Microsoft” Windows®
Workflow Foundation
Step by Step

FOUNDATION .
8 '

~ Kenn Scribner (Wintellect)

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/10023.aspx

9780735623354 Microsoft

Publication Date: February 2007 PI’GSS

Table of Contents

FOreword. v
Acknowledgments Xifi
INtrodUcCtion XV

Part| Introducing Windows Workflow Foundation (WF)

1 Introducing Microsoft Windows Workflow Foundation.............. 3
Workflow Concepts and Principles o 3

Enter the Operating System 4

Multithreading and Workflow 4

Comparing WF with Microsoft BizTalk and WCF 5
Beginning Programming with WF 6

Visual Studio Workflow Support 8

Building Your First Workflow Program 8

Chapter 1 Quick Reference 22

2 The WorkflowRuntime 23
Hosting WF in Your Applications 24

A Closer Look at the WorkflowRuntime Object 27

Building a Workflow Runtime Factory 28

Starting the Workflow Runtime 31

Stopping the Workflow Runtime 32
Subscribing to Workflow Runtime Events, 34

Chapter 2 Quick Reference i 38

3 Workflow Instances i i 39
Introducing the Workflowinstance Object 41

Starting a Workflow Instance 42

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vi

Table of Contents

Starting a Workflow Instance with Parameters 52
Determining Workflow Instance Status i 54
Terminating a Workflow Instance i i i 55
Dehydration and Rehydration 56
Chapter 3 Quick Reference i 56
Introduction to Activities and Workflow Types.................... 57
Introducing the Activity, the Basic Unitof Work 58
The ActivityExecutionContext Object 59
Dependency Properties 101 60
Activity Validation 61
Workflow Typeso 62
Selecting a Workflow Type 62

The Sequence Activity 64
Building a Sequential Workflow Application 64
The State Activity o 66
Building a State Machine Workflow Application 69
Chapter 4 Quick Referenceo i 71
5 Workflow Trackingo i i 73
Pluggable Services 73
Workflow Tracking 74
Workflow Event Tracking Using Sq/TrackingService 75
Setting Up SQL Server for Tracking 77
Using the Sq/TrackingService SErviceuuuiiiiiiiiinannnnn.. 82
Tracking User Events 91
Building Custom Tracking Profilesc.c.oiiiiiiiiiiaa... 91
Viewing Tracking Information with WorkflowMonitor 96
Chapter 5 Quick Reference ... 99
Loading and Unloading Instances 101
Persisting Workflow Instances 101
Setting Up SQL Server for Persistenceuuuiiiiiiiiiianannnn.. 103
Introducing the Sq/WorkflowPersistenceService Service 106
Unloading INStances it 108
Loading INStanCesttt 118
Loading and Unloading Instancesonldle, 120

Chapter 6 Quick Referenceo i 123

Table of Contents vii

Part I Working with Activities

7 Basic Activity Operations. it 127
Using the Sequence Activity Object i 127

Using the Code Activity 131

Using the Throw Activity s 131

Using the FaultHandler Activity 137

Quick Tour of the Workflow Visual Designer 138

Using the Suspend Activity 145

Using the Terminate Activity i 148

Chapter 7 Quick Reference 150

8 Calling External Methods and Workflows........................ 151
Building an ExternalDataService Service 152

Workflow Intraprocess Communication, 152

Designing and Implementing Workflow Intraprocess Communication153

The Motor Vehicle Data-Checking Application 154

Creating Service Interfaces 156

Using the ExternalDataExchange Attribute 157

Using ExternalDataEventArgs s 159

Creating External Data Servicesuu e 160

The CallExternalMethod Activity 170

Creating and Using Custom External Data Service Activities 170

Receiving Workflow Data Within the Host Application 174

Invoking External Workflows with InvokeWorkflow 177

Chapter 8 Quick Reference 181

9 Logic Flow Activities.ttt 183
Conditions and Condition Processinguuuuiiiiaannnn.. 183

The Questioner Application 184

Using the IfElse Activity o 185

Using the While Activity 195

Using the Replicator Activity 199

Chapter 9 Quick Reference 208

10 EventActivitiest e 209
Using the HandleExternalEvent Activity i 209

Using the Delay Activity s 211

Using the EventDriven Activity 212

viii

Table of Contents

Using the Listen Activity 212
Using the EventHandlingScope Activity i 213
Host-to-Workflow Communication i i 213
Creating the Communication Interface, 216
Chapter 10 Quick Reference i 239
11 Parallel Activities.ot e 241
Using the Parallel Activity 241
Using the SynchronizationScope Activity 246
Using the ConditionedActivityGroup (CAG) Activity, 253
Chapter 11 Quick Reference i 266
12 PolicyandRules i e 267
Policy and Rules o 267
Implementing Rules 269

