

Debugging
Microsoft

®
.NET 2.0

Applications

John Robbins (Wintellect)

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/8650.aspx

9780735622029
Publication Date: November 2006

Table of Contents

Acknowledgments. .xv

Introduction .xvii

Part I The Gestalt of Debugging

1 Bugs: Where They Come From and How You Solve Them 3

Bugs and Debugging . 3

What Are Bugs? . 4

Process Bugs and Solutions . 8

Planning for Debugging . 17

Prerequisites to Debugging . 18

The Skill Set . 18

Learning the Skill Set . 20

The Debugging Process. 21

Step 1: Duplicate the Bug . 22

Step 2: Describe the Bug . 23

Step 3: Always Assume That the Bug Is Yours . 24

Step 4: Divide and Conquer . 24

Step 5: Think Creatively . 25

Step 6: Utilize Tools . 26

Step 7: Start Heavy Debugging . 27

Step 8: Verify That the Bug Is Fixed . 27

Step 9: Learn and Share. 29

Final Debugging Process Secret. 29

Summary . 30

2 Preparing for Debugging . 31

Track Changes Until You Throw Away the Project. 31

Version Control Systems . 32

Bug Tracking Systems . 36

Choosing the Right Systems for You . 37
ix

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

x Table of Contents
Schedule Time for Building Debugging Systems . 38

Build All Builds with Debugging Symbols . 38

Treat Warnings as Errors . 41

Know Where Your Assemblies Load . 42

Always Build with Code Analysis Turned On . 47

Frequent Builds and Smoke Tests Are Mandatory . 51

Frequent Builds . 52

Smoke Tests . 60

Build the Installation Program Immediately . 61

QA Must Test with Debug Builds . 62

Set Up a Symbol Store. 62

Set Up a Source Server . 73

The Zen of Source Server . 74

Basic Indexing . 76

Debugging with Source Servers . 82

Better and Easier Source Server Indexing . 86

Summary . 88

3 Debugging During Coding. 89

Assert, Assert, Assert, and Assert . 90

How and What to Assert . 92

Assertions in .NET . 98

SUPERASSERT.NET . 108

Trace, Trace, Trace, and Trace . 132

Basic Tracing . 133

Advanced Tracing . 139

Comment, Comment, Comment, and Comment . 146

Summary . 149

4 Common .NET Debugging Questions. 151

Process- and Infrastructure-Related Questions. 151

Why must you always develop as a non-admin? . 152

What’s the secret to debugging? . 155

What sort of development methodology should I use? 156

Should we do code reviews? . 157

What do we do if we’re having trouble reproducing builds sent
to others outside the team?. 158

What additional C# compiler options will help me with
my proactive debugging of managed code? . 158

Table of Contents xi
What CPU should I set my build to? . 159

When should I freeze upgrades to the compiler and other tools?. 160

Is there anything I can do to speed up the Source Server when
I first debug a program? . 160

How does ConditionalAttribute work? . 161

Why do you always put the constants on the left side of
conditional statements? . 163

What’s the difference between a .NET debug and release binary? 163

Visual Studio Bugs . 165

Visual Studio crashes when I load a specific project or when
I press F5, won’t debug at all, or won’t hit any breakpoints. What’s
going on? . 165

Suddenly, a specific key doesn’t work in the editor. I’ve tried
uninstalling and reinstalling, but I still can’t use the key.
How can I get my key back?. 165

What happened to the Debug menu (or some
other major UI portion)? . 165

Designing for Debugging . 166

How should you implement exception handling? . 166

How can I log unhandled exceptions in my applications? 167

When do I put a finalizer on my class? . 169

Debugger Questions . 170

I need a debugger on a production system. Do I have to purchase
an additional copy of Visual Studio for that machine? 170

What is that VSHOST thing? . 170

Can you debug SQL stored procedures by using Visual Studio? 171

How do you debug script by using Visual Studio? . 172

How can I debug with a different Code Access Security (CAS) level? 173

Why do I sometimes get that annoying context switch deadlock
exception when stopped in the debugger too long on Windows
Forms applications? What are Managed Debugging Assistants?. 173

Debugging Scenario Questions . 177

How do I debug assembles in the Global Assembly Cache (GAC)? 177

How can I debug the startup code for a Windows service
written in .NET?. 178

My boss is sending me so much e-mail that I can’t get anything
done. Is there any way I can slow down the dreaded PHB e-mail? 180

What strategies do you have for debugging deadlocks? 181

xii Table of Contents
How do you debug design-time assemblies? How do you
debug add-ins? . 184

How do you debug assembly-loading issues? . 184

How can I always get the source and line information in any
unhandled exception? . 185

What Tools Do You Use? . 185

Everything from SysInternals! . 186

Reflector by Lutz Roeder . 190

Sells Brothers’ RegexDesigner.NET . 192

Windows Installer XML (WiX). 192

Other Tools . 193

Summary . 195

Part II Power Debugging

5 Advanced Debugger Usage with Visual Studio. 199

Advanced Breakpoints and How to Use Them . 200

Breakpoint Tips . 202

Quickly Breaking on Any Function . 205

Location Breakpoint Modifiers . 210

The Watch Window . 219

Format Specifiers and Property Evaluation . 221

Make Object ID . 223

DataTips . 224

Expanding Your Own Types . 225

Debugger Visualizers . 235

Calling Methods in the Watch Window Family. 239

Advanced Tips and Tricks . 242

The Set Next Statement Command. 242

Mixed-Mode Debugging . 243

Debugging Exceptions . 246

Debugging Multiple Threads and Processes . 248

Summary . 249

6 WinDBG, SOS, and ADPlus . 251

Before You Begin . 252

Installation . 252

Additional Reading . 254

Table of Contents xiii
Basics . 254

Symbol Server Setup . 255

WinDBG Options and Windows. 256

Dealing with Debuggees. 259

The Command Window. 260

Getting Help . 261

Ensuring That Correct Symbols Are Loaded. 261

Processes and Threads. 265

Walking the Native Stack . 270

Exceptions and Events . 273

Commands for Controlling WinDBG. 277

Dump File Handling. 279

Extremely Useful Extension Commands . 282

SOS . 291

Loading SOS into WinDBG . 292

Loading SOS into Visual Studio . 294

Getting Help and Using Commands . 294

Program State and Managed Threads . 296

Managed Call Stacks . 300

Displaying Object Data . 302

Looking at the GC Heaps . 309

Exceptions and Breakpoints . 326

Deadlocks . 331

Other SOS Commands. 337

ADPlus . 340

Hang Mode . 341

Crash Mode . 344

Snapping at the Right Time . 349

Summary . 352

Part III Power Tools

7 Extending the Visual Studio IDE . 355

Extending with Macros . 357

Macro Parameters . 358

Debugging Macros . 359

Code Elements . 360

xiv Table of Contents
CommenTater: The Cure for the Common Potato? . 361

More Macros for You. 368

Visual Studio Add-Ins . 370

Tricks of Add-In Development. 371

Option Pages and the HiddenSettings Add-In . 375

SettingsMaster . 377

Summary . 384

8 Writing Code Analysis Rules. 385

Thinking About Rule Development. 386

Basics of Rule Development . 387

The All-Important Check Method. 390

Advanced Rule Development . 395

DoNotUseTraceAssertRule and
CallAssertMethodsWithMessageParametersRule Rules. 395

DoNotLockOnPublicFields, DoNotLockOnThisOrMe,
DoNotLockOnTypes, and
DoNotUseMethodImplAttributeWithSynchronized Rules. 397

AvoidBoxingAndUnboxingInLoops Rule . 402

ExceptionDocumentationInvalidRule and
ExceptionDocumentationMissingRule Rules . 407

Summary . 413

Index. 415
What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

Chapter 3

Debugging During Coding

In this chapter:

Assert, Assert, Assert, and Assert. .90

Trace, Trace, Trace, and Trace .132

Comment, Comment, Comment, and Comment .146

Summary .149

In Chapter 2, “Preparing for Debugging,” I laid the groundwork for the project-wide
infrastructure needed to enable engineers to work more efficiently. In this chapter, we’ll turn
to what you need to do to make debugging easier while you are at the stage of writing your
code. Most people refer to this process as defensive programming, but I like to think of it as
something broader and deeper: proactive programming or debugging during coding. To me,
defensive programming is the error-handling code that tells you an error occurred. Proactive
programming tells you why the error occurred.

Coding defensively is only part of the battle of fixing and solving bugs. Engineers generally
attempt to make the obvious defensive maneuvers—for example, verifying that a string isn’t
null or Nothing—but they often don’t take the extra step that proactive programming would
require: checking that same parameter to ensure that it’s not an empty string. Proactive
programming means doing everything possible to avoid ever having to use the debugger and
instead making the code tell you where the problems are. The debugger can be one of the
biggest time drains in the world, and the way to avoid it is to have the code tell you exactly
when something isn’t perfect. Whenever you type a line of code, you need to stop and review
what you’re assuming is the good-case scenario and determine how you’re going to verify that
exact state is met every time that line of code executes.

It’s a simple fact: bugs don’t just magically appear in code. The “secret” is that you and I put
them in as we’re writing the code, and those pesky bugs can come from myriad sources. As
Edsger Dijkstra, the great computer scientist who invented structured programming, said, “If
debugging is the process of removing bugs, then programming must be the process of putting
them in.” Those bugs that you’re entering can be the result of a problem as critical as a design
flaw in your application or as simple as a typographical error. Although some bugs are easy
to fix, others are nearly impossible to solve without major rewrites. It would be nice to
blame the bugs in your code on gremlins, but you need to accept the fact that you and your
coworkers are the ones putting the bugs in the code. (If you’re reading this book, it has to
be mainly your coworkers putting the bugs in.)
89

90 Part I The Gestalt of Debugging
Because you and the other developers are responsible for any bugs in the code, the issue
becomes one of finding ways to create a system of checks and balances that lets you catch
bugs as you go. I’ve always referred to this approach as “trust, but verify,” which is the late
United States President Ronald Reagan’s famous quote about how the United States was
going to enforce one of the nuclear arms limitation treaties with the former Soviet Union. I
trust that my colleagues and I will use my code correctly. To avoid bugs, however, I verify
everything. I verify the data that others pass into my code, I verify my code’s internal
manipulations, I verify every assumption I make in my code, I verify data my code passes to
others, and I verify data coming back from calls my code makes. If there’s something to verify,
I verify it. This obsessive verification is nothing personal against my coworkers, and I don’t
have any psychological problems (to speak of). It’s just that I know where the bugs come
from; I also know that you can’t let anything by without checking it if you want to catch your
bugs as early as you can. By checking everything, you also make maintenance and code evolution
drastically easier because you’ll know immediately when there’s anything that doesn’t match
the original set of assumptions.

Before we go any further, I need to stress one key tenet of my development philosophy: code
quality is the sole responsibility of the development engineers, not the test engineers, technical
writers, or managers. You and I are the ones designing, implementing, and fixing the code, so
we’re the only ones who can take meaningful measures to ensure the code we write is as bug
free as possible.

As a consultant, one of the most surprising attitudes I encounter in many organizations is
that developers should only develop and testers only test. The prevailing problem with this
approach is that developers write a bunch of code and ever so briefly decide whether it executes
the good condition before throwing it over the wall to the testers. It goes without saying that
you’re asking for schedule slippage in addition to a poor-quality product when developers
don’t take responsibility for testing their code.

In my opinion, a developer is a tester is a developer. I can’t stress this enough: if a developer
isn’t spending at least 40 to 50 percent of his development time testing his code, he is not developing.
A tester’s job is to focus on issues such as regression testing, stress testing, and performance
testing. Finding a crash or unhandled exception should be an extremely rare occurrence for a
tester. If the code does crash, it reflects directly on the development engineer’s competence.
The key to developer testing is the unit test. Your goal is to execute as much of your code as
possible to ensure that it doesn’t crash and properly meets established specifications and
requirements. Armed with solid unit test results, the test engineers can look for integration
issues and systemwide test issues.

Assert, Assert, Assert, and Assert
I hope most of you already know what an assertion is, because it’s the most important proactive
programming tool in your debugging arsenal. For those who are unfamiliar with the term,
here’s a brief definition: an assertion declares that a certain condition must be true at a specific
point in a program. The assertion is said to fail if the condition is false. You use assertions in

Chapter 3 Debugging During Coding 91
addition to normal error checking. Traditionally, assertions are functions or macros that execute
only in debug builds and bring up a message box or log into a file telling you what condition
failed. I extend the definition of assertions to include conditionally compiled code that checks
conditions and assumptions that are too complex for a general assertion function or macro to
handle. Assertions are a key component of proactive programming because they help developers
and test engineers determine not just that bugs are present but also why the errors are
happening.

Even if you’ve heard of assertions and drop them in your code occasionally, you might not be
familiar enough with them to use them effectively. Development engineers can never be too
rich or too thin—or use too many assertions. The rule of thumb I’ve always followed to judge
whether I’ve used enough assertions is simple: I have enough assertions when my junior
coworkers complain that they get multiple assertion failure reports whenever they call into my
code with invalid information or assumptions.

If used sufficiently, assertions will tell you most of the information you need to diagnose a
problem at the first sign of trouble. Without assertions, you’ll spend considerable time in the
debugger working backward from the crash searching for where things started to go wrong. A
good assertion will tell you where and why a condition was invalid. A good assertion will also
let you get into the debugger after a condition fails so that you can see the complete state of
the program at the point of failure. A bad assertion tells you something’s wrong, but not what,
why, or where.

A side benefit of using plenty of assertions is that they serve as outstanding additional
documentation in your code. What assertions capture is your intent. I’m sure you go well out
of your way to keep your design documents perfectly up to date, but I’m just as sure that a few
random projects let their design documents slip through the cracks. By having good assertions
throughout your code, the maintenance developer can see exactly what value ranges you
expected for a parameter or what you anticipated would fail in a normal course of operation
versus a major failure condition. Assertions will never replace proper comments, but by using
them to capture the elusive “here’s what I meant, which is not what the documents say,” you
can save a great deal of time later in the project.

Before we go any further, I want to rebut what some of you are thinking right now: “I don’t
need to read this chapter on assertions; if I have a problem in my code, I’ll just throw an
exception.” The problem is that once you throw that exception, you’ve lost the state! Look at
the result of an unhandled exception such as the following (note that I wrapped some of the
lines for readability):

Unhandled Exception: System.ComponentModel.Win32Exception: Only part of a
ReadProcessMemory or WriteProcessMemory request was completed

at System.Diagnostics.NtProcessManager.GetModuleInfos(Int32 processId,
Boolean firstModuleOnly)

at System.Diagnostics.Process.get_Modules()
at DiagnosticHelper.StackWriter.IsDotNetInProcess() in c:\Bar\StackWriter.cs:line 343
at DiagnosticHelper.StackWriter.Execute() in c:\Bar\StackWriter.cs:line 58
at DiagnosticHelper.Program.Main(String[] args) in c:\Bar\Program.cs:line 79

92 Part I The Gestalt of Debugging
While you can detect a memory reading problem in the Process.get_Modules method, can you
tell me exactly which module loaded was causing the problem? Is the value of firstModuleOnly
true or false? What were the local variables in the Execute method?

The problem with Microsoft .NET is that you get very little of the information you need to
diagnose problems in an exception. The call stack tells you where it started, but it says nothing
about your local variables and parameters even in the function that caused the state to be bad.
Without an assertion, you are going to spend far more time debugging than with one.

The key with assertions is that good assertion code, such as that in .NET, allows you to get the
debugger attached before the state is lost. With the debugger, you’ll be able to see all the data
you can’t see in an exception, so you now have the information to solve the problem faster.
You’ll still throw the exception as part of your normal error handling, but by adding the assertion,
you’ll spend less time on the problem and have more time for more interesting tasks.

Some of you may be thinking that you can still do without assertions because if you set the
debugger to stop instantly when an exception is thrown, you’ll achieve the same effect. That’s
true, but you’d have to start your application from the debugger every time you run it.
Although that may be the only way you run the application, I can assure you that testers, your
coworkers, or even your manager are not starting those debug builds from the debugger. The
assertions are always there ready to trigger the instant anything is amiss so you can decide
how you want to proceed from the problem.

How and What to Assert

My stock answer when asked what to assert is to assert everything. I would love to say that for
every line of code you should have an assertion, but it’s an unrealistic albeit admirable goal.
You should assert any condition because it might be the one you need to solve a nasty bug in
the future. Don’t worry that putting in too many assertions will hamper your program’s
performance—assertions are active only in debug builds, and the bug-finding opportunities
created outweigh any performance hit.

Assertions should never change any variables or states of a program. Treat all data you check
in assertions as read-only. Because assertions are active only in debug builds, if you do change
data by using an assertion, you’ll have different behavior between debug and release builds,
and tracking down the differences will be extremely difficult.

