
Integration Patterns

Integration Patterns

David Trowbridge, Microsoft Platform Architecture Guidance

Ulrich Roxburgh, Microsoft Consulting Services (Australia)

Gregor Hohpe, ThoughtWorks, Inc.

Dragos Manolescu, ThoughtWorks, Inc.

E.G. Nadhan, EDS

pat ter ns & pract ices

ISBN 0-7356-1850-X

Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted, the
example companies, organizations, products, domain names, e-mail addresses,
logos, people, places, and events depicted herein are fictitious, and no association
with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing
of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory,
BizTalk, InfoPath, Visio, Visual Basic, and Visual Studio are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Broker: Handles the communication between applica-
tions by locating services, forwarding requests, and
returning responses to clients. Clients access services
by making service requests through the broker
[Buschmann96].

Data Integration: Integrates applications at the logical
data layer. Uses a Shared Database, a File Transfer, or a
Maintain Data Copies implementation.

Direct Broker: A specialized type of Broker that allows
direct communication between applications after initial
contact through the broker.

Distributed Object Integration: Uses object interfaces
that can be consumed remotely by other systems. See
also Remote Procedure Invocation [Hohpe04].

Entity Aggregation: Introduces a layer that provides a
logical representation of the entities at an enterprise
level with physical connections that support the access
and that update to their respective instances in back-
end repositories.

File Transfer: At regular intervals, each application
produces files that contain the information that the
other applications must consume. After a file is
created, the file is not maintained. See File Transfer
[Hohpe04].

Functional Integration: Integrates applications at the
logical business layer through Distributed Object
Integration, (proprietary) Message-Oriented Middle-ware
Integration, or Service-Oriented Integration.

Gateway: Abstracts the access to an external resource
by presenting a single interface to the integrated
applications while hiding the external resource inter-
face. In addition, the gateway encapsulates any
protocol translation that may be necessary to communi-
cate with the external resource.

Indirect Broker: A specialized type of Broker that does
not allow direct contact between applications; applica-
tions communicate only with the broker.

Maintain Data Copies: Multiple applications access
multiple copies of the same data. The system main-
tains state integrity between copies. See Maintain Data
Copies [Teale03].

Message Broker: A specialized type of Direct Broker
that handles message-based communication between
applications. Instead of communicating with each other,
applications communicate only with the message
broker.

Message Bus: A logical component that specializes in
transporting messages between applications. A
message bus contains three key elements [Hohpe04]:

a set of agreed-upon message schemas; a set of
common command messages, and a shared infrastruc-
ture for sending bus messages to recipients.

Message-Oriented Middleware Integration: Connects
systems by using asynchronous message queues that
are based on proprietary message-oriented middleware.
The connected systems then communicate through
messages that contain small packets of data. See also
Messaging [Hohpe04].

Pipes and Filters: Implements transformations by using
a sequence of filter components, where each filter
component receives an input message, applies a simple
transformation, and sends the transformed message to
the next component. Conducts messages through pipes
[McIlroy64] that connect filter outputs and inputs, and
that buffer the communication between the filters.

Point-to-Point Connection: A direct connection used to
integrate two systems. The sending system must
translate the message into a format that the receiving
system understands. When you use point-to-point
connections, each system determines the address of
all the other nodes that it communicates with.

Portal Integration: A portal application displays the
information that is retrieved from multiple applications
in a unified user interface. The user can then perform
the required tasks based on the information that
appears in this portal.

Presentation Integration: Accesses the application’s
functionality through the user interface by simulating a
user’s input and by reading data from the screen.

Process Integration: Uses a separate process manager
component that can interpret multiple concurrent
instances of a business process model and that can
interact with the existing applications to perform the
individual steps of the process.

Publish/Subscribe: A communication infrastructure that
uses topics or dynamically inspects message content,
enables listening applications to subscribe to specific
messages, and sends messages to all interested
subscribers. Three variations of Publish/Subscribe are
List-Based Publish/Subscribe, Broadcast-Based Publish/
Subscribe, and Content-Based Publish/Subscribe.

Service-Oriented Integration: Uses Web services to
expose interfaces that can be consumed remotely by
other systems.

Shared Database: Multiple applications store their data
in a single database. A schema handles the needs of
all the relevant applications. See Shared Database
[Hohpe04].

List of Patterns

Contents
Preface xi

Who Should Read This Book . xi
How This Book Is Organized. xii
Documentation Conventions . xiv
Community . xiv
Feedback and Support . xv
Contributors . xv
About the Principal Authors . xvi

Chapter 1
Integration and Patterns 1

The Problem of Integration . 2
Integration Architecture . 2
Applications . 3

The Global Bank Scenario . 4
Context . 4
Requirements . 4
Next Steps . 6

Patterns . 7
Patterns in Sports . 7
Patterns in Music . 9
Pattern Structure . 9
Pattern-Based Design . 10

Patterns at Global Bank. 11
Next Chapter . 17

Chapter 2
Using Patterns to Design the Baseline Architecture 19

Meeting the Requirements of Global Bank . 19
Using Patterns to Communicate Design Decisions . 20
The Role of a Baseline Architecture . 21

Designing the Global Bank Baseline Architecture . 21
View Scheduled Payments Use Case . 22
Adding a Message Broker for the Loan Systems . 29
Execute Scheduled Payment Use Case. 33
Designing for Execute Scheduled Payment and Receive Payment Response 35
Accessing Account Services on the Mainframe . 44
The Portal Web Application . 46
Global Bank Portal Application . 49
Implementing the Global Bank Scenario . 50

Next Chapter . 53

Contents v

Chapter 3
Integrating Layer 55

Level of Automation . 55
Level of Abstraction . 56
Maintaining State . 56
Coupling . 57
Semantic Dissonance . 57
Choosing an Integration Layer Type . 57

Portal Integration . 58
Entity Aggregation . 59
Process Integration . 59

Integrating Layer Patterns . 60
Entity Aggregation . 61

Context . 61
Problem . 61
Forces . 61
Solution . 62
Example . 72
Resulting Context . 73
Testing Considerations . 74
Security Considerations . 74
Operational Considerations . 74
Known Uses . 75
Related Patterns . 75

Process Integration . 76
Context . 76
Problem . 76
Forces . 76
Solution . 77
Implementation Details . 80
Example . 82
Resulting Context . 82
Testing Considerations . 84
Related Patterns . 85
Acknowledgments . 85

Implementing Process Integration with BizTalk Server 2004 . 86
Context . 86
Background . 86
Implementation Strategy . 86
Example . 91
Resulting Context . 103
Testing Considerations . 104
Security Considerations . 104
Operational Considerations . 105
Related Patterns . 105
Acknowledgments . 105

Contentsvi

Portal Integration . 106
Context . 106
Problem . 106
Forces . 106
Solution . 107
Example . 109
Resulting Context . 109

Chapter 4
System Connections 111

Connecting to Layered Applications . 111
Data Integration . 114
Presentation Integration . 117
Functional Integration . 118

Credit Scoring Example . 119
Kinds of Functional Integration . 119

System Connection Patterns . 120
Data Integration . 124

Context . 124
Problem . 124
Forces . 124
Solution . 125
Example . 127
Resulting Context . 127
Acknowledgments . 134

Functional Integration . 135
Context . 135
Problem . 135
Forces . 135
Solution . 136
Resulting Context . 138
Testing Considerations . 144
Security Considerations . 144
Acknowledgments . 145

Service-Oriented Integration . 146
Context . 146
Problem . 146
Forces . 146
Solution . 148
Example . 153
Resulting Context . 153
Security Considerations . 155
Related Patterns . 155
Acknowledgments . 155

Contents vii

Implementing Service-Oriented Integration with ASP.NET . 157
Context . 157
Background . 157
Implementation Strategy . 158
Example: Building an ASP.NET Web Service to Access the Mainframe Gateway 164
Resulting Context . 179
Testing Considerations . 179
Security Considerations . 181
Acknowledgments . 181

Implementing Service-Oriented Integration with BizTalk
Server 2004 . 182
Context . 182
Background . 182
Implementation Strategy . 183
Example . 186
Resulting Context . 203
Testing Considerations . 204
Security Considerations . 204
Operational Considerations . 205
Acknowledgments . 205

Presentation Integration . 206
Aliases . 206
Context . 206
Problem . 206
Forces . 206
Solution . 207
Example . 209
Resulting Context . 210
Testing Considerations . 211
Security Considerations . 212
Acknowledgments . 212

Chapter 5
Integration Topologies 213

Point-to-Point Connection . 214
Broker . 215

Broker Examples . 218
Message Bus . 221
Publish/Subscribe. 223

List-Based Publish/Subscribe . 223
Broadcast-Based Publish/Subscribe . 224
Content-Based Publish/Subscribe . 224

A More Detailed Look at Topologies . 225
Topology Levels . 225

Contentsviii

Using Topologies Together . 229
Point-to-Point Connection . 230
Broker . 231
Message Bus and Publish/Subscribe . 231

Integration Topology Level Patterns . 236
Message Broker . 237

Aliases . 237
Context . 237
Problem . 237
Forces . 237
Solution . 238
Example . 239
Resulting Context . 240
Testing Considerations . 242
Security Considerations . 242
Operational Considerations . 243
Known Uses . 243
Variants . 243
Related Patterns . 243
Acknowledgments . 244

Implementing Message Broker with BizTalk Server 2004. 245
Context . 245
Background . 245
Implementation Strategy . 246
Example . 249
Resulting Context . 255
Testing Considerations . 256
Security Considerations . 256
Operational Considerations . 257
Variants . 257
Business Rule Engine . 257
Related Patterns . 258
Acknowledgments . 259

Message Bus . 260
Context . 260
Problem . 260
Forces . 260
Solution . 261
Example . 266
Resulting Context . 269
Security Considerations . 270
Operational Considerations . 270
Related Patterns . 271
Acknowledgments . 271

Contents ix

Publish/Subscribe. 272
Aliases . 272
Context . 272
Problem . 272
Forces . 272
Solution . 273
Example . 280
Resulting Context . 280
Testing Considerations . 281
Security Considerations . 281
Operational Considerations . 281
Related Patterns . 282
Acknowledgments . 282

Chapter 6
Additional Integration Patterns 283

Pipes and Filters . 283
Gateway . 284
Integration Layers Patterns . 285
Pipes and Filters . 286

Aliases . 286
Context . 286
Problem . 286
Forces . 286
Solution . 287
Example . 290
Resulting Context . 292
Testing Considerations . 293
Known Uses . 293
Related Patterns . 295
Acknowledgments . 295

Implementing Pipes and Filters with BizTalk Server 2004 . 296
Context . 296
Background . 296
Implementation Strategy . 297
Example . 299
Resulting Context . 305
Testing Considerations . 305
Security Considerations . 306
Operational Considerations . 306
Acknowledgments . 307

Contentsx

Gateway . 308
Context . 308
Problem . 308
Forces . 308
Solution . 309
Example . 312
Resulting Context . 314
Testing Considerations . 315
Security Considerations . 316
Operational Considerations . 317
Related Patterns . 317
Acknowledgments . 318

Implementing Gateway with Host Integration Server 2004. 319
Context . 319
Background . 319
Implementation Strategy . 320
Example . 331
Resulting Context . 339
Tests . 339

Chapter 7
Project Notebook 341

Interpreting the Artifacts . 342
Global Bank Business Context . 342

Convergence in the Banking Industry . 342
Stakeholder Viewpoints . 344

Board of Directors Viewpoint . 344
Chief Executive Officer . 346
General Manager of Banking . 351
Director of Electronic Bill Presentment and Payment . 354
Electronic Bill Presentment and Payment Supervisor . 355

From Business Scenario to Technical Solution . 355
Viewpoints Within the Enterprise Architecture . 357
Business Architecture Views . 358
Integration Architecture Views . 365
Integration Patterns . 369

Going Forward . 378

Appendix 379
List of Patterns and Pattlets . 379

Bibliography 385

Index 389

Preface

Welcome to Integration Patterns, the third patterns release in the pattern & practices
series from Microsoft. Building on the application patterns presented in Enterprise
Solution Patterns Using Microsoft .NET, this guide applies patterns to solve integra-
tion problems within the enterprise.

Integration Patterns explains how the authors of this guide used patterns to design
and build an integration architecture in the context of a representative customer
scenario. The guide contains a catalog of 18 integration patterns, including imple-
mentations that use BizTalk Server 2004, Host Integration Server 2004, ASP.NET,
Visual Studio .NET, Visio 2003, and the .NET Framework.

Why does this guide include a scenario? Although reader feedback on previous
patterns releases was positive, they also gave us suggestions for improvement.
Readers said that they liked the pattern catalog, but they wanted help understand-
ing how to apply patterns to a real scenario. In response to this feedback, the au-
thors used a pattern-based approach to build and test a baseline architecture that
meets the needs of an integration scenario. We incorporated the essence of our actual
design discussions into the scenario to show how we used patterns to communicate
and make design decisions. .Because a well-designed architecture must be traceable
to the needs of the business, we included a set of artifacts that trace from high-level
business processes down to code.

The chosen scenario is an online bill payment application in the banking industry.
Although we don’t presume to be experts in banking, we did want to use a scenario
with sufficient complexity to illustrate our approach to solving significant technical
challenges. We expect that you will use your own skills and experience to tailor your
systems to your enterprise. We hope you find this guide to be a practical and helpful
resource during this effort.

Who Should Read This Book
If you are new to patterns, we suggest that you read Enterprise Solution Patterns
Using Microsoft .NET before you read this guide. This prerequisite reading will
introduce you to patterns that you can apply during the design and implementation
of applications.

Integration Patterns is for readers in one or more of the following categories:
● Chief technology officers, architects, designers, and developers who understand

application patterns but are new to integration patterns

Prefacexii

● Chief technology officers, architects, designers and developers who are already
experienced in using integration patterns to integrate enterprise solutions

● Chief information officers, chief technology officers, technology directors, and IT
managers who are responsible for aligning business with technology and inte-
grating multiple systems

For those in the first group, the first two chapters are very important to understand-
ing the context of integration and the use of patterns during the design process.
These chapters will help you understand the next four chapters, which collectively
form a pattern catalog. You are likely to discover that you have implemented some
of these patterns before without knowing that they were patterns.

Readers in the second group can go directly to chapters three through six and use
them as a pattern catalog. After you find a particular pattern you are interested in, it
is helpful to review the introductory material at the beginning of the chapter to
better understand the relationship of this pattern to other adjacent patterns. As you
consider design alternatives for your enterprise, you are likely to find chapter seven
helpful. This chapter contains examples of business and technology alignment
artifacts and more information on the pattern-based design approach.

Readers in the last group should read chapter one, then go directly to chapter seven.
This chapter explains how Global Bank approached the issue of business and tech-
nology alignment. This chapter contains example artifacts and more information on
the role of patterns in the design process. If you would like more information about
a specific pattern, use chapters three through six as a pattern catalog and find the
appropriate pattern.

How This Book Is Organized
Chapter 1, “Integration and Patterns” introduces the Global Bank scenario that is
used throughout this guide and briefly discusses how patterns can help develop-
ment teams find workable answers to integration challenges.

Chapter 2, “Using Patterns to Design the Integration Baseline Architecture” uses the
language of patterns to explore the decisions and tradeoffs that the members of the
Global Bank architecture team made while designing and implementing their bill
payment system.

Chapters 3 through 5 present a catalog of 18 patterns, which are grouped into
clusters. Each chapter starts by describing how the patterns in a particular cluster
are related and then gives direction on when to use the patterns. The implementa-
tion patterns include step-by-step instructions and code examples where applicable.
Code examples are written in C# and are for example purposes only. The example
code is not meant to be used in production.

Preface xiii

Chapter 3, “Integrating Layer” describes the different strategies for designing an
integration layer and the tradeoffs involved in choosing an alternative. An integra-
tion layer can automate complex business processes or provide unified access to
information that is scattered across many systems.

This chapter includes the following patterns:
● Entity Aggregation
● Process Integration
● Implementing Process Integration with BizTalk Server 2004
● Portal Integration

Chapter 4, “System Connections” builds on Chapter 3 by describing how to connect
individual systems. Each system allows certain types of access and restricts others.
This chapter presents a series of related patterns that will help you analyze the
alternative methods and the tradeoffs to consider when you choose your system
connections.

This chapter includes the following patterns:
● Data Integration
● Functional Integration
● Service-Oriented Integration
● Implementing Service-Oriented Integration with ASP.NET
● Implementing Service-Oriented Integration with BizTalk Server 2004
● Presentation Integration

Chapter 5, “Integration Topologies” builds on previous chapters by describing
overall integration topologies. This chapter presents a series of related patterns that
help you analyze the alternative methods and the tradeoffs to consider when you
choose between integration topology alternatives.

This chapter includes the following patterns:
● Message Broker
● Implementing Message Broker with BizTalk Server 2004
● Message Bus
● Publish/Subscribe

Chapter 6, “Additional Integration Patterns” presents two important patterns: Pipes
and Filters and Gateway. Many integration architectures are based on pipes and filters
and on gateways. Gateways are useful design elements that encapsulate access to
enterprise resources such as mainframes. This chapter explains both patterns and
then traces them to implementations that use the Microsoft platform.

Prefacexiv

This chapter includes the following patterns:
● Pipes and Filters
● Implementing Pipes and Filters with BizTalk Server 2004
● Gateway
● Implementing Gateway with Host Integration Server 2004

Chapter 7, “Project Notebook” takes a broader view of the Global Bank scenario by
showing the link between business and technology viewpoints. It starts with an
overview of the Global Bank business environment, and then describes the view-
points of five key business stakeholders. The chapter then presents a series of
models that the Global Bank team produced as they designed the baseline architec-
ture based on business requirements. These models trace a path from the Chief
Executive Officer to the technical solution and show how the team used patterns
during the design process. The chapter also includes additional details about the
pattern based approach used in this guide.

Appendix, “List of Patterns and Pattlets,” presents a list of patterns and pattlets that
this guide mentions, but that it does not discuss in detail. Pattlets are actual patterns
that this book refers to; however, the book does not discuss them in detail.

Documentation Conventions
This guide uses the following style conventions and terminology.

Table 1: Style Conventions Table

Element Meaning

Bold font Objects, classes, methods, predefined functions, and events.

Italic font Names of patterns and pattlets referenced in this guide. New
terminology also appears in italic on first use.

Monospace font Code examples.

Note Alerts you to supplementary information.

Community
The patterns in this guide are part of a new Patterns community on GotDotNet.
GotDotNet is a Microsoft .NET Framework Community Web site that uses
workspaces in an online collaborative development environment where .NET
Framework developers can create, host, and manage projects throughout the project
life cycle. You can also use this Patterns community to post questions, provide
feedback, or connect with other users for sharing ideas.

Preface xv

Access to the Patterns community is available from the following Web site:

http://gotdotnet.com/team/architecture/patterns

Feedback and Support
Questions? Comments? Suggestions? For feedback on this guide, please send e-mail
to pnppatfb@microsoft.com.

The patterns documented here are designed to jump-start the architecture and
design of systems integration. Patterns are simple mechanisms that are meant to be
applied to the problem at hand and are usually combined with other patterns. They
are not meant to be plugged into an application. Example code is provided “as is”
and is not intended for production use. It is only intended to illustrate the pattern,
and therefore does not include extra code such as exception handling, logging,
security, and validation. Although this deliverable has undergone testing and review
by industry luminaries it is not supported like a traditional Microsoft product.

Contributors
Thanks to the following contributing authors: Ward Cunningham, Microsoft Plat-
form Architecture Guidance; Ramkumar Kothandaraman, Microsoft Developer and
Platform Evangelism Architecture Strategy Team; Bill Mc Donald, Robert Miles,
Ascentium Corporation; Javier Mariscal, Two Connect, Inc.; Raymond Laghaeian,
Implement.Com.

Many thanks to the following reviewers who provided invaluable assistance and
feedback: John Sullivan, Thoughtworks; Ralph Johnson, University of Illinois at
Urbana-Champaign; Eddie Hulme, EDS; Dave Swift, Chief Architect, Zurich Finan-
cial Services; Rupert D.E. Brown, CTO Team Reuters; United Kingdom Architect
Council – Patterns Working Group; Richard Sears, Sears and Associates; Michael
Platt, Scott Woodgate, Satish Thatte, Phil Teale, Alex Weinert, Marc Levy, Ulrich
Homann, Dave Green, Paul Larsen, Jack Greenfield, Keith Short, David Lavigne,
Chris Houser, Anil Balakrishnan, Shawn Henretty, Doug Carrell, Joe Sharp, Miles
Ulrich, Steve Smaller, Shanku Niyogi, Wojtek Kozaczynski, Jonathan Wanagel,
Jason Hogg, Jim Newkirk, Ed Lafferty, Sandy Khaund, Ken Perilman, Mauro Regio,
Microsoft Corporation.

Thanks also to the many contributors who assisted us in the production of this book,
in particular: Matt Evans, Larry Brader, Microsoft Platform Architecture Guidance;
Abhijit Somalwar, Jude Yuvaraj, Anuradha Sathyanarayana, Infosys Technologies
Ltd; Tyson Nevil, Susan Filkins, Entirenet; Claudette Iebbiano, CI Design Studio;
Sanjeev Garg, Satyam Computer Services; Blaine Wastell, Ascentium Corporation

Prefacexvi

About the Principal Authors
David Trowbridge is an Architect with the Platform Architecture Group at
Microsoft. He is one of the driving forces behind Microsoft’s pattern initiative.
David was also the lead author of Enterprise Solution Patterns Using Microsoft.NET.
Prior to joining Microsoft, David designed and delivered numerous enterprise
transactional systems, commercial shrink-wrapped software products, and custom
integration solutions.

Ulrich Roxburgh has over 20 years academic and IT experience. He has worked for
Microsoft for the last seven years as a consultant specializing in e-business systems,
both in New Zealand and Australia. He is currently an architect with Microsoft
Consulting Services, based in Sydney. He has worked closely with the BizTalk Server
team since early 2000. In the process, he wrote some of the first training material for
BizTalk Server 2000, and he has published several whitepapers on BizTalk Server,
application integration, and business process automation.

Gregor Hohpe leads the Enterprise Integration practice at ThoughtWorks, Inc., a
specialized provider of application development and integration services. Gregor is
a widely recognized thought leader on asynchronous messaging architectures and
co-author of the seminal book Enterprise Integration Patterns (Addison-Wesley, 2004).
Gregor speaks regularly at technical conferences around the world and maintains
the Web site www.eaipatterns.com.

Dragos A. Manolescu is a software architect with ThoughtWorks. He has been an
active member of the patterns community since 1996. He has published patterns on
data flow, information retrieval, multimedia, workflow engines and e-business, and
chaired the 6th Conference on Pattern Languages of Programs (PLoP). He holds a
Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign.

E. G. Nadhan is a Principal in EDS with over 21 years of experience in software
development and engineering in distributed environments. Nadhan has successfully
led the implementation and deployment of several integration solutions for EDS
clients in multiple industries including the financial, chemical, healthcare, and
manufacturing industries. He has always encouraged the adoption of a pattern-
based approach to the architecture of these solutions.

1
Integration and Patterns

“The significant problems we face cannot be solved at the same level of thinking we were at
when we created them.” — Albert Einstein

Few enterprise applications exist in isolation. Most are connected to other applica-
tions and services by data feeds and common reference data. Others are con-
nected through elaborate integration networks. If you look above the level of
single applications and focus on an enterprise’s whole software portfolio, you
often see a complex collection of silo applications, heterogeneous platforms, and
islands of sometimes duplicated data and services that are interconnected by
messages, objects, file transfers, batch feeds, and human interactions.

At the same time, businesses consider information technology (IT) to be a key
element of both operational efficiency and competitive advantage. There are high
expectations of technical investments despite rapidly changing business conditions
and operating environments. Compounding this problem is the rate of change in
technology, as innovations such as Web services emerge. Although adopting this
new technology promises a new level of interoperability between systems and
enterprises, it also demands that practitioners devise an integrated, enterprise-
level approach to building applications and services.

Given today’s complex technical and business environment, how do you create an
integrated portfolio of applications and services for your enterprise?

This guide discusses known good ways to integrate systems, and it uses patterns
to describe them. To ground the discussion in something tangible, the guide:
● Describes a representative scenario in detail
● Builds out a performance-tested, baseline architecture to validate the approach
● Uses the vocabulary of patterns to describe important design tradeoffs
● Traces the patterns to an implementation that uses the Microsoft® platform

Integration Patterns2

The guide does not:
● Describe a feature-complete or fully secure implementation
● Assert that there is only one right answer when it comes to design
● Promote patterns as a silver bullet for solving all design problems

The Problem of Integration
Many enterprises create overly complex integration architectures in very predictable
ways. Business units within the enterprise often have a strong business case for an
IT capability. They fund and staff projects to provide this capability, while tracking
primarily the delivered functionality. However, they often have little regard for the
technical architecture underneath. Assuming the business case is sound, this is often
in the best interest of the business — at least in the short run.

In the long run, however, building business capabilities without careful consider-
ation of an enterprise-wide technical architecture can lead to a high cost for IT
operations, an inflexible portfolio of applications and services, and a high cost for
new application development. Even worse, the enterprise will be at a distinct disad-
vantage with respect to other competitors that have built well-factored, agile, and
well-integrated applications and services. This is especially true in industries where
information has a high economic value and new business models emerge quickly,
posing real economic threats.

The balance between these business and technology forces is delicate. Moving too
fast to enable business capabilities can result in a glut of architecturally incompatible
applications, which likely will need to be rationalized and integrated later at
a high cost to the enterprise. On the other hand, unchecked indulgence of the natu-
ral engineering tendency to study the problem deeply before acting can lead to long
and costly enterprise architecture engagements. Not only do these efforts take
significant time to execute (at a high opportunity cost), but, if not carefully man-
aged, they risk producing little more than a set of binders that sit unused on
a shelf.

Integration Architecture
An enterprise’s integration architecture balances the requirements of the business
and the requirements of individual applications. Inside this integration architecture,
you often find an overwhelming maze of systems, connections, and channels. If you
study enough of these, you see common combinations of integrated
systems such as portals, networks of connections such as message brokers, buses,
and point-to-point connections, and numerous individual connections and channels.
To understand the maze, it is helpful to understand how many of these integration
architectures evolve — one application at a time.

Chapter 1: Integration and Patterns 3

Many developers and architects start by designing and building stand-alone appli-
cations. They then progress to more complex enterprise applications. As applications
require connections to shared enterprise resources, it is natural to create abstractions
and wrappers that encapsulate these resources from an application-centric point of view.
After all, it is just one more connection to the enterprise resource. Further enterprise-
level work is often out of scope for the application project.

Although this approach works well from the perspective of a single application,
connecting all applications in this way is unlikely to produce a well-ordered set of
applications. Instead, you need a logical design at the integration level, just like you
need a logical design at the application level. To think clearly about an integrated
portfolio of applications and services at the enterprise level, you must invert your
viewpoint. You must first consider the needs of the enterprise as an integrated
whole and then consider how to expose shared functionality through networked
applications. This kind of thinking is quite different from traditional monolithic
application development or n-tier development. It begs the question: what is
an application anyway?

Applications
Most software-related definitions describe applications as “any part of a software
system used to deliver end-user functionality” [Firesmith95] or “a computer pro-
gram designed to help people perform a certain type of work” [Microsoft02-3]. If
you think of design from a traditional application-centric point of view, you usually
expect to encapsulate functionality into one or more executable files and then deploy
them to necessary servers. You do not expect to use existing services to any large
degree. However, if you approach this same problem from an integration architec-
ture perspective, the ideal application is a thin layer of presentation that consumes
shared functionality or data at the enterprise level. Ideally, much of this functional-
ity already exists and is accessible at a level of granularity that is meaningful to the
business. And if new functionality must be built, it is designed not to stand alone,
but to be shared with other enterprise applications and services.

To show how this kind of thinking might be practically applied, the remainder of
this guide uses some of these concepts in an interesting, yet challenging, online bill
payment scenario called Global Bank. This scenario introduces enough complexity
to illustrate the design tradeoffs without introducing too many details.

Integration Patterns4

The Global Bank Scenario
Although talking about architecture and design at a conceptual level helps to set
guiding principles, there is nothing like building out an actual system against
requirements to gain common understanding at a more technical level. That is why
the authors of this guide have developed an executable baseline architecture against
a concrete scenario: Global Bank. Later chapters of this guide describe the design
and implementation details of the solution, but first, let’s look at some of the context
and requirements of this scenario.

Context
Global Bank is a midsize, traditional bank that has acquired a complete range of
financial services capabilities through a series of acquisitions. It has a limited online
banking presence that is fragmented across its various divisions. As part of its
strategy to expand with the limited cash it has available, Global Bank has decided to
innovate in the online banking market by providing a host of value-added services
in addition to a fully integrated financial management capability.

Note: This chapter contains an intentionally brief overview of Global Bank’s business context
and approach to building integration architecture. For more detailed information, see Chapter
7, “Project Notebook.”

The chief executive officer (CEO) decided the first step was to immediately add
an electronic bill payment capability to the current online banking system. This
would allow customers to schedule electronic payments online from their checking
accounts — a high demand feature providing greater customer convenience. The
CEO believed this added convenience would have an immediate impact upon
customer satisfaction and loyalty, while demonstrating tangible progress to his
board of directors. To initiate this effort, the CEO brought in his chief technical
officer (CTO) and the vice president for consumer banking and asked them to
deliver this capability before the end of the fiscal year. He expected rough-order-of-
magnitude (ROM) cost and schedule estimates within six weeks.

Requirements
The CTO immediately involved a senior program manager to create a project around
this initiative. The program manager formed a team to build a high-level project
plan and to start gathering requirements. Unlike many projects, the CTO expected to
not only gather requirements from the consumer banking division, but to also
negotiate requirements with the consumer banking division based on the overall
needs of the business.

Chapter 1: Integration and Patterns 5

As he reflected on the overall initiative, the CTO felt confident that the business
would continue to invest in additional financial services for its customer base and
that additional acquisitions were likely to follow. This was clearly not an isolated
initiative; rather, it reflected a longer-term strategy for the company. He realized it
was important to have a well-conceived technical architecture at the enterprise level
that would smoothly support these corporate goals.

Beyond the functional requirements that would emerge, he wanted a solid technical
foundation that would allow him to meet operational requirements as well. He
pulled together an architecture team and asked them to create a baseline architecture
that would support this initiative and future initiatives. As a first approximation, he
started with the following high-level requirements and constraints:
● Build a baseline architecture for a Web-based online banking portal that allows

customers to pay bills online from their checking accounts.
● All account-related transactions will use the current system, which resides on an

IBM mainframe (OS390) using Customer Information Control System (CICS)
based transactions.

● The online bank system will reside in the corporate data center in Seattle, Wash-
ington. It will be connected to an acquired bank’s data center in Los Angeles,
California though a private leased line.

● Loan information will be pulled from the acquired bank’s loan systems, which
reside on systems that are based on IBM WebSphere J2EE.

● All customer profile information will use the current Customer Relationship
Management (CRM) system.

● Domestic electronic payments will use the current payment system, and interna-
tional electronic payments will use SWIFT-based transactions through an external
payment gateway. Payees that cannot receive electronic payments will be paid
using electronic transactions to a manual fulfillment center, which will then make
the payments manually through the U.S. mail.

● Except for the systems previously identified, the system will be based on the
Microsoft platform.

● The system’s overall transaction rates, concurrent users, and response time must
meet the first year’s projected usage plus an engineering safety factor of 3x (or
three times the first year’s projected usage) to handle burst load.

● The system must meet or exceed the service level agreement (SLA) for our cur-
rent online system.

Integration Patterns6

Next Steps
If you were part of this architecture team, how would you proceed? If you were
fortunate, someone on this team would have built a system like this before and
would apply those experiences and lessons learned to this effort. This would be
optimal, but is not probable. It is more likely that members of your team are very
proficient with a set of technologies that might solve part of this problem. For
example, they might be proficient with object-oriented design, message-oriented
middleware, integration servers, or distributed object systems. Naturally, team
members want to apply the tools they have used before to solve future problems,
but how do you know which technology is appropriate for which area of the design
and when? When the problem and the technology align, you can move quickly and
effectively to build the solution. However, we have all seen familiar technology
applied in unfamiliar areas for which it is suboptimal.

Wouldn’t it be great to be able to break this problem down into relatively atomic
decision points and understand the design alternatives available to you at each
point? For each alternative, wouldn’t you want to know how others have imple-
mented similar choices and what the resulting advantages and disadvantages were?
Although you may not have the luxury of an experienced person to discuss this
with, the next best alternative is a catalog of best practices that are documented as
patterns. Before continuing with the Global Bank scenario, let’s discuss the concept
of patterns at a very high level and how they might apply to software development.

Note: Rather than repeat the introductory material from Enterprise Solution Patterns Using
Microsoft .NET or from a formal pattern description found in an introductory patterns book, this
chapter relaxes the formal pattern description and provides some examples from everyday life.
This is an effort to make the pattern idea more approachable. The chapter then shows the
results of applying pattern-based thinking to an integration scenario. Later chapters explain
specific patterns in more detail.

Chapter 1: Integration and Patterns 7

Patterns
People think in patterns. It is the way we naturally communicate ideas related to
complex subject areas such as music, science, medicine, chess, and software
design. Patterns are not new. We all use them intuitively as part of the learning
process without really thinking about it. And because our minds naturally use
patterns to perform complex tasks, you can find patterns nearly everywhere.

Patterns in Sports
Consider what happens during a soccer game or an American football game.

A

B

Figure 1.1
Patterns in soccer

Integration Patterns8

A P

Q
E F

M
N FQ

A

P

Figure 1.2
Patterns in American football

Individuals who are acting according to predetermined patterns move quickly and
decisively against targeted opponents. Each individual’s pattern of movement is
also part of a larger pattern of orchestration where each player has clear responsibili-
ties and scope. In addition, the entire team is in a binary state — either offense or
defense. Without patterns in sports, the games would not be as rich and interesting.
Can you image how long the huddle would be in an American football game with-
out the language of plays (patterns)?

Note: Software patterns are significantly more complex than these simple examples. The
examples are intended to make the notion of software patterns more approachable at the
expense of being less technically rigorous. For more rigorous introductions to patterns, see the
bibliography section.

If you look closer at patterns, you will find relationships between them. In sports,
for example, teams have certain plays for offense and certain plays for defense; the
patterns that describe two players’ actions must fit into a larger pattern that the
team is following. In this sense, patterns can be described in terms of
hierarchies.

Chapter 1: Integration and Patterns 9

Patterns in Music
Another example of how people think in patterns is the patterns found in music,
such as rock and roll. In rock and roll, a rhythm guitar player usually repeats a
pattern of chords in a specific key. Against this backdrop, a lead guitarist plays a
freeform series of notes from a candidate pattern of notes that correspond to the
chord progression being played. Figure 1.3 shows a pattern chart that lead guitar-
ists use to learn the correct finger positions on a guitar neck.

minor pentatonic scale note

III V VII IX XII XV XVII

blue note

root note

Figure 1.3
Pentatonic scale patterns in the key of A

The root note in Figure 3 indicates the key that the song is in. Within the song’s
key, the lead guitar player is free to improvise, although most of the notes he or
she plays will correspond to the pattern chart in Figure 3. The order and sequence
of the notes may vary according to artist, style, and song, but the pattern of actual
notes played remains. If the key changes, the scale pattern moves to a different
place on the guitar neck that corresponds to the song’s new key. Interestingly
enough, this notion of one layer of patterns constraining another is exactly what
happens when you apply pattern-based design methods. This is just as true in
software design as it is in other design disciplines.

Pattern Structure
Patterns have a natural relationship with each other. Perhaps the most often used
example is the interplay between patterns for designing towns, which in turn,
contain patterns for designing clusters of buildings and roads. The building
cluster and road patterns, in turn, contain patterns for designing buildings. Figure
1.4 shows these relationships.

Integration Patterns10

Christopher Alexander

Agricultural Valleys Country Towns

Web of Shopping

Row Houses Small Public
Squares

Ring Roads

Local Town
Hall

Figure 1.4
Hierarchy of patterns

Pattern-Based Design
While pattern-based design is relatively new in the field of software develop-
ment, industrial technology has used pattern-based design for decades, perhaps
even centuries. Catalogs of mechanisms and standard configurations provide
design elements that are used to engineer automobiles, aircraft, machine tools,
and robots. Applying pattern-based design to software development promises the
same benefits to software as it does to industrial technology: predictability, risk
mitigation, and increased productivity.

Chapter 1: Integration and Patterns 11

Experience is Key
Of course, pattern-based design alone is no guarantee of success in either software
design or industrial technology. Known good mechanisms can be used to build
planes that do not fly, cars that do not handle well, and applications that do not
scale. There is simply no substitute for the skill and experience of designers and
engineers in any subject area, and software is no exception. Although patterns help
by offering manageable portions of design knowledge, they are not complete solu-
tions by themselves. They still require your skill and experience to tailor them to
your specific requirements.