Rule Attributes o 271

The Update Statement e 272

Rule Conditions 273
Forward Chaining e 278
Implicit Chaining 279
Attributed Chaining 280
Explicit Chaining 280
Controlling Forward Chaining i 281
Controlling Rule Reevaluation i 282
Using the Policy ACtiVIty 283
Chapter 12 Quick Reference it 294
13 Crafting Custom Activities. ittt 295
More About ACtiVIties 295
Activity Virtual Methods 296
Activity COmpPonentso 297
Execution Contexts 297
Activity Lifetime 298
Creating an FTP Activity 299
Creating a Custom ActivityValidator 310
Providing a Toolbox Bitmap 314
Tailoring Activity Appearance in the Visual Workflow Designer 315
Integrating Custom Activities into the Toolbox 317

Chapter 13 Quick Reference i i 324

Table of Contents ix

Part Il Workflow Processing

14 State-Based Workflows i, 327
The State Machine Concept 327

Using the State Activity 328

Using the SetState Activity 328

Using the Statelnitialization Activity 329

Using the StateFinalization Activity i 330

Creating a State-Based Workflow Application ..., 330

Chapter 14 Quick Reference 346

15 Workflows and Transactions oo, 347
Understanding Transactions i 347

Classic (XA) Transactionsttt e 348

Initiating Transactions in Your Workflows 351

Workflow Runtime and Transactional Services 351

Fault Handling 352

Ambient Transactions 352

Using the TransactionScope Activity i 352
Committing Transactions i iiiiin i, 353

Rolling Back Transactions ..., 354

Using the CompensatableTransactionScope Activity 354

Using the Compensate Activity i 355

Using the CompensatableSequence Activitycoiiiiiinn. 356

Creating a Transacted Workflow i, 357

Chapter 15 Quick Reference 371

16 Declarative Workflows i 373
Declarative Workflow—XML Markup i 374

Declaring Namespaces and Namespace Association 375

Creating and Executing XAML-Based Workflows 377

Chapter 16 Quick Reference 390

17 Correlation and Local Host Communication. 391
Host and Workflow Local Communication 391

Correlation . . oo 392

The CorrelationParameter Attribute 394

The Correlationinitializer Attribute 394

X

Table of Contents
The CorrelationAlias Attribute o 395
Building Correlated Workflows 395
Chapter 17 Quick Reference i 430
18 Invoking Web Services from Within Your Workflows. 431
Web Services Architecture 431
Using the InvokeWebService Activity i 432
Adding the Web Reference 434
Configuring the Proxy 435
Static Proxy Configuration 435
Dynamic Proxy Configuration 435
Working with Sessions 436
Long-Running XML Web Services 437
Building a Workflow That Uses an XML Web Service 438
Chapter 18 Quick Reference i i 443
19 Workflows as Web Services.o, 445
Exposing a Workflow as an XML Web Service 445
Creating the Workflow Runtime i 447
Configuring ServiCes i 448
Workflow Housekeepingc.c.iiiiiiiiii . 450
Using the WebServicelnput Activity i 451
Using the WebServiceOutput Activity i 452
Using the WebServiceFault Activity 452
Creating a Host Web Service Project 453
Chapter 19 Quick Referenceo i 468
INdeX. .o e 469

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Chapter 14

State-Based Workflows

After completing this chapter, you will be able to:

m Understand the notional concept of a state machine and how it is modeled in
workflow processing

m Create state-based workflows
m Apply initial and terminal state conditions

m Incorporate code to transition from state to state

In Chapter 4, “Introduction to Activities and Workflow Types,” where I described the types of
workflows you can create using Windows Workflow Foundation (WF), I mentioned the state-
based workflow. State-based workflows model something known as the finite state machine.
State-based workflows shine when the workflow requires much interaction with outside
events. As events fire and are handled by the workflow, the workflow can transition from state
to state as required.

WEF provides a rich development experience for creating state-based workflows, and much of
what you've seen in the book so far applies to state-based workflows. For example, when a
state is transitioned into, you can, if you want, execute a few sequential activities, make condi-
tional decisions (using rules or code), or iterate through some data points using an iterative
activity structure. The only real difference is how the activities are queued for execution. In

a sequential or parallel workflow, they’re queued as they come up. But in a state-based
workflow, activities are queued as states are transitioned into and out of. Events generally
drive those transitions, but this is not a universal rule. Let’s take another look at the
conceptual state machine and relate those concepts to WF activities you can use to model
your workflows.

The State Machine Concept

State machines are meant to model discrete points within your processing logic, the transi-
tions to which are controlled by events. For example, you load your washing machine, close
the door, and push the start button. Pushing the start button initiates a state machine that
runs your laundry through the various cleaning cycles until the cycles are complete.

State machines have known starting points and known termination or end points. The states
in between should be controlled by events expected to occur while the machine is at a specific
state. Sometimes events throw state machines into invalid states, which are conditions not

unlike sustaining unhandled exceptions in your applications. The entire process either comes

327

328

Part Il Workflow Processing

to a sudden halt or crashes entirely. Either way, transitioning to invalid states is something
you want to monitor closely, at least in digital electronic systems. (WF is a bit more forgiving
because you control when states are transitioned to by using an activity designed for the task—
no transitional activity, no transition.)

