

Microsoft Dynamics AX

How to Write Data Upgrade

Scripts for

Microsoft Dynamics AX 2009

White Paper

[This document describes how to use the Microsoft Dynamics™ AX Data Upgrade

Framework and to write data upgrade scripts for customer data upgrade data models

(Microsoft Dynamics AX tables).]

Date: May 14, 2008

http://www.microsoft.com/dynamics/ax

UPGRADE

http://www.microsoft.com/dynamics/ax

2

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Contents

Introduction .. 4

When is a Data Upgrade Script Needed? .. 5

How to Upgrade Data for a Major Release or Service Pack 6

The Upgrade Checklist .. 6

The Data Upgrade Framework... 8

Data Upgrade Scripts by Module .. 9

SYS Versions and Data Upgrade of Interim SYS releases ... 11

Data Upgrade for Service Packs ... 12

Data Upgrade for Customization... 12

Create a single upgrade script that combines changes across multiple product versions 13

Using Configuration Key to Remove Obsolete Objects after Upgrade .. 13

Data Upgrade Scripts ... 14

Writing Data Upgrade Scripts.. 16

Upgrade script configuration keys .. 16

Script Dependencies ... 17

Precautions When You Write Data Scripts Before Synchronization ... 18

Best Practices for Writing Data Upgrade Scripts ...20

Transaction and Idempotency .. 20

Coding Best Practices .. 21

Indicating Progress .. 21

Documenting Scripts ... 21

Deleting a Table or Field from the Data Model .. 21

Unique Indexes .. 21

Deleting the Contents of a Table .. 22

Upgrading a Table with Table ID or Field ID Changed ... 22

Deleting Configuration Keys .. 22

Referencing Number Sequences withing upgrade scripts .. 23

Performance Guidelines... 24

Performance Improvement Options ... 25

Using the Set-based Operators Delete_From, Update_RecordSet and Insert_SecordSet 25

Calling skipDataMethods and skipDatabaseLog Before Calling Update_RecordSet or Delete_From 25

Using RecordInsertList Class to Batch Multiple Inserts... 25

Optimizing X++ logic .. 26

3

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Appendix 1: Guidelines for Writing Direct SQL in Upgrade Scripts28

Using Set-Based Updates in X++ .. 28

Executing Direct SQL from X++ .. 29

How to Execute Direct SQL for X++ .. 29

Best Practices Warning when Executing Direct SQL .. 29

Using Utility Functions to Execute Direct SQL .. 30

Documenting Direct SQL ... 30

Using Table Names in Direct SQL ... 30

Adding Literals in Direct SQL ... 30

Specifying DataAreaId in Where-Clauses ... 31

Determining Whether a Table or Field Exists in the Database ... 32

Defining String Lengths ... 33

Applying LTrim for String Comparisons in the WHERE Clause .. 33

Oracle Only: Applying NLS_LOWER on String Columns in the WHERE Clause ... 33

Structuring an Upgrade Script for Managing SQL Server and Oracle ... 34

Implementing Complex Inserts and Updates in Direct SQL ... 35

Creating Stored Procedures and Functions ... 35

Implementing Set-Based Updates with Joins ... 36

Using Direct SQL for Set-Based Updates .. 37

Using a Set-Based Insert Operation .. 38

Number Sequence Considerations ... 39

RECID in Dynamics AX 5.0 .. 39

Assigning RECID on INSERT .. 40

Looking Up Table ID and Field IDs .. 41

Assigning Business Sequences on Insert ... 41

Calling FN_FMT_NUMBERSEQUENCE .. 44

4

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

 Introduction

This document describes how to use the Microsoft Dynamics™ AX Data Upgrade Framework and to write data

upgrade scripts for customer data upgrade data models (Microsoft Dynamics AX tables). The data upgrade

framework can be used to perform data correction or data transformation.

The intended audience for this document is Microsoft Dynamics AX application developers.

This document is based on Leveraging the Microsoft Dynamics AX2009 Data Upgrade Framework, a Microsoft

Dynamics AX2009 Technical Information document, and on the Microsoft Dynamics AX 2009 Data Upgrade

Framework. It has been updated for the new data upgrade framework and Best Practices for performance.

Out of the box – Dynamics Ax 2009 supports upgrading data from Dynamics Axapta 3.0 and Dynamics Ax 4.0

to Dynamics Ax 2009.

5

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

When is a Data Upgrade Script Needed?

There are changes that can be made in the data model without the need for an upgrade script, and there are

changes that need an upgrade script.

The following changes can be made without an upgrade script:

1. Change the name of a field

2. Change the name of a table

3. Add a field to a table with a default value for every field

4. Add/change relations

5. Add/change non-unique indexes

6. Add/change delete actions

7. Add/change/delete temporary table

The following changes require an upgrade script:

1. Delete a table and save data

2. Delete a field and save data

3. Add/change unique indexes

4. Change a non-unique index into a unique index

5. Restructure where data is stored. For example, moving data from one field to another

6. Correct old data inconsistencies

7. Populate new tables with existing data

8. Populate new fields with existing data or a default value that is different from the default value for the

data type

6

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

How to Upgrade Data for a Major Release or Service Pack

The Upgrade Checklist

Figure 1. The Upgrade Checklist

The Upgrade Checklist is a navigation pane that guides you through the data upgrade steps. It is invoked

automatically when Microsoft Dynamics AX starts after a service pack or major release is installed. Data

upgrade is performed using the Upgrade Checklist in the following order:

1. Presynchronize

7

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

2. Postsynchronize

3. Upgrade additional features

The data upgrade framework drives the data upgrade scripts that transform an older version of the

Microsoft Dynamics AX database to the new version. These steps are described in later sections.

8

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

The Data Upgrade Framework

The data upgrade framework gives developers the infrastructure to insert data upgrade scripts written in X++.

The data upgrade framework manages the dependencies of the scripts, schedules them to be run in parallel by

batch clients, and provides progress reports on the running scripts. The data upgrade framework has a built-in

error recovery mechanism that helps to ensure system integrity when the upgrade has to be resumed after an

error.

With the exception of the base ReleaseUpdateDB class, the ReleaseUpdateDB* classes contain implementations

of data upgrade scripts. The scripts provide abstract methods and utility functions for data upgrade classes. The

class diagram of the upgrade script classes is shown in Figure 2.

… more classes

for other modules

addStandardJob()

+ addDependency()

+ addCrossModuleDependency()

+ moduleName()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ run()

ReleaseUpdateDB (SYS)

+ initPreSyncJobs()

+ initPostSyncJobs()

+ moduleName()
+ upgradeScript393()

+ upgradeScript394()

ReleaseUpdateDB39_Asset (SYS)

+ initPreSyncJobs()

+ initPostSyncJobs()

+ moduleName()

+ upgradeScript395()

+ upgradeScript396()

ReleaseUpdateDB39_Ledger (SYS)

TAP 3 ships

Release 4.0 TAP3

V39 classes for

upgrade to TAP3

Release 4.0

V40 classes for

upgrade to AX 4.0

In AX 4.0, no data

upgrade in the

Ledger module
+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript403()

+ upgradeScript404()

ReleaseUpdateDB40_Asset (SYS)

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript4013()

+ upgradeScript4014()

ReleaseUpdateDB401_Asset (SYS)

ReleaseUpdateDB401_Asset (DIS)

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript4013()

ReleaseUpdateDB401_Asset (VAR)

+ upgradeScript4013()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript4017()

AX 4.0 RTM ships

Release 4.0.1

V401 classes for

upgrade to AX 4.0.1

AX 4.0 SP1 ships

Overlaid:

Custom upgrade

scripts for AX

4.0.1 in DIS and

VAR layers

ReleaseUpdateDB401_Ledger (SYS)

+ upgradeScript4016()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript4015()

Release 4.0 Service Pack 2

Upgrade scripts in SYP

layer, copied to 4.1 SYS

layer

AX 4.0 SP2 ships

Release 5.0

V41 classes for

upgrade to AX 5.0

include service

pack upgrade

scripts

AX 5.0 ships

ReleaseUpdateDB41_Asset (SYP)

+ upgradeScript41SP2()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript41SP1()

ReleaseUpdateDB41_Asset (SYS)

+ upgradeScript41SP2()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript41SP1()

+ upgradeScript413()

ReleaseUpdateDB41_Ledger (SYS)

+ upgradeScript416()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript415()

Figure 2. Data Upgrade Script Classes

9

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Data Upgrade Scripts by Module

Data upgrade scripts are inserted into the data upgrade as methods of a ReleaseUpdateDB<NN>_<module>

class, where <NN> is the version of Microsoft Dynamics AX being upgraded to, and <module> is the module

name the script belongs to. These classes are derived from the base class ReleaseUpdateDB and are connected

to the data upgrade framework.

When you create upgrade scripts for your version of Microsoft Dynamics AX, you can use any of the new

classes in the following table according to your script's application module and the version you are developing.

TAP3 (39) 401 41

ReleaseUpdateDB39_Administration

ReleaseUpdateDB39_Asset

ReleaseUpdateDB39_Bank

ReleaseUpdateDB39_Basic

ReleaseUpdateDB39_COS

ReleaseUpdateDB39_Cust

ReleaseUpdateDB39_HRM

ReleaseUpdateDB39_Invent

ReleaseUpdateDB39_Jmg

ReleaseUpdateDB39_KM

ReleaseUpdateDB39_Ledger

ReleaseUpdateDB39_PBA

ReleaseUpdateDB39_Prod

ReleaseUpdateDB39_Proj

ReleaseUpdateDB39_Req

ReleaseUpdateDB39_SMA

ReleaseUpdateDB39_smm

ReleaseUpdateDB401_Administration

ReleaseUpdateDB401_Bank

ReleaseUpdateDB401_COS

ReleaseUpdateDB401_Cust

ReleaseUpdateDB401_Ledger

ReleaseUpdateDB401_Proj

ReleaseUpdateDB401_Vend

ReleaseUpdateDB41_Administration

ReleaseUpdateDB41_Asset

ReleaseUpdateDB41_Bank

ReleaseUpdateDB41_Basic

ReleaseUpdateDB41_COS

ReleaseUpdateDB41_Cust

ReleaseUpdateDB41_HRM

ReleaseUpdateDB41_Invent

ReleaseUpdateDB41_Jmg

ReleaseUpdateDB41_KM

ReleaseUpdateDB41_Ledger

ReleaseUpdateDB41_Prod

ReleaseUpdateDB41_Proj

ReleaseUpdateDB41_Req

ReleaseUpdateDB41_SMA

ReleaseUpdateDB41_smm

ReleaseUpdateDB41_Trv

ReleaseUpdateDB41_Vend

Name ReleaseUpdateDB39 means upgrade to Microsoft Dynamics AX TAP3. Pre-synchronization, Post-

synchronization and Additional features upgrade methods coexist in these classes.

