2005

Programming Microsoft”
ADO.NET 2.0 Core
Reference

David Sceppa

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/8744.aspx

9780735622067 M’cmSOft

Publication Date: August 2006 Press

Table of Contents

Acknowledgments XVii
INtrodUCEION Xix
WHho This BOOK IS FOIr. e Xix
How This Book Is Organized. i XiX
System ReqUIrementso XX
Configuring SQL Server 2005 Express Edition0cccoeiieo.... XX
Code SaMPIES XXi
Support for This BoOK xxii

Part| Getting Started with Microsoft ADO.NET 2.0

1 Overview of ADO.NET it i i eenn 3
No New Object Model?l? 3
The ADO.NET Object Model. 4

NET Data Providers. 5

Why Use Separate Classes and Libraries?. 8
Coverage of .NET Data Providers in ThisBook 9
Connected Objects.ot 9
Disconnected Classes.ttt 13
Metadata 19
Strongly Typed DataSet Classes 20
Questions That Should Be Asked More Frequently.................. 22

2 Building Your First ADO.NET Application with

Microsoft Visual Studio 2005......... i, 23
Everyone Loves a Demo i 23
The Data Form Wizard Has Been Deprecated........................... 23
Creating Your Data Access Form WithoutCode 24
Createthe New Project. 24
AddaNew DataSourceo i 25

Using the Data Source to Add Items to the Form........................ 38
Running the Project. 40
Adding Related Datatothe Form.......... 42
Examining the Code Generated by Visual Studio 43

You Can Write Better Data-Access Code Than the Designers! 45
Questions That Should Be Asked More Frequently. 46

Table of Contents

Part Il Getting Connected: Using a .NET Data Provider

Connecting to Your Database, 51
Creating SglConnection Objects 52
Opening Sq/Connection Objects 52
Closing Sg/Connection Objects 53
Cleaning Up After Yourself. ... 53
CoNNECHiON StHNGS. . .ottt e 56

What Is a Connection String? i 56
Introducing Connection String Builders. 58
Connection String Security. 65
Connection Pooling. 68
Connection Handles and Physical Connections 69
What Is Connection Pooling? 69
How Connection Pooling Can Improve YourCode 70
Enabling Connection Pooling, 71
When Will My Pooled Connection Be Closed?.......................... 72
Disabling Connection Pooling................ L. 72
Answering Your Own Questions About Connection Pooling.............. 72
How ADO.NET Determines Whether to Use a Pooled Connection......... 74
Forcing ADONET toUseaNew Pool................ 74
Manually Releasing Pooled Connections., 74
What Other Pooling Options Do I Have?. 74
Using the Sq/Connection as a Starting Point 76
Creating SqiCommands 76
Starting SqITransactionso 77
Retrieving Schema Information..................... 77
Visual Studio Design-Time Features. ..., 82
Working with Connections in Server Explorer 83
Adding a Data Connection to Server Explorerooooii.... 84
What Happened to the Drag-and-Drop Features? 86
SglConnection Object Reference i 86
Properties of the Sqg/ConnectionClass 86
Methods of the Sq/Connection Class 89
Events of the Sq/Connection Class. 97

Questions That Should Be Asked More Frequently 99

Table of Contents vii

4 Querying Your Database........... i, 103
Using Sqg/Command Objects in Code. ... 103
Creating a Sg/Command Object. 103

Using a Sqg/Command to Execute Queriesccoviiiiiinnnnn... 104
Executing a Row-Returning Query i 105
Retrieving a Single Value. 107
Executing a Query That Does Not Return a Resultset 109
Executing Batches of Action Queries i 112
Executing a Query to Retrieve XML Data.............................. 113
Executing a Queryina Transaction. ..., 113
Executing a Query Asynchronously.oo i, 115
Working with the Sq/DataReader. 122
Examining the Results of Your Query i 122
Closing Your Sq/DataReader. i iuiiiiiiiiiiinnn... 123
Examining the Schema of Your Resultset 126
Fetching Data Faster with Ordinal-Based Lookups...................... 129
Strongly Typed Getterso 130
Handling Null Values. e 131
SITYPES . . o o 134
Handling Multiple Resultsets froma Query............................ 135

SQL Server 2005 and Multiple Active Resultsets. 137
Working with Parameterized Queries. ...t 141
Formatting User Inputina Query Stringot 142

Query Construction and SQL Injection.............. ..., 142
Parameterized QUENIES it 143
Stored Procedures 148
Microsoft Visual Studio Design-Time Features 149
What Happened to the Drag-and-Drop Features?...................... 150
Object Reference for Sg/Command, SqlDataReader, and SqlParameter 151
Properties of the Sg/lCommand Classo .. 151
Methods of the Sqg/iCommand Class 154

Event of the Sg/lCommand Class iiiiiinnoiiin. 158
Properties of the Sg/DataReader Classcccoiiiiiiiiiinnn. 158
Methods of the Sq/DataReader Classc.ccoiiiiiunnnnn. 160
Creating SqlParameter Objects 165
Properties of the Sg/Parameter Classccciiiiiiiiinnnn. 165

Questions That Should Be Asked More Frequently. 168

Table of Contents

Retrieving Data Using Sq/DataAdapter Objects 171
What Is a Sg/DataAdapter Object? 173
How the Sq/DataAdapter Differs from Other Query Objects 174
Anatomy of the Sq/DataAdapter Class..........., 176
Creating and Using Sq/DataAdapter Objects. i, 179
Creating a Sg/DataAdapter. 180
Retrieving Results froma Query ... 181
Mapping the Results of Your Query to Your DataSet. 188
Working with Batch Queries i i 190
Retrieving Rows from a Stored Procedure. 191
Fetching Schema Information.............. 191

Visual Studio 2005 Design-Time Features. ..., 193
What Happened to the Drag-and-Drop Features? 193
SqglDataAdapter Reference 194
Properties of the Sg/DataAdapter Classcoovviiiieineneen. .. 194
Methods of the Sq/DataAdapter Class 200

Events of the Sq/DataAdapter Classcccvvviieieeeieao.... 206
Questions That Should Be Asked More Frequently 211

Part Il Working with Data Offline—The ADO.NET DataSet

Working with DataSet Objectscciiiiiiiian... 215
Features of the DataSet Class. 215
Working with Disconnected Data............... ..., 216
Scrolling, Sorting, Searching, and Filtering 216
Working with Hierarchical Data. i, 217
Caching Changes. 217

XML Integration. 217
Uniform Functionality.............. 218

Using DataSet Objects. 218
Creating a DataSet Object i 218
Examining the Structure Created by Calling Sq/DataAdapterFill. 219
Examining the Data Returned by a Sq/DataAdapter 220
Validating Data in Your DataSet it 223
Creating DataTable Objectsin Code. 227
Autoincrement Do'sand Don'ts 236
Modifying the Contents of a DataTable. 241

ADO.NET 2.0 DataSet Serialization and Remoting Options 253

Table of Contents ix

Working with DataSet Objects in Visual Studio............. 260
Creating Strongly Typed DataSets in Visual Studio. 260
Creating an Untyped DataSet 260

DataSet, DataTable, DataColumn, DataRow, UniqueConstraint,

and ForeignKeyConstraint Class Reference, 264
Properties of the DataSet Classcoo it 264
Methods of the DataSet Class o .. 269
DataSet, DataTables, and the ISupportinitializeNotification Interface 271
Events of the DataSet Class.t 277
Properties of the DataTable Class 278
Methods of the DataTable Class. 283
Events of the DataTable Class. ..., 290
Properties of the DataColumn Class. iiiiiiinnein. 293
Properties of the DataRow Class 299
Methods of the DataRow Class 301
Properties of the UniqueConstraint Class.cccoviiun.. 307
Properties of the ForeignKeyConstraint Classc.ccovuiuunn. 308