Chapter 4 covered the essential concepts involved with state machines in general. For a quick
refresher, see the section “The State Activity.” Let’s instead find out how activities designed to
be used within state-based workflows are used.

Using the State Activity

Perhaps not too surprisingly, the State activity models a state in your state-based workflow. It’s
a composite activity, but it’s limited to accepting only certain types of activities as children:
the EventDriven activity, the Statelnitialization activity, the StateFinalization activity, and other
State activities. The EventDriven activity waits for the events that will cause a transition to
another state, while Statelnitialization and StateFinalization are activities guaranteed to execute
when a state is transitioned into and out of, respectively. It might seem odd to be able to drop
a secondary State activity into an existing State activity, but the intent is to provide the capabil-
ity for embedding child state machines within parent state machines.

There is also a restriction regarding the number of valid activities your state can contain.
Only a single instance of Statelnitialization and StateFinalization is allowed. You can have one
of each, but not more than one of each. Neither is required.

However, nothing says you can’t have one or more instances of child EventDriven and State
activities. In fact, it’s common to find multiple EventDriven activities, because each event might
cause a transition to a different state. For example, a “disapprove” event might transition to the
final state, while an “approve” event might transition to a state designed to request more
approval. As for State activities, clearly more than one should be allowed if you are to create
embedded state-based workflows. State-based workflows with a single state model a simple
sequential workflow, so in that case you should probably use a sequential workflow directly.

In any case, to use the State activity, simply drag an instance from the Toolbox onto the visual
workflow designer. The only requirement is the workflow itself must be a state-based work-
flow rather than sequential. Then decide what child activities your state should maintain, and
drag and drop them as required, keeping in mind the four types of activities you can insert.

Using the SetState Activity

In a purely electronic system, one made using electrical components (your computer’s
processor, for example), the fact that an event fires is enough to transition from one state to
another. The presence of an electrical voltage or voltages sets in motion everything that's
required for a state change.

Chapter 14 State-Based Workflows 329

WEF is not an electronic system, even if it is executed on your system’s processor. What this
means to you is that firing an event your design specifies as the signal for a state change is not
enough to transition to the other state. Instead, you must insert another activity—SetState.

The SetState activity, interestingly enough, isn’t one of the activities you can drop into the State
activity directly. Why is this? Because the State activity knows that something must trigger a
state change. If you could drop SetState directly into State, when that state was entered it
would immediately be transitioned out of. The state is then meaningless.

Instead, you drop an instance of SetState into two of the other three valid State child
activities. Although it’s more common to find SetState in EventDriven activities (changing to a
new state as a result of an event), you will from time to time find it useful to drop SetState
into Statelnitialization. I do this in this chapter’s sample application when the initial state
merely sets things up for the remaining states. You cannot drop an instance of SetState into
StateFinalization. StateFinalization is invoked when the particular state is being transitioned
out of, so a previous instance of SetState would have already executed. It’s too late to change
your mind when StateFinalization is executing.

So aside from dropping an instance of SetState into your state’s EventDriven or
StateInitialization activities, how does it actually cause a transition to a different state?

The answer is simply that SetState’s TargetStateName property should be set to the name of the
state to be transitioned to.

Tip The visual workflow designer in Microsoft Visual Studio makes setting the
TargetStateName easier by keeping track of all the states in your workflow and then present-
ing them to you in a drop-down list when you click on the TargetStateName property. For this
reason, it's often better to drop all the states you'll require into your workflow before "wiring
them up” using instances of SetState.

When the workflow runtime encounters a SetState activity when executing your workflow, it
searches for the State activity bearing the same name as specified in the TargetStateName prop-
erty. That state is then queued for execution. In the visual workflow designer, this is repre-
sented by an arrow traveling from the SetState activity to the state it indicates.

Using the Statelnitialization Activity

When a state is transitioned into, you have the opportunity to initialize things related to that
state through the Statelnitialization activity. Although Statelnitialization is not a required activ-
ity in your state, if an instance is present, WF guarantees that Statelnitialization will be invoked
before any other activity in your state.

330

Part Il Workflow Processing

Statelnitialization derives from the Sequence activity, so nearly any activity you want to place
in this composite activity is available to you and will be executed in sequential order. Certain
activities are not allowed, such as any activity based on IEventActivity. To handle events in your
state, you must use the EventDriven activity.

StateInitialization is also executed in a nonblocking manner. This approach is necessary
because your state needs to be able to listen for events. If Statelnitialization were a blocking
activity, the thread executing the initialization code would be tied up and unable to listen for
events. Note, however, that the event, although it has been received, will not be acted upon
until Statelnitialization completes. After all, critical initialization code might need to be exe-
cuted prior to actually handling the event.

