

Introducing Devices Profile for Web Services 1

Introducing Devices Profile for Web Services
Copyright © 2007 Microsoft Corporation. All rights reserved.

Devices Profile for Web Services (DPWS) is a Web Services profile that enables plug-and-play for

networked devices. A PC or other device can detect DPWS-enabled devices on a network, then discover

and invoke the Web service functionality each device provides. Its purpose is similar to Universal Plug

and Play (UPnP), although it employs a Web Services model.

DPWS, also called Web Services on Devices (WSD), is part of the Windows Rally technology set for

network-connected devices.1 A DPWS client library (known as WSDAPI) is a part of Windows Vista, and

DPWS-enabled devices automatically appear in the Windows Vista Network Explorer. And with version

2.5, DPWS is also part of the .NET Micro Framework, so you can provide or consume DPWS functionality

in small devices.

To help you get a head start on DPWS, we have prepared a discussion based on an early draft of the

documentation that will be provided with version 2.5 of the .NET Micro Framework. To get the most

from this article, you should already understand basic Web Services concepts. MSDN has a good

introduction2 and numerous other resources on the topic.

NOTE The DPWS implementation in .NET Micro Framework v2.5 should be considered a technology

preview. The API will likely change significantly in a future release, which will also incorporate

tools that will simplify writing services and make parsing and generating messages easier. You

will find the current implementation useful if you have a pressing need for DPWS functionality

or if you simply want to experiment with Web Services.

Web Services Profiles and DPWS
In Web Services terms, a profile is a set of guidelines for how to use Web Services technologies for a

given purpose or application. Web Services standards allow implementers to choose from a variety of

message representations, text encodings, transport protocols, and other options, some of which are not

interoperable. By constraining these decisions, profiles ensure that conforming implementations will

work well together.

DPWS is a profile developed by Microsoft and others for communication with and among networked

devices and peripherals. As such, the DPWS library for the .NET Micro Framework is not a full Web

Services implementation but a lightweight subset with only the functionality needed to support DPWS

on a device. The full DPWS profile specification is available on the Web.3

1
 http://www.microsoft.com/whdc/rally/default.mspx

2
 http://msdn2.microsoft.com/en-us/webservices/aa740678.aspx

3
 http://schemas.xmlsoap.org/ws/2006/02/devprof/

http://www.microsoft.com/whdc/rally/default.mspx
http://msdn2.microsoft.com/en-us/webservices/aa740678.aspx
http://schemas.xmlsoap.org/ws/2006/02/devprof/

Introducing Devices Profile for Web Services 2

Communicating Between Devices
DPWS provides the following functionality between conforming devices:

 Discovering DPWS-capable devices on the network and the services they offer

 Sending messages to DPWS-capable devices and receiving replies

 Describing a Web service by providing a WSDL file

 Interacting with a service using its description

 Subscribing to and receiving events from a Web service

Devices can be DPWS clients (invoking services on devices), servers (providing services), or both. DPWS

for the .NET Micro Framework supports devices in either role or both simultaneously. These two sets of

functionality are provided in separate DLLs and are not dependant on each other.

DPWS is based on existing Web Services standards, including XML, WSDL, XML Schema, SOAP, MTOM,

and HTTP. DPWS for the .NET Micro Framework also incorporates this supporting functionality, although

not all of it is exposed in the APIs. For example, there are classes for reading and writing XML documents

so that applications and service implementations can parse Web Services messages and build responses

to them.

Implementation Specifics
The DPWS specification defines the required behavior of a DPWS implementation, but leaves some

decisions to the implementer. The following list describes the behavior of the .NET Micro Framework

DPWS implementation with respect to the specification.

 URIs longer than MAX_URI_SIZE (2,048 octets) are not processed and a SOAP fault is

generated. (Section 3.1, requirement R0025.)

 The address property of a device’s Endpoint Reference must be a UUID. (Section 3.5,

requirement R0004.)

 A device will not include any reference properties in its Endpoint Reference. (Section 3.5,

requirement R0007.)

 A service will always use an HTTP transport address as the address property of its Endpoint

Reference. (Section 3.5, requirement R0042.) The address is formed using the device’s IP

address and a unique UUID-based URN.