10

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Figure 3. Upgrade Classes in the Applications Object Tree

11

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

SYS Versions and Data Upgrade of Interim SYS releases

The SYS layer contains the core functionality of Microsoft Dynamics AX. A modification to this layer is

shipped to partners and customers in beta versions (for example, Microsoft Dynamics AX 4.0 TAP3), final

release version (for example, Microsoft Dynamics AX 4.0), and refresh versions of major releases (for example,

Microsoft Dynamics AX 4.0.1), referred to here as interim SYS releases. The data upgrade framework supports

upgrades that span multiple SYS releases by providing the infrastructure to incrementally upgrade from one

SYS release to another, later release.

SYS versions are defined in the Base Enum SysReleaseVersion

Each ReleaseUpdateDB* class (except for the base ReleaseUpdateDB class) is associated with a SYS version

and named accordingly. The class hosts the data upgrade scripts that upgrade the SYS data model from the

previous SYS version to the current SYS version.

Upgrade scripts can span more than one SYS release. Therefore, each data upgrade script class inherits upgrade

scripts from the class of the same module in the most recent previous release. When you need upgrade scripts

for a new interim release, and when the upgrade script class for the corresponding module does not yet exist,

you create the class that uses the right naming convention and ensure this class inherits upgrade scripts from the

previous version of the upgrade script class of the same module.

For example, in Figure 2, the Ledger module has upgrade scripts for version 4.0 TAP3 (39) and 4.0.1 (401), but

does not have an upgrade script for release version 4.0 (40). Therefore, the class ReleaseUpdateDB401_Ledger

inherits directly from ReleaseUpdateDB39_Ledger. While for the Asset module, there are upgrade scripts for

versions 39, 40, 401, 41 (Microsoft AX 2009). Therefore the class ReleaseUpdateDB401_Asset must inherit

from ReleaseUpdateDB40_Asset, which in turn inherits from ReleaseUpdateDB39_Asset.

 Public class ReleaseUpdateDB401_Ledger extends ReleaseUpdateDB39_Ledger

 {

 }

 Public class ReleaseUpdateDB40_Asset extends ReleaseUpdateDB39_Asset

 {

 }

 Public class ReleaseUpdateDB401_Asset extends ReleaseUpdateDB40_Asset

 {

 }

 Public class ReleaseUpdateDB41_Asset extends ReleaseUpdateDB401_Asset

 {

 }

In order to incrementally upgrade from a SYS release that is two or more versions earlier, the

initPreSyncJobs, initPostSyncJobs and initAdditionalJobs methods must be overridden

12

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

and you must call “#initSyncJobsPrefix” to include the previous upgrade. The initPreSyncJobs,

initPostSyncJobs and initAdditionalJobs jobs detect the earlier (“from”) version of the upgrade

and skips if necessary.

 void initPostSyncJobs()

 {

#initSyncJobsPrefix

 // Add upgrade scripts

 }

Finally, the purpose of an individual script is to upgrade a table's data from SysVer -1 to SysVer. Each

script is used to upgrade the data to the current version.

Data Upgrade for Service Packs

Service packs are shipped in the SYP layer of each major Microsoft Dynamics AX release. Service pack fixes

are rolled forward into the next version of the SYS release. Therefore, they can be viewed as a pre-release of the

next major release, and, to perform a data upgrade, the upgrade scripts are added to the upgrade script classes of

the next major release in the SYP layer.

For example, in Figure 2, a data upgrade script in the Fixed Asset module for the Service Pack for

Microsoft Dynamics AX 4.0.1 is implemented in the ReleaseUpdateDB41_Asset class in the SYP layer. This

script will be merged with the data upgrade scripts for SYS release Microsoft Dynamics AX 4.1 into

ReleaseUpdateDB41_Asset in the SYS layer. The data upgrade framework handles service pack releases by

detecting at individual script level what has been run already in a service pack of the previous SYS release and

skips the upgrade script.

 void initPostSyncJobs()

 {

#initSyncJobsPrefix

 …

 // Add service pack upgrade scripts, for example, upgradeScript413

 }

Data Upgrade for Customization

Customizations are performed in layers higher than the SYS (and SYP) layers. If the customization requires a

data upgrade, the same layer would be used to update the data upgrade scripts.

Customization of a data upgrade is performed by overlaying the SYS level data upgrade scripts classes in the

same layer as the customization. This can be achieved by either overriding a SYS layer upgrade script or by

adding a new upgrade script. This is illustrated in Figure 2. There are two overlaid ReleaseUpdateDB401_Asset

classes in the DIS and VAR layer.

Note: Service pack releases and customizations (including local features, option pack providers, and partner

customizations) have different purposes. Therefore, implementation of the data upgrade scripts for a Service

Pack and for customization data upgrade will be different.

When customizing a data upgrade by overlaying data upgrade script classes, the initPreSyncJobs,

initPostSyncJobs and initAdditionalJobs methods must be overlaid and the jobs from lower

layers must be included in the current layer. For example, the ReleaseUpdateDB401_Asset::InitPreSyncJob in

the VAR layer in Figure 2 should resemble the following sample:

 void initPostSyncJobs()

 {

#initSyncJobsPrefix

13

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

 // Add SYS upgrade scripts, including overlaid upgrade scripts

 …

 // Add new DIS upgrade scripts, not DIS overlaid upgrade scripts

 …

 // Add new VAR upgrade scripts, not VAR overlaid upgrade scripts

 }

Create a single upgrade script that combines changes across multiple product versions

When upgrading to version n (target) from version n-2 (source), you can sometimes provide an algorithm that

upgrades data directly from the source to the target version without upgrading to the interim version. We call

these algorithms combined upgrade scripts. In cases for which you can create a combined upgrade script, follow

the best practices below:

1. Place the algorithm in the upgrade class for the source version, replacing the original algorithm. For

example, if you are upgrading from version 3.0 to 4.0 SP1, put the combined algorithm in the

ReleaseUpdateDB39 class.

2. Put a condition in a script in the upgrade class for the target version, setting it to execute only if you are

not upgrading from the source version. For example, change the script in the 4.0 SP1 version to

3. public void updateCustTrans()

4. {

5. if (ReleaseUpdateDB::getFromVersion() != sysReleasedVersion::v30)

6. {

7. Original script logic for upgrade from 4.0 to 4.0 SP1

8. }

9. }

Using Configuration Key to Remove Obsolete Objects after Upgrade

Note that after the upgrade is finished, you can disable the configuration keys “Keep update objects”

(SysDeletedObjects40 and SysDeletedObjects41 for Microsoft Dynamics AX 2009). After

database synchronization is complete, all obsolete components of the data model will be removed and

performance will be improved. The components that are removed are those needed to perform the data upgrade,

but provide no value when the process is completed.

14

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Data Upgrade Scripts

Data upgrade scripts comprise the majority of the data upgrade framework. For each version, a set of classes

exists - one upgrade class per module. Currently, there are 18 application modules for upgrade scripts. They are

named ReleaseUpdateDB<version>_<module>, for example ReleaseUpdateDB39_Bank.

Each of these classes contains scripts for pre-synchronization, post-synchronization and additional upgrades.

The scripts are scheduled by the initPreSyncJobs, initPostSyncJobs and

initAdditionalJobs methods respectively.

Each class can handle your upgrade script in one of four different ways - Start, Shared, Normal (also called

Standard), and Final. Note that it is important to choose the right one so that the script runs at the correct time

and in the correct manner:

 Pre-synchronization Post-synchronization Additional upgrade

Start (allow duplicates) -

Shared/Normal Shared/Normal Shared/normal

- Final (undo allow duplicates)

1. Presynchronize Start scripts

 (Executed first)

Start scripts are used to change indexes that have become unique in order to allow duplicates. This is a

modification of meta data and must be undone in a post-synchronization final script (see below). Start

scripts are run once versus once per company as with normal scripts.

2. Presynchronize Shared scripts

 (Executed once in parallel with pre-synchronization normal scripts)

Shared scripts are used mainly for cleanup jobs such as deleting duplicate records for tables that have

changed an index from allowing duplicates to being unique. Shared scripts are run at the same time as

normal scripts. The only way to ensure that a shared script is run before another shared script or a

normal script is to set up a dependency between the scripts. To perform this operation, see Writing

Data Upgrade Scripts below. Shared scripts are run only once, as compared to normal scripts, which

are run once per company

3. Presynchronize Normal scripts

(Executed for each company account in parallel with pre-synchronization shared scripts)

Normal scripts are run once per company and are used for company-specific clean up jobs, rebuilding

indexes, or deleting company-specific data that will be regenerated later.

4. Presynchronize Final scripts

Used very rarely. Pre-synchronization start, shared and normal scripts manage dependencies better.

5. Postsynchronize Start scripts

Used very rarely. Post-synchronization shared, normal and final scripts manage dependencies better.

6. Postsynchronize Shared scripts

(Executed once in parallel with post-synchronization normal scripts)

Shared scripts are run once and used to update non company-specific tables.

7. Postsynchronize Normal scripts

(Executed for each company account in parallel with post-synchronization shared scripts.)

15

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Standard scripts are run once per company and are used to update company specific tables. (~90% of

all scripts are of this type)

8. Postsynchronize Final scripts

(Executed last)

Final scripts are used to undo changes to indexes that were made to allow duplicates using the pre-

synchronization start script. Final scripts are run only once, as compared to normal scripts, which are

run once per company.

1. Upgrade additional features scripts

Upgrade additional features scripts are used to upgrade of the non-core functionality after the

functional data upgrade

16

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Writing Data Upgrade Scripts

To create a script you need to create a method on the appropriate class. For example, for

Microsoft Dynamics AX 4.0 TAP3 the class is ReleaseUpdateDB39_<module>. You must also inform the

framework how to handle the script. This is done by adding a line in the initPreSyncJobs or

initPostSyncJobs or initAdditionalJobs method on the class. Each of these

ReleaseUpdateDBxx_xxx classes contains three separate methods you can modify to schedule your jobs –

initPreSyncJobs, initPostSyncJobs and initAdditionalJobs. If you would like your job to

run in pre-synchronize phase, add it to the initPreSyncJobs method, otherwise add it to the

initPostSyncJobs method or to the initAdditionalJobs method for the additional feature upgrade.

