

Microsoft
®
 Windows

®

Communication
Foundation Step by Step

John Sharp (Content Master)

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/10022.aspx

9780735623361
Publication Date: January 2007

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Table of Contents
Acknowledgments . xi

Introduction . xiii

1 Introducing Windows Communication Foundation 1

What Is Windows Communication Foundation? . 1

The Early Days of Personal Computer Applications . 1

Inter-Process Communications Technologies . 2

The Web and Web Services . 3

Using XML as a Common Data Format . 3

Sending and Receiving Web Service Requests . 4

Handling Security and Privacy in a Global Environment. 5

The Purpose of Windows Communication Foundation . 6

Building a WCF Service . 7

Defining Contracts . 12

Implementing the Service . 14

Configuring, Deploying, and Testing the WCF Service . 18

Building a WCF Client. 24

Service-Oriented Architectures and Windows Communication Foundation. 28

Summary . 30

2 Hosting a WCF Service . 31

How Does a WCF Service Work? . 31

Service Endpoints . 32

Processing a Client Request . 33

Hosting a WCF Service in a User Application . 35

Using the ServiceHost Class. 35

Building a Windows Presentation Foundation Application to Host a
WCF Service . 38

Reconfiguring the Service to Use Multiple Endpoints . 44
v

vi Table of Contents
Understanding Bindings . 47

The WCF Predefined Bindings . 47

Configuring Bindings . 50

Hosting a WCF Service in a Windows Service . 52

Summary . 57

3 Making Applications and Services Robust . 59

CLR Exceptions and SOAP Faults . 60

Throwing and Catching a SOAP Fault . 60

Using Strongly-Typed Faults . 65

Reporting Unanticipated Exceptions . 73

Managing Exceptions in Service Host Applications . 76

ServiceHost States and Transitions. 76

Handling Faults in a Host Application . 77

Handling Unexpected Messages in a Host Application 78

Summary . 80

4 Protecting an Enterprise WCF Service . 81

What Is Security?. 81

Authentication and Authorization in a Windows Environment. 83

Transport and Message Level Security . 84

Implementing Security in a Windows Domain . 86

Protecting a TCP Service at the Message Level . 86

Protecting an HTTP Service at the Transport Level . 93

Protecting an HTTP Service at the Message Level. 100

Authenticating Windows Users . 102

Authorizing Users . 108

Using Impersonation to Access Resources . 114

Summary . 116

5 Protecting a WCF Service over the Internet . 117

Authenticating Users and Services in an Internet Environment 118

Authenticating and Authorizing Users by Using the SQL Membership
Provider and the SQL Role Provider . 118

Authenticating and Authorizing Users by Using Certificates. 132

Authenticating a Service by Using a Certificate. 142

Summary . 148

Table of Contents vii
6 Maintaining Service Contracts and Data Contracts 149

Modifying a Service Contract . 150

Selectively Protecting Operations . 150

Versioning a Service . 156

Making Breaking and Nonbreaking Changes to a Service Contract. 163

Modifying a Data Contract . 165

Data Contract and Data Member Attributes. 166

Data Contract Compatibility . 176

Summary . 179

7 Maintaining State and Sequencing Operations 181

Managing State in a WCF Service. 182

Service Instance Context Modes . 193

Maintaining State with the PerCall Instance Context Mode. 198

Selectively Controlling Service Instance Deactivation . 204

Sequencing Operations in a WCF Service . 206

Summary . 211

8 Supporting Transactions . 213

Using Transactions in the ShoppingCartService Service . 214

Implementing OLE Transactions . 214

Implementing WS-AtomicTransaction Transactions. 229

Designing a WCF Service to Support Transactions . 231

Transactions and Service Instance Context Modes . 231

Transactions and Messaging . 232

Transactions and Multi-Threading . 232

Long-Running Transactions . 233

Summary . 233

9 Implementing Reliable Sessions . 235

Using Reliable Sessions. 235

Implementing Reliable Sessions with WCF . 236

Detecting and Handling Replay Attacks . 245

Configuring Replay Detection with WCF . 246

Summary . 251

viii Table of Contents
10 Programmatically Controlling the Configuration
and Communications . 253

The WCF Service Model . 253

Services and Channels . 254

Behaviors . 255

Composing Channels into Bindings. 256

Inspecting Messages . 261

Controlling Client Communications . 265

Connecting to a Service Programmatically . 265

Sending Messages Programmatically . 271

Summary . 274

11 Implementing OneWay and Asynchronous Operations 275

Implementing OneWay Operations. 276

The Effects of a OneWay Operation . 276

OneWay Operations and Timeouts . 277

Recommendations for Using OneWay Methods . 285

Invoking and Implementing Operations Asynchronously . 286

Invoking an Operation Asynchronously in a Client Application 286

Implementing an Operation Asynchronously in a WCF Service 287

Using Message Queues . 296

Summary . 301

12 Implementing a WCF Service for Good Performance 303

Using Service Throttling to Control Resource Use . 304

Configuring Service Throttling . 305

Transmitting Data by Using MTOM . 311

Sending Large Binary Data Objects to a Client Application 314

Streaming Data from a WCF Service . 318

Enabling Streaming in a WCF Service and Client Application 319

Designing Operations to Support Streaming. 319

Security Implications of Streaming. 320

Summary . 320

13 Routing Messages . 321

How the WCF Service Runtime Dispatches Operations . 322

ChannelDispatcher and EndpointDispatcher Objects Revisited 322

EndpointDispatcher Objects and Filters . 324

Table of Contents ix
Routing Messages to Other Services . 325

WCF and the WS-Addressing Specification . 337

The WS-Referral Specification and Dynamic Routing . 339

Summary . 340

14 Using a Callback Contract to Publish and Subscribe to Events 341

Implementing and Invoking a Client Callback . 342

Defining a Callback Contract . 342

Implementing an Operation in a Callback Contract . 343

Invoking an Operation in a Callback Contract . 345

Reentrancy and Threading in a Callback Operation . 346

Implementing a Duplex Channel . 347

Using a Callback Contract to Implement Events . 347

Delivery Models for Publishing and Subscribing . 358

Summary . 359

15 Managing Identity with Windows CardSpace . 361

Using Windows CardSpace to Access a WCF Service . 362

Implementing Claims-Based Security. 362

Using a Third-Party Identity Provider. 375

Claims-Based Authentication in a Federated Environment 377

Summary . 380

16 Integrating with ASP.NET Clients and Enterprise
Services Components . 381

Creating a WCF Service that Supports an ASP.NET Client . 381

Exposing a COM+ Application as a WCF Service. 390

Summary . 402

Index .403

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Chapter 13

Routing Messages
After completing this chapter, you will be able to:

■ Describe how the WCF runtime for a service dispatches messages to operations.

