperty RowSpacingProperty =

 BindableProperty.Create(

 "RowSpacing",

 typeof(double),

 typeof(WrapLayout),

 6.0,

 propertyChanged: (bindable, oldvalue, newvalue) =>

 {

 ((WrapLayout)bindable).InvalidateLayout();

 });

 public WrapOrientation Orientation

 {

 set { SetValue(OrientationProperty, value); }

 get { return (WrapOrientation)GetValue(OrientationProperty); }

 }

 public double ColumnSpacing

 {

 set { SetValue(ColumnSpacingProperty, value); }

 get { return (double)GetValue(ColumnSpacingProperty); }

 }

 public double RowSpacing

 {

 set { SetValue(RowSpacingProperty, value); }

 get { return (double)GetValue(RowSpacingProperty); }

 }

 ...

 }

}

WrapLayout also defines a private structure for storing information about a particular collection of children. The CellSize property is the maximum size of all the children but adjusted to the size of the layout. The Rows and Cols properties are the number of rows and columns.

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class WrapLayout : Layout<View>

 {

 struct LayoutInfo

 {

 public LayoutInfo(int visibleChildCount, Size cellSize, int rows, int cols) : this()

 {

 VisibleChildCount = visibleChildCount;

 CellSize = cellSize;

 Rows = rows;

 Cols = cols;

 }

 public int VisibleChildCount { private set; get; }

 public Size CellSize { private set; get; }

 public int Rows { private set; get; }

 public int Cols { private set; get; }

 }

 Dictionary<Size, LayoutInfo> layoutInfoCache = new Dictionary<Size, LayoutInfo>();

 ...

 }

}

Notice also the definition of a Dictionary to store multiple LayoutInfo values. The Size key is either the constraint arguments to the OnSizeRequest override, or the width and height arguments to the LayoutChildren override.

If the WrapLayout is in a constrained ScrollView (which will normally be the case), then one of the constraint arguments will be infinite, but that will not be the case for the width and height arguments to LayoutChildren. In that case, there will be two dictionary entries.

If you then turn the phone sideways, WrapLayout will get another OnSizeRequest call with an infinite constraint, and another LayoutChildren call. That’s two more dictionary entries. But then if you turn the phone back to portrait mode, no further calculations need occur because the cache already has that case.

Here is the GetLayoutInfo method in WrapLayout that calculates the properties of the LayoutInfo structure based on a particular size. Notice that the method begins by checking if a calculated LayoutInfo value is already available in the cache. At the end of the GetLayoutInfo method, the new LayoutInfo value is stored in the cache:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class WrapLayout : Layout<View>

 {

 ...

 LayoutInfo GetLayoutInfo(double width, double height)

 {

 Size size = new Size(width, height);

 // Check if cached information is available.

 if (layoutInfoCache.ContainsKey(size))

 {

 return layoutInfoCache[size];

 }

 int visibleChildCount = 0;

 Size maxChildSize = new Size();

 int rows = 0;

 int cols = 0;

 LayoutInfo layoutInfo = new LayoutInfo();

 // Enumerate through all the children.

 foreach (View child in Children)

 {

 // Skip invisible children.

 if (!child.IsVisible)

 continue;

 // Count the visible children.

 visibleChildCount++;

 // Get the child's requested size.

 SizeRequest childSizeRequest = child.GetSizeRequest(Double.PositiveInfinity,

 Double.PositiveInfinity);

 // Accumulate the maximum child size.

 maxChildSize.Width =

 Math.Max(maxChildSize.Width, childSizeRequest.Request.Width);

 maxChildSize.Height =

 Math.Max(maxChildSize.Height, childSizeRequest.Request.Height);

 }

 if (visibleChildCount != 0)

 {

 // Calculate the number of rows and columns.

 if (Orientation == WrapOrientation.HorizontalThenVertical)

 {

 if (Double.IsPositiveInfinity(width))

 {

 cols = visibleChildCount;

 rows = 1;

 }

 else

 {

 cols = (int)((width + ColumnSpacing) /

 (maxChildSize.Width + ColumnSpacing));

 cols = Math.Max(1, cols);

 rows = (visibleChildCount + cols - 1) / cols;

 }

 }

 else // WrapOrientation.VerticalThenHorizontal

 {

 if (Double.IsPositiveInfinity(height))

 {

 rows = visibleChildCount;

 cols = 1;

 }

 else

 {

 rows = (int)((height + RowSpacing) /

 (maxChildSize.Height + RowSpacing));

 rows = Math.Max(1, rows);

 cols = (visibleChildCount + rows - 1) / rows;

 }

 }

 // Now maximize the cell size based on the layout size.

 Size cellSize = new Size();

 if (Double.IsPositiveInfinity(width))

 {

 cellSize.Width = maxChildSize.Width;

 }

 else

 {

 cellSize.Width = (width - ColumnSpacing * (cols - 1)) / cols;

 }

 if (Double.IsPositiveInfinity(height))

 {

 cellSize.Height = maxChildSize.Height;

 }

 else

 {

 cellSize.Height = (height - RowSpacing * (rows - 1)) / rows;

 }

 layoutInfo = new LayoutInfo(visibleChildCount, cellSize, rows, cols);

 }

 layoutInfoCache.Add(size, layoutInfo);

 return layoutInfo;

 }

 ...

 }

}

The logic of GetLayoutInfo is divided into three major sections:

The first section is a foreach loop that enumerates through all the children, calls GetSizeRequest with an infinite width and height, and determines the maximum child size.

The second and third sections are executed only if there is at least one visible child. The second section has different processing based on the Orientation property and calculates the number of rows and columns. It will usually be the case that a WrapPanel with the default Orientation setting (HorizontalThenVertical) will be a child of a vertical ScrollView, in which case the heightConstraint argument to the OnSizeRequest override will be infinite. It might also be the case that the widthConstraint argument to OnSizeRequest (and GetLayoutInfo) is also infinite, which results in all the children being displayed in a single row. But that would be unusual.

The third section then calculates a cell size for the children based on the dimensions of the WrapLayout. For an Orientation of HorizontalThenVertical, this cell size is usually a bit wider than the maximum child size, but it might be smaller if the WrapLayout is not wide enough for the widest child or tall enough for the tallest child.

The cache must be entirely destroyed when the layout receives calls to InvalidateLayout (which could result when children are added to or removed from the collection, or when one of the properties of WrapLayout changes value) or to OnChildMeasureInvalidated. This is simply a matter of clearing the dictionary:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class WrapLayout : Layout<View>

 {

 ...

 protected override void InvalidateLayout()

 {

 base.InvalidateLayout();

 // Discard all layout information for children added or removed.

 layoutInfoCache.Clear();

 }

 protected override void OnChildMeasureInvalidated()

 {

 base.OnChildMeasureInvalidated();

 // Discard all layout information for child size changed.

 layoutInfoCache.Clear();

 }

 }

}

Finally, we’re ready to look at the two required methods. The OnSizeRequest override simply calls GetLayoutInfo and constructs a SizeRequest value from the returned information together with the RowSpacing and ColumnSpacing properties:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class WrapLayout : Layout<View>

 {

 ...

 protected override SizeRequest OnSizeRequest(double widthConstraint,

 double heightConstraint)

 {

 LayoutInfo layoutInfo = GetLayoutInfo(widthConstraint, heightConstraint);

 if (layoutInfo.VisibleChildCount == 0)

 {

 return new SizeRequest();

 }

 Size totalSize = new Size(layoutInfo.CellSize.Width * layoutInfo.Cols +

 ColumnSpacing * (layoutInfo.Cols - 1),

 layoutInfo.CellSize.Height * layoutInfo.Rows +

 RowSpacing * (layoutInfo.Rows - 1));

 return new SizeRequest(totalSize);

 }

 ...

 }

}

The LayoutChildren override begins with a call to GetLayoutInfo and then enumerates all the children to size and position them within each child’s cell. This logic also requires separate processing based on the Orientation property:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class WrapLayout : Layout<View>

 {

 ...

 protected override void LayoutChildren(double x, double y, double width, double height)

 {

 LayoutInfo layoutInfo = GetLayoutInfo(width, height);

 if (layoutInfo.VisibleChildCount == 0)

 return;

 double xChild = x;

 double yChild = y;

 int row = 0;

 int col = 0;

 foreach (View child in Children)

 {

 if (!child.IsVisible)

 continue;

 LayoutChildIntoBoundingRegion(child,

 new Rectangle(new Point(xChild, yChild), layoutInfo.CellSize));

 if (Orientation == WrapOrientation.HorizontalThenVertical)

 {

 if (++col == layoutInfo.Cols)

 {

 col = 0;

 row++;

 xChild = x;

 yChild += RowSpacing + layoutInfo.CellSize.Height;

 }

 else

 {

 xChild += ColumnSpacing + layoutInfo.CellSize.Width;

 }

 }

 else // Orientation == WrapOrientation.VerticalThenHorizontal

 {

 if (++row == layoutInfo.Rows)

 {

 col++;

 row = 0;

 xChild += ColumnSpacing + layoutInfo.CellSize.Width;

 yChild = y;

 }

 else

 {

 yChild += RowSpacing + layoutInfo.CellSize.Height;

 }

 }

 }

 }

 ...

 }

}

Let’s try it out! The XAML file of the PhotoWrap program simply contains a WrapPanel with default property settings in a ScrollView:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="PhotoWrap.PhotoWrapPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ScrollView>

 <toolkit:WrapLayout x:Name="wrapLayout" />

 </ScrollView>

</ContentPage>

The code-behind file accesses the JSON file containing the list of stock photos previously used in several sample programs in this book. The constructor creates an Image element for each bitmap in the list and adds it to the WrapLayout:

Click here to view code image

public partial class PhotoWrapPage : ContentPage

{

 [DataContract]

 class ImageList

 {

 [DataMember(Name = "photos")]

 public List<string> Photos = null;

 }

 WebRequest request;

 static readonly int imageDimension = Device.OnPlatform(240, 240, 120);

 static readonly string urlSuffix =

 String.Format("?width={0}&height={0}&mode=max", imageDimension);

 public PhotoWrapPage()

 {

 InitializeComponent();

 // Get list of stock photos.

 Uri uri = new Uri("http://docs.xamarin.com/demo/stock.json");

 request = WebRequest.Create(uri);

 request.BeginGetResponse(WebRequestCallback, null);

 }

 void WebRequestCallback(IAsyncResult result)

 {

 try

 {

 Stream stream = request.EndGetResponse(result).GetResponseStream();

 // Deserialize the JSON into imageList.

 var jsonSerializer = new DataContractJsonSerializer(typeof(ImageList));

 ImageList imageList = (ImageList)jsonSerializer.ReadObject(stream);

 Device.BeginInvokeOnMainThread(() =>

 {

 foreach (string filepath in imageList.Photos)

 {

 Image image = new Image

 {

 Source = ImageSource.FromUri(new Uri(filepath + urlSuffix))

 };

 wrapLayout.Children.Add(image);

 }

 });

 }

 catch (Exception)

 {

 }

 }

}

The number of columns in each row depends on the size of the bitmaps, the screen width, and the number of pixels per device-independent unit:

[image: Image]

Turn the phones sideways, and you’ll see something a bit different:

[image: Image]

The ScrollView allows the layout to be vertically scrolled. If you want to check the different orientation of the WrapPanel, you’ll need to change the orientation of the ScrollView as well:

Click here to view code image

<ScrollView Orientation="Horizontal">

 <toolkit:WrapLayout x:Name="wrapLayout"

 Orientation="VerticalThenHorizontal" />

</ScrollView>

Now the screen scrolls horizontally:

[image: Image]

The Image elements load the bitmaps in the background, so the WrapLayout class will get numerous calls to its Layout method as each Image element gets a new size based on the loaded bitmap. Consequently, you might see some shifting of the rows and columns as the bitmaps are being loaded.

No unconstrained dimensions allowed!

There are times when you want to see everything on the screen, perhaps in an array of uniformly sized rows and columns. You can do something like this with a Grid with all the row and column definitions defined with the asterisk to make them all the same size. The only problem is that you probably also want the number of rows and columns to be based on the number of children, and optimized for the best use of the screen real estate.

Let’s write a custom layout called UniformGridLayout. Like WrapLayout, UniformGridLayout requires Orientation, RowSpacing, and ColumnSpacing properties, so let’s eliminate some of the work involved in redefining properties by deriving UniformGridLayout from WrapLayout.

Because UniformGridLayout makes no sense with an unconstrained dimension, the OnSizeRequest override checks for infinite constraints and raises an exception if it encounters such a thing.

To assist in the ability of UniformGridLayout to optimize the use of the screen real estate, let’s give it a property named AspectRatio of type AspectRatio. This property indicates the expected aspect ratio of the children as a double value. The value 1.33, for example, indicates an aspect ratio of 4:3, which is a width that is 33 percent longer than the height. By default, however, UniformGridLayout will calculate an average aspect ratio of its children.