Using Statelnitialization, and indeed any of the child activities in a given State activity, requires
you to interact with the visual workflow designer in a slightly different way than you have so
far in this book. If you drag and drop an instance of Statelnitialization into a State activity,
you'll find you can’t then drop child activities directly into Statelnitialization. (This is true
for the EventDriven and StateFinalization activities as well.) To drop child activities into
StateInitialization, you must first double-click the instance of Statelnitialization you just
dropped to activate the sequential workflow editor you've used in previous chapters. To
return to the state-based workflow editor, you'll find hyperlink-style buttons in the upper-left
corner of the workflow designer that will return you to a view of the particular state you're
editing or the entire workflow.

Using the StateFinalization Activity

The StateFinalization activity is a mirror image of the Statelnitialization activity and is used
in a similar way. Where the Statelnitialization activity is executed when the state itself begins
execution, StateFinalization executes just prior to transitioning out of the state. Like
StateInitialization, the StateFinalization activity is based on the Sequence activity.
StateFinalization also limits the types of activities it can contain—IEventActivity activities

are disallowed, as are State and SetState.

Creating a State-Based Workflow Application

If you recall the sample state machine I presented in Chapter 4, Figure 14-1 will look
familiar. Yes, it’s the (simplified) vending machine state diagram. I thought it might be
interesting to build this state diagram into a true WF state-based workflow and then drive it
using a user interface that, given my feeble artistic abilities, models a crude soft drink (“soda”)
vending machine.

Chapter 14 State-Based Workflows 331

Initialized

Coinlnserted

SufficientCoins

ltemDispensed

Figure 14-1 The SodaMachine state diagram

Given no user interaction, the soda machine application appears as you see in Figure 14-2.
Abottle of soda costs $1.25. While you insert coins, the soda buttons on the left are inactive.
However, when you insert enough money, the soda buttons are enabled and you can make a
selection. This simplified model doesn’t deal with such things as refunds and making change,
but feel free to modify the application if you wish.

Note For the sake of simplicity, | did not internationalize the sample application. It
simulates a vending machine that accepts United States currency only. However, keep in
mind the salient point here is the workflow, not the monetary unit used.

Soda Machine

€
(11 ... =

€D
€D

Figure 14-2 The SodaMachine user interface in its initial state

However, you can’t actually insert coins into a Windows Forms application, so I provided
buttons for 5¢, 10¢, and 25¢. Sorry, coins only. When you click one of the coin buttons for the
first time, a new state-based workflow instance is started, one that implements the workflow
shown in Figure 14-1. Figure 14-3 shows you the soda machine after several coins have been
added. The state-based workflow keeps track of the coinage received and reports the total
back to the application, which displays it in the simulated liquid crystal diode (LCD) display.

332

Part Il Workflow Processing

Soda Machihe

(41 ..
Coing Only

Figure 14-3 The SodaMachine user interface as coins are added

When sufficient coins have been inserted, the workflow notifies the application that the
user can now make a selection, as shown in Figure 14-4. The application, in turn, enables the
individual soda buttons, located on the left of the user interface.

Soda Machine :

$1.25 Caing

(o

—
X

Coing Only

€) Ian
€
O

Figure 14-4 The SodaMachine user interface allowing soda selection

When one of the soda buttons on the left has been clicked, as the darkened button in
Figure 14-5 indicates, a label appears that says “Soda!” This is my way of simulating the
bottle of soda dropping from the machine for the customer to retrieve. To reset the entire
process, click the Reset button. This doesn’t affect the workflow but rather resets the user
interface buttons. The user interface now appears as it did in Figure 14-2, and you can start
the process all over again.

Chapter 14 State-Based Workflows 333

Soda Machihe : E @

(i) == -
[‘] Coing Only
Cantrol

(i1
[‘] Soda!

Figure 14-5 The SodaMachine user interface once a selection has been made

A great deal of the application has been created for you. If you wade through the sample Soda-
Machine code, you'll find I used the CallExternalMethod activity (from Chapter 8, “Workflow
Data Transfer”) and the HandleExternalEvent activity (from Chapter 10, “Event Activities”).
These are great tools for interacting with your workflow from your application. What’s left to
create is the workflow itself, and here’s how.

Building a state-based workflow

1. The SodaMachine application in its initial form can be found in the \Work-
flow\Chapter14\SodaMachine directory. As I've done in the past for the more complex
sample applications, I placed two different versions in the Chapter14 directory—an
incomplete version and a completed version. If you're interested in following along but
don’t want to perform the steps outlined here, open the solution file for the completed
version. (It will be in the SodaMachine Completed directory.) The steps you'll follow
here take you through building the state-based workflow. If you're interested in working
through the steps, open the incomplete version instead. To open either solution, drag
the .sln file onto a copy of Visual Studio to open the solution for editing and compilation.
(If you decide to compile and execute the completed version directly, compile it twice
before executing it. Internal project-level dependencies must be resolved after the first
successful compilation.)

2. With the SodaMachine solution open in Visual Studio, press F6 or select Build
Solution from Visual Studio’s Build menu. The projects have various dependencies, and
compiling the solution generates assemblies that dependent projects can reference.