■ Build a WCF service that transparently routes client requests to other WCF services.

■ Describe how WCF conforms to the WS-Addressing specification.

When a client application sends a message to a WCF service, it sends the request through an
endpoint. If you recall, an endpoint specifies three pieces of information: an address, a bind-
ing, and a contract. The address indicates where the message should go; the binding identifies
the transport, format, and protocols to use to communicate with the service; and the contract
determines the messages that the client can send and the responses it should expect to
receive. A service can expose multiple endpoints, each associated with the same or a different
contract. When a WCF service receives a message, it has to examine the message to determine
which service endpoint should actually process it. You can customize the way in which WCF
selects the endpoint to use, and this provides a mechanism for you to change the way in which
WCF routes messages within a service.

Sometimes it is useful to forward messages to entirely different services for handling. Suppose
that client applications send requests to various WCF services hosted by an organization, but
all of these requests actually go through the same front-end service, which acts as a firewall to
the real WCF services. The front-end service can run on a computer forming part of the orga-
nization’s perimeter network, and the computers hosting the real WCF service servers can
reside in a protected network inside the organization. The front-end service can act as a router,
forwarding requests on the real services by examining the action or address in each message.
This mechanism is known as address-based routing. The front-end service can also filter mes-
sages, detecting rogue requests and blocking them, depending on the degree of intelligence
you want to incorporate into the front-end service logic.

An alternative scheme is to route messages based on their contents rather than the action
being requested. This mechanism is known as content-based routing. For example, if you are
hosting a commercial service, you might offer different levels of service to different users
depending on the fees that they pay you. A “premium” user (paying higher fees) could have
requests forwarded to a high-performance server for a fast response, whereas a “standard”
user (not paying as much) might have to make do with a lower level of performance. The cli-
ent application run by both categories of user actually sends messages to the same front-end
service, but the front-end service examines some aspect of the message, such as the identity of
the user making the request, and then forwards the message to the appropriate destination.
321

322 Chapter 13 Routing Messages
A front-end service can also provide other features such as load-balancing. Requests from cli-
ent applications arrive at a single front-end server, which uses a load-balancing algorithm to
distribute requests evenly across all servers running the WCF service.

In this chapter, you will look at techniques you can use to handle scenarios such as these.

How the WCF Service Runtime Dispatches Operations
Before looking in detail at how you can build a WCF service that routes messages to other ser-
vices, it is useful to explain a little more about what happens when a WCF service actually
receives a request message from a client application.

ChannelDispatcher and EndpointDispatcher Objects Revisited

In Chapter 10, “Programmatically Controlling the Configuration and Communications,” you
saw that the WCF runtime for a service creates a channel stack for each distinct address and
binding combination used to communicate with the service. Each channel stack has a Chan-
nelDispatcher object and one or more EndpointDispatcher objects. The purpose of the Chan-
nelDispatcher object is to determine which EndpointDispatcher object should handle the
message. The role of the EndpointDispatcher object is to convert the message into a method
call and invoke the appropriate method in the service.

Note This is a very simplified view of the WCF Service Model. The EndpointDispatcher
object does not directly invoke the method in the service itself. It uses a number of other
helper objects instantiated by the WCF runtime. These objects have their own specific
responsibilities for converting the message into a method call, selecting the appropriate ser-
vice instance, handling the value returned by the method, and all the other low-level tasks
associated with executing an operation. The WCF runtime is highly customizable, and you
can replace many of the standard objects provided by WCF that perform these tasks with
your own implementations.

Each address and binding combination exposed by a service can be shared by multiple end-
points. For example, the configuration file for the ProductsServiceV2 solution from Chapter 6,
“Maintaining Service Contracts and Data Contracts,” defined the following service and end-
points:

<services>
<service … name="Products.ProductsServiceImpl">

<endpoint
address="https://localhost:8000/ProductsService/ProductsService.svc"
binding="basicHttpBinding" name="ProductsServiceHttpEndpoint"
contract="Products.IProductsService" />

<endpoint address="net.tcp://localhost:8080/TcpProductsService"
binding="netTcpBinding" name="ProductsServiceTcpBinding"
contract="Products.IProductsService" />

<endpoint

Chapter 13 Routing Messages 323
address="http://localhost:8010/ProductsService/ProductsService.svc"
binding="wsHttpBinding" name="ProductsServiceWSHttpEndpoint"
contract="Products.IProductsService" />

<endpoint
address="https://localhost:8000/ProductsService/ProductsService.svc"
binding="basicHttpBinding" name="ProductsServiceHttpEndpointV2"
contract="Products.IProductsServiceV2" />

<endpoint address="net.tcp://localhost:8080/TcpProductsService"
binding="netTcpBinding" name="ProductsServiceTcpBindingV2"
contract="Products.IProductsServiceV2" />

<endpoint
address="http://localhost:8010/ProductsService/ProductsService.svc"
binding="wsHttpBinding" name="ProductsServiceWSHttpEndpointV2"
contract="Products.IProductsServiceV2" />

</service>
</services>

Notice that this configuration defines six endpoints, but that there are only three distinct
address/binding combinations. Consequently, this configuration causes the WCF runtime to
create three channel stacks, each with its own ChannelDispatcher object. Each channel stack is
associated with two possible endpoints; one for each of the contracts available through that
channel stack. The WCF runtime creates two EndpointDispatcher objects for each channel
stack and adds them to the collection of EndpointDispatcher objects associated with the Chan-
nelDispatcher object. Figure 13-1 shows the relationship between the endpoints, channel
stacks, and dispatcher objects for this service.

