THE SECURITY i
DEVELOPMENT The Securlty

LIFECYCLE Development Lifecycle

v L :
~ H '
i

Michael Howard and
Steve Lipner

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/8753.aspx

9780735622142 Mmso”
Publication Date: May 2006 P 1855

Table of Contents

FOreword. . .. o e XV
INtrOdUCHION . . . oL e e e e e e xvii
Why Should You Read This Book? Xviii
Organization of This Book. i Xviii
Part], “The Need forthe SDL" s Xviii

Part I, “The Security Development Lifecycle Process” xviii

Part I, "SDL Reference Material”. i Xviii

The Future Evolution of the SDL o e Xix
What's on the Companion Disc? e Xix
System RequIremMeNnts.ot XX
Acknowledgments XX
RefErENCES . . . XXi

Part| The Need for the SDL

1 Enough Is Enough: The Threats Have Changed. 3
Worlds of Security and Privacy Collideo i i 5

Another Factor That Influences Security: Reliability 8

It's Really About Quality 10

Why Major Software Vendors Should Create More Secure Software. 11
AChallengetolarge ISVs. ... 12

Why In-House Software Developers Should Create More Secure Software 12

Why Small Software Developers Should Create More Secure Software 12

SUMIMIAIY oo e e 13
REfErENCES . . .t 13

2 Current Software Development Methods Fail

to Produce Secure Software. i, 17
“Given enough eyeballs, all bugs are shallow”. 18

Incentive to Review Code it 18

Understanding Security Bugs. ... 19

Critical Mass 19

“Many Eyeballs” Misses the Point Altogether 20

Proprietary Software Development Methods 21

CMMI, TSP and PSP 22

What do you think of this book? Microsoft is interested in hearing your feedback about this publication so we can

continually improve our books and learning resources for you. To participate in a brief

We want to hear from yOU! online survey, please visit: www.microsoft.com/learning/booksurvey/

vii

viii

3

4

Table of Contents

Agile Development Methods. 22
COMMON CHTEII .« v v e e e e e e e e e e 22
SUMIMIAIY . et e e e e 23
REfEIENCES. . . . 24
A Short History of the SDL at Microsoft. 27
First StePS o 27
New Threats, New Responsesttt 29
Windows 2000 and the Secure Windows Initiative 30
Seeking Scalability: Through Windows XP. i i ... 32
Security Pushes and Final Security Reviews., 33
Formalizing the Security Development Lifecycle, 36
A Continuing Challenge 37
References. . . .o 38
SDLfor Managementciiiiiiiiniii i, 41
Commitment for SUCCESSo 41
Commitment at Microsoft 41

Is the SDL Necessary for You? ..., 43
Effective Commitment 45
Managing the SDL. 48
RESOUICES . ..ttt 48

Is the Project on Track?.o 50
SUMIMIAIY .« e e e e e e e 51
REfEIENCES . 51

part I The Security Development Lifecycle Process

5

Stage 0: Education and Awarenessc.cuviininnenennnn. 55
A Short History of Security Education at Microsoft 56
Ongoing Education 58
Types of Training Delivery ... 60
Exercisesand Labs 61
Tracking Attendance and Compliance 62

Other Compliance ldeas. e 62
Measuring Knowledge 63
Implementing Your Own In-House Trainingoooiiiiiiineiin. .. 63

Creating Education Materials “OnaBudget” 64
Key Success Factors and Metricst 64
SUMIMIAIY .« e e e e e e e e e e 65

ReferenCes. . .. o 65

6

7

8

Table of Contents

Stage 1: Project Inception. i
Determine Whether the Application Is Covered by SDL
Assign the Security AdVISOr.

Act as a Point of Contact Between the Development Team

and the Security Teamo

Holding an SDL Kick-Off Meeting for the Development Team.............

Holding Design and Threat Model Reviews with the

Development Teamttt

Analyzing and Triaging Security-Related and Privacy-Related Bugs

Acting as a Security Sounding Board for the Development Team..........

Preparing the Development Team for the Final Security Review

Working with the Reactive Security Teamt
Build the Security Leadership Team. i ...
Make Sure the Bug-Tracking Process Includes Security and Privacy Bug Fields.
Determine the "Bug Bar”.
SUMMAIY oo e e e e e e e
REfErENCES . . .

Stage 2: Define and Follow Design Best Practices
Common Secure-Design Principles. o i
Attack Surface Analysis and Attack Surface Reduction

Step 1: Is This Feature Really That Important?...........................
Step 2: Who Needs Access to the Functionality and from Where?
Step 3: Reduce Privilege
More Attack Surface Elements............. oo
SUMIMIAIY e e e e e e e e
References oo

Stage 3: Product Risk Assessment............

Security Risk Assessment.
Setup QUESLIONSo
Attack Surface QUESLIONS i
Mobile-Code QUESLIONSot
Security Feature—Related Questions L.
General QUESHIONS
Analyzing the Questionnaire

Privacy Impact Rating oot
Privacy Ranking 1. o
Privacy Ranking 2.o
Privacy Ranking 3.