 The developer must manually increment the metadata version number if any of the device’s

ThisDevice or relationship metadata changes. (Section 5.1 requirement R2002, Section 5.2

requirement 2030).

 The implementation does not provide any WSDL-related functionality aside from message

validation (Section 5.3, requirements R2023 and R2024), although validation uses the .NET

service classes rather than WSDL. The device developer must provide a WSDL description of

their service and make it publicly accessible via URL (for example, by placing it on a Web server).

Introducing Devices Profile for Web Services 3

 This implementation does not support WS-POLICY (Section 5.4), DateTime expiration types

(Section 6.2), or security (Section 7), all optional features.

The DPWS Libraries
The .NET Micro Framework DPWS device stack libraries, MFWsStack.dll and MFDpwsDevice.dll,

provide service hosting functionality for a device (the “device stack”). The DPWS client library,

MFDpwsClient.dll, provides functionality for invoking Web services on a device. A separate library,

MFDpwsExtensions.dll, contains the System.Ext.* namespaces, which are partial implementations

of certain .NET System.* classes required by the DPWS device stack that are not included in the base

.NET Micro Framework libraries.

Since not all applications need DPWS functionality, these libraries are not automatically added to .NET

Micro Framework projects you create in Visual Studio. Instead, you should manually add references to

the DLLs to your project. To do this, follow these steps:

1. Right-click the References folder in your Visual Studio project.

2. Choose Add Reference from the context menu.

3. In the Add Reference dialog, choose the .NET tab.

4. Select MFWsStack.dll in the list, then click OK.

5. Repeat steps 1 to 3, this time adding MFDpwsExtensions.dll.

6. If your project is a for a device hosting a service, repeat steps 1 to 3, this time adding

MFDpwsDevice.dll.

7. If your project requires DPWS client functionality, repeat steps 1 to 3, this time adding

MFDpwsClient.dll.

DPWS Namespaces
The DPWS device stack DLLs (MFDpwsDevice.dll and MFWsStack.dll) include the following

namespaces.

Dpws.Device

Provides a class that represents the DPWS device stack, and classes
that hold properties that are used by the DPWS stack

Dpws.Device.Services

Contains classes used to create and manage event sources, and
classes for working with hosted service endpoints, operations and
events.

Ws.Services

Provides classes for collections of service endpoints managed by a
transport host, and the operations they expose.

Ws.Services.Faults Contains classes used to build and raise fault response messages.
Ws.Services.Mtom Contains classes used to process MTOM parts in SOAP messages.
Ws.Services.Soap Provides a class and an enumerated type for parsing SOAP messages.
Ws.Services.Transport Contains a class that provides basic network services.
Ws.Services.Utilites Provides classes for displaying debug output, representing time

durations, and validating URIs based on UUIDs.
Ws.Services.WsaAddressing Contains classes used to process WS-Addressing header information.
Ws.Services.Xml Contains classes used to process XML.

Introducing Devices Profile for Web Services 4

The DPWS client DLL (MFDpwsClient.dll) includes the following namespaces.

Dpws.Client Provides classes for creating DPWS clients.
Dpws.Client.Discovery Contains classes for working with client probe and resolve

requests.
Dpws.Client.Eventing Contains classes for subscribing to events.
Dpws.Client.Transport Contains classes for sending and receiving HTTP requests.

Using the Device Class
The static class Dpws.Device.Device represents the device stack itself. This class provides

infrastructure functionality for DPWS-enabled devices as well as acting as the host for services you

write. Include a call to Dpws.Device.Device.Start in your application’s Main method to start the

DPWS device stack.

The Device class also serves to contain parameters used by the device stack, such as the device’s

endpoint address. The Device.ThisModel class contains information specific to the device model,

such as the model name and model number, and the Device.ThisDevice class contains information

specific to the device itself, such as the serial number. Your Main method should set these as

appropriate, using code like the following.