In this section, I want to concentrate on how to use assertions and what to assert. I’ll do this
by showing code examples. For .NET, all your assertions start with Debug.Assert methods
from the System.Diagnostic namespace. There are three overloaded Assert methods. All three
take a Boolean value as their first or only parameter, and if the value is false, the assertion is
triggered. As shown in the following examples in which I used Debug.Assert, one of the methods
takes a second parameter of type string, which is shown as a message in the output. The final
overloaded Assert method takes a third parameter of type string, which provides even more
information when the assertion triggers. In my experience, the two-parameter approach is the

Chapter 3 Debugging During Coding 93
easiest to use because I simply copy the condition checked in the first parameter and paste
it in as a string. Of course, now that the assertion requiring the conditional expression is in
quotes, make it part of your code reviews to verify that the string value always matches the real
condition. As I mentioned in the Custom Code Analysis Rules section in Chapter 2, using the
one parameter Debug.Assert is not good because the assertion output does not tell you why
you’re asserting. That’s why I wrote the Code Analysis rule to report an error if you’re using it.
The following code shows all three Assert methods in action:

Debug.Assert (i > 3) ;
Debug.Assert (i > 3 , "i > 3") ;
Debug.Assert (i > 3 , "i > 3" , "This means I got a bad parameter") ;

Debugging War Story
A Career-Limiting Move

The Battle
A long, long time ago in the C++ days, I worked at a company whose software product
had serious stability problems. As the senior Microsoft Windows engineer on this
behemoth project, I found that many of the issues affecting the project resulted from a
lack of understanding about why calls made to others’ modules failed. I wrote a memo
advising the same practices I promote in this chapter, telling project members why and
when they were supposed to use assertions, in addition to requiring everyone to use a
C++ macro, ASSERT, to do their assertions. I had a little bit of power, so I also made it part
of the code review criteria to look for proper assertion usage.

After sending out the memo, I answered a few questions people had about assertions
and thought everything was fine. Three days later, my boss came into my office and
started screaming at me about how I screwed everyone up, and he ordered me to rescind
my assertion memo. I was stunned, and we proceeded to get into an extremely heated
argument about my assertion recommendations. I couldn’t quite understand what my
boss was arguing about, but it had something to do with making the product much more
unstable. After five minutes of yelling at each other, I finally challenged my boss to prove
that people were using assertions incorrectly. He handed me a code printout that looked
like the following:

BOOL DoSomeWork (HMODULE * pModArray , int iCount , LPCTSTR szBuff)
{

ASSERT (if ((pModArray == NULL) &&
(IsBadWritePtr (pModArray ,

(sizeof (HMODULE) * iCount)) &&
(iCount != 0) &&

(szBuff != NULL)))
{

return (FALSE) ;
}

) ;
for (int i = 0 ; i < iCount ; i++)

94 Part I The Gestalt of Debugging
{
pModArray[i] = m_pDataMods[i] ;

}
...

}

The Outcome
I should also mention here that my boss and I generally didn’t get along. He thought I
was a young whippersnapper who hadn’t paid his dues and didn’t know a thing, and
I thought he was a completely clueless PHB who couldn’t engineer his way out of a wet
paper bag. As I read over the code, my eyes nearly popped completely out of my head!
The person who had coded this example had completely misunderstood the purpose of
assertions and was simply going through and wrapping all the normal error handling in
an assertion macro. Since assertions disappear in release builds, the person who wrote
the code was removing all error checking in release builds!

By this point, I was livid and screamed at the top of my lungs, “Whoever wrote this needs
to be fired! I can’t believe we have an engineer on our staff who is this incredibly and
completely stupid!” My boss got very quiet, grabbed the paper out of my hands, and quietly
said, “That’s my code.” My career-limiting move was to start laughing hysterically as my
boss walked away.

The Lesson
I can’t stress this enough: use assertions in addition to normal error handling, never as a
replacement for it. If you have an assertion, you need to have some sort of error handling
near it in the code. As for my boss, when I went into his office a few weeks later to resign
because I had accepted a job at a better company, I was treated to a grown man dancing
on his desk and singing that it was the best day of his life.

How to Assert

The first rule when using assertions is to check one item at a time. If you check multiple
conditions with just one assertion, you have no way of knowing which condition caused the
failure. In the following example, I show the same function with two assertion checks. Although
the assertion in the first function will catch a bad parameter, the assertion won’t tell you which
condition failed or even which of the three parameters is the offending one. Your first assertion
goal is to check each condition atomically.

// The wrong way to write an assertion. Which parameter was bad?
string FillData (char[] array , int offset , int length)
{

Debug.Assert ((null != array) &&
(offset > 0) &&
((length > 0 && (length < 100)))) ;

...
}

Chapter 3 Debugging During Coding 95
// The proper way. Each parameter is checked individually so that you
// can see which one failed.
string FillData (char[] array , int offset , int length)
{

Debug.Assert (null != array , "null != array") ;
Debug.Assert (offset > 0 , "offset > 0") ;
Debug.Assert ((length > 0) && (length < 100) ,

" (length > 0) && (length < 100)") ;
...

}

In looking at the fixed FillData example above, you may think that I’m breaking my own rules
by checking that the length parameter is between 0 and 100. Because I’m checking against a
constrained range, that check is atomic enough. There’s no need to break apart the expression
into two separate Debug.Assert calls.

When you assert a condition, you need to strive to check the condition completely. For example,
if your .NET method takes a string as a parameter and you expect the string to have something
in it, checking against null checks only part of the error condition.

// An example of checking only a part of the error condition
bool LookupCustomerName (string customerName)
{

Debug.Assert (null != customerName , "null != customerName") ;
...

}

You can check the full condition by also checking to see whether the string is empty.

// An example of completely checking the error condition
bool LookupCustomerName (string customerName)
{

Debug.Assert (false == string.IsNullOrEmpty (customerName),
"false == string.IsNullOrEmpty (customerName)");

...

Another step I always take is to ensure that I’m asserting against specific values so I’m assert-
ing correctly. The following example shows first how to check for a value incorrectly and then
how to check for it correctly:

// Example of a poorly written assertion. What happens if count is negative?
Function UpdateListEntries (ByVal count As Integer) As Integer

Debug.Assert (count <> 0 , "count <> 0")
...

End Function

// A proper assertion that explicitly checks against what the value
// is supposed to be
Function UpdateListEntries (ByVal count As Integer) As Integer

Debug.Assert (count > 0 , "count > 0")
...

End Function

96 Part I The Gestalt of Debugging
The incorrect sample essentially checks only whether count isn’t 0, which is just half of the
information that needs to be asserted. By explicitly checking the acceptable values, you
guarantee that your assertion is self-documenting, and you also ensure that your assertion
catches corrupted data.

What to Assert

Now that you’re armed with an idea of how to assert, we can turn to exactly what you need to
be asserting throughout your code. If you haven’t guessed from the examples I’ve presented
so far, let me clarify that the first mandatory items to assert are the parameters coming into the
method or property setter. Asserting parameters is especially critical with module interfaces
and class methods that others on your team call. Because those gateway functions are the
entry points into your code, you want to make sure that each parameter and assumption is
valid. As I pointed out in the debugging war story earlier in this chapter, “A Career-Limiting
Move,” assertions always work hand in hand with normal error handling.

As you move inside your module, the parameters of the module’s private methods might not
require as much checking, depending mainly on where the parameters originated. Much of
the decision about which parameters to validate comes down to a judgment call. It doesn’t
hurt to assert every parameter of every method, but if a parameter comes from outside
the module, and if you fully asserted it once, you might not need to again. By asserting
each parameter on every function, however, you might catch some errors inside your module.

I sit right in the middle of the two extremes. Deciding how many parameter assertions are
right for you just takes some experience. As you get a feel for where you typically encounter
problems in your code, you’ll figure out where and when you need to assert parameters internal
to your module. One safeguard I’ve learned to use is to add parameter assertions whenever a
bad parameter blows up my code. That way, the mistake won’t get repeated, because the
assertion will catch it.

Another area that’s mandatory for assertions is API and COM return values because the return
values tell you whether the API succeeded or failed. One of the biggest problems I see in
debugging other developers’ code is that they simply call API functions without ever checking
the return value. I have seen so many cases in which I’ve looked for a bug only to find out that
some method early on in the code failed but no one bothered to check its return value. Of
course, by the time you discover the culprit, the bug is manifested, so the program dies or
corrupts data some 20 minutes later. By asserting API return values appropriately, you at least
know about a problem when it happens. Of course, you will still perform regular error
handling on those API return values.

Keep in mind that I’m not advocating asserting on every single possible failure. Some failures
are expected in code, and you should handle them appropriately. Having an assertion fire
each time a lookup in the database fails will likely drive everyone to disabling assertions in the
project. Be smart about it, and assert on return values when it’s something serious. Handling
good data throughout your program should never cause an assertion to trigger.

Chapter 3 Debugging During Coding 97
Another area in which you’ll have assertions is when you verify the state of the object. For
example, if you have a private method that assumes that the object hasn’t been disposed,
you’d have an assertion to ensure that the method call happens with the correct state. The big
idea behind proactive programming is that you leave nothing to chance and never leave an
assumption unquestioned.

Finally, I recommend that you use assertions when you need to check an assumption. For
example, if the specifications for a class require 3 MB of disk space, you should assert this
assumption with conditional inside the class to ensure that the callers are upholding their end
of the deal. Here’s another example: if your code is supposed to access a database, you should
have a check to see whether the required tables actually exist in the database. That way you’ll
know immediately what’s wrong instead of wondering why you’re getting weird return values
from other methods in the class.

In both of the preceding examples, as with most assumption assertions, you can’t check the
assumptions in a general assertion method. In these situations, the conditional compilation
technique that I indicated in the last paragraph should be part of your assertion toolkit.
Because the code executed in the conditional compilation works on live data, you must take
extra precautions to ensure that you don’t change the state of the program. To avoid the serious
problems that can be created by introducing code that has side effects, I prefer to implement
these types of assertions in separate methods, if possible. By doing so, you avoid changing any
local variables inside the original method. Additionally, the conditionally compiled assertion
methods can come in handy in the Watch window, as you’ll see in Chapter 5, “Advanced
Debugger Usage with Visual Studio,” when we talk about the Microsoft Visual Studio 2005
debugger. Listing 3-1 shows a conditionally compiled method that checks whether a table
exists so that you’ll get the assertion before you start any significant access. Note that this test
method assumes that you’ve already validated the connection string and can fully access the
database. AssertTableExists ensures that the table exists so that you can validate this assump-
tion instead of looking at an odd failure message from deep inside your code.

Listing 3-1 AssertTableExists checks whether a table exists

[Conditional ("DEBUG")]
static public void AssertTableExists (string connStr ,

string tableName)
{
#if DEBUG

SqlConnection conn = new SqlConnection (connStr);

StringBuilder buildCmd = new StringBuilder ();

buildCmd.Append ("select * from dbo.sysobjects where ");
buildCmd.Append ("id = object_id('");
buildCmd.Append (tableName);
buildCmd.Append ("‘) and xtype = 'U'");

// Make the command.
SqlCommand cmd = new SqlCommand (buildCmd.ToString () , conn);
SqlDataAdapter tableDataAdapter = null;
try

98 Part I The Gestalt of Debugging
{

// Open the database.
conn.Open ();

// Create a dataset to fill.
DataSet tableSet = new DataSet ();
tableSet.Locale = Thread.CurrentThread.CurrentUICulture;

 // Create the data adapter.

tableDataAdapter = new SqlDataAdapter ();

// Set the command to do the select.
tableDataAdapter.SelectCommand = cmd;

// Fill the dataset from the adapter.
tableDataAdapter.Fill (tableSet);

// If anything showed up, the table exists.
if (0 == tableSet.Tables [0].Rows.Count)
{

String sMsg = "Table : '" + tableName +
"' does not exist!\r\n";

Debug.Assert (false , sMsg);
}

}
catch (SqlException e)
{

Debug.Assert (false , e.Message);
}
finally
{

if (null != tableDataAdapter)
{

tableDataAdapter.Dispose ();
}
if (null != cmd)
{

cmd.Dispose ();
}
if (null != conn)
{

conn.Close ();
}

}
#endif
}

Assertions in .NET

Before I get into the gritty details of .NET assertions, I want to mention one key mistake I’ve
seen in almost all .NET code written, especially in many of the samples from which developers
are lifting code to build their applications. Everyone forgets that it’s entirely possible to have

Chapter 3 Debugging During Coding 99
an object parameter passed as null (or Nothing in Visual Basic). Even when developers are
using assertions, the code looks like the following:

void DoSomeWork (string name)
{

Debug.Assert (name.Length > 0) ;
...

Instead of triggering the assertion, if name is null, calling the Length property causes a
System.NullReferenceException exception in your application, effectively crashing it. This is a
horrible case in which the assertion is causing a nasty side effect, thus breaking the cardinal
rule of assertions. Of course, it logically follows that if developers aren’t checking for null
objects in their assertions, they aren’t checking for them in their normal parameter checking.
Do yourself a huge favor and start checking objects for null.

The fact that .NET applications don’t have to worry about pointers and memory pointers and
manual memory management means that at least 60 percent of the assertions we were used to
handling in the C++ days just went away. On the assertion front, the .NET team added as part
of the System.Diagnostic namespace two objects, Debug and Trace, which are active only if you
defined DEBUG or TRACE, respectively, when compiling your application. Both of these
conditional compilation symbols can be specified as part of the Build tab in the project property
pages dialog box. Visual Studio–created projects always define TRACE for both debug and
release builds, so if you’re doing manual projects, make sure to add it to your build options. As
you’ve seen, the Assert is the method that handles assertions in .NET. Interestingly enough,
both Debug and Trace have identical methods, including an Assert method. I find it a little
confusing to have two possible assertions that are conditionally compiled differently.
Consequently, because assertions should be active only in debug builds, I use only Debug.Assert
for assertions. Doing so prevents surprise phone calls from end users asking about a weird
dialog box or message telling them that something went bad. I strongly suggest that you do
the same so that you contribute to some consistency in the world of assertions. If you use the
Code Analysis rules provided with the book’s source code, I have a rule that will tell you that
you are using Trace.Assert so you can remove it from your code.

The .NET Debug class is intriguing because you can see the output in multiple ways. The output
for the Debug class—and the Trace class for that matter—goes through another class, named a
TraceListener. Classes derived from TraceListener can be added to the Debug class’s Listeners
collection property. The beauty of the TraceListener approach is that each time an assertion
fails, the Debug class runs through the Listeners collection and calls each TraceListener object in
turn. This convenient functionality means that even when new and improved ways of reporting
assertions surface, you won’t have to make major code changes to benefit from them. Even
better, in the next section, I’ll show you how you can add new TraceListener objects without
changing your code at all, which makes for ultimate extensibility!

The initial TraceListener in the Listeners collection, appropriately named DefaultTraceListener,
sends the output to two different places, the most visible of which is the assertion message
box shown in Figure 3-1. As you can see in the figure, the bulk of the message box is taken up

100 Part I The Gestalt of Debugging
with the stack walk and parameter types in addition to the source and line for each item. The
top lines of the message box report the string values you passed to Debug.Assert. In the case of
Figure 3-1, I just passed “Debug.Assert assertion” as the second parameter to Debug.Assert.

The result of clicking each button is described in the title bar for the message box. The only
interesting button is Retry. If you’re running under a debugger, you simply drop into the
debugger at the line directly after the assertion. If you’re not running under a debugger, clicking
Retry triggers a special exception and then launches the Just In Time debugger selector to
allow you to select the registered debugger you’d like to use to debug the assertion.

In addition to the message box output, Debug.Assert also sends all the output through Output-
DebugString, the Windows API tracing function, so the attached debugger will get the output.
The output has a nearly identical format, shown in the following code. Since the DefaultTrace-
Listener does the OutputDebugString output, you can always use Mark Russinovich’s excellent
DebugView (www.sysinternals.com/utilities/debugview.html) to view the output even when
you’re not running under a debugger. I’ll discuss this in more detail later in the chapter.

---- DEBUG ASSERTION FAILED ----
---- Assert Short Message ----
Debug.Assert assertion
---- Assert Long Message ----

at HappyAppy.Fum() D:\AssertExample\Class1.cs(11)
at HappyAppy.Fo(StringBuilder sb) D:\AssertExample\Class1.cs(16)
at HappyAppy.Fi(IntPtr p) D:\AssertExample\Class1.cs(20)
at HappyAppy.Fee(String Blah) D:\AssertExample\Class1.cs(25)
at HappyAppy.Baz(Double d) D:\AssertExample\Class1.cs(30)
at HappyAppy.Bar(Object o) D:\AssertExample\Class1.cs(35)
at HappyAppy.Foo(Int32 i) D:\AssertExample\Class1.cs(42)
at HappyAppy.Main() D:\AssertExample\Class1.cs(48)

Figure 3-1 The DefaultTraceListener message box

Armed with the information supplied by Debug.Assert, you should never again have to wonder
how you got into the assertion condition! The .NET Framework also supplies numerous other

Chapter 3 Debugging During Coding 101
TraceListener-derived classes. To write the output to a text file, use the TextWriterTraceListener
class. To write the output to the event log, use the EventLogTraceListener class. The other
TraceListener-derived classes, DelimitedListTraceListener, ConsoleTraceListener, and XmlWriterTrace-
Listener are used more in pure tracing, so I’ll discuss them in the “Trace, Trace, Trace, and
Trace” section later in the chapter.

Unfortunately, the TextWriterTraceListener and EventLogTraceListener classes are essentially
worthless because they log only the message fields to your assertions and not the stack trace
at all. The good news is that implementing your own TraceListener objects is fairly trivial, so as
part of Wintellect.Diagnostics.dll, I went ahead and wrote the correct versions for TextWriter-
TraceListener and EventLogTraceListener for you: FixedTextWriterTraceListener and FixedEvent-
LogTraceListener, respectively.