This AspectRatio structure is similar to the GridLength structure defined for the Grid class in that it allows a double value as well as an “Auto” option to force UniformGridLayout to calculate that average aspect ratio:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 [TypeConverter(typeof(AspectRatioTypeConverter))]

 public struct AspectRatio

 {

 public AspectRatio(double value)

 {

 if (value < 0)

 throw new FormatException("AspectRatio value must be greater than 0, " +

 "or set to 0 to indicate Auto");

 Value = value;

 }

 public static AspectRatio Auto

 {

 get

 {

 return new AspectRatio();

 }

 }

 public double Value { private set; get; }

 public bool IsAuto { get { return Value == 0; } }

 public override string ToString()

 {

 return Value == 0 ? "Auto" : Value.ToString();

 }

 }

}

The “Auto” option is indicated by a Value property of 0. An application using UniformGridLayout can create such an AspectRatio value with the parameterless constructor, or by passing a 0 to the defined constructor, or by using the static Auto property.

I’m sure you’d like to be able to set an AspectRatio property in XAML, so the structure is flagged with a TypeConverter attribute. The AspectRatioTypeConverter class can handle a string with the word “Auto” or a double:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class AspectRatioTypeConverter : TypeConverter

 {

 public override bool CanConvertFrom(Type sourceType)

 {

 return sourceType == typeof(string);

 }

 public override object ConvertFrom(CultureInfo culture, object value)

 {

 string str = value as string;

 if (String.IsNullOrWhiteSpace(str))

 return null;

 str = str.Trim();

 double aspectValue;

 if (String.Compare(str, "auto", StringComparison.OrdinalIgnoreCase) == 0)

 return AspectRatio.Auto;

 if (Double.TryParse(str, NumberStyles.Number,

 CultureInfo.InvariantCulture, out aspectValue))

 return new AspectRatio(aspectValue);

 throw new FormatException("AspectRatio must be Auto or numeric");

 }

 }

}

The UniformGridLayout class derives from WrapLayout solely for inheriting the three bindable properties that WrapLayout defines. To those properties, UniformGridLayout adds the AspectRatio property:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class UniformGridLayout : WrapLayout

 {

 public static readonly BindableProperty AspectRatioProperty =

 BindableProperty.Create(

 "AspectRatio",

 typeof(AspectRatio),

 typeof(UniformGridLayout),

 AspectRatio.Auto,

 propertyChanged: (bindable, oldvalue, newvalue) =>

 {

 ((UniformGridLayout)bindable).InvalidateLayout();

 });

 public AspectRatio AspectRatio

 {

 set { SetValue(AspectRatioProperty, value); }

 get { return (AspectRatio)GetValue(AspectRatioProperty); }

 }

 ...

 }

}

The OnSizeRequest override begins by checking if the constraints are infinite and raising an exception if that is the case. Otherwise, it requests the entire area unless it has no visible children:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class UniformGridLayout : WrapLayout

 {

 ...

 protected override SizeRequest OnSizeRequest(double widthConstraint,

 double heightConstraint)

 {

 if (Double.IsInfinity(widthConstraint) || Double.IsInfinity(heightConstraint))

 throw new InvalidOperationException(

 "UniformGridLayout cannot be used with unconstrained dimensions.");

 // Just check to see if there aren't any visible children.

 int childCount = 0;

 foreach (View view in Children)

 childCount += view.IsVisible ? 1 : 0;

 if (childCount == 0)

 return new SizeRequest();

 // Then request the entire (noninfinite) size.

 return new SizeRequest(new Size(widthConstraint, heightConstraint));

 }

 ...

 }

}

The hard part is the LayoutChildren override, and it has three main sections:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class UniformGridLayout : WrapLayout

 {

 ...

 protected override void LayoutChildren(double x, double y, double width, double height)

 {

 int childCount = 0;

 foreach (View view in Children)

 childCount += view.IsVisible ? 1 : 0;

 if (childCount == 0)

 return;

 double childAspect = AspectRatio.Value;

 // If AspectRatio is Auto, calculate an average aspect ratio

 if (AspectRatio.IsAuto)

 {

 int nonZeroChildCount = 0;

 double accumAspectRatio = 0;

 foreach (View view in Children)

 {

 if (view.IsVisible)

 {

 SizeRequest sizeRequest = view.GetSizeRequest(Double.PositiveInfinity,

 Double.PositiveInfinity);

 if (sizeRequest.Request.Width > 0 && sizeRequest.Request.Height > 0)

 {

 nonZeroChildCount++;

 accumAspectRatio += sizeRequest.Request.Width /

 sizeRequest.Request.Height;

 }

 }

 }

 if (nonZeroChildCount > 0)

 {

 childAspect = accumAspectRatio / nonZeroChildCount;

 }

 else

 {

 childAspect = 1;

 }

}

int bestRowsCount = 0;

int bestColsCount = 0;

double bestUsage = 0;

double bestChildWidth = 0;

double bestChildHeight = 0;

// Test various possibilities of the number of columns.

for (int colsCount = 1; colsCount <= childCount; colsCount++)

{

 // Find the number of rows for that many columns.

 int rowsCount = (int)Math.Ceiling((double)childCount / colsCount);

 // Determine if we have more rows or columns than we need.

 if ((rowsCount - 1) * colsCount >= childCount ||

 rowsCount * (colsCount - 1) >= childCount)

 {

 continue;

 }

 // Get the aspect ratio of the resultant cells.

 double cellWidth = (width - ColumnSpacing * (colsCount - 1)) / colsCount;

 double cellHeight = (height - RowSpacing * (rowsCount - 1)) / rowsCount;

 double cellAspect = cellWidth / cellHeight;

 double usage = 0;

 // Compare with the average aspect ratio of the child.

 if (cellAspect > childAspect)

 {

 usage = childAspect / cellAspect;

 }

 else

 {

 usage = cellAspect / childAspect;

 }

 // If we're using more space, save the numbers.

 if (usage > bestUsage)

 {

 bestRowsCount = rowsCount;

 bestColsCount = colsCount;

 bestUsage = usage;

 bestChildWidth = cellWidth;

 bestChildHeight = cellHeight;

 }

 }

 int colIndex = 0;

 int rowIndex = 0;

 double xChild = x;

 double yChild = y;

 foreach (View view in Children)

 {

 // Position and size the child.

 LayoutChildIntoBoundingRegion(view,

 new Rectangle(xChild, yChild, bestChildWidth, bestChildHeight));

 // Increment the coordinates and indices.

 if (Orientation == WrapOrientation.HorizontalThenVertical)

 {

 xChild += bestChildWidth + ColumnSpacing;

 if (++colIndex == bestColsCount)

 {

 colIndex = 0;

 xChild = x;

 yChild += bestChildHeight + RowSpacing;

 }

 }

 else // Orientation == WrapOrientation.VerticalThenHorizontal

 {

 yChild += bestChildHeight + RowSpacing;

 if (++rowIndex == bestRowsCount)

 {

 rowIndex = 0;

 xChild += bestChildWidth + ColumnSpacing;

 yChild = y;

 }

 }

 }

 }

 }

}

The first section calculates an average aspect ratio of the children if the “Auto” option has been specified.

The second section loops through different combinations of rows and columns and determines which combination results in the best use of the available space. The crucial calculation is this:

Click here to view code image

if (cellAspect > childAspect)

{

 usage = childAspect / cellAspect;

}

else

{

 usage = cellAspect / childAspect;

}

For example, suppose that the childAspect that is calculated based on the average of all the children is 1.5, and for a particular combination of rows and columns the cellAspect value is 2. A child with an aspect ratio of 1.5 will occupy only 75 percent of a cell with an aspect ratio of 2. If the cellAspect is instead 0.75, then the child will occupy only 50 percent of that cell.

The third section then gives each child a size and position within the grid. This requires different processing based on the Orientation property.

Let’s try it out. The PhotoGrid XAML file fills the page (except for the top padding on the iPhone) with a UniformGridLayout with two properties set:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="PhotoGrid.PhotoGridPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <toolkit:UniformGridLayout x:Name="uniformGridLayout"

 Orientation="VerticalThenHorizontal"

 AspectRatio="Auto" />

</ContentPage>

The code-behind file is virtually identical to the one in PhotoWrap, and here’s the result:

[image: Image]

Again, as the Image elements load the bitmaps, you might see some shifting of the rows and columns.

It’s fun to run this on the Windows desktop and change the size and aspect ratio of the window to see how the bitmaps are reordered into rows and columns. This is a good way also to check for some bugs in your code.

Overlapping children

Can a Layout<View> class call the Layout method on its children so that the children overlap? Yes, but that probably raises another question in your mind: What determines the order that the children are rendered? Which children seemingly sit in the foreground and might partially or totally obscure other children displayed in the background?

In some graphical environments, programmers have access to a value called Z-index. The name comes from visualizing a three-dimensional coordinate system on a two-dimensional computer screen. The X and Y axes define the horizontal surface of the screen, while the Z axis is perpendicular to the screen. Visual elements with a higher Z-index appear to be closer to the viewer in the foreground, and hence might possibly obscure elements with a lower Z-index in the background.

There is no explicit Z-index in Xamarin.Forms. You might guess that a Z-index is implied by the order in which the layout class calls the Layout method on its children, but this is not the case. A layout class can call the Layout methods on its children in whatever order you want without any change in the display. These calls give each child a size and position relative to its parent, but the children are not rendered in that order.

Instead, the children are rendered in their order in the Children collection. The children earlier in the collection are rendered first, so they appear in the background, which means that children later in the collection appear to be in the foreground and can obscure those earlier children.

The Layout class defines two methods that allow you to move a child to the beginning or end of the Children collection. These methods are:

• LowerChild — moves a child to the beginning of the Children collection, and visually to the background.

• RaiseChild — moves a child to the end of the Children collection, and visually to the foreground.

The child must already be a part of the Children collection for these methods to work. These calls result in a call to the protected OnChildrenReordered method defined by VisualElement and a firing of the ChildrenReordered event.

At the time this chapter was written, the LowerChild and RaiseChild methods do not work on the various Windows platforms. However, the Children property defined by Layout<T> is of type IList<T>, so you can also move children in and out of the collection with calls to Add, Insert, Remove, and RemoveAt. Regardless of how you do it, any change to the contents of the Children collection results in a call to LayoutInvalidated and a new layout cycle.

These issues arise when you want to write a layout class that overlaps its children, but you also want the option to bring a partially obscured child out of hiding, perhaps with a tap. To move a child to the visual foreground, you’ll need to manipulate the Children collection, but you’ll also need to make sure that these manipulations don’t interfere with the rendering of the children.

You’ll see one possible solution in the OverlapLayout class. This layout class displays its children in a vertical or horizontal stack but overlapped. Each child is positioned slightly lower (or to the right of) the previous child, specified by a property that OverlapLayout defines called Offset.

Here is program called StudentCardFile that uses OverlapLayout in a ScrollView to display the students of the School of Fine Art by using a card-file metaphor:

[image: Image]

The students are ordered by last name. The iOS screen shows the very top of the list. The Android screen is scrolled to somewhere in the middle, and the Windows 10 Mobile screen is scrolled to the end. The only entirely visible student is the one at the end of the Children collection, with a last name very late in the alphabet.

To view a student, you can tap the top of the student’s card:

[image: Image]

The child is brought to the foreground with calls to two methods that simulate a RaiseChild call:

Click here to view code image

overlapLayout.Children.Remove(tappedChild);

overlapLayout.Children.Add(tappedChild);

You can now scroll the list like normal. All the children are in the same order from top to bottom. You can cause that child to be restored to its initial position in the Children collection with another tap on that child or by tapping another child.

If you think about the logic of VerticalStack earlier in this chapter, you can imagine that there might be a bit of a problem if you simply call RaiseChild without doing anything else. RaiseChild sends the child to the end of the Children collection, so it would normally be rendered last and appear at the bottom of the list. We need some way to reorder the Children collection while keeping the rendering order constant.

The solution that OverlapLayout uses is an attached bindable property that can be set on each child by the application. This property is called RenderOrder, and you’ll see how it works shortly.

Here’s how to define an attached bindable property in a layout class. It’s a little different from a regular bindable property:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class OverlapLayout : Layout<View>

 {

 ...

 // Attached bindable property.

 public static readonly BindableProperty RenderOrderProperty =

 BindableProperty.CreateAttached("RenderOrder",

 typeof(int),

 typeof(OverlapLayout),

 0);

 // Helper methods for attached bindable property.

 public static void SetRenderOrder(BindableObject bindable, int order)

 {

 bindable.SetValue(RenderOrderProperty, order);

 }

 public static int GetRenderOrder(BindableObject bindable)

 {

 return (int)bindable.GetValue(RenderOrderProperty);

 }

 ...

 }

}

The definition of the public static read-only field is similar to defining a regular bindable property except that you use the static Bindable.CreateAttached method, defining at least the text name of the property, the type of the property, the type of the class defining the property, and a default value.

However, unlike with a regular bindable property, you do not define a C# property. Instead, you define two static methods for setting and getting the property. These two static helper methods—called SetRenderOrder and GetRenderOrder—are not strictly required. Any code that uses the attached bindable property can simply call SetValue and GetValue instead, as the bodies of the methods demonstrate. But they are customary.

As you’ll see, code or markup using OverlapLayout sets this RenderOrder property on each of the layout’s children. The StudentCardFile sample you’ll see shortly sets the property when the children are first created and never changes it. However, in the general case, the attached bindable properties set on children can change, in which case another layout pass is required.