Applying Patterns
Applying patterns to a specific scenario usually involves an iterative design process.
As a guiding principle, you want to keep your design as “simple as possible and no
simpler,” as Albert Einstein once said. Although you can use patterns to solve design
problems, make sure that you have a legitimate problem first before applying a
pattern. Do not use patterns just for the sake of using them.

Although design guidelines and process are related topics (and worthy of dedicated
works), this book focuses on the tangible outputs of the design process. It focuses in
particular on the role of patterns as they are applied to problems. To examine the
concrete artifacts produced by a pattern-based design process, let’s go back to
Global Bank and see what came out of the design sessions as the team worked on
the baseline architecture.

Patterns at Global Bank
The architecture team analyzed the high-level requirements and constraints pro-
vided by the CTO and reviewed existing technical architecture models of the enter-
prise. The architecture team also designated several members of the team to do a
build-versus-buy analysis of related commercial off-the-shelf software (COTS)
packages that might meet the requirements.

Based on the build-versus-buy analysis, the team decided to build a custom extensible
portal by using commercial platform infrastructure components such as Web servers
and database servers, but not to use packaged portal applications. Figure 1.5 shows
their initial approximation of the server types in a network diagram.

Integration Patterns12

Data
Firewall

External Partner
(SWIFT)

External Partner
(Manual Fulfillment)

Customer

SMTP Integration
Server

Web Server

Firewall

Integration
Server

Networked
Bank

System

Networked
Bank

System

Payment Directory
Services

Gateway
Service

Gateway

Mainframe

CRM

Ethernet

Ethernet

Firewall

Remote Data Center

Data

Figure 1.5
Initial network diagram with server types

For each key use case, the team determined the sequence of system interactions that
must occur to fulfill the stated requirements. They described these interactions in
terms of server types and message sequences. Figure 1.6 shows the View Scheduled
Payments use case realization in the form of a collaboration diagram.

Chapter 1: Integration and Patterns 13

9:
 C

he
ck

Fo
rL

oa
nB

al
an

ce
s(

co
rr

el
at

io
nI

D
)

4:
 G

et
Lo

an
B

al
an

ce
s

WebAppServices
3: GetSystemIDs(handle, password)

8:
 G

et
S

ch
ed

ul
ed

P
ay

m
en

ts
()

5:
 G

et
M

FA
cc

ou
nt

N
um

be
r(

m
as

te
rC

us
to

m
er

ID
)

6: G
etC

ustom
erP

rofile(m
asterC

ustom
erID

)
7: GetBalance(accountNumber)4.2: Concatenate-

Balances

4.
1:

 G
et

Lo
an

B
al

an
ce

()
1: Navigate To Page

2: Login

Directory Services

Account Services

Profile Services

Payment Services

Broker

Loan

10-13: BuildView

Figure 1.6
View Scheduled Payments collaboration diagram

Integration Patterns14

The flow of the use case in Figure 1.6 is:
1. A customer navigates to the online bill payment application.
2. The Web server prompts the customer for a user name and password.
3. The Web server authenticates the customer by using information retrieved from

the directory server.
4. The Web server sends an asynchronous request to the integration server asking

for related loans.
5. The Web server retrieves the customer’s mainframe account number from the

payment server.
6. The Web server retrieves customer profile information from the CRM server.
7. The Web server retrieves account balance information from the mainframe.
8. The Web server retrieves a list of scheduled payments from the payment server.
9. The Web server checks the integration server to see whether any loan information

has been retrieved.
10. The Web server builds the presentation, which displays account balance, sched-

uled payments, and customer profile information.
11. If loan information is available, it appends this optional information onto the

presentation.
12. The Web server returns the presentation code back to the browser.
13. The browser renders the view.

This use case realization is a representative sample of the bill payment application’s
significant use cases. The team took a similar approach to analyze other use cases,
identify server types, and design message interactions. To create these use case
realizations, the team conducted a series of iterations, each beginning with a design
session using class-responsibility-collaboration (CRC) style techniques. Although
similar in nature to CRC sessions, these sessions were not limited to class-level
abstractions. Often these sessions involved subsystems, server types, processes, and
channels as well.

The team’s goal, as they considered the necessary collaborations between elements,
was to design the simplest system that would satisfy all current requirements and
account for system constraints. While working through the alternatives, they relied on
the language of patterns to provide a common vocabulary for the team. Patterns were
also useful as a concise way to communicate the context, forces, and tradeoffs in-
volved in each design decision. At times, they realized that certain patterns only
added complexity to the design, so they eliminated those patterns.

As they completed each iteration, they created a pattern model of the system to
record their decisions. The model from the last iteration is shown in Figure 1.7. This
pattern model represented the simplest system that realized the target use cases and
constraints. To keep their models simple, they represented patterns as circles and
added other high-level design elements to the model to communicate the overall
design.

Chapter 1: Integration and Patterns 15

External Partner
(SWIFT)

SOI*

External Partner
(Manual Fulfillment)

Customer

Loan
Services

CRM
System

Payment
System

Model-View-
Controller

SOI*

SOI*

Service
Interface

Gateway
(subsystem)

Message
Broker

SOI*

SOI* = Service-Oriented Integration

Remote Data Center

Half Synch/
Half Asynch

Gateway
(object level)

Gateway
(object level)

Gateway
(object level)

SOI*

Pub/
Sub

Message
Broker

Process
Integration

Pub/
Sub

SOI*

Service
Interface

Intercepting
Filter

Portal Integration

Loan
Services

Directory
Services

Account
Services

(mainframe)

Data
Integration

Figure 1.7
Patterns and design element model

The next chapter captures some of the pattern-based discussion that occurred during
the design process. For now, just notice how the patterns connect key design ele-
ments such as the customer and the mainframe system.

Note: Because architects and developers are the primary audience for this guide, this discus-
sion moved quickly into applying patterns to a specific scenario. For a more detailed discussion
of pattern-based design, see Chapter 7, “Project Notebook.”

Integration Patterns16

The next step was to map these patterns to an implementation technology and to
iterate again. In this case, many of the platform decisions were already made, and
these platform decisions constrained the design choices. Sometimes, the implemen-
tation constraints forced the team to reconsider their design, and they adjusted
accordingly. When they finished, they produced the platform-level implementation
diagram shown in Figure 1.8.

Customer

Model-View-
Controller

SOI*

Service
Interface

Gateway
(subsystem)SOI*

SOI* = Service-Oriented Integration

Half Synch/
Half Asynch

Gateway
(object level)

Gateway
(object level)

Gateway
(object level)

SOI*

SOI*

Intercepting
Filter

Portal Integration

ASP.NET &
.NET Framework

IBM OS390Microsoft
CRM?

SQL Server
(Yukon)

Pub/
Sub

Message
Broker

Process
Integration

Pub/
Sub

Remote Data Center

BizTalk Server 2004

External Partner
(SWIFT)

SOI*

External Partner
(Manual Fulfillment)

SOI*

Message
Broker

BizTalk Server 2004

Service
Interface

Host Integration
Server 2004

.NET Framework

Data
Integration

IBM WebSphere J2EE

Active
Directory

Figure 1.8
Pattern diagram mapped to implementation technology

Chapter 1: Integration and Patterns 17

Figure 1.8 shows that the Global Bank integration architecture is composed of
numerous pattern-based design elements implemented on the Microsoft platform.
To trace the implementation of these elements down to running bits, refer to the
appropriate implementation pattern later in this guide. For example, to understand
how to implement the gateway to the mainframe, refer to Implementing Gateway with
Host Integration Server 2004. This pattern includes the details associated with con-
necting Global Bank’s .NET Framework portal application with their existing
COBOL-based CICS transactions.

Next Chapter
This chapter introduced the Global Bank scenario that is used throughout this guide
and briefly discussed how patterns can help development teams find workable
answers to integration challenges. The next chapter uses the language of patterns to
explore the decisions and tradeoffs that the Global Bank architecture team made
while designing and implementing their bill payment system.

2
Using Patterns to Design the Baseline
Architecture

“It’s all talk until the code runs.” — Ward Cunningham

The last chapter introduced a banking scenario that posed many technical integra-
tion challenges. It also presented patterns as an effective means of communicating
design decisions. This chapter walks though the application of integration patterns
in the context of the Global Bank scenario.

Although the scenario is a fictitious story for conveying design decisions, it is
important to note that the authors actually built and performance tested this
design in the patterns & practices lab at Microsoft. The design team consisted of field-
experienced practitioners with access to the latest product builds. The decision
points in the story correspond to real decision points in the lab, although this de-
scription shapes them into a more readable story than the actual effort. Also, the
actual development process was more iterative than the story might suggest; some
portions of the system evolved incrementally. Later in this guide, you will find that
the implementation patterns contain extracts of the code used to run the Global
Bank baseline architecture. You will also find more detailed explanations of the
patterns mentioned in this chapter.

Meeting the Requirements of Global Bank
At the end of the last chapter, the Global Bank architecture team applied a pattern-
based design approach to its bill payment system’s requirements and arrived at an
initial technical architecture blueprint. At this point, the team felt fairly satisfied
about the initial design, at least on paper. The members of the team knew the value
of creating these design models, but they also knew that they would learn other
things only from the running code. They were anxious to validate their models with
executable bits.

Integration Patterns20

To validate their thinking, the members of the Global Bank team built a baseline
architecture in the test lab and implemented five of the most architecturally signifi-
cant use cases. They chose these particular use cases to help define and validate the
most important mechanisms in the design. They did not intend the use cases to be
functionally complete — that would come later when the functional requirements
firmed up. At this point, they wanted to refine the riskiest parts of their design
down to the level of executable code, the most concrete form of design.

As they implemented this baseline architecture, members of the team also perfor-
mance tested many parts of the system to validate their design assumptions and
tradeoffs. This helped them to further understand the overall scalability of their
solution as they considered the impact of additional users over time. All of this
implementation and testing contributed to their overall confidence in the patterns
they had selected.

The bulk of this chapter explores the decisions and tradeoffs that the Global Bank
architecture team made during the design and implementation process, and it takes
a closer look at the implemented system. The discussion uses the language of pat-
terns to convey these decisions and tradeoffs, as well as the intentions behind them,
as discrete and comprehensible decision points. Throughout the discussion, pattern
names appear in title capitalization and italic (for example, Portal Integration). This
treatment of pattern names emphasizes the building of a pattern vocabulary and
signals that the concepts are explained as patterns later in this guide.

Using Patterns to Communicate Design Decisions
Each pattern clearly limits the scope of its problem and solution to a discrete and
comprehensible, or “mind-sized,” decision point. By considering relatively small
atomic design decisions one at a time, you are better prepared to manage the overall
complexity of the system. As you build a complex system, you aggregate these
small design decisions together to eventually form a larger hierarchy, or frame, of
decisions.

Of course, changes at the top of the hierarchy may affect the elements below, and it
is unrealistic to expect your first design to be just right. Most likely, you will need to
iterate. However, having a set of discrete decision points makes it easier to iterate
when you need to.

Remember, in complex environments, there is often no single right answer for a
given problem. For any set of requirements, each group of designers may arrive at
different, yet equally valid, designs. Usually, the difference reflects a different set of
tradeoffs and priorities. What is most important to understand about the design
process is that:

Chapter 2: Using Patterns to Design the Baseline Architecture 21

● A series of technical decisions must be made.
● Each design decision involves tradeoffs — both advantages and disadvantages.
● Tradeoffs made at one level constrain the decisions at other levels.
● The sum of these design decisions must result in an architecture that meets both

the functional and nonfunctional requirements of the system.

With these guidelines in mind, the architecture team set out to build a baseline
architecture.

The Role of a Baseline Architecture
A baseline architecture is a thin executable slice through the overall system that is
designed to implement the most architecturally significant use cases. As you imple-
ment these key use cases, you want to define the key mechanisms and components
in the system and retire the most serious technical risks early. If you do this well, the
baseline architecture does not become a prototype to be thrown away. Instead, it
becomes the skeletal structure of the system. The baseline provides sufficient stabil-
ity so that subsequent iterations can smoothly evolve the running system into one
that meets all of the functional and nonfunctional requirements. The baseline archi-
tecture is intentionally incomplete.

How do you actually design a baseline architecture? To answer this question, let’s
trace the architecture team’s steps during the design sessions.

Designing the Global Bank Baseline Architecture
As the team dissected the high-level requirements of the chief technology officer
(CTO), the members of the team arrived at the following use cases:
● Schedule Payments
● View Scheduled Payments
● Execute Scheduled Payment
● Receive Payment Response
● Add Payee

The first use case they discussed was the View Scheduled Payments use case. This
use case involved a portal that allowed users to see their account information,
including their current account balance and a list of scheduled payments. To build
this portal, the team would need to connect to multiple back-end systems and to
aggregate the results in a single view. Implementing this use case would require the
team to resolve several key technical issues. Let’s look now at the use case in more
detail and understand the team’s thinking as they approached the problem.

Integration Patterns22

View Scheduled Payments Use Case
To implement View Scheduled Payments, the portal would have to display the
following information:
● Account information from the mainframe
● Profile information such as name and address from the Customer Relationship

Management (CRM) system
● Scheduled payment information from a payment system

Optionally, the portal would have to display any other loans the customer might
have with newly acquired banks so that the customer could submit electronic
payments toward these loans.

Initially, members of the team had slightly different opinions of what a portal was.
However, they eventually agreed that a portal is a single view into many back-end
systems that are integrated “at the glass,” or, in other words, at the user presentation
level. Thus, Portal Integration is a type of integration that looks like Figure 2.1.

Loan System
Payment
System

CRM System Mainframe

Portal Integration

Figure 2.1
Portal integration to multiple back-end systems

The members of the Global Bank team needed to make individual connections to
many different kinds of systems to make Portal Integration work. They considered
each connection individually to determine exactly how they were going to connect
to the system.

Note: At this point in the story, the payment system does not exist. It is, however, included in
Figure 2.1 as a placeholder to use for planning purposes.

Chapter 2: Using Patterns to Design the Baseline Architecture 23

System Connections
As the members of the team thought more about this problem, they debated the
kinds of connections they could make. The discussion was full of overloaded terms
and individual biases toward the methods that each member was most familiar
with. To make matters worse, the team did not share a common design vocabulary
because some members of the team had never worked together before.

Finally, the members of the team realized they had to narrow the discussion to a few
practical choices for each system. To do so, they would have to tighten their frame of
reference when they compared their connection options. They finally agreed to
approach the problem from the perspective of integrating by using a Three-Layered
Services Application [Trowbridge03]. As shown in Figure 2.2, a Three-Layered Services
Application defines three distinct logical layers: data, business logic (functional), and
presentation.

Data Layer

Presentation
Layer

Business Logic
Layer

Figure 2.2
Three-Layered Services Application

They also agreed that although not every system was designed as a Three-Layered
Services Application, using these three logical layers would give them a common way
to reason about other systems. Using these layers to shape their discussion, they
began to discuss the relative tradeoffs between each connection alternative.

Note: To present an overview of the design, this chapter discusses tradeoffs between design
alternatives at a high level only. For more detailed information regarding these tradeoffs, see
the pattern chapters (Chapters 3 through 6). If you want to see a visual model of all of these
patterns and their relationships, see Chapter 7, “Project Notebook”

Integration Patterns24

First, they could use Data Integration to connect at the logical level of data, making
the same data available to more than one application. This approach worked well
when there was very little business logic to reuse across applications. For other
applications, they knew that raw data was not enough; they wanted to reuse the
functionality of a given application. This functionality often contained business
logic, process, or calculated values. In this case, they would need to use Functional
Integration to connect at the business logic layer. And although they preferred to
connect to systems directly to share either function or data, they acknowledged that
sometimes the only practical way to integrate with a system was through Presenta-
tion Integration, also known as screen scraping. Moving away from a pure systems
perspective, they also discussed human integration as a means to integrate with a
system. However, because they were focused on building a baseline architecture,
they considered human integration to be out of scope — at least for the moment.

Now that they agreed on an approach to the alternatives before them, the members
of the team returned to the set of individual connection decisions they had to make.
The first system to connect to was the payment system.

Connecting to the Payment System

The members of the team knew they would need a system to hold all the scheduled
payments along with related information. They decided the simplest thing to do was
to build a payment system that persisted this information in a database with Web-
based administrator screens to manage the data. They decided to use Data Integra-
tion to connect the portal to the payment system because no additional system
functionality or behavior seemed important to share.

Connecting to the CRM System

The next system to connect to was the existing CRM system. The members of the
team analyzed the system architecture and realized there was only one practical
choice: Functional Integration. That is because the software vendor used a highly
abstracted schema within a relational database to store information and recom-
mended against Data Integration. Instead, the vendor provided a functional Web
services interface to encapsulate access to the data. This was the same kind of
encapsulation at a system level that good object-oriented designers perform at a
class level when they create private instance variables and public accessor
methods.

Although encapsulation is generally a good thing, in this case the members of the
team marked it as a technical risk. They marked it as a risk because the vendor’s
implementation was effectively “black box,” or unknown to the Global Bank team.
The members of the team also knew from experience how difficult it is to build high
performance abstract interfaces. Furthermore, because profile information from the
CRM was required with each View Scheduled Payments request, performance was
critical. They decided to mark this interface as a key test point and to stress test it

Chapter 2: Using Patterns to Design the Baseline Architecture 25

early to discover the point where additional load would compromise system perfor-
mance. They needed this information soon so they could consider compensating
design alternatives, if necessary.

Connecting to the Mainframe

Integrating with the mainframe was critical because it was the system of record for
all account information. Over the years, the organization had invested significantly
to develop solid Customer Information Control System (CICS) transactions. Any
integration with the account system would need to use this functionality; therefore,
the team chose Functional Integration but deferred the connection details until later.

The team created the diagram in Figure 2.3 to record the design decisions made so
far. The team used squares to represent design elements, circles to represent pat-
terns, and lines to indicate relationships between the patterns and other design
elements.

Customer

CRM
System

Payment
System

Functional
Integration

Functional
Integration

Data
Integration

Portal Integration

Account
Services

(mainframe)

Figure 2.3
Connecting the payment, CRM, and mainframe systems to a portal

Integration Patterns26

Connecting to Loan Systems

The final connections to consider were the connections to the acquired bank systems
that were located in a remote data center. This optional part of the use case involved
finding all loans a customer might have with these banks so that the customer could
schedule payments toward them. This requirement presented many challenges.
First, Data Integration would be complex because of the many different data formats.
The many different data formats would require multiple transformations. Next,
because more acquisitions were likely, the team wanted to minimize the cost of
integrating additional systems into this consolidated loan information request. The
team decided to use Functional Integration in the form of request and response
messages and to expect each system involved in this collaboration to provide the
appropriate response. This decentralized approach would make it easier to integrate
new systems in the future.

As the members of the team thought more about the connections to the remote data
center, they realized there was another complication with these connections. All of
the links between previous connections were reliable connections within the same
enterprise (near links). The connection to the remote data center spanned multiple
enterprises and was not considered reliably connected (a far link). Based on previous
experience, they preferred to use a message queue or message-oriented middleware,
to buffer connections between far links to improve reliability. They also knew that
there were more issues than the reliability of the far link connections. With this in
mind, they decided to consider their growing network of connection points more
carefully.

Integration Topology
Although the team was making progress toward determining the best way to
connect to each system, choosing the right topology to link these connection points
seemed less clear. As the members of the team discussed alternatives, they arrived at
three possible ways to connect three or more systems together: Point-to-Point Connec-
tion, Message Broker, and Message Bus.

The easiest way to connect the systems was to use the Point-to-Point Connection
pattern, as shown in Figure 2.4.

Chapter 2: Using Patterns to Design the Baseline Architecture 27

System 3

System 1

System 4

System 2

Figure 2.4
Connecting four systems through point-to-point connections

Point-to-Point Connection is effective and simple for a small number of systems. A
liability of this approach, however, is that each system must have information about
each endpoint that it connects to. The members of the team knew that as they added
more systems to their integration architecture, it would become more and more
complex to add each additional system, making it expensive to extend and manage.

The team considered inserting a Message Broker to act as an intermediary between
senders and receivers, as shown in Figure 2.5.

System 3

System 1

System 4

System 2

Message Broker

Figure 2.5
Connecting four systems by using a message broker

Integration Patterns28

The advantage of using a Message Broker is that it decouples the receiver from the
sender. Instead of sending the message to a specific endpoint, the sender can send
messages to the broker. The broker then routes the message to the proper recipients.
In addition, the broker often transforms the messages from one format to another to
resolve the incompatible message formats between endpoints.

Finally, the team considered connecting multiple systems by using a Message Bus. A
Message Bus (see Figure 2.6) requires each system on the bus to share a common data
format, a common set of command messages, and a common infrastructure. A
system sends a message to the Message Bus, and the Message Bus then transports the
message to the other systems by way of the common infrastructure.

The members of the team liked the fact that after a Message Bus is built, the cost of
adding another system to the message bus is negligible to the existing systems. As
they thought further about implementation, they discussed different ways the
common infrastructure might be built and soon found themselves in a heated debate
over such issues as broadcast and Publish/Subscribe (Pub/Sub). They agreed to post-
pone further discussion of these issues until or unless they decided to incorporate a
Message Bus into the actual design.

System 1

System 3 System 4

System 2

Message Bus

Figure 2.6
Four systems connected with a message bus

Now that the members of the team had brainstormed alternative integration topolo-
gies, they brought their attention back to the View Scheduled Payments use case.
They knew there were many kinds of systems providing loan information to this use
case. They also knew it was likely that the bank would acquire even more financial
services companies in the future. These potential acquisitions represented even more
sources of loan information to be integrated. They wanted the system to be flexible
in its ability to handle these kinds of changes.

Chapter 2: Using Patterns to Design the Baseline Architecture 29

Adding a Message Broker for the Loan Systems
They decided to employ a Message Broker between Global Bank’s data center and the
remote data center housing the other loan systems. They intended to send a loan
information request message to the broker, and the broker would then forward it to
other systems interested in this type of message. As these systems responded with
loan information, the broker would pull the information together and make it
available as a consolidated whole.

By using a message queue to implement Message Broker, they would also create the
kind of buffer they wanted between their data center and the far link that connected
it to the remote data center.

Figure 2.7 shows how the members of the team modified their original diagram to
include the message broker connecting the portal to the remote data center.

Remote Data Center

Customer

Loan
Services

CRM
System

Payment
System

Message
Broker

Functional
Integration

Functional
Integration

Data
Integration

Portal Integration

Loan
Services

Account
Services

(mainframe)

Figure 2.7
Connecting the portal to the remote data center

Integration Patterns30

To show the dynamic nature of the system and to document how the system would
realize the View Scheduled Payments use case, the team drew the collaboration
diagram that is shown in Figure 2.8.

9:
 C

he
ck

Fo
rL

oa
nB

al
an

ce
s(

co
rr

el
at

io
nI

D
)

4:
 G

et
Lo

an
B

al
an

ce
s

WebAppServices
3: GetSystemIDs(handle, password)

8:
 G

et
S

ch
ed

ul
ed

P
ay

m
en

ts
()

5:
 G

et
M

FA
cc

ou
nt

N
um

be
r(

m
as

te
rC

us
to

m
er

ID
)

6: G
etC

ustom
erP

rofile(m
asterC

ustom
erID

)

7: GetBalance(accountNumber)4.2: Concatenate-

Balances

4.
1:

 G
et

Lo
an

B
al

an
ce

()

1: Navigate To Page

2: Login

Directory Services

Account Services

Profile Services

Payment Services

Broker

Loan

10-13: BuildView

Figure 2.8
View Scheduled Payments collaboration diagram

Chapter 2: Using Patterns to Design the Baseline Architecture 31

The following is the flow of the use case that is shown in Figure 2.8:
1. A customer browses to the online bill payment application.
2. The Web server prompts the customer for a user name and password.
3. The Web server authenticates the customer by using information retrieved from

the directory server.
4. The Web server sends an asynchronous request to the integration server asking

for related loans.
5. The Web server retrieves customer profile information from the CRM server.
6. The Web server retrieves the customer’s mainframe account number from the

payment server.
7. The Web server retrieves account balance information from the mainframe.
8. The Web server retrieves a list of scheduled payments from the payment server.
9. The Web server checks the integration server to see whether any loan information

has been retrieved.
10. The Web server builds the presentation, which displays account balance, sched-

uled payments, and customer profile information.
11. If loan information is available, it appends this optional information to the

presentation.
12. The Web server returns the presentation code back to the browser.
13. The browser renders the view.

So far, the members of the team had a pattern-based design model and a collabora-
tion diagram that showed how the system would realize the View Scheduled Pay-
ment use case. They wanted one more model that showed the static nature of their
system with well-defined high-level boundaries. To portray this view, they used a
port-and-wire model as shown in Figure 2.9. The outgoing ports are depicted as black
squares, and the incoming ports are depicted as white squares.

Integration Patterns32

[Set Loan Info]

[Get Loan
Balances]

Integration Services

[Get System IDs]

Directory Services
(Directory Server)

[Get Other Loans]

Loan Services
(acquired

bank’s systems)

[Get Other Loans]

Loan Services
(acquired

bank’s systems)

Gateway

Business
Logic

Presentation

Customer

[View Scheduled
Payments]

Web/App
Services

[Get Customer
Profile Information]

Profile Services
(CRM System)

[Get Account
Balance]

Account Services
(Mainframe)

[Get Mainframe Acct No]

[Get Scheduled Payments]

Payment Services
(Payment System)

Data

Data Data Data

Figure 2.9
View Scheduled Payments message flow

Chapter 2: Using Patterns to Design the Baseline Architecture 33

Although all the details were certainly not worked out for this use case, the mem-
bers of the team felt that the use case was at a sufficient level of detail to proceed to
the next use case. They would return to refine the design later, after exploring
whether parts of this design would realize other use cases as well.

Execute Scheduled Payment Use Case
The next use case they considered was the Execute Scheduled Payment use case. To
implement this use case, the system would:
● Start up at a system-defined interval.
● Retrieve the set of payments to be made on or before the current date.
● For each payment, the system would verify that there were sufficient funds in the

payment account and then debit the account for the payment amount.
● Send the payment to an appropriate payment channel.

There were four kinds of payment channels currently in scope: domestic payments
through a clearing house, electronic payment gateways using Society for Worldwide
Interbank Financial Telecommunication (SWIFT) transactions, electronic payments
to a manual fulfillment house, and account-to-account transfers within the bank’s
internal system.

Focusing on the Baseline Architecture
As the members of the team talked though this use case, they tried to avoid discuss-
ing domain-specific details that had more to do with business logic than technical
architecture. Although they knew these details were important, they also realized
that the purpose of the baseline architecture was to mitigate technical risk, not to
fully refine the business requirements. They knew the requirements team was on
track to do exactly that job, so they focused on the items that worried them the most
from a technical perspective. They also deemphasized some of the use case areas
that did not represent top technical challenges.

Payment Channels
One area of concern was the SWIFT payment Gateway.

Note: The Gateway pattern abstracts access to an external resource by presenting a single
interface to the integrated applications while hiding the external resource interface. For more
information, see “Gateway” later in this chapter.

Integration Patterns34

The members of the team knew the requirements would include making interna-
tional transactions to support their wealthiest clients, and for this they would use
SWIFT transactions. They also knew there would be requirements for domestic
payments, and for those payments they would use the existing system. It would be
too expensive to pay a SWIFT transaction fee for domestic payments, especially
when they already had an existing payment system.

The existing payment system was technically straightforward. It used a leased
secure line for Point-to-Point Connection with a clearing house and secure file trans-
fer. The bank and the clearing house exchanged files that contained both outgoing
and incoming data records. This was a simple form of Data Integration that the bank
had used for years. The team would use this system for domestic transfers. Because
they understood it well, there was little reason to build and test this system early, so
these details were omitted from the initial use case.

However, the SWIFT payment Gateway was a very different story. They would need
to package the transaction securely in an XML message and use Web services to send
it to the payment Gateway over the Internet. Because this part of the use case was
new to the team and presented many technical risks, it was one of the top priorities for
the baseline architecture. They wanted to build it early and test it.

Using Domain Knowledge to Guide Design Decisions
Because many members of the team had been in banking for years, they naturally
brought their business knowledge into the design sessions. Although this business
knowledge was invaluable, the team had to sort out what was relevant for the
baseline architecture and what was not. This sorting was, of course, a judgment call,
but it was necessary for the team to stay focused on mitigating the most important
technical risks first.

For example, the members of the team knew that any time the bank would initiate a
payment through an external party such as a clearing house or a payment Gateway,
the confirmation would be delayed. The rules of double entry accounting would not
allow funds to be in limbo during this period. Therefore, a holding account would
have to be credited at payment initiation and debited upon payment confirmation.
This would keep the system in balance at all times.

Although implementing a holding account was critical to the final use case, it was
not critical for the early baseline architecture. The team was proficient at enlisting
debits and credits in the same transactions across most of the systems in the bank.
They did not consider this to be a technical risk. Therefore, the team decided to defer
the implementation of this logic until after the requirements team defined the
specific holding accounts to use.

Chapter 2: Using Patterns to Design the Baseline Architecture 35

Using SWIFT Gateway for the Baseline Architecture
The rules to determine the right payment channel were straightforward. When a
customer scheduled a payment, the customer could select either a domestic or an
international payment. If the payment were domestic, the customer would provide
an American Bankers Association (ABA) routing number for the intended payee. If
this field were left blank, the system would send an electronic payment to a com-
pany that specialized in paper check writing and mailing services (a manual fulfill-
ment house). If the field were not blank, the system would check the routing number
against a list of internal banks. If the numbers matched, the system would make a
payment by transferring money internally from one account to another. If the
routing number were valid but did not match the internal banks, the standard
domestic payments system would make the payment by secure file transfer. Finally,
payments marked as international would use the SWIFT payment Gateway. Because
the system would send the payment to an appropriate channel, there would be a
system-based acknowledgment that the message was received.

To simplify the initial use case, the members of the team omitted any routing to their
domestic payment system and instead routed these payments through the SWIFT
Gateway for test purposes. This exercised the SWIFT Gateway by using the test data.
The test data was based on domestic accounts instead of international accounts. It
would be easy to add international routing and test data later, but they wanted to
pressure test the Gateway payment mechanisms early.

As they continued to walk though the use case flow, the members of the team
realized that a key element was missing. Currently, the system would receive an
acknowledgment that the payment message was sent, but how would the system
know if the payment was received by the intended payee? What would happen if
the payment Gateway or manual fulfillment house could not pay the payee? These
questions led them to the Receive Payment Response use case.

Designing for Execute Scheduled Payment and Receive Payment
Response
The Receive Payment Response use case described the behavior of the payment
Gateway and the manual fulfillment house after they processed the payment request.
In this use case, these payment channels returned the result of their processing to
Global Bank’s system. If the payment was successful, the payment status and trans-
action ID were updated in the payment system. If the payment failed, a compensat-
ing transaction to credit the account was first issued to the mainframe and then
status and ID fields were updated accordingly in the
payment system.

Integration Patterns36

Because of the close relationship between Execute Scheduled Payments and Receive
Payment Response, the team decided to evaluate Process Integration for both use
cases.

Process Integration
Process Integration adds a layer of software on top of other applications and services
to coordinate the execution of a long-running business function, as shown in Figure
2.10.

SWIFT
Gateway

Manual
Fulfillment

Partner

Payment
System

Internal Bank
System

Process Integration

Figure 2.10
Process Integration, a coordinating layer above other applications and services

The members of the team knew they would need a layer like this to coordinate the
two use cases, and they discussed the best way to design it. Some members of the
team suggested an integration server. Integration servers often include orchestration
tools for this purpose. Other members of the team wanted to build a custom coordi-
nating layer by encapsulating process and activity components. They thought the
integration server was excessive. After some debate, they decided to choose the
integration server approach. They reasoned it was likely that the bank would con-
tinue to add more financial services and external partners in the future, and that
these services and partners would need Process Integration capabilities also. And
although the use of an integration server might initially cost them some time for
installation and training, the cost would be more than repaid through the reduced
development time and overall flexibility of the system.

The members of the team updated their design model to incorporate Process Integra-
tion, as shown in Figure 2.11. Notice that process integration needs to communicate
with the message broker and the payment systems, but it does not need to connect
directly to the portal.

Chapter 2: Using Patterns to Design the Baseline Architecture 37

Remote Data Center

External Partner
(SWIFT)

External Partner
(Manual Fulfillment)

Customer

Loan
Services

CRM
System

Payment
System

Process
Integration

Message
Broker

Functional
Integration

Functional
Integration

Data
Integration

Portal Integration

Loan
Services

Account
Services

(mainframe)

Figure 2.11
Incorporating Process Integration into the baseline architecture

Message Broker for Payment Channels
Although Process Integration would handle the orchestration needs of long-running
transactions, the members of the team knew that each payment channel was likely
to need a different message format, thus requiring transformation code. They would
need a SWIFT-compliant XML schema in the case of the payment Gateway and a
more generic XML schema in the case of the manual fulfillment house. Worse, they
anticipated that the bank would add more external partners who would use more
message formats in the future. To avoid duplicating this transformation logic across
the system and to take advantage of transformation tools, they decided to use a

Integration Patterns38

Message Broker as an intermediary between Global Bank’s system and their trading
partners’ systems.

Like the other Message Broker in this design, the queue-based message broker imple-
mentation would buffer the somewhat unreliable connections between systems.

Message Broker Using Functional Integration with SOI
Even though they decided to use a message broker to communicate with trading
partners, they still had to decide how to connect the Message Broker to the target
system. Message Brokers can use Data Integration to connect at the logical data layer.
For example, Message Brokers can connect at the logical data level by sending files by
using File Transfer Protocol (FTP). Or, Message Brokers can use Functional Integration
to connect at the business logic layer. For example, they can connect by using Web
services.

The members of the team knew there were many ways to share functionality. The
three most common methods are distributed objects (.NET Framework remoting,
COM+, Common Object Request Broker Architecture (CORBA)), Remote Method
Invocation (RMI); proprietary message-oriented middleware, and Web services.
Some of the team members came from large enterprises where they had built logical
services on top of proprietary message-oriented middleware. This approach had had
worked well for them in the past. However, all the members of the team were
intrigued by the possibility of using Web services because of the potential
interoperability between platforms and the support of major platform vendors. Not
surprisingly, they decided to connect with partners by using a kind of Functional
Integration based on Web services: Service-Oriented Integration (SOI).

To record their design decisions, the members team modified their design model to
include an additional message broker and the use of Service-Oriented Integration, as
shown in Figure 2.12. They also rationalized the communication lines with a com-
mon bus to make the model more readable.

Chapter 2: Using Patterns to Design the Baseline Architecture 39

SOI* = Service-Oriented Integration

Remote Data Center

External Partner
(SWIFT)

SOI*

External Partner
(Manual Fulfillment)

Customer

Loan
Services

CRM
System

Payment
System

SOI*

Message
Broker

Message
Broker Process

Integration

Functional
Integration

Functional
Integration

Data
Integration

Portal Integration

Loan
Services

Account
Services

(mainframe)

Figure 2.12
Incorporating Message Broker and Service-Oriented Integration for connections with trading partners

Integration Patterns40

Models for Execute Scheduled Payment and Receive Payment Response
In addition to the pattern-based design model, the team decided to create a
collaboration diagram for the Execute Scheduled Payment use case, as shown in
Figure 2.13.

3: C
heckB

alanceA
ndD

ebit5:
 E

xe
cu

te
P

m
t

4: GetIdentity1: Notify
Scheduler Integration Server Directory Services

2.
 G

et
S

ch
ed

ul
ed

P
ay

m
en

ts

PaymentChannel Payment Services Account Services

Figure 2.13
Execute Scheduled Payment collaboration diagram

The following is the flow of the use case that is shown in Figure 2.13:
1. A system scheduler in the integration server initiates this use case and begins to

execute the payment.
2. The integration server requests the list of payments to make from the payment

system.
3. For each payment, the integration server checks the account balance in the

mainframe. The integration server debits the account if sufficient funds exist.
4. The integration server retrieves the appropriate security credentials for the

message exchange.
5. The integration server sets the routing information, transforms the message to the

format understood by the recipient, and then sends the message.

To show a static view of the system with boundaries, they created a port-and-wire
drawing, as shown in Figure 2.14.

Chapter 2: Using Patterns to Design the Baseline Architecture 41

[Pay Item]

Payment Gateway
(SWIFT)

[Get Identity]

Directory Services
(Directory Server)

[Pay Item]

Account Services
 (acquired

bank’s systems)

[Pay Item]

Manual Fulfillment

Execute
Payment

Send
Payment

[Send Payment] Integration Services

[Set Payment
Status]

[Check Balance
+ Debit]

Account Services
(Mainframe)

[Get Scheduled
Payments]

Payment Services
(Payment System)

Data

Data Data

Transform
Message

Set Payment
Routing

Figure 2.14
Execute Scheduled Payment use case realization

Integration Patterns42

Because the Receive Payment Response use case was related to the View Scheduled
Payments use case, the team created a collaboration diagram for this use case, as
shown in Figure 2.15.