Figure 13-1 Channels and Dispatchers for the ProductsServiceImpl service.

Endpoint
Dispatchers

IProductsService

URI: https://localhost:8000/
 ProductsService/ProductsService.svc
Binding: basicHttpBinding
Contracts: IProductService and IProductServiceV2

URI: https://localhost:8080/
 TcpProductsService/ProductsService.svc
Binding: net TcpBinding
Contracts: IProductService and IProductServiceV2

URI: https://localhost:8100/
 ProductsService/ProductsService.svc
Binding: wsHttpBinding
Contracts: IProductService and IProductServiceV2

IProductsServiceV2

Channel
Dispatchers

Channel
Stacks

Endpoint
Definitions

HTTP

IProductsService IProductsServiceV2

HTTP

IProductsService IProductsServiceV2

HTTP

324 Chapter 13 Routing Messages
When the service receives a message on a channel, the ChannelDispatcher object at the top of
the channel stack queries each of its associated EndpointDispatcher objects to determine
which endpoint can process the message. If none of the EndpointDispatcher objects can accept
the message, the WCF runtime raises the UnknownMessageReceived event on the ServiceHost
object hosting the service. Chapter 3, “Making Applications and Services Robust,” describes
how to handle this event.

EndpointDispatcher Objects and Filters

How does an EndpointDispatcher object indicate that it can process a message? Well, an End-
pointDispatcher object exposes two properties that the ChannelDispatcher can query. These
properties are AddressFilter and ContractFilter.

The AddressFilter property is an instance of the EndpointAddressMessageFilter class. The End-
pointAddressFilterMessage class provides a method called Match that takes a message as its
input parameter and returns a Boolean value indicating whether the EndpointDispatcher
object recognizes the address contained in the header of this message or not.

The ContractFilter property is an instance of the ActionMessageFilter class. This class also pro-
vides a Match method that takes a message as its input parameter, and it returns a Boolean
value indicating whether the EndpointDispatcher object can handle the action specified in the
message header. Remember that the action identifies the method that the EndpointDispatcher
will invoke in the service instance if it accepts the request. Internally, the ActionMessageFilter
object contains a table of actions, held as strings, and all the Match method does is iterate
through this table until it finds a match or reaches the end of the table.

The Match method in both filters must return true for the ChannelDispatcher object to consider
sending the message to the EndpointDispatcher object for processing. It is also possible for
more than one EndpointDispatcher object to indicate that it can handle the message. In this
case, the EndpointDispatcher class provides the FilterPriority property. This property returns
an integer value, and an EndpointDispatcher object can indicate its relative precedence com-
pared to other EndpointDispatcher objects by returning a higher or lower number. If two
matching endpoints have the same priority, the WCF runtime throws a MultipleFilter-
MatchesException exception.

The WCF runtime creates the EndpointAddressFilterMessage and ActionMessageFilter objects for
each ChannelDispatcher object based on the endpoint definitions in the service configuration
file (or in code, if you are creating endpoints dynamically by using the AddServiceEndpoint
method of the ServiceHost object, as described in Chapter 10). You can override these filters by
creating your own customized instances of these objects with your own address and table of
actions and inserting these filters when the WCF runtime builds the service prior to opening
it. One way to do this is to create a custom behavior, as you did when adding the message
inspector in Chapter 10.

Chapter 13 Routing Messages 325
By default, the EndpointDispatcher invokes the method corresponding to the action in the ser-
vice contract. However, you can modify the way in which the EndpointDispatcher processes an
operation request by creating a class that implements the IDispatchOperationSelector interface
and assigning it to the OperationSelector property of the DispatchRuntime object referenced by
the DispatchRuntime property of the EndpointDispatcher. This interface contains a single
method called SelectOperation:

public string SelectOperation(ref Message message).

You can use this method to examine the message and return the name of a method that the
EndpointDispatcher should invoke to handle it. This is useful if you want to manually control
the way in which the dispatching mechanism works.

More Info The Custom Demux sample included with the WCF samples in the Microsoft
Windows SDK provides more information on creating an endpoint behavior class that over-
rides the contract filter and operation selector for an endpoint dispatcher. This sample is
based on the MsmqIntegrationBinding binding, but the general principles are the same for
other bindings. You can find this sample online at http://windowssdk.msdn.microsoft.com/en-
us/library/ms752265.aspx.

To summarize, the dispatching mechanism provides a highly customizable mechanism for
determining which endpoint should process a message. You can make use of this knowledge
to build services that can transparently route messages to other services.

Routing Messages to Other Services
The WCF runtime makes it a relatively simple matter to build a WCF service that accepts spe-
cific messages and sends them to another service for processing (I shall refer to this type of ser-
vice as a front-end service from here on in this chapter). All you need to do is define a front-end
service with a service contract that mirrors that of the target service. The methods defining the
operations in the front-end service can perform any pre-processing required, such as examin-
ing the identity of the user making the request or the data being passed in as parameters, and
then forward the request on to the appropriate target service.

However, creating a generalized WCF service that can accept any messages and route them to
another service running on a different computer requires a little more thought. There are at
least three issues that you need to handle:

1. The service contract. A WCF service describes the operations it can perform by defining
a service contract. For a service to accept messages, they must be recognized by the Con-
tractFilter of one or more EndpointDispatcher objects. At first glance, therefore, it would
appear that any front-end service that accepts messages and forwards them on to
another service must implement a service contract that is the same as that of the target
service. Though it is acceptable when routing messages to a single service, if a WCF ser-

326 Chapter 13 Routing Messages
vice is acting as a front-end for many other services this situation can quickly become
unmanageable, as the front-end service has to implement service contracts that match all
of these other services.

