

Microsoft
®
 Windows

®

Workflow Foundation
Step by Step

Kenn Scribner (Wintellect)

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/10023.aspx

9780735623354
Publication Date: February 2007

Table of Contents
Foreword . v
Acknowledgments . xiii
Introduction . xv

Part I Introducing Windows Workflow Foundation (WF)
1 Introducing Microsoft Windows Workflow Foundation. 3

Workflow Concepts and Principles . 3
Enter the Operating System . 4
Multithreading and Workflow . 4

Comparing WF with Microsoft BizTalk and WCF . 5
Beginning Programming with WF . 6
Visual Studio Workflow Support . 8
Building Your First Workflow Program . 8
Chapter 1 Quick Reference . 22

2 The Workflow Runtime . 23

Hosting WF in Your Applications . 24
A Closer Look at the WorkflowRuntime Object . 27
Building a Workflow Runtime Factory . 28
Starting the Workflow Runtime . 31
 Stopping the Workflow Runtime . 32
Subscribing to Workflow Runtime Events . 34
Chapter 2 Quick Reference . 38

3 Workflow Instances . 39

Introducing the WorkflowInstance Object . 41
Starting a Workflow Instance . 42
v

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

vi Table of Contents
Starting a Workflow Instance with Parameters . 52
Determining Workflow Instance Status . 54
Terminating a Workflow Instance . 55
Dehydration and Rehydration . 56
Chapter 3 Quick Reference . 56

4 Introduction to Activities and Workflow Types . 57

Introducing the Activity, the Basic Unit of Work . 58
The ActivityExecutionContext Object . 59
Dependency Properties 101 . 60
Activity Validation . 61

Workflow Types . 62
Selecting a Workflow Type . 62

The Sequence Activity . 64
Building a Sequential Workflow Application . 64
The State Activity . 66
Building a State Machine Workflow Application . 69
Chapter 4 Quick Reference . 71

5 Workflow Tracking . 73

Pluggable Services . 73
Workflow Tracking . 74
Workflow Event Tracking Using SqlTrackingService . 75
Setting Up SQL Server for Tracking . 77
Using the SqlTrackingService Service . 82
Tracking User Events . 91
Building Custom Tracking Profiles . 91
Viewing Tracking Information with WorkflowMonitor . 96
Chapter 5 Quick Reference . 99

6 Loading and Unloading Instances . 101

Persisting Workflow Instances . 101
Setting Up SQL Server for Persistence . 103
Introducing the SqlWorkflowPersistenceService Service . 106
Unloading Instances . 108
Loading Instances . 118
Loading and Unloading Instances on Idle . 120
Chapter 6 Quick Reference . 123

Table of Contents vii
Part II Working with Activities
7 Basic Activity Operations . 127

Using the Sequence Activity Object . 127
Using the Code Activity . 131
Using the Throw Activity . 131
Using the FaultHandler Activity . 137

Quick Tour of the Workflow Visual Designer . 138
Using the Suspend Activity . 145
Using the Terminate Activity . 148
Chapter 7 Quick Reference . 150

8 Calling External Methods and Workflows . 151

Building an ExternalDataService Service . 152
Workflow Intraprocess Communication . 152
Designing and Implementing Workflow Intraprocess Communication 153

The Motor Vehicle Data-Checking Application . 154
Creating Service Interfaces . 156
Using the ExternalDataExchange Attribute . 157
Using ExternalDataEventArgs . 159
Creating External Data Services . 160
The CallExternalMethod Activity . 170
Creating and Using Custom External Data Service Activities 170
Receiving Workflow Data Within the Host Application . 174
Invoking External Workflows with InvokeWorkflow . 177
Chapter 8 Quick Reference . 181

9 Logic Flow Activities . 183

Conditions and Condition Processing . 183
The Questioner Application . 184
Using the IfElse Activity . 185
Using the While Activity . 195
Using the Replicator Activity . 199
Chapter 9 Quick Reference . 208

10 Event Activities . 209

Using the HandleExternalEvent Activity . 209
Using the Delay Activity . 211
Using the EventDriven Activity . 212

viii Table of Contents
Using the Listen Activity . 212
Using the EventHandlingScope Activity . 213
Host-to-Workflow Communication . 213

Creating the Communication Interface . 216
Chapter 10 Quick Reference . 239

11 Parallel Activities . 241

Using the Parallel Activity . 241
Using the SynchronizationScope Activity . 246
Using the ConditionedActivityGroup (CAG) Activity . 253
Chapter 11 Quick Reference . 266

12 Policy and Rules . 267

Policy and Rules . 267
Implementing Rules . 269
Rule Attributes . 271
The Update Statement . 272

Rule Conditions . 273
Forward Chaining . 278

Implicit Chaining . 279
Attributed Chaining . 280
Explicit Chaining . 280
Controlling Forward Chaining . 281
Controlling Rule Reevaluation . 282

Using the Policy Activity . 283
Chapter 12 Quick Reference . 294

13 Crafting Custom Activities. 295

More About Activities . 295
Activity Virtual Methods . 296
Activity Components . 297
Execution Contexts . 297
Activity Lifetime . 298

Creating an FTP Activity . 299
Creating a Custom ActivityValidator . 310
Providing a Toolbox Bitmap . 314
Tailoring Activity Appearance in the Visual Workflow Designer 315
Integrating Custom Activities into the Toolbox . 317
Chapter 13 Quick Reference . 324

Table of Contents ix
Part III Workflow Processing
14 State-Based Workflows . 327

The State Machine Concept . 327
Using the State Activity . 328
Using the SetState Activity . 328
Using the StateInitialization Activity . 329
Using the StateFinalization Activity . 330
Creating a State-Based Workflow Application . 330
Chapter 14 Quick Reference . 346

15 Workflows and Transactions . 347

Understanding Transactions . 347
Classic (XA) Transactions . 348

Initiating Transactions in Your Workflows . 351
Workflow Runtime and Transactional Services . 351
Fault Handling . 352
Ambient Transactions . 352