// Set device information (in Main)
Device.EndpointAddress = "http://localhost:1234";
Device.ThisModel.Manufacturer = "Microsoft Corporation";
Device.ThisModel.ManufacturerUrl = "http://www.microsoft.com/";
Device.ThisModel.ModelName = "SampleService Test Device";
Device.ThisModel.ModelNumber = "12021345";
Device.ThisModel.ModelUrl = "http://www.microsoft.com/";
Device.ThisModel.PresentationUrl = "http://www.microsoft.com/";

Device.ThisDevice.FriendlyName = "SampleService Device";
Device.ThisDevice.FirmwareVersion = "alpha";
Device.ThisDevice.SerialNumber = "12345678";

// Add a service
Device.HostedServices.Add(typeof(TestService), typeof(ITestService), new
 Uri("http://localhost:1234/TestService/"));

// Start the device stack
Device.Start();

Defining Services and Operations

The Dpws.Device.Device.HostedServices collection includes all services hosted by the device.

Each service is derived from the class Dpws.Device.Services.DpwsHostedService.

Call the Add method in your application’s Main to instantiate your services and add them to the

HostedServices collection, as shown here. Any number of hosted services can be added. Services

should be added before the device stack is started.

// Add hosted service to the device (in Main)
SampleService sampleService = new SampleService();
Device.HostedServices.Add(sampleService);

Introducing Devices Profile for Web Services 5

Service classes must be derived from the DpwsHostedService base class, which is used to define the

service’s transport address, unique identifier, namespace, and type. A service provides one or more

operations, which are listed in the service class’s ServiceOperations collection. Operations are

methods of the service class, not classes of their own. As shown in the following code, the service’s

constructor should add the operations to the service’s ServiceOperations collection in much the

same way that services are instantiated and added to the HostedServices collection. The

SampleService class also needs methods for the two defined operations, OneWay and

TwoWayRequest.

class SampleService : DpwsHostedService
{
 public SampleService()
 {
 // Add ServiceNamespace. Set ServiceID and ServiceTypeName
 ServiceNamespace = new WsXmlNamespace("smpl",
 "http://schemas.example.org/SampleService");
 ServiceID = "urn:uuid:3cb0d1ba-cc3a-46ce-b416-212ac2419b90";
 ServiceTypeName = "SampleService";

 // Add additional namespaces if needed, for example:
 // Namespaces.Add("someprefix", "http://some/Namespace");

 // Add service operations
 ServiceOperations.Add(new WsdHostedServiceOperation("smpl",
 "http://schemas.example.org/SampleService", "OneWay"));
 ServiceOperations.Add(new WsdHostedServiceOperation("smpl",
 "http://schemas.example.org/SampleService", "TwoWayRequest"));

 }

 // method for the first defined operation
 public byte[] OneWayRequest(WsWsaHeader header, WsXmlDocument envelope)
 {
 ...
 }

 // method for the second defined operation
 public byte[] TwoWayRequest(WsWsaHeader header, WsXmlDocument envelope)
 {
 ...
 }
 }
}

Operations receive two parameters: a Ws.Services.WsaAddressing.WsWsaHeaderobject

containing validated header information, and a Ws.Services.Xml.WsXmlDocument object containing

the entire SOAP request as an XML tree. The operation implementation must use methods of

WsXmlDocument (for example, SelectSingleNode) to extract any values from the content of the

message needed to perform the desired operation, and must return a byte array containing the SOAP

response message for the request. The response is typically built using the original request header

object, information provided by the method implementation, and a System.Ext.XML.XMLWriter

object. (The System.Ext.Xml namespace is not a part of the base .NET Micro Framework, but is

provided in MFDpwsExtensions.dll.)

Introducing Devices Profile for Web Services 6

The following code shows how parameters can be extracted from the SOAP message for an operation

that adds two integers.

public byte[] TwoWayRequest(WsWsaHeader header, WsXmlDocument envelope)
{
 WsXmlNode tempNode;
 WsFault fault = new WsFault();

 if ((tempNode =
 envelope.SelectSingleNode("Body/TwoWayRequest/X", false)) == null)
 return fault.RaiseFault(header, WsExceptionFaultType.XmlException,
 "Body/TwoWay X value is missing.");

 int X = Convert.ToInt32(tempNode.Value);
 if ((tempNode =
 envelope.SelectSingleNode("Body/TwoWayRequest/Y", false)) == null)
 return fault.RaiseFault(header, WsExceptionFaultType.XmlException,
 "Body/TwoWay Y value is missing.");
 int Y = Convert.ToInt32(tempNode.Value);

 return TwoWayResponse(header, X+Y);
}

The response to a Web Services message is another message. It is often good practice to create a

separate method that generates the response and call it from the method that handles the original

request, particularly if either procedure is involved, or if similar responses are needed for more than one

request. For example, the TwoWayRequest method (defined as part of the SampleService class

partially shown above) might call a TwoWayResponse method to generate its response. Since the

response method is called by the request handler and not by the DPWS stack, the response method is

not limited to receiving a header and a SOAP request as parameters, but can receive any values needed

to construct the response.