4: SetStatus

5: UpdateStatus

Payment ServicesPaymentChannel

2: SendPayment-
Response

1: ProcessPayment
3: CorrelateResponse

Integration Services

Figure 2.15
Receive Payment Response collaboration diagram

The following is the flow of the use case that is shown in Figure 2.15:
1. The precondition for this use case is that a payment message has been sent to one

of the payment recipients: the SWIFT payment gateway, the manual fulfillment
partner, or an acquired bank.

2. After processing the payment request, the payment recipient sends a payment
response to the integration server.

3. The integration server correlates the response to the originating request.
4. If the payment failed, the integration server credits the customer account on the

mainframe.
5. The integration server updates the payment record in the payment system with

status and transaction ID.

Just as they did for the previous use case, the members of the team also produced a
port-and-wire diagram for Receive Payment Response, as shown in Figure 2.16.

Chapter 2: Using Patterns to Design the Baseline Architecture 43

[Receive Payment
Response]

Integration Services

[Send Payment
Response]

Payment Gateway
(SWIFT)

[Send Payment
Response]

Account Services
 (acquired

bank’s systems)

Manual Fulfillment

[Credit Account]

Account Services
(Mainframe)

[Set Payment Status]

Payment Services
(Payment System)

Data Data

[Send Payment
Response]

Figure 2.16
Receive Payment Response use case realization

Integration Patterns44

Accessing Account Services on the Mainframe
As the members of the team reviewed the Receive Payment Response use case, they
realized there was still a key issue to resolve. Both this use case and the View Sched-
uled Payments use case needed to access the mainframe by using Functional Integra-
tion, although exactly how that was going to be done was still unclear. There were
clear differences in application programming and potential differences in network
protocols that had to be resolved, not to mention security and transactions. How
would the team manage this complexity and not let it overcomplicate the design?
One team member suggested a Gateway.

Gateway
A Gateway is a design element that encapsulates outbound access to an external
system. There are Gateways at the application level that are usually implemented as
classes. For more information, see Enterprise Solution Patterns Using Microsoft .NET
[Trowbridge03] or Martin Fowler’s Patterns of Enterprise Application Architecture
[Fowler03]. There are also Gateways at the integration level that are usually imple-
mented as processes or subsystems. Based on the CTO’s constraints, the members of
the team knew that the system platform would be based on Microsoft technology,
while the mainframe was based on an IBM CICS system. They decided to employ a
Gateway to bridge the communication and programming model between these
different technologies.

Although the team decided to use a Gateway to bridge technologies, the team needed
to decide how to connect the application to the Gateway. One method was to connect
the Web server directly to the mainframe Gateway, resulting in the least number of
network hops, while placing a mainframe connection in the perimeter network (also
known as DMZ, demilitarized zone, and screened subnet). Although this direct
connection was likely to be fast, it would require deploying the connection to every
Web server used for this purpose. It also made the team nervous that a hacked Web
server could be used to gain mainframe access.

Another choice was to wrap the mainframe Gateway with a Service Interface
[Trowbridge03] by using Web services and to then have the ASP.NET page from the
Web servers make the call to the Service Interface. The Service Interface would then
access the mainframe through the Gateway. The additional network hops and serial-
ization would have performance implications, but this approach would also have
the advantage of exposing the mainframe functionality (Functional Integration) to
other applications in the enterprise by using a platform-independent connection
(Service-Oriented Integration). To secure this connection, the members of the team
considered a Web Services Security (WS-Security) implementation, but they realized
there would be a performance tradeoff for the necessary encryption and decryption
routines.

Chapter 2: Using Patterns to Design the Baseline Architecture 45

Capturing the design decisions made so far, the members of the team modified
their design model to reflect the Gateway and Service Interface patterns shown in
Figure 2.17.

External Partner
(SWIFT)

SOI*

External Partner
(Manual Fulfillment)

Customer

Loan
Services

CRM
System

Payment
System

SOI*

SOI*

Service
Interface

Gateway
(subsystem)

Message
Broker

SOI* = Service-Oriented Integration

Remote Data Center

Message
Broker

Process
Integration

Functional
Integration

Data
Integration

Portal Integration

Loan
Services

Account
Services

(mainframe)

Figure 2.17
Incorporating the Gateway and Service Interface to communicate with the mainframe

Integration Patterns46

Performance vs. Extensibility Tradeoff
The team knew that the account system on the mainframe was a key system to the
enterprise and that many other systems and services would need to use it. Because
so many systems depended on it, they also knew that performance was important.

Based on these considerations, the members of the team created test request and
response messages with realistic payloads, and they created three test points that
were designed to measure relevant performance.

The first test point ran from the Web server directly to the Gateway system. The
second test point ran from the Web server to a Web services – based Service Interface.
The Service Interface then used a Gateway system to call the mainframe. Finally, the
last test point ran the same Web services – based Service Interface but implemented
WS-Security. They stressed the system to find out where the transaction rates,
concurrent users, and response times flattened. They would need to know this
information to compare it to the operational requirements being captured by the
project team. Using the actual performance against the requirements would help
them determine how to best meet the requirement for the system to handle up to
three times the anticipated load. Ultimately, it would help them make the tradeoffs
in performance and flexibility that they needed to make.

At this point, the team felt they had worked out most of the necessary resource
connections and communication mechanisms to meet the current use cases. They
now turned their attention to the portal Web application itself.

The Portal Web Application
To refine the portal application, the team needed to decide the identification, authen-
tication, and authorization mechanisms the Web application would use to identify a
customer and authorize access. They decided to use Intercepting Filter and the Active
Directory® directory service.

Following the steps of the View Scheduled Payments use case, a customer uses a
Web browser to go to the Global Bank Web site where an Intercepting Filter intercepts
the Web request and prompts the user for a user name and password. The Web
server requests the user’s credentials from the directory server, authenticates the
user, associates the user with a role, and then returns a set of credentials to the Web
server.

Figure 2.18 shows how the members of the team modified their pattern-based
design model to document these decisions.

Chapter 2: Using Patterns to Design the Baseline Architecture 47

Data
Firewall

External Partner
(SWIFT)

External Partner
(Manual Fulfillment)

Customer

SMTP Integration
Server

Web Server

Firewall

Integration
Server

Networked
Bank

System

Networked
Bank

System

Payment Directory
Services

Gateway
Service

Gateway

Mainframe

CRM

Ethernet

Ethernet

Firewall

Remote Data Center

Data

Figure 2.18
Adding Intercepting Filter and Directory Services to the design model

Refining the portal application required the use of other related patterns that solve
other problems beyond integration. These problems appear almost any time you
want to build a Web-based application.

Integration Patterns48

Application vs. Integration Patterns
The Intercepting Filter pattern just introduced into the Global Bank design is not part
of this Integration Patterns guide. Neither are the Service Interface or class-level
gateways, such as Service Gateway, that also become part of the design later in this
chapter. These other patterns are from Enterprise Solution Patterns Using Microsoft
.NET, which is a recommended prerequisite to this guide. Additionally, the Data
Integration pattern later in this guide refers to Data Patterns, which is another previ-
ous patterns guide. Figure 2.19 shows the relationship between these three guides.

Integration Patterns

Integration
Architecture

Data Patterns

Enterprise Solution
Patterns

Application
Architecture

M-S
Snapshot

Repl.

M-M
Row-Level
Synchron-

ization

M-M
Row-Level

Synchronization
Using SQL

Server

M-S
Transactional
Incremental
Repl. Using
SQL Server

Move
Copy of

Data

App-
Managed

Data
Copies

Maintain
Data

Copies

ETL

Master-
Slave
Repl.

Master-
Master
Repl.

Capture
Transaction

Details

M-S
Transactional
Incremental

Repl.

Data
Replication

M-S
Snapshot

Replication
Using SQL

Server

Figure 2.19
Relationship between Integration Patterns and other Microsoft patterns guides

For more information about previously released patterns, refer to the guides and
their references. Now let’s return to the Global Bank scenario.

Chapter 2: Using Patterns to Design the Baseline Architecture 49

Global Bank Portal Application
In the View Scheduled Payments use case, after the Web server obtains and validates
security credentials, the Web server uses these credentials to issue an asynchronous
request for loan information from within a synchronous method. This approach is
the Half Synch/Half Asynch pattern [Schmidt00]. Next, the Web server uses a Gateway
object to access the mainframe’s Gateway subsystem and retrieve an account balance.

Note: The Gateway in this case is a class-level or object-level Gateway, whereas the Gateway
that translates network and programming model calls to the mainframe is a subsystem-level
Gateway. For information about class-level Gateways, see Service Gateway in Enterprise Solution
Patterns for Microsoft .NET and Data Table Gateway in Martin Fowler’s Enterprise Application
Architecture. Information about subsystem-level gateways is contained later in this guide.

The Web server then uses a Gateway object to call the CRM system. The CRM system
has encapsulated its functionality with a Web services – based Service Interface.
Finally, the Web server checks to see whether the asynchronous request has returned
a loan information response. After all this data is retrieved, the Web server then
builds a presentation that displays all the requested information. If the loan system
request returned any entries, the presentation appends this information to the
display as optional information.

Figure 2.20 shows how the members of the team updated the pattern-based design
model to document these decisions.

Integration Patterns50

External Partner
(SWIFT)

SOI*

External Partner
(Manual Fulfillment)

Customer

Loan
Services

CRM
System

Payment
System

SOI*

SOI*

Service
Interface

Gateway
(subsystem)

Message
Broker

SOI* = Service-Oriented Integration

Remote Data Center

Message
Broker

Process
Integration

Functional
Integration

Data
Integration

Intercepting
Filter

Portal Integration

Loan
Services

Directory
Services

Account
Services

(mainframe)

Figure 2.20
Adding Gateways to the design model

Implementing the Global Bank Scenario
If you consider all of the patterns in Figure 2.20 as high-level design elements (un-
bound) and walk thorough the use cases presented so far, you can see how these
elements collaborate at an abstract level to realize these use cases. To refine this design
further, you must map these patterns to an implementation platform. Doing so usually
requires additional iterations across the design because the chosen implementation
may constrain or enable certain pattern-based design decisions.

Chapter 2: Using Patterns to Design the Baseline Architecture 51

For example, some of the implementation decisions will be constrained by decisions
that the enterprise has already made. To understand these constraints, you need to
understand the current technical architecture within your enterprise and make an
intelligent initial allocation of functionality to server types. The members of the
Global Bank team did this for their scenario and arrived at the model of their techni-
cal architecture that is shown in Figure 2.21.

External Partner
(SWIFT)

SOI*

External Partner
(Manual Fulfillment)

Customer

Loan
Services

CRM
System

Payment
System

Model-View-
Controller

SOI*

SOI*

Service
Interface

Gateway
(subsystem)

Message
Broker

SOI*

SOI* = Service-Oriented Integration

Remote Data Center

Half Synch/
Half Asynch

Gateway
(object level)

Gateway
(object level)

Gateway
(object level)

SOI*

Pub/
Sub

Message
Broker

Process
Integration

Pub/
Sub

SOI*

Service
Interface

Intercepting
Filter

Portal Integration

Loan
Services

Directory
Services

Account
Services

(mainframe)

Data
Integration

Figure 2.21
Initial Global Bank network diagram with server types

Integration Patterns52

To refine this model more, the members of the team needed to decide the platform
or platforms to build their system on. Given the CTO’s constraints, some of the
platform infrastructure decisions were easy. For example, the account information of
record would reside on the mainframe. The mainframe is based on an IBM OS/390
operating system. The acquired banks ran on systems based on WebSphere Java 2
Enterprise Edition (J2EE). The rest of the systems would be based on the Microsoft
platform, as shown in Figure 2.22.

Customer

Model-View-
Controller

SOI*

Service
Interface

Gateway
(subsystem)SOI*

SOI* = Service-Oriented Integration

Half Synch/
Half Asynch

Gateway
(object level)

Gateway
(object level)

Gateway
(object level)

SOI*

SOI*

Intercepting
Filter

Portal Integration

ASP.NET &
.NET Framework

IBM OS390Microsoft
CRM?

SQL Server
(Yukon)

Pub/
Sub

Message
Broker

Process
Integration

Pub/
Sub

Remote Data Center

BizTalk Server 2004

External Partner
(SWIFT)

SOI*

External Partner
(Manual Fulfillment)

SOI*

Message
Broker

BizTalk Server 2004

Service
Interface

Host Integration
Server 2004

.NET Framework

Data
Integration

IBM WebSphere J2EE

Active
Directory

Figure 2.22
Mapping the baseline architecture and patterns to technologies

Chapter 2: Using Patterns to Design the Baseline Architecture 53

Notice the mix of Microsoft and third-party technologies, as well as the question
mark associated with the Microsoft CRM system. The question mark indicates that
the Global Bank team is still testing whether this system meets its requirements. The
team will compare the performance test results with the actual operational require-
ments obtained from the project team to see if this implementation meets its perfor-
mance needs.

Later in this book, you will find these patterns described in detail, with matching
implementation patterns to Microsoft technologies.

Note: The preview release of this guide does not document all the patterns that appear in
Figure 2.22. For example, only some architecture and design patterns have matching imple-
mentation patterns. However, some patterns have multiple implementation patterns, such as
Implementing Service-Oriented Integration with ASP.NET and Implementing Service-Oriented
Integration with BizTalk Server 2004.

Next Chapter
This chapter showed how the Global Bank team applied patterns to design their
baseline architecture. The description moved quickly over a wide range of patterns
and technical challenges. The next chapter is the first of three pattern cluster chap-
ters that describe these patterns in greater detail. Chapter 7, “A Language of Pat-
terns,” uses a visual model to tie these patterns and their relationships together and
to explain how the Global Bank team used this visual model to guide them through
their design choices.

3
Integrating Layer

“Any problem in computer science can be solved with another layer of indirection.” —
David Wheeler (chief programmer for the EDSAC project in the early 1950s)

As described in Chapter 1, connecting multiple systems requires an infrastructure
that moves data between the systems. However, you often want the solution to do
more than just pass data around. You want to add an additional layer of functional-
ity on top of the functional assets that reside inside the existing applications. This
layer can automate complex business processes or provide unified access to informa-
tion that is currently scattered across many systems.

How should such an integrating layer be designed, and what choices do you have?
Unfortunately, there is no single right answer for all enterprise architectures. This
chapter discusses some of the key considerations to help you to understand the
tradeoffs associated with the various alternatives and to find the most suitable
approach.

Level of Automation
A fully integrated enterprise seems to be any CIO’s idea of perfection. Complex
interactions between systems are orchestrated through precisely modeled business
process definitions. Any data format inconsistencies are resolved through the inte-
gration layer. Relevant summary data is presented to executive dashboards with up-
to-the-minute accuracy. Such visions are surely enticing, but should every enterprise
set out to build such a comprehensive and inherently complicated solution?

It is not likely that anyone would build such a solution because of the time and
money it takes to build a complex enterprise integration solution. Therefore, decid-
ing how far to go is an important step when planning an integration solution.
Automation brings efficiency and can help eliminate inconsistencies in current

Integration Patterns56

business practices. However, complete automation can require an enormous upfront
effort that delays the tangible benefits to the business. A simpler solution might only
achieve a portion of the business benefit, but it achieves that benefit much sooner
and with much less risk. For example, displaying information from multiple systems
in a single screen that is divided into individual panels can increase productivity,
and it does not require the system to resolve all the differences between existing
systems.

Level of Abstraction
Object-oriented design principles teach the benefits of abstraction. Abstracting one
system’s internals from other systems allows you to change one system without
affecting the other systems. This ability to limit the propagation of changes is a key
consideration for integration solutions where connections can be plentiful and
making changes to applications can be very difficult.

You achieve abstraction in a number of ways. For example, you can achieve abstrac-
tion by passing self-contained documents between systems. Passing a document
does not instruct another system to perform a specific function, but it leaves that
choice to the receiving system. Thus, if the receiving application processes the
document in a different way, the originating system is not affected.

Maintaining State
Most integration solutions aim to streamline business processes such as placing an
order or making a payment. These processes rely on the coordinated completion of a
series of steps. When an order arrives, the order has to be validated, the inventory
has to be checked, the sales tax has to be computed, and an invoice has to be gener-
ated. This type of integration requires some mechanism to track the current state of
an order. For example, the mechanism might indicate whether the order has been
validated yet and which step should be completed next. This state mechanism can
be implemented in three ways:
● Manually. State can reside in the user’s head or in a manual on the user’s desk.

Based on the information gathered, a user can decide which step should be
performed next. This approach is less efficient and less reliable than more auto-
mated solutions, but it is also very flexible and easy to implement.

● Inside existing applications. The state can be kept inside existing applications.
For example, after the inventory application has verified the number of items on
hand, it can be programmed to send a message to the financial system to com-
pute the sales tax. The financial system in turn might send a message to the
fulfillment system to ship the goods. This approach is more efficient but also ties
the applications more closely to each other.

Chapter 3: Integrating Layer 57

● In an integration layer. You can insert a new integration layer to orchestrate the
activities across multiple applications and to keep track of state. Such a layer is
likely to require additional effort, but it manages all interactions from a central
point without applications requiring information about each other.

Coupling
Loose coupling has become the standard of distributed applications. Loose coupling
makes integrated systems less dependent on each other and allows them to evolve
independently. However, loose coupling is not a panacea. Loosely coupled systems
can often be difficult to understand and debug.

Semantic Dissonance
One of the key difficulties in building integration solutions is the notion of
semantic dissonance. This term describes a situation where data that appears to be the
same may not necessarily mean the same thing. For example, one system might treat
a monetary figure for annual revenues as if it includes sales tax, while another
system treats the monetary figure as if it does not include any taxes. Likewise, one
system might define the Western Region, in the context of revenue breakdown, to
include the state of Colorado. Meanwhile, another system may define Colorado as
part of the Central Region. These types of semantic dissonance can be very difficult
to detect and reconcile. Some rather elegant types of integration rely on the complete
resolution of semantic dissonance, which might not be feasible in real-life situations.
Other simpler forms of integration, such as Portal Integration, can accommodate
ambiguity, but they do it at the expense of precision. For an in-depth discussion of
data modeling and the perils of semantic dissonance, see Data and Reality, by William
Kent [Kent00].

Choosing an Integration Layer Type
Based on these considerations, this guide identifies three approaches towards
integrating layers. Each approach is presented as a pattern (see Figure 3.1):
● Entity Aggregation
● Process Integration
● Portal Integration

Integration Patterns58

Entity Aggregation Process Integration Portal Integration

Figure 3.1
Three integration approaches

The following paragraphs briefly describe each approach to integration, in order
from least to most complex.

Portal Integration
Portal Integration connects systems to provide a unified view to a user. Portal Integra-
tion can dramatically increase productivity because users no longer have to access
multiple applications independently. Instead, they receive a comprehensive view
across all systems in a visually consistent format that is illustrated in Figure 3.2.
More sophisticated versions of Portal Integration also allow the user to make updates
to individual systems or even across multiple systems.

System 1 System 2 System 3 System 4

Portal Integration

Figure 3.2
Portal Integration provides a unified view across systems

Chapter 3: Integrating Layer 59

Portal Integration is often easier to implement than other, more automated alterna-
tives. The disadvantage of the simplicity is that much of the business process and
many of the rules still reside in a user’s head as opposed to in a system. Neverthe-
less, Portal Integration is often a good first step towards integration.

Entity Aggregation
The main limitation of Portal Integration is that it aggregates information only for
end users but not for applications. Entity Aggregation addresses this shortcoming by
providing a unified data view to applications, as illustrated in Figure 3.3.

Applications and Services

System 1 System 2 System 3 System 4

Entity Aggregation

Figure 3.3
Entity Aggregation provides unified data access across systems

Entity Aggregation provides a logical representation of unified data entities across
multiple data stores. Applications can interact with this representation as if it were a
single data source. Thus, Entity Aggregation greatly simplifies the development of
applications that need to access data across multiple data stores. The tradeoff for this
increased integration is that the integration layer must now resolve any instances of
semantic dissonance between the individual systems. Resolving such semantic
dissonance and creating a unified data layer can be a major undertaking.

Process Integration
Process Integration focuses on the orchestration of interactions between multiple
systems, as illustrated in Figure 3.4. As mentioned earlier, automated business
processes such as straight-through processing often drive integration initiatives. It is
often advisable to model these processes outside of the applications to avoid cou-
pling the applications to each other. You can achieve this modeling by adding a
Process Integration layer that manages the interaction across applications. This layer
tracks the state of each business process instance and also enables centralized

Integration Patterns60

reporting. For example, this layer enables the Business Activity Monitoring (BAM)
feature of Microsoft BizTalk® Server.

System 1 System 2 System 3 System 4

Process Integration

Figure 3.4
Process Integration orchestrates activities across systems

The three integration layer types are not mutually exclusive. An integration solution
might use Portal Integration for some portions of the solution and Process Integration
for others. Management reporting functions may be accomplished by using Entity
Aggregation. All the approaches may be used in parallel.

Integrating Layer Patterns
The following table summarizes the three patterns just discussed and shows the
corresponding implementation patterns.

Table 3.1: Integrating Layer Patterns

Pattern Problem Associated implementations

Entity Aggregation How can enterprise data that is
redundantly distributed across
multiple repositories be effectively
maintained by applications?

Process Integration How do you coordinate the execution Implementing Process
of a long-running business function Integration with BizTalk
that spans multiple disparate Server 2004
applications?

Portal Integration How can users efficiently perform
tasks that require access to
information that resides in
disparate systems?

Chapter 3: Integrating Layer 61

Entity Aggregation

Context
Enterprise-level data is distributed across multiple repositories in an inconsistent
fashion. Existing applications need to have a single consistent representation of key
entities which are logical groups of related data elements such as Customer, Product,
Order, or Account. Moving data between these repositories may not be a viable
option.

Problem
How can enterprise data that is redundantly distributed across multiple repositories
be effectively maintained by applications?

Forces
The following forces have to be considered in this context:
● There may be multiple systems of record for the same entity. Business rules and

processes could dictate the manner in which the system of record is determined
for a given entity. For example, an employee entity is usually defined in human
resource management system (HRMS) applications, in payroll applications, and
in benefits applications, as well as in other systems. Each system defines its own
view of an employee. However, if you are building an employee self-service
portal, you need to have a complete view of what constitutes an employee and
not just the bits and pieces.

● Often, semantic dissonance exists between the data values represented within the
same entity across repositories. The same data element may not represent the
same information in multiple repositories. For example, the data element
NumberOfDaysRemaining for a project task might include all days including
holidays in one repository, but it might include only workdays in another
repository.

● Even when the data elements are semantically consistent, the information they
represent might vary across parallel instances of the data element. In such cases,
it may be difficult to determine which instance of the data element is accurate.
For example, in a financial institution where there are dedicated repositories for
various customer communication channels, the Available Balance entity in one
repository may not be the same as the Available Balance in another repository.
For example, the Available Balance in the ATM database may not be the same as
the Available Balance in the repository serving the online banking channel.

Integration Patterns62

● Invalid data might have crept in through other entry points into the repositories.
All the entry points may not enforce all the business and data validation rules in
a consistent fashion. This is typical of mainframe systems where the validation
logic enforced in the screens may be outdated and therefore not enforced in the
enterprise’s newer applications.

● Referential integrity of data across multiple repositories may have been violated.
This happens due to absent or malfunctioning data synchronization processes. In
a manufacturing environment, it is critical that the product data management
(PDM) system always be concurrent with the order management system. Orders
entered in the order management system that have an invalid reference to a
product can violate the referential integrity of the product data across the respec-
tive repositories.

● Applications may need logical subsets of the data elements that may not be
available in a single repository. Therefore, business logic may have to be applied
to properly group the data elements into the logical subset. For example, a
banking customer maintains different kinds of information across various reposi-
tories. Personal information is stored in the customer information file repository;
account balance is stored in a financial application repository; and loan informa-
tion is stored in the mortgage lending repository. When the customer accesses the
online banking site, the nature of the customer’s request determines the subset of
the information to be presented. An address change request needs data from the
customer information file repository, but an inquiry on the outstanding balance
for all accounts and loans requires specific data from all three repositories.

● Data synchronization processes may already exist between repositories that
permit one repository to act as a front end to the other. In these cases, the syn-
chronization mechanism is better left untouched. This is typical where database
replication is used across two separate database instances that use the same
underlying technology.

Solution
Introduce an Entity Aggregation layer that provides a logical representation of the
entities at an enterprise level with physical connections that support the access and
that update to their respective instances in back-end repositories.

This representation is analogous to the Portal Integration pattern, which presents to
the end user a unified view of information that is retrieved from multiple applica-
tions. Similar to the portal layer that provides this view for the application front
ends, the Entity Aggregation layer provides a similar view across the data in the back-
end repositories as shown in Figure 3.5.

Chapter 3: Integrating Layer 63

Repository 1 Repository 2

Entity Aggregation
Layer

Application

Repository 3

Figure 3.5
Entity Aggregation

Establishing Entity Aggregation involves a two-step process:
1. Defining the enterprise-wide representation that provides a consistent unified

representation of the entity.
2. Implementing a physical bidirectional connection between this representation

and its respective instances in the back-end repositories.

The following example explains this process in more detail.

Integration Patterns64

U.S. Repository

Area Code
Exchange
Number

Phone Number

EMEA Repository

Back-End Repositories

Front-End Applications

Country Code
City Code
Exchange
Number

Phone Number

U.S. Application EMEA Application

U.S. Enterprise EMEA Enterprise

Figure 3.6
Environment without Entity Aggregation

Figure 3.6 shows two applications that access their respective back-end repositories
for information about the Phone Number entity within two different enterprises:
U.S. Enterprise and the Europe, Middle East, and Asia (EMEA) Enterprise. Both
applications maintain the information about the phone number within their respec-
tive repositories.

Each application follows the respective domestic convention for representing phone
numbers in its back-end repository. The U.S. representation of the entity includes the
area codes, the exchanges, and the numbers. The EMEA representation, on the other
hand, represents the same information using the country code, the city code, the
exchange, and the number.

As part of a merger and acquisition exercise, these enterprises merge to form a new
logical enterprise. Both applications have to access the information in both reposito-
ries. Therefore, the phone number now has to be represented at an enterprise-wide
level that includes both the U.S. and the EMEA business units.

Chapter 3: Integrating Layer 65

Back-End Repositories

Entity
Aggregation

Layer

Front-End Applications

U.S. Repository

Area Code
Exchange
Number

Phone Number

Country Code
Area Code
Exchange
Number

Phone Number

EMEA Repository

Country Code
City Code
Exchange
Number

Phone Number

U.S. Application EMEA Application

U.S. Enterprise EMEA Enterprise

Figure 3.7
Environment with Entity Aggregation

Figure 3.7 shows the manner in which Entity Aggregation can facilitate the seamless
representation of the Phone Number entity across both repositories.

The first step in establishing this layer involves defining the enterprise-wide repre-
sentation of the Phone Number entity.

The Phone Number entity within the Entity Aggregation layer includes attributes that
are unique to each enterprise. The Phone Number entity also includes attributes that
are common across both enterprises. Thus, Country Code is included because it is an
attribute unique to the EMEA enterprise. Similarly, because Exchange and Number
are common attributes across both repository instances, they are also included. Even
though Area Code and City Code are unique to each enterprise, their basic represen-
tation and purpose is identical. Therefore, the Entity Aggregation layer representation

Integration Patterns66

chooses to include the Area Code while using this field to store the City Code
information from the EMEA repository.

The next step involves building the physical connections between the Entity Aggre-
gation layer and the back-end U.S. and EMEA repositories. The technology driving
these connections depends on the repository being accessed.

Approach
There are two architectural approaches to implementing Entity Aggregation:
● Straight-through processing
● Replication

Depending on the architectural characteristics of the entity instances to be inte-
grated, a combination of these approaches may be required.

Straight-Through Processing

A straight-through processing approach fetches information from the respective
back-end repositories in real time and correlates the information into a single unified
view. This implies that the Entity Aggregation layer has real-time connectivity to the
repositories and should be able to associate the disparate instances of the entity.

Replication

The replication of entities for use by the Entity Aggregation layer is required when
the following conditions are true:
● Real-time connectivity to the repositories is absent.
● Complicated joins across multiple instances of the same entity across various

repositories is required to provide a consistent representation.
● High performance is vital to the solution.

This approach requires a separate physical repository within the Entity Aggregation
layer that stores data conforming to the enterprise-wide representation of the entity.
The data in each back-end repository is replicated into the Entity Aggregation reposi-
tory. This replication requires the implementation of supporting processes to enforce
the business rules that validate the data being replicated. Replication should be
performed both ways between the back-end repositories and the Entity Aggregation
repositories.

In many respects, this approach offers capabilities very similar to those supported by a
data warehouse. Data warehouses originally were built with the intent of summariz-
ing transactional data that could be used for business intelligence and trends analysis.
In many large enterprises today, data warehouses have transformed into yet another
repository within the enterprise. They do not always serve as the enterprise-wide
unified representation of the data. However, such data warehouses have a good

Chapter 3: Integrating Layer 67

baseline definition for enterprise-level entities, and the enterprise-wide representation
of an entity can be built on top of this definition.

Design Considerations
Effective design of an Entity Aggregation layer requires several issues to be given due
consideration. These issues may be broadly classified as follows:
● Data representation. Data representation includes entity representation and schema

reconciliation. Entity representation is the definition of the enterprise-wide repre-
sentation of the entity with its attributes and key relationships to other entities.
Schema reconciliation involves reconciling the varied definitions of the underly-
ing schema across repositories. In addition to the data representation being
defined, the format in which the representation is stored must be established as
well.

● Data identification. Introduction of a new layer of data representation requires
the establishment of an appropriate mechanism that uniquely identifies each
entity across all repositories, including the Entity Aggregation layer itself. An
entity reference is one such mechanism.

● Data operation. Data operation includes the manner in which transactional
operations are performed on the data. This includes Create, Read, Update, and
Delete (CRUD) actions, and it includes any compensatory measures thereof. For
more information about this consideration, see “Inquiry vs. Update” later in this
pattern.

● Data governance. Data governance involves establishing ownership of ongo-
ing maintenance and establishing change management processes to direct the
ongoing maintenance of entities and their data elements. These processes also
help refine the integration requirements by rationalizing the number of data
repositories, if necessary.

Each of these issues is outlined in the following sections.

Entity Representation

There are several approaches that could be adopted to defining the enterprise-wide
representation of the entity.

Entity representations may have to be custom developed to address the specific
needs of the enterprise as whole. This may be the only viable option under the
following circumstances:
● Existing representations within the enterprise represent only a small portion of

the enterprise-wide representation of the entity and are not readily extensible to
accommodate the needs of the enterprise.

● Characteristics that are unique to the enterprise cannot be properly reflected
within any external representations of the entity.

Integration Patterns68

However, custom representations are not always a financially viable option because
they require a regeneration of the existing entities and their relationships.

Instead, a representation that is foreign to all the applications within the enterprise
may be a viable approach as long as it still conforms to the core business processes.
You could also use current representations that are specific to certain industries for
this purpose. In other words, embracing an external representation does not neces-
sarily entail the additional expense of procuring an application.

In other cases, you could choose the representation supported by one of the
existing applications within the enterprise. ERP and CRM applications that support
and drive the business processes for the enterprise are prime candidates for this
approach.

While Entity Aggregation is all about having a single view of entities across the
enterprise, entity representations within this layer might have to be adjusted to
represent the nuances of individual business units. This is especially true for large
international conglomerates that have been forced into being a logical enterprise
through acquisitions and mergers of other enterprises that operate as autonomous
business units.

Reaching a consensus on the representation within any one of these units can be a
challenge. Therefore, reaching a similar consensus across all of these units can be an
ambitious goal, if not an impossible one. In these cases, multiple representations (one
for each operating unit) might be a more realistic and practical approach.

Schema Reconciliation

Even if the enterprise reaches consensus on the entity representation, the representa-
tion within each instance of the entity may still vary across different repositories.
Different repositories can hold different schemas for the same entity. The Entity
Aggregation layer must harmonize the subtle differences between these schemas in
the following ways:
● Entity Aggregation must account for the representation of all entities held within

the different repositories.
● Entity Aggregation must define a unified schema for all entities which represents

a logical consolidation of all the views.
● Entity Aggregation must effect transformations between each repository’s schema

and the unified schema.

Note: Sometimes, the term canonical schema is used instead of unified view. This pattern uses
the latter term, because canonical schema implies that all the representations share the same
schema, which is not always necessary.

Chapter 3: Integrating Layer 69

Figure 3.8 shows an example of customer information that is represented in more
than one repository. Although the contact repository defines the contact information
for a customer, the financial repository defines the credit card details for the cus-
tomer. The Entity Aggregation layer defines a unified schema that contains all the
attributes required for representing the customer entity. The Entity Aggregation layer
also defines the mapping between the unified schema and those schemas held by the
individual repositories.

Customer

Contact Repository

Back-End
Repositories

Entity Aggregation
Layer

Customer ID
Last Name
First Name
Address
SocSecID
Email
PhoneNum

Customer

Financial Repository

Financial Mapping

Contact Mapping

Customer ID
Card Type
Card Num
Exp Date

Customer

Customer ID
Last Name
First Name
Address
SocSecID
Email
PhoneNum
Card Type
Card Num
Exp Date

Figure 3.8
Schema reconciliation

Integration Patterns70

References

Entity reference is the information required to uniquely identify an entity. Repositories
that store instances of a given entity tend to maintain their own unique identifiers for
their respective instances to ensure they have full control over internal data consis-
tency. The Entity Aggregation layer should account for this and should be able to map
references that point to a single instance. Apart from references that are held by other
repositories, the Entity Aggregation layer might create its own reference for an entity
instance. The idea here is that the Entity Aggregation layer maintains its own reference
to an entity instance and maps this reference to the individual repository’s reference.
This reduces the coupling between the Entity Aggregation layer and individual reposi-
tories because new repositories can be introduced without affecting the Entity Aggrega-
tion layer’s unified view.

Master Reference

Entity Aggregation layer uniquely identifies an entity instance by using a reference
known as a master reference. A master reference could be:
● A reference held by one of the repositories. For example, you can designate the

reference held by a CRM repository as the master reference for a customer entity.
● A new reference that the Entity Aggregation layer creates for the entity instance

and maps to other references held by different repositories.

Inquiry vs. Update

The technological solutions available today are more robust for inquiring than they
are for updating data in the back-end repositories. Updating has the inherent chal-
lenges of maintaining the synchrony of data across repositories.

Note: In the context of this pattern, deleting an entity is considered to be a form of update.

An update request usually contains two elements: a reference that uniquely identi-
fies the instance and an update payload that contains information about the updated
attributes and their respective values.

The Entity Aggregation layer uses entity references across all the repositories to
perform the inquiries and updates. Although the Entity Aggregation layer maintains
the entity reference, the references that are unique to each repository have to be
determined before the update is made to the back-end repositories. For more infor-
mation, see “References.”

Compensation

The process of performing a compensating action can be manual or automatic.
Business process owners have a strong influence on the manner in which compen-
sating actions should be implemented.

Chapter 3: Integrating Layer 71

If one of the systems fails to handle the update request, the Entity Aggregation layer
should be able to handle this business exception by using one of the following
approaches:
● Request a rollback on all the other updates that have already been made.
● Run a compensating transaction to reverse the effects of the successful updates

that were already completed.

Ownership

Although the Entity Aggregation layer represents the unified view of an entity, it is
certainly possible to store different fragments of an entity in different systems.
Therefore, the system of record is not the same for all fragments.

For example, employee information could be distributed across the payroll and
benefits repositories. It is also possible that some information may be owned by
multiple systems. For example, attributes such as LastName and FirstName are
probably represented in more than one system. In this case, the Entity Aggregation
layer should designate a system as an authoritative source for attributes that are
represented in more than one system.

This has several implications for the behavior that occurs during inquiries and
updates. Attributes will always be fetched from the authoritative source. If the same
attribute is represented by another system, those values will be ignored by the Entity
Aggregation layer. Updates, on the other hand, have different semantics. When the
Entity Aggregation layer receives an update request for an entity, the updates should
be propagated to all the constituent systems of record.

Change Management

Processes have to be put in place to coordinate changes across all the repositories
and the Entity Aggregation layer. In addition to ensuring active participation from the
different business process owners and information technology (IT) representatives
for each repository, a key step in this process is to ensure that the integrity of the
enterprise-wide representation of the entity is not compromised.

Three types of changes to the underlying repositories can directly and significantly
affect the Entity Aggregation layer:
● Configuration. The repository configuration could undergo changes. This would

include redeployment of the repository to a new physical location or to a differ-
ent server. Configuration parameters such as the scheduled downtime for mainte-
nance could affect connectivity to the Entity Aggregation layer as well. In an ideal
environment, only the Entity Aggregation layer is directly affected by this change
because connections between repositories usually do not exist. However, the
other repositories could be indirectly affected by these changes through their
connectivity to the Entity Aggregation layer.