2. The contents of messages. In some ways this issue is related to the first problem. If a
front-end service has to implement the service contracts for a vast array of other services,
it also has to implement any data contracts that these other services use, describing how
data structures are serialized into the bodies of the messages. Again, this can quickly
become an unwieldy task.

3. The contents of message headers. Apart from the data in the body, a message also con-
tains one or more message headers. These message headers contain information such as
encryption tokens, transaction identifiers, and many other miscellaneous items used to
control the flow of data and manage the integrity of messages. A front-end service must
carefully manage this information in order to appear transparent to the client application
sending requests and the services that receive and process those requests.

Fortunately, there are reasonably simple solutions to at least some of these problems. In the
following exercises, you will see how to build a very simple load-balancing router for the
ShoppingCartService service. You will run two instances of the ShoppingCartService service,
and the load-balancing router will direct requests from client applications transparently to
them. The load-balancing routing will implement a very simple algorithm, sending alternate
requests to each instance of the ShoppingCartService service. Although all three services in
this exercise will be running on the same computer, it would be very easy to arrange for
them to execute on different machines, enabling you to spread the workload across different
processors.

You will start by re-familiarizing yourself with the ShoppingCartService service and modifying
it to execute in a more traditional Internet environment.

Revisit the ShoppingCartService service

1. Using Visual Studio 2005, open the ShoppingCartService solution in the Microsoft
Press\WCF Step By Step\Chapter 13\Load-Balancing Router folder under your \My
Projects folder.

This solution contains a copy of the ShoppingCartService and ShoppingCartService-
Host projects from Chapter 7, “Maintaining State and Sequencing Operations,” and the
ShoppingCartClient project containing a client application for testing the service in a
multi-user environment.

2. In the ShoppingCartService project, open the ShoppingCartService.cs file. Examine the
ServiceBehavior attribute for the ShoppingCartServiceImpl class. Note that this version of
the service uses the PerCall instance context mode; this is the stateless version of the ser-
vice. The operations in the service make use of the saveShoppingCart and restoreShop-
pingCart methods to serialize users’ shopping carts as XML files.

Chapter 13 Routing Messages 327
3. Open the Program.cs file in the ShoppingCartServiceHost project. This is the service
host application. All it does is start the service running by using a ServiceHost object and
then waiting for the user to press Enter to close the host.

4. Open the App.config file in the ShoppingCartServiceHost project. Notice that the service
host creates an HTTP endpoint with the URI http://localhost:7080/ShoppingCartSer-
vice/ShoppingCartService.svc. The endpoint uses the wsHttpBinding binding. The
binding configuration specifies message level security; the client application is expected
to provide a Windows username and a password for accessing the service. Close the
App.config file when you have finished examining it.

5. Open the Program.cs file in the ShoppingCartClient project. This is a multi-threaded cli-
ent application. Each thread runs the doClientWork method. This version of the client
application creates two threads.

Examine the doClientWork method. You can see that this method creates a proxy for
connecting to the ShoppingCartService service and provides credentials for Fred and
Bert, depending on which thread the method is running in. The method then exercises
the methods in the ShoppingCartService service.

6. Open the App.config file in the ShoppingCartClient project, and verify that the client
application uses an endpoint with the same URI and binding as the service (http://local-
host:7080/ShoppingCartService/ShoppingCartService.svc). Close the App.config file
when you have finished.

7. Start the solution without debugging. In the client console window, press Enter when
the message “Service running” appears in the service console window.

As the two client threads perform their tasks, they output messages in the client console
window displaying their progress. Both threads add two water bottles and a mountain
seat assembly to the shopping basket, display it, and then invoke the Checkout opera-
tion. The result should look like this (your output might appear in a slightly different
sequence):

After both “Goods purchased” messages have appeared, press Enter to close the client
console window. In the service console window, press Enter to stop the service.

328 Chapter 13 Routing Messages
In an Internet environment, for reasons of speed and interoperability, you are more likely to
protect the ShoppingCartService by using transport level security than message level security.
In the next exercise, you will reconfigure the service and client application to use transport
level security. You will reuse the HTTPS-Server certificate that you created in Chapter 4, “Pro-
tecting an Enterprise WCF Service,” to provide the necessary protection.

Note In general, you should avoid reusing the same certificate for protecting multiple ser-
vices in a production environment. However, I don’t want you to have to uninstall too many
test certificates on your computer when you have finished reading this book.

Reconfigure the ShoppingCartService service to use transport level security

1. Using Microsoft Management Console and the Certificates snap-in, find the thumbprint
of the HTTPS-Server certificate. (If you cannot remember how to do this, refer back to
the exercise “Configure the WCF HTTP endpoint with an SSL certificate” in Chapter 4.)

2. Open a Windows SDK CMD Shell window, and run the following command to associate
the certificate with port 7080, replacing the string following the –h flag with the thumb-
print of the HTTPS-Server certificate on your computer:

httpcfg set ssl –i 0.0.0.0:7080 –h c390e7a4491cf97b96729167bf50186a4b68e052

Note On Windows Vista, use the following command, replacing the value for the
certhash parameter with the thumbprint of the HTTPS-Server certificate:
netsh http add sslcert ipport=0.0.0.0:7080
certhash= c390e7a4491cf97b96729167bf50186a4b68e052
appid={00112233-4455-6677-8899-AABBCCDDEEFF}

3. Leave the CMD Shell window open and return to Visual Studio 2005.

4. Edit the App.config file in the ShoppingCartServiceHost project by using the WCF Ser-
vice Configuration editor.

❑ Change the Address property of the ShoppingCartServiceHttpEndpoint endpoint
in the Endpoints folder to use the https scheme.

❑ Edit the ShoppingCartServiceHttpBindingConfig binding configuration in the
Bindings folder, click the Security tab, and change the Mode property to Transport.
Set the TransportClientCredentialType property to Basic.

❑ Save the file and exit the WCF Configuration Editor.

5. Open the App.config file in the ShoppingCartClient project by using the WCF Service
Configuration Editor.

❑ In the Bindings folder, create a new binding configuration for the wsHttpBinding
type. Set the Name property of the binding configuration to ShoppingCartClientHt-

Chapter 13 Routing Messages 329
tpBindingConfig. Click the Security tab and set the security Mode property to Trans-
port, and set the TransportClientCredentialType property to Basic.

