
Tools for Agility 
White Paper 

Kent Beck, Three Rivers Institute 

 
June 2008 

www.microsoft.com/teamsystem; 

msdn.microsoft.com/process 

msdn.microsoft.com/practices 

 

 

http://www.microsoft.com/teamsystem
http://msdn.microsoft.com/process
http://msdn.microsoft.com/practices


This white paper is for informational purposes only. MICROSOFT 
MAKES NO WARRANTIES, EXPRESS, IMPLIED OR 
STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT. 

Complying with all applicable copyright laws is the responsibility of 
the user. Without limiting the rights under copyright, no part of this 
document may be reproduced, stored in or introduced into a retrieval 
system, or transmitted in any form or by any means (electronic, 
mechanical, photocopying, recording, or otherwise), or for any 
purpose, without the express written permission of Microsoft 
Corporation. 

Microsoft may have patents, patent applications, trademarks, 
copyrights, or other intellectual property rights covering subject 
matter in this document. Except as expressly provided in any written 
license agreement from Microsoft, the furnishing of this document 
does not give you any license to these patents, trademarks, 
copyrights, or other intellectual property. 

© 2008 Microsoft Corporation. All rights reserved. 

Microsoft and Visual Studio are trademarks of the Microsoft group of 
companies  

All other trademarks are property of their respective owners. 

 

 



Introduction .............................................................................................. 1 

The Short Form ........................................................................................ 2 

Flow .......................................................................................................... 3 

Transparency ........................................................................................... 6 

Tool-Practice Map.................................................................................... 8 

Predictions ............................................................................................. 10 

About the Author ................................................................................... 12 
 

CONTENTS 



 

 White Paper: Tools for Agility 1 

Microsoft has invited me to share my thoughts on the relationship between 

tools and agile software development. Agile development seeks to increase 

the value of software development by increasing the feedback available to 

customers and developers. Some of the feedback comes from more frequent 

releases to production, some from more frequent testing, some from more 

frequent software builds, and some from social structures that encourage 

conversation and dialog. A decrease in cycle time implies an increase in the 

number of transitions between activities, though, which changes the 

requirements for effective development tools. 

The Agile Manifesto [Beck et al 2001]
1
 says, “We value processes and tools, 

but we value individuals and interactions more.” Like many attempts to 

encourage change, this is stated strongly enough that it is open to 

misinterpretation. Some have taken it to mean that agile software 

development doesn’t require tools, or that the agile development community 

is populated by neo-Luddites
2
 tossing tool CDs onto bonfires and scratching 

project plans on cave walls with the burnt ends of sticks. I appreciate the 

opportunity to counteract this impression, to make the case for the 

appropriate use of tools (and processes) in agile development, and to look 

forward to the evolution of software development tools.  

                                                      

1
 http://agilemanifesto.org/  

2
 http://en.wikipedia.org/wiki/Luddite  

INTRODUCTION 

http://agilemanifesto.org/
http://en.wikipedia.org/wiki/Luddite


 

 White Paper: Tools for Agility 2 

There is reason and sense behind valuing individuals and interactions over 

processes and tools. Processes and tools distill common experience. Along 

comes an uncommon experience and processes and tools can’t adapt. Only 

humans can. That’s where the individuals and interactions come in—figuring 

out how to make progress in unusual situations. A blind adherence to 

processes and tools in the face of novelty is as ineffective as persisting in 

variety, debate, negotiation, and creativity in the face of routine and repeating 

circumstances. 

Agile development rests on principles that contradict those found in some 

software development. The principles of flow, universal responsibility for 

quality, accountability, and transparency are a few principles of agile 

development that can lead to substantial changes in development style. 

Another key principle of agile development is acknowledging that software is 

done by people. One (seemingly unconscious) metaphor for a software 

process is that it is like a program, with developers acting as computers. If 

only you could write the perfect process and support it with tools to enforce 

that process, goes the thinking, it wouldn’t matter how talented, experienced, 

disciplined, or creative the people on your team, you would be guaranteed 

success. This bias, the “process as program/human as computer” metaphor, 

shows through in the emphasis on repeatability in the Capability-Maturity 

Model. In reaction to this, the nascent agile software development community 

emphasizes the novelty of much software development. 

