Programming
Applications for Microsoft”
Office Outlook” 2007

APPLICATION
OFFICE

Randy Byrne; Ryan Gregg

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/9179.aspx

9780735622494 Microsoft

Publication Date: February 2007 P/’@SS

Table of Contents

FOreword. e e XXi
Acknowledgments. e XXV
Introduction. e e XXVii
Why We Wrote This Book. ... XXVil
Who This Book Is For.o Xxviii
How This Book Is Organized. i Xxviii
Part I: Introducing Microsoft Office Outlook 2007..................... Xxviii

Part Il: Quick Guide to Building Solutions XXiX

Part Ill: Working with Outlook Data XXiX

Part IV: Providing a User Interface for Your Solution XXiX

Part V: Advanced TOPICSt XXX

Sample CodeontheWeb XXX
Code SnIPPEts. . ..ot XXXili

Building the Sample Add-Ins Xxxiii
System RequUIremMeNts.t XXXV
Support for This Book XXXV

part| Introducing Microsoft Office Outlook 2007

1 What's New in Microsoft Office Outlook 2007 3
FOrmM REGIONS . ..ottt e 4

S CUIIEY .« ottt 6

Table ObJeCt. 7
Improved Search. 8
Enhanced Events.o oo 9
AddressEntry Enhancements. 11
SelectNamesDialog Object 11

ExchangeUser and ExchangeDistributionList Objects 12

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

Sharing ObJectS 12
Rules Objects 13
PropertyAccessor Object. 14
PropertyAccessor Sample Code. 14
Developer Reference. 16
SUMIMIAIY . et e e e e 17
2 OutlookasaPlatform i, 19
Why Integrate with Outlook? 19
Different Types of Outlook Integration 21
Data Integration. 22
Functional Integration 24
Integration GuIidelings. 26
Data Integration. 26
BUSINESS LOGIC o\ttt 29

User Interface Integration and Data Presentation 30
InfoPath FOrms. 38

APIS 40
ArchiteCture 40
Outlook Object Model 41

FOrm RegiONS 43

MAPI as a Platform Component 45
Outlook 2007 Integration APl Reference. 51
Simple MAPL . . 51
Deemphasized and Phased-Out Components 52
Development TOOIS 53
Visual Basic for Applications 53

Visual Studio Tools for Office. ... 54
Managed Versus Native Code. ...ttt 55
Add-In Model 56
UMY .« . e e e e e e e e e 57

part I Quick Guide to Building Solutions

3 Writing Your First Outlook Add-in Using Visual Basic .NET.......... 61

Introducing the Instant Search Add-In. i, 61
Install the Outlook Add-in Templates. 62

Table of Contents ix

Creating the Instant Search Add-In. 63
Writing Code. . ..o 65
The InitializeAddin Method. 66

Turn Option Strict ONo 67
Adding Instance Variables. 67
Hooking Up Events in Visual Basic i, 68
ItemContextMenuDisplay Event............ 68
ContextMenuClose Event, 70

The DisplayinstantSearchExplorer Method. 71
Writing Code for Submenu Click Events. 72
Building the Add-in Project 73
Creating a Shim Project. 74
Creating a Setup Projectt 78
Building the Setup Project 81
Installing the Instant Search Add-In i, 81
Testing the Instant Search Add-in Solution 82
What to EXPECt. . ..ot 82
Troubleshooting 82
Debug Mode. 83
Debugging Code 84
SUMIMIAIY e e e e 85
4 Writing Your First Outlook Add-inUsing C# 87
Introducing the Instant Search Add-In........ i i 87
Install the Outlook Add-in Templates.......... ..o, 88
Creating the Instant Search Add-In....... i i i 89
Writing Code. . . oot 91
InitializeAddin Method 92
Adding Instance Variables. 93
Hooking Up Eventsin Visual C# 94
ItemContextMenuDisplay Event........... i 94
ContextMenuClose Event, 97
Cleaning Up Event Handlers.t 98
DisplayinstantSearchExplorer Method., 98
Writing Code for Submenu Click Events. 99
Building the Add-in Projecto i 101

Creating a Shim Project. e 101

X Table of Contents

Creating a Setup Project. 105
Building the Setup Project 108
Installing the Instant Search Add-In.................................. 108

Testing the Instant Search Add-in Solution....... 109
What t0 EXPECt. . .\t e 109
Troubleshooting. 109

DebUg MOdE . ..o 110
Debugging Code. 111

SUMIMIAIY .« ettt et e e e e e e e e 112

part Il Working with Outlook Data

5 Built-inltemTypesot e 115
Introduction to Built-in and Custom Iltem Types 115
Understanding MessageClass 117
Built-invs. Custom Types 118
Creating an ltem 118
Mailltem, Postltem, and Sharingltem Objects 122
Appropriate Uses of Mailltem and Postltem 123
Compose Mailltem 123

Read Mailltem 132
Adding an Electronic Business Card, 136
CreateaTo-Doltemt 137
Postltem Object 139
Creating @ PosStitem 140
Responding to a Postitem 140
Appointmentltem Object i 140
Appropriate Uses of Appointmentltem. 141
One-Time Appointments.ttt 141
All-Day EVENtS . ..o 143
Appointment Attendees. 144
Recurring Appointments 146
Meetingltem Object. 154
Contactltem Object 158
Appropriate Uses of Contactitem 158
Working with Contact Properties 158

Electronic Business Cardst 160

Table of Contents xi

Taskltem ObJeCt oo 162
Appropriate Uses of Taskltem. i, 162
Creatinga Recurring Task 162
Delegatinga Task. o 163

TaskRequestitem Object. 163
Working with Task Requests. 164

Other Hem TYPES . .ottt 166
DistListltem Object. 166
Journalltem Object.o 167
Noteltem Object. 167
Storageltem Object. 168

SUMIMIAIY o e 170

6 AccessingOutlookData............. ..., 171

An Overview of Outlook Data Storage . ..o ... 171
Exchange Server.o 171
Personal Folder Files (.pst) 173
Custom Store Providers. 173

Accounts Collection and Account Object 173

Stores Collection and Store Object. i 174
Stores Collection. 174
Adding or Removing a Store Programmatically 175
Working with the Store Object............ i ... 176

Folders Collection and Folder Objects........... 178
An Overview of Folder Types 178
Folders Collection. 180
Folder Object.o 182
Working with the Folder Object. i .. 183
Folder Propertiesand Methods i ... 187

Folder Permissions 191
Assigning Folder Permissions.oo i 192
AssSigNINg ROIES.o 193
Using the Sharingltem Object to Assign Folder Permissions. 194

Accessing Itemsina Folder. 194
Performance Considerationsccoiiiiiiiiiiiiiiii.. 194
Outlookitem Helper Class 195

Items Collection e 196

xii Table of Contents

Table ObJeCt 201
SUMIMIAIY . .t e e e 214
7 Address Books and Recipients i ... 215
An Overview of Outlook Address Books 215
Exchange Global Address List ..., 215
Exchange Containers.t 216
Offline Address Book i 216
Outlook Address Book 217

Other Address Book Providers i 217

The Recipients Collection and Recipient Objects. 218
Outlook Object Model Guard Considerations 218

The CreateRecipient Method i, 218
Working with the Recipients Collection Object......................... 220
Obtaining the SMTP Address of a Recipient........................... 223

The AddressLists Collection and AddressList Objects 224
Enumerating AddressList Objects it 224

The AddressListType Property, 224
Determining Resolution Order of Address Lists 225
Finding a Specific AddressList Object. i 225
Determining the Contacts Folder for a Contacts Address Book. 226

The AddressEntries Collection and AddressEntry Object....................... 227
The AddressEntryUserType Property. ..o, 228
Finding a Specific AddressEntry Object 229

The GetAddressEntryFromID Method 229
Displaying AddressEntry Details i i 231
Getting Availability Information foraUser 232

The ExchangeUser Object.t e 234
Working with ExchangeUser Properties............ ..., 234
Obtaining an ExchangeUser Object from an AddressEntry Object 235

The GetExchangeUserManager Method. 236

The GetDirectReports Methodo i i 236

The GetMemberOfList Method 237
Obtaining Proxy Addresses for an ExchangeUser Object 238

The ExchangeDistributionList Object. i 238
The GetExchangeDistributionListMembers Method 239

The GetMemberOfList Method 240

Table of Contents xiii

The GetOwners Method. ... 240

The SelectNamesDialog Object i 240
Using the SetDefaultDisplayMode Method 241

Dialog Caption and Recipient Selectors.......... 242
Setting the InitialAddressList Property 243
Displaying the Select Names Dialog Box, 245

Using SelectNamesDialog.Recipients.c.couuuiiiieeeeena .. 245
SUMMIAIY oo e e 246
8 RespondingtoEvents..........l 247
Writing Event Handlers in Managed Code. oo, 247
Hooking Up Events in Visual Basic NET. ...t 249
Hooking Up Events in C# e 251
Outlook 2007 Bvents ot 254
Application Object Events. i 254
Explorers Collection Event. i 259
Explorer Object Events. oo 262
Folders Collection Events. 264
Folder Object Events 264
FormRegion Objecto 265
Inspectors Collection Event. i 265
Inspector Object Events. i i 268

Items Collection Events i 269
ltem-Level Events. 270
Namespace Object Events. 274
NavigationGroups Collection Events.t 275
NavigationPane Object Event. 275
OutlookBarPane Object Events.o 275
OutlookBarGroup Object Events i, 276
OutlookBarShortcut Object Events o i, 276

Stores Collection Events. i 277
SyncObject Object Eventst 278
Reminders Collection Events. i i i i 278

Views Collection Events. 279
SUMIMIAIY o e e e e 280
9 Sharing Information with Other Users........................... 281

Outlook and Shared Datat 281

Xiv Table of Contents

Sharing iniCalendar Format i 281
Sharing a Calendar Through E-Mail 282
Savinga Calendarto Disk. i 283
Saving an Appointmentto Disk 284
Opening aniCalendar File........ i 285

Subscribing to Shared Folders. 286
RSS FEEAS . .ottt 286
SharePoint Folders. 287
Internet Calendars. 289

Using the Sharingltem Object 290
Sharingltem TYPES e 291
Sharing a Folder with a Sharing Invitation 291
Requesting Folder Access with a Sharing Request...................... 292
Processing a Sharing Item 293

SUMMAIY . .o e e 295

10 Organizing Outlook Data............. ... i .. 297

How Outlook 2007 Helps to Organize Information........................... 297

The Categories Collection and Category Objects....................., 297
Creatinga Category 299
Assigning One or More Categoriestoanltem......................... 299
Displaying the Categories Dialog Box ..., 300

Task Flaggingt 301
Controlling Visibility of the To-DoBar................. ... oot 301
Creating To-Do Items That Appear in the To-DoBar.................... 302

The Rules Collection and Rule Objects. ..., 303
Overview of Rules Programming i 303
Rules Collection 306
The Rule Object 310
The RuleActions Collection. 312
The RuleConditions Collection., 314
Get or Set Action or Condition Properties with an Array 317
Rules Sample Add-In. 318

Search Folders 319
When to Use a Search Folder., 319
Enumerating Search Folders i i 320

Creating a Search Folder Programmatically 321

Table of Contents Xv

OUHIOOK VIBWS. . . 325
Objects That Derive from the View Object 325
Adding or Removing a View Programmatically 326