The following are script templates you can use:

this.addStartJob(methodStr(<ClassName>, <MethodName>), "description",

[configurationkeynum(ConfigurationKey1), …, configurationkeynum(ConfigurationKey1)]);

this.addSharedJob(methodStr(<ClassName>, <MethodName>), "description",

[configurationkeynum(ConfigurationKey1), …, configurationkeynum(ConfigurationKey1)]);

this.addStandardJob(methodStr(<ClassName>, <MethodName>),

"description",[configurationkeynum(ConfigurationKey1), …, configurationkeynum(ConfigurationKey1)]);

this.addFinalJob(methodStr(<ClassName>, <MethodName>),

"description",[configurationkeynum(ConfigurationKey1), …, configurationkeynum(ConfigurationKey1)]);

Upgrade script configuration keys

Developers can provide an optional set of configuration keys associated with an upgrade script -

[configurationkeynum (<config key name1,config key name2, ... , config key name n>]. The script will be

scheduled to run if at least one configuration key associated with script is enabled during upgrade.

this.addFinalJob(methodstr(ReleaseUpdateDB39_Administration, allowDupSysExpImpTableGroupIdx),

"@SYS97945", [configurationkeynum(Asset), configurationkeynum(Bank)]);

Also, you can specify a set of configuration keys on the module level by using the setModuleConfigKey

function. The module configuration key set is joined with each upgrade script configuration key set for that

module.

this.setModuleConfigKey([configurationkeynum(ConfigurationKey1),…,configurationkeynum(Configur

ationKey1)])

Note that if you are using setModuleConfigKey, it should be called from InitPreSyncJobs, initPostSyncJobs and

InitAdditionalJobs method separately.

17

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Script Dependencies

You can also add dependencies between your scripts. This can be useful to avoid locking and for enforcing a

logical flow of your scripts. To add a dependency, include the following in the appropriate InitXXXJobs

method:

this.addDependency(methodStr(<ClassName>, <MethodName>),

 methodStr(<ClassName>, <MethodName>));

where the first method must be executed before the second method executes.

1. If you have a dependency between the scripts inside a module, use the addDependency method.

2. If the script is dependant on another module’s script, you can use the

addCrossModuleDependency method to ensure a correct execution sequence between scripts

placed in the different classes:

this.addCrossModuleDependency(classnum(<ClassName>), methodStr(<ClassName>, <MethodName>),

 classnum <ClassName>, methodStr(<ClassName>, <MethodName>));

1. If the script is dependant on another module’s script from a previous version, you can use the

addCrossVersionModuleDependency method to ensure that the correct execution sequence

between scripts placed in the different versions and modules:

this.addCrossVersionModuleDependency(

 classnum(<ClassName>),

 methodStr(<ClassName>, <MethodName>),

 SysReleaseVersion::<version>,

 classnum <ClassName>,

 methodStr(<ClassName>, <MethodName>),

 SysReleasedVersion::<version>);

2. If a script is dependent on another script from a previous version but located in the same module,

then you don‟t need a dependency, as the upgrade framework automatically provides implicit

dependency in that case.

18

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Here is an example of the dependency tree:

Upgrade dependency tree

… more classes

for other modules

Start scripts

Standard and

Shared scripts

Final scripts

Upgrade starts

ReleaseUpdateDB39_Asset

Start scripts

ReleaseUpdateDB401_Asset

Start scripts

ReleaseUpdateDB41_Asset

Start scripts

ReleaseUpdateDB39_Ledger

Start scripts

ReleaseUpdateDB401_Ledger

Start scripts

ReleaseUpdateDB41_Ledger

Start scripts

ReleaseUpdateDB39_Asset

Standard and Shared scripts

ReleaseUpdateDB401_Asset

Standard and Shared scripts

ReleaseUpdateDB41_Asset

Standard and Shared scripts

ReleaseUpdateDB39_Ledger

Standard and Shared scripts

ReleaseUpdateDB401_Ledger

Standard and Shared scripts

ReleaseUpdateDB41_Ledger

Standard and Shared scripts

… more classes

for other modules

ReleaseUpdateDB39_Asset

Final scripts

ReleaseUpdateDB401_Asset

Final scripts

ReleaseUpdateDB41_Asset

Final scripts

ReleaseUpdateDB39_Ledger

Final scripts

ReleaseUpdateDB401_Ledger

Final scripts

ReleaseUpdateDB41_Ledger

Final scripts

… more classes

for other modules

Example of a Custom Cross module

cross version dependency

Example of a custom Cross
Module Dependency

Precautions When You Write Data Scripts Before Synchronization

Pre-synchronization data upgrade scripts are executed before the new version of Microsoft Dynamics AX

Object Data (AOD) is synchronized to the Microsoft Dynamics AX database. This means that the executed code

will use a new version of metadata, but the database will still be the old version.

Also, please note that several special tables are synchronized during AOS startup even before the upgrade

checklist starts:

SysSetupLog

SysSetupCompanyLog

SysRecordTemplateTable

SysTraceTable

SysTraceTableSQL

SysTraceTableSQLExecPlan

SysTraceTableSQLTabRef

SysUserLog

SysUserInfo

SysInetCSS

19

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

SysInetThemeTable

SysImageTable

SysPersonalization

LanguageTable

Batch

BatchGroup

SysLicenseCodeSort

DocuParameters

SysSecurityFormTable

SysSecurityFormControlTable

SysEvent

KMConnectionType

SalesParmUpdate

SalesParmSubTable

PurchParmUpdate

PurchParmSubTable

SysVersionControlParameters

ReleaseUpdateScripts

ReleaseUpdateScriptDependency

ReleaseUpdateJobStatus

DocuOpenFile

CompanyInfo

For these special tables, you cannot use pre-synchronization Start scripts. So, if you change field ID on one of

these tables, code changes must be made directly in the \Classes\Application\syncApplTables()

method, for example:

if (!this.isRunningMode())

{

 ttsbegin;

 if (isConfigurationkeyEnabled(configurationkeynum(CRSEGermany)))

 {

 ReleaseUpdateDB::changeFieldByName('TaxRepresentative', 41, 0, 75);

 }

 ttscommit;

}

syncTable(tablenum(CompanyInfo));

 Note that changes in Application class are risky and should be made with caution.

20

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Best Practices for Writing Data Upgrade Scripts

Transaction and Idempotency

It is an important requirement that each data upgrade script be idempotent. That is, if the execution fails, it must

be able to execute successfully with the desired results upon reexecution.

The data upgrade framework guarantees idempotency by enclosing each script within a transaction, ensuring

that the script is only executed once. Although this is a simple and robust way to ensure idempotency it results

in a performance decline when an upgrade script has complex logic in a loop on a large table. In

Microsoft Dynamics AX 4.0, this mechanism is optional such that an individual script can be run without the

transaction at the highest level. When this option is chosen, the individual script must implement its own

idempotency logic.

Another important consideration for implementing idempotency is that you can upgrade from many different

versions. For example, if you write an upgrade script for SP2 of version N, when version N+1 is shipped, your

customers are upgrading from both Version N SP1 and Version N SP2. This means that some customers already

are upgraded and others are not. If your upgrade script is idempotent, you can just reuse it for the upgrade to

version N+1.

Note that if an upgrade script contains an error, it is easier to resolve the problem if the script is idempotent.

21

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Coding Best Practices

Indicating Progress

To supply progress status, you can use a simplified version operation progress by calling:

this.tableProgress(<tableId>);

and including the table-ID for the table you have just updated. This should only be called once in each

outermost loop (even if you are updating several tables in the inner loops).

Documenting Scripts

You should include meaningful comments in each data upgrade script to explain the functionality of the script.

Deleting a Table or Field from the Data Model

It is not possible to simply delete data from the data model as this would be the equivalent of deleting customer

data. This also applies to fields that were never used or fields that appear in the UI (unless they are temporary).

Removing a field or table requires careful planning and execution as follows:

1. Prefix the name of the item to be removed with "DEL_"

2. Set the configuration property to: "SysDeletedObjectsXX" where XX is the next version, for

example "41" (for Microsoft Dynamics AX 5.0)

3. Implement the upgrade script that will transform the data into the new data model

4. Test the upgrade script

5. Benchmark the upgrade script

6. (New for Interim Upgrade): Do not delete the table or field permanently from the AOT. They need to

stay in the source until the release where they are deleted is no longer supported by upgrade. For

example, if a 3.0 field is renamed in 4.0 as DEL_field, it needs to stay in the source until 4.1 if 3.0->4.0

upgrade is supported.

Unique Indexes

It is important that the database can synchronize without errors when the customer upgrades. Three scenarios

require special attention when dealing with index changes:

1. Removing a field from a unique index

2. Adding a new unique index

3. Making a non-unique index unique, (setting the AllowDuplicates property to false)

All these scenarios make an index more restrictive and will cause the synchronization to fail if not handled

properly.

The easiest solution is to delete the data that collides with the index. This should only be done in situations

where it doesn't make sense to keep the duplicate records. This is performed using one of the following options:

Option 1. Create an upgrade script using the pattern:

 set fieldSet = new set(Types::INTEGER);

 ;

 fieldSet.add(fieldNum(<TableName>, <FieldName1>));

 fieldSet.add(fieldNum(<TableName>, <FieldName2>));

 fieldSet.add(fieldNum(<TableName>, <FieldName3>));

 ReleaseUpdateDB::deleteDuplicatesUsingIds(tableNum(<TableName>), 0, fieldSet);

22

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Add this script to the shared pre-synchronization jobs. It will execute across companies even for company

specific tables.

Note that if the table or fields have changed names or IDs from one version to another, you have to use option 2

instead.

Option 2. When the duplicate records contain values that need more complex logic to clean up, the solution is

more involved:

1. Create a start pre-synchronization upgrade script. This will change the index to allow duplicates:

 DictIndex dictIndex = new

 DictIndex(TableNum(<TableName>),indexNum(<TableName>,<IndexName>));

 ;

 ReleaseUpdateDB::indexAllowDup(dictIndex);

2. Create a normal upgrade script. This will move the data according to the new data model.

3. Create a final post-synchronization upgrade script. This will change the index to not allow duplicates:

 DictIndex dictIndex = new

 DictIndex(TableNum(<TableName>),indexNum(<TableName>,<IndexName>));

 ;

 ReleaseUpdateDB::indexAllowNoDup(dictIndex);

Deleting the Contents of a Table

Situations may occur where you need to delete the contents of a table, for example, if the table will be used in

the new version (but not if the table has become obsolete). This can be useful when the contents of the table are

auto-generated. To do this, create a pre-synchronization shared script using the pattern:

 ReleaseUpdateDB::deleteDataInTableWithTableId(tableNum(<tableId>));

Note this action will delete across companies even for company-specific tables and it is the fastest way to

perform the operation.