Neither FixedTextWriterTraceListener nor FixedEventLogTraceListener are very exciting classes.
FixedTextWriterTraceListener is derived directly from TextWriterTraceListener, so all it does is
override the Fail method, which is what Debug.Assert calls to do the output. Keep in mind that
when using FixedTextWriterTraceListener or TextWriterTraceListener, the associated text file
for the output isn’t flushed unless you set the trace element autoflush attribute to true in the
application configuration file, explicitly call Close on the stream or file, or set Debug.AutoFlush
to true so that each write causes a flush to disk. Alternatively, you can also set these values to
true in the configuration files, which I’ll show in a moment.

For some bizarre reason, the EventLogTraceListener class is sealed, so I couldn’t derive directly
from it and had to derive from the abstract TraceListener class directly. However, I did retrieve
the stack trace by using the standard StackTrace class that’s been around since .NET 1.0. One
nice feature in .NET 2.0 is that you no longer have to manually work through reflection to find
the source and line of each method on the stack. If you want the full stack with source and
line, use one of the StackTrace constructors that take a Boolean value and pass true. Since I’m
talking about the source and line, I should mention that the .NET StackTrace class source
lookup will look only at .pdb files in the same directory as the binary. It will not look in your
Symbol Server.

Controlling the TraceListener Property with Configuration Files

For the most part, DefaultTraceListener should serve most of your needs. However, having a
message box that pops up every once in a while can wreak havoc on any automated test scripts
you might have. Also if you use a third-party component in a Win32 service, which was not
tested running under a service but has calls to Debug.Assert in it, the debug build of that
component could cause message box popups using DefaultTraceListener, which would hang
your service. In both of these cases, you want to be able to shut off the message box generated
by DefaultTraceListener. You could add code to remove the DefaultTraceListener instance from
the Debug.Listeners property, but it is also possible to remove it even without touching the code.

102 Part I The Gestalt of Debugging
Any .NET executable can have an external XML configuration file associated with it. This
file resides in the same directory as the binary file and is the name of the executable with
“.Config” appended to the end. For example, the configuration file for Example.exe is
Example.exe.Config. You can easily add a configuration file to your project in Visual Studio by
adding a new XML file named App.Config. That file will automatically be copied to the output
directory and named to match the binary. For Microsoft ASP.NET applications, the configuration
file is always named Web.Config.

In the XML configuration file, the assert element under system.diagnostics has two attributes.
If you set the first attribute, assertuienabled, to false, .NET doesn’t display message boxes,
and the output still goes through OutputDebugString. The second attribute, logfilename, allows
you to specify a file you want any assertion output written to. Interestingly, when you specify
a file in the logfilename attribute, any trace statements will also appear in the file. A minimal
configuration file is shown in the next code snippet, and you can see how easy it is to shut off
the assertion message boxes. Don’t forget that the master configuration file Machine.Config,
which is stored in the %SystemRoot%\Microsoft.NET\Framework64\FrameworkVersion\Config
directory, has the same settings as the EXE configuration file, so you can optionally turn off
message boxes on the whole machine by using the same settings, as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
 <system.diagnostics>
 <assert assertuienabled="false"
 logfilename="tracelog.txt" />
 </system.diagnostics>
</configuration>

As I mentioned earlier, you can add and remove listeners without touching the code, and
as you probably guessed, the configuration file has something to do with it. This file looks
straightforward in the documentation, but the documentation at the time I am writing this
book is not correct. After a little experimentation, I figured out all the tricks necessary to
control your listeners correctly without changing the code.

All the action happens under the trace element of the configuration. The trace element happens
to have one very important optional attribute you should always set to true in your configuration-
files: autoflush. By setting autoflush to true, you force the output buffer to be flushed each time
a write operation occurs. If you don’t set autoflush, you’ll have to add calls to your code to get
the output saved onto the disk. Note that autoflush is false by default, and this could be the reason
why you don’t get any trace after your application crashes: the last output was not saved on
disk before the crash occurs.

Underneath trace is the listeners element, containing the list of the TraceListener-derived objects
that will be added to or removed from the Debug.Listeners property at run time. Removing a
TraceListener object is very simple. Specify the remove element, and set the name attribute to
the string name of the desired TraceListener class. If you define your own TraceListener-derived
class, don’t forget to either override the get accessor of its Name property or, in the constructor,
call the base constructor with your own specific name; this is how your class will be identified

Chapter 3 Debugging During Coding 103
within configuration files. The complete configuration file necessary to remove DefaultTrace-
Listener is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>

<system.diagnostics>
<trace autoflush="true" indentsize="0">

<listeners>
<remove name="Default" />

</listeners>
</trace>

</system.diagnostics>
</configuration>

The add element has two required attributes. The name attribute is a string that specifies the
name of the TraceListener object set into the TraceListener.Name property when the instance is
created. The second attribute, type, specifies the .NET type you want to load and associate
with the given name. The one optional attribute, initializeData, is the string passed to the
constructor of the TraceListener object. The documentation shows only adding a type that is in
the global assembly cache (GAC) and implies that that’s where all assemblies must be in order
to load, which is not the case.

To add a TraceListener object that’s in the GAC, the type element can consist of two different
forms. The usual is the fully qualified type name, which specifies the type, assembly, version,
culture, and public key token. You’ll want to use this form in most cases to specify the exact
type you want to load. An undocumented feature will allow you to specify just the type name,
and .NET will load the first type found in the GAC. In the case of the Microsoft-supplied
TraceListener classes, this works fine.

If you want to add your custom TraceListener class that doesn’t reside in the GAC, your options
become a little more involved. The easy case is when your TraceListener resides in the same
directory where the EXE for your process loads from. In that case, to add the derived Trace-
Listener object, you specify the full type name, a comma, and the name of the assembly. You
can enter the fully qualified type name, but because you can have only a single named DLL in
the directory at one time, the extra typing is overkill. The following shows how to add Fixed-
TextWriterTraceListener from Wintellect.Diagnostics.dll:

<?xml version="1.0” encoding="UTF-8” ?>
<configuration>

<system.diagnostics>
<trace autoflush="true” indentsize="0">

<listeners>
<add name="AGoodListener"

type=
"Wintellect.Diagnostics.FixedTextWriterTraceListener,Wintellect.Diagnostics"

initializeData="HappyGoLucky.log"/>
</listeners>

</trace>
</system.diagnostics>

</configuration>

104 Part I The Gestalt of Debugging
In adding TraceListeners from configuration files, there has been a change concerning where
.NET creates the output files for TraceListeners. In .NET 2.0, the output file is relative to the
App.Config/Web.Config. For the example above, the HappyGoLucky.log file will be written
to the same directory as App.Config. In .NET 1.x, the output file was always created relative to
the application. In the case of the ASP.NET worker process, this was usually a major problem
because the worker process is down deep in %SystemRoot%\system32\INETSRV directory, where
your application probably does not have write permissions.

If you’d like to keep the assembly containing your TraceListener type in a different directory,
you have two choices. Using the probing element in the App.Config/Web.Config, you can set
the privatePath attribute to the private assembly search path to a directory below the
application directory. The following example configuration file shows adding FixedTextWriter-
TraceListener and telling the runtime to look both in the directories Happy and Joyful for the
assembly. I’ve found that it works best to use the fully qualified type name of the assembly
when utilizing the probing element.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<probing privatePath="Happy;Joyful"/>
</assemblyBinding>

</runtime>
<system.diagnostics>

<trace autoflush="true" indentsize="0">
<listeners>

<add name="CoolListener"
type="Wintellect.Diagnostics.FixedTextWriterTraceListener,

Wintellect.Diagnostics,
Version=2.0.0.0,
Culture=neutral,
PublicKeyToken=f54122dc856f9575"

initializeData="MyConfigEventLog"/>
</listeners>

</trace>
</system.diagnostics>

</configuration>

The final way of specifying the assembly to load is the most flexible because the TraceListener
can be anywhere, but it requires a little more typing. The trick is to tell .NET where to look by
using the <dependentAssembly> elements in the configuration to have the assembly loader look
for a specific assembly in a different location. In the following example, I’ll specify the three
assemblies needed to load FixedTextWriterTraceListener. The assemblyIdentity elements specify
the exact name, culture, and public key token for the assembly, and the codeBase element
indicates the version and points to a directory where the assembly will be loaded from.
Interestingly, the href attribute in codeBase takes a Uniform Resource Identifier (URI), so you
could also specify a Web site with an http:// location.

Chapter 3 Debugging During Coding 105
<configuration>
<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>

<assemblyIdentity name="Wintellect.Diagnostics"
culture="neutral"
publicKeyToken="f54122dc856f9575"/>

<codeBase version="2.0.0.0"
href="file://c:/Listeners/Wintellect.Diagnostics.dll"/>

</dependentAssembly>
<dependentAssembly>

<assemblyIdentity name="Wintellect.Utility"
culture="neutral"
publicKeyToken="f54122dc856f9575"/>

<codeBase version="1.0.0.0"
href="file://c:/Listeners/Wintellect.Utility.DLL"/>

</dependentAssembly>
<dependentAssembly>

<assemblyIdentity name="Caudal.Windows.Forms"
culture="neutral"
publicKeyToken="f54122dc856f9575"/>

<codeBase version="1.0.0.0"
href="file://c:/Listeners/Caudal.Windows.Forms.dll"/>

</dependentAssembly>
</assemblyBinding>

</runtime>
<system.diagnostics>

<trace autoflush="true" indentsize="0">
<listeners>

<add name="CoolListener"
type="Wintellect.Diagnostics.FixedTextWriterTraceListener,

Wintellect.Diagnostics,
Version=2.0.0.0,
Culture=neutral,
PublicKeyToken=f54122dc856f9575"

initializeData="MyOutputFile.txt"/>
</listeners>

</trace>
</system.diagnostics>

</configuration>

Assertions in ASP.NET

Up to this point, if you’re doing primarily ASP.NET development, you’re thinking that what
I’ve talked about applies only to Windows Forms or console applications. In the mean old
.NET 1.1 days, you would have been right. There was zero support for Debug.Assert in
ASP.NET, but at least the message box didn’t pop up on some hidden desktop and wipe out
the ASP.NET worker process. Without assertions, you might as well not program! In the
previous edition of this book, I had a bunch of code that developed assertion handling for
ASP.NET, but I’m not including it in this version.

106 Part I The Gestalt of Debugging
The great news with .NET 2.0 is the Web Development Server ultimately makes ASP.NET
applications nothing more than regular user mode programs that just happen to run through
the browser. If you have an assertion in your code, you get to see the exact same message box
shown in Figure 3-1. I personally am thrilled that we now have a single way to assert across all
types of .NET development.

When your application is running under Internet Information Services (IIS) instead of the
Web Development Server, your calls to Debug.Assert behave slightly differently. You’ll still
see the message box from DefaultTraceListener if you are logged into the physical server or
are connected with Remote Desktop Program (Mstsc.exe) with /console specified at the
command prompt. As you would expect, clicking the Ignore button ignores the assertion, and
your application continues what it was doing. Clicking the Abort button unceremoniously
terminates the ASP.NET worker process just as it does for any console application. Clicking
the Retry button gets a little more interesting.

In the Web Development Server, clicking the Retry button calls Debugger.Launch, which brings
up the Visual Studio Just-In-Time Debugger dialog box, in which you can choose the debugger
with which you want to debug the application. When running under IIS, the Retry button
does not trigger the debugger dialog box. While I wish we still had the option to see the dialog
box, it does expose a security hole to have the debugger dialog box pop up when the logged-in
user might not be someone you want debugging applications.

Fortunately, it’s easy enough to start the debugger and attach it to the ASP.NET worker process
that’s showing the assertion. Once you’ve attached the debugger, clicking the Retry button
will break inside the debugger, and you’ll be on your way to assertion nirvana. The last point
I need to make about assertions in ASP.NET applications is that you must have the compilation
element, debug attribute in Web.Config set to true for any calls made in your ASP.NET code
to be compiled in through conditional compilation. With the debug attribute set to false,
Aspnet_Compiler.exe compiles your binary on the fly without the /define:DEBUG switch
passed to CSC.exe or VBC.exe.

Debugging War Story
Disappearing Files and Threads

The Battle
Many years ago, while working on a version of NuMega’s BoundsChecker, we had
incredible difficulty with random crashes that were almost impossible to duplicate. The
only clues we had were that file handles and thread handles occasionally became invalid,
which meant that files were randomly closing and thread synchronization was some-
times breaking. The user-interface developers were also experiencing occasional crashes,
but only when running under the debugger. These problems plagued us throughout
development, finally escalating to the point when all developers on the team stopped
what they were doing and started trying to solve these bugs.

Chapter 3 Debugging During Coding 107
The Outcome
The team nearly dipped me in tar and covered me with feathers because the problem
turned out to be my fault. I was responsible for the debug loop in BoundsChecker. In the
debug loop, you use the Windows debugging API to start and control another process,
the debuggee, and to respond to debug events that the operating system generates. Being
a conscientious programmer, I saw that the WaitForDebugEvent function was returning
handle values for some of the debugging event notifications. For example, when a process
started under a debugger, the debugger would get a structure that contained a handle to
the process and the initial thread for that process.

Because I’m so careful, I knew that if an API gave you a handle to some object and you
no longer needed the object, you called CloseHandle to free the underlying memory for
that object. Therefore, whenever the debugging API gave me a handle, I closed that handle
as soon as I finished using it. That seemed like the reasonable thing to do.

However, much to my chagrin, I hadn’t read the fine print in the debugging API
documentation, which says that the debugging API itself closes any process and thread
handles it generates. What was happening was that I was holding some of the handles
returned by the debugging API until I needed them, but I was closing those same handles
after I finished using them—after the debugging API had already closed them.

To understand how this situation led to our problem, you need to know that when you
close a handle, the operating system marks that handle value as available. Microsoft
Windows NT 4.0, the operating system we were using at the time, is particularly aggressive
about recycling handle values. (Windows 2000 and Windows XP exhibit the same
aggressive behavior toward handle values.) Our UI portions, which were heavily
multithreaded and opened many files, were creating and using new handles all the time.
Because the debugging API was closing my handles and the operating system was
recycling them, sometimes the UI portions would get one of the handles that I was saving.
As I closed my copies of the handles later, I was actually closing the UI’s threads and file
handles!

I was barely able to avoid the tar and feathers by showing that this bug was also in the
debug loop of previous versions of BoundsChecker. We’d just been lucky before. What
had changed was that the version we were working on had a new-and-improved UI that
was doing much more with files and threads, so the conditions were ripe for my bug to
do more damage.

The Lesson
I could have avoided this problem if I’d read the fine print in the debugging API
documentation. Additionally—and this is the big lesson—I learned that you always check
the return values to CloseHandle. Although you can’t do much when you close an invalid
handle, the operating system does tell you when you’re doing something wrong, and you
should pay attention.

108 Part I The Gestalt of Debugging
As a side note, I want to mention that if you attempt to double-close a handle or pass a
bad value to CloseHandle, and you’re doing native debugging, Windows operating systems
will report an “Invalid Handle” exception (0xC0000008) when running under a debugger.
When you see that exception value, you can stop to investigate why it occurred.

I also learned that it really helps to be able to out-sprint your coworkers when they’re
chasing you with a pot of tar and bags of feathers.

SUPERASSERT.NET

In the previous edition of this book, which covered both .NET and native C++ debugging, I
presented what I’d like to think was the ultimate in native C++ assertions, SUPERASSERT.
Many people liked it, and I’ve lost track of the number of companies that had integrated the
code into their applications. Nothing is better than when I’m working on a super-difficult bug
for a client and run across some of my own code in their application. It’s happened many
times, and it’s still an amazing thrill for me to see that someone found my code good enough
to use.

When we all started turning to .NET development, many people kept asking for a version of
SUPERASSERT that worked with .NET. After a lot of thinking, I came up with a version that I
first published in my “Bugslayer” column for the November 2005 issue of “MSDN Magazine”
(http://msdn.microsoft.com/msdnmag/issues/05/11/Bugslayer/default.aspx). Many people
liked it, but that version always bothered me because it just wasn’t as useful as the native C++
version. After even more thought, I have finally come up with a worthy successor to the native
SUPERASSERT.

SUPERASSERT.NET Requirements

As with any project, you need a good set of requirements so you know what to develop and if
you’re meeting your goals. Based on the success of the native SUPERASSERT, the idea of a
user interface much better than a message box is mandatory to present even more information
and, most importantly, allow you to debug deeper without starting a debugger. You’ll see
some screenshots of the dialog box in a few pages. The user interface is nothing fancy, but it
allows you to see the key information quickly and efficiently.

The primary mission of the user interface is to offer better assertion-ignoring capabilities. For
example, with the DefaultTraceListener, if you had a misplaced assertion that triggered every
time through a loop counting to 1,000, you’d see 1,000 message boxes, which would drive you
to distraction. With SUPERASSERT.NET, I wanted the option to mark an assertion as ignored
for a specific number of times it’s triggered. Additionally, I wanted to be able to completely
disable a particular assertion for the remainder of the application’s instance. Finally, I wanted
to be able to turn off all assertions at any time.

Chapter 3 Debugging During Coding 109
As you’ll see when I start talking about Son of Strike (SOS) and WinDBG in Chapter 6,
“WinDBG, SOS, and ADPlus,” minidump files of your application are critical to solving the
toughest problems. By getting that snapshot of all the memory currently in use, you can start
looking at the tough problems, such as why a particular object is in Generation 2 and who’s
referencing it. When it comes to .NET assertions, you need that ability to write the minidump
file to be able to look at the state of the application after the fact, so I wanted to include that
functionality in SUPERASSERT.NET.