When writing or running code for the first time, no repetition is possible, 

hence there is no leverage for tools or processes. Even in novel situations, 

though, some routine remains. Code is tested, written, integrated, and 

deployed. Even if I’ve never written a medical digital assistant before, I still 

remember how to program. I should standardize and automate the tasks that 

remain routine. If deployment is different than what is supported by my 

automated deployment tool I may need to deploy manually until I recognize 

the new routine. I shouldn’t twist the architecture to match the tools. 

 

Tools have evolved to efficiently support the separate activities of software 

development. Agile development, an outgrowth of the nearly-universal drive 

to ever shorter release cycles, changes the basis of competition for software 

tools. Rather than single-activity efficiency, tools need to support frequent 

transitions between activities. 

THE SHORT FORM 



 

 White Paper: Tools for Agility 3 

FLOW 

The principle of flow states that, all other things being equal, it is more 

valuable to deliver smaller batches of functionality more frequently than 

bigger batches of functionality less frequently. One part of this effect is the 

ability to react more quickly to change. If the path from new idea to deployed 

feature is one month long rather than one year, the team can deliver 

responses to new or changed needs sooner. Another aspect is the greater 

opportunities for learning that come from sooner and more frequent 

deployment. Finally, frequent deployment encourages (that so much nicer a 

term than “forces”) the team to learn how to do everything well. A six week 

manual testing phase makes no sense in a one month delivery cycle. 

Flow is valuable for all software development. One way of looking at agile 

software development is that it pushes the principle of flow further faster. 

Going from annual releases to quarterly releases may be a strain, but as the 

trend continues those quarterly releases become monthly, weekly, and even 

(eventually) daily. Every kind of software is delivered more frequently today 

than it was ten years ago and the trend will continue indefinitely. 

One consequence of increased flow, noted by my partner Cynthia Andres 

and profoundly affecting tools for agile development, is that the greater the 

flow, the more transitions between activities. The total percentage of time 

spent analyzing or designing is likely to be similar (although it would be 

interesting to verify this), but instead of one transition between analysis 

decisions and design decisions, flow-oriented development can have tens or 

hundreds or thousands. The priority for tools shifts from supporting the 

efficiency of a given activity to efficient switching between activities. 



 

 White Paper: Tools for Agility 4 

The simplified picture above under-represents this problem of transitions. 

Rather than a miniature waterfall, agile development mingles analysis and 

testing, design and testing, coding and test execution, and sets up a quick 

feedback loop between information gained during implementation and 

subsequent analysis, design, and implementation decisions. 

Tools need to take transitions into account. A user interface that assumes 

hours of coding at a time followed by a big build process is likely to be 

cumbersome if applied to a development style requiring multiple build/test 

cycles per minute. Similarly, a planning tool assuming a major change to plan 

details every few months is unlikely to smoothly support weekly planning. It’s 

not that these tools couldn’t support more transitions, but without constant 

tumbling in the rushing river bottom of use their transition overhead is 

unlikely to get polished away. 

Teams looking to apply the principle of flow need tools that support rapid 

transitions between activities. For example, using cards on a wall for 

planning has many disadvantages—the cards can’t be easily distributed to 



 

 White Paper: Tools for Agility 5 

multiple locations, they are impermanent, and spatial information is easily 

lost. However, the one thing well supported by cards on a wall is transitions. 

A pair can be in the middle of coding(/analyzing/designing/testing), discover 

a new requirement out of scope for the current cycle, jot it on a card, and get 

back to coding without interrupting their development flow—elapsed time ten 

seconds. Even the quickest switch to another application is likely to take long 

enough to break their concentration. 

Sometimes teams can use parts of tools effectively if they pay attention to 

the cost of transitions. For example, if tasks are added to a plan daily, taking 

great care to lay all the tasks out beautifully by hand doesn’t make sense. 

Setting up a tension between aesthetics and accuracy is borrowing trouble. 

You don’t want a project manager dropping tasks on the floor to avoid 

creating crossing lines. Better to settle for a less attractive but more change-

friendly format. 

To summarize, the greater the flow, the greater the need to support 

transitions between activities. Straight ahead efficiency takes a back seat to 

quick and non-interruptive side tasks. If it comes to a choice, the team is 

better off with a less effective but more transition-capable tool. 

As a tool maker I’m not content to force a tradeoff. I’d like to make and use 

tools that are both functionally superior (at least for the 80/20 subset of 

features) and prepared to work in small batches. Beyond that, I’d like tools 

that take care of the new challenges introduced by agile development. 