Alternatively, you can create a pre-synchronization normal script using the delete_from construct.

Upgrading a Table with Table ID or Field ID Changed

When a table or field is renamed, no upgrade scripts are needed. However, when the ID of a table or field is

changed, in order to preserve the table and its data, you must call the following methods in a pre-

synchronization Start script:

ReleaseUpdateDB::ChangeTableID (for table ID changes)

ReleaseUpdateDB::ChangeFieldID (for field ID changes)

You can also use the following methods to address tables and fields by name:

ReleaseUpdateDB::ChangeTableByName (for table ID changes)

ReleaseUpdateDB::ChangeFieldByName (for field ID changes)

Note that for few special tables listed in the “Precautions When You Write Data Scripts Before

Synchronization” section you cannot use pre-synchronization Start script. Please refer to that section for more

details and code samples.

Deleting Configuration Keys

Note: Configuration keys should not be deleted. Configuration key changes are not handled by code upgrade,

therefore, changes will not be detected at code upgrade time. If a customization has been set up to use a

23

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Microsoft Corporation shipped configuration key in custom tables, and if the configuration key is deleted, the

table will be lost during synchronization.

Referencing Number Sequences within upgrade scripts

If a number sequence has to be referenced within a X++ upgrade script, it is recommended to code that

reference as a separate method insetad of hardcoding it within the script itself, which will make the process of

changing it easier for a user running the upgrade

private str numberSequence_SQ()

{;

 return 'SQ';

}

Later in the upgrade script, you can use that method to get the actual number sequence

num = NumberSeq::newGetNumFromCode(this.numberSequence_SQ(), false);

salesQuotationTable.QuotationId = num.num();

24

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Performance Guidelines

Performance is a critical piece of the upgrade process and requires that you think about each line in your script.

Most companies will perform this task over a weekend, so the entire upgrade process must be able to be

completed within 48 hours. The actual update will typically be performed between Friday night and Monday

morning. In addition, prior to running the upgrade process on a live system, the upgrade process is tested several

times on a test system.

In addition to the following considerations, please read Performance Improvement Options to determine which

apply to your upgrade scripts:

1. Monitor and minimize the number of client/server calls.

2. Use record set functions whenever possible.

3. Break down your scripts into smaller pieces. For example, do not upgrade two independent tables in

the same script even if there is a pattern in the way the scripts work. This is because:

1. Each script, by default, runs in one transaction (=one rollback segment). If the segment becomes

too large, the database server will start swapping memory to disk, and the script will slowly come

to a halt.

2. Each script can be executed in parallel with other scripts.

1. Partial commits can only be used out of the box in one situation; this is when the table to upgrade is

large and contains a discriminator that can be used to split the script into several scripts. For example,

update all "Open" in one script and all "Closed" in another. The scripts should be set up to be

dependant on each other to avoid locking problems. (see point below regarding database lock

contention)

2. Take care when you sequence the scripts. For example, do not update data first and then delete it

afterwards.

3. Be careful when calling normal business logic in your script. Normal business logic is not usually

optimized for upgrade performance. For example, the same parameter record may be fetched for each

record you need to upgrade. The parameter record is cached, but just calling the Find method takes an

unacceptable amount of time. For example, the kernel overhead for each function call in

Microsoft Dynamics AX is 5 ms. Usually10-15 ms will elapse before the Find method returns (when

the record is cached). If there are a million rows, two hours will be spent getting information you

already have. The solution is to cache whatever is possible in local variables.

4. Run benchmarking on your script using large datasets to verify your performance is acceptable.

5. If database lock contention prevents the data upgrade process from scaling up with multiple batch

clients running in parallel, consider disabling the transaction in the framework and ensuring

idempotency by one of the following:

 Using an existing field/condition that can check if the table/record has been updated

 Adding new fields to track upgrade status

 Using the primary key as ordering columns and recording the last row that was updated

1. Use index tunint. Create indexes to speed up the upgrade and possibly remove them after the upgrade.

Setting up a configuration key to SysDeletedObjects<version> can help you ensure that the index is

deleted after the upgrade is finished.

1. If there is no business logic in the script, rewrite the script to issue a direct query to bulk update the

data. To write Direct SQL queries, see Appendix 2: Guidelines for Writing Direct SQL in Upgrade

Scripts.

25

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Performance Improvement Options

Using the Set-based Operators Delete_From, Update_RecordSet and Insert_SecordSet

If the script performs inserts, updates, or deletes within a loop, you should consider changing the logic to use

one of the set-based statements. If possible, use these set options to perform a single set-based operation.

Note when using set-based operations:

1. With Insert_RecordSet you cannot use a literal or function call in the field list. This operation does not

handle configuration keys so special care is required.

2. With Update_RecordSet you cannot perform inner or left outer joins.

3. Set based statements do not support memo fields.

Please refer to Speeding Up SQL Operations and Maintain Fast SQL Operations in the SDK documentation for

list and syntax of set based operations available in Microsoft Dynamics AX 4.0.

Example:

Before performance improvement:

while select inventTable

 where inventTable.ItemType == ItemType::Service

{

this.tableProgress(tablenum(InventTable));

delete_from inventSum where inventSum.ItemId == inventTable.ItemId;

}

After performance improvement:

delete_from inventSum

 exists join inventTable

 where inventTable.ItemId == inventSum.ItemId

 && inventTable.ItemType == ItemType::Service

Calling skipDataMethods and skipDatabaseLog Before Calling Update_RecordSet or

Delete_From

If your script runs delete_from or update_from on a large table where the delete() or update() methods of the

target table have been overwritten, the bulk database operation will fall back to record-by-record processing. To

prevent this, call the skipDataMethods(true) method to cause the update() and delete() methods to be skipped.

Also, you can call the skipDatabaseLog(true) method to improve performance.

Example:

taxExchRateAdjustment.skipDataMethods(true);

taxExchRateAdjustment.skipDatabaseLog(true);

update_recordset taxExchRateAdjustment

 setting GovernmentExchRate = taxExchRateAdjustment.UseGovtBankRate

 where taxExchRateAdjustment.UseGovtBankRate == NoYes::Yes;

Using RecordInsertList Class to Batch Multiple Inserts

If the business scenario cannot be written as insert_recordset, consider using the RecordInsertList class to

batch multiple inserts to reduce network calls. This operation is not as fast as insert_recordset, but is faster than

individual inserts in a loop.

26

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Example:

rilAssetTransMerge = new RecordInsertList(tablenum(assetTransMerge));

while select assetTrans

{

if (!AssetTransMerge::exist(AssetBookType::ValueModel,assetTrans.RecId))

{

 assetTransMerge.AssetId = assetTrans.AssetId;

 assetTransMerge.AssetGroup = assetTrans.AssetGroup;

 …

 rilAssetTransMerge.add(assetTransMerge);

 }

}

rilAssetTransMerge.insertDatabase();

Optimizing X++ logic

To optimize X++ logic, apply the following rules:

1. Minimize the amount of time spent in the X++ interpreter

2. For database related code, ensure SQL is fully utilized by including where conditions, for example, to

check for null values, using joins across tables

3. Use set-based updates and inserts instead of record-based updates and inserts

Examples of the wrong way to code:

while select forupdate projForecastCost

where ! projForecastCost.TransId

{

 if (! projForecastCost.TransId)

 {

 numberSeq = NumberSeq::newGetNum(ProjParameters::numRefProjTransIdBase());

 }

}

The where !projForecastCost.TransId is already checked by SQL. There is no need to check the

value again. The entire statement if (! projForecastCost.TransId) should be removed.

void someFunc()

{

 while select custTable

 {

 if (custNum != 0)

 {

 dosomething()

 }

 }

}

Again, this is not good coding practice. SQL can perfom this operation for you.

Rewrite the above function as:

void someFunc()

{

 while select custTable where custNum != 0

 {

 dosomething()

 }

}

27

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Below is another example of wasting CPU cycles in the X++ interpreter:

private ledgerSRUCode somefunc(AccountNum _accountNum)

{

.....

 if (auxAccountNum >= '1910' &&

 auxAccountNum <= '1979')

 {

 ledgerSRUCode = '200';

 }

 if ((auxAccountNum >= '1810' && auxAccountNum <= '1819') ||

 (auxAccountNum >= '1880' && auxAccountNum <= '1889'))

 {

 ledgerSRUCode = '202';

 }

 and so on

 return ledgerSRUCode;

}

This function only gets the ledgerSRU. So, when this is done, you should exit the function and not execute the if

statements. Also, if you are aware of the most likely results, test for these most likely options early in your code.

Below is a corrected version:

private ledgerSRUCode someFunc(AccountNum _accountNum)

{

.....

 if (auxAccountNum >= '1910' &&

 auxAccountNum <= '1979')

 {

 return '200';

 }

 if ((auxAccountNum >= '1810' && auxAccountNum <= '1819') ||

 (auxAccountNum >= '1880' && auxAccountNum <= '1889'))

 {

 return '202';

 }

 and so on

}

28

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Appendix 1: Guidelines for Writing Direct SQL in Upgrade Scripts

Using Set-Based Updates in X++

Whenever possible, set-based updates should be used in place of row-based updates. Set-based updates have a

partial implementation in X++ as insert_recordset, update_recordset, and delete_from. You can implement set-

based operations in X++ when:

1. An update involves data or references to a single table only. In other words, the data to be updated in a

table is not derived from another column. For example:

while select forupdate some_table where some_table.some_column == some_value

 {

 some_table.some_column = new_value;

 some_table.doUpdate();

 }

Can be rewritten in X++ as:

Some_table st;

Update_recordset st

Setting some_column == new_value

Where st.some_column = some_value;

If the update method is overridden, the update_recordset will change into a row-by-row update,

executing the update code for each row. You can prevent this by using the skipDataMethod operator.

Refer to Calling skipDataMethods and skipDatabaseLog Before Calling Update_RecordSet or

Delete_From for more details.

1. An update_recordset or delete_from that includes in its selection criteria a check for existence or

absence of data in the same or different table. In X++ these can be implemented directly using the

EXISTS Join or NOT EXISTS Join.