CusStomizing YOUT VIEW e 327
Specifying FieldsinaView 327
Filtering Items in the View Object. i, 329
Sorting IltemsinaView. ... 329
The AutoFormatRules Collection i, 330

SUMIMIAIY o e 334

11 SearchingOutlookData............. i, 335

Overview of Searching Data.............ooo i 335

Outlook QUery Languageso ettt 335
A 337
DAL . 342

Date-Time COMPaAriSONSottt ettt e 354
Filtering Recurring Items in the Calendar Folder 354
Date-Time Format of Comparison Strings. ..., 355
Time Zones Used in ComparisoNn.utetiiineeeiiinnean. 356
Conversion to UTC for DASLQUETIESt 357

Integer COmMPAriSONSttt e ettt e e e ettt 358

Invalid Properties 359
= 359
DA S L . 359

Comparison and Logical Operators. 360
Comparison Operatorsoiiiiii i 360
Logical Operators.o 360
NUIl COMPATISONS. . . .\ttt e e 361

Search Entry Points. o oo e 361

Search Considerations 364
Performance 364
Read-Only vs. Read/Write. 365
Searching Subfolders. 366
Windows Desktop Search 366

SUMIMIAIY o e e e e e e 367

xvi Table of Contents

part Iv Providing a User Interface for Your Solution

12 Introducing the Outlook User Interface 371
Decoding the User Interface i 371
The Explorer Window (The Explorer Object), 372
Programming the Explorer Object. 373

The Explorers Collection 373
The Inspector Window (The Inspector Object), 377
Programming the Inspectors Collection and
Inspector Object. 378
The Inspectors Collection i 378
Working with the Navigation Pane......... i i 380
Making the Most of Navigation Modules 380
Adding Structure with Navigation Groupscooiien..n. 382
Removing Folders 384
Folder Viewso 385
The Reading Panet e 385
Customizing the ReadingPane........... ... i, 385
The To-DO Bar. . ..o 386
Command Bars. 386
Context MeNUS. 386
Folder Home Pages e 389
SUMIMIAIY et e e e e e e e e 390
13 Creating FormRegions. it 391
Introduction to Form Regions 391
Form Pages Compared with Form Regions. 392
Form Region TYpesot 392
Standard FOrm Types.ttt 395
Anatomy of a Form Region Solutiono.... 396
Becoming Familiar with Form Region Design........., 396
Designinga Form Region. i 397
Adding Controls. 399
Working with Fields. 403
Polishing Your Form Region. 406
Form Region ENdto End. 411
Step 1: Creatinga Form Region. i 411

Step 2: Writing Business LOGiC.t 415

Table of Contents xvii

Step 3: Registering the Form Region. 423
Advanced Form Region Methods 433
SUMIMIAIY o e e 434
14 FormRegionControlsttt i, 435
Standard Controls.t e 435
The Outlook Check BOX.ot e 435

The Outlook COMbO BOXooiiii e 435

The Outlook Command Button............ i i i i, 436

The Outlook Label Control 437

The Outlook List BOX oottt e 437

The Outlook Option Button oo i 437

The Outlook Text BoX.ot 438
Outlook-Specific CoNtrols. e 438
The Outlook Body Control i 438

The Outlook Business Card Control.ot ... 438

The Outlook Category Control. 439

The Outlook Contact Photo Control............... 440

The Outlook Date Control i i i 441

The Outlook Frame Header Control oa... 441

The Outlook InfoBar Control 442

The Outlook Page Controlt 443

The Outlook Recipient Control 444

The Outlook Sender Photo Control........... 444

The Outlook Time Zone Control i i i i, 445

The Outlook Time Control 446

The Outlook View Control i i i 447

Using Form Region Controls. i 447
Adding Controls to the Control Toolbox 447
Adding Controls Programmatically........... i .. 448
Programmatic Accessto Controls, 450
SUMMATY . oo e e e e 452
15 ExtendingtheRibbon...... L. 453
Introducing Ribbon Extensibility 453
What Happens with ExistingCode i, 454
Outlook RibbonX Sample Add-In 458

Installation INStructions. 458

xviii Table of Contents

Running the Sample Add-In 459
Modifying Your Code to Use RibbonX i 459
Authoring Ribbon XML. 461
IRibbonExtensibility Interface. 462
Detecting Errors.o 465
Newinspector Event. 466
Outlookinspector Class 467
IRibbonUI Object 468
IRibbonControl Object. 468
SUMIMIAIY .« e e e 470
16 Completing Your User Interface........ it 471
Custom Task Panes. 471
When to Use a Custom Task Pane. ..., 472
Implementing a Custom Task Pane. i, 472
Adding a Custom Task Paneinan Add-In............................. 475
Custom Property Pages 478
Designing a Custom Property Pagecoiiiiiiiii. .. 479
SUMIMIAIY .« . ettt e e e e e e e e 486

partv Advanced Topics

17 Using the PropertyAccessor Object 489
Scenarios for PropertyACCessor . ..o 489
Objects That Implement PropertyAccessorcoiiieeiiiinnnnnnn. 490
PropertyAccessor NamesSpPacCes. oo vttt e 491

Obtaining a Specific SchemaName String.o, 491
TYPE SPECITIENS . . v 492
The Proptag Namespacettt 492
Named Property ID Namespaceoovuuiiieeinniiiiiiennn 493
Named Property String Namespace., 494
Office Namespacesttt 495
DAV NamMESPACES. . . . oottt e et et e e et e e e 496
The PropertyAccessor Object i 497
The GetProperty Method 497
The SetProperty Method. i 498
The GetProperties Method i 499

The SetProperties Method i i 500

Table of Contents Xix

The DeleteProperty Method 501

The DeleteProperties Method. 501
Date-Time Propertiest e 502
Multivalued Propertiest 502
Helper Methods s 503
Detecting and Reporting Error Conditions. 505
Property Size Limitations. 506
SUMMIAIY oo e e 507
18 Add-in Setup and Deployment......... 509
Creating a Setup Projectt 509
Writing Required Keys to the Windows Registry 510
Installing to HKEY_CURRENT_USER.o 510
Installing to HKEY_LOCAL_MACHINE i 510
Registry Keys Required foran Add-In.......... 510
Registry Keys Required fora Form Region............... 512
Required Installation Components i 512
NET Framework Version 2.0. i 512

Visual Studio Tools for Office Runtime................ 513
Primary Interop Assemblies i 514
Add-in Assembly and Other Required Components 516
Usinga COM Shim e 516
Writing Custom Actions oot 516
Deploying to Users Who Are Not Administrators.t 517
SUMIMIAIY o e e e e e e 517
19 Trustand Securityo 519
Code Security for Outlook 2007. 519
Guard Principlesot 522
Security Warning TYPeS . .« ..ttt 523
Detecting Trusted State......... ... i 525
TrappPiNg ErrOrs . ..o 526
Restricted Propertiesand Methods. 526
Trusting Managed Code 531
Trustable Shared Add-Ins 531

Trust Center. . ..o 532
Administrative Optionso 535

Group Policy Security for COM Add-Ins. 535

XX Table of Contents

Exchange-Brokered Security for COM Add-Ins 536
Configuring a Security Policy. 536

Trusting an Add-In. ... 537

Form Region Policy 540

Folder Home Page Policyooo i 541

SUMIMIAIY .« et e e e e 542
INdEX. oo e e 543

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Chapter 10

Organizing Outlook Data

When you complete this chapter, you should have a good understanding of the following
areas:

Overview of organizing information in Microsoft Office Outlook 2007
Using categories and task flagging
Creating rules programmatically

Writing code to create a search folder

Customizing views with new View objects

How Outlook 2007 Helps to Organize Information

Outlook 2007 introduces several new features that help to organize the constantly growing
number of items that arrive in a user’s Inbox. Category colors and task flagging are easy to use
and provide a simple tool for getting organized. Organizational schemes for mailbox items are
almost as varied as the number of Outlook users. The focus of this chapter is not to prescribe
the best method of organizing Outlook data. Rather, you'll learn how to use the Outlook
object model to implement organizational schemes programmatically. The good news for
developers is that the Outlook object model supports all the new organizational features of
Outlook 2007. By writing a few lines of code, you can add color categories to items, mark
items for follow-up, create rules, build custom search folders, or add views.

The Categories Collection and Category Objects

Outlook 2007 provides color categorization functionality in which Outlook items can be cat-
egorized and displayed by category. Multiple color categories can be applied to a single
Outlook item, and Outlook items can be grouped or sorted by color category. Shortcut keys
can be assigned to each color category to allow users to more easily categorize items. Color
categories are user defined, and can be created, deleted, and changed either programmatically
or by user action within the Outlook user interface.

The Category object represents a single user-defined color category in the master category list,
the list of color categories presented in the Outlook user interface and represented by the

Categories collection of the NameSpace object. Unlike previous versions of Outlook, Outlook
2007 stores the master category list in the default store so that it will roam by default in most
scenarios, as is the case with an Exchange mailbox. Category objects are identified with a glo-
bally unique identifier (GUID) when created, and this identifier cannot be changed. However,

297

298

&

Part Il Working with Outlook Data

you can change the name, color, and shortcut key associated with a color category by setting
the Name, Color, and ShortcutKey properties of the Category object. The CategoryID property
can be used to retrieve the identifier of a Category object.

Outlook items are displayed based on the category name stored in the Categories property of
that Outlook item. The Categories property gets or sets a comma-delimited string of category
names. It does not return a Categories collection object. Because category names are stored as
part of the Outlook item, it is possible to add a category to an Outlook item that is not present
in the master category list. For example, a category might have been removed. To determine if
a category exists in the master category list, use the following CategoryExists method:

private bool CategoryExists(string categoryName)

{
try
{
Outlook.Category category =
Application.Session.Categories[categoryName];
if (category != null)
{
return true;
}
else
{
return false;
}
}
catch { return false; }
}

Note If the Categories property of an item contains a category name that does not exist in
the Categories collection of the Namespace object, then the category name associated with
that Outlook item is displayed, but without an associated color.

The following code sample enumerates the Category objects in the Categories collection and
writes the Name and CategoryID properties to the trace listeners in the Listeners collection:

private void EnumerateCategories()
{
Outlook.Categories categories =
Application.Session.Categories;
foreach (Outlook.Category category in categories)
{
Debug.WriteLine(category.Name);
Debug.WriteLine(category.CategoryID);

Chapter 10 Organizing Outlook Data 299

Category Colors

The Category object exposes a Color property that lets you set or get an olCategoryColor
constant. If you need to reproduce the color in a custom control, you can use these read-
only properties of the Category object:

m CategoryBorderColor
m CategoryGradientBottomColor
m CategoryGradientTopColor

These properties return an OLE_COLOR value, which is dependent on the Color prop-
erty of the Category object. For an advanced example of how to use CategoryBorderColor,
CategoryGradientBottomColor, and CategoryGradientTopColor, see ColorSwatchBuilder.cs
or ColorSwatchBuilder.vb in the PrepareMe sample add-in that accompanies this book.