Questions That Should Be Asked More Frequently. 310

7 Working with RelationalData 315

A Brief Overview of Relational Data ACCeSSoovii .., 316
JOIN QUENIES. . .ot e e 316
Separate QUENIESt 317
Hierarchical ADO Recordset Objects.............ccoiiiiiiiiiinnaan. 318
ADO.NET DataRelation Objects i 319

Working with DataRelation ObjectsinCode i, 320
Creating DataRelation Objects. 320
Locating Related Data........ ... 323
Using DataRelation Objects to Validate YourData...................... 329
Self-Referencing DataRelationship Objects 333
Many-to-Many Relationships........... i 335
Using DataRelation Objects in Expression-Based DataColumn Objects337
Cascading Changest 341
Moving Away from Join QUEriest 343

Creating DataRelation Objects in Microsoft Visual Studio 343
Adding a DataRelation to a Strongly Typed DataSet 343
Adding a DataRelation to an Untyped DataSet. 344

DataRelation Object Reference 345
Properties of the DataRelation Class., 345

Questions That Should Be Asked More Frequently.o.... 348

Table of Contents

8 Sorting, Searching, and Filtering......... 353
Using the DataTable Class's Searching and Filtering Features 353
Locating a Row by Its Primary Key Values............................. 353
Conducting More Dynamic Searches.o ... 355
Conducting Wildcard Searches. o i 356
Working with Delimiters. 357

Using the Additional Select Methods............... 359

What Is a DataView Object?. 362
DataView Objects Return Data from a DataTable 363
DataView Objects Are Not SQLQueries 363
Working with DataView Objects in Code. ..., 364
Creating DataView Objectst 365

Using the RowStateFilter Property 366

Using the DataRowView Class. ..., 367
Examining All Rows of Data Available Through a DataView 369
Searching for Dataina DataView. iiiiiiiiiiiiinn. 369
Modifying DataRowView Objects., 372

Using a DataView to Create a New DataTable 373
Creating DataView Objects in Microsoft Visual Studio 376
Adding a New DataView Object to Your Designer 376
Setting Properties of Your DataView Object........................... 376
DataView Object Reference 377
Methods of the DataView Class 380

Events of the DataView Class. ... 384
Properties of the DataRowView Class.ccoiiiiiiin... 385
Methods of the DataRowView Class., 386
Questions That Should Be Asked More Frequently 388
9 Working with Strongly Typed DataSet Objects and TableAdapters. .. 395
Strongly Typed DataSets. i 395
Creating Strongly Typed DataSet Objects ..., 397
The Hard Way. e 397

The Easy Wayo 399

Using Strongly Typed DataSet Objects, 404
Adding @ ROW. 404
Findinga Row ... i 406
Editing @ ROW . .. 407

Workingwith NullData 408

Table of Contents xi

Working with Hierarchical Data........... o ... 409

Other DataSet, DataTable, and DataRow Features 410
Adding Your OwWn Codeooiin 410

When to Use Strongly Typed DataSet Objects 414
Software Components and Pocket Knives 414
Design-Time Benefits i 415
Run-Time Benefits 416
Additional Considerations. 421
Manually Adding Tablesand Columns 423
Improving on the DataSets (De)Faults, 427
Introducing TableAdapters oo 428
Creating a TableAdapter 428

Using a TableAdapter. o 432
Adding More QUENIESttt 438
Adding Your Own Codeooii 440
TableAdapter Limitations.o 441
Choosing Your Path 443
Questions That Should Be Asked More Frequently. 444
10 Submitting Updates to Your Database 447
Submitting Updates Using Parameterized Sg/iCommands...................... 453
Submittinga New ROW 453
Updating an EXisting ROW. i 454
Deleting an Existing Row 462

What More Could You Need? i 463
Submitting Updates Using a Sq/DataAdapter 464
Using Sq/DataAdapter Objects to Submit Updates. 467
Manually Configuring Your Sg/DataAdapter Objects.......................... 467
Bound Parameters 467

Using Stored Procedures to Submit Updates. 469
Supplying Your Own Updating Logic, 474

Using a Sqg/CommandBuilder to Generate Updating Logic 475
How the CommandBuilder Generates Updating Logic................... 476
Concurrency Options Using the Sg/lCommandBuilder 477

Benefits and Drawbacks of Using the Sg/CommandBuilder 478

xii Table of Contents

Using the Visual Studio TableAdapter Configuration Wizard to

Generate Updating LOgiC . ..o 478
Examining the TableAdapter's Updating Logic......................... 479
Options for Building Updating Logic......... ..., 480
Using Stored Procedures to Submit Updates 481
Benefits and Drawbacks of Using the Wizard.......................... 483

Return of the DataAdapters! 484
Invoking the Data Adapter Configuration Wizard...................... 484
Creating a Simple Data Access Layer with Sq/DataAdapters. 485

Submitting Updates in SglTransactions 492
Using the TableMappings Collection 497
The Best WaytoUpdate. 499

SqlCommandBuilder Object Reference 500
Properties of the Sg/CommandBuilder Class. 500
Methods of the Sqg/CommandBuilder Class 502

Questions That Should Be Asked More Frequently 505

11 Advanced Updating Scenarios. 513

Refreshing a Row After Submittingan Update............................... 514
Refreshing the Contents of a DataRow After Submitting Changes. 515
Using Batch Queries to Retrieve Data After You Submit an Update. 516
Retrieving New Data Using Output Parameters........................ 518
Using the Sq/DataAdapter Class's RowUpdated Event to
Retrieve Data After You Submitan Update............................ 520
RefreshAfterUpdate Sample Code. 522

Retrieving Newly Generated Auto-Increment Values. 522
Working with SQL Server. 522
Working with Access Databasesooiiiiii ... 526
Working with Oracle Sequences......... ..., 526
Sample Applications That Retrieve Auto-Increment Values.............. 529

Submitting Hierarchical Changes 529
Submitting Pending Insertions and Deletions 529
Working with Auto-Increment Values and Relational Data 532

Isolating and Reintegrating Changes............. 534
Saving Bandwidth Using the GetChanges Method. 535
Isolating and Reintegrating Changes Sample Code..................... 545

Handling Failed Update Attempts i, 546
Planning Ahead for Conflicts. i i i 546

Informing the User of Failures.......... i i, 547

Table of Contents xiii

Fetching the Current Contents of Conflicting Rows..................... 549

If at First You Don't Succeed i 550

The Conflicts Sample Application i, 551
Working with Distributed Transactions. i i, 551
Transaction Coordinators and Resource Managers 553
Distributed Transactions in the .NET Framework 554
Database Support for Distributed Transactions. 555
Building Your Components. 555
System.Transactions Samplest 558

Batch QUENIES o 558
Using Transactions with Batched Updates............................. 559
Choosing an Appropriate Value for UpdateBatchSize 560

EVents. . 561
Refreshing ROWS e 561
Batched Updating Samples. 561

SQL BUIK COPY. - e vttt ettt 561
Creating a Sq/BulkCopy Object 562
Writing Datatothe Server 563
Mapping Data to the Destination Table............ 564

The Sq/BulkCopyOptions Enumeration ..., 564
BulkCopy Sample Code.ot 565
DataSet Objects and Transactionsttt 565
DataSet Objects and Transactions Sample Code. 566

When Handling Advanced Updating Scenarios, Use ADO.NET 566
Questions That Should Be Asked More Frequently............................ 566
12 Workingwith XMLData............. ... it 569
Bridging the Gap Between XML and Data Access.covviiiiiinnennnnn. 569
Reading and Writing XML Data. 570
The DataSet Class's XML Methods. i, 570
Inferring Schemas. 574
ADO.NET Properties That Affect the Schema of Your XML Document 575
Caching Changes and XML Documents..............ccooiiieeiinnn... 577
DataSet + XmIDocument = XmIDataDocument 579
Using the XmIDataDocument Class. uiiiiiiinenennn.. 580
Accessing Your DataSet as an XML Document 580

