
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
EDITOR’S NOTE
Does Your Program Smell
Like Bacon?
Keith Ward page 4

CUTTING EDGE
Don’t Worry, Be Lazy
Dino Esposito page 6

DATA POINTS
Deny Table Access to the
Entity Framework Without
Causing a Mutiny
Julie Lerman page 14

TEST RUN
Fault Injection Testing with TestApi
James McCaffrey page 84

THE WORKING PROGRAMMER
Inside SQLite
Ted Neward page 88

UI FRONTIERS
Multi-Touch Manipulation Events
in WPF
Charles Petzold page 92

DON’T GET ME STARTED
Mars and Venus
David Platt page 96

AUGUST 2010 VOL 25 NO 8

DEALING WITH DATA
Passive Authentication for ASP.NET with WIF
Michele Leroux Bustamante . 20

Tips for Migrating Your Applications to the Cloud
George Huey and Wade Wegner . 36

Creating Synchronization Providers
with the Sync Framework
Joydip Kanjilal . 46

Building an AtomPub Server Using WCF Data Services
Chris Sells . 54

Tuning Your Database Calls
with Tier Interaction Profi ling
Mark Friedman . 62

Building Distributed Apps with NHibernate
and Rhino Service Bus, Part 2
Oren Eini . 72

Windows Phone and the Cloud: an Introduction
Ramon Arjona . 78

Untitled-5 2 3/5/10 10:16 AM

http://infragistics.com

Sure, Visual Studio 2010 has a lot of great functionality—
we’re excited that it’s only making our User Interface
components even better! We’re here to help you go

beyond what Visual Studio 2010 gives you so you can create
Killer Apps quickly, easily and without breaking a sweat! Go

to infragistics.com/beyondthebox today to expand your
toolbox with the fastest, best-performing and most powerful

UI controls available. You’ll be surprised
by your own strength!

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055

Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

Untitled-5 3 3/5/10 10:16 AM

http://infragistics.com

magazine

Printed in the USA

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director/mmeditor@microsoft.com
KERI GRASSL Site Manager

KEITH WARD Editor in Chief/mmeditor@microsoft.com
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor
MARTI LONGWORTH Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in U.S. funds: U.S. $35; Canada $45;
International $60. Single copies/back issues: U.S. $10, all others $12. Send orders with payment
to: MSDN Magazine, P.O. Box 3167, Carol Stream, IL 60132, e-mail MSDNmag@1105service.com or
call 847-763-9560. POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie,
IL 60076. Canada Publications Mail Agreement No: 40612608. Return Undeliverable Canadian
Addresses to Circulation Dept. or IMS/NJ. Attn: Returns, 310 Paterson Plank Road, Carlstadt, NJ 07072.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

AUGUST 2010 VOLUME 25 NUMBER 8

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtsearch.com

programmersparadise.com

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

NEW
RELEASE!

Professional Edition
Paradise #

T79 02101A02
$1,220.99

programmers.com/ca

CA ERwin® Data Modeler
r7.3 – Product Plus 1 Year
Enterprise Maintenance
by CA
CA ERwin Data Modeler is a data modeling
solution that enables you to create and
maintain databases, data warehouses and
enterprise data resource models. These models
help you visualize data structures so that you
can effectively organize, manage and moderate
data complexities, database technologies and
the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/pragma

“Pragma SSH for Windows”
Best SSH/SFTP/SCP Servers
and Clients for Windows
by Pragma Systems
Get all in one easy to use high performance
package. FIPS Certified and Certified for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/

7/Vista/XP/2000

Paradise #
P35 04201A01
$550.99

Paradise #
P26 04201E01

$3,931.99

programmers.com/vSphereprogrammers.com/LEAD

LEADTOOLS Recognition SDK
by LEAD Technologies
Develop desktop and server document imaging
and ECM applications that require high-speed
multi-threaded forms recognition and process-
ing, OCR, ICR, OMR, and barcode technology.
• Supports text, OMR, image, and

barcode fields
• Recognize machine print and constrained

handwritten text
• Auto-registration and clean-up to

improve recognition results
• Includes comprehensive confidence

reports to assess performance
Paradise #
L05 26301A01
$3,214.99

Certified
for Windows
7/2008R2

VMware vSphere
Put time back into your day.
Your business depends on how you spend
your time. You need to manage IT costs
without losing time or performance. With
proven cost-effective virtualization solutions
from VMware, you can:

• Increase the productivity of your existing
staff three times over

• Control downtime—whether planned
or not

• Save more than 50% on the cost of
managing, powering and cooling servers

Make your time (and money) count for
more with virtualization from VMware.

VMware
Advanced

Acceleration Kit
for 6 processors

Paradise #
V55 78101A01

$9,234.99

programmers.com/vmware

Client Licenses
Minimum 500 with
Basic Level Support

Paradise #
V55 MIGRATION

$16.99

programmers.com/multiedit

Multi-EditX

by Multi Edit Software

Multi-EditX is “The Solution”
for your editing needs with
support for over 50 languages.
Edit plain text, ANY Unicode, hex,
XML, HTML, PHP, Java, Javascript,
Perl and more! No more file size
limitations, unlimited line length,
any file, any size Multi-EditX is
“The Solution”!

Pre-Order Your Copy and Save!

1-49 Users
Paradise #

A30Z10101A01
$223.20

ActiveReports 6
by GrapeCity
Integrate Business Intelligence/Reporting/Data
Analysis into your .NET applications using the
NEW ActiveReports 6.

• Fast and Flexible reporting engine

• Data Visualization and Layout Controls such
as Chart, Barcode and Table Cross Section
Controls

• Wide range of Export and Preview formats
including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

• Royalty-Free Licensing for Web and
Windows applications

Professional Ed.
Paradise #
D03 04301A01
$1,310.99

NEW
VERSION

6!

programmers.com/grapecity

NEW
RELEASE!

NEW
RELEASE!

programmers.com/flexera

InstallShield Professional
for Windows
by Flexera Software
If your software targets Windows®,
InstallShield® is your solution. It makes it
easy to author high-quality reliable Windows
Installer (MSI) and InstallScript installations
and App-V™ virtual packages for Windows
platforms, including Windows 7. InstallShield,
the industry standard for MSI installations,
also supports the latest Microsoft technologies
including Visual Studio 2010, .NET
Framework 4.0, IIS7.0, SQL Server 2008
SP1, and Windows Server 2008 R2 and
Windows Installer 5, keeping your customers
happy and your support costs down.

Intel Parallel Studio
by Intel
Intel Parallel Studio is a comprehensive
Windows parallelism toolset designed for
Microsoft Visual Studio C/C++ developers.
Parallel Studio is interoperable with the widely
used Microsoft Visual Studio, supports higher-
level parallelism abstractions to simplify and
speed development such as Intel Threading
Building Blocks and Open MP, is fully supported,
and provides an immediate opportunity to real-
ize the benefits of multicore platforms. Tools are
designed so novices can learn as they go, and
professional developers can more easily bring
parallelism to existing and new projects. Create
optimized, innovative parallel applications and
compete in a multicore industry.

Microsoft Office
Professional 2010
by Microsoft
Organize projects, manage finances and
build a better way to do business with tools
from Microsoft® Office Professional 2010.
This software suite includes 2010 versions
of Word, Excel®, PowerPoint®, OneNote®,
Outlook®, Publisher® and Access®. It offers
a Backstage™ view which replaces the
traditional File menu to give you one
go-to spot to conveniently save, open and
print documents. Additionally, the server
integration capabilities make it easier to
track. Besides this, the Office Professional
Plus 2010 also offers complete package
through familiar intuitive tools.

Upgrade from
Active IS Pro +

IS Pro Silver Mtn
Paradise #

I21 02301S01

$1,399.00

866-719-1528

VMware ThinApp Windows
7 Migration Promotion
by VMware

Migration to the new Windows 7 OS is
forcing companies to rethink their desktop
delivery. VMware ThinApp is the easiest
and most cost effective way to prepare for
your Win 7 journey. By virtualizing your
applications first with ThinApp, you will
mitigate risk, dramatically speed up the
migration process—and save money
when you migrate to Windows 7!

SAVE
75%!

LIMITED
TIME OFFER!

programmers.com/microsoftprogrammers.com/intel

Complete
DVD Windows

32/64 bit
Paradise #

M47 21301A01
$442.99

Single User
Commercial
Paradise #

I23 63101A04

$753.99

NEW
RELEASE!

programmers.com/adobe

Adobe Creative Suite 5
fro Windows
by Adobe
Discover breakthrough interactive design
tools that enable you to create, deliver,
and optimize beautiful, high-impact digital
experiences across media and devices.
Create once and deliver that same experi-
ence virtually everywhere, thanks to the
highly anticipated releases of the Adobe®

Flash® Player 10.1 and Adobe AIR® 2
runtimes. Maximize the impact of what
you’ve created through integration of
signature Omniture® technologies.

Paradise #
A14 06201A02

$2,555.99

NEW
VERSION

5!

Untitled-2 1 7/1/10 2:19 PM

www.Programmersparadise.com

msdn magazine4

Double whoa! Th en it told me that the pizza was
on its way, who the driver was and what time the
driver left . Wowser!

The graphics were outstanding; clear, large
and well-labeled. You didn’t have to wonder
about anything. For instance, at every stage, the
 particular segment on the timeline that was in
process fl ashed; in other words, when it was in

the oven, that part of the timeline fl ashed.
I immensely enjoyed following my

pizza’s progress on that colorful
timeline.

Th e pizza arrived, direct to my room,
within 15 minutes of the driver leaving.

Needless to say, I gave him a big tip.
This experience, to me, really demonstrated the pow-

er of customer- focused development. The UI answered
any question I could possibly have about my pizza; in
fact, it went above and beyond my expectations (how of-
ten does that happen?), informing me at every step of the
process what was going on. As strange as it sounds, I felt personally
connected to the pizza delivery company—and my pizza—through
this experience. Isn’t that how you want your users to feel?

Th e key take-away from this experience: You must do more than
just “Get it to work.” Th ink like an end user, and ask yourself, “What
would make me excited about this program? What functionality
would make me go ‘Wow!’?” Has your program gone beyond the
minimum requirements? Is the UI more than just functional—
does it make users happy?

If not, you’ve got some work to do.
Do you have examples of great UI design? Send them to me at

mmeditor@microsoft .com.

Does Your Program Smell Like Bacon?

Has a UI experience ever just made you really happy?
I had one at Tech•Ed in June, and wanted to
share it with you.

I was in my hotel room in New Orleans and
wanted a pizza. I found the Web site of a nation-
ally known pizza delivery company and decided
to see how well its online order/delivery system
worked. I’m always a bit hesitant to order food
online; I’m never sure that the store will get
my order, or whether the employee
responsible for monitoring Internet
orders will see it. Then, if they get
it, will they make it right away?
When will it be delivered? So many
questions, so few answers from most on-
line food-ordering systems.

I went through the ordering process—medium pepperoni,
bacon, black olives (yeah, I’m strange). Th en I hit “Order,” and the
magic began.

A timeline appeared—it told me that my order was received.
Then it told me that the pizza was being made, and by whom
(Susie). Whoa! Th at’s something I didn’t expect. Th en the sys-
tem informed me that the pizza was in the oven. Th en out of
the oven and going through a quality assurance check by Susie.

EDITOR’S NOTE KEITH WARD

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

The pizza arrived, direct to my
room, within 15 minutes of the
driver leaving. Needless to say,

I gave him a big tip.

mailto:mmeditor@microsoft.com
http://microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx
http://msdn.microsoft.com/magazine

Untitled-1 1 3/10/10 2:49 PM

www.axosoft.com

msdn magazine6

tion. If applied appropriately, lazy instantiation of objects can also be a
formidable tool to make applications start much faster. Th e following
code shows how to initialize an object in a lazy manner:

var container = new Lazy<DataContainer>();

In this example, the DataContainer class indicates a plain data
container object that references arrays of other objects. Right aft er
invoking the new operator on a Lazy<T> instance, all you have back
is a live instance of the Lazy<T> class; in no case will you have an
instance of the specifi ed type T. If you need to pass an instance of
DataContainer to members of other classes, you must change the
signature of these members to use Lazy<DataContainer>, like this:

void ProcessData(Lazy<DataContainer> container);

When does the actual instance of DataContainer get created so that
the program can work with the data it needs? Let’s have a look at the
public programming interface of the Lazy<T> class. Th e public inter-
face is fairly slim as it includes only two properties: Value and IsValue-
Created. Th e property Value returns the current value of the instance
associated with the Lazy type, if any. Th e property is defi ned as follows:

public T Value
{
 get { ... }
}

Th e property IsValueCreated returns a Boolean value and indi-
cates whether or not the Lazy type has been instantiated. Here’s an
excerpt from its source code:

public bool IsValueCreated
{
 get
 {
 return ((m_boxed != null) && (m_boxed is Boxed<T>));
 }
}

Th e m_boxed member is an internal private and volatile member
of the Lazy<T> class that contains the actual instance of the T type,
if any. Th erefore, IsValueCreated simply checks whether a live in-

Don’t Worry, Be Lazy

In soft ware development, the term laziness refers to delaying certain
expensive activity as long as possible much more than it relates to
idleness. Soft ware laziness is still about doing things, but it means
that any action will take place only when it’s needed to complete
a certain task. In this regard, laziness is an important pattern in
soft ware development and can be successfully applied to a variety
of scenarios, including design and implementation.

For example, one of the fundamental coding practices of the
Extreme Programming methodology is summarized simply as “You
Aren’t Gonna Need It,” which is an explicit invitation to be lazy and
incorporate in the codebase only the features you need—and only
when you need them.

On a diff erent note, during the implementation of a class, you
might want to be lazy when it comes to loading data from a source
that isn’t so cheap to access. Th e lazy loading pattern, in fact, illus-
trates the commonly accepted solution of having a member of a
class defi ned but kept empty until its content is actually required by
some other client code. Lazy loading fi ts perfectly in the context of
object-relational mapping (ORM) tools such as the Entity Frame-
work and NHibernate. ORM tools are used to map data structures
between the object-oriented world and relational databases. In
this context, lazy loading refers to a framework’s ability to load, for
example, Orders for a customer only when some code is trying to
read the exposed Orders collection property on a Customer class.

Lazy loading, though, isn’t limited to specifi c implementation
scenarios such as ORM programming. Moreover, lazy loading
is about not getting an instance of some data before it actually
becomes useful. Lazy loading, in other words, is about having
special factory logic that tracks what has to be created and creates
it silently when the content is eventually requested.

In the Microsoft .NET Framework, we developers have long had
to implement any lazy behavior manually in our classes. Th ere’s
never been built-in machinery to help with this task. Not until
the advent of the .NET Framework 4, that is, where we can start
leveraging the new Lazy<T> class.

Meet the Lazy<T> Class
Th e Lazy<T> is a special factory you use as a wrapper around an
object of a given type T. Th e Lazy<T> wrapper represents a live proxy
for a class instance that doesn’t yet exist. Th ere are many reasons for
using such lazy wrappers, the most important of which is improving
performance. With lazy initialization of objects, you avoid any com-
putation that isn’t strictly needed, so you reduce memory consump-

CUTTING EDGE DINO ESPOSITO

Laziness is an important pattern
in software development and
can be successfully applied to

a variety of scenarios, including
design and implementation.

Untitled-2 1 6/10/10 11:54 AM

www.DevExpress.com/grids

msdn magazine8 Cutting Edge

stance of T exists and returns a Boolean answer. As mentioned, the
m_boxed member is private and volatile, as shown in this snippet:

private volatile object m_boxed;

In C#, the volatile keyword indicates a member that can be modi-
fi ed by a concurrently running thread. Th e volatile keyword is used
for members that are available in a multithread environment but
lack (essentially for performance reasons) any protection against
possible concurrent threads that could access such members at the
same time. I’ll return to the threading aspects of Lazy<T> later. For
now, suffi ce it to say that public and protected members of Lazy<T>
are thread-safe by default. Th e actual instance of the type T is
created the fi rst time any code attempts to access the Value member.
Th e details of the object creation depend on the threading attributes
optionally specifi ed via the Lazy<T> constructor. It should be clear
that implications of the threading mode are only important for when
the boxed value is actually initialized or accessed for the fi rst time.

In the default case, an instance of the type T is obtained via
reflection by placing a call to Activator.CreateInstance. Here’s a
quick example of the typical interaction with the Lazy<T> type:

var temp = new Lazy<DataContainer>();
Console.WriteLine(temp.IsValueCreated);
Console.WriteLine(temp.Value.SomeValue);

Note that you are not strictly required to check IsValueCreated
before invoking Value. You typically resort to checking the value of
IsValueCreated only if—for whatever reason—you need to know
whether a value is currently associated with the Lazy type. Th ere’s
no need for you to check IsValueCreated to avoid a null reference
exception on Value. Th e following code works just fi ne:

var temp = new Lazy<DataContainer>();
Console.WriteLine(temp.Value.SomeValue);

Th e getter of the Value property checks whether a boxed value
already exists; if not, it triggers the logic that creates an instance of
the wrapped type and returns that.

The Process of Instantiation
Of course, if the constructor of the Lazy type—DataContainer in the
previous example—throws an exception, your code is responsible
for handling that exception. Th e exception captured is of type
TargetInvocationException—the typical exception you get when
.NET refl ection fails to create an instance of a type indirectly.

Th e Lazy<T> wrapper logic simply ensures that an instance of
type T is created; in no way does it also guarantee that you won’t get
a null reference exception as you access any of the public members
on T. For example, consider the following code snippet:

public class DataContainer
{
 public DataContainer()
 {
 }

 public IList<String> SomeValues { get; set; }
}

Imagine now that you attempt to call the following code from
a client program:

var temp = new Lazy<DataContainer>();
Console.WriteLine(temp.Value.SomeValues.Count);

In this case, you’ll get an exception because the SomeValues
property of the DataContainer object is null, not because the Data-
Container is null itself. Th e exception raises because the DataCon-
tainer’s constructor doesn’t properly initialize all of its members; the
error has nothing to do with the implementation of the lazy approach.

The Value property of Lazy<T> is a read-only property,
meaning that once initialized, a Lazy<T> object always returns
the same instance of the type T or the same value if T is a value
type. You can’t modify the instance but you can access any public
properties the instance may have.

Here’s how you can confi gure a Lazy<T> object to pass ad hoc
parameters to the T type:

temp = new Lazy<DataContainer>(() => new Orders(10));

One of the Lazy<T> constructors takes a delegate through which
you can specify any action required to produce proper input data
for the T constructor. Th e delegate isn’t run until the Value property
of the wrapped T type is accessed for the fi rst time.

Thread-Safe Initialization
By default, Lazy<T> is thread-safe, meaning that multiple threads
can access an object and all threads will receive the same instance
of the T type. Let’s look at aspects of threading that are important only
for the fi rst access to a Lazy object.

The first thread to hit the Lazy<T> object will trigger the
instantiation process for type T. All following threads that gain
access to Value receive the response generated by the fi rst—what-
ever that is. In other words, if the fi rst thread causes an exception
when invoking the constructor of the type T, then all subsequent
calls—regardless of the thread—will receive the same exception.
By design, different threads can’t get different responses from
the same instance of Lazy<T>. Th is is the behavior you get when
you choose the default constructor of Lazy<T>.

Th e Lazy<T> class, however, also features an additional constructor:
public Lazy(bool isThreadSafe)

Th e Boolean argument indicates whether or not you want thread
safety. As mentioned, the default value is true, which will off er the
aforementioned behavior.

Value Description
None The Lazy<T>instance isn’t thread-

safe and its behavior is undefi ned if
it’s accessed from multiple threads.

PublicationOnly Multiple threads are allowed to
concurrently try to initialize the Lazy
type. The fi rst thread to complete
wins and the results generated by
all others are discarded.

ExecutionAndPublication Locks are used to ensure that only a
single thread can initialize a Lazy<T>
instance in a thread-safe manner.

Figure 1 TheLazyThreadSafetyMode Enumeration

In the Microsoft .NET
Framework, we developers have
long had to implement any lazy
behavior manually in our classes.

Untitled-2 1 6/10/10 11:55 AM

www.DevExpress.com/reporting

msdn magazine10 Cutting Edge

If you pass false instead, the Value property will be accessed from
just one thread—the one that initializes the Lazy type. Th e behavior
is undefi ned if multiple threads attempt to access the Value property.

Th e Lazy<T> constructor that accepts a Boolean value is a special
case of a more general signature where you pass the Lazy<T>
constructor a value from the LazyTh readSafetyMode enumeration.
Figure 1 explains the role of each value in the enumeration.

You can set the PublicationOnly mode using either of the fol-
lowing constructors:

public Lazy(LazyThreadSafetyMode mode)
public Lazy<T>(Func<T>, LazyThreadSafetyMode mode)

Th e values in Figure 1 other than PublicationOnly are implicitly
set when you use the constructor that accepts a Boolean value:

public Lazy(bool isThreadSafe)

In that constructor, if the argument isTh readSafe is false,
then the selected threading mode is None. If the argument
isTh readSafe is set to true, then the threading mode is set to
ExecutionAndPublication. ExecutionAndPublication is also the
working mode when you choose the default constructor.

The PublicationOnly mode falls somewhere in between the
full thread safety guaranteed by ExecutionAndPublication and
the lack thereof you get with None. PublicationOnly allows
concurrent threads to try to create the instance of the type T but
ensures that only one thread is the winner. Th e T instance created
by the winner is then shared among all other threads regardless of
the instance that each may have computed.

Th ere’s an interesting diff erence between None and Execution-
AndPublication regarding a possible exception thrown during the
initialization. When PublicationOnly is set, an exception generated
during the initialization isn’t cached; subsequently, each thread
that attempts to read Value will have a chance to re-initialize if an
instance of T isn’t available. Another diff erence between Publication-
Only and None is that no exception is thrown in PublicationOnly
mode if the constructor of T attempts to recursively access Value.
Th at situation will raise an InvalidOperation exception when the
Lazy<T> class works in None or ExecutionAndPublication modes.

Dropping thread safety gives you a raw performance benefi t, but
you need to be careful to prevent nasty bugs and race conditions.

Th us, I recommend you use the option LazyTh readSafetyMode.
None only when performance is extremely critical.

If you use LazyTh readSafetyMode.None, it remains your respon-
sibility to ensure the Lazy<T> instance will never be initialized from
more than one thread. Otherwise, you may incur unpredictable
results. If an exception is thrown during the initialization, the same
exception is cached and raised for each subsequent access to Value
within the same thread.

ThreadLocal Initialization
By design, Lazy<T> doesn’t let diff erent threads manage their own
personal instance of type T. However, if you want to allow that
behavior, you must opt for a diff erent class—the Th readLocal<T>
type. Here’s how you use it:

var counter = new ThreadLocal<Int32>(() => 1);

Th e constructor takes a delegate and uses it to initialize the thread-
local variable. Each thread holds its own data that’s completely out
of reach of other threads. Unlike Lazy<T>, the Value property on
Th readLocal<T> is read-write. Each access is therefore independent
from the next and may produce diff erent results, including throwing
(or not) an exception. If you don’t provide an action delegate via the
Th readLocal<T> constructor, the embedded object is initialized
using the default value for the type—null if T is a class.

Implementing Lazy Properties
Most of the time, you use Lazy<T> for properties within your own
classes, but which classes, exactly? ORM tools off er lazy loading
on their own, so if you’re using these tools, the data access layer
probably isn’t the segment of the application where you’ll fi nd likely
candidate classes to host lazy properties. If you aren’t using ORM
tools, the data access layer is defi nitely a good fi t for lazy properties.

Segments of the application where you use dependency injection
might be another good fi t for laziness. In the .NET Framework
4, the Managed Extensibility Framework (MEF) just implements
extensibility and inversion of control using Lazy<T>. Even if you’re
not using the MEF directly, management of dependencies is a great
fi t for lazy properties.

Implementing a lazy property within a class doesn’t require any
rocket science, as Figure 2 demonstrates.

Filling a Hole
Wrapping up, lazy loading is an abstract concept that refers to load-
ing data only when it’s really needed. Until the .NET Framework
4, developers needed to take care of developing lazy initialization
logic themselves. Th e Lazy<T> class extends the .NET Framework
programming toolkit a nd gives you a great chance to avoid waste-
ful computation by instantiating your expensive objects only when
strictly needed and just a moment before their use begins.

DINO ESPOSITO is the author of “Programming ASP.NET MVC” from
Microsoft Press and the coauthor of “Microsoft .NET: Architecting Applications for
the Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent speaker at
industry events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical expert for reviewing this article:
Greg Paperin

public class Customer
{
 private readonly Lazy<IList<Order>> orders;

 public Customer(String id)
 {
 orders = new Lazy<IList<Order>>(() =>
 {
 return new List<Order>();
 }
);
 }

 public IList<Order> Orders
 {
 get
 {
 // Orders is created on first access
 return orders.Value;
 }
 }
}

Figure 2 Example of a Lazy Property

http://weblogs.asp.net/despos

Untitled-2 1 6/10/10 11:56 AM

www.DevExpress.com/analytics

© 1987-2010 ComponentOne LCC. All rights reserved. iPhone and iPod are trademarks of Apple Inc. While supplies last. Void where
prohibited or restricted by law. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Untitled-8 2 7/14/10 4:03 PM

www.componentone.com/devtopia

Untitled-8 3 7/14/10 4:03 PM

www.componentone.com/devtopia

msdn magazine14

How the Entity Framework processes requests to retrieve or persist
data is one such behavior that can be modifi ed. You’re not required
to build a model that depends on the Entity Framework to have
access to your data tables. You can build a model that knows only
about your database’s views and stored procedures without impacting
the application code that uses the model. By combining the Entity
Framework’s stored procedure support with its database view support,
you can base all database interaction on stored procedures and views.

Mapping Entities to Database Views, Not Tables
Th ere are a few ways to build a model. I’ll focus on models that are
built from a legacy database by reverse-engineering the database.
Visual Studio has a wizard for this process.

In the wizard, users can select database tables, views and stored
procedures. Th e stored procedure section also lists scalar-valued,
user-defi ned functions that can be brought into the model.

Typically, a developer will select tables and let the wizard create
entities from them. In the change-tracking and SaveChanges
process I described earlier, the Entity Framework automatically
generates INSERT, UPDATE and DELETE commands for the
entities based on tables.

Let’s fi rst take a look at how you can force the Entity Framework
to query against views instead of tables.

Database views brought into the model also become entities. Th e
Entity Framework tracks changes to those entities just as it would
for entities that are mapped to tables. Th ere’s a caveat about identity
keys when using views. A database table will likely have one or more

Deny Table Access to the Entity Framework
Without Causing a Mutiny

One of the fi rst things I hear from database owners when they see
the Entity Framework command creation at work is: “What? I have
to provide access to my tables?” Th ey react this way because one
of the core capabilities of the Entity Framework is generation of
SELECT, UPDATE, INSERT and DELETE commands.

In this column, I will give database administrators some insight
into how the Entity Framework generates commands and then
introduce features that let you limit its access to your database by
allowing it to work only with views and stored procedures. And
you can do this without impacting application code or alienating
the developers on your team.

Exploring Default Command Generation
How does this command generation work? Th e focal point of the
Entity Framework is the Entity Data Model (EDM), a conceptual
model that describes an application’s domain objects. Th e Entity
Framework lets developers express queries against the model rather
than concern themselves with details of the database. Th e model, its
entities and their relationships are defi ned as XML, and develop-
ers work with strongly typed classes based on the model’s entities.
Th e Entity Framework runtime uses the model’s XML combined
with additional metadata (which describes the database schema
and mappings to get from the model to the database schema) to
bridge the classes with the database (see Figure 1).

At run time, with the help of database-specific ADO.NET
providers, the Entity Framework transforms queries composed
against the model into store queries—for example, T-SQL—which
it then sends to the database. Th e Entity Framework transforms
the query results into objects defi ned by the strongly typed entity
classes as shown in Figure 2.

As the user works with these objects, the Entity Framework uses
identity keys to track changes to properties as well as relationships
between the objects. Finally, when the code calls the Entity Frame-
work SaveChanges method to persist changes back to the database, the
Entity Framework runtime reads through all of the change tracking
information it has collected. For each entity that has been modifi ed,
added or deleted, the Entity Framework once again reads the model
and engages the provider to build store commands and then executes
them in a single, reversible transaction on the database.

Th is description of the default behavior of the Entity Framework
tends to send database owners out of the room screaming, but I
would like to emphasize the word “default” here. Th e Entity Frame-
work has many default behaviors that can be altered.

DATA POINTS JULIE LERMAN

Figure 1 The Entity Framework Runtime Metadata Is Used to
Build Database Commands

EF Runtime Metadate (XML files)

Conceptual
Model

Schema

Database
Structure
Schema

Mappings

DBApp

Give your users an effective way to visualize and analyze their data

so they can make more informed decisions and solve business problems.

By subscribing to the ESRI® Developer Network (EDNSM), you have access to the complete ESRI

geographic information system (GIS) software suite for developing and testing applications on

every platform. Whether you’re a desktop, mobile, server, or Web developer, EDN provides the

tools you need to quickly and cost-effectively integrate mapping and GIS into your applications.

Subscribe to EDN and leverage the power of GIS to get more
from your data. Visit www.esri.com/edn.

ESRI
®

 Developer Network
Integrate Mapping and GIS into Your Applications

Copyright © 2010 ESRI. All rights reserved. ESRI, the ESRI globe logo, EDN, and www.esri.com are trademarks, registered trademarks, or service marks of ESRI in the United States, the
European Community, or certain other jurisdictions. Other companies and products mentioned herein may be trademarks or registered trademarks of their respective trademark owners.

Untitled-10 1 7/9/10 3:03 PM

http://www.esri.com/edn
http://www.esri.com

msdn magazine16 Data Points

columns marked as its primary key or keys. By default, the wizard
will compose an entity’s identity key from a table’s primary key(s).
When creating entities that map to views (which lack primary keys),
the wizard does its best job of inferring this identity key by building
a composite key from all non-nullable values in the table. Consider
an entity created from a view that has four non-nullable columns:
ContactID, FirstName, LastName and TimeStamp.

 Th e four resultant properties will be marked as EntityKeys (the
designer uses a key icon to indicate EntityKey properties), which means
that the entity has an EntityKey composed of these four properties.

Th e ContactID is the only property that’s needed to uniquely
identify this entity. Th erefore, aft er the model has been created,
you can use the designer to change the EntityKey attribute of the
other three properties to False, leaving only the ContactID as a
designated EntityKey.

Alternatively—if it’s possible—you can plan ahead, designing
database views that provide the correct, non-nullable columns.

With the key in place, the Entity Framework can uniquely
identify each entity and is therefore able to perform change
tracking on these entities and then persist changes back to the
database when SaveChanges is called.

Overriding Command Generation with
Your Own Stored Procedures
For persistence back to the database, you can override the default
command generation and instead direct the Entity Framework to
use your own Insert, Update and Delete stored procedures when
it’s time to persist changes back to the database. Th is is referred to
as “stored procedure mapping.” Let’s take a look at how that works.

Any stored procedure that you select in the EDM Wizard (or
subsequently in the Update Wizard) to come into your model
becomes a function in the section of the model’s XML metadata
that describes the database schema. It isn’t automatically part of
the conceptual model and you won’t see any representation of it
on the design surface.

Here’s a simple Insert stored procedure for a Person table in one
of my databases.

ALTER procedure [dbo].[InsertPerson]
 @FirstName nchar(50),
 @LastName nchar(50),
 @Title nchar(50)
AS
INSERT INTO [Entity FrameworkWorkshop].[dbo].[Person]
 ([FirstName]
 ,[LastName]
 ,[Title])
 VALUES
(@FirstName,@LastName,@Title)
SELECT @@IDENTITY as PersonID

Th is stored procedure not only performs the database insert,
it then returns the primary key value that SQL Server has created
for the new row.

When you choose this procedure in the wizard, it’s represented
in the model’s database schema as the following function:

<Function Name="InsertPerson" Aggregate="false" BuiltIn="false"
 NiladicFunction="false" IsComposable="false"
 ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">
 <Parameter Name="FirstName" Type="nchar" Mode="In" />
 <Parameter Name="LastName" Type="nchar" Mode="In" />
 <Parameter Name="Title" Type="nchar" Mode="In" />
</Function>

You can then use the designer’s Mapping Details window to map
this InsertPerson function to the Person entity that was created
based on the Person table, as shown in Figure 3.

Notice that in Figure 3, the PersonID property maps to the
return value from the stored procedure. Th is particular mapping
will cause the Entity Framework to update the in-memory Person
object with the database-generated key once the insert has been
executed in the database.

A critical requirement when mapping functions
is that every parameter in the function must map
to a property in the entity. You can’t map a formula
or a value to the parameters. However, developers
have many opportunities to customize the Microsoft
.NET Framework classes that represent these entities.

You can also map the Update and Delete func-
tions. While it isn’t necessary to map all three
actions (Insert, Update and Delete), developers
will have to pay attention to some rules described
in the documentation pertaining to mapping only
some of the functions.

In Figure 3, notice that there are two columns
to the right of property (abbreviated due to col-

Figure 2 The Entity Framework Executes Queries and
Processes Their Results

Entity FrameworkModel &
Metadata

ADO.NET DB Providers
(e.g. SqlClient)

Link to
Entities
Query

Store
Query

(e.g. T-SQL)
Data
Store

Object(s)

Figure 3 Mapping Stored Procedures to an Entity

Image Formats & Compression: Supports 150+ image formats and
compressions including TIFF, EXIF, PDF, JPEG2000, JBIG and CCITT.
Display Controls: ActiveX, COM, Win Forms, Web Forms, WPF and Silverlight.
Image Processing: 200+ lters, transforms, color conversion and dra ing

functions supporting region of interest and extended grayscale data.
OCR/ICR/OMR: Full page or zonal recognition for multithreaded 32 and 64 bit

development.
Forms Recognition and Processing: Automatically identify forms and extract

user lled data.
Barcode: Detect, read and rite 1D and 2D barcodes for multithreaded 32 and

64 bit development.
Document Cleanup/Preprocessing: Des e , despec le, hole punch, line and

border removal, inverted text correction and more.
PDF and PDF/A: ead and rite searchable PDF ith text, images and

annotations.
Annotations: Interactive UI for document mark-up, redaction and image

measurement (including support for DICOM annotations).
Medical Web Viewer Framework: Plug-in enabled frame ork to uickly

build high- uality, full-featured, eb-based medical image delivery and vie er
applications.
Medical Image Viewer: igh level display control ith built-in tools for image

mark-up, indo level, measurement, zoom pan, cine, and UT manipulation.
DICOM: Full support for all IOD classes and modalities de ned in the 200

DICOM standard (including Encapsulated PDF CDA and a Data).
PACS Communications: Full support for DICOM messaging and secure

communication enabling uick implementation of any DICOM SCU and SCP
services.
JPIP: Client and Server components for interactive streaming of large images

and associated image data using the minimum possible band idth.
Scanning: TWAIN 2.0 and WIA (32 and 64-bit), autodetect optimum driver

settings for high speed scanning.
DVD: Play, create, convert and burn DVD images.
DVR: Pause, re ind and fast-for ard live capture and UDP or TCP IP streams.
Multimedia: Capture, play, stream and convert MPEG, AVI, WMV, MP4, MP3,

OGG, ISO, DVD and more.
Enterprise Development: Includes WCF services and WF activities to create

scalable, robust enterprise applications.

Vector

DICOM Medical

Form Recognition
& Processing

Multimedia

Barcode

Document

Free 60 Day Evaluation! www.leadtools.com/msdn 800 637-1840

ig evel Design ow evel Control

Develop your application ith the same robust imaging technologies used by
Microsoft, HP, Sony, Canon, Kodak, GE, Siemens, the US Air Force and
Veterans Affairs Hospitals.