❑ Change the Address property of the WSHttpBinding_ShoppingCartService end-
point to use the https scheme, and set the BindingConfiguration property of the
endpoint to ShoppingCartClientHttpBindingConfig.

❑ Save the file and exit the WCF Configuration Editor.

6. In Visual Studio 2005, edit the Program.cs file in the ShoppingCartClient project.
Because the certificate used to protect the communications with the service was not
issued by a recognized certification authority, you need to add the code you used before
(in Chapter 4), to bypass the certificate validation. Add the following using statements to
the top of the file:

using System.Security.Crytography.X509Certificates;
using System.Net;

7. Add the PermissiveCertificatePolicy class to the file, immediately after the Program class.
The code for this class is available in the PermissiveCertificatePolicy.txt file in the Chap-
ter 13 folder.

8. In the doClientWork method in the Program class, add the following statement shown in
bold immediately before the code that creates the proxy object:

…
PermissiveCertificatePolicy.Enact("CN=HTTPS-Server");
ShoppingCartServuceClient proxy =

new ShoppingCartServiceClient("WSHttpBinding_ShoppingCartService");
…

9. Change the statements that populate the ClientCredentials property of the proxy to pro-
vide the username and password for Fred and Bert as tokens available to Basic authen-
tication rather than Windows authentication:

…
if (clientNum == 0)
{

proxy.ClientCredentials.UserName.UserName = "Bert";
proxy.ClientCredentials.UserName.Password = "Pa$$w0rd";

}
else
{

proxy.ClientCredentials.UserName.UserName = "Fred";
proxy.ClientCredentials.UserName.Password = "Pa$$w0rd";

}
…

10. Start the solution without debugging. In the client console window, press Enter when
the message “Service running” appears in the service console window.

Verify that the client application runs exactly as before. When the client application has
finished, press Enter to close the client console window. Press Enter to close the service
console window.

330 Chapter 13 Routing Messages
You now have a version of the ShoppingCartService service that a client application can con-
nect to by using transport level security. The next step is to run multiple instances of this ser-
vice and create another service that routes messages from the client application transparently
to one of these instances.

Create the ShoppingCartRouter service

1. Add a new project to the ShoppingCartService solution using the WCF Service Library
template (make sure you select the Visual C# project types). Name the project Shopping-
CartServiceRouter, and save it in the Microsoft Press\WCF Step By Step\Chapter
13\Load-Balancing Router folder under your \My Projects folder.

2. In the ShoppingCartServiceRouter project, rename the Class1.cs file as ShoppingCart-
ServiceRouter.cs.

3. Open the ShoppingCartServiceRouter.cs file. Add the following using statements to the
list at the top of the file:

using System.ServiceModel.Channels;
using System.ServiceModel.Dispatcher;
using System.ServiceModel.Description;
using System.Security.Cryptography.X509Certificates;
using System.Net;

4. Remove the extensive comments describing how to host the WCF service and the sam-
ple code for the IService1 service contract, the service1 class, and the DataContract1 data
contract. Leave the empty ShoppingCartServiceRouter namespace in place.

5. Add the service contract shown below to the ShoppingCartServiceRouter namespace:

[ServiceContract(Namespace = "http://adventure-works.com/2007/03/01",
Name = "ShoppingCartServiceRouter")]

public interface IShoppingCartServiceRouter
{

[OperationContract(Action="*", ReplyAction="*")]
Message ProcessMessage(Message message);

}

Understanding this rather simple-looking service contract is the key to appreciating how
the router works.

In the earlier discussion, you saw that the problems that you have to overcome when
designing a generalized front-end service that can forward any message on to another
service concern the service contract and the contents of messages passing through the
service. A service contract defines the operations that the service can process. Under nor-
mal circumstances, the WSDL description for an operation combines the Namespace and
Name properties from the ServiceContract attribute with the name of the operation to the
generate identifier, or action, defining the request message that a client application
should send to invoke the operation, and the identifier, or reply action, for the response
message that the service will send back. For example, the AddItemToCart operation in
the ShoppingCartService service is identified like this:

Chapter 13 Routing Messages 331
http://adventure-works.com/2007/03/01/ShoppingCartService/AddItemToCart

When the WCF runtime constructs each EndpointDispatcher for a service, it adds the
actions that the corresponding endpoint can accept to the table referenced by the Con-
tractFilter property.

If you explicitly provide a value for the Action property of the OperationContract attribute
when defining an operation, the WCF runtime uses this value instead of the operation
name. If you specify a value of “*” for the Action property, the WCF runtime automati-
cally routes all messages to this operation, regardless of the value of the action specified
in the header of the message sent by the client application. Internally, the WCF runtime
for the service replaces the ActionMessageFilter object referenced by the ContractFilter
property of the EndpointDispatcher object with a MatchAllMessageFilter object. The Match
method of this object returns true for all non-null messages passed to it, so the Endpoint-
Dispatcher will automatically indicate that it can accept all requests sent to it (the Address-
Filter property is still queried by the ChannelDispatcher, however). In this exercise, when
the ShoppingCartClient application sends AddItemToCart, RemoveItemFromCart, Get-
ShoppingCart, and Checkout messages to the ShoppingCartRouter service, it will accept
them all and the EndpointDispatcher will invoke the ProcessMessage method.

You should also pay attention to the signature of the ProcessMessage method. The WCF
runtime on the client packages the parameters passed into an operation as the body of
a SOAP message. Under normal circumstances, the WCF runtime on the service con-
verts the body of the SOAP message back into a set of parameters that are then passed
into the method implementing the operation. If the method returns a value, the WCF
runtime on the service packages it up into a message and transmits it back to the WCF
runtime on the client, where it is converted back into the type expected by the client
application.