Caching Updates to the XML Document, 581

xiv

Table of Contents

Using SQL Server 2005's XML Features ..., 582
SQL Server 2005's XML Type . . oo it 583
Executing an XPath Query to Retrieve Data 587
Retrieving Query Results as XML Using XQuery., 590

Retrieving XML Data from SQL Server 2000 via SELECT..FORXML.............. 593

The SQL XML .NET Data Provider i 596
Using a Sg/IXmICommand to Load Data into an Xm/Document. 596
Using a Sq/XmlAdapter to Load Data into a DataSet.................... 598
Working with Template Queries i, 599
Working with XPath Queries i i 603
Applying an XSL Transform 605
Submitting Updates 605

A Simple ADO.NET and XML Sample 609
Two Paths, One Destination. ..., 610
ADO.NET and XML: AHappy Couple. ...t 610

Questions That Should Be Asked More Frequently 611

rartIv Building Effective Applications with ADO.NET 2.0

13

Building Effective Microsoft Windows-Based Applications 617
Building a User Interface Quickly by Using Data Binding...................... 618
Step 1: Creating Your Strongly Typed DataSet 619

Step 2: Adding Simple Bound Controlstothe Form 620

Step 3:Retrieving Data. 625

Step 4: Navigating Through the Results. 628

Step 5: Adding and Deleting ltems. 630

Step 6: Submitting Changes. 632

Step 7: Adding Edit, Accept, and Reject Buttons 634

Step 8: Viewing Child Data.t 636

Step 9: Binding a Second Form to the Same Data Source 640

Step 10: Improving the User Interface 641

Step 11: If You Want Something Done (Just) Right....................... 647

Data Binding Summary. oo 648
Application Design Considerations.o, 648
Fetching Only the DataYou Need 648
Updating Strategies. 649
Connection Strategies.t 653
Working with BLOB Data 655

User Interfaces Built with ADO.NET Power 660

Questions That Should Be Asked More Frequently 660

Table of Contents XV

14 Building Effective Web Applications. 665
Brief Introduction to Web Applicationso i 666
ASP.NET Makes Building Web Applications Easier 666

The Good and Bad of Statelessness. ..., 666
Connecting to Your Database. 667
Connecting with Integrated Security 668
Working with Microsoft Office Access Databases....................... 670
Challenges Interacting with Databases in ASPNET 1.0......................... 671
Introducing Data Source Controls................. ... 671
Displaying Data by Using a Sq/DataSource Control 672
Features of the Sg/DataSource Control., 677
Caching Data Between Roundtrips 685
The Stateless Approach—Maintaining No State 686
Caching DataattheClient, 686
Maintaining State in Your Web Server 689

Using SQL Server 2005 Notification Services 691
Maintaining State in Your Databasel 698
Guidelines for Maintaining State L. 700
PagING ..o 701
Paging Features of the GridView Control.............................. 701
Paging Features of the DataAdapter Classescccoviunn. 702
Building Queries That Returna PageofData 703
Questions That Should Be Asked More Frequently............................ 710
15 SQL Server 2005 Common Language Runtime Integration 713
Extending SQL Server the Old Way—Extended Stored Procedures.............. 713
Extending SQL Server the New Way—CLR Integration 714
Using Microsoft Visual Studio 2005 to Simplify Building SQL CLR Code 715
Setting Properties on Your SQL Server Project 715
Building and Deploying Your Project ..., 718
Adding Itemsto Your Project. i 718
Testing Your Project Usinga SQL Script 718

SQL CLR SCENAIIOS . ..ottt 719
Creating a Scalar Function to Validate Data. 719
Creating an Aggregate Function............ 722
Querying the Current Database Using the Context Connection 726
Building SQL CLR Table Valued Functions 728
Returning Query Results from a Stored Procedure...................... 731

Returning Data Through Stored Procedure Parameters. 735

xvi Table of Contents

Creating a SQL CLR User-Defined Type 737
What's in a SQL CLR User-Defined Type? ..o, 737
Exposing Methods and Properties on the User-Defined Type............ 741
Using Your User-Defined Type in a Client Application 746

SUMIMIAIY . . et e e e e e 749

Questions That Should Be Asked More Frequently 750

Partv Appendixes

A Using Other .NET Data Providers 755
The Provider Factory Model. 756
Limitations of the ADO.NET Common Interfaces....................... 756

How the Provider Factory Model Addresses Previous Limitations. 757
Provider Factory Model Limitationso ... 762
Database Schema Discoverabilityc i, 766

The ODBC .NET Data Provider. ... 770
Connecting to Your Database Using an OdbcConnection................ 770
Executing Queries Using an OdbcCommand 771
Retrieving the Results of a Query Using an OdbcDataAdapter 774
Retrieving Database Schema Information............................. 775

The OLE DB .NET Data Provider 777
Connecting to Your Database Using an OleDbConnection............... 778
Executing Queries Using an OleDbCommand. 779
Retrieving the Results of a Query Using an OleDbDataAdapter 783
Retrieving Database Schema Information............................. 783

The Oracle Client .NET Data Provider............ o .. 786
Connecting to Your Oracle Database Using an OracleConnection 787
Executing Queries Using an OracleCommand 787

Using the OracleDataAdapter Class oo .. 795
Retrieving Database Schema Information............................. 803

B SamplesandTools i 807
Sample .NET Data Provider—DSP.o i 807
ADO.NET Data EXplorer.o 808
AdapterSet. 810

Chapter 1

Overview of ADO.NET

In this chapter:

No New Object Model?1? o i e et eiiae e 3
The ADO.NET Object Model. i i i 4
Questions That Should Be Asked More Frequently 22

ADO.NET is a set of libraries included with the Microsoft NET Framework that help you
communicate with various data stores from .NET applications. The ADO.NET libraries
include classes for connecting to a data source, submitting queries, and processing results.
You can also use ADO.NET as a robust, hierarchical, disconnected data cache to work
with data offline. The central disconnected object, the DataSet, allows you to sort, search,
filter, store pending changes, and navigate through hierarchical data. The DataSet also
includes a number of features that bridge the gap between traditional data access and XML
development. Developers can now work with XML data through traditional data access
interfaces and vice versa.

In short, if you're building a .NET application that accesses data, you should use ADO.NET.

Microsoft Visual Studio includes a suite of design-time data access features that can help you
build data access applications more efficiently. Many of these features can save you time
during the development process by generating large amounts of tedious code for you. Other
features improve the performance of the applications you build by storing metadata and
updating logic in your code rather than fetching this information at run time. Believe it or not,
many of Visual Studio’s data access features accomplish both tasks.

As we examine ADO.NET throughout this book, we’ll also look at features in Visual Studio
that you can use to save time and effort.

No New Object Model?!?

Visual Studio 2005 breaks new ground for Microsoft in that it is the first major release of
Visual Studio that does not introduce a new data access object model. (Visual Studio 2003
doesn’t count because it contained only minor enhancements to Visual Studio 2002.)
Developers who have honed their ADO.NET skills using versions 1.0 and 1.1 of the
NET Framework can continue to enhance those skills in version 2.0 of the NET
Framework.

4 Part| Getting Started with Microsoft ADO.NET 2.0

Many developers who are new to the NET Framework may have had experience with
Microsoft’s previous data access technology—Active Data Object (ADO). ADO served many
developers well, but it lacks key features that developers need to build more powerful applica-
tions. For example, more and more developers want to work with XML data. Although later
versions of ADO added XML features, ADO was not built to work with XML data. For example,
ADO does not allow you to separate the schema information from the actual data. Microsoft
might add more XML features to future releases of ADO, but ADO will never handle XML data
as efficiently as ADO.NET does because ADO.NET was designed with XML in mind and ADO
was not. The ADO cursor engine makes it possible to pass disconnected ADO Recordset
objects between different tiers in your application, but you cannot combine the contents of
multiple Recordset objects. ADO allows you to submit cached changes to databases, butit does
not give you control over the logic used to submit updates. Also, the ADO cursor engine does
not, for example, provide a way to submit pending changes to your database via stored proce-
dures. Because many database administrators allow users to modify the contents of the data-
base only through stored procedures, many developers cannot submit updates through the
ADO Recordset object.