EADTOO S provides developers easy access to decades of expertise in
color, grayscale, document, medical, vector and multimedia imaging development.
Install EADTOO S to eliminate months of research and programming time hile
maintaining high levels of uality, performance and functionality.

Silverlight, .NET, WPF, WCF, WF, C API, C++ Class Lib, COM & more!

Untitled-1 1 5/28/10 11:41 AM

http://www.leadtools.com/msdn

msdn magazine18 Data Points

umn width): Use Original Value and Rows Affected. The Entity
Framework supports optimistic concurrency, and you can
use these attributes to provide concurrency checking with the
Update and Delete functions. Check the MSDN document,
“Walkthrough: Mapping an Entity to Stored Procedures (Entity
Data Model Tools),” at msdn.microsoft.com/library/cc716679 for more
information on this feature.

At run time, if a user has created a new Person type and then
triggers the SaveChanges method, the Entity Framework will see
the Insert function mapping in the metadata (based on the map-
ping defi ned in Figure 3). It will send the following command,
executing the stored procedure, rather than generating its own
INSERT command on the fl y:

exec [dbo].[InsertPerson] @FirstName=N'Julie',@LastName=N'Lerman',

@Title=N'Ms.'

Closing the Gap and Preventing
Table Access by the Entity Framework
Th e Entity Framework will generate commands to persist data
from view-based entities, but views may not be updatable. In the
case of non-updatable views, you can map Insert, Update and
Delete stored procedures to the entities and get the full roundtrip
of retrieving and persisting data without providing direct access
to the database tables.

You could do something as simple as create database views that
match the tables and create stored procedures that update the table
columns. Or you might have more complex views and complex

stored procedures that contain advanced logic for performing
updates. You could even supplant some of your read stored
procedures with views that will enable developers to compose
queries over the views—something that can’t be done against
stored procedures.

As an example of this composability, the application could
request a query against the CustomersInPastYear entity, fi ltering
the view even further using the customer’s LastName property:

from c in context.CustomersInPastYears
 where c.LastName.StartsWith("B")
 select c;

This results in the following command being executed on
the database:

SELECT
[Extent1].[CustomerID] AS [CustomerID], [Extent1].[FirstName] AS
[FirstName],
[Extent1].[LastName] AS [LastName], [Extent1].[EmailAddress] AS
[EmailAddress],
[Extent1].[TimeStamp] AS [TimeStamp]
FROM (SELECT
 [CustomersInPastYear].[CustomerID] AS [CustomerID],
 [CustomersInPastYear].[FirstName] AS [FirstName],
 [CustomersInPastYear].[LastName] AS [LastName],
 [CustomersInPastYear].[EmailAddress] AS [EmailAddress],
 [CustomersInPastYear].[TimeStamp] AS [TimeStamp]
 FROM [dbo].[CustomersInPastYear] AS [CustomersInPastYear]) AS
[Extent1]
WHERE [Extent1].[LastName] LIKE N'B%'

Th e .NET compiler would accept a similar query composed over
a stored procedure that’s been mapped into the model. However,
the Entity Framework would execute the stored procedure on the
database, return all of its results to the application and then apply
the fi lter to the in-memory objects returned by the stored proce-
dure. Th is could potentially waste resources and hurt performance
without the developer’s knowledge.

Figure 4 shows a stored procedure that updates the Customer
table using the same columns that participate in the Customers-
InPastYear view. It can be used as the Update function for the
CustomersInPastYear entity.

 Now you can map this stored procedure to the entity. Th e
mapping shown in Figure 5 sends the original TimeStamp to the
stored procedure and then, using the Result Column Bindings,
captures the updated TimeStamp returned by the stored procedure.

Wrapping up, as long as the model is designed well, the view-
based entities have appropriate identity keys and the functions are
properly mapped, there’s no need to expose your database tables to
an application that uses the Entity Framework for its data access
strategy. Database views and stored procedures can provide the

EDM and the Entity Framework all that they need
to successfully interact with your database.

JULIE LERMAN is a Microsoft MVP, .NET mentor and con-
sultant who lives in the hills of Vermont. You can fi nd her
presenting on data access and other Microsoft .NET topics
at user groups and conferences around the world. Lerman
blogs at thedatafarm.com/blog and is the author of the highly
acclaimed book, “Programming Entity Framework” (O’Reilly
Media, 2009). You can follow her on Twitter.com at julielerman.

THANKS to the following technical experts for reviewing
this article:
Noam Ben-Ami and Srikanth MandadiFigure 5 Mapping a Stored Procedure to an Entity Based on a View

ALTER PROCEDURE UpdateCustomerFirstNameLastNameEmail
@FirstName nvarchar(50),
@LastName nvarchar(50),
@Email nvarchar(50),
@CustomerId int,
@TimeStamp timestamp

AS

UPDATE Customer
 SET [FirstName] = @FirstName
 ,[LastName] = @LastName
 ,[EmailAddress] = @Email
 WHERE CustomerID=@CustomerId AND TimeStamp=@TimeStamp

 SELECT TimeStamp
 FROM Customer
 WHERE CustomerID=@CustomerId

Figure 4 UpdateCustomerFirstNameLastNameEmail
Stored Procedure

http://msdn.microsoft.com/library/cc716679

Why is Amyuni PDF
so interesting?

Develop with the fastest PDF
conversion on the market, designed
to perform in multithreaded and
64-bit Windows environments.

License and distribute products
quickly and easily with a PDF
technology that does not rely on
external open-source libraries.

Produce accurate and stable PDF
documents using reliable tools
built by experts with over ten years
of experience.

Let our experienced consultants
help you turn your software
requirements into customized
PDF solutions.

Integrate PDF conversion, creation
and editing into your .NET and
ActiveX applications with just a few
lines of code.

Choose a PDF technology that is
integrated into thousands of
applications behind millions of
desktops worldwide.

High-Performance

OEM LicensesExpertise

Rapid IntegrationProven

Customization

We understand the challenges that come with PDF integration.
From research and development, through design and
implementation, we work with you every step of the way.

Get 30 days of FREE technical support with your trial download!

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2009 AMYUNI Technologies. All rights reserved.

www.amyuni.com

Now v4.0!

Project1 12/2/09 12:51 PM Page 1

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com
http://www.amyuni.com

msdn magazine20

FE DE RAT ED IDENT IT Y

Passive Authentication
for ASP.NET with WIF

The goal of federated security is to provide a mechanism
for establishing trust relationships between domains so that users
can authenticate to their own domain while being granted access
to applications and services belonging to another domain. This
makes authentication techniques like single sign-on possible,
removes the need to provision and manage duplicate accounts for
users across applications and domains, and signifi cantly lowers the
cost to extend applications to trusted parties.

In a federated security model, an Identity Provider (IdP) performs
authentication and supplies a Security Token Service (STS) to issue
security tokens. Th ese tokens, in turn, assert information about
the authenticated user: her identity and possibly other information
including roles and more granular access rights. In a federated world,
this information is referred to as claims, and claims-based access
control is central to a federated security model. In this model,
applications and services authorize access to features and function-
ality based on claims from trusted issuers (the STS).

Michele Leroux Bustamante

Platform tools like Windows Identity Foundation (WIF) make
it much easier to support this type of identity federation. WIF is an
identity model framework for building claims-based applications
and services, and for supporting SOAP-based (active) and browser-
based (passive) federation scenarios. In the article “Claims-Based
Authorization with WIF,” in the November 2009 issue of MSDN
Magazine (msdn.microsoft.com/magazine/ee335707), I focused on using
WIF with Windows Communication Foundation (WCF). In that
article I described how to implement claims-based security models
for WCF services and how to migrate to identity federation.

In this follow-up article I will focus on passive federation. I will
explain the fl ow of communication for passive federation, show
you several techniques for enabling federation in your ASP.NET
applications, discuss claims-based authorization techniques for
ASP.NET, and talk about single sign-on and single sign-out sce-
narios. Along the way, I will explain the underlying WIF features
and components that support passive federation scenarios.

Passive Federation Basics
Passive federation scenarios are based on the WS-Federation speci-
fi cation. Th is describes how to request security tokens and how to
publish and acquire federation metadata documents, which makes
establishing trust relationships easy. WS-Federation also describes
single sign-on and sign-out procedures and other federation
implementation concepts.

While WS-Federation discusses many details about federa-
tion, there are sections devoted to browser-based federation that

This article discusses:
• Passive federation basics

• WIF and passive federation

• Claims-based authorization

• Single sign-on and sign-out

Technologies discussed:
Windows Identity Foundation, ASP.NET

http://msdn.microsoft.com/magazine/ee335707

21August 2010msdnmagazine.com

rely on HTTP GET and POST, browser redirects and cookies to
accomplish the goal.

Some aspects of passive federation messaging are based closely
on the WS-Trust specifi cation. For example, passive federation
employs a browser-compatible form of Request Security Token (RST)
and RST Response (RSTR) when a security token is requested of
an STS. In the passive federation scenario, I’ll call the RST a sign-in
request message and the RSTR a sign-in response message. Th e
WS-Trust specifi cation focuses on SOAP-based (active) federation,
such as between Windows clients and WCF services.

A simple passive federation scenario is illustrated in Figure 1.
Users authenticate to their domain and are granted access to a
Web application according to their roles. Th e participants in this
authentication scheme include the user (the subject), a Web browser
(the requester), an ASP.NET application (the relying party or RP),
an IdP responsible for authenticating the users within its domain
and an STS belonging to the user’s domain (IP-STS). A sequence
of browser redirects ensures that the user is authenticated at her
domain prior to accessing the RP.

Th e user browses to the RP application (1) and is redirected to
her IdP to be authenticated (2). If the user has not yet been authen-
ticated at the IdP, the IP-STS may present a challenge or redirect
her to a login page to collect credentials (3). Th e user supplies her
credentials (4) and is authenticated by the IP-STS (5). At this point,
the IP-STS issues a security token according to the sign-in request,
and the sign-in response containing the token is posted to the RP
via browser redirect (6). Th e RP processes the security token and
authorizes access based on the claims it carries (7). If successfully
authorized, the user is presented with the page she originally
requested and a session cookie is returned (8).

Implementing this passive federation scenario with WIF and
ASP.NET involves only a few steps:
1. Establish a trust relationship between the RP and IdP (IP-STS)
2. Enable passive federation for the ASP.NET application
3. Implement authorization checks to control access to

application features
In the next sections I’ll discuss the features of WIF that support

passive federation, walk through the steps to confi gure this simple
scenario, and then explore other practical considerations for this
and other scenarios.

WIF Features for Passive Federation
Before discussing implementation, let me review the features of WIF
specifi cally useful for identity federation within your ASP.NET applica-
tions. To begin with, WIF supplies the following useful HTTP modules:

• WSFederationAuthenticationModule (FAM): Enables
browser-based federation, handling redirection to the
appropriate STS for authentication and token issuance, and
processing the resulting sign-in response to hydrate the
issued security token into a ClaimsPrincipal to be used for
authorization. This module also handles other important
federation messages such as sign-out requests.

• SessionAuthenticationModule (SAM): Manages
the authenticated session by generating the session security
token that contains the ClaimsPrincipal, writing it to a cookie,

managing the lifetime of the session cookie and rehydrating
the ClaimsPrincipal from the cookie when it’s presented. Th is
module also maintains a local session token cache.

• ClaimsAuthorizatonModule: Provides an extensibility
point to install a custom ClaimsAuthorizationManager that
can be useful for centralized access checks.

• ClaimsPrincipalHttpModule: Creates a ClaimsPrincipal
from the current user identity attached to the request thread.
In addition, provides an extensibility point to install a custom
ClaimsAuthenticationManager that can be useful for custom-
izing the ClaimsPrincipal to be attached to the request thread.

ClaimsPrincipalHttpModule is most useful for applications
without passive federation. You can think of it as a useful tool
for implementing a claims-based security model in the ASP.NET
application prior to moving to passive federation. I discussed this
technique for WCF in my previous article.

Th e other three modules are typically used together for passive
federation—although ClaimsAuthorizationModule is optional.
Figure 2 illustrates how these core modules fi t into the request pipe-
line and their functions in a typical federated authentication request.

Keeping in mind the fl ow of passive federation from Figure 1,
when the user fi rst browses to a protected page in the RP (1), access

Figure 1 A Simple Passive Federation Scenario

1 68

Resource

Set
Session
Cookie

POST
Sign-In

Response

RP Domain

Authorize
Access

Web Site (RP)

7

2 4

POST
Credentials

Sign-In
Request

3

Login
Page

IP-STS (IdP)

IdP Domain

Authenticate /
Issue Token

5

Browser
(Requester)

User (Subject)

Passive federation scenarios
are based on the

WS-Federation specifi cation.

www.msdnmagazine.com

msdn magazine22 Federated Identity

to the application will be denied. Th e FAM processes unauthorized
requests, produces the sign-in message and redirects the user to
the IP-STS (2). The IP-STS authenticates the user (3), produces
a sign-in response that includes the issued security token, and
redirects back to the RP application (4).

Th e FAM processes the sign-in response—ensuring that the
response contains a valid security token for the authenticated user—
and hydrates a ClaimsPrincipal from the sign-in response (5). Th is
will set the security principal for the request thread and HttpCon-
text. Th e FAM then uses the SAM to serialize the Claims Principal
to an HTTP cookie (6) that will be presented with subsequent
requests during the browser session. If ClaimsAuthorizationModule
is installed, it will invoke the confi gured ClaimsAuthorization-
Manager, providing an opportunity to perform global access checks (7)
against the ClaimsPrincipal prior to accessing the requested resource.

Once the requested resource is presented, access control can be
implemented with traditional ASP.NET login controls, IsInRole
checks and other custom code that queries the user’s claims (8).

On subsequent requests the session token is presented with the
cookie previously written by the SAM (9). Th is time the SAM is
engaged to validate the session token and rehydrate the Claims-
Principal from the token (10). Th e FAM is not engaged unless the
request is a sign-in response, a sign-out request, or if access is denied,
which can happen if the session token is not present or has expired.

In addition to these modules, there are two ASP.NET controls
that are also useful in passive federation:

• FederatedPassiveSignIn Control: Can be used in lieu
of the FAM if the application will redirect all unauthorized calls
to a login page that hosts this control only when authentication

is required. Th is assumes the user will interact with the sign-in
process—useful in step-up authentication scenarios where the
user is prompted for credentials, possibly additional credentials
from the original login, as required by the application. Th e
control handles redirection to the STS, processing the sign-
in response, initializing the ClaimsPrincipal from the
response and establishing a secure session by leveraging
functionality exposed by the FAM and SAM.

• FederatedPassiveSignInStatus Control: Th is control
provides an interactive way for the user to sign in or sign out from
the RP application, including support for federated sign-out.
Figure 3 illustrates how the fl ow of communication changes

when the FederatedPassiveSignIn control is employed. Th e ap-
plication relies on Forms authentication to protect resources and
redirect to the login page, which hosts the control (1). Th e user clicks
the FederatedPassiveSignIn control (or can be redirected to it
automatically), which triggers a redirect to the STS (2). Th e control
page receives the response from the STS, relying on the FAM and the
SAM to process the sign-in response (3), hydrate the Claims Principal
and write the session cookie (4). When the user is redirected to the
originally requested page (5), the SAM is engaged to validate the
session cookie and hydrate the ClaimsPrincipal for the request.
At this point, the ClaimsAuthorizationModule and that page can
perform their authorization checks as illustrated in Figure 2.

Both the FAM and SAM rely on the appropriate Security-
TokenHandler type to process incoming tokens. When a sign-in
response arrives, the FAM iterates through SecurityTokenHandler-
Collection looking for the correct token handler to read the XML
token. In a federated scenario this will typically be Saml11Security-

TokenHandler or Saml2Security-
TokenHandler—though other
token formats may be employed
if you add custom token handlers.
For the SAM, SessionSecurity-
TokenHandler is used to process
the session token associated with
the session cookie.

Several identity model confi g-
uration settings are important to
the fl ow of passive federation—
and are used to initialize the FAM
and the SAM and the Federated-
PassiveSignIn control (although
the latter also exposes properties
confi gurable from the Visual Stu-
dio designer). Programmatically,
you can supply an instance of the
Service Confi guration type from the
Microsoft .IdentityModel.Confi gu-
ration namespace, or you can sup-
ply declarative confi guration in the
<microsoft .identityModel> section.
Figure 4 summarizes identity mod-
el settings, many of which will be
discussed in subsequent sections. Figure 2 WIF Components and HTTP Modules Engaged in Passive Federation

Claims AuthZ
Manager

Security Token
Handler

SAM

Claims
Authorization

Module

Web Page

10

1
6

2

Authenticate /
Issue Token

Session
Cookie

Create
ClaimsPrincipal

Create
ClaimsPrincipal

Sign-In Request

Sign-In Response

Authorize Access
Based on ClaimsPrincipal

3

5 FAM IP-STSClaims Principal

9

8

7

4

<authorization>

Login Controls

Principal Permission/
PrincipalPermissionAttribute

ClaimsPrincipal
Claims Checks

Presenting Telerik OpenAccess ORM – The easiest way to build your data layer

www.telerik.com/ORM
Europe HQ: +359.2.80.99.850 US Sales: +1.888.365.2779 Germany Sales: +49.89.8780687.70

e-mail: sales@telerik.com

 Powerful Visual Designer

 Forward and Reverse Mapping capabilities

 Full LINQ support

 Automatic web service layer

 Silverlight support

 Optimized for complex scenarios

Untitled-1 1 7/6/10 2:54 PM

http://www.telerik.com/ORM
mailto:sales@telerik.com

msdn magazine24 Federated Identity

Enabling Passive Federation
WIF makes it easy to configure passive federation for your
ASP.NET applications. An STS should supply federation metadata
(as described in the WS-Federation specifi cation) and WIF supplies
a Federation Utility (FedUtil.exe), which uses federation metadata
to establish trust between an RP and an STS (among other features
useful to both active and passive federation scenarios). You can
invoke FedUtil from the command line or from Visual Studio by
right-clicking on the RP project and selecting Add STS reference.

You’ll complete the following simple steps with the FedUtil wizard:
• Th e fi rst page of the wizard allows you to confi rm the confi gura-

tion fi le to be modifi ed by the wizard and the RP application URI.
• Th e second page requests the path to the federation metadata

XML document for the STS with which the RP will establish trust.
• Th e third page allows you to supply a certifi cate to be used for

decrypting tokens.
• Th e fi nal page shows a list of claims off ered by the STS—which

you can use to plan access control decisions, for example.
When the wizard steps are completed, FedUtil modifies the

project to add a reference to the Microsoft .IdentityModel assembly.
It also modifies the web.config to install the FAM and SAM
modules and to supply identity model confi guration settings for
those modules. Th e application now supports passive federation
and will redirect unauthorized requests to the trusted STS.

Th ere’s an assumption here that the STS has prior knowledge
of the RP, will thus issue tokens for authenticated users trying to
access the RP, and of course that it has the public key the RP requires
the STS to use to encrypt tokens. Th is is an easy way to get your
ASP.NET applications initially set up for federation. Of course, it helps
to understand how to set this up from scratch in case adjustments
are required, and how to go beyond the basic settings enabled by the
wizard. I’ll focus on the “from scratch” approach from here on in.

Without using FedUtil, you need to manually add a reference
to the Microsoft .IdentityModel assembly, and manually confi gure
the FAM and the SAM modules along with the necessary identity
model settings. HTTP modules are added to two sections: system.
web for Internet Information Services (IIS) 6 and system.webServer
for IIS 7. Assuming the application is hosted in IIS 7, the WIF
modules are confi gured as follows:

<modules>
 <!--other modules-->
 <add name="SessionAuthenticationModule"
 type="Microsoft.IdentityModel.Web.SessionAuthenticationModule, Microsoft.
IdentityModel, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 preCondition="managedHandler" />
 <add name="WSFederationAuthenticationModule"
 type="Microsoft.IdentityModel.Web.WSFederationAuthenticationModule,
Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral, PublicKeyToke
n=31bf3856ad364e35"
 preCondition="managedHandler" />
</modules>

By default this confi guration will only protect resources with
extensions explicitly mapped to be handled by the ASP.NET pipe-
line (.aspx, .asax, and so on). To protect additional resources with
federated authentication, you should map those extensions to the
ASP.NET pipeline in IIS, or you can set runAllManagedModules-
ForAllRequests to true in the modules setting (IIS 7 only) as follows:

<modules runAllManagedModulesForAllRequests="true">

For the FAM to kick in, you must also set the ASP.NET au-
thentication mode to None and deny anonymous users access to
application resources:

<authentication mode="None" />

<authorization>
 <deny users="?" />
</authorization>

Both modules rely on identity model configuration settings
described in Figure 4, a typical example of which is shown in
Figure 5. Most of these settings are generated for you by FedUtil,
with the exception of certifi cateValidation and a few of the settings
within federatedAuthentication. I typically recommend using Peer-
Trust certifi cate validation mode—which means that you explicitly
add all trusted certifi cates, including that of the trusted issuer, to
the local machine’s TrustedPeople store.

You should typically require HTTPS/SSL for passive federation
to protect the issued bearer token from man-in-the-middle attacks,
and require HTTPS/SSL for session cookies. By default, cookies
are hidden from script, but it’s an important setting, which is why
I call it out in Figure 5.

As for the name and path of the cookie, the name defaults to
FedAuth, the path to the application directory. It can be useful
to specify a unique name for the cookie, in particular if many RP
applications in the solution share the same domain. Conversely,
you can choose to specify a generic path when you want cookies
to be shared across several apps on the same domain.

You will typically use FedUtil to confi gure your ASP.NET applica-
tions for passive federation using the FAM and SAM, then tweak the

Figure 3 Passive Federation with the FederatedPassive -
SignIn Control

1

2

Session
Cookie Sign-In Request

Sign-In
Response

3

IP-STS

Claims
Authorization

Module
Web PageSAM

Forms
Authorization

Module

Login.aspx

Federated
PassiveSignIn

SAM FAM

45

WIF makes it easy to confi gure
passive federation for your

ASP.NET applications.

Alpha Five v10.5 with Codeless AJAX
Builds Powerful & Secure

Web 2.0/AJAX Database Applications
5-10x faster than other

Web database development tools

Design AJAX Web apps against SQL
databases that run as fast as desktop

apps. Professional developers can
extend Alpha Five using open
Javascript libraries, the Xbasic or
SQL languages, Genies and Xdialogs,
the Report Builder, the Security
Framework, over 1000 built-in
functions, and more.

500 no charge full copies of Alpha Five v10.5

developer have been set aside for professional

developers, normally the cost on these is $395,

But if you hurry to www.alphafive.com/500free

you should qualify to get one of

these reserved copies.

Free Copies of #1 Rated AJAX Web DB Development tool,
(Normally the price is $395 - see below for details)

www.alphafive.com/500free
No Purchase Required, Limited Time Offer

Untitled-10 1 7/9/10 2:59 PM

http://www.alphafive.com/500free

msdn magazine26 Federated Identity

appropriate settings according to the requirements of the solution.
You can also use the PassiveFederationSignIn control in lieu of
the FAM as illustrated in Figure 3. Th e control can either load its
settings from the microsoft .identityModel section, or you can set
properties directly on the control.

Th e control approach is useful if you want unauthorized requests
to be redirected to a login page where the user can explicitly sign in
by clicking the control, rather than having the FAM automatically
redirect to the STS. For example, if the user may belong to more
than one identity provider (home realm), the login page could
provide a mechanism for her to indicate her home realm prior to
redirecting to the STS. I’ll discuss home realm discovery shortly.

Passive Token Issuance
As mentioned earlier, passive federation relies on HTTP GET and
POST and browser redirects to facilitate communication between the

RP and STS. Figure 6 shows the primary request parameters involved
in the sign-in request and sign-in response during this process.

When the STS receives the sign-in request, it will verify that it knows
about the RP by checking the wtrealm parameter against its list of
known RP realms. Presumably the STS will have prior knowledge
of the RP, the certifi cate required for token encryption, and any
expectations with respect to the desired claims to be included in
the issued token. Th e RP can indicate which claims it requires if it
supplies the optional wreq parameter with a full sign-in request,
and the STS can optionally respect that list or decide autonomously
which claims to grant based on the authenticated user.

In a simple federation scenario like that described in Figure 1,
there is a single RP and a single IP-STS responsible for authenti-
cating users. If the IP-STS authenticates users against a Windows
domain, it might issue role claims such as Admin, User or Guest.
Th e assumption is that these roles have meaning to the RP for
authorization. In the next section, I’ll assume these roles suffi ce
and discuss authorization techniques. Following that I will discuss
claims transformation at the RP to convert STS claims into some-
thing more useful for authorization as needed.

Claims-Based Authorization
As I discussed in my previous article, role-based security in the .NET
Framework expects that a security principal is attached to each thread.
Th e security principal, based on IPrincipal, wraps the identity of the
authenticated user in an IIdentity implementation. WIF supplies
ClaimsPrincipal and ClaimsIdentity types based on IClaimsPrinci-
pal and IClaimsIdentity (which ultimately derive from IPrincipal and
IIdentity). When the FAM processes the sign-in response, it hydrates
a ClaimsPrincipal for the issued security token. Likewise, the SAM
hydrates a ClaimsPrincipal for the session cookie. Th is ClaimsPrin-
cipal is the heart of WIF authorization for your ASP.NET application.

You can use any of the following approaches to authorization:
• Use location-specifi c authorization settings to restrict access

to directories or individual application resources.
• Use ASP.NET login controls, such as the LoginView control,

to control access to functionality.
• Use ClaimsPrincipal to perform dynamic IsInRole checks (for

example, to dynamically hide or show UI elements).

<microsoft.identityModel>
 <service>
 <issuerNameRegistry type="Microsoft.IdentityModel.Tokens.
ConfigurationBasedIssuerNameRegistry, Microsoft.IdentityModel,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35">
 <trustedIssuers>
 <add thumbprint="EF38A0A6D1274766093D3D78BFE4ECA77C62D5C3"
 name="http://localhost:60768/STS/" />
 </trustedIssuers>
 </issuerNameRegistry>
 <certificateValidation certificateValidationMode="PeerTrust"
 revocationMode="Online" trustedStoreLocation="LocalMachine"/>
 <audienceUris>
 <add value="http://localhost:50652/ClaimsAwareWebSite2/" />
 </audienceUris>
 <federatedAuthentication>
 <wsFederation passiveRedirectEnabled="true"
 issuer="http://localhost:60768/STS/"
 realm="http://localhost:50652/ClaimsAwareWebSite2/"
 requireHttps="true" />
 <cookieHandler requireSsl="true" name="FedAuth"
 hideFromScript="true" path="/ClaimsAwareWebSite2" />
 </federatedAuthentication>
 <serviceCertificate>
 <certificateReference x509FindType="FindByThumbprint"
 findValue="8A90354199D284FEDCBCBF1BBA81BA82F80690F2"
 storeLocation="LocalMachine" storeName="My" />
 </serviceCertificate>
 </service>
</microsoft.identityModel>

Figure 5 Identity Model Confi guration for Passive Federation

Section Description
<issuerNameRegistry> Specify a list of trusted certifi cate issuers. This list is primarily useful for validating the token signature so that tokens

signed by un-trusted certifi cates will be rejected.
<audienceUris> Specify a list of valid audience URIs for incoming SAML tokens. Can be disabled to allow any URI, though not recommended.
<securityTokenHandlers> Customize confi guration settings for token handlers or supply custom token handlers to control how tokens are

validated, authenticated, and serialized.
<maximumClockSkew> Adjust the allowed time difference between tokens and application servers for token validity. The default skew is 5 minutes.
<certifi cateValidation> Control how certifi cates are validated.
<serviceCertifi cate> Supply a service certifi cate for decrypting incoming tokens.
<claimsAuthenticationManager> Supply a custom ClaimsAuthenticationManager type to customize or replace the IClaimsPrincipal type to be attached to

the request thread.
<claimsAuthorizationManager> Supply a custom ClaimsAuthorizationManager type to control access to functionality from a central component.
<federatedAuthentication> Supply settings specifi c to passive federation.

Figure 4 Summary of the Essential <microsoft.identityModel> Elements

Project3 12/16/09 11:55 AM Page 1

www.nsoftware.com

msdn magazine28 Federated Identity

• Use the PrincipalPermission type to perform dynamic permis-
sion demands, or the PrincipalPermissionAttribute if declarative
permission demand seems appropriate on a particular method.

• Provide a custom ClaimsAuthorizationManager to centralize
access checks in a single component, even prior to loading the
requested resource.
The first three of these options rely on the IsInRole method

exposed by the ClaimsPrincipal type. You must select a role claim
type fi tting for the IsInRole check so that the correct claims will
be used to control access. Th e default role claim type for WIF is:

http://schemas.microsoft.com/ws/2008/06/identity/claims/role

If ClaimsPrincipal includes defi ned claims, the role claim type
will match the default. Later, I will discuss permission claims in
the context of claims transformation. When these are utilized, you
should specify the permission claim type as the role claim type so
that IsInRole will be eff ective.

You can control access to specifi c pages or directories globally
from the web.confi g fi le. In the application root, supply a location
tag specifying the path to protect, allow a list of acceptable roles
and deny access to all other users. The following allows only
Administrators to access fi les beneath the AdminOnly directory:

<location path="AdminOnly">
 <system.web>
 <authorization>
 <allow roles="Administrators" />
 <deny users="*"/>
 </authorization>
 </system.web>
</location>

As an alternative, you can put a web.confi g in any subdirectory
and specify authorization rules. Placing the following confi guration
in the AdminOnly directory achieves the same result:

<configuration>
 <system.web>
 <authorization >
 <allow roles="Administrators" />
 <deny users="*"/>
 </authorization>
 </system.web>
</configuration>

To dynamically hide and show UI components or otherwise
control access to features within a page, you can leverage the
role-based features of controls such as the
LoginView. However, most developers
prefer to explicitly set control properties for
access control during page load for more
granular control. To do this, you can call
the IsInRole method exposed by Claims-
Principal. You can access the current prin-
cipal through the Thread.CurrentPrincipal
static property as follows:

if (!Thread.CurrentPrincipal.
IsInRole("Administrators"))
 throw new SecurityException("Access is
denied.");

Aside from explicit IsInRole checks at run-
time, you can also write classic role-based
permission demands using the Principal-
Permission type. You initialize the type with
the required role claim (the second con-
structor parameter), and when Demand is

called, the IsInRole method of the current principal is called. An
exception is thrown if the claim is not found:

PrincipalPermission p =
 new PrincipalPermission("", "Administrators");
p.Demand();

Th is approach is useful for rejecting a request with an exception,
when the appropriate roles aren’t present.

It’s also useful to centralize authorization checks common to
all requested resources. Sometimes, if you have an access control
policy—for example, rules stored in a database—you can use a
central component to read those rules to control access to features
and functionality. For this, WIF supplies a ClaimsAuthorization-
Manager component that you can extend. Recall from my previous
article that you can confi gure this type of custom component in
the identity model section:

<microsoft.identityModel>
 <service>
 <!--other settings-->
 <claimsAuthorizationManager
 type="CustomClaimsAuthorizationManager"/>
 </service>
</microsoft.identityModel>

Figure 7 illustrates a custom ClaimsAuthorizationManager
that verifi es the presence of the name claim and whether the
requested resource is within the AdminsOnly directory requires
the Administrators role claim.

The CustomClaimsAuthorizationManager overrides Check-
Access to provide this functionality. Th is method supplies an Autho-
rizationContext parameter, which provides information about the
request action (for passive federation this is an HTTP verb such as

Figure 6 Primary Sign-In Request and Response Parameters Involved in Passive
Federation Requests

Sign-In Request

RequestedSecurityToken

SAML 1.1 Token

Signature

Subject Confirmation

Token Lifetime

Attributes
(Claims = name,role)

HTTP GET
wa=wsignin1.0
wtrealm=[Uri]
whr=[Uri]
wreply=[Uri]
wctx=[context]

HTTP POST
wresult=RSTR

wctx=[context]

Web Site (RP) IP-STS (IdP)

Browser
(Requester)

12

Role-based security in the
.NET Framework expects that
a security principal is attached

to each thread.

DynamicPDF Generator v6.0 for .NET

ceTe Software has been delivering quality software applications and components to our customers for over 10 years. Our
DynamicPDF product line has proven our commitment to delivering innovative software components and our ability to
respond to the changing needs of software developers. We back our products with a first class support team trained to
provide timely, accurate and thorough responses to any support needs.

 Easy-to-use Highly efficient
 Industry leading support Huge feature set

DynamicPDF…Proven .NET Components for Real-Time PDFs

Layout reports in DynamicPDF Designer with its Visual Studio look and feel.

.

Untitled-1 1 3/15/10 11:50 AM

www.cete.com

msdn magazine30 Federated Identity

GET or POST), the requested resource (a URI), and the Claims-
Principal, which is not yet attached to the request thread.

Claims Transformation
Oft en, the claims issued by the IP-STS, although useful for describing the
authenticated user, are not relevant to the authorization requirements
of the RP. It isn’t the IdP’s job to know what type of roles, permissions
or other fi ne-grained artifact is necessary for authorization at each RP.
It’s the IdP’s job to grant claims that are relevant to the identity provider
domain, claims that the IdP can assert about the authenticated user.

As such, the RP may need to transform claims from the IP-STS
into something more relevant for authorization. Th is implies that
the RP may map the user identity (perhaps by user name or UPN)
to a set of RP claims. Assuming the IP-STS grants default role
claims, Figure 8 lists a possible set of permission claims that the
RP could issue based on each incoming role claim. Th e permission
claim type may be a custom claim type defi ned by the RP such as:

urn:ClaimsAwareWebSite/2010/01/claims/permission

A good place to transform incoming IP-STS claims is with a
custom ClaimsAuthenticationManager. You can install a custom
ClaimsAuthenticationManager by adding the following to the
microsoft .identityModel section:

<microsoft.identityModel>
 <service>
 <!--other settings-->
 <claimsAuthenticationManager
 type="CustomClaimsAuthenticationManager"/>
 </service>
</microsoft.identityModel>

Figure 9 shows a sample CustomClaimsAuthenticationMan-
ager that transforms incoming role claims granted by the IP-STS
into permission claims relevant to the RP.

For IsInRole checks (as described earlier) to work, you must
provide the permission claim type as the role claim type. In
Figure 9, this is specifi ed when the ClaimsIdentity is constructed
because the RP is creating the ClaimsIdentity.

In the case where incoming SAML tokens are the source of
claims, you can provide the role claims type to the SecurityToken-
Handler. Th e following illustrates how to declaratively confi gure
the Saml11SecurityTokenHandler to use the permission claim type
as the role claim type:

<microsoft.identityModel>
 <service>
 <!--other settings-->
 <securityTokenHandlers>
 <remove type="Microsoft.IdentityModel.Tokens.Saml11.
Saml11SecurityTokenHandler, Microsoft.IdentityModel, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>
 <add type="Microsoft.IdentityModel.Tokens.Saml11.
Saml11SecurityTokenHandler, Microsoft.IdentityModel, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35">
 <samlSecurityTokenRequirement >
 <roleClaimType
 value= "urn:ClaimsAwareWebSite/2010/01/claims/permission"/>
 </samlSecurityTokenRequirement>
 </add>
 </securityTokenHandlers>
 </service>
</microsoft.identityModel>

SAML token handlers have a samlSecurityTokenRequirement
section where you can provide a setting for the name and role claim
type, along with other settings related to certifi cate validation and
Windows tokens.