For example:

while select SalesBasketId from salesBasket

 where salesBasket.CustAccount == guestAccount

 {

 delete_from salesBasketLine

 where salesBasketLine.SalesBasketId ==

 salesBasket.SalesBasketId;

 }

Can be rewritten as:

delete_from salesBasketLine

exists join salesBasket

where salesBasket.SalesBasketId == salesBasketLine.SalesBasketId

 && salesBasket.CustAccount == guestAccount;

29

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Executing Direct SQL from X++

How to Execute Direct SQL for X++

1. If Direct SQL code is executed using X++, it requires checking for Code Access Security.as follows:

In the variable definition section, add:

SqlStatementExecutePermission permission;

;

In the code section, add:

stmtString = < SQL Statement >;

 stmt = con.createStatement();

 permission = new SqlStatementExecutePermission(stmtString);

 permission.assert();

stmt.executeUpdate(stmtString);

 // the permissions needs to be reverted back to original condition.

CodeAccessPermission::revertAssert();

1. Direct SQL stored procedures are executed using X++ as shown in the following example:

str sql;

str dataAreaId;

Connection conn;

SqlStatementExecutePermission permission;

;

dataAreaId = curExt();

sql = = 'execute <StoredProcName> \' + dataAreaId + '\' \'' + numSeq + '\'';

permission = new SqlStatementExecutePermission(sql);

conn = new Connection();

permission = new SqlStatementExecutePermission(sql);

permission.assert();

conn.createStatement().executeUpdate(sql);

// the permissions needs to be reverted back to original condition.

CodeAccessPermission::revertAssert();

Best Practices Warning when Executing Direct SQL

Executing Direct SQL is a deviation from Best Practices recommendations, so, whenever Direct SQL is

executed, the X++ compiler will flag it as a best practice error. To suppress this warning, before the

stmt.executeUpdate(stmtString) statement you will need to place the following comment indicating

that this is a known deviation from best practices:

//BP Deviation Documented

The code will be changed to:

stmtString = < SQL Statement >;

 stmt = con.createStatement();

 permission = new SqlStatementExecutePermission(stmtString);

 permission.assert();

 // BP Deviation Documented

 stmt.executeUpdate(stmtString);

 CodeAccessPermission::revertAssert();

30

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Using Utility Functions to Execute Direct SQL

Two new methods, statementExeUpdate() and statementExeQuery(), have been added to the

ReleaseUpdateDB class. They can be used to run any Direct SQL statements in ReleaseUpdateDB based

classes. Note that, for security reasons, these functions do not have CAS assert() or revertAssert() methods,

these should be called by the caller. See the code example in Stored Procedure and function Guidelines for

ReleaseUpdateDB::statementExeUpdate and ReleaseUpdateDB::statementExeQuery

use.

Documenting Direct SQL

For debugging and maintenance purposes, always put the resulting direct SQL statement as a comment before

the code that performs the string construction.

Using Table Names in Direct SQL

Use ReleaseUpdateDB::backendFieldName and ReleaseUpdateDB::backendTableName to

look up the actual table name in the database. These methods use the correct look up procedure:

new DictTable(TableNum(<sometable>)).name(DbBackend::Sql)

new DictField(TableNum(<sometable>),FieldNum(<someTable>,<somefield>)).name(DbBackend::Sql)

Adding Literals in Direct SQL

It is important for security, amongst other advantages, to pass parameters into the Direct SQL statement. For

example, when creating Direct SQL code there are several scenarios where you will need to add literal values to

the SQL statement. The most common examples are data area identification and empty date strings. These

scenarios are handled by the following examples:

 /* UPDATE PROJTRANSPOSTINg

 SET EMPLITEMID = PET.EMPLID,

 CATEGORYID = PET.CATEGORYID,

 PROJTYPE = PT.TYPE,

 QTY = PET.QTy

 FROM PROJTRANSPOSTING PTP, PROJEMPLTRANS PET, PROJTABLE Pt

 WHERE PTP.TRANSID = PET.TRANSId

 AND PTP.PROJTRANSTYPE = 2

 AND PET.PROJID = PT.PROJId

 AND PTP.DATAAREAID = N'xyz' AND PET.DATAAREAID = N'xyz' AND PT.DATAAREAID = N'xyz' */

 sqlStmt = strfmt('UPDATE %1', #T(ProjTransPosting));

 sqlStmt += strfmt(' SET %1 = %2, %3 = %4, %5 = %6, %7 = %8',

 #F(ProjTransPosting, EmplItemId), #AF(ProjEmplTrans, EmplId),

 #F(ProjTransPosting, CategoryId), #AF(ProjEmplTrans, CategoryId),

 #F(ProjTransPosting, ProjType), #AF(ProjTable, Type),

 #F(ProjTransPosting, Qty), #AF(ProjEmplTrans, Qty));

 sqlStmt += strfmt(' FROM %1 %2, %3 %4, %5 %6',

 #T(ProjTransPosting), #A(ProjTransPosting),

 #T(ProjEmplTrans), #A(ProjEmplTrans),

 #T(ProjTable), #A(ProjTable));

 sqlStmt += strfmt(' WHERE %1 = %2 AND %3 = %4 AND %5 = %6 AND %7 = %8 AND %9 = %10 AND %11 =

%12',

 #AF(ProjTransPosting, TransId), #AF(ProjEmplTrans, TransId),

 #AF(ProjTransPosting, ProjTransType), int2str(enum2int(ProjTransType::Hour)),

 #AF(ProjEmplTrans, ProjId), #AF(ProjTable, ProjId),

 #AF(ProjTransPosting, DataAreaId), sqlSystem.sqlLiteral(projTransPosting.DataAreaId),

 #AF(ProjEmplTrans, DataAreaId), sqlSystem.sqlLiteral(projEmplTrans.DataAreaId),

 #AF(ProjTable, DataAreaId), sqlSystem.sqlLiteral(projTable.DataAreaId));

/*

UPDATE SALESLINE

SET SHIPPINGDATEREQUESTED =

(SELECT MAX(DATEEXPECTED) FROM INVENTTRANS

 WHERE INVENTTRANS.DATAAREAID = INVENTTRANS.DATAAREAID

 AND SALESLINE.INVENTTRANSID = INVENTTRANS.INVENTTRANSID

 AND INVENTTRANS.DATEEXPECTED <> '1900-01-01')

31

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

WHERE SHIPPINGDATEREQUESTED = '1900-01-01'

AND DATAAREAID = SALESLINE.DATAAREAID

AND EXISTS

(SELECT DATEEXPECTED

FROM INVENTTRANS

WHERE INVENTTRANS.DATAAREAID = N'ext'

AND SALESLINE.INVENTTRANSID = INVENTTRANS.INVENTTRANSID

AND INVENTTRANS.DATEEXPECTED <> '1900-01-01')

*/

 sqlStmt = 'UPDATE ' + dictTable_SalesLine.name(DbBackend::Sql);

 sqlStmt += ' SET ' +

dictTable_SalesLine.fieldName(fieldnum(SalesLine,ShippingDateRequested),DbBackend::Sql);

 sqlStmt += ' = (SELECT MAX(' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ') FROM ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += ' WHERE ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DataAreaId),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral(inventTrans.DataAreaId);

 sqlStmt += ' AND ' + dictTable_SalesLine.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_SalesLine.fieldName(fieldnum(SalesLine,InventTransId),DbBackend::Sql);

 sqlStmt += ' = ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,InventTransId),DbBackend::Sql);

 sqlStmt += ' AND ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ' <> ' + sqlSystem.sqlLiteral('1900-01-01') + ')';

 sqlStmt += ' WHERE ' +

dictTable_SalesLine.fieldName(fieldnum(SalesLine,ShippingDateRequested),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral('1900-01-01');

 sqlStmt += ' AND ' +

dictTable_SalesLine.fieldName(fieldnum(SalesLine,DataAreaId),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral(salesLine.DataAreaId);

 sqlStmt += ' AND EXISTS';

 sqlStmt += ' (SELECT ' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ' FROM ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += ' WHERE ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DataAreaId),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral(inventTrans.DataAreaId);

 sqlStmt += ' AND ' + dictTable_SalesLine.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_SalesLine.fieldName(fieldnum(SalesLine,InventTransId),DbBackend::Sql);

 sqlStmt += ' = ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,InventTransId),DbBackend::Sql);

 sqlStmt += ' AND ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ' <> ' + sqlSystem.sqlLiteral('1900-01-01') + ')';

Specifying DataAreaId in Where-Clauses

The DataAreaId to be used in a where-clause may not be equal to the current company code returned by

curExt(). Therefore, curExt() should not be used to build the query string.

Because of the virtual company feature, it cannot be guaranteed that two tables in any join statement will fetch

its data using the same DataAreaId. In this instance a Where clause should not use the following predicate: A.

DATAAREAID = B.DATAAREAID.

The DataAreaId field should always be compared to a literal or a placeholder.

The following statement may not always work correctly:

DELETE FROM INVENTSUM

WHERE DATAAREAID=N'dmo' AND

EXISTS (SELECT 'x' FROM INVENTTABLE B

32

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

WHERE B.DATAAREAID=INVENTSUM.DATAAREAID

AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)

The statement should always be written as follows:

DELETE FROM INVENTSUM

WHERE DATAAREAID=N'dmo' AND

EXISTS (SELECT 'x' FROM INVENTTABLE B

WHERE B.DATAAREAID=N'dmo'

AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)

In the event that the InventTable is shared among several companies in the „dmo‟ company, then the statement

should be as follows, where the virtual company is assumed to be named „vir‟:

DELETE FROM INVENTSUM

WHERE DATAAREAID=N'dmo' AND

EXISTS (SELECT 'x' FROM INVENTTABLE B

WHERE B.DATAAREAID=N'vir'

AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)

To get the correct DataAreaId, declare a table buffer of the specific table type and use the value of the

DataAreaId field in the table buffer.

To get the correct formatting with the „-s and the preceding N, parse the DataAreaId to the

SqlSystem.sqlLiterals method and use the return value.

The following shows the use of DataAreaId and sqlLiteral:

static void UseDataAreaId(Args _args)

{

 InventSum inventSum;

 InventTable inventTable;

 str sqlStr;

 SqlSystem sqlSystem = new SqlSystem();

 ;

 sqlStr = strfmt(@"DELETE FROM INVENTSUM

 WHERE DATAAREAID=%1 AND

 EXISTS (SELECT 'x' FROM INVENTTABLE B

 WHERE B.DATAAREAID=%2

 AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)",

 sqlSystem.sqlLiteral(inventSum.dataAreaId),

 sqlSystem.sqlLiteral(inventTable.dataAreaId));

}

Notes:

1. The example above assumes that DataAreaId is left justified, which is a valid assumption as it is a

system field where the justification cannot be changed by the customers or partners.

2. The example is only used for demonstrating the use of DataAreaId. The table names and fields should

be retrieved from the dict classes and the statement should be built using name(DbBackend::Sql).