Using the TransactionScope Activity . 352
Committing Transactions . 353
Rolling Back Transactions . 354

Using the CompensatableTransactionScope Activity . 354
Using the Compensate Activity . 355
Using the CompensatableSequence Activity . 356
Creating a Transacted Workflow . 357
Chapter 15 Quick Reference . 371

16 Declarative Workflows . 373

Declarative Workflow—XML Markup . 374
Declaring Namespaces and Namespace Association . 375
Creating and Executing XAML-Based Workflows . 377
Chapter 16 Quick Reference . 390

17 Correlation and Local Host Communication. 391

Host and Workflow Local Communication . 391
Correlation . 392
The CorrelationParameter Attribute . 394
The CorrelationInitializer Attribute . 394

x Table of Contents
The CorrelationAlias Attribute . 395
Building Correlated Workflows . 395
Chapter 17 Quick Reference . 430

18 Invoking Web Services from Within Your Workflows 431

Web Services Architecture . 431
Using the InvokeWebService Activity . 432
Adding the Web Reference . 434
Configuring the Proxy . 435

Static Proxy Configuration . 435
Dynamic Proxy Configuration . 435

Working with Sessions . 436
Long-Running XML Web Services . 437

Building a Workflow That Uses an XML Web Service . 438
Chapter 18 Quick Reference . 443

19 Workflows as Web Services. 445

Exposing a Workflow as an XML Web Service . 445
Creating the Workflow Runtime . 447
Configuring Services . 448
Workflow Housekeeping . 450

Using the WebServiceInput Activity . 451
Using the WebServiceOutput Activity . 452
Using the WebServiceFault Activity . 452
Creating a Host Web Service Project . 453
Chapter 19 Quick Reference . 468

Index . 469

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Chapter 15

Workflows and Transactions
After completing this chapter, you will be able to:

■ Understand the classical transaction model and where that model does and does
not fit

■ Know where classical transactions do not fit and when compensated transactions
are appropriate

■ See how transactions are rolled back or compensated

■ See how to modify the default order of compensation

If you write software, sooner or later you’ll need to understand transactional processing.
Transactional processing in this sense means writing software that records information to a
durable resource, such as a database, Microsoft Message Queue (which uses a database under
the covers), Windows Vista with transacted file system and Registry access, or even some
other software system that supports transactional processing. Durable resources retain the
written information no matter what happens to them once the data has been recorded.

Transactions are critical to any business process because, by using transactions, you can be
sure the data contained within your application is consistent. If the business process sustains
an error yet still persists any data, the erroneous data most likely will propagate throughout
the system, leaving you to question which data is good and which data is bad. Imagine order-
ing this book from an online merchant, only to find the merchant “had a little accident” with
your credit card transaction and charged you 100 times the face value of the book instead of
their discounted price. Transactional processing isn’t a laughable or avoidable subject when
errors such as this can happen.

Understanding Transactions
Transactional processing, at its very core, is all about managing your application’s state.
By state, I really mean the condition of all the application’s data. An application is in a deter-
minate state when all of its data is consistent. If you insert a new customer record into your
database and that update requires two insertions (one to add a normalized row to tie the
address to your customer and one to record the actual address information), adding the nor-
malized row but failing to insert the address itself places your application in an indeterminate
state. What will happen later when someone tries to retrieve that address? The system says
the address should be there, but the actual address record is missing. Your application data is
now inconsistent.
347

348 Part III Workflow Processing
To be sure both updates are successful, a transaction comes into play. A transaction itself is a
single unit of work that either completely succeeds or completely fails. That’s not to say you
can’t update two different database tables. It just means that both table updates are consid-
ered a single unit of work, and both must be updated or else neither one is. If either or both
updates fail, ideally you want the system to return to its state just prior to your attempt to
update the tables. Your application should move forward with no evidence that there had
been an incomplete attempt to modify the tables, and more important, you don’t want to have
data from the unsuccessful update in one table but not in the other.

Note Entire volumes have been written about transactions and transactional processing.
Although I’ll describe the concepts in sufficient depth to explain how Microsoft Windows
Workflow Foundation (WF) supports transactions, I cannot possibly cover transactional pro-
cessing in great depth in this book. If you haven’t reviewed general transactional support in
.NET 2.0, you should do so. WF transactions model .NET 2.0 transactional support very
closely, and you might find the information in the following article helpful to understanding
WF transactional support: msdn2.microsoft.com/en-us/library/ms973865.aspx.

Traditionally, transactions have come in a single form—that of the XA, or two-phase commit,
style of transaction. However, with the advent of Internet-based communication and the need
to commit long-running transactions, a newer style of transaction was introduced known as
the compensated transaction. WF supports both styles. We’ll first discuss the classical transac-
tion, and then after noting the conditions that make this type of transaction a poor architec-
tural choice, we’ll discuss the compensated transaction.

Classic (XA) Transactions

The first system known to have implemented transactional processing was an airline
reservation system. Reservations that required multiple flights could not progress if any of
the individual flights could not be booked. The architects of that system knew this and
designed a transactional approach that today we know as the. X/Open Distributed Transac-
tion Processing Model, known as XA. (See en.wikipedia.org/wiki/X/Open_XA.)

An XA transaction involves the XA protocol, which is the two-phase commit I mentioned
earlier, and three entities: the application, resource, and transactional manager. The applica-
tion is, well, your application. The resource is a software system that is designed to join in XA-
style transactions, which is to say it enlists (joins) in the transaction and understands how to
participate in the two phases of committing data as well as provides for durability (discussed
shortly). The transactional manager oversees the entire transactional process.

So what is a two-phase commit? In the end, imagine your application needs to write data to,
say, a database. If that write is performed under the guise of a transaction, the database holds
the data to be written until the transactional manager issues a prepare instruction. At that
point, the database responds with a vote. If the vote is to go ahead and commit (write) the data
into a table, the transaction manager proceeds to the next participating resource, if any.