For this reason, layouts that implement attached bindable properties should override the OnAdded and OnRemoved methods to attach (and detach) a handler for the PropertyChanged event on each child in the Children collection of the layout. This handler then checks for changes in the attached bindable property and invalidates the layout if the property value has changed:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class OverlapLayout : Layout<View>

 {

 ...

 // Monitor PropertyChanged events for items in the Children collection.

 protected override void OnAdded(View view)

 {

 base.OnAdded(view);

 view.PropertyChanged += OnChildPropertyChanged;

 }

 protected override void OnRemoved(View view)

 {

 base.OnRemoved(view);

 view.PropertyChanged -= OnChildPropertyChanged;

 }

 void OnChildPropertyChanged(object sender, PropertyChangedEventArgs args)

 {

 if (args.PropertyName == "RenderOrder")

 {

 InvalidateLayout();

 }

 }

 ...

 }

}

Rather than explicitly referencing the text name of the property in the PropertyChanged handler (and possibly misspelling it), you can alternatively reference the PropertyName property of the RenderOrderProperty bindable property object.

OverlapLayout also defines two regular bindable properties. The Orientation property is based on the existing StackOrientation enumeration (because the layout is very similar to a stack) and Offset indicates the difference between each successive child:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class OverlapLayout : Layout<View>

 {

 public static readonly BindableProperty OrientationProperty =

 BindableProperty.Create(

 "Orientation",

 typeof(StackOrientation),

 typeof(OverlapLayout),

 StackOrientation.Vertical,

 propertyChanged: (bindable, oldValue, newValue) =>

 {

 ((OverlapLayout)bindable).InvalidateLayout();

 });

 public static readonly BindableProperty OffsetProperty =

 BindableProperty.Create(

 "Offset",

 typeof(double),

 typeof(OverlapLayout),

 20.0,

 propertyChanged: (bindable, oldvalue, newvalue) =>

 {

 ((OverlapLayout)bindable).InvalidateLayout();

 });

 ...

 public StackOrientation Orientation

 {

 set { SetValue(OrientationProperty, value); }

 get { return (StackOrientation)GetValue(OrientationProperty); }

 }

 public double Offset

 {

 set { SetValue(OffsetProperty, value); }

 get { return (double)GetValue(OffsetProperty); }

 }

 ...

 }

 }

The two required method overrides are quite simple compared with some of the other layout classes in this chapter. OnSizeRequest simply determines the maximum size of the children and calculates a requested size based on the size of one child—because initially only one child is fully visible—plus the product of the Offset value and the number of children minus one:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class OverlapLayout : Layout<View>

 {

 ...

 protected override SizeRequest OnSizeRequest(double widthConstraint,

 double heightConstraint)

 {

 int visibleChildCount = 0;

 Size maxChildSize = new Size();

 foreach (View child in Children)

 {

 if (!child.IsVisible)

 continue;

 visibleChildCount++;

 // Get the child's desired size.

 SizeRequest childSizeRequest = new SizeRequest();

 if (Orientation == StackOrientation.Vertical)

 {

 childSizeRequest = child.GetSizeRequest(widthConstraint,

 Double.PositiveInfinity);

 }

 else // Orientation == StackOrientation.Horizontal

 {

 childSizeRequest = child.GetSizeRequest(Double.PositiveInfinity,

 heightConstraint);

 }

 // Find the maximum child width and height.

 maxChildSize.Width = Math.Max(maxChildSize.Width,

 childSizeRequest.Request.Width);

 maxChildSize.Height = Math.Max(maxChildSize.Height,

 childSizeRequest.Request.Height);

 }

 if (visibleChildCount == 0)

 {

 return new SizeRequest();

 }

 else if (Orientation == StackOrientation.Vertical)

 {

 return new SizeRequest(

 new Size(maxChildSize.Width,

 maxChildSize.Height + Offset * (visibleChildCount - 1)));

 }

 else // Orientation == StackOrientation.Horizontal)

 {

 return new SizeRequest(

 new Size(maxChildSize.Width + Offset * (visibleChildCount - 1),

 maxChildSize.Height));

 }

 }

 ...

 }

}

If we didn’t need to worry about bringing hidden children to the foreground, the LayoutChildren method would position each successive child by incrementing x or y (depending on the orientation) by Offset units. Instead, the method calculates a childOffset value for each child by multiplying the Offset property by the RenderOrder property:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class OverlapLayout : Layout<View>

 {

 ...

 protected override void LayoutChildren(double x, double y, double width, double height)

 {

 foreach (View child in Children)

 {

 if (!child.IsVisible)

 continue;

 SizeRequest childSizeRequest = child.GetSizeRequest(width, height);

 double childOffset = Offset * GetRenderOrder(child);

 if (Orientation == StackOrientation.Vertical)

 {

 LayoutChildIntoBoundingRegion(child,

 new Rectangle(x, y + childOffset,

 width, childSizeRequest.Request.Height));

 }

 else // Orientation == StackOrientation.Horizontal

 {

 LayoutChildIntoBoundingRegion(child,

 new Rectangle(x + childOffset, y,

 childSizeRequest.Request.Width, height));

 }

 }

 }

 }

}

The statement that performs the multiplication of the Offset and the RenderOrder property is

Click here to view code image

double childOffset = Offset * GetRenderOrder(child);

You can do the same thing without the static GetRenderOrder property by using GetValue:

Click here to view code image

double childOffset = Offset * (int)child.GetValue(RenderOrderProperty);

But the GetRenderOrder method is definitely easier.

The StudentCardFile program defines a page with an OverlapLayout in a ScrollView:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="StudentCardFile.StudentCardFilePage"

 BackgroundColor="Yellow">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ScrollView>

 <toolkit:OverlapLayout x:Name="overlapLayout"

 Padding="10" />

 </ScrollView>

</ContentPage>

The code-behind file instantiates the SchoolViewModel and uses the PropertyChanged event to determine when the StudentBody property is valid. The students are first sorted by last name. Then, for each Student object, the code creates a StudentView (which you’ll see shortly) and assigns the Student object to the view’s BindingContext:

Click here to view code image

public partial class StudentCardFilePage : ContentPage

{

 ...

 public StudentCardFilePage()

 {

 InitializeComponent();

 // Set a platform-specific Offset on the OverlapLayout.

 overlapLayout.Offset = 2 * Device.GetNamedSize(NamedSize.Large, typeof(Label));

 SchoolViewModel viewModel = new SchoolViewModel();

 viewModel.PropertyChanged += (sender, args) =>

 {

 if (args.PropertyName == "StudentBody")

 {

 // Sort the students by last name.

 var students =

 viewModel.StudentBody.Students.OrderBy(student => student.LastName);

 Device.BeginInvokeOnMainThread(() =>

 {

 int index = 0;

 // Loop through the students.

 foreach (Student student in students)

 {

 // Create a StudentView for each.

 StudentView studentView = new StudentView

 {

 BindingContext = student

 };

 // Set the Order attached bindable property.

 OverlapLayout.SetRenderOrder(studentView, index++);

 // Attach a Tap gesture handler.

 TapGestureRecognizer tapGesture = new TapGestureRecognizer();

 tapGesture.Tapped += OnStudentViewTapped;

 studentView.GestureRecognizers.Add(tapGesture);

 // Add it to the OverlapLayout.

 overlapLayout.Children.Add(studentView);

 }

 });

 }

 };

 }

 ...

}

The RenderOrder property is simply set to sequential values:

Click here to view code image

OverlapLayout.SetRenderOrder(studentView, index++);

It doesn’t seem like much, but it’s crucial for maintaining the rendering order of the students when the Children collection is altered.

The Children collection is altered in the Tapped handler. Keep in mind that the code needs to handle three different (but related) cases: A tap on a student card requires that the card be moved to the foreground with manipulation of the Children collection, equivalent to a call to RaiseChild—except if the student card is already in the foreground, in which case the card needs to be put back where it was. If one card is already in the foreground when another card is tapped, then the first card must be moved back and the second card moved to the foreground:

Click here to view code image

public partial class StudentCardFilePage : ContentPage

{

 View exposedChild = null;

 ...

 void OnStudentViewTapped(object sender, EventArgs args)

 {

 View tappedChild = (View)sender;

 bool retractOnly = tappedChild == exposedChild;

 // Retract the exposed child.

 if (exposedChild != null)

 {

 overlapLayout.Children.Remove(exposedChild);

 overlapLayout.Children.Insert(

 OverlapLayout.GetRenderOrder(exposedChild), exposedChild);

 exposedChild = null;

 }

 // Expose a new child.

 if (!retractOnly)

 {

 // Raise child.

 overlapLayout.Children.Remove(tappedChild);

 overlapLayout.Children.Add(tappedChild);

 exposedChild = tappedChild;

 }

 }

}

The StudentView class derives from ContentView and is meant to resemble an index card. The borders are thin BoxView elements, and another BoxView draws a horizontal line under the name at the top of the card:

Click here to view code image

<ContentView xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StudentCardFile.StudentView"

 BackgroundColor="White">

 <ContentView.Resources>

 <ResourceDictionary>

 <x:Double x:Key="thickness">3</x:Double>

 <Style TargetType="Label">

 <Setter Property="TextColor" Value="Black" />

 </Style>

 <Style TargetType="BoxView">

 <Setter Property="Color" Value="Black" />

 </Style>

 </ResourceDictionary>

 </ContentView.Resources>

 <Grid>

 <BoxView VerticalOptions="Start"

 HeightRequest="{StaticResource thickness}" />

 <BoxView VerticalOptions="End"

 HeightRequest="{StaticResource thickness}" />

 <BoxView HorizontalOptions="Start"

 WidthRequest="{StaticResource thickness}" />

 <BoxView HorizontalOptions="End"

 WidthRequest="{StaticResource thickness}" />

 <StackLayout Padding="5">

 <StackLayout Orientation="Horizontal">

 <Label Text="{Binding LastName, StringFormat='{0},'}"

 FontSize="Large" />

 <Label Text="{Binding FirstName}"

 FontSize="Large" />

 <Label Text="{Binding MiddleName}"

 FontSize="Large" />

 </StackLayout>

 <BoxView Color="Accent"

 HeightRequest="2" />

 <Image Source="{Binding PhotoFilename}" />

 <Label Text="{Binding GradePointAverage, StringFormat='G.P.A. = {0:F2}'}"

 HorizontalTextAlignment="Center" />

 </StackLayout>

 </Grid>

</ContentView>

You’ve already seen the screenshots.

More attached bindable properties

Attached bindable properties can also be set in XAML and set with a Style. To see how this works, let’s examine a class named CartesianLayout that mimics a two-dimensional, four-quadrant Cartesian coordinate system. This layout lets you use BoxView to draw lines by specifying relative X and Y coordinates ranging from -1 to 1 with a particular line thickness in device units.

CartesianLayout derives from Layout<BoxView>, so it is restricted to children of that type. This layout doesn’t make much sense with other types of elements. The class begins by defining three attached bindable properties and static Set and Get methods:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class CartesianLayout : Layout<BoxView>

 {

 public static readonly BindableProperty Point1Property =

 BindableProperty.CreateAttached("Point1",

 typeof(Point),

 typeof(CartesianLayout),

 new Point());

 public static readonly BindableProperty Point2Property =

 BindableProperty.CreateAttached("Point2",

 typeof(Point),

 typeof(CartesianLayout),

 new Point());

 public static readonly BindableProperty ThicknessProperty =

 BindableProperty.CreateAttached("Thickness",

 typeof(Double),

 typeof(CartesianLayout),

 1.0); // must be explicitly Double!

 public static void SetPoint1(BindableObject bindable, Point point)

 {

 bindable.SetValue(Point1Property, point);

 }

 public static Point GetPoint1(BindableObject bindable)

 {

 return (Point)bindable.GetValue(Point1Property);

 }

 public static void SetPoint2(BindableObject bindable, Point point)

 {

 bindable.SetValue(Point2Property, point);

 }

 public static Point GetPoint2(BindableObject bindable)

 {

 return (Point)bindable.GetValue(Point2Property);

 }

 public static void SetThickness(BindableObject bindable, double thickness)

 {

 bindable.SetValue(ThicknessProperty, thickness);

 }

 public static double GetThickness(BindableObject bindable)

 {

 return (double)bindable.GetValue(ThicknessProperty);

 }

 ...

 }

}

As with any attached properties defined in a layout, you should invalidate the layout whenever an attached property changes that might affect the layout. This PropertyChanged handler uses the PropertyName property of the bindable property to avoid misspellings:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class CartesianLayout : Layout<BoxView>

 {

 ...

 // Monitor PropertyChanged events for items in the Children collection.

 protected override void OnAdded(BoxView boxView)

 {

 base.OnAdded(boxView);

 boxView.PropertyChanged += OnChildPropertyChanged;

 }

 protected override void OnRemoved(BoxView boxView)

 {

 base.OnRemoved(boxView);

 boxView.PropertyChanged -= OnChildPropertyChanged;

 }

 void OnChildPropertyChanged(object sender, PropertyChangedEventArgs args)

 {

 if (args.PropertyName == Point1Property.PropertyName ||

 args.PropertyName == Point2Property.PropertyName ||

 args.PropertyName == ThicknessProperty.PropertyName)

 {

 InvalidateLayout();

 }

 }

 ...