Pulling It All Together e

SUMIMIAIY et e e e e e e e e e e e e e e

References

82

X

Table of Contents

9 Stage 4: Risk Analysis. i 101
Threat-Modeling Artifacts 103
Whatto Model. 104
Building the Threat Model e 104

The Threat-Modeling Process ... 105

1. Define Use SCENANIOS. . . oo 105

2. Gather a List of External Dependencies.................ccoiiiiiin. 106

3. Define Security Assumptions. ..ot 106

4. Create External Security Notes, 107

5. Create One or More DFDs of the Application Being Modeled 110

6. Determine Threat Types 114

7. |dentify Threatstothe System. 116

8. Determine Risk. 121

9. Plan Mitigations. 124

Using a Threat Model to Aid Code Review 128
Using a Threat Modelto Aid Testing 129

Key Success Factors and Metrics 129
SUMIMAIY .« o e e e e e e e e 130
REfErENCES. . 130

10 Stage 5: Creating Security Documents, Tools,

and Best Practices for Customers il 133
Why Documentation and TooIS? 135
Creating Prescriptive Security Best Practice Documentation 135

Setup Documentation. 136
Mainline Product Use Documentation..............oooiiiian. 136

Help Documentation.o 138
Developer Documentation.t 138
Creating ToOIS. . . .o 139
SUMIMIAIY .« . et e e e e e e e e 140
REfErENCES . 140
11 Stage 6: Secure Coding Policies. o oL, 143
Use the Latest Compiler and Supporting Tool Versions 143
Use Defenses Added by the Compiler 144
Buffer Security Check: /GS 144

Safe Exception Handling: /SAFESEH 144
Compatibility with Data Execution Prevention: /INXCOMPAT 145

Use Source-Code Analysis TOOISt 145
Source-Code Analysis Tool Traps.ot iiniiieea 145
Benefits of Source-Code Analysis Tools 146

Do Not Use Banned Functions. 148

Table of Contents xi

Reduce Potentially Exploitable Coding Constructs or Designs 149

Use a Secure Coding Checklist. 150

SUMIMAIY oo e e 150

RefErENCES . . .o 150

12 Stage 7: Secure Testing Policies o i, 153
Fuzz Testing. 153

Penetration Testing.ottt 164

Run-Time Verification 165

Reviewing and Updating Threat Models If Needed 165
Reevaluating the Attack Surface of the Software 166

SUMIMIAIY oo e e e e e 166

REfEIENCES . . . e 166

13 Stage 8: The SecurityPush i i 169
Preparing for the Security Push L. 170

Push Duration. ... 171

TrAINING .« e 171

Code REVIBWS . . oo 172
Executable-File Owners. ... 174

Threat Model Updates.t e 174

SecUrity TeStiNGo 175
Attack-Surface Scrub o 175
Documentation SCrub 176

Are We Done Yet?. ... 177

SUMMAIY o e e 178

RefErENCES . . o 179

14 Stage 9: The Final Security Review 181
Product Team Coordination i 182

Threat Models ReVIEWo 182

Unfixed Security Bugs Review. 183

Tools-Use Validation. 184

After the Final Security Review Is Completed, 184

Handling EXceptionst 184

SUMIMIAIY o e e e e e e e e 185

15 Stage 10: Security Response Planning 187
Why Prepare to Respond?. 187

Your Development Team Will Make Mistakes 187

New Kinds of Vulnerabilities Will Appear. oot 188

Rules Will Change e 189

xii Table of Contents

Preparing to Respond 190
Building a Security Response Centert 191
Security Response and the Development Team 208
Create Your Response Team. ... it 208
Support Your Entire Product 209
Support All Your CUStOmErs. 210

Make Your Product Updatable i 211

Find the Vulnerabilities Before the Researchers Do 212
SUMIMIAIY .« et e e e e e e e 213
REfErENCES . 213
16 Stage 11: ProductRelease.ot iiiiiiinnn.. 215
REfErENCES. e 215
17 Stage 12: Security Response Execution.......................... 217
Following Your Plan. e 217
Stay COOl. .o 217

Take YOUr TimMe. . ..ot e 218
Watch for Events That Might Change Your Plans. 219
Follow Your Plan 220
Making It Up as You GOt e e 220
Know Whomto Call 220

Be AbletoBuildanUpdate......... ..o, 220

Be Ableto Installan Updateo 221

Know the Priorities When Inventing Your Process 221
Knowing Whatto SKip 221
SUMIMAIY .« oo e e e e e e e e e 222
REfErENCES. . 222

Part I SDL Reference Material

18 Integrating SDL with Agile Methods 225
Using SDL Practices with Agile Methods, 226
Security Education. 226
Project Inception 226
Establishing and Following Design Best Practices 227
Risk Analysis 227
Creating Security Documents, Tools, and Best Practices
for CUSTOMENS. . . oo 229
Secure Coding and Testing Policies 229

Security Push 231

Table of Contents xiii

Final Security Review 232
Product Release 233
Security Response Execution i 233
Augmenting Agile Methods with SDL Practices 234
USEr SEOMIES . . . ottt 235

Small Releases and Iterations i il 236
Moving People Around 236
SIMPIICITY . .. 236

Spike SOIULIONS . . .o\ 236
Refactoring 237
Constant Customer Availability 237
Coding to Standards ... 237
Codingthe Unit Test First oo 238

Pair Programmingoiii 238
Integrating Often 238
Leaving Optimization Until Last.o it 238