Microsoft built ADO.NET to address these key scenarios, along with others that I'll discuss
throughout this book.

ADO.NET is designed to combine the best features of its predecessors while adding features
requested most frequently by developers—greater XML support, easier disconnected data
access, more control over updates, and greater update flexibility.

The ADO.NET Object Model

Now that you understand the purpose of ADO.NET and where it fits into the overall Visual
Studio architecture, it's time to take a closer look at the technology. In this chapter, we’ll look
briefly at the ADO.NET object model and see how it differs from previous Microsoft data
access technologies.

ADO.NET is designed to help developers build efficient multi-tiered database applications
across intranets and the Internet, and the ADO.NET object model provides the means.
Figure 1-1 shows the classes that comprise the ADO.NET object model. A dotted line
separates the object model into two halves. The objects to the left of the line are connected
objects. These objects communicate directly with your database to manage the connection
and transactions as well as to retrieve data from and submit changes to your database.
The objects to the right of the line aredisconnected objects that allow a user to work with
data offline.

The objects that comprise the disconnected half of the ADO.NET object model do not
communicate directly with the connected objects. This is a major change from previous
Microsoft data access object models. In ADO, the Recordset object stores the results of

your queries. You can call its Open method to fetch the results of a query and call its Update (or
UpdateBatch) method to submit changes stored within the Recordset to your database.

Chapter 1 Overview of ADO.NET 5

Connected Classes Disconnected Classes

DataSet

(DataTable J (DataView J

DataRow

ProviderFactory

Transaction

ConnectionString
Builder

DataAdapter Constraint

Command DataRelation

Parameter

DataReader

0
o
=)
=)
0]
a
=g
o
=)

. /

Figure 1-1 The ADO.NET object model

The ADO.NET DataSet, which we’ll discuss shortly, is comparable in functionality to the ADO
Recordset. However, the DataSet does not communicate with your database. To fetch data from
your database into a DataSet, you pass the DataSet into the Fill method of a connected
ADO.NET object—the DataAdapter. Similarly, to submit the pending changes stored in your
DataSet to your database, you pass the DataSet to the DataAdapter object’s Update method.

.NET Data Providers

A NET data provider is a collection of classes designed to allow you to communicate with

a particular type of data store. The NET Framework includes four such providers, the SQL
Client NET Data Provider, the Oracle Client .NET Data Provider, the ODBC .NET Data
Provider and the OLE DB .NET Data Provider. The SQL Client and Oracle Client NET

Data Providers are designed to talk to specific databases, SQL Server and Oracle, respectively.
The ODBC and OLE DB .NET Data Providers are often called “bridge” components because
they serve as a bridge to legacy technologies—ODBC and OLE DB. These providers let

you communicate with various data stores through ODBC drivers and OLE DB providers,
respectively.

Part| Getting Started with Microsoft ADO.NET 2.0

Each .NET data provider implements the same basic classes—ProviderFactory, Connection,
ConnectionStringBuilder, Command, DataReader, Parameter, and Transaction—although their
actual names depend on the provider. For example, the SQL Client .NET Data Provider has a
SqlConnection class, and the ODBC .NET Data Provider includes an OdbcConnection class.
Regardless of which .NET data provider you use, the provider’s Connection class

implements the same basic features through the same basic interfaces. To open a connection
to your data store, you create an instance of the provider’s connection class, set the object’s
ConnectionString property, and then call its Open method.

Each .NET data provider has its own namespace. The four providers included in the .NET
Framework are subsets of the System.Data namespace, where the disconnected objects reside.
The SQL Client .NET Data Provider resides in the System.Data.SqlClient namespace, the
ODBC .NET Data Provider resides in System.Data.Odbc, the OLE DB .NET Data Provider
resides in the System.Data.OleDb, and the Oracle Client .NET Data Provider resides in
System.Data.OracleClient.

Namespaces

A namespace is a logical grouping of objects. The NET Framework is large, so to make
developing applications with the NET Framework a little easier, Microsoft has divided
the objects into different namespaces. Figure 1-2 shows a portion of the hierarchy of
namespaces in the .NET Framework.

4 N\
System
s N\ [N\ [A
Collections Data XML
(Generic) (SqlClient) ' Schema '
(ObjectModeI) (OracIeCIient) ' Serialization '
(Specialized) (Odbc) ' XPath '
' OleDb ' Xsl
SqlTypes
. J \ J \ J
. J

Figure 1-2 Namespaces in the .NET Framework

The most important reason for using namespaces is to prevent name collisions in
assemblies. With different namespaces, programmers working on different components
combined into a single solution can use the same names for different items. Because

Chapter 1 Overview of ADO.NET 7

these names are separated, they don’t interfere with each other at compile time. A more
practical reason for namespaces is that grouping objects can make them easier to locate.
Sometimes I forget the exact name of the class I'm looking for. If the classes in the
NET Framework were not broken out into smaller namespaces, I would have to find
the desired class in an alphabetical list of all the classes in the framework. Thankfully, I
can usually remember the namespace of the desired class. Finding the class within its
namespace is simpler because there are fewer classes to examine.

For more information on using namespaces in the Microsoft NET Framework or Visual
Studio, see the .NET Framework SDK.

Because each .NET data provider implements the same basic features, the code you write will
look fairly similar regardless of the provider you use. As you can see in the following code
snippets, all you need to do to switch from using the ODBC .NET Data Provider to the SQL
Client .NET Data Provider is to change the class you instantiate and the contents of the
connection string to conform to the provider’s standards.

Visual Basic

'Open and close an OdbcConnection

Dim cnOdbc As New OdbcConnection

cnOdbc.ConnectionString = "Driver={SQL Server};" & _
"Server=.\SQLExpress;" & _
"Database=Northwind;..."

cnOdbc.Open()

cnOdbc.Close()

'Open and close a SqlConnection

Dim cnSgl As New SqlConnection

cnSql.ConnectionString = "Data Source=.\SQLExpress;" & _
"Initial Catalog=Northwind;..."

cnSql.0pen()

cnSql.Close()

Visual C#

//0pen and close an OdbcConnection

OdbcConnection cnOdbc = new OdbcConnection();

cnOdbc.ConnectionString = "Driver={SQL Server};" +
@"Server=.\SQLExpress" +
"Database=Northwind;...";

cn0leDb.0pen();

cnOleDb.Close();

//0pen and close a SqlConnection

SqTConnection cnSql = new SqlConnection();

cnSql.ConnectionString = @"Data Source=.\SQLExpress;" +
"Initial Catalog=Northwind;...";

cnSql.0penQ);

cnSql.Close();

8 Part| Getting Started with Microsoft ADO.NET 2.0

Why Use Separate Classes and Libraries?

No previous Microsoft data access technology has used separate libraries and classes for
different data stores. Many developers have asked why Microsoft has made such a major
change. There are three main reasons: performance, extensibility, and proliferation.

Better Performance

How does moving to .NET data providers improve performance? When you write ADO code,
you're essentially using the ADO interfaces as middlemen when communicating with your
data store. You tell ADO which provider you want to use, and ADO forwards your calls to the
appropriate provider. The provider performs the requested action and returns the result to
you through the ADO library.

NET data providers don’t involve a middle layer. You communicate directly with the data
provider, which communicates with your data store using the data store’s low-level programming
interfaces. Communicating with SQL Server by using the SQL Client .NET Data Provider in
ADO.NET is faster than using ADO and the SQL Server OLE DB provider because one less
layer is involved.