I had two requirements under “getting the information out of an assertion.” The first was
the ability to copy all the data in the assertion dialog box onto the clipboard. Because SUPER-
ASSERT.NET shows much more data than DefaultTraceListener, I wanted to be able to get all
that data to the clipboard. Because I’m talking about the clipboard, I’ll toss in here one of my
favorite undocumented tricks in Windows: In any application that calls the standard Windows
message box, you can press CTRL+C to copy the entire contents to the clipboard, title, text,
and even button text. This isn’t a screenshot, but the text values of everything in the message
box. I have no idea why Microsoft has never documented this wonderful message box shortcut.

The second informational requirement is to be able to e-mail the assertion to the developer.
This is especially important in testing environments so the tester can get as much information
to the developer as quickly as possible. While some of you might be shuddering in horror
right now, I assure you that this is an extremely valuable feature. If you’re getting the same
assertion messages in your inbox repeatedly, that’s a very good sign that you need to look at
why this particular assertion is popping up all the time.

Although Visual Studio is an outstanding debugger, there are times when you need to look at
a process with SOS and WinDBG, or its close cousin, the console-based CDB. With Default-
TraceListener supporting only managed debugger attaching, I wanted the option to get more
debuggers on the process. Additionally, I wanted WinDBG and CDB to have SOS loaded and
ready to rock when they attached.

The final two features are the big ones. I wanted SUPERASSERT.NET to run perfectly on all
operating systems and CPUs that .NET supports. That means handling 32-bit and 64-bit
versions in addition to the specific CPU differences. The last requirement sounds simple, but
in practice, is extremely difficult: I want to be able to see call stacks from all the threads in the
application in addition to all the parameters and local variables.

If you look carefully at Figure 3-1, which shows the DefaultTraceListener message box, it’s
wonderful that you get to see the call stack, but do you see anything that shows the parameter
or local values? There’s no way to get those values, because if you could, you would break all
the security in .NET. For example, if your code is used in a secure context and you can crawl
up the stack to look at local variables, you could steal secrets. The same goes for looking at the
call stacks of other managed threads in your application. Even though you can get the Process
class instance that represents your process and can even enumerate the threads as ProcessThreads,
there’s no way to get at the call stack.

110 Part I The Gestalt of Debugging
However, when you’re debugging, all the information that the great .NET security hides from
you is exactly what you need to see. I wanted my code to get that information because the
more you can see in an assertion, the less need you’ll have for the debugger to do, thus your
work will get done faster. Of course, working around the .NET security to show the good stuff
is something you’ll want to have enabled only in the development shop—not for the customer.
Finally, I felt that without the ability to see the other stacks and all their variables, there was
no way I was going to be able to call my assertion SUPERASSERT.NET. I know you’re dying to
see the implementation details to see if I was able to fulfill all the requirements, but I need
to show you how to use SUPERASSERT.NET first.

Using SUPERASSERT.NET

SUPERASSERT.NET is composed of three assemblies that you’ll need to incorporate with your
application: Caudal.Windows.Forms.dll, Wintellect.Diagnostics.dll, and Wintellect.Utility.dll.
Three other applications, DiagnosticHelper-AMD64.exe, DiagnosticHelper-i386.exe, and
DiagnosticHelper-IA64. exe, must be in the path on the machine. If you want to e-mail assertions
through Microsoft Office Outlook, you’ll also need to include Wintellect.Diagnostics.Mail.
Outlook.dll. Note that Wintellect.Diagnostics.Mail.Outlook.dll is not built by default because
it relies on the Office Primary Interop Assemblies (PIA) and there’s no way for me to know
which version of Office is on your computer. You can find the main binaries in the .\Debug or
.\Release directories in the directory where you installed the book’s source code. In the
implementation section, I’ll describe what each of the assemblies does.

With any development tool, there’s always the implied requirement that the tool be easy to use.
To accomplish that, I derived the SuperAssertTraceListener class in Wintellect.Diagnostics.dll
directly from the DefaultTraceListener class, so all the same rules about adding and loading
TraceListener classes through code or configuration files apply just the same. Because it’s
derived from DefaultTraceListener, SUPERASSERT.NET properly pays attention to the assert
element’s assertuienabled attribute in App.Config or Machine.Config and won’t pop up if you
don’t want it to.

Once you have SUPERASSERT.NET integrated into your application, and you encounter an
assertion, you’ll see the dialog box in Figure 3-2. The text box control at the top of the window
shows the message and detailed message parameters you passed to Debug.Assert. You also see
the module, source, and line where the assertion occurred. So far, it’s the same information
you’d see in the standard DefaultTraceListener.

Figure 3-2 SUPERASSERT.NET’s main dialog box

Chapter 3 Debugging During Coding 111
The LastError value shows you the last native Windows error as reported by GetLastError,
which can be helpful, especially if you’re doing lots of interop. Note that the value displayed
here might not have anything to do with the assertion you’re seeing. My code saves off the last
error value as soon as it’s called. However, the last error value could have been changed by a
previous TraceListener in the Listeners collection.

After the last error value comes the number of times this particular Debug.Assert failed. The
penultimate value is the number of times this particular assertion has been ignored. The last
value in the edit control is the number of native Windows handles your process currently has
open. Leaking handles is a huge problem in both native and managed code. So seeing the total
number of handles can, in fact, help you detect potential problems.

I’m sure that you can guess what the Ignore Once button does for the current assertion.
The Abort Program button is a true death button, as it will call the GetCurrentProcess().Kill()
method to rip the process completely out of memory. To save accidental clicks on this button,
you’ll always be prompted to ensure that this is what you want to do.

The Managed Debugger button triggers the managed debugger. If you are debugging the
process, it will call Debugger.Break to stop in the debugger. If there is no debugger present,
SUPERASSERT.NET will call Debugger.Launch to start the Just-In-Time debugger process so
that you can choose the debugger to use. As you would expect, you need to have sufficient
operating system privileges to debug the process.

The Copy To Clipboard button does exactly what you’d expect and copies all the text values
in the dialog box to the clipboard. The Create Minidump button brings up the standard file
Save dialog box in which you can specify the name of the minidump file you want to write. If
you look at the code, you’ll see that I had to do the interop to call the native Windows GetSave-
FileName function in order to show the Save dialog box. The reason is that the standard .NET
SaveFileDialog class uses COM, so it’s not safe to use without an Single Threaded Apartment
(STA) main thread, which is an onerous requirement just to use an assertion.

The minidump files that I created are the appropriate full-memory minidump files, which
means that you can fully use SOS on them and really see what’s going on in your application.
That also means that minidump files can get huge. For the simple test program, I created full-
memory minidump files on Windows XP Professional x64 Edition that were 421 MB!

The Email Assertion button allows you to e-mail the assertion to a developer. By default, the
To e-mail address will be blank, but a very small change to your code can make it easier for
the user. The CodeOwner attribute from the Wintellect.Diagnostics namespace in Wintellect.
Diagnostics.dll allows you to specify the e-mail address. Add it to your classes, as shown in the
following snippet:

[CodeOwner ("Assertion Report" , "assertreport@mycompany.com")]
class Program
...

112 Part I The Gestalt of Debugging
SUPERASSERT.NET will look up the stack of the assertion for the first class with the Code-
Owner attribute and use that e-mail address as the To field for the message. When using the
CodeOwner attribute, you probably don’t want to include an actual developer name as that
address because your binary has the address embedded in it. You’ll want to set up a separate
account for receiving all assertions or use conditional compilation so that the CodeOwner
attribute appears only in debug builds.

As I mentioned earlier, if you include the Wintellect.Diagnostics.Mail.Outlook.dll with the
code, you could also use Office Outlook to send the message. To choose the e-mail program to
use, in the SUPERASSERT.NET dialog box, select Options from the System menu, which you
access by clicking the icon in the dialog box’s caption bar. On the Mail tab, select the e-mail
program to use.

Figure 3-3 shows the Options dialog box. As you can see in the dialog box, there are other tabs
to set such as the path to CDB.exe, stack walking options, and other options, such as if you
want SUPERASSERT.NET to play a sound when it pops up on the screen. Any settings are
stored for the user in the appropriate %SystemDrive%\Documents and Settings\user_name\Local
Settings\Application Data\Wintellect\SUPERASSERT.NET\version directory. This allows
settings that are global for the current Windows user.

Figure 3-3 SUPERASSERT.NET Options dialog box

If you’ve chosen to use the SMTP mail option, SUPERASSERT.NET will assume initially that
the appropriate settings are in the App.Config/Web.Config as described in the SmtpClient
class. You can change the SMTP settings in the Options dialog box by selecting SMTP Mail as
the Default mail plugin and clicking the Plugin Options button. You can also set the same
settings when sending a message.

If you’ve chosen Office Outlook to send the messages, things are a little more annoying
because the only way to access Office Outlook across all operating systems is through COM.
That means that you’ll get all the scary dialog boxes about an application accessing your
e-mail and have to navigate the timeout dialog boxes. It’s enough to make you want to find a
virus writer and smack him silly. I strongly suggest that you always use the SMTP e-mail, but
depending on how draconian your network administrators are, getting SMTP e-mail set up in
your environment may be very difficult. If you can’t set it up, you can always use Google’s
Gmail because it is free and fully supports SMTP sending. It’s what I used to test the SUPER-
ASSERT.NET code.

Chapter 3 Debugging During Coding 113
Once you click the Email Assertion button, you’ll see the dialog box in Figure 3-4, which is the
simple e-mail dialog box in which you can type in additional data about the bug. If the user
enters her own SMTP settings, she will be prompted for a password when sending messages.
No password is stored in any of the SUPERASSERT.NET settings.

Figure 3-4 Sending the assertion by e-mail

The More button in the SUPERASSERT.NET dialog box is where the excitement is. Because I
don’t do much UI programming, I expect you to oooh and aaah every time you click it. The
expanded SUPERASSERT.NET dialog box, shown in Figure 3-5, has all sorts of interesting
information in it. The Ignore group contains advanced options for disabling specific assertions
or even all assertions and should be used with care. Make sure to read the section “A Word
About Ignoring Assertions” later in this chapter.

The Native Debuggers for SOS section allows you to choose which debugger you want to
spawn to look at the process with SOS. When you start one of the native debuggers, SUPER-
ASSERT.NET automatically loads SOS in the native debugger, so you’re all set to start exploring
to your heart’s content. When you are finished poking at the process, use the qd command to
detach and quit the debugger to return to the asserting process.

Looking at the dialog box in Figure 3-5, you can see that the stack walk shown looks identical
to what you’d see in regular DefaultTraceListener, and you’re wondering what the excitement is
all about. The magic begins when you click the Walk Stacks button. The edit control that
contained the stack turns into a tree control, and as you start clicking the plus signs, or right-
clicking and selecting Expand All, a big smile will appear on your face. I almost didn’t include
a screen shot here because the effect the first time you see it is quite amazing! Since a picture
is worth a thousand words, I need to include one so I can explain what’s going on.

114 Part I The Gestalt of Debugging
Figure 3-5 The expanded SUPERASSERT.NET dialog box

Figure 3-6 The amazing SUPERASSERT.NET!

What you’re seeing in the tree control are all the methods on the stack, their parameters, and
their locals, and you have the ability to expand objects to show all the field values. The blue
icons with the lock next to them denote local variables. What I can’t show in the book text is
clicking the Thread id combo box and showing you that you’d be looking at the call stacks
with full detail for any other managed thread in your application. Of course, if you do show

Chapter 3 Debugging During Coding 115
the cool stack display, all the call stack data is copied to the clipboard and any e-mail messages
you send from SUPERASSERT.NET, just as you would expect.

The object expansion defaults to a single level, so you’ll see parameter and local object fields.
If you need to drill down more, go into the SUPERASSERT.NET Option dialog box, and on
the Stack Walking tab, set the Stack variable expansion up-down control to the level you want.
You can also elect to have arrays expanded in the display. After changing the values and closing
the dialog box, click Walk Stacks again in the main dialog box to see the changed expansion.
Because SUPERASSERT.NET has to gather all the thread detail at once, you’ll want to be careful
about expanding too far because you’ll use a ton of memory and it will take quite a while to
generate the data.

Console and Windows Forms applications in addition to any ASP.NET applications running
under the development Web server will now have all the glory of SUPERASSERT.NET to help
keep you out of the debugger more than ever. Of course, things are a little different if you’re
running an ASP.NET application under Internet Information Services (IIS). The rules are
different there, and there’s no clean way to show Windows Forms or spawn applications
because both would potentially open security holes. Consequently, SUPERASSERT.NET
degrades gracefully by falling back to the DefaultTraceListener to generate the output. It’s not
ideal, but it’s better than changing the account IIS runs under and having it interact with the
desktop. If you are going to those extremes, that’s exactly what the development Web server
is all about.

A Word About Ignoring Assertions

It’s always a bad moment when another developer or tester drags you over to his machine to
blame your code for a crash. It’s even worse when you start diagnosing the problem by asking
him if he clicked the Ignore button on an assertion that popped up. Many times he’ll swear to
you that he didn’t, but you know that there’s no way that crash could have occurred without
a particular assertion trigger. When you finally pin him down and force him to admit that he
did click that Ignore button, you’re on the verge of ripping his head off. If he had reported that
assertion, you could have easily solved the problem!

The Ignore button, if you haven’t already guessed, is a potentially very dangerous option
because people are so tempted to click it! Although it might have been a little draconian, I
seriously considered not putting an Ignore button on SUPERASSERT.NET to force users to
deal with the assertion and its underlying cause. I specifically added the ignore count to the
upper text box to ensure an easy way to check whether a specific assertion has been ignored.
This allows you to see at a glance if the Ignore button has been clicked before wasting your
time looking at the crash.

What you might want to consider adding to the Debug.Listeners collection is a second listener, such
as the FixedTextWriterTraceListener, so you have complete logging of all assertions that are trig-
gered. That way you’d automatically have a running total of the number of Ignore values clicked by

116 Part I The Gestalt of Debugging
users, allowing you to validate the user actions that led to the crash. Some companies automati-
cally log assertions to a central database so that they can keep track of assertion frequencies and
determine whether developers and testers are improperly using the Ignore button.

Since I’ve talked about protecting yourself against the user’s reflex reaction of clicking the
Ignore button, it’s only fair that I mention that you might be doing it, too. Assertions should
never pop up in normal operation—only when something is amiss. Here’s a perfect example of
an improperly used assertion that I encountered while helping debug an application. When I
chose an item on the most recently used menu that didn’t have a target item, an assertion fired
before the normal error handling. In such a case, the normal error handling was more than
sufficient. If you’re getting complaints that assertions are firing too much, you need to carefully
analyze whether those assertions really need to be there.

Debugging War Story
Assertions Save the Day!

The Battle
A friend of mine related the following story: Our current Service Oriented Architecture
sets up a bank of Web services, which provide the business services to our client-side
applications. The first of these was a Windows Forms application performing a wide
variety of user operations using all of the different areas of the services provided. Like many
projects, it started out small with a proof of concept and as a result used a workstation
on my desk as the development server. The development team would all refresh the
references from this server each time the code set changed.

As the project grew, more developers came online and more servers were added to create
the different levels of testing environments we needed. This meant that a sturdier beast
replaced the original development server. The different server configurations were handled
with changes to the configuration file, which was updated by the installer to ensure that
the correct servers were being used for the correct environment, and the original
development server became my test deployment server.

The Web services were grouped so that the application required five different Web
references, all of which had to point at the correct server or server cluster for the correct
environment.

Our release cycles are fairly rigid, and therefore, when something reaches the final stages
of testing, there’s not much that can be done—the cycle faces a series of go/nogo
decisions, but no fixes are applied because the testing processes would need to be
restarted. As our application went into its last phase of testing, I was scheduled to move
to a different desk, so I powered down all of my machines.

The Outcome
A few minutes after turning off all my computers, we got a frantic call from the preproduction
test environment team because all of the tests had started failing with strange timeout

Chapter 3 Debugging During Coding 117
messages saying that some services were not responding. Oddly, all of the servers running
the Web services seemed to be fine, processing messages and with almost no resource
utilization.

After a lot of head scratching and some network tracing, we finally figured out that for
some reason, one of the sets of Web services was routing back to the original development
server, the same one that was now turned off ready to be moved. After a quick hunt
through the code, we finally discovered that one of the Web references had not been set
to dynamic because of a file being read-only when the Web reference was refreshed. As
a result, the Web reference had always been routing through the server on my desk.
Because I had always kept the code up to date and the Web reference was to some
services that were not heavily used, no one had ever noticed that the application routed
through my workstation—we were all convinced it would have gone live if it weren’t for
a desk move!

The Lesson
At around the same time as this, I was having difficulty conveying to the development
team why assertions are so important. When we almost deployed a major business
application running on one of my desktops, we modified the code to include an assertion
checking the Web reference URL against the config file to see if we had mistakenly
configured it to be static. Suddenly, the whole team understood why assertions are so
important, and this helped justify usage of assertions tremendously.

SUPERASSERT.NET Implementation

I do have to admit that I had a great time developing SUPERASSERT.NET. In the end, I wrote
four different versions of the core code to achieve the results. While I was able to achieve my
ultimate goal, I also learned a good bit of .NET along the way. Most of the assertion code is in
the Wintellect.Diagnostics.dll assembly, so you might want to open that project to follow
along as I describe some of the initial interesting highlights.