When aBug IsFound,aTestIsCreatedt 239
SUMIMIAIY o e e e e e e e e e 239
ReferenCes . . . 239
19 SDL Banned FunctionCalls.......... i, 241
The Banned APIS. 242
Why the "n” Functions Are Banned i i 245
Important Caveat 246
Choosing StrSafe vs. Safe CRT. e 246
Using StrSafeo oo 246
StrSafe Example 247

Using Safe CRTo i 247
Safe CRT EXample. .. 248

Other Replacements.o 248
TOOIS SUPPOIt - oo 248
ROland CostImpact ... 249
Metrics and GOalS. 249
ReferenCes 249
20 SDL Minimum Cryptographic Standards 251
High-Level Cryptographic Requirements................. 251
Cryptographic Technologies vs. Low-Level Cryptographic Algorithms. 251

Use Cryptographic Libraries. ... 252
Cryptographic Agility ... 252

Default to Secure Cryptographic Algorithms. 253

Xiv Table of Contents

Cryptographic Algorithm Usage i 253
Symmetric Block Ciphers and Key Lengths 254
Symmetric Stream Ciphers and Key Lengths. 254
Symmetric Algorithm Modes.o i 255
Asymmetric Algorithms and Key Lengths 255
Hash FUNCEiONS. 255
Message Authentication Codes. 256

Data Storage and Random Number Generation 256
Storing Private Keys and Sensitive Data.............t 256
Generating Random Numbers and Cryptographic Keys. 257
Generating Random Numbers and Cryptographic Keys from Passwords
Or Other Keys . ..o 257

REfEIENCES. . . 257

21 SDL-Required Tools and Compiler Options...................... 259

Required TOOISot 259
PREfast. . .\ 259
FXC 0P, o et 263
Application Verifier 265
Minimum Compiler and Build Tool Versions. 267

References. o 268

22 Threat Tree Patterns. it 269

Spoofing an External Entity ora Process oo, 271

Tampering with @ Process. i 273

TamperingwithaData Flow e 274

TamperingwithaDataStore 276

Repudiation. 278

Information Disclosure of a Process 280

Information Disclosure of a Data Flow........... 281

Information Disclosure of aDataStore 282

Denial of Service Against @ Processoiuiiiiiiiiiniiiiiiennnnn. 284

Denial of Service AgainstaDataFlow i, 285

Denial of Service AgainstaDataStore........... ..o 286

Elevation of Privilege. 287

REfEIENCES. . . 288

e =) PP 291
What do you think of this book? Microsoft is interested in hearing your feedback about this publication so we can

continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

We want to hear from you!

Chapter 1

Enough Is Enough: The Threats
Have Changed

In this chapter:

Worlds of Security and Privacy Collide. oo, 5
Another Factor That Influences Security: Reliability.......................... 8
It's Really About Qualityooii i i i e 10
Why Major Software Vendors Should Create More Secure Software 11
Why In-House Software Developers Should Create More Secure Software. 12
Why Small Software Developers Should Create More Secure Software 12

The adage “Necessity is the mother of invention” sums up the birth of the Security Develop-
ment Lifecycle (SDL) at Microsoft. Under the banner of Trustworthy Computing (Microsoft
2002), Microsoft heard the call from customers requiring more secure software from their
software vendors and changed its software development process to accommodate customers’
pressing security needs and, frankly, to preserve the company’s credibility. This book explains
that process in detail with the simple goal of helping you update your present software devel-
opment process to build more secure software.

The first question that probably comes to mind is, “Why bother with security?” The answer is
simple: the world is more connected now than it has ever been, and no doubt it will become
even more connected over time. This incredible level of interconnectedness has created a huge
threat environment and, hence, hugely escalated risk for all software users. The halcyon days
of defacing Web sites for fun and fame are still with us to an extent, but the major and most
dangerous attacks are now upon us: cybercrime has arrived. What makes these attacks so
dangerous is that the cybercriminal can attack and exploit his target system silently without
creating any obvious sign of a break-in. Now, the criminal can access private or sensitive data
or use a compromised system for further attacks on other users, as in the cases of phishing
(APWG 2006) and extortion.

The cost-benefit ratio for a criminal is defined by Clark and Davis (Clark and Davis 1995) as

My, + Py, > Ocp + OemPaPe

Part I: The Need for the SDL
where

M}, is the monetary benefit for the attacker.
P}, is the psychological benefit for the attacker.
@)

cp Is the cost of committing the crime.

O¢n is the monetary costs of conviction for the attacker (future lost opportunities and
legal costs).

m P, is the probability of being apprehended and arrested.

m P_is the probability of conviction for the attacker.

If the left side of the equation is greater than the right side, the benefit of an attack outweighs
the costs and a crime could ensue. Of course, this does not imply that all people will commit
a crime given enough opportunity! Remember the old model of 10:80:10: 10 percent of people
would never commit a crime, no matter what; 80 percent are opportunists; and 10 percent
can’t be deterred, no matter what. By raising the probability of getting caught and lowering the
chance of success, you deter the 80 percent and make the task harder for the “evil 10.”

The software development industry cannot easily control P, or P, although the industry can
work with the law-enforcement community to provide information that helps apprehend
criminals. However, some countries have no cybercrime laws.

Users and administrators of computer systems could control My a little by not storing data of
value to the attacker, but this solution is infeasible because much of the benefit of using com-
puters is that they allow businesses to operate more efficiently, and that means storing and
manipulating data of value to both the customer and the attacker. A well-designed and secure
system will increase O, making it expensive for an attacker to successfully mount an attack
and motivating the attacker to move on to softer targets at other IP addresses.