Greater Extensibility

When SQL Server 2000 introduced XML features, the ADO development team faced an
interesting challenge. To add features to ADO that would let developers retrieve XML data
from SQL Server 2000, the ADO development team had to add new interfaces to the OLE DB
API and to the SQL Server OLE DB provider.

NET data providers are more easily extensible. They need to support only the same basic
interfaces and can provide additional provider-specific features when appropriate. The SQL
Client .NET Data Provider’s Command object (SqlCommand) exposes all the same methods
and properties that its OLE DB .NET Data Provider counterpart does, but it also adds a
method to fetch the results of a query as XML.

SQL Server 2005 includes a suite of new features, including the ability to have applications
use Notification Services to receive notifications when the results of a query change on the
server. Rather than change the inner workings of ADO.NET’s common classes, Microsoft
simply introduced two new classes to the SQL Client .NET Data Provider to leverage these
new SQL Server features.

Proliferation

Microsoft first shipped OLE DB providers for SQL Server, Microsoft Access, and Oracle with
the release of the Microsoft Data Access Components (MDAC) version 2.0 in July 1998.

Microsoft and other development teams have created native OLE DB providers to communicate
with other data stores, but not a whole lot of OLE DB providers are available. If you're using

Chapter 1 Overview of ADO.NET 9

ADO but aren’t using a Microsoft-built OLE DB provider, there’s a high probability that you're
using an ODBC (OLE DB’s predecessor) driver instead. Many more ODBC drivers are available,
primarily because they were easier to develop. Many developers simply found it too difficult to
build their own OLE DB providers.

By comparison, a .NET data provider is simple to write. There are far fewer interfaces to
implement. Microsoft simplified the process of building providers for ADO.NET so that
developers can build .NET data providers more easily. The more .NET data providers there
are, the more different data sources you can access via ADO.NET.

I wrote the previous two paragraphs for the first edition of this book. Since that time, .NET
Data Providers have been developed by database vendors, independent software vendors and
various open source projects. There are fewer and fewer teams producing new versions of
OLE DB providers. At the time of writing the second edition of this book, most teams that are
creating components to be used from Microsoft development technologies are focusing on
producing .NET Data Providers, ODBC drivers, or both.

Coverage of .NET Data Providers in This Book

Because each .NET data provider implements the same base interfaces, there’s no need for me
to explain the use of these interfaces for every NET data provider. Instead, I'll mostly focus on
one provider: the SQL Client .NET Data Provider. In the first edition of the book, I focused on
the OLE DB .NET Data Provider, but OLE DB providers have fallen out of vogue, as has the
OLE DB .NET Data Provider. Plus, the SQL Client .NET Data Provider offers a ton of new
features—asynchronous query execution, batch updating, query notifications, and bulk copy,
to name just a few.

Appendix A discusses the features of the other three NET data providers, as well as the common
provider model. Chapter 12 addresses the SQL XML .NET Data Provider to demonstrate the
use of some of ADO.NET’s XML features. Because the SQL XML .NET Data Provider offers no
new features and omits many classes included in other .NET data providers, it’s generally not
considered a full-fledged .NET data provider.

If I'm discussing a class that's common to all NET data providers, I'll often refer to it by
its provider-independent name—for example, DataAdapter rather than SqlDataAdapter or
OdbcDataAdapter.

Connected Objects

The ADO.NET object model includes classes designed to help you communicate directly
with your data source. I'll refer to such classes, which appear to the left of the dotted line in
Figure 1-1 (shown earlier), as ADO.NET’s “connected” classes. Most of these classes represent
basic data access concepts such as the physical connection to the database, a query, and the
query’s results.

10

Part| Getting Started with Microsoft ADO.NET 2.0

ProviderFactory Class

A ProviderFactory class is new to ADO.NET 2.0 and acts as an object factory, allowing you to
create instances of other classes for your .NET data provider. Each ProviderFactory class offers
a Create method that creates Connections, ConnectionStringBuilders, Commands, Parameters,
DataAdapters and CommandBuilders.

Connection Class

A Connection object represents a connection to your data source. You can specify the type
of data source, its location, and other attributes through the various properties of the
Connection class. A Connection object is roughly equivalent to an ADO Connection object or a
DAO Database object; you use it to connect to and disconnect from your database. A
Connection object acts as a conduit through which other objects, such as DataAdapter and
Command objects, communicate with your database to submit queries and retrieve results.

ConnectionStringBuilder Class

The ConnectionStringBuilder class is new to ADO.NET 2.0 and simplifies the process of building
connection strings for a .NET data provider. Each ConnectionStringBuilder class exposes
properties that correspond to options available in that .NET data provider’s connection
strings. For example, the OdbcConnectionStringBuilder class exposes a Driver property and
the OleDbConnectionStringBuilder class exposes a Provider property. Once you've used your
ConnectionStringBuilder to build your connection string, you can access the connection string
by using the ConnectionStringBuilder object’s ConnectionString property.

Command Class

Command objects are similar in structure to ADO Command or DAO QueryDef objects. They
can represent a query against your database, a call to a stored procedure, or a direct request to
return the contents of a specific table.

Databases support many types of queries. Some queries retrieve rows of data by referencing
one or more tables or views or by calling a stored procedure. Other queries modify rows of
data, and still others manipulate the structure of the database by creating or modifying
objects such as tables, views, or stored procedures. You can use a Command object to execute
any of these types of queries against your database.

Using a Command object to query your database is rather straightforward. You set the
Connection property to a Connection object that connects to your database and then specify the
text for your query in the CommandText property. You can supply a standard SQL query such
as this one:

SELECT CustomerID, CompanyName, ContactName, Phone FROM Customers

Chapter 1 Overview of ADO.NET 11

You can also supply just the name of a table, view, or stored procedure and use the Command
object’s CommandType property for the type of query you want to execute. The Command class
offers different ways to execute your query. If the query does not return rows, simply call the
ExecuteNonQuery method. The Command class also has an ExecuteReader method, which
returns a DataReader object that you can use to examine the rows returned by your query. If
you only want to retrieve the first column of the first row returned by the query, you can save
yourself a few lines of code by calling the Command object’s ExecuteScalar method instead.
The SqlCommand includes a fourth execution method, ExecuteXmlReader, that is similar to
ExecuteReader but is designed to handle queries that return results in XML format.

DataReader Class

The DataReader class is designed to help you retrieve and examine the rows returned by your
query as quickly as possible. You can use the DataReader class to examine the results of a
query one row at a time. When you move forward to the next row, the contents of the previous
row are discarded. The DataReader doesn’t support updating. The data returned by the
DataReader is read-only. Because the DataReader class supports such a minimal set of features,
it’s extremely fast and lightweight.

Developers with experience using cursors in previous data access technologies may recognize
the DataReader as a forward-only read-only cursor, or a firehose cursor.

Transaction Class

At times, you might want to group a number of changes to your database and treat them as a
single unit of work. In database programming, that unit of work is called a transaction. Let’s
say that your database contains banking information and has tables for checking and savings
accounts and a user wants to transfer money from a savings account to a checking account.
In your code, you'll want to make sure that the withdrawal from savings and the deposit

to checking complete successfully as a single unit or that neither change occurs. You use a
transaction to accomplish this.

The Connection class has a BeginTransaction method that you can use to create Transaction
objects. You use a Transaction object to either commit or cancel the changes you make to
your database during the lifetime of the Transaction object. In our banking example, the
changes to both the savings and checking accounts would be included in a single transaction
and, therefore, would be either committed or cancelled as a single unit of work.

Parameter Class

Say that you want to query your Orders table for all the orders for a particular customer. Your
query will look something like this:

SELECT CustomerID, CompanyName, CompanyName, Phone FROM Customers
WHERE CustomerID = 'ALFKI'

12

Part| Getting Started with Microsoft ADO.NET 2.0

The value you use for the CustomerID column in the query’s WHERE clause depends on the
customer whose orders you want to examine. But if you use this type of query, you must modify
the text for the query each time you want to examine the orders for a different customer.