 

 White Paper: Tools for Agility 6 

The previous section is basically retrospective. It talks about supporting 

existing activities in software development by encouraging fluid transitions 

between these activities. There is more to tools for agile development than 

that. 

I was taught that every quantitative change of an order of magnitude creates 

a qualitative change. Thus, the change from the 10 KPH of a horse to the 

100 KPH of a car didn’t just result in faster transportation, it (eventually) 

changed peoples’ attitudes towards transportation, and the role mobility 

played in their lives. 

In going from annual deployments to monthly deployments to daily 

deployments we encounter two orders of magnitude of quantitative change. 

Agile software development, then, is going to be qualitatively different. One 

change that I wrote about in “Test-Driven Development: By Example” is that 

programmers need to accept primary responsibility for the quality of their 

work. To do this efficiently requires tool support as well as a change of 

attitude. The individual transparency provided by developer-written tests is a 

prerequisite to greater team transparency. 

Team transparency becomes essential with agile software development. 

When the details of plans change daily, everyone needs a way of finding out 

what everyone else is doing. 

When I started programming the weekly status report was sufficient. Here’s 

what I did this week, here’s what I’m planning to do next week. Press fast 

forward twice, though, and the weekly status report becomes as quaint as a 

debate about the relative merits of assembly language and higher level 

languages. When coordinating the changing plans of a large, distributed 

group working on a constantly evolving and deploying system you need more 

frequent updates. At some point (and here comes the qualitative change) 

everyone would theoretically be spending all their time reporting the progress 

they would be making if they weren’t spending all their time reporting 

progress. 

One way out of the Reporting Dilemma is to stop explicitly telling people what 

you are doing. Instead, rely on your tools to infer your intentions from your 

activities and report that for you. 

This sounds rather Big Brother-ish, but I see an important difference. Rather 

than Orwell’s central controlling power, transparency is a choice you make to 

offer trustworthiness to you teammates. A transparent team can more 

cheaply and effectively coordinate their efforts towards shared goals. Acting 

transparently sends a signal to others that they can trust you. Trust, when 

realized, reduces the friction of development as people focus more on what 

they are accomplishing together and less on avoiding blame. Just as TDD 

allows me to trust my code and do more with it, trust on a team allows them 

to be more innovative and experimental. 

TRANSPARENCY 



 

 White Paper: Tools for Agility 7 

I have been experimenting with forms of transparency for several years. The 

first level of transparency was being transparent with myself. I monitored my 

use of JUnit and discovered that during test-driven development I ran tests 

every minute or two most of the time. I expanded this idea to an open 

repository of software development activity, DevCreek
3
. Even just being 

transparent with ourselves provided unexpected benefits. Using our own 

development data, for example, we discovered that to support our weekly 

status meeting we were bringing development to a virtual halt for an entire 

day. 

Transparency can be a big personal shift for developers. Our development 

on JUnit
4
 is projected transparently on DevCreek. Oddly, I resisted making 

JUnit transparent. Upon reflection I realized I was afraid people would think 

less of it because we spent so little time on development. So far, though, we 

don’t seem to have lost any sales as a result. I just needed to get used to the 

idea of telling other people exactly what I was doing. 

The trend toward greater transparency to wider audiences will continue. It 

may be hard to unlearn habits and beliefs, but in a world of wide and free 

flowing information, keeping secrets is a position of weakness. You never 

know when you are going to be found out. Transparency is the new strength.  

                                                      

3
 http://www.devcreek.com/ 

4
 http://www.devcreek.com/project/junit 



 

 White Paper: Tools for Agility 8 

Agile development relies on tools, especially when those tools are tuned for a 

different rhythm of development. Here is a map of the relationships between 

some practices common to agile development and some of the tools that 

support those practices: 

Each line in this diagram tells a story. For example, incremental design 

requires a continuous build tool to quickly smoke out incompatibilities 

introduced by design changes. Telling all these stories would take more 

words than I have to share with you here, but what’s important to notice is 

that each tool supports multiple practices, each practice requires multiple 

tools, and the practices and tools support each other. The strength of this 

complexity is leverage—a better tool or better way of working can have 

widespread impact. 

It’s ridiculous to speak of agile software development without tools. There is 

so much going on in an agile project every day, so many formerly-manual 

steps now repeated on fast-forward, that appropriate tools is essential. 