3. Find the Workflow1.cs file in the SodaFlow project, within Visual Studio’s Solution
Explorer window. (You might need to expand tree control nodes to find it.) When the
file is in view in the tree control, select it with a single mouse click and then click the
View Designer toolbar button. This brings the workflow into the visual workflow
designer for editing.

334

&

Part Il Workflow Processing

Note | have already created the basic workflow project because the application uses
CallExternalMethod and HandleExternalEvent activities using the techniques you saw in
Chapters 8 and 10. There wasn't any need to rehash the steps necessary to create the
custom activities, as you would need to do if you created the workflow project from
scratch. (If you were starting from scratch you'd add a new workflow library project
using the State Machine Workflow Library template.)

[] Slabe Machane Wikl

Dion Stamicly

E verdlimvendiclredy.
StatelndinizatinAcindy o
StareTnskzationdetivity here

The workflow consists of a single State activity. Select the activity, stateActivityl, and
change its name to StartState. You will find its Name property in Visual Studio’s
Properties pane when the activity is selected in the visual workflow designer.

When the workflow was created, Visual Studio inserted this original State activity for
you. But it also established this activity as the initial, or “start,” activity. When you
renamed the activity in the preceding step, the workflow lost this linkage. To reestablish
this activity as the start activity, click once anywhere in the visual workflow designer’s
surface except for the State activity to activate the properties for the workflow as a whole.
In the Properties pane, you should see an InitialStateName property. Change that from
stateActivity] to StartState. Note you can either type this value into the property itself or
use the drop-down list and select StartState.

Workflowl Systen.Waorkflow, Activities, StateMachin =

[
= Activity
(Mame) Workflowl
Base Class System.Workflow.Activit]
Description
Enabled True
[Conditions
DynamicUpdateConditio {None)
= Misc

CompletedstateMame
InitialStateMame StartState| [v]

InitialStateMame
Please specify the initial state for the state machine.

Let’s now drop the remaining State activities onto the visual workflow designer’s surface.
Asyourecall, this facilitates assigning target states when working with SetState. From the
Visual Studio Toolbox, drag an instance of the State activity onto the designer’s surface
and drop it next to the StartState activity. Change its name to WaitCoinsState.

Chapter 14 State-Based Workflows

|

State Machine Workfow

-

(i 3 StaitState: “ (O weiCoinsStats)

Diop Statetheliviy.
EveniDrivendctiviy,
StatelniizlzationActiviy of
| StateFinaieatiorsctivity here |

Diop Statedtivity,
EvertDiivendctivty,
Statelritiizationactivity of
StateFinalzationictiviy hers |

7. Drop another State activity onto the visual workflow designer’s surface, and name it

WaitSelectionState.

]

State Machine WorkHow

= StailState]

Drop Stateshlivity,
EventDrvendctivity.
Statelniiakzationboiivity of
| StateFinslizationdetivity here |

"] ‘wWaiCoinsState “

Diop Statethcliviy.
EveniDifvenéciivty,
StatelniiaizationActivity or
StateFinslizationdchiviy hers |

] WalSelectionState |
Drap Statesetivity,
EventDiivenictiiy,
Statelritslizstionsctiviy of
| StateFinalizationictiiy here |

335

8. Drop the final State activity onto the visual workflow designer’s surface, and change its

name to EndState.

Im] Slabe Machane Wikl
1] SiaState [0 weltorssise 1
Deop StaveActivity, Do Stabeirtivity,
Everdiventichviy, Euerillivmnboiy.
Statelndiaizationdcha of Statrindiskzasonbeiy o
SlateF mskzlirricinly b Statelraicstiondctiviy bars
(3 Endttaie (O WekSeketionttae |
Dicp Statehativiy, Usa Stalmiclrty.

_ EventDiiearictivty, Everilimvenficinly.
Statelritiskzationdctivly of Slaleindighe sbwondvctely o
ShaeFmaksatuordicily hete StaleFrkeaiondctivly here

Just as you reassigned the starting state, so too will you need to tell WF what the ending
state will be. Click the visual workflow designer’s surface outside any State activity to
enable the workflow properties. Assign the CompletedStateName property to be End-

State. Visual Studio then clears EndState’s contents and changes the icon in the upper-
left corner. As before, you can type EndState or select it from the drop-down list.

Workflow1 System.Workflow, Activities, StateMachi -

= Activity
(Mame) Workflowl
Base Class System.Workflow.Activit]
Description
Enabled True

[Conditions
DynamicUpdateConditio (None)

= Misc
e e Endstate] [V]
InitialStateMame StartState

CompletedStateName
Please specify the final state For the state machine.

336 Part Il Workflow Processing

10. With the state activities in place, let’s now add details. Starting with StartState, drag an
instance of the Statelnitialization activity from the Toolbox and drop it into StartState.

|

Slabe Machue Wkl

(4 SiaState

|2 WalCorsstse |

. . .
» 1] Astelnhsesontctndy] o
. . .