As I mentioned, SUPERASSERT.NET starts out as a TraceListener, SuperAssertTraceListener,
derived from DefaultTraceListener. All of the work takes place in the overridden Fail method.
The first challenge I had to tackle was trying to figure out how to uniquely identify the spot
where the assertion occurred so I could keep track of the assertion count. Because the Stack-
Trace class always returns a stack starting at the location where it’s created, I had to walk the
frames back to the point before the call to Debug.Assert so I would not be showing a call stack
starting inside SuperAssertTraceListener. Realizing that I now had the location where the call
occurred, I could use the StackFrame class for that location to build up a unique key because
it has the class, method, and module name, along with the IL offset into the module making
the call to Debug.Assert. That meant that I could just toss all the assertions I saw into a hash
table so I could keep track of the number of times triggered, and I could ignore counts easily.

118 Part I The Gestalt of Debugging
If the assertion is not ignored, the next challenge in SuperAssertTraceListener.Fail is to figure
out if it’s safe to show the assertion dialog. Because I wanted to respect the DefaultTraceListener
assertuienabled attribute, I started looking at how I was going to read App.Config and
Machine.Config to determine if they were set. It was looking as if it were going to be quite hard
to do the configuration parsing because the configuration classes provided by the Framework
Class Library (FCL) were returning an internal-only class, SystemDiagnosticsSection, which was
causing all sorts of InvalidCastExceptions when I’d try to access it. Thinking I was going to have
to do my own XML parsing, I was getting a little desperate when I saw the DefaultTraceListener.
AssertUiEnabled property, which does all the work I needed. There’s nothing like trying to
completely reinvent the wheel.

Checking if the user interface is enabled is only the first check I needed to make before I could
bring up the dialog box. In order to play well in a limited-rights settings, I demand unrestricted
UIPermission rights. The DefaultTraceListener does not need full rights, but my dialog box is
doing much more than a message box, so I need full UIPermission to have any hope of it to
work. If the configuration settings are for no user interface or there are insufficient rights to
show a full user interface, I’ll call the DefaultTraceListener.WriteLine method to at least log that
an assertion occurred. See the SuperAssertTraceListener.UiPermission property for how I
demand the appropriate permissions.

The final check is the usual SystemInformation.UserInteractive to see if the process is running in
user interactive mode. Form.ShowDialog makes the same check and will throw an InvalidOperation-
Exception if you call it without checking first. If I can’t show my dialog box in this case, I’ll try
calling the DefaultTraceListener.Fail method because it will just show a message box and, as
I explained earlier, you’ll at least see that with ASP.NET under IIS.

If you are familiar with my native SUPERASSERT, you know that it has a very cool feature that
would suspend all the other threads in the application other than the one with the assertion.
This allowed the assertion to have as minimal an impact on the application as possible. In
showing the new SUPERASSERT.NET to numerous developers, they asked if I kept that excellent
feature. If you think about it for a moment, that would be a very bad idea in the .NET world.
What’s one of the most important threads in .NET? The garbage collector thread! Because
SUPERASSERT.NET uses .NET, I’d end up deadlocking or terminating the process if I
suspended all other threads, which would not make my assertion very useful.

The assertion dialog box itself, which is in AssertDialog.cs, is derived from Wintellect.Utility.System-
MenuForm, which allows me to easily add the Options and Center on Screen commands to the
system menu. If you’re interested in how to make your own folding dialog boxes, you can
search for the Folding/Unfolding Handling region, which shows how it’s done.

There are only two key items about the user interface I wanted to point out. The first is that
clicking the Abort Program button calls Process.GetCurrentProcess ().Kill (), which is identical
to calling the TerminateProcess API. I originally started to call the .NET Application.Exit
method, but looking at what it does with Lutz Roeder’s Reflector (http://www.aisto.com/roeder
/dotnet/), it is a little too kind in how it asks the windows and threads in your application to

Chapter 3 Debugging During Coding 119
shut down. Because an assertion is indicating that you have a bad state, I felt that it was safer
to have this button do the death kill to avoid partial transactions or race conditions.

The last interesting thing in the user interface was getting the clipboard to always work. Like
the OpenFileDialog, the ClipBoard class in .NET relies on COM to do some of its work. While
we would all love for COM to finally die the hard death it deserves, we’re stuck with it and its
nasty Single Threaded Apartment (STA) model. In order for it to work, the clipboard code
requires that your thread be marked with the STAThreadAttribute. I wanted to solve this
because that is an onerous requirement and because copying the assertion data is so important.

I was all set to do the interop work to directly call the Windows clipboard API functions
when I ran across a cool trick from Jeff Atwood (http://www.codinghorror.com/blog/archives
/000429.html): spawn your own thread, set its state to STA, and do the clipboard operation in
that thread. I wrapped up Jeff’s idea in the Wintellect.Utility.SmartClipboard class so you could
reuse it.

The first major hurdle I wanted to tackle was getting a minidump file of the process written.
It’s simple enough to make a call to MiniDumpWriteDump, the Windows API that does all the
work, but that minidump file won’t be readable by any debugger. The problem is that the API
is designed for writing dumps of other processes, not for being called from your own process.
In the native version of SUPERASSERT, I used inline assembly language to simulate making
the call to MiniDumpWriteDump and allow you to write a perfect minidump file from inside
your own process.

Even though there’s no inline IL in .NET applications, which is a scary thought all on its own,
I figured there had to be a way I could do some Ninja hacking and get MiniDumpWriteDump
working inside the process. Alas, no amount of sneaking around the code in a black suit
worked. I tried everything to get this working inside the process with just .NET code. The only
way I was able to write a minidump file from inside the process was to write a native C++ DLL
that mimicked the way I had done the writing in the native version of SUPERASSERT. Given
the fact that I was then going to have to support three separate DLLs, one for each CPU type
.NET runs on, that was going to be a mess to manage.

However, I could get good minidump files from MiniDumpWriteDump when using it to write
dumps of other processes. That meant that to keep the code all .NET, I was going to have to
write a process that my assertion would spawn. The assertion code would pass on its process
ID or name on the command line to this other program to tell it what to dump, which is
basically the same thing as writing the dump from inside my own process. Although it’s not
exactly how I wanted the code to be, the DiagnosticHelper executables achieves the desired
result of a minidump file that SOS can process.

The big feature of course, is getting all the thread’s call stacks and variables. As you can guess,
that one was the hardest to get working. At the initial glance, I thought it might be relatively
easy because I’d noticed in the .NET Framework 2.0 documentation that the StackTrace class
has a new constructor that takes a Thread object. The idea is that you can pass in any Thread

120 Part I The Gestalt of Debugging
object and get that thread’s stack. That gave me some hope of enumerating the threads from
inside the application and getting their corresponding Thread objects.

You may have noticed that the Process.Threads property is a ProcessThreadCollection that contains
the ProcessThread objects for all the native threads in the process. Thinking that there might be
a way to convert those ProcessThread objects into the equivalent Thread object, I spent some
serious quality time with the compiler and Reflector trying and looking at ideas. Alas, there’s
absolutely no way to get the list of Thread objects that I could in turn pass to StackTrace. Even
if I could, that would still not achieve the goal of getting the locals and parameters.

What I really wanted was a way that I could work around the whole security system in .NET
so I could get those locals and parameters. Although the security protections are a great
feature of .NET, they can sometimes get in the way of fun tools. If given enough time, I probably
could find some way to wander the stack and extract the locals, but I certainly wouldn’t be
doing it from straight .NET code. That meant that I had to do some serious thinking and look
at the big picture.

As we all know, a debugger can see everything inside a process. My thinking was that there
was nothing stopping me from spawning off a debugger on myself. That would definitely
work and get me the information that I wanted to present. Because I already had the dialog
box set up to spawn off CDB, I couldn’t see any reason why I couldn’t tell CDB to load SOS
and gather all the data for me.

When I presented the first version of SUPERASSERT.NET in my Bugslayer column, that’s
exactly what I did. I created a temporary file with the commands to execute and passed that
on the CDB command line. Those commands loaded SOS, opened up a logging file I specified,
and ran the SOS !clrstack command to perform the magic. The bad news was that the !clrstack
command is essentially broken and doesn’t always return the parameters and locals correctly.
The other problem with this approach is that you’re required to install the Debugging Tools
for Windows on every machine to have access to CDB.

To get what I wanted, I turned next to the CLR Debugging API, which you can read about at
http://msdn2.microsoft.com/en-us/library/ms404520(VS.80).aspx. This certainly looked like
the way to go, but with approximately 102 COM interfaces, I certainly wasn’t looking forward
to grinding through writing a native C++ EXE to be a debugger. Just as I was starting to sketch
out exactly what I was going to have to do, the CLR Debugging Team handed all of us a major
present: the CLR Managed Debugger Sample, also known as MDBG. You can download
MDBG at http://www.microsoft.com/downloads/details.aspx?familyid=38449a42-6b7a-4e28-
80ce-c55645ab1310&displaylang=en.

As part of their internal testing of the debugging APIs, the CLR Debugging Team had written
a test system completely in .NET that wrapped the entire COM-based API. This eventually
evolved into MDBG, and they released it as source code so others could write debugging tools
without grinding through the mind-numbing COM interfaces. The CLR Debugging Team did
a major service to the community by releasing this code and certainly made my life a heck of
a lot easier! This meant that I could do a complete .NET solution for the debugger portion.

Chapter 3 Debugging During Coding 121
From a high level, the idea is to spawn the debugger and have it attach back to the process
with the assertion. Once attached, it will open up a file where it can write data. The debugger
will enumerate the threads and walk the stack for each thread. In each stack frame, it will
dump the parameters and locals. The code I wrote turns out to be almost as easy as that
description.

Listing 3-2 shows the .\DiagnosticHelper\StackWriter.cs file that does the work to do all the
CLR debugger work and stack writing. As you can see, most of the code is concerned with
writing out the XML file. If the code looks a bit familiar, that’s because it’s based on a blog
entry by Mike Stall, http://blogs.gotdotnet.com/jmstall/archive/2005/11/28/snapshot.aspx.
Mike is a developer on the CLR Debugging Team, and you definitely need to subscribe to
his blog because there are all sorts of interesting tips about debugging and using the CLR
Debugging API.

Listing 3-2 StackWriter.cs

/*--
* Debugging Microsoft .NET 2.0 Applications
* Copyright © 1997-2006 John Robbins -- All rights reserved.
---*/

using System;
using System.Diagnostics;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Xml;
using System.Globalization;
using Microsoft.Samples.Debugging.MdbgEngine;
using System.Reflection;

namespace DiagnosticHelper
{

/// <summary>
/// The class that will walk the stack of a specific process and write the
/// output to an XML file.
/// </summary>
internal class StackWriter
{

// The process Id we're to work on.
private Int32 processId;
// The XML output filename.
private String fileName;
// The number of levels to expand objects.
private Int32 levels;
// The flag that if true has this class show locals even if source is
// not available.
private Boolean noSymLocals;
// Flag to indicate if arrays are supposed to be expanded also.
private Boolean showArrays;

/// <summary>
/// Initializes a new instance of the <see cref="StackWriter"/> class.

122 Part I The Gestalt of Debugging
/// </summary>
/// <param name="processId">
/// The process id to dump the stack on.
/// </param>
/// <param name="fileName">
/// The name of the output file to write.
/// </param>
/// <param name="levels">
/// How many levels deep to display object fields.
/// </param>
/// <param name="noSymLocals">
/// If set to <c>true</c> will show locals for methods that don't have
/// source.
/// </param>
/// <param name="showArrays">
/// if set to <c>true</c> expands array values.
/// </param>
public StackWriter (Int32 processId ,

String fileName ,
Int32 levels ,
Boolean noSymLocals ,
Boolean showArrays)

{
// Check the parameters.
Debug.Assert (0 != processId , "0 != processId");
if (0 == processId)
{

throw new ArgumentException (Constants.InvalidParameter ,
"processId");

}
Debug.Assert (false == String.IsNullOrEmpty (fileName) ,

"false == String.IsNullOrEmpty (fileName)");
if (true == String.IsNullOrEmpty (fileName))
{

throw new ArgumentException (Constants.InvalidParameter ,
"fileName");

}
this.processId = processId;
this.fileName = fileName;
this.levels = levels;
this.noSymLocals = noSymLocals;
this.showArrays = showArrays;
errorMessage = String.Empty;

}

private String errorMessage;
/// <summary>
/// Gets the error message for error returns.
/// </summary>
/// <value>
/// The error message.
/// </value>
public String ErrorMessage
{

get { return (errorMessage); }
}

Chapter 3 Debugging During Coding 123
// The XmlWriter used everywhere.
private XmlWriter xw;
// The process name we're snapping. This is set in the
// IsDotNetInProcess method.
private String processName;
// The process we'll be debugging.
private MDbgProcess proc;

/// <summary>
/// Does the work to walk the stack and write to a file.
/// </summary>
/// <returns>
/// One of the <see cref="ReturnCodes"/> enumerations.
/// </returns>
public Int32 Execute ()
{

// The value we'll be eventually returning.
Int32 retValue = (Int32)ReturnCodes.ERROR_SUCCESS;

// Before we get too far into the code, let's see if .NET is in the
// process. If not, jump out immediately.
if (false == IsDotNetInProcess ())
{

errorMessage = Constants.DotNetNotInProcess;
return ((Int32)ReturnCodes.ERROR_NO_DOTNET_IN_PROCESS);

}

try
{

// Create us a debugger!
MDbgEngine debugger = new MDbgEngine ();

// Create the XML file.
xw = XmlWriter.Create (fileName);
try
{

// Do the attach.
proc = debugger.Attach (processId);
// Drain all events until we have completed the attach.
DrainAttachEvents (debugger , proc);

// Start with ye olde process.
xw.WriteStartElement ("process" ,

"http://schemas.wintellect.com/diagnostics/SuperAssertStackDump");
// Poke on a few attributes.
WriteProcessElementAttributes ();
// Hu Ra! Let's go!
DumpAllThreads ();

}
finally
{

// Make sure to always detach or the process is dead.
if (null != proc)
{

124 Part I The Gestalt of Debugging
proc.Detach ().WaitOne ();
}
// Close off the XML files.
if (null != xw)
{

xw.WriteEndDocument ();
xw.Flush ();
xw.Close ();

}
}

}
// Means we weren't able to write the XML file.
catch (UnauthorizedAccessException ex)
{

retValue = (Int32)ReturnCodes.E_ACCESSDENIED;
errorMessage = ex.Message;

}
return (retValue);

}

private void DumpAllThreads ()
{

// Grab all the threads.
MDbgThreadCollection tc = proc.Threads;
foreach (MDbgThread t in tc)
{

// Write out the thread only if there's actually something on
// the stack.
if (true == t.HaveCurrentFrame)
{

try
{

xw.WriteStartElement ("thread");
xw.WriteAttributeString ("tid" ,

t.Id.ToString (CultureInfo.InvariantCulture));

xw.WriteStartElement ("callstack");
foreach (MDbgFrame f in t.Frames)
{

DumpFrame (f);
}

}
finally
{

// Finish off call stack.
xw.WriteEndElement ();
// Finish off thread.
xw.WriteEndElement ();

}
}

}
}

private void DumpFrame (MDbgFrame f)
{

Chapter 3 Debugging During Coding 125
// Skip the managed/native transitions stuff.
if (false == f.IsInfoOnly)
{

try
{

xw.WriteStartElement ("frame");
WriteFrameElementAttributes (f);

// Let's start with the arguments.
try
{

xw.WriteStartElement ("arguments");
foreach (MDbgValue v in f.Function.GetArguments (f))
{

DumpValue (v);
}

}
finally
{

// Close of <arguments>.
xw.WriteEndElement ();

}
// Party on the locals.
try
{

xw.WriteStartElement ("locals");
// Write out only the actual values if there's source
// or the user is telling me to do it anyway.
if ((null != f.SourcePosition) ||

(true == noSymLocals))
{

foreach (MDbgValue v in
f.Function.GetActiveLocalVars (f))

{
DumpValue (v);

}
}

}
finally
{

xw.WriteEndElement ();
}

}
finally
{

// Close off <frame>.
xw.WriteEndElement ();

}
}

}

private void DumpValue (MDbgValue v)
{

DumpValueWorker (v , levels);
}

126 Part I The Gestalt of Debugging
private void DumpValueWorker (MDbgValue v , Int32 depth)
{

// Take a quick look at the name. If it's one of those auto created
// things, skip it.
if (true == IsCompilerCreatedVariable (v.Name))
{

return;
}

try
{

xw.WriteStartElement ("value");
xw.WriteAttributeString ("name" , v.Name);
xw.WriteAttributeString ("type" , v.TypeName);
// Always show the value for the item.
String val = v.GetStringValue (0 , true);
// Special case empty values coming from GetStringValue.
if (val == "'\0'")
{

val = "\\0";
}
xw.WriteAttributeString ("val" , val);

// Is it recursion time!?
if (depth >= 1)
{

// Dump sub items.
if (true == v.IsComplexType)
{

MDbgValue [] fields = SafeGetFields (v);
if ((null != fields) && (fields.Length > 0))
{

try
{

xw.WriteStartElement ("fields");
foreach (MDbgValue v2 in fields)
{

DumpValueWorker (v2 , depth - 1);
}

}
finally
{

// Close off <fields>.
xw.WriteEndElement ();

}
}

}
else if ((true == v.IsArrayType) &&

(true == showArrays))
{

MDbgValue [] items = v.GetArrayItems ();
if ((null != items) && (items.Length > 0))
{

try
{

Chapter 3 Debugging During Coding 127
xw.WriteStartElement ("fields");
foreach (MDbgValue v2 in items)
{