 }

}

The OnSizeRequest override requires that at least one of the dimensions be constrained and requests a size that is square:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class CartesianLayout : Layout<BoxView>

 {

 ...

 protected override SizeRequest OnSizeRequest(double widthConstraint,

 double heightConstraint)

 {

 if (Double.IsInfinity(widthConstraint) && Double.IsInfinity(heightConstraint))

 throw new InvalidOperationException(

 "CartesianLayout requires at least one dimension to be constrained.");

 // Make it square!

 double minimum = Math.Min(widthConstraint, heightConstraint);

 return new SizeRequest(new Size(minimum, minimum));

 }

 ...

 }

}

However, the resultant layout will not be square if it has default HorizontalOptions and VerticalOptions settings of Fill.

The LayoutChildren override calls a method that contains the mathematics to translate the Point1, Point2, and Thickness properties into a Rectangle suitable for a Layout call. The Layout call always renders the BoxView as a horizontal line positioned midway between Point1 and Point2. The Rotation property then rotates the BoxView to coincide with the points. The math is a little more complex than the alternative (positioning the BoxView so that it begins at one point, and then rotating the BoxView so that it meets the other point), but this approach doesn’t require setting the AnchorX and AnchorY properties:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class CartesianLayout : Layout<BoxView>

 {

 ...

 protected override void LayoutChildren(double x, double y, double width, double height)

 {

 foreach (View child in Children)

 {

 if (!child.IsVisible)

 continue;

 double angle;

 Rectangle bounds = GetChildBounds(child, x, y, width, height, out angle);

 // Lay out the child.

 child.Layout(bounds);

 // Rotate the child.

 child.Rotation = angle;

 }

 }

 protected Rectangle GetChildBounds(View child,

 double x, double y, double width, double height,

 out double angle)

 {

 // Get coordinate system information.

 Point coordCenter = new Point(x + width / 2, y + height / 2);

 double unitLength = Math.Min(width, height) / 2;

 // Get child information.

 Point point1 = GetPoint1(child);

 Point point2 = GetPoint2(child);

 double thickness = GetThickness(child);

 double length = unitLength * Math.Sqrt(Math.Pow(point2.X - point1.X, 2) +

 Math.Pow(point2.Y - point1.Y, 2));

 // Calculate child bounds.

 Point centerChild = new Point((point1.X + point2.X) / 2,

 (point1.Y + point2.Y) / 2);

 double xChild = coordCenter.X + unitLength * centerChild.X - length / 2;

 double yChild = coordCenter.Y - unitLength * centerChild.Y - thickness / 2;

 Rectangle bounds = new Rectangle(xChild, yChild, length, thickness);

 angle = 180 / Math.PI * Math.Atan2(point1.Y - point2.Y,

 point2.X - point1.X);

 return bounds;

 }

 }

}

You can set the attached bindable properties in XAML and even in a Style, but because the class name is required when referencing attached bindable properties, the properties also require the XML namespace declaration. The UnitCube program draws the outline of a 3D cube:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="UnitCube.UnitCubePage">

 <toolkit:CartesianLayout BackgroundColor="Yellow"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <toolkit:CartesianLayout.Resources>

 <ResourceDictionary>

 <Style x:Key="baseStyle" TargetType="BoxView">

 <Setter Property="Color" Value="Blue" />

 <Setter Property="toolkit:CartesianLayout.Thickness" Value="3" />

 </Style>

 <Style x:Key="hiddenStyle" TargetType="BoxView"

 BasedOn="{StaticResource baseStyle}">

 <Setter Property="Opacity" Value="0.25" />

 </Style>

 <!-- Implicit style. -->

 <Style TargetType="BoxView"

 BasedOn="{StaticResource baseStyle}" />

 </ResourceDictionary>

</toolkit:CartesianLayout.Resources>

<!-- Three "hidden" edges first in the background -->

<!-- Rear edges -->

<BoxView toolkit:CartesianLayout.Point1="0.25, 0.75"

 toolkit:CartesianLayout.Point2="0.25, -0.25"

 Style="{StaticResource hiddenStyle}" />

<BoxView toolkit:CartesianLayout.Point1="0.25, -0.25"

 toolkit:CartesianLayout.Point2="-0.75, -0.25"

 Style="{StaticResource hiddenStyle}" />

<!-- Front to rear edge -->

<BoxView toolkit:CartesianLayout.Point1="0.5, -0.5"

 toolkit:CartesianLayout.Point2="0.25, -0.25"

 Style="{StaticResource hiddenStyle}" />

<!-- Front edges -->

<BoxView toolkit:CartesianLayout.Point1="-0.5, 0.5"

 toolkit:CartesianLayout.Point2="0.5, 0.5" />

<BoxView toolkit:CartesianLayout.Point1="0.5, 0.5"

 toolkit:CartesianLayout.Point2="0.5, -0.5" />

<BoxView toolkit:CartesianLayout.Point1="0.5, -0.5"

 toolkit:CartesianLayout.Point2="-0.5, -0.5" />

<BoxView toolkit:CartesianLayout.Point1="-0.5, -0.5"

 toolkit:CartesianLayout.Point2="-0.5, 0.5" />

<!-- Rear edges -->

<BoxView toolkit:CartesianLayout.Point1="-0.75, 0.75"

 toolkit:CartesianLayout.Point2="0.25, 0.75" />

<BoxView toolkit:CartesianLayout.Point1="-0.75, -0.25"

 toolkit:CartesianLayout.Point2="-0.75, 0.75" />

<!-- Front to rear edges -->

<BoxView toolkit:CartesianLayout.Point1="-0.5, 0.5"

 toolkit:CartesianLayout.Point2="-0.75, 0.75" />

<BoxView toolkit:CartesianLayout.Point1="0.5, 0.5"

 toolkit:CartesianLayout.Point2="0.25, 0.75" />

 <BoxView toolkit:CartesianLayout.Point1="-0.5, -0.5"

 toolkit:CartesianLayout.Point2="-0.75, -0.25" />

 </toolkit:CartesianLayout>

</ContentPage>

The background “lines” are drawn with an Opacity value that makes them seem as if they’re viewed through a translucent side:

[image: Image]

Layout and LayoutTo

VisualElement defines a collection of transform properties. These are AnchorX, AnchorY, Rotation, RotationX, RotationY, Scale, TranslationX, and TranslationY, and they don’t affect layout at all. In other words, setting these properties does not generate calls to InvalidateMeasure or InvalidateLayout. Element sizes returned from GetSizeRequest are not affected by these properties. The Layout call sizes and positions elements as if these properties do not exist.

This means that you can animate these properties without generating a bunch of layout cycles. The TranslateTo, ScaleTo, RotateTo, RotateXTo, and RotateYTo animation methods defined as extension methods in ViewExtensions are entirely independent of layout.

However, ViewExtensions also defines a method named LayoutTo that makes animated calls to the Layout method. This results in changing the layout size or position of the element relative to its parent and setting new values of the element’s Bounds, X, Y, Width, and Height properties.

Using LayoutTo therefore requires exercising some precautions.

For example, suppose an element is a child of a StackLayout. When StackLayout gets a LayoutChildren call, it will call Layout on that element to size and position it at a particular location relative to itself. Suppose your program then calls LayoutTo on that element to give it a new size and position. The StackLayout doesn’t know about that, so if the StackLayout undergoes another layout cycle, it will move the element back to where it thinks it should be. If you still need the element to be somewhere other than where the StackLayout thinks it should be, you might want to attach a handler to the LayoutChanged event of the StackLayout and call Layout or run the LayoutTo animation on that element again.

Another problem is running a LayoutTo animation on a layout with many children. It’s allowed, of course, but keep in mind that the layout will get numerous calls to its Layout method, and hence also its LayoutChildren method while the animation is in progress. For each of these calls to its LayoutChildren override, the layout class will try to lay out all its children (and, of course, some of those children could be other layouts with children), and the animation might become quite choppy.

But you can use the relationship between the LayoutTo animation and the Layout method to implement some interesting effects. An element must have its Layout method called to be visible on the screen, but calling LayoutTo satisfies that requirement.

Here’s a class that derives from CartesianLayout, called AnimatedCartesianLayout. It defines two bindable properties (not attached bindable properties) to govern the animation, and instead of calling Layout and setting the Rotation property, it calls LayoutTo and (optionally) RotateTo:

Click here to view code image

namespace Xamarin.FormsBook.Toolkit

{

 public class AnimatedCartesianLayout : CartesianLayout

 {

 public static readonly BindableProperty AnimationDurationProperty =

 BindableProperty.Create(

 "AnimatedDuration",

 typeof(int),

 typeof(AnimatedCartesianLayout),

 1000);

 public int AnimationDuration

 {

 set { SetValue(AnimationDurationProperty, value); }

 get { return (int)GetValue(AnimationDurationProperty); }

 }

 public static readonly BindableProperty AnimateRotationProperty =

 BindableProperty.Create(

 "AnimateRotation",

 typeof(bool),

 typeof(AnimatedCartesianLayout),

 true);

 public bool AnimateRotation

 {

 set { SetValue(AnimateRotationProperty, value); }

 get { return (bool)GetValue(AnimateRotationProperty); }

 }

 protected override void LayoutChildren(double x, double y, double width, double height)

 {

 foreach (View child in Children)

 {

 if (!child.IsVisible)

 continue;

 double angle;

 Rectangle bounds = GetChildBounds(child, x, y, width, height, out angle);

 // Lay out the child.

 if (child.Bounds.Equals(new Rectangle(0, 0, -1, -1)))

 {

 child.Layout(new Rectangle(x + width / 2, y + height / 2, 0, 0));

 }

 child.LayoutTo(bounds, (uint)AnimationDuration);

 // Rotate the child.

 if (AnimateRotation)

 {

 child.RotateTo(angle, (uint)AnimationDuration);

 }

 else

 {

 child.Rotation = angle;

 }

 }

 }

 }

}

The only tricky part involves a child that hasn’t yet received its first Layout call. The Bounds property of such a child is the rectangle (0, 0, –1, –1), and the LayoutTo animation will use that value as the starting point for the animation. In that case, the LayoutChildren method first calls Layout to position the child in the center and to give it a size of (0, 0).

The AnimatedUnitCube program has a XAML file nearly identical to the UnitCube program but with an AnimatedCartesianLayout with an animation duration of 3 seconds:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="AnimatedUnitCube.AnimatedUnitCubePage">

 <toolkit:AnimatedCartesianLayout BackgroundColor="Yellow"

 AnimationDuration="3000"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <toolkit:AnimatedCartesianLayout.Resources>

 <ResourceDictionary>

 <Style x:Key="baseStyle" TargetType="BoxView">

 <Setter Property="Color" Value="Blue" />

 <Setter Property="toolkit:CartesianLayout.Thickness" Value="3" />

 </Style>

 <Style x:Key="hiddenStyle" TargetType="BoxView"

 BasedOn="{StaticResource baseStyle}">

 <Setter Property="Opacity" Value="0.25" />

 </Style>

 <!-- Implicit style. -->

 <Style TargetType="BoxView"

 BasedOn="{StaticResource baseStyle}" />

 </ResourceDictionary>

 </toolkit:AnimatedCartesianLayout.Resources>

 ...

 </toolkit:AnimatedCartesianLayout>

</ContentPage>

The following screenshots show the progression from left to right almost to the point where the cube is complete:

[image: Image]

Depending on how they’re defined, some of the horizontal lines aren’t rotated at all, while others (the ones on the bottom, for example) must be rotated 180 degrees.

As you know, user interfaces have become more animated and dynamic in recent years, so exploring various techniques that are possible by using LayoutTo rather than Layout can become a whole new area for adventurous programmers to pursue.

Chapter 27. Custom renderers

At the core of Xamarin.Forms is something that might seem like magic: the ability of a single element such as Button to appear as a native button under the iOS, Android, and Windows operating systems. In this chapter, you’ll see how on all three platforms each element in Xamarin.Forms is supported by a special class known as a renderer. For example, the Button class in Xamarin.Forms is supported by several classes in the various platforms, each named ButtonRenderer.

The good news is that you can also write your own renderers, and this chapter will show you how. However, keep in mind that writing custom renderers is a big topic, and this chapter can only get you started.

Writing custom renderers is not quite as easy as writing a Xamarin.Forms application. You’ll need to be familiar with the individual iOS, Android, and Windows Runtime platforms. But obviously it’s a powerful technique. Indeed, some developers think of the ultimate value of Xamarin.Forms as providing a structured framework in which to write custom renderers.

The complete class hierarchy

In Chapter 11, “The bindable infrastructure,” you saw a program called ClassHierarchy that displays the Xamarin.Forms class hierarchy. However, that program only displays the types in the Xamarin.Forms.Core and Xamarin.Forms.Xaml assemblies, which are the types that a Xamarin.Forms application generally uses.

Xamarin.Forms also contains additional assemblies associated with each platform. These assemblies play a crucial role by providing the platform support for Xamarin.Forms, including all the renderers.

You’re probably already familiar with the names of these assemblies from seeing them in the Reference sections of the various projects in your Xamarin.Forms solution:

• Xamarin.Forms.Platform (very small)

• Xamarin.Forms.Platform.iOS

• Xamarin.Forms.Platform.Android

• Xamarin.Forms.Platform.UAP

• Xamarin.Forms.Platform.WinRT (larger than the next two on this list)

• Xamarin.Forms.Platform.WinRT.Tablet

• Xamarin.Forms.Platform.WinRT.Phone

In this discussion, these will be referred to collectively as the platform assemblies.