Home Realm Discovery
So far, I have focused on a simple federation scenario with a single
IP-STS. The assumption is that the RP will always redirect to a
particular IP-STS to authenticate users.

In the world of federation, however, the RP may trust multiple
token issuers from several domains. A new challenge presents
itself in this case because the RP must decide which IP-STS should
authenticate users requesting access to resources. Th e domain to
which users authenticate is known as the user’s home realm, and
thus this process is called home realm discovery.

Th ere are a number of mechanisms an application may use for
home realm discovery:

• As in the current example, the home realm is known in advanced
and so requests are always redirected to a particular IP-STS.

• Users may browse to the RP from another portal, which
can provide a query string to indicate the home realm for users
from that portal.

• The RP may require that users land on a particular entry
page for each home realm. Th e landing page could assume a
particular home realm.

• Th e RP may be able to determine the home realm by the IP
address of the request or some other heuristic.

• If the RP can’t determine the home realm from one of the afore-
mentioned techniques, it can present a UI where the user can
select the home realm or provide information that helps the
RP determine this.

Role Claim Permission Claims
Administrators Create, Read, Update, Delete
Users Create, Read, Update
Guest Read

Figure 8 Transforming Role Claims to Permission Claims at the RP

public class CustomClaimsAuthorizationManager:
 ClaimsAuthorizationManager {

 public CustomClaimsAuthorizationManager()
 { }

 public override bool CheckAccess(
 AuthorizationContext context) {

 ClaimsIdentity claimsIdentity =
 context.Principal.Identity as ClaimsIdentity;
 if (claimsIdentity.Claims.Where(
 x => x.ClaimType == ClaimTypes.Name).Count() <= 0)
 throw new SecurityException("Access is denied.");

 IEnumerable<Claim> resourceClaims =
 context.Resource.Where(x=>x.ClaimType==ClaimTypes.Name);
 if (resourceClaims.Count() > 0) {
 foreach (Claim c in resourceClaims) {
 if (c.Value.Contains("\AdminOnly") &&
 !context.Principal.IsInRole("Administrators"))
 throw new SecurityException("Access is denied.");
 }
 }

 return true;
 }
}

Figure 7 Custom ClaimsAuthorizationManager Implementation

(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/08

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

ContourCube from $900.00
OLAP component for interactive reporting and data analysis.

BEST SELLER

BEST SELLER TX Text Control .NET and .NET Server from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts from $195.02
Interactive and animated charts for ASP and ASP.NET apps.

BEST SELLER

BEST SELLER LEADTOOLS Recognition SDK from $3,595.50
Add robust 32/64 bit document imaging & recognition functionality into your applications.

BEST SELLER

Untitled-1 1 7/6/10 2:53 PM

http://www.componentsource.com

msdn magazine32 Federated Identity

• If the RP supports information cards, the selected card can
drive authentication to the appropriate home realm using
active federation.

• Th e WS-Federation briefl y describes how one might imple-
ment a discovery service for resolving the home realm, but
there isn’t a well-defi ned specifi cation for this.
No matter how the home realm is discovered, the goal is to

redirect the user to authenticate with the correct IP-STS. Th ere are

a few possible scenarios here. In one scenario, the RP may need
to dynamically set the issuer URI so that the sign-in request is
sent to the correct IP-STS. In this case, the RP must list all trusted
IP-STS in the trustedIssuers section, for example:

<trustedIssuers>
 <add thumbprint="6b887123330ae8d26c3e2ea3bb7a489fd609a076"
 name="IP1" />
 <add thumbprint="d5bf17e2bf84cf2b35a86ea967ebab838d3d0747"
 name="IP2" />
</trustedIssuers>

In addition, you can override the RedirectingToIdentityProvider
event exposed by the FAM and, using relevant heuristics, deter-
mine the correct URI for the STS. To do this, place the following
code in the Global.asax implementation:

void WSFederationAuthenticationModule_RedirectingToIdentityProvider(
 object sender, RedirectingToIdentityProviderEventArgs e) {
 if (e.SignInRequestMessage.RequestUrl.Contains(
 "IP1RealmEntry.aspx")) {
 e.SignInRequestMessage.BaseUri =
 new Uri("https://localhost/IP1/STS/Default.aspx");
 }
 else if (e.SignInRequestMessage.RequestUrl.Contains(
 "IP2RealmEntry.aspx")) {
 e.SignInRequestMessage.BaseUri = new Uri(
 "https://localhost/IP2/STS/Default.aspx");
 }
}

Th e other scenario involves passing the home realm parameter
(whr) with the sign-in request to the primary STS. Th e RP may,
for example, have a Resource STS (R-STS or RP-STS) responsible
for claims transformation. The RP-STS doesn’t authenticate
users (it’s not an IdP), but it has trust relationships with one or
more other IdPs.

Th e RP has a trust relationship with the RP-STS, and will always
respect tokens issued by the RP-STS. Th e RP-STS is responsible
for redirecting to the correct IdP for each request. Th e RP-STS
can determine the correct IP-STS to redirect to as in the code
just described, but another option is for the RP to supply infor-
mation about the home realm, passing this in the home realm
parameter to the RP-STS. In this case, the RP dynamically sets
the home realm parameter:

void WSFederationAuthenticationModule_RedirectingToIdentityProvider(
 object sender, RedirectingToIdentityProviderEventArgs e) {
 if (e.SignInRequestMessage.RequestUrl.Contains(
 "IP1RealmEntry.aspx")) {
 e.SignInRequestMessage.HomeRealm =
 "https://localhost/IP1/STS/Default.aspx";
 }
 else if (e.SignInRequestMessage.RequestUrl.Contains(
 "IP2RealmEntry.aspx")) {
 e.SignInRequestMessage.HomeRealm =
 "https://localhost/IP2/STS/Default.aspx";
 }
}

Th e RP-STS uses this parameter to redirect to the correct IP-STS
and subsequently transforms claims from the IP-STS into claims
relevant to the RP.

public class CustomClaimsAuthenticationManager:
 ClaimsAuthenticationManager {

 public CustomClaimsAuthenticationManager() { }

 public override IClaimsPrincipal Authenticate(
 string resourceName, IClaimsPrincipal incomingPrincipal) {

 IClaimsPrincipal cp = incomingPrincipal;
 ClaimsIdentityCollection claimsIds =
 new ClaimsIdentityCollection();

 if (incomingPrincipal != null &&
 incomingPrincipal.Identity.IsAuthenticated == true) {

 ClaimsIdentity newClaimsId = new ClaimsIdentity(
 "CustomClaimsAuthenticationManager", ClaimTypes.Name,
 "urn:ClaimsAwareWebSite/2010/01/claims/permission");

 ClaimsIdentity claimsId =
 incomingPrincipal.Identity as ClaimsIdentity;
 foreach (Claim c in claimsId.Claims)
 newClaimsId.Claims.Add(new Claim(
 c.ClaimType, c.Value, c.ValueType,
 "CustomClaimsAuthenticationManager", c.Issuer));

 if (incomingPrincipal.IsInRole("Administrators")) {
 newClaimsId.Claims.Add(new Claim(
 "urn:ClaimsAwareWebSite/2010/01/claims/permission",
 "Create"));
 newClaimsId.Claims.Add(new Claim(
 "urn:ClaimsAwareWebSite/2010/01/claims/permission",
 "Read"));
 newClaimsId.Claims.Add(new Claim(
 "urn:ClaimsAwareWebSite/2010/01/claims/permission",
 "Update"));
 newClaimsId.Claims.Add(new Claim(
 "urn:ClaimsAwareWebSite/2010/01/claims/permission",
 "Delete"));
 }

 else if (incomingPrincipal.IsInRole("Users")) {
 newClaimsId.Claims.Add(new Claim(
 "urn:ClaimsAwareWebSite/2010/01/claims/permission",
 "Create"));
 newClaimsId.Claims.Add(new Claim(
 "urn:ClaimsAwareWebSite/2010/01/claims/permission",
 "Read"));
 newClaimsId.Claims.Add(new Claim(
 "urn:ClaimsAwareWebSite/2010/01/claims/permission",
 "Update"));
 }

 else {
 newClaimsId.Claims.Add(new Claim(
 "urn:ClaimsAwareWebSite/2010/01/claims/permission",
 "Read"));
 }

 claimsIds.Add(newClaimsId);
 cp = new ClaimsPrincipal(claimsIds);
 }

 return cp;
 }
}

Figure 9 Custom Claims Transformation at the RP

The domain to which users
authenticate is known as the

user’s home realm.

0810msdn_GrapeCity_Insert.indd 1 7/14/10 12:30 PM

http://GCPowerTools.com/ActNow

0810msdn_GrapeCity_Insert.indd 2 7/14/10 12:31 PM

http://GCPowerTools.com/ActNow

33August 2010msdnmagazine.com

Single Sign-On and Single Sign-Out
Single sign-on and single sign-out are important parts of federation.
Single sign-on is a feature that allows authenticated users to access
multiple RP applications while authenticating only once. Single
sign-out, as it implies, facilitates sign-out from all RP applications
and any relevant STS chain with a single request.

In a simple federation scenario like that shown in Figure 1, the
user authenticates to the IP-STS and is authorized at the RP based
on the issued security token. Post-authentication, the user has a
session cookie for the STS and another for the RP. Now, if the user
browses to another RP, she will be redirected to the IP-STS for
authentication—assuming both RP applications trust the same
IP-STS. Because the user already has a session with the IP-STS,
the STS will issue a token for the second RP without prompting
for credentials. Th e user now has access to the second RP and has
a new session cookie for the second RP.

As I’ve discussed, WIF supplies the SAM to write out the
session cookie for authenticated users. By default, this session
cookie is issued for the relative application address for the domain,
and its base name is FedAuth. Because federated session cookies
can be large, the token is usually split into two (or more) cookies:
FedAuth, FedAuth1, and so on.

If you are hosting more than one application at the same domain,
as part of the federation scenario, the default behavior would be
that the browser has a FedAuth cookie for each RP (see Figure 10).
Th e browser sends only those cookies associated with the domain
and path for the request.

This default behavior is generally fine, but sometimes it’s
necessary to supply a unique, per-application name for each
session cookie—in particular if they’re hosted on the same domain.
Or multiple applications at the same domain may share a session
cookie, in which case you can set the cookie path to “/”.

If the session cookie expires, the browser will remove it from the
cache and the user will be redirected once again to the STS for au-
thentication. Separately, if the issued token associated with the ses-
sion cookie has expired, WIF will redirect to the STS for a new token.

Sign-out is more explicit—usually driven by the user. Single
sign-out is an optional feature of the WS-Federation specifi cation
that suggests the STS should also notify other RP applications for
which it has issued tokens of the sign-out request. Th is way, the
session cookie is removed for all applications the user browsed
to during the single sign-on session. In a more complex scenario,
where multiple STSs are involved, the primary STS receiving the
sign-out request should also notify other STSs to do the same.

For the purpose of this discussion, I will focus on what you
should do at the RP to facilitate federated single sign-out. You can
place the FederatedPassiveSignInStatus control on any page from
which you want to support sign-in and sign-out and the control
will automatically indicate its state. Once signed-in, the control
presents a link, button or image for signing out.

When you click the control, it will handle sign-out according to
the SignOutAction property, which can be Refresh, Redirect, Redi-
rectToLoginPage or FederatedPassiveSignOut. Th e fi rst three delete
the session cookie for the application, but do not notify the STS of
the sign-out request. When you select the FederatedPassiveSignOut
setting, the control will call SignOut on WSFederationAuthentica-
tionModule. Th is ensures that federated session cookies are removed
for the application. In addition, a sign-out request is sent to the STS:

GET https://localhost/IP1/STS?wa=wsignout1.0

If you aren’t using the FederatedPassiveSignInStatus control, you
can directly call WSFederationAuthenticationModule.SignOut to
trigger a redirect to the STS with the sign-out request.

Single sign-out implies that the user is signed out of all
applications she signed into with her federated identity. If the STS
supports this, it should hold a list of RP applications the user logged
in to during her session, and issue a clean-up request to each RP
when federated sign-out is requested:

GET https://localhost/ClaimsAwareWebSite?wa=wsignoutcleanup1.0

In more complex scenarios, the same clean-up request should be
sent to any other STS involved in the federated session. To that end,
the STS would have to have prior knowledge of the clean-up URI for
each RP and STS. To support single sign-out, your RPs should be able
to process these clean-up requests. Both the FAM and the Federated-
PassiveSignInStatus control support this. If you’re using the FAM, the
clean-up request can be posted to any URI at the RP and the FAM will
process the request and clean up any session cookies. If you’re using
the FederatedPassiveSignInStatus control, the clean-up request must
be posted to a page that contains the control.

In fact, the WS-Federation specifi cation does not detail how to
implement single sign-out and clean-up behavior beyond the rec-
ommended query strings and fl ow of communication. It’s not easy
to guarantee single sign-out will be eff ective across all federation
partners as a result—but if you own the environment and want to
achieve this goal, it’s indeed possible.

MICHELE LEROUX BUSTAMANTE is chief architect at IDesign (idesign.net) and
chief security architect at BiTKOO (bitkoo.com). She’s also a Microsoft regional
director for San Diego and a Microsoft MVP for Connected Systems. Visit her
blog at michelelerouxbustamante.com.

THANKS to the following technical expert for reviewing this article:
Govind Ramanathan

Figure 10 Session Cookies Associated with Each RP and the STS

RP1 IP-STS RP2

Set Cookie: FedAuth
Set Cookie: FedAuth1 Set Cookie: .ASPXAUTH Set Cookie: FedAuth

Set Cookie: FedAuth1
Set Cookie: FedAuth
Set Cookie: FedAuth1 Set Cookie: .ASPXAUTH Set Cookie: FedAuth

Set Cookie: FedAuth1

Browser

Single sign-on and single
sign-out are important

parts of federation.

www.msdnmagazine.com
http://michelelerouxbustamante.com
http://idesign.net
http://bitkoo.com

Untitled-1 1 7/12/10 2:41 PM

www.aspose.com

Untitled-1 1 7/12/10 2:42 PM

www.aspose.com

msdn magazine36

W IN DOWS A ZUR E

Tips for Migrating Your
Applications to the Cloud

One of our favorite aspects of technology is that it
is constantly evolving and continually changing—there’s always
more to learn! As students and followers of cloud computing, we’re
tremendously excited about the Windows Azure platform. As tech-
nical evangelists for Microsoft , we have the great fortune to work
with customers in the adoption of new technology. As a result, we’ve
seen a host of diff erent ways in which to apply Windows Azure.

Early on, George had a personal reason for wanting to use
Windows Azure. George is involved in many community activities,
and the ability to quickly spin up temporary applications and spin
them down when no longer needed proved tremendously useful.
For developers with experience writing Microsoft .NET Framework
code, there’s hardly any learning curve—build your application,
deploy it and run it.

Because of the interest many of our corporate customers express-
ed in Windows Azure, we decided to hold a set of Windows Azure

George Huey and Wade Wegner

Migration Labs at the Microsoft Technology Centers. Th e intent was
for customers to bring their applications into the lab and actually mi-
grate them to Windows Azure. Th rough this process, every single
customer was able to successfully migrate its Web applications and
SQL databases to the Windows Azure platform.

We weren’t surprised—we already had plenty of experience with
Windows Azure and were confi dent our customers would meet with
success. But in the course of helping the lab attendees migrate their
various applications, we learned quite a few tricks that help migrations
go smoothly. In this article, we’ll share some of those tips and tricks
we discovered working with customers on real-world migrations.

Migration Basics
When deciding to migrate an application from on-premises to
the cloud (or to create a new application on a cloud service),
there are several aspects of the application architecture that need
to be considered:

• Application management
• Application security
• Application compatibility
• Database compatibility

Th e questions and concerns we heard most frequently during
the migration labs tended to revolve around these four areas. As a
result, we’ll focus our discussion around these topics.

One misconception we oft en encountered was the idea that, by
using Windows Azure, developers don’t have to worry about common

This article discusses:
• Planning for security

• Application compatibility

• Database compatibility

• Migrating your data to SQL Azure

Technologies discussed:
Windows Azure, SQL Azure, SQL Server

37August 2010msdnmagazine.com

architectural patterns regarding issues such as availability, scalabil-
ity, reliability and security when moving to or creating applications
in the cloud. Th e truth is that architectural patterns in the context of
distributed computing are equally valid for applications architected
for on-premises deployment or Windows Azure deployment.

Application Management
No matter whether your application is running on-premises or in
the cloud, the operations management team needs data that will
enable them to make eff ective decisions. Th e issues you’ll need
to consider include service-level agreements, capacity planning,
customer billing, auditing, application monitoring, traffi c analysis
and managing costs (knowing when to scale up or down). Th ese need
to be resolved before the application is deployed to production—
and for best results, oft en before the application is created.

Th ese were just some of the issues that were considered during
the Windows Azure Migration Labs. By utilizing the Windows
Azure Diagnostics API provided in the Windows Azure SDK
(Microsoft .WindowsAzure.Diagnostics), customers were able to
expose application crash dumps, failed request tracing, Windows
event logs, IIS logs, Windows Azure logs and performance counters.

Th is is much more straightforward than you might expect.
You tell the diagnostic monitor which types of diagnostic infor-
mation to collect (see Figure 1 for an example) and set the data
transfer schedule for the information to be transferred to a central
Windows Azure storage location.

For more information about Windows Azure diagnostics,
see the article “Cloud Diagnostics: Take Control of Logging and
Tracing in Windows Azure” by Mike Kelley, in the June 2010 issue
of MSDN Magazine (msdn.microsoft.com/magazine/ff714589).

Application Security
A top concern of any organization moving to the cloud is secu-
rity. Most companies have invested a substantial amount of time,
money and engineering into designing and developing a security
model and it’s important that they’re able to leverage existing invest-
ments such as identity stores, single sign-on solutions and fi rewalls.

While there are many ways for a company to go about securing
cloud-based applications, an increasingly popular pattern is a
claims-based approach.

Th is process is shown in Figure 2. In order for an application to
be able to process security tokens from a Security Token Service
(STS), a trust relationship must be established between the STS
and the application.

Th e access control rules (step 1) are defi ned to meet business
requirements (who can log into the application). Th ese rules are
stored with the STS. When a user tries to access the application,
she’s redirected to the STS so she can receive a valid token (step 2).
Th e user provides a set of input claims (for example, a Live ID or
a domain account) to the STS for authentication purposes. Th e
STS will map these claims to a set of output claims once the user
is authenticated (step 3). In step 4, the output claims are packaged
into a Security Assertions Markup Language (SAML) token,
signed by the STS, and returned to the user for forwarding to the
application (the relying partner in step 5). The application

confi rms that the SAML token is valid and from the trusted STS (step
6). Once the token is validated, the application checks the claims in
the token and sends back the appropriate response (step 7). Pretty
simple! The beauty of this approach is that it fits in extremely well
within the ASP.NET provider model. Th e process of making your
ASP.NET application claims-aware is really quite simple.

In order to make life easier for the developer, Microsoft intro-
duced the Windows Identity Foundation (WIF) SDK. Th is does all
of the grunt work of parsing SAML 2.0 tokens, letting the developer
concentrate on his application without having to worry about the
underlying security technology.

Th e fi rst thing to do is download WIF (microsoft.com/downloads/
details.aspx?FamilyID=eb9c345f-e830-40b8-a5fe-ae7a864c4d76) and the WIF
SDK (microsoft.com/downloads/details.aspx?familyid=C148B2DF-C7AF-46BB-9162-
2C9422208504). Once these are installed, you’ll have what you need
to make your application claims-aware.

In the Visual Studio solution with your ASP.NET Web appli-
cation, right-click and select Add | Add New Web Site. Select the

public class WebRole : RoleEntryPoint {
 public override bool OnStart() {
 DiagnosticMonitorConfiguration config =
 DiagnosticMonitor.GetDefaultInitialConfiguration();

 // To see which counters you can capture, type
 // "typeperf.exe /q" in a command window.

 // Capture CPU utilization.
 PerformanceCounterConfiguration procUtilization =
 new PerformanceCounterConfiguration();
 procUtilization.CounterSpecifier =
 @"Processor(*)\% Processor Time";
 procUtilization.SampleRate =
 System.TimeSpan.FromSeconds(30.0);
 config.PerformanceCounters.DataSources.Add(procUtilization);

 // Monitor available memory.
 PerformanceCounterConfiguration procAvailMemory =
 new PerformanceCounterConfiguration();
 procAvailMemory.CounterSpecifier = @"\Memory\Avail MBytes";
 procAvailMemory.SampleRate =
 System.TimeSpan.FromSeconds(30.0);
 config.PerformanceCounters.DataSources.Add(procAvailMemory);

 // Add event collection from Windows Event Log
 // (System and Application event logs).
 config.WindowsEventLog.DataSources.Add("System!*");
 config.WindowsEventLog.DataSources.Add("Application!*");

 // All of the information monitored so far is being stored locally.
 // Tell diagnostic monitor what schedule period should be used when
 // transfering the events.
 config.Directories.ScheduledTransferPeriod =
 TimeSpan.FromMinutes(1);
 config.Logs.ScheduledTransferPeriod =
 TimeSpan.FromMinutes(1);

 // Start the diagnostics monitor.
 DiagnosticMonitor.Start("DiagnosticsConnectionString", config);

 // True gives full crash dumps. False gives small crash dumps.
 CrashDumps.EnableCollection(false);

 System.Diagnostics.Trace.TraceInformation("OnStart Completed");

 RoleEnvironment.Changing += RoleEnvironmentChanging;

 return base.OnStart();
 }
...

Figure 1 Setting Up Diagnostics

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/ff714589
http://microsoft.com/downloads/details.aspx?FamilyID=eb9c345f-e830-40b8-a5fe-ae7a864c4d76
http://microsoft.com/downloads/details.aspx?FamilyID=eb9c345f-e830-40b8-a5fe-ae7a864c4d76
http://microsoft.com/downloads/details.aspx?familyid=C148B2DF-C7AF-46BB-9162-2C9422208504
http://microsoft.com/downloads/details.aspx?familyid=C148B2DF-C7AF-46BB-9162-2C9422208504

msdn magazine38 Windows Azure

ASP.NET Security Token Service Web Site template. This will
allow you to set up an STS for your development environment.

Once you have your STS created, you can add a reference to the
STS by right-clicking on your application and clicking “Add STS
reference.” Th is starts a wizard that walks you through the process
of establishing a relationship between your application and the STS.
Point to the application’s web.confi g fi le for your site and specify
the Application URI (see Figure 3).

In the next step, choose “Use an existing STS” and then specify
the location of the FederationMetadata.xml fi le in the STS project
(see Figure 4). Choose the defaults for the remainder of the process.

Take a look at your web.config file. You’ll see that the Fed-
Util.exe wizard changed a substantial amount of code. Th e most
important changes were made to the microsoft.identityModel
node of the web.confi g fi le. Here you’ll see references to your STS
project, along with the claim types expected by the application. To
ensure that your application is appropriately receiving
the claims back from your STS, put the following
code in your default.aspx page (note that you’ll have
to add a reference to the Microsoft.IdentityModel
from the WIF SDK):

IClaimsIdentity ici =
 (IClaimsIdentity)Thread.CurrentPrincipal.Identity;

foreach (Claim c in ici.Claims) {
 Response.Write(c.ClaimType + " - " + c.Value + "
");
}

When you next run your application, you will be
automatically redirected to your STS. By default, the
STS allows you to authenticate as “Adam Carter.” Just
click the Login button (you don’t need a password).

After the STS authenticates the login, you will
be redirected back to your Web application, along
with a SAML token needed for authentication.
Your application will accept the token and allow the
default.aspx page to run. Because the WIF modules
intercept your security credentials, you’re able to
cast the identity principal as an IClaimsIdentity, and,

consequently, you can extract the claims type and value out of the
identity object (see Figure 5).

Now that the Web application is claims-aware, it’s easy to adapt it
to your existing identity model. Simply update your confi guration
fi le so that it points to your production STS and ensure that you’ve
confi gured your application as a relying party. Additionally, you
can use this information to create a custom role provider so that
you can translate claims types into roles.

Th is is an extremely powerful technique, and will let you move
your applications to almost any environment—on-premises, the
cloud or even a partner datacenter—and still validate against your
identity stores through a publicly exposed STS.

Application Compatibility
Windows Azure is an application platform, so it’s important to
understand the types of applications suited to the Windows Azure
platform. While you have the ability to run native code and you
can run applications with full trust, you must package your appli-
cation before deploying it to the cloud, which means it’s important
to evaluate your application to see if it’s a good fi t.

Here’s an example. One of our customers at the Windows
Azure Migration Labs had an existing application consisting of
a SQL Server 2005 back end, a LINQ to SQL data-access layer
and a front end using both MVC Framework 1.0 and ASP.NET
3.5 SP1 running on IIS.

Th e application sat in a Web farm with a load balancer routing
the traffi c. Th e application itself was stateless so it didn’t matter to
which server the user was ultimately directed.

An interesting detail about this application was that the MVC
application manages more than 220 separate Web sites. The
company used a combination of MVC routing and information
stored in the SQL Server database to determine which content
should be loaded for each Web site. Th ere were fi ve Web servers
behind the load balancer serving more than 4 million page visits
per month for the collection of Web sites.

Figure 3 Starting the Federation Utility Wizard

Figure 2 Claims-Based Identity in an Application Context

Security Token
Service (STS)

THE ACCESS CONTROL PATTERN

User
(Application)

Your App
(Relying Party)

5. Send token

7. Get response

Tru
st

ex
ch

an
ge

d;

sec
ret

s,
ce

rts

2. Send token

(input claims; e.g. identity)
4. Return token

(output claims from 3)

6. Check
claims

3. Map input claims
to output claims based on
access control rules

1. Define access
control rules

Learn more:

Imagine...
...an intranet employees want to use

Copyright © 2010 Ektron, Inc. All rights reserved. | http://www.ektron.com | 1-877-4-WEB-CMS

http://www.ektron.com/intranet

Why is user adoption
such a large hurdle for intranets?
eIntranet overcomes this hurdle by transforming the user
experience. Employees connect with the right people
and content instantly. Information fi nds them, no matter
where they go.

 Collaboration – Complete projects faster in collaborative
groupspaces with powerful communication and sharing tools

 Timeline and Social Navigation – Find content and collateral
based on when it was created and who is using it

 Easy to deploy, customize and extend – Integrate with business
infrastructures and extend the functionality to meet unique needs

 Mobile engagement – Engage employees on the go, delivering
updates via SMS alerts, e-mail or the eIntranet Mobile App

Untitled-1 1 6/11/10 11:48 AM

http://www.ektron.com
http://www.ektron.com/intranet

msdn magazine40 Windows Azure

Th e primary challenge the company faced was the length of time
it took to provision a new Web server for its environment: months!
When the company considered migrating the application to
Windows Azure, its primary motivation was saving a tremen-
dous amount of time. Scaling out would become a confi guration
detail rather than a quarter-long nightmare.

The migration process to Windows Azure is actually quite
straightforward. Here’s the generic process we used:
1. Verify that the application is running correctly in the

development environment.
2. Migrate the SQL Server back end to SQL Azure using the SQL

Azure Migration Wizard (we’ll discuss the details later in this article).
3. Update the local application to work with the SQL Azure

database. Th is was as simple as changing the connection string.
4. Convert the application into a Web Role project.
5. Validate that the application runs on the local develop ment

fabric.
6. Package up the Web Role and deploy it to Windows Azure.
7. Validate that the application runs from Windows Azure.

In order to reduce the size of the Web role package, we ended
up pulling all the images and CSS fi les out of their content folders
and placing them in Windows Azure blob storage.

Because all the content was in Windows Azure blob storage, GGP
was able to leverage the Windows Azure content-delivery network
(CDN). Th is allowed caches of data to sit closer to the end users.

For an overview of development, testing and deployment for
Windows Azure, see the article “Windows Azure: Developing and
Deploying Windows Azure Apps in Visual Studio 2010” in the April
2010 issue of MSDN Magazine (msdn.microsoft.com/magazine/ee336122).
For a deeper look at storage issues, see “Cloud Storage: Fueling Your
Application’s Engine with Windows Azure Storage” in the January
2010 issue (msdn.microsoft.com/magazine/ee335721).

Database Compatibility
When SQL Azure fi rst came out, we migrated a couple of our SQL
Server databases to it. Along with our experience hold-
ing the Windows Azure Migration Labs, we learned a
few important things you should consider before em-
barking on the migration process.

First, it’s important to check the size of your data-
base and how it fi ts within the database allowances
used by SQL Azure. Currently, SQL Azure off ers Web
Editions in 1GB and 5GB sizes and Business Editions in
10, 20, 30, 40 and 50GB sizes. You need to check your
database and make sure it isn’t larger than 50GB. If
your database is larger than 50GB, then you’ll need
to examine your database and see if it can be broken
down into smaller databases (in other words, sharding
your database) or moving large data to blobs.

SQL Azure supports only SQL Authentication, so
you’ll need to consider whether changes are needed to
the authentication scheme used by your application.
On top of that, SQL Azure has a resource throttle that
limits connection time. We’ll discuss both of these
issues a little later in the article.

Th e version of your SQL Server database is another item you
need to take into consideration before migrating your database to
SQL Azure. SQL Azure is built on top of SQL Server 2008. Th is
means that if you want to migrate your SQL Server 2000 or SQL
Server 2005 databases to SQL Azure, you need to make sure your
databases are compatible with SQL Server 2008. For example,
earlier versions of SQL Server support the old style TSQL joins
such as *= and =* operators in the WHERE clause. SQL Server
2008 only supports ANSI style joins. For example:

SELECT ProcessClassTypeName
 , bpa.PropertyMetadata AS PropertyMetadataOverride
 , act.PropertyMetadata AS PropertyMetadataDefault
 FROM dbo.BusinessProcessActivities bpa
 LEFT JOIN dbo.Activities act ON act.Activity_ID = bpa.Activity_ID

When the compatibility level of the database is set to SQL Server
2005 or SQL Server 2008, the old style TSQL joins (*= and =*) are
not supported. Th is is only one example of compatibility issues
you’ll fi nd when migrating to SQL Server 2008.

It’s beyond the scope of this article to discuss in detail the migration
process to SQL Server 2008. If you’re interested in database migration
best practices, please check out the “Ultimate guide for upgrading to
SQL Server 2008” (microsoft.com/downloads/details.aspx?FamilyID=66d3e6f5-6902-
4fdd-af75-9975aea5bea7). Th ere’s also a wealth of resources available from
the MSDN SQL Server developer center (msdn.microsoft.com/sqlserver).

You’ll find the best path is to migrate from a SQL Server
2008- compatible database to SQL Azure. Th is means that if you
want to migrate your SQL Server 2000 or 2005 database to SQL
Azure, you can go through an on-premises upgrade to SQL Server
2008 before you migrate to SQL Azure.

Microsoft off ers a great tool called SQL Server Upgrade Advisor
(microsoft.com/downloads/details.aspx?FamilyId=F5A6C5E9-4CD9-4E42-A21C-
7291E7F0F852) that analyzes instances of SQL Server 2000 and SQL
Server 2005 to identify features and confi guration changes that
might aff ect your upgrade. It provides links to documentation that
describes each identifi ed issue and how to resolve it. Once you’ve
verifi ed that your database is compatible with SQL Server 2008,
you can fast-forward to migrating the database to SQL Azure.

Figure 4 Confi guring the STS

http://microsoft.com/downloads/details.aspx?FamilyID=66d3e6f5-6902-4fdd-af75-9975aea5bea7
http://microsoft.com/downloads/details.aspx?FamilyID=66d3e6f5-6902-4fdd-af75-9975aea5bea7
http://microsoft.com/downloads/details.aspx?FamilyId=F5A6C5E9-4CD9-4E42-A21C-7291E7F0F852
http://microsoft.com/downloads/details.aspx?FamilyId=F5A6C5E9-4CD9-4E42-A21C-7291E7F0F852
http://msdn.microsoft.com/magazine/ee336122
http://msdn.microsoft.com/magazine/ee335721

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

At Infragistics, we make sure our NetAdvantage for
.NET controls make every part of your User Interface
the very best it can be. That’s why we’ve tested and
re-tested to make sure our Data Grids are the very
fastest grids on the market and our Data Charts
outperform any you’ve ever experienced. Use our
controls and not only will you get the fastest load
times, but your apps will always look good too. Fast
and good-looking…that’s a killer app. Try them for
yourself at infragistics.com/wow.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Fast Data Chart

WPF Grid

Silverlight Grid

ASP.NET Grid

Untitled-12 1 4/9/10 2:27 PM

www.infragistics.com/wow

msdn magazine42 Windows Azure

Th at said, you also need to be aware that SQL Azure doesn’t sup-
port 100 percent of new SQL Server 2008 functionality. For example,
fi lestream is not currently supported in SQL Azure. Th ere are a few ways
to check for compatibility issues when going to SQL Azure.

Th e blunt force approach is to simply ride the wild side—run
your TSQL scripts against SQL Azure and look for errors. Cor-
rect any errors that occur and run again. Repeat until successful.
Perhaps not the best use of your time, but that’s for you to decide.

You can use the SQL Server Management Studio script gen-
erator wizard to generate your TSQL script. Note that when you
walk through the wizard, be sure to select the advanced scripting
option and select SQL Azure Database for the “Script for the da-
tabase engine type” property. If you miss this step, SQL Server will
generate TSQL that’s not compatible with SQL Azure.

Another option is to download SQL Azure Migration Wizard
(SQLAzureMW) from sqlazuremw.codeplex.com. SQLAzureMW will
do its best to identify compatibility issues, fi x them where possible
and notify you of all issues it knows about.

To better understand general guidelines and limitations to SQL
Azure, see msdn.microsoft.com/library/ee336245.

Once you have your database schema (tables, views, stored
procedures and so on) in SQL Azure, you’ll need to upload your
data. Here are the most common ways:

• SQL Server Integration Services
• Bulk Copy Program (BCP)
• SqlBulkCopy for data migration
• SQL Azure Migration Wizard (which uses BCP in the background)

Using SQLAzureMW
George created SQLAzureMW to help our customers with the SQL
database migration process. Figure 6 shows SQLAzureMW in action.

SQLAzureMW analyzes SQL Server databases for compatibility
issues with SQL Azure. It also allows you to migrate database
objects and data from the source database to SQL Azure.

By using SQLAzureMW, database developers can get an idea
of how much work will be required in migrating their databases
to SQL Azure. If SQLAzureMW fl ags a lot of compatibility issues
with a SQL Server 2000 or 2005 database, we recommend upgrad-
ing your database to SQL Server 2008 fi rst, then migrating to SQL
Azure. Th e process of migrating to SQL Server 2008 is well-docu-
mented and there’s a lot of guidance and expertise you can leverage.
For more information on migrating to SQL Server 2008, see the

SQL Server 2008 Upgrade Technical Reference Guide (microsoft.com/
downloads/details.aspx?FamilyID=66d3e6f5-6902-4fdd-af75-9975aea5bea7). Th ere’s
also a wealth of resources available from the MSDN SQL Server
developer center (msdn.microsoft.com/sqlserver).

Note that if you don’t have SQL Server 2008 R2, this doesn’t
stop you from going through the upgrade process. Just down-
load SQL Server 2008 R2 Express Edition and go through the
side-by-side upgrade process.

Other good sources for database developers to understand the
diff erences between SQL Server and SQL Azure—what’s compatible
and what’s not, and general guidance and limitations—include the
Transact-SQL Reference (SQL Azure Database) at msdn.microsoft.com/
library/ee336281 and the General Guidelines and Limitations (SQL
Azure Database) at msdn.microsoft.com/library/ee336245.