From an Internet attacker’s perspective, the element that influences this equation the most is
P, because the chance of being found and apprehended is too often very small. Admittedly,
some miscreants have been apprehended (FBI 2005, CNN 2003), but most attacks are anon-
ymous and go unnoticed by users and system administrators alike. In fact, the most insidious
form of attack is the one that goes unnoticed.

As operating system vendors have focused on shoring up core operating system security,
cybercriminals have simply moved to more fertile ground higher in the application stack
(eWeek 2004)—such as databases (ZDNet 2006a), antivirus software (InformationWeek
2005), and backup software (ZDNet 2006b)—because there is a better chance of a successful
attack and the reward is worth the effort. Attacking an operating system does not directly
yield valuable data for a criminal, but attacking a database, a customer relationship manage-
ment (CRM) tool, a health-care system, or a system management tool is like winning the lot-
tery and is reflected in the O, variable in the equation previously mentioned. It doesn’t
matter how big or small your software or your company might appear to be; if the attacker

Chapter 1: Enough Is Enough: The Threats Have Changed 5

thinks it’s worth the effort, and the gains are many and the risk is low, then any insecure appli-
cation you use might very well come under attack (Computerworld 2006).

Microsoft products are not the only targets of attack. That's why we wrote this book. A cursory
glance at any security-bug tracking database will show that every platform and every product
includes security bugs (OSVDB 2006a, OSVDB 2006b, OSVDB 2006¢, OSVDB 20064d).

Furthermore, the skill required to reverse-engineer security updates (Flake 2004) and build
exploitations is easier than ever (Moore 2006). As Mary Ann Davidson, Oracle Corporation’s
chief security officer, points out:

You don’t have to be technically sophisticated to be a hacker anymore. Hacking isn’t just
for bragging rights and chest thumping. There’s real money in it. (eWeek 2005)

The implications of attacks on applications rather than on operating systems cannot be
underestimated. Most software vendors build business-productivity or end-user applications,
not operating system components. And most security-savvy administrators have focused their
limited time on securing their operating system installations and putting network-level
defenses such as firewalls in place.

One could argue that the software industry focused almost exclusively on securing operating
systems when it should have considered the security of applications with just as much effort.
One could also argue that the reason attackers are targeting applications is because the oper-
ating system vendors have, on the whole, done a reasonable job of securing the base operating
systems in common use. Remember, everything is relative—we said “reasonable,” not “good”—
but regarding application security, most operating systems are in a better security state than
applications.

To compound the problem, many application vendors are dangerously unaware of the real
security issues facing customers (CNN 2002), which has led to a false sense of security within
the user community and a lack of urgency within the vendor community. Many users and ven-
dors see security as an operating system problem or a network perimeter and firewall prob-
lem, but it has become obvious that this is simply untrue.

In short, if you build software, and your software can be accessed by potentially malicious
users inside or outside the firewall, the application will come under attack. But this alone
is not a sufficient reason to consider security in the development life cycle. The following
sections address additional considerations.

Worlds of Security and Privacy Collide

For security to be accepted within an organization, and for software developers to take secu-
rity seriously, security must accommodate, or at least acknowledge, business needs and busi-
ness problems. To be successful in an organization, secure software development requires

a business benefit. In the case of Microsoft, the business benefit was pretty obvious—our
customers demanded more secure software.

Part I: The Need for the SDL

But for some people, the decision to make software more secure appears to be not so simple.
This is where privacy enters the picture. Trying to sell security to project managers and to
upper management can be difficult because there is little, if any, demonstrable return on
investment (ROI) data for employing secure development practices. Frankly, upper manage-
ment is tired of nebulous “we could be attacked” stories that are used to gain budget for secu-
rity. This is often not a productive way to sell security. But privacy is another matter altogether.
People understand what privacy is and what it means when personal, confidential, or person-
ally identifiable information is leaked to miscreants. When users think of security, most often
they think about credit card information or online banking passwords being stolen. This, to
be pedantic, is not security; it is privacy. Administrators, Chief Information Officers (CIOs),
and Chief Information Security Officers (CISOs) should think in terms of risk to business-
critical data. Privacy plays a big part in risk calculations.

Privacy and Security

Many people see privacy and security as different views of the same issue. However, pri-
vacy can be seen as a way of complying with policy and security as a way of enforcing
policy. Restrooms are a good analogy of this concept. The sign on a restroom door indi-
cates the policy for who should enter the restroom, but no security prevents anyone who
might want to enter. Adding a lock to the door would provide security to help enforce
the privacy policy.

Note Privacy's focus is compliance with regulatory requirements (Security Innovation 2006),
corporate policy, and customer expectations.

Risk managers try to put a monetary value on risk. If, according to risk management, the value
of protected data if exposed to attackers is, say, $10,000,000, it probably makes sense to
spend the $200,000 needed by the development team to remove all known design and coding
issues and to add other defenses to protect against such attacks.

Note Risk management can assign a monetary value to the risk of disclosing data.