Creating a Category

To create a category programmatically, you call the Add method of the Categories collection. If
the ISV category does not exist, the following code sample adds a category named ISV to the
master category list and assigns the dark blue color to this category. It also assigns Ctrl+F11 as
the shortcut key for the category.

private void AddACategory()

{
Outlook.Categories categories =

Application.Session.Categories;

if(!CategoryExists("ISV"))
{

Outlook.Category category = categories.Add("ISV",
Outlook.0TCategoryColor.olCategoryColorDarkBlue,
Outlook.0TCategoryShortcutKey.olCategoryShortcutKeyCtr1F11);

}
}

Assigning One or More Categories to an Item

To assign categories to an item, use the Categories property on the item. The Categories prop-
erty gets or sets a comma-delimited string that contains all of the categories assigned to the
item. This property can contain a maximum of 255 characters, including the commas and
spaces, to separate the category values. If you assign a category that is not in the Categories col-
lection of the Namespace object, that category will not display a color. The following code sam-
ple creates a restriction for items that contain “ISV” in the subject. This code sample uses a for
loop and the OutlookItem class to assign the ISV category to any item in the Inbox that con-
tains “ISV” in the subject. Notice that the code sample examines the string returned by

300

Part Il Working with Outlook Data

item.Categories to determine if the Categories property is empty or already has been assigned to
the ISV category.

private void AssignCategories()
{

string filter = "@SQL=" + "\"" + "urn:schemas:httpmail:subject"
+ "\"" + " ci_phrasematch "ISV'";

Outlook.Items items =
Application.Session.GetDefaultFolder(
OutTook.O1DefaultFolders.olFolderInbox).Items.Restrict(filter);

for(int i = 1; i<=items.Count; i++)

{

OutTookItem item = new OutlookItem(items[i]);
string existingCategories = item.Categories;
if(String.IsNul10rEmpty(existingCategories))
{
item.Categories = "ISV";
}
else
{
if (item.Categories.Contains("ISV") == false)
{
item.Categories = existingCategories + ", ISV";
}
}

item.Save(Q);

Displaying the Categories Dialog Box

The Outlook object model also provides the ShowCategoriesDialog method on an item to dis-
play the Categories dialog box, shown in Figure 10-1. This dialog box lets the user pick one
or more categories that are assigned to the item. The user can also create new categories or
clear existing categories with this dialog box. In the following code sample from the sample
RulesAddin project that accompanies this book, a dummy mail item is created and the
ShowCategoriesDialog method is called on the item. In this case, the categories selected by
the user are displayed in an edit box and used to create a categories rule.

private void cmdCategory_Click(object sender, EventArgs e)
{
try
{
//Create a dummy MailItem and display Categories dialog box
Outlook.MailItem oMail = (Outlook.MailItem)m_olApp.CreateItem(
Outlook.O1ItemType.oTMailItem);
if (!string.IsNul1OrEmpty(txtCategory.Text))
{
oMail.Categories = txtCategory.Text;
}
oMail.ShowCategoriesDialog(Q);
Application.DoEvents();

Cha

if (!string.IsNul10rEmpty(oMail.Categories))

txtCategory.Text = oMail.Categories;

chkCategory.Checked = true;

oMail = null;

catch(Exception ex)

LogMessage("cmdCategory_Click:
+ ex.ToString() , EventLogEntryType.Error);

{
}
}
{
}

pter 10 Organizing Outlook Data 301

Color Categories

Mame

@ Fun

| Help

[Internal
1=

0 oLm
) oom

Shorkout key

-7 =

To assign Color Categories ko the currently selected items, use the checkboxes next ta each
category, To edit a category, select the category name and use the commands to the right.

| Mew. ..

| Rename

| Delete

Color:

(]

Shorkout Key:

| (Mone)

-]

h |

Ok | | Cancel

Figure 10-1 Display the Categories dialog box programmatically.

Task Flagging

Outlook 2007 provides a new task flagging system in which certain Outlook items such as
mail items or contact items can be flagged for follow-up. Flagging an Outlook item for follow-
up displays information about that Outlook item, along with other task-based information, on
the To-Do Bar and Calendar navigation module in the Outlook user interface.

Controlling Visibility of the To-Do Bar

The To-Do Bar is displayed as a vertical pane in a typical configuration of the Outlook
Explorer window. It contains a date navigator control, upcoming appointments, and items
that have been flagged for follow-up. The To-Do Bar itself is not extensible, and configuration
options for the To-Do Bar can only be set through the Outlook user interface. You can pro-
grammatically change the visibility of the To-Do Bar using the ShowPane method of the
Explorer object.

302 Part Il Working with Outlook Data

Creating To-Do Items That Appear in the To-Do Bar

Creating to-do items programmatically is covered in the section “Create a To-Do Item” in
Chapter 5, “Built-in Item Types.” Any item that is flagged for follow-up will appear in the To-Do
Bar. As an organizational technique, item flagging creates a well-defined scheme for prioritiz-
ing tasks and to-do items. You should understand how to mark a group of items for a specified
follow-up interval. The following code example processes all items in the user’s Inbox that are
from the user’s manager and flags all high-importance items for follow-up today. If the item’s
importance is normal, then the item is flagged for follow-up this week.

private void DemoTaskFlagging()
{
const string PR_SENT_REPRESENTING_NAME =
"http://schemas.microsoft.com/mapi/proptag/0x0042001E";
const string PR_MESSAGE_CLASS =
"http://schemas.microsoft.com/mapi/proptag/0x001A001E";
Outlook.AddressEntry currentUser =
Application.Session.CurrentUser.AddressEntry;

if (currentUser.Type == "EX")

{
Outlook.ExchangeUser manager;
try
{

manager = currentUser.
GetExchangeUser() .GetExchangeUserManager();

}

catch

{
Debug.WriteLine("Could not obtain user's manager.");
return;

}

if (manager != null)

{

string displayName = manager.Name;

string filter = "@SQL=" + "\""

+ PR_SENT_REPRESENTING_NAME + "\""

+ " ="'"" + displayName + "'" + " AND " + "\""

+ PR_MESSAGE_CLASS + "\"" + " = "IPM.NOTE'";

Outlook.Items items =
Application.Session.GetDefaultFolder(
Outlook.O1DefaultFolders.olFolderInbox).
Items.Restrict(filter);

foreach(Outlook.MailItem mail in items)

{
if (mail.Importance ==

Outlook.O0TImportance.olImportanceHigh)

{
mail.MarkAsTask(
Outlook.O1MarkInterval.olMarkToday) ;
mail.Save(Q);
}

if (mail.Importance ==
Outlook.0lImportance.olImportanceNormal)

{

Chapter 10 Organizing Outlook Data 303

mail.MarkAsTask(
OutTlook.0TMarkInterval.olMarkThisWeek);
mail.Save(Q);

The Rules Collection and Rule Objects

Because they can operate either server-side or client-side, depending on the type of account
and rule, Outlook rules provide one of the most powerful Outlook features for organizing
information in a user’s mailbox. Users implement rules to enforce their own organizational
schemes. For example, some users like to create a hive of subfolders that contain unread mail
and read mail by subject area. Other users might create a subfolder hierarchy that corre-
sponds to the sender of the message. Still others categorize their mail and then use search
folders to aggregate the mail by category. As stated at the beginning of this chapter, users fol-
low a multiplicity of schemes when they organize the items in their mailboxes. The new Rules
object model in Outlook 2007 allows you as a developer to participate in the power of rules.
You can create rules programmatically to enforce a certain organizational scheme, create a spe-
cific rule that is unique to your solution, or ensure that certain rules are deployed to a group
of users.

The Rules object model supports the programmatic adding, editing, and deleting of rules. The
Rules collection and Rule objects allow you to access, add, and delete rules defined for a ses-
sion. The RuleAction and RuleCondition objects, their collection objects, and derived action
and condition objects further support editing actions and conditions.

Note The Rules object model provides partial parity with the Rules and Alerts Wizard in
the Outlook user interface. Although it does not support every single rule that you can pos-
sibly create using the wizard, it supports the most commonly used rule actions and condi-
tions. Just like any rule created using the Rules and Alerts Wizard, rules created
programmatically are applied to messages, which include mail items, meeting requests, task
requests, documents, delivery receipts, read receipts, voting responses, and out-of-office
notices.

Overview of Rules Programming

Creating one or more rules programmatically is straightforward once you understand the
architecture of the Rules object model. Figure 10-2 illustrates the basic architecture of the
Rules object model. Note that there is no separate collection that represents rule exception
conditions. Rule exception conditions are accessed through the Exceptions property of the
Rule object. The Exceptions property returns a RuleCollections object.

304

Part Il Working with Outlook Data

Namespace

RuleActions
RuleConditions

Figure 10-2 Rules object model architecture.

Now that you understand the architecture of the Rules objects, it’s time to move on to practical
coding instructions. From a top-level perspective, follow these steps when you create rules
through the Outlook object model:

1.

Obtain the Rules collection from the DefaultStore property of the Namespace object. Call
the GetRules method on DefaultStore to obtain the Rules collection. You should write this
code in a try...catch block because Outlook will raise an error if the user is offline or dis-
connected from the Exchange server.

Call the Create method on the Rules object to create an instance variable for a Rule object.
When you call the Create method, you specify a Name and a RuleType parameter. RuleType
determines whether the Rule object is a send or receive rule. Send rules operate on out-
going messages and receive rules operate on incoming messages. You cannot change the
RuleType property after the Rule object has been created. If you apply inappropriate con-
ditions to a Rule instance (such as a NewltemAlert action to a send rule), Outlook raises
an error when you call the Save method on the Rules collection.

Use the RulesActions and RuleConditions collections to enable actions, conditions, and
exceptions on the Rule object. Note that the Exceptions property on a Rule object returns
a RuleConditions collection, and any condition enabled in this collection is treated as a
rule exception condition. These collection objects represent static collections, meaning
that you cannot add additional built-in or custom actions or conditions to the collection.

For any given Rule action, condition, or exception to be operational, you must first set its
Enabled property to true. For some actions or conditions, this is all that you have to do.
For other actions or conditions, such as the MoveOrCopyRuleAction.Folder property, you
must set additional properties on the action or condition to save the Rule object without
an error.

Chapter 10 Organizing Outlook Data 305

5. Finally, you call the Save method on the Rules collection to persist the created or modi-
fied rules to storage. Again, it is recommended that you enclose the Save method in a
try...catch block to handle exceptions.

Next you'll see a detailed code sample that implements the steps just described. If the
CurrentUser property represents an ExchangeUser object, the CreateManagerRule procedure
obtains the ExchangeUser object for the manager of the CurrentUser property of the Namespace
object. The Rules object model is used to create a receive rule that moves received messages to
a subfolder of the Inbox if the message is from the user’s manager, the recipient is on the To
line of the message, and the message is not a meeting request or update. Additionally, the mes-
sage is marked for follow-up today.