Determining Whether a Table or Field Exists in the Database

You can test whether a table exists in the database by using the isTmp() method on the table buffer as follows:

static void TestTable(Args _args)

{

 SalesTable salesTable;

 ;

 if (!salesTable.isTmp()) // remember the NOT operator

 {

33

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

 // table exists in the database.

 // isTmp will return true if the table is

 // specifically marked as temporary or if it is

 // disabled by the configuration key.

 }

}

You can test whether a field exists in the database by testing its configuration key as follows:

static void TestField(Args _args)

{

 DictField dictField;

 ;

 dictField = new DictField(tableNum(SalesTable),

 fieldNum(SalesTable, PriceGroupId));

 if (isConfigurationKeyEnabled(dictField.configurationKeyId()))

 {

 // Field exists in the database

 }

}

There is no need to test every field. If you know the field is always in the database because the table is in the

database, then there is no need to test each field individually. You only need to test fields that have a different

configuration key to the table.

Defining String Lengths

When writing Direct SQL or stored procedures, it cannot be assumed that a given string field has the currently

defined length as it may have been changed by the user before the execution of the upgrade job.

A variable designed to hold an ItemId cannot be defined as NVARCHAR(20) even though the current

maximum length for the ItemId data type is 20. It may have been changed to a higher value, and, consequently,

the variable cannot hold the entire value for all items. The length of the variable should therefore be defined

taking the length of the type at execution time into consideration.

The current maximum length of a field should be retrieved through the

ReleaseUpdateDB::fieldStringSize method.

Applying LTrim for String Comparisons in the WHERE Clause

In X++, left and right justification is managed by the kernel using string comparisons in the WHERE clause.

Microsoft Dynamics AX 4.0 is left justified when installed, so there is no need to handle compares within

Microsoft shipped upgrade scripts. If customers use mixed-mode, then, in Direct SQL, the code needs to check

the justification of the two sides of the comparison and apply LTRIM on the right justified side if the two sides

have different justification properties.

The new static method fields2WhereClause() is created in ReleaseUpdateDB class. It returns a string to be

used in a Direct SQL WHERE clause.

Oracle Only: Applying NLS_LOWER on String Columns in the WHERE Clause

In Dynamics AX on Oracle, all indexes on string fields are defined as functional indexes as
SUBSTR(NLS_LOWER(string column),1, length of column). The column fields in search conditions need to

have the NLS_LOWER "wrapped" around them, in order to achieve functional correctness and performance.

SUBSTR is optional. If it is omitted the Oracle optimizer will still use the index because SUBSTR does not

impact that decision.

SELECT PRICECALCID, ITEMID, INVENTDIMID, BOMID, ROUTEID, ROWNUM AS NEWPRICECALCID

FROM BOMCALCTABLE WHERE NLS_LOWER(DATAAREAID) = N'dmo'

34

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Note that if customers have de-selected the option in the Server Configuration utility to not use SUBSTR and

NLS_LOWER, they will not have functional indexes; they will have regular indexes and thus the SUBSTR and

NLS_LOWER is not required.

Structuring an Upgrade Script for Managing SQL Server and Oracle

The following is an example of how you can structure your code so that it can run on both SQL and Oracle:

void testDeliveryAddress()

{

 SysSQLSystem sqlSystem;

 SqlStatementExecutePermission permission;

 Connection connection;

 Statement statement;

 str sqlStmt;

 str dataareaid;

 void runSQLCode()

 {

 // MS SQL specific code

 sqlStmt = 'UPDATE SALESLINE SET DELIVERYADDRESS = T.DELIVERYADDRESS,';

 sqlStmt += ' DELIVERYNAME = T.DELIVERYNAME,';

 sqlStmt += ' DELIVERYSTREET = T.DELIVERYSTREET,';

 sqlStmt += ' DELIVERYZIPCODE = T.DELIVERYZIPCODE,';

 sqlStmt += ' DELIVERYCITY = T.DELIVERYCITY,';

 sqlStmt += ' DELIVERYCOUNTY = T.DELIVERYCOUNTY,';

 sqlStmt += ' DELIVERYSTATE = T.DELIVERYSTATE,';

 sqlStmt += ' DELIVERYCOUNTRYREGIONID = T.DELIVERYCOUNTRYREGIONID';

 sqlStmt += ' FROM SALESLINE L,';

 sqlStmt += ' SALESTABLE T';

 sqlStmt += ' WHERE T.DATAAREAID = ' + sqlSystem.sqlLiterals(dataareaid);

 sqlStmt += ' AND L.DATAAREAID = T.DATAAREAID';

 sqlStmt += ' AND L.SALESID = T.SALESID';

 sqlStmt += ' AND L.DELIVERYADDRESS = ' + sqlSystem.sqlLiterals('');

 permission = new SqlStatementExecutePermission(sqlStmt);

 permission.assert();

 statement.ExecuteUpdate(sqlStmt);

 }

 void runOraCode()

 {

 // Oracle specific code

 }

 ;

 connection = new Connection();

 statement = connection.createStatement();

 sqlSystem = new SqlSystem();

 dataareaid = curExt();

 switch (sqlSystem.databaseId())

 {

 case DatabaseId::MS_Sql_Server :

 runSQLCode();

 break;

 case (DatabaseId::Oracle) :

 runOraCode();

 break;

 default :

 break;

 }

}

35

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Implementing Complex Inserts and Updates in Direct SQL

Complex updates cannot be implemented directly in X++. When these conditions are encountered, the update

operations must be rewritten in Direct SQL.

If the method being examined involves one or a small number of update operations, the SQL can be constructed

as a string and executed as described in Executing Direct SQL from X++ in this document.

For more complex methods that operate on multiple tables, it is advisable that the method be rewritten as a

stored procedure. The stored procedure can be executed via X++ as described in Stored Procedure and Function

Guidelines in this document.

Creating Stored Procedures and Functions

If stored procedures are needed in order to implement direct Transact-SQL logic, it may be created during

execution time, executed, and then dropped after the upgrade script has run.

The AOS account has the privilege to create a stored procedure but it does not have execute permission on all

stored procedures or functions. In order for your upgrade script to have the permission to execute the stored

procedure or function you created, you need to prefix the object with the schema that the AOS account owns,

and always use the two part name:

[schema name].[object name]

in the create, execute, and drop statements.

To get the correct schema name, use the utility function:

ReleaseUpdateDB::getSchemaName().

Example:

void createDimHistory_PurchInvoice_DSQL()

{

 InventReportDimHistory dimHistory;

 VendInvoiceTrans vendInvoiceTrans;

 InventTrans inventTrans;

 SqlSystem sqlSystem = new SqlSystem();

 SqlStatementExecutePermission sqlStatementExecutePermission;

 str str_ExecSproc;

 str str_SQLEXEC = 'EXEC [%1].%2 %3';

 void runOraCode()

 {

 while select vendInvoiceTrans

 exists join inventTrans

 where inventTrans.InventTransId == vendInvoiceTrans.InventTransId

 && inventTrans.InvoiceId == vendInvoiceTrans.InvoiceId

 notexists join dimHistory

 where dimHistory.InventTransId == vendInvoiceTrans.InventTransId

 && dimHistory.TransRefId == vendInvoiceTrans.InvoiceId

 && dimHistory.TransactionLogType ==

InventReportDimHistoryLogType::PurchInvoice

 {

 InventReportDimHistory::addFromVendInvoiceTrans(vendInvoiceTrans);

 }

 }

 ;

 if (dimHistory.isTmp() || inventTrans.isTmp() || vendInvoiceTrans.isTmp())

 return;

 select firstonly RecId from vendInvoiceTrans;

 if (!vendInvoiceTrans.RecId)

36

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

 return;

 switch(SqlSystem::databaseBackendId())

 {

 case DatabaseId::Oracle:

 runOraCode();

 break;

 case DatabaseId::MS_Sql_Server:

 str_ExecSproc = strfmt(str_SQLEXEC,ReleaseUpdateDB::getSchemaName()

 ,#CREATEDIMHISTORY_PURCHINVOICE

,sqlSystem.sqlLiteral(vendInvoiceTrans.DataAreaId));

 sqlStatementExecutePermission = new

SqlStatementExecutePermission(str_ExecSproc);

 sqlStatementExecutePermission.assert();

 ReleaseUpdateDB::statementExeUpdate(str_ExecSproc);

 CodeAccessPermission::revertAssert();

}

When writing stored procedures that replace X++ methods or functions in the upgrade class, use the following

guidelines:

1. The stored procedure name should be the same as the method or function that it is replacing.

2. The stored procedure should include the original X++ statements as comments to provide context

during testing and troubleshooting.

3. Transactional control statements (BEGIN TRANSACTION, COMMIT) should not be coded in the

stored procedure. Transaction management is implemented in X++.

4. The stored procedure must accept a required parameter of DATAAREAID as data type

NVARCHAR(3).

5. If the stored procedure will be populating a table with a formatted business sequence column

(described in Assigning Business Sequences on Insert section of this document), the procedure must

accept the following parameters:

1. @NUMBERSEQUENCE NVARCHAR(20). This will be used as a key to the

NUMBERSEQUENCE table to retrieve the next key value and format requirements.

2. @RJUSTIFY CHAR(1). If “Y”, this indicates the column is to be right justified.