Integration Patterns72

● Data model. The data model could undergo changes within the repository. The
enterprise-wide representation of entities supported by the Entity Aggregation
layer is significantly affected by these changes. Other repositories that store
information in the same domain are affected also.

● Data values. Changes to transactional data in a repository have the least impact,
if any, on the Entity Aggregation layer and on other repositories. However,
changes to reference data that spans repositories or to reference data that is used
by the Entity Aggregation layer have a significant impact.

Example
Figure 3.9 shows a scenario where the Stock Trade entity is partitioned across
systems based on geographical constraints. Applications that analyze the trends in a
given industry require a complete view of the trades across geographical boundaries
and systems.

The Entity Aggregation layer consolidates the view across geographical boundaries
so that the partitioning of data across the repositories is transparent to the applica-
tions that perform trends analysis.

U.S. Trades

Global Trades

Entity Aggregation Layer

Stock Trends
Analysis Application

EMEA Trades

Figure 3.9
Stock trades scenario

Chapter 3: Integrating Layer 73

Resulting Context
Entity Aggregation has the following benefits and liabilities:

Benefits
● Consensus. Entity Aggregation forces consensus across business and functional

units on the manner in which entities are represented at an enterprise-level.
● Single view. Entity Aggregation enables a single view of key business entities such

as Customer, Account, Product, and (in the case of healthcare) Patient.
● Improved access to information. An enterprise-level view of key business

entities enables applications to have immediate access to the information perti-
nent to these entities. Access to information is not constrained by the repositories
that house them.

● Reduced semantic dissonance. Entity Aggregation eliminates semantic dissonance
across existing applications that work on the same data elements from multiple
repositories.

● Central location. Entity Aggregation supports a central location for validating
data that is populated into the repositories.

● Reduced change impact. Entity Aggregation reduces the potential impact of
changes to the back-end repositories. Depending on the nature of the changes
being made, the Entity Aggregation layer can continue to serve the needs of the
applications while these changes are in progress.

Liabilities
● Additional layer. Entity Aggregation introduces an additional architectural layer

that could adversely affect end-to-end performance of the solution.
● Consensus. Entity Aggregation requires consensus across business units on the

definition of the enterprise-wide representation of entities.
● Reengineering applications. Existing applications that are tightly coupled to a

given set of repositories would have to be reengineered to accommodate the new
architectural layer. Additionally, it is not always possible to reengineer some
applications — especially packaged solutions.

Integration Patterns74

Testing Considerations
The following testing considerations apply when adding an Entity Aggregation layer:
● Depending on the degree to which the Entity Aggregation layer is adopted, all

valid combinations of applications and their back-end repositories would have to
be regression tested.

● Existing test cases may have to be revised to reflect the business rules being
exercised in the Entity Aggregation layer.

● Test data available within a given repository must be repurposed to accommo-
date the enterprise-wide representation of entities in the Entity Aggregation layer.

● Simultaneous connectivity from the Entity Aggregation layer to all the back-end
repositories has to be tested. In the absence of Entity Aggregation, connectivity
would have been a requirement only between the various application-
repository pairs.

Security Considerations
The Entity Aggregation layer is effective at providing access to information that is
pertinent to business entities at an enterprise level. However, applications might be
able to obtain access to repositories that may not have been available prior to the
introduction of the Entity Aggregation layer. Even though applications might still
operate on the same data elements, they might access new repositories through the
Entity Aggregation layer. Access privileges for various roles within these applications
have to be managed at the Entity Aggregation layer.

Operational Considerations
There are two separate operational aspects to the Entity Aggregation layer:
● The Entity Aggregation layer has to be operated and monitored as a repository

that houses the enterprise-wide representation of entities. Less maintenance of
the underlying data in the Entity Aggregation layer is required for the straight-
through processing solution than for the replication solution. In the replication
solution, the operational aspects that apply to the data in the repositories also
apply to the Entity Aggregation layer. In either case, similar operational aspects
apply if the Entity Aggregation layer maintains the entity references that are
external to all the repositories.

● Network connectivity between the applications and the Entity Aggregation layer
and network connectivity between the Entity Aggregation layer and the reposito-
ries are critical components of the overall solution. The straight-through process-
ing solution, in particular, requires concurrent connectivity to all the repositories.

Chapter 3: Integrating Layer 75

Known Uses
Enterprise Information Integration is another industry term that is used to identify
the enterprise-wide representation of a logical data model that houses the key
business entities that have bidirectional physical connections to the back-end reposi-
tories where data is stored.

Some companies provide a logical metadata modeling approach that allows enter-
prises to reuse models and data for real-time aggregation and caching with update
synchronization. All these companies initially provided query-only capability, but
they are slowly beginning to support bidirectional transfer of data between the
Entity Aggregation layer and the back-end repositories.

Related Patterns
Given that the Entity Aggregation layer provides a view of data that is distributed
across repositories, Data Integration is closely related to this pattern.

Integration Patterns76

Process Integration

Context
You have multiple disparate systems, and each of those systems is part of an overall
business function. For example, a business function such as processing an incoming
order may require the participation of the customer management system, the inven-
tory system, the shipping system, and one or more financial systems. The business
could operate more efficiently if the systems could be integrated so that the business
function could be completed automatically.

Problem
How do you coordinate the execution of a long-running business function that spans
multiple disparate applications?

Forces
To solve this problem, you have to balance the following considerations and forces:
● To implement the overall business function, you could have one system directly

call the system that performs the next step, as defined in the business function.
However, this approach encodes the sequence of interactions into the individual
systems. Creating this dependency in each system makes changing the sequence
more error-prone and also limits your ability to reuse systems in multiple
contexts.

● The change and maintenance cycle of a complex business function is likely to be
different from the change cycle of the individual business functions that reside
inside the applications. For example, financial functions such as computing sales
tax or posting revenues are typically subject to infrequent, but mandatory, legal
or regulatory changes. In contrast, the overall execution of a business function
might be changed much more frequently based on business and marketing
strategies.

● Complex business functions can often take days or weeks to complete.
However, most functions that are available in existing applications are synchro-
nous; that is, the caller has to wait while the application performs the requested
function. This type of synchronous interaction is not well-suited to long-running
business functions because one application could spend a significant amount of
time waiting for another application to complete the requested function.

● A longer time span of execution increases the likelihood that an application might
fail during the execution of the business function. If one application fails, por-
tions of the overall function may have to be reverted so that all systems can be
returned to a consistent state.

Chapter 3: Integrating Layer 77

● Because a complex business function can take a long time to execute, it is likely
that a new request will arrive while the previous one is still being serviced. To
improve response times, the solution should be able to handle multiple concur-
rent executions of the function. Many applications are not designed for this type
of concurrent execution.

● Modeling business processes inside a software component can be difficult if the
processes are not well understood or documented. In many businesses, users
make decisions based on experience rather than documented business rules.

Solution
Define a business process model that describes the individual steps that make up the
complex business function. Create a separate process manager component that can
interpret multiple concurrent instances of this model and that can interact with the
existing applications to perform the individual steps of the process.

Process Manager

Process Model

Application Application Application
Figure 3.10
Process Integration with a process manager component directing applications according to a process
model

Integration Patterns78

For each incoming request for the business function, the process manager creates a
new process instance based on the process model. Each instance maintains the
current state of the process plus any additional information that is needed for the
business process to continue. Creating individual process instances allows the
process manager to execute many business functions in parallel.

After one application completes its business function, the process manager deter-
mines which function to execute next based on the state of the process instance.
Therefore, each participating application can operate individually without any
knowledge of the sequence of steps defined in the process model.

The process manager maintains this state even if a specific application is temporarily
unavailable. As a result, the overall execution of the business function is not stopped
if a specific application is temporarily unavailable. Instead, the business function
can continue after the application is back online.

The process manager interacts with the individual applications by way of Data
Integration, Functional Integration, or Presentation Integration, depending on the nature
of the interaction and the architecture of the application. Therefore, Process Integra-
tion resembles a composite application built on top of existing business functions that
reside in existing applications.

Process Integration provides a clean separation between the definition of the process
in the process model, the execution of the process in the process manager, and the
implementation of the individual functions in the applications. This separation
allows the application functions to be reused in many different
processes.

The separation of process model and process manager also allows the process
manager to be domain independent because it only has to interpret the basic con-
structs that form a process model. These constructs manage the parallel execution of
multiple steps, and they typically comprise sequences, decision points, forks, and
joins. Using these constructs, enterprises can create a model at the business level
without having to understand the internals of the process manager or the individual
applications.

Process Integration involves collaboration between the components that are described
in Table 3.2.

Chapter 3: Integrating Layer 79

Table 3.2: Process Integration Components

Component Responsibilities Collaborations

Process model Defines the sequence of steps The process manager interprets the
that make up the business process model in separate process
instances. function.

Process manager – Manages multiple instances – Interprets the process model.
of the process model and their – Directs applications through steps
current state. according to the process model.
– Maps the steps defined in the
process model to the business
functions that reside in the
applications.

Application Executes a specific business None.
function.

The process manager typically exposes an external interface so that the business
process defined by the process model can be initiated by a user, by business part-
ners, or by another application. Correspondingly, the interface can take the form of a
user interface or the form of an application programming interface (API) that can be
made available to other applications by using Functional Integration, making it
essentially indistinguishable from a simple application. Therefore, this business
process can be used as part of another overarching business process that is defined
using a higher-level process model. As a result, process managers and applications
can be linked in a recursive fashion. Figure 3.11 shows a hierarchy of process manag-
ers and applications.

Integration Patterns80

Process Manager

Process Manager

Process Manager

Process Manager

Figure 3.11
Hierarchy of process managers and applications

Implementation Details
At first glance, the process manager resembles a traditional application that
implements business logic. The only difference is that the process manager takes
advantage of functions implemented in existing systems. However, the fact that
the execution of the business function can take hours or days places specific
requirements on the process manager. Specifically, a process manager typically
must be able to:
● Correlate messages from external systems with the instance of the business

process they are intended for.
● Support long-running transactions.
● Handle exceptions raised by individual steps in the business process, and take

appropriate action in the event of these exceptions.
● Provide compensation logic to undo actions committed earlier in the business

process if a failure occurs in the business process.

Chapter 3: Integrating Layer 81

Correlating Messages and Process Instances

Orchestration of processes involves messages sent to external systems and received
from external systems. These external systems implement the actions that make up
the business process. At any time, there are likely to be many instances of the
business process running at once, and any message that is received must be
correlated with the correct instance of the business process that it was intended for.

Transactions

Transactions provide encapsulation of individual atomic actions. A transaction is
an action or a series of actions that transform a system from one consistent state
to another. When dealing with long-running business functions, it is useful to
distinguish between two kinds of transactions: atomic transactions and long-
running transactions. When you use Process Integration, your design must support
both kinds of transactions.

Atomic transactions are the same kind of transactions as those found in databases.
They adhere to a set of properties, commonly called the Atomicity, Consistency,
Isolation, and Durability (ACID) properties. This type of transaction requires
transactional resources, such as a database update or the sending of a message, that
permit you to automatically roll back changes if the transaction is stopped. Atomic
transactions are suited only for short-running portions of the overall process.

Long-running transactions are used when one or more of the following conditions
are true:
● The transactions must occur over an extended time period, and the transaction

cannot be supported by atomic transactions.
● The actions involved in the transaction are not themselves transactional, but you

want to group these actions into more granular atomic units of work that can
exist across time, organizations, and applications.

● Other transactions are grouped within a transaction. Both atomic and long-
running transactions may be grouped in a long-running transaction, but other
transactions cannot be grouped in an atomic transaction.

For long-running transactions, you must allow the user to stop the process mid-
stream. When the process stops, the system will persist data regarding the com-
pleted actions and the intermediate states. After the process restarts, the application
will reload this intermediate state to allow the process to continue from the point
where it stopped.

Integration Patterns82

Handling Exceptions and Compensating Transactions

When external applications are invoked to implement a specific action, a variety of
errors can occur. These errors cause error codes to be sent in messages that are
returned by the external systems, and these errors cause exceptions to be thrown.

Status code errors can be handled by conditional logic inside the process model. This
approach is natural, but can lead to an unwieldy control flow if all possible error
conditions have to be covered. Errors in the form of exceptions can be handled by
exception handlers attached to the scope in which the exception occurred. This scope
can be the entire process model, or it can be a specific subsection. If an exception
occurs within this scope, the exception handler is automatically invoked without the
process designer having to explicitly model each individual error condition.

Some of these errors require the application to revert the transaction state to the state
before the long-running transaction started. When these errors occur, the application
issues a compensating transaction.

Example
Process Integration is commonly used to streamline the execution of a sequence of
tasks. One popular application in the financial industry is the notion of straight-
through processing (STP). STP describes the automated end-to-end processing of
transactions such as trades from inception to settlement.

As described in the solution section, Process Integration can also be used to provide an
aggregate service to other applications. For example, consider a service that makes
concurrent updates to multiple data sources as defined in Entity Aggregation. The
implementation of such a service requires Process Integration internally to manage
transactional integrity, partial failure situations, and compensation actions.

Process Integration is such a common need that standards committees and working
groups are defining standard languages to describe process models. Examples of
such languages are:
● Business Process Modeling Language (BPML)
● Business Process Execution Language (BPEL)
● Web Services Choreography Interface (WSCI)

Resulting Context
Process Integration results in the following benefits and liabilities:

Chapter 3: Integrating Layer 83

Benefits
● Maintainability. Creating a separate process integration layer allows users to

define and maintain the business process independent from the implementation
of the individual functions. This increases maintainability and reduces the skill
set requirements for the personnel who maintain the process definition.

● Reusability. Because the existing applications are not dependent on the process
management layer, the functions inside these applications can be reused in
multiple process definitions.

● Flexibility. The process manager can support a variety of configurations that
would be difficult to implement in many traditional programming models. For
example, parallel execution of multiple tasks, synchronization points, timeouts,
and escalations are all configurations that would be difficult to implement in a
traditional programming model. Supporting a variety of configurations gives the
process manager the flexibility to adapt to many different business requirements.

● Reporting capability. Because the process instances are maintained centrally, it
becomes feasible to extract statistical information that spans multiple process
steps and process instances. Such reports can provide answers to questions such
as “How long does it take on average to fulfill an order?” or “How many orders
are on hold due to insufficient inventory?” This type of reporting can be instru-
mental in making informed business decisions.

Liabilities
● Potential bottleneck. Managing a large number of process instances in a central

process manager component can present a run-time bottleneck. However, in most
cases, the parallel execution of multiple process manager instances can alleviate
this threat while maintaining the benefit of central configurability.

● Temptation to overuse. This liability is the flip side of the flexibility inherent in
Process Integration solutions. Because Process Integration can be used to solve
nearly any integration problem, some people take this as an indication that each
and every integration problem should be solved using Process Integration. This is
not true. Using Process Integration frivolously can lead to overarchitected and
sometimes inefficient solutions — for example, in cases where a Message Broker
would be perfectly appropriate to address the requirements.

● Complexity. A generic process manager can be difficult to build because it has to
deal with concurrency, checkpoints, and recoverability. For these reasons, a
commercial process manager should be used whenever possible. If a commercial
component is not available, the cost of building the process manager should be
carefully weighed against the cost of making changes to the process model.

Integration Patterns84

Testing Considerations
Separating the process definition from the functions provided by the applications
allows you to test each function individually by creating a simple test driver
that only calls one specific function and that verifies the results, as shown in
Figure 3.12.

Application

Test Driver

Figure 3.12
Test driver

Likewise, you can test the process manager by creating placeholder implementa-
tions, or stubs, of the actual services while providing test triggers to the process
manager (see Figure 3.13).

Chapter 3: Integrating Layer 85

Process Manager

Test Stub Test Stub Test Stub

Figure 3.13
Using stubs to test the process manager

Related Patterns
For more information, see the following related patterns:
● Implementing Process Integration with BizTalk Server 2004. This pattern uses the

Global Bank scenario to show how you can use BizTalk Server 2004 to implement
Process Integration.

● Process Manager pattern [Hohpe04]. Process Manager describes the internal
function and implementation of the process manager component.

Acknowledgments
[Hohpe04] Hohpe, Gregor; Bobby Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

[Ruh01] Ruh, William. Enterprise Application Integration. A Wiley Tech Brief. Wiley,
2001.

Integration Patterns86

Implementing Process Integration with BizTalk Server 2004

Context
You are developing new solutions that reuse functionality provided by existing
applications and systems in your enterprise. The individual mechanisms to integrate
with each of these applications have already been defined, so now you use Microsoft
BizTalk Server 2004 to implement Process Integration to coordinate and manage the
overall interaction between all these systems.

Background
Global Bank is developing new banking solutions, including an electronic bill
payment system. Global Bank wants to enable customers to schedule payments from
their accounts. These scheduled payments will be batch-processed daily by the
bank’s systems.

The application to be built, which processes the customer’s scheduled payments
(Execute Scheduled Payments use case), will reuse functionality supplied by various
bank systems including the Microsoft SQL Server database, various Web services,
and the Microsoft Host Integration Server interface to the bank mainframe (see
Implementing Gateway with Host Integration Server 2004). The Execute Scheduled
Payments application will also interact with internal, external, and manual payment
systems.

Global Bank has already defined the individual integration mechanisms for each of
these applications and systems. Now Global Bank wants to use BizTalk Server 2004
orchestration to manage interactions across all the systems that constitute the
composite electronic bill payment business process.

BizTalk Server orchestration is a good choice for describing complex process models.
Orchestration is a .NET Framework language, just like C# and Microsoft Visual
Basic® .NET. Orchestration provides programming constructs such as loops, deci-
sion statements, program scope, transactions, and exception processing semantics.
Orchestrations are compiled to produce .NET Framework common language
runtime (CLR) libraries that are hosted by the BizTalk Server runtime. The BizTalk
Server runtime essentially acts as an application server for long-running business
applications.

Implementation Strategy
Global Bank developers have already implemented the individual integration
mechanisms required to interact with each of the systems that are involved in the
Execute Scheduled Payments solution. You now define a process model that de-
scribes the sequence of steps that make up the overall application. This process
model is defined and implemented as a BizTalk Server orchestration. Figure 3.14

Chapter 3: Integrating Layer 87

shows the relationship between the orchestration (the process model), the existing
systems, and the BizTalk Server runtime (the process manager).

BizTalk Server
(Process Manager)

Orchestration
(Process Model)

Application Application Application

Figure 3.14
BizTalk Server orchestration directing applications according to a process model

To develop the Execute Scheduled Payments application, you use BizTalk Orchestra-
tion Designer to define the process model. Orchestration Designer presents a visual
design and development environment that defines the process flow separately from
the implementation of the individual steps in the process. You then link each action
in the process flow with the implementation of that action. The implementation is
usually represented as an interaction with an application that is external to the
orchestration itself.

Each incoming request to execute a payment creates a new instance of the Execute
Scheduled Payments orchestration. These orchestration instances run in parallel,
maintain their own state, and maintain any additional information that is needed for
execution. The orchestration engine uses the orchestration to determine the external
applications to invoke and the sequence in which to call them. The external applica-
tions are invoked synchronously or asynchronously depending on the nature of the
interaction and the architecture of the external application. For example, an external
application is invoked synchronously when updating status information in the
database and asynchronously when sending payment requests to external systems.

Integration Patterns88

To completely model a process, an orchestration must do more than invoke each of
the external applications in sequence. The orchestration must be able to do the
following:
● Correlate messages from external systems with the instance of the business

process they are intended for.
● Support long-running application instances.
● Handle exceptions raised by individual steps in the application and take appro-

priate action when these exceptions occur.
● Provide compensation logic to undo actions committed earlier in the business

process if a failure occurs.

BizTalk Server orchestration provides functionality to support each of these require-
ments, as described in the following sections.

Correlating Messages and Process Instances
Orchestration of processes such as Execute Scheduled Payments involves messages
sent to external systems and received from external systems. These external systems
implement the actions that make up the business process. At any time, there are
likely to be many instances of the business process running at the same time. Each
instance maintains its own state, and any message that is received must be
correlated with the correct instance of the business process that it was intended for.
For example, Execute Scheduled Payments receives a payment acknowledgment
message from a payment authority to indicate that a specific payment has been
processed. For more information, see, “Step 6: Sending the Payment and Receiving
an Acknowledgment,” in the “Example” section.

To set up correlation within an orchestration, you start by defining a correlation type
that specifies one or more message properties. The combination of these properties
is guaranteed to be unique across all instances of the business process. These
properties map to fields in the outgoing and incoming messages. For example, SSN
could be a property that occurs in both the outgoing message and the incoming
message, albeit in a different location in each message.

To map the properties to fields in the outgoing message, you create an instance of
this correlation type called a correlation set. This correlation set is then initialized
(unique values are assigned to the properties in the correlation type) by specifying
this correlation set as the Initializing Correlation Set for a Send shape in the orches-
tration. This means that when a message is transmitted by way of this Send shape,
the correlation set will be initialized using the correct fields in the message (SSN, for
example).

Lastly, you configure the matching Receive shape to use this correlation set as the
Following Correlation Set. This means that when a message is sent back to the
orchestration, the message will be passed to the instance of the orchestration that
has a correlation set with properties that match the properties in the message.

Chapter 3: Integrating Layer 89

Long-Running Transactions
A long-running transaction contains persistence points that are also restart points if
a failure occurs. BizTalk Server 2004 implements transactions, compensation, and
exception handling within a Scope shape. The Scope shape supports both atomic
and long-running transactions. For more information about atomic and long-
running transactions, see “Transactions” in the Process Integration pattern.

The Execute Scheduled Payments orchestration uses long-running transactions to
handle long-lived interactions with external systems that may fail or time out. For
more information, see “Step 6: Sending the Payment and Receiving an
Acknowledgment” in the “Example” section.

Handling Exceptions and Compensating Transactions
When external applications are invoked to implement a specific action, a variety of
errors can occur. These errors may cause exceptions to be thrown. For example,
when an orchestration calls a Web service, the Web service can raise an exception
that is passed back to the BizTalk orchestration process. Exceptions are handled by
exception handlers that are attached to the scope within which the exception oc-
curred. The outermost scope in a BizTalk orchestration is that of the orchestration
itself. Additional scopes can be nested within an orchestration by using the Scope
shape.

Exception handling logic can be defined for the entire orchestration as a separate
execution flow within the Orchestration Designer. It is also possible to encapsulate
various action shapes within a Scope shape and to define an exception handling
boundary around these shapes so that the shape has its own unique exception
handling properties. An example of this is shown in “Step 4: Handling
Exceptions.”

When an error occurs, an orchestration may need to reverse the effects of transac-
tions that occurred earlier in the orchestration, and that have already been commit-
ted. To achieve this, the orchestration executes a compensation block, which
specifies how the transaction can be reversed. Compensation also reverses actions
that are not transactional, such as sending a message.

For example, an orchestration contains a scope with an atomic transaction that
commits and writes changes to a database. This first scope is followed by another
scope with a long-running transaction. When an error occurs in this second scope,
the error aborts the long-running transaction and then starts exception handling
logic for the long-running transaction. However, the effects of the first atomic
transaction cannot be rolled back, because they have already been committed.

Integration Patterns90

Instead, a compensating transaction (series of actions which compensate for the
original transaction) is required to remove the changes from the database.

Implementing the Execute Scheduled Payments Orchestration
The following steps form the general guidelines for implementing and deploying an
orchestration like the Execute Scheduled Payments orchestration:
1. Designing the orchestration. You use BizTalk Orchestration Designer to lay out

the sequence of actions that define the Execute Scheduled Payments application.
No implementation is specified at this stage.

2. Designing the schemas used by the orchestration. You use the BizTalk Schema
Editor in Visual Studio .NET to define schemas for all messages received or
sent by the orchestration so that the message can be read or written by the
orchestration.

3. Adding implementation to actions in the orchestration. You use BizTalk Orches-
tration Designer to link the steps in the orchestration with the implementation of
those steps. This may involve sending and receiving messages by using Send and
Receive shapes to and from external systems. Or, it may involve sending and
receiving messages by specifying small code segments in Expression shapes.

4. Adding error and exception handling. You add error and exception handling by
using Decision shapes or by using Exception blocks that are attached to Scope
shapes.

5. Building and deploying the orchestration. An orchestration has to be deployed
to the global assembly cache and to the BizTalk Management database before it
can be executed. The orchestration is deployed by using the BizTalk Deployment
Wizard.

6. Setting up send and receive ports. Before the orchestration can be started, you
use BizTalk Explorer from within Visual Studio .NET to create BizTalk receive
and send ports, and to bind them to the logical port definitions referenced by the
orchestration.

7. Setting up the receive adapter. The SQL Server adapter is configured to periodi-
cally execute a stored procedure that returns XML records to the orchestration
based on a specified query. The SQL Server Adapter is typically configured by
using the BizTalk Explorer from within Visual Studio .NET.

8. Starting the orchestration. Starting the orchestration causes it to actively listen to
incoming messages. The service is now live and executes an instance of the
orchestration for each message that is delivered by the SQL Server Adapter.

Chapter 3: Integrating Layer 91

Example
This example follows a Global Bank developer through the process of creating the
Execute Scheduled Payments scenario and describes the specific configurations that
are necessary to meet Global Bank’s requirements.

Send Payment
to Payee

Set Payment
Error Status

Receive Payment
Acknowledgment

Set Payment
Complete Status

Check Account
Credit and Debit

Payment

Yes No

End

End

Debit
Successful?

Payment Request

Figure 3.15
High-level view of the Execute Scheduled Payments business process

Integration Patterns92

To implement the Execute Scheduled Payments process, the Global Bank developer
starts by designing the process model that describes the solution. Figure 3.15 shows
a high-level sketch of the process flow for this solution. The developer uses this
process model design to develop the Execute Scheduled Payments orchestration in
the BizTalk Server Orchestration Designer. Initially, the developer just specifies the
process flow in the orchestration and then links the actions in the orchestration to
the implementation of those actions. For example, actions may be implemented by a
call to an external Web method.

The following steps describe in detail how the Execute Scheduled Payments orches-
tration implements the process model. They also describe how the completed
orchestration is compiled and deployed in the Global Bank environment.

Note: Although the following steps adhere to the general implementation and deployment
guidelines presented earlier in “Implementing the Execute Scheduled Payments Orchestration,”
the order and number of the steps vary slightly. The sample steps that follow reflect both the
order in which the developer creates the orchestration in BizTalk Server and the order in which
BizTalk Server presents the orchestration in the user interface. The developer also performs
some steps such as error handling multiple times, according to accepted practices.

Step 1: Receiving a Payment Request
The first shape in the orchestration is a Receive shape, which receives payment
messages (requests). This Receive shape is linked to an orchestration port called
ReceivePaymentRequest (see Figure 3.16).

Figure 3.16
The first stage in the orchestration is receiving the Payment message

Whenever a payment request message is received, a new instance of the orchestra-
tion is created and the message is received by this port. For information about how
these messages are generated, see “Step 10: Setting Up the SQL Server Adapter.”

Chapter 3: Integrating Layer 93

Step 2: Designing the Payment Message Schema
The developer needs to specify an XML schema that describes the payment message
so that it can be processed by the orchestration. Normally, a developer would use
the BizTalk Schema Editor to design a schema. However, in this case, the payment
messages are generated by using a SQL query to create an XML record set (see “Step
10: Setting Up the SQL Server Adapter”). The developer can use the SQL Server
Adapter Wizard to automatically generate a schema that is appropriate for this
query. Figure 3.17 shows the Global Bank payment schema as viewed in the BizTalk
Schema Editor.

Figure 3.17
The generated payment schema in the BizTalk Schema Editor

Integration Patterns94

When the SQL query is executed, multiple payment records are typically returned.
The payment records must be split into separate records so that each payment can
be handled individually. The developer uses the BizTalk Schema Editor to create
another schema that is known as an envelope schema. The envelope schema repre-
sents the set of payments. When the receive port is configured to use these schemas,
the XML recordset that is generated is automatically split into individual XML
records.

Step 3: Calling a Web Service to Debit the Account
Next, the customer’s account is checked to ensure that it has sufficient funds to pay
the bill. The appropriate amount is then debited from the account. The functionality
for these steps exists on the mainframe and has been exposed as a Web service
through Host Integration Server (see Implementing Gateway with Host Integration
Server 2004).

To implement this part of the orchestration, the developer uses the Add Web Refer-
ence Wizard to add a Web reference to the project, just as he or she would add a Web
reference to any other .NET Framework application. Adding the Web reference
creates an orchestration port that is bound to the Web service. Figure 3.18 shows the
results of adding a Web reference to an orchestration; the DebitPort is the port
bound to the Web service, and CheckBalanceAndDebit and CreditAccount repre-
sent some of the Web methods that this Web service
implements.

In addition, the Add Web Reference Wizard generates XML schemas that represent
the request-response messages for each of the Web methods exposed by the Web
service. The Add Web Reference Wizard also creates corresponding orchestration
message types. The developer then creates instances of the orchestration message
types CheckBalanceAndDebit_request and CheckBalanceAndDebit_response. These
instances are called DebitRequest and DebitResponse respectively.

Chapter 3: Integrating Layer 95

Figure 3.18
Preparing and sending a message to a Web method

The DebitRequest message is initialized using a Transform shape called
TransformPayment2DebitRequest (see Figure 3.19). This shape applies an Exten-
sible Stylesheet Language for Transformations (XSLT) transformation to the incom-
ing Payment message and initializes the DebitRequest message.

The DebitRequest message is then sent to the Web method CheckBalanceAndDebit
by the SendDebitRequest shape, which ensures the account has sufficient funds.
The appropriate amount is then debited from the account. The Web method returns
the DebitResponse message to the ReceiveDebitResponse shape. This message has
fields that contain the new account balance and the status of the debit action.

Integration Patterns96

Step 4: Handling Exceptions
Under some circumstances, the CheckBalanceAndDebit Web method may
return an exception. For example, an exception is generated if a request to
CheckBalanceAndDebit specifies an invalid account number. The orchestration
must handle this exception by providing an exception handler that specifies an
appropriate action under these conditions.

Exception handling can be set at various levels of scope within the orchestration. In
this instance, the Web method request and response are enclosed by a Scope shape.
The Scope shape has specific exception handling code attached (see Catch SOAP
Exception in Figure 3.18).

In this example, the exception handling is simple. The code in the Set Error Status
Expression shape sets the value of the errorStatus orchestration variable to 1, to
indicate that a Web service exception has occurred. This value is checked later in the
orchestration (see “Step 5: Checking for Errors”).

Note: This example assumes that if an exception is generated, no debit occurs. Therefore, no
compensation logic is required in this case. For an example that requires compensation logic,
see “Step 7: Compensating for Payment Errors.”

Step 5: Checking for Errors
Step 4 described how the Web method can throw exceptions, and how these excep-
tions are caught and handled. Additionally, the Web method response message
(DebitResponse) returns a status code that may also indicate an error such as insuffi-
cient funds in the account.

Exceptions and error status messages differ in their recoverability. An exception is
reserved for situations where a fundamental error has occurred that is not likely to
be recoverable. Step 4 provides an example of an exception being thrown for an
invalid account number. This situation may indicate a significant problem (a data
error) that is not likely to be recoverable.

An error status message is reserved for an error status that is returned by a Web
method and that indicates a business error occurred where the business error is
likely to be recoverable. An example of a business error that is likely to be recover-
able is an attempt to execute a payment when there are insufficient funds in the
account.

When the Web method returns a response message, the response message contains
a Boolean status field. The orchestration checks the value of this field to determine
if the Web method call was successful. In this case, the Web method call is successful
if the appropriate amount was debited from the account. To check the value of the
field, a Decide shape is used to test the value of the status field as shown in Figure
3.19.

Chapter 3: Integrating Layer 97

Figure 3.19
Checking the status in the Web method response

The following is the expression in the Decide shape.

(DebitResponse(ExecutePaymentSchemas.success) == true) && (errorNo == 0)

Notice that the Decide shape also checks the value of the global orchestration
variable, errorStatus, which is set to 1 if an exception occurs. Assuming that both of
these conditions are met, no error has occurred, so the orchestration proceeds to
“Step 6: Sending the Payment and Receiving an Acknowledgment.”

If either of the conditions is not met, an error occurs, and the orchestration writes
status information back to the database. Specifically, the orchestration writes status
information to the Status field of the appropriate record in the Payment table. The
orchestration then terminates by using the Terminate shape. The Terminate shape
sets an error message that which appears in the operations view of the BizTalk
Server Health and Activity Tracking (HAT) console.

Step 6: Sending the Payment and Receiving an Acknowledgment
After the account has been checked for sufficient funds and the funds have been
debited, a payment message is sent to the appropriate payment authority based on
the value that is specified in the fulfillmentTypeId field in the payment. To simplify
this process and to avoid having to change the Execute Scheduled Payments busi-
ness process whenever the payment authorities make changes, the payment message

Integration Patterns98

is sent to a Message Broker. Message Broker is implemented with BizTalk Server also,
For additional information, see Implementing Message Broker with BizTalk Server 2004.

Message Broker selects the appropriate payment authority based on the
fulfillmentTypeId field, transforms the message to the appropriate format for that
payment authority, and then sends the message. This series of events is shown in
Figure 3.20.

Figure 3.20
Sending the payment request and receiving a response

After the payment message is sent to the payment authority through the Message
Broker, the payment authority sends an acknowledgement back to the
ReceivePaymentResponse port. When these acknowledgement responses arrive,
they need to be correlated to the correct instance of the payment orchestration for
which they are intended.

To correlate the response message with the orchestration instance, the developer
creates a correlation type that specifies certain fields in the message. These fields are
guaranteed to be unique across all instances of the orchestration; this example uses
the PaymentId field. The developer creates an instance of this correlation type called
a correlation set. The correlation set is be initialized with the actual value of the
PaymentId from the PaymentRequest message when that message is sent out the
SendPaymentRequest orchestration port. Lastly, the developer configures the
Receive Payee Response shape to wait for an acknowledgment message that
matches this correlation set.

Chapter 3: Integrating Layer 99

Now, when the payment authority sends an acknowledgment back, the acknowledg-
ment includes the PaymentId. The BizTalk orchestration engine automatically passes
the acknowledgment to the instance of the ReceivePaymentResponse port with a
correlation set that equates to this PaymentId.

Step 7: Compensating for Payment Errors
At this stage in the orchestration, the following errors could have occurred:
● No response was received from the payment authority. This error could occur

either because the payment authority never received the Payment message or
because of some fault with the payment authority system.

● The response indicated that payment could not be processed. This error could
occur for a number of reasons, such as invalid payee details or incorrect payment
details.

Exceptions and errors are handled in the same way as in steps 4 and 5. One or more
exception handlers catch exceptions, and a Decide shape checks the status fields in
the response messages.

Note: The Send Payment Request Tx scope shape can have a timeout attached so that if no
response is received within a certain time, the orchestration automatically generates an
exception.

Compensation processing is also needed at this point. Compensation processing
reverses the effects of earlier transactions that have occurred in the business process.
In this example, the customer account is debited before the payment request is sent
to the payment authority. It is not possible to roll back this transaction because it has
already been committed and the money has been deducted from the customer’s
account balance. Because the bill has not been paid, the compensation processing
must reverse the effects of this transaction by crediting the money back to the
account.

Integration Patterns100

Figure 3.21
Compensation logic for failed payments

Figure 3.21 shows how the compensation is added to the Scope shape that sends the
payment request message. The compensation logic transforms the payment message
to create a Web method request that can be sent to the CreditAccount Web method.

Note: A real-world scenario would require additional error handling around the compensation
code, but this has been excluded in this example for simplicity.

Step 8: Deploying the Orchestration
The orchestration, schemas, and maps now must be compiled to a .NET Framework
assembly, and then the assembly must be deployed to the BizTalk Server Configura-
tion database and to the global assembly cache. To deploy to the global assembly
cache, the assembly must be signed with a strong name.

Before building the assembly, create a key file by using the following command at
the command prompt.

>sn –k ExecutePayment.snk

Chapter 3: Integrating Layer 101

Copy the file to the project folder, and then enter the file name in the Assembly Key
File name property in the project properties. Next, build and deploy the solution.

Note: The developer can also use the scripts that ship with the BizTalk Server 2004 Software
Development Kit (SDK) to perform these actions.

Step 9: Setting Up Send and Receive Ports
As well as the two sets of SOAP ports that are automatically negated when the
orchestration is deployed, the orchestration has the following ports:
● ReceivePaymentRequest. This port receives messages from the SQL Server

Adapter and initiates a new instance of the orchestration for each message that is
received.

● SendPaymentRequest. This port sends the payment message to the Message
Broker. The Message Broker then sends it to the payment authority.

● ReceivePaymentResponse. This port receives a payment response from the
payment authority.