@ EndSiain

Do Stabeirtivity,
Eveniliomn .
Stalelndiafzatondcssty o

StateFnskzshiondctivity hare

(O watsehctonstse |

iy

EveriDmrendclenly.
Slalelndaie gwondlenly o
StateFiralzstiondctivity here

11. Double-click the activity you just inserted, statelnitializationl, to enter the sequential
workflow editor.

3 Slabe Machane Wikl

7] Worklkow] 7 [3] StatSlale

2] StatSiste

statel nitiskzationd,

|

. .
Diop Aciiies
Here

v

12. Draga copy of the Code activity from the Toolbox, and drop it into the state initialization
activity. Assign its ExecuteCode method to be ResetTotal. Visual Studio then adds the
ResetTotal method for you and switches you to the code editor. Rather than add code at
this point, return to the visual workflow designer.

Im} State Machine Workflow

] Warkflow] : [3] StartState

[3] StartState

statel nitislizationd,

ua}

L.

‘ o podshctiy

\' I ‘/

13. Next drag an instance of SetState onto the designer’s surface, and drop it just below the
Code activity you just inserted.

14.

15.

Chapter 14 State-Based Workflows 337

[m] State Machine Workllow

] Warkflow] : [3] StartState
[3] StanState

statel nitislizationd,

..)
‘ =5%:udeAchlty ‘

o
(1 setStatedcli
| s
U y

\' T ‘/

Assign the SetState’s TargetStateName property to be WaitCoinsState.

= Activity
(Mame) setStateActivityl
Descripkion
Enahled True

= Misc

TargetStateName
Please specify the target state for this
'SetStatedctivity' activity.

To return to the visual workflow designer’s state editor view, click the Workflow1
hyperlink-style button in the upper-left corner.

3 Slabe Machane Wikl

- Eﬂmﬁ' ° (3] GtatSlabe

(3 StartSiate

statel niiskzationd,

cdebcty

e
E

¥ -
]
35

WatCoriState.

The state editor should now indicate that StartState transitions to WaitCoinsState.

338 Part Il Workflow Processing

3 Slabe Machane Wikl

(T JT‘ —
1 dateiisesontclndy] 4 “M"mw.

E: e Ay,
Stateinbislzatondcisaty o
StateFnskzshiondctivity hare

B EndSte (0] WekSeketionStas
Drop Stabeucinaty.
EveriDovendictrly.

St o e sborsechely o

StateFiralzstiondctivity here

16. StartStateis now complete. Next we'll turn to WaitCoinsState. To begin, drag a copy of the
EventDriven activity onto the designer’s surface and drop it into WaitCoinsState. Name it
CoinlInserted by changing its Name property in the Visual Studio Properties pane (you
must press Enter for the change to take place).

] State Machine Workflow

= StailState (O waitCeinsState

)/

‘] statelnitislzationdctiviy] 241 Coirlrsered .

@ Endstate) (O WaiSelectionstate |
Diop Statedolivity.
EveniDiivendcliviy.
Statelnitializationdctivity o
L) | StateFinazationdetiviy here |

17. Double-click the CoinInserted EventDriven activity to enable the sequential workflow
editor.

] State Machine Warkllow

] Workflow] ©] WaitCainsState
(O waitsinsiate |

.
Coinlnserted
@

Diop Activities

18. Now drag an instance of the Coinlnserted custom activity from the Toolbox and drop it
onto the EventDriven activity’s surface. Note that if you haven’t yet compiled the entire
solution, the CoinInserted event doesn’t appear in the Toolbox. You might have to remove
the EventDriven activity to successfully compile if you skipped step 2.

Chapter 14 State-Based Workflows 339

|

Slabe Machue Wkl

] Worklkw! * [T WalCorsState
] WekCoinaSaate

Coirdnarated
<
&1

oy corlniened ||
1

v

19. With the ExternalEventHandler coinlnserted] activity selected in the visual workflow
designer, click the CoinValue property in the Properties pane to activate the browse (...)
button, and then click the browse button. This brings up the Bind ‘CoinValue’ To An
Activity’s Property dialog box. Click the Bind To A New Member tab, and type LastCoin-
Dropped in the New Member Name field. The Create Property option should be
selected, butif itisn’t, select it so that you create a new dependency property. Click OK.

B Coan VAT o s activily's property

| Bindd tn an existing momber | Ured o 8 new mesber
M e sy

LastCoinropped|

haoss the type of mesber b0 creste

O Craste ek

B} Creake Propesty

Frowide the name of the new member to be crested. The member canbe s fiekd or s
property of Lype System, Decnal’,

I =

20. Now we need to make a decision—did the user just drop enough money to enable soda
selection? To do this, drag an instance of the IfElse activity onto the visual workflow

designer’s surface and drop it into the Coinlnserted EventDriven activity, following the
coinlnserted] event handler.

340

Part Il Workflow Processing

21.

22.