A security bug such as a SQL injection bug (Howard, LeBlanc, and Viega 2005) is a serious
problem to have in your Web-based service-oriented application, but potential privacy
issues are what make this class of bug so grave. A SQL injection bug allows an attacker to
wreak havoc on an underlying database, including corrupting information and viewing sen-
sitive data. In some instances, a SQL injection attack can be a steppingstone to complete
takeover of a network (Johansson 2005). SQL injection vulnerabilities are reasonably

Chapter 1: Enough Is Enough: The Threats Have Changed 7

common in database applications, but some have been discovered in database engines also
(Red Database 2006).

SQL injection issues are not the only form of security bug that has privacy ramifications. Any
bug that allows an attacker to run code of his bidding can potentially lead to privacy viola-
tions. Examples include some forms of buffer overflows, command-injection bugs, integer
arithmetic issues, and cross-site scripting bugs. But more subtle issues that do not allow arbi-
trary code execution, such as cryptographic weaknesses and data leakage faults, can lead to
privacy issues also.

Warning Much noise has been made about not running as an administrator or root
account when operating a computer. We authors are vocal commentators about this issue, and
this has helped force fundamental changes in Microsoft Windows Vista; users are, by default,
ordinary users and not administrators. Even members of the local Administrators group are
users until they are elevated to perform administrative tasks. Running as a normal user does
indeed provide security benefits, but it may provide only a limited benefit for privacy protec-
tion. Malicious code running as the user can still access any sensitive data that can be read by
the user.

The ability of an unauthorized person to view data, an information disclosure threat, can be a
privacy issue. In some countries and United States, it could lead to legal action under U.S.
state or federal or international privacy laws and industry-specific regulations.

In short, privacy is a huge driver for employing effective security measures and making appli-
cations secure from attack. Security is not the same as privacy, but effective security is a pre-
requisite for protecting the privacy of data about employees and customers.

It’s also important to remember that, in some cases, security and privacy can be diametrically
opposed to one another. For example, good authentication is a venerable and effective secu-
rity defense, but it can also raise a privacy issue. Anytime you provide your identity to a com-
puter system, any tasks you perform or any resources you access while you are logged on can
be collected and used to model your computer habits. One way to defend against this is to not
authenticate, but that’s hardly secure.

A good example of privacy and security colliding is the design of Google Desktop version 3
beta. This product allows a user to upload his or her potentially personal or private docu-
ments to Google’s servers. This design prompted a Gartner analyst to warn that the product
posed an “unacceptable security risk” (ZDNet 2006¢). It may seem like we're splitting hairs,
but this is not a security risk; it’s a privacy risk. It’s very easy to mix the two concepts. Note
that Time magazine ran a cover story on February 20, 2006, with the headline “Can We Trust
Google with Our Secrets?” (Time 2006). Privacy issues can quickly yield negative headlines.

But wait, there’s more!

8 Part I: The Need for the SDL

Another Factor That Influences Security: Reliability

Additional aspects to consider are service-level agreements with your customers and main-
taining uptime. Crashed or unresponsive software will probably not satisfy customers or meet
their needs. Just as privacy and security are not the same, security is not the same as reliability.
But like privacy and security, reliability and security share some goals. For example, any secu-
rity mitigation that protects against denial of service (DoS) attacks is also a reliability feature.

However, like security and privacy, security and reliability can be at odds. Take a critical server
on a protected network as an example. Once the computer’s security audit log is full, the
machine can no longer log security events, which means that an attacker has a window of
opportunity to access sensitive resources on the computer without being audited. In this
example, it is not unheard of to simply cause the computer to stop functioning on purpose
when the audit log is full. For example, the U.S. government protection profiles (NIAP 2005)
for evaluating the security of operating systems require the availability of the CrashOnAudit-
Fail option in Microsoft Windows (Microsoft 2003). When this option is set, the computer
will crash if the security log is full or if a security-related audit entry cannot be written success-
fully. Clearly, this is a reliability concern, butit’s a valid security defense for some customers.
In fact, in some legal-compliance scenarios, you might have no alternative but to crash a com-
puter if auditing can no longer continue.

Another example of security working at odds with reliability is the ability of Windows to auto-
matically restart a service if the service fails. This is an excellent reliability feature, but if it is
configured incorrectly, it could be a security issue. Imagine that a service has a bad security
vulnerability, like a buffer overrun, and an attacker attempts to compromise a system by
exploiting the buffer overrun. If the attacker gets the attack wrong on the first attempt, the ser-
vice crashes, and then, depending on the configuration, the service might restart. The restart
would give the attacker another chance to get the attack right. Every time he gets it wrong, the
service crashes and restarts!

Figure 1-1 shows the service recovery configuration dialog box for the print spooler. Configu-
ration options present a tradeoff between security and reliability. The application can crash
only twice in one day: if it crashes again, it will not restart. Also, there is a delay of one minute
before the service starts up again. This will slow down an attacker substantially.

Many common security coding bugs and design errors can lead to reliability issues such as
some forms of buffer overrun, integer arithmetic bugs, memory exhaustion, referencing
invalid memory, or array bounds errors. All of these issues have forced software developers to
create security updates, but they are reliability issues, too. In fact, the OpenBSD project refers
to some of its security bugs as reliability bugs, although other vendors would call the fix a
security fix. One such example is a bug fixed by OpenBSD in the BIND DNS daemon in late
2004 (OpenBSD 2004). This is clearly a DoS bug that most vendors would treat as a security
fix, but OpenBSD treats it as a reliability fix. Technically, the OpenBSD team is correct, but no
major OS vendor differentiates between reliability and security fixes.