Is it possible to write a Xamarin.Forms application that displays a class hierarchy of the types in these platform assemblies?

Yes! However, if you restrict yourself to examining only the assemblies normally loaded with an application—and this is certainly the simplest approach—then an application can only display the types in the assemblies that are part of that application. For example, you can only display the types in the Xamarin.Forms.Platform.iOS assembly with a Xamarin.Forms program running under iOS, and similarly for the other assemblies.

But there’s still a problem: As you might recall, the original ClassHierarchy program began by obtaining .NET Assembly objects for the Xamarin.Forms.Core and Xamarin.Forms.Xaml assemblies based on two classes (View and Extensions) that it knew to be in those two assemblies:

Click here to view code image

typeof(View).GetTypeInfo().Assembly

typeof(Extensions).GetTypeInfo().Assembly

However, a Xamarin.Forms application’s Portable Class Library doesn’t have direct access to the platform assemblies. The platform assemblies are referenced only by the application projects. This means that a Xamarin.Forms Portable Class Library can’t use similar code to get a reference to the platform assembly. This won’t work:

Click here to view code image

typeof(ButtonRenderer).GetTypeInfo().Assembly

However, these platform assemblies are loaded when the application runs, so the PCL can instead obtain Assembly objects for the platform assemblies based on the assembly name. The PlatformClassHierarchy program begins like this:

Click here to view code image

public partial class PlatformClassHierarchyPage : ContentPage

{

 public PlatformClassHierarchyPage()

 {

 InitializeComponent();

 List<TypeInformation> classList = new List<TypeInformation>();

 string[] assemblyNames = Device.OnPlatform(

 iOS: new string[] { "Xamarin.Forms.Platform.iOS" },

 Android: new string[] { "Xamarin.Forms.Platform.Android" },

 WinPhone: new string[] { "Xamarin.Forms.Platform.UAP",

 "Xamarin.Forms.Platform.WinRT",

 "Xamarin.Forms.Platform.WinRT.Tablet",

 "Xamarin.Forms.Platform.WinRT.Phone" }

);

 foreach (string assemblyName in assemblyNames)

 {

 try

 {

 Assembly assembly = Assembly.Load(new AssemblyName(assemblyName));

 GetPublicTypes(assembly, classList);

 }

 catch

 {

 }

 }

 ...

}

And from there the PlatformClassHierarchy program is the same as the original ClassHierarchy program.

As you can see, the foreach loop obtains the Assembly object from the static Assembly.Load method. However, there’s not a straightforward way for the program to determine whether it’s running under the Universal Windows Platform or one of the other Windows Runtime platforms, so if Device.OnPlatform indicates that it’s the WinPhone device, the program tries all four assemblies and uses try and catch to just ignore the ones that don’t work.

Some of the class names—and particularly the fully qualified class names for classes outside the assembly—are a little too long for the portrait display and wrap awkwardly, but here’s part of the display on the three platforms. Each has been scrolled to the part of the class hierarchy that begins with the generic ViewRenderer class. This is generally the class you’ll derive from to create your own custom renderers:

[image: Image]

Notice the generic parameters for the ViewRenderer class named either TView and TNativeView, or TElement and TNativeElement: As you’ll see, TView or TElement is the Xamarin.Forms element, such as Button, while TNativeView or TNativeElement is the native control for that Button.

Although the PlatformClassHierarchy program doesn’t indicate this, the constraints for the ViewRenderer generic parameters are platform dependent:

• On iOS:

[image: Image] TView is constrained to Xamarin.Forms.View

[image: Image] TNativeView is constrained to UIKit.UIView

• On Android:

[image: Image] TView is constrained to Xamarin.Forms.View

[image: Image] TNativeView is constrained to Android.Views.View

• On the Windows platforms:

[image: Image] TElement is constrained to Xamarin.Forms.View

[image: Image] TNativeElement is constrained to Windows.UI.Xaml.FrameworkElement

To write a custom renderer, you derive a class from ViewRenderer. To accommodate all the platforms, you must implement the iOS renderer by using a class that derives from UIView, implement the Android renderer with a class that derives from View, and implement a renderer for the Windows platforms with a class that derives from FrameworkElement.

Let’s try it!

Hello, custom renderers!

The HelloRenderers program mostly demonstrates the overhead required to write simple renderers. The program defines a new View derivative named HelloView that is intended to display a simple fixed string of text. Here’s the complete HelloView.cs file in the HelloRenderers Portable Class Library project:

Click here to view code image

using Xamarin.Forms;

namespace HelloRenderers

{

 public class HelloView : View

 {

 }

}

That’s it! However, note that the class is defined as public. Even though you might think that this class is only referenced within the PCL, that’s not the case. It must be visible to the platform assemblies.

The HelloRenderers PCL is so simple that it doesn’t even bother with a page class. Instead, it instantiates and displays a HelloView object centered on the page right in the App.cs file:

Click here to view code image

namespace HelloRenderers

{

 public class App : Application

 {

 public App()

 {

 MainPage = new ContentPage

 {

 Content = new HelloView

 {

 VerticalOptions = LayoutOptions.Center,

 HorizontalOptions = LayoutOptions.Center

 }

 };

 }

 ...

 }

}

Without any other code, this program runs fine, but you won’t actually see the HelloView object on the screen because it’s just a blank transparent view. What we need are some platform renderers for HelloView.

When a Xamarin.Forms application starts up, Xamarin.Forms uses .NET reflection to search through the various assemblies that comprise the application, looking for assembly attributes named ExportRenderer. An ExportRenderer attribute indicates the presence of a custom renderer that can supply support for a Xamarin.Forms element.

The HelloRenderers.iOS project contains the following HelloViewRenderer.cs file, shown in its entirety. Notice the ExportRenderer attribute right under the using directives. Because this is an assembly attribute, it must be outside a namespace declaration. This particular ExportRenderer attribute basically says “The HelloView class is supported by a renderer of type HelloViewRenderer”:

Click here to view code image

using Xamarin.Forms;

using Xamarin.Forms.Platform.iOS;

using UIKit;

using HelloRenderers;

using HelloRenderers.iOS;

[assembly: ExportRenderer(typeof(HelloView), typeof(HelloViewRenderer))]

namespace HelloRenderers.iOS

{

 public class HelloViewRenderer : ViewRenderer<HelloView, UILabel>

 {

 protected override void OnElementChanged(ElementChangedEventArgs<HelloView> args)

 {

 base.OnElementChanged(args);

 if (Control == null)

 {

 UILabel label = new UILabel

 {

 Text = "Hello from iOS!",

 Font = UIFont.SystemFontOfSize(24)

 };

 SetNativeControl(label);

 }

 }

 }

}

The definition of the HelloViewRenderer class follows the ExportRenderer attribute. The class must be public. It derives from the generic ViewRenderer class. The two generic parameters are named TView, which is the Xamarin.Forms class, and TNativeView, which is the class in this particular case that is native to iOS.

In iOS, a class that displays text is UILabel in the UIKit namespace, and that’s what’s used here. The two generic arguments to ViewRenderer basically say “A HelloView object is actually rendered as an iOS UILabel object.”

The one essential job for a ViewRenderer derivative is to override the OnElementChanged method. This method is called when a HelloView object is created, and its job is to create a native control for rendering the HelloView object.

The OnElementChanged override begins by checking the Control property that the class inherits from ViewRenderer. This Control property is defined by ViewRenderer to be of type TNativeView, so in HelloViewRenderer it is of type UILabel. The first time that OnElementChanged is called, this Control property will be null. The UILabel object must be created. This is what the method does, assigning to it some text and a font size. That UILabel method is then passed to the SetNativeControl method. Thereafter, the Control property will be this UILabel object.

The using directives at the top of the file are divided into three groups:

• The using directive for the Xamarin.Forms namespace is required for the ExportRenderer attribute, while Xamarin.Forms.Platform.iOS is required for the ViewRenderer class.

• The iOS UIKIt namespace is required for UILabel.

• The using directives for HelloRenderers and HelloRenderers.iOS are required only for the HelloView and HelloViewRenderer references in the ExportRenderer attribute because the attribute must be outside the HelloRenderer.iOS namespace block.

Those last two using directives are particularly annoying because they’re only required for a single purpose. If you’d like, you can get rid of those two using directives by fully qualifying the class names within the ExportRenderer attribute.

This is done in the following renderer. Here’s the complete HelloViewRenderer.cs file in the HelloRenderers.Droid project. The Android widget for displaying text is TextView in the Android.Widget namespace:

Click here to view code image

using Xamarin.Forms;

using Xamarin.Forms.Platform.Android;

using Android.Util;

using Android.Widget;

[assembly: ExportRenderer(typeof(HelloRenderers.HelloView),

 typeof(HelloRenderers.Droid.HelloViewRenderer))]

namespace HelloRenderers.Droid

{

 public class HelloViewRenderer : ViewRenderer<HelloView, TextView>

 {

 protected override void OnElementChanged(ElementChangedEventArgs<HelloView> args)

 {

 base.OnElementChanged(args);

 if (Control == null)

 {

 SetNativeControl(new TextView(Context)

 {

 Text = "Hello from Android!"

 });

 Control.SetTextSize(ComplexUnitType.Sp, 24);

 }

 }

 }

}

This HelloViewRenderer class derives from the Android version of ViewRenderer. The generic arguments for ViewRenderer indicate that the HelloView class is supported by the Android TextView widget.

Once again, on the first call to OnElementChanged, the Control property will be null. The method must create a native Android TextView widget and call SetNativeControl. To save a little space, the newly instantiated TextView object is passed directly to the SetNativeControl method. Notice that the TextView constructor requires the Android Context object. This is available as a property of OnElementChanged.

After the call to SetNativeControl, the Control property defined by ViewRenderer is the native Android widget, in this case the TextView object. The method uses this Control property to call SetTextSize on the TextView object. In Android, text sizes can be scaled in a variety of ways. The ComplexUnitType.Sp enumeration member indicates “scaled pixels,” which is compatible with how Xamarin.Forms handles font sizes for Label in Android.

Here’s the UWP version of HelloViewRenderer in the HelloRenderers.UWP project:

Click here to view code image

using Xamarin.Forms.Platform.UWP;

using Windows.UI.Xaml.Controls;

[assembly: ExportRenderer (typeof(HelloRenderers.HelloView),

 typeof(HelloRenderers.UWP.HelloViewRenderer))]

namespace HelloRenderers.UWP

{

 public class HelloViewRenderer : ViewRenderer<HelloView, TextBlock>

 {

 protected override void OnElementChanged(ElementChangedEventArgs<HelloView> args)

 {

 base.OnElementChanged(args);

 if (Control == null)

 {

 SetNativeControl(new TextBlock

 {

 Text = "Hello from the UWP!",

 FontSize = 24,

 });

 }

 }

 }

}

In all the Windows platforms, the HelloView object is rendered by a Windows Runtime TextBlock in the Windows.UI.Xaml.Controls namespace.

The HelloViewRenderer classes in the HelloRenderers.Windows and HelloRenderers.WinPhone projects are mostly the same except for namespaces and the text used to set the Text property of TextBlock.

Here’s the program running on the three standard platforms:

[image: Image]

Notice how the text is properly centered through the use of the normal HorizontalOptions and VerticalOptions properties set on the HelloView object. However, you can’t set the HorizontalTextAlignment and VerticalTextAlignment properties on HelloView. Those properties are defined by Label and not by HelloView.

To turn HelloView into a full-fledged view for displaying text, you’d need to start adding properties to the HelloView class. Let’s examine how properties are added to renderers with a different example.

Renderers and properties

Xamarin.Forms includes a BoxView element for displaying rectangular blocks of color. Have you ever wished you had something similar for drawing a circle, or to make it more generalized, an ellipse?

That’s the purpose of EllipseView. However, because you might want to use EllipseView in multiple applications, it is implemented in the Xamarin.FormsBook.Platform libraries, introduced in Chapter 20, “Async and file I/O.”

BoxView defines one property on its own—a Color property of type Color—and EllipseView can do the same. It doesn’t need properties to set the width and height of the ellipse because it inherits WidthRequest and HeightRequest from VisualElement.

So here’s EllipseView as defined in the Xamarin.FormsBook.Platform library project:

Click here to view code image

namespace Xamarin.FormsBook.Platform

{

 public class EllipseView : View

 {

 public static readonly BindableProperty ColorProperty =

 BindableProperty.Create(

 "Color",

 typeof(Color),

 typeof(EllipseView),

 Color.Default);

 public Color Color

 {

 set { SetValue(ColorProperty, value); }

 get { return (Color)GetValue(ColorProperty); }

 }

 protected override SizeRequest OnSizeRequest(double widthConstraint,

 double heightConstraint)

 {

 return new SizeRequest(new Size(40, 40));

 }

 }

}

The Color property simply involves a basic definition of a bindable property with no propertychanged handler. The property is defined, but it doesn’t seem to be doing anything. Somehow, the Color property defined in EllipseView has to be linked up with a property on the object that the renderer is rendering.

The only other code in EllipseView is an override of OnSizeRequest to set a default size of the ellipse, the same as BoxView.

Let’s begin with the Windows platform. It turns out that a Windows renderer for EllipseView is simpler than the iOS and Android renderers.