Im] Slabe Machane Wikl

7] Wrklkowl 7 7] WelCornState

T watCainaStain

Cainlnassted
4

y, eoirinseitnd
1

i lnbotiviy!
*,

IE I cBonchtetnd © ElseBrorehécti
&zl &l

Diop At Do At
Hesn Heem:

| |
I

Select the left branch of ifElseActivity] to display its properties in the Properties pane. For
its Condition property, select Code Condition. Expand the Condition node and in the
child Condition property, type TestTotal. When Visual Studio adds the new method and
switches you to the code editor, return to the visual workflow designer.

ifElseBranchactivityl System.Workflow, Activities -

=

E Activity
(Mame) ifElseBranchictivity 1
Description
Enabled True

[Conditions

= Condition Code Condition

Condition J TestTotal [+]

Condition
Please specify method to evaluate the condition.

TestTotal will eventually check the total amount of money inserted into the soda
machine. (We'll finish the workflow in the visual workflow designer before adding code
because there are properties we need that have not yet been created.) If enough money
has been inserted, we need to transition to the WaitSelectionState. Therefore, drag a copy
of SetState into the left IfElse activity branch, ifElseBranchActivityl, and drop it. Assign its
TargetStateName to be WaitSelectionState.

23.

24.

|

Slabe Machue Wkl

Chapter 14 State-Based Workflows

7] Wrklkowl 7 7] WelCornState

T watCainaStain

Cainlnassted
4

coirbnsnitnd

3
m- Elsedctay]
"

HIE s eDeanchbctiv {Elselranhieti
1] 1]
areStateArt '
i b L :).rfﬁ\m.‘.m
W i ehecion - o

v

|

341

If TestTotal decides there isn’t enough money to purchase a soda, the workflow needs to
communicate the total amount of money inserted into the soda machine so far. To do
this, drag an instance of UpdateTotal from the Toolbox and drop it into the right IfElse
activity branch. UpdateTotal is a customized instance of CallExternalMethod I created for

the job.

|

Slabe Machue Wkl

7] Wrklkowl 7 7] WelCornState

T watCainaStain

Cainlnassted
4

4 coindnarited
1

|

m- Elsedctay]
"

ilE I3 eBeanchaictive {ENzeBranchictivi

1] 1}

. seeStateActi
E)

WalSekechon .

UpdateTotal requires a total value to communicate, so select its total property and click
the browse (...) button to activate the bindings dialog box once again. When the bind-
ings dialog box appears, select the Bind To A New Member tab and type Total into the

New Member Name field, again making sure the Create Property option is selected.

Click OK.

342 Part Il Workflow Processing

L T e

| Bined b an pisting member | [£ & new mesber
Mewy (peabrer name:

Total

Chooss the type of member to creste

O Craste ek

(%) Creabe Propesty

Frowide the name of the new member to be crested. The member canbe s fiekd or s
property of Lype System, Decnal’,

e] o]

25. Click the Workflow1 hyperlink-style button in the upper-left corner to return to the state
designer view. Drag an instance of StateFinalization onto the visual workflow designer’s

surface, and drop it into WaitCoinsState.

]

State Machine Workfow

= StartState (O WeitsinsStats

[#] statelnitializationActivityl 4 Coinlnserted

. .
& [7] stateFinaliationdotiviyl

(@ EndState (O waitSelectionstate
Dirop Statedctivity,
EventDrivenctivty,

Statelnitializaliond cliviy or

| stateFinalizationActviy hers |

26. Double-click the stateFinalizationActivityl activity you just inserted to reactivate the

sequential designer view.

a

State Machine WorkHow

[Worklon! 7] WalCoinsStals
[] waitCoinsState

stateFinalizationd..

n}

Diop Activities

27. From the Toolbox, drag an instance of ReadyToDispense and drop it into
stateFinalizationActivity1. ReadyToDispense is also a customized CallExternalMethod

activity.

|

Slabe Machue Wkl

Chapter 14 State-Based Workflows 343

] Worklkw! * [T WalCorsState

] WitCeinsSuate

stateFinaizaliord
i
. . .
madyTolis.
o W| .
e]

28. ReadyToDispensel, the activity you just inserted, will return the final total to the main
application. To do that, it needs to access the Total property you inserted in step 24.
Looking at readyToDispensel’s properties, click the finalTotal property, and then click the
browse (...) button in the finalTotal property. Clicking the browse button activates the
binding dialog box, but this time bind to an existing member. Select the Total property
from the list and click OK.

B Tinal Total™ 1o anm activily's property

Ured to an existing mermber | Bind ko & new messher

=[] winrkfinwe
@] StatStats
W] WalConsState
W] WalSelectior@ate
w] EmdState
@ O LestCor Dropoed
w o

® [DymasicUpdsteComdition

by of type f canbe
of bype System Decimal.