Although this code sample is extensive, it provides you with a great start for understanding
how to use the Rules object model. It also illustrates appropriate error handling for conditions
that could raise an exception under certain conditions such as the user being offline or dis-
connected in cached Exchange mode. As you read through the code, notice that each of the
steps discussed earlier has been implemented in the code sample.

private void CreateManagerRule()
{
Outlook.ExchangeUser manager;
Outlook.Folder managerFolder;
Outlook.AddressEntry currentUser =
Application.Session.CurrentUser.AddressEntry;

if (currentUser.Type == "EX")
{

try

{

manager = currentUser.
GetExchangeUser() .GetExchangeUserManager();

}

catch

{
Debug.WriteLine("Could not obtain user's manager.");
return;

}

OutTook.Rules rules;

try

{
rules = Application.Session.DefaultStore.GetRules();

}

catch

{
Debug.WriteLine("Could not obtain rules collection.");
return;

}

if (manager !'= null)

{

string displayName = manager.Name;

Outlook.Folders folders =
Application.Session.GetDefaultFolder(
Outlook.O1DefaultFolders.olFolderInbox).Folders;

306 Part Il Working with Outlook Data

try
{
managerFolder =
folders[displayName] as Outlook.Folder;
}
catch
{
managerFolder =
folders.Add(displayName, Type.Missing)
as Outlook.Folder;
}

Outlook.Rule rule = rules.Create(displayName,
Outlook.OTRuleType.olRuleReceive);
//Rule conditions
//From condition
rule.Conditions.From.Recipients.Add(
manager.PrimarySmtpAddress) ;
rule.Conditions.From.Recipients.ResolveAll1();
rule.Conditions.From.Enabled = true;
//Sent only to me
rule.Conditions.ToMe.Enabled = true;
//Rule exceptions
//Meeting invite or update
rule.Exceptions.MeetingInviteOrUpdate.Enabled = true;
//Rule actions
//MarkAsTask action
rule.Actions.MarkAsTask.MarkInterval =
Outlook.OlMarkInterval.olMarkToday;
rule.Actions.MarkAsTask.FlagTo = "Follow-up";
rule.Actions.MarkAsTask.Enabled = true;
//MoveToFolder action
rule.Actions.MoveToFolder.Folder = managerFolder;
rule.Actions.MoveToFolder.Enabled = true;
try
{
rules.Save(true);
}
catch(Exception ex)
{

Debug.WriteLine(ex.Message);

Rules Collection

The Rules collection represents a set of Rule objects that are the rules available in the current

session.

Q)

Chapter 10 Organizing Outlook Data 307

Obtaining the Rules Collection

To obtain the Rules collection, you call the GetRules method on the DefaultStore property of the
Namespace object. For users connected to an Exchange server, calling GetRules can be an
expensive operation in terms of performance on slow connections.

The order of the Rule objects in the collection returned from GetRules follows that of
Rule. ExecutionOrder, with ExecutionOrder equal to 1 being the first Rule object in the collection
and Rule.ExecutionOrder equal to Rules.Count being the last Rule object in the collection.

Tip You should scope the lifetime of the Rules collection to the most constrained possible
scope. Qutlook enforces “last writer wins” when the Rules collection is saved. If another add-
in or the Rules and Alerts Wizard modifies rules while your add-in holds onto an instance of
the Rules collection, you might see unexpected results after you call Rules.Save.

Creating a Rule Object

To create an instance of a Rule object, call the Create method on the Rules collection. Depend-
ing on whether you want to create a send rule or a receive rule, specify an appropriate
OlRuleType constant to the Create method. The RuleType parameter of the added rule deter-
mines valid rule actions, rule conditions, and rule exception conditions that can be associated
with the Rule object. Newly created rules are enabled by default. If you want to create the rule
and also leave it disabled, you must explicitly set its Enabled property to false. When a rule is
added to the collection, the Rule. ExecutionOrder value of the new rule is 1. The ExecutionOrder
value of other rules in the collection is incremented by 1. The newly created Rule object is not
persisted until you call the Save method on the Rules collection. However, you can call the
Execute method on the Rule object before you save the collection.

Enumerating Rules

Use the Indexer to enumerate rules in the Rules collection. Once you have obtained a Rule
object, you can enable or disable the rule by changing its Enabled property. You can also mod-
ify the existing rule actions, conditions, and exceptions. Finally, you can execute the rule by
calling the Execute method on the Rule object. The following code sample enumerates all the
rules in the Rules collection and writes the rule’s Name, IsLocalRule, and Enabled properties to
the trace listeners in the Listeners collection:

private void EnumerateRules()
{
Outlook.Rules rules =
Application.Session.DefaultStore.GetRules();
foreach (Outlook.Rule rule 1in rules)
{
StringBuilder sb = new StringBuilder();
sb.AppendLine("Name: "

308 Part Il Working with Outlook Data

+ rule.Name);
sb.AppendLine("Local:

+ rule.IsLocalRule.ToString(Q));
sb.AppendLine("Enabled: "

+ rule.Enabled.ToString());
Debug.WriteLine(sb.ToString());

Note You can retrieve each rule in a Rules collection by indexing the collection using

Rules[Index], with Index being either the name of the rule (the default property Rule.Name),
or a value ranging from 1 through the total number of rules in the collection,
Rules.Count.Rule.ExecutionOrder indicates the order of execution of the rules in the collection
and is directly mapped with the numerical value of Index in Rules[index]. For example, Rules[1]
represents a rule with Rule.ExecutionOrder being 1, Rules[2] represents a rule with
Rule.ExecutionOrder being 2, and Rules[Rules.Count] represents the rule with
Rule.ExecutionOrder being Rules.Count.

RSS Rules Processing

The Rules collection exposes an IsRssRulesProcessingEnabled property that controls whether
RSS rule conditions are evaluated for RSS items. To persist changes to this property, you must
call Rules.Save. The IsRssRulesProcessingEnabled property corresponds to the Enable Rules On
All RSS Feeds check box in the Rules And Alerts dialog box, shown in Figure 10-3.

Rules and Alerts 7 ==
E-mail Rules | Manage Alerts
% Mew Rule... Change Rule - =3 Copy... >(Delete | % Run Rules Mow,., Options
Rule {applied in the order shown) Actions
| Clear categories on mail {recommendead) gl
v| Rian Gregg -3

Rule description {click an underlined value to edit):

Apply this rule after the message arrives
assigned to any category
clear message's categories

Enable rules on all R55 Feeds

| OF | | Cancel | Apply

Figure 10-3 Rules And Alerts dialog box.

Chapter 10 Organizing Outlook Data 309

If you set IsRssRulesProcessingEnabled to true, you can create RSS rules that operate in a differ-
ent manner than default RSS rules that move RSS items from a specific feed to a subfolder of
the RSS Subscriptions folder. If IsRssRulesProcessingEnabled is false, then no conditions about
RSS feeds will be evaluated during rules processing. To create a rule that operates on RSS
items, enable the FromRssFeed or FromAnyRssFeed rule conditions.

Deleting a Rule

To delete a Rule, call the Remove method on the Rules collection. Rules.Remove removes from
the Rules collection a Rule object specified by Index, which is either a numerical index into the
Rules collection or the rule name. You must call Rules.Save to persist the deletion.

Saving Rules

You do not save an individual Rule object. Instead you must call the Save method on the Rules
collection to save all the Rule objects in the collection. After you enable a rule, you must also
save the rule by using Rules.Save so that the rule and its enabled state will persist beyond the
current session. A rule is only enabled after it has been saved successfully.

If you set the ShowProgress argument of the Save method to true, Outlook displays a progress
dialog box. If you are saving rules on a slow connection to an Exchange server, Rules.Save is an
expensive operation in terms of performance. In this circumstance it is advisable to display
the progress dialog box; otherwise the user might believe that Outlook has hung.

Handling Errors During a Save Operation

Always place Rules.Save in a try...catch construct. The connection to the Exchange server can
go down, and you must be able to handle this exception. Exchange Server limits the maxi-
mum number of rules that can be supported by a store. The rules limit depends on the ver-
sion of Exchange Server. For Microsoft Exchange Server 2007, an Exchange administrator can
also control the rules limit per mailbox. Rules.Save returns an error when this limit is reached.
The limit is generally not an issue for users running against a Post Office Protocol 3 (POP3) or
Internet Message Access Protocol (IMAP) account, because all rules operate locally.

Saving rules that are incompatible or have improperly defined actions or conditions (such as
an empty string for TextRuleCondition. Text or MarkAsTaskRuleAction.FlagTo) will return an
error. Some combinations of RuleActions and RuleConditions are incompatible and will also
return an error.

If an error occurs during Rules.Save, the entire save operation is rolled back. Modified rules are
not saved and newly created or deleted rules are discarded. Unfortunately, the error that bub-
bles up to your code will not tell you exactly which rules or combination of RuleActions and
RuleConditions caused the error to occur.

310 Part Il Working with Outlook Data

The Rule Object

The Rule object represents an Outlook rule. A Rule object has a RuleType property that indi-
cates whether the rule is a send or receive rule. RuleType is specified when the rule is created.
RuleType cannot be changed without deleting the rule and re-creating the rule with a different
RuleType property.

Arule can execute on the Exchange server or on the Outlook client, provided that the current
user’s mailbox is hosted on an Exchange server. If the rule executes on the server, Outlook
does not have to be running for the rule conditions to be evaluated and the rule actions to be
completed. If the rule executes on the client, meaning that the IsLocalRule property of the Rule
object returns true, then Outlook must be running for the rule to execute.

Executing a Rule

To cause a rule to execute immediately, call the Execute method on the Rule object. Use
Rule.Execute to apply a rule as a one-off operation regardless of whether Rule.Enabled returns
true. Use Rule.Enabled and then Rules.Save if you want to apply the rule consistently and per-
sist the rules beyond the current session. The following code sample executes the rule created
in the CreateManagerRule procedure shown earlier:

private void ExecuteManagerRule()
{
Outlook.AddressEntry currentUser =
Application.Session.CurrentUser.AddressEntry;

if (currentUser.Type == "EX")
{

try

{

string managerName = currentUser.

GetExchangeUser() .GetExchangeUserManager() .Name;
Outlook.Rule managerRule =

Application.Session.DefaultStore.GetRules() [managerName];
if (managerRule != null)
{

managerRule.Execute(false, Type.Missing,

Type.Missing, Type.Missing);

}
}
catch(Exception ex)
{
Debug.WriteLine(ex.Message);
3

Chapter 10 Organizing Outlook Data 311

The parameters to the Execute method are optional. If you do not specify any parameters, the
rule will be applied to all messages in the Inbox but not to the subfolders of the Inbox. The
default values for the optional arguments for the Execute method are shown in Table 10-1.

Table 10-1 Parameters for Rules.Execute

Parameter Default value

ShowProgress False

Folder Inbox

IncludeSubfolders False

RuleExecuteOption OlRuleExecuteOption.olRuleExecuteAllMessages

If ShowProgress is true and the user cancels the progress dialog box, rule execution is canceled
in the same manner as if the user had canceled rule execution through the Rules and Alerts
Wizard. Execute returns an error when the user cancels the progress dialog box.

If you plan to show a custom progress user interface instead of using the progress dialog box,
you should be aware that there are no events that indicate when rule execution starts and
stops.

Causing a Rule to Operate Locally

To cause a server-side rule to operate locally, enable the OnLocalMachine rule condition. For
some rule actions that must run on the client (such as displaying a new mail alert or playing
a sound), the OnLocalMachine condition will be enabled by default when you set the Enabled
property to true for a client-side only RuleAction object. For other rule actions that normally
run on the server, you can enable an OnLocalMachine condition that will force the rule to
run locally on the client. The following code sample illustrates how an OnLocalMachine
condition forces a server-side rule to run locally. Normally a Forward action and OnlyToMe
condition will operate on the server. In this case they operate as a client-side rule because
the OnLocalMachine condition has been enabled.

private void DemoOnMachineOnly()
{
Outlook.Rules rules =
Application.Session.DefaultStore.GetRules();
Outlook.Rule rule =
rules.Create("Demo Machine Only Rule",
Outlook.OTRuTeType.oTRuleReceive);
rule.Conditions.OnlyToMe.Enabled = true;
rule.Actions.Forward.Enabled = true;
rule.Actions.Forward.Recipients.Add("someone@example.com");
rule.Actions.Forward.Recipients.ResolveAl1();
//Force the rule to execute locally
rule.Conditions.OnLocalMachine.Enabled = true;
rules.Save(true);

312

&

Part Il Working with Outlook Data

Note The corollary of enabling the OnLocalMachine condition for a rule is that the
OnOtherMachine condition will be enabled when the same rule is examined from another
machine. You cannot programmatically enable or disable a condition of type
olConditionOtherMachine. This type of rule condition indicates that the rule can run only on a
specific computer that is not the current one. This happens when the rule is created on that
computer and the OnlocalMachine rule condition is enabled, indicating that the rule can run
only on that computer. When you run the same rule on another computer, the rule will show
that the OnOtherMachine rule condition is enabled.