Chapter 15 Workflows and Transactions 349
If all resources vote to commit the data, the transactional manager issues a commit instruction
and each resource writes the data into its internal data store. Only then is the data destined for
your table actually inserted into the database.

If any one resource has a problem and votes not to commit the data, the transactional manager
issues a rollback instruction. All resources participating in the transaction must then destroy
the information related to the transaction, and nothing is permanently recorded.

Once the data has been committed, the XA protocol guarantees that the result of the
transaction is permanent. If data was inserted, it is there for your application to use. If
information was deleted, it has been deleted permanently. Your application, then, can move
forward comfortable in the knowledge that all is well with the data. The data is consistent,
and the application is in a determinate state.

ACID Properties

When we speak of XA transactions, it’s hard not to mention the ACID acronym—Atomic,
Consistent, Isolated, and Durable (en.wikipedia.org/wiki/ACID). All XA-style transactions, to
non-volatile resources, must exhibit these properties or the transaction is architecturally
invalid.

By atomic, we mean the resource enlisted in the transaction supports the two-phase commit
protocol. The data to be transacted is either completely transacted (updated, deleted, or what-
ever) or none of it is. If the transaction fails, the resource returns to the state just prior to the
attempt to transact the data.

Consistency means the data maintains integrity. For databases, this typically means the
data doesn’t violate any constraints, but for other resources maintaining integrity might have
different or additional connotations. If the data violates any rules or constraints, which ulti-
mately would result in an indeterminate application state, the resource must vote to roll back
the transaction to prevent inconsistent data from being permanently recorded in the system.

Isolation is the transactional property that causes the system to be unable to access data
while a transaction is ongoing. In a database, attempting to write to a previously locked row,
or perhaps reading from a row with uncommitted data, is disallowed. Data is available only
when it has been committed, or in the case of the read operation, when you explicitly allow
uncommitted reads (often called “dirty reads”).

Durable resources guarantee that when the data is committed it will always be available in a
nonvolatile manner. If the data is committed and the power to the database server is cut off
one millisecond later, when the database server is back online that data will be in the data-
base, ready for your application to use. This is much more difficult to do in practice than it
sounds, and it is one of the primary reasons architects use a database for persistent data stor-
age rather than simple data files, such as XML, for critical data. (Admittedly, Windows Vista
might change things a bit with its transacted file system, but hopefully you see my point.)

350 Part III Workflow Processing
Long-Running Transactions and Application State

Keep in mind that the entire premise of the XA-style transaction is that your application will
retain its original state if the transaction rolls back. But consider this: What happens to your
application if a transaction takes an inordinate amount of time to commit?

Before I answer that, imagine your online purchasing system received an order from a cus-
tomer, but the credit card validation process got hung up. Clearly your process is running
within a transaction because you don’t want to charge the customer if something fails. But in
the meantime, other customers are placing orders. Lots of orders, if you’re fortunate. If the
first customer’s transaction later fails, what will happen to the orders placed in the meantime?

If the system isn’t designed to isolate individual order failures, then the correct thing to do is
to roll the system completely back to its original state. But considering this, that means we not
only lose the first customer’s order, but we also lose every other customer’s order that was
placed in the interim. Even if it’s only two orders, that’s not good. But if it’s 10,000 orders...the
loss of that amount of revenue can’t be tolerated.

Of course, we’ll retain those 10,000 orders and just deal with the first customer as an isolated
event, but we’re taking a chance in this case and intentionally breaking one of the four trans-
actional properties to retain the revenue. It’s a calculated risk, but often a risk we must accept
in real-world situations.

The property that’s being broken is actually atomicity, and for this reason people who write
transactional processing systems strive to keep their transactions as short as possible. You
do only what is required within your transactional bounds and no more, and you do so as
efficiently as possible so that the transaction completes quickly.

Now let’s throw in another complication—the Internet. Your customer is ordering online, and
networks are notorious for slow speeds and even disconnections. So transactional processing
over the Internet is questionable if only because sooner or later a transaction will run overlong
and put our online ordering system in a transactional bind.

Compensation as a Solution

It is precisely this situation that created the need for a compensated transaction. If I give you
five apples using an XA-style transaction and the transaction fails, time itself rewinds to the
point I started to give you the apples. In a sense, history is rewritten such that the five apples
were never given in the first place. But if I give you five apples in a compensated transaction
and that transaction fails, to compensate (so that we maintain a determinate application
state), you must return five apples to me. It might seem like a subtle difference, but there is a
definite difference between the two styles of transactions.

When writing XA-style transactions, the responsibility for rolling back failed transactions falls
to the resource, such as your database. Conversely, when a compensated transaction fails,
you—as a transactional participant—are responsible for compensating by providing a

Chapter 15 Workflows and Transactions 351
compensation function for your part of the transaction. If you debited an online consumer’s
credit card and were later told to compensate, you would immediately credit the customer’s
account with the same amount of money you originally debited. In an XA-style transaction,
the account would never have been debited in the first place. With the compensated transac-
tion, you initiate two actions—one to debit the account and one to later credit it.

Note Make no mistake, it would be a rare system that could successfully perform XA-style
transactions over the Internet. (I would argue that no system can, but I would be doing just
that—starting an argument—so I accept the fact that some systems will try and even
succeed in some cases.) Compensation is generally called for. But craft your compensation
functions very carefully. Pay attention to details. If you don’t, you could be making a bad
situation worse by injecting error upon error. It is often not easy to write accurate
compensation functions.

Initiating Transactions in Your Workflows
In general, initiating transactions in WF is as simple as dropping a transaction-based activity
into your workflow. If you’re using transactional activities, however, there is a little more you
should know.

Workflow Runtime and Transactional Services

When you use a transaction-based activity in your workflow, two workflow-pluggable services
are required. First, because the two out-of-the-box transaction-based WF activities are both
decorated with the PersistOnClose attribute (mentioned in Chapter 6, “Loading and Unloading
Instances”), you must also start the SqlWorkflowPersistenceService. If you do not, WF won’t
crash, but neither will your transactions commit.