DumpValueWorker (v2 , depth - 1);
}

}
finally
{

// Close off <fields>.
xw.WriteEndElement ();

}
}

}
}

}
finally
{

// Close off <value>.
xw.WriteEndElement ();

}
}

// I've seen cases in Visual Basic apps where calling GetFields has
// NullReferenceException problems.
private static MDbgValue [] SafeGetFields (MDbgValue v)
{

MDbgValue [] fields;
try
{

fields = v.GetFields ();
}
catch (NullReferenceException)
{

fields = null;
}
return (fields);

}

private static Boolean IsCompilerCreatedVariable (String name)
{

return (name.StartsWith ("CS$" ,
StringComparison.InvariantCultureIgnoreCase));

}

private void WriteFrameElementAttributes (MDbgFrame f)
{

String func = f.Function.FullName;
String moduleName = f.Function.Module.CorModule.Name;
xw.WriteAttributeString ("function" , func);
xw.WriteAttributeString ("module" , moduleName);

if (null != f.SourcePosition)
{

String source = f.SourcePosition.Path;
String line = f.SourcePosition.Line.ToString (

CultureInfo.InvariantCulture);

128 Part I The Gestalt of Debugging
xw.WriteAttributeString ("source" , source);
xw.WriteAttributeString ("line" , line);

}
}

private void WriteProcessElementAttributes ()
{

// We'll add a few attributes for each identification.
xw.WriteAttributeString ("name" , processName);
xw.WriteAttributeString ("timestamp" ,

DateTime.Now.ToString (CultureInfo.InvariantCulture));
}

// The MDBG API does the right thing when you attach to a process that
// doesn't have .NET loaded, it waits until .NET shows up.
// Unfortunately, for a stack-n-go app like this, that's not an ideal
// situation. I'll cheat a bit and look to see if MSCORWKS.DLL is
// loaded in the process, which means .NET is there. Note that this is
// a change from .NET 1.1 to .NET 2.0. There's only one garbage
// collector DLL, MSCORWKS.DLL for both workstation and server.
private Boolean IsDotNetInProcess ()
{

Process targetProc = Process.GetProcessById (processId);
for (int i = 0 ; i < targetProc.Modules.Count ; i++)
{

// Get the filename.
string currModName =

Path.GetFileName (targetProc.Modules [i].ModuleName);
// Save off the process name.
if (i == 0)
{

processName = currModName;
}
// I've only got to look for MSCORWKS.DLL as that's the only
// CLR DLL for both workstation and servers in .NET 2.0.
if (0 == String.Compare (currModName ,

"mscorwks.dll" ,
StringComparison.InvariantCultureIgnoreCase))

{
// Good enough.
return (true);

}
}
return (false);

}

// Once you first attach to a process, you need to drain a bunch of fake
// startup events for thread-create, module-load, etc.
// Lifted right from Mike Stall's samples.
private static void DrainAttachEvents (MDbgEngine debugger ,

MDbgProcess proc)
{

bool fOldStatus = debugger.Options.StopOnNewThread;
// Skip while waiting for AttachComplete
debugger.Options.StopOnNewThread = false;

Chapter 3 Debugging During Coding 129
proc.Go ().WaitOne ();
Debug.Assert (proc.StopReason is AttachCompleteStopReason);
if (!(proc.StopReason is AttachCompleteStopReason))
{

throw new InvalidOperationException (
Constants.InvalidDebugAttach);

}
// Needed for attach
debugger.Options.StopOnNewThread = true;

// Drain the rest of the thread create events.
while (proc.CorProcess.HasQueuedCallbacks (null))
{

proc.Go ().WaitOne ();
Debug.Assert (proc.StopReason is ThreadCreatedStopReason);
if (!(proc.StopReason is ThreadCreatedStopReason))
{

throw new InvalidOperationException (
Constants.InvalidDebugAttach);

}
}
debugger.Options.StopOnNewThread = fOldStatus;

}
}

}}

As you read Listing 3-2, you can see how trivial it actually is to attach a debugger to the
process. You create an instance of MDbgEngine and call its Attach method. Right after you
attach, in a regular debugger, you’d ask for notifications for all thread creates, module loads,
and other interesting events, because that’s the CLR Debugging API telling you what’s in the
process. In the case for my code, I don’t care about those, so I’m going to drain all of those off
events in the DrainAttachEvents method at the bottom of the file.

The CLR Debugging API is interesting because of the fact that if you attach to a process that
has no .NET in it, the CLR Debugging API will wait in the process until the hosted runtime
shows up. In my case, I want only to do the actual debugging attach if .NET is already loaded
and running in the process. Consequently, before I call Attach, I take a quick peek to ensure
that MScorwks.dll is loaded in the process. If it’s not, I’ll report that there’s no .NET in the
process. If SUPERASSERT.NET spawns the DiagnosticHelper code, .NET is there and running.
However, there’s nothing stopping someone from executing the DiagnosticHelper executable
from a command prompt. I wanted to handle the case in which .NET wasn’t loaded. The
reason is that the DiagnosticHelper code will just sit there until .NET loads. If you accidentally
attach to Notepad.exe, you’re going to be waiting a very long time for .NET to load.

The DumpAllThreads and DumpFrame methods take care of enumerating the threads and
call stacks respectively. While I could have chosen to show threads that had native code or
managed-native transitions, I chose to limit the dumping to only the managed code parts. If
you would like to extend SUPERASSERT.NET, it would be nice to offer the option to show all
the data.

130 Part I The Gestalt of Debugging
The DumpFrame method is also where the key work of dumping out the parameters and locals
occurs. In .NET applications, you’ll always have the parameter values because that information
is part of the metadata in the assembly itself. The locals are part of the .pdb files, so unless
they are found by the CLR Debugging API, you won’t see them. The .pdb files are loaded only
locally, not out of your Symbol Server, so they must be next to the binaries in the file system.
I don’t know about you, but it amazes me that 388 lines of code, including comments, can do
that much work.

Whereas it’s easy to use the CLR Debugging API, integrating it into your application is a
completely different matter. Originally, I had my DiagnosticHelper executable linking against
the MDBGCore.dll that shipped as part of the Framework SDK. In a meeting with the CLR
Debugging Team, they pointed out two issues with that version of MDBGCore.dll. The first
was that there were numerous bugs fixed in the released MDBG source code, so I’d be much
better off with that version. The second was that the licensing agreement would not allow me
to redistribute that DLL.

When I started linking my code against the MDBG source code versions, I found that parts of
the MDBGCore.dll had been pulled out into separate DLLs, MDBGEng.dll, Corapi.dll, and
Corapi2.dll. Because I didn’t want to add three more DLLs to what you had to distribute, I
started looking for a way to combine the code for those DLLs into the actual DiagnosticHelper
executable.

My initial thought was that I could use Michael Barnett’s excellent ILMerge utility
(http://research.microsoft.com/~mbarnett/ilmerge.aspx) to combine the binaries together.
ILMerge will take separate .NET assemblies and mash them together into a single assembly.
The .NET 2.0 version also merges the .pdb files together so you’ll have full source debugging.
Initially, this approach worked, and I was very happy to have a single DiagnosticHelper.exe
that took care of minidump file writing in addition to the stack walking.

Regrettably, I ran into a problem with my DiagnosticHelper.exe. I had a utility that did a ton of
interop, and I recompiled it to run under .NET 2.0 so I could take advantage of the better startup
performance and working set tuning. Because I didn’t want to tackle the many P/Invoke
declarations to ensure that it worked with 64-bit, I took the easy route and set the compiler’s
/platform switch to x86 to force the utility to run with the 32-bit version of the CLR when
running on my x64 machine.

Being the good developer I think I am, I added SUPERASSERT.NET through the App.Config
file so I could get the killer assertion dialog box. On the first assertion in my utility, I clicked
the Walk Stacks button and was looking at a crash dialog box from the spawned off Diagnostic-
Helper.exe. The unhandled exception follows and is wrapped for readability:

Unhandled Exception: System.ComponentModel.Win32Exception:
Only part of a ReadProcessMemory or WriteProcessMemory request was completed
at System.Diagnostics.NtProcessManager.GetModuleInfos(Int32 processId,

Boolean firstModuleOnly)
at System.Diagnostics.Process.get_Modules()

Chapter 3 Debugging During Coding 131
at DiagnosticHelper.StackWriter.IsDotNetInProcess() in
C:\Dev\3Book\Disk\DiagnosticHelper\StackWriter.cs:line 343

at DiagnosticHelper.StackWriter.Execute() in
C:\Dev\3Book\Disk\DiagnosticHelper\StackWriter.cs:line 58

at DiagnosticHelper.Program.Main(String[] args) in
C:\Dev\3Book\Disk\DiagnosticHelper\Program.cs:line 79

The exception is occurring at the for loop in IsDotNetInProcess where I’m calling targetProc.
Modules.Count to get the module count. I was quite stumped when I ran the AssertTest.exe
program, which is the unit test for the whole SUPERASSERT.NET code, and was able to manually
execute the exact same DiagnosticHelper.exe and get the correct stack output. Whenever I ran
DiagnosticHelper.exe against my utility, I always had the unhandled Win32Exception.

That’s when it dawned on me that what was happening was as I described in Chapter 2; the
default on Win64 systems is for the .NET application to run as a 64-bit binary. My 32-bit utility
was asking a 64-bit binary to walk its stack, and the CLR Debugging API does not support that.
I thought that all I would have to do is build the DiagnosticHelper.exe code, set the /platform
switch to the three CPUs that .NET runs on, run ILMerge on each of those to jam in the three
MDBG DLLs, and I’d be set. The first run of ILMerge gave me an error stating that it did not
support merging assemblies that had different PE architectures set, so the only step left was to
bring the source code for the three MDBG DLLs I needed into DiagnosticHelper and build it
three different ways. I was already going to have three separate DiagnosticHelper-CPU.exe
programs, and I didn’t want a total of three separate MDBG DLLs just to run ILMerge on them.

Of course, I would immediately run into a doozy of a problem bringing the code together:
Corapi2.dll is written entirely in IL. That’s the DLL that has all the P/Invoke marshalling
definitions in it. I’m not sure why it’s all written in IL when it could have accomplished the
same thing in C#. However, I was certainly not looking forward to the prospect of manually
converting all the IL to C# to bring it into the DiagnosticHelper project.

Fortunately, I’m a man armed with tools and wouldn’t let the piddling problem of different
languages stop me. I took the compiled Corapi2.dll, loaded it into the amazing Reflector,
loaded Denis Bauer’s fantastic Reflector.FileDisassembler add-in (http://www.denisbauer.com
/NETTools/FileDisassembler.aspx), and decompiled the IL directly to C#. I threw the output files
together into the DiagnosticHelper project along with the C# source code for MDBGEng.dll and
Corapi.dll and had everything compiling together in no time. In the .\DiagnosticHelper
directory are the three different projects that all contain the same source files but compile to
the three CPU-specific versions.

I also updated the AssertDialog.cs file, where Diagnostic-CPU.exe is started, to look at the
ImageFileMachine type of MScorlib.dll because that has CPU-specific code in it so it always will
reflect the type of runtime you’re actually executing under. The Wintellect.Utility.RuntimeInfo
class does the actual work, and you can look at that code if you’re curious.

The DiagnosticHelper-CPU.exe utility might be something you want to consider using on its
own because it can generate minidump files and call-stack XML files any time you need them.

132 Part I The Gestalt of Debugging
I’ve found it much easier to use in ASP.NET test systems than messing with WinDBG or CDB
to simply snap a minidump file. Run the CPU-specific version you need at a command prompt
to look at all the options you can pass to the program to output the dumps or call stacks any
way you want.

To display the cool tree list view, I used an article from the always excellent Code Project by
Thomas Caudal (http://www.codeproject.com/cs/miscctrl/treelistview.asp). The code was
written for .NET 1.0 and was three years old when I looked at it. I ported the code over to
.NET 2.0 and tweaked the code to work on all Microsoft operating systems. Note that I
concentrated only on the parts of the code I needed for SUPERASSERT.NET, so not every-
thing’s been tested under .NET 2.0. I greatly appreciate Thomas’s letting me use his code.

In the .\Caudal.Windows.Forms\Test\StackReader directory is a standalone test program
that will let you view DiagnosticHelper-CPU.exe–produced stack walks. It was the unit test for
the control, but it’s there if you need it. It’s not built as part of the normal book code build, so
you’ll need to build it on your own.

Trace, Trace, Trace, and Trace
Assertions might be the best proactive programming trick you can learn, but trace statements,
if used correctly with assertions, will truly allow you to debug your application without the
debugger. For some of you old programmers out there, trace statements are essentially printf-
style debugging. You should never underestimate the power of printf-style debugging because
that’s how most applications were debugged before interactive debuggers were invented. Tracing
in the .NET world is intriguing because when Microsoft first mentioned .NET publicly, the key
benefits were not for developers but rather for network administrators and IT workers responsible
for deploying the applications developers write. One of the critical new benefits Microsoft
listed was the ability of IT workers to easily turn on tracing to help find problems in applica-
tions! I was quite stunned when I read that because it showed Microsoft responding to the
pain our end users experience when dealing with buggy software.

The trick to tracing is analyzing how much information you need for solving problems on
machines that don’t have the development environment installed. If you log too much, you get
large files that are a real pain to slog through. If you log too little, you can’t solve your problem.
The balancing act requires having just enough logged to avoid a last-minute, 5,000-mile plane
trip to a customer who just duplicated that one nasty bug—a plane trip in which you have to sit
in the middle seat between a crying baby and a sick person. In general, good logging balance
means that you need two levels of tracing: one level to give you the basic flow through the soft-
ware so that you can see what’s being called when and another level to add key data to the file
so that you can look for data-stream–dependent problems.

Unfortunately, each application is different, so I can’t give you an exact number of trace
statements or other data marks that would be sufficient for your log. One of the better
approaches I’ve seen is giving some of the newer folks on the team a sample log and asking

Chapter 3 Debugging During Coding 133
whether they can get enough of a clue from it to start tracking down the problem. If they give
up in disgust after an hour or two, you probably don’t have enough information. If after an
hour or two they can get a general idea of where the application was at the time of the corruption
or crash, you’ve got a good sign that your log contains the right amount of information.

The problem of having too much tracing output, while not as common as having too little, is
bad also. When there’s too much tracing, you have two problems. The first is that the tracing
does slow down your application. On one consulting job we worked on, the tracing overhead
on a production box made it impossible to turn on tracing for peak usage times. Too much
tracing also makes it much harder to find the problems because you’re wading through tens of
pages to find that one special nugget of information you need. When you use your trace logs
to do the debugging and you find yourself skipping lots of output, you need to question
seriously if that data is necessary and if it’s not, remove those traces.

As I mentioned in Chapter 2, you must have a team-wide logging system. Part of that logging
system design has to consider the format of the tracing, especially so that debug build tracing is
easier to deal with. Without that format, tracing effectiveness quickly vanishes because no one
will want to wade through a ton of text that constantly repeats worthless data. The good news
for .NET applications is that Microsoft did quite a bit of work to make controlling the output
easier.

Before I jump into the different platform-specific issues, I want to mention one extremely cool
tool you always need to have on your development machines: DebugView. My former neighbor
Mark Russinovich wrote DebugView and many other outstanding tools that you can down-
load from Sysinternals (www.sysinternals.com/utilities/debugview.html). The price is right
(free!), and Mark’s tools solve some very difficult problems, so you should subscribe to
the Sysinternals RSS feed to be notified immediately where there are new tools or versions
available. While you’re there, you should also subscribe to Mark’s blog if you want to read
some of the best writing on hard-core system-level debugging in the world. DebugView monitors
any calls to the user mode OutputDebugString or the kernel mode DbgPrint, so you can see any
debug output when your application isn’t running under a debugger. What makes DebugView
even more useful is that it can burrow its way across machines, so you can monitor from a single
machine all the machines that are part of a distributed system.

Basic Tracing

As I mentioned earlier, Microsoft made some marketing noise about tracing in .NET applications.
In general, they did a good job creating a clean architecture that better controls tracing in real-
world development. I already mentioned the Trace object during the assertion discussion,
which is designed to use for your own tracing. Like the Debug object, the Trace object uses the
concept of TraceListeners to handle the output. In your development, you’ll want your assertion
code to do the same thing. The Trace object’s method calls are active only if TRACE is defined.
The default for both debug and release build projects created by Visual Studio is to have
TRACE defined, so the methods are probably already active.

134 Part I The Gestalt of Debugging
The Trace object has four overloaded methods to output trace information: Write, WriteIf,
WriteLine, and WriteLineIf. You can probably guess the difference between Write and
WriteLine, but understanding the *If methods is a little more challenging: they allow for
conditional tracing. If the first parameter to the *If method evaluates to true, the trace
happens; evaluating to false means it doesn’t. That’s quite convenient, but it possibly could
lead to some big performance problems if you’re not careful. For example, if you write code
like that shown in the first portion of the next snippet, you will incur the overhead of the
string concatenation every time the line executes because the determination for doing
the actual tracing occurs inside the Trace.WriteLineIf call. You’re much better off following the
second method in the next snippet, in which you use an if statement to make the call to
Trace.WriteLine only when you need to, minimizing how often you must incur the string
concatenation overhead.