The RuleActions Collection

The RuleActions collection contains a set of RuleAction objects or objects derived from
RuleAction, representing the actions that are executed on a Rule object. The actions exposed
on the RuleActions collection let you enable or disable the action programmatically by setting
the Enabled property of a given rule action. The number of rule actions in the RuleActions
object is fixed.

Although the RulesActions collection lets you determine the rule actions that are enabled for a
given Rule object, not all RuleAction objects are supported for programmatic creation of rule
actions. For example, you cannot enable a rule action in your code that assigns the Importance
property to an item. However, your code can recognize a rule action created through the Rules
and Alerts Wizard that enables an action that assigns the Importance property. In this case,
RuleAction.ActionType would return OlRuleActionType.olRuleActionImportance. You could write
code similar to the following to determine that such a rule action exists. Note that you cannot
determine the Importance value assigned by the rule action.

private void ParseImportanceRuleAction()

{
Outlook.Rules rules =
Application.Session.DefaultStore.GetRules();
Outlook.Rule rule =
rules["Importance Rule"];
foreach (Outlook.RuleAction ruleAction in rule.Actions)
{
if (ruleAction.ActionType ==
Outlook.O1RuleActionType.olRuleActionImportance)
{
Debug.WriteLine(ruleAction.Enabled.ToString(Q));
}
}
}

Table 10-2 lists all rules actions listed by OlRuleActionType. From this table, you can determine
which rule actions are supported when creating a rule programmatically by looking at the
Valid When Creating New Rules with Code? column. You can also determine which rule
actions are valid for receive and send rules.

Chapter 10 Organizing Outlook Data

Table 10-2 Rule Actions by O/RuleActionType

313

Valid when
creating Valid for
Constant in new rules receive Valid for

Action OlRuleActionType with code? rules? send rules?
Assign the message to the olRuleActionAssignTo- Yes Yes Yes
categories specified in the Category
Categories property.
Cc the message to the olRuleActionCcMessage Yes No Yes
recipient list specified in
the Recipients property.
Clear all categories for the olRuleActionClear- Yes Yes Yes
message. Categories
Copy the message to the olRuleActionCopyToFolder Yes Yes Yes
folder specified in the
Folder property.
Run a custom action. olRuleActionCustomAction No Yes Yes
Defer the delivery by a olRuleActionDefer No No Yes
specified number of
minutes.
Delete the message. olRuleActionDelete Yes Yes No
Permanently delete the olRuleActionDelete- Yes Yes No
message. Permanently
Display a desktop alert. olRuleActionDesktopAlert Yes Yes No
Clear the message flag. olRuleActionFlagClear No Yes No
Flag the message with the olRuleActionFlagColor No Yes No
color specified.
Flag the message for olRuleActionFlagFor- No Yes Yes
action in days specified. ActionInDays
Forward the message to olRuleActionForward Yes Yes No
the recipient list specified
in the Recipients property.
Forward the message as olRuleActionForwardAs- Yes Yes No
an attachment to the Attachment
recipient list specified in
the Recipients property.
Mark the message with olRuleActionImportance No Yes Yes
the specified Importance
value.
Mark message as a task for olRuleActionMarkAsTask Yes Yes No
follow-up using the FlagTo
and Markinterval proper-
ties of the MarkAsTask-
RuleAction object.
Mark as read. olRuleActionMarkRead No Yes No

314 Part Il Working with Outlook Data

Table 10-2 Rule Actions by O/RuleActionType

Valid when
creating Valid for

Constant in new rules receive Valid for
Action OlRuleActionType with code? rules? send rules?
Move the message to the olRuleActionMoveToFolder Yes Yes No
folder specified in the
Folder property.
Display the message spec- olRuleActionNewltemAlert Yes Yes No
ified in the Text property.
Notify that the message olRuleActionNotifyDelivery Yes No Yes
has been delivered.
Notify that the message olRuleActionNotifyRead Yes No Yes
has been read.
Play the .wav file specified olRuleActionPlaysound Yes Yes No
in the FilePath property.
Print the message to the olRuleActionPrint No Yes No
default printer.
Redirect the message to olRuleActionRedirect Yes Yes No
the recipient list specified
in the SendRuleAction-
.Recipients property.
Start a script. olRuleActionRunScript No Yes No
Mark the message with olRuleActionSensitivity No No Yes
the specified sensitivity.
Have server reply using olRuleActionServerReply No Yes No
the specified message.
Start an .exe file. olRuleActionStart- No Yes No

Application
Stop processing more olRuleActionStop Yes Yes Yes
rules.
Reply using the specified olRuleActionTemplate No Yes No
template (.oft) file.
Unrecognized rule action. olRuleActionUnknown No Yes No

The RuleConditions Collection

The RuleConditions collection contains a set of RuleCondition objects or objects derived from

RuleCondition, representing the conditions or exception conditions that must be satisfied for
the Rule to execute. The conditions exposed on the RuleConditions collection let you enable or
disable the condition programmatically by setting the Enabled property of a given rule condi-
tion. The number of rule conditions in the RuleConditions collection is fixed.

Although the RuleConditions collection lets you determine the rule conditions that are enabled
for a given Rule object, not all RuleCondition objects are supported for programmatic creation

Chapter 10 Organizing Outlook Data

315

of rule conditions. See the earlier discussion of RuleActions for a method of determining which
conditions are enabled for a given rule.

Table 10-3 lists all rules actions listed by OlRuleConditionType. From this table, you can deter-
mine which rule conditions are supported when creating a rule programmatically by looking
at the Valid When Creating New Rules with Code? column. You can also determine which

rule conditions are valid for receive and send rules.

Table 10-3 Rule Actions by O/RuleConditionType

Valid when
creating Valid for
Constant in new rules receive Valid for

Condition OlRuleConditionType with code? rules? send rules?
Account is the account olConditionAccount Yes Yes Yes
specified in the Account
property.
Message is assigned any olConditionAnyCategory Yes Yes Yes
category.
Body contains words spec- olConditionBody Yes Yes Yes
ified in Text property.
Body or subject contains olConditionBodyOrSubject Yes Yes Yes
words specified in Text
property.
Message is assigned the olConditionCategory Yes Yes Yes
category or categories
specified in the Categories
property.
Message has my name in olConditionCc Yes Yes No
the Cc box.
Message was received olConditionDateRange No Yes Yes
between x and y, where x
and y are Integer values.
Message is flagged for the olConditionFlaggedFor- No Yes Yes
specified action. Action
Message uses the form olConditionFormName Yes Yes Yes
specified in the Form-
Name property.
Sender is in the recipient olConditionFrom Yes Yes No
list specified in the Recipi-
ents property.
Message is generated olConditionFromAnyRss- Yes Yes No
from any RSS subscription. Feed
Message is generated olConditionFromRssFeed Yes Yes No

from a specified RSS sub-
scription.

316

Part IlI

Table 10-3 Rule Actions by O/RuleConditionType

Working with Outlook Data

Valid when
creating Valid for
Constant in new rules receive Valid for

Condition OlRuleConditionType with code? rules? send rules?
Message has an attach- olConditionHasAttach- Yes Yes Yes
ment. ment
Message is marked with olConditionimportance Yes Yes Yes
the specified level of
importance.
Rule can run only on this olConditionLocalMachine- Yes Yes Yes
machine. Only
Message is a meeting invi- olConditionMeetinglInvite- Yes Yes Yes
tation or update. OrUpdate
Message header contains olConditionMessage- Yes Yes No
words specified in the Text Header
property.
Message does not have olConditionNotTo Yes Yes No
my name in the To box.
Message is sent only to olConditionOnlyToMe Yes Yes No
me.
Message is an out-of- olConditionOOF No Yes No
office message.
Rule can run only on a olConditionOtherMachine No Yes Yes
specific machine that is
not the current one.
Document property is olConditionProperty No Yes Yes
exactly, contains, or does
not contain specified
properties.
Recipient address contains olConditionRecipient- Yes Yes Yes
words specified by the Address
Text property.
Sender address contains olConditionSenderAddress Yes Yes No
words specified by the
Text property.
Sender is in the address olConditionSenderIn- Yes Yes No
list specified in the AddressBook
Address property.
Message is marked with olConditionSensitivity No Yes Yes
the specified level of sen-
sitivity.
Sent to recipients (To, Cc) olConditionSentTo Yes Yes Yes

are in the recipient list
specified in the Recipients

property.

Chapter 10 Organizing Outlook Data 317

Table 10-3 Rule Actions by O/RuleConditionType

Valid when
creating Valid for
Constant in new rules receive Valid for

Condition OlRuleConditionType with code? rules? send rules?
Message size is between x olConditionSizeRange No Yes Yes
andy in units of KB, where
x and y are Date values.
For example, "10;50" sets
the size condition
between 10 and 50KB.
Subject contains words olConditionSubject Yes Yes Yes
specified in the Text
property.
My name is in the To box. olConditionTo Yes Yes No
Message has my name in olConditionToOrCc Yes Yes No
the To or Cc box.
Unrecognized rule olConditionUnknown No Yes No
condition.

Get or Set Action or Condition Properties with an Array

Certain actions or conditions get or set an array that represents the conditions to be evaluated
or the actions to be completed. The most notable example is the Text property of the
TextRuleCondition. The Text property returns or sets an array of string elements that represents
the text to be evaluated by the rule condition. For the Text property, you must assign an array
with one string or multiple strings for evaluation. Multiple text strings assigned in an array are
evaluated using the logical OR operation. Properties that get or set an array are as follows:

AddressRuleCondition.Address
AssignToCategoryRuleAction.Categories

CategoryRuleCondition.Categories

FormNameRuleCondition. FormName
m TextRuleCondition. Text

The following code sample shows you how to use arrays for some of these properties. In this
sample, a rule is created that assigns categories based on conditional evaluation of the words
“Office,” “Outlook,” and “2007” in the subject of the item. If the condition is satisfied, then the
categories of Office and Outlook are assigned to the item. Note that the code checks for the exist-
ence of these categories in the Categories collection using the CategoryExists method listed earlier
in this chapter. If the category does not exist, the category is added to the master category list.

private void CreateTextAndCategoryRule()

{
if(!CategoryExists("0ffice"))

318 Part Il Working with Outlook Data

{
Application.Session.Categories.Add(
"0ffice",Type.Missing, Type.Missing);
}
if(!CategoryExists("Outlook"))
{
Application.Session.Categories.Add(
"Outlook",Type.Missing, Type.Missing);
}

Outlook.Rules rules =
Application.Session.DefaultStore.GetRules();
Outlook.Rule textRule =
rules.Create("Demo Text and Category Rule",
Outlook.OTRuleType.oTRuleReceive);
Object[] textCondition =
{ "Office", "Outlook", "2007" };
Object[] categoryAction =
{ "Office", "Outlook" };
textRule.Conditions.BodyOrSubject.Text =
textCondition;
textRule.Conditions.BodyOrSubject.Enabled = true;
textRule.Actions.AssignToCategory.Categories =
categoryAction;
textRule.Actions.AssignToCategory.Enabled = true;
rules.Save(true);

Rules Sample Add-In

The Rules Sample add-in is available in a Microsoft Visual Basic .NET version (RulesAddinVB)
and in a C# version (RulesAddinCS) in the sample code on this book’s companion Web site.