To simplify the process of executing such queries, you can replace the value for the CustomerID
column with a parameter marker, as shown in the following query:

SELECT CustomerID, CompanyName, CompanyName, Phone FROM Customers
WHERE CustomerID = @CustomerID

Then, prior to executing the query, you supply a value for the parameter. Many developers rely
heavily on parameterized queries because they can help simplify your programming and
make for more efficient code.

To use a parameterized Command object, you create Parameter objects for each of the parameters
in your query and append them to the Command object’s Parameters collection. The ADO.NET
Parameter class exposes properties and methods that let you define the data type and value
for your parameters. To work with a stored procedure that returns data through output
parameters, you set the Parameter object’s Direction property to the appropriate value from
the ParameterDirection enumeration.

DataAdapter Class

The DataAdapter class represents a new concept for Microsoft data access models; it has
no true equivalent in ADO or DAQO, although you can consider the ADO Command and DAO
QueryDef objects to be its second cousins, once removed.

DataAdapter objects act as a bridge between your database and the disconnected objects in
the ADO.NET object model. The Fill method, which is part of the DataAdapter object class,
provides an efficient mechanism to fetch the results of a query into a DataSet or a DataTable so
you can work with your data offline. You can also use DataAdapter objects to submit the pend-
ing changes stored in your DataSet objects to your database.

The ADO.NET DataAdapter class exposes a number of properties that are actually Command
objects. For instance, the SelectCommand property contains a Command object that
represents the query you'll use to populate your DataSet object. The DataAdapter class also
has UpdateCommand, InsertCommand, and DeleteCommand properties that correspond to
Command objects you use when you submit modified, new, or deleted rows to your database,
respectively.

These Command objects provide updating functionality that was automatic (or “automagic,”
depending on your perspective) in the ADO and DAO Recordset objects. For example,

when you run a query in ADO to generate a Recordset object, the ADO cursor engine asks the
databases for metadata about the query to determine where the results came from. ADO then
uses that metadata to build the updating logic to translate changes in your Recordset object
into changes in your database.

Chapter 1 Overview of ADO.NET 13

So why does the ADO.NET DataAdapter class have separate UpdateCommand, InsertCommand,
and DeleteCommand properties? To allow you to define your own updating logic. The updating
functionality in ADO and DAO is fairly limited in the sense that both object models translate
changes in Recordset objects into action queries that directly reference tables in your database.
To maintain the security and integrity of the data, many database administrators restrict access
to the tables in their databases so that the only way to change the contents of a table is to call a
stored procedure. ADO and DAO don’t know how to submit changes using a stored procedure;
neither provides mechanisms that let you specify your own updating logic. The ADO.NET
DataAdapter does.

With a DataAdapter object, you can set the UpdateCommand, InsertCommand, and Delete-
Command properties to call the stored procedures that will modify, add, or delete rows in
the appropriate table in your database. Then you can simply call the Update method on the
DataAdapter object and ADO.NET will use the Command objects you've created to submit the
cached changes in your DataSet to your database.

As I stated earlier, the DataAdapter class populates tables in the DataSet object and also
reads cached changes and submits them to your database. To keep track of what goes where,
a DataAdapter has some supporting properties. The TableMappings collection is a property
used to track which table in your database corresponds to which table in your DataSet object.
Each table mapping has a similar property for mapping columns, appropriately called a
ColumnMappings collection.

Disconnected Classes

You've seen that you can use the connected classes in a .NET data provider to connect to a
data source, submit queries, and examine their results. However, these connected classes let
you examine data only as a forward-only, read-only stream of data. What if you want to sort,
search, filter, or modify the results of your queries?

The ADO.NET object model includes classes to provide such functionality. These classes

act as an offline data cache. Once you've fetched the results of your query into a DataTable
(which we’ll discuss shortly), you can close the connection to your data source and continue
to work with the data. As mentioned earlier, because these classes do not require a live
connection to your data source, we call them “disconnected” classes.

Let’s look at the disconnected classes in the ADO.NET object model.
DataTable Class

The ADO.NET DataTable class is similar to the ADO and DAO Recordset classes. A DataTable
object allows you to examine data through collections of rows and columns. You can store the
results of a query in a DataTable by calling a DataAdapter object’s Fill method, as shown in
the following code snippet:

Visual Basic

Dim strConn, strSQL As String
strConn = "Data Source=.\SQLExpress;" & _

14

Part| Getting Started with Microsoft ADO.NET 2.0

"Initial Catalog=Northwind;Integrated Security=True;"
strSQL = "SELECT CustomerID, CompanyName FROM Customers"
Dim da As New SqglDataAdapter(strSQL, strConn)
Dim tb1l As New DataTable()
da.Fi11(tb1)

Visual C#

string strConn, strSQL;
strConn = @"Data Source=.\SQLExpress;" +

"Initial Catalog=Northwind;Integrated Security=True;";
strSQL = "SELECT CustomerID, CompanyName FROM Customers";
Sq1DataAdapter da = new SqglDataAdapter(strSQL, strConn);
DataTable tb1 = new DataTable();
da.Fi11(tbh1);

Once you've fetched the data from your database and stored it in a DataTable object, that
data is disconnected from the server. You can then examine the contents of the DataTable
object without creating any network traffic between ADO.NET and your database. By

working with the data offline, you no longer require a live connection to your database, but
remember that you also won’t see any changes made by other users after you’ve run your

query.

The DataTable class contains collections of other disconnected objects, which I'll discuss
shortly. You access the contents of a DataTable through its Rows property, which returns a
collection of DataRow objects. If you want to examine the structure of a DataTable, you use its
Columns property to retrieve a collection of DataColumn objects. The DataTable class also lets
you define constraints, such as a primary key, on the data stored within the class. You can
access these constraints through the DataTable object’s Constraints property.

DataColumn Class

Each DataTable has a Columns collection, which is a container for DataColumn objects.

As its name implies, a DataColumn object corresponds to a column in your table. However,
a DataColumn object doesn’t actually contain the data stored in your DataTable. Instead, it
stores information about the structure of the column. This type of information, data about
data, is commonly called metadata. For example, DataColumn exposes a DataType property
that describes the data type (such as string or integer) that the column stores. The Data-
Column class has other properties such as ReadOnly, AllowDBNull, Unique, Default, and
AutoIncrement that allow you to control whether the data in the column can be updated,
restrict what can be stored in the column, or dictate how values should be generated for
new rows of data.

The DataColumn class also exposes an Expression property, which you can use to define how
the data in the column is calculated. A common practice is to base a column in a query on an
expression rather than on the contents of a column in a table in your database. For example,
in the sample Northwind database that accompanies most Microsoft database-related products,
each row in the Order Details table contains UnitPrice and Quantity columns. Traditionally, if
you wanted to examine the total cost for the order item in your data structure, you would add

Chapter 1 Overview of ADO.NET 15

a calculated column to the query. The following SQL example defines a calculated column
called ItemTotal:

SELECT OrderID, ProductID, Quantity, UnitPrice,
Quantity * UnitPrice AS ItemTotal
FROM [Order Details]

The drawback to this technique is that the database engine performs the calculation only at
the time of the query. If you modify the contents of the UnitPrice or Quantity columns in your
DataTable object, the ItemTotal column doesn’t change.

The ADO.NET DataColumn class defines an Expression property to handle this scenario more
elegantly. When you check the value of a DataColumn object based on an expression,
ADO.NET evaluates the expression and returns a newly calculated value. In this way, if you
update the value of any column in the expression, the value stored in the calculated column
is accurate. Here are two code snippets illustrating the use of the Expression property:

Visual Basic
Dim col As New DataColumn()

With col

.ColumnName = "ItemTotal"

.DataType = GetType(Decimal)

.Expression = "UnitPrice * Quantity"
End With
Visual C#
DataColumn col = new DataColumn();
col.ColumnName = "ItemTotal";
col.DataType = typeof(Decimal);
col.Expression = "UnitPrice * Quantity";

The Columns collection and DataColumn objects can be roughly compared to the Fields
collection and Field objects in ADO and DAO.