No matter whether you decide to upgrade to SQL Server 2008
fi rst or just migrate directly from SQL Server 2000 or 2005, you’ll
still need a way to analyze your database for compatibility issues
and generate SQL Azure-compatible SQL. Th is is where SQL-
AzureMW really helps out. Not only can SQLAzureMW analyze
the database, it will also analyze SQL Profi ler trace fi les when you
want to check dynamic SQL for compatibility issues.

During the migration labs, we were able to migrate all of the SQL
databases (SQL Server 2000 and SQL Server 2005) to SQL Azure with
little to no modifi cation. Th e two remaining issues that needed to be
addressed were authentication and SQL Azure resource throttling.

Th e authentication issue was due to the fact that SQL Azure sup-
ports only SQL Authentication, not Windows Authentication. In
the case of one customer, they had to modify their connection string
to refl ect username and password instead of a trusted connection.
For example, we started out with something like this:

<add key="ConStr"
 value="server=DbSvr;database=CRMDB;Trusted_Connection=yes" />
We simply changed the connection string to something like this:
<add key="ConStr"
 value="Server=avl6qnn22s.database.windows.net;Database=CRMDB;User
ID=WebSvrAdmin@avl6qnn22s;Password=password;Trusted_Connection=False;" />
To get more information on connecting to SQL Azure using ADO.NET, see
msdn.microsoft.com/library/ee336243.

Resource Throttling
Addressing SQL Azure resource throttling took a little more work for
some applications. For the applications that followed best practices
in getting a connection to a SQL database only when needed and at
the last possible second, doing all of the transactions in a quick and
effi cient manner and letting go of the connection as soon as possible,

SQL Azure throttling wasn’t an issue. On the other
hand, the applications that grabbed a connection to a
SQL database at startup and held onto the connection
for the life of the program, or for long periods of time,
had to be modifi ed to implement retry logic or refac-
tored to follow best practices and not hold resources.

One misconception we ran into a lot was that SQL
Azure would only disconnect your connection if the
connection sat idle for fi ve minutes. SQL Azure takes
into account several factors in determining when
to disconnect an application, including excessive
resource usage, long-running queries, long-running
single transactions and idle connections.Figure 5 The Claims Type and Value of an Identity Object

http://sqlazuremw.codeplex.com
http://msdn.microsoft.com/library/ee336245
http://microsoft.com/downloads/details.aspx?FamilyID=66d3e6f5-6902-4fdd-af75-9975aea5bea7
http://microsoft.com/downloads/details.aspx?FamilyID=66d3e6f5-6902-4fdd-af75-9975aea5bea7
http://msdn.microsoft.com/sqlserver
http://msdn.microsoft.com/library/ee336281
http://msdn.microsoft.com/library/ee336281
http://msdn.microsoft.com/library/ee336245

Untitled-5 1 6/7/10 12:05 PM

www.CodeFluentEntities.com/msdn
www.CodeFluentEntities.com
mailto:info@softfluent.com

msdn magazine44 Windows Azure

The SQL Azure team will continue to tweak the resource
throttling parameters, but the net effect is that the application
has to have retry logic built into it because SQL Azure will force
a disconnection on any application that exceeds its resource
utilization parameters.

In general, SQL Azure will provide specifi c error messages if it ever
throttles the connection. For a full list of errors, see msdn.micro soft.com/
library/ff394106.

If you have a high volume of small transactions, you should use
the following pattern:
1. Use the connection pool. Th e connection pool manager will

keep the connections open for you and there will be little to
no impact on performance for the application to open and
close connections.

2. Keep the connection for as small a duration as possible. Open the
connection, execute your transaction and close the connection.

3. Use the try-catch pattern around your database activity.
4. Catch the exceptions and retry the transaction, if appropriate.
5. Log your failures and exceptions to help facilitate problem

resolution. Make sure to get a UTC timestamp (or provide
time and time zone), the connection context ID and the
exception number.
SQLAzureMW is a good example of an application that had to

deal with resource throttling in SQL Azure. As we mentioned earlier,
SQLAzureMW can migrate an on-premises SQL database to SQL
Azure. If you’re migrating a database that has more than 1,000 tables,

1,500 stored procedures and millions of rows of data, it
could easily take longer than fi ve hours depending on
the actual amount of data that needs to be uploaded.

In this scenario, SQLAzureMW would have well
over 2,500 TSQL statements to execute against SQL
Azure, as well as the data to migrate via BCP. Executing
more than 2,500 TSQL statements in a single statement
(or transaction) would more than likely exceed SQL
Azure resource throttling parameters, thus resulting
in a terminated connection.

As a solution, SQLAzureMW breaks down the trans-
actions into smaller bunches and runs until SQL Azure
terminates the connection. When SQL AzureMW
encounters the connection error, it reestablishes a new
connection with SQL Azure and picks up processing
aft er the last successful command. In the same man-
ner, when using BCP to upload the data to SQL Azure,
SQLAzureMW chunks the data into smaller sections
and uses retry logic to fi gure out the last successful
record uploaded before the connection was closed.
Then it has BCP restart the data upload with the
next set of records.

Th e SQL Azure product team has made vast improve-
ments to SQL Azure since SQL Azure was fi rst released.
For example, a lot of the throttling issues we ran into
during the migration labs have gone away—though we
still recommend that your applications use retry logic
to handle terminated connections gracefully.

Next Steps
As you can see, although there are a number of issues you need to
consider in planning for a smooth Windows Azure migration, in
practice we’ve found that the amount of work required to migrate an
application from on-premises to Windows Azure is oft en minimal.
Of course, this is going to be diff erent for each application.

You’ll need to do your own analysis to determine whether it
makes sense to migrate to Windows Azure and what issues you’ll
need to address. During the Windows Azure Migration Labs, our
customers found they were able to migrate their applications with
little to no modification and that they were able to utilize the
Windows Azure platform with very little learning curve and invest-
ment. Th e information here, along with tools like SQLAzureMW,
should help you achieve a similarly successful result.

GEORGE HUEY is a principal architect for the Developer & Platform Evangelism
Group at Microsoft . Huey works with companies to help them understand new
and emerging technologies and how these technologies can be applied to solve
their business problems. He also is the author of SQL Azure Migration Wizard
(SQLAzureMW).

WADE WEGNER works for Microsoft and is the technical evangelist for
the Windows Azure platform. You can reach him through his blog at
blog.wade wegner.com or on Twitter at twitter.com/wadewegner.

THANKS to the following technical expert for reviewing this article:
Jim Nakashimi

Figure 6 Using SQLAzureMW

http://msdn.microsoft.com/library/ff394106
http://msdn.microsoft.com/library/ff394106
http://twitter.com/wadewegner
http://blog.wadewegner.com

Untitled-2 1 7/1/10 11:21 AM

www.techexcel.com

msdn magazine46

IN S YN C

Creating Synchronization
Providers with
Sync Framework

Microsoft Sync Framework is a comprehensive platform
for synchronizing offl ine and online data, and facilitates collabora-
tion and offl ine access for applications, services and devices alike. It
is protocol- and database-independent and includes technologies
and tools that enable device roaming, sharing and the ability to
take networked data offl ine before synchronizing it back at a later
point in time.

Sync Framework can be used to build applications that syn-
chronize data from any data store using any protocol over a net-
work. It’s a comprehensive synchronization platform that facilitates
offl ine and online data access for applications, services and devices.
Sync Framework has an extensible provider model and can be used
with both managed and unmanaged code to synchronize data
between two data sources.

Joydip Kanjilal

Th is article takes a look at the concepts of synchronization and
how Sync Framework can be integrated into your own projects.
Specifi cally, I’ll be discussing the fundamentals of data synchroni-
zation, the architectural components of Sync Framework and how
you use sync providers.

To work with Sync Framework and the code examples in this
article, you’ll need to install Visual Studio 2010 and the Sync Frame-
work runtime 2.0 or later. You can download the runtime with the
Microsoft Sync Framework 2.0 Redistributable Package from the
Sync Framework Developer Center (msdn.microsoft.com/sync).

Sync Framework Basics
Sync Framework comprises four primary components: a runtime,
metadata services, synchronization providers and participants.

Th e Sync Framework runtime provides the infrastructure for
synchronizing data between data sources. It also provides an SDK
that developers can extend to implement custom providers.

Metadata services provide the infrastructure to store sync meta-
data, which contains information used during a synchronization
session. Sync metadata includes versions, anchors and change
detection information. You’ll also use sync metadata in the design
and development of custom providers.

Synchronization providers are used to synchronize data between
replicas or endpoints. A replica is a unit of synchronization and is
used to denote the actual data store. As an example, if you’re syn-
chronizing data between two databases, then each of the databases

This article discusses:
• Sync Framework basics

• Default synchronization providers

• Filtering fi les, handling confl icts

• Creating a custom provider

Technologies discussed:
Visual Studio 2010, Sync Framework

Code download available at:
code.msdn.microsoft.com/mag201008Sync

http://code.msdn.microsoft.com/mag201008Sync
http://msdn.microsoft.com/sync

47August 2010msdnmagazine.com

is referred to as a replica. A replica is identifi ed using a unique
identifi er called a replica key. An endpoint here also refers to a
data store. I’ll discuss providers in more depth later in the article.

A participant refers to the location where the data to be syn-
chronized can be retrieved. Th ese can be full participants, partial
participants and simple participants.

Full participants are devices that can create new data stores,
store sync metadata information and run sync applications on the
devices themselves. Examples of full participants include desktop
computers, laptops and tablets. A full participant can synchronize
data with another participant.

Partial participants are devices that can create new data stores
and store sync metadata information, but cannot run applications
on their own. A USB storage device or smartphone could be a
partial participant. Note that a partial participant can synchronize
data with a full participant, but not with another partial participant.

Simple participants include devices that cannot store new data
or execute applications, but can only provide the requested infor-
mation. Examples of simple participants include RSS feeds and
Amazon and Google Web services.

Synchronization Providers
A synchronization provider is a component that can participate in a
synchronization process and enables a replica to sync data with other
replicas. You should have one synchronization provider per replica.

To synchronize data, a synchronization session is started. Th e appli-
cation connects the source and destination synchronization providers
in the session to facilitate data synchronization between the replicas.

When a synchronization session is in progress, the destination
provider provides information about its data store to the source
provider. Th e source provider determines what changes to the source
replica are not known to the destination replica, and then pushes
the list of such changes to the destination provider. Th e destination
provider then detects any confl icts between its own items and those
present in the list, and then applies the changes to its data store. Th e
Sync Framework engine facilitates all of this synchronization process.

Sync Framework provides support for three default providers
for database, fi le system and feed synchronization:

• Synchronization provider for ADO.NET-enabled data sources
• Synchronization provider for RSS and Atom feeds
• Synchronization provider for fi les and folders

You can also extend Sync Framework to create your own custom sync
provider to exchange information between devices and applications.

Th e database synchronization provider (previously called Sync
Services for ADO.NET in Sync Framework 1.0) supports synchro-
nization of ADO.NET-enabled data sources. You can build discon-
nected data applications that facilitate synchronization between
ADO.NET-enabled data sources such as SQL Server. It enables
roaming, sharing and taking data offl ine. Any database that makes
use of the database provider can participate in the synchronization
process with other data sources that are supported by Sync Frame-
work including fi le systems, Web services or even custom data stores.

Th e Web synchronization provider (formerly Sync Services for
FeedSync) supports synchronization of RSS and ATOM feeds.
Before FeedSync, this technology was known as Simple Sharing

Extensions and was originally designed by Ray Ozzie. Note that
the Web synchronization provider doesn’t replace the existing
technologies like RSS or Atom feeds. Rather, it provides you a
simple way to add synchronization capabilities to existing RSS or
Atom Feeds so that they can be consumed by other applications or
services independent of the platform or device in use.

Th e fi le synchronization provider (formerly Sync Services for File
Systems) supports synchronization of fi les and folders in your system.
It can be used to synchronize fi les and folders in the same system or
across systems in the network. You can synchronize fi les and folders
in systems with NTFS, FAT or SMB fi le systems. Th e provider
uses the Sync Framework metadata model to enable peer-to-peer
synchronization of fi le data with support for arbitrary topologies
(client/server, full mesh and peer-to-peer) including support for
removable media. Th e fi le synchronization provider also enables
incremental synchronization, conflict and change detection,
synchronization in both preview and non-preview modes of opera-
tion, and fi ltering and skipping fi les in the synchronization process.

Working with Built-In Sync Providers
In this section I’ll demonstrate how to work with the built-in
synchronization providers to implement a simple application that
synchronizes the content of two folders in your system.

Th e FileSyncProvider class can be used to create a fi le synchro-
nization provider. Th is class extends the UnManagedSyncProvider
class and implements the IDisposable interface. Th e FileSyncScope-
Filter class is used to include or exclude fi les and folders that will
be participating in the synchronization process.

FileSyncProvider detects the changes in replica using sync
metadata. Sync metadata contains information about all the fi les
and folders that participate in the synchronization process. Th ere
are actually two kinds of sync metadata: replica metadata and item
metadata. Th e fi le synchronization provider stores the metadata for
all fi les and folders that participate in the synchronization process.
Later, it uses the fi le size, attributes and the last accessed times of
these fi les and folders to detect changes.

Open Visual Studio 2010 and create a new Windows Presentation
Foundation (WPF) project. Save the project with the name SyncFiles.
Open the MainWindow.xaml fi le and create a WPF form similar to
what is shown in Figure 1.

Figure 1 The Sample Sync App

www.msdnmagazine.com

msdn magazine48 In Sync

As you can see, you have controls to pick the source and desti-
nation folders. You also have controls to display the synchroniza-
tion statistics and content of the source and the destination folders.

Right-click on the project in Solution Explorer, click Add Reference
and add the Microsoft .Synchronization assemblies.

Now add a new GetReplicaID method in MainWindow.xaml.cs
fi le to return a GUID as shown in the code in Figure 2. Th e Syn-
chronize method, when called on the instance of SyncOrchestrator,
creates a metadata fi le called fi lesync.metadata in each of the folders
or replicas using the unique GUID. Th e GetReplicaID method
persists this GUID in a fi le so that the next call to this method doesn’t
generate a new GUID for that particular folder. Th e GetReplicaID
method first checks whether the file containing a replica ID
exists. If the fi le isn’t found, a new replica ID is created and stored
in the fi le. If the fi le exists (because a replica ID for that folder was
previously generated), it returns the replica ID from the fi le.

Next, add a method called GetFilesAndDirectories to return a
list of the fi les and folders under the replica location (see Figure 3).
Th e folder name should be passed to it as a parameter.

Th is method would be used to display the list of fi les and folders
inside the source and destination folders both before and aft er the
synchronization process. Th e methods PopulateSourceFileList and
PopulateDestinationFileList call GetFilesAndDirectories to pop-
ulate the list boxes that display the fi les and directories inside the
source and destination folders (see the code download for details).

The btnSource_Click and the btnDestination_Click event
handlers are used to select the source and the destination folders.
Both methods make use of the FolderBrowser class to display a

dialog box from where the user can select the source or destina-
tion folders. Th e complete source code of the FolderBrowser class
is available for download with the code download for this article.

Now I need to write the Click event handler of the Button
control, which starts by disabling the button before synchroniza-
tion starts. It then calls the Synchronize method with the source
and destination paths as parameters. Finally, I start the synchro-
nization process, catch any errors, and enable the button when
synchronization completes:

btnSyncFiles.IsEnabled = false;
// Disable the button before synchronization starts
Synchronize(sourcePath, destinationPath);
btnSyncFiles.IsEnabled = true;
// Enable the button after synchronization is complete

Th e Synchronize method accepts the source and destination path
and synchronizes content of the two replicas. In the Synchronize
method, I take an instance of the SyncOperationStatistics class to
retrieve statistical information on the synchronization process:

SyncOperationStatistics syncOperationStatistics;

I also create the source and destination sync providers, create a
SyncOrchestrator instance named synchronizationAgent, assign
the GUIDs to the source and destination replicas and attach
the two providers to it. Th e SyncOrchestrator is responsible for
coordinating the synchronization session:

sourceReplicaID =
 GetReplicaID(Path.Combine(source,"ReplicaID"));
destinationReplicaID =
 GetReplicaID(Path.Combine(destination,"ReplicaID"));

sourceProvider =
 new FileSyncProvider(sourceReplicaID, source);
destinationProvider =
 new FileSyncProvider(destinationReplicaID, destination);

SyncOrchestrator synchronizationAgent =
 new SyncOrchestrator();
synchronizationAgent.LocalProvider = sourceProvider;
synchronizationAgent.RemoteProvider = destinationProvider;

Finally, I start the synchronization process, catch any errors and
release resources as appropriate as shown in Figure 4. Th e code
download for this article includes the complete source project with
error handling and other implementation details.

You can also report the synchronization progress for a synchro-
nization session. To implement this, follow these steps:
1. Register an event handler for the ApplyingChange event.
2. Enable preview mode by setting the PreviewMode property

of FileSyncProvider to true.
3. Take an integer counter and increase it each time the Applying-

Change event is triggered.
4. Start the synchronization process.
5. Set the PreviewMode property of FileSyncProvider to false to

disable PreviewMode.
6. Start the synchronization process again.

Filtering and Skipping Files
When synchronizing using Sync Framework, some fi les are skipped
automatically, including Desktop.ini and Th umbs.db, fi les with sys-
tem and hidden attributes, and metadata fi les. You can apply static
fi lters to control the fi les and folders you want to be synchronized.
Specifi cally, these fi lters exclude the fi les you don’t want to be a part
of the synchronization process.

private Guid GetReplicaID(string guidPath) {
 if (!File.Exists(guidPath)) {
 Guid replicaID = Guid.NewGuid();
 using (FileStream fileStream =
 File.Open(guidPath, FileMode.Create)) {
 using (StreamWriter streamWriter =
 new StreamWriter(fileStream)) {

 streamWriter.WriteLine(replicaID.ToString());
 }
 }

 return replicaID;
 }
 else {
 using (FileStream fileStream =
 File.Open(guidPath, FileMode.Open)) {
 using (StreamReader streamReader =
 new StreamReader(fileStream)) {

 return new Guid(streamReader.ReadLine());
 }
 }
 }
}

Figure 2 GetReplicaID

Synchronization providers
are used to synchronize data

between replicas or endpoints.

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine50 In Sync

To use static fi lters, create an instance of the FileSyncScopeFilter
class and pass the inclusion and exclusion fi lters as parameters to its
constructor. You can also use the FileNameExcludes.Add method
on your FileSyncScopeFilter instance to filter out one or more
fi les from the synchronization session. You can then pass in this
FileSyncScopeFilter instance when creating your FileSyncProvider
instance. Here’s an example:

FileSyncScopeFilter fileSyncScopeFilter =
 new FileSyncScopeFilter();
fileSyncScopeFilter.FileNameExcludes.Add("filesync.id");
FileSyncProvider fileSyncProvider =
 new FileSyncProvider(Guid.NewGuid(),
 "D:\\MyFolder",fileSyncScopeFilter,FileSyncOptions.None);

Similarly, you can exclude all .lnk fi les from the synchroniza-
tion process:

FileSyncScopeFilter fileSyncScopeFilter =
 new FileSyncScopeFilter();
fileSyncScopeFilter.FileNameExcludes.Add("*.lnk");

You can even use FileSyncOptions to explicitly set options for
the synchronization session:

FileSyncOptions fileSyncOptions =
 FileSyncOptions.ExplicitDetectChanges |
 FileSyncOptions.RecycleDeletedFiles |
 FileSyncOptions.RecyclePreviousFileOnUpdates |
 FileSyncOptions.RecycleConflictLoserFiles;

To skip one or more fi les during the synchronization process,
register an event handler on the ApplyingChange event and set the
SkipChange property to true:

FileSyncProvider fileSyncProvider;
fileSyncProvider.AppliedChange +=
 new EventHandler (OnAppliedChange);
destinationProvider.SkippedChange +=
 new EventHandler (OnSkippedChange);

Now I can implement the OnAppliedChange event handler to
show what changes occur:

public static void OnAppliedChange(
 object sender, AppliedChangeEventArgs args) {
 switch (args.ChangeType) {
 case ChangeType.Create:
 Console.WriteLine(“Create ” + args.NewFilePath);
 break;
 case ChangeType.Delete:
 Console.WriteLine(“Delete” + args.OldFilePath);
 break;
 case ChangeType.Overwrite:
 Console.WriteLine(“Overwrite” + args.OldFilePath);
 break;
 default:
 break;
 }
}

Note that this example is simplifi ed for clarity. A more robust
implementation is included in the code download.

To understand why a particular fi le has been skipped during
the synchronization session, you can implement the OnSkipped-
Change event handler:

public static void OnSkippedChange(
 object sender, SkippedChangeEventArgs args) {

 if (args.Exception != null)
 Console.WriteLine(“Synchronization Error: “ +
 args.Exception.Message);
}

Build and execute the application. Click on the Source Folder
button to select the source folder. Use the Destination Folder
to select the destination folder. You’ll see the list of the files
in each of the folders before synchronization is displayed in
the respective list boxes (see Figure 1). The Synchronization

Statistics list box doesn’t display anything as synchronization is
yet to be started.

Now click the Synchronize button to start the synchronization
process. Once the source and destination folders have been
synchronized, you’ll see the content of both folders aft er synchro-
nization in the respective list boxes. Th e Synchronization Statistics
list box now displays information about the tasks that were
completed (see Figure 5).

Handling Confl icts
Sync Framework manages all the complexities involved in time-
stamp-based synchronization that include deferred conflicts,
failures, interruptions and loops. To handle data confl icts when a
synchronization session is in progress, Sync Framework follows
one of the following strategies:

• Source Wins: In this strategy, the changes that have been made
in the source data store in the event of a confl ict always win.

try {
 syncOperationStatistics = synchronizationAgent.Synchronize();

 // Assign synchronization statistics to the lstStatistics control
 lstStatistics.Items.Add("Download Applied: " +
 syncOperationStatistics.DownloadChangesApplied.ToString());
 lstStatistics.Items.Add("Download Failed: " +
 syncOperationStatistics.DownloadChangesFailed.ToString());
 lstStatistics.Items.Add("Download Total: " +
 syncOperationStatistics.DownloadChangesTotal.ToString());
 lstStatistics.Items.Add("Upload Total: " +
 syncOperationStatistics.UploadChangesApplied.ToString());
 lstStatistics.Items.Add("Upload Total: " +
 syncOperationStatistics.UploadChangesFailed.ToString());
 lstStatistics.Items.Add("Upload Total: " +
 syncOperationStatistics.UploadChangesTotal.ToString());
}
catch (Microsoft.Synchronization.SyncException se) {
 MessageBox.Show(se.Message, "Sync Files - Error");
}
finally {
 // Release resources once done
 if (sourceProvider != null)
 sourceProvider.Dispose();
 if (destinationProvider != null)
 destinationProvider.Dispose();
}

Figure 4 Synchronizing Replicas

private List<string> GetFilesAndDirectories(String directory) {
 List<String> result = new List<String>();
 Stack<String> stack = new Stack<String>();
 stack.Push(directory);

 while (stack.Count > 0) {
 String temp = stack.Pop();

 try {
 result.AddRange(Directory.GetFiles(temp, "*.*"));

 foreach (string directoryName in
 Directory.GetDirectories(temp)) {
 stack.Push(directoryName);
 }
 }
 catch {
 throw new Exception("Error retrieving file or directory.");
 }
 }

 return result;
}

Figure 3 Getting Replica Files and Folders

msdnmagazine.com

• Destination Wins: In this strategy, the changes that have been
made in the destination data store in the event of a confl ict
always win.

• Merge: In this strategy, the changes in the event of a confl ict
are merged together.

• Log confl ict: Th is is a strategy in which the confl ict is deferred
or logged.

Understanding the Synchronization Flow
A SyncOrchestrator instance controls a synchronization session
and the fl ow of data during the session. Th e synchronization fl ow
is always unidirectional and you have a source provider attached
to the source replica and a destination provider attached to the
destination replica. The first step is to create your source and
destination providers, assign unique replica IDs to them and attach
the two providers to the source and destination replicas:

FileSyncProvider sourceProvider =
 new FileSyncProvider(sourceReplicaID, @"D:\Source");
FileSyncProvider destinationProvider =
 new FileSyncProvider(destinationReplicaID, @"D:\Destination");

Next, create an instance of SyncOrchestrator and attach the two pro-
viders to it. A call to the Synchronize method on the SyncOrchestrator
instance creates a link between the source and the destination providers:

SyncOrchestrator syncAgent = new SyncOrchestrator();
syncAgent.LocalProvider = sourceProvider;
syncAgent.RemoteProvider = destProvider;
syncAgent.Synchronize();

From that point, a number of calls can be made by Sync Framework
while a synchronization session is in progress. Let’s walk through them.

BeginSession is called on both the source and destination
providers to indicate the synchronization provider is about to join a
synchronization session. Note that the BeginSession method throws
InvalidOperationException if the session cannot be started or the
provider is not initialized properly:

public abstract void BeginSession(
 SyncProviderPosition position,
 SyncSessionContext syncSessionContext);

Sync Framework calls GetSyncBatchParameters on the instance
of the destination provider. Th e destination provider returns its
knowledge (a compact representation of versions or changes that a
particular replica is aware of) and the requested batch size. Th is meth-
od accepts two out parameters, namely, batchSize and knowledge:

public abstract void GetSyncBatchParameters(
 out uint batchSize,
 out SyncKnowledge knowledge);

Sync Framework invokes GetChangeBatch on the source pro-
vider. Th is method accepts two input parameters, the batch size
and the knowledge of the destination:

public abstract ChangeBatch GetChangeBatch(
 uint batchSize,
 SyncKnowledge destinationKnowledge,
 out object changeDataRetriever);

A SyncOrchestrator instance
controls a synchronization

session and the fl ow of data.

www.scaleoutsoftware.com
www.msdnmagazine.com

msdn magazine52 In Sync

As an example of a custom provider, say you wanted to imple-
ment a synchronization provider for synchronizing data between
databases. Th is is just an overview of a simple example, and it could
be extended to accommodate much more complicated scenarios.

Start by creating three databases in SQL Server 2008 (I named
them ReplicaA, ReplicaB and ReplicaC) and create a table in each
database called Student. Th e custom provider will sync records
between these three Student tables. Next, create an entity called
Student for performing CRUD operations on the Student table.

Create a class called Student with StudentID, FirstName, Last-
Name as fi elds, and the necessary helper methods to execute CRUD
operations in the database:

public class Student {
 public int StudentID { get; set; }
 public String FirstName { get; set; }
 public String LastName { get; set; }
 //Helper methods for CRUD operations
...
}

Create a class called CustomDBSyncProvider and extend
it from the KnowledgeSyncProvider, IChangeDataRetriever,
INotifyingChangeApplierTarget and IDisposable interfaces:

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.Synchronization;
using Microsoft.Synchronization.MetadataStorage;
public class CustomDBSyncProvider : KnowledgeSyncProvider,
 IChangeDataRetriever,
 INotifyingChangeApplierTarget,IDisposable {
...

Implement the necessary methods in your custom database syn-
chronization provider and create the UI to display the content of each
of the Student tables (see the code download for this article for details).

Now, create three instances of the custom synchronization
provider and attach them to each of the Student database tables.
Finally, synchronize the content of one replica with another with
the help of the custom synchronization provider:

private void Synchronize(
 CustomDBSyncProvider sourceProvider,
 CustomDBSyncProvider destinationProvider) {

 syncAgent.Direction =
 SyncDirectionOrder.DownloadAndUpload;
 syncAgent.LocalProvider = sourceProvider;
 syncAgent.RemoteProvider = destinationProvider;
 syncStatistics = syncAgent.Synchronize();
}

Synced Up
As you’ve seen, Sync Framework provides a simple yet comprehen-
sive synchronization platform that provides seamless synchroniza-
tion between offl ine and online data. It can be used to synchronize
data independent of the protocol and the data store in use. It could
be used for simple fi le backup or easily extended for collaboration-
based networks. You can also create custom synchronization providers
to support data sources that aren’t accommodated out of the box.

JOYDIP KANJILAL is an independent soft ware consultant as well as a Microsoft
MVP in ASP.NET since 2007. He’s also a speaker and author of several books and
articles and blogs at aspadvice.com/blogs/joydip.

THANKS to the following technical expert for reviewing this article:
Liam Cavanagh

Th e source synchronization provider now sends the summary
of changed versions and knowledge to the destination provider in
the form of changeDataRetriever object.

Th e ProcessChangeBatch method is called on the destination
provider to process the changes:

public abstract void ProcessChangeBatch(
 ConflictResolutionPolicy resolutionPolicy,
 ChangeBatch sourceChanges,
 object changeDataRetriever,
 SyncCallbacks syncCallbacks,
 SyncSessionStatistics sessionStatistics);

SaveItemChange is called on the destination synchronization
provider for each of the changes in the batch. If you’re implement-
ing your own custom provider, you should update the destination
replica with the changes sent by the source replica and then update
the metadata in the metadata store with the source knowledge:

void SaveItemChange(SaveChangeAction saveChangeAction,
 ItemChange change, SaveChangeContext context);

StoreKnowledgeForScope is called on the destination synchro-
nization provider to save knowledge in the metadata store:

public void StoreKnowledgeForScope(
 SyncKnowledge knowledge,
 ForgottenKnowledge forgottenKnowledge)

EndSession is called on both the source and destination providers
to indicate that the synchronization provider is about to leave the
synchronization session it joined earlier:

public abstract void EndSession(
 SyncSessionContext syncSessionContext);

Custom Synchronization Providers
Now you’ve seen how the default synchronization providers work.
As I’ve mentioned before, you can also implement custom synchro-
nization providers. A custom synchronization provider extends
the functionality of a built-in synchronization provider. You may
need a custom synchronization provider if there’s no provider for
the data stores to be synchronized. You can also create a custom
synchronization provider that implements change units for better
control over change tracking and to reduce the number of confl icts.

To design your own synchronization provider, create a class that
extends the KnowledgeSyncProvider abstract class and imple-
ments the IChangeDataRetriever and INotifyingChangeApplier-
Target interfaces. Note that these classes and interfaces are part of
the Microsoft .Synchronization namespace.

Figure 5 Synchronization Finished

http://aspadvice.com/blogs/joydip

TRAININGCAMP.COM | 800.698.5501

MICROSOFT,MICROSOFT,MICROSOFT,MICROSOFT,
CISCO, APPLE,,,,,,,,,,,,,,,,,, CISCO, APPLE,,,,,,,,,,,,CISCO, APPLE,,,,,,,,,,,,CISCO, APPLE,,,,,,,,
LINUX, ORAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCCCCLLEE,,LINUX, ORAAAAAAAAAAACCCCCCCCCCCCLE,LINUX, ORAAAAAAAAAAACCCCCCCCCCCCLE,LINUX, ORAAAAAAAACCCCCCCCLE,
COMPTIIIIIIIIIIIIIIIIIAAAAAAAAAAAAAAAAAAA,, ((IISSCC))COMPTIIIIIIIIIIIIAAAAAAAAAAAA, (ISC)COMPTIIIIIIIIIIIIAAAAAAAAAAAA, (ISC)COMPTIIIIIIIIAAAAAAAA, (ISC)22222

Untitled-1 1 5/7/10 3:10 PM

www.trainingcamp.com

msdn magazine54

ODATA AND ATOMPUB

Building an
AtomPub Server Using
WCF Data Services

If you’re not familiar with it, the Open Data Protocol (OData)
is a thing of beauty. OData (described in detail at odata.org) builds on
the HTTP-based goodness of Atom for publishing data; AtomPub
for creating, updating and deleting data; and the Microsoft Entity
Data Model (EDM) for defi ning the types of data.

If you have a JavaScript client, you can get the data back directly
in JSON instead of Atom format, and if you’ve got something else—
including Excel, the .Microsoft NET Framework, PHP, AJAX and
more—there are client libraries for forming OData requests and
consuming OData responses. If you’re using the .NET Framework
on the server side, Microsoft also provides an easy-to-use library
called WCF Data Services for exposing .NET Framework types or
databases supported by the Microsoft Entity Framework as OData

Chris Sells

sources. Th is makes it easy to expose your data over the Internet
in an HTTP- and standards-based way.

Having said all that, there are some things that you might like to
do with OData that aren’t quite part of the out-of-box experience,
such as integrating OData with existing Atom- and AtomPub-based
readers and writers. Th at’s what we’re going to experiment with.

A Simple Blog
As an example, let’s imagine that I’m building a simple blogging
system (and, in fact, this work is based on me rewriting the
content management system on sellsbrothers.com). I’m a big fan
of the model-fi rst support in Visual Studio 2010, so I created an
ASP.NET MVC 2.0 project, added an ADO.NET EDM fi le called
MyBlogDB.edmx and laid out a Post entity, as shown in Figure 1.

More complicated blogging soft ware will want to track more
data, but the fields in Figure 1 are the basics. When I right-click
on the designer surface, I can choose Generate Database From
Model, which shows the SQL file that will be created for me
(MyBlogDB.sql in this case) and the SQL that will be generated
to create my database. Clicking Finish will create the SQL fi le and
bind the database to the entities I created in the EDM designer. Th e
important bits of the SQL are shown in Figure 2.

Basically, we’re just creating a single table from our single entity,
as expected, and mapping the fi elds to SQL types. Notice that the
PublishDate is set to NULL, which is not the default. I explicitly
chose that setting in the EDM designer because I wanted it to be

This article discusses:
• OData

• Building a blogging system with ASP.NET MVC 2.0

• Mapping between Atom and OData

• Building a rich text editor with Windows Live Writer

Technologies discussed:
OData, Atom, AtomPub, ASP.NET MVC 2.0, Entity Data Model,
Entity Framework, WCF Data Services

Code download available at:
code.msdn.microsoft.com/mag201008Atom

http://code.msdn.microsoft.com/mag201008Atom

55August 2010msdnmagazine.com

OK not to have a publish date (some tools don’t
provide one by default).

To execute this SQL and create the database
is just a matter of right-clicking on the SQL
in the Visual Studio text editor and choosing
Execute SQL. It will ask you for your connection
information and the database name. Because this
is a new database, you’ll want to type in the new
name, for example, MyBlogDB, and click OK to
create it when prompted. When your database
has been created, you can explore it in the Server
Explorer under the connection that Visual Studio
has just created for you.

To make testing easier, you can add data
directly into the table by right-clicking on Posts
and choosing Show Table Data, which will give you a little grid, as
shown in Figure 3.

It’s not the best editing experience in the world, but it’s better
than writing SQL statements until we’ve got an end-to-end editing
solution up and running (it’s coming—keep reading!).

Now that we’ve got some data, we can do a little bit of ASP.NET
coding to show it by updating HomeController.cs (read more about
MVC at asp.net/mvc/):

...
namespace ODataBloggingSample.Controllers {
 [HandleError]
 public class HomeController : Controller {
 MyBlogDBContainer blogDB = new MyBlogDBContainer();

 public ActionResult Index() {
 return View(blogDB.Posts);
 }

 public ActionResult About() {
 return View();
 }
 }
}

Here all I did was create an instance of the MyBlogDBContainer
class, which is the top-level ObjectContext-derived class created
from our MyBlogDB.edmx fi le to let us access our new database.
(If you’re not familiar with the Entity Framework, you should be:
see msdn.com/data/aa937723.) When the Index method is called on
the HomeController class, someone is requesting the home page of
our new Web application, which we’d like to use to show our new
blog posts, so we route the Posts collection from the database to an
instance of the Home/Index.aspx view, which we’ve modifi ed like so:

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<IEnumerable<ODataBloggingSample.Post>>" %>

<asp:Content ID="indexTitle" ContentPlaceHolderID="TitleContent" runat="server">
 Home Page
</asp:Content>
<asp:Content ID="indexContent" ContentPlaceHolderID="MainContent" runat="server">
 <% foreach (var post in Model) { %>
 <h1><%= post.Title %></h1>
 <div><%= post.Content %></div>
 <p><i>Posted <%= post.PublishDate %></i></p>
 <% } %>
</asp:Content>

Here we changed the base class to take a collection of the Post type
generated (along with the MyBlogDBContainer class) to model our
Posts table. We also replaced the home page content with a foreach
statement to show each post’s title, content and publish date.