=

29. Click the Workflow1 hyperlink-style button to return to the state designer view. There,
select the EventDriven activity from the Toolbox and drag it onto the designer’s surface,
dropping it into the WaitSelectionState activity. Name it ItemSelected.

|

Slabe Machue Wkl

| StauState

() WaiCorsstatn)

| L
] dsenlidedoniciy] o J 41 Coinlnaented — ‘

(1] srareFinsizatondctiy|

(B Endstan

(2] WekSeketionStae

L) Nonolected 3

30. Double-click the ItemSelected EventDriven activity to enter the sequential designer view.

344 Part Il Workflow Processing
= Slabe Maschane Wothlkon
] Wiskllow] © 7] ‘Waklectuntitaie

O WakSedectnnisin
loniected

]

Diop Acties
Here
¥
31.

ItemSelected EventDriven activity.

Drag a copy of the custom ExternalEventHandler activity ItemSelected, and drop it into the

]

State Machine Workfow

] Workflowl 2 [7] WaitSelectionState

ItemSelected
£

—l

| cpiemselete |,

32.

[walSslectionStats

'I')

After the user makes a selection, the main application fires the ItemSelected event. When

that happens, we want to transition to EndState. To do that, of course, we need to insert
a copy of the SetState activity. So drag an instance of SetState from the Toolbox and drop

it into the ItemSelected EventDriven

activity following the itemSelected] event handler.

Assign its TargetStateName to be EndState.

]

State Machine Workfow

] Warkllawd [WaitSelectionState

ItemSelected
ki)

4 emSelecte
ot

—_

“' g settateAcl ‘

ity
EndState

[walSslectionStats

\. T ./

33. Click the Workflow1 hyperlink-style button to return to the state designer view.

34.

35.

36.

37.

Chapter 14 State-Based Workflows 345

[] Slabe Machane Wikl

(< SiiState] weiCoraslae
™ Adteibiskedonticlrly] o 2 Comlnsarted

......

(1] srareFinsizatondctiy|

+ *
[& Erdfie 2 WetdekctionStae |

&k e plected

The workflow is complete from a visual workflow designer’s point of view, but we still
have some code to write. Select Workflow1.cs in Visual Studio’s Solution Explorer, and
click the View Code toolbar button to open the file for editing in the code editor.

Scan the Workflow1.cs source file, and locate the ResetTotal method you added in step
12. Insert the following code in the ResetTotal method:

// Start with no total.
Total = 0.0m;

Finally, locate the TestTotal method you added in step 21. To that method, add this code:

// Add the Tast coin dropped to the total and check
// to see if the total exceeds 1.25.

Total += LastCoinDropped;

e.Result = Total >= 1.25m;

Compile the entire solution by pressing F6 or by selecting Build Solution from Visual
Studio’s Build menu. Correct any compilation errors.

Now you can run the application by pressing F5 or Ctrl+F5. Click a coin button. Does the total
update in the LCD display? When you insert enough money, can you select a soda?

Note If the application crashes with an InvalidOperationException, it's most likely due to
the references not being fully updated by the first complete solution compilation. Simply
recompile the entire application (repeat step 37) and run the application again. It should
run cleanly.

If you want to continue to the next chapter, keep Visual Studio 2005 running and turn to
Chapter 15, “Workflows and Transactions.” In Chapter 15, you’ll take your first steps into the
fascinating world of workflow transactional processing.

If you want to stop, exit Visual Studio 2005 now, save your spot in the book, and close it. Who
needs transactions anyway? Actually, we all do, but we’ll wait for you.

346 Part Il Workflow Processing

Chapter 14 Quick Reference

To

Do This

Add new states to your state-based workflow

Drag as many copies of the State activity onto the visual
workflow designer’s surface as you require. Remember it's
easier to wire the states together (using the SetState
activity) with the states in place. However, this is not a
requirement.

Receive events within your workflow's states

Drag instances of EventDriven into your State activity, and
assign event handlers to each event. EventDriven can
accept only a single event, so you might need to drop
multiple copies of the EventDriven activity into your State
activity—one for each discrete event you need to accept.

Transition between states

Drag an instance of SetState activity into your state’s
EventDriven activity or Statelnitialization activity. Assign the
TargetStateName to the name of the state you want to tran-
sition to.

Initialize your state as it is transitioned into

Drag a copy of the Statelnitialization activity into your
State activity, and drop the necessary activities into
Statelnitialization as required for your initialization process.
Statelnitialization is a composite, sequential activity, but it
will allow for events to be accepted by your state event
handlers (even if the processing of those events is deferred
until the initialization work is complete). Note that only a
single instance of Statelnitialization is allowed per State
activity.

Execute code as your state is transitioned
out of

Drag an instance of StateFinalization onto the visual
workflow designer’s surface, and drop it into your State
activity. Like Statelnitialization, the StateFinalization activity
is a composite, sequential activity, and only one per State
activity is allowed.

	Cover
	Table of Contents
	Chaper 14: State-Based Workflows
	The State Machine Concept
	Using the State Activity
	Using the SetState Activity
	Using the StateInitialization Activity
	Using the StateFinalization Activity
	Creating a State-Based Workflow Application
	Chapter 14 Quick Reference