Perhaps more interesting for this chapter is the DefaultWorkflowTransactionService that WF
starts on your behalf when the workflow runtime is started. This service is responsible for
both starting and committing your transactional operations. Without such a service,
transactions within the workflow runtime are not possible.

Note Although it’s beyond the scope of this chapter, you can create your own
transactional services. All WF transactional services derive from WorkflowTransactionService,
so creating your own service is a matter of overriding the base functionality you want to
change. In fact, WF ships with a customized transactional service for shared Microsoft SQL
Server connections, SharedConnectionWorkflowTransactionService. You can find more
information at msdn2.microsoft.com/en-us/library/ms734716.aspx.

352 Part III Workflow Processing
Fault Handling

Although it isn’t required that you handle faults in your workflow due to transactional failures,
it’s good practice. But I don’t mention it here simply because it could be considered a best
practice. I mention it because it is possible for you to write your own transactional service that
automatically examines the exception and retries the transaction before actually failing.
Although demonstrating how to do this is outside the scope of this chapter, you should know
this is possible.

Ambient Transactions

The transaction-based activities all work with something known as the ambient transaction.
When your workflow enters a transactional scope, the workflow transactional service auto-
matically creates a transaction for you. There is no need to try and create one yourself. The
activities embedded in a transactional scope all belong to this one ambient transaction and are
committed or rolled back (or compensated) if the transaction succeeds or fails.

Using the TransactionScope Activity
XA-style transactions in WF are implemented by the TransactionScope activity. This activity
is closely aligned with the .NET System.Transactions namespace, and in fact it initiates a
Transaction as the ambient transaction when the activity begins execution. The Transaction-
Scope activity even shares data structures (TransactionOptions) with System.Transactions.

Using the composite activity-based TransactionScope is truly as easy as dropping it into your
workflow. Any activity you place inside the TransactionScope activity automatically inherits
the ambient transaction and operates as typical transactions do when using .NET’s own
System.Transactions.

Note You cannot place a TransactionScope activity within another transactional activity.
Nesting of transactions is not permitted. (This rule holds true for CompensatableTransaction-
Scope as well.)

Transactional options dictate more precisely how the ambient transaction will operate. These
options, supported by the System.Transactions.TransactionOptions structure, allow you to set
the isolation level and timeout that the ambient transaction will support. The timeout value is
self-explanatory, but the isolation level might not be.

Note The timeout values have limits, which are configurable. There is a machine-wide
setting, System.Transactions.Configuration.MachineSettingsSection.MaxTimeout, and a local one,
System.Transactions.Configuration.DefaultSettings.Timeout, which set the ceilings on the maxi-
mum value to allow for a timeout. These values override anything you set using
TransactionOptions.

Chapter 15 Workflows and Transactions 353
A transaction’s isolation level defines to a large extent what the transaction can do with data
to be transacted. For example, maybe you want your transaction to be able to read uncommit-
ted data (to preclude being locked out by a previous transactional database page lock). Or the
data you are writing might be critical, and therefore you allow the transaction to read only
committed data, and moreover, you disallow other transactions to work with the data while
your transaction is executing. The isolation levels you can select are shown in Table 15-1.
You set both the isolation level and timeout using the TransactionOptions property of the
TransactionScope activity.

When you drop an instance of the TransactionScope activity into your workflow, the isolation
level is automatically set to Serializable. Feel free to change this as your architecture dictates.
Serializable is the strictest isolation level, but it also limits scalability to some degree. It’s not
uncommon to select ReadCommitted as the isolation level for systems that require a bit more
throughput, but this is a decision only your system can dictate based on your individual
requirements.

Committing Transactions

If you’re used to working with SQL Server transactions, or perhaps COM+ transactions,
you know that once the data has been inserted, updated, or deleted you must commit the

Table 15-1 Transactional Isolation Levels

Isolation Level Meaning
Chaos Uncommitted and pending changes from transactions using higher

isolated level cannot be overwritten.
ReadCommitted Uncommitted data cannot be read during the transaction, but it can

be modified.
ReadUncommitted Uncommitted data can be both read and modified during the

transaction. However, keep in mind that the data may change—
there is no guarantee that the data will be the same on subsequent
reads.

RepeatableRead Uncommitted data can be read but not modified during the
transaction. However, new data can be inserted.

Serializable Uncommitted data can be read but not modified, and no new data
can be inserted during the transaction.

Snapshot Uncommitted data can be read. But prior to the transaction actually
modifying the data, the transaction verifies that another transaction
has not changed the data after it was initially read. If the data has
been changed, the transaction raises an error. The purpose of this is
to allow a transaction to read the previously committed data value.

Unspecified A different isolation level from the one specified is being used, but
the level cannot be determined for some reason. If you try to set the
transactional isolation level to this value, an exception is thrown.
Only the transactional system can set this value.

354 Part III Workflow Processing
transaction. That is, you initiate the two-phase commit protocol and the database
permanently records or removes the data.

However, this is not necessary with the TransactionScope activity. If the transaction is
successful (no errors while inserting, updating, or deleting the data), the transaction is auto-
matically committed for you when the workflow execution leaves the transactional scope.

Rolling Back Transactions

How about rolling back failed transactions? Well, just as transactions are committed for you,
so too will the data be rolled back if the transaction fails. What is interesting about this is the
rollback is silent, at least as far as WF is concerned. If you need to check the success or failure
of your transaction, you need to incorporate logic for doing so yourself. TransactionScope
doesn’t automatically throw an exception if the transaction fails. It merely rolls back the data
and moves on.