Implementing Set-Based Updates with Joins

Update operations that involve true joins (in contrast to exists joins) cannot be directly implemented in X++ and

represent one case where a Transact-SQL rewrite is needed. The following code is an example of an update that

derives data from another table:

while select forupdate salesLine

 where salesLine.ShippingDateRequested == dateNull()

 join firstonly maxof(DateExpected) from inventTrans

 group by InventTransId

 where inventTrans.InventTransId == salesLine.InventTransId &&

 inventTrans.DateExpected != dateNull()

 {

 salesLine2 =

 SalesLine::findInventTransId(inventTrans.InventTransId,true);

 salesLine2.ShippingDateRequested = inventTrans.DateExpected;

 if (salesLine2)

 salesLine2.doUpdate();

 }

The corresponding Transact-SQL update is written as follows:

37

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

UPDATE SALESLINE

SET SHIPPINGDATEREQUESTED =

(SELECT MAX(B1.DATEEXPECTED) FROM INVENTTRANS B1

 WHERE A.DATAAREAID = B1.DATAAREAID

 AND A.DATAAREAID = @dataareaid

 AND A.INVENTTRANSID = B1.INVENTTRANSID

 AND B1.DATEEXPECTED <> '1900-01-01'

 AND A.SHIPPINGDATEREQUESTED = '1900-01-01')

FROM SALESLINE A, INVENTTRANS B0

WHERE A.SHIPPINGDATEREQUESTED = '1900-01-01'

AND A.DATAAREAID = @dataareaid

AND A.INVENTTRANSID = B0.INVENTTRANSID

AND B0.DATEEXPECTED <> '1900-01-01'

Using Direct SQL for Set-Based Updates

The following code is an example of performing a set-based update using the

updateSalesAndTransLineDlvAddress:

 while select salesTable

 {

 update_recordset salesLine

 setting deliveryAddress = salesTable.DeliveryAddress,

 deliveryName = salesTable.DeliveryName,

 deliveryStreet = salesTable.DeliveryStreet,

 deliveryZipCode = salesTable.DeliveryZipCode,

 deliveryCity = salesTable.DeliveryCity,

 deliveryCounty = salesTable.DeliveryCounty,

 deliveryState = salesTable.DeliveryState,

 deliveryCountryRegionId = salesTable.DeliveryCountryRegionId

 where salesLine.SalesId == salesTable.SalesId

 && salesLine.DeliveryAddress == '';

 //The journal lines must be updated for intrastat to function

 update_recordset custInvoiceTrans

 setting DlvCountryRegionId = salesTable.DeliveryCountryRegionId,

 DlvCounty = salesTable.DeliveryCounty,

 DlvState = salesTable.DeliveryState

 where custInvoiceTrans.SalesId == salesTable.SalesId

 && custInvoiceTrans.DlvCountryRegionId == '';

 update_recordset custPackingSlipTrans

 setting DlvCountryRegionId = salesTable.DeliveryCountryRegionId,

 DlvCounty = salesTable.DeliveryCounty,

 DlvState = salesTable.DeliveryState

 where custPackingSlipTrans.SalesId == salesTable.SalesId

 && custPackingSlipTrans.DlvCountryRegionId == '';

 }

In this example, the code loops through every SalesTable Entry and:

1. Updates SalesLine with the relevant address information for the salesid.

2. Updates CustInvoicetrans with the address information for salesid.

3. Updates custPackingSlipTrans with the address information for salesid.

Direct SQL needs to be rewritten in this case because of the need to:

1. Perform one mass update where possible.

38

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

2. Reduce looping on a large transactional table such as salesline.

The following is the Transact-SQL code that you should generate from X++:

UPDATE SALESLINE

SET DELIVERYADDRESS = T.DELIVERYADDRESS,

 DELIVERYNAME = T.DELIVERYNAME,

 DELIVERYSTREET = T.DELIVERYSTREET,

 DELIVERYZIPCODE = T.DELIVERYZIPCODE,

 DELIVERYCITY = T.DELIVERYCITY,

 DELIVERYCOUNTY = T.DELIVERYCOUNTY,

 DELIVERYSTATE = T.DELIVERYSTATE,

 DELIVERYCOUNTRYREGIONID = T.DELIVERYCOUNTRYREGIONID

FROM SALESLINE L,

 SALESTABLE T

WHERE T.DATAAREAID = @DATAAREAID

AND L.DATAAREAID = T.DATAAREAID

AND L.SALESID = T.SALESID

AND L.DELIVERYADDRESS = ''

UPDATE CUSTINVOICETRANS

SET DLVCOUNTRYREGIONID = T.DELIVERYCOUNTRYREGIONID,

 DLVCOUNTY = T.DELIVERYCOUNTY,

 DLVSTATE = T.DELIVERYSTATE

FROM CUSTINVOICETRANS C,

 SALESTABLE T

WHERE T.DATAAREAID = @DATAAREAID

AND C.DATAAREAID = T.DATAAREAID

AND C.SALESID = T.SALESID

AND C.DLVCOUNTRYREGIONID = ''

UPDATE CUSTPACKINGSLIPTRANS

SET DLVCOUNTRYREGIONID = T.DELIVERYCOUNTRYREGIONID,

 DLVCOUNTY = T.DELIVERYCOUNTY,

 DLVSTATE = T.DELIVERYSTATE

FROM CUSTPACKINGSLIPTRANS C,

 SALESTABLE T

WHERE T.DATAAREAID = @DATAAREAID

AND C.DATAAREAID = T.DATAAREAID

AND C.SALESID = T.SALESID

AND C.DLVCOUNTRYREGIONID = ''

The performance improvement achieved in this example is significant. On a database, Baseline ran for 24

minutes. With SET BASED CHANGE, it ran in 16 seconds.

This type of update, which does not require sequencing conditional to each record, can be written in X++ as a

sequence of Direct SQL statements.

Using a Set-Based Insert Operation

There are a number of cases in the upgrade process where tables that are new in Microsoft Dynamics AX 4.0

must be populated from one or more tables. If the volume of data to be processed in these tables is large, and if

INSERT_RECOREDSET does not achieve the desired performance, then using a set-based insert operation is

required.

Example Transact-SQL set-based inserts are written as:

INSERT INTO SOME_NEW_TABLE (column-list)

 SELECT column-list FROM SOME_OLD_TABLE WHERE criteria

39

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Number Sequence Considerations

A complicating factor when we use a Direct SQL set-based insert into a table in the Microsoft Dynamics AX

database is that tables have one or more sequentially assigned numbers which are derived from the

SYSTEMSEQUENCES and NUMBERSEQUENCETABLE tables.

A two-step process of initially populating a temporary table that uses a DBMS-specific sequence mechanism

(IDENTITY for Transact-SQL, ROW NUMBER for Oracle) and then copying the temporary table‟s rows to the

final permanent table is required.

The two sections that follow provide Transact-SQL examples of populating both a system sequence (RECID)

and business sequence.

RECID in Dynamics AX 2009

The RECID allocation algorithm has undergone significant changes in Dynamics AX 5.0. RECID‟s can be

allocated in two different ways:

1. Kernel automatically allocates the RECID during insert and INSERT_RECORDSET

2. User manually chooses to allocate the RECID

In the case of upgrade, we are concerned about #2. This section will document the allocation APIs, the usage

and some patterns. The document does not dwell in the allocation algorithm itself.

Manually allocating RECID

There are cases where you want to allocate the RECID manually in your script. The following are some of the

scenarios:

1. You are trying to do a bulk insert manually. There are cases where row by row insert is not sufficient

and you want to do a bulk insert. Import/Export code is an example of this usage pattern. In such a

case, you need to allocate the RECID manually.

2. An upgrade script uses direct SQL to insert data. In this usage pattern, you need to allocate RECID

manually.

3. Upgrade script was optimized to use RecordInsertList instead of row by row insert. But, cross

references need to be set up on another table (for example REFRECID). In such a case, allocate the

RECID upfront for the record so that cross references can be patched up.

In all the above scenarios, the allocation is done the same way, using the RECID allocation APIs. There are

three APIs that you need to know about:

RECID suspension - suspendRecids

RECID reservation - reserveValues

RECID releasing suspension - removeRecidSuspension

The APIs are members of the SystemSequence class.

The following is a code snippet of how to use the allocation APIs.

static void Job2(Args _args)

{

 SystemSequence s;

 AAMyTable t;

 int64 startValue;

 int i;

 ;

Create a new instance of the systemSequence class

40

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

 s = new SystemSequence();

 s.suspendRecIds(tablenum (AAMyTable));

 startValue = s.reserveValues(10, tablenum(AAMyTable));

 for (i = 0; i <10; i++)

 {

 t.IntFld = i;

 t.RecId = startValue + i;

 t.insert();

 }

 s.removeRecIdSuspension(tablenum (AAMyTable));

}

Tips on using the RECID allocation API:

1. Once you suspend the RECID allocation for that table, the kernel will not dispense any more RECIDs

for that table on that session.

2. The ReserveValues API will guarantee contiguity of the RECID range that is being reserved.

3. If you try to insert an id that has not been reserved, then kernel will raise an exception.

4. If you are trying to assign a RECID without suspending, kernel will raise an exception.

5. If you do not remove the suspension after using the reservation API‟s, the suspension remains until the

end of your session.

Assigning RECID on INSERT

RECID is a continuously ascending key value for each table in the Microsoft Dynamics AX schema. It is

derived from table SYSTEMSEQUENCES which keeps the next available key value (NEXTVAL) for each

table by that table‟s Table ID.

Note that the SystemSequences table may be empty if the table is new and no records have been inserted. Please

refer to the ReleaseUpdateDB39_Cust.createDimHistorySprocs(), which provides an example of the solution for

that problem: it checks if a RECID existed and if not, inserting and deleting a record to get the RECID‟s started.

In Microsoft Dynamics AX 4.0, RECID is a 64-bit integer column; this data type is implemented in SQL Server

as BIGINT.

Suspend the RECID allocation by the kernel

Reserve the RECID by passing in the number of id‟s to

reserve. The return value is the starting value of the

range you reserved. The API gaurantees that the

allocated id‟s are contiguous.

Assign the RECID to the RECID column

Remove the suspension

41

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

The abbreviated example below illustrates using SYSTEMSEQUENCES and a temporary table using

IDENTITY for sequential numbers:

CREATE PROCEDURE initFromSMMQuotationTable

 @DATAAREAID NVARCHAR(3

AS

DECLARE @NEXTVAL BIGINT,

 @ROWCOUNT BIGINT

SELECT ,

 RECID = IDENTITY(BIGINT,1,1) AS QUOTATIONID

INTO #TEMP

FROM DEL_SMMQUOTATIONTABLE

WHERE QUOTATIONSTATUS = 0 -- SMMQUOTATIONSTATUS::INPROCESS

SELECT @NEXTVAL=NEXTVAL

FROM SYSTEMSEQUENCES (UPDLOCK, HOLDLOCK)

WHERE ID = -1

AND TABID = 1967

INSERT INTO SALESQUOTATIONTABLE

(column-list)

SELECT,

 RECID = QUOTATIONID+@NEXTVAL

FROM #TEMP

SELECT @ROWCOUNT = COUNT(*) FROM #TEMP

UPDATE SYSTEMSEQUENCES

SET NEXTVAL=NEXTVAL + @ROWCOUNT

WHERE ID = -1

AND TABID = 1967

GO

Looking Up Table ID and Field IDs

If you are gettingTABID in the stored procedure, you should perform the fetch from the SQL Dictionary.

Assigning Business Sequences on Insert

Business sequences are a more complex problem to solve with Direct SQL; not only is the number sequentially

assigned from a table (NUMBERSEQUENCETABLE), but you also have to consider the following factors:

1. The specific number sequence to be used for a specific column.

2. Whether the column is to be left or right justified.

3. The customer‟s specific formatting requirements (FORMAT) for the column.

The first two factors are accessible in X++ and, as described in the stored procedure guidelines above, must be

passed as parameters to any stored procedure which must populate a formatted business sequence number.