As you’ll recall, the Xamarin.FormsBook.Platform solution created in Chapter 20 has a facility to allow sharing code among the various Windows platforms: The Xamarin.FormsBook.Platform.UWP library, the Xamarin.FormsBook.Platform.Windows library, and the Xamarin.FormsBook.Platform.WinPhone library all have references to the Xamarin.FormsBook.Platform.WinRT library, which is not a library at all but actually a shared project. This shared project is where the EllipseViewRenderer class for all the Windows platforms can reside.

On the Windows platforms, an EllipseView can be rendered by a native Windows element called Ellipse in the Windows.UI.Xaml.Shapes namespace, because Ellipse satisfies the criteria of deriving from Windows.UI.Xaml.FrameworkElement.

The Ellipse is specified as the second generic argument to the ViewRenderer class. Because this file is shared by all the Windows platforms, it needs some preprocessing directives to include the correct namespace for the ExportRendererAttribute and ViewRenderer classes:

Click here to view code image

using System.ComponentModel;

using Windows.UI.Xaml.Media;

using Windows.UI.Xaml.Shapes;

#if WINDOWS_UWP

using Xamarin.Forms.Platform.UWP;

#else

using Xamarin.Forms.Platform.WinRT;

#endif

[assembly: ExportRenderer(typeof(Xamarin.FormsBook.Platform.EllipseView),

 typeof(Xamarin.FormsBook.Platform.WinRT.EllipseViewRenderer))]

namespace Xamarin.FormsBook.Platform.WinRT

{

 public class EllipseViewRenderer : ViewRenderer<EllipseView, Ellipse>

 {

 protected override void OnElementChanged(ElementChangedEventArgs<EllipseView> args)

 {

 base.OnElementChanged(args);

 if (Control == null)

 {

 SetNativeControl(new Ellipse());

 }

 if (args.NewElement != null)

 {

 SetColor();

 }

 }

 ...

 }

}

As you might expect by now, the OnElementChanged override first checks whether the Control property is null, and if so, it creates the native object, in this case an Ellipse, and passes it to SetNativeControl. Thereafter, the Control property is set to this Ellipse object.

This OnElementChanged override also contains some additional code involving the ElementChangedEventArgs argument. This requires a little explanation:

Each renderer instance—in this example, an instance of this EllipseViewRenderer class—maintains a single instance of a native object, in this example an Ellipse.

However, the rendering infrastructure has a facility both to attach a renderer instance to a Xamarin.Forms element and to detach it and attach another Xamarin.Forms element to the same renderer. Perhaps Xamarin.Forms needs to re-create the element or substitute another element for the one already associated with the renderer.

Changes of this sort are communicated to the renderer with calls to OnElementChanged. The ElementChangedEventArgs argument includes two properties, OldElement and NewElement, both of the type indicated in the generic argument to ElementChangedEventArgs, in this case EllipseView. In many cases, you don’t have to worry about different Xamarin.Forms elements being attached and detached from a single renderer instance. But in some cases you might want to use the opportunity to clean up or free some resources that your renderer uses.

In the simplest and most common case, each renderer instance will get one call to OnElementChanged for the Xamarin.Forms view that uses that renderer. You’ll use the call to OnElementChanged to create the native element and pass it to SetNativeControl, as you’ve already seen. After that call to SetNativeControl, the Control property defined by ViewRenderer is the native object, in this case the Ellipse.

At the time you get that call to OnElementChanged, the Xamarin.Forms object (in this case an EllipseView) has probably already been created and it might also have some properties set. (In other words, the element might be initialized with a few property settings by the time the renderer is required to display the element.) But the system is designed so that this is not necessarily the case. It’s possible that a subsequent call to OnElementChanged indicates that an EllipseView has been created.

What’s important is the NewElement property of the event arguments. If that property is not null (which is the normal case), that property is the Xamarin.Forms element, and you should transfer property settings from that Xamarin.Forms element to the native object. That’s the purpose of the call to the SetColor method shown above. You’ll see the body of that method shortly.

The ViewRenderer defines a property named Element that it sets to the Xamarin.Forms element, in this case an EllipseView. If the most recent call to OnElementChanged contained a non-null NewElement property, then Element is that same object.

In summary, these are the two essential properties that you can use throughout your renderer class:

• Element—the Xamarin.Forms element, valid if the most recent OnElementChanged call had a non-null NewElement property.

• Control—the native view, or widget, or control object, valid after a call to SetNativeView.

As you know, properties of Xamarin.Forms elements can change. For example, the Color property of EllipseView might be animated. If a property such as Color is backed by a bindable property, any change to that property causes a PropertyChanged event to be fired.

The renderer is also notified of that property change. Any change to a bindable property in a Xamarin.Forms element attached to a renderer also causes a call to the protected virtual OnElementPropertyChanged method in the ViewRenderer class. In this particular example, any change to any bindable property in EllipseView (including the Color property) generates a call to OnElementPropertyChanged. Your renderer should override that method and check for which property has changed:

Click here to view code image

namespace Xamarin.FormsBook.Platform.WinRT

{

 public class EllipseViewRenderer : ViewRenderer<EllipseView, Ellipse>

 {

 ...

 protected override void OnElementPropertyChanged(object sender,

 PropertyChangedEventArgs args)

 {

 base.OnElementPropertyChanged(sender, args);

 if (args.PropertyName == EllipseView.ColorProperty.PropertyName)

 {

 SetColor();

 }

 }

 ...

 }

}

If the Color property has changed, the PropertyName property of the event argument is “Color,” the text name specified when the EllipseView.ColorProperty bindable property was created. But to avoid misspelling the name, the OnElementPropertyChanged method checks the actual string value in the bindable property. The renderer must respond by transferring that new setting of the Color property to the native object, in this case the Windows Ellipse object.

This SetColor method is called from only two places—the OnElementChanged override and the OnElementPropertyChanged override. Don’t think you can skip the call in OnElementChanged under the assumption that the property hasn’t changed prior to the call to OnElementChanged. It is very often the case that OnElementChanged is called after an element has been initialized with property settings.

However, SetColor can make some valid assumptions about the existence of the Xamarin.Forms element and the native control: When SetColor is called from OnElementChanged, the native control has been created and NewElement is non-null. This means that both the Control and Element properties are valid. The Element property is also valid when OnElementPropertyChanged is called because that’s the object whose property has just changed.

This means that the SetColor method can simply transfer a color from Element (the Xamarin.Forms element) to Control, the native object. To avoid namespace clashes, this SetColor method fully qualifies all references to any structure named Color:

Click here to view code image

namespace Xamarin.FormsBook.Platform.WinRT

{

 public class EllipseViewRenderer : ViewRenderer<EllipseView, Ellipse>

 {

 ...

 void SetColor()

 {

 if (Element.Color == Xamarin.Forms.Color.Default)

 {

 Control.Fill = null;

 }

 else

 {

 Xamarin.Forms.Color color = Element.Color;

 global::Windows.UI.Color winColor =

 global::Windows.UI.Color.FromArgb((byte)(color.A * 255),

 (byte)(color.R * 255),

 (byte)(color.G * 255),

 (byte)(color.B * 255));

 Control.Fill = new SolidColorBrush(winColor);

 }

 }

 }

}

The Windows Ellipse object has a property named Fill of type Brush. By default, this property is null, and that’s what the SetColor method sets it to if the Color property of EllipseView is Color.Default. Otherwise, the Xamarin.Forms Color must be converted to a Windows Color, which is then passed to the SolidColorBrush constructor. The SolidColorBrush objects is set to the Fill property of Ellipse.

That’s the Windows version, but when it comes time to create iOS and Android renderers for EllipseView, you might feel a little stymied. Here again are the constraints for the second generic parameter to ViewRenderer:

• iOS: TNativeView is constrained to UIKit.UIView

• Android: TNativeView is constrained to Android.View.Views

• Windows: TNativeElement is constrained to Windows.UI.Xaml.FrameworkElement

This means that to make an EllipseView renderer for iOS, you need a UIView derivative that displays an ellipse. Does something like that exist? No, it does not. Therefore, you must make one yourself. This is the first step to making the iOS renderer.

For that reason, the Xamarin.FormsBook.Platform.iOS library contains a class named EllipseUIView that derives from UIView for the sole purpose of drawing an ellipse:

Click here to view code image

using CoreGraphics;

using UIKit;

namespace Xamarin.FormsBook.Platform.iOS

{

 public class EllipseUIView : UIView

 {

 UIColor color = UIColor.Clear;

 public EllipseUIView()

 {

 BackgroundColor = UIColor.Clear;

 }

 public override void Draw(CGRect rect)

 {

 base.Draw(rect);

 using (CGContext graphics = UIGraphics.GetCurrentContext())

 {

 //Create ellipse geometry based on rect field.

 CGPath path = new CGPath();

 path.AddEllipseInRect(rect);

 path.CloseSubpath();

 //Add geometry to graphics context and draw it.

 color.SetFill();

 graphics.AddPath(path);

 graphics.DrawPath(CGPathDrawingMode.Fill);

 }

 }

 public void SetColor(UIColor color)

 {

 this.color = color;

 SetNeedsDisplay();

 }

 }

}

The class overrides the OnDraw method to create a graphics path of an ellipse and then to draw it on the graphics context. The color it uses is stored as a field and is initially set to UIColor.Clear, which is transparent. However, you’ll notice a SetColor method at the bottom. This delivers new color to the class and then calls SetNeedsDisplay, which invalidates the drawing surface and generates another call to OnDraw.

Notice also that the BackgroundColor of the UIView is set in the constructor to UIColor.Clear. Without that setting, the view has a black background in the area not covered by the ellipse.

Now that the EllipseUIView class exists for iOS, the EllipseViewRenderer can be written using EllipseUIView as the native control. Structurally, this class is virtually identical to the Windows renderer:

Click here to view code image

using System.ComponentModel;

using UIKit;

using Xamarin.Forms;

using Xamarin.Forms.Platform.iOS;

[assembly: ExportRenderer(typeof(Xamarin.FormsBook.Platform.EllipseView),

 typeof(Xamarin.FormsBook.Platform.iOS.EllipseViewRenderer))]

namespace Xamarin.FormsBook.Platform.iOS

{

 public class EllipseViewRenderer : ViewRenderer<EllipseView, EllipseUIView>

 {

 protected override void OnElementChanged(ElementChangedEventArgs<EllipseView> args)

 {

 base.OnElementChanged(args);

 if (Control == null)

 {

 SetNativeControl(new EllipseUIView());

 }

 if (args.NewElement != null)

 {

 SetColor();

 }

 }

 protected override void OnElementPropertyChanged(object sender,

 PropertyChangedEventArgs args)

 {

 base.OnElementPropertyChanged(sender, args);

 if (args.PropertyName == EllipseView.ColorProperty.PropertyName)

 {

 SetColor();

 }

 }

 void SetColor()

 {

 if (Element.Color != Color.Default)

 {

 Control.SetColor(Element.Color.ToUIColor());

 }

 else

 {

 Control.SetColor(UIColor.Clear);

 }

 }

 }

}

The only real differences between this renderer and the Windows version is that the Control property is set to an instance of ColorUIView, and the body of the SetColor method at the bottom is different. It now calls the SetColor method in ColorUIView. This SetColor method is also able to make use of a public extension method in the Xamarin.Forms.Platform.iOS library called ToUIColor to convert a Xamarin.Forms color to an iOS color.

You might have noticed that neither the Windows renderer nor the iOS renderer had to worry about sizing. As you’ll see shortly, an EllipseView can be set to a variety of sizes, and the size calculated in the Xamarin.Forms layout system becomes the size of the native control.

This unfortunately turned out not to be the case with the Android renderer. The Android renderer needs some sizing logic. Like iOS, Android is also missing a native control that renders an ellipse. Therefore, the Xamarin.FormsBook.Platform.Android library contains a class named EllipseDrawableView that derives from View and draws an ellipse:

Click here to view code image

using Android.Content;

using Android.Views;

using Android.Graphics.Drawables;

using Android.Graphics.Drawables.Shapes;

using Android.Graphics;

namespace Xamarin.FormsBook.Platform.Android

{

 public class EllipseDrawableView : View

 {

 ShapeDrawable drawable;

 public EllipseDrawableView(Context context) : base(context)

 {

 drawable = new ShapeDrawable(new OvalShape());

 }

 protected override void OnDraw(Canvas canvas)

 {

 base.OnDraw(canvas);

 drawable.Draw(canvas);

 }

 public void SetColor(Xamarin.Forms.Color color)

 {

 drawable.Paint.SetARGB((int)(255 * color.A),

 (int)(255 * color.R),

 (int)(255 * color.G),

 (int)(255 * color.B));

 Invalidate();

 }

 public void SetSize(double width, double height)

 {

 float pixelsPerDip = Resources.DisplayMetrics.Density;

 drawable.SetBounds(0, 0, (int)(width * pixelsPerDip),

 (int)(height * pixelsPerDip));

 Invalidate();

 }

 }

}

Structurally, this is similar to the EllipseUIView class defined for iOS, except that the constructor creates a ShapeDrawable object for an ellipse, and the OnDraw override renders it.