A physical BizTalk receive or send port is created for each of these and is bound to
the appropriate orchestration port. The developer uses BizTalk Explorer inside
Visual Studio .NET to create these ports. After the physical ports are set up, the
orchestration is bound to these ports in BizTalk Explorer. The developer can also use
the BTSdeploy command line utility and a binding file. The binding file is created by
using the Export BizTalk assembly binding to file option in BizTalk Deployment
Wizard to bind ports.

Note: The ReceivePaymentRequest port is configured to use the SQL Server Adapter to
periodically execute a SQL query. This is covered in more detail in the next section, “Step 10:
Setting Up the SQL Server Adapter.”

Step 10: Setting Up the SQL Server Adapter
In this step, the developer creates a BizTalk Server receive port that is configured
with the SQL Server Adapter. The SQL Server Adapter is configured to periodically
execute a query that returns all payments to be processed as an XML recordset.
Figure 3.22 shows how the SQL Server Adapter is configured to periodically call this
query and to return the individual XML records.

Integration Patterns102

Figure 3.22
Configuring the SQL Server receive adapter

The following query returns all payments that need to be run now as an XML
recordset that is based on scheduled time (payment.dateToMake) and status
(payment.status).

SELECT payment.MFtransactionId, payment.amount, payment.dateMade,
payment.dateToMake, payment.frequency, payment.status, Payee.MFPayeeId,
Payee.fulfillmentTypeId, Payee.payeeName, Payee.accountNumber,
customerAccount.customerAccountId, customerAccount.MFaccountNumber,
customer.firstName, customer.middleName, customer.lastName
FROM payment, Payee, customerAccount, customer
WHERE payment.payeeId = Payee.PayeeId
AND payment.customerAccountId=customerAccount.customerAccountId
AND customerAccount.customerId=customer.customerId
AND payment.status='sc'
AND payment.dateToMake > getdate()
FOR XML AUTO, ELEMENTS

Chapter 3: Integrating Layer 103

As described in steps 1 and 2, the record set returned is split into individual pay-
ment messages by using an XML envelope schema, and each of these messages
creates a new instance of the orchestration.

Step 11: Starting the Orchestration
Finally, the developer uses BizTalk Explorer to bind the physical receive and send
ports created in steps 9 and 10 to the ports in the orchestration. The developer then
starts the orchestration. Now, the SQL Server Adapter should execute the SQL query
every six hours, and one instance of the orchestration should be created for each
payment record that is returned. These orchestrations execute the scheduled pay-
ment as described and terminate upon completion.

Resulting Context
This implementation of Process Integration results in the following benefits and
liabilities.

Benefits
● Maintainability. Creating a separate process integration layer allows users to

define and maintain the business process independent from the implementation
of the individual functions. This increases maintainability and reduces the skill
set requirements for the personnel who maintain the process definition. BizTalk
Server orchestration supports this by defining the business process flow indepen-
dently of the binding to individual actions that make up that flow.

● Reusability. Because the existing applications are not dependent on the process
management layer, the functions inside these applications can be reused in
multiple process definitions.

● Flexibility. BizTalk orchestration supports a variety of configurations that would
be difficult to implement in many traditional programming models. For example,
BizTalk orchestration supports parallel execution of multiple tasks, synchroniza-
tion points, timeouts, and escalations. Supporting a variety of configurations
gives the process manager the flexibility to adapt to many different business
requirements.

● Reporting. Because the process instances are maintained centrally, it becomes
feasible to extract statistical information that spans multiple process steps and
process instances. Such reports can tell you the average length of time it takes to
fulfill an order and the number of orders that are on hold because of insufficient
inventory. BizTalk Server provides extensive real-time reporting, and in addition,
it uses SQL Server Analysis Services to provide comprehensive reporting across
aggregated business results.

Integration Patterns104

Liabilities
● Potential bottleneck. Managing a large number of process instances in a central

process manager component may present a run-time bottleneck. However,
BizTalk Server provides mechanisms to manage the lifetime of a large number of
concurrently running orchestrations. These mechanisms include dehydration and
rehydration of business processes that are currently blocked.

● Temptation to overuse. This liability is the flipside of the flexibility inherent in
Process Integration solutions. Because BizTalk orchestration can be used to solve
nearly any integration problem, the temptation is to apply BizTalk orchestration
to all integration problems. This can lead to overarchitected solutions and some-
times to inefficient solutions. For example, many developers might be tempted to
use Process Integration in cases where Message Broker would be
perfectly appropriate to address the requirements.

Testing Considerations
Separating the process definition from the functions provided by the applications
means that you can test each business function (service) individually by creating
simple test drivers that call the functions and verify the results. For example, you
can test the Gateway Web service by using a.NET Framework application to call the
Web service, by supplying various test parameters, and by validating the responses.

The advantage of using a commercial process manager such as BizTalk Server 2004
is that it is designed to handle complex issues that are related to throughput, thread-
ing, transactions, locking, and performance bottlenecks. This means that you only
need to perform minimal testing of these aspects of the application. This also means
that more testing effort can concentrate on the unit tests of the individual steps of
the business process and on the integration of these steps into a complete business
process.

Security Considerations
Applications built using BizTalk Server orchestration typically access multiple
business systems that encapsulate the individual steps of the business process. These
business systems often provide their own authentication mechanism, usually a user
name and password. A common requirement when using BizTalk orchestration to
access these systems is for the orchestration to supply credentials for the user who is
represented by this instance of the business process.

For example, a business process may be initiated by many users filling out a
Microsoft Office InfoPath™ form and sending it in a SOAP message to BizTalk
Server. The messages initiate a new instance of the orchestration for each user. These
instances then access business systems such as an Enterprise Resource Planning

Chapter 3: Integrating Layer 105

(ERP) system by using the user’s credentials for that system. Because it is not practi-
cal to request the credentials from the user, credentials are either encoded in the
message itself or accessed by BizTalk from a secure store.

BizTalk Server provides the enterprise single sign-on (SSO) system to store creden-
tial information. SSO provides a secured store, which is based on the user’s security
context, and stores security and state information that is pertinent to that security
context. In the earlier example, the security context of the user filling out the
InfoPath form can be used to retrieve the user name and password for the ERP
system from SSO. The orchestration can then access the ERP system on that user’s
behalf.

Operational Considerations
BizTalk Server orchestrations are bound to a BizTalk Server host. A BizTalk Server
host is an engine for messaging and orchestration. An instance of a BizTalk Server
host can be created on each BizTalk Server computer in the BizTalk Server group,
which results in the creation of a process on a computer through a Windows service.
The process then executes instances of the orchestration.

You can use the BizTalk Server Administration console to create additional hosts.
You can then bind the additional hosts to orchestrations and map to servers in the
BizTalk Server group. This allows orchestrations to be deployed to any combination
of servers in the BizTalk Server group. Therefore, the business application can be
distributed across the servers in your enterprise as needed.

Related Patterns
Process Manager [Hohpe04] describes the internal function and implementation of
the process manager component.

Acknowledgments
[Hohpe04] Hohpe, Gregor, and Bobby Woolf, Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

[Chapell03] David Chappell, Chappell & Associates. “Understanding BizTalk Server
2004.” Microsoft Corporation, 2003. Available at
http://go.microsoft.com/fwlink/?LinkId=21313.

Integration Patterns106

Portal Integration

Context
Many business functions require users to access information that resides in multiple
disparate systems. For example, a customer might call a service representative to
place a new order. However, before the service representative accepts a new order,
he or she has to verify the customer’s payment history in the accounting system to
ensure that the customer is in good standing. Switching between systems makes the
service representative’s work tedious and error-prone.

Problem
How can users efficiently perform tasks that require access to information that
resides in multiple disparate systems?

Forces
To solve this problem, you need to consider the following forces:
● It is still very common for an end user to have to manually copy information

from one system to another. This type of integration is often referred to humor-
ously as “swivel chair integration” because the user has to access multiple sys-
tems, often from multiple terminal screens. The user views the information on
one screen and then swivels to another screen to enter data based on the informa-
tion from the first screen. Obviously, this type of manual integration is very
inefficient and error prone.

● Process Integration can automate tasks that combine data and functions from
multiple systems, thereby alleviating the need for users to access multiple sys-
tems directly. However, Process Integration requires a good understanding of the
business process so that the business process can be accurately represented in a
process model. This is often not the case because users make improvised deci-
sions based on the information they see.

● Entity Aggregation allows multiple systems to share data, which enables the user
to access all required information from a single point. However, Entity Aggrega-
tion is often impossible or not economical due to strong semantic dissonance
between the individual systems and lack of a common vocabulary
between systems and people.

● Reading data from an application is generally simpler and less risky than updat-
ing information. This is especially true in cases such as Data Integration, which
directly accesses application data and bypasses the business and validation logic.

Chapter 3: Integrating Layer 107

Solution
Create a portal application that displays the information retrieved from multiple
applications in a unified user interface. The user can then perform the required tasks
based on the information displayed in this portal.

Portal Engine

Application Application Application

User Interface

Figure 3.23
Portal Integration

Portal Integration is a comparatively simple form of integration. It is popular because
it is typically much easier to implement and less intrusive than more sophisticated
types of integration, such as Process Integration. With Portal Integration, the business
process that describes the sequence of tasks does not have to be represented in a
precise process model, but instead resides in the user’s head. This enables the end
user to compensate for mismatches in semantics between the individual systems and
to make a case-by-case decision. This approach is naturally less efficient than Process

Integration Patterns108

Integration, but it gives the user flexibility and it is typically much faster to imple-
ment. In many cases, Portal Integration can be used as an intermediate solution until
business processes are better understood and can be incorporated into a process
model, thus enabling the transition to Process Integration.

The portal engine shown in Figure 3.23 interacts with the individual applications
using Data Integration, Functional Integration, or Presentation Integration. Because the
primary purpose of the portal is the display of information, Portal Integration works
particularly well with simpler forms of connectivity, such as Data Integration or
Presentation Integration.

Portal Integration comes in a variety of flavors from very simple to fairly complex.
The following list categorizes the different variants:
● Display-only. The simplest form of Portal Integration simply displays data in

different areas of the screen. Information from each application is mapped to a
rectangular area of the screen, also referred to as a pane. This display allows the
user to view information retrieved from multiple applications on a single screen.
No other functionality is provided.

● Simple post-processing. Instead of presenting the data received from each
individual system, many portals add simple rules that help the user make deci-
sions. For example, if the billing system reports that a customer payment is
overdue, the portal would list this as an exception in bold red letters at the top of
the screen instead of showing the history of all payments received. This type of
functionality helps turn raw data into useful information for the user.

● Single application interaction. This variant displays data in different areas of the
screen, but it also allows the user to issue commands to one system at a time. This
extra functionality enables the user to view information from multiple systems
and use the resulting data to perform a business function that is limited to a
single system.

● Cross-pane interactivity. In many cases, the information to be displayed in one
pane depends on a user selection in another pane. For example, a list of custom-
ers might be retrieved from the customer relationship management (CRM)
system. When the user selects a customer’s name from the list, the portal re-
trieves the selected customer’s payment history from the billing system and
displays it in a separate pane. To automate these steps, basic interaction
between different portal panes is required. This type of portal speeds up the
user’s tasks without requiring full integration between systems. However, this
type of portal does require the availability of common keys, such as a customer
identifier (ID), that function across multiple systems. With this type of portal, the
development of the interaction is often difficult to test and reuse.

The Portal Integration solution relies on interplay between the solution components
that are described in Table 3.3.

Chapter 3: Integrating Layer 109

Table 3.3: Portal Integration Solution Components

Component Responsibilities Collaborators

Portal engine – Extract information from existing applications
 – Render information into a unified user interface Applications

Application Host relevant business data None

Example
Many customer service functions require access to a range of customer data. For
example, a customer may call to place a new order, check whether a payment has
been received, and change his or her phone number. Often, this type of information
is stored in many different systems, such as the order management system, the
billing system, or the complaint system. Giving a customer service representative a
unified view of the various records for a customer can be enormously helpful in
providing efficient and effective service to the customer. A similar or reduced ver-
sion of the portal could also be presented directly to the consumer on the company’s
Web site.

Resulting Context
Portal Integration results in the following benefits and liabilities:

Benefits
● Non-intrusiveness. Because its primary function is the retrieval and display of

information, Portal Integration can typically be added to existing systems without
disturbing the existing functionality. This is particularly true if Portal Integration
uses Data Integration for the retrieval of data from the individual systems.

● Speed of implementation. Adding a portal to existing applications can often be
accomplished in a matter of days or weeks, whereas a full integration of the
systems could take many months. Many vendors offer Portal Integration platforms
in combination with a suite of prefabricated panes that integrate with many
popular enterprise applications and data sources.

● Flexibility. Because the user makes the decisions, Portal Integration can be used in
situations where business rules are not well understood or not agreed upon.

Integration Patterns110

Liabilities
● Inefficient. Portal integration is best suited to the automation of simple tasks and

processes because it still requires manual interaction by the user. For example,
because most portals allow the user to interact with only one application at a
time, the user might have to perform multiple manual actions in sequence to
complete a complex business function. This makes Portal Integration unsuitable
for high-volume applications. In these situations, Process Integration is generally a
better solution because the sequence of steps can be encoded in a process model
and run automatically by the process manager.

● Error-prone. When using Portal Integration, the user makes business decisions
and determines the sequence of tasks to be performed. While this provides
flexibility, it also introduces the risk of human error. Therefore, Portal Integration
is not well suited to integrations that require strict repetition of a defined busi-
ness process. Process Integration is generally a better choice in those scenarios.

4
System Connections

The previous chapter described different strategies for the design of an integration
layer and the tradeoffs involved in choosing an alternative. After you decide to use
an integrating layer, you must then decide exactly how you are going to connect
each system that you intend to integrate.

As you consider how to connect to different information systems, you will encoun-
ter a mix of technical architectures. Each technical architecture is designed to allow
certain types of access and to restrict others. These access restrictions constrain the
set of integration options that are available to you. This chapter discusses a series of
related patterns that will help you analyze the alternative methods and the tradeoffs
to consider when you choose your system connections.

Connecting to Layered Applications
When trying to find connection points to an existing application, you need to study
the way these applications are structured. The prevailing architectural style for
business applications is Layered Application. Many applications fall into the more
specific form of the Three-Layered Services Application pattern [Trowbridge03]. The
components of this pattern are shown in Figure 4.1.

Integration Patterns112

Data Layer

Presentation
Layer

Business Logic
Layer

Figure 4.1
A three-layered services application

This architectural style defines three distinct layers:
● Presentation layer. The presentation layer displays information to the end user

and allows for user input.
● Business logic layer. The business logic layer contains business functions that act

on the business data
● Data layer. The data layer stores data persistently in a data store. This layer is

also known as the resource layer.

Each application layer presents an opportunity for an application to interact with
the integration layer, as shown in Figure 4.2.

Chapter 4: System Connections 113

New Application

Integration
Layer

Business Logic
Layer

Presentation Layer

Data Store

Figure 4.2
Multiple choices when connecting an application

Because each layer has different requirements and purposes, you face different
challenges when connecting to each layer. Similarly, there are three primary patterns
you can use to connect an application to an integration layer:
● Presentation Integration. The integration layer can extract information from the

application’s user presentation layer through a technique known as screen
scraping.

● Functional Integration. The integration layer can interact with the business logic
layer through application or service interfaces.

● Data Integration. The integration layer can move data in and out of the data layer.

Integration Patterns114

To make an informed choice about which pattern to use, you must know the options
that are viable, and you must evaluate their impact on the overall integration archi-
tecture. This chapter describes each pattern and elaborates on the benefits and
liabilities of each one.

As in other chapters, this chapter uses visual models to show the associations
between the patterns. Figure 4.3 shows the patterns as circles and simple associa-
tions between them as lines. As the discussion progresses, more complex pattern
relationships build upon this basic diagram.

Data Integration Functional Integration Presentation Integration

Figure 4.3
System connection patterns

The first kind of integration to consider is Data Integration.

Data Integration
Many applications keep large volumes of data in data stores such as flat files and
relational, hierarchical, and object-oriented databases. Other applications that need
this information can access it directly from these data stores.

Connecting applications through the data store is relatively simple. Usually, you use
FTP, scheduled batch files, database management system (DBMS) utilities, extract
transform and load (ETL) tools, and integration servers.

If you decide to integrate at the data layer, there are three patterns that represent the
three types of data integration to consider: Shared Database [Hohpe04], Maintain Data
Copies [Teale03], and File Transfer [Hohpe04]. These patterns are shown in Figure 4.4.

Chapter 4: System Connections 115

Shared Database Maintain Data Copies

Data Integration

File Transfer

Figure 4.4
Three kinds of data integration

Figure 4.4 introduces a new pattern relationship to the visual model from Figure 4.3.
The triangle indicates refinement between the base pattern (Data Integration) and the
derivative patterns (Shared Database, Maintain Data Copies, and File Transfer). More
precisely, this relationship is defined as follows:

“A specific pattern refines a more abstract pattern if the specific pattern’s full
description is a direct extension of the more general pattern. That is, the specific
pattern must deal with a specialization of the problem the general pattern ad-
dresses, must have a similar (but more specialized) solution structure, and must
address the same forces as the more general pattern, but may also address addi-
tional forces. To make an analogy with object-oriented programming … the refines
relationship is similar to inheritance.” [Noble98]

Applying this relationship to the problem of data integration means that if you
decide to integrate systems at the data layer, you must further refine your decision
by choosing one of three alternatives. You could share a single instance of a database
between multiple applications by using the Shared Database pattern, as shown in
Figure 4.5.

Integration Patterns116

Application Application

Data Store

Application

Figure 4.5
Multiple applications sharing the same data store

Another approach is to create multiple copies of a database and distribute them
throughout your enterprise according to the Maintain Data Copies pattern. If you do
this, you must then maintain these separate copies, which introduces synchroniza-
tion and replication. Figure 4.6 shows the Data Replication pattern, which refines
Maintain Data Copies.

Application

Business Logic
Layer

Presentation
Layer

Data Store

Other Applications

Figure 4.6
Data Replication, a refinement of Maintain Data Copies

Chapter 4: System Connections 117

Yet another approach is to use File Transfer. In this pattern, one application produces
a file and transfers it so that other applications can consume it. Files can then be
produced at regular intervals to synchronize two or more systems.

The Data Integration pattern, later in this chapter, describes these alternatives in
detail and provides the benefits and liabilities of each approach. This discussion
should help you choose the kind of data integration that is appropriate for your
requirements.

Using Data Integration is made easier by the abundance of tool support provided by
many companies. However, in spite of the low cost and the maturity of the tools,
accessing the data store is not viable in some cases. A less invasive way of connect-
ing applications is to connect through the presentation layer.

Presentation Integration
When applications that have user interfaces join an integration architecture, other
applications can connect to them through the presentation byte stream as shown in
Figure 4.7.

Other Applications

Application

Business Logic
Layer

Presentation
Layer

Data Store

Terminal Emulator

Figure 4.7
Connecting to an application through the presentation layer

Integration Patterns118

Presentation connectivity represents the least invasive way of connecting applica-
tions because the other applications appear to the host application as humans who
are interacting through the user interface. Therefore, this form of integration does
not require any changes to the host. The disadvantage is that simulating user inter-
action is cumbersome and inefficient. It requires parsing the data or functionality
out of the byte stream, which effectively reverses the transformations performed by
the presentation logic. In addition, applications that connect through the presenta-
tion layer can only access what is also available to a human user. The granularity of
the exposed data and functionality is very coarse; burying potentially-rich APIs.

One advantage of Presentation Integration is that it can be an inexpensive way to
integrate applications. Although the connection is inexpensive, it is also easily
disrupted. By its very nature, presentation integration is tightly coupled to the host
application’s presentation. If the application’s presentation changes, the presentation
integration solution must also change.

Instead of sharing data or parsing through a byte stream to access a system’s func-
tionality, it is often preferable to access a system’s business logic directly through
Functional Integration.

Functional Integration
By connecting directly to the business logic layer, Functional Integration enables other
applications and services to take advantage of the business logic that is encapsulated
in other systems, as shown in Figure 4.8.

Data Layer

Presentation
Layer

Other Applications
Business Logic

Layer

Figure 4.8
Integrating applications and services at the business logic layer

Chapter 4: System Connections 119

Functional Integration connects applications through interfaces and specifications.
Unfortunately, not all applications in an integration architecture have interfaces and
specifications. Quite often, the applications that have APIs do not expose their data
and functions at a granularity level that is suitable for integration.

Functional Integration can be very effective in the right circumstances. A good example of
when to use Functional Integration is for a credit scoring application or service.

Credit Scoring Example
Many financial applications require a credit score to qualify an applicant for a
specific loan. Salespeople often want a quick and accurate response from a credit
scoring system so they can quickly prequalify customers and steer them to an
affordable alternative. In addition, credit scores depend on a number of dynamic
factors, which means that credit scores can quickly become out of date.

Because credit scores are calculated values, sharing data means relying on credit
scores that might be out of date or duplicating raw input data and forcing each
application to implement the credit scoring algorithm independently. A better
solution is to share the business logic encapsulated in the credit scoring system and
to then expose it through some type of functional interface that other systems can
consume. For this level of integration, you need Functional Integration.

Kinds of Functional Integration
After you choose to use Functional Integration, you must further refine your decision
by choosing one of the three alternatives:
● Distributed Object Integration. Distributed Object Integration is also known as

instance-based collaboration because it extends the model of object-oriented
computing to distributed solutions. Objects inside one application interact with
objects in another remote application in the same way they would interact locally
with another object.

● Message-Oriented Middleware Integration. Message-Oriented Middleware Integration
connects systems by using asynchronous message queues that are based on
proprietary message-oriented middleware. The connected systems then commu-
nicate through messages that contain small packets of data. Because the commu-
nication is asynchronous and durable, there is little chance that the messages will
be lost during a network or system failure.

● Service-Oriented Integration. Service-Oriented Integration connects systems by
enabling them to consume and provide XML Web services. This type of integra-
tion uses standards to provide both a portable type system and an extensible
messaging framework that is not coupled to a proprietary implementation or
transport. In addition, Service-Oriented Integration recommends the WS-I Basic
Profile to ensure interoperability between endpoints. The WS-I Basic Profile is a
carefully chosen subset of XML, SOAP, HTTP, and other standards.

Integration Patterns120

Note: The term service is used in many different ways in the context of software engineer-
ing. It is also used in at least seven levels of scope: operating system, process, object,
distributed object, proprietary message-oriented middleware, logical, and XML Web services.
This guide uses the term service to mean XML Web services unless indicated otherwise.

Figure 4.9 shows these three alternatives as distinct derivatives, or refinement
patterns, of Functional Integration.

Distributed Object
Integration

Message-Oriented
Middleware Integration

Functional Integration

Service-Oriented
Integration

Figure 4.9
Three kinds of Functional Integration

Later in this chapter, the Functional Integration pattern describes these alternatives in
detail and discusses the benefits and liabilities of each approach. This discussion
should help you choose the kind of functional integration that is appropriate for
your requirements.

System Connection Patterns
Data, presentation, and functional integration represent ways in which seasoned
integration architects connect applications. But given your specific requirements,
how do you connect applications within your integration architecture?

Sometimes the applications you are integrating limit your choices. If there is more
than one way you can connect them, you must evaluate the tradeoffs associated

Chapter 4: System Connections 121

with each potential choice. The Data Integration, Presentation Integration, and Func-
tional Integration patterns later in this chapter distill the knowledge required to make
an informed decision.

Two general points are worth noting. First, an application that uses one style of
connection can communicate with another application that uses a different style. For
example, Presentation Integration may be the only way to extract data from a preexist-
ing application, but you can still insert this data into the target application using
Data Integration. Second, despite sometimes similar names, a specific integration
layer pattern can be used with any system connection pattern. For example, a Portal
Integration solution can extract data from existing applications by using Presentation
Integration, Functional Integration, or Data Integration.

Figure 4.10 shows three system connection patterns, with derivative patterns and
associations.

Shared
Database

Maintain
Data Copies

Data
Integration

File
Transfer

Distributed
Object

Integration

Message-
Oriented

Middleware
Integration

Functional
Integration

Service-
Oriented

Integration

Presentation
Integration

Figure 4.10
System connection patterns and their relationships

Table 4.1 summarizes these patterns and provides the problem/solution pairs they
represent.

Integration Patterns122

Table 4.1: System Connections Patterns

Pattern or pattlet Problem Solution Associated implementations

Data Integration How do you integrate Integrate applications
information systems at the logical data layer.
that were not Use a Shared Database,
designed to work File Transfer, or Maintain
together? Data Copies.

Shared Database How can multiple Have multiple applica-
[Hohpe04] applications work tions store data in a

together and exchange single database. Define
information? a schema that handles

the needs of all
relevant applications.

Maintain Data How can multiple Have multiple applica-
Copies [Teale03] applications work tions access multiple

together and exchange copies of the same data.
information? Maintain state integrity

between copies.

File Transfer How can multiple At regular intervals,
[Hohpe04] applications work have each application

together and produce files that
exchange contain the information
information? that the other applica-

tions must consume.
After you create it, do
not maintain the file.

Functional How do you integrate Integrate applications at
Integration information systems the logical business layer.

that were not Use Distributed Object
designed to work Integration, (proprietary)
together? Message-Oriented

Middleware Integration,
or Service-Oriented
Integration.

Distributed How do you integrate Develop systems that
Object applications at the have object interfaces
Integration logical business that can be consumed
(see also layer? remotely by other
Remote systems.
Procedure
Invocation
[Hohpe04])

Chapter 4: System Connections 123

Pattern or pattlet Problem Solution Associated implementations

Message- How do you integrate Use proprietary
Oriented applications at the message-oriented
Middleware logical business layer? middleware to send
Integration messages
(see also asynchronously.
Messaging
[Hohpe04])

Service-Oriented How do you integrate Use Web services to Implementing
Integration applications at the expose interfaces that Service-Oriented

logical business layer? can be consumed Integration with
remotely by other ASP.NET, or
systems. Implementing Service-

Oriented Integration
with BizTalk Server
2004.

Presentation How do you integrate Access the application’s
Integration information systems functionality through the

that were not designed user interface by
to work together? simulating a user’s input

and reading data from
the screen display.

Integration Patterns124

Data Integration

Context
Enterprise information systems are comprised of a variety of data storage systems,
which vary in complexity and in the ways they access internal data. An example of
a simple data storage system is a flat file. An example of a far more complex data
storage system is a Database Management System (DBMS) server farm.

Problem
How do you integrate information systems that were not designed to work
together?

Forces
● Most enterprises contain multiple systems that were never designed to work

together. The business units that fund these information systems are primarily
concerned with functional requirements rather than technical architectures.
Because information systems vary greatly in terms of technical architecture,
enterprises often have a mix of systems, and these systems have incompatible
architectures.

● Many applications are organized into three logical layers: presentation, business
logic, and data.

● When you integrate multiple systems, you usually want to be as noninvasive as
possible. Any change to an existing production system is a risk, so it is wise to try
to fulfill the needs of other systems and users while minimizing disturbance to
the existing systems.

● Likewise, you usually want to isolate applications’ internal data structures.
Isolation means that changes to one application’s internal structures or business
logic do not affect other applications. Without isolated data structures, a small
change inside an application could cause a ripple effect and require changes in
many dependent applications.

● Reading data from a system usually requires little or no business logic or valida-
tion. In these cases, it can be more efficient to access raw data that a business
layer has not modified.

● Many preexisting applications couple business and presentation logic so that the
business logic is not accessible externally. In other cases, the business logic may
be implemented in a specific programming language without support for remote
access. Both scenarios limit the potential to connect to an application’s business
logic layer.

Chapter 4: System Connections 125

● When making updates to another application’s data, you should generally take
advantage of the application’s business logic that performs validations and data
integrity checks. You can use Functional Integration to integrate systems at the
logical business layer.

● Direct access to an application’s data store may violate security policies that are
frequently implemented in an application’s business logic layer.

● The availability of commercial tools can influence the integration strategy be-
tween applications. Commercial tools usually carry a lower risk and expense
when compared to a custom solution.

Solution
Integrate applications at the logical data layer by allowing the data in one applica-
tion (the source) to be accessed by other applications (the target), as shown in
Figure 4.11.

Application

Business Logic
Layer

Presentation
Layer

Data Store

Other Applications

Figure 4.11
Integrating applications at the logical data layer

Integration Patterns126

To connect applications at the logical data layer, use one or more of the following
patterns:
● Shared Database. All applications that you are integrating read data directly from

the same database.
● Maintain Data Copies. Maintain copies of the application’s database so that other

applications can read the data (and potentially update it).
● File Transfer. Make the data available by transporting a file that is an extract from

the application’s database so that other applications can load the data from the
files.

When you are implementing Data Integration, you usually have to consider the
following design tradeoffs:
● Latency tolerance. Some forms of data integration imply a delay between up-

dates to the data that is used by multiple applications. For example, in the Data
Replication pattern [Teale03], the data is extracted from the source system, and it is
transported over a network. The data might then be modified, and then it is
inserted in a target database. This delay means that one system may have access
to data that is more up to date than another system. This latency in propagating
data can play an important role in integration.

● Push versus pull. When accessing a data source’s database, a system can either
pull the data from the database or let the database itself push the data when a
change occurs. Pull approaches are generally less intrusive, while push
approaches minimize latency.

● Granularity. Getting a larger chunk of information at one time is generally more
efficient than propagating each small change by itself. This requires an under-
standing of the cohesion between multiple data entities. If one entity changes, are
other entities also likely to be affected?

● Master/subordinate relationships. If updates are made only to one application’s
data, propagating these changes is relatively simple. However, if multiple appli-
cations are allowed to update the information, you can run into difficult synchro-
nization issues. For a more detailed description of synchronization issues, see the
Master-Master Replication pattern [Teale03].

● Synchronization logic versus latency. For geographically dispersed applications,
sharing a single database may cause excessive network latency. To overcome this
problem, you can use distributed databases that contain copies of the same data.
However, distributed databases add the additional complexity of synchronization
and replication logic.

Chapter 4: System Connections 127

Example
There are many real-life examples of Data Integration. For example, an order entry
application may store a copy of product codes that reside in the Enterprise Resource
Planning (ERP) system. If product codes do not change very frequently, the data
from the source (the ERP system) may be synchronized daily or weekly with the
data on the target (the order-entry application).

Resulting Context
After you decide to use Data Integration, you must then choose a particular kind of
data integration that is appropriate for your situation. Your choices are summarized
by the following patterns:
● Shared Database
● Maintain Data Copies
● File Transfer

Shared Database
The Shared Database approach is shown in Figure 4.12. Shared Database aims to
eliminate latency by allowing multiple applications to access a single physical data
store directly. This approach is more intrusive because you usually have to modify
some applications to use a common schema.

Application Application

Data Store

Application

Figure 4.12
Shared Database

Integration Patterns128

Reading data directly from a database is generally harmless, but writing data
directly into an application’s database risks corrupting the application’s internal
state. Although transactional integrity mechanisms protect the database from cor-
ruption through multiple concurrent updates, they cannot protect the database from
the insertion of bad data. In most cases, only a subset of data-related constraints is
implemented in the database itself. Other constraints are likely to be contained in
the business logic. This distribution of data constraints allows other applications to
leave the database in a state that the application logic considers to be invalid. For a
more detailed description, see Martin Fowler’s Shared Database pattern in Hohpe and
Woolf’s Enterprise Integration Patterns [Hohpe04].

Maintain Data Copies
Instead of sharing a single instance of a database between applications, you can
make multiple copies of the database so that each application has its own dedicated
store. To keep these copies synchronized, you copy data from one data store to the
other.

This approach is common with packaged applications because it is not intrusive.
However, it does imply that at any time, the different data stores are slightly out of
synchronization due to the latency that is inherent in propagating the changes from
one data store to the next. Figure 4.13 shows the Data Replication pattern, which is a
derivative of Maintain Data Copies.

Data Replication

Data Replication Data Replication

Application

Data Store

Application

Data Store

Application

Data Store

Figure 4.13
Data Replication

Chapter 4: System Connections 129

The mechanisms involved in maintaining these copies are complex. Data Patterns
discusses these mechanisms in a cluster of 12 data movement patterns [Teale03] that
use Maintain Data Copies as a root pattern. The other patterns in the guide include
the following:
● Move Copy of Data
● Data Replication
● Master-Master Replication
● Master-Slave Replication
● Master-Master Row-Level Synchronization
● Master-Slave Snapshot Replication
● Capture Transaction Details
● Master-Slave Transactional Incremental Replication
● Implementing Master-Master Row Level Synchronization Using SQL Server
● Implementing Master-Slave Snapshot Replication Using SQL Server
● Master-Slave Cascading Replication

For more details about these patterns, see Data Patterns on MSDN (http://
msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us/dnpatterns/html
/Dp.asp).

File Transfer

In the File Transfer pattern, one application produces a file and transfers it so that
other applications can consume it. Because files are a universal unit of storage for all
enterprise operating systems, this method is often simple to implement. The disad-
vantage of this method is that two applications can lose synchronization with each
other because each one is changing the file independently. For more information, see
Martin Fowler’s File Transfer pattern [Hohpe04].

Choosing Between Alternatives
There are many factors to consider when you choose the kind of data integration
that is best for your particular requirements. Some of those factors include:
● Tolerance for data that is not current (stale data)
● Performance
● Complexity
● Platform infrastructure and tool support

Integration Patterns130

After you pull data from a transactional system, the data is effectively stale. When
you attempt to modify the data, you encounter potential contention and conflict
resolution logic. If your conflict resolution logic is simple, and if you can accommo-
date relatively long time intervals with stale data, File Transfer may be the best way
to integrate data.

If your conflict resolution logic is more complex, and if you have less tolerance for
stale data, consider Shared Database or Maintain Data Copies. Before deciding on one
or the other, consider your performance needs.

If your applications and databases are located in the same data center, then Shared
Database enables you to use transaction managers to enforce data consistency. Using
transaction managers to enforce data consistency limits stale data. However, if you
have too many applications accessing the same data, the database may become a
performance bottleneck for your system.

Maintaining multiple copies of the same data reduces the performance bottleneck
of a single database, but it creates stale data between synchronizations. Also, if your
application is geographically distributed, sharing one single database creates exces-
sive network latency and affects performance. Maintain Data Copies also presents its
own operations challenges. However, you can reduce the effort associated with
maintaining multiple copies by using the synchronization and replication capabili-
ties that are built into many DBMSs.

As you can see, each form of data integration has advantages and disadvantages.
Choosing the right kind of data integration depends on the factors that are most
important to your organization and on achieving the right balance among the
tradeoffs.

Benefits
Regardless of the type of data integration you choose, the benefits are as follows:
● Nonintrusive. Most databases support transactional multiuser access, ensuring

that one user’s transaction does not affect another user’s transaction. This is
accomplished by using the Isolation property of the Atomicity, Consistency,
Isolation, and Durability (ACID) properties set. In addition, many applications
permit you to produce and consume files for the purpose of data exchange. This
makes Data Integration a natural choice for packaged applications that are diffi-
cult to modify.

● High bandwidth. Direct database connections are designed to handle large
volumes of data. Likewise, reading files is a very efficient operation. High band-
width can be very useful if the integration needs to access multiple entities at the
same time. For example, high bandwidth is useful when you want to create
summary reports or to replicate information to a data warehouse.

Chapter 4: System Connections 131

● Access to raw data. In most cases, data that is presented to an end user is trans-
formed for the specific purpose of user display. For example, code values may be
translated into display names for ease of use. In many integration scenarios,
access to the internal code values is more useful because the codes tend to more
stable than the display values, especially in situations where the software is
localized. Also, the data store usually contains internal keys that uniquely iden-
tify entities. These keys are critical for robust integration, but they often are not
accessible from the business or user interface layers of an application.

● Metadata. Metadata is data that describes data. If the solution that you use for
data integration connects to a commercial database, metadata is usually available
through the same access mechanisms that are used to access application data. The
metadata describes the names of data elements, their type, and the relationships
between entities. Access to this information can greatly simplify the transforma-
tion from one application’s data format to another.

● Good tool support. Most business applications need access to databases. As a
result, many development and debugging tools are available to aid in connecting
to a remote database. Almost every integration vendor provides a database
adapter component that simplifies the conversion of data into messages. Also,
Extract, Transform, and Load (ETL) tools allow the manipulation of larger sets of
data and simplify the replication from one schema to another. If straight data
replication is required, many database vendors integrate replication tools as part
of their software platform.

Liabilities
Regardless of the type of data integration you choose, the liabilities are as
follows:
● Unpublished schemas. Most packaged applications consider the database chema

to be unpublished. This means that the software vendor reserves the right to
make changes to the schema at will. A solution based on Data Integration is likely
to be affected by these changes, making the integration solution unreliable. Also,
many software vendors do not document their database schemas for packaged
applications, which can make working with a large physical schema difficult.