Chapter 1: Enough Is Enough: The Threats Have Changed 9

Print Spooler Properties (Local Computer) E|E|

General | Log On | Recovery | Dependencies
Select the computer's response if this service falls

Firat failure: Restart the Service

Second failure: Flestart the Service v
Subsequent failures Take Mo Action >
Rleset fail cournt after: 1 days

Restart service after 1 minubes

Fiun program

Figure 1-1 Microsoft Windows XP service recovery configuration dialog box.

Note Microsoft's Trustworthy Computing initiative has four pillars. Three of them are tech-
nical, addressing the issues we have discussed so far: Security, Privacy, and Reliability. The selec-
tion of these three technical pillars is not accidental. (For completeness, the fourth pillar is
Business Practices.)

Figure 1-2 shows the results of an analysis of security bugs that were assigned a CVE number
by Common Vulnerabilities and Exposures (CVE 2006) between 2002 and 2004. The authors
analyzed the CVE bug categories (CVE 2005) to determine whether they had security, pri-
vacy, or reliability ramifications. Over this three-year period, CVE created entries for 3,595
security bugs from all corners of the software industry. Notice that the sum is greater than
3,595 because some bugs are both privacy and reliability issues.

Pure Security:
1434, 31%

Privacy:
2017, 44%

Reliability:
1136, 25%

Figure 1-2 Analysis of CVE statistics showing a breakdown of security, privacy, and reliability issues.
All the bugs are security bugs, but some also have privacy or reliability consequences, or both.

10 PartI: The Need for the SDL

It's Really About Quality

Ultimately, all the issues we have mentioned are quality bugs. Figure 1-3 shows the relation-
ship among quality, security, privacy, and reliability.

. Security
Privacy

Quality

Reliability
Figure 1-3 The relationship among quality, privacy, security, and reliability.

It is worth mentioning that some elements overlap, as noted in our description of the CVE
analysis. Overlap can occur in the following combinations:

B Security and privacy Examples include mitigation of privacy issues using encryption,
which is a security technology.

Security and reliability For example, a DoS threat is also a reliability issue.

Reliability and privacy TFor example, an application might crash or otherwise fail, yield-
ing sensitive information in an error message. This is also a security issue.

You'll also notice that portions of the privacy, security, and reliability elements extend beyond
the quality circle:

m Security If a user invites malicious software onto the computer, this is a security prob-
lem but not a security-quality issue.

B Privacy Ifauser willingly divulges personal data to an untrustworthy attacker, through
a phishing attack for example, this is not a privacy-quality issue.

B Reliability If a person trips over and pulls out a computer’s power cable, this is not a
software reliability-quality issue.

What we're trying to say is that security should not be considered an isolated endeavor. Only
when you start to think about security holistically—as the intersection of privacy, reliability,
and quality—does it start to make business-value sense. At that point, you can better sell
secure-software improvements to upper management.

@)

Chapter 1: Enough Is Enough: The Threats Have Changed 11

Important Security bugs that lead to disclosure of sensitive, confidential, or personally
identifiable data are privacy issues and can have legal ramifications. Security bugs that lead to
reliability issues could mean reduced uptime and failure to meet service-level agreements.

Why Major Software Vendors Should Create More
Secure Software

Improving software security should be an easy sell if your software has a significant number
of users; the sheer cost of applying security updates makes it worth getting security, privacy,
and reliability right early in the process rather than putting the burden on your customers
to apply updates. And frankly, if you have a large number of users, every security vulnerability
in your product puts many customers at risk of attack—or worse, exploitation—because you
will never have 100-percent patch deployment, and a deployment of less than 100 percent
means that a large number of users are put at risk.

If your software is a business-critical application, improved security should again be an easy
sell because of the business impact of a failed system.

The goal of creating more secure software and reducing customer pain is why Microsoft has
adopted SDL. SDL is not free; it costs time, money, and effort to implement. But the upfront
benefits far outweigh the cost of revisions, developing and testing security updates, and hav-
ing customers deploy the updates. Microsoft has received a lot of criticism in the past about
the insecurity of some of its products, and this criticism was a major factor in the company’s
commitment to improve its software development processes. A vocal critic of Microsoft’s secu-
rity problems was John Pescatore of Gartner. In September 2001, Pescatore advised Gartner
clients to evaluate the cost of ownership of using Microsoft Internet Information Services (IIS)
5.0 Web server on Internet-facing computers and to seek alternatives if the costs were justified
(Gartner 2001). After seeing the progress Microsoft has made since that date, Pescatore has
stated, “We actually consider Microsoft to be leading the software [industry] now in improve-
ments in their security development life cycle [SDL],” and “Microsoft is not the punching bag
for security anymore” (CRN 2006).

In an interesting (almost perverse) turnaround, the main IIS competitor, Apache on Linux, is
now, and has been for some time, the most frequently attacked Web server on the Internet.
Not only does Apache on Linux (Secunia 2006a) have more security bugs than IIS 6.0 on
Windows (Secunia 2006b), it is attacked and compromised more than IIS on Windows (Zone-
H 2006). Admittedly, many attacks result from poor server administration and insecure con-
figuration, but system management is a critical part of the security equation. We discuss this
issue in more detail in Chapter 10, “Stage 5: Creating Security Documents, Tools, and Best
Practices for Customers.”