This class has two methods to set properties of this ellipse. The SetColor method converts a Xamarin.Forms color to set the Paint property of the ShapeDrawable object, and the SetSize method converts a size in device-independent units to pixels for setting the bounds of the ShapeDrawable object. Both SetColor and SetSize conclude with a call to Invalidate to invalidate the drawing surface and generate another call to OnDraw.

The Android renderer makes use of the EllipseDrawableView class as its native object:

Click here to view code image

using System.ComponentModel;

using Xamarin.Forms;

using Xamarin.Forms.Platform.Android;

[assembly: ExportRenderer(typeof(Xamarin.FormsBook.Platform.EllipseView),

 typeof(Xamarin.FormsBook.Platform.Android.EllipseViewRenderer))]

namespace Xamarin.FormsBook.Platform.Android

{

 public class EllipseViewRenderer : ViewRenderer<EllipseView, EllipseDrawableView>

 {

 double width, height;

 protected override void OnElementChanged(ElementChangedEventArgs<EllipseView> args)

 {

 base.OnElementChanged(args);

 if (Control == null)

 {

 SetNativeControl(new EllipseDrawableView(Context));

 }

 if (args.NewElement != null)

 {

 SetColor();

 SetSize();

 }

 }

 protected override void OnElementPropertyChanged(object sender,

 PropertyChangedEventArgs args)

 {

 base.OnElementPropertyChanged(sender, args);

 if (args.PropertyName == VisualElement.WidthProperty.PropertyName)

 {

 width = Element.Width;

 SetSize();

 }

 else if (args.PropertyName == VisualElement.HeightProperty.PropertyName)

 {

 height = Element.Height;

 SetSize();

 }

 else if (args.PropertyName == EllipseView.ColorProperty.PropertyName)

 {

 SetColor();

 }

 }

 void SetColor()

 {

 Control.SetColor(Element.Color);

 }

 void SetSize()

 {

 Control.SetSize(width, height);

 }

 }

}

Notice that the OnElementPropertyChanged method needs to check for changes to both the Width and Height properties and save them in fields so they can be combined into a single Bounds setting for the SetSize call to EllipseDrawableView.

With all the renderers in place, it’s time to see whether it works. The EllipseDemo solution also contains links to the various projects of the Xamarin.FormsBook.Platform solution, and each of the projects in EllipseDemo contains a reference to the corresponding library project in Xamarin.FormsBook.Platform.

Each of the projects in EllipseDemo also contains a call to the Toolkit.Init method in the corresponding library project. This is not always necessary. But keep in mind that the various renderers are not directly referenced by any code in any of the projects, and some optimizations can cause the code not to be available at run time. The call to Toolkit.Init avoids that.

The XAML file in EllipseDemo creates several EllipseView objects with different colors and sizes, some constrained in size while others are allowed to fill their container:

Click here to view code image

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:platform=

 "clr-namespace:Xamarin.FormsBook.Platform;assembly=Xamarin.FormsBook.Platform"

 x:Class="EllipseDemo.EllipseDemoPage">

 <Grid>

 <platform:EllipseView Color="Aqua" />

 <StackLayout>

 <StackLayout.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </StackLayout.Padding>

 <platform:EllipseView Color="Red"

 WidthRequest="40"

 HeightRequest="80"

 HorizontalOptions="Center" />

 <platform:EllipseView Color="Green"

 WidthRequest="160"

 HeightRequest="80"

 HorizontalOptions="Start" />

 <platform:EllipseView Color="Blue"

 WidthRequest="160"

 HeightRequest="80"

 HorizontalOptions="End" />

 <platform:EllipseView Color="#80FF0000"

 HorizontalOptions="Center" />

 <ContentView Padding="50"

 VerticalOptions="FillAndExpand">

 <platform:EllipseView Color="Red"

 BackgroundColor="#80FF0000" />

 </ContentView>

 </StackLayout>

 </Grid>

</ContentPage>

Take note in particular of the penultimate EllipseView that gives itself a half-opaque red color. Against the Aqua of the large ellipse filling the page, this should render as medium gray.

The last EllipseView gives itself a BackgroundColor setting of half-opaque red. Again, this should render as gray against the large Aqua ellipse, but as a light red against a white background and dark red against a black background. Here they are:

[image: Image]

Once you have an EllipseView, of course you’ll want to write a bouncing-ball program. The BouncingBall solution also includes links to all the projects in the Xamarin.FormsBook.Platform solution, and all the application projects have references to the corresponding library projects. The BouncingBall PCL also has a reference to the Xamarin.FormsBook.Toolkit library for a structure called Vector2, a two-dimensional vector.

The XAML file positions an EllipseView in the center of the page:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:platform=

 "clr-namespace:Xamarin.FormsBook.Platform;assembly=Xamarin.FormsBook.Platform"

 x:Class="BouncingBall.BouncingBallPage">

 <platform:EllipseView x:Name="ball"

 WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

</ContentPage>

The code-behind file starts up two animations that run “forever.” The first animation is defined in the constructor and animates the Color property of the bouncing ball to take it through the colors of the rainbow every 10 seconds.

The second animation bounces the ball on the four “walls” of the screen. For each cycle through the while loop, the code first determines which wall it will hit first and the distance to that wall in device-independent units. The new calculation of center toward the end of the while loop is the position of the ball as it strikes a wall. The new calculation of vector determines a deflection vector based on an existing vector and a vector that is perpendicular to the surface that it’s hitting (called a normal vector):

Click here to view code image

public partial class BouncingBallPage : ContentPage

{

 public BouncingBallPage()

 {

 InitializeComponent();

 // Color animation: cycle through rainbow every 10 seconds.

 new Animation(callback: v => ball.Color = Color.FromHsla(v, 1, 0.5),

 start: 0,

 end: 1

).Commit(owner: this,

 name: "ColorAnimation",

 length: 10000,

 repeat: () => true);

 BounceAnimationLoop();

 }

 async void BounceAnimationLoop()

 {

 // Wait until the dimensions are good.

 while (Width == -1 && Height == -1)

 {

 await Task.Delay(100);

 }

 // Initialize points and vectors.

 Point center = new Point();

 Random rand = new Random();

 Vector2 vector = new Vector2(rand.NextDouble(), rand.NextDouble());

 vector = vector.Normalized;

 Vector2[] walls = { new Vector2(1, 0), new Vector2(0, 1), // left, top

 new Vector2(-1, 0), new Vector2(0, -1) }; // right, bottom

 while (true)

 {

 // The locations of the four "walls" (taking ball size into account).

 double right = Width / 2 - ball.Width / 2;

 double left = -right;

 double bottom = Height / 2 - ball.Height / 2;

 double top = -bottom;

 // Find the number of steps till a wall is hit.

 double nX = Math.Abs(((vector.X > 0 ? right : left) - center.X) / vector.X);

 double nY = Math.Abs(((vector.Y > 0 ? bottom : top) - center.Y) / vector.Y);

 double n = Math.Min(nX, nY);

 // Find the wall that's being hit.

 Vector2 wall = walls[nX < nY ? (vector.X > 0 ? 2 : 0) : (vector.Y > 0 ? 3 : 1)];

 // New center and vector after animation.

 center += n * vector;

 vector -= 2 * Vector2.DotProduct(vector, wall) * wall;

 // Animate at 3 msec per unit.

 await ball.TranslateTo(center.X, center.Y, (uint)(3 * n));

 }

 }

}

Of course, a still photograph can’t possibly capture the exciting action of the animation:

[image: Image]

Renderers and events

Most Xamarin.Forms elements are interactive. They respond to user input by firing events. If you implement an event in your Xamarin.Forms custom element, you probably also need to define an event handler in the renderers for the corresponding event that the native control fires. This section will show you how.

The StepSlider element was inspired by a problem with the Xamarin.Forms implementation of the Windows Slider element. By default, the Xamarin.Forms Slider when running on the Windows platforms has only 10 steps from 0 through 1, so it is only capable of Value values of 0, 0.1, 0.2, and so forth up to 1.0.

Like the regular Xamarin.Forms Slider, the StepSlider element has Minimum, Maximum, and Value properties, but it also defines a Step property to specify the number of steps between Minimum and Maximum. For example, if Minimum is set to 5, Maximum is set to 10, and Step is set to 20, then the possible values of the Value property are 5.00, 5.25, 5.50, 5.75, 6.00, and so forth up to 10. The number of possible Value values is equal to the Step value plus 1.

Interestingly, implementing this Step property turned out to require a different approach on all three platforms, but the primary purpose of this exercise is to demonstrate how to implement events.

Here is the StepSlider class in the Xamarin.FormsBook.Platform library. Notice the definition of the ValueChanged event at the top and the firing of that event by changes in the Value property. Much of the bulk of the bindable property definitions are devoted to the validateValue methods, which ensure that the property is within allowable bounds, and the coerceValue methods, which ensure that the properties are consistent among themselves:

Click here to view code image

namespace Xamarin.FormsBook.Platform

{

 public class StepSlider : View

 {

 public event EventHandler<ValueChangedEventArgs> ValueChanged;

 public static readonly BindableProperty MinimumProperty =

 BindableProperty.Create(

 "Minimum",

 typeof(double),

 typeof(StepSlider),

 0.0,

 validateValue: (obj, min) => (double)min < ((StepSlider)obj).Maximum,

 coerceValue: (obj, min) =>

 {

 StepSlider stepSlider = (StepSlider)obj;

 stepSlider.Value = stepSlider.Coerce(stepSlider.Value,

 (double)min,

 stepSlider.Maximum);

 return min;

 });

 public static readonly BindableProperty MaximumProperty =

 BindableProperty.Create(

 "Maximum",

 typeof(double),

 typeof(StepSlider),

 100.0,

 validateValue: (obj, max) => (double)max > ((StepSlider)obj).Minimum,

 coerceValue: (obj, max) =>

 {

 StepSlider stepSlider = (StepSlider)obj;

 stepSlider.Value = stepSlider.Coerce(stepSlider.Value,

 stepSlider.Minimum,

 (double)max);

 return max;

 });

 public static readonly BindableProperty StepsProperty =

 BindableProperty.Create(

 "Steps",

 typeof(int),

 typeof(StepSlider),

 100,

 validateValue: (obj, steps) => (int)steps > 1);

 public static readonly BindableProperty ValueProperty =

 BindableProperty.Create(

 "Value",

 typeof(double),

 typeof(StepSlider),

 0.0,

 BindingMode.TwoWay,

 coerceValue: (obj, value) =>

 {

 StepSlider stepSlider = (StepSlider)obj;

 return stepSlider.Coerce((double)value,

 stepSlider.Minimum,

 stepSlider.Maximum);

 },

 propertyChanged: (obj, oldValue, newValue) =>

 {

 StepSlider stepSlider = (StepSlider)obj;

 EventHandler<ValueChangedEventArgs> handler = stepSlider.ValueChanged;

 if (handler != null)

 handler(obj, new ValueChangedEventArgs((double)oldValue,

 (double)newValue));

 });

 public double Minimum

 {

 set { SetValue(MinimumProperty, value); }

 get { return (double)GetValue(MinimumProperty); }

 }

 public double Maximum

 {

 set { SetValue(MaximumProperty, value); }

 get { return (double)GetValue(MaximumProperty); }

 }

 public int Steps

 {

 set { SetValue(StepsProperty, value); }

 get { return (int)GetValue(StepsProperty); }

 }

 public double Value

 {

 set { SetValue(ValueProperty, value); }

 get { return (double)GetValue(ValueProperty); }

 }

 double Coerce(double value, double min, double max)

 {

 return Math.Max(min, Math.Min(value, max));

 }

 }

}

The StepSlider class fires the ValueChanged property when the Value property changes, but there’s nothing in this class that changes the Value property when the user manipulates the platform renderer for StepSlider. That’s left to the renderer class.

Once again, let’s first look at the Windows implementation of StepSliderRenderer in the Xamarin.FormsBook.Platform.WinRT shared project because it’s a little more straightforward. The renderer uses the Windows.UI.Xaml.Controls.Slider for the native control. To avoid a namespace clash between the Windows Slider and the Xamarin.Forms Slider, a using directive defines the win prefix to refer to the Windows namespace and uses that to reference the Windows Slider:

Click here to view code image

using System.ComponentModel;

using Xamarin.Forms;

using Win = Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Controls.Primitives;

#if WINDOWS_UWP

using Xamarin.Forms.Platform.UWP;

#else

using Xamarin.Forms.Platform.WinRT;

#endif

[assembly: ExportRenderer(typeof(Xamarin.FormsBook.Platform.StepSlider),

 typeof(Xamarin.FormsBook.Platform.WinRT.StepSliderRenderer))]

namespace Xamarin.FormsBook.Platform.WinRT

{

 public class StepSliderRenderer : ViewRenderer<StepSlider, Win.Slider>

 {

 protected override void OnElementChanged(ElementChangedEventArgs<StepSlider> args)

 {

 base.OnElementChanged(args);

 if (Control == null)

 {

 SetNativeControl(new Win.Slider());

 }

 if (args.NewElement != null)

 {

 SetMinimum();

 SetMaximum();

 SetSteps();

 SetValue();

 Control.ValueChanged += OnWinSliderValueChanged;

 }

 else

 {

 Control.ValueChanged -= OnWinSliderValueChanged;

 }

 }

 ...