Integration Patterns132

● Bypassed business logic. Because data integration accesses the application data
store directly, it bypasses most of the business logic and validation rules incorpo-
rated into the application logic. This means that direct updates to an application’s
database can corrupt the application’s integrity and cause the application to
malfunction. Even though databases enforce simple constraints such as unique-
ness or foreign key relationships, it is usually very inefficient to implement all
application-related rules and constraints inside the database. Therefore, the
database may consider updates as valid even though they violate business rules
that are encoded in the application logic. Use Functional Integration instead of
Data Integration if you need the target application to enforce complex business
rules.

● No encapsulation. Accessing an application’s data directly provides the advan-
tage of immediate access to raw data. However, the disadvantage is that there is
little or no encapsulation of the application’s functionality. The data that is
extracted is represented in the format of an application-internal physical database
schema. This data very likely has to be transformed before other applications can
use it. These transformations can become very complex because they often have
to reconcile structural or semantic differences between applications. In extreme
scenarios, the data store may contain information in a format that cannot be used
by other systems. For example, the data store might contain byte streams repre-
senting serialized business objects that cannot be used by other systems.

● Simplistic semantics. As the name suggests, Data Integration enables the integra-
tion of data only. For example, it enables the integration of data contained in
entities such as “Customer XYZ’s Address.” It is not well-suited for richer com-
mand or event semantics such as “Customer XYZ Moved” or “Place Order.”
Instead, use Functional Integration for these types of integration.

● Different storage paradigms. Most data stores use a representation that is differ-
ent from the underlying programming model of the application layer. For ex-
ample, both relational databases and flat-file formats usually represent entities
and their relationships in a very different way from an object-oriented applica-
tion. The difference in representation requires a translation between the two
paradigms.

● Semantic dissonance. Semantic dissonance is a common problem in integration.
Even though you can easily resolve syntactic differences between systems,
resolving semantic differences can be much more difficult. For example, although
it is easy to convert a number into a string to resolve a syntactic difference, it is
more difficult to resolve semantic differences between two systems that have
slightly different meanings for the Time, Customer, and Region entities. Even
though two databases might contain a Customer entity, the semantic context of
both entities might be dramatically different.

Chapter 4: System Connections 133

Testing Considerations
Testing data integration solutions can be difficult for a number of reasons, including
the following:
● The direct access to the data source and destination does not allow isolation of a

specific function. For example, using a test stub or mock object does not allow
isolation of a specific function. If the data exchange uses a file to transfer data,
you can use test files to test the data insertion.

● Inserting data directly into the target database bypasses all or most business
logic. Therefore, testing the insert itself may not be very meaningful because it is
likely to succeed. Even if the data is inserted successfully into the database, the
data may violate another application’s business logic. As a result, the complete
application may have to be regression tested after you insert data directly into the
application data store.

● Because Data Integration puts few constraints on the data to be inserted into an
application’s data store, a large data set may be required to provide appropriate
coverage of all test cases.

Security Considerations
Data Integration presents potential security issues that are worth considering:
● Coarse-grained security. Because Data Integration bypasses the application logic,

it also bypasses any security rules that are enforced by the application logic.
Many databases manage access privileges at the table level. At the table level, a
user either has access to the Customer table or the user does not have access.
Most applications enforce security at an object level. At the object level, a specific
user has access only to those customer records that are associated with the user.

● Privacy policies may not be enforced. Many corporate databases are subject to
privacy policies that are based on corporate or legal guidelines. Directly accessing
these data stores may be in violation of these policies because it is difficult to
control the ways the retrieved data may be used. In comparison, Functional
Integration can offer restricted access to sensitive data to only allow queries that
do not expose individual data. For example, a functional interface may allow the
user to query the average compensation in a specific region but not individual
compensation.

● Data may be encrypted. Data inside the database may be encrypted so that it is
not accessible for data integration unless the integration solution obtains the key
to decrypt the data. Providing the key to the data integration solution could
present a security risk unless the key is properly protected.

Integration Patterns134

Related Patterns
For more information, see the following related patterns:
● Functional Integration. Data Integration is used to extract data from or insert data

into an existing application. If direct access to the data source must be avoided,
use Functional Integration instead. Functional Integration interfaces with an
application’s business logic.

● Data Consistency Integration [Ruh01]. In cases where inserting data into an appli-
cation is tied to specific business rules and validations, straight data integration
might not be the best solution because the business logic has to be re-created for
the data insert operation. In these cases, consider using Functional Integration to
achieve data consistency.

Acknowledgments
[Britton01] Britton, Chris. IT Architectures and Middleware – Strategies for Building
Large, Integrated Systems. Addison-Wesley, 2001.

[Hohpe04] Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

[Ruh01] Ruh, William. Enterprise Application Integration. A Wiley Tech Brief. Wiley,
2001.

[Teale03] Teale, Philip; Christopher Etz, Michael Kiel, and Carsten Zeitz. “Data
Patterns.” .NET Architecture Center. June 2003. Available at:
http://msdn.microsoft.com/architecture/patterns/default.aspx.

Chapter 4: System Connections 135

Functional Integration

Context
Enterprise information systems contain a variety of applications that provide levels
of interaction that range from simple to complex. The functions that are included in
these systems offer a variety of capabilities and levels of access, from undocumented
functions and silo applications to fully developed composite applications. In addi-
tion, the mechanism for invoking a function differs from one system to another.

Problem
How do you integrate information systems that were not designed to work
together?

Forces
To correctly solve this problem, you need to consider the following forces:
● Most enterprises contain multiple systems that were never designed to work

together. The business units that fund these information systems are primarily
concerned with functional requirements rather than technical architectures.
Because information systems vary greatly in terms of technical architecture,
enterprises often have a mix of systems, and these systems have incompatible
architectures.

● Many applications are organized into three logical layers: presentation, business
logic, and data.

● Most commercial business applications developed in the last decade provide
stable documented programming interfaces to allow access to the business
functionality that is incorporated in the application. Software vendors provide
these APIs specifically to support integration with external software.

● The functional interfaces provided by an application typically abstract from the
underlying data representations so that they are more stable than the internal
representations. For example, while a database schema might change in a new
version of the software, the vendors keep the public APIs compatible with the
previous version so that external applications accessing the API do not break.

● Accessing a function that resides in another application provides a natural
extension of the application programming model that developers are used to. The
semantics of accessing an external function that resides in another application are
similar to making a local method call. This allows for natural integration with
existing applications.

Integration Patterns136

● Making direct updates to another application’s data store through Data Integra-
tion bypasses all business and validation logic incorporated in the application’s
business logic layer. As a result, the risk of corrupting an application’s data store
is high.

● Exchanging messages between applications that include both data and behavior
can provide for a more powerful conversation between systems. Instead of
sending a message that only contains a customer’s address, one system can
instruct the other system to perform a specific function. For example, one system
can instruct another system to validate the customer’s address or to update a
customer record with the customer’s new address. More powerful conversations
also allow an application to more specifically describe the functions and services
it can provide to other applications.

● Many programming interfaces are programming language-specific and are not
available remotely unless they have been developed on top of a specific remoting
technology, such as Microsoft .NET Framework remoting or Common Object
Request Broker Architecture (CORBA).

Solution
Integrate applications at the business logic layer by allowing the business function
in one application (the source) to be accessed by other applications (the target), as
shown in Figure 4.14.

Data Layer

Presentation
Layer

Other Applications
Business Logic

Layer

Figure 4.14
Integrating applications at the business logic layer

Chapter 4: System Connections 137

For an external application to integrate with the source application through Func-
tional Integration, the following two conditions must be met:
● The business function that you want must be available inside the source

application’s business logic.
● The API of the source application must be accessible remotely.

If the desired business function is not available, you have to modify the source
application to make the function available. If modifying the source application is not
feasible, you should add the new function outside the source application and then
communicate with the application through another form of integration, such as Data
Integration or Presentation Integration. This approach has fewer side effects and is
generally available for most types of applications.

Many applications only expose their business functions as a local API that is depen-
dent on a specific programming language such as C++ or C#. In those cases, a local
adapter or middleware interface has to be created that translates incoming messages
from other applications into local API calls. Likewise, results from API calls are
translated back into messages. In most cases, such an adapter can be generic enough
to support a variety of different functions without having to be modified for each
individual function that you want to make available externally.

Functional Integration is very versatile because many different operations can be
performed though an API. A functional interface can retrieve data, update data
entities (change an address), or perform business functions (validate a credit card).
In fact, one common use of Functional Integration is to ensure data consistency
between applications [Ruh01].

Functional Integration is based on the interaction between the components that are
described in Table 4.2.

Table 4.2: Functional Integration Components

Components Responsibilities Collaborators

Business logic Executes local business functions Middleware interface

Middleware interface – Converts incoming messages into method Business logic and
invocations of functions that reside in the remote application
business logic
– Converts return data back into messages
that can be transported across the network

Remote application Consumes functions that reside in the Middleware interface
application

Integration Patterns138

Resulting Context
After you decide to use Functional Integration, you must choose a particular kind of
integration that is appropriate for your situation. Your choices are summarized by
the following patterns:
● Distributed Object Integration
● Message-Oriented Middleware Integration
● Service-Oriented Integration (through XML-based Web services)

Distributed Object Integration
Distributed Object Integration is also known as instance-based collaboration because it
extends the model of object-oriented computing to distributed solutions. Objects
inside one application interact with objects in another remote application in the
same way that they would interact locally with another object. This implies that the
interaction occurs with a specific object instance and that the client application often
manages the lifetime of the object it is accessing. This type of interaction usually
seems natural to application developers, but it can result in a complex and tightly-
coupled interaction model between the components. This tight coupling is not a
problem as long as the components are part of a single distributed application.
However, it is generally not a good choice when integrating multiple stand-alone
applications.

Great examples of distributed component middleware are technologies such as .NET
remoting, COM+, or CORBA. For more information, see the Remote Procedure Invoca-
tion pattern [Hohpe04] or the “Distributed Systems” chapter in Enterprise Solution
Patterns Using Microsoft .NET [Trowbridge03].

Message-Oriented Middleware Integration
Message-Oriented Middleware Integration connects systems by using asynchronous
message queues that are based on proprietary message-oriented middleware. The
connected systems then communicate by using messages that contain small packets
of data. Because the communication is asynchronous and durable, there is little
chance of the messages being lost during network or system failure.

To share request/response type functionality, the consuming system must create a
request message and send it by way of the message queue to the system that pro-
vides the functionality. The provider then takes the message from the queue, inter-
prets it as a request, and processes it. Upon completion, the provider creates a
response message and sends it back to the functional consumer by way of the
message queue. Of course, not all functionality is shared by using a request/re-
sponse style collaboration, but similar principles apply. For more information, see
the Messaging pattern [Hohpe04].

Chapter 4: System Connections 139

Service-Oriented Integration
Service-Oriented Integration connects systems by enabling them to consume and
provide XML-based Web services. The interfaces to these systems are described
through Web Services Definition Language (WDSL) contracts. Systems interact with
each other by using SOAP messages. SOAP messages are usually conveyed through
HTTP by using XML serialization.

Note: The term service is used in many different ways in the context of software engineering. It
is also used in at least seven levels of scope: operating system, process, object, distributed
object, proprietary message-oriented middleware, logical, and XML Web services. This guide
uses the term service to mean XML Web services unless indicated otherwise.

A Service Interface [Trowbridge03] exposes functionality as a Web service, and, a
Service Gateway encapsulates the logic necessary to consume services (see
Figure 4.15).

Service Gateway Service Interface Service Implementation

Service Provider ApplicationService Consumer

Figure 4.15
Using a service gateway and service interface to connect a Web service consumer and provider

Using Service-Oriented Integration increases interoperability by using XML and XML
Schema as the basis of message exchange and by using SOAP as an extensible
messaging framework. XML Schema provides for a type system that is portable
between disparate technical architectures. In contrast, SOAP can be bound to a
number of different transport mechanisms. For more information, see Service-
Oriented Integration.

Choosing Between Alternatives
There are many factors to consider when choosing the kind of Functional Integration
that is best for your particular requirements. Some of these factors include:
● Reliability and latency of the network between endpoints
● Interfaces exposed by your current systems
● Need for interoperability between disparate technical architectures
● Performance

Integration Patterns140

● Fragility, if incompatible updates are introduced to any participant
● Expertise of the technical team
● Existing infrastructure

Choosing Distributed Objects

If your team is proficient with object-oriented development and if you use a plat-
form infrastructure that offers a Broker such as .NET Framework remoting, Distrib-
uted-Object Integration can be fairly simple to implement. Although the remote
interface is almost as easy to manipulate as the local interface, you must always
consider network latency, network failure, and distributed systems failures. You
must develop a significant amount of error detection and correction logic to antici-
pate these impacts. With high-latency network round trips, you want to avoid a
large number of fine-grained method invocations. Therefore, use Remote Facade
[Fowler03] and Data Transfer Object [Trowbridge03] to optimize call granularity and
payload size.

This kind of integration works best when the systems that you want to connect are
located in the same data center and when those systems have fairly reliable and
high-speed connections. This kind of integration does not work well across slow and
unreliable connections, including any connection that uses the Internet. This kind of
integration is fragile if incompatible updates are introduced to any of the partici-
pants. Of course, if the target system you want to integrate with only exposes object-
based APIs, you must use this method or an adapter to connect.

Choosing Message-Oriented Middleware Integration

Message-Oriented Middleware Integration is an excellent choice when systems are not
reliably connected because there is the potential for network failure or distributed
systems failure. Because Message-Oriented Middleware Integration works by placing
messages asynchronously into a durable queue, there is little chance that the mes-
sages could be lost during a system or network failure. In addition, using asynchro-
nous communication decouples the sender from the receiver. The application that
sends the messages will continue to function even if the receiver fails, and the failed
message receiver will continue processing messages from the queue after the re-
ceiver is restored.

The sender and the receivers are also decoupled from each other because they use a
common message format. This makes it easier to separate the message from the set of
intended receivers in the enterprise. After a message is sent from a source, you can
design an integration network that uses the Message Broker pattern, the Message Bus
pattern, the Publish/Subscribe pattern, or a host of other message receivers without
modifying the original message sender. This allows the source, distribution, and
consumption of the message to vary independently, thus improving flexibility.

Chapter 4: System Connections 141

Of course, there are tradeoffs involved with using Message-Oriented Middleware.
Although the programming model is fairly simple for Distributed-Object Integration,
the programming model becomes much more complex for Message-Oriented
Middleware. Messages arriving at endpoints become events; therefore, the program-
ming model is event driven. In addition, these events arrive across networks that
may be unreliable and that do not have implicit correlation between them. The order
of message arrival is not necessarily guaranteed and there may be duplicate mes-
sages. Sometimes, processing duplicate messages (also known as idempotent mes-
sages) does not adversely affect your system. Other times, processing duplicate
messages is a serious flaw, for example, when you are transferring money. The
security context of the message must be established, policies must be applied, and
trust boundaries must be established. Your particular requirements must anticipate
and justify this additional complexity. In addition, using proprietary message-
oriented integration binds you to a particular message-oriented middleware imple-
mentation. It must be installed on the endpoint you want to communicate with,
which may not always be the case inside your enterprise or between trading
partners.

Service-Oriented Integration

Most enterprises have heterogeneous technical architectures and want to take
advantage of system-based collaboration over the Internet. The most competitive
enterprises want flexible and automated business processes that may require tech-
nology independence. All of these factors contribute to an urgent requirement for
interoperability between different technical architectures. The best way to design
for interoperability is by using Service-Oriented Integration.

Like Message-Oriented Middleware Integration, Service-Oriented Integration uses mes-
sages to communicate between senders and receivers. Unlike Message-Oriented
Middleware, Service-Oriented Integration uses XML Schema and SOAP to transport
and resolve messages. These two standards provide a portable type system and an
extensible messaging framework that is not coupled to any proprietary implementa-
tion or transport. In addition, Service-Oriented Integration recommends the Web
Services Integration (WS-I) Basic Profile to ensure interoperability between end-
points.

Service-Oriented Integration enables interoperability and allows you to send both
synchronous and asynchronous messages (for more information, see the Service-
Oriented Integration pattern). As a result, you can have the same kind of complex
programming model as Message-Oriented Middleware. In addition, you have the
complexity of a new and still emerging set of standards to understand and comply
with. Therefore, make sure your requirements justify this level of complexity.

Integration Patterns142

After you build these interoperable systems, there is one more tradeoff to consider:
performance. Using XML incurs the cost of serializing, deserializing, and parsing
XML documents. In addition, XML documents are often much larger than their
binary equivalents because they contain metadata. This can increase the size of the
payload that must be processed during message exchanges. However, because
processing power is relatively inexpensive and because processors get faster every
year, the issue of payload size can be addressed though hardware. Also, you can
selectively trade interoperability for performance by using binary encoding inside
your SOAP message as needed. Finally, given the support of major vendors, it is
likely that new platform infrastructure will evolve in a way that will optimize Web
services – based performance.

Combining Distributed Objects, Message-Oriented Middleware, and Services

It is likely you will use some combination of all three types of integration in your
enterprise. Start by identifying services at a level of granularity that is meaningful
to the business, such as steps within a business process. This will help you define
service boundaries where interoperability is important. For interactions across these
boundaries, use Service-Oriented Integration. For an example of service identification,
see Chapter 9, “Integration Examples.” To implement a service within these bound-
aries, you may want to use Distributed-Object Integration, Message-Oriented
Middleware Integration, or Service-Oriented Integration. If you need to do two-phase
commits across distributed databases, using Distributed-Object Integration permits
you to take advantage of platform infrastructure that supports two-phase commits
across distributed databases. Just ensure that you keep these transactions inside
your service boundaries.

Any time you connect with systems and networks that you consider to be unreliable,
consider using Message-Oriented Middleware to provide a durable buffer between
connected systems. Using messages as your means of communication, either
through Message-Oriented Middleware or Service-Oriented Integration, permits you to
construct more advanced integration architectures that use Message Broker and
Message Bus to communicate. As needed, you can always connect these integration
architectures by using object-based APIs as described by the Adapter pattern
[Gamma95].

Regardless of the kind of Functional Integration you use, you will encounter the
following benefits and liabilities.

Benefits
● Flexibility. Functional Integration is very flexible. The abstraction, in the form of a

function call, permits many different types of interchanges, such as data replica-
tion, shared business functions, or business process integration. This also implies
that a generic mechanism for Functional Integration can be used in many different
integration scenarios.

Chapter 4: System Connections 143

● Encapsulation. A functional interface provides an abstraction from an
application’s internal workings. This isolates users of the programming interface
from variations in the application’s internal workings or data representations.

● Robust. Executing a function through an application’s business logic layer
ensures that only well-defined functions can be executed. It also ensures that all
validations built into the application logic are executed. This ensures that other
applications cannot perform invalid functions or corrupt the application’s inter-
nal state.

● Familiar programming model. Functional Integration provides a programming
model that is more aligned with widespread application programming models.
Functional Integration is therefore familiar to most application developers. Other
styles of integration, such as Data Integration or Presentation Integration, require
developers to learn a new style of development.

Liabilities
● Tighter coupling. One application that sends a command directly to another

application results in tighter coupling compared to publishing data to a common
Message Bus because the requesting application requires information about the
location of the application that is providing the service. However, inserting a
Message Broker can alleviate this type of coupling.

● Requires business layer to be exposed. Naturally, Functional Integration is lim-
ited to scenarios where the affected applications expose a suitable functional
interface. This is the case for most contemporary business applications, but it may
not be true for older monolithic applications or for Web applications hosted by
external entities. In those cases, Presentation Integration may be the only option.

● Limited to available functions. In most cases, Functional Integration is limited to
the functions that are already implemented in the application’s business logic.
Extending the application’s logic with new functions usually involves significant
development and may outweigh the other benefits of Functional Integration. In
such cases, implementing the new function externally might be a more efficient
approach.

● Inefficient with large datasets. Existing functional interfaces are generally
designed to execute individual functions. This typically makes them inefficient
for the transmission of large datasets because many individual requests must be
made.

Integration Patterns144

● Programming-language specific. Many functional interfaces are tied to a specific
programming language or technology because the stronger semantics of the
conversation require a more detailed contract that includes the representation of
method names, complex data structures, return values, exceptions, and other
elements.

Testing Considerations
Functional Integration is easier to test than other integration approaches for the
following reasons:
● The additional abstraction provided by the separation of the exposed functional

interface and the internal execution of the function permits the creation of mock
objects and test stubs. These constructs work with the external applications in the
same way the full application does because they implement the same interface.
However, the test stub or mock object usually does not perform actual business
functions that may be slow or that may require many external resources. Instead,
the stub fabricates response data, or it logs data into a logging mechanism that
can be monitored by the test tools.

● Because Functional Integration is based on the same programming model as the
application itself, tests of the integration are easier to tie to the testing of the
application itself. This type of testing is also generally well-supported by test
tools such as NUnit that target application testing.

However, you must consider the following considerations. Your ability to test depends
on how well the functional interface of the existing application is structured. If the
interface exposes functions that are well-defined and that are free of side effects free,
testing should be relatively easy. If the functional interface consists of a blur of poorly
defined functions that are full of side effects, then testing will be difficult.

Security Considerations
The richer semantics of Functional Integration allow for a more finely grained security
model. Many applications enforce security rules based on user identity, and they
control permissions on an object level. For example, a user is only allowed to access
the accounts that belong to that user and to access related accounts. This type of
permission checking is typically not available with Data Integration.

The disadvantage of this more complex security model is that the integration solu-
tion has to acquire the proper user credentials to access data or to invoke functions.
Because other applications are generally unaware of the security context used in
another application, the security context has to be established by the middleware.
You can establish the security context either by using a fixed user or by using an
explicit translation of security contexts between applications.

Chapter 4: System Connections 145

Acknowledgments
[Hohpe04] Hohpe, Gregor, and Bobby Woolf, Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

[Linthicum04] Linthicum, David. Next Generation Application Integration. Addison-
Wesley, 2003.

[Ruh01] Ruh, William. Enterprise Application Integration. A Wiley Tech Brief. Wiley,
2001.

[Trowbridge03] Trowbridge, David; Dave Mancini, Dave Quick, Gregor Hohpe,
James Newkirk, and David Lavigne. Enterprise Solution Patterns Using Microsoft
.NET. Microsoft Press, 2003. Also available on the MSDN Architecture Center at:
http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us
/dnpatterns/html/Esp.asp

[W3C04] “Web Services Architecture W3C Working Draft 11 February 2004.” Avail-
able on the W3C Web site at: http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

Integration Patterns146

Service-Oriented Integration

Context
You’ve decided to use the Functional Integration pattern to integrate information
systems that were not designed to work together. You need interoperability among
systems built with different technical architectures. In addition, the systems that you
want to integrate may not be reliably connected.

Problem
How do you integrate applications at the business logic layer?

Forces
Integrating systems at the business logic layer involves balancing the following
forces:
● Machine boundaries are important. The idea that you can take a local object

interface and extend it across machine boundaries to create location transparency
is flawed. Although it is true that both the remote objects and the local objects
have the same interface from the perspective of the calling process, the behavior
of the called interface is quite different depending on location. From the client
perspective, a remote implementation of the interface is subject to network
latency, network failure, and distributed system failures that do not exist with
local implementations. A significant amount of error detection and correction
logic must be written to anticipate the impacts of using remote object interfaces.

● Coupling affects interoperability. Integrating at the logical business layer
involves sharing functionality. Sharing functionality implies some level of cou-
pling between the consumer and the provider of the functionality. There are
many forms of coupling. These forms of coupling include the following:
● Temporal coupling. Temporal coupling occurs during the request for func-

tionality. If the request is synchronous, the calling system must wait for the
provider to finish processing the request before it can continue. If the request
is asynchronous, the calling system can continue processing after it makes the
request while the providing system independently continues to process the
request. In terms of time, the asynchronous call is more loosely coupled than
the synchronous call.

Chapter 4: System Connections 147

● Type-system coupling. Type-system coupling occurs when a process must
associate the name of a type with its binary representation on the host com-
puter. This association may be as simple as an integer, meaning a big-endian
4-byte primitive on one computer and a 2-byte little-endian primitive on
another. Of course, user-defined types such as a customer object become much
more complex. When two systems interoperate, they must share a common
type representation; in this sense they are coupled together. Most implementa-
tion platforms do not share the same type representation.

● Dependency coupling. Dependency coupling occurs when one executable
depends on other executables to run. If the executable cannot resolve its
dependencies at run time, the executable fails. In this sense, the executable and
its dependencies are coupled together.

To integrate disparate systems, you must resolve potential differences in type
systems and execution dependencies. You must also decide whether you want the
calling thread of execution to block when making a request to the provider.

● Coupling and Interface Definition Language. Even when the type system is
described using an Interface Definition Language (IDL), platform infrastructure
code must be installed on the host computer that interprets the IDL. For example,
if you are using Common Object Request Broker Architecture (CORBA), infra-
structure such as an Object Request Broker (ORB) must be installed on the host
computer for a system to resolve the CORBA IDL types. Two CORBA-based
systems that are installed on different hardware platforms and operating systems
can interoperate, but they both remain coupled to the CORBA type specification
and binary mappings.

● Coupling and message-oriented middleware. Type-system coupling also occurs
when using proprietary message-oriented middleware. To resolve message
formats, each endpoint must contain an installation of the appropriate message-
oriented middleware. Although a particular message-oriented-middleware
product may be ported to multiple platforms, any endpoint you want to commu-
nicate with must also have the same message-oriented middleware product
installed.

● Portable type system. Most enterprise systems can process XML. From the
perspective of type-system coupling, the only primitive that must be agreed upon
is a string. After the incoming byte stream is interpreted as a string buffer, the
string can be parsed according to XML specifications, including XML schema. In
turn, the schema provides a type system that is highly portable between dispar-
ate hardware and operating systems.

● Contracts. Contracts have proven to be an excellent means of specifying
behavior between a consumer and a provider of services.

Integration Patterns148

Solution
To integrate applications at the business logic layer, enable systems to consume and
provide XML-based Web services. Use Web Services Description Language (WSDL)
contracts to describe the interfaces to these systems. Ensure interoperability by
making your implementation compliant with the Web Services family of specifica-
tions (for example, the Web Services Security [WS-Security] specification). For more
information about the Web Services specifications, see “Specifications” in the Web
Services Developer Center on MSDN (http://msdn.microsoft.com/webservices/under-
standing/specs/default.aspx). Whenever possible, use the document message style and
literal serialization (see “Use Document/Literal SOAP Styles and Encoding” later in
this pattern).

Note: The term service is used in many different ways in the context of software engineering. It
is also used in at least seven levels of scope: operating system, process, object, distributed
object, proprietary message-oriented middleware, logical, and XML Web services. This guide
uses the term service to mean XML Web services unless indicated otherwise.

To expose existing functionality as a Web service, use the Service Interface pattern
[Trowbridge03]. To encapsulate the logic necessary to consume services, use the
Service Gateway pattern [Trowbridge03]. Figure 4.16 shows the design elements
involved in this interaction.

Service Gateway Service Interface Service Implementation

Service Provider ApplicationService Consumer

Figure 4.16
Using Service Gateway and Service Interface to connect a Web service consumer and provider

In addition to following the Web Services specifications, you should also refer to
the Web Services Interoperability (WS-I) profiles when you design and build Web
services. For more information about WS-I, see the Web Services Interoperability
Organization Web site (http://www.ws-i.org). For guidance about how to build Web
services that are compliant with the WS-I basic profile, see Building Interoperable Web
services: WS-I Basic Profile 1.0 on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnsvcinter/html/wsi-bp_msdn_landingpage.asp).

Chapter 4: System Connections 149

Web Services
What exactly is a Web service? According to the World Wide Web Consortium
(W3C),

“a Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP-messages,
typically conveyed using HTTP with an XML serialization in conjunction with
other Web-related standards.” [W3C04]

In terms of interaction, two systems use Web services to communicate when a
requesting application creates an XML document in the form of a message and sends
it over the network to a provider of Web services. Optionally, the provider sends a
reply to the requester in the form of an XML document. Web services standards
specify the interface that the message is sent to, the format of the message, the
mapping of the message contents to service implementations, the optional headers,
and the means by which services can publish and discover other Web services.

Resolving the Forces
How does using Web services to integrate systems resolve the forces mentioned
earlier? First, basing your messages on XML and XML Schema definition language
(XSD) results in a highly portable type system as explained earlier. A portable type
system dramatically reduces type-system coupling. Type-system coupling is a major
impediment to cross-platform integration. However, to take full advantage of this
portable type system, you must understand SOAP styles and encoding.

Use Document/Literal SOAP Styles and Encoding

The WSDL 1.1 specification identifies two message styles (document and Remote
Procedure Call [RPC]) and two means of serializing the message onto the transport
mechanism (SOAP encoding and XML Schema). Choosing the right combination
of style and serialization have major impact on the interoperability of your Web
service.

The document message style indicates that the message body contains an XML
document. It is up to the service consumer and the service provider to agree on the
document exchanged. The RPC style indicates that the message body will contain
an XML representation of an RPC.

Integration Patterns150

To serialize the message data, the XML Schema – based serialization simply uses
the definitions contained in the XML Schema specification. Because using XML
Schema results in a highly portable type system, the messages are highly
interoperable. However, the SOAP-encoded serialization uses encoding rules that
require RPC-style communication. Since the details of RPC communication can
vary significantly between implementations, the resulting messages are not as
easily interoperable.

As a result of these interoperability concerns, use document-style messages with
literal encoding (doc/literal) whenever possible. For more information about this
topic, see “Understanding Soap” on MSDN (http://msdn.microsoft.com/webservices
/understanding/webservicebasics/default.aspx?pull=/library/en-us//dnsoap/html
/understandsoap.asp).

Combine Synchronous and Asynchronous Behavior to Address Temporal Coupling

To address temporal coupling, it is possible to invoke Web services both synchro-
nously and asynchronously. To understand how to do this in the context of Web
services, you must understand parts of the WSDL, SOAP, and Web Service Architec-
ture specifications.

To abstract communication away from implementation notions such as synchronous
and asynchronous calls, WSDL uses the concept of message exchange patterns
(MEP) to describe generic patterns of message exchange between endpoints. There
are four kinds of MEP described in WSDL 1.1, as shown in Table 4.3.

Table 4.3: Four Kinds of Message Exchange Patterns (MEP)

MEP name Description Type

Request-response The endpoint receives a message and then Synchronous*
sends a correlated message.

One-way The endpoint receives a message. Asynchronous

Solicit-response The endpoint sends a message and then Synchronous*
receives a correlated message.

Notification The endpoint sends a message. Asynchronous

* This MEP emulates synchronous behavior with HTTP POST/GET SOAP binding.

Chapter 4: System Connections 151

SOAP provides an extensible one-way messaging framework between sender and
receiver. To implement SOAP, however, you must bind it to a specific protocol.
HTTP POST/GET is the most common protocol. Because HTTP is a synchronous
protocol, if you use the SOAP/HTTP binding, you get the synchronous/asynchro-
nous behavior shown in Figure 4.17.

In cases where there are long-running transactions across enterprises, a Web service
exchanges messages synchronously while the larger business process that it runs
within executes asynchronously. For example, consider the Global Bank scenario.

Global Bank’s Asynchronous Business Process

In the Execute Scheduled Payment use case (see Chapter 2 for more details), Global
Bank sends international payments through a Society for Worldwide Interbank
Financial Telecommunication (SWIFT) payment gateway by using Web services over
the Internet. The message sent is an XML document containing the information
necessary for the payment gateway to electronically pay the payee identified in the
document. This message is sent synchronously through HTTP, and the response
only acknowledges a successful transmission. When the successful transmission
occurs, the payment gateway processes the message, and the calling system does not
wait for a response. After the payment gateway has finished processing the pay-
ment, it sends another message to Global Bank confirming the payment status. This
message is a synchronous HTTP request/response, and the response information
only acknowledges a successful message transmission.

Integration Patterns152

ExecutePayment

Ack [HTTP 200]

UpdatePaymentStatus

Ack [HTTP 200]

ExecutePayment

Ack [HTTP 200]

Global Bank Payment
System Web Service

PayeeSWIFT Payment
Gateway Web Service

Figure 4.17
SWIFT payment gateway combining synchronous exchanges to simulate asynchronous behavior

In the Execute Scheduled Payment use case, two synchronous message exchanges
participate in an asynchronous business collaboration. This effectively decouples the
systems.

Chapter 4: System Connections 153

Recognize Explicit Boundaries

Because Web services pass documents instead of RPC calls, there is no attempt to
consider that the location of the service is transparent. Indeed, the boundary be-
tween the two services is explicitly recognized. With explicit boundaries, the connec-
tion is not treated as reliable and available, as it would be treated with Distributed
Object Integration. You can use other patterns such as Server Clustering, Load-Balanced
Cluster, and Failover Cluster [Trowbridge03] to meet operational requirements when
traversing these boundaries.

Treat Services as Autonomous

When using services to integrate systems, you should consider two key elements:
service interfaces and service implementations. Service interfaces describe the
functionality, messages, and results that the consumers of the service can expect.
Contracts provide these interfaces in the form of WSDL files. Service implementa-
tions contain the software that implements the service and all its execution depen-
dencies, with the possible exception of other services.

Collaborations through service interfaces facilitate a high degree of interoperability
in your enterprise. The services should be capable of being independently versioned,
managed, and deployed. As these services are deployed, all the appropriate execu-
tion dependencies (except other services) should be deployed with the service and
contained within the service boundary.

Example
For detailed examples, see Implementing Service-Oriented Integration with ASP.NET
and Implementing Service-Oriented Integration with BizTalk Server 2004.

Resulting Context
As a result of implementing the Service-Oriented Integration pattern, the following
tenets apply [Box04]:
● Boundaries are explicit. Crossing service boundaries can be costly. For example,

you may need to span geography, trust boundaries, or execution environments..
You should therefore explicitly opt into service orientation by formally passing
defined messages between services. The explicit boundaries allow you to for-
mally express implementation-independent interaction so that your interactions
do not depend on the different platform, middleware, or coding language choices
used to implement other services.

Integration Patterns154

● Services are autonomous. There is no presiding authority in a service-oriented
environment. Services are independently deployed, versioned, and managed. The
topology in which a service executes evolves over time. The service should expect
that peer services will fail and that it will receive malformed or malicious mes-
sages. The services should be built by using techniques such as redundancy and
failover so that the services do not fail.

● Services share schema and contract, not class. Services interact solely on their
expression of structures through schemas and behaviors through contracts. The
service’s contract describes the structure of messages and ordering constraints
over messages. The formality of the expression allows machine verification of
incoming messages. Machine verification of incoming messages allows you to
protect the service’s integrity. Contracts and schemas must remain stable over
time, so building them flexibly is important.

● Service compatibility is based on policy. Services express their capabilities and
requirements in terms of a machine readable policy expression. Policy assertions
are identified by a stable, globally unique name. Individual policy assertions are
opaque to the system as a whole; services must simply be able to satisfy each
other’s policy requirements.

Benefits
The key benefit of using Service-Oriented Integration is interoperability between
disparate technical architectures. Interoperability at the level of technical architec-
ture helps to decouple an enterprise’s business architecture from its information
technology. This decoupling gives an enterprise a great deal of flexibility in terms of
how it implements specific business capabilities.

Although an enterprise contains processes, resources, goals, business rules, and
relationships [Eriksson00], it is the business processes that define how work actually
is done. Technical architectures enable work to be done efficiently by incorporating
business processes.

Without interoperable systems, the cost of process change is relatively high because
it may involve crossing technology boundaries. When using interoperable systems,
however, the cost of process change is dramatically lowered. This is especially true
when services are designed at a level of granularity that is meaningful to the busi-
ness, such as steps within a process. Businesses that have interoperable systems and
that use services that are relevant to business process are in a better position to sense
and respond to market changes and opportunities. These businesses become more
agile as a result of creating interoperable systems and using services that are rel-
evant to business practices.

Chapter 4: System Connections 155

Liabilities
The key liability of using Service-Oriented Integration is the performance cost of
serializing, deserializing, and parsing XML documents. In addition, XML documents
are much larger than their binary equivalents because they contain metadata. This
increases the size of the payload that must be processed during message exchange.

Security Considerations
Security is critical to services. Given its complex and technology-specific nature, you
must consider security individually for each implementation.

Related Patterns
For more information, see the following related patterns:
● Implementing Service-Oriented Integration with ASP.NET.
● Implementing Service-Oriented Integration with BizTalk Server 2004.
● Broker [Buschmann96]. To discover and publish services, Web services use an

implementation of the Universal Description, Discovery, and Integration of Web
Services (UDDI) specification. UDDI is an implementation of the Indirect Broker
pattern. The Indirect Broker is a specialized kind of Broker [Buschmann96]. Indirect
Broker enables one endpoint to locate another. After the other endpoint is located,
the two endpoints communicate directly with each other. In comparison, Direct
Broker also helps make the initial connection, but it maintains central control over
the communication. For an example of a Direct Broker, see Message Broker.

● Service Gateway [Trowbridge03]. This pattern contains the code that implements
the consumer portion of the contract into its own Service Gateway component.