// Paying the overhead every time
Trace.WriteLineIf (bShowTrace , "Parameters: x=" + x + "y =" + y) ;

// Causing the concatenation only when necessary
if (true == bShowTrace)
{

Trace.WriteLine ("Parameters: x=" + x + " y =" + y) ;
}

I think the .NET designers did us all a favor when they added the TraceSwitch class. With the
*If methods for the Trace object allowing for conditional compilation, it took only a small step
to define a class that provided for multiple levels of tracing and a consistent way to set them.
The most important part of TraceSwitch is the name it’s given in the first parameter of the
constructor. (The second parameter is a descriptive name.) The name enables you to control
the switch from outside the application, which I’ll talk about in a moment. TraceSwitch objects
wrap a tracing level. The levels are shown in Table 3-1. To check whether TraceSwitch matches
a particular level, you use a set of properties, such as TraceError, that returns true if the switch
condition is met. Combined with the *If methods, using TraceSwitch objects is quite straight-
forward.

public static void Main ()
{

TraceSwitch TheSwitch = new TraceSwitch ("SwitchyTheSwitch",
"Example Switch");

TheSwitch.Level = TraceLevel.Info ;
Trace.WriteLineIf (TheSwitch.TraceError ,

"Error tracing is on!") ;
Trace.WriteLineIf (TheSwitch.TraceWarning ,

"Warning tracing is on!") ;
Trace.WriteLineIf (TheSwitch.TraceInfo ,

"Info tracing is on!") ;
Trace.WriteLineIf (TheSwitch.TraceVerbose ,

"VerboseSwitching is on!") ;
}

Chapter 3 Debugging During Coding 135
The real magic of TraceSwitch objects is that they allow you to easily set them from outside the
application in the ubiquitous .Config file. The switches element under the system.diagnostics
element is where you specify the add elements to add and set the name and level. A complete
configuration file for an application follows this paragraph. Ideally, you have a separate
TraceSwitch object for each assembly in your application. Keep in mind that the TraceSwitch
settings can also be applied to the global Machine.Config.

<?xml version="1.0” encoding="UTF-8” ?>
<configuration>

<system.diagnostics>
<switches>

<add name="Wintellect.ScheduleJob" value="4" />
<add name="Wintellect.DataAccess" value="0" />

</switches>
</system.diagnostics>

</configuration>

The number-one sentiment about tracing is that it’s very cool to set a TraceSwitch externally in
the .config file, but getting the TraceSwitch to reread the .config file while the app is running is
a big concern. In the .NET Framework 1.x, you have to do all the work yourself manually. But
in the .NET Framework 2.0, the Trace object has a static method, Refresh, that will force a
reread of the configuration files and update any trace switches as appropriate.

Instead of everyone writing their own file change watcher, I wrote a little class called Wintellect.
Diagnostics.ConfigTraceSwitchWatcher, which you can instantiate in your apps to get the TraceSwitch
updates easily. The class sets a FileSystemWatcher on the directory that contains your application
.config file, and when it changes, ConfigTraceSwitchWatcher will automatically call the Trace.Refresh
method to automatically update all TraceSwitches. The only interesting part of the implementation
was ensuring the correct name of the App.Config when running under the special debugging
helper, *.vshost.exe, for Windows Forms and Console applications.

Back in the Assert, Assert, Assert, and Assert sections, I discussed two of the TraceListeners
included with the Framework Class Library (FCL): TextWriterTraceListener and Event-
LogTraceListener. Whereas those two have the problem that they don’t show the stack traces
for assertions, they will show everything from one of the Trace.Write* calls. In .NET 2.0,
Microsoft has added several other TraceListener-derived classes that you may find useful.

Table 3-1 TraceSwitch Levels

Trace Level Value

Off 0

Error 1

Warnings (and errors) 2

Info (warnings and errors) 3

Verbose (everything) 4

136 Part I The Gestalt of Debugging
The FileLogTraceListener class from the Microsoft.VisualBasic.Logging namespace is a great new
listener because it automatically handles log file rollover on a per-date or per-week basis.
Additionally, the class has options to limit disk space usage and to specify the file output
directory. If you’ve been doing any .NET server development, you’ve probably already written
your own version of the FileLogTraceListener class. It’s nice to see this functionality incorporated
into the FCL.

I’ve already mentioned a couple of the others: ConsoleTraceListener, DelimitedListTraceListener,
and XmlWriterTraceListener. All three of those are derived from TextWriterTraceListener, and
you can tell by the names what they do with their output. However, I need to explain some of
the issues with the XmlWriterTraceListener. The following code snippet shows manually creating
and writing to an XmlWriterTraceListener, and Listing 3-3 shows the example output.

Listing 3-3 Example XmlWriterTraceListener output

XmlWriterTraceListener xwtl = new XmlWriterTraceListener ("Foo.xml");
Trace.Listeners.Add (xwtl);
Trace.WriteLine ("Hello there, XmlWriterTraceListener!");
Trace.WriteLine ("Nice to have you as part of .NET 2.0");
xwtl.Flush ();
xwtl.Close ();

<E2ETraceEvent xmlns="http://schemas.microsoft.com/2004/06/E2ETraceEvent">

<System xmlns="http://schemas.microsoft.com/2004/06/windows/eventlog/system">
<EventID>0</EventID>
<Type>3</Type>
<SubType Name="Information">0</SubType>
<Level>8</Level>
<TimeCreated SystemTime="2006-03-06T14:55:42.6553629-05:00" />
<Source Name="Trace" />
<Correlation ActivityID={00000000-0000-0000-0000-000000000000}" />
<Execution ProcessName="ConsoleApplication1.vshost"

ProcessID="3100"
ThreadID="10" />

<Channel/>
<Computer>TIMON</Computer>

</System>
<ApplicationData>Hello there, XmlWriterTraceListener!</ApplicationData>

</E2ETraceEvent>
<E2ETraceEvent xmlns="http://schemas.microsoft.com/2004/06/E2ETraceEvent">

<System xmlns="http://schemas.microsoft.com/2004/06/windows/eventlog/system">
<EventID>0</EventID>
<Type>3</Type>
<SubType Name="Information">0</SubType>
<Level>8</Level>
<TimeCreated SystemTime="2006-03-06T14:55:42.8272379-05:00" />
<Source Name="Trace" />
<Correlation ActivityID="{00000000-0000-0000-0000-000000000000}" />
<Execution ProcessName="ConsoleApplication1.vshost"

ProcessID="3100"
ThreadID="10" />

<Channel/>
<Computer>TIMON</Computer>

Chapter 3 Debugging During Coding 137
</System>
<ApplicationData>Nice to have you as part of .NET 2.0</ApplicationData>

</E2ETraceEvent>

As you read the Listing 3-3 XML output, you can see the first problem is that there’s a ton of
stuff written on each trace statement. When I get to the TraceSource discussions later in the
chapter, I’ll explain why the XmlWriterTraceListener is doing the heavy writing. Suffice it to say,
you won’t be doing massive detailed tracing with the XmlWriterTraceListener, but it’s perfect
for general tracing in your application. The subsequent, and bigger, issues with the output
might be difficult to see in the book, but if you opened this file with the XML editor in Visual
Studio 2005, the second E2ETraceEvent node has a squiggly red line under it indicating the
error: “XML document cannot contain multiple root level elements.”

As a wise developer once told me: there are two types of XML, well formed and garbage. Some
have argued that the XmlWriterTraceListener does not output valid XML for performance reasons.
That may be the case, but if I’m turning on super-heavy tracing, I’m probably not going to
want to spew that much data for a single trace anyway. Whatever the reason, it’s what we have
to deal with.

Any discussion of basic tracing wouldn’t be complete if I didn’t mention the open source
log4net project you can find at http://logging.apache.org/log4net/. It’s a derivation of the Java
log4j project and offers many ways of controlling exactly what type of tracing output your
heart desires. In our consulting business we’ve run into many projects using log4net that have
excellent results.

Tracing in ASP.NET Applications and XML Web Services

In the .NET 1.1 days, ASP.NET tracing used a completely different system than everything else
in .NET. The old way is still supported for backwards compatibility, so I do want to discuss it.
However, at the end of this section, I’ll describe how to easily merge both tracing systems into
one so that everything’s consistent across your Web interface in addition to your business
logic pieces.

The System.Web.UI.Page class has its own Trace property that returns an instance of type
System.Web.TraceContext based on the HttpContext of the page. The two key methods for
TraceContext are Write and Warn. Both handle tracing output, but the Warn method writes the
output in red. Each method has three overloads, and both take the same parameters: the usual
message and category with message overload, but also one that takes the category, message,
and System.Exception. That last overload writes out the exception message and callstack.
To avoid extra overhead processing when tracing isn’t enabled, check whether the IsEnabled
property is true.

The easiest way to turn on tracing is to set the Trace attribute to true inside the @Page directive
at the top of your .aspx files.

<%@ Page Trace="true" %>

138 Part I The Gestalt of Debugging
That magic little directive turns on a ton of tracing information that appears directly at the
bottom of the page, which is convenient, but it will be seen by both you and the users. In fact,
there’s so much tracing information that I really wish it were divided into several levels.
Although seeing the Cookies and Headers Collections in addition to the Server Variables is
nice, most of the time you don’t need them. All sections are self-explanatory, but I want to
point out the Trace Information section because any calls you make to TraceContext appear
here. Even if you don’t call TraceContext.Warn/Write, you’ll still see output in the Trace
Information section because ASP.NET reports when several of its methods have been called.
This section is also where the red text appears when you call TraceContext.Warn.

Setting the Trace attribute at the top of each page in your application is tedious, so the
ASP.NET designers put a section in Web.Config that allows you to control tracing. This tracing
section, named, appropriately enough, trace element, is shown here:

<?xml version="1.0” encoding="utf-8” ?>
<configuration>

<system.web>
<trace

enabled="false"
requestLimit="10"
mostRecent="true"
pageOutput="false"
traceMode="SortByTime"
localOnly="true"

/>
</system.web>

</configuration>

The enabled attribute dictates whether tracing is turned on for this application. The request-
Limit attribute indicates how many trace requests to cache in memory on a per-application
basis. (In just a moment, I’ll discuss how to view these cached traces.) The new-to-.NET 2.0
mostRecent attribute, tells ASP.NET to keep the most recent requestLimit traces. If mostRecent is
false, your tracing will match the .NET 1.1 way, which was to stop tracing after the requestLimit
count was met. The pageOutput element tells ASP.NET where to show the trace output. If
pageOutput is set to true, the output appears on the page just as it would if you set the Trace
attribute in the Page directive. You probably won’t want to change the traceMode element so
that the Trace Information section in the trace is sorted by time. If you do want to see the sort-by
category, you can set traceMode to SortByCategory. The final attribute, localOnly, tells ASP.NET
whether the output should be visible only on the local machine or visible to any client
applications.

To see cached traces when pageOutput is false, append the HTTP handler, Trace.axd, to the
application directory, which will show a page that allows you to choose the stored trace you’d
like to see. For example, if your directory is http://www.wintellect.com/schedules, to see the
stored traces, the path would be http://www.wintellect.com/schedules/trace.axd.

As you can see, if you’re not careful with tracing, your end users will be looking at them, which
is always a little scary since developers are notorious for trace statements that could be career

Chapter 3 Debugging During Coding 139
limiting if the output fell into the wrong hands. Luckily, setting localOnly to true keeps
the trace viewing only on the local server, even when accessing the trace log through the
Trace.axd HTTP handler. To view your application trace logs, you’ll simply have to use
the greatest piece of software known to humankind, Terminal Services, so that you can access the
server directly from your office and don’t even have to get up from your desk. You’ll want to
update the customErrors section of Web.Config so that you have a defaultRedirect page, preventing
your end users from seeing the ASP.NET “Server Error in ‘AppName’ Application” error if they
try to access Trace.axd from a remote machine. You’ll also want to log that someone tried to
access Trace.axd, especially because an attempted access is probably an indication of a hacker.

You’ve probably guessed the limitation of the old ASP.NET means of tracing. Your user interface
tracing goes to one location, and all your class libraries are sending theirs through Trace.Write-
Line, so they go to a different location. In the previous edition of this book, I had to write a
TraceListener that would take care of mapping the System.Diagnostic.Trace object to the
ASP.NET page so you could see them. Fortunately, with .NET 2.0, Microsoft now provides that
code inside the FCL in the form of the WebPageTraceListener. The only problem is that
ASP.NET does not automatically add it to the Trace.Listeners collection. You will need to
include the following lines in all your Web.Config files to ensure that you have all your tracing
going through TraceContext so you can see it:

<system.diagnostics>
<trace autoflush="true" indentsize="4">

<listeners>
<add name="webListener"

type="System.Web.WebPageTraceListener,
System.Web,
Version=2.0.0.0,
Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a"/>

</listeners>
</trace>

</system.diagnostics>

Advanced Tracing

The tracing system consisting of the Trace object is quite good and will generally suffice for
all small- and medium-sized applications as is. However, the Trace object is not perfect and
can lead to some issues. The main problem is that there’s only one Trace object global to
the application domain. As you move into larger industrial-strength applications, the global,
one-size-fits-all nature of the Trace object becomes a hindrance because all threads in the
application domain must go through the bottleneck of the single tracing object. In heavily
multithreaded applications, your goal is to use as much of the time-slice given to your thread
as possible. If you are artificially giving up your time slice because of synchronization, you’re
slowing down your application.

The second problem with a single Trace object is that everyone sharing the same object can
quickly overload you with data. Although you can use TraceSwitch options to control output,

140 Part I The Gestalt of Debugging
you can become overwhelmed when you have to turn on tracing for multiple pieces of a large
application. You’ll be sorting through lots of potential output you don’t really want to see in
many cases.

Another problem with the existing Trace object in larger applications is that the output is limited
to just the string passed to Trace.Write*. In real-world apps, many times, such as when tracing
into error handling code, you want to add lots of additional output, such as the call stack,
process information, thread information, and so on. While you could programmatically add
that data into every place where you think you might need it in your trace output, it would be
much better if you could dynamically change the data output in the configuration file.

To rectify these problems, Microsoft added several new features to the FCL. The biggest is the
TraceSource class, which is a Trace object you can instantiate. The idea is that you’ll instantiate
a TraceSource for each of your major subsystems so you can avoid blocking across them.
Microsoft also extended the existing TraceListener class with all sorts of new output options.
To take advantage of the new output options, they’ve added a SourceSwitch, which is like a
TraceSwitch on steroids. Finally, they’ve also added a TraceFilter class to allow better filtering of
output.

Because code and pictures are worth a thousand words, the best way for me to show how the
new enhancements work is to show some code and a picture of how things work. Listing 3-4
is a simple program that shows using a TraceSource along with the other options now available
for large application tracing control. Read over the code because it wasn’t until I wrote the
code that I started seeing the amazing power of the new tracing functionality.

Listing 3-4 The TraceSource, TraceListener, and TraceFilter features

using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;

namespace TraceSourceExample
{

class Program
{

static void ShowAllTraceMethods (TraceSource trc)
{

// The simplest method. Notice that it takes parameters, which is a
// big improvement over the Trace object.
trc.TraceInformation ("The simplest trace method with {0}{1}" ,

"params" , "!");

// The method to trace an event based on the TraceEventType enum.
trc.TraceEvent (TraceEventType.Error , 100 , "Pretend error!");

// The method to make dumping out data easy.
trc.TraceData (TraceEventType.Information ,

50 , "Some" , "pretend" , "data.");

Chapter 3 Debugging During Coding 141
// The method to record a transfer. This method is primarily for
// the XmlWriterTraceListener. See the text for more discussion.
trc.TraceTransfer (75 , "What was transferred?" ,

new Guid ("7b5fcdbc-913e-43bd-8e39-ee13c062ecc3"));
}

static void Main (string [] args)
{

// Create the TraceSource for this program. Like the Trace
// object, the TraceSource.Listeners collection starts out with
// the DefaultTraceListener.
TraceSource trc = new TraceSource ("HappySource");

// Set the switch level for this TraceSource instance so
// everything is shown. The default for TraceSource is to *not*
// trace. The default name of the switch is the same as the
// TraceSource. You'll probably want to be sharing Switches across
// TraceSources in your development.
trc.Switch.Level = SourceLevels.All;

// Trace to show the default output.
ShowAllTraceMethods (trc);

// The TraceListener class has a very interesting new property,
// TraceOutputOptions, which tells the TraceListener the additional
// data to automatically display.
trc.Listeners ["Default"].TraceOutputOptions =

TraceOptions.Callstack | TraceOptions.DateTime |
TraceOptions.ProcessId | TraceOptions.ThreadId |
TraceOptions.Timestamp;

// Now all the trace calls in the Debug Output window will show
// all the data included in the TraceOutputOptions.

ShowAllTraceMethods (trc);

// Filtering allows you to apply a limiter to the TraceListener
// directly. That way you can turn on tracing, but apply more
// smarts to the actual output so you can better separate the
// wheat from the chaff on a production system.
EventTypeFilter evtFilt =

new EventTypeFilter (SourceLevels.Error);

// Apply the filter to the DefaultTraceListener.
trc.Listeners ["Default"].Filter = evtFilt;

// The only output in the Debug Output window will be from the
// TraceEvent method call in ShowAllTraceMethods.
ShowAllTraceMethods (trc);

trc.Flush ();
trc.Close ();

}
}

}

142 Part I The Gestalt of Debugging
After I’d written that code, I ran across a wonderful blog entry from Mike Rousos
(http://blogs.msdn.com/bclteam/archive/2005/03/15/396431.aspx), a member of the Base
Class Library Team, talking about the TraceSource. The blog had a graphic that showed where
the various classes fit together. For those of you who are graphical thinkers, I took Mike’s idea
and expanded it so you could see how a trace flows through the new tracing system.