Th at’s all we need. Now when we execute the
project (Debug | Start Debugging), the browser
starts and the blog posts are shown (just one post,
unless you’ve put more than that into the data-
base), as shown in Figure 4.

Now, I told you everything up to this point so I
could tell you this: Th e reason OData is so fabulous
is that, with a fl ick of my mouse and two shakes of
my keyboard, I can expose a complete program-
matic interface to this data that I can access from
JavaScript, the .NET Framework, PHP and more.
To see this magic happen, right-click on your
project in the Solution Explorer, choose Add |
New Item, choose WCF Data Service, pick a name
(I used odata.svc) and click Add. What you’ll get

is a skeleton piece of code in a fi le (odata.svc.cs in this case) that,
ignoring security just now, we’d like to make look like the following:

using System.Data.Services;
using System.Data.Services.Common;
using ODataBloggingSample;

namespace ODataBloggingSample {
 public class odata : DataService<MyBlogDBContainer> {
 public static void InitializeService(DataServiceConfiguration config) {
 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 }
 }
}

Notice that we’ve thrown in MyBlogDBContainer—our top-level
database access class—as the template parameter to the DataService
class, which is the core of server-side WCF Data Services (see msdn.com/
data/bb931106). Th e DataService class allows us to easily expose our
database via HTTP verb-based create, read, update and delete
(CRUD) operations defi ned in the OData protocol. Th e type
passed to the DataService is examined for public properties
that expose collections. In our example, the Entity Framework-
generated object context class contains the Posts collection that
fi ts the bill nicely:

...
namespace ODataBloggingSample {
 ...
 public partial class MyBlogDBContainer : ObjectContext {
 ...
 public ObjectSet<Post> Posts {...}
 ...
 }

 ...
 public partial class Post : EntityObject {
 ...
 public global::System.Int32 Id { get { ... } set { ... } }
 public global::System.String Title { get { ... } set { ... } }
 public Nullable<global::System.DateTime> PublishDate {
 get { ... } set { ... } }
 public global::System.String Content { get { ... } set { ... } }
 ...
 }
}

Notice that the generated MyBlogDBContainer exposes an
ObjectSet (which is just a kind of collection) called Posts that
contains instances of the Post type. Furthermore, the Post type is
defi ned to provide the mapping between the Id, Title, PublishDate
and Content properties to the underlying columns on the Posts
table we created earlier.

Figure 1 A Post Entity Created
in Visual Studio 2010

www.msdnmagazine.com
http://asp.net/mvc/
http://msdn.com/data/aa937723
http://msdn.com/data/bb931106
http://msdn.com/data/bb931106

msdn magazine56 OData and AtomPub

With odata.svc in place, we can surf to the service document
that exposes our object context collection properties using the
name of the data service endpoint fi le in the URL, for example,
localhost:54423/odata.svc:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<service xml:base="http://localhost:54423/odata.svc/"
xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app" xmlns="http://www.w3.org/2007/app">
 <workspace>
 <atom:title>Default</atom:title>
 <collection>
 <atom:title>Posts</atom:title>
 </collection>
 </workspace>
</service>

Th is entire fi le is defi ned by the AtomPub specifi cation (ietf.org/
rfc/rfc5023.txt). Taking it one level deeper, we can see our posts
exposed as a set of Atom entries at localhost:54423/odata.svc/Posts,
as shown in Figure 5.

This file is almost completely plain-vanilla Atom (ietf.org/
rfc/ rfc4287.txt) except for the Microsoft-based URIs, which are
used to layer OData functionality into Atom. Specifically, you’ll
want to notice the “properties” element inside the “content”
element. You’ll recognize these properties as the same ones defined
earlier in the Post entity and corresponding Posts table. This data
is contained in the envelope defined by Atom and exposed via the
CRUD comments, which themselves are defined by AtomPub and
allow you to create, read, update and delete via the HTTP methods
POST, GET, PUT and DELETE, respectively. The problem is
that this isn’t quite plain-vanilla-Atom enough. For example,
if we surf to odata.svc/Posts in an Atom reader, like Internet
Explorer 8, the title and content don’t come through properly,
as shown in Figure 6.

You can see that the data is there (notice the date is right and
the category is showing), but the title and content are nowhere
to be seen. Th at’s because the places where Internet Explorer is
looking for title and content—the “title” and “content” elements in
each entry, logically enough—don’t contain what it expects to be
there. Th e “title” element is blank and the “content” element is in a
format that Internet Explorer doesn’t recognize. Th e format that
Internet Explorer would really like to see looks like this:

<feed ...>
 <title type="text">Posts</title>
 <id>http://localhost:54423/atompub.svc/Posts</id>
 <updated>2010-03-15T00:42:32Z</updated>
 <link rel="self" title="Posts" href="Posts" />
 <entry>
 <id>http://localhost:54423/atompub.svc/Posts(1)</id>
 <title type="text">My first blog post</title>
 <updated>2010-03-15T00:42:32Z</updated>
 ...
 <content type="html">Hi! How are you?</content>
 <published>2010-03-14T00:00:00-08:00</published>
 </entry>
</feed>

Notice that the “title” element has what used to be buried in
the Title property from the OData “properties” element in the
“content” element, the “content” element has been overwritten with
the Content property and the “published” element was added from
the value of PublishDate property. When this data is viewed in
Internet Explorer, we get something much more like what we’d
like to have, as shown in Figure 7.

I should mention that it’s only for support of blogging tools that
we even care. Internet Explorer isn’t expecting to see a customer list or
an invoice; it’s expecting to see titles and publish dates and HTML con-
tent. Sometimes it makes sense to do this mapping for customer lists and
invoices, in which case Microsoft has a feature in WCF Data Services
called “Friendly Feeds” (see blogs.msdn.com/astoriateam/archive/2008/09/
28/making-feeds-friendly.aspx). It doesn’t quite do everything, however
(specifi cally, it won’t remap the Atom “content” element), because the
WCF Data Services team wants to make sure even “friendly” feeds
still work with various client libraries. Th e goal is to make the OData
feeds friendly, not abandon OData in favor of Atom/AtomPub.

In this case, however, we’re abandoning OData and just using
WCF Data Services as our AtomPub endpoint, which requires a
mapping between Atom and OData, as shown in Figure 8.

Figure 3 The Show Table Data Grid Makes Testing Easier Figure 4 The Completed Web Page

...
USE [MyBlogDB];
GO
...
-- Dropping existing tables
IF OBJECT_ID(N'[dbo].[Posts]', 'U') IS NOT NULL
 DROP TABLE [dbo].[Posts];
GO
...
-- Creating table 'Posts'
CREATE TABLE [dbo].[Posts] (
 [Id] int IDENTITY(1,1) NOT NULL,
 [Title] nvarchar(max) NOT NULL,
 [PublishDate] datetime NULL,
 [Content] nvarchar(max) NOT NULL
);
GO
...
-- Creating primary key on [Id] in table 'Posts'
ALTER TABLE [dbo].[Posts]
ADD CONSTRAINT [PK_Posts]
 PRIMARY KEY CLUSTERED ([Id] ASC);
GO

Figure 2 The SQL Code Resulting from “Generate
Database From Model”

http://ietf.org/rfc/rfc5023.txt
http://ietf.org/rfc/rfc5023.txt
http://blogs.msdn.com/astoriateam/archive/2008/09/28/making-feeds-friendly.aspx
http://blogs.msdn.com/astoriateam/archive/2008/09/28/making-feeds-friendly.aspx

You’ve got the data, but time, budget and staff
constraints can make it hard to present that valuable
information in a way that will impress. With Infragistics’
NetAdvantage for Silverlight Data Visualization, you
can create Web-based data visualizations and
dashboard-driven applications on Microsoft Silverlight
(and coming soon for WPF) that will not only impress
decision makers, it actually empowers them. Go to
infragistics.com/sldv today and get inspired to create
killer apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

GeospatialMaps

Silverlight
Pivot
Grids

Fast
DataCharts

Untitled-12 1 4/9/10 2:28 PM

www.infragistics.com/sldv

msdn magazine58 OData and AtomPub

The trick is, how do we get this mapping to happen? We’ve
obviously got the data, but we need to remap it to Atom properties
so that Atom readers (and writers) know where the data is tucked
away. Th e reason to do this is so WCF Data Services can still do the
mapping to our .NET Framework types or, via Entity Framework,
our databases. All we have to do is a little at-the-door mapping of
Atom/AtomPub to/from OData.

Th e code sample that comes with this article has some code
to inject into the WCF pipeline that allows just exactly this kind
of message data transformation. You can read it to your heart’s
content (check out ODataBlogging.cs), but I’m going to show you
how to use it.

First, create a new WCF Data Services endpoint just like you
did before, but with a diff erent name (I used atompub.svc). Hook
up the top-level object context class and expose whatever entity
sets you like, just as before, but also tag your service class with the
ODataBloggingServiceBehavior, like so:

...
using ODataBlogging;

namespace ODataBloggingSample {
 [ODataBloggingServiceBehavior(typeof(MyBlogDBContainer))]
 [EntityAtomMapping("Posts", "PublishDate", "published")]
 public class atompub : DataService<MyBlogDBContainer> {
 public static void InitializeService(DataServiceConfiguration config) {
 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 }
 }
}

Th is does the mapping from Atom/AtomPub coming in—for
example, “title,” “content” and “published” elements—to the
corresponding OData format via the nested “properties” element
inside the “content” element. By default, if the names on the entities match
(ignoring case), then the mapping (and type coercion) will just happen.

For example, when an entity is exposed that contains a Title property
(like our Post entity), it’s mapped to the Atom “title” element.

On the other hand, if there’s no automatic mapping, you can
override that behavior by providing an explicit mapping based
on the entity name, as we’ve done to map the PublishDate prop-
erty for objects in the “Posts” collection to the “published” atom
property. Th ose two attributes are enough to turn our OData feed
into an Atom feed, giving us the full-featured view of the data as
shown in Figure 7.

This mapping is not one-way; it supports all of the HTTP
methods, so you can use the AtomPub protocol to create, up-

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<feed xml:base="http://localhost:54423/odata.svc/"
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m=
 "http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <title type="text">Posts</title>
 <id>http://localhost:54423/odata.svc/Posts</id>
 <updated>2010-03-15T00:26:40Z</updated>
 <link rel="self" title="Posts" href="Posts" />
 <entry>
 <id>http://localhost:54423/odata.svc/Posts(1)</id>
 <title type="text" />
 <updated>2010-03-15T00:26:40Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Post" href="Posts(1)" />
 <category term="MyBlogDB.Post"
 scheme=
 "http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:Id m:type="Edm.Int32">1</d:Id>
 <d:Title>My first blog post</d:Title>
 <d:PublishDate m:type=
 "Edm.DateTime">2010-03-14T00:00:00</d:PublishDate>
 <d:Content>Hi! How are you?</d:Content>
 </m:properties>
 </content>
 </entry>
</feed>

Figure 5 Posts Exposed as a Set of Atom Entries

Figure 6 Viewing Blog Posts in Atom Reader Shows That Title
and Content Are Missing

Figure 7 Tweaking the XML Format Results in Correct Display
of the Title and Content

Untitled-1 1 6/9/10 11:03 AM

www.nevron.com

msdn magazine60 OData and AtomPub

date and delete items in the Posts collection as well as read them.
Th is means you can confi gure a tool like Windows Live Writer
(WLW), which supports AtomPub as a blog API, and use it for rich
text editing of your posts. For example, given the atompub.svc
endpoint, in WLW, you could choose Blogs | Add blog account and
fi ll in the following options in the dialogs that follow:

• What blog service do you use? Other blog service
• Web address of your blog: http://<<server>>:<<port>>/

atompub.svc
• Username: <<username>> (required and should be implemented

on your AtomPub endpoint using standard HTTP techniques)
• Password: <<password>>
• Type of blog that you’re using: Atom Publishing Protocol
• Service document URL: http://<<server>>:<<port>>/

atompub.svc
• Blog nickname: <<whatever you like>>

Click Finish and you’ve got a rich text editor for managing your
blog posts, as shown in Figure 9.

Here we’ve taken the Data Services engine, which supports full
CRUD functionality by packing properties into the Atom “content”
element, and have done a little bit of mapping to make it support
plain ol’ Atom and AtomPub, too.

Th e little sample library that I used to make this work (which I built
with Phani Raj, a soft ware engineer at Microsoft on the WCF Data Ser-
vices team), does the barest minimum and it’s never going to be all you
need to build a real blog. Here’s a list off the top of my head of things it
still needs to really support just Atom and AtomPub:

• Mapping the Atom author element sub-elements, such as
name, uri and e-mail.

• Handling images (although WLW allows for FTP, so that
might be enough).

• Exposing capabilities to make WLW recognize these features.
If you’re interested in pushing this experiment further, Joe Cheng,

a member of the WLW team, has written a series of blog posts about
AtomPub support in WLW that inspired this work in the fi rst
place: jcheng.wordpress.com/2007/10/15/how-wlw-speaks-atompub-introduction.

Enjoy!

CHRIS SELLS is a Microsoft program manager in the Business Platform Divi-
sion. He’s written several books, including the coauthored “Programming WPF”
(O’Reilly Media, 2007), “Windows Forms 2.0 Programming” (Addison-Wesley
Professional, 2006) and “ATL Internals” (Addison-Wesley Professional, 1999). In
his free time, he hosts various conferences and makes a pest of himself on Micro-
soft internal product team discussion lists. More information about Sells, and his
various projects, is available at sellsbrothers.com.

THANKS to the following technical expert for reviewing this article:
Pablo Castro

Figure 8 Mapping Between Atom and OData

Figure 9 Atom/OData Mapping Facilitates Building a Rich
Text Editor to Manage Your Blog Posts

The goal is to make the OData
feeds friendly, not abandon OData

in favor of Atom/AtomPub.

http://jcheng.wordpress.com/2007/10/15/how-wlw-speaks-atompub-introduction
http://sellsbrothers.com

Word Processing Components
for Windows Forms & ASP.NET www.textcontrol.com

US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0

WORD PROCESSING
COMPONENTS

(WHAT YOU SEE IS WHAT YOU GET)

WINDOWS FORMS / WPF / ASP.NET / ACTIVEX

Untitled-8 1 6/3/10 1:04 PM

http://www.textcontrol.com

msdn magazine62

S PE E D S QL

Tuning Your
Database Calls with
Tier Interaction Profi ling

Many applications are designed explicitly to use
multiple tiers, where the performance of calls into the data access
tier is crucial to the overall responsiveness of the application. Th e
use of multiple tiers increases the fl exibility of the application. Th e
n-tiered approach also fosters isolation of key components, which
can be used to improve both reliability and scalability. Th e use of
multiple tiers promotes scalability because components that are
isolated into distinct tiers can then more readily be distributed
across available computing resources.

Tier interaction profi ling (TIP) is designed to help you un-
derstand the performance of the data layer on which the application
relies. TIP is a new feature of the Visual Studio profi ling tools that
measures and reports the duration of data tier delays .NET Frame-
work applications experience when waiting for synchronous calls

Mark Friedman

to ADO.NET-compliant databases to complete. For response-
time-oriented applications that make frequent calls to databases,
TIP helps you to understand which data requests contribute the
most to response delays.

In this article, I’ll introduce you to TIP and demonstrate its
reporting capabilities. I’ll also discuss the instrumentation tech-
nology that TIP relies on and provide some best practices for
using TIP eff ectively to diagnose performance problems related to
database activity. I will walk you through using TIP on a sample
two-tiered ASP.NET Web application that is data-intensive and
that accesses data from Microsoft SQL Server using the LINQ
to SQL technology. Finally, I will discuss how you can augment
the TIP performance data by using standard SQL Administrator
performance tools to gain an even deeper understanding of the
performance of a data tier.

Getting Started with TIP
TIP dynamically adds instrumentation code to measure the duration
of calls to the data layer of your application during a profi ling run.
Th e Visual Studio profi ling tools are available in Visual Studio 2010
Premium Edition and Visual Studio 2010 Ultimate Edition.

To begin a profi ling session, you can either click Launch Perfor-
mance Wizard from the Analyze menu, click Start Performance
Analysis from the Debug menu, or use the Alt+F2 keyboard
shortcut. Th e fi rst page of the Performance Wizard then asks you
to select a profi ling method.

This article discusses:
• Introduction to Tier Interaction Profi ling (TIP)

• Using TIP to improve the performance of applications

• Reading a TIP Report

• TIP data with LINQ to SQL

• Choosing a primary profi ling method

Technologies discussed:
ADO.NET, Visual Studio, SQL Server

63August 2010msdnmagazine.com

TIP can be used with any profil-
ing method (sampling, instrumen-
tation, memory, or concurrency),
but it isn’t enabled by default. To
enable TIP, you will need to un-
check the “Launch profiling after
the wizard finishes” checkbox on
page 3 of the Performance Wizard.
(Because TIP isn’t turned on yet,
you’re not ready to launch your
application and begin profiling.)
For best results, I recommend
selecting the sampling method
of profiling initially, especially if
what you care about most is the
data tier interaction data. This
is mainly because sampling has
least impact on the performance
of your application.

To enable TIP data collection,
access the Performance Session in
the Performance Wizard just cre-
ated in the Performance Explorer
window and right-click to see its
properties. In the properties dialog,
select the Tier Interactions tab, then
check the "Enable tier interaction
profi ling" checkbox. Click the OK
button to dismiss the dialog. Now
that TIP is enabled, you’re ready to
start profi ling your application.

To start the actual profi ling run, click the Launch with Profi ling
toolbar button in the Performance Explorer window

For complete instructions on enabling TIP in Visual Studio, see
Habib Heydarian’s blog post “Walkthrough: Using the Tier Interac-
tion Profi ler in Visual Studio Team System 2010” at blogs.msdn.com/

b/habibh/archive/2009/06/30/walkthrough-using-the-tier-interaction-profi ler-in-

visual- studio-team-system-2010.aspx.

How TIP Measures Performance
TIP inserts code into your application during a profiling run
that measures calls to the ADO.NET data layer your application
uses. When tier interaction profi ling is active, the Visual Studio
Profiler inspects the Microsoft intermediate language (MSIL)
in your solution, looking for references to ADO.NET functions.
Prior to calling the just-in-time (JIT) compiler to generate the
native code run by the application, the profi ler inserts instructions
that add instrumentation to key ADO.NET methods. Th is instru-
mentation code keeps track of the amount of time spent during
each ADO.NET call.

As the application executes, TIP captures and records timing
data. When your application is being profi led, this instrumentation
records the duration of any ADO.NET calls that are made and also
captures a copy of the command text used in the database call.
As your application runs, timing data is gathered for all database

accesses performed using synchronous methods of the ADO.NET
classes, including SQL, OLE DB, Open Database Connectivity
(ODBC), and SQL Server Compact (SQL CE) APIs. TIP also
captures timing data if your application uses LINQ to SQL or the
Entity Framework APIs to access SQL databases.

Th e timing data is stored along with any other data gathered
during the profi ling session in a Visual Studio profi ler fi le (.vsp).
Because an application making a call to an external database
performs an out-of-process call, the instructions that TIP adds
to instrument the application have very little impact on overall
application performance.

Tuning for Performance
A common design pattern involves dividing a Web application into
a presentation layer, a business logic layer and a data layer. Th is

Figure 1 A Visual Studio Profi ler Tier Interaction Report

TIP helps you to understand
which data requests contribute
the most to response delays.

www.msdnmagazine.com
http://blogs.msdn.com/b/habibh/archive/2009/06/30/walkthrough-using-the-tier-interaction-profiler-in-visual-studio-team-system-2010.aspx
http://blogs.msdn.com/b/habibh/archive/2009/06/30/walkthrough-using-the-tier-interaction-profiler-in-visual-studio-team-system-2010.aspx
http://blogs.msdn.com/b/habibh/archive/2009/06/30/walkthrough-using-the-tier-interaction-profiler-in-visual-studio-team-system-2010.aspx

msdn magazine64 Speed SQL

design paradigm leads to breaking your application into com-
ponent parts to foster reliability, extensibility and scalability. Th e
multi-tiered application accesses its data layer using business logic
components that reference data entities logically as rows and
columns in a related set of tables. How a database like SQL Server
maintains the physical data associated with the database tables is
transparent to your application by design.

For the sake of reliability and scalability, large-scale Web
applications often configure multiple machines into pools that
are responsible for the processing logic associated with each
layer of the application. Multiple machines supporting multiple
tiers creates a special challenge in performance analysis because
monitoring any single machine provides an incomplete picture
of the application.

For example, using a database system like SQL Server to manage
and mediate access to the application’s data store creates a data
layer that is isolated from the application logic. The application
data housed in a database like SQL Server is maintained in a sep-

arate process address space with
its own data store. Th e database
containing the application data
can reside on the same physical
machine as the application, but
is more likely to be accessed
from a different machine using
networking protocols.

SQL commands that the ap-
plication passes to an external
database and that are operated
upon there are out-of-process
calls. Sampling profiles see that
the application is dormant while
waiting for these out-of-process
calls to complete, but cannot tell
you why the application is waiting
or the duration of these delays.
Instrumented and concurrency
profiles do measure the duration
of these delays, but cannot tell you
what SQL commands are being
issued or why they’re taking so
long to complete.

In multi-tiered applications that
communicate with an external

database, the database component is oft en a major contributor
to overall application response time. Th e Visual Studio profi ling
tools include a variety of profi ling methods including sampling,
instrumentation, memory allocation, and concurrency—but
none of these methods may be of much help in identifying
performance issues associated with accessing an external data-
base without TIP data.

TIP data lets you drill down into database-related delays and
understand why they’re occurring. In conjunction with other
performance tools your database vendor can supply, you can also
start to understand what can be done to improve the performance
of an application that depends heavily on database performance.

Because TIP adds instrumentation to the application code,
timing data associated with database commands can be gathered
no matter where the database instance being accessed is physically
located. Timing data can be gathered, for example, for out-of-process
calls to a SQL Server instance physically resident on the same
machine as the application, which is a typical scenario in unit
testing. When the same application is ready for integration or
load testing against a SQL Server instance located on a separate
physical machine, TIP can continue to gather measurement data
for that confi guration. In fact, the TIP measurements enable you
to compare the performance of these two diff erent confi gurations.

TIP lets you compare and contrast the impact of the many
external database performance and tuning options that are avail-
able, including cache memory confi guration, physical data storage
devices, database partitioning, database indexing and database
table design. In addition, you can directly measure the performance
impact of running SQL Server on a virtual machine.

Figure 2 The AdventureWorks Tables Used to Query Sales.Customer Information

TIP data lets you drill
down into database-related
delays and understand why

they’re occurring.

65August 2010msdnmagazine.com

TIP Report Basics
Once a profi ling session with TIP activated completes, the timing
data associated with any of your application’s interaction with its
ADO.NET data layer is summarized in the Tier Interactions view.
Figure 1 shows an example of the profi ler when TIP data gathering
is active and there is ADO.NET activity during the profi ling run.

Th e top half of the report is a summary of the profi ling data that
was gathered. For ASP.NET applications, the view is organized by
URL. Th e report groups server-side response time of Web appli-
cation GET requests by URL.

Below the application layer, the report shows each connection
to a database tier (which in this example was the AdventureWorks
sample database). It measures and reports the portion of the server-
side processing time for ASP.NET requests that is associated with
synchronous database calls using ADO.NET. In this example
three summary lines appear, each tabulating the database activity
associated with three different ASP.NET pages in the Web site
being profi led. For each ASP.NET page identifi ed during profi ling,
the number of ASP.NET requests that were processed during the
profi ling run and the server-side response times for each response
message that was generated are reported.

Additional summary lines show response-time data for other
GET requests, including requests for stylesheets, Javascript code,
and images linked in the pages. Any database calls that the profi ler
is unable to associate with a specifi c ASP.NET request are grouped
under an Other Requests category.

When you’re profi ling a Windows desktop or console applica-
tion that utilizes a data layer, the report organizes the ADO.NET
activity under the process name.

Below each Web page summary line is a single summary line that
reports the number of synchronous database requests, organized by
database connection, that were made during ASP.NET processing.
In this example, you can see that six ASP.NET requests to Customer-
Query.aspx were handled over a single database connection. Th ese
six requests took a total of 0.959 seconds to process on the server,
for an average response time of 160 milliseconds. Th ese requests
issued 12 SQL queries that took approximately 45 milliseconds to
complete. Waiting for the database requests accounted for only
about 5 percent of the elapsed time associated with generating the
response messages for this Web page.

If you highlight one of the database connection summary lines,
the bottom half of the Tier Interactions view breaks out the specifi c
SQL commands that the application issued. Th e SQL commands
are grouped by the command text issued and sorted by elapsed
time within the page group.

In the example, one SQL command was issued three times,
another command was issued six times, and a third query was

issued three times. In the detail view, the elapsed time of each
specifi c query that is rolled up into a single line on the summary
report is reported separately. You can see the total elapsed time, the
average across all instances of the command, and the minimum
and maximum delays that were observed for each query.

If you double-click the SQL command detail line, the full text
of the SQL command that was issued is displayed in a Database
Command Text window. Th is is the actual command the applica-
tion passed to the database across the ADO.NET interface during
execution. If the request is for execution of a stored procedure, the
specifi c call to the stored procedure is shown.

A LINQ to SQL Example
Let’s look at a simple example of using TIP to understand an
ASP.NET application that depends heavily on accessing infor-
mation from a database.

TIP can be especially helpful with applications that use LINQ
to SQL to access data stored in an external SQL Server database
because LINQ tends to remove the developer one step further
from the physical database and its performance characteristics.
With LINQ to SQL, the Entity:Relationship (E:R) diagrams that
you create in the Object Relational Designer generate classes
that are then used by Visual Studio as templates for building
syntactically correct SQL commands automatically.

Because LINQ to SQL eliminates most SQL language coding
considerations and is easy to use, it also tends to mask important
performance considerations associated with database design,
confi guration and tuning. As this example illustrates, using LINQ,

var customerquery =
 from customers in db.Customers
 from custaddrs in db.CustomerAddresses
 from addrs in db.Addresses
 where (customers.CustomerID == custid &&
 customers.CustomerID == custaddrs.CustomerID &&
 custaddrs.AddressID == addrs.AddressID)

 select new {
 customers.CustomerID,
 customers.CustomerType,
 addrs.AddressLine1,
 addrs.AddressLine2,
 addrs.City,
 addrs.StateProvince,
 addrs.PostalCode,
 customers.TerritoryID
 };

Figure 3 LINQ to SQL Customer Query

SELECT [t0].[CustomerID], [t0].[CustomerType], [t2].[AddressLine1],
[t2].[AddressLine2], [t2].[City], [t3].[StateProvinceID],
[t3].[StateProvinceCode], [t3].[CountryRegionCode], [t3].
[IsOnlyStateProvinceFlag], [t3].[Name], [t3].[TerritoryID], [t3].
[rowguid], [t3].[ModifiedDate], [t2].[PostalCode], [t0].[TerritoryID] AS
[TerritoryID2]
FROM [Sales].[Customer] AS [t0]
CROSS JOIN [Sales].[CustomerAddress] AS [t1]
CROSS JOIN [Person].[Address] AS [t2]
INNER JOIN [Person].[StateProvince] AS [t3] ON [t3].[StateProvinceID] =
[t2].[StateProvinceID]
WHERE ([t0].[CustomerID] = @p0) AND ([t0].[CustomerID] = [t1].
[CustomerID]) AND ([t1].[AddressID] = [t2].[AddressID])

Figure 4 SQL Command for customerquery

TIP can be especially
helpful with applications that

use LINQ to SQL.

www.msdnmagazine.com

msdn magazine66 Speed SQL

you can easily create a complex query that joins multiple tables with-
out having to consider the performance implications of doing so.

With TIP, you can see the actual SQL command text that LINQ
to SQL generates and gather measurements from the runtime
execution of these SQL queries. With the SQL command text in
hand, you can then access other database tuning tools to help you
better understand the performance implications of any particular
LINQ to SQL operation.

My example is a Web Form application that queries the Adventure-
Works Sales.Customer tables using a specifi c customer ID to retrieve
that customer’s order history. Th e AdventureWorks tables involved
in this query include the Customer, SalesOrderHeader, Sales-
OrderDetail and StateProvince tables, as illustrated in the Object
Relational Designer view in Figure 2.

If you also wanted to display the customer mailing and e-mail
address information alongside the order history, the Customer-
Address, Address, and Contact tables need to be accessed. As shown
in the Object Relational Designer, the AdventureWorks tables
contain primary and foreign keys such as CustomerID, SalesOrder,
and ContactID that allow these tables to be joined logically.

The C# code to create an AdventureWorks customer query
using LINQ to SQL is shown in Figure 3. In this case custid is

the specific CustomerID value requested. This query returns a
customeryquery collection that contains a single data row contain-
ing the data fi elds listed in the select new clause.

The customeryquery can then be bound to a control on an
ASP.NET Web page:

DetailsView1.DataSource = customerquery;
DetailsView1.DataBind();

Now I can create a query to retrieve the order history of
this customer:

var orderquery =
 from orderhdr in db.SalesOrderHeaders
 where (orderhdr.CustomerID == custid)
 orderby orderhdr.OrderDate
 select new {
 Date = orderhdr.OrderDate.ToShortDateString(),
 orderhdr.AccountNumber,
 InvoiceNo = orderhdr.SalesOrderID,
 orderhdr.TotalDue
 };

When this LINQ to SQL operation executes, orderquery will
contain a row corresponding to each row in the OrderHdr table
associated with a specifi c Customer ID. Th e orderquery collection
will contain multiple rows if the customer history indicates there
were multiple sales transactions.

Th ese queries look straightforward on the surface. But using TIP,
you can start to understand the performance implications of these
seemingly simple LINQ to SQL operations.

Using TIP Data for Tuning
Let’s take a closer look at customerquery. At run time, LINQ to
SQL takes the logical database SELECT operations implied in the
LINQ statement and uses it to generate a valid SQL command that
joins data from four AdventureWorks tables: Customers, Customer-
Addresses, Addresses and the static StateProvince table. You don’t
see this in the LINQ to SQL code here.

When you run this code under
the Visual Studio profiler, the
TIP instrumentation reports the
number of times this query was
executed and measures the time
the Web page was delayed waiting
for its execution. Th is is, in fact, the
operation that executed six times
during the profi ling run illustrated
back in Figure 1.

In addition, as you saw earlier,
the SQL command generated by
the LINQ to SQL code is also
available when the application is
profi led. Figure 4 shows the actual
SQL command for this operation.
Note that the SQL command
text includes a token (designated
here as “@p0”) to represent the
customer ID parameter that LINQ
feeds into the query.

Now that the actual SQL com-
mand text generated by LINQ is Figure 5 The Execution Plan for the Example LINQ to SQL Operation

Using TIP, you can start to
understand the performance

implications of these seemingly
simple LINQ to SQL operations.

It’s so powerful it makes the Kraken look like a gimp sea monkey.

It’s so fast it makes warp drive look like a hobbit running backwards.

IT’S SO EASY IT MIGHT AS WELL BE “GOD MODE”
It makes other reporting solutions seem like

you’re trying to crack RIJNDAEL ENCRYPTION,

or like driving the “ROAD OF DEATH” in the

Bolivian Andes, backwards, while blindfolded.

No other solution can match Windward’s array of features,
STREAMLINED IMPLEMENTATION, and already familiar
interface. You create custom report templates with Word,
Excel, or PowerPoint. Even your co-workers who need IT
to turn on their computers can use Microsoft Office to
format reports.

I F YOU F IND A L L OF T H IS HA RD T O S WALLOW,

D O W N L O A D T H E F R E E T R I A L A T

Design Reports in Microsoft Word, Excel, and PowerPoint.

Drag N’Drop data into report templates no coding required!

Solutions for .Net, Java and SharePoint platforms

Integrates easily into any software application

Unless of course you enjoy designing

report templates with endless code,

apologies for keeping you from your
current mind-numbingly dull solution.

the ONLY EPIC REPORT ING & DOCUMENT GENERAT ING SOLUT ION

A N D S E E F O R Y O U R S E L F .

(303) 499-2544

www.WindwardReports.com/msdn.aspx

Untitled-1 1 7/19/10 11:53 AM

http://www.WindwardReports.com/msdn.aspx

msdn magazine68 Speed SQL

available, it’s possible to understand
how the database design is aff ecting
the performance of the query.

One thing you can do is execute
this SQL command in SQL Server
Management Studio and examine
its execution plan, as shown in
Figure 5. To access the execution
plan for this query, you need to
add a command to point to the
appropriate database:

USE AdventureWorks ;
GO

Next, copy the SQL command
text from the TIP report, remem-
bering to replace the “@p0” token
with a valid CustomerID from
the database. Then execute this
example query in SQL Server
Management Studio and access
the execution plan that shows how the query optimizer translated
the logical request into a physical plan of execution.

In this example, the execution plan for the query shows that the
SELECT statement accessed the Customer table using a clustered
index on the CustomerID fi eld that returned exactly one row in the
table. In SQL Server Management Studio you can use the mouse
to hover over an operation to view its properties or highlight the
operation and right-click to view the Properties window. In this
fashion, you can cycle through each of the remaining operations
that the command requests. Each of the three subsequent JOINs
that augment the initial Customer SELECT also accesses a table
using its clustered index and returns a single unique row.

From this investigation, you can see that, to process this query,
a total of four rows, each from a diff erent table in the Adventure-
Works database, needs to be accessed. Each access is performed
effi ciently utilizing the table’s unique primary key.

Similarly, you can use TIP to see the SQL command for the
orderquery code and feed it to SQL Server Management Studio to
see its execution plan (see Figure 6). Th is query accesses a single
table called OrderHdr using the CustomerID as a foreign key, so
it needs to access both an ordinary nonclustered index as well as
the clustered index on SalesOrderHeaderID.

This particular instance of the query returns nine rows. The
orderby clause in the LINQ to SQL code translates into a SQL ORDER
BY clause that entails an additional Sort operation on the resultset of
the SELECT. Th is operation represents 40 percent of the overall cost
of executing the request, as estimated by SQL Server Plan Optimizer.

Choosing a Profi ling Context
TIP is designed to supplement existing Visual Studio profi ling
methods to gather specifi c measurements on data tier interactions.
TIP is a secondary data-gathering facility and cannot be gathered
without specifying a primary profi ling method. TIP data can be
gathered during sampling, instrumentation and concurrency
profi ling runs for any application that communicates with a data
tier using ADO.NET.

Given that you need to choose a primary profiling method
for an application for which you want to gather TIP data, which
should you use? Let’s walk through some of the considerations for
choosing a primary profi ling method.

Are the delays associated with data tier interactions the primary
focus of the performance investigation? If so, sampling profi ling
is the recommended primary method because it’s usually the least
intrusive form of profi ling.

If data tier delays aren’t the primary focus of the performance
investigation, choose a profi ling method based on what is most likely
to provide the measurement data that is most applicable in the cur-
rent context. For instance, if you’re investigating a problem associated
with the concurrent execution of multiple threads, gather concurrency
data. If you’re investigating a problem associated with a CPU-bound
application, gather sampling data. For additional guidance on which
primary collection method to choose, see the article “How to: Choose
Collection Methods” (msdn.microsoft.com/library/ms182374(VS.100)).