● Service Interface [Trowbridge03]. This pattern designs an application as a collec-
tion of software services. Each software service has a service interface that con-
sumers of the application can interact through.

Acknowledgments
[Box04] Box, Don. “Code Name Indigo: A Guide to Developing and Running Con-
nected Systems with Indigo.” MSDN Magazine. January 2004. Available from the
MSDN Windows Code-Named “Longhorn” Developer’s Center at:
http://msdn.microsoft.com/longhorn/understanding/pillars/indigo/default.aspx?pull=/
msdnmag/issues/04/01/Indigo/default.aspx.

[Buschmann96] Buschmann, Frank; Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns. John Wiley & Sons Ltd, 1996.

Integration Patterns156

[Erikkson00] Eriksson, Hans-Erik, and Magnus Penker. Business Modeling with UML:
Business Patterns at Work. John Wiley & Sons, Inc., 2000.

[Newcomer02]. Newcomer, Eric. Understanding Web Services: XML, WSDL, SOAP, and
UDDI. Addison-Wesley, 2002.

[Skonnard03-2] Skonnard, Aaron. “Understanding SOAP.” MSDN Web Services
Developer Center, March 2003. Available at:
http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/
library/en-us//dnsoap/html/understandsoap.asp.

[Trowbridge03] Trowbridge, David; Dave Mancini, Dave Quick, Gregor Hohpe,
James Newkirk, and David Lavigne. Enterprise Solution Patterns Using Microsoft
.NET. Microsoft Press, 2003. Also available on the MSDN Architecture Center at:
http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us/
dnpatterns/html/Esp.asp.

[W3C04] “Web Services Architecture W3C Working Draft 11 February 2004.” Avail-
able on the W3C Web site at:
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[Wanagel03] Wanagel, Jonathan, et al. “Building Interoperable Web Services: WS-I
Basic Profile 1.0.” MSDN Library, August 2003. Available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsvcinter/html/wsi-
bp_msdn_landingpage.asp.

Chapter 4: System Connections 157

Implementing Service-Oriented Integration with ASP.NET

Context
You are connecting two systems by using Service-Oriented Integration so that one
system can consume functions provided by the other. The service provider is imple-
mented by using the Microsoft .NET Framework.

Background
In the Global Bank scenario, the Web application server accesses the mainframe
computer through a gateway service to retrieve a customer’s account balance.
Figure 4.18 illustrates how the interaction between the two systems is implemented
as Service-Oriented Integration by using Microsoft ASP.NET Web services.

Mainframe

Other
Applications

Service-Oriented Integration

GatewayASP.NET

Web Server

HIS
SOAP

Figure 4.18
Two applications using Service-Oriented Integration to access the gateway

Integration Patterns158

This implementation describes how to expose functionality that resides on a main-
frame computer as a Web service so that it can be accessed through Service-Oriented
Integration. The gateway is a custom C# application that connects to the banking
mainframe computer through Microsoft Host Integration Server (HIS). The main-
frame computer manages the account balances for the customer accounts and
provides functions such account balance retrieval, account credits, and account
debits.

Note: This implementation focuses on the interaction between the Web server and the Gateway
component. For a more detailed description of the interaction between the Gateway and the
mainframe computer, see Implementing Gateway with Host Integration Server 2004.

The mainframe gateway exposes a number of different methods to get account
balances, to credit and debit accounts, and to perform other functions. This imple-
mentation describes only the use of the GetAccountInfo method to return the name
and balance of an account.

Implementation Strategy
As already mentioned, the strategy is to enable Service-Oriented Integration by expos-
ing mainframe functionality as an ASP.NET Web service. Before discussing detailed
steps, it is helpful to review the concept of Service-Oriented Integration as well as
some details about ASP.NET Web services.

Service-Oriented Integration
Service-Oriented Integration connects applications through the exchange of docu-
ments, usually in the form of XML documents. Figure 4.19 shows Service-Oriented
Integration passing documents between a service consumer and a service provider.

Document
Exchange

Channel

Service
Consumer

Service
Provider

Figure 4.19
Document exchange in Service-Oriented Integration

Chapter 4: System Connections 159

The document exchange in Figure 4.19 does not imply interaction with a specific
instance of a remote object. Instead, when the document is passed from the con-
sumer to the provider, it triggers the execution of a specific function or service that is
self-contained and stateless. This is an important difference between Service-Oriented
Integration and Distributed Object Integration (also known as instance-based integra-
tion), which allows the client to manage the lifetime of a specific remote object
instance.

The following example shows an XML document passed inside a SOAP envelope.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetAccountInfoRequest xmlns="http://msdn.microsoft.com/patterns/">
 <AccountID xmlns="">12345678</AccountID>
 </GetAccountInfoRequest>
 </soap:Body>
</soap:Envelope>

ASP.NET Web Services
When you use ASP.NET to implement a Web service, the function that processes the
incoming document is implemented as a method of a .NET Framework class. The
.NET Framework manages the instantiation of a specific instance of that class.

The .NET Framework does quite a bit of work behind the scenes when it receives an
incoming SOAP request, as shown in Figure 4.20. Understanding the functions that
the .NET Framework performs internally is not strictly necessary, but it is very
helpful when designing ASP.NET Web services. It also gives you a good apprecia-
tion of the amount of functionality that resides in the .NET Framework.

Integration Patterns160

<<create>>

SOAPAction: "GetInfo"
<soap:Envelope>
<soap:Body>
<Request>
<AcctNo>123</AcctNo>
...

<%@ WebService
Language="c#"
Codebehind=
"Gateway.asmx.cs"
Class="gateway.Gateway"
%>

http://localhost/Gateway.asmx

.NET HTTP Pipeline

Internet
Information

Services

aspnet_isapi.dll

Request

AccountNo: integer

Gateway

Gateway.asmx.cs

[WebMethod]
GetInfo(Document doc)

<<create>>

SOAP Document

Gateway.asmx

Figure 4.20
ASP.NET Web services handling

When a document reaches a specified endpoint, the server has two main pieces of
information to work with: the contents of the document and the URL of the end-
point. With those two pieces of information, the server has to complete the following
steps:

Chapter 4: System Connections 161

1. Determine the .NET Framework class that should handle the request.
2. Determine the method to invoke inside that class.
3. Instantiate data transfer objects to pass data from the incoming document to the

method.
4. Invoke the method.
5. Return the results.

Internet Information Services (IIS) uses the file extension of the incoming URL to
map requests to the appropriate Internet Services API (ISAPI) handler. ASP.NET
Web services endpoints carry an .asmx extension in the URL. The .asmx extension in
the URL causes IIS to map the request to the standard .NET Framework HTTP
pipeline. Based on default computer configuration settings, the .NET Framework
HTTP pipeline hands control over to a WebServiceHandler. The
WebServiceHandler in turn determines the .NET Framework class that is associated
with the URL by reading the .asmx file referenced by the URL. In Figure 4.21, the
Gateway.asmx file specifies the class Gateway as the class servicing requests. This
class is defined inside a code-behind page named Gateway.asmx.cs.

The Web service handler still has to determine the method to invoke for the incom-
ing document. By default, it determines the method to invoke based on the value of
the SOAPAction field that is part of the HTTP header. The following is a sample of
that part of an HTTP header.

SOAPAction: "http://msdn.microsoft.com/patterns/GetAccountInfo"

After the Web service handler has determined the method to invoke, it parses the
incoming XML document and creates an instance of the matching .NET Framework
objects to be passed to the method. This step is referred to as deserialization and is
performed by the .NET Framework XML Serializer. The method performing the
function does not even have to know that the parameters were originally passed as
an XML document wrapped inside a SOAP envelope. Lastly, the Web service han-
dler creates an instance of the class that implements the service function and invokes
the appropriate method, passing instances of the applicable data transfer objects.

For a more detailed description of ASP.NET Web service internals, see “How
ASP.NET Web Services Work” on MSDN (http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnwebsrv/html/howwebmeth.asp) [Skonnard03].

Integration Patterns162

Building an ASP.NET Web Service
XML Web services expose the service contract to potential consumers as a Web
Services Description Language (WSDL) document. To simplify development of Web
services, the .NET Framework offers a variety of capabilities, including the auto-
matic generation of WSDL documents based on a service implementation. As a
result, you have a number of options when creating a new service interface:
● Develop the code first. Write the service implementation code first, and then let

the .NET Framework create the WSDL document from the code.
● Specify the XML schemas first. Develop message schemas as XML Schema

definition language (XSD) schemas first, generate code from the schemas, and
then let the .NET Framework create the WSDL document.

● Develop the WSDL first. Develop the WSDL definition first, and then let the
.NET Framework generate skeleton code matching the definition.

Each approach has advantages and limitations. Generally, the choice is among the
amount of control you need, the effort required, and the ease of integrating with
other platforms.

Developing the Code First

The easiest way to expose code as a Web service is to label a .NET Framework
class with the [WebService] attribute and to label the affected method with a
[WebMethod] attribute. The .NET Framework then takes care of all the details. For
example, it generates the WSDL document to give potential clients a description of
the service. To perform this conversion without any additional information, the
.NET Framework derives the names of SOAP body elements from the name of the
method and its arguments. The advantage of this approach is clearly its simplicity.
With two lines of extra “code,” a method can become a Web service that can be
invoked remotely. The limitation lies in the fact that the service interface exactly
resembles the code, including variable names. The .NET Framework allows you to
override the default naming choices by specifying additional attributes, but the
specification for the service still resides in application code. This can be undesirable,
for example, if an enterprise wants to keep a global repository of all message defini-
tions independent of the platform that implements a particular service. Another
potential pitfall, however, is that this approach can generate a service that will not
function properly. For example, if a method returns a non-serializable object, any
service invocation will fail even though the code compiled without errors.

Chapter 4: System Connections 163

Specifying XML Schemas First

A Web services call typically requires two separate messages: a request message and
a response message. These messages play roles similar to the roles played by the
parameters and the return value of a regular method. Just as defining the signature
of a method is an important first step in the creation of a new method, defining the
request and return message formats is a logical first step in the creation of a Web
services interface. After the message format has been specified, it can be compiled
into a C# classes automatically without incurring additional effort. At run time, the
.NET Framework still renders the WSDL document and eliminates the need for
hand-coding.

XML Web services use XSD documents to define message formats. Defining these
documents by using a standard format such as XSD has advantages over generating
them from the code. XSD documents are platform-independent and can be used to
define message formats independent of the technology implementing the service,
whether it is the .NET Framework, the Java 2 Platform, Java 2 Enterprise Edition
(J2EE), or any in a range of other technologies. This makes it feasible to keep a global
repository of all message types in an enterprise. Creating XML schemas also gives
the interface designer exact control over the look of SOAP messages that are sent to
and from a particular service.

Potential disadvantages of developing the XSD schemas first include the fact that a
new specification language (XML Schema) and tool has to be used. However, many
modern development environments, including Microsoft Visual Studio .NET, in-
clude powerful and easy-to-use XML Schema editors. Creating XSD documents first
also requires additional development and build steps because the XSD document
first has to be converted into C# classes. This step has to be repeated whenever the
XSD document changes, presenting the risk that the document and the implementa-
tion of the service can get out of synchronization.

Developing WSDL First

The specification of a service contract depends on factors other than just the format
of inbound and outbound messages. For example, to be accessible, the service has to
be bound to a port that can be addressed by using a specified Uniform Resource
Identifier (URI). A WSDL document specifies these additional contract terms, such
as ports and binding. Starting with the creation of a WSDL document ensures that
all details of the service contract (at least to the extent that they are supported by
WSDL) can be specified directly and in a technology-neutral manner. The biggest
drawback of starting with a WSDL document is that the verboseness of WSDL
makes the manual creation tedious.

Integration Patterns164

Example: Building an ASP.NET Web Service to Access the Mainframe
Gateway
As described in the Global Bank scenario, the Web application server accesses the
mainframe computer through a gateway service to retrieve a customer’s account
balance. This example creates an ASP.NET Web service that accesses the gateway to
the mainframe.

The ASP.NET page framework supports the development of both service providers
and service consumers. This implementation begins with the design and develop-
ment of the service provider. In the example, the mainframe gateway is the service
provider. Fortunately, most of the work that the .NET Framework performs is
hidden from the developer of an ASP.NET Web service. The developer’s main task is
to create the interface definition of the service and to fill out the implementing code
with the correct attributes to configure the behavior of the ASP.NET internals.

As mentioned in the previous section, there are several approaches to developing a
Web service by using ASP.NET. This implementation begins by defining XSD docu-
ments for the request and response messages. This approach gives you good control
over the published service interface while sparing you from having to hand-code
full-blown WSDL documents.

To expose an existing function as an ASP.NET Web service, follow these steps:
1. Develop an XSD document for the request and the response message.
2. Generate data transfer classes from the schema.
3. Define the operations that the service exposes.
4. Connect the service interface to the service implementation.
5. Build and run the service.
6. Create a test client that invokes the Web service.

Figure 4.21 illustrates this process. Each numbered step is explained in detail in the
sections that follow.

Chapter 4: System Connections 165

<service>
<port>
...

<xs:element>
...
</xs:element>

1

Service Contract

WSDL

Message.xsd

5

6

Class MyClient
{
 Service s =
new Service();
 s.Do(...)
}

Class Message
{...}
Class Service
{
 Do(Message msg)
}

NET DISCO

Service Consumer
Client Implementation

Service Gateway

2

Class Message
{...}

[WebMethod]
Do(Message msg)
{...}

Service Provider

Service Activator

Service Implementation

4

3

Interface lBackEnd
{
void GoDo(Parms parms)
}

BackEndStub

Go Do(Parms)

BackEndlmpl

Go Do(Parms)

BackEndFactory

lBackEnd GetBackEnd()

xsd.exe

Design Time

RunTime

.NET / llS

Figure 4.21
Building an ASP.NET Web service

Integration Patterns166

Step 1: Develop XSD Documents
The first step is to define the format of the request and response messages by creat-
ing two XSD files. The following are the XSD files for the GetAccountInfo method
generated using the Microsoft Visual Studio .NET XSD Editor. To ensure maximum
interoperability between the gateway service and the consumers, this implementa-
tion uses only standard data types and avoids using .NET Framework – specific data
types such as DataSet.

The XML schema for the request message (GetAccountInfoRequest.xsd) looks like
the following example. (To improve readability, the namespace declarations have
been omitted.)

<xs:schema … >
 <xs:element name="GetAccountInfoRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AccountID" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

You will notice that the document for the request is quite simple; it contains only a
single string data element named <AccountID>.

The following sample is what the XML schema response
(GetAccountInfoResponse.xsd) looks like.

<xs:schema … >
 <xs:element name="GetAccountInfoResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AccountID" type="xs:string" />
 <xs:element name="Balance" type="xs:decimal" />
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Description" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Chapter 4: System Connections 167

After creating the XSD files, the next step is to generate the data transfer classes.

Step 2: Generate Data Transfer Classes
The XML Schema Definition tool (xsd.exe) in the .NET Framework can create a .NET
Framework class from an XSD file. To create the data transfer files, run the following
commands from the command prompt in the directory where the XSD files reside:

xsd /n:GatewayWS /c GetAccountInfoRequest.xsd
xsd /n:GatewayWS /c GetAccountInfoResponse.xsd

These commands generate the GetAccountInfoRequest.cs and
GetAccountInfoResponse.cs files. Using the /namespace option (or the short form,
/n) enables you to specify the namespace to be used for the generated class. Other-
wise, the global namespace is used as the default namespace, which could lead to
conflicting namespaces.

The generated class file GetAccountInfoRequest.cs is shown in the following sample.

namespace GatewayWS {
 using System.Xml.Serialization;
 …
 public class GetAccountInfoRequest {
 [System.Xml.Serialization.XmlElementAttribute
 (Form=System.Xml.Schema.XmlSchemaForm.Unqualified)]
 public string AccountID;
 }
}

The attribute in front of the AccountID field instructs the XML Serializer that no
namespace qualifier is required in the XML string for this element.

The generated class has no functionality, but rather it is a simple data holder class
that acts as a Data Transfer Object [Trowbridge03] between the .NET Framework and
the service implementation. This class is the .NET Framework representation of the
XML document that is embedded in a SOAP request to the gateway service. As
described previously, at run time the XML Serializer parses the incoming SOAP
document, creates an instance of this object, and populates all fields with the values
from the incoming SOAP XML document.

Integration Patterns168

Step 3: Define the Operations That the Service Exposes
Now that you have data transfer objects, you can define the methods and operations
that the service is going to expose. As described in “ASP.NET Web Services” earlier
in this pattern, an ASP.NET Web service endpoint is created from the combination of
an .asmx file and an associated code-behind page that contains the actual class
definition. Because the Visual Studio .NET tool set generates the .asmx file for you,
you can focus on the Gateway class itself, which is contained in the file
Gateway.asmx.cs. This implementation follows the Service Interface [Trowbridge03]
approach and separates the public service interface from the implementation.

The class Gateway inherits from the base class WebService. To keep things simple,
the class exposes only a single method, GetAccountInfo, as a service.

namespace GatewayWS
{
 [WebService(Namespace="http://msdn.microsoft.com/patterns/")]
 public class Gateway : System.Web.Services.WebService
 {
 …
 [WebMethod]
 [SoapDocumentMethod(ParameterStyle=SoapParameterStyle.Bare)]
 public GetAccountInfoResponse GetAccountInfo(
 GetAccountInfoRequest GetAccountInfoRequest)
 {
 return null;
 }
 }
}

For now, leave the method body empty and only return a null value. You will tie this
method to the service implementation in the next step.

Note that both the method and the class are encoded with special attributes. The
[WebMethod] attribute of the GetAccountInfo method makes the method accessible
as part of the Web service. The additional [SoapDocumentMethod(…)] attribute
customizes the way the XML Serializer parses incoming SOAP messages. By default,
the XML Serializer expects method parameters to be wrapped inside an additional
element, which is in turn contained in the <soap:Body> element. Changing the
ParameterStyle setting to SoapParameterStyle.Bare makes these method param-
eters appear immediately under the <soap:Body> element, rather than encapsulated
in an additional XML element.

Chapter 4: System Connections 169

The following example shows a SOAP message that causes the GetAccountInfo
method of the Gateway.asmx Web service to be invoked.
…
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetAccountInfoRequest xmlns="http://msdn.microsoft.com/patterns">
 <AccountID xmlns="">1234567</AccountID>
 </GetAccountInfoRequest>
 </soap:Body>
</soap:Envelope>

The <soap:Body> element contains a <GetAccountInfoRequest> element. This
element corresponds to the single parameter that the GetAccountInfo method
receives.

Without the ParameterStyle setting, the SOAP request for the same method would
look like the following sample. Note that an additional GetAccountInfo node
beneath the <soap:Body> element wraps the method parameters.
…
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetAccountInfo xmlns="http://msdn.microsoft.com/patterns/">
 <GetAccountInfoRequest xmlns="http://msdn.microsoft.com/patterns">
 <AccountID xmlns="">1234567</AccountID>
 </GetAccountInfoRequest>
 </GetAccountInfo>
 </soap:Body>
</soap:Envelope>

Because the method receives all the necessary data elements inside a single data
transfer object, the additional wrapping is not required and makes the SOAP mes-
sage unnecessarily verbose. Therefore, set the ParameterStyle to Bare.

Step 4: Connect the Service Interface to the Service Implementation
Now that you have built the service interface and have encoded it with the neces-
sary Web service attributes, you need to link the still-empty GetAccountInfo
method to the actual service implementation. One option is to insert the code that
implements the service into the GetAccountInfo method of the Gateway class.
However, this approach has a number of drawbacks.

Integration Patterns170

First, the Gateway class inherits from the WebService base class. That means that
the class cannot be part of a separate inheritance tree that the service implementa-
tion may require.

Second, tying together the Web service interface and the implementation makes it
harder to test the implementation outside the Web services context.

Third, the functions that the service implementation provides may not exactly match
the service interface definition. For example, the service implementation may re-
quire multiple calls to fine-grained methods, whereas the Web service interface
should expose coarse-grained functions. Or, the service implementation may use
.NET Framework – specific data types, such as DataSets, that you are seeking to
avoid in the public Web service interface. As a result, the service may need to con-
tain logic to arbitrate between the public Web service interface and the internal
implementation.

Finally, tying the Web service directly to the implementation means that the Web
service can be functional only when the service implementation is running and is
available. That may not always be the case if the actual service implementation
resides in an existing system. For example, many mainframe systems have offline
times when they are not available for online requests. As the Web service is weaved
into a larger solution, these outages could hinder testing. For testing purposes, it
would be very convenient to be able to replace the service implementation with a
dummy implementation without affecting the service interface.

All these problems can be solved with a combination of well-known design patterns
that is shown in Figure 4.22. The first step is to separate the interface of the service
functionality from the implementation — for example, the mainframe access. You can
do so by applying the Separated Interface pattern [Fowler03]. The interface
IGlobalBank is a generic interface that represents the functions provided by the
mainframe system, but it has no dependency on the server running HIS. The class
GlobalHIS implements the methods specified in this interface by connecting to the
mainframe through HIS.

Chapter 4: System Connections 171

Gateway IGlobalBank

GlobalStub GlobalHIS HIS

GlobalPlugin
Factory

<<create>> <<create>>

Figure 4.22
Separating the service implementation from the service interface

After you have separated the interface from the implementation, you can create a
Service Stub [Fowler03]. A service stub is a dummy implementation of an external
service that reduces external dependencies during testing. The GlobalStub service
stub implements the same IGlobalBank interface but does not actually connect to
the mainframe computer. Instead, it simulates the mainframe functions internally.

Now that you have two implementations, you have to decide which one to use. You
want to be able to switch between the dummy implementation and the real imple-
mentation without having to change any code or having to recompile. Therefore,
this example uses a Plugin [Fowler03]. Plugin links classes during configuration
rather than compilation. You implement the Plugin inside the GlobalPlugInFactory
class. The factory class reads the name of the implementing class from a configura-
tion file so that you can switch between GlobalStub and GlobalHIS at run time by
changing the application configuration file.

Integration Patterns172

What is left for the Gateway class to do? It has to call the GlobalPlugInFactory class
to obtain a reference to an implementation of the IGlobalBank interface. Next, it has
to invoke the appropriate method in the interface. The names and types of the
parameters of the service implementation may differ from the XML schemas that
you created, so the Gateway class may have to perform simple mapping functions
between the two data representations.

Even though the implementation of these extra classes is not strictly necessary to
create a working Web service, these patterns simplify testing tremendously and are
well worth the additional coding effort. It turns out that the implementation of each
class is actually quite simple. The implementation involves the following steps:
1. Create an interface.
2. Create service implementations.
3. Create the plug-in factory.
4. Implement the Web service method.

Let’s walk through these steps one by one.

Step 4.1: Create an Interface

First, create an interface for the service implementation. The following code is from
the IGlobalBank.cs file. The code references the AccountInfo class. The AccountInfo
class is used by the service implementation. Note that this interface and the data
transfer class have no dependency on a specific service
implementation.

public interface IGlobalBank
{
 // Throws ArgumentException if account does not exist.
 AccountInfo GetAccountInfo (string AccountID);
}

public class AccountInfo
{
 public string accountID;
 public string name;
 public string description;
 public decimal balance;

 public AccountInfo(string accountID, string name,
 string description, decimal balance)
 {
 this.accountID = accountID;
 this.name = name;
 this.description = description;
 this.balance = balance;
 }
}

Chapter 4: System Connections 173

Step 4.2: Create the Service Implementations

Next, create two implementations of the interface as shown. Create one that is a
simple stub, and create another one that connects to the mainframe system through
HIS.

The two implementation classes are named GlobalHIS and GlobalStub. GlobalHIS
connects to the external system. In the example, the mainframe gateway is the
external system. The class implements the IGlobalBank interface.

public class GlobalHIS : IGlobalBank
{
 …
 public AccountInfo GetAccountInfo(string accountID)
 {
 decimal balance = 0.00m;
 string name = "";
 object [] contextArray = null;

 TCP_LinkTRM_NET.GlobalBank bank = new TCP_LinkTRM_NET.GlobalBank ();
 bank.cedrbank (ref name ,ref accountID ,ref balance,
 ref contextArray);
 AccountInfo info = new AccountInfo(accountID, "","", balance);
 return info;
 }
}

The GlobalStub class provides another implementation of the IGlobalBank inter-
face but is a simple stub without any dependency on external systems. It uses an
internal accounts collection to simulate account balances. For testing purposes, the
class constructor initializes this collection by using hard-coded values.

public class GlobalStub : IGlobalBank
{
 static IDictionary accounts = (IDictionary) new Hashtable();

 public GlobalStub()
 {
 if (accounts.Count == 0)
 {
 accounts.Add("123",
 new AccountInfo("123", "TestAccount", "TestDescription", 777.12m));
 }
 }

 public AccountInfo GetAccountInfo(string accountID)
 {
 if (!accounts.Contains(accountID))
 throw new ArgumentException("Account does not exist");
 return (AccountInfo)accounts[accountID];
 }
}

Integration Patterns174

Step 4.3: Create the Plug-in Factory

Now that you have created two implementations of the IGlobalBank interface, you
need to decide the implementation that you want to use at run time. This is the
purpose of the GlobalBankPlugInFactory class. The class reads the name of the
class to be used from the configuration file and then creates an instance of that class.
It returns a reference to the newly created object to the service interface, but the
reference is cast to the IGlobalStub interface. This way the service interface is not
dependent on the implementation that was chosen.

public class GlobalBankPlugInFactory
{
 static string globalBankImplName =
System.Configuration.ConfigurationSettings.AppSettings["GlobalBankImpl"];

 static public GlobalBank.IGlobalBank GetGlobalBankImpl()
 {
 Type globalBankImplType = Type.GetType(GetImplementationClassName());
 if (globalBankImplType == null)
 throw new TypeLoadException("Cannot load type " + globalBankImplName);
 GlobalBank.IGlobalBank bank =
(GlobalBank.IGlobalBank)Activator.CreateInstance(globalBankImplType);
 return bank;
 }

 static public string GetImplementationClassName()
 {
 if (globalBankImplName == null)
 globalBankImplName = "GlobalBank.GlobalStub";
 return globalBankImplName;
 }
}

For the Plugin class to be functional, you need to add the following entry to the
Web.config file.

<appSettings>
 <add key="GlobalBankImpl" value="GlobalBank.GlobalStub"/>
</appSettings>

Chapter 4: System Connections 175

Step 4.4: Implement the Web Service Method

Now that you have defined the implementation classes, you can finally fill in the
implementation code to the GetAccountInfo method of the Gateway.asmx Web
service as follows.

[WebMethod]
[SoapDocumentMethod(ParameterStyle=SoapParameterStyle.Bare)]
public GetAccountInfoResponse GetAccountInfo(
 GetAccountInfoRequest GetAccountInfoRequest)
 {
 GlobalBank.IGlobalBank bank =
GlobalBank.GlobalBankPlugInFactory.GetGlobalBankImpl();

 GlobalBank.AccountInfo globalAccountInfo =
bank.GetAccountInfo(GetAccountInfoRequest.AccountID);

 return BuildAccountInfo(globalAccountInfo);
 }

private GetAccountInfoResponse BuildAccountInfo(GlobalBank.AccountInfo
globalAccountInfo)
 {
 GetAccountInfoResponse response = new GetAccountInfoResponse();
 response.AccountID = globalAccountInfo.accountID;
 response.Balance = globalAccountInfo.balance;
 response.Name = globalAccountInfo.name;
 response.Description = globalAccountInfo.description;
 return response;
 }

The preparation you have done pays off. The implementation of the Web service
interface method now consists of three easy steps:
1. Obtain a reference to the IGlobalBank interface.
2. Invoke the service implementation by using the reference.
3. Construct the correct response format to return to the consumer.

Each step can be implemented in a single line of code. Step 3 is implemented in a
BuildAccountInfoResponse private helper method. In this contrived example, it
might appear unnecessary to use separate structures for GetAccountInfoResponse
and GlobalBank.AccountInfo because they are essentially identical. However, each
structure is likely to undergo a different change cycle over time. Including this
translation step allows the gateway to accommodate changes to either the HIS
interface or to the gateway interface without affecting both interfaces.

Integration Patterns176

Step 5: Build and Run the Web Service
Now you are ready to build and run the Web service. In Visual Studio .NET, click
the Build menu, and then click Build Solution. Visual Studio then compiles the
Web service. Browse the Web service by typing the URL in the Microsoft Internet
Explorer Address bar. For the example, the URL is http://localhost/GatewayWS
/Gateway.asmx.

A key aspect of a service is the service contract. XML Web services use WSDL
documents to describe the contract between a service consumer and the provider.
A WSDL document is quite comprehensive. Fortunately, the .NET Framework
automatically renders the WSDL document that describes the service. The following
example shows the definitions section of the WSDL document.

<?xml version="1.0" encoding="utf8"?>
<definitions …>
 <types>…</types>
 <message name="GetAccountInfoSoapIn">
 <part name="GetAccountInfoRequest" element="s0:GetAccountInfoRequest"/>
 </message>
 <message name="GetAccountInfoSoapOut">
 <part name="GetAccountInfoResult" element="s0:GetAccountInfoResult"/>
 </message>
 <portType name="GatewaySoap">
 <operation name="GetAccountInfo">
 <input message="tns:GetAccountInfoSoapIn"/>
 <output message="tns:GetAccountInfoSoapOut"/>
 </operation>
 </portType>
 <binding>…</binding>
 <service name="Gateway">
 <port name="GatewaySoap" binding="tns:GatewaySoap">
 <soap:address location="http://localhost/GatewayWS/Gateway.asmx"/>
 </port>
 </service>
</definitions>

The other major sections of the WSDL document include the following:
● Types
● Messages
● Bindings
● Service

Note: For the sake of clarity, some sections of the document have been condensed here; they
are discussed in more detail later in this chapter.

Chapter 4: System Connections 177

Types

The <types> element specifies the request and response messages. The content of
the element reflects the XSD documents that you created in step 1.

<types>
 <s:schema elementFormDefault="qualified"
 targetNamespace="http://msdn.microsoft.com/patterns">
 <s:element name="GetAccountInfoRequest" type="s0:GetAccountInfoRequest"/>
 <s:complexType name="GetAccountInfoRequest">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified"
 name="AccountID" type="s:string"/>
 </s:sequence>
 </s:complexType>
 <s:element name="GetAccountInfoResult" type="s0:GetAccountInfoResponse"/>
 <s:complexType name="GetAccountInfoResponse">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified"
 name="AccountID" type="s:string"/>
 <s:element minOccurs="1" maxOccurs="1" form="unqualified"
 name="Balance" type="s:decimal"/>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified"
 name="Name" type="s:string"/>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified"
 name="Description" type="s:string"/>
 </s:sequence>
 </s:complexType>
 </s:schema>
</types>

Messages

The next section of the WSDL document specifies the operations that the service
supports. For each operation, the request and response message format is specified
through the types declared in the <types> section of the WSDL document. As
you can see in the condensed WSDL listing, the Web service you are building
provides a single operation named GetAccountInfo. The operation takes a
GetAccountInfoRequest as an argument and returns a message of type
GetAccountInfoResult. The .NET Framework derives the name of the operation
directly from the name of the method that implemented it.

Bindings

The third major section of the WSDL document defines the binding of the operation
to a transport protocol and a message format. The style attribute of the
<soap:binding> element is set to document, indicating that the operation is docu-
ment-oriented and not remote procedure call – oriented. The [soapAction] attribute
of the <soap:operation> element specifies the action string to be used in the

Integration Patterns178

SOAPAction HTTP header. As explained in “ASP.NET Web Services,” the .NET
Framework uses this string to determine the method to execute.

The soap:body elements describe that the message format will be literal, meaning
that the body portion of an incoming SOAP request looks exactly as specified in the
types section of the document without any additional wrapping or encoding. The
specified style of SOAP message exchange is also referred to as doc/literal.

<binding name="GatewaySoap" type="tns:GatewaySoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document"/>
 <operation name="GetAccountInfo">
 <soap:operation style="document"
 soapAction="http://msdn.microsoft.com/patterns/GetAccountInfo" />
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

Service

The last part of the WSDL document specifies an address for the service. The service
in the example is available through the URL http://localhost/GatewayWS/Gateway.asmx.

As you can see, you can save a significant amount of work by having the .NET
Framework generate the WSDL document for you rather than coding it manually.

Step 6: Create a Test Client
Now that the service is available online and it is properly described by a service
contract in the form of a WSDL document, you are ready to create a client applica-
tion that consumes the service.

To create a test client that accesses the Web service, create a new ASP.NET project.
Use the Add Web Reference Wizard in Visual Studio .NET Solution Explorer to
create a reference to the gateway Web service. You can also use the Web Services
Description Language tool (Wsdl.exe). This command-line tool creates proxy classes
from WSDL. Compiling this proxy class into an application and then calling the
method of this proxy class causes the proxy class to package a SOAP request across
HTTP and to receive the SOAP-encoded response.

You can use these proxy classes later to generate automated test cases by using test
tools such as NUnit (http://www.nunit.org).

Chapter 4: System Connections 179

Resulting Context
Evaluate the following benefits and liabilities to decide whether you should imple-
ment and use Service-Oriented Integration with ASP.NET.

Benefits
● Efficient. ASP.NET does a lot of the work involved in exposing functions as Web

services.
● Flexible. If you want, you can still control the exact behavior declaratively

through the use of attributes. This approach provides a good combination of
simplicity without being unnecessarily restrictive. If you need even finer-grained
control, you can replace the standard WebServiceHandler with a custom class.

Liabilities
● Geared towards custom applications. Even though the .NET Framework does a

lot of the Web service coding and configuration, you still have to code the service
implementation in C# or Visual Basic .NET by hand. ASP.NET does not offer
built-in support for process modeling and orchestrations that might be needed
for the creation of more complex composite services. If this type of functionality
is required, consider using Implementing Service-Oriented Integration with BizTalk
Server 2004 instead.

 ● Synchronous interaction. By default, this approach supports only synchronous
interaction. The client has to wait until the service completes. In distributed
service-oriented environments, asynchronous communication is often the pre-
ferred approach.

Testing Considerations
Two design decisions significantly improve your ability to test the service provider
in this implementation:
● The separation of the service interface from the service implementation
● The use of a plug-in to dynamically substitute a service stub for the

implementation

Service Interface Separation
The separation of the service interface from the service implementation makes it
easy to test the service implementation without having to deal with the Web service
aspect of the gateway component. You can create unit test cases as you would for
any application. Do this by creating test cases for the service implementation and by
circumventing the service interface, as shown in Figure 4.23).

Integration Patterns180

Service
Implementation

Consumer Service
Interface

Unit
Test Cases

Unit Test

Figure 4.23
Unit testing of Service-Oriented Integration

Automating the unit test cases has a very desirable side effect: you can apply the
same test cases to both the real implementation and the dummy implementation.
Applying the same test cases ensures that the GlobalStub class is a true rendering
of the mainframe functionality. It also allows you to use the stub implementation
to run all functional tests with confidence.

Service Stub
The service stub, in combination with the plug-in factory, allows you to switch
between the real service implementation and a dummy implementation at run time
by changing a configuration file. This allows you to test consumers of the service
more easily, reliably, and quickly because you eliminate any dependencies to the
mainframe service (see Figure 4.24).

Integration Test

Consumer

Consumer

Gateway

Gateway

GlobalStub

End-To-End Test Production

HIS Mainframe

Figure 4.24
Replacing the implementation of the gateway for testing

Chapter 4: System Connections 181

You can be assured that the switch does not affect the behavior of the gateway
because both the dummy (stub) implementation and the Host Integration Server
interface have been unit-tested by using the same suite of unit tests.

Security Considerations
The Web service implementation presented here does not incorporate any security
considerations. This may be undesirable because the Web service exposes sensitive
account data that resides in the bank’s mainframe computer. Even though the Web
service resides behind the firewall, you would not want anyone with Visual Studio
.NET and a little programming skill to create a client to this service to retrieve
customers’ account balances.

Security has been widely recognized as a critical element for the success of Web
services. Microsoft has partnered with IBM and VeriSign to develop the Web Ser-
vices Security (WS-Security) specification. This specification describes how SOAP
messages can be augmented with security certificates. The WS-Security specification
is currently implemented by Web Services Enhancements (WSE) for Microsoft .NET.

Acknowledgments
[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Skonnard03] Skonnard, Aaron. “How ASP.NET Web Services Work.” MSDN Library,
May 2003. Available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html
/howwebmeth.asp.

[Trowbridge03] Trowbridge, David; Dave Mancini, Dave Quick, Gregor Hohpe,
James Newkirk, and David Lavigne. Enterprise Solution Patterns Using Microsoft
.NET. Microsoft Press, 2003. Also available on the MSDN Architecture Center at:
http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us
/dnpatterns/html/Esp.asp.