12 PartI: The Need for the SDL

A Challenge to Large ISVs

We challenge all independent software vendors, especially those who have more than
100,000 customers, to change their software development processes. Pay close attention to
what we say next: If you are not implementing a process similar to SDL, the processes you
have now simply do not create more secure products. It’s time to admit this and do something
about it. Your customers demand it.

At Microsoft, our customers have benefited from a vulnerability reduction of more than 50
percent because of SDL. Admittedly, we still have a great deal of work ahead of us, and we are
under no illusion that we're “done” with security. Jim Allchin, copresident of the Platforms

and Services Division at Microsoft, stated, “At no time am I saying this system is unbreakable”
(CNET 2006).

That said, Microsoft has taken on the challenge, and SDL has galvanized the company to
deliver more secure products to customers. You must do likewise, or attackers will smell
blood and the competition that offers products that are more secure than yours will take sales
from you. Rebuilding customer trust and goodwill will be difficult at best. We say this from
painful experience.

Numerous consumers are starting to ask what their vendors are doing to secure their prod-
ucts from attack. What will your answer be?

Why In-House Software Developers Should Create More
Secure Software

The main benefits of SDL for in-house developers are reduced privacy and reliability expo-
sure. Yes, there is a pure security benefit, but as we mentioned earlier, the benefits of security
to in-house applications are hard to quantify. Privacy has a risk component that senior manag-
ers and risk managers understand, and reliability has an uptime and service-level agreement
component that managers also understand. Sell security as privacy and reliability, with a
security bonus!

Customer-facing e-commerce applications are, of course, high-risk components and should be
developed with utmost care.

Why Small Software Developers Should Create More
Secure Software
Creating more secure software is a harder sell for smaller companies because even a small

amount of security work up front costs time and money. Although “hacking the code” is effec-
tive at creating code rapidly, it is also extremely effective at creating bugs.

Chapter 1: Enough Is Enough: The Threats Have Changed 13

Smaller development houses often have a lot of personal pride and ego tied up in their code; so
look at security as a measure of quality. Most importantly, if you get it right up front, the cost of
fixing bugs later diminishes rapidly. Many sources outline the benefits of building better-quality
and more secure software early. One such example is in Chapter 9, “Stage 4: Risk Analysis.”

It’s fair to say that most people don’t mind doing hard work; they just hate reworking. Fixing
security bugs can be difficult and time consuming. You can pay now and increase the odds that
you'll get it right, or you can pay much more later. As a small development house or an individ-
ual developer, you probably have little spare time, and implementing more secure software up
front saves you time in the long run. Better-quality software means less reworking, which trans-
lates into more time to ski, work out, play with the kids, read a good book (not about software!),
or go on a date with your significant other. You get the picture. We have observed at Microsoft
that having fewer security vulnerabilities also means that there is more time to add useful fea-
tures that customers want to our products, and this translates into more customers.

Summary

Selling security process improvements to upper management is not easy because security pro-
fessionals have often focused on vague although troubling potential threats. Security experts
are often seen as alarmists in the boardroom. Selling security as a means to mitigate risk—most
notably privacy issues that could lead to legal action from affected customers and reliability
issues that could lead to violation of service-level agreements and system downtime—is much
more plausible and can be assigned monetary value by managers. Risks and potential costs
are associated with the privacy issue and with downtime.

Threats have changed, and the security and privacy landscape is not what it was in 2001. Every-
thing is connected today, and criminals are being lured to the online community because that’s
“where the money is.” There is no indication that this trend will abate any time soon.

The software industry’s past is littered with security bugs from all software vendors. If our
industry is to protect the future and deliver on the vision of Trustworthy Computing, we need
to update our processes to provide products that are more secure, more private, and more reli-
able for customers.

Microsoft has learned from and has adopted the SDL to remedy its past mistakes. You should,
too. Microsoft has seen vulnerabilities reduced more than 50 percent because of the SDL.
You will, too.

References

(Microsoft 2002) Trustworthy Computing site, http;//www.microsoft.com/mscorp/twc/
default. mspx.

(APWG 2006) Anti-Phishing Working Group, http://www.antiphishing.org/.

14

Part I: The Need for the SDL

(Clark and Davis 1995) Clark, J. R., and W. L. Davis. “A Human Capital Perspective on Crimi-
nal Careers,” Journal of Applied Business Research, volume 11, no 3. 1995, pp. 58-64.

(FBI 2005) “FBI Announces Two Arrests in Mytob and Zotob Computer Worm Investiga-
tion,” http;//www.fbi.gov/ pressrel/pressrel05/zotob_release082605.htm. August 2005.

(CNN 2003) “Teenager arrested in ‘Blaster’ Internet attack,” http://www.cnn.com,/2003/
TECH/internet/08/29/worm.arrest/. August 2003.

(eWeek 2004) “App Developers Need to Redouble Security Efforts,” http:// www.eweek.com/
article2/0,1759,1663716,00.asp. September 2004.

(ZDNet 2006a) Ou, George. “Oracle from unbreakable to unpatchable,” http://
blogs.zdnet.com/Ou/?p=151&tag=nl.e622. January 2006.