If you’re not already familiar with the data layer code, you may
need help from the primary profi ling data to fi nd the exact code
where these ADO.NET calls originate. TIP does not capture a call
stack when it gathers timing information on synchronous ADO.
NET out-of-process calls. If you need to understand where in the
application calls to ADO.NET methods are being made, instru-
mented profi les will be the most helpful. Sampling data can also help
you do this, but not with the precision of an instrumented profi le.

You can choose to gather resource-contention data along with
the tier interaction measurements, but gathering contention data

Figure 6 The Execution Plan for orderquery

TIP data can be gathered during
sampling, instrumentation and

concurrency profi ling runs.

http://msdn.microsoft.com/library/ms182374(VS.100)

You have the vision, but time, budget and staff
constraints prevent you from seeing it through.
With rich user interface controls like Gantt Charts
that Infragistics NetAdvantage® for .NET adds to
your Visual Studio 2010 toolbox, you can go to market
faster with extreme functionality, complete usability
and the “Wow-factor!” Go to infragistics.com/spark
now to get innovative controls for creating Killer Apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc. All other trademarks or registered trademarks are the property of their respective owner(s).

Gantt Chart

Untitled-12 1 4/9/10 2:29 PM

www.infragistics.com/spark

msdn magazine70 Speed SQL

tends to be a higher-overhead function than sampling, and the
contention data is unlikely to provide any assistance in helping to
determine where specifi c ADO.NET calls originate. Investigations
that require .NET Memory Allocation profiling, which are
normally very high impact, are unlikely to benefi t from gathering
tier interaction measurements.

Sampling Profi les
Oft en, the data tier interactions themselves are the primary focus
of a performance investigation. In this case, best results are
usually obtained when sampling is chosen as the primary profi ling
method. Sampling is preferred in this case mainly because it’s the
profi ling method that usually aff ects an application’s performance
the least. Sampling profi les can also prove helpful in navigating
to the source code where the ADO.NET calls that most affect
performance originate.

With data tier functions that run out-of-process, the instruction
execution samples gathered during a sampling profi le normally
do not refl ect any of the time that an application spends waiting
for synchronous calls across an ADO.NET interface to complete.
During periods when an application’s execution thread is waiting
for these out-of-process calls to complete, the application thread
is blocked and no execution samples are recorded against it. When
sampling is used, gathering TIP data is the best way to understand
which application delays occur that are due to synchronous calls
to a data tier.

Th e instrumentation used by TIP doesn’t capture call stacks when
it gathers timing data. So, if you’re profi ling a tiered application and
aren’t thoroughly familiar with the code, it can be diffi cult to deter-
mine precisely where the calls to the data layer originate. Sampling
profi les may also help identify where in the application code calls to
these ADO.NET interfaces are performed. If the application makes
frequent calls to ADO.NET interfaces, some samples showing
time spent in ADO.NET modules, including System.Data.dll and
System.Data.Linq.dll, are likely to be gathered.

In reviewing the sampling data and comparing it to the tier
interaction measurements, keep in mind that while an application
thread is blocked waiting for a synchronous database call to
complete, no sampling data for the thread is gathered. Th e samples
accumulated during execution exclude the out-of-process delays
TIP explicitly measures. What you can expect, however, is a rough
correlation between the execution samples gathered in ADO.NET
methods and the number of ADO.NET commands that TIP
observes and measures. In such cases, sampling profi les can assist

you in navigating to the source code where the ADO.NET calls
that TIP measures and reports originate.

Note that if an application has SQL queries that return large
resultsets that are then bound to a data-bound control on a form,
you’re apt to fi nd a signifi cant number of execution samples in
the control’s DataBind method. Seeing which DataBind methods
appear in the sampling profi le may also assist you in navigating to
the source code where the ADO.NET calls originate.

Instrumented Profi les
When instrumented profi les are gathered, the timing data for methods
recorded by the instrumentation already include any time spent
waiting for out-of-process calls to complete inside the method. Th e
timing data recorded in an instrumented profi le is gathered by measur-
ing the time at the entry and exit of each of the application’s methods
that are selected for instrumentation. Timing data for methods in an
application that interface to a data-tier layer using ADO.NET calls
implicitly include the delay in executing any out-of-process calls.

Th e timing data gathered from TIP explicitly identifi es and
measures out-of-process delays separately. Th e delay measured
by tier interaction profi ling should be a subset of the overall time
spent inside the method, as measured during an instrumented
profi ling run. With this understanding, you should be able to match
the timing data from tier interaction profi ling against the timing
data gathered at the method level in an instrumented profi le to
pinpoint the method where the call to the data layer originated.

If instrumentation at the method level is suffi cient to allow
you to fi gure out where in the application any ADO.NET calls
originate, then instrumented profiling can be used without
hesitation. However, instrumented profi les are usually much more
intrusive than sampling profi les, incur greater overhead, and tend
to generate signifi cantly larger .vsp collection fi les. In addition,
if your application uses methods that make multiple calls to
ADO.NET functions, the data gathered by instrumentation will
only help you navigate to the method level, not diff erentiate among
multiple ADO.NET calls embedded inside a single method.

More Data, Please
Building multi-tiered applications is a design pattern that promotes
reliability and scalability, but does lead to performance-monitoring
challenges when application components execute on diff erent
machines.

A simple view of a multi-tiered application that doesn’t encom-
pass all of its interconnected layers can’t provide a complete picture
of its performance. As you’ve seen, TIP can supply key timing data
that’s otherwise missing. As the example in this article suggests, this
timing data can be augmented with other performance data from
standard data base administrator tools.

MARK FRIEDMAN is an Architect on the Visual Studio Ultimate team at Micro-
soft . He’s the author of two books on Windows performance and blogs periodi-
cally about performance issues at blogs.msdn.com/ddperf/.

THANKS to the following technical experts for reviewing this article:
Daryush Laqab and Chris Schmich

Tier Interaction Profi ling
explicitly identifi es and

measures out-of-process
delays separately.

http://blogs.msdn.com/ddperf/

If you’re looking for no-nonsense .NET development training,
look no further than Visual Studio Live! From Visual Studio
and Sharepoint, to Silverlight, Data Management, and Cloud
Computing, we’ve got you covered. Seriously.

For more reasons on why you should attend
Visual Studio Live!, visit www.vslive.com/serious.

Are you serious?

NOVEMBER 14–17, 2010
ORLANDO, FL

Untitled-1 1 7/13/10 10:46 AM

http://www.vslive.com/serious

msdn magazine72

S MA RT C L I ENT

Building Distributed Apps
with NHibernate and
Rhino Service Bus, Part 2

In the July 2010 issue of MSDN Magazine, I started walking
through the process of building a smart client application for a
lending library. I called the project Alexandria, and decided to
use NHibernate for data access and Rhino Service Bus for reliable
communication with the server.

NHibernate (nhforge.org) is an object-relational mapping (O/RM)
framework, and Rhino Service Bus (github.com/rhino-esb/rhino-esb) is
an open source service bus implementation built on the Microsoft
.NET Framework. I happen to be deeply involved in developing
both of these frameworks, so it seemed like an opportunity to im-
plement a project with technologies I know intimately, while at the
same time provide a working example for developers who want to
learn about NHibernate and Rhino Service Bus.

In the previous article, I covered the basic building blocks of
the smart client application. I designed the back end, along with
the communication mode between the smart client application
and the back end. I also touched on batching and caching, how to
manage transactions and the NHibernate session, how to consume
and reply to messages from the client, and how everything comes
together in the bootstrapper.

In this installment, I will cover best practices for sending data
between the back end and the smart client application, as well as
patterns for distributed change management. Along the way, I’ll

Oren Eini

cover the remaining implementation details, and will present a
completed client for the Alexandria application.

You can download the sample solution from github.com/ayende/
alexandria. Th e solution comprises three parts: Alexandria.Backend
hosts the back-end code; Alexandria.Client contains the front-
end code; Alexandria.Messages contains the message defi nitions
shared between them.

No One Model Rules
One of the most common questions people ask when writing
distributed applications is: How can I send my entities to the client
application and then apply the change set on the server side?

If that’s your question, you’re probably thinking in a mode
where the server side is mostly a data repository. If you build
such applications, there are technology choices you can make
that simplify this task (for example, employing WCF RIA
Services and WCF Data Services). Using the type of architecture
I’ve outlined so far, however, it doesn’t really make sense to talk
about sending entities on the wire. Indeed, the Alexandria appli-
cation uses three distinct models for the same data, each model
best suited for diff erent parts of the application.

Th e domain model on the back end, which is used for querying
and transactional processing, is suitable for use with NHibernate
(and further refi nement would be to split the querying and trans-
actional processing responsibilities). Th e message model represents
messages on the wire, including some concepts that map closely to
domain entities (BookDTO in the sample project is a data clone of
Book). In the client application, the View Model (like the Book-
Model class) is optimized to be bound to the XAML and to handle
user interactions.

While at fi rst glance you can see many commonalities among the
three models (Book, BookDTO, BookModel), the fact that they have
diff erent responsibilities means that trying to cram all of them into a

This article discusses:
• Commands over change sets

• Local state management

• Back-end processing

• Handling complex operations

Technologies discussed:
NHibernate, Rhino Service Bus

http://nhforge.org
http://github.com/rhino-esb/rhino-esb
http://github.com/ayende/alexandria
http://github.com/ayende/alexandria

73August 2010msdnmagazine.com

single model would create a cumbersome, heavy-
weight, one-size-doesn’t-fi t-anyone model. By split-
ting the model along the lines of responsibilities, I
made the work much easier because I can refi ne
each model independently to fi t its own purposes.

From a conceptual point of view, there are
other reasons to want to create a separate model
for each usage. An object is a combination of
data and behavior, but when you try to send
an object over the wire, the only thing you can
send is the data. Th at leads to some interesting
questions. Where do you place business logic that should run on
the back-end server? If you put it in the entities, what happens if
you execute this logic on the client?

Th e end result of this sort of architecture is that you aren’t using
real objects. Instead, you’re using data objects—objects that are
simply holding the data—and the business logic resides elsewhere,
as procedures that run over the object data. Th is is frowned upon,
because it leads to scattering of logic and code that’s harder to maintain
over time. No matter how you look at it, unless the back-end
system is a simple data repository, you want to have different
models in diff erent parts of the application. Th at, of course, leads to
a very interesting question: how are you going to handle changes?

Commands over Change Sets
Among the operations I allow users in the Alexandria application
are adding books to their queue, reordering books in the queue, and
removing them entirely from the queue, as shown in Figure 1. Th ose
operations need to be refl ected in both the front end and the back end.

I could try to implement this by serializing the entities over
the wire and sending the modified entity back to the server for
persistence. Indeed, NHibernate contains explicit support for just
such scenarios, using the session.Merge method.

However, let’s assume the following business rule: When a
user adds a book to her queue from the recommendations list,
that book is removed from the recommendations and another
recommendation is added.

Imagine trying to detect that a book was moved from the recom-
mendations list to the queue using just the previous and current
state (the change set between the two states). While it can be done,
to say that it would be awkward to handle is an understatement.

I call such architectures Trigger-Oriented Programming.
Like triggers in a database, what you have in a system based on
change sets is code that deals mostly with data. To provide some
meaningful business semantics, you have to extract the meaning of
the changes from the change set by brute force and luck.

Th ere’s a reason that triggers containing logic are considered
an anti-pattern. Though appropriate for some things (such as
replication or pure data operations), trying to implement busi-
ness logic using triggers is a painful process that leads to a system
that’s hard to maintain.

Most systems that expose a CRUD interface and allow you
to write business logic in methods such as UpdateCustomer are
giving you Trigger-Oriented Programming as the default (and
usually the only choice). When there isn’t signifi cant business logic

involved—when the system as a whole is mostly
about CRUD—this type of architecture makes
sense, but in most applications, it’s not appro-
priate and not recommended.

Instead, an explicit interface (Remove-
BookFromQueue and AddBookToQueue, for
instance) results in a system that’s much easier
to understand and think about. Th e ability to
exchange information at this high level allows a
great degree of freedom and easy modifi cation
down the road. Aft er all, you don’t have to fi gure

out where some functionality in the system is based on what data
is manipulated by that functionality. The system will spell out
exactly where this is happening based on its architecture.

Th e implementation in Alexandria follows the explicit interface
principle; invoking those operations resides in the application model
and is shown in Figure 2. I’m doing several interesting things here,
so let’s handle each of these in order.

First, I modify the application model directly to immediately refl ect
the user’s desires. I can do this because adding a book to the user’s
queue is an operation that is guaranteed never to fail. I also remove it
from the recommendations list, because it doesn’t make sense to have
an item on the user’s queue also appear on the recommendations list.

Next, I send a message batch to the back-end server, telling it to
add the book to the user’s queue, and also to let me know what the
user’s queue and recommendations are aft er this change. Th is is an
important concept to understand.

Th e ability to compose commands and queries in this manner
means that you don’t take special steps in commands like Add-
BookToQueue to get the changed data to the user. Instead, the
front end can ask for it as part of the same message batch and you
can use existing functionality to get this data.

Th ere are two reasons I request the data from the back-end
server even though I make the modifi cations in memory. First, the
back-end server may execute additional logic (such as fi nding new
recommendations for this user) that will result in modifi cations
you don’t know about on the front-end side. Second, the reply from
the back-end server will update the cache with the current status.

Disconnected Local State Management
You might have noticed a problem in Figure 2 with regard to
disconnected work. I make the modification in memory, but

public void AddToQueue(BookModel book) {
 Recommendations.Remove(book);
 if (Queue.Any(x => x.Id == book.Id) == false)
 Queue.Add(book);

 bus.Send(
 new AddBookToQueue {
 UserId = userId, BookId = book.Id
 },
 new MyQueueQuery {
 UserId = userId
 },
 new MyRecommendationsQuery {
 UserId = userId
 });
}

Figure 2 Adding a Book to the User’s Queue on the Front End

Figure 1 Possible Operations on
the User’s Books Queue

www.msdnmagazine.com

msdn magazine74 Smart Client

until I get a reply back from the server, the cached data isn’t going
to reflect those changes. If I restart the application while still
disconnected, the app will display expired information. Once
communication with the back-end server resumes, the messages
would fl ow to the back end and the fi nal state would resolve to
what the user is expecting. But until that time, the application is
displaying information that the user has already changed locally.

For applications that expect extended periods of disconnection,
don’t rely only on the message cache; instead implement a model
that’s persisted aft er each user operation.

For the Alexandria application, I extended the caching conven-
tions to immediately expire any information that’s part of a com-
mand-and-queries message batch such as the one in Figure 2.
Th at way, I won’t have the up-to-date information, but I also won’t
show erroneous information if the application is restarted before
I get a reply from the back-end server. For the purposes of the
Alexandria application, that’s enough.

Back-End Processing
Now that you understand how the process works on the front-end
side of things, let’s look at the code from the back-end server point
of view. You’re already familiar with the handling of queries,
which I showed in the previous article. Figure 3 shows the code for
handling a command.

Th e actual code is pretty boring. I load the relevant entities and
then call a method on the entity to perform the actual task. However,
this is more important than you might think. An architect’s job,

I’d argue, is to make sure that the developers in the project are
as bored as possible. Most business problems are boring, and by
removing technological complexities from the system, you get a
much higher percentage of developer time spent working on boring
business problems instead of interesting technological problems.

What does that mean in the context of Alexandria? Instead
of spreading business logic in all the message consumers, I have
centralized as much of the business logic as possible in the entities.
Ideally, consuming a message follows this pattern:

• Load any data required to process the message
• Call a single method on a domain entity to perform the

actual operation
Th is process ensures that the domain logic is going to remain in

the domain. As for what that logic is—well, that’s up to the scenarios
you need to handle. Th is should give you an idea about how I
handle the domain logic in the case of User.AddToQueue(book):

public virtual void AddToQueue(Book book) {
 if (Queue.Contains(book) == false)
 Queue.Add(book);
 Recommendations.Remove(book);

 // Any other business logic related to
 // adding a book to the queue
}

You’ve seen a case where the front-end logic and the back-end
logic match exactly. Now let’s look at a case where they don’t.
Removing a book from the queue is very simple on the front end
(see Figure 4). It’s pretty straightforward. You remove the book
from the queue locally (which removes it from the UI), then send
a message batch to the back end, asking it to remove the book
from the queue and update the queue and the recommendations.

On the back end, consuming the RemoveBookFromQueue
message follows the pattern shown in Figure 3, loading the entities
and calling the user.RemoveFromQueue(book) method:

public virtual void RemoveFromQueue(Book book) {
 Queue.Remove(book);
 // If it was on the queue, it probably means that the user
 // might want to read it again, so let us recommend it
 Recommendations.Add(book);
 // Business logic related to removing book from queue
}

Th e behavior is diff erent between the front end and the back end. On
the back end, I add the removed book to the recommendations, which
I don’t do on the front end. What would be the result of the disparity?

Well, the immediate response would be to remove the book
from the queue, but as soon as the replies from the back-end server
reach the front end, you’ll see the book added to the recom-
mendations list. In practice, you’d probably be able to notice the
diff erence only if the back-end server was shut down when you
remove a book from the queue.

Which is all very nice, but what about when you actually need
confi rmation from the back-end server to complete an operation?

Complex Operations
When the user wants to add, remove or reorder items in her queue,
it’s pretty obvious that the operation can never fail, so you can
allow the application to immediately accept the operation. But for
operations such as editing addresses or changing the credit card,
you can’t just accept the operation until you have a confi rmation
of success from the back end.

public class AddBookToQueueConsumer :
 ConsumerOf<AddBookToQueue> {

 private readonly ISession session;

 public AddBookToQueueConsumer(ISession session) {
 this.session = session;
 }

 public void Consume(AddBookToQueue message) {
 var user = session.Get<User>(message.UserId);
 var book = session.Get<Book>(message.BookId);

 Console.WriteLine("Adding {0} to {1}'s queue",
 book.Name, user.Name);

 user.AddToQueue(book);
 }
}

Figure 3 Adding a Book to the User’s Queue

public void RemoveFromQueue(BookModel book) {
 Queue.Remove(book);

 bus.Send(
 new RemoveBookFromQueue {
 UserId = userId,
 BookId = book.Id
 },
 new MyQueueQuery {
 UserId = userId
 },
 new MyRecommendationsQuery {
 UserId = userId
 });
}

Figure 4 Removing a Book from the Queue

We get it—web design is your world. That’s why Web Design World is bringing the top minds in web

design to Las Vegas this October. Join us for three days of the real deal: new sessions devoted to the

coding, design, and production techniques you need today, presented by some of the top minds in the

fi eld. Oh, and did we mention it’s in Vegas?

Here are just a few of the expert speakers you’ll fi nd at Web Design World Las Vegas:

We take our mantra—provide practical, no-fl uff, how-to—very seriously. If you’ve joined us before,

you know that. Get the insights you need to build user-friendly sites emphasizing emerging web standards

and hands-on learning with the latest tools helping you achieve great design.

SAVE $200 WHEN YOU REGISTER BY SEPTEMBER 15!LAS VEGAS • OCTOBER 18 - 20, 2010

Go to WEBDESIGNWORLD.COM today
and use Priority Code NQW2 to save $200 when you

register before September 15th!

Steve Mulder
Vice President,

Experience Strategy Isobar

Greg Rewis
Principal Worldwide Evangelist,

 Creative Suite Web Premium,

Adobe Systems, Inc.

Dan Rubin
Designer,

 Sidebar Creative

Stephanie Sullivan Rewis
Consultant,

W3Conversions

Untitled-1 1 7/16/10 11:13 AM

www.webdesignworld.com

msdn magazine76 Smart Client

In Alexandria, this is implemented as a four-stage process. It sounds
scary, but it’s really quite simple. Figure 5 shows the possible stages.

The top-left screen shot shows the normal view of the sub-
scription details. This is how Alexandria shows confirmed
changes. The bottom-left screen shot shows the edit screen for
the same data. Clicking the save button on this screen results in
the screenshot shown on the top–right; this is how Alexandria
shows unconfirmed changes.

In other words, I accept the change (provisionally) until I
get a reply back from the server indicating that the change was
accepted (which moves us back to the top-left screen) or rejected,
which moves the process to the bottom-right screenshot. That
screenshot shows an error from the server and allows the user to
fi x the erroneous detail.

The implementation isn’t complex, despite what you may
think. I’ll start in the back end and move outward. Figure 6
shows the back-end code required to handle this and it isn’t
anything new. I’ve been doing much the same thing throughout
this article. Most of the conditional command functionality (and
complexity) lives in the front end.

One thing that’s diff erent from what you’ve seen before is that
here I have explicit success/fail code for the operation, while before
I simply requested a data refresh in a separate query. Th e operation
can fail, and I want to know not only whether the operation is
successful or not, but why it failed.

Alexandria makes use of the Caliburn framework to
handle much of the drudgery of managing the UI. Caliburn
(caliburn.codeplex.com) is a WPF/Silverlight framework that relies
heavily on conventions to make it easy to build much of the application
functionality in the application model rather than writing code in the
XAML code behind.

As you’ll see from looking at the sample code, just about every-
thing in the Alexandria UI is wired via the XAML using conventions,
giving you both clear and easy to understand XAML and an
application model that directly refl ects the UI without having a
direct dependency on it. Th is results in signifi cantly simpler code.

Figure 7 should give you an idea about how this is implemented
in the SubscriptionDetails view model. In essence, Subscription-
Details contains two copies of the data; one is held in the Editable
property and that’s what all the views relating to editing or display-
ing unconfi rmed changes show. Th e second is held in the Details
property, which is used to hold the confi rmed changes. Each mode
has a diff erent view, and each mode selects from which property
to display the data.

In the XAML, I wired the ViewMode binding to select the appropri-
ate view to show for every mode. In other words, switching the mode
to Editing will result in the Views.SubscriptionDetails.Editing.xaml
view being selected to show the edit screen for the object.

It is the save and confi rmation processes you will be most inter-
ested in, however. Here’s how I handle saving:

public void Save() {
 ViewMode = ViewMode.ChangesPending;
 // Add logic to handle credit card changes
 bus.Send(new UpdateAddress {
 UserId = userId,
 Details = new AddressDTO {
 Street = Editable.Street,
 HouseNumber = Editable.HouseNumber,
 City = Editable.City,
 ZipCode = Editable.ZipCode,
 Country = Editable.Country,
 }
 });
}

Th e only thing I’m actually doing here is sending a message and
switching the view to a non-editable one with a marker saying that
those changes have not yet been accepted. Figure 8 shows the code
for confi rmation or rejection. All in all, a miniscule amount of code
to implement such a feature, and it lays the foundation for imple-
menting similar features in the future.

You also need to consider classic request/response calls, such
as searching the catalog. Because communication in such calls is
accomplished via one-way messages, you need to change the UI
to indicate background processing until the response from the
back-end server arrives. I won’t go over that process in detail, but
the code for doing it exists in the sample application.

public void Consume(UpdateAddress message) {
 int result;
 // pretend we call some address validation service
 if (int.TryParse(message.Details.HouseNumber, out result) ==
 false || result % 2 == 0) {
 bus.Reply(new UpdateDetailsResult {
 Success = false,
 ErrorMessage = "House number must be odd number",
 UserId = message.UserId
 });
 }
 else {
 var user = session.Get<User>(message.UserId);
 user.ChangeAddress(
 message.Details.Street,
 message.Details.HouseNumber,
 message.Details.City,
 message.Details.Country,
 message.Details.ZipCode);

 bus.Reply(new UpdateDetailsResult {
 Success = true,
 UserId = message.UserId
 });
 }
}

Figure 6 Back-End Handling of Changing a User’s Address

Figure 5 Four Possible Stages for a Command
Requiring Confi rmation

http://caliburn.codeplex.com

77August 2010msdnmagazine.com

Checking Out
At the beginning of this project, I started by stating the goals and
challenges I anticipated facing in building such an application. Th e
major challenges I intended to address were data synchronization,
the fallacies of distributed computing, and handling an occasionally
connected client. Looking back, I think Alexandria does a good job
of meeting my goals and overcoming the challenges.

Th e front-end application is based on WPF and making heavy use
of the Caliburn conventions to reduce the actual code for the applica-
tion model. Th e model is bound to the XAML views and a small set of
front-end message consumers that make calls to the application model.

I covered handling one-way messaging, caching messages at the
infrastructure layer and allowing for disconnected work even for
operations that require back-end approval before they can really
be considered complete.

On the back end, I built a message-based application based on
Rhino Service Bus and NHibernate. I discussed managing the
session and transaction lifetimes and how you can take advantage
of the NHibernate fi rst-level cache using messages batches. Th e
message consumers on the back end serve either for simple
queries or as delegators to the appropriate method on a domain
object, where most of the business logic actually resides.

Forcing the use of explicit commands rather than a simple
CRUD interface results in a clearer code. Th is allows you to change
the code easily, because the entire architecture is focused on clearly
defi ning the role of each piece of the application and how it should
be built. Th e end result is a very structured product, with clear lines
of responsibility.

It’s hard to try to squeeze guidance for a full-blown distributed
application architecture into a few short articles, especially while
trying to introduce several new concepts at the same time. Still, I
think you’ll fi nd that applying the practices outlined here will result in
applications that are actually easier to work with than the more
traditional RPC- or CRUD-based architectures.

Oren Eini (who works under the pseudonym Ayende Rahien) is an active member of
several open source projects (NHibernate and Castle among them) and is the founder
of many others (Rhino Mocks, NHibernate Query Analyzer and Rhino Commons
among them). Eini is also responsible for the NHibernate Profi ler (nhprof.com),
a visual debugger for NHibernate. You can follow his work at ayende.com/Blog.

public void BeginEdit() {
 ViewMode = ViewMode.Editing;

 Editable.Name = Details.Name;
 Editable.Street = Details.Street;
 Editable.HouseNumber = Details.HouseNumber;
 Editable.City = Details.City;
 Editable.ZipCode = Details.ZipCode;
 Editable.Country = Details.Country;
 // This field is explicitly ommitted
 // Editable.CreditCard = Details.CreditCard;
 ErrorMessage = null;
}

public void CancelEdit() {
 ViewMode = ViewMode.Confirmed;
 Editable = new ContactInfo();
 ErrorMessage = null;
}

Figure 7 Moving Between View Modes in Response to User Input

public class UpdateAddressResultConsumer :
 ConsumerOf<UpdateAddressResult> {
 private readonly ApplicationModel applicationModel;

 public UpdateAddressResultConsumer(
 ApplicationModel applicationModel) {

 this.applicationModel = applicationModel;
 }

 public void Consume(UpdateAddressResult message) {
 if(message.Success) {
 applicationModel.SubscriptionDetails.CompleteEdit();
 }
 else {
 applicationModel.SubscriptionDetails.ErrorEdit(
 message.ErrorMessage);
 }
 }
}

//from SubscriptionDetails
public void CompleteEdit() {
 Details = Editable;
 Editable = new ContactInfo();
 ErrorMessage = null;
 ViewMode = ViewMode.Confirmed;
}

public void ErrorEdit(string theErrorMessage) {
 ViewMode = ViewMode.Error;
 ErrorMessage = theErrorMessage;
}

Figure 8 Consuming the Reply and Handling the Result

www.nwoods.com
www.msdnmagazine.com
http://ayende.com/Blog
http://nhprof.com

msdn magazine78

W IN DOWS PHONE 7

Windows Phone
and the Cloud:
an Introduction

I’m learning to read and write in Spanish. Because of where
I live, I can practice my Spanish by trying to read the bilingual signs
that show up in many public places. Th e thing is, sometimes I get
stuck on one particular word and can’t fi gure it out, or sometimes
I’m confused by a whole sentence. It’s also tough to be sure that I’ve
understood what I’ve read without a parallel English translation to
refer to. I could carry a Spanish-English dictionary with me, but
fl ipping through all of those pages is just so analog.

What I really want, because I always seem to have my phone in
my hand, is an easy way for my phone to help me with the trans-
lation. Going to Bing with my phone and using the cloud-based

Ramon Arjona

Microsoft Translator is helpful, but it takes a lot of key presses to get
to the translation screen. If only there were a way—an easy way—to
somehow get the translator on my phone. Well, with the advent of
Windows Phone 7, there is.

Th is article serves as an introduction to developing Windows
Phone applications and shows how to tie such an app into a
Web service in the cloud. You should have some familiarity with
C# and Visual Studio, and it would be helpful if you have at
least some experience developing applications with Extensible
Application Markup Language (XAML), but this isn’t required. I
used the April refresh of the community technology preview (CTP)
of the Windows Phone tools. By the time you read this, things may
have changed, so go to developer.windowsphone.com to read the latest
documentation and download the latest tools.

First Things First: Getting an AppID
If you’re going to interact with Translator—or any of the Bing Web
services—the fi rst step is to get an AppID. It’s used by the service
API to validate that a request is coming from a registered Bing
application developer.

Go to bing.com/developers/createapp.aspx and sign in with your
Windows Live ID. Then fill out the form, which asks you for
your application’s name and description, as well as details such as
your company name and e-mail address. Your e-mail address is
used to notify you when these APIs change, for example, as new
versions are rolled out or old versions taken offl ine. For the Trans-

This article uses a community technology preview of the Windows
Phone tools. All information is subject to change.

This article discusses:
• Obtaining an AppID to work with Microsoft Translator

• Defi ning an application user scenario

• Using XAML to design a UI

• Changing an application icon

• Working with the Microsoft Translator API

• Expanding an application with a default list project

Technologies discussed:
Windows Phone 7, Visual Studio Express 2010 for Windows Phone,
Microsoft Translator, XAML

http://developer.windowsphone.com
http://bing.com/developers/createapp.aspx

79August 2010msdnmagazine.com

lator API in particular, at the time
of this writing the documentation
says that old versions will remain
online for 90 days following the
release of a new version.

Next, read the terms of use, check
the box to signify you accept them
and click the “Accept” button, and
you’ll be taken to a page with your
newly minted AppID in it. You can
always come back to this page for
reference, but I usually copy and
paste my AppID into my applica-
tion’s source fi le when I fi rst create it.

Always read the terms of use for
any Web service you plan to con-
sume in an app. Seriously, resist
the temptation to just scan them,
especially if you plan to distribute
your application to users through Marketplace. You owe it to
your customers to understand the service-level goals and other
conditions set by the partners who provide the services your app
consumes. So make sure you read and understand the terms of
use, whether your app is consuming a service from Microsoft or
from any other party.

Now that you have an AppID, we’re ready to start working on
the mobile translator app.

Defi ning the Scenario
Before I started to work on my first app, I took a look at some
successful mobile applications on the market. I looked at applica-
tions for Windows phones and other smartphones to try to get a
sense of what makes a truly successful mobile application. I read
product reviews. I interviewed people. I pestered my friends to let
me play with their phones.

Aft er all this research, I concluded that the key to a successful
mobile app is simplicity. Every popular app fulfi lls one or two key
user scenarios and fulfi lls them well. For example, I discovered a
whole class of apps whose sole purpose is to generate rude noises.
In practice, they’re essentially a re-implementation of the whoopee
cushion on a phone. People seem to fi nd them amusing, at least
enough to pay money to load them onto their phones.

Similarly, there are apps that roll simulated dice, recommend a
restaurant for dinner and even calculate the tip amount for that par-
ticular dinner. All of these have a focused user scenario and execute
on that scenario in a way that’s simple and intuitive. Th is approach
isn’t unique to any particular brand of smartphone. Th e idea that we
should have a polished, intuitive user experience is reinforced by
the Windows Phone UI Design and Interaction Guide published
at developer.windowsphone.com/windows-phone-7.

So when I started to work on my translator app, it was impor-
tant to focus on exactly what I wanted the app to accomplish,
and nothing else. To do this, I fi rst had to have a clear picture of
what I wanted to accomplish. Once I had this picture in mind, I
could resist the temptation to add cool new features that—while

interesting—wouldn’t serve the main user scenario. I decided my
app should translate between English and Spanish. It should easily
switch translation modes from Spanish to English or English
to Spanish, and it should deal with only single words or simple
sentences. Moreover, I only cared about Spanish and English, so
my app would ignore other languages.

Building the App
To get started building the translator app, open Visual Studio
Express 2010 for Windows Phone. Choose “New project...” and select
“Windows Phone Application.” Th is opens the default Windows Phone
project with a screen divided into two sections: Title and Content.
Th ese sections are delineated with a XAML Grid object, which lets us
defi ne a series of rows and columns in which we can position child UI
elements such as Buttons and TextBlocks (see Figure 1).

First, edit the application name and the page title by selecting
these UI elements in the designer. This highlights the related
XAML in the code view window of the designer, showing you
which element you need to edit. Next, open the toolbox and drag
some UI elements to the lower grid on the page, which is named
ContentGrid. Choose a TextBox, where we’ll put the words we
want to translate, then a TextBlock, where the translation will be
rendered. Finally, add two buttons (see Figure 2).

One button will execute the translation and the second will toggle
the direction of the translation from Spanish to English or back again.

XAML: the Modern UI
Th e heart of the Windows Phone 7 user experience is the design
system code-named “Metro.” And the heart of implementing a UI
according to the Metro system is XAML. If you’ve worked with
Silverlight or Windows Presentation Foundation (WPF) before,
XAML is probably familiar to you. If you haven’t, this section
provides a brief introduction.

XAML is a way to declaratively structure your UI, giving you
a strict separation between your app’s logic and its look and feel.
You’ll notice that the code for your app’s main page, for example, is

Figure 1 Default Windows Phone Project with Display and Code Views

www.msdnmagazine.com
http://developer.windowsphone.com/windows-phone-7

msdn magazine80 Windows Phone 7

contained in Mainpage.xaml.cs, but the basic layout of your app is
contained in Mainpage.xaml. Unlike traditional Windows Forms
development, there’s no mixing of app code with app UI layout.
Every UI element in your application is modeled as an XML
element in a XAML fi le.

This is an advantage because it allows one person to work
independently on the app’s look and feel while another works on
the app’s logic. For example, now that we’ve outlined the basic UI of
our translator app, we could hand the XAML to a UI expert while
we continue to work on the code. Th e designer wouldn’t need to
know anything about the implementation of my app and I wouldn’t
need to know anything about the color palette he’s chosen.

Of course, I don’t have any budget for a UI designer, but I do
have MSPaint, and that’s enough to demonstrate how easy it is to
update the graphic assets that accompany my app.

Giving the Translator a New Icon
I double-click the default ApplicationIcon.png that was automatically
added to the project when I created it. Th is opens my image-editing
soft ware, which is MSPaint on my dev machine. I replace the boring
gear icon with a capital letter T. Th en I erase the black background
and fi ll it in with a monochrome pink. I probably won’t win any
awards for graphic design, but I like it (see Figure 3).

To review the change, I hit the start button to deploy the appli-
cation to the Windows Phone 7 emulator. If you’ve worked with pre-
vious versions of Windows Phone emulators, you’ll see right away
how much the developer experience has improved. Work-
ing with the emulator for Windows Phone 6.5 can be a pain
and involves manual confi guration steps to start and attach
the debugger to the emulator. Here in the Windows Phone 7
development environment, everything just works once I hit
the green start button. I’m even happy with how quickly the
emulator loads and displays the app’s main UI (see Figure 4).

To see the app icon, I exit from the main UI and navi-
gate to the emulator’s main screen. Th e translator graphic
is there, and it looks OK (see Figure 5).