Once the specific numbersequence to be used is known, the formatting requirement must be retrieved from

FORMAT column of the NUMBERSEQUENCETABLE table.

Notes:

1. The stored procedure is passed an indicator that specifies if right justification is to take place. A value

of “Y” means right-justify the column. The default is to left-justify the column.

Assign an IDENTITY column with a

starting value of 0 incremented by 1

Retrieve the next value for RECID

for this table (by TABID)

When we insert into the permanent table,

we add the temporary table‟s IDENTITY

column to the next value retrieved from

SYSTEMSEQUENCES

We update SYSTEMSEQUENCES to

reflect the number of rows that we have

added to this table

42

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

2. Because formatted sequence columns are of different maximum lengths, you must look up the length of

the column that is to be formatted and record the length in your procedure. The instructions that follow

will describe how you pass the column‟s length, along with the formatting requirements, to a user-

defined SQL function that will format the column correctly.

The example below illustrates the use of a user-defined function FN_FMT_NUMBERSEQUENCE which

accomplishes the formatting and justification requirements of a business sequence column:

CREATE PROCEDURE initFromSMMQuotationTable

 @DATAAREAID NVARCHAR(3),

 @NUMBERSEQUENCE NVARCHAR(20),

 @RJUSTIFY CHAR(1)

AS

DECLARE @NEXTREC BIGINT,

 @FORMAT NVARCHAR(40),

 @ROWCOUNT BIGINT

 @RJUSTIFY_LENGTH INT

IF RJUSTIFY = ‘Y’

 SET @RJUSTIFY_LENGTH = 40

ELSE

 SET @RJUSTIFY_LENGTH = 0

SELECT QUOTATIONID = IDENTITY(BIGINT,1,1),

INTO #TEMP

FROM DEL_SMMQUOTATIONTABLE

WHERE QUOTATIONSTATUS = 0 -- SMMQUOTATIONSTATUS::INPROCESS

SELECT @NEXTREC = NEXTREC, @FORMAT=FORMAT

FROM NUMBERSEQUENCETABLE (UPDLOCK, HOLDLOCK)

WHERE DATAAREAID = @DATAAREAID

AND NUMBERSEQUENCE = @NUMBERSEQUENCE

INSERT INTO SALESQUOTATIONTABLE

(column-list)

SELECT

 DBO.FN_FMT_NUMBERSEQUENCE(@FORMAT,QUOTATIONID,@NEXTREC, @RJUSTIFY_LENGTH) ,

FROM #TEMP

SELECT @ROWCOUNT = COUNT(*) FROM #TEMP

UPDATE NUMBERSEQUENCETABLE

SET NEXTREC = NEXTREC+@ROWCOUNT

WHERE DATAAREAID = @DATAAREAID@NUMBERSEQUENCE

AND NUMBERSEQUENCE = @NUMBERSEQUENCE

In many cases it will be necessary to assign a sequential number both for RECID and a business sequence

column. However, SQL Server only permits one IDENTITY column per table.

The following example demonstrates how to use the single IDENTITY column for both purposes. This example

is also useful as a template for creating new procedures to upgrade data into new tables in the

Microsoft Dynamics AX 4.0 schema:

You must determine the column‟s

length if it is to be right justified

and set a variable so we can pass

that to the formatting function

As in the previous example, we create

an IDENTITY column in the

temporary table with initial value of 0

Retrieve the next value from

NUMBERSEQUENCETABLE using

the NUMBERSEQUENCE key

supplied

Details on calling this function follow

Update NUMBERSEQUENCE to

reflect the number of rows added to

the table

43

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

CREATE PROCEDURE initFromSMMQuotationTable

 @DATAAREAID NVARCHAR(3),

 @NUMBERSEQUENCE NVARCHAR(20),

 @RJUSTIFY CHAR(1) =’N’

AS

DECLARE @NEXTREC BIGINT,

 @NEXTVAL BIGINT,

 @FORMAT NVARCHAR(40),

 @ROWCOUNT BIGINT

 @RJUSTIFY_LENGTH INT

-- Set the length of the column that is to be right-justified

-- Confirm length in table definition

IF RJUSTIFY = ‘Y’

 SET @RJUSTIFY_LENGTH = 40

ELSE

 SET @RJUSTIFY_LENGTH = 0

-- The SELECT INTO creates a temp table

-- RECID is assigned during the insert and given

-- a sequentially ascending number starting with 0

SELECT QUOTATIONID = ‘’

 RECID = IDENTITY(BIGINT,1,1),

INTO #TEMP

FROM DEL_SMMQUOTATIONTABLE

WHERE QUOTATIONSTATUS = 0 -- SMMQUOTATIONSTATUS::INPROCESS

-- Retrieve next key value for RECID

-- Note TABID; you need to determine the

-- value here from table SQLDICTIONARY

SELECT @NEXTVAL=NEXTVAL

FROM SYSTEMSEQUENCES (UPDLOCK, HOLDLOCK)

WHERE ID = -1 AND TABID = 1967

-- Retrieve next key value for business sequence (QUOTATIONID)

-- NUMBERSEQUENCE is supplied in X++ and passed in @NUMBERSEQUENCE

SELECT @NEXTREC = NEXTREC, @FORMAT=FORMAT

FROM NUMBERSEQUENCETABLE (UPDLOCK, HOLDLOCK)

WHERE DATAAREAID = @DATAAREAID AND NUMBERSEQUENCE = @NUMBERSEQUENCE

-- Insert from temp table to final table. Note that temp table RECID

--is sued to supply values to both QUOTATIONID and REID in final table

INSERT INTO SALESQUOTATIONTABLE

(column-list)

SELECT

 DBO.FN_FMT_NUMBERSEQUENCE(@FORMAT, RECID,@NEXTREC, @RJUSTIFY_LENGTH) ,

 ,

 RECID+@NEXTVAL

FROM #TEMP

-- Row count of temp table then used to update both NUMBERSEQUENCETABLE

-- and SYSTEMSEQUENCES tables

SELECT @ROWCOUNT = COUNT(*) FROM #TEMP

UPDATE NUMBERSEQUENCETABLE SET NEXTREC = NEXTREC+@ROWCOUNT

WHERE DATAAREAID = @DATAAREAIDAND AND NUMBERSEQUENCE = @NUMBERSEQUENCE

UPDATE SYSTEMSEQUENCES SET NEXTVAL=NEXTVAL + @ROWCOUNT

WHERE ID = -1 AND TABID = 1967

44

HOW TO WRITE DATA UPGRADE SCRIPTS FOR MICROSOFT DYNAMICS AX 4.0 AND BEYOND

Calling FN_FMT_NUMBERSEQUENCE

A user defined function FN_FMT_NUMBERSEQUENCE is provided to assist with the formatting

requirements of a business sequence column. This function enables the following operations to be performed:

1. Adds the value of the IDENTITY column to the NEXTREC value retrieved from

NUMBERSEQUENCETABLE.

2. Formats the result according to the FORMAT column retrieved from NUMBERSEQUENCETABLE.

3. Right justifies the formatted column to the length specified. If the function encounters a value of 0, no

justification occurs and the formatted value remains left justified by default.

The parameters that are supplied to FN_FMT_NUMBERSEQUENCE are:

1. The FORMAT column value from NUMBERSEQUENCETABLE.

2. The integer value to be formatted.

3. The value from NEXTREC in NUMBERSEQUENCETABLE. If this is not supplied, it is set to 0 by

default.

 The length of the column to be right justified. If this is not supplied it is set to 0 by default. If 0 is

specified or becomes the default, then no justification occurs.

The ReleaseUpdateDB38_Basic::createFnFmtNumberSequence method creates the

FN_FMT_NUBMERSEQUENCE function. If your script needs to call the function, you should make the script

depend on the ReleaseUpdateDB38_Basic::createFnFmtNumberSequence script and then you can reference the

function in your Direct SQL code.

	Introduction
	When is a Data Upgrade Script Needed?
	How to Upgrade Data for a Major Release or Service Pack
	The Upgrade Checklist

	The Data Upgrade Framework
	SYS Versions and Data Upgrade of Interim SYS releases
	Data Upgrade for Service Packs
	Data Upgrade for Customization
	Create a single upgrade script that combines changes across multiple product versions
	Using Configuration Key to Remove Obsolete Objects after Upgrade
	Data Upgrade Scripts
	Writing Data Upgrade Scripts
	Upgrade script configuration keys
	Script Dependencies

	Best Practices for Writing Data Upgrade Scripts
	Transaction and Idempotency
	Coding Best Practices
	Indicating Progress
	Documenting Scripts
	Deleting a Table or Field from the Data Model
	Unique Indexes
	Option 1. Create an upgrade script using the pattern:
	Option 2. When the duplicate records contain values that need more complex logic to clean up, the solution is more involved:

	Deleting the Contents of a Table
	Upgrading a Table with Table ID or Field ID Changed
	Deleting Configuration Keys
	Referencing Number Sequences within upgrade scripts

	Performance Guidelines
	Performance Improvement Options
	Using the Set-based Operators Delete_From, Update_RecordSet and Insert_SecordSet
	Calling skipDataMethods and skipDatabaseLog Before Calling Update_RecordSet or Delete_From
	Using RecordInsertList Class to Batch Multiple Inserts
	Optimizing X++ logic

	Appendix 1: Guidelines for Writing Direct SQL in Upgrade Scripts
	Using Set-Based Updates in X++
	Executing Direct SQL from X++
	How to Execute Direct SQL for X++
	Best Practices Warning when Executing Direct SQL
	Using Utility Functions to Execute Direct SQL
	Documenting Direct SQL
	Using Table Names in Direct SQL
	Adding Literals in Direct SQL
	Specifying DataAreaId in Where-Clauses
	Determining Whether a Table or Field Exists in the Database
	Defining String Lengths
	Applying LTrim for String Comparisons in the WHERE Clause
	Oracle Only: Applying NLS_LOWER on String Columns in the WHERE Clause
	Structuring an Upgrade Script for Managing SQL Server and Oracle

	Implementing Complex Inserts and Updates in Direct SQL
	Creating Stored Procedures and Functions
	Implementing Set-Based Updates with Joins
	Using Direct SQL for Set-Based Updates
	Using a Set-Based Insert Operation
	Number Sequence Considerations
	RECID in Dynamics AX 2009
	Manually allocating RECID
	Tips on using the RECID allocation API:

	Assigning RECID on INSERT
	Looking Up Table ID and Field IDs
	Assigning Business Sequences on Insert
	Calling FN_FMT_NUMBERSEQUENCE