Using the CompensatableTransactionScope Activity
If an XA-style transaction won’t do, you can instead drop the CompensatableTransactionScope
activity into your workflow and provide for compensated transactional processing. The
CompensatableTransactionScope activity, like TransactionScope, is a composite activity. However,
CompensatableTransactionScope also implements the ICompensatableActivity interface, which
gives it the ability to compensate for failed transactions by implementing the Compensate
method.

Also like TransactionScope, the CompensatableTransactionScope activity creates an ambient
transaction. Activities contained within CompensatableTransactionScope share this transaction.
If their operations succeed, the data is committed. However, should any of them fail, you
generally initiate the compensation by executing a Throw activity.

Tip Compensated transactions can enlist traditional resources, such as databases, and
when the transaction commits, the data is committed just as if it were an XA-style transac-
tion. However, a nice feature of compensated transactions is that you do not have to enlist
an XA-style resource to store data. Sending data to a remote site using a Web service is the
classic example for a nonenlistable transactional resource. If you send data to the remote site
but later must compensate, you need to somehow communicate with the remote site that
the data is no longer valid. (How you accomplish this depends on the individual remote site.)

Throw causes the transaction to fail and calls into execution your compensation handler for
your CompensatableTransactionScope activity. You access the compensation handler through
the Smart Tag associated with the CompensatableTransactionScope activity in much the same
way you would add a FaultHandler.

Chapter 15 Workflows and Transactions 355
Note Although throwing an exception kicks off the transactional compensation, the Throw
activity itself is not considered handled. You can also decide to place a FaultHandler activity in
your workflow to preclude premature workflow termination.

Using the Compensate Activity
When you are compensating a failed transaction implemented by CompensatableTransaction-
Scope, the compensation handler is invoked. If you have multiple compensatable transactions,
the transactions are compensated in a default order, starting with the deepest nested transac-
tion and working outward. (You’ll see how this might be accomplished in the next section.)
When your logic calls for compensation, you can place a Compensate activity in your
compensation handler to initiate compensation of all completed activities supporting
ICompensatableActivity.

It will always be the case that exceptions will cause compensation, so the use of the
Compensate activity is not required. Why have it then? Because you might have nested more
than a single compensatable transaction in a CompensatableSequence activity. If one transac-
tion fails and is to be compensated, you can initiate the compensation of the other transaction
even if that transaction previously completed successfully.

Note The Compensate activity is valid only in compensation handlers, cancellation
handlers, and fault handlers.

You should use the Compensate activity only when you need to compensate activities in an
order other than the default compensation order. Default compensation invokes compensa-
tion for all nested ICompensatableActivity activities in the reverse order of their completion. If
this ordering doesn’t fit your workflow model, or if you want to selectively invoke compensa-
tion of completed compensatable child activities, the Compensate activity is the tool of choice.

Note The Compensate activity uses its TargetActivityName property to identify which
compensatable activity should be compensated. If more than one compensatable activity
should be queued for compensation, you need to use more than one Compensate activity. If
you decide not to compensate a given transaction, simply do nothing in the compensation
handler for that transaction or in the enclosing parent activity.

The Compensate activity provides you control over the compensation process by allowing you
to decide whether you want to compensate an immediate child activity that supports compen-
sation or not. This ability enables your workflow to explicitly perform compensation on a
nested compensatable activity according to your process’s needs. By specifying which com-
pensatable activity you want to be compensated in the Compensate activity, any compensation

356 Part III Workflow Processing
code in that compensatable activity will be executed as long as the compensatable activity pre-
viously successfully committed.

If you want to compensate more than one nested compensatable activity, you add a
Compensate activity in your handler for each compensatable activity you want to compensate.
If the Compensate activity is used in a handler of a compensatable activity that contains embed-
ded compensatable activities, and if TargetActivityName for that Compensate activity is assigned
to the parent activity, compensation in all child (compensatable) activities that committed
successfully is invoked. Try saying that three times, fast.

Using the CompensatableSequence Activity
The preceding section might leave you wondering why the Compensate activity exists. After all,
you can’t nest compensated transactions. You can’t nest any type of WF-based transaction.

But let’s look at it in a different way. How would you tie two compensatable transactions
together so that the failure of one triggers compensation in the other, especially if the other
already completed successfully? The answer is you pair the compensated transactions in a sin-
gle instance of the CompensatableSequence activity. Then, in the compensation or fault handler
for the CompensatableSequence activity, you trigger compensation of both child transactional
scope activities if either one of them fails. Even more interesting is the situation where you tie
three compensatable transactions together in a single CompensatableSequence activity and
allow one transaction to succeed even if the others fail and are compensated. The Compensate
activity gives you this control.

This highlights the intent of the CompensatableSequence activity. The CompensatableSequence
activity, at its core, is a Sequence activity, and you use the CompensatableSequence activity in the
same way you would any sequential activity. The major difference is that you can embed
multiple compensatable activities in a single CompensatableSequence activity, effectively
tying related transactions together. Coupling the CompensatableSequence activity with both the
CompensatableTransactionScope and Compensate activities provides you with powerful transac-
tional control in your workflow.

Note CompensatableSequence activities can be embedded within other CompensatableSe-
quence activities, but they cannot be children of CompensatableTransactionScope activities.

Tip When combining multiple compensatable transactions in a single compensatable
sequence, you do not have to assign compensation functions to the individual transacted
activities. Compensation flows to the parent activity if called for, so you can collect your
compensation activities in the enclosing compensatable sequence activity if you want to.

Chapter 15 Workflows and Transactions 357
Creating a Transacted Workflow
I’ve created an application that simulates an automated teller machine (ATM), one where you
provide your personal identification number, or PIN as it’s called, and make deposits to or
withdrawals from your bank account. Deposits will be embedded in an XA-style transaction,
while withdrawals will be compensated if the action fails. To really exercise the transactional
nature of the application, I placed a “force transactional error” check box in the application.
Simply select the check box and the next database-related operation will fail.

The workflow for this application is a state-based one, and it is more complex than the appli-
cation you saw in the previous chapter (Chapter 14, “State-Based Workflows”). I’ve shown the
state machine I based the workflow on in Figure 15-1. Most of the application has already
been written for you. You’ll add the transactional components in the exercises to follow.