Constraint Class

The DataTable class also provides a way for you to place constraints on the data stored locally
within a DataTable object. For example, you can build a Constraint object that ensures that the
values in a column, or multiple columns, are unique within the DataTable. Constraint objects
are maintained in a DataTable object’s Constraints collection.

DataRow Class

To access the actual values stored in a DataTable object, you use the object’s Rows collection,
which contains a series of DataRow objects. To examine the data stored in a specific column of
a particular row, use the Item property of the appropriate DataRow object to read the value for
any column in that row. The DataRow class provides several overloaded definitions of its Item
property. You can specify which column to view by passing the column name, index value, or
associated DataColumn object to a DataRow object’s Item property. Because Item is the default

16

Part| Getting Started with Microsoft ADO.NET 2.0

property of the DataRow class, you can use it implicitly, as shown in the following code
snippets:

Visual Basic

Dim row As DataRow

row = tb1.Rows(0)

Console.WriteLine(row(0))
Console.WriteLine(row("CustomerID"))
Console.WriteLine(row(tb1.Columns("CustomerID™)))

Visual C#

DataRow row;

row = tb1.Rows[0];

Console.WriteLine(row[0]);
Console.WriteLine(row["CustomerID"]);
Console.WriteLine(row[MyTable.Columns["CustomerID"]]);

Rather than return the data for just the current row, the DataTable makes all rows of data
available through a collection of DataRows. This is a marked change in behavior from the ADO
and DAO Recordset objects, which expose only a single row of data at a time, thereby requiring
you to navigate through its contents by using methods such as MoveNext. The following code
snippet is an example of looping through the contents of an ADO Recordset:

Visual Basic "Classic"
Dim strConn As String, strSQL As String
Dim rs As ADODB.Recordset
strConn = "Provider=SQLOLEDB;Data Source=.\SQLExpress;" & _
"Initial Catalog=Northwind;Integrated Security=SSPI;"
strSQL = "SELECT CustomerID, CompanyName FROM Customers"
Set rs = New ADODB.Recordset
rs.CursorLocation = adUseClient
rs.Open strSQL, strConn, adOpenStatic, adLockReadOnly, adCmdText
Do While Not rs.EOF
Debug.Print rs("CustomerID™)
rs.MoveNext
Loop

To examine the contents of an ADO.NET DataTable, you loop through the DataRow objects
contained in the DataTable object’s Rows property, as shown in the following code snippet:

Visual Basic

Dim strSQL, strConn As String
strConn = "Data Source=.\SQLExpress;" & _
"Initial Catalog=Northwind;Integrated Security=True;"
strSQL = "SELECT CustomerID, CompanyName FROM Customers"
Dim da As New SqlDataAdapter(strSQL, strConn)
Dim tb1l As New DataTable()
da.Fi11(tb1)
For Each row As DataRow In tbT.Rows
Console.WriteLine(row("CustomerID"))
Next row

Chapter 1 Overview of ADO.NET 17

Visual C#

string strSQL, strConn;
strConn = @"Data Source=.\SQLExpress;" +
"Initial Catalog=Northwind;Integrated Security=True;";

strSQL = "SELECT CustomerID, CompanyName FROM Customers";
Sq1DataAdapter da = new SqglDataAdapter(strSQL, strConn);
DataTable tb1 = new DataTable();
da.Fi11(tbh1);
foreach (DataRow row in tb1.Rows)

Console.WriteLine(row["CustomerID"]);

The DataRow class is also the starting point for your updates. For example, you can call the
BeginEdit method of a DataRow object, change the value of some columns in that row through
the Item property, and then call the EndEdit method to save the changes to that row. Calling a
DataRow object’s CancelEdit method lets you cancel the changes made in the current editing
session. The DataRow class also exposes methods to delete or remove an item from the Data-
Table object’s collection of DataRows.

When you change the contents of a row, the DataRow caches those changes so that you can
later submit them to your database. Thus, when you change the value of a column in a row,
the DataRow maintains that column’s original value as well as its current value to successfully
update the database. The Item property of a DataRow object also allows you to examine the
original value of a column when the row has a pending change.

DataSet Class

A DataSet object, as its name indicates, contains a set of data. You can think of a DataSet object
as the container for a number of DataTable objects (stored in the DataSet object’s Tables
collection). Remember that ADO.NET was created to help developers build large multi-tiered
database applications. At times, you might want to access a component running on a middle-tier
server to retrieve the contents of many tables. Rather than having to repeatedly call the server
in order to fetch that data one table at a time, you can package all the data into a DataSet object
and return it in a single call. But a DataSet object does a great deal more than act as a container
for multiple DataTable objects.

The data stored in a DataSet object is disconnected from your database. Any changes you
make to the data are simply cached in each DataRow. When it’s time to send these changes to
your database, it might not be efficient to send the entire DataSet back to your middle-tier
server. You can use the GetChanges method to extract just the modified rows from your
DataSet. In this way, you pass less data between the different processes or servers.

The DataSet class also exposes a Merge method, which can act as a complement to the
GetChanges method. The middle-tier server you use to submit changes to your database, using
the smaller DataSet returned by the Merge method, might return a DataSet that contains newly
retrieved data. You can use the DataSet class’s Merge method to combine the contents of two
DataSet objects into a single DataSet. This is another example that shows how ADO.NET was
developed with multi-tiered applications in mind. Previous Microsoft data access models have
no comparable feature.

18

Part| Getting Started with Microsoft ADO.NET 2.0

You can create a DataSet object and populate its Tables collection with information without
having to communicate with a database. In previous data access models, you generally need to
query a database before adding new rows locally, and then later submit them to the database.
With ADO.NET, you don’t need to communicate with your database until you're ready to
submit the new rows.

The DataSet class also has features that allow you to write it to and read it from a file or an area
of memory. You can save just the contents of the DataSet object, just the structure of the
DataSet object, or both. ADO.NET stores this data as an XML document. Because ADO.NET
and XML are so tightly coupled, moving data back and forth between ADO.NET DataSet
objects and XML documents is a snap. You can thus take advantage of one of the most
powerful features of XML: its ability to easily transform the structure of your data. For example,
you can use an Extensible Stylesheet Language (XSL) transformation template to convert data
exported to an XML document into HTML.

DataRelation Class

The tables in your database are usually related in some fashion. For example, in the North-
wind database, each entry in the Orders table relates to an entry in the Customers table, so
you can determine which customer placed which orders. You'll probably want to use related
data from multiple tables in your application. The ADO.NET DataSet class handles data from
related DataTable objects with a little help from DataRelation class.

The DataSet class exposes a Relations property, which is a collection of DataRelation objects.
You can use a DataRelation object to indicate a relationship between different DataTable
objects in your DataSet. Once you've created your DataRelation object, you can use code such
as the following to retrieve an array of DataRow objects for the orders that correspond to a
particular customer:

Visual Basic

Dim ds As DataSet

Dim tb1Customers, tb10rders As DataTable
Dim rel As DataRelation

'The code for creating the DataSet goes here.

rel = ds.Relations.Add("Customers_Orders", _
tbT1Customers.Columns("CustomerID™), _
tb10rders.Columns ("CustomerID"))

For Each rowCustomer As DataRow In tblCustomers.Rows
Console.WriteLine(rowCustomer ("CompanyName"))
For Each rowOrder As DataRow In rowCustomer.GetChildRows(rel)
Console.WriteLine(" {0}", rowOrder("OrderID"))
Next rowOrder
Console.WriteLine()
Next rowCustomer

Chapter 1 Overview of ADO.NET 19

Visual C#

DataSet ds;
DataTable tb1Customers, tbl10rders;
DataRelation rel;

//Create and initialize DataSet.

rel = ds.Relations.Add("Customers_Orders",
tb1Customers.Columns["CustomerID"],
tb10rders.Columns["CustomerID"]);

foreach (DataRow rowCustomer in tblCustomers.Rows) {
Console.WriteLine(rowCustomer["CompanyName"]);
foreach (DataRow rowOrder in rowCustomer.GetChildRows(rel))
Console.WriteLine(" {03}", rowOrder["OrderID"]);
Console.WriteLine(Q);

3

DataRelation objects also expose properties that allow you to enforce referential integrity. For
example, you can set a DataRelation object so that if you modify the value of the primary key
field in the parent row, the change cascades down to the child rows automatically. You can
also set your DataRelation object so that if you delete a row in one DataTable, the corresponding
rows in any child DataTable objects, as defined by the relation, are automatically deleted as
well.