Granted, that tooling may not be what is considered state-of-the-art for a 

slower cycling project. Cards on a wall may be a superior planning and 

transparency tool, if the computerized alternatives weren’t designed for 

effectively broadcasting frequent changes. Cards on a wall have serious 

limitations, but they are better than a tool that discourages changes. The 

challenge for tool makers is to come up with tools that are superior along 

new dimensions—transition time, change accommodations, transparency. 

The challenge for tool users is to make effective use of the appropriate 

subsets of their current tools, make do with low-tech fill-ins when necessary, 

and communicate their needs clearly to vendors. 

This brings us to toolsmithing, a common activity on agile teams. Because 

the demands placed on tools are often different than what those tools were 

designed for, teams often spend some of their time adapting or inventing 

tools. It can be better to invest in a rudimentary tool that supports work than 

adapt to a tool polished for a different style of work. Over time I expect this 

TOOL-PRACTICE MAP 



 

 White Paper: Tools for Agility 9 

balance to shift as more tools appears that are intended to support frequent 

changes and frequent transitions. 

 



 

 White Paper: Tools for Agility 10 

Agile development has already had an impact on developer tools. Unit 

testing, incremental design, and continuous builds have all arrived in the tool 

mainstream over the past decade. However, this is only the beginning of the 

changes. Here are four more changes I see coming: 

 Smooth transitions between activities 

 Greater scope for automated testing 

 Transparency 

 Real-time collaboration 

A trend that will continue to influence software tools is ever-tightening release 

cycles. Where releases once took years, an increasing number of software 

products will release new functionality to production monthly, week, daily, or 

even more frequently. Tools that implicitly assume sequential phases will 

give way to tools that support parallel (really rapidly alternating) activities. 

The trend towards support more frequent transitions between activities will 

continue. More activities will be supported without large changes of context. 

Manual post-development testing can only be compressed so far before it 

loses effectiveness. Manually testing more frequently duplicates effort and 

risks blunting the focus and attention applied to testing. 

A tool-based alternative is to spread the effort of system verification across 

development with automated tests. As teams gain experience with the new 

tools and style of work, the additional value of manual post-development 

testing diminishes. At some point, releasable software results from each 

round of automated testing: 

PREDICTIONS 



 

 White Paper: Tools for Agility 11 

Currently, only a subset of projects possesses the tools, experience, 

frameworks, design techniques, and social structures to support such a 

transformation. Over time, larger, more complex systems will need to move 

to automated testing and thus frequent releases. 

Tools need to simultaneously support rapid change, frequent transitions 

between activities, and at the same time help the entire team remain focused 

on large-scale, long-term goals. It is maintaining overall perspective that the 

kind of transparency discussed earlier becomes valuable. When the cycles 

become short enough, you don’t have time to wait to be told important 

information. The information needs to be automatically and immediately 

radiated throughout the team. 

In ten years, transparency will be the norm in software development. Rolling 

up detailed analyses of activities and outcomes will provide developers, 

managers, and customers to monitor the health of projects and whole 

organizations. I don’t expect this transition to go smoothly. I once asked a 

room full of programmers at a large company, “What would happen if your 

software metrics appeared in your annual report?” “Reported defects would 

fall to zero,” was the answer. It’s understandable that people feel afraid about 

actively choosing to publish information about programming for the first time, 

but most of the information that is so jealously guarded is already public 

knowledge to some degree. The customers already know how many defects 

you produce—they are the ones who report them. 

Finally, here’s a prediction from my own experience. I spent 5-10 hours every 

week pair programming remotely, using screen sharing and a video 

connection. Whoever hosts the development environment, though, has a big 

advantage. The delay when I am the remote user is long enough to affect my 

programming style. I predict that real-time, fine-grained collaboration will 

become common in tools in the next decade. My explorations along these 

lines have convinced me that supporting pair programming requires local 

editing of programs with some way of reconciling collisions when they occur. 

Once this change is in place, though, I suspect it will trigger further changes 

as we learn how to support large, distributed teams working transparently to 

frequently deliver valuable business functionality. 

 



 

 White Paper: Tools for Agility 12 

Kent Beck is the founder and director of Three Rivers Institute (TRI). His 

career has combined the practice of software development with reflection, 

innovation, and communication. His biography can be found at 

http://www.threeriversinstitute.org/Kent%20Beck.htm 

ABOUT THE AUTHOR 

http://www.threeriversinstitute.org/Kent%20Beck.htm