Figure 15-1 The WorkflowATM state diagram

Start

KeyPressed

CommandPressed

Wait
PIN

Deposit

Completed

Withdraw

KeyPressed

KeyPressed

Wait
Selection

CommandPressed

CommandPressed

CommandPressed

Invalid PIN

Succeeded

Failed

CommandPressed

Failed

Succeeded

358 Part III Workflow Processing
The user interface for the application is shown in Figure 15-2. This is the initial application
state, akin to the ATM’s state prior to inserting your bank card. Clearly, the sample can’t deal
with a true bank card, so clicking the B key transitions the user interface (and application
state) to the PIN verification state (shown in Figure 15-3).

Figure 15-2 The WorkflowATM initial user interface

Figure 15-3 The WorkflowATM PIN verification user interface

You enter your PIN using the keypad to the right. Once the four-digit code is entered, you click
the C key to kick off a database query to verify the PIN. If the PIN is verified (and note the
account number in the lower-left corner; the PIN must be valid for that account number), the
user interface transitions to the activity selection state, shown in Figure 15-4. Here you decide
to either deposit funds to or withdraw funds from your account.

Chapter 15 Workflows and Transactions 359
Figure 15-4 The WorkflowATM activity selection user interface

The application user interface for depositing and withdrawing funds is similar, so I’ve shown
only the deposit user interface in Figure 15-5. You again use the keypad to enter a monetary
value and then click a command key, the D key, to make the deposit or withdrawal or the E
key to cancel the transaction.

Figure 15-5 The WorkflowATM transaction deposit user interface

If the transaction was successful, you are rewarded with the screen you see in Figure 15-6. If
not, you see the error screen shown in Figure 15-7. Either way, clicking the C key starts the
workflow over again.

Figure 15-6 The WorkflowATM transaction successful user interface

360 Part III Workflow Processing
Figure 15-7 The WorkflowATM transaction failed user interface

The application requires a database to fully test WF’s transactional capabilities. Therefore, I
created a simple database used to store both user accounts with PINs and account balances.
Several stored procedures are also available to help with the database interactions. All the
stored procedures that involve a database update are required to execute within a transac-
tion—I check @@trancount, and if it is zero, I return an error from each stored procedure. What
this should prove is that the ambient transaction is being used if I fail to provide any
ADO.NET code to initiate my own SQL Server transaction. What this also means is you need
to create an instance of the database, but that’s easily accomplished because you’ve learned
how to execute queries in SQL Server Management Studio Express in previous chapters. In
fact, let’s start with that task because we’ll soon need the database for application develop-
ment and testing.

Note Before I forget to mention it, the database creation script creates a single account,
11223344, with the PIN 1234. The application allows you to change accounts and provide
any PIN value you like, but unless you use this account (11223344) and this PIN (1234), or
create your own account record, you will not be authorized to make deposits or withdrawals.

Creating the Woodgrove ATM databases

1. You should find the Create Woodgrove Database.sql database creation script in the
\Workflow\Chapter15 directory. First find it and then start SQL Server Management
Studio Express.

Note Keep in mind that the full version of SQL Server will work here as well.

2. When SQL Server Management Studio Express is up and running, drag the Create
Woodgrove Database.sql file from Windows Explorer and drop it onto SQL Server
Management Studio Express. This opens the script file for editing and execution.

Chapter 15 Workflows and Transactions 361
Note If SQL Server Management Studio Express requests a new connection to your
database engine, make the connection and continue. The “Creating a SQL Server 2005
tracking database” procedure from Chapter 5, “Workflow Tracking,” describes this pro-
cess in detail if you need a refresher.

3. The script both creates the Woodgrove database and populates it with data. If you did
not load SQL Server in the default directory, C:\Program Files\Microsoft SQL Server,
you might need to edit the creation script to change the directory in which the database
will be created. The fifth and seventh lines of the creation script indicate the database’s
directory and filename. Feel free to modify those as required to work within the bounds
of your system. In most cases, you should not need to make changes. Click the Execute
button to run the script and create the database. (You do not need to specify which data-
base the query will run against since it creates an entirely new database.)

4. While you’re using SQL Server Management Studio Express, if you didn’t already work
through the steps indicated in Chapter 6, “Loading and Unloading Instances,” in the
section “Setting Up SQL Server for Persistence,” to install the workflow persistence
database, do so now.

After completing these four steps, you’ll have two databases ready to use: the Woodgrove data-
base for banking information and the WorkflowStore database for workflow persistence. Now
let’s write some transacted workflow code.

Adding an XA-style transaction to your workflow

1. You should find the WorkflowATM application in the \Workflow\Chapter15\
WorkflowATM directory. As usual, I placed two different versions in the Chapter15
directory—an incomplete version and a completed version. If you’re interested in follow-
ing along but don’t want to perform the steps outlined here, open the solution file for the
completed version. (It will be in the WorkflowATM Completed directory.) If you’re inter-
ested in working through the steps, open the WorkflowATM version instead. To open
either solution, drag the .sln file onto an instance of Microsoft Visual Studio to open the
solution for editing and compilation. For either version of the sample application, you
might need to change the connection strings in the App.Config file to match your SQL
Server installation.

2. So that the custom activities show up in the Visual Studio Toolbox, press F6 to compile
the entire solution. You can, alternatively, choose Build and then Build Solution from
Visual Studio’s main menu. The application will compile without error.

3. Although the WorkflowATM application is moderately complex, it follows the pattern
we’ve used throughout the book. The Windows Forms application itself communicates
with the workflow via a local communication service, using custom activities I created
with wca.exe. The service is housed in the BankingService project, while the workflow is
maintained in the BankingFlow project. The only code we’ll concentrate on is in the

362 Part III Workflow Processing
workflow itself. Locate the Workflow1.cs file in the BankingFlow project, and double-
click it to open it for editing in the visual workflow designer. The workflow should
appear as you see here. Does it look somewhat like Figure 15-1?