(InformationWeek 2005) Keizer, Gregg. “Bug Bites McAfee Antivirus,” http://
www.informationweek.com/showArticle.jhtml?articleID=175007526. December 2005.

(ZDNet 2006b) Evers, Joris. “Backup software flaws pose risk,” http://news.zdnet.com/
2100-1009_22-6028515.html. January 2006.

(Computerworld 2006) Vijayan, Jimkumar. “Targeted attacks expected to rise in 06, IBM
study says,” http://www.computerworld.com/securitytopics/security/story,/
0,10801,107992,00.html. January 2006.

(OSVBD 2006a) Open Source Vulnerability Database. Oracle, http://www.osvdb.org/
searchdb.php?action=search_title&vuln_title=oracle.

(OSVDB 2006b) Open Source Vulnerability Database. CRM software, http://www.osvdb.org/
searchdb.php?action=search_title&vuln_title=crm.

(OSVDB 2006c) Open Source Vulnerability Database. Lotus Domino, http://www.osvdb.org/
searchdb.php?action=search_title&vuln_title=lotus+domino.

(OSVDB 2006d) Open Source Vulnerability Database. Firewalls, http://www.osvdb.org/
searchdb.php?action=search_title&vuln_title=firewall.

(Flake 2004) Flake, Halvar. “Structural Comparison of Executable Objects,” http://
www.sabre-security.com/files/dimva_paper2.pdyf.

(Moore 2006) Moore, H. D. Metasploit Project, http;//www.metasploit.com.

(eWeek 2005) Fisher, Dennis, and Brian Fonseca. “Data Thefts Reveal Storage Flaws,”
http://www.eweek.com/article2,/0,1759,1772598,00.asp. March 2005.

(CNN 2002) Evers, Joris. “Ellison: Oracle remains unbreakable,” http://archives.cnn.com/
2002/TECH/industry,/01/21/oracle.unbreakable.idg/index. html. January 2002.

(Security Innovation 2006) Security Innovation, Inc. “Regulatory Compliance Demystified:
An Introduction to Compliance for Developers,” http;//msdn.microsoft.com/security/
default.aspx?pull=/library/en-us/dnsecure/html/regcompliance_demystified.asp. MSDN,
March 2006.

Chapter 1: Enough Is Enough: The Threats Have Changed 15

(Howard, LeBlanc, and Viega 2005) Howard, Michael, David LeBlanc, and John Viega. 19
Deadly Sins of Software Development. New York, NY: McGraw-Hill, 2005. Chapter 4, “SQL
Injection.”

(Johansson 2005) Johansson, Jesper. “Anatomy of a Hack,” http://www.microsoft.com/
australia/events/teched2005,/mediacast.aspx. Microsoft Tech.Ed, 2005).

(Red Database 2006) Red Database Security. “Published Oracle Security Alerts,” http://
www.red-database-security.com/advisory/published_alerts.html.

(ZDNet 2006¢c) Espiner, Tom. “Google admits Desktop security risk,” http://
news.zdnet.co.uk,/0,39020330,39253447,00.htm. February 2006.

(Time 2006) “Can We Trust Google with Our Secrets?” Time, February 20, 2006.

(NIAP 2005) National Information Assurance Partnership, National Security Agency. “Protec-
tion Profiles,” http://niap.nist.gov/pp/ index.html.

(Microsoft 2003) Microsoft Help and Support. “How To Prevent Auditable Activities When
Security Log Is Full,” http://support.microsoft.com/kb,/140058/. Last Review: May 2003.

(OpenBSD 2004) OpenBSD 3.6 release errata & patch list. “002: Reliability Fix,” http;//
www.openbsd.org/errata36.html. November 2004.

(CVE 2006) Common Vulnerabilities and Exposures. http://cve.mitre.org.

(CVE 2005) Christey, Steven M. “Re: Vulnerability Statistics,” http://seclists.org/lists/
webappsec/2005/Jan-Mar,/0056.html. January 2005.

(Gartner 2001) Pescatore, John. “Nimda Worm Shows You Can’t Always Patch Fast Enough,”
http://www.gartner.com/DisplayDocument?doc_cd=101034. September 2001,

(CRN 2006) Rooney, Paula. “Is Windows Safer?” http://www.crn.com/sections/ coverstory,/
coverstory.jhtml;jsessionid=VV1Q351 RM5A1YQSNDBOCKHOCJUMEK]VN?articleld=
179103240. February 2006.

(Secunia 2006a) “Vulnerability Report: Apache 2.0.x,” http://secunia.com/product/73/ .
(Secunia 2006b) “Vulnerability Report: Microsoft I1S 6.0,” http://secunia.com/product/1438/ .
(Zone-H 2006) Zone-H, the Internet Thermometer. http://www.zone-h.org.

(CNET 2006) Evers, Joris. “Allchin: Buy Vista for the security,” http://news.com.com/
Allchin+Buy+Vista+for+the+security/2100-1012_3-6032344.html?tag=st.prev. January 2006.

	Cover
	Table of Contents
	Chapter 1: Enough Is Enough: The Threats Have Changed
	Worlds of Security and Privacy Collide
	Another Factor That Influences Security: Reliability
	It’s Really About Quality
	Why Major Software Vendors Should Create More Secure Software
	A Challenge to Large ISVs

	Why In-House Software Developers Should Create More Secure Software
	Why Small Software Developers Should Create More Secure Software
	Summary
	References