The following code shows an example of how the XML might be built in the TwoWayResponse method

that is called from the example TwoWayRequest method.

public byte[] TwoWayResponse(WsWsaHeader header, int sum)
{
 MemoryStream soapStream = new MemoryStream();
 XmlWriter xmlWriter = XmlWriter.Create(soapStream);

 // Write processing instructions and root element
 xmlWriter.WriteProcessingInstruction("xml",
 "version='1.0' encoding='UTF-8'");
 xmlWriter.WriteStartElement("soap", "Envelope",
 "http://www.w3.org/2003/05/soap-envelope");

 // Write namespaces
 xmlWriter.WriteAttributeString("xmlns", "wsdp", null,
 Device.Namespaces.GetNamespace("wsdp"));
 xmlWriter.WriteAttributeString("xmlns", "wsd", null,
 Device.Namespaces.GetNamespace("wsd"));
 xmlWriter.WriteAttributeString("xmlns", "wsa", null,
 Device.Namespaces.GetNamespace("wsa"));
 xmlWriter.WriteAttributeString("xmlns", "sim", null,
 TypeNamespaces.GetNamespace("sim");

 // Write header
 xmlWriter.WriteStartElement("soap", "Header", null);
 xmlWriter.WriteStartElement("wsa", "To", null);
 xmlWriter.WriteString(header.From);
 xmlWriter.WriteEndElement();

Introducing Devices Profile for Web Services 7

 xmlWriter.WriteStartElement("wsa", "Action", null);
 xmlWriter.WriteString(
 "http://schemas.example.org/SimpleService/TwoWayResponse");
 xmlWriter.WriteEndElement();
 xmlWriter.WriteStartElement("wsa", "RelatesTo", null);
 xmlWriter.WriteString(header.MessageID);
 xmlWriter.WriteEndElement(); // End RelatesTo
 xmlWriter.WriteStartElement("wsa", "MessageID", null);
 xmlWriter.WriteString("urn:uuid:" + Device.GetUuid());
 xmlWriter.WriteEndElement(); // End MessageID
 xmlWriter.WriteEndElement(); // End Header

 // write body
 xmlWriter.WriteStartElement("soap", "Body", null);
 xmlWriter.WriteStartElement("sim", "TwoWayResponse", null);
 xmlWriter.WriteStartElement("sim", "Sum", null);
 xmlWriter.WriteString(sum.ToString());
 xmlWriter.WriteEndElement(); // End Sum
 xmlWriter.WriteEndElement(); // End TwoWayResponse
 xmlWriter.WriteEndElement(); // End Body

 xmlWriter.WriteEndElement();

 // Create return buffer and close writer
 xmlWriter.Flush();
 byte[] soapBuffer = soapStream.ToArray();
 xmlWriter.Close();

 return soapBuffer;
}

Event Subscriptions
DPWS supports event subscription under the WS-Eventing specification, allowing other DPWS

consumers to register with your device to receive notifications when events of interest to them occur.

Subscriptions are handled automatically by the .NET Micro Framework DPWS device stack, so the stack

needs to know which events each service provides. The service class declares the events it can provide

as part of its constructor, as follows:

// Add event source
DpwsWseEventSource sampleEvent = new DpwsWseEventSource("smpl",
 "http://schemas.example.org/SampleService", "SampleEvent");
EventSources.Add(sampleEvent);

To send an event, use the Dpws.Device.Services.DpwsWseSubscriptionMgr.FireEvent

method. This method requires a reference to the DpwsHostedService, a reference to the

DpwsWseEventSource, and a byte array containing the SOAP message to be sent. The latter is typically

constructed by a method in the service, using System.Ext.Xml.XmlWriter.