4. To insert the XA-style transaction, first double-click the CmdPressed4 EventDriven activity
in the DepositState activity. This opens the CmdPressed4 activity for editing.

5. Looking to the left, you should see the Code activity named makeDeposit1. Between this
Code activity and the ifElseBranchActivity11 title above makeDeposit1, drag an instance of
the TransactionScope activity from the Toolbox and drop it.

Chapter 15 Workflows and Transactions 363
6. Drag makeDeposit1 from below the transaction scope activity you just inserted, and
drop it inside so that the makeDeposit1 Code activity will execute within the transactional
scope.

Note Feel free to examine the code contained in the MakeDeposit method, which
is bound to the makeDeposit1 activity. The code you find there is typical ADO.NET
database access code. An interesting thing to see is that no SQL Server transaction is
initiated in the code. Instead, the ambient transaction will be used when the code is
executed.

7. Compile the entire solution by pressing F6 or by selecting Build Solution from the Visual
Studio Build menu.

8. To test the application, press F5 or select Start Debugging from Visual Studio’s Debug
menu. The account should already be set. Click the B key to access the PIN verification
screen, and then type 1234 (the PIN). Click the C key to verify the PIN and proceed to
the activity selection screen.

364 Part III Workflow Processing
Note If the application fails to verify the PIN, assuming you typed the correct PIN
into the application, it might be because the connection string for the Woodgrove
database is not correct. (The error handling is such that the application should not
crash.) Verify that the connection string is correct, and run the application again.
Chapter 5 has some suggestions for building connection strings.

9. Because you added the transaction to the deposit logic, click the C key to make a deposit.

10. Type 10 to deposit $100 (10 multiples of $10.00) and then click the D key to initiate the
transaction. The transaction should succeed, and the screen now indicates the transac-
tion is complete. Because the Woodgrove database creation script loaded the fictitious
bank account with $1234.56, the balance now indicates $1334.56. Note you can read
the balance in the lower-left corner of the application. Click the C key to return to the
starting screen.

11. Now let’s force the transaction to fail. The Deposit stored procedure takes as a parameter
a value that causes the stored procedure to return an error. Selecting the Force Transac-
tional Error check box assigns a value that causes the Deposit error. So click the B key to
access the PIN verification screen yet again, then type 1234, and then click the C key to
access the banking activity selection screen.

12. Again, click the C key to make a deposit and enter 10 to deposit another $100, but this
time select the Force Transactional Error check box before clicking the D key.

13. After clicking the D key, the application indicates a transactional failure, but notice the
balance. It indicates the current balance is still $1334.56, which was the balance prior to
the transaction. Both the successful transaction (step 10) and the failed transaction (step
12) were handled by the TransactionScope activity you placed in the workflow in step 5.

This is a phenomenal result! By including a single WF activity, we gained automatic (XA-style)
transactional control over database updates. Can implementing a compensated transaction be
as easy? As it happens, more work is required, but it’s still not difficult to add compensated
transactions to your workflow.

Adding a compensated transaction to your workflow

1. With the WorkflowATM solution open for editing, again open the Workflow1.cs file in
the visual workflow designer. Look for the WithdrawState activity in the lower row of
state activities and double-click the CmdPressed5 activity you see there. This opens the
CmdPressed5 activity for editing, and once it’s opened, you should see the
makeWithdrawal1 Code activity on the left side of the workflow.

Chapter 15 Workflows and Transactions 365
2. Similar to what you did with the preceding transaction, drag an instance of
CompensatableTransactionScope from the Visual Studio Toolbox and drop it between the
makeWithdrawal1 activity and the ifElseBranchActivity13 title above makeWithdrawal1.

3. Drag the makeWithdrawal1 Code activity from below the compensatableTransactionScope1
activity, and drop it into the transaction scope. The MakeWithdrawal method, which is
bound to the makeWithdrawal1 activity, now executes its ADO.NET code within an
ambient transaction just as the deposit activity did.

366 Part III Workflow Processing
4. However, unlike the deposit functionality, you must provide the compensation logic.
The transaction isn’t rolled back in the traditional sense. Instead, you need to access the
compensatableTransactionScope1 compensation handler and add the compensating func-
tion yourself. To do that, move the mouse over the Smart Tag beneath the
compensatableTransactionScope1 title in the visual workflow designer and click it once to
drop the view menu associated with this activity.

5. Click the right icon, View Compensation Handler, to activate the compensation handler
view.

Chapter 15 Workflows and Transactions 367
6. Drag an instance of the Code activity from the Visual Studio Toolbox, and drop it into the
compensation handler activity.

7. For the Code activity’s ExecuteCode property, enter CompensateWithdrawal. Visual
Studio inserts the method into your source code and switches you to the code editor.

368 Part III Workflow Processing
8. Add the following code to the CompensateWithdrawal method you just inserted:

// Here, you "undo" whatever was done that did succeed. The
// code that withdrew the money from the account was actually
// successful (there is no catch block), so this compensation
// is forced. Therefore, we're safe in depositing the amount
// that was withdrawn. Note we can't use MakeDeposit since
// we require a SQL Server transaction and this method is
// called within the compensation handler (i.e., we can't drop
// a TransactionScope activity into the compensation to kick
// off the SQL Server transaction). We'll create the transaction
// ourselves here.
//
// Craft your compensation handlers carefully. Be sure you know
// what was successfully accomplished so that you can undo it
// correctly.
string connString =
 ConfigurationManager.ConnectionStrings["BankingDatabase"].
 ConnectionString;

if (!String.IsNullOrEmpty(connString))
{
 SqlConnection conn = null;
 SqlTransaction trans = null;
 try
 {
 // Create the connection
 conn = new SqlConnection(connString);

 // Create the command object
 SqlCommand cmd = new SqlCommand("dbo.Deposit", conn);
 cmd.CommandType = CommandType.StoredProcedure;