The ProcessMessage method is a little different as it takes a Message object as input. In
Chapter 10, you saw that the Message class provides a means for transmitting and receiv-
ing raw SOAP messages. When the WCF runtime on the service receives a message from
the client application, it does not unpack the parameters but instead passes the com-
plete SOAP message to the ProcessMessage method. It is up to the ProcessMessage
method to parse and interpret the contents of this Message object itself.

Similarly, the value returned by the ProcessMessage method is also a Message object. The
ProcessMessage method must construct a complete SOAP message containing the data
in the format expected by the client application and return this object. This response
message must also include a ReplyAction in the message header corresponding to the
ReplyAction expected by the WCF runtime on the client. Usually, the WCF runtime on
the service adds a ReplyAction based on the name of the service and the operation. For
example, the message that the ShoppingCartService service sends back to a client appli-
cation in response to an AddItemToCart message is identified like this:

http://adventure-works.com/2007/03/01/ShoppingCartService/AddItemToCartResponse

332 Chapter 13 Routing Messages
If you set the ReplyAction property of the OperationContract attribute to “*”, the WCF
runtime on the service expects you to provide the appropriate ReplyAction yourself and
add it to the message header when you create the response message. In this case, you will
pass the ReplyAction returned from the ShoppingCartService back to the client applica-
tion unchanged.

6. Add the ShoppingCartServiceRouterImpl class to the ShoppingCartServiceRouter
namespace:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall,
ValidateMustUnderstand = false)]

public class ShoppingCartServiceRouterImpl : IShoppingCartServiceRouter
{
}

This class will contain the implementation of the ProcessMessage method. If you are
familiar with the SOAP protocol, you will be aware that you can include information in
message headers that the receiving service must recognize and be able to process. In this
example, the ShoppingCartServiceRouter service is not actually going to process the
messages itself, it is simply going to forward them to an instance of the ShoppingCart-
Service service. It therefore does not need to examine or understand the message head-
ers and should pass them on unchanged. Setting the ValidateMustUnderstand property of
the ServiceBehavior attribute to false turns off any enforced recognition and validation of
message headers by the service.

7. Add the following private fields to the ShoppingCartServiceRouterImpl class:

private static IChannelFactory<IRequestChannel> factory = null;
private EndpointAddress address1 = new EndpointAddress(

"https://localhost:7080/ShoppingCartService/ShoppingCartService.svc");
private EndpointAddress address2 = new EndpointAddress(

"https://localhost:7090/ShoppingCartService/ShoppingCartService.svc");
private static int routeBalancer = 1;

The ShoppingCartServiceRouter service actually acts as a client application to two
instances of the ShoppingCartService service, sending them messages and waiting for
responses. The generalized nature of the ProcessMessage method requires you to con-
nect to the ShoppingCartService service using the low-level techniques described in
Chapter 10 rather than by using a proxy object. You will use the IChannelFactory object
to create channel factory for opening channels to each instance of the ShoppingCartSer-
vice. Notice that channels for sending messages over the HTTP transport use the IRe-
questChannel shape (refer back to Chapter 10 for a description of channel shapes).

The EndpointAddress objects specify the URI for each instance of the ShoppingCartSer-
vice service. You will configure the ShoppingCartServiceHost application to run two
instances of the ShoppingCartService service at these addresses in a later step.

The ProcessMessage method will use the routeBalancer variable to determine which
instance of the ShoppingCartService service to send messages to.

Chapter 13 Routing Messages 333
8. Add the static constructor shown below to the ShoppingCartServiceRouterImpl class:

static ShoppingCartServiceRouterImpl()
{

try
{

PermissiveCertificatePolicy.Enact("CN=HTTPS-Server");
WSHttpBinding service = new WSHttpBinding(SecurityMode.Transport);
factory = service.BuildChannelFactory<IRequestChannel>();
factory.Open();

}
catch (Exception e)
{

Console.WriteLine("Exception: {0}", e.Message);
}

}

The ShoppingCartServiceRouter service uses the PerCall instance context mode, so each
request from the ShoppingCartClient application creates a new instance of the service
(for scalability). The ProcessMessage method will use a ChannelFactory object to open a
channel with the appropriate instance of the ShoppingCartService service. ChannelFac-
tory objects are expensive to create and destroy, but all instances can reuse the same
ChannelFactory objects. Building these objects in a static constructor ensures that they
are created only once.

Also, notice that the ChannelFactory object is constructed by using a WSHttpBinding
object with the security mode set to Transport. This matches the security requirements
of the ShoppingCartService service.

Note The code also includes a statement that invokes the PermissiveCertificatePol-
icy.Enact method to bypass the security checks for the certificate used to protect com-
munications with the ShoppingCartService service (you will add the
PermissiveCertificatePolicy class to this service in a later step). You should not include
this statement in a production environment.

9. Add the ProcessMessage method to the ShoppingCartServiceRouterImpl class, as follows:

public Message ProcessMessage(Message message)
{

IRequestChannel channel = null;

Console.WriteLine("Action {0}", message.Headers.Action);
try
{

if (routeBalancer % 2 == 0)
{

channel = factory.CreateChannel(address1);
Console.WriteLine("Using {0}\n", address1.Uri);

}
else
{

channel = factory.CreateChannel(address2);

334 Chapter 13 Routing Messages
Console.WriteLine("Using {0}\n", address2.Uri);
}
routeBalancer++;

channel.Open();
Message reply = channel.Request(message);
channel.Close();
return reply;

}
catch (Exception e)
{

Console.WriteLine(e.Message);
return null;

}
}

This method contains several Console.WriteLine statements that enable you to follow the
execution in the service console window when the service runs.

The if statement in the try block implements the load-balancing algorithm; if the value in
the routeBalancer variable is even, the method creates a channel for forward requests to
address1 (https://localhost:7080/ShoppingCartService/ShoppingCartService.svc), oth-
erwise it creates a channel for address2 (https://localhost:7090/ShoppingCartService/
ShoppingCartService.svc). The method then increments the value in the routeBalancer
variable. In this way, the ProcessMessage method sends all requests alternately to one
instance or the other of the ShoppingCartService service.