The following is an example of raising an event SampleEvent in the service SampleService, assuming

references to the service and the event source were stored in the variables sampleService and

sampleEvent when they were instantiated (as shown earlier):

// build the message and fire the event
Dpws.Device.Services.DpwsWseSubscriptionMgr.FireEvent(sampleService, sampleEvent,
 sampleService.BuildSampleEventMessage());

Introducing Devices Profile for Web Services 8

Exceptions
The DPWS device stack is built to catch and handle most of the exceptions that can happen during the

processing of Web Services messages. Most methods in the processing chain catch the exception and

either return a fault message or return null. Null return values are handled in the transport services,

where they are converted to exception faults and sent to the listening client. A debug method is also

produced. Exceptions will never cause the stack to stop operating.

Faults
The DPWS device stack returns Addressing and Eventing faults where appropriate, and Exception

faults for everything else. If one of your operations needs to return a fault, you can do so using the

classes in the Ws.Services.Faults namespace. The RaiseFault method takes one of three

enumerations as its second parameter, allowing you to create faults of any of the following types.

 WsExceptionFaultType: Exception fault

 WsWsaFaultType: Addressing fault

 WsWseFaultType: Eventing fault

Threads
The DPWS device stack operates on three main threads, which are started when

Dpws.Device.Device.Start is called. One is used for processing UDP requests for device discovery,

a thread that is not exposed in the APIs. A second is used for the eventing queue and a third for

processing HTTP requests. The HTTP thread spawns at most one processing thread for each type of

service hosted on the device. These threads last only as long as required to process each HTTP request.

Operations within a particular service are processed synchronously, so only one operation per service

can be processed at a time. This is usually acceptable for the applications for which DPWS is designed. If

you need to be able to process multiple operations in a particular service simultaneously, you can create

multiple services of the same type as long as they have different endpoints.

Using the DPWS Client
A DPWS client derives from Dpws.Client.DpwsClient class, which provides a

DpwsDiscoveryClient member for sending Probe and Resolve messages. A Probe message is a

WS-Discovery message used by a client to search for services on the network by service type, and a

Resolve message is a WS-Discovery message used by a client to search for services on the network by

name. The Probe and Resolve methods of DpwsDiscoveryClient both return collections of

DpwsServiceDescription objects that describe the discovered service endpoints. Once the client

has a service endpoint's information, the client can send a request to a Web service.

Sending a Request in the DPWS Client

To make a Web service request from the client, build the XML for the SOAP request using XmlWriter

and send the request using a WsHttpClient object. If the request is a two-way request that returns a

response, you will also have to parse the response. The following code example demonstrates how to

call a two-way web service method.

Introducing Devices Profile for Web Services 9

/// <summary>
/// Method calls a two-way method that sums two integers.
/// </summary>
/// <param name="x">A integer containing the x value to add.</param>
/// <param name="y">A integer continaining the y value to add.</param>
/// <returns>An integer sum of x+y.</returns>

public int Request(int x, int y)
{
 ...
 // call your function to build the request
 byte[] Request = BuildTwoWayRequest(x, y, sEndPointURI);
 DpwsHttpClient httpClient = new DpwsHttpClient();

 // send the request
 DpwsSoapResponse response = httpClient.SendRequest(Request, sEndPointURI,
 false, false);
 if (response != null)
 {
 // call your function to parse the request
 return Parse2WayResponse(response.Header, response.Envelope);
 }
 else
 {
 ...
 }
}

Building a Request

The following code example shows how to create a Web service request.

/// <summary>
/// Method builds an Xml 2way request message.
/// </summary>
/// <param name="X">An integer containing the first integer to add.</param>
/// <param name="Y">An integer containing the second integer to add.</param>
/// <param name="endpointAddress">The service endpoint address.</param>
/// <returns>The constructed request.</returns>

private byte[] BuildTwoWayRequest(int X, int Y, string endpointAddress)
{
 MemoryStream soapStream = new MemoryStream();
 XmlWriter xmlWriter = XmlWriter.Create(soapStream);

 // Write processing instructions and root element
 xmlWriter.WriteProcessingInstruction("xml",
 "version='1.0' encoding='UTF-8'");
 xmlWriter.WriteStartElement("soap", "Envelope",
 "http://www.w3.org/2003/05/soap-envelope");