Figure 3-7 shows three different TraceSource instances in use by an app. When a Trace* method
is called, it checks the Switch-derived class in the TraceSource.Switch property to see if the
condition on the Trace* method matches. If the condition doesn’t match, nothing is traced.
Notice that a Switch class can be shared between TraceSource instances (see B and C in the
diagram). If the Switch-derived condition is met, the TraceSource loops through its Listeners
collection calling the appropriate TraceListener.Trace* method. (In the .NET Framework 2.0
documentation, you’ll see that the TraceListener class has numerous new properties and methods.)

If the individual TraceListener class has a TraceFilter instance in the TraceListener.Filter property,
before any output is sent, the TraceListener checks to see if TraceFilter.ShouldTrace returns true.
If it does not, no output is sent. If ShouldTrace returns true, the output is sent to that TraceListener’s
internal writing method.

In Figure 3-7, TraceSource instance B has a single TraceListener instance called X1 set in its
TraceListeners collection, and TraceSource C has a single TraceListener called Y1. However, the
TraceSource objects are sharing a Switch 2, so any initial matching on the TraceSource.Trace*
methods for B or C will be filtered identically. In the case of the two TraceListeners, they both
share a filter, Filter 2, so any filtering will apply to both.

At the top of Listing 3-4, the ShowAllTraceMethods calls each of the methods in a TraceSource
instance dedicated to tracing. The first method, TraceInformation, is for the simplest tracing,
and after I talk about the other methods, you probably won’t want to use it for your tracing
because it has no flexibility for controlling output externally. The main method you’ll want to
use is TraceEvent because it allows you to assign a TraceEventType enumeration to indicate the
level of tracing. The second parameter is the numeric identifier for the trace. With that parameter,
you either uniquely identify tracing or assign a specific value to a class to help identify tracing
output at a glance. There are three overloads to TraceEvent, but the big news is that one takes
variable-length parameters so you can pass a formatting string and get your data displayed
nicely in the trace.

The TraceData method also accepts the trace identifier, but its main purpose is to allow you to
pass either an object array or multiple parameters so the trace output shows them separated by
commas. If you are dealing with data objects whose ToString method does the heavy lifting, the
TraceData call can be your dependable friend. In general, you’ll nearly always use TraceEvent.

The final method, TraceTransfer, was designed to work hand in glove with the XmlWriterTrace-
Listener. If you look back at the output of XmlWriterTraceListener in Listing 3-3, you might have
noticed a Correlation element with an ActivityID attribute that looks like a GUID. TraceTransfer
sets the internal GUID that the XmlWriterTraceListener will use until the next time a call to

Chapter 3 Debugging During Coding 143
TraceTransfer sets a new GUID. You can assign a GUID to major activities in your application,
such as login handling, so you can quickly scan the XmlWriterTraceListener output looking for
logical operations in your tracing.

Figure 3-7 Data flow of TraceSource to output

I’m willing to bet that only the largest applications will use TraceTransfer and the ActivityID.
That’s because the first parameter of both the TraceEvent and TraceData methods is a TraceEvent-
Type, and it’s worth mentioning how much this has grown in the .NET Framework 2.0. In the
.NET Framework 1.x, you were limited to Error, Warning, Info, and Verbose with a TraceSwitch.

Trace Source A

Trace Source B
(Sharing Switch 2

with Trace
Source C)

Trace Listener X1
(Sharing Filter 2

with Trace
Listener Y1)

Trace Filter 2
(Shared with D)

Trace Listener Y1
(Sharing Filter 2

with Trace
Listener X1)

Trace Listener A
(No filters set)

Trace Listener B

Trace Filter 1

Trace Source C
(Sharing Switch 2

with Trace
Source B)

Switch 2
(Switch shared

with C)

Check with TraceFilter

TraceFilter.ShouldTrace
Returns True

Trace is Output by the
Trace Listener

TraceFilter.ShouldTrace
Returns True

Trace is Output

Check with
TraceFilter

Trace* Method Called Trace* Method Called

Trace Matches
Switch Condition

Trace Matches
Switch Condition

Trace Matches
Switch Condition

Trace Matches
Switch Condition

Switch 1

Trace* Method Called

Check with TraceFilter

Trace is
Output

144 Part I The Gestalt of Debugging
Table 3-2 shows all the values of the TraceEventType enum and what they are for. As you can
see, Start, Stop, Resume, and Transfer are all called activity types. Since one of the primary uses
of tracing is to determine which operations occurred and the order in which they occurred,
these new tracing events make that extremely easy. To see just the activity tracing, you can set
the TraceSource.Switch.Level to SourceLevels.ActivityTracing.

While programmatically manipulating TraceSource instances is possible, as shown back in
Listing 3-4, the real action is in manipulating the tracing from the application’s configuration
file. Listing 3-5 shows the App.Config file of a program that has two TraceSource instances,
HappySource and GiddySource. (Remember, anything you can put in App.Config you can put in
Web.Config.) The sources element is where you configure the individual TraceSource instances
in a source element for each instance you want to configure. The two required attributes to the
source element are the self-explanatory name and switchName. By associating a Switch instance
with the TraceSource, you can control the output for the TraceSource instance. Keep in mind
that Switch instances can be shared across multiple TraceSource instances.

Underneath the source element, you can specify any TraceListeners you want to associate with
that TraceSource. You can add and remove any items from the TraceSource.Listeners property
and dynamically create new TraceListeners directly from the configuration file, just as you can
in the .NET Framework 1.x.

What’s most interesting in Listing 3-5 is the sharedListeners element with which you can create
TraceListener instances that are shareable across all TraceSource instances in the application. As
you can see in the listing, you will still need to add the shared instance to the individual Trace-
Sources. In the XmlWriterTraceListener added in Listing 3-5, I also show how to apply a Trace-
Filter to a TraceListener. The new traceOutputOptions attribute allows you to specify the
TraceOptions you want applied to the TraceListener. Whereas I added that filter to the TraceListener
being shared across all TraceSource instances, you can also add those TraceFilters to TraceListeners
that you add to an individual TraceSource instance.

Table 3-2 TraceEventType Values

TraceEventType Value Usage

Critical Unrecoverable errors and exceptions in the application

Error Recoverable errors the application handled, such as invalid logins

Warning Unusual activity that may need exploration, such as data not being
in the proper format

Information Normal operation information, such as a user logging in or out

Verbose Debugging information, such as entering and exiting a method

Start The activity type indicating a logical operation started

Stop The activity type indicating that a logical operation stopped

Suspend The activity type indicating that a logical operation was suspended

Resume The activity type indicating that a logical operation was restarted

Transfer The activity type indicating that a change in the correlation ID
(that is, a call to TraceTransfer)

Chapter 3 Debugging During Coding 145
The last piece of Listing 3-5 is the switches element, with which you configure individual Switch
instances. The only difference in the switches element in the .NET Framework 2.0 from the
.NET Framework 1.x is that the value attribute can now take string values that are passed to
the switch constructor to set the value instead of numbers like the original TraceSwitch class.

As you can see, the amount of control that you have over your tracing in the configuration
with the .NET Framework 2.0 is simply amazing. The icing on the cake is the new ability in
the .NET Framework 2.0 to tell you the exact line in the configuration file that’s not correct, so
those of us who have spent hours pulling our hair out looking for problems in our configuration
file can now start growing some of it back.

Listing 3-5 Example App.Config setting HappySource and GiddySource

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<system.diagnostics>
<!-- The <sources> is where you configure the TraceSource instances in

your application. -->
<sources>

<!-- Configure the HappySource TraceSource instance. The
switchName attribute associates the Switch-derived class with
the TraceSource. The Switch classes are configured in the
<switches> section below, reminiscent of the TraceSwitch
classes in .NET 1.1.

-->
<source name="HappySource" switchName="HappySwitch">

<listeners>
<!-- Add a TextWriterTraceListener just to the individual

TraceSource called HappyName. -->
<add name="myTextListener"

type="System.Diagnostics.TextWriterTraceListener"
initializeData="TextWriterOutput.txt"/>

<!-- Remove the DefaultTraceListener from just
HappySource. -->

<remove name="Default"/>
<!-- Add the shared listener. -->
<add name="myXmlListener"/>

</listeners>
</source>
<source name="GiddySource" switchName="GiddySwitch">

<listeners>
<!-- Add a ConsoleTraceListener just to Giddy. -->
<add name="myConsoleListener"

type="System.Diagnostics.ConsoleTraceListener"/>
<!-- Remove the DefaultTraceListener. -->
<remove name="Default"/>
<!-- Add the shared listener. -->
<add name="myXmlListener"/>

</listeners>
</source>

</sources>
<!-- In <sharedListeners> you can add trace listeners to ALL

TraceSource instances in your application at once. Note that you

146 Part I The Gestalt of Debugging
may *add* only TraceListeners here. You cannot remove them. If
you want to remove the DefaultTraceListener, you must do what I
did above. -->

<sharedListeners>
<!-- I'll add an XmlWriterTraceListener and set the output options

as well as a filter. You can do these same operations for an
individual TraceSource as well. -->

<!-- Notice the traceOutputOptions attribute. The values come from
the TraceOption enumeration.-->

<add name="myXmlListener"
type="System.Diagnostics.XmlWriterTraceListener"
initializeData="SharedOutput.XML"
traceOutputOptions="DateTime, Timestamp, Callstack">

<!-- Apply a brand new filter to this trace listener. This
will filter everything but SourceLevels.Warning and
higher. -->

<filter type="System.Diagnostics.EventTypeFilter"
initializeData="Warning"/>

</add>

</sharedListeners>
<switches>

<!-- Have HappySwitch report everything. -->
<add name="HappySwitch" value="All" />
<!-- Have GiddySwitch list only errors. -->
<add name="GiddySwitch" value="Error"/>

</switches>
</system.diagnostics>

</configuration>

Comment, Comment, Comment, and Comment
One day, my friend François Poulin, who was working full-time on maintaining some code
that someone else wrote, came in wearing a button that said, “Code as if whoever maintains
your code is a violent psychopath who knows where you live.” François is by no means a
psychopath, but he did have a very good point. Although you might think your code is the
model of clarity and completely obvious, without descriptive comments, it is as bad as raw
assembly language to the maintenance developers. The irony is that the maintenance developer
for your code can easily turn out to be you! Not too long before I started writing the second
edition of this book, I received an e-mail message from a company I had worked for nearly
13 years ago asking me whether I could update a project I had written for them. It was an
amazing experience to look at code I wrote that long ago! I was also amazed at how bad my
commenting was. Remember François’s button every time you write a line of code.

Our job as engineers is twofold: develop a solution for the user, and make that solution
maintainable for the future. The only way to make your code maintainable is to comment it.
By “comment it,” I don’t mean simply writing comments that duplicate what the code is
doing; I mean documenting your assumptions, your approach, and your reasons for choosing

Chapter 3 Debugging During Coding 147
the approach you did. You also need to keep your comments coordinated with the code. Normally
mild-mannered maintenance programmers can turn into raving lunatics when they’re trying
to update code that does something different from what the comments say it’s supposed
to do. As Norm Schryer, a researcher at AT&T, so wonderfully said: “If the code and the
comments disagree, then both are probably wrong.”

I use the following approach to commenting:

■ Each function or method needs a sentence or two that clarifies the following information:

❑ What the routine does

❑ What assumptions the method makes

❑ What each input parameter is expected to contain

❑ What each output parameter is expected to contain on success and failure

❑ Each possible return value

❑ Each exception directly thrown by the method

■ Each part of the function that isn’t completely obvious from the code needs a sentence
or two that explains what it’s doing.

■ Any interesting algorithm deserves a complete description.

■ Any nontrivial bugs you’ve fixed in the code need to be commented with the bug number
and a description of what you fixed.

■ Well-placed trace statements, assertions, and good naming conventions can also serve as
good comments and provide excellent context to the code.

■ Comment as if you were going to be the one maintaining the code in five years.

■ Avoid keeping dead code commented out in source modules whenever possible. It’s
never really clear to other developers whether the commented-out code was meant to be
removed permanently or removed only temporarily for testing. Your version control
system is there to help you revert to areas of code that no longer exist in current versions.

■ If you find yourself saying, “This is a big hack” or “This is really tricky stuff,” you probably
need to rewrite the function instead of commenting it.

Proper and complete documentation in the code marks the difference between a serious,
professional developer and someone who is playing at it. Donald Knuth, author of the
seminal The Art of Computer Programming series of books, once observed that you should
be able to read a well-written program just as you read a well-written book. Although I don’t
see myself curling up by the fire with a copy of the TeX source code, I strongly agree with
Dr. Knuth’s sentiment.

I recommend that you study Chapter 32, “Self-Documenting Code,” of Steve McConnell’s
phenomenal book, Code Complete, 2nd Edition (Microsoft Press, 2005). I learned to write

148 Part I The Gestalt of Debugging
comments by reading this chapter. If you comment correctly, even if your maintenance
programmer turns out to be a psychopath, you know you’ll be safe.

Some of you may be questioning the earlier line in which I say that you need to document
each exception directly thrown by the method. As I discussed back in the “Custom Code Analysis
Rules” section in Chapter 2, the exceptions that are directly thrown by the method are the
ones that the programmer is much more interested in handling. If you start documenting
every possible exception value that can be thrown by every method your code calls, you’ll end
up listing every exception in the entire Framework Class Library (FCL). It’s reasonable to
document an exception thrown by a private helper method for a public method because that’s
just common sense code separation. However, documenting exceptions that can be thrown
deep inside the FCL will just confuse all the users of your API.

Since I’m discussing comments, I need to mention how much I love the XML documentation
comments, especially now that they are supported by all languages from Microsoft. The
main reason is that those XML files produced by the compiler are what’s used to build your
Intellisense. That alone should be reason enough to produce them religiously.

You can read the help documentation for the specifics, but as I pointed out in Chapter 2, the
<exception> tag is one of the most important but one that everyone forgets. That’s why I wrote
the Code Analysis rule to flag errors when you’re not using it. Another tag that everyone
forgets is the <permission> tag, with which you can document the permissions you demand for
your code to run.

I like the XML documentation comments so much, I built a moderately complicated macro,
CommenTater, in Chapter 7 Extending the Visual Studio IDE, that takes care of adding
and keeping your XML documentation comments current in addition to ensuring that you’re
adding them. Although my macro is useful, Roland Weigelt’s outstanding GhostDoc add-in
(http://www.roland-weigelt.de/ghostdoc/) is what you really want. It’s one of those tools that
you’ll wonder how you can live without.

For example, I had a method called Initialize, which took a path string. Right-clicking the
method and selecting Document This from the menu automatically filled in the following doc-
umentation:

/// <summary>
/// Initializes the specified path.
/// </summary>
/// <param name="path">The path.</param>
void Initialize (String path)
{

...
}

The beauty of GhostDoc is that it has some serious smarts built in and does an excellent job
of figuring out what a big chunk of text should be. You can also add your own rules and analysis
in the configuration. It can greatly cut down on a huge chunk of tedious typing for all those
simple methods.

Chapter 3 Debugging During Coding 149
The part of GhostDoc that will make you say Whoa! is when you ask it to document an inherited
method that you’re overloading. It automatically pulls in the base class’s documentation, thus
saving you a huge amount of time. Of course, it is still your job to ensure that the documentation
is the best possible, but I’m all in favor of any helping hand to speed up the process.

Once you have that excellent XML documentation file being produced by the compiler, you’ll
want to turn to using it to produce your documentation. In the .NET 1.x days, we all used the
open source NDOC program, but alas, NDOC is no more. Fortunately, Microsoft is, at the
time I write this, working on releasing their internal tool to produce help files, SandCastle.
The tool looks very promising and is actively under development. You can find more information
on SandCastle at www.sandcastledocs.com. A Community Technical Preview (CTP) was available at
the time I wrote this, but SandCastle was undergoing quite a bit of change so I wasn’t able to
use it in time for the book’s release. As soon as SandCastle releases, I will integrated it into the
book's source code to produce appropriate help files and release the changes.

If you are serious about producing help files from your XML documentation comments, you’ll
need to turn to a nice product from Innovasys, Document! X (http://www.innovasys.com/products
/documentx.asp). It will not only produce help that makes it easy to integrate that help into
the Visual Studio Help system, Innovasys will give you the Dynamic Help capability free. Its
integration the IDE is excellent, so you can edit your comments in a WYSIWYG editor so
you’ll know exactly what the output will look like. Additionally, Document! X supports docu-
menting databases, XSD Schemas, and other code documentation.

Summary
This chapter presented the best proactive programming techniques you can use to debug during
coding. The best technique is to use assertions everywhere so that you gain control whenever
a problem occurs. The SUPERASSERT.NET assertion code in Wintellect.Diagnostics.dll
should help you narrow down problems without needing to get into a debugger at all. In addition
to assertions, proper tracing and comments can make maintaining and debugging your
code much easier for you and others. The more time you spend debugging your code during
development, the less time you’ll have to spend debugging it later and the better the quality of
the final product.

	Cover
	Table of Contents
	Chapter 3: Debugging During Coding
	Assert, Assert, Assert, and Assert
	How and What to Assert
	Assertions in .NET
	SUPERASSERT.NET

	Trace, Trace, Trace, and Trace
	Basic Tracing
	Advanced Tracing

	Comment, Comment, Comment, and Comment
	Summary