The Rules Sample add-in demonstrates how you can substitute a custom Microsoft Windows
Form dialog box for the default Outlook Create Rule dialog box that can be invoked from the
context menu for an item. Corporate developers can modify and extend this example to create
their own version of the Rules Sample add-in. The custom dialog box could promote the cre-
ation of rules that you want to deploy in your organization. Figure 10-4 shows the default
Outlook Create Rule dialog box.

Create Rule 7=l

‘when I get e-mail with all of the selected conditions
/| From Ryan Gregg
Subject contains | Cuskomer Meeting: Contosa
Sentto |me only lz‘
Do the Following

Display in the Mew Tkem Alert window

Flay a selected sound: ‘Windows Mokify way |I| |E| | Browse. .. |
J|Move the item to Folder: Ryan Gregg | Select Folder... |
| OF | | Cancel | | Advanced Options. .. |

Figure 10-4 Outlook Create Rule dialog box.

Chapter 10 Organizing Outlook Data 319

When you build and install the Rules Sample add-in following the instructions that accom-
pany the sample, you'll find that the add-in has repurposed the Create Rule command on the
item context menu so that the custom Windows Form dialog box, shown in Figure 10-5,
appears in place of the default Outlook Create Rule dialog box. Due to space limitations, the
Rules Sample add-in is not discussed in detail here. Although this sample is relatively simple,
it is packed with great code samples for creating rules programmatically and repurposing
command bar and Ribbon commands.

Create Rule (=3

Wwhen | get e-mail with any of the checked conditions

/| From Fiyan Gregg
Subject contains Customer Meeting: Contoso

Sent to arly me -

['o the following

Farward to | Sendto. |

Mark for Follow up - Today -
J| Move tao folder | Folder.. |

Azzign to category | Category... |
Except when

J| The meszage iz a meeting request or update

Fule

J| Run rule now Mame Ryan Gregg

| ()8 || Cancel |

Figure 10-5 Custom Windows Forms dialog box appears in place of the default Create Rules
dialog box.

Search Folders

Search folders provide another way to organize Outlook data. Think of a search folder as a vir-
tual folder that can contain items located across different folders in a given store. This section
shows you how to create search folders programmatically. You can create and persist search
folders so that they are visible in the Outlook folder hierarchy, or you can create searches
dynamically that are not saved. If the search folder is not saved, it will not appear in the folder
hierarchy. If a search folder is an integral component of your solution, you should consider
adding your solution search folder to the user’s favorite folders to promote its visibility. Later
in this chapter you'll see how you can create a search folder programmatically and add that
search folder to the user’s favorite folders.

When to Use a Search Folder

A search folder provides a virtual folder that contains items that meet a set of search criteria.
If you want to use a search folder in your solution, you should understand the following
guidelines for search folders:

320

Part Il Working with Outlook Data

Search folders are only supported for items in mail folders.

You can run multiple searches simultaneously by calling the AdvancedSearch method in
successive lines of code. A maximum of 100 simultaneous searches can be performed
using the Microsoft Outlook user interface and the Outlook object model.

You can only create the criteria for a search folder using a DAV Searching and Locating
(DASL) query. For additional information on DASL and Jet query languages, see Chapter
11, “Searching Outlook Data.” Note that you cannot use a Microsoft Jet query for the
Filter parameter of AdvancedSearch. If Instant Search is enabled on a store that contains
a folder specified in the Scope parameter, you can use Instant Search keywords to
improve the performance of your search. If you use Instant Search keywords and Instant
Search is not enabled, Outlook will return an error and your search will fail.

Creating search folders on Exchange Server can affect the server’s performance. For addi-
tional information on search folders and performance, see the section “Performance” in
Chapter 11.

Search folders can search in multiple folders and subfolders within a store. To specify
multiple folders for the Scope parameter, use a comma character between each folder
path and enclose each folder path in single quotes.

The Outlook object model does not allow you to modify search folder criteria dynami-
cally. If you create a search folder programmatically, the end user cannot modify criteria
for the search folder. If you need to modify the criteria for a programmatically created
search folder, you must delete the search folder programmatically and then re-create it.
The end user can modify the scope for a programmatically created search folder, but it
cannot be modified programmatically for an existing search folder.

Use the GetTable method of the Search object or the Search.Results object to enumerate items
returned by the search. When you obtain a Table object from the GetTable method, you can
add or remove table columns. However, you cannot call the Restrict method on the Table
object to modify the original criteria specified by the Filter parameter to AdvancedSearch.

Because the results of AdvancedSearch can be returned asynchronously, you should use
the AdvancedSearchComplete event of the Application object to obtain the results of the
search. Use the IsSynchronous property of the Search object to determine if the search is
synchronous or asynchronous.

Search folders cannot span stores.

Outlook 2007 does not support search folders for appointment, contact, task, and other
folder types.

Enumerating Search Folders

To enumerate search folders, you call the GetSearchFolders method on the Store object.
GetSearchFolders returns all the visible active search folders for the Store object. It does not return
uninitialized or aged-out search folders. GetSearchFolders returns a Folders collection object with

Chapter 10 Organizing Outlook Data 321

Folders.Count equal to zero (0) if no search folders have been defined for the store. Not all store
providers (the Exchange public folder store, for example) support search folders. If the store
provider does not support search folders, calling Store. GetSearchFolders will raise an error.

The following code sample enumerates the search folders on all .pst or .ost stores for the cur-
rent session and writes the search folder path to the trace listeners in the Listeners collection:

private void EnumerateAllSearchFolders()

{
Outlook.Stores stores = Application.Session.Stores;
foreach (Outlook.Store store in stores)
{
if (store.IsDataFileStore)
{
Outlook.Folders folders = store.GetSearchFolders();
foreach (Outlook.Folder folder in folders)
{
Debug.WriteLine(folder.FolderPath);
}
}
}
}

Note Although you can enumerate search folders programmatically, you cannot activate a
search folder using code. You also cannot determine the built-in or custom criteria for an
existing search folder.

Creating a Search Folder Programmatically

To create a search folder programmatically, you call the AdvancedSearch method of the Application
object and pass the Scope, Filter, SearchSubFolders, and Tag parameters. The AdvancedSearch
method returns a Search object. Once you have obtained a Search object, you can call the Save
method on the Search object to create a search folder that is visible in the Outlook user interface,
or you can examine the contents of the search programmatically without saving the search
folder. The GetTable method of the Search object allows you to enumerate items in the Search
object in a performant manner. Table 10-4 lists the parameters for the AdvancedSearch method.

Table 10-4 Parameters for the AdvancedSearch Method

Name Required? Datatype Description

Scope Required String The scope of the search; for example, the folder
path of a folder. It is recommended that the folder
path be enclosed within single quotes. Otherwise,
the search might not return correct results if the
folder path contains special characters, including
Unicode characters. To specify multiple folder
paths, enclose each folder path in single quotes and
separate the single-quoted folder paths with a
comma.

322

Part Ill

Working with Outlook Data

Table 10-4 Parameters for the AdvancedSearch Method

Name

Required?

Data type

Description

Filter

Optional

String

@SQL= prefix.

The DASL search filter that defines the parameters
of the search. Do not prefix the DASL filter with the

SearchSubFolders

Optional

Boolean

Determines if the search will include any of the
folder’s subfolders. If SearchSubFolders is true and
multiple folders are specified by scope, then the

subfolders of all folders specified in scope are

searched.

Tag

Optional

String

The name given as an identifier for the search.

The following extensive code sample provides an end-to-end illustration of how to create a
search folder programmatically. The code creates a search folder that contains all items in the
Inbox and RSS Subscriptions folders and their subfolders that contain items with “Office” in

the subject. The search folder created by the sample code is shown in Figure 10-6.

iadNew - | 3 X |

Edit Miew Go Tools

(~) Office Search - Microsaft Outlook
i File

Actions Help

2 Forward | 5

¥ | L Send/Regeive + [| [{d Search sddress baoks M

Mail «

A Dffice Search

Favorite Folders

»

[Inbox

O Urread Maif

[Sent Ttems

2 Office Search (41)

[search Office Search

p~l+

Mail Folders ES

2] All Mail tems

=2 S5t Mailbox - Randy Byrme =
(5] Deleted tems [4)
L7 Drafts [3)]
=3[nbox
(1 Jared Brown
(1 Ryan Gregg
L InfoPath Forms
[Junk E-mail
(4] Outbox
3 ([Rss subscriptions
[sent Items
= Lo search Folders
) Categarized Maif
U Categaryflin
) Categoryinternal
) Categoryisy
U CateganyMve
U CategarsOLM
O Large Mail
0 Office Search [41) ™

~ Mail

H] calendar

&=| contacts

g -

()

(=) .NET4Office
] Eric Carter 971472006
+STO 2005 Second Ed.
] Eric Carter 872212006
On-demand webcast ...
] Eric Carter 773112006
Office Deweloper Con...
] Eric Carter 773112006
Office Deweloper Con...
] Eric Carter 672772006
Updated Office Citize...
|| Eric Carter 6782006
&YSTO release to sup...
] Eric Carter 572472006
YSTO 3" CTP for Offi..
|| Eric Carter 57472006
Creating a Ribaon for...
|| Eric Carter 371672006
Office Deweloper Con...
] Eric Carter 1171472005
The first must-hae ..

& Andrew Whitechapel
] andrewsw 2/18/2006

Converging the Offic..
& digg

] digg 671472006
US Patent Office Ope...

Arranged By: Folder |Sontop & &

VSTO 2005 Second Edition Beta: Add-ins for Office
2007 and Office 2003
Eric Carter

Click here to wiew the full article in your default Web browser or to
download the article and any enclosures,

Thu 9/14/2006 1:51 PM

Type 3 question far help o

To-Do Bar e Bl

So the big announcement today--ok, excluding the
announcement of Zune and Wii--is the availability of the
2007 Beta 2 Technical refresh and the beta of ¥STO 200

Qctoher 2006
SuMo Tue Th Fr Sa

12
59
15 16
22 23
29 30

3 456 7
10 11 12 13 14

17[18] 19 20 21

24 25 26 27 28

31
0O0M on MSDN
o

10030 AM - 11:30 AW
3672529

Second Edition [SE).

First of all, I'm currently using Office 2007 Beta 2 Techn|=
Refresh in all my everyday work and it is pretty great. [
can alsa download WSTO 2005 SE and it installs right on
W5TO 20085 and works with Office 2007 Beta 2 Technical
50 you can start deweloping against Office 2007,

Also (2 brand new announcement today] wSTO 2005 SE
install on top of Wisual Studio 2005 Professional. So if y
Professional and have felt left out (Professional didn't h
projects to target Office, only Y3TO and W5TS) you can n
install wSTO 2005 SE on top of your Prafessional install ¢
daing Office development taday.