DataView Class

Once you've retrieved the results of a query into a DataTable object, you can use a DataView
object to view the data in different ways. If you want to sort the contents of a DataTable
object based on a column, simply set the DataView object’s Sort property to the name of that
column. You can also set the Filter property on a DataView so that only the rows that match
certain criteria are visible.

You can use multiple DataView objects to examine the same DataTable at the same time. For
example, you can have two grids on a form, one showing all customers in alphabetical order,
and the other showing the rows ordered by a different field, such as state or region. To show
each view, you bind each grid to a different DataView object, but both DataView objects
reference the same DataTable. This feature prevents you from having to maintain two copies
of your data in separate structures. We'll discuss this in more detail in Chapter 8.

Metadata

ADO and DAO allow you to create a Recordset based on the results returned by your query. The
data access engine examines the columns of data in the result set and populates the Recordset
object’s Fields collection based on this information, setting the name, data type, and so forth.

ADO.NET offers you a choice. You can use just a couple lines of code and let ADO.NET
determine the structure of the results automatically, or you can use more code that includes
metadata about the structure of the results of your query.

20

Part| Getting Started with Microsoft ADO.NET 2.0

Why would you choose the option that involves writing more code? The main benefits are
increased functionality and better performance. But how could having more code make your
application run faster? That seems counterintuitive, doesn’t it?

Unless you're writing an ad hoc query tool, you'll generally know what the structure of your
query results will look like. For example, most ADO code looks something like the following;

Dim rs as Recordset
'Declare other variables here.

'Initialize variables and establish connection to database.

rs.Open strSQL, cnDatabase, adOpenStatic, adLockOptimistic, adCmdText
Do While Not rs.EOF

Listl.AddItem rs.Fields("UserName™).Value

rs.MoveNext
Loop

In this code snippet, the programmer knows that the query contains a column named
UserName. The point is that as a developer, you generally know what columns your query
will return and what data types those columns use. But ADO doesn’t know in advance
what the results of the query will look like. As a result, ADO has to query the OLE DB
provider to ask questions such as “How many columns are there in the results of this
query?” “What are the data types for each of those columns?” “Where did this data come
from?” and “What are the primary key fields for each table referenced in this query?” The
OLE DB provider can answer some of these questions, but in many cases it must call back
to the database.

To retrieve the results of your query and store this data in a DataSet object, ADO.NET needs to
know the answers to such questions. You can supply this information yourself or force
ADO.NET to ask the provider for this information. Your code will run faster using the former
option because asking the provider for this information at run time can result in a significant
performance hit compared to supplying your own metadata through code.

Writing code to prepare the structure for your DataSet can become tedious, even if it improves
the performance of your application. Thankfully, Visual Studio includes design-time data
access features that offer the best of both worlds. For example, you can create a DataSet
object based on a query, a table name, or a stored procedure, and then a configuration
wizard will generate ADO.NET code to run the query and support submitting updates
back to your database. We’'ll take a close look at many of these Visual Studio features in
upcoming chapters.

Strongly Typed DataSet Classes

Visual Studio also helps you simplify the process of building data access applications by
generating strongly typed DataSet. Let’s say that we have a simple table named Orders that

Chapter 1 Overview of ADO.NET 21

contains two columns, CustomerID and CompanyName. You don’t have to write code such as
the following.

Visual Basic

Dim ds As DataSet
'Create and fill DataSet.
Console.WriteLine(ds.Tables("Customers").Rows(0) ("CustomerID™))

Visual C#

DataSet ds;
//Create and fil1l DataSet.
Console.WriteLine(ds.Tables["Customers"].Rows[0]["CustomerID"]);

Instead, we can write code like this:

Visual Basic

Dim ds As CustomersDataSet

'Create and fill DataSet.
Console.WritelLine(ds.Customers(0).CustomerID)

Visual C#

CustomersDataSet ds;

//Create and fil1l DataSet.
Console.WriteLine(ds.Customers[0].CustomerID);

The strongly typed DataSet is simply a class that Visual Studio builds with all the table and
column information available through properties. Strongly typed DataSet objects also expose
custom methods for such features as creating new rows. So instead of code that looks like the
following:

Visual Basic

Dim ds as DataSet

'Code to create DataSet and customers DataTable

Dim rowNewCustomer As DataRow

rowNewCustomer = ds.Tables("Customers").NewRow()
rowNewCustomer("CustomerID") = "ALFKI"

rowNewCustomer ("CompanyName") = "Alfreds Futterkiste"
ds.TabTles("Customers") .Rows.Add(rowNewCustomer)

Visual C#

DataSet ds;

//Code to create DataSet and customers DataTable
DataRow rowNewCustomer;

rowNewCustomer = ds.Tables["Customers"].NewRow();
rowNewCustomer["CustomerID"] = "ALFKI";
rowNewCustomer["CompanyName"] = "Alfreds Futterkiste";
ds.Tables["Customers"].Rows.Add(rowNewCustomer) ;

We can create and add a new row to our table in a single line of code, such as this:
ds.Customers.AddCustomersRow("ALFKI", "Alfreds Futterkiste")

We'll take a closer look at strongly typed DataSet objects in Chapter 9.

22 Part| Getting Started with Microsoft ADO.NET 2.0

Questions That Should Be Asked More Frequently

Despite what its name implies, ADO.NET bears little resemblance to ADO. Although
ADO.NET has classes that allow you to connect to your database, submit queries, and retrieve
the results, the object model as a whole is very different from that of ADO. By now, you've
probably picked up on many of those differences. In the coming chapters, we’ll take a closer
look at the main objects in the ADO.NET hierarchy. But before we do, it’s worth addressing
some of the questions that developers who are new to ADO.NET are likely to ask.

Q
A

Why didn’t you mention cursors?

ADO.NET does not support server-side cursors. Future releases might include such
functionality. Currently, no object in the ADO.NET hierarchy acts as an interface to a
server-side cursor. The DataSet and DataTable classes most closely resemble a client-side
ADO Recordset class. The DataReader class most closely resembles a server-side ADO
Recordset class that uses a forward-only, read-only cursor.

How do [set the current position in a DataTable using ADO.NET? Previous object models
exposed such methods as MoveFirst and MoveNext. Where are the positional properties
and move methods?

The DataTable class exposes a Rows collection (of DataRow objects) that you can use to
reference any row in the table at any given time; therefore, the DataTable class has no
concept of a current row. Because any row can be addressed directly, there is no need for
positional properties or navigation methods such as MoveFirst, MoveLast, MoveNext, and
MovePrevious.

These positional properties and move methods were used in ADO most often when dis-
playing data on a form.

	Cover
	Table of Contents
	Chapter 1: Overview of ADO.NET
	No New Object Model?!?
	The ADO.NET Object Model
	.NET Data Providers
	Why Use Separate Classes and Libraries?
	Coverage of .NET Data Providers in This Book
	Connected Objects
	Disconnected Classes
	Metadata
	Strongly Typed DataSet Classes

	Questions That Should Be Asked More Frequently