The Request method of the IRequestChannel class sends a Message object through the
channel to the destination service. The value returned is a Message object containing the
response from the service. The ProcessMessage method returns this message unchanged
to the client application.

Important Note that the code explicitly closes the IRequestChannel object before
the method finishes. This object is local to the ProcessMessage method and so is sub-
ject to garbage collection when the method finishes, and if it was open at that time, it
would be closed automatically. However, you can never be sure when the Common
Language Runtime is going to perform its garbage collection, so leaving the IRequest-
Channel object open holds a connection to the service open for an indeterminate
period, possibly resulting in the service refusing to accept further connections if you
exceed the value of MaxConcurrentInstances for the service (Refer back to Chapter 12,
“Implementing a WCF Service for Good Performance,” for more details.)

Remember that the Message object sent by the client application can contain security and
other header information. The ProcessMessage method makes no attempt to examine or
change this information, and so the destination service is not even aware that the mes-
sage has been passed through the ShoppingCartServiceRouter service. Similarly, the Pro-
cessMessage method does not modify the response in any way, and the router is
transparent to the client application. However, there is nothing to stop you from adding
code that modifies the contents of a message or a response before forwarding it. This

Chapter 13 Routing Messages 335
opens up some interesting security considerations, and you should ensure that you
deploy the ShoppingCartServiceRouter service in a secure environment.

10. Add the PermissiveCertificatePolicy class to the file, immediately after the ShoppingCart-
ServiceRouterImpl class. The code for the PermissiveCertificatePolicy class is available in
the PermissiveCertificatePolicy.txt file in the Chapter 13 folder.

11. Build the ShoppingCartServiceRouter project.

Configure the ShoppingCartServiceHost application

1. Edit the App.config file for the ShoppingCartServiceHost project by using the WCF Ser-
vice Configuration Editor.

2. Click the Services folder in the left pane. In the right pane click the Create a New Service
link. Use the values in the table below as the response to the various questions in the
New Service Element Wizard:

Note Make sure you include the “s” in the “https” scheme when specifying the
address of the endpoint.

3. In the Services folder, note that there are now two services. Expand the Endpoint folder
for the ShoppingCartService.ShoppingCartServiceImpl service. Select the Shopping-
CartServiceHttpEndpoint service endpoint. In the right pane, change the name of this
endpoint to ShoppingCartServiceHttpEndpoint1.

Page Prompt Response

What is the
service type
of your
service?

Service type ShoppingCartServiceRouter.ShoppingCartServiceRouterImpl

What
service
contract are
you using?

Contract ShoppingCartServiceRouter.IShoppingCartServiceRouter

What
binding
config-
uration do
you want to
use?

Existing
binding
configuration

ShoppingCartServiceHttpBindingConfig_wsHttpBinding

What is
the address
of your
endpoint?

Address https://localhost:7070/ShoppingCartService
/ShoppingCartService.svc

336 Chapter 13 Routing Messages
4. Add another endpoint to the ShoppingCartService.ShoppingCartServiceImpl service.
Use the values in the following table to set the properties for this endpoint.

5. Save the configuration file and exit the WCF Service Configuration Editor.

6. Using Solution Explorer, add a reference to the ShoppingCartServiceRouter project to
the ShoppingCartServiceHost project.

7. Edit the Program.cs file in the ShoppingCartServiceHost project. In the Main method,
add the following statements, shown in bold, which create and open a new ServiceHost
object for the ShoppingCartServiceRouter service:

…
ServiceHost host = new ServiceHost(…)
host.Open();
ServiceHost routerHost = new ServiceHost(

typeof(ShoppingCartServiceRouter.ShoppingCartServiceRouterImpl));
routerHost.Open();
Console.WriteLine("Service running");
…

8. The ShoppingCartServiceRouter service listens to port 7070, and the second instance of
the ShoppingCartService service listens to port 7090. Both of these services require
transport level security. Return to the CMD Shell window you opened earlier, and run
the following commands to associate the HTTPS-Server certificate with ports 7070 and
7090, replacing the string following the –h flag with the thumbprint of the HTTPS-Server
certificate on your computer:

httpcfg set ssl –i 0.0.0.0:7070 –h c390e7a4491cf97b96729167bf50186a4b68e052
httpcfg set ssl –i 0.0.0.0:7090 –h c390e7a4491cf97b96729167bf50186a4b68e052

Note On Windows Vista, use the following commands, replacing the value of the
certhash parameter with the thumbprint of the HTTPS-Server certificate:
netsh http add sslcert ipport=0.0.0.0:7070
certhash= c390e7a4491cf97b96729167bf50186a4b68e052
appid={00112233-4455-6677-8899-AABBCCDDEEFF}
netsh http add sslcert ipport=0.0.0.0:7090
certhash= c390e7a4491cf97b96729167bf50186a4b68e052
appid={00112233-4455-6677-8899-AABBCCDDEEFF}

Property Value

Name ShoppingCartServiceHttpEndpoint2

Address https://localhost:7090/ShoppingCartService
/ShoppingCartService.svc

Binding wsHttpBinding

BindingConfiguration ShoppingCartServiceHttpBindingConfig

Contract ShoppingCartService.IShoppingCartService

Chapter 13 Routing Messages 337
9. Close the CMD Shell window and return to Visual Studio 2005.

Reconfigure the client application to use the ShoppingCartRouter service

1. Edit the App.config file for the ShoppingCartClient project. Change the address of the
WSHttpBinding_ShoppingCartService endpoint to refer to port 7070, like this:

https://localhost:7070/ShoppingCartService/ShoppingCartService.svc

This is the address of the router.

2. Save the configuration file.

3. Start the solution without debugging. In the client console window, press Enter when
the message “Service running” appears in the service console window.

The client application should function exactly as before. However, if you examine the
service console window, you can see that the router has forwarded the messages to the
two instances of the ShoppingCartService service in turn; the addresses alternate
between port 7090 and port 7080:

4. When the client application has finished, press Enter to close the client console window.
Press Enter to close the service console window.