The App Manifest
Th e application icon is defi ned in
a fi le called WMAppManifest.xml,
which is located in your project’s
Properties folder. To rename your
app icon, change the name of
the ApplicationIcon.png in your
project and then make sure you
reflect the change here, in the
IconPath element:
 <IconPath IsRelative="true"
 IsResource="false">myicon.png
 </IconPath>

If your app can’t fi nd its icon, it
will be assigned the runtime de-
fault, which looks something like a
white circle on a black background.

Another element of this fi le that
bears examination is the Capabil-
ities element, which contains the

specifi c capabilities your application wants to use. It’s a good idea to
request exactly what your application needs, nothing more. If you scan
the fi le, you’ll see it’s got a number of capabilities we probably aren’t
going to use in our translator application.

For example, ID_CAP_GAMERSERVICES declares that
your app needs to interact with the XBox game APIs. Th e
ID_CAP_LOCATION capability says that the app wants to make
use of the device’s location capability. And ID_CAP_PUSH_
NOTIFICATION says that the app wants to interact with the push
notifi cation feature of Windows Phone 7. All of these are great
features, but we don’t need them for our app, so out they go. In fact,
we probably need only the ID_CAP_NETWORKING capability,
which says our app wants to use the network to send and receive data.

The Microsoft Translator API
Microsoft Translator exposes three kinds of APIs. Th e SOAP API
gives the consumer strong typing and ease of use. Th e AJAX API
is primarily useful for Web page developers who want to embed
translation into their UI. Th e HTTP API is useful when neither
the SOAP nor the AJAX API is appropriate.

We’re going to choose the SOAP interface, because it’s easiest to work
with for our purposes. Go to Solution Explorer and right-click Refer-
ences. Th en choose “Add a Service Reference” and input the endpoint
for the SOAP interface to the Translator API: http://api.microsoft trans-
lator.com/V2/Soap.svc. Give the service endpoint the name Trans-
latorService in the namespace textbox and click OK (see Figure 6).

 Visual Studio takes care of the rest, generating the SOAP
interface client code for you.

Now add some code to your application. Add the
AppID and a reference to the TranslatorService client in
the declaration of your app’s MainPage class:
 string appID = <<your appID>>;
 TranslationService.LanguageServiceClient client =
 new TranslationService.LanguageServiceClient();

IntelliSense shows us that the translator service has a
number of interesting methods available. Th e fi rst thing to
notice is that all of the methods are asynchronous. Th is makes

Figure 2 Adding TextBox, TextBlock and Button UI Elements

Figure 3 A
New Project
Icon Created
with MSPaint

81August 2010msdnmagazine.com

sense, because there’s no good reason to block the client application
while we’re waiting for a network operation to complete. It means
we’ll need to register a delegate for each specifi c operation we per-
form. In our case, we’re only interested in the TranslateAsync method
and the TranslateAsyncComplete event exposed by the Language-
ServiceClient. But the other methods certainly do look interesting.
Let’s take a look at them and see if they fi t into our user scenario.

Two methods that stand out are GetLanguagesForTranslateAsync
and GetLanguageNamesAsync. Th e fi rst method provides a list
of language codes supported by the Translator service. By calling
this method, you can see the language code for Spanish is “es.”
Th e GetLanguageNamesAsync method returns a list of language
names for a given set of language codes, localized for a given locale.
For example, if you pass “es” into this method as the
locale and the language code, you get back the string
“Español.” If we were doing a multilingual translator,
these would both be useful.

Another interesting method is named SpeakAsync.
It accepts a string and a locale and returns a URL to
a WAV fi le that’s the native-sounding pronunciation
of a word. Th is is an awesome feature. For example, I
could type in a string, get the translation and then pass
this string to the SpeakAsync method to get a WAV fi le
I could use to communicate with others in Spanish.
Or if I were unsure of the pronunciation of a particu-
lar word, I could use the SpeakAsync method to hear
what it was supposed to sound like.

Th ese are pretty cool, and it’s tough to resist the temp-
tation to put them into the app just because they’re
cool. For now, though, we should stand fi rm and focus
only on fulfi lling the user scenario we outlined at the
start. Having this clear picture in mind makes it easier
when faced with the temptation to add “just one more
feature.” I’m sure I’ll end up using the features off ered
in the Translator API at some point, just not right now.

Wiring up the code to make our translator app is easy. First, we
register the delegates for TranslateCompleted:

client.TranslateCompleted += new
 EventHandler<TranslationService.TranslateCompletedEventArgs>

(client_TranslateCompleted);

Th en we implement the event handler for the TranslateCompleted,
which sets the text of our TextBlock to the translated text:

 void client_TranslateCompleted(object sender,
 TranslationService.TranslateCompletedEventArgs e)
 {
 TranslatedTextBlock.Text = e.Result;
 }

We wire up the button to submit the text we’ve entered for translation:
 private void TranslateButton_Click(object sender,
 RoutedEventArgs e)
 {
 client.TranslateAsync(appID, TranslateTextBox.Text, fromLanguage,
 toLanguage);
 }

Th en we add some simple code to the second button to toggle
between translation modes, from “Spanish to English” or from
“English to Spanish.” Th is button manages a global state variable
and changes the text of our translate button to indicate that state.

Finally, we deploy the app to the emulator to test it. We’ve now
got a fully functional translator app, with just a few lines of code
and an hour or so of development time.

Expanding the Translator Application
Th e simple translator app is nice, but we could take it further by
expanding our user scenario. It would be great if we could tie more
of the languages off ered by the Translator API into our app in a way
that fi ts with the Metro design guidelines. And it would be even
better if we could eliminate the button that manages the translation
direction and instead have a simpler, more intuitive way of
managing the direction of the translation. Whatever we do, it has
to be friendly to a person using his fi ngers to interact with the
device, and it has to feel fast and easy.

Figure 4 The App Displayed by
the Windows Phone 7 Emulator

Figure 5 Checking the New
App Icon in the Emulator

Figure 6 Adding a SOAP Service Reference

www.msdnmagazine.com

msdn magazine82 Windows Phone 7

So what do we do? We build an application using the default list
project. Start a new project and select “Windows Phone List Application.”
This gives you a default screen with a ListBox control in the
ContentGrid. Th e ListBox will contain six languages we want to
translate our text into, replacing the dummy text (see Figure 7).

We’ll edit the MainViewModelSampleData.xaml fi le, which is
contained in the SampleData folder in your project. You’ll see some
XML that looks something like this:

<local:ItemViewModel LineOne="design one" LineTwo="Maecenas praesent
accumsan bibendum" LineThree="Maecenas praesent accumsan bibendum dictumst
eleifend facilisi faucibus habitant inceptos interdum lobortis nascetur"/>

By editing the XML, you can change the design-time view of the
ListBox to include all of the languages we want to work with: Span-
ish, German, English, Portuguese, Italian and French. Notice that
aft er you save this fi le, the design-time view will refl ect your changes.
This is because the ListBox control is databound to the Items
element defi ned in MainViewModelSampleData.xaml. Th is is

controlled by the ItemsSource
attribute of the ListBox control.

You can also update the
contents of the ListBox at
run time. If you look into
the file generated by Visual
Studio, you’ll see an Observable-
Collection<ItemViewCollection>
being filled with placeholder
data similar to that contained in
the MainViewModelSample-
Data.xaml fi le. For example, if
I wanted to dynamically gen-
erate the list of languages in the
UI based on the languages re-
turned by the GetLanguage-
NamesAsync method, I would
edit the MainViewModel.cs fi le
to populate the Items collection.
I prefer to specify a static list of

languages for now and just edit
the collection of ItemViewModel
objects directly. Now when we run
the list application, we should see a
UI something like Figure 8.

When the user touches one of
these buttons, he’ll be taken to a
details page that looks essen-
tially the same as the UI of our
Simple Translator. Th ere’s a Text-
Box to enter the words to trans-
late, a TextBlock to contain the
translated text and a button to
submit the translation. Instead of
adding another button to man-
age the direction of the transla-
tion, however, we’ll rely on the
Translator API. Th e bidirectional
translation of our SimpleTranslator

app doesn’t make sense in this multilingual scenario, and adding
additional layers of UI would make the app start to feel clunky
instead of smooth. Fortunately, the Translator API provides a way
to automatically detect the language being passed in.

We add some code to fi rst call the DetectAsync method of the
translator client, passing in the text we want to translate, then call
TranslateAsync from the DetectAsyncComplete event handler.
Th e event handler now looks like this:

void client_DetectCompleted(object sender,
 TranslationService.DetectCompletedEventArgs e)
{
 string languageCode = e.Result;
 client.TranslateAsync(appID, TranslateTextBox.Text, fromLanguage, tolanguage);
}

We know the language we want to translate into because of the
button the user selected. We know the language that we want to
translate from because the Translator API has autodetected it. We’re
able to create a simple, multilingual translator that allows the user
to get a translation with just two touches—not counting typing—
and less than an hour of coding.

Simplicity
Simplicity is at the heart of development for Windows Phone 7.
An app should focus on fulfi lling one user scenario, and fulfi lling
it well. Th e tools that come with the Windows Phone 7 SDK CTP
make it not only possible but easy to deliver apps that are both
simple and powerful. We’ve also seen that interacting with the
cloud is straightforward, and that the Microsoft Translator Web
service can be wired into a Windows Phone app with just a small
investment of developer time. By taking familiar tools such as
Visual Studio and clear guidelines such as Metro, Windows
Phone and the cloud come together to open up a world of new
opportunities for developers and users.

RAMON ARJONA is a senior test lead working on the Windows team at Microsoft .

THANKS to the following technical experts for reviewing this article:
VikramDendi and Sandor Maurice

Figure 7 The Default Windows Phone List Application

Figure 8 The List Application UI

NOVEMBER 14–17, 2010
ORLANDO, FL | HILTON WALT DISNEY WORLD RESORT

VSLIVE.COM/ORLANDO
DETAILS AND REGISTRATION AT

USE PRIORITY CODE NQZF1

Supported by:

REAL-WORLD TRAINING.
KILLER SKILLS.
Register today for Visual Studio Live! Orlando and learn how to maximize the
development capabilities of Visual Studio, .NET 4.0, and so much more. Join us for
four action-packed days of workshops, 50+ sessions by expert instructors, and
keynotes by industry heavyweights. Topics covered include:

 PROGRAMING WITH WCF

 ARCHITECTING FOR AZURE

 WPF & SILVERLIGHT

 ASP.NET 4

 jQUERY FOR ASP.NET

 WHAT’S NEW IN VISUAL STUDIO 2010

 SHAREPOINT 2010 FOR ASP.NET
DEVELOPERS

Untitled-1 1 7/13/10 10:47 AM

www.vslive.com/orlando

msdn magazine84

tips about when the use of fault injection testing is appropriate and
when alternative techniques are more suitable. Although the FaultHar-
ness.exe program itself is quite simple and most of the diffi cult work
is performed behind the scenes by the TestApi DLLs, understanding
and modifying the code I present here to meet your own testing sce-
narios requires a solid understanding of the .NET programming envi-
ronment. Th at said, even if you’re a .NET beginner, you should be able
to follow my explanations without too much diffi culty. I’m confi dent
you’ll fi nd the discussion of fault injection an interesting and possibly
useful addition to your toolset.

The Application Under Test
My dummy application under test is a simplistic but representative
C# WinForm application that simulates a hypothetical card game
called Two Card Poker. The application consists of two main
components: TwoCardPokerGame.exe provides the UI and
TwoCardPokerLib.dll provides the underlying functionality.

To create the game DLL I launched Visual Studio 2008 and
selected the C# Class Library template from the File | New Project

Fault Injection Testing with TestApi

Fault injection testing is the process of
deliberately inserting an error into an
application under test and then running
the application to determine whether the
application deals with the error proper-
ly. Fault injection testing can take several
diff erent forms. In this month’s column, I
explain how you can introduce faults into
.NET applications at run time using a com-
ponent of the TestApi library.

The best way for you to see where
I’m headed in this column is to take a
look at the screenshot in Figure 1. Th e
screenshot shows that I’m performing
fault injection testing on a dummy .NET
WinForm application named TwoCar-
dPokerGame.exe. A C# program named
FaultHarness.exe is running in the com-
mand shell. It alters the normal behavior of
the application under test so the application
throws an exception the third time a user
clicks on the button labeled Evaluate. In this situation, the Two Card
Poker application does not handle the application exception gracefully
and the result is the system-generated message box.

Let’s take a closer look at this scenario to consider some of the
details involved. When FaultHarness.exe is launched from the
command shell, behind the scenes the harness prepares profi ling
code that will intercept the normal code execution of TwoCard-
PokerGame.exe. Th is is called the fault injection session.

Th e fault injection session uses a DLL to start watching for calls to
the application’s button2_Click method, which is the event handler
for the button labeled Evaluate. Th e fault injection session has been
confi gured so that the fi rst two times a user clicks on the Evaluate
button, the application behaves as coded, but on the third click the
fault session causes the application to throw an exception of type
System.ApplicationException.

The fault session records session activity and logs a set of fi les
to the test host machine. Notice in Figure 1 that the fi rst two ap-
plication Deal-Evaluate click pairs work properly, but the third
click generated an exception.

In the sections that follow, I’ll briefl y describe the dummy Two Card
Poker Game application under test, present and explain in detail the code
in the FaultHarness.exe program shown in Figure 1, and provide some

TEST RUN JAMES MCCAFFREY

Figure 1 Fault Injection Testing in Action

Code download available at code.msdn.microsoft.com/mag201008TestRun.

http://code.msdn.microsoft.com/mag201008TestRun

85August 2010msdnmagazine.com

dialog box. I named the library TwoCardPokerLib. Th e overall
structure of the library is presented in Figure 2. Th e code for
TwoCardPokerLib is too long to present in its entirety in this
article. The complete source code for the TwoCardPokerLib
library and the FaultHarness fault injection harness is available in
the code download that accompanies this article.

The Application UI Code
Once I had the underlying TwoCardPokerLib library code fi nished,
I created a dummy UI component. I started a new project in
Visual Studio 2008 using the C# WinForm Application template
and I named my application TwoCardPokerGame.

Using the Visual Studio designer, I dragged a Label control from the
Toolbox collection onto the application design surface, and modifi ed
the control’s Text property from “textBox1” to “Two Card Poker.” Next I
added two more Label controls (“Your Hand” and “Computer’s Hand”),
two TextBox controls, two Button controls (“Deal” and “Evaluate”), and
a ListBox control. I didn’t change the default control names of any of
the eight controls—textBox1, textBox2, button1 and so on.

Once my design was in place, I double-clicked on the button1
control to have Visual Studio generate an event handler skeleton for
the button and load fi le Form1.cs into the code editor. At this point
I right-clicked on the TwoCardPokerGame project in the Solution
Explorer window, selected the Add Reference option from the
context menu, and pointed to the fi le TwoCardPokerLib.dll. In Form1.cs,
I added a using statement so that I wouldn’t need to fully qualify the
class names in the library.

Next, I added four class-scope static objects to my application:
namespace TwoCardPokerGame {
 public partial class Form1 : Form {
 static Deck deck;
 static Hand h1;
 static Hand h2;
 static int dealNumber;
...

Object h1 is the Hand for the user, and h2 is the Hand for the com-
puter. Th en I added some initialization code to the Form constructor:

public Form1() {
 InitializeComponent();
 deck = new Deck();
 deck.Shuffle();
 dealNumber = 0;
}

Th e Deck constructor creates a deck of 52 cards, in order from
the ace of clubs to the king of spades, and the Shuffle method
randomizes the order of the cards in the deck.

Next I added the code logic to the button1_Click method as shown
in Figure 3. For each of the two hands, I call the Deck.Deal method
to remove two cards from the deck object. Th en I pass those two
cards to the Hand constructor and display the value of the hand
in a TextBox control. Notice that the button1_Click method han-
dles any exception by displaying a message in the ListBox control.

Next, in the Visual Studio designer window I double-clicked on
the button2 control to auto-generate the control’s event handler
skeleton. I added some simple code to compare the two Hand
objects and display a message in the ListBox control. Notice that
the button2_Click method does not directly handle any exceptions:

private void button2_Click(
 object sender, EventArgs e) {
 int compResult = h1.Compare(h2);
 if (compResult == -1)
 listBox1.Items.Add(" You lose");
 else if (compResult == +1)
 listBox1.Items.Add(" You win");
 else if (compResult == 0)
 listBox1.Items.Add(" You tie");

 listBox1.Items.Add("-------------------------");
}

The Fault Injection Harness
Before creating the fault injection harness shown in Figure 1, I
downloaded the key DLLs to my test host machine. Th ese DLLs
are part of a collection of .NET libraries named TestApi and can
be found at testapi.codeplex.com.

using System;
namespace TwoCardPokerLib {
 // ---
 public class Card {
 private string rank;
 private string suit;
 public Card() {
 this.rank = "A"; // A, 2, 3, . . ,9, T, J, Q, K
 this.suit = "c"; // c, d, h, s
 }
 public Card(string c) { . . . }
 public Card(int c) { . . . }
 public override string ToString(){ . . . }
 public string Rank { . . . }
 public string Suit { . . . }
 public static bool Beats(Card c1, Card c2) { . . . }
 public static bool Ties(Card c1, Card c2) { . . . }
 } // class Card

 // ---
 public class Deck {
 private Card[] cards;
 private int top;
 private Random random = null;

 public Deck() {
 this.cards = new Card[52];
 for (int i = 0; i < 52; ++i)
 this.cards[i] = new Card(i);
 this.top = 0;
 random = new Random(0);
 }

 public void Shuffle(){ . . . }
 public int Count(){ . . . }
 public override string ToString(){ . . . }
 public Card[] Deal(int n) { . . . }

 } // Deck

 // ---
 public class Hand {
 private Card card1; // high card
 private Card card2; // low card
 public Hand(){ . . . }
 public Hand(Card c1, Card c2) { . . . }
 public Hand(string s1, string s2) { . . . }
 public override string ToString(){ . . . }
 private bool IsPair() { . . . }
 private bool IsFlush() { . . . }
 private bool IsStraight() { . . . }
 private bool IsStraightFlush(){ . . . }
 private bool Beats(Hand h) { . . . }
 private bool Ties(Hand h) { . . . }
 public int Compare(Hand h) { . . . }
 public enum HandType { . . . }

 } // class Hand

} // ns TwoCardPokerLib

Figure 2 The TwoCardPokerLib Library

www.msdnmagazine.com
http://testapi.codeplex.com

msdn magazine86 Test Run

Th e TestApi library is a collection of soft ware-testing-related
utilities. Included in the TestApi library is a set of Managed Code
Fault Injection APIs. (Read more about them at blogs.msdn.com/b/
ivo_manolov/archive/2009/11/25/9928447.aspx.) I downloaded the latest
fault injection APIs release, which in my case was version 0.4, and
unzipped the download. I will explain what’s in the download and
where to place the fault injection binaries shortly.

Version 0.4 supports fault injection testing for applications created
using the .NET Framework 3.5. Th e TestApi library is under active
development, so you should check the CodePlex site for updates to
the techniques I present in this article. Additionally, you may want to
check for updates and tips on the blog of Bill Liu, the primary developer
of the TestApi fault injection library, at blogs.msdn.com/b/billliu/.

To create the fault injection harness I started a new project
in Visual Studio 2008 and selected the C# Console Application
template. I named the application FaultHarness and I added some
minimal code to the program template (see Figure 4).

I hit the <F5> key to build and run the harness skeleton, which
created a \bin\Debug folder in the FaultHarness root folder.

The TestApi download has two key components. The first is
TestApiCore.dll, which was located in the Binaries folder of the
unzipped download. I copied this DLL into the root directory of the
FaultHarness application. Th en I right-clicked on the FaultHarness
project in the Solution Explorer window, selected Add Reference,

and pointed it to TestApiCore.dll. Next, I added a using statement
for Microsoft .Test.FaultInjection to the top of my fault harness
code so my harness code could directly access the functionality in
TestApiCore.dll. I also added a using statement for System.Diag-
nostics because, as you’ll see shortly, I want to access the Process
and ProcessStartInfo classes from that namespace.

Th e second key component in the fault injection download is a
folder named FaultInjectionEngine. Th is holds 32-bit and 64-bit
versions of FaultInjectionEngine.dll. I copied the entire Fault-
InjectionEngine folder into the folder holding my FaultHarness
executable, in my case C:\FaultInjection\FaultHarness\bin\Debug\.
Th e 0.4 version of the fault injection system I was using requires
the FaultInjectionEngine folder to be in the same location as the
harness executable. Additionally, the system requires that the appli-
cation under test binaries be located in the same folder as the harness
executable, so I copied fi les TwoCardPokerGame.exe and TwoCard-
PokerLib.dll into C:\FaultInjection\FaultHarness\bin\Debug\.

To summarize, when using the TestApi fault injection system, a
good approach is to generate a skeleton harness and run it so that
a harness \bin\Debug directory is created, then place fi le TestApi-
Core.dll in the harness root directory, place the FaultInjectionEngine
folder in \bin\Debug, and place the application under test binaries
(.exe and .dll) in \bin\Debug as well.

Using the TestApi fault injection system requires that you specify
the application under test, the method in the application under
test that will trigger a fault, the condition that will trigger a fault,
and the kind of fault that will be triggered:

string appUnderTest = "TwoCardPokerGame.exe";
string method =
 "TwoCardPokerGame.Form1.button2_Click(object, System.EventArgs)";
ICondition condition =
 BuiltInConditions.TriggerEveryOnNthCall(3);
IFault fault =
 BuiltInFaults.ThrowExceptionFault(
 new ApplicationException(
 "Application exception thrown by Fault Harness!"));
FaultRule rule = new FaultRule(method, condition, fault);

Notice that, because the system requires the application under test
to be in the same folder as the harness executable, the name of the ap-
plication under test executable does not need the path to its location.

Specifying the name of the method that will trigger the injected
fault is a common source of trouble for TestApi fault injection
beginners. Th e method name must be fully qualifi ed in the form
Name space.Class.Method(args). My preferred technique is to use
the ildasm.exe tool to examine the application under test to help
me determine the triggering method’s signature. From the special
Visual Studio tools command shell I launch ildasm.exe, point to
the application under test, then double-click on the target method.
Figure 5 shows an example of using ildasm.exe to examine the
signature for the button2_Click method.

When specifying the trigger method signature, you do not use the
method return type, and you do not use parameter names. Getting
the method signature correct sometimes requires a bit of trial and
error. For example, on my fi rst attempt to target button2_Click, I used:

TwoCardPokerGame.Form1.button2_Click(object,EventArgs)

I had to correct it to:
TwoCardPokerGame.Form1.button2_Click(object,System.EventArgs)

Th e TestApi download contains a Documentation folder contain-
ing a concepts document that provides good guidance on how to

private void button1_Click(
 object sender, EventArgs e) {

 try {
 ++dealNumber;
 listBox1.Items.Add("Deal # " + dealNumber);
 Card[] firstPairOfCards = deck.Deal(2);
 h1 = new Hand(firstPairOfCards[0], firstPairOfCards[1]);
 textBox1.Text = h1.ToString();

 Card[] secondPairOfCards = deck.Deal(2);
 h2 = new Hand(secondPairOfCards[0], secondPairOfCards[1]);
 textBox2.Text = h2.ToString();
 listBox1.Items.Add(textBox1.Text + " : " + textBox2.Text);
 }
 catch (Exception ex) {
 listBox1.Items.Add(ex.Message);
 }
}

Figure 3 Dealing the Cards

using System;
namespace FaultHarness {
 class Program {
 static void Main(string[] args) {
 try {
 Console.WriteLine("\nBegin TestApi Fault Injection environmnent
session\n");

 // create fault session, launch application

 Console.WriteLine("\nEnd TestApi Fault Injection environment session");
 }
 catch (Exception ex) {
 Console.WriteLine("Fatal: " + ex.Message);
 }
 }
 } // class Program
} // ns

Figure 4 FaultHarness

http://blogs.msdn.com/b/ivo_manolov/archive/2009/11/25/9928447.aspx
http://blogs.msdn.com/b/ivo_manolov/archive/2009/11/25/9928447.aspx
http://blogs.msdn.com/b/billliu/

87August 2010msdnmagazine.com

correctly construct diff erent kinds of method signatures including
constructors, generic methods, properties, and overloaded operators.
Here I target a method that’s located in the application under test,
but I could have also targeted a method in the underlying Two-
CardPokerLib.dll, such as:

string method = "TwoCardPokerLib.Deck.Deal(int)"

Aft er specifying the trigger method, the next step is to specify the
condition under which the fault will be injected into the application
under test. In my example I used TriggerEveryOnNthCall(3), which as
you’ve seen injects a fault every third time the trigger method is called.
Th e TestApi fault injection system has a neat set of trigger conditions
including TriggerIfCalledBy(method), TriggerOnEveryCall, and others.

Aft er specifying the trigger condition, the next step is to specify
the type of fault that will be injected into the system under test. I
used BuiltInFaults.Th rowExceptionFault. In addition to exception
faults, the TestApi fault injection system has built-in return type
faults that allow you to inject erroneous return values into your
application under test at run time. For example, this will cause
the trigger method to return a (presumably incorrect) value of -1:

IFault f = BuiltInFaults.ReturnValueFault(-1)

Aft er the fault trigger method, condition, and fault kind have
been specifi ed, the next step is to create a new FaultRule and pass
that rule to a new FaultSession:

FaultRule rule = new FaultRule(method, condition, fault);
Console.WriteLine(
 "Application under test = " + appUnderTest);
Console.WriteLine(
 "Method to trigger injected runtime fault = " + method);
Console.WriteLine(
 "Condition which will trigger fault = On 3rd call");
Console.WriteLine(
 "Fault which will be triggered = ApplicationException");
FaultSession session = new FaultSession(rule);

With all the preliminaries in place, the last part of writing the
fault harness code is to programmatically launch the application
under test in the fault session environment:

ProcessStartInfo psi =
 session.GetProcessStartInfo(appUnderTest);
Console.WriteLine(
 "\nProgrammatically launching application under test");
Process p = Process.Start(psi);
p.WaitForExit();
p.Close();

When you execute the fault harness, it
will launch the application under test in
your fault session, with the FaultInjection-
Engine.dll watching for situations where
the trigger method is called when the
trigger condition is true. Th e tests are
performed manually here, but you can
also run test automation in a fault session.

While the fault session is running,
information about the session is logged
into the current directory—that is, the
directory that holds the fault harness
executable and the application under
test executable. You can examine these
log fi les to help resolve any problems
that might occur while you’re develop-
ing your fault injection harness.

Discussion
Th e example and explanations I’ve presented here should get you
up and running with creating a fault injection harness for your own
application under test. As with any activity that’s part of the soft -
ware development process, you will have limited resources and you
should analyze the costs and benefi ts of performing fault injection
testing. In the case of some applications, the eff ort required to create
fault injection testing may not be worthwhile, but there are many
testing scenarios where fault injection testing is critically important.
Imagine soft ware that controls a medical device or a fl ight system.
In situations such as these, applications absolutely must be robust
and able to correctly handle all kinds of unexpected faults.

Th ere is a certain irony involved with fault injection testing. Th e
idea is that, if you can anticipate the situations when an exception
can occur, you can in theory oft en programmatically guard against
that exception and test for the correct behavior of that guarding
behavior. However, even in such situations, fault injection testing
is useful for generating diffi cult to create exceptions. Additionally,
it’s possible to inject faults that are very diffi cult to anticipate, such
as System.OutOfMemoryException.

Fault injection testing is related to and sometimes confused
with mutation testing. In mutation testing, you deliberately
insert errors into the system under test, but then execute an
existing test suite against the faulty system in order to determine
whether the test suite catches the new errors created. Mutation
testing is a way to measure test suite effectiveness and ultimately
increase test case coverage. As you’ve seen in this article, the
primary purpose of fault injection testing is to determine whether
the system under test correctly handles errors.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he
manages technical training for software engineers working at the Microsoft
Redmond, Wash., campus. He’s worked on several Microsoft products, including
Internet Explorer and MSN Search. Dr. McCaff rey is the author of “.NET Test Automa-
tion Recipes” (Apress, 2006) and can be reached at jammc@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Bill Liu and Paul Newson

Figure 5 Using ILDASM to Examine Method Signatures

www.msdnmagazine.com
mailto:jammc@microsoft.com

msdn magazine88

In case there are concerns about its applicability or stability,
SQLite is slowly making its way into a variety of “lightweight”
environments—it already appears inside the Mozilla Firefox
browser (for HTML 5 support), as well as the Symbian, iOS
and Android environments, among others. In other words, this
is how the “other half ” of the development world (that is, non-
Microsoft -centric) does the lightweight database. SQLite continues
to enjoy ongoing development and bug fi xing, making it a pretty
safe bet as a minimal SQL engine.

Of course, no database would be complete without some kind
of administrator interface, and SQLite doesn’t disappoint. It
has a command-line console tool for accessing and manipulat-
ing SQLite databases—but that may not impress your sysadmin
all that much. Fortunately, the open source community has a
number of SQLite tools available (a long list of them is on the
SQLite Web site), but if you just need a quick Query Analyzer-like
tool, try SQLite Administrator, a free tool available for download
at sqliteadmin.orbmu2k.de.

Goin’ Native
SQLite was intended from the beginning to be a database for the
native code developer, which is why it’s implemented as a native
C/C++ DLL. Th is native fl avor of SQLite is both a blessing and a
curse: blessing, in that it cuts out a lot of the overhead (such as that
of traversing the network to the server and back again) from the
total time required to execute a given SQL statement; but curse in
that, because the original SQLite database is a native C/C++ DLL,
getting to it from a Microsoft .NET Framework-based application
can be challenging.

Fortunately, the savvy .NET Framework developer realizes
that accessing a native DLL is really just an exercise in P/Invoke
declarations, and it’s relatively easy to create a wrapper class around
the native declarations exposed in the SQLite DLL. In fact, for the

Inside SQLite

In keeping with the theme of this issue, it’s time to return to
the roots of SQL and relational databases. Naturally, it would
thus seem apropos to write something about SQL Server,
something about its new feature set or performance improvements
or whatnot, but that’s just not my style. Don’t get me wrong, SQL
Server is a great database, and highly recommended for those “big
iron” enterprise-class scenarios, but not every problem demands
(as a friend once put it) a “big honkin’ centralized database.”

In fact, developers have long been using relational databases merely
as a place to “put stuff for next time”—stuff such as confi guration
options, user settings, internationalization values and so on. Although
it’s sometimes convenient to put these into a centralized SQL Server
instance, in some cases, particularly in rich client scenarios (and
especially Microsoft Silverlight or Windows Phone 7 rich client
scenarios), maintaining a constant connection back to the SQL Server
instance is infeasible at best, and oft en just fl at-out impossible.

Developers don’t necessarily want to give up the power and
fl exibility of a relational database, but even SQL Server Express is
sometimes too heavy an install. What’s to be done?

Go light, of course: SQLite, to be precise.

Introducing SQLite
As described by its Web site (sqlite.org), “SQLite is a soft ware library
that implements a self-contained, serverless, zero-confi guration,
transactional SQL database engine.” Th e key elements in that state-
ment revolve around the noun “library.” Unlike SQL Server, which
uses a client-side assembly to send requests to a server for parsing
and execution, SQLite lives entirely inside the client process, making
it an “embedded” database. The running footprint of a SQLite
database during use is a single file stored someplace on the
client fi le system, and typically the install footprint is equally small.

For all that, the SQLite database is remarkably feature-rich, in that it
supports the majority of the SQL-92 specifi cation, minus a few things
(described in more detail on the SQLite Web site) such as RIGHT
and FULL OUTER JOIN, ALTER TABLE, some trigger support,
GRANT/REVOKE and writing to VIEWs. What’s impressive is how
much is supported, including transactions and a wide range of data
types. Although it’s probably beyond credibility to expect that a SQL
Server database schema will port to SQLite without modifi cation, it’s
reasonable to assume that a fairly straightforward (that is, not taking
advantage of SQL Server-specifi c types or features) schema will port
with minimal trouble. Th is makes SQLite ideal for scenarios where
just a “lightweight SQL” is necessary.

THE WORKING PROGRAMMER TED NEWARD

Code download available at code.msdn.microsoft.com/mag201008WorkProg.

Not every problem demands
(as a friend once put it) a “big
honkin’ centralized database.”

http://code.msdn.microsoft.com/mag201008WorkProg
http://sqlite.org
http://sqliteadmin.orbmu2k.de

89August 2010msdnmagazine.com

basics, as with so many things in the open source community, it’s
already been done; navigate to switchonthecode.com/tutorials/csharp-tutorial-
writing-a-dotnet-wrapper-for-sqlite, and we fi nd a working set of P/Invoke
declarations already laid down, shown in Figure 1.

Th e high fi delity of P/Invoke to C/C++ APIs makes this a relatively
simple process—the SQLite API uses a raw pointer to represent the
database itself, which P/Invoke sees as a System.IntPtr, and every
so oft en the SQLite API uses a pointer to an int as a parameter so it
can modify the contents, described by P/Invoke with the C# “out”
keyword. (For more on P/Invoke, see pinvoke.codeplex.com.)

I’ll refer you to the SQLite Web site for most of the details about
how to use the SQLite API, but a quick glance at how to open a
database, execute a query and then close the database would show
you something like Figure 2.

Th is code, as can probably be inferred, opens the database around
the fi le “persons.sqlite,” prepares to create a table, executes that state-
ment, cleans up that statement and then closes up the database. If
for some reason the database fails to prepare or execute the query,
an error message is harvested from the database (and can then be
printed or logged or whatever else is needed).

I’m Feelin’ Mighty Low
The most striking thing about this API is that it’s a bit on the
low-level side. If you’re an old C++ hack like me, this may be a good
thing, giving us a wonderful opportunity to reminisce about the
Good Old Days, back when men were men, memory was managed
by hand, and women swooned at cocktail parties over our scary
stories of chasing down untamed pointers in the wilds of Windows
95 … but to the rest of these C# whipper-snappers, these Johnny-
Come-Latelys who actually want to get productive work done, it’s
a bit too low to the ground, so to speak. What’s needed is a good
abstraction wrapper around that API to make it more manageable
and cut down on the number of lines of code required to use it.