WSTO 2005 SE installs a bunch of prajects that you can L
Office 2007 add-in development. You get Excel, InfoPat
Outlook, PowerPoint, Visio, and Ward suppart.

Also (2 brand new announcement today), wSTO 2005 SE -
4 »

Training: Cross-Team Commu
1:00 PM - 5:00 P
Blclg 323/332 =

Thu 11:00 AR - 12:00 PR

0OM Sample Code
36/2529; Randy Byrne o

Arranged By: Due Date|

Type 3 new task
& ¥ Mo Date

Contact Portal Id...
Contact Portal Id...

ov
ov
& V¥ Today

e weekly Dev... (0¥

Meeting anwih.., [¥
QOM Elogs \d
Back up Busines... \d

5T lterns |

&l falders are up to date, | £ Connected to Micrasoft Exchenge = | .

Figure 10-6 Create the Office Search search folder programmatically.

The sample assumes that you are creating a search folder using an Outlook add-in. The
InitializeAddin procedure is called by the add-in’s OnConnection procedure.

private void InitializeAddin()

{

3

Chapter 10 Organizing Outlook Data

Application.AdvancedSearchComplete += new
Outlook.ApplicationEvents_11_AdvancedSearchCompleteEventHandler(
Application_AdvancedSearchComplete);

CreateOfficeSearch();

private void CreateOfficeSearch()

{

// Construct search filter

// Only use ci_ keywords if Instant Search 1is enabled
string filter;

if (Application.Session.DefaultStore.IsInstantSearchEnabled)
{

filter = "urn:schemas:httpmail:subject”
+ " ci_phrasematch 'Office'";
}
else
{
filter = "urn:schemas:httpmail:subject"
+ " Tlike '%0ffice%'";
}

// Construct search scope

StringBuilder sb = new StringBuilder(Q);

sb.Append("'");

sb.Append(Application.Session.GetDefaultFolder(
OutTook.O1DefaultFolders.olFolderInbox).FolderPath);

sb.Append("'");

sb.Append(",");

sb.Append("'");

sb.Append(Application.Session.GetDefaultFolder(
Outlook.O1DefaultFolders.olFolderRssFeeds).FolderPath);

sb.Append("'");

string scope = sb.ToString(Q);

// Call AdvancedSearch method

Outlook.Search search =
Application.AdvancedSearch(
scope, filter, true, "My Office Search™);

// To save the search as a search folder,

// you can call Search.Save()

search.Save("Office Search");

// Add the search folder to favorites

Outlook.Folder folder =
Application.Session.DefaultStore.GetSearchFolders()
["Office Search"] as Outlook.Folder;

Outlook.NavigationPane pane =
Application.ActiveExplorer().NavigationPane;

Outlook.MaiTModule mailModule =
pane.Modules.GetNavigationModule(
Outlook.OTNavigationModuleType.oTModuleMail)
as Outlook.MailModule;

Outlook.NavigationGroup mailGroup =
mailModule.NavigationGroups.GetDefaultNavigationGroup(
Outlook.01GroupType.olFavoriteFoldersGroup);

mailGroup.NavigationFolders.Add(folder);

323

324 Part Il Working with Outlook Data

Each bullet in the following list discusses an important aspect of the sample code just shown:

The InitializeAddin procedure creates an event handler for the AdvancedSearchComplete
event on the Outlook.Application object and calls the CreateOfficeSearch procedure.
Because AdvancedSearch returns results asynchronously, you need to create an event
handler to determine when the search has completed.

CreateOfficeSearch creates instance variables named filter and scope, and then passes
those arguments to the AdvancedSearch method of the Application object. If Instant
Search is enabled and DefaultStore.IsInstantSearchEnabled is true, then filter contains the
ci_phrasematch keyword to create a phrase match search for “Office” in the item subject.
If Instant Search is not enabled and DefaultStore.IsInstantSearchEnabled is false, then filter
contains the like keyword to create a substring match search for “Office” in the item sub-
ject. Note that the filter does not impose an additional restriction for message class so
that all item types (including meeting requests in the Inbox that contain “Office” in the
subject) will be returned by the search. If you want to restrict by message class, you
should add additional conditions to the criteria. The scope string specifies multiple fold-
ers for the search, namely the Inbox and RSS Subscriptions folders.

CreateOfficeSearch calls the AdvancedSearch method of the Application object to return a
Search object named search. The optional SearchSubfolders argument is true so that sub-
folders of the target folders will be searched. Also the Tag argument is specified so that
the Tag property of the Search object will have the value My Office Search.

CreateOfficeSearch saves the Search object named search returned by AdvancedSearch. The
Save method is called on the search instance variable to persist the search as a search
folder. The name of the search folder is Office Search. Although the code does not illus-
trate this precaution, you might want to check the Folders collection returned by
DefaultStore.GetSearchFolders() to ensure that a search folder with same name does not
already exist.

Once the search folder has been saved, you can find the search folder in the Folders col-
lection returned by DefaultStore. GetSearchFolders(). In this case, the code returns a Folder
object that represents the newly created search folder.

Now that you have an instance variable representing the search folder, you can use
NavigationPane and related objects to add the newly created search folder to the user’s
favorite folders.

Finally, the AdvancedSearchComplete method will fire when the search is complete. In the
Application_AdvancedSearchComplete event procedure, the code checks that the Search
object passed to the event is the search named My Office Search. You then use the
GetTable method on the Search object and write the subject for every row in the table to
the trace listeners in the Listeners collection.

Chapter 10 Organizing Outlook Data 325

Outlook Views

Outlook 2007 allows you to create customizable views that allow you to better sort, group,
and ultimately view data of all different types within the View Pane of Explorer. You can also
customize built-in views programmatically. There are a variety of different view types that pro-
vide the flexibility needed to organize your solution’s data. For example, Microsoft Business
Contact Manager uses the custom view shown in Figure 10-7 to organize and present solution
data in the view named By Campaign Type in the Marketing Campaigns folder.

~ Marketing Campaigns in Business Contact Manager - Micrasoft Outiook - e x

i File Edit Miew Go Tools Actions BusinessContactManager Help o

L Mew - 0 K| | om0 RN

¢ £} Business Contact Manager Home | Display = | -]

Tasks « || @ Marketing Campaigns [Pl¥|l «
) All Task tems + || O] campaign hame & | campaian code Campaign Type & | Executed | _|
My Tasks A - o
v = Campaign Type: Direct Mail Print (1 item) o

To-Do List

g ¥ a0 o
2 Tasks «lf Buy1, GetlFree Campaign 10/17/2006 1:40:5... Direct Mail Print o
= 2
] Tasks

z Tasks (= Campaign Type: SeminarCanference (1 item] -
CnE T = |[e Partrers Unlimited Campaign 10/17/2006 1:333... Seminar/Conference

%{, OutlookTest in Public Folders 9
Business Contact Manager % @
. E
2] Opportunities in Business Contact Manas 2
2] Marketing Campaigns in Business Cantac g
7] Business Projects in Business Contact Ma)
2] Project Tasks in Business Contact Manage 3

g

Current Yiew S

@ [By Campaign Type |

[Launched] v
[Matketing Campaign List] z
simple List E
Detailed List =
=
Ative Tasks Hl
Hext Sewen Days - =
—~J Mail
TH] catendar
&=| contacts
o] Tasks
bl G (&
2ltems | | [

Figure 10-7 Custom By Campaign Type view in the Marketing Campaigns folder.

Objects That Derive from the View Object

Outlook 2007 supports the following objects that represent Outlook views. Table 10-5 lists
new Outlook 2007 view objects that derive from the View object. For a complete listing of all
the properties and methods of these view objects, see the Outlook Developer’s Reference.

Table 10-5 Outlook 2007 View Objects

Object name Description
BusinessCardView This object allows you to view data as a series of Electronic Business Card
images.

CalendarView This object allows you to view data in a calendar format.

326 Part Il Working with Outlook Data

Table 10-5 Outlook 2007 View Objects

Object name Description

CardView This object allows you to view data in a series of cards.

IconView This object allows you to view data as icons, similar to a Windows folder or
Explorer.

TableView This object allows you to view data in a simple, field-based table.

TimelineView This object allows you to view data in a customizable linear time line.

Although you can use the View object to interact with the properties and methods common to
all views, you must cast the View object to one of the derived view objects, such as the CardView
object, to access certain properties, such as the HeadingsFont property of the CardView object.
Use the ViewType property of the View object to determine which type of view is represented
by that object. For example, the following code sample obtains the CurrentView object for the
Inbox. If the CurrentView represents a TableView object, then the code creates an instance of
the TableView and sets the AllowInCellEditing property to true. The code then calls the Apply
method to reflect the change to the view in the Outlook user interface.

private void DemoAllowInCellEditingForView()

{

Outlook.View view =
Application.Session.GetDefaultFolder(
Outlook.0TDefaultFolders.olFolderInbox).CurrentView;

if (view.ViewType == Outlook.01ViewType.olTableView)

{

OutTook.TableView tableView = (Outlook.TabTleView)view;
tableView.AllowInCellEditing = true;
tableView.Apply(Q;

}

}

Adding or Removing a View Programmatically

You can define a new view by using the Add method of the Views collection for a Folder object.
Visibility for the view can be set either at the time of creation, by specifying an OlViewSaveOption
constant in the SaveOption parameter of the Add method, or any time after the view is created,
by specifying an OlViewSaveOption constant for the SaveOption property of the View object.
Adding a new view raises the ViewAdd event of the Views collection. For example, the follow-
ing code sample adds a new view named Meeting Requests to the user’s Inbox. The DASL
string supplied for the Filter property of the View object causes the view to display only items
that contain “IPM.Schedule” in the message class for the item.

private void CreateMeetingRequestsView()
{
const string PR_MESSAGE_CLASS =
"http://schemas.microsoft.com/mapi/proptag/0x001A001E";
Outlook.Views views =
Application.Session.GetDefaultFolder(

Chapter 10 Organizing Outlook Data 327

Outlook.O1DefaultFolders.olFolderInbox).Views;
OutTook.TableView tableView = (Outlook.TableView)
views.Add("Meeting Requests",
Outlook.0TViewType.olTableView,
Outlook.01ViewSaveOption.olViewSaveOptionThisFolderEveryone);
tableView.Filter = "\"" + PR_MESSAGE_CLASS + "\"" +
" Tike "IPM.Schedule%'";
tabTleView.Save();
tableView.Apply(Q);
}

If you need to remove a view from a folder, use the Remove method of the Views collection to
remove an existing custom view. If you attempt to remove a built-in view, Outlook will raise an
error. Removing a view raises the ViewRemove event of the Views collection.

Once a view is defined, you can customize the view programmatically by casting the View
object to one of the derived view objects and performing whatever changes are needed. Use
the Save method of the derived view object or the View object to save any changes to the view.

You can apply the view, once defined and customized, to the current Explorer object by using
the Apply method of the derived view object or the View object. Applying a view raises the
ViewSwitch event of the Explorer object.

Customizing Your View

There are a variety of methods for customizing a built-in or custom view. In previous versions
of Outlook, developers used the XML property of the View object to customize a view. In
Outlook 2007, you can use the first-class properties of the derived View object to customize
the view. Although the XML property of the View object is still available, you can achieve more
consistent and easier results by using new view objects such as ViewField, OrderField,
ColumnFormat, and AutoFormatRule.