WCF and the WS-Addressing Specification
When using the WSHttpBinding binding, the mechanism that WCF uses to identify message
actions, route a message to a service, and send a response message back follows to the WS-
Addressing specification. This specification defines a standard format for the message header,
containing information such as the action, the address of the destination service, and the
return address for any response, which conforming services should use in a SOAP message. As
long as a message contains addressing information in this standard format, neither the service
nor the client application cares about the technology used to create the message. This is a key
factor enabling WCF client applications and services to interoperate with applications and ser-
vices running on other platforms; you can use WCF to build a router for Web services devel-
oped using other languages and running on platforms other than Windows, as long as these
Web services also follow the WS-Addressing specification.

338 Chapter 13 Routing Messages
Here is an example showing the addressing header of a typical message sent by the Shopping-
CartClient application to the ShoppingCartServiceRouter service:

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:a="http://
schemas.xmlsoap.org/ws/2004/08/addressing">

<s:Header>
<a:Action s:mustUnderstand="1">

http://adventure-works.com/2007/03/01/ShoppingCartService/AddItemToCart
</a:Action>
<a:MessageID>
urn:uuid:5705a3a1-21ca-4e83-b279-dc223a0274a9

</a:MessageID>
<a:ReplyTo>

<a:Address>
http://www.w3.org/2005/08/addressing/anonymous

</a:Address>
</a:ReplyTo>
<a:To s:mustUnderstand="1">

https://localhost:9070/ShoppingCartService
</a:To>

</s:Header>
<s:Body>

…
</s:Body>

</s:Envelope>

Much of the information in this header should be reasonably clear, although there are one or
two points that require further explanation. In particular, you might expect the Address in the
<ReplyTo> element to contain the address of the client endpoint. The question is: what is the
address of the client endpoint? In many cases, you cannot easily specify the information for a
reply address in a manner that is meaningful in a SOAP header (several applications might
share the same address, or the address might even vary between the time the application
sends the message and the time the service responds). For this reason, the WS-Addressing
specification allows a client application to insert this “anonymous” placeholder instead. How-
ever, the client application must provide some alternative mechanism of providing an address
to enable the service to send it a response. The way in which the client application and service
negotiate the reply address is independent of the WS-Addressing specification and frequently
depends on the underlying transport mechanism. For example, the client might expect the
service to reply using the same connection that the client used to send the initial request. The
exact details of how this happens are beyond the scope of this book.

The other noteworthy part of the WS-Addressing header is the <MessageID> element. Each
message that the client application sends has a unique identifier. When a service responds, it
should include this same identifier in a <RelatesTo> element in the response header. A typical
response to an AddItemToCart message from the ShoppingCartService service looks like this:

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:a="http://
schemas.xmlsoap.org/ws/2004/08/addressing">

<s:Header>
<a:Action s:mustUnderstand="1">

Chapter 13 Routing Messages 339
http://adventure-works.com/2007/03/01/ShoppingCartService/AddItemToCartResponse
</a:Action>
<a:RelatesTo>
urn:uuid:5705a3a1-21ca-4e83-b279-dc223a0274a9

</a:RelatesTo>
</s:Header>
<s:Body>

…
</s:Body>

</s:Envelope>

When the client application receives this response message, it can use the information in the
<RelatesTo> element to correlate the response with the original request.

More Info You can find a detailed description of the WS-Addressing specification on
the Microsoft Web Services and Other Distributed Technologies Developer Center at
http://msdn.microsoft.com/webservices/webservices/understanding/specs/default.aspx?pull=
/library/en-us/dnglobspec/html/ws-addressing.asp.

The WS-Referral Specification and Dynamic Routing

The approach to building a router described in this chapter works well, but the routes it
defines are static; the addresses of the services are hard-coded into the router. The next evolu-
tionary step is to build a dynamic router that routes messages to services that register them-
selves with the router. This is actually a common scenario, and the WS-Referral specification
defines a protocol that enables a SOAP router to dynamically configure and modify its paths
for routing messages. The WS-Referral specification describes a standard set of messages that
services can use to register themselves with a SOAP router, and the messages to which they
are interested. The SOAP router can store this information in a referral cache. When a client
application sends a request message to the SOAP router, the router can query the referral
cache, obtain the address of a service that can handle the message, and forward the request to
this service.

WCF does not provide explicit support for the WS-Referral specification, but if you are inter-
ested in this approach to message routing, you should look at the Intermediary Router sample
included with the WCF samples in the Microsoft Windows SDK. This sample is also available
online at http://windowssdk.msdn.microsoft.com/en-us/library/ms751497.aspx.

More Info For a detailed description of the WS-Referral specification, see the Web
Services Referral Protocol page at http://msdn2.microsoft.com/en-us/library/ms951244.aspx.

340 Chapter 13 Routing Messages
Summary
In this chapter, you have seen how the WCF runtime for a service determines how to handle
an incoming message. The ChannelDispatcher object receiving the message queries each of its
EndpointDispatcher objects in turn. An EndpointDispatcher exposes the AddressFilter and Con-
tractFilter properties that the ChannelDispatcher can use to ascertain whether the EndpointDis-
patcher can accept the message. The EndpointDispatcher selected to process the message
invokes the appropriate method in the service. You can customize the way in which the End-
pointDispatcher accepts and processes messages by providing your own AddressFilter and Con-
tractFilter objects and implementing the IDispatchOperationSelector interface.

You have also seen how to define a very generalized WCF service that can act as a router for
other services, implementing a method that can accept almost any message and forwarding it
for processing elsewhere.

Finally, you have seen how the infrastructure provided by WCF conforms to the WS-Address-
ing specification, when using the WSHttpBinding binding. This enables you to accept and
route messages to and from applications and services created by using other technologies.

	Cover
	Table of Contents
	Chapter 13: Routing Messages
	How the WCF Service Runtime Dispatches Operations
	ChannelDispatcher and EndpointDispatcher Objects Revisited
	EndpointDispatcher Objects and Filters

	Routing Messages to Other Services
	WCF and the WS-Addressing Specification
	The WS-Referral Specification and Dynamic Routing

	Summary