 // Write namespaces
 xmlWriter.WriteAttributeString("xmlns", "wsdp", null,
 Namespaces.GetNamespace("wsdp"));
 xmlWriter.WriteAttributeString("xmlns", "wsd", null,
 Namespaces.GetNamespace("wsd"));
 xmlWriter.WriteAttributeString("xmlns", "wsa", null,
 Namespaces.GetNamespace("wsa"));
 xmlWriter.WriteAttributeString("xmlns", "smpl", null,
 "http://schemas.example.org/SimpleService");

 // Write header
 xmlWriter.WriteStartElement("soap", "Header", null);
 xmlWriter.WriteStartElement("wsa", "To", null);
 xmlWriter.WriteString(endpointAddress);
 xmlWriter.WriteEndElement(); // End To
 xmlWriter.WriteStartElement("wsa", "Action", null);
 xmlWriter.WriteString
 ("http://schemas.example.org/SimpleService/TwoWayRequest");
 xmlWriter.WriteEndElement(); // End Action
 xmlWriter.WriteStartElement("wsa", "From", null);

Introducing Devices Profile for Web Services 10

 xmlWriter.WriteStartElement("wsa", "Address", null);
 xmlWriter.WriteString(EndpointAddress);
 xmlWriter.WriteEndElement(); // End Address
 xmlWriter.WriteEndElement(); // End From
 xmlWriter.WriteStartElement("wsa", "MessageID", null);
 xmlWriter.WriteString("urn:uuid:" + Guid.NewGuid());
 xmlWriter.WriteEndElement(); // End MessageID
 xmlWriter.WriteEndElement(); // End Header

 // write body
 xmlWriter.WriteStartElement("soap", "Body", null);
 xmlWriter.WriteStartElement("smpl", "TwoWayRequest", null);
 xmlWriter.WriteStartElement("smpl", "X", null);
 xmlWriter.WriteString(X.ToString());
 xmlWriter.WriteEndElement(); // End X
 xmlWriter.WriteStartElement("smpl", "Y", null);
 xmlWriter.WriteString(X.ToString());
 xmlWriter.WriteEndElement(); // End Y
 xmlWriter.WriteEndElement(); // End TwoWayRequest
 xmlWriter.WriteEndElement(); // End Body

 xmlWriter.WriteEndElement();

 // Create return buffer and close writer
 xmlWriter.Flush();
 byte[] soapBuffer = soapStream.ToArray();
 xmlWriter.Close();

 return soapBuffer;
}

Parsing a Response

The following code shows how to parse a response.

/// <summary>
/// Parses the 2way message response and returns the results.
/// </summary>
/// <param name="header">WsdWsaHeader object: a SOAP response header.</param>
/// <param name="envelope">WsdXmlDocument object: the entire SOAP response.</param>
/// <returns></returns>

private int Parse2WayResponse(WsWsaHeader header, WsXmlDocument envelope)
{
 WsXmlNode tempNode;

 // There should be more validation here; this is the minimal effort required
 if ((tempNode = envelope.SelectSingleNode("Body/TwoWayResponse/Sum", false))
 == null)
 {
 Debug.Print("");
 Debug.Print("Body/TwoWayResponse/Sum element is missing. Returning 0.");
 return 0;
 }
 int Sum = Convert.ToInt32(tempNode.Value);

 return Sum;
}

Conclusion
Devices Profile for Web Services (DPWS) is a set of guidelines designed to allow devices to discover each

other on a network and invoke the services each provides. The .NET Micro Framework provides a DPWS

toolset that allows you to support this profile on your own devices, acting as a server, a client, or both.

Microsoft intends to further advance DPWS support in the future. In the meantime, you can model your

service code on the samples in this article and provided with.NET Micro Framework v2.5. Prepare to

step into the Web Services world and bring a new level of plug-and-play to your networked devices!

	Introducing Devices Profile for Web Services
	Web Services Profiles and DPWS
	Communicating Between Devices
	Implementation Specifics
	The DPWS Libraries
	DPWS Namespaces
	Using the Device Class
	Defining Services and Operations

	Event Subscriptions
	Exceptions
	Faults
	Threads
	Using the DPWS Client
	Sending a Request in the DPWS Client
	Building a Request
	Parsing a Response

	Conclusion