Wrapping this up into a single class isn’t that diffi cult, particularly
because System.Data provides some good classes that can handle
most of the user-API interaction. Showing the full details of

static void NativeMain()
 {
 // Open the database--db is our "handle" to it
 IntPtr db;
 if (SQLiteNative.sqlite3_open(@"cities.sqlite", out db)
 == SQLiteNative.SQLITE_OK)
 {
 // Prepare a simple DDL "CREATE TABLE" statement
 string query =
 "CREATE TABLE City " +
 "(name TEXT, state TEXT, population INTEGER)";
 IntPtr stmHandle;
 if (SQLiteNative.sqlite3_prepare_v2(db, query, query.Length,
 out stmHandle, IntPtr.Zero) != SQLiteNative.SQLITE_OK)
 {
 // Something went wrong--find out what
 var err = SQLiteNative.sqlite3_errmsg(db);
 }
 if (SQLiteNative.sqlite3_step(stmHandle) !=
 SQLiteNative.SQLITE_DONE)
 {
 // Something went wrong--find out what
 var err = SQLiteNative.sqlite3_errmsg(db);
 }
 if (SQLiteNative.sqlite3_finalize(stmHandle) !=
 SQLiteNative.SQLITE_OK)
 {
 // Something went wrong--find out what
 var err = SQLiteNative.sqlite3_errmsg(db);
 }

 // ... Now that we've created a table, we can insert some
 // data, query it back and so on

 // Close the database back up
 SQLiteNative.sqlite3_close(db);
 }
 }

Figure 2 Opening a Database, Executing a Query
and Closing the Database

namespace SQLiteWrapper
{
 public class SQLiteException : Exception
 {
 public SQLiteException(string message) :
 base(message)
 { }
 }

 public class SQLite
 {
 const int SQLITE_OK = 0;
 const int SQLITE_ROW = 100;
 const int SQLITE_DONE = 101;
 const int SQLITE_INTEGER = 1;
 const int SQLITE_FLOAT = 2;
 const int SQLITE_TEXT = 3;
 const int SQLITE_BLOB = 4;
 const int SQLITE_NULL = 5;

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_open")]
 static extern int sqlite3_open(string filename, out IntPtr db);

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_close")]
 static extern int sqlite3_close(IntPtr db);

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_prepare_v2")]
 static extern int sqlite3_prepare_v2(IntPtr db, string zSql,
 int nByte, out IntPtr ppStmpt, IntPtr pzTail);

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_step")]
 static extern int sqlite3_step(IntPtr stmHandle);

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_finalize")]
 static extern int sqlite3_finalize(IntPtr stmHandle);

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_errmsg")]
 static extern string sqlite3_errmsg(IntPtr db);

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_column_count")]
 static extern int sqlite3_column_count(IntPtr stmHandle);

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_column_origin_name")]
 static extern string sqlite3_column_origin_name(
 IntPtr stmHandle, int iCol);

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_column_type")]
 static extern int sqlite3_column_type(IntPtr stmHandle, int iCol);

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_column_int")]
 static extern int sqlite3_column_int(IntPtr stmHandle, int iCol);

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_column_text")]
 static extern string sqlite3_column_text(IntPtr stmHandle, int iCol);

 [DllImport("sqlite3.dll", EntryPoint = "sqlite3_column_double")]
 static extern double sqlite3_column_double(IntPtr stmHandle, int iCol);
 }
}

Figure 1 P/Invoke Declarations

www.msdnmagazine.com
http://switchonthecode.com/tutorials/csharp-tutorial-writing-a-dotnet-wrapper-for-sqlite
http://switchonthecode.com/tutorials/csharp-tutorial-writing-a-dotnet-wrapper-for-sqlite
http://pinvoke.codeplex.com

msdn magazine90 The Working Programmer

that wrapper class, called SQLite, is a bit too lengthy to include
here, but the declarations shown in Figure 3 give a pretty clear
indication of how it’s supposed to be used.

Using it, then, would look something like the example in Figure 4.
Clearly there are more operations that could be added to the

SQLite wrapper class in Figure 4, but it’s already got the necessary
barebones functionality, thanks in part to the wonderful database-
agnostic nature of the core DataTable/DataRow/DataColumn
classes in System.Data.

Abstractions, Abstractions
In some ways, the SQLite database’s advantage is its low-level
design and implementation—being embeddable means the “fric-
tion” involved in using it is pretty light. Add the wrapper classes,
make sure the SQLite DLL is somewhere accessible to the program
(typically by putting it into the directory with the executable) and
now you’re writing SQL statements like a champion. Assuming
that’s what you want to do, of course.

But it’s likely that a significant majority of .NET Framework
developers are either out of practice in managing a SQL database
entirely “by hand” via console APIs, never knew how to do it or just
want to leave that world behind. Th e modern .NET Framework
environment provides such a wealth of tools for creating and man-
aging relational schema that going back to this manual approach
feels positively primitive and, more importantly, unproductive.

Furthermore, Microsoft has already spent eff ort creating an API
that eff ectively describes most things a programmer wants to do
against a relational database, and lots of those tools (LINQ to SQL,
the Entity Framework and even the Visual Studio designer) are built
on top of that API. I refer, of course, to ADO.NET and its provider
model. Not having the ability to slide SQLite “underneath” ADO.NET
means that all of that coolness is unavailable to the developer
using SQLite, and that feels like a pretty signifi cant shortcoming.
Th e solution, then, is to build an ADO.NET provider for SQLite.

As we’ve already discovered, one of the nice things about the
open source community is that there’s a really good chance that
whatever you’re looking to do, somebody’s already done it, and
this is no diff erent. System.Data.SQLite, available for download
at sqlite.phxsoftware.com, is a full ADO.NET 3.5 provider, meaning
that everything a developer can do with a traditional client/server
relational database provider is available to the SQLite developer,
including all the Visual Studio designer support as well as LINQ
and the Entity Framework.

Using System.Data.SQLite is pretty straightforward. Grab the
download (either the source, so you can build it yourself and poke

around in the code to see how everything works—this is a good
example to work from to learn how to build an ADO.NET pro-
vider, if you’re curious—or grab just the binaries if you only want
to get to “done” more quickly). Th en drop the bits somewhere
on your hard drive, reference System.Data.SQLite.dll from the
project and life is good. Not surprisingly, the API classes live in
System.Data.SQLite, and once they’re referenced, you can write
good ol’ ADO.NET code against the database, as shown in Figure 5.

So far, so good. When the code is run from a Visual Studio 2005
or 2008 project, everything works fl awlessly. But when the code
is executed from Visual Studio 2010, an error comes up, claiming
“Unhandled Exception: System.IO.FileLoadException: Mixed
mode assembly is built against version 'v2.0.50727' of the run-
time and cannot be loaded in the 4.0 runtime without additional
confi guration information.” A mixed-mode assembly, for those

 public class SQLite : IDisposable
 {
 private IntPtr _db; //pointer to SQLite database
 private bool _open; //whether or not the database is open

 /// <summary>
 /// Opens or creates SQLite database with the specified path
 /// </summary>
 /// <param name="path">Path to SQLite database</param>
 public void OpenDatabase(string path);

 /// <summary>
 /// Closes the SQLite database
 /// </summary>
 public void CloseDatabase();

 /// <summary>
 /// Executes a query that returns no results
 /// </summary>
 /// <param name="query">SQL query to execute</param>
 public void ExecuteNonQuery(string query);

 /// <summary>
 /// Executes a query and stores the results in
 /// a DataTable
 /// </summary>
 /// <param name="query">SQL query to execute</param>
 /// <returns>DataTable of results</returns>
 public DataTable ExecuteQuery(string query);
 }

Figure 3 Declarations of the SQLite Wrapper Class

 static void NativeWrapperMain()
 {
 using (SQLite db = new SQLite("persons.sqlite"))
 {
 db.ExecuteNonQuery("CREATE Table Persons " +
 "(first TEXT, last TEXT, age INTEGER)");

 db.ExecuteNonQuery("INSERT INTO Persons (first, last, age) " +
 "VALUES ('Aaron', 'Erickson', 38)");
 db.ExecuteNonQuery("INSERT INTO Persons (first, last, age) " +
 "VALUES ('Rick', 'Minerich', 29)");
 db.ExecuteNonQuery("INSERT INTO Persons (first, last, age) " +
 "VALUES ('Talbott', 'Crowell', 35)");

 DataTable table = db.ExecuteQuery("SELECT * FROM Persons");

 foreach (DataRow row in table.Rows)
 {
 Console.WriteLine("{0} {1} {2}", row[0], row[1], row[2]);
 }
 }
 }

Figure 4 Using the SQLite Wrapper Class

It’s relatively easy to create
a wrapper class around the
native declarations exposed

in the SQLite DLL.

http://sqlite.phxsoftware.com

91August 2010msdnmagazine.com

who haven’t heard the term before, is an assembly that contains
both managed Microsoft Intermediate Language and native x86
assembly instructions. Th is, of course, is not good, on two levels—
one, the obvious problem is we need to get the code to work, and
two, if this is a mixed-mode assembly, it’s going to create some prob-
lems when using SQLite in other environments, such as ASP.NET.

Th e fi rst problem is easily solved by adding an app.confi g fi le that
tells the CLR 4.0 to load the mixed-mode assembly:

<?xml version="1.0"encoding="utf-8" ?>
<configuration>
 <startup useLegacyV2RuntimeActivationPolicy="true">
 <supportedRuntime version="v4.0"/>
 </startup>
</configuration>

A bigger problem is that a number of environments don’t support
mixed-mode assemblies, and in any event, there’s a certain aesthetic
involved here. For a variety of reasons, an all-managed solution would
be preferable, but because the SQLite DLL is native code, that would
be tricky. What would be nice is a port of the SQLite code base to
C#, kept as close to the original C as possible.

All-Managed
Once again, the open source community provides when asked, and
in this case, it provided a project called “C#-SQLite,” available at
code.google.com/p/csharp-sqlite. It apparently started as “an exercise to
learn the C# language” by porting the code over, and the associated
wiki has some discussion of what the author did to manage the port,
but the upshot is that we now have exactly what we needed: an
all-managed version of SQLite.

Using it requires downloading the project sources, opening
the project and kicking off a build. Like a number of open source
projects, C#-SQLite consists of several projects, but each one is
enclosed in its own solution fi le, so you may need to open more
than one solution. (Or just kick off the builds from the command
line with MSBuild—whatever works best.)

Once it’s built, add the C#-SQLite assembly (Community.C -
Sharp SQLite) to the project, and for ADO.NET support, add the
C#-SQLite Client assembly (Community.CsharpSqlite.SQLite-
Client.dll) as well. Once again, the full capabilities of SQLite are

available to us through an ADO.NET provider, such that we can
rewrite almost the exact same code shown earlier (see Figure 6).

Notice how the APIs are almost identical to the earlier mixed-
mode version (only the class names have changed, and even then
it’s really just a question of case: “SQLite” vs. “Sqlite” as a prefi x, for
example), but now we get all of the SQLite goodness without the
potential security concerns (if any) of a native-mode DLL.

Limitations
Despite the wonderful nature of SQLite, it’s important to understand
its limitations if the decision between using SQLite and SQL Server
is to be made with any degree of sanity. SQLite is not going to provide
all the features of SQL Server—far from it. Th e SQLite database doesn’t
even want developers using it to use multiple threads, much less
access it from multiple threads. In fact, it’s fair to say that if two pro-
grams want access to a SQLite database simultaneously, it’s probably
time to upgrade to a SQL Server instance (Express or otherwise).

SQLite’s principal areas of “win” will be in many of the same
areas that Access fi les used to occupy, with a near-complete SQL-92
syntax to back it, along with an ability to read database fi les used by
other environments (Python, Perl and so on). Using it from Silver-
light or phone clients is also a highly interesting area, particularly
for local storage—sticking a SQLite database into Silverlight
isolated storage would give developers a portable (in that it can
travel with the Silverlight code) database in which to store local
data, for example. Use it judiciously, and SQLite rounds out a
relational database continuum of functionality-to-weight options.

Again, if there’s a particular topic you’d like to see explored, don’t
hesitate to drop me a note. In a very real way, it’s your column, aft er all.

Happy coding!

TED NEWARD is a principal with Neward & Associates, an independent fi rm spe-
cializing in enterprise Microsoft .NET Framework and Java platform systems. He
has written more than 100 articles, is a C# MVP, INETA speaker and the author
and coauthor of a dozen books, including “Professional F# 2.0” (Wrox 2010). He
consults and mentors regularly. Reach him at ted@tedneward.com and read his
blog at blogs.tedneward.com.

static void ManagedWrapperMain()
{
 var connStr = new SQLiteConnectionStringBuilder()
 { DataSource = "persons.sqlite" };
 using (SQLiteConnection conn = new SQLiteConnection(connStr.ToString()))
 {
 conn.Open();
 SQLiteCommand cmd = conn.CreateCommand();
 cmd.CommandText = "SELECT COUNT(*) FROM Persons";
 var ct = cmd.ExecuteScalar();
 Console.WriteLine("Count = {0}", ct);

 cmd = conn.CreateCommand();
 cmd.CommandText = "SELECT * FROM Persons";
 SQLiteDataReader reader = cmd.ExecuteReader();
 DataTable dt = new DataTable();
 dt.Load(reader);
 foreach (DataRow row in dt.Rows)
 {
 Console.WriteLine("{0} {1} {2}", row[0], row[1], row[2]);
 }
 }
}

Figure 5 Using System.Data.SQLite

Static void AllManagedMain()
{
 SqliteConnection conn =
 New SqliteConnection(@"Version=3,uri=file:persons.sqlite");
 conn.Open();
 try
 {
 SqliteCommand cmd = conn.CreateCommand();
 cmd.CommandText = "SELECT COUNT(*) FROM Persons";
 var ct = cmd.ExecuteScalar();
 Console.WriteLine("Count = {0}", ct);

 cmd = conn.CreateCommand();
 cmd.CommandText = "SELECT * FROM Persons";
 SqliteDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 Console.WriteLine("{0} {1} {2}", reader[0], reader[1], reader[2]);
 }
 }
 finally
 {
 conn.Close();
 }
}

Figure 6 Using C#-SQLite

mailto:ted@tedneward.com
www.msdnmagazine.com
http://code.google.com/p/csharp-sqlite

msdn magazine92

A subset of the Manipulation events is listed in the documen-
tation of Silverlight 4, but that’s a bit deceptive. Th e events are not
yet supported by Silverlight itself, but they are supported in Silver-
light applications written for Windows Phone 7. Th e Manipulation
events are listed in Figure 1.

Web-based Silverlight 4 applications will continue to use the
Touch.FrameReported event that I discussed in the article “Finger
Style: Exploring Multi-Touch Support in Silverlight” in the March
2010 issue of MSDN Magazine (msdn.microsoft.com/magazine/ee336026).

Along with the Manipulation events themselves, the UIElement
class in WPF also supports overridable methods such as On-
ManipulationStarting corresponding to the Manipulation events.
In Silverlight for Windows Phone 7, these overridable methods are
defi ned by the Control class.

A Multi-Touch Example
Perhaps the archetypal multi-touch application is a photograph
viewer that lets you move photos on a surface, make them larger
or smaller with a pair of fi ngers, and rotate them. Th ese operations
are sometimes referred to as pan, zoom and rotate, and they
correspond to the standard graphics transforms of translation,
scaling and rotation.

Obviously a photograph-viewing program needs to maintain
the collection of photos, allow new photos to be added and photos
to be removed, and it’s always nice to display the photos in a little
graphical frame, but I’m going to ignore all that and just focus on
the multi-touch interaction. I was surprised how easy it all becomes
with the Manipulation events, and I think you will be as well.

All the source code for this column is in a single downloadable
solution named WpfManipulationSamples. The first project is

Multi-Touch Manipulation Events in WPF

Just within the past few years, multi-touch has progressed from
a futuristic sci-fi film prop to a mainstream UI. Multi-touch
displays are now standard on new models of smartphones and
tablet computers. Multi-touch is also likely to become ubiquitous
on computers in public spaces, such as kiosks or the table computer
pioneered by Microsoft Surface.

Th e only real uncertainly is the popularity of multi-touch on
the conventional desktop computer. Perhaps the greatest impedi-
ment is the fatigue known as “gorilla arm” associated with moving
fi ngers on vertical screens for long periods of time. My personal
hope is that the power of multi-touch will actually provoke a
redesign of the desktop display. I can envision a desktop computer
with a display resembling the confi guration of a draft ing table, and
perhaps almost as large.

But that’s the future (perhaps). For the present, developers have
new APIs to master. Th e support for multi-touch in Windows 7 has
fi ltered down and settled into various areas of the Microsoft .NET
Framework with interfaces both low and high.

Sorting out the Multi-Touch Support
If you consider the complexity of expression that’s possible with
the use of multiple fi ngers on a display, you can perhaps appreciate
why nobody seems to know quite yet the “correct” programming
interface for multi-touch. Th is will take some time. Meanwhile,
you have several options.

Windows Presentation Foundation (WPF) 4.0 has two multi-
touch interfaces available for programs running under Windows
7. For specialized uses of multi-touch, programmers will want to
explore the low-level interface consisting of several routed events
defi ned by UIElement named TouchDown, TouchMove, TouchUp,
TouchEnter, TouchLeave, with preview versions of the down, move
and up events. Obviously these are modeled aft er the mouse events,
except that an integer ID property is necessary to keep track of
multiple fi ngers on the display. Microsoft Surface is built on WPF
3.5, but it supports a more extensive low-level Contact interface
that distinguishes types and shapes of touch input.

Th e subject of this column is the high-level multi-touch support
in WPF 4.0, which consists of a collection of events whose names
begin with the word Manipulation. Th ese Manipulation events
perform several crucial multi-touch jobs:

• consolidating the interaction of two fi ngers into a single action
• resolving the movement of one or two fi ngers into transforms
• implementing inertia when the fi ngers leave the screen

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201008UF.

Event Supported by Windows Phone 7?
ManipulationStarting No
ManipulationStarted Yes
ManipulationDelta Yes
ManipulationInertiaStarted No
ManipulationBoundaryFeedback No
ManipulationCompleted Yes

Figure 1 The Manipulation Events
in Windows Presentation Foundation 4.0

http://msdn.microsoft.com/magazine/ee336026
http://code.msdn.microsoft.com/mag201008UF

93August 2010msdnmagazine.com

SimpleManipulationDemo, and the MainWindow.xaml file is
shown in Figure 2. Th e Grid contains four Image elements.

First notice the setting on all three Image elements:
IsManipulationEnabled="True"

Th is property is false by default. You must set it to true for any
element on which you want to obtain multi-touch input and
generate Manipulation events.

Th e Manipulation events are WPF routed events, meaning that
the events bubble up the visual tree. In this program, neither the
Grid nor MainWindow have the IsManipulationEnabled property

set to true, but you can still attach handlers for the Manipulation
events to the Grid and MainWindow elements, or override the
OnManipulation methods in the MainWindow class.

Notice also that each of the Image elements has its Render-
Transform set to a six-number string:

RenderTransform="0.5 0 0 0.5 100 100"

This is a shortcut that sets the RenderTransform property
to an initialized MatrixTransform object. In this particular case,
the Matrix object set to the MatrixTransform is initialized to
perform a scale of 0.5 (making the photos half their actual
size) and a translation of 100 units to the right and down.
The code-behind file for the window accesses and modifies this
MatrixTransform.

Th e complete MainWindow.xaml.cs fi le is shown in Figure 3,
and overrides just two methods, OnManipulationStarting and
OnManipulationDelta. Th ese methods process the manipulations
generated by the Image elements.

Manipulation Basics
A manipulation is defi ned as one or more fi ngers touching a particular
element. A complete manipulation begins with the Manipulation-
Starting event (followed soon thereaft er by ManipulationStarted)
and ends with ManipulationCompleted. In between, there might
be many ManipulationDelta events.

Each of the Manipulation events is accompanied by its own set
of event arguments encapsulated in a class named aft er the event
with EventArgs appended, such as ManipulationStartingEventArgs
and ManipulationDeltaEventArgs. Th ese classes derive from the
familiar InputEventArgs, which in turn derives from RoutedEvent-
Args. Th e classes include Source and OriginalSource properties
indicating where the event originated.

In the SimpleManipulationDemo program, Source and Original-
Source will both be set to the Image element generating the
Manipulation events. Only an element with its IsManipulation-

<Window x:Class="SimpleManipulationDemo.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Simple Manipulation Demo">

 <Window.Resources>
 <Style TargetType="Image">
 <Setter Property="Stretch" Value="None" />
 <Setter Property="HorizontalAlignment" Value="Left" />
 <Setter Property="VerticalAlignment" Value="Top" />
 </Style>
 </Window.Resources>

 <Grid>
 <Image Source="Images/112-1283_IMG.JPG"
 IsManipulationEnabled="True"
 RenderTransform="0.5 0 0 0.5 100 100" />

 <Image Source="Images/139-3926_IMG.JPG"
 IsManipulationEnabled="True"
 RenderTransform="0.5 0 0 0.5 200 200" />

 <Image Source="Images/IMG_0972.JPG"
 IsManipulationEnabled="True"
 RenderTransform="0.5 0 0 0.5 300 300" />

 <Image Source="Images/IMG_4675.JPG"
 IsManipulationEnabled="True"
 RenderTransform="0.5 0 0 0.5 400 400" />
 </Grid>
</Window>

Figure 2 The XAML File for SimpleManipulationDemo

using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Windows.Media;

namespace SimpleManipulationDemo {
 public partial class MainWindow : Window {
 public MainWindow() {
 InitializeComponent();
 }

 protected override void OnManipulationStarting(
 ManipulationStartingEventArgs args) {

 args.ManipulationContainer = this;

 // Adjust Z-order
 FrameworkElement element =
 args.Source as FrameworkElement;
 Panel pnl = element.Parent as Panel;

 for (int i = 0; i < pnl.Children.Count; i++)
 Panel.SetZIndex(pnl.Children[i],
 pnl.Children[i] ==
 element ? pnl.Children.Count : i);

 args.Handled = true;

 base.OnManipulationStarting(args);
 }

 protected override void OnManipulationDelta(
 ManipulationDeltaEventArgs args) {

 UIElement element = args.Source as UIElement;
 MatrixTransform xform =
 element.RenderTransform as MatrixTransform;
 Matrix matrix = xform.Matrix;
 ManipulationDelta delta = args.DeltaManipulation;
 Point center = args.ManipulationOrigin;

 matrix.ScaleAt(
 delta.Scale.X, delta.Scale.Y, center.X, center.Y);
 matrix.RotateAt(
 delta.Rotation, center.X, center.Y);
 matrix.Translate(
 delta.Translation.X, delta.Translation.Y);
 xform.Matrix = matrix;

 args.Handled = true;
 base.OnManipulationDelta(args);
 }
 }
}

Figure 3 The Code-Behind File for SimpleManipulationDemo

www.msdnmagazine.com

msdn magazine94 UI Frontiers

Enabled property set to true will show up as the Source and
OriginalSource properties in these Manipulation events.

In addition, each of the event argument classes associated with
the Manipulation events includes a property named Manipulation-
Container. This is the element within which the multi-touch
manipulation is occurring. All coordinates in the Manipulation
events are relative to this container.

By default, the ManipulationContainer property is set to the same
element as the Source and OriginalSource properties—the element
being manipulated—but this is probably not what you want. In
general, you don’t want the manipulation container to be the same
as the element being manipulated because tricky interactions get
involved with dynamically moving, scaling and rotating the same
element that’s reporting touch information. Instead, you want the
manipulation container to be a parent of the manipulated element,
or perhaps an element further up the visual tree.

In most of the Manipulation events, the ManipulationContainer
property is get-only. Th e exception is the very fi rst Manipulation
event that an element receives. In ManipulationStarting you have
the opportunity to change ManipulationContainer to something
more appropriate. In the SimpleManipulationDemo project, this
job is a single line of code:

args.ManipulationContainer = this;

In all subsequent events, ManipulationContainer
will then be the MainWindow element rather than the
Image element, and all coordinates will be relative to that
window. Th is works fi ne because the Grid containing
the Image elements is also aligned with the window.

Th e remainder of the OnManipulationStarting
method is dedicated to bringing the touched
Image element to the foreground by resetting
the Panel.ZIndex attached properties of all the
Image elements in the Grid. Th is is a simple way
of handling ZIndex but probably not the best
because it creates sudden changes.

ManipulationDelta and DeltaManipulation
The only other event handled by SimpleManpulationDemo is
ManipulationDelta. Th e ManipulationDeltaEventArgs class defi nes
two properties of type ManipulationDelta. (Yes, the event and the class
have the same name.) Th ese properties are DeltaManipulation and
CumulativeManipulation. As the names suggest, DeltaManipulation
refl ects the manipulation that occurred since the last Manipulation-
Delta event, and CumulativeManipulation is the complete manipula-
tion that began with the ManipulationStarting event.

ManipulationDelta has four properties:
• Translation of type Vector
• Scale of type Vector
• Expansion of type Vector
• Rotation of type double

Th e Vector structure defi nes two properties named X and Y
of type double. One of the more signifi cant diff erences with the
Manipulation support under Silverlight for Windows Phone 7 is
the absence of the Expansion and Rotation properties.

Th e Translation property indicates movement (or a pan) in the
horizontal and vertical directions. A single fi nger on an element
can generate changes in translation, but translation can also be part
of other manipulations.

Th e Scale and Expansion properties both indicate a change in
size (a zoom), which always requires two fi ngers. Scale is multi-
plicative and Expansion is additive. Use Scale for setting a scale
transform; use Expansion for increasing or decreasing the Width
and Height properties of an element by device-independent units.

In WPF 4.0, the X and Y values of the Scale vector are always
the same. The Manipulation events do not give you sufficient
information to scale an element anisotropically (that is, diff erently
in the horizontal and vertical directions).

By default, Rotation also requires two fi ngers, although you’ll
see later how to enable one-finger rotation. In any particular
ManipulationDelta event, all four properties might be set. A pair
of fi ngers might be enlarging an element, and at the same time
rotating it and moving it to another location.

Scaling and rotation are always relative to a particular center
point. Th is center is also provided in ManipulationDeltaEvent-
Args in the property named ManipulationOrigin of type Point.
This origin is relative to the ManipulationContainer set in the
ManipulationStarting event.

Your job in the ManipulationDelta event is to modify the Render-
Transform property of the manipulated object in
accordance with the delta values in the following
order: scaling first, then rotation, and finally
translation. (Actually, because the horizontal and
vertical scaling factors are identical, you can switch
the order of the scaling and rotation transforms
and still get the same result.)

Th e OnManipulationDelta method in Figure 3
shows a standard approach. Th e Matrix object is
obtained from the MatrixTransform set on the
manipulated Image element. It’s modifi ed through
calls to ScaleAt and RotateAt (both relative to the
ManipulationOrigin) and Translate. Matrix is a

Figure 4 The SimpleManipulationDemo Program

Figure 5 The Manipulation-
ModeDemo Display

95August 2010msdnmagazine.com

structure rather than a class, so you must fi nish up by replacing the
old value in the MatrixTransform with the new one.

It’s possible to vary this code a little. As shown, it scales around
a center with this statement:

matrix.ScaleAt(delta.Scale.X, delta.Scale.Y, center.X, center.Y);

Th is is equivalent to translating to the negative of the center
point, scaling and then translating back:

matrix.Translate(-center.X, -center.Y);
matrix.Scale(delta.Scale.X, delta.Scale.Y);
matrix.Translate(center.X, center.Y);

Th e RotateAt method can likewise be replaced with this:
matrix.Translate(-center.X, -center.Y);
matrix.Rotate(delta.Rotation);
matrix.Translate(center.X, center.Y);

Th e two adjacent Translate calls now cancel each other out, so
the composite is:

matrix.Translate(-center.X, -center.Y);
matrix.Scale(delta.Scale.X, delta.Scale.Y);
matrix.Rotate(delta.Rotation);
matrix.Translate(center.X, center.Y);

It’s probably a little bit more effi cient.
Figure 4 shows the SimpleManipulationDemo program in action.

Enabling the Container?
One of the interesting features of the SimpleManpulationDemo
program is that you can simultaneously manipulate two Image
elements, or even more if you have the hardware support and a
suffi cient number of fi ngers. Each Image element generates its own
ManipulationStarting event and its own series of Manipulation-
Delta events. Th e code eff ectively distinguishes between the multiple
Image elements by the Source property of the event arguments.

For this reason, it’s important not to set any state information in
fi elds that implies that only one element can be manipulated at a time.

Th e simultaneous manipulation of multiple elements is possible
because each of the Image elements has its own IsManipulation-
Enabled property set to true. Each of them can generate a unique
series of Manipulation events.

When approaching these Manipulation events for the fi rst time,
you might instead investigate setting IsManpulationEnabled to
true only on the MainWindow class or another element serving as
a container. Th is is possible, but it’s somewhat clumsier in practice
and not quite as powerful. Th e only real advantage is that you
don’t need to set the ManipulationContainer property in the
ManipulationStarting event. Th e messiness comes later when you
must determine which element is being manipulated by hit-testing
on the child elements using the ManipulationOrigin property in
the ManipulatedStarted event.

You would then need to store the element being manipulated as
a fi eld for use in future ManipulationDelta events. In this case, it’s
safe to store state information in fi elds because you’ll only be able
to manipulate one element in the container at a time.

The Manipulation Mode
As you saw, one of the crucial properties to set during the Manipu-
lationStarting event is the ManipulationContainer. Another couple
of properties are useful to customize the particular manipulation.

You can limit the types of manipulation you can perform by
initializing the Mode property with a member of the Manipulation-

Modes enumeration. For example, if you were using manipulation
solely for scrolling horizontally, you might want to limit the events
to just horizontal translation. Th e ManipulationModesDemo
program lets you set the mode dynamically by displaying a list of
RadioButton elements listing the options, as shown in Figure 5.

Of course, the RadioButton is one of the many controls in WPF
4.0 that respond directly to touch.

The Single Finger Rotation
By default, you need two fi ngers to rotate an object. However, if a
real photo is sitting on a real desk, you can put your fi nger on the
corner and rotate it in a circle. Th e rotation is roughly occurring
around the center of the object.

You can do this with the Manipulation events by setting the
Pivot property of ManipulationStartingEventArgs. By default the
Pivot property is null; you enable one-fi nger rotation by setting
the property to a ManipulationPivot object. Th e key property of
ManipulationPivot is Center, which you might consider calculating
as the center of the element being manipulated:

Point center = new Point(element.ActualWidth / 2,
 element.ActualHeight / 2);

But this center point must be relative to the manipulation
container, which in the programs I’ve been showing you is the
element handling the events. Translating that center point from the
element being manipulated to the container is easy:

center = element.TranslatePoint(center, this);

Another little piece of information also needs to be set. If all
you’re specifying is a center point, a problem arises when you put
your fi nger right in the center of the element: just a little movement
will cause the element to spin around like crazy! For this reason,
ManipulationPivot also has a Radius property. Rotation will not
occur if the fi nger is within Radius units of the Center point. Th e
ManipulationPivotDemo program sets this radius to half an inch:

args.Pivot = new ManipulationPivot(center, 48);

Now a single finger can perform a combination of rotation
and translation.

Beyond the Basics
What you’ve seen here are the basics of using the WPF 4.0 Manipulation
events. Of course, there are some variations on these techniques that I’ll
show in future columns, as well as the power of manipulation inertia.

You may also want to take a look at the Surface Toolkit for
Windows Touch (msdn.microsoft.com/library/ee957352), which provides
touch-optimized controls for your apps. Th e ScatterView control
in particular eliminates the need for using the Manipulation
events directly for basic stuff like manipulating photos. It has some
snazzy eff ects and behaviors that will make sure your app behaves
the same as other touch apps.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine. He’s
currently writing “Programming Windows Phone 7,” which will be published as a
free downloadable e-book in the fall of 2010. A preview edition is currently avail-
able through his Web site, charlespetzold.com.

THANKS to the following technical experts for reviewing this article:
Doug Kramer, Robert Levy and Anson Tsao

www.msdnmagazine.com
http://msdn.microsoft.com/library/ee957352
http://charlespetzold.com

msdn magazine96

once all-male, back when the Earth was still cooling off and the
last few dinosaurs tottered around wondering where their friends
had gone; today it isn’t. Half of your users are female, which means
that their thought processes probably resemble those of my client’s
wife more than they do yours.

And it’s oft en more than half. Many user populations contain
far more women than men—nurses, for example (94 percent
female, according to nursingadvocacy.org/faq/rn_facts.html) or elementary
school teachers (85 percent female, according to a bnet.com article:
tinyurl.com/26xub2p). I recently walked through the customer service
department of one of my fi nancial-industry clients and counted
100 percent females, mostly in their 40s and 50s, soon to be
using soft ware built by men in their 20s. At least I got those guys
thinking about the diff erences.

What pleases a female user? If I knew for sure, I’d be retired on
my private island, not knocking out these columns for a pittance
per word. I remember trying to convince my mother how great my
idea was of self-location and directions on her cell phone (back in
2004, before this became ubiquitous). She wasn’t interested. “I can
usually fi gure out where I am without much trouble, and if not, I
ask someone. I know you want me to say yes because you think it’s
so cool, but I don’t really care. Sorry.” I had a fl ash of sympathy for
the geekiest guy in the galaxy when Harry Mudd told him: “You’re
an excellent science offi cer, Mr. Spock, but you couldn’t sell false
patents to your mother.”

When we’re trying to develop soft ware that doesn’t suck, we
have to consider the diff erence between an X and a Y chromo-
some. It’s bigger than you think. Next time you’re roughing out a
design, ask your mother what she would do with it. And listen to
what she tells you.
Reader mail department: In response to my statement in the
May issue that “your mother might [be interested in your soft ware],
because you wrote it and she loves you,” a reader named Barclay
drew my attention to B. B. King’s classic blues song, “Nobody Loves
Me But My Mother, And She Could Be Jivin’ Too.” You’ll fi nd it
online in the usual places, such as youtube.com/watch?v=OIW4ARVbhrw.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He is the author of 11 programming
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Soft ware Legend in 2002. He wonders whether he should tape down two
of his daughter’s fi ngers so she learns how to count in octal. You can contact him
at rollthunder.com.

Mars and Venus

A client of mine was scratching his head over his wife’s behavior
when he’d taken her shopping for a new netbook. “Look at this,
honey,” he had told her. “A dual-core processor. How’d they get one
into this little box? Wow, what a neato heat sink.”

“Th at’s nice, dear,” she said to him. “But will it do Facebook?
Th at’s what I want.”

“I told her all about the disk and the memory, how it was a
really nice unit for the price,” the guy told me, “But all she kept
asking was, ‘Will it do Facebook?’ How can she not care about this
important stuff ?”

I don’t think he’d been married very long.
My client was reporting a common, almost archetypal, division of

thought, which market research guru Paco Underhill discussed in his
book “Why We Buy: Th e Science of Shopping” (Simon & Schuster,
1999). “Men are in love with the technology itself, with the gee-whiz

factor, with the horsepower. … [They’re] gathered around the
barbecue comparing the size of their hard drives and the speed of
their modems. As they say, it’s a dude thing.” Women, on the other
hand, “take a completely diff erent approach to the world of high-
tech. Th ey take technologies and turn them into appliances. Th ey
strip even the fanciest gizmo of all that is mysterious and jargony in
order to determine its usefulness. Women look at technology and
see its purpose, its reason—what it can do [for them]. Th e promise
of technology is always that it will make our lives easier and more
effi cient. Women are the ones who demand that it fulfi ll its purpose.”
Th e husband in my example obsessed over hardware—the means.
Th e wife concentrated on Facebook—the desired end.

Th e developer population is almost entirely male. It reached
25 percent female at one point; now it’s down to 10 percent in the
United States, and less in Europe. Th e user population was also

DON’T GET ME STARTED DAVID PLATT

Half of your users are female,
which means that their thought
processes probably resemble
those of my client’s wife more

than they do yours.

http://nursingadvocacy.org/faq/rn_facts.html
http://tinyurl.com/26xub2p
http://youtube.com/watch?v=OIW4ARVbhrw
http://rollthunder.com

Untitled-2 1 7/14/10 11:22 AM

www.GCPowerTools.com/ActNow

Untitled-1 1 4/12/10 2:38 PM

www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, August 2010
	Contents
	EDITOR’S NOTE: Does Your Program Smell Like Bacon?
	CUTTING EDGE: Don’t Worry, Be Lazy
	DATA POINTS: Deny Table Access to theEntity Framework WithoutCausing a Mutiny
	DEALING WITH DATA:
	Passive Authentication for ASP.NET with WIF
	Tips for Migrating Your Applications to the Cloud
	Creating Synchronization Providers with the Sync Framework
	Building an AtomPub Server Using WCF Data Services
	Tuning Your Database Calls with Tier Interaction Profiling
	Building Distributed Apps with NHibernate and Rhino Service Bus, Part 2
	Windows Phone and the Cloud: an Introduction

	TEST RUN: Fault Injection Testing with TestApi
	THE WORKING PROGRAMMER: Inside SQLite
	UI FRONTIERS: Multi-Touch Manipulation Eventsin WPF
	DON’T GET ME STARTED: Mars and Venus