 // Create and add parameters
 SqlParameter parm = new SqlParameter("@AccountNo", SqlDbType.Int);
 parm.Direction = ParameterDirection.Input;
 parm.Value = _account;
 cmd.Parameters.Add(parm);
 parm = new SqlParameter("@ThrowError", SqlDbType.SmallInt);
 parm.Direction = ParameterDirection.Input;
 parm.Value = 0;
 cmd.Parameters.Add(parm);
 parm = new SqlParameter("@Amount", SqlDbType.Money);
 parm.Direction = ParameterDirection.Input;
 parm.Value = CurrentMoneyValue;
 cmd.Parameters.Add(parm);
 SqlParameter outParm =
 new SqlParameter("@Balance", SqlDbType.Money);
 outParm.Direction = ParameterDirection.Output;
 outParm.Value = 0; // initialize to invalid
 cmd.Parameters.Add(outParm);

 // Open the connection
 conn.Open();

Chapter 15 Workflows and Transactions 369
 // Initiate the SQL transaction
 trans = conn.BeginTransaction();
 cmd.Transaction = trans;

 // Execute the command
 cmd.ExecuteNonQuery();

 // Commit the SQL transaction
 trans.Commit();

 // Pull the output parameter and examine
 CurrentBalance = (decimal)outParm.Value;
 } // try
 catch
 {
 // Rollback... Note we could issue a workflow exception here
 // or continue trying to compensate (by writing a transactional
 // service). It would be wise to notify someone...
 if (trans != null) trans.Rollback();
 } // catch
 finally
 {
 // Close the connection
 if (conn != null) conn.Close();
 } // finally
} // if

9. With the compensation code added to your workflow, return to the visual workflow
designer and drop an instance of the custom Failed activity into the compensation han-
dler, following the Code activity you just entered. Note Visual Studio might reformat and
return you to the top-level state activity layout as you return to the visual workflow
designer. If this happens, simply double-click the CmdPressed5 activity in WithdrawState
once again to access the compensatableTransactionScope1 activity, and once again select
the compensation handler view from its Smart Tag.

10. For the Failed activity’s error property, type Unable to withdraw funds.

370 Part III Workflow Processing
11. Following the Failed activity you just placed in your workflow, drag and drop an instance
of SetState. For its TargetStateName property, select CompletedState.

12. To again test the application, press F5 or select Start Debugging from Visual Studio’s
Debug menu. After the application begins execution, click the B key to access the PIN
verification screen, and then type 1234 (the PIN). Click the C key to verify the PIN and
proceed to the activity selection screen.

13. Click the D key to make a withdrawal.

14. Press 10 to withdraw $100 (10 multiples of $10.00) and then click the D key to initiate
the transaction. With no other intervention on your part, the transaction should succeed
and the screen should now tell you the transaction is complete with a balance of
$1234.56.

15. Now let’s again force the transaction to fail. Click the C key to restart the ATM and
then click the B key to access the PIN verification screen once more. Type 1234,
and then click the C key to access the banking activity selection screen.

16. Once again, enter 10 to withdraw another $100, and select the Force Transactional error
check box. Then click the D key to initiate the transaction.

Chapter 15 Workflows and Transactions 371
17. After you click the D key, the application indicates a transactional failure and displays
the current balance ($1234.56). Because there is no catch block in the MakeWithdrawal
method, we know the withdrawal was made. (If it was not, the application would have
terminated with a critical error.) This means the account was in fact debited the $100
and that the compensating function ran, which added $100 back into the account.

Note There are other ways to see the account debited and then credited as well. You
could set a breakpoint in the compensating function, or you could even execute SQL Server
Profiler, if you’re familiar with that application and are using the full retail version of SQL
Server.

If you want to continue to the next chapter, keep Visual Studio 2005 running and turn to
Chapter 16, “Declarative Workflows.” WF is capable of loading workflows declared in an XML
format, and you’ll see how that’s accomplished in the next chapter.

If you want to stop, exit Visual Studio 2005 now, save your spot in the book, and close it. The
next chapter introduces workflow in a slightly different way, and one you might find quite
interesting, but there is certainly no hurry.

Chapter 15 Quick Reference

To Do This
Introduce XA-style transactions into
your workflow

Drop an instance of the TransactionScope activity into your
workflow. You then should place all the transacted activities within
the transactional scope. The ambient transaction will be applied to
all, and should any one fail, all child activities will be rolled back.
Otherwise, all will commit.

Introduce compensated transactions
into your workflow

Drag and drop an instance of the CompensatableTransactionScope
activity into your workflow. As with the TransactionScope activity,
you then drop transacted child activities into the transactional
scope. If all succeed, the transaction is considered successful and
the child activities are committed. If not, the compensation
handler is invoked and the code you place there to “undo” the
transaction is executed.

Change the default order of
compensation, or control which child
transaction is compensated

Drop a Compensate activity into your compensation handler, can-
cellation handler, or fault handler. Assign the TargetActivityName
property to the name of the activity to be compensated for.

Collect compensated transactions into
a single work entity

Use the CompensatableSequence activity, and drop instances of
the CompensatableTransactionScope activity into the compen-
sated sequence. Keep in mind you can control which transactions
are compensated using the Compensate activity. Individual
compensated transactions do not require their own compensation
function if the enclosing compensated sequence will provide for
compensation.

	Cover
	Table of Contents
	Chaper 15: Workflows and Transactions
	Understanding Transactions
	Classic (XA) Transactions

	Initiating Transactions in Your Workflows
	Workflow Runtime and Transactional Services
	Fault Handling
	Ambient Transactions

	Using the TransactionScope Activity
	Committing Transactions
	Rolling Back Transactions

	Using the CompensatableTransactionScope Activity
	Using the Compensate Activity
	Using the CompensatableSequence Activity
	Creating a Transacted Workflow
	Chapter 15 Quick Reference