Specifying Fields in a View

You can specify which Outlook item properties are displayed in a view by adding one or more
properties to the ViewFields collection of any of the following objects:

m CardView
B TableView

BusinessCardView, CalendarView, IconView, and TimelineView objects use other methods of
determining which Outlook item properties are displayed within the view. The fields dis-
played for the BusinessCardView object, for example, are determined by the Electronic Busi-
ness Card (EBC) layout associated with each displayed Outlook item.

328

Part Il Working with Outlook Data

The ViewFields collection for those views can be retrieved by accessing the ViewFields property
of the appropriate View object. The Add method of the ViewFields collection is used to create a
ViewField object that represents the Outlook item property to be displayed in the view.

Note To add built-in fields to the ViewFields collection, the property must exist in the Out-
look field registry; otherwise Outlook will raise an error when you call the Add method. Use
the Field Chooser to determine if the field exists in the Outlook field registry. To add custom
fields to the ViewFields collection, the custom property must exist in the UserDefinedProperties
collection of the parent Folder object; otherwise Outlook will raise an error when you call the
Add method.

A ViewField object not only identifies an Outlook item property to display within the view, but
also describes how the values for that property should be displayed. You can change how indi-
vidual column properties are displayed in a view by modifying the ColumnFormat property of
the ViewField object.

The following code sample adds the Start and End fields to the Meeting Requests view. It also
changes the label for the From field to Organized By.

private void ModifyMeetingRequestsView()

{

Outlook.TableView tableView = null;
OutTook.ViewField startField = null;
OutTlook.ViewField endField = null;

Outlook.ViewField fromField = null;

try
{
tableView =
Application.Session.GetDefaultFolder(
Outlook.01DefaultFolders.olFolderInbox)
.Views["Meeting Requests"] as Outlook.TableView;
}
catch { }
if (tableView != null)
{
try
{
startField = tableView.ViewFields["Start"];
}
catch{}
if (startField == null)
{
startField = tableView.ViewFields.Add("Start");
}
try
{
endField = tableView.ViewFields["End"];
}
catch{}

if (endField == null)
{

Chapter 10

endField = tableView.ViewFields.Add("End");

}
try
{
fromField = tableView.ViewFields["From"];
}
catch{}
if (fromField != null)
{
fromField.ColumnFormat.Label = "Organized By";
}
try
{
tableView.Save(Q);
}
catch (Exception ex)
{
Debug.WriteLine(ex.Message);
}

Filtering Items in the View Object

Organizing Outlook Data 329

Outlook items can be filtered in any view derived from the View object by specifying a valid

DASL filter expression in the Filter property of the View object. Do not prefix the DASL string
for the filter expression with @SQL= as you must for the Restrict method on the Table or Items
objects. For more information about creating a DASL filter expression to filter Outlook items,
see Chapter 11.

@ Warning Do not use c_phrasematch and ci_startswith keywords in the filter expression for a
view. The performance of the view will not be optimized if you use these keywords. For a
view filter, use the = or like operators to construct your filter expression.

Sorting Items in a View

Items in a view can be sorted by adding one or more Outlook item properties to the
OrderFields collection of any of the following objects:

BusinessCardView
CardView
IconView

TableView

330 Part Il Working with Outlook Data

Outlook items in a CalendarView or TimelineView object are displayed in chronological order,
depending on the values of the Outlook item properties specified for the StartField and
EndField properties of the view.

The OrderFields collection for those views can be accessed with the SortFields property of the
appropriate view object. The Add method of the OrderFields collection is used to create an
OrderField object that represents the Outlook item property to be sorted.

Specifying Properties for Sorting

You can add either built-in or custom Outlook item properties to the OrderFields collection.
The order in which the properties are included in the OrderFields collection determines the
order in which the properties are sorted, whereas the IsDescending property of the OrderField
object, which represents an Outlook item property, determines whether the values of that
property are sorted in ascending or descending order.

Specifying Built-In Properties for Sorting
The following guidelines should be used when specifying built-in Outlook item properties:

m Builtin properties can be specified either by property name (for example, Subject) or by
namespace (for example, http://schemas.microsoft.com/mapi/proptag/0x0037001E).

B Property names are not case-sensitive and cannot include spaces.

Namespace identifiers are case-sensitive, must follow URL encoding rules, and cannot be
enclosed in square brackets ([]). For more information about property namespace identifiers,
see Chapter 17, “Using the PropertyAccessor Object.”

Specifying Custom Properties for Sorting

The following guidelines should be used when specifying custom properties:

B The custom property must be available in the UserDefinedProperties collection for the
parent Folder object.

m Custom properties should be specified by property name (for example, [Shoe Size]).

m Custom property names are not case-sensitive, can include spaces, and should be
enclosed in square brackets ([]) if they contain spaces.

The AutoFormatRules Collection

The new AutoFormatRules collection lets you add an AutoFormatRule object that represents a
formatting rule used by a View object to determine how to format Outlook items displayed
within that view.

Chapter 10 Organizing Outlook Data 331

Use the Add method or the Insert method of the AutoFormatRules collection to create a new
formatting rule for the following objects:

m CardView
B TableView

For views that support automatic formatting, Outlook provides a set of built-in formatting
rules that can be disabled but cannot be removed or reordered. Use the Standard property of
the AutoFormatRule object to determine whether a formatting rule is built-in or custom. You
cannot modify a built-in formatting rule. You can add or remove a custom formatting rule sub-
ject to the limitation that calling the Save or Apply methods will not persist AutoFormatRule. Filter
in the View object. If you want to add an AutoFormatRule object to your solution, you need to
add or remove the formatting rule dynamically.

The following CreateAutoFormatRule procedure creates a custom formatting rule named Can-
celed for the Meeting Requests view discussed earlier in this chapter. If the meeting item is a
meeting cancellation, a red font is used to display the item in the view. To remove the format-
ting rule when the user navigates away from the folder or Outlook shuts down, the
RemoveAutoFormatRule procedure deletes the Canceled formatting rule. The code sample
assumes that you've created a class-level instance variable named m_Explorer and lists all the
events necessary to make the dynamic formatting rule work correctly. For additional informa-
tion on handling Outlook events, see Chapter 8, “Responding to Events.”

private void InitializeAddin()

{

m_Explorer = Application.ActiveExplorer();

m_Explorer.BeforeViewSwitch += new
Outlook.ExplorerEvents_10_BeforeViewSwitchEventHandler(
m_Explorer_BeforeViewSwitch);

m_Explorer.ViewSwitch += new
Outlook.ExplorerEvents_10_ViewSwitchEventHandler(
m_Explorer_ViewSwitch);

Outlook.ExplorerEvents_Event explorerEvents =
(OutTlook.ExplorerEvents_Event)m_Explorer;

explorerEvents.Close += new
Outlook.ExplorerEvents_CloseEventHandler(m_Explorer_Close);

m_Explorer.FolderSwitch += new
Outlook.ExplorerEvents_10_FolderSwitchEventHandler(
m_Explorer_FolderSwitch);

if (m_Explorer.CurrentFolder.CurrentView.Name
== "Meeting Requests")

{
CreateAutoFormatRule();

}

}

void m_Explorer_FolderSwitch(Q)
{

332 Part Il Working with Outlook Data

if (m_Explorer.CurrentFolder.CurrentView.Name
== "Meeting Requests")

{
CreateAutoFormatRule();
}
}
void m_Explorer_Close()
{
RemoveAutoFormatRule();
}
void m_Explorer_ViewSwitch(Q)
{
if (m_Explorer.CurrentFolder.CurrentView.Name
== "Meeting Requests")
{
CreateAutoFormatRule();
}
}
void m_Explorer_BeforeViewSwitch(object NewView, ref bool Cancel)
{
if (m_Explorer.CurrentFolder.CurrentView.Name
== "Meeting Requests")
{
RemoveAutoFormatRule();
}
}

private void CreateAutoFormatRule()
{
OutTook.TableView tableView = null;
OutTook.AutoFormatRule autoFormat = null;
const string PR_MESSAGE_CLASS =
"http://schemas.microsoft.com/mapi/proptag/0Ox001A001E";
Outlook.Folder inbox = Application.Session.GetDefaultFolder(
OutTook.OTDefaultFolders.olFolderInbox) as Outlook.Folder;
Outlook.Folder currentFolder =
Application.ActiveExplorer().CurrentFolder
as Outlook.Folder;
if (Application.Session.CompareEntryIDs(currentFolder.EntryID,
inbox.EntryID))

{
try
{
tableView =
inbox.Views["Meeting Requests"] as Outlook.TableView;
}
catch{ }
if (tableView != null)
{

try
{

3

Chapter 10 Organizing Outlook Data

autoFormat =
tableView.AutoFormatRules["Canceled"];
}
catch{ }
if (autoFormat == null)
{
autoFormat =
tableView.AutoFormatRules.Add("Canceled");
autoFormat.Filter = "\"" + PR_MESSAGE_CLASS +
"\"" + " 1ike '%Canceled%'";
autoFormat.Font.Color = Outlook.01Color.ol1ColorRed;
autoFormat.Enabled = true;
// Save the view
tableView.Save();
}

private void RemoveAutoFormatRule()

{

Outlook.TableView tableView = null;

OutTook.AutoFormatRule autoFormat = null;

Outlook.Folder inbox = Application.Session.GetDefaultFolder(
Outlook.O1DefaultFolders.olFolderInbox) as Outlook.Folder;

Outlook.Folder currentFolder =
Application.ActiveExplorer().CurrentFolder
as Outlook.Folder;

if (Application.Session.CompareEntryIDs(currentFolder.EntryID,
inbox.EntryID))

{
try
{
tableView =
inbox.Views["Meeting Requests"] as Outlook.TableView;
}
catch { }
if (tableView != null)
{

try

{
autoFormat =

tableView.AutoFormatRules["Canceled"];

}

catch { }

if (autoFormat != null)

{
tabTleView.AutoFormatRules.Remove("Canceled™);
tableView.Save();

}

}
}

333

334 Part Il Working with Outlook Data

Summary

Outlook 2007 provides several features to help organize user or solution data. This chapter

shows you how to leverage these features programmatically. You can use category colors, task
flagging, rules, search folders, and views to organize or present data to the user. You learned
how you can take advantage of these features in your solution and tailor them to your specific

scenario.

	Cover
	Table of Contents
	Chapter 10: Organizing Outlook Data
	How Outlook 2007 Helps to Organize Information
	The Categories Collection and Category Objects
	Creating a Category
	Assigning One or More Categories to an Item
	Displaying the Categories Dialog Box

	Task Flagging
	Controlling Visibility of the To-Do Bar
	Creating To-Do Items That Appear in the To-Do Bar

	The Rules Collection and Rule Objects
	Overview of Rules Programming
	Rules Collection
	The Rule Object
	The RuleActions Collection
	The RuleConditions Collection
	Get or Set Action or Condition Properties with an Array
	Rules Sample Add-In

	Search Folders
	When to Use a Search Folder
	Enumerating Search Folders
	Creating a Search Folder Programmatically

	Outlook Views
	Objects That Derive from the View Object
	Adding or Removing a View Programmatically

	Customizing Your View
	Specifying Fields in a View
	Filtering Items in the View Object
	Sorting Items in a View
	The AutoFormatRules Collection

	Summary