 }

}

The big difference between this renderer and the one you’ve seen earlier is that this one sets an event handler on the ValueChanged event of the native Windows Slider. (You’ll see the event handler shortly.) If args.NewElement becomes null, however, that means that there is no longer a Xamarin.Forms element attached to the renderer and that the event handler is no longer needed. Moreover, you’ll see soon that the event handler refers to the Element property inherited from the ViewRenderer class, and that property will also be null if args.NewElement is null.

For that reason, OnElementChanged detaches the event handler when args.NewElement becomes null. Likewise, any resources you’ve allocated for the renderer should be freed whenever args.NewElement becomes null.

The override of the OnElementPropertyChanged method checks for changes in the four properties that StepSlider defines:

Click here to view code image

namespace Xamarin.FormsBook.Platform.WinRT

{

 public class StepSliderRenderer : ViewRenderer<StepSlider, Win.Slider>

 {

 ...

 protected override void OnElementPropertyChanged(object sender,

 PropertyChangedEventArgs args)

 {

 base.OnElementPropertyChanged(sender, args);

 if (args.PropertyName == StepSlider.MinimumProperty.PropertyName)

 {

 SetMinimum();

 }

 else if (args.PropertyName == StepSlider.MaximumProperty.PropertyName)

 {

 SetMaximum();

 }

 else if (args.PropertyName == StepSlider.StepsProperty.PropertyName)

 {

 SetSteps();

 }

 else if (args.PropertyName == StepSlider.ValueProperty.PropertyName)

 {

 SetValue();

 }

 }

 ...

 }

}

The Windows Slider defines Minimum, Maximum, and Value properties just like the Xamarin.Forms Slider and the new StepSlider. But it doesn’t define a Steps property. Instead, it defines a StepFrequency property, which is the opposite of a Steps property. To reproduce the earlier example (Minimum set to 5, Maximum set to 10, and Steps set to 20), you’d set StepFrequency to 0.25. The conversion is fairly simple:

Click here to view code image

namespace Xamarin.FormsBook.Platform.WinRT

{

 public class StepSliderRenderer : ViewRenderer<StepSlider, Win.Slider>

 {

 ...

 void SetMinimum()

 {

 Control.Minimum = Element.Minimum;

 }

 void SetMaximum()

 {

 Control.Maximum = Element.Maximum;

 }

 void SetSteps()

 {

 Control.StepFrequency = (Element.Maximum - Element.Minimum) / Element.Steps;

 }

 void SetValue()

 {

 Control.Value = Element.Value;

 }

 ...

 }

}

Finally, here’s the ValueChanged handler for the Windows Slider. This has the responsibility of setting the Value property in the StepSlider, which then fires its own ValueChanged event. However, a special method exists for setting a value from a renderer. This method, called SetValueFromRenderer, is defined by the IElementController interface and implemented by the Xamarin.Forms Element class:

Click here to view code image

namespace Xamarin.FormsBook.Platform.WinRT

{

 public class StepSliderRenderer : ViewRenderer<StepSlider, Win.Slider>

 {

 ...

 void OnControlValueChanged(object sender, RangeBaseValueChangedEventArgs args)

 {

 ((IElementController)Element).SetValueFromRenderer(StepSlider.ValueProperty,

 args.NewValue);

 }

 }

}

The iOS UISlider has MinValue, MaxValue, and Value properties and defines a ValueChanged event, but it doesn’t have anything like a Steps or StepFrequency property. Instead, the iOS StepSliderRenderer class in Xamarin.FormsBook.Platform.iOS makes a manual adjustment to the Value property before calling SetValueFromRenderer from the ValueChanged event handler:

Click here to view code image

using System;

using System.ComponentModel;

using UIKit;

using Xamarin.Forms;

using Xamarin.Forms.Platform.iOS;

[assembly: ExportRenderer(typeof(Xamarin.FormsBook.Platform.StepSlider),

 typeof(Xamarin.FormsBook.Platform.iOS.StepSliderRenderer))]

namespace Xamarin.FormsBook.Platform.iOS

{

 public class StepSliderRenderer : ViewRenderer<StepSlider, UISlider>

 {

 int steps;

 protected override void OnElementChanged(ElementChangedEventArgs<StepSlider> args)

 {

 base.OnElementChanged(args);

 if (Control == null)

 {

 SetNativeControl(new UISlider());

 }

 if (args.NewElement != null)

 {

 SetMinimum();

 SetMaximum();

 SetSteps();

 SetValue();

 Control.ValueChanged += OnUISliderValueChanged;

 }

 else

 {

 Control.ValueChanged -= OnUISliderValueChanged;

 }

 }

 protected override void OnElementPropertyChanged(object sender,

 PropertyChangedEventArgs args)

 {

 base.OnElementPropertyChanged(sender, args);

 if (args.PropertyName == StepSlider.MinimumProperty.PropertyName)

 {

 SetMinimum();

 }

 else if (args.PropertyName == StepSlider.MaximumProperty.PropertyName)

 {

 SetMaximum();

 }

 else if (args.PropertyName == StepSlider.StepsProperty.PropertyName)

 {

 SetSteps();

 }

 else if (args.PropertyName == StepSlider.ValueProperty.PropertyName)

 {

 SetValue();

 }

 }

 void SetMinimum()

 {

 Control.MinValue = (float)Element.Minimum;

 }

 void SetMaximum()

 {

 Control.MaxValue = (float)Element.Maximum;

 }

 void SetSteps()

 {

 steps = Element.Steps;

 }

 void SetValue()

 {

 Control.Value = (float)Element.Value;

 }

 void OnUISliderValueChanged(object sender, EventArgs args)

 {

 double increment = (Element.Maximum - Element.Minimum) / Element.Steps;

 double value = increment * Math.Round(Control.Value / increment);

 ((IElementController)Element).SetValueFromRenderer(StepSlider.ValueProperty, value);

 }

 }

}

Interestingly enough, the Android SeekBar widget has an equivalent to the Steps property but no equivalents to the Minimum and Maximum properties! How is this possible? The SeekBar actually defines an integer property named Max, and the Progress property of the SeekBar is always an integer that ranges from 0 to Max. So the Max property really indicates the number of steps the SeekBar can make, and a conversion is necessary between the Progress property of the SeekBar and the Value property of the StepSlider.

This conversion occurs in two places: The SetValue method converts from the Value property of the StepSlider to the Progress property of the SeekBar, and the OnProgressChanged method converts from the Progress property of the SeekBar to the Value property of the StepSlider.

In addition, the event handler is a little different. The SetOnSeekBarChangeListener method accepts an argument of type IOnSeekBarChangeListener, which defines three methods that report changes to the Seekbar, including the method OnProgressChanged. The renderer itself implements that interface.

Here’s the complete StepSliderRenderer class in the Xamarin.FormsBook.Platform.Android library:

Click here to view code image

using System.ComponentModel;

using Android.Widget;

using Xamarin.Forms;

using Xamarin.Forms.Platform.Android;

[assembly: ExportRenderer(typeof(Xamarin.FormsBook.Platform.StepSlider),

 typeof(Xamarin.FormsBook.Platform.Android.StepSliderRenderer))]

namespace Xamarin.FormsBook.Platform.Android

{

 public class StepSliderRenderer : ViewRenderer<StepSlider, SeekBar>,

 SeekBar.IOnSeekBarChangeListener

 {

 double minimum, maximum;

 protected override void OnElementChanged(ElementChangedEventArgs<StepSlider> args)

 {

 base.OnElementChanged(args);

 if (Control == null)

 {

 SetNativeControl(new SeekBar(Context));

 }

 if (args.NewElement != null)

 {

 SetMinimum();

 SetMaximum();

 SetSteps();

 SetValue();

 Control.SetOnSeekBarChangeListener(this);

 }

 else

 {

 Control.SetOnSeekBarChangeListener(null);

 }

 }

 protected override void OnElementPropertyChanged(object sender,

 PropertyChangedEventArgs args)

 {

 base.OnElementPropertyChanged(sender, args);

 if (args.PropertyName == StepSlider.MinimumProperty.PropertyName)

 {

 SetMinimum();

 }

 else if (args.PropertyName == StepSlider.MaximumProperty.PropertyName)

 {

 SetMaximum();

 }

 else if (args.PropertyName == StepSlider.StepsProperty.PropertyName)

 {

 SetSteps();

 }

 else if (args.PropertyName == StepSlider.ValueProperty.PropertyName)

 {

 SetValue();

 }

 }

 void SetMinimum()

 {

 minimum = Element.Minimum;

 }

 void SetMaximum()

 {

 maximum = Element.Maximum;

 }

 void SetSteps()

 {

 Control.Max = Element.Steps;

 }

 void SetValue()

 {

 double value = Element.Value;

 Control.Progress = (int)((value - minimum) / (maximum - minimum) * Element.Steps);

 }

 // Implementation of SeekBar.IOnSeekBarChangeListener

 public void OnProgressChanged(SeekBar seekBar, int progress, bool fromUser)

 {

 double value = minimum + (maximum - minimum) * Control.Progress / Control.Max;

 ((IElementController)Element).SetValueFromRenderer(StepSlider.ValueProperty, value);

 }

 public void OnStartTrackingTouch(SeekBar seekBar)

 {

 }

 public void OnStopTrackingTouch(SeekBar seekBar)

 {

 }

 }

}

The StepSliderDemo solution contains links to the Xamarin.FormsBook.Platform libraries and corresponding references to those libraries. The StepSliderDemo.xaml file instantiates five StepSlider elements, with data bindings on three of them and an explicit event handler on the other two:

Click here to view code image

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:platform=

 "clr-namespace:Xamarin.FormsBook.Platform;assembly=Xamarin.FormsBook.Platform"

 x:Class="StepSliderDemo.StepSliderDemoPage">

 <StackLayout Padding="10, 0">

 <StackLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="ContentView">

 <Setter Property="VerticalOptions" Value="CenterAndExpand" />

 </Style>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="HorizontalOptions" Value="Center" />

 </Style>

 </ResourceDictionary>

 </StackLayout.Resources>

 <ContentView>

 <StackLayout>

 <platform:StepSlider x:Name="stepSlider1" />

 <Label Text="{Binding Source={x:Reference stepSlider1},

 Path=Value}" />

 </StackLayout>

 </ContentView>

 <ContentView>

 <StackLayout>

 <platform:StepSlider x:Name="stepSlider2"

 Minimum="10"

 Maximum="15"

 Steps="20"

 ValueChanged="OnSliderValueChanged" />

 <Label x:Name="label2" />

 </StackLayout>

 </ContentView>

 <ContentView>

 <StackLayout>

 <platform:StepSlider x:Name="stepSlider3"

 Steps="10" />

 <Label Text="{Binding Source={x:Reference stepSlider3},

 Path=Value}" />

 </StackLayout>

 </ContentView>

 <ContentView>

 <StackLayout>

 <platform:StepSlider x:Name="stepSlider4"

 Minimum="0"

 Maximum="1"

 Steps="100"

 ValueChanged="OnSliderValueChanged" />

 <Label x:Name="label4" />

 </StackLayout>

 </ContentView>

 <ContentView>

 <StackLayout>

 <platform:StepSlider x:Name="stepSlider5"

 Minimum="10"

 Maximum="20"

 Steps="2" />

 <Label Text="{Binding Source={x:Reference stepSlider5},

 Path=Value}" />

 </StackLayout>

 </ContentView>

 </StackLayout>

</ContentPage>

The code-behind file has the ValueChanged event handler:

Click here to view code image

public partial class StepSliderDemoPage : ContentPage

{

 public StepSliderDemoPage()

 {

 InitializeComponent();

 }

 void OnSliderValueChanged(object sender, ValueChangedEventArgs args)

 {

 StepSlider stepSlider = (StepSlider)sender;

 if (stepSlider == stepSlider2)

 {

 label2.Text = stepSlider2.Value.ToString();

 }

 else if (stepSlider == stepSlider4)

 {

 label4.Text = stepSlider4.Value.ToString();

 }

 }

}

You’ll find that the StepSlider functions like a normal Xamarin.Forms Slider except that the possible values from the StepSlider are now under programmatic control:

[image: Image]

The first StepSlider has Value properties in increments of 1, the second in increments of 0.25, the third in increments of 10, the fourth in increments of 0.01, and the fifth in increments of 5 with just three possible settings.

And now you can see how Xamarin.Forms provides the tools that let you take it beyond what it at first seems to be. Anything you can define in three platforms can become something usable in just one universal platform. With the C# programming language, and the power of Xamarin.Forms and renderers, you can step not only into iOS programming, or Android programming, or Windows programming, but all three at once with a single step, and continue to step into the future of mobile development.

[image: Image]

Code Snippets

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the eBook in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

OEBPS/html/graphics/0010fig01.jpg

OEBPS/html/graphics/0009fig01.jpg
EXDEETS)
A \ A

(Portable Class Library (PCL) or Shared Asset Project (SAP)

{

y

‘ Xamarin.Forms.Core and Xamarin.Forms.Xaml

{ {

Xamarin.Forms.
Platform.Android

{

Xamarin.Forms.

Platform.iOS

y
y

{

08 AP oane | ONGNRARIN

Solution
with C#
projects

OEBPS/html/graphics/0007fig01.jpg
’ Portable Class Library (PCL) or Shared Asset Project (SAP) J

{ { {
B e

\ \

\ }
RS

Solution
with C#
projects