Integration Patterns182

Implementing Service-Oriented Integration with BizTalk
Server 2004

Context
You are connecting two or more systems by using Service-Oriented Integration. The
service implementation requires the orchestration of multiple functions.

Background
In the Global Bank scenario, the customer can view his or her balances for all ac-
counts, including loan accounts, on a single page. To provide this function, the Web
application server interacts with multiple systems to retrieve the required informa-
tion. The loan accounts may reside on multiple external loan systems that are oper-
ated by subsidiaries that were acquired over time. Figure 4.25 shows how the Web
application server interacts with the multiple systems to display the account infor-
mation in the customer’s Web browser.

BizTalk Server

Loan
System

Loan
System

Payment
System

Web
Application

Server

CRM Mainframe

Browser

1,000

2,360

230,000

11,543

1,234Credit card

Car

Home

Savings

Checking

Figure 4.25
Aggregated account balances from multiple banks

Chapter 4: System Connections 183

To hide the complexity of interacting with external loan systems, you want to design
a service that the Web application server can easily access by using a single
GetOtherLoans request.

Implementation Strategy
This pattern implements a Microsoft BizTalk Server 2004 orchestration and exposes
it as a Web service. Before discussing detailed steps, it is helpful to review the
concept of Service-Oriented Integration and to review some details about BizTalk
Server orchestrations.

Service-Oriented Integration
Service-Oriented Integration connects applications by exchanging documents. In many
cases, these documents are represented in XML format. The following code shows a
document passed in a SOAP envelope.
)<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope>
 <soap:Body>
 <LoanBalanceRequest>
 <MasterCustomerID>12345678</MasterCustomerID>
 <CorrelationID>1100222</CorrelationID>
 </LoanBalanceRequest>
 </soap:Body>
</soap:Envelope>

Service-Oriented Integration hides the complexity of the underlying service very well.
For example, the service might execute a complex process internally that has many
parallel threads of activity. However, the complex internal process does not affect
the service interface at all (see Figure 4.26).

Service
Interface

<CustomerID>
 12345678
</CustomerID>
<CorrelationID>
 1100222
</CorrelationID>

Document Complex Interactions

Figure 4.26
Complexity hidden behind a service-oriented interface

Integration Patterns184

Exposing a BizTalk Orchestration as a Web Service
You can use BizTalk Server 2004 to model complex processes by using the BizTalk
Orchestration Designer. BizTalk orchestrations interact with the outside world
through logical ports as shown in Figure 4.27. An orchestration can interact with
logical ports through send and receive ports that are incorporated into the orchestra-
tion graph. Messages received from a receive port can start a new instance of an
orchestration or interact with an existing orchestration instance. An orchestration
can send messages to any output port through the send port. A sent message can
either be the response to a previously received message or to a standalone message.

Logical
Ports

Orchestration Logical
Ports

Configuration
Database

SOAP

BizTalk Orchestration
Designer

Web Services
Publishing Wizard

ASP.NET

IIS Port
Binding

BizTalk Server
Figure 4.27
An orchestration invoked by a Web service call

Chapter 4: System Connections 185

Logical ports can be bound to physical ports at design time or at deployment time.
Physical ports specify a transport type, such as File, File Transfer Protocol (FTP),
HTTP, or SOAP. Physical ports also specify a physical location, such as a directory
name or a URL. This separation of logical and physical ports allows you to create
and reuse orchestrations without being tied to specific directory names or URLs. You
can specify a physical Web port by selecting the SOAP transport protocol and by
specifying a URL.

After you design an orchestration in BizTalk Server, you can expose it as a Web
service to be invoked from other applications. The BizTalk Web Services Publishing
Wizard supports this task, generating both a physical port definition and an
ASP.NET Web service that invokes the orchestration when it receives a SOAP re-
quest. For a more detailed description of ASP.NET Web services, see Implementing
Service-Oriented Integration with ASP.NET.

The following steps are necessary to create a BizTalk orchestration and to expose it
as a Web service to be consumed by other applications. To illustrate this procedure,
all steps here are performed manually. However, you can automate some steps by
scripting to the BizTalk Windows Management Instrumentation (WMI) interface.

� To expose a BizTalk orchestration as a Web service
1. Define the message schemas for inbound and outbound messages. The mes-

sage schemas define the format of the messages that the orchestration receives
and sends. Ultimately, the Web Services Description Language (WSDL) document
generated by the ASP.NET Web service uses these message schemas to specify the
required format for inbound and outbound SOAP messages.

2. Define logical request-response ports. A logical port is required so that the
orchestration can receive and send messages. A request-response port is a port
that receives a request message and that sends a response within the same inter-
action.

3. Define the orchestration and connect it to the logical port. The orchestration
encapsulates the tasks that the service needs to execute internally. Connecting to
the logical port starts a new instance of the orchestration every time a new
message arrives on the port.

4. Build and deploy the orchestration. An orchestration has to be built and de-
ployed to the global assembly cache and to the BizTalk Management database
before it can be executed. You use the BizTalk Deployment Wizard to deploy the
orchestration.

5. Run the BizTalk Web Services Publishing Wizard. The wizard creates and
compiles a Microsoft Visual Studio project for an ASP.NET Web service. If you
select the Create BizTalk Receive Location option, the wizard also creates a
physical port definition in the BizTalk configuration database.

Integration Patterns186

6. Bind the orchestration’s logical port to the physical port. Before you can start
the orchestration, you must bind the logical port definition referenced by the
orchestration to a physical port. To do this, you usually use BizTalk Explorer from
within Microsoft Visual Studio .NET. In this case, you bind the logical port to the
physical port that the Web Services Publishing Wizard created.

7. Start the orchestration. When you start the orchestration, it begins to actively
listen to incoming messages. In this case, the incoming messages are SOAP
requests. The service is now live and executes the orchestration for each
incoming SOAP request.

8. Create a test client that invokes the Web service. The ASP.NET Web service
generated by the Web Services Publishing Wizard renders the necessary WSDL
document that describes the public service contract. This means that you can use
the Web Services Description Language tool (Wsdl.exe) or Visual Studio .NET to
easily create applications that consume the newly created Web service.

Example
The following example explains the architectural decisions involved and the steps
performed in building the Global Bank solution.

Asynchronous Interaction
In the Global Bank scenario, customers can view their account balances, including
loan balances, on a single page. The loan balances, however, must be retrieved from
external systems that may not always be available or that may have slow response
times. Users indicated that quick response times for the Web site were more impor-
tant than complete information. Therefore, given that the system cannot guarantee
quick response times, the user requirements state that loan balances are optional for
display on the View Scheduled Payments page.

This optional user requirement is reflected in the solution architecture by making the
request for the loan balances asynchronous. This means that the Web application
server requests the loan balances first, and then it retrieves data from the mainframe
and payment systems. After all other data has been retrieved, the application server
checks whether the loan balances were retrieved. If so, they are incorporated into the
page display. If not, the page is rendered without the loan balance portion. Figure
4.28 shows the concurrent action in Unified Modeling Language (UML). The interac-
tion between BizTalk Server and the individual loan systems is not shown.

Chapter 4: System Connections 187

Get Payment Info

Get Payment Info

Render Page

Request

Response

Web
App Server

BizTalk
Server

Mainframe Payment
System

Initiate Request for Loan Balance

Get Account Balance

Figure 4.28
Asynchronous interaction between the Web application server and BizTalk Server

Implementing Asynchronous Web Services
To make the interaction between the Web application server and BizTalk Server
asynchronous, you have three implementation choices. The three implementation
choices are illustrated in Figure 4.29.

Integration Patterns188

BizTalk ServerWeb Application Server
SOAP Request

SOAP Response

BeginRequest()
…
DoOtherStuff()
…
loans = EndRequest()

SOAP Request

SOAP Response

SOAP Request

SOAP Response

SOAP Request

SOAP Response

SOAP Request

SOAP Response

InitiateRequest()
…
DoOtherStuff()
…
loans=PollResults()

InitiateRequest()
…
DoOtherStuff()
...
loans=getFromCache()

OnSoapMessage(loan)
{ cache += loan }

A

B

C

Figure 4.29
Implementation choices for asynchrony between the Web application server and BizTalk Server

The three implementation choices from Figure 4.29 can be summarized as follows:
A. Client-side asynchrony. The Web server issues a single SOAP request by using

the asynchronous Web service API. This API permits the client (in this case, the
client is the Web application server) to continue with other processing and to read
the results of the request at a later time. This approach permits the client to
operate asynchronously while the interaction with BizTalk Server is
synchronous.

Chapter 4: System Connections 189

B. Asynchronous interaction with polling. The Web server makes two SOAP
requests to BizTalk Server. One of the SOAP requests initiates the request for loan
information. This first request only initiates processing on the BizTalk Server side
and returns immediately. Subsequently, the Web server issues a second SOAP
request to poll for the results. BizTalk Server returns the results if they are avail-
able or returns a blank message if they are not yet available. BizTalk Server
discards the loan balance results if they become available after the Web server
polled for them.

C. Asynchronous interaction with callback. The Web server issues a single SOAP
request to initiate the retrieval of loan information. As with option B, control is
returned immediately to the Web server. The Web server then goes on to other
work. After BizTalk Server has retrieved the loan information, it sends a SOAP
request back to the Web server to pass the loan information. It is important to
note that for this part of the interaction, the Web server has to be able to service
incoming SOAP messages. Therefore, the Web server has to act as the server. The
Web server stores the loan information in a global cache that is accessible to the
threads that generated the requests. Before the Web server renders the HTML
page, it checks the global cache to see whether any loan information has arrived
while it was interacting with the mainframe and the Customer Relationship
Management (CRM) systems.

To choose the best option, you need to evaluate the advantages and disadvantages of
each option. Table 4.4 compares the different options.

Table 4.4: Comparison of the Implementation Choices for Asynchronous Interaction

Option A: Option B: Option C:
client-side asynchronous asynchronous
asynchrony interaction with interaction with

polling callback

Client-side implementation Low Medium High
effort

Server-side implementation Low Medium Medium/low
effort

Network traffic Low Higher Higher

Efficient use of resources Poor (for long-running
interactions) Good Good

Where state is kept Connection Server Client

As you can see, each option has its advantages and disadvantages. Therefore, you
must make your decision based on the priorities that you assign to the individual
criteria.

Integration Patterns190

Although option A may be the easiest to construct, it is essentially a synchronous
SOAP interaction that just appears to be asynchronous to the client code because the
connection between the client and the service remains active throughout the whole
interaction. The use of long-standing connections can quickly deplete system re-
sources and can be one of the biggest impediments to a solution’s scalability. Be-
cause the loan balance service has to access external loan systems over slow and
unreliable connections, the interaction can definitely be long running. Therefore, you
should eliminate option A.

The choice between option B and C is more difficult and depends on whether you
want to maintain the state on the client (the Web application server) or on the server
running BizTalk Server. Both servers are multithreaded and quite efficient at keeping
state for many concurrent requests. The choice also depends on where you want to
allocate the additional development effort. Do you prefer to put additional effort
into the ASP.NET code on the Web server or into the orchestration design on the
server running BizTalk Server? Option B requires a little extra work on the BizTalk
Server to ensure proper correlation and to allow the concurrent servicing of multiple
requests. Option C requires additional coding effort in the Web server to maintain
and to clear the global cache. Overall, option B offers the best results for the smallest
amount of development effort and is the first choice. However, this discussion
highlights that architectural decisions are not only based on technical considerations
alone but also on development resource constraints and skills preferences.

Building the Solution
Based on the tradeoffs discussed in the previous section, Global Bank decided to use
option B, asynchronous interaction with polling. The next step was to start building
the solution. The rest of this example shows you the steps required to build the
Global Bank solution. Due to the large number of steps involved in creating the
solution, some steps are not covered in full detail.

Step 1: Define the Message Schemas for Inbound and Outbound Messages

To define the format of the request and response messages, create two XML Schema
(XSD) files in the Visual Studio .NET XSD Editor. The XSD schema for the
LoanBalanceRequest.xsd request message looks like the following schema. To
improve readability, the namespace declarations are omitted.

Chapter 4: System Connections 191

<xs:schema…>
 <xs:element name="LoanBalanceRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" name="MasterCustomerID"
 type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The document specifies a single MasterCustomerID data field for the request mes-
sage. The MasterCustomerID field is common across all systems and can be used to
locate all the customer’s accounts.

In response to the request, the application returns the following acknowledgement
(Ack.xsd).

<xs:schema…>
 <xs:element name="Ack">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CorrelationID" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The only field in this schema is a unique correlation identifier. The orchestration
assigns an ID to this field and uses it later to match (or correlate) the request and
response messages across the asynchronous communication. For more information,
see the Correlation Identifier pattern in Enterprise Integration Patterns [Hohpe04].

After receiving the acknowledgment response from the orchestration, the client polls
the orchestration for the result.

The client application copies the correlation identifier returned in the acknowledg-
ment message (Ack.xsd) into PollReq.xsd. PollReq.xsd has only one field
(CorrelationID), as shown in the following schema.

<xs:schema…>
 <xs:element name="PollReq">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CorrelationID" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Integration Patterns192

The XSD code for the LoanBalanceResponse.xsd response message looks like the
following.

<xs:schema …>
 <xs:element name="LoanBalanceResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Loan">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="AccountID" type="xs:string" />
 <xs:element name="Amount" type="xs:decimal" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The response message schema defines a list of account names and balances. This list
is filled in by the Web service (through the orchestration). The completed message is
then sent back to the client.

Step 2: Define Logical Request-Response Ports

In BizTalk Orchestration Designer, add a port to the orchestration, and then use the
Port Configuration Wizard to configure a public request-response port. Figure 4.30
indicates the Request-Response option.

Chapter 4: System Connections 193

Figure 4.30
Using the BizTalk Port Configuration Wizard to add a request-response port

In addition to selecting the Request-Response setting, you must change the Access
Restrictions setting to Public – no limit.

Integration Patterns194

Step 3: Define the Orchestration and Connect It to the Logical Port

As described in “Implementing Asynchronous Web Services,” the interaction be-
tween the Web server and the BizTalk Server orchestration consists of two parts:
● The Web server requests loan information from BizTalk Server.
● The Web server polls for results. The BizTalk Server orchestration returns a

response immediately with the results it retrieved up to that point.

Based on Global Bank requirements, the orchestration must:
a. Receive the initial request from the Web server. The orchestration creates a new

instance of the orchestration for each request.
b. Generate a unique correlation identifier to pass back to the client. The orches-

tration returns the correlation identifier back to the Web server so that it can use
this identifier to poll later for the results.

c. Request the loan balance from multiple backend loan systems. These requests
can be made concurrently. The results from each loan system have to be com-
bined into a single message. In this example, both loan systems are accessible
through prebuilt Web services.

d. Service the polling request. The orchestration has to be able to receive a polling
request from the Web server at any time. When it receives a polling request, the
orchestration returns the loan balances if they have been obtained already. Other-
wise, the orchestration returns a blank result. The polling request can arrive at
any time after the initial request.

e. Time out. If the orchestration does not receive a polling request after an extended
period of time (for example, 60 seconds), the orchestration is terminated. This
function keeps orchestration instances from staying active indefinitely while they
are waiting for a polling request.

Figure 4.31 shows these tasks modeled inside a BizTalk Server orchestration.

Chapter 4: System Connections 195

Figure 4.31
The BizTalk Server orchestration for loan balances

Now, let’s examine the orchestration tasks in more detail. The letters in the following
list correlate to the letters in Figure 4.31.

A: Receive the Initial Request from the Web Server

In the Global Bank scenario, the ASP.NET client sends a request for a customer’s
loan balances (GetOtherLoans) to BizTalk Server. LoanBalanceRequest.xsd defines
the format of the request. The request contains only the MasterCustomerID field (see
“Step 1: Define the Message Schemas for Inbound and Outbound Messages”).

The request is received through the ReceiveReq port in the orchestration (see Figure
4.31). After the message is received, the port forwards it to the ReceiveReq Receive
shape. The Activate property of the ReceiveReq Receive shape is set to True, which
activates the orchestration.

Integration Patterns196

B: Generate a Correlation Identifier and Send Acknowledgment

After the ASP.NET client sends the initial request to BizTalk Server, it receives an
acknowledgment message (Ack.xsd). This message contains the CorrelationID field.
The CorrelationID field identifies the orchestration instance associated with the
initial request. This field guarantees that incoming messages are associated with the
correct instance of the orchestration.

To create the correlation ID, you can use a custom C# class that uses
System.Random to generate and return an ID. That ID is assigned to the
CorrelationID field of the Ack.xsd message, and it is returned to the client. Alterna-
tively, you can assign one of the BizTalk Server message context properties
(BTS.MessageID) as a unique ID to the CorrelationID field of the Ack.xsd message.
This is accessible within an Expression shape in the orchestration.

For the CorrelationID field to be accessible to the code in the Expression Editor
window, you must use the BizTalk Schema Editor to promote it, as shown in
Figure 4.32.

Figure 4.32
Promoting a schema field

Chapter 4: System Connections 197

After the acknowledgment response is created, the Send_Ack send shape sends the
response to the receive-request port, and the receive-request port then returns it to
the client. The Send shape should be configured to initialize the orchestration
correlation set. To accomplish this, add a correlation type and a correlation set in the
Orchestration Viewer, and then set the Initialize Correlation property of the Send
shape to the new correlation type you created. When the orchestration sends the
message to the client, the correlation set is automatically initialized with the value in
the CorrelationID field.

C: Request the Loan Balances

The initial request from the client activated the orchestration. The orchestration
then synchronously returned an acknowledgment containing the CorrelationID to
the client. Now, to retrieve the customer’s loan balance, the orchestration needs
to call the external systems that are implemented as two Web services,
GetOtherLoans1.asmx and GetOtherLoans2.asmx. The request and response
messages to these Web services are fairly simple. Each takes a customer ID as a
request and returns the loan information that corresponds to that customer ID.
This is shown in the following selection from the GetOtherLoan1.asmx external
Web service request schema.

<?xml version="1.0" encoding="utf-16" ?>
<xs:schema ..>
<xs:element name="Request">
<xs:complexType>
<xs:sequence>
 <xs:element name="CustomerId" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

Note: The namespace information in these examples is omitted here for brevity.

At this stage, the client’s request must be transformed into the message format that
the external Web services require. Each external Web service can have a different
schema, although both schemas are identical in this example. The following is the
key portion of the GetOtherLoans1.asmx external Web service response schema.

<?xml version="1.0" encoding="utf-16" ?>
 <xs:schema …>
 <xs:element name="Response">
<xs:complexType>
 <xs:sequence>
<xs:element name="Name" type="xs:string" />
<xs:element name="Amount" type="xs:string" />
<xs:element name="AccountNo" type="xs:string" />

Integration Patterns198

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

To transform one schema into another, Transform shapes in ConstructWS_Req1 and
ConstructWS_Req2 map the CustomerId fields of the two schemas. You use the
BizTalk Mapper to map the MasterCustomerID field of LoanBalanceRequst.xsd to
the CustomerId field of the Web service’s request schema (see Figure 4.33).

Figure 4.33
Using BizTalk Mapper to map request fields

Now that the Web services’ request messages have been constructed, the response
messages have to be parsed and consumed. In BizTalk Solution Explorer, open the
Web service’s Reference.xsd file. Using the Promote option, distinguish the Name,
AccountNo, and Amount elements of the Web service response schema (see Figure
4.32). Distinguishing these fields allows the code in the AddLoan1 and AddLoan2
Expression shapes to reference their values and use them to construct the response
document.

Chapter 4: System Connections 199

Next, you use the response from each Web service to construct a
LoanBalanceResponse.xsd response that is returned to the client. To accomplish this,
AddLoan1 and AddLoan2 Expression shapes use a custom C# class
(LoanInfoCollection) to collect the results returned by each Web service. Each Web
service returns the Name, AccountNo, and Amount for the customer’s loan. The
custom class aggregates the responses into an XML document which is returned to
the polling client as the LoanBalanceResponse.xsd response. The following is the
code from the Expression property of AddLoan1.

LoanInfoCollection.AddLoan(
msgWebServ1_Resp.GetLoanInfoResult.Name,
msgWebServ1_Resp.GetLoanInfoResult.Amount,
msgWebServ1_Resp.GetLoanInfoResult.AccountNo);

Because all three branches of the parallel action use the LoanInfoCollection class,
the AddLoan1 and AddLoan2 Expression shapes are inside synchronized blocks
(Scope_LoanInfo1 and Scope_LoanInfo2 respectively). The Transaction Type
property of the synchronized blocks is set to Atomic to protect the class from con-
current access. For more information about transactions in BizTalk Server, see
Implementing Process Integration with BizTalk Server 2004.

D: Service Polling Request

At this point, the response message has been constructed and is ready to be deliv-
ered to the client. The client polls the orchestration by sending a SOAP message to
BizTalk Server. The message contains the correlation ID that identifies the instance of
the orchestration that is associated with this request.

The PollReqResp port is linked to the ReceivePollReq receive shape. The
ReceivePollReq receive shape has an important property, Following Correlation
Sets. This property is set to the correlation type created earlier in step B, and it
allows BizTalk Server to associate the polling request to the correct instance of this
orchestration.

The request message is then assigned the loan information gathered from Web
services by the LoanInfoCollection class within the Construct Response shape of
Scope_CreateResponse.

As the final step, the SendPollResp Send shape sends the constructed response
message that is mentioned earlier to the PollReqResp port. The PollReqResp port
then sends the constructed response message to the polling client.

E: Time Out

With respect to the polling request, there are two potential scenarios that you have
to design the orchestration to handle properly. In the first scenario, the client may
poll too early, before the orchestration has received a response from external Web
services and constructed the response message. In the second scenario, the client

Integration Patterns200

may not poll at all. If the client does not poll at all, the orchestration instance is left
in an active state forever.

To handle early polling, you must allow the client to poll again if no results are
returned. To accomplish this, you add a loop and set it to run indefinitely. In this
case, add a Poll_Loop. Note, however, that the loop is limited by the Timeout
property value of the orchestration.

To set the Timeout value for the orchestration, set the Transaction Type property to
Long Running, and set the Timeout property value to 60 seconds or another appro-
priate value. This allows the client enough time to poll for the result and eliminates
the possibility that an orchestration could run indefinitely.

Step 4: Build and Deploy the Orchestration

Before you build the orchestration, create an assembly key file by typing sn –k
SOIwithBizTalk.snk at the command prompt. Copy the file to the project folder,
and then enter the file name in the Assembly Key File name property of the project
properties.

Note: You need to build the LoanInfoCollection assembly that is referenced by the project by
using a strong name assembly key file. You then must deploy it to the global assembly cache.

From the Visual Studio .NET menu, build the solution. This creates a .NET Frame-
work assembly called SOIwithBizTalk. You then deploy the SOIwithBizTalk
assembly by using the BizTalk Server Deployment Wizard or by using the scripts
that are included with the BizTalk 2004 SDK.

Step 5: Run the BizTalk Web Services Publishing Wizard

To expose the SOIwithBizTalk assembly that you deployed in step 5 as a Web
service, run the BizTalk Web Services Publishing Wizard. The wizard creates the
SOIwithBiztalk_Proxy Web service. The SOIwithBiztalk_Proxy Web service exposes
Web services corresponding to the ReceiveReq and PollReqResp ports.

Step 6: Bind the Orchestration’s Logical Port to the Physical Port

The Web Services Publishing Wizard that you ran in step 4 also created two receive
ports for the ReceiveReq and PollReqResp ports, which you can access through
BizTalk Explorer.

Note: The Receive Pipeline property of these ports should be set to XmlReceive. To set this
property in BizTalk Explorer, select the port, right-click the port name, and then click Edit on the
context menu.

Chapter 4: System Connections 201

Next, you need to add two send ports for the GetOtherLoan1 and GetOtherLoan2
Web ports. The Receive Pipeline properties of these ports also should be set to
XmlReceive instead of the default PassThrough setting.

After you set up the physical ports, bind the orchestration to these ports in BizTalk
Explorer. Note that there are two inbound ports and two outbound ports in the Port
Binding Properties window of the orchestration. You can also use the BTSDeploy
command line utility and a binding file to bind ports. Use the Export BizTalk
assembly binding to file option in BizTalk Deployment Wizard to create the bind-
ing file.

Step 7: Start the Orchestration

After binding the logical ports to physical ports, start the orchestration in BizTalk
Explorer.

Step 8: Create a Test Client That Invokes the Web Service

To test the orchestration, you need to create a client that consumes the Web service
created from the orchestration in step 4. As you saw in step 4, the wizard created
two Web services that correspond to the two request-response ports of the orchestra-
tion. The following code shows part of the WSDL file for PollReqResp.asmx. For the
sake of clarity, some parts of the file are not shown here.

 <types>
 + <s:schema elementFormDefault="qualified" targetNamespace="http://
msdn.microsoft.com/soi">
 - <s:schema elementFormDefault="qualified" targetNamespace="http://
SOIwithBiztalk.PollReq">
 <s:element name="PollReq" type="s1:PollReq" />
 - <s:complexType name="PollReq">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified"
name="CorrelationId" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:schema>
 - <s:schema elementFormDefault="qualified" targetNamespace="http://
SOIwithBiztalk.PollResp">
 <s:element name="PollResp" type="s2:PollResp" />
 - <s:complexType name="PollResp">
 - <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified"
name="Loans" type="s2:ArrayOfPollRespLoan" />
 </s:sequence>
 </s:complexType>
 - <s:complexType name="ArrayOfPollRespLoan">
 - <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" form="unqualified"

Integration Patterns202

name="Loan" type="s2:PollRespLoan" />
 </s:sequence>
 </s:complexType>
 - <s:complexType name="PollRespLoan">
 - <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified"
name="Amount" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" form="unqualified"
name="Name" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" form="unqualified"
name="AccountNo" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:schema>
 </types>
+ <message name="PollReqRespSoapIn">
+ <message name="PollReqRespSoapOut">
+ <portType name="SOIwithBiztalk_SOIwithBiztalk_Orchestration_PollReqRespSoap">
+ <binding name="SOIwithBiztalk_SOIwithBiztalk_Orchestration_PollReqRespSoap"
type="s0:SOIwithBiztalk_SOIwithBiztalk_Orchestration_PollReqRespSoap">
- <service name="SOIwithBiztalk_SOIwithBiztalk_Orchestration_PollReqResp">
 <documentation>BizTalk assembly "SOIwithBiztalk, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=c6495a1a84cf8ad3" published web service.</
documentation>
 - <port name="SOIwithBiztalk_SOIwithBiztalk_Orchestration_PollReqRespSoap"
binding="s0:SOIwithBiztalk_SOIwithBiztalk_Orchestration_PollReqRespSoap">
 <soap:address location="http://localhost/SOIwithBiztalk_Proxy/
SOIwithBiztalk_SOIwithBiztalk_Orchestration_PollReqResp.asmx" />
 </port>
 </service>
</definitions>

The test client is a Windows Form application that uses the NUnit test tool. For more
information about this tool, see www.nunit.org. The following test case sends a
request to BizTalk Server, waits, and then polls for the result.

[Test]
 public void TestRequestAndPollLater()
 {
 RequestWS.SOIwithBiztalk_SOIwithBiztalk_Orchestration_ReceiveReq
ws = new
TestSOIwithBiztalk.RequestWS.SOIwithBiztalk_SOIwithBiztalk_Orchestration_ReceiveReq();
 RequestWS.Request req = new RequestWS.Request();
 req.MasterCustomerID = "1234";
 RequestWS.Ack resp = ws.InitialRequest(req);

 string corId = resp.CorrelationId;
 //wait for external services to return response
 System.Threading.Thread.Sleep(6000);
 //poll for result
PollWS.SOIwithBiztalk_SOIwithBiztalk_Orchestration_PollReqResp pollws = new

Chapter 4: System Connections 203

TestSOIwithBiztalk.PollWS.SOIwithBiztalk_SOIwithBiztalk_Orchestration_PollReqResp();
 PollWS.PollReq pollreq = new TestSOIwithBiztalk.PollWS.PollReq();
 pollreq.CorrelationId = corId;

 PollWS.PollResp pollresp = pollws.PollReqResp(pollreq);

 Assertion.AssertEquals(2, pollresp.Loans.Length);
 //test results
 ValidateLoanEntry(pollresp.Loans[0]);
 ValidateLoanEntry(pollresp.Loans[1]);
}

 private void ValidateLoanEntry(PollWS.PollRespLoan entry)
 {
 // note: the responses do not have to be in order
 if (entry.AccountNo.Equals("1234"))
 {
 Assertion.AssertEquals("1000", entry.Amount);
 }
 else if (entry.AccountNo.Equals("5678"))
 {
 Assertion.AssertEquals("2000", entry.Amount);
 }
 else
 {
 Assertion.Fail("Wrong account number");
 }
 }

Resulting Context
This implementation of Service-Oriented Integration results in the following benefits
and liabilities:

Benefits
● Powerful. You can use BizTalk Server 2004 to model complex processes compris-

ing multiple parallel interactions. You can even build a hierarchy of orchestra-
tions where one orchestration invokes other orchestrations. BizTalk Server also
imports important concepts that are critical when developing asynchronous,
event-driven solutions. These solutions include correlation, synchronization,
timeouts, long-running transactions, and compensating actions.

● Integrated development tools. The BizTalk Server 2004 visual modeling tools are
integrated into Visual Studio .NET. This greatly enhances the development
experience for mixed development consisting of actual C# or Visual Basic .NET
code and visual models from maps and orchestrations.

● Operational support. Monitoring and operating Web services solutions can be
difficult. BizTalk Server 2004 includes sophisticated tools to monitor the flow of
messages and the execution of orchestrations through the Health and
Activity Tracker (HAT) tool.

Integration Patterns204

Liabilities
● Complexity. Although BizTalk Server 2004 provides many useful features, it also

introduces a series of new concepts, a large number of moving parts, and a
different development environment than what developers are used to. This can
increase the learning curve for application developers.

Testing Considerations
There are several possible options available when testing this implementation. First,
the Web service as a whole can be tested by writing a test client in the .NET Frame-
work. To create the test client, create a new C# console application, and use the Add
Web Reference command in Visual Studio Solution Explorer to create a reference to
the orchestration Web service. You can then write test code that invokes the Web
service. Subsequently, you can add automated test cases to this test client by using
test tools such as NUnit.

After running the test client, you can use the Orchestration Debugger to examine
traces of the orchestration execution. You can access the Orchestration Debugger
from the HAT tool and use the Orchestration Debugger in two modes: reporting
mode and interactive mode. Reporting mode tracks the execution of each shape in
the orchestration as it occurs. In reporting mode, you can replay the steps or set
breakpoints on the class of orchestration so that you can then debug new instances
in interactive mode. Interactive mode enables you to debug a currently running
instance. To debug a process interactively, set a breakpoint within an orchestration
while in reporting mode, and then submit a new message (create a new instance of
an orchestration). The orchestration will stop at the breakpoint, and you can then
attach the orchestration debugger to that instance.

Security Considerations
The Web service implementation presented here does not address security consider-
ations. Appropriate security measures are essential in this scenario because the Web
service exposes sensitive account data that resides in the bank’s mainframe com-
puter. Even though the Web service resides behind the firewall, you would not want
unauthorized users to create a client to this service to retrieve customers’ account
balances.

Security is implemented at multiple levels when exposing an orchestration as a Web
Service:
● Transport security. The BizTalk Web Services Publishing Wizard creates an

ASP.NET virtual directory like any other ASP.NET Web service. SOAP messages
sent to this virtual directory can be sent by using HTTPS (encrypted). Addition-
ally, the virtual directory can be configured to require basic authentication,
NTLM authentication, or even client certificates.

Chapter 4: System Connections 205

● SOAP security. Microsoft has partnered with IBM and VeriSign to develop the
Web Services Security (WS-Security) specification. The WS-Security specification
describes how SOAP messages can be augmented with security certificates. The
WS-Security specification is currently implemented by Web Services Enhance-
ments (WSE) for Microsoft .NET. The current version of the SOAP adapter does
not support WS-Security, but this functionality can be supported by using custom
pipeline components in the BizTalk receive and send pipelines.

● Receive adapter security. The SOAP adapter is run by a BizTalk Server Isolated
Host instance within a specific Microsoft Windows security context. If the BizTalk
Isolated Host was installed as trusted, then the user that acquires authentication
when running the Web service must be a member of the BizTalk Isolated Host
Users group (this is often the IUSR_computer name account). If the BizTalk Iso-
lated Host was not installed as trusted, the ASP.NET account must be a member
of the BizTalk Isolated Host Users group.

● Receive port security. You can configure the receive port to require messages to
be authenticated before they are processed. Messages are authenticated in the
ResolveParty stage of the receive pipeline by using a client certificate or by using
a Security Identifier (SID). Messages that are not authenticated can either be
dropped or saved, but they are not processed.

Operational Considerations
Many of the BizTalk receive adapters, including the HTTP and the SOAP adapters,
perform batching to optimize throughput and server resource utilization by mini-
mizing polling. The default batch size is 10, and there is a delay between polls of one
second. This means that a single synchronous HTTP post or SOAP call is processed,
but because it is not a complete batch, the adapter waits for one second before
polling again. Therefore, successive calls may be delayed. This is appropriate behav-
ior in high-transaction situations, but it is not appropriate behavior for a highly
responsive system.

To make the HTTP and SOAP adapters more responsive, you can set the registry
HttpBatchSize subkey DWORD value in the HKLM\CurrentControlSet\BtsSvc
3.0\HttpReceive registry key to 1. Setting this value to 1 affects the maximum
throughput that the adapter is capable of handling.

Acknowledgments
[Hohpe04] Hohpe, Gregor, and Bobby Woolf, Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

Integration Patterns206

Presentation Integration

Aliases
Screen scraping

Context
You have multiple independent applications that are organized as functional silos.
Each application has a user interface.

Problem
How do you integrate information systems that were not designed to work
together?

Forces
To correctly solve this problem, you need to consider the following forces:
● When integrating multiple applications, you should minimize changes to existing

systems because any change to an existing production system represents a risk
and might require extensive regression testing.

● Because many computer systems are designed according to the Layered Applica-
tion pattern, some of the layers are typically deployed in physical tiers that are
not externally accessible. For example, security policy may require the database
tier of an application to reside on a separate physical server that is not directly
accessible to other applications. Most Web applications allow external access only
to the user interface and protect the application and database tiers behind
firewalls.

● Many applications feature little or no separation between business and presenta-
tion logic. The only remote components of these applications are simple display
and input devices. These display terminals access the central mainframe com-
puter, and the central mainframe computer hosts all business logic and data
storage.

● The business logic layer of many applications is programming-language specific
and is not available remotely, unless it was developed on top of a specific
remoting technology such as DCOM or Common Object Request Broker Architec-
ture (CORBA).

Chapter 4: System Connections 207

● Directly accessing an application’s database layers can cause corruption of
application data or functionality. In most applications, important business rules
and validations reside in the business logic, and they often reside in the presenta-
tion layer also. This logic is intended to prevent erroneous user entry from
affecting the integrity of the application. Making data updates directly through
the data store bypasses these protection mechanisms and increases the risk of
corrupting the application’s internal state.

Solution
Access the application’s functionality through the user interface by simulating a
user’s input and by reading data from the screen display. Figure 4.34 shows the
elements of a solution that is based on the Presentation Integration pattern.

Other Applications

Application

Business Logic
Layer

Presentation
Layer

Data Store

Terminal Emulator

Figure 4.34
Presentation Integration connects to an existing application through the presentation layer

The Presentation Integration pattern is sometimes disparagingly called screen scraping
because the middleware collects (or scrapes) the information from the information
that is displayed on the screen during a user session. Collecting information from
the screen of the user session tends to be the simpler part of the integration. The
more difficult part tends to occur when the middleware has to locate the correct
screen in the application in the same way a human user has to.

Integration Patterns208

To simulate user interaction, the integration solution has to use a terminal emulator
that appears to the application as a regular terminal, but that can be controlled
programmatically to simulate user input. Such a terminal emulator is usually spe-
cific to the exact type of user interface device that is supported by the application.
Fortunately, in the mainframe world, IBM’s 3270 terminal standard is so widespread
that many commercial 3270 terminal emulators are available. Instead of displaying
information to the user, these emulators make the screen data available through an
API. In the case of 3270 emulators, a standard API exists that is called the High Level
Language Application Program Interface (HLLAPI). The emulator can send data to
the application to simulate keystrokes that a user would make on a real 3270 termi-
nal. Because the terminal emulator mimics a user’s actions, it usually does not
depend on the specific application that it is interacting with. Additional middleware
logic must encode the correct keystrokes and extract the correct fields from the
virtual screen.

The widespread trend of equipping applications with Web-based interfaces has
revived interest in using Presentation Integration as a vital integration approach. Web
applications are easily accessible over the Internet. However, the only accessible
portion is the user interface that is accessed through the relatively simple HTTP
protocol. Web applications transmit presentation data in HTML. Because HTML is
relatively easy to parse programmatically, Presentation Integration is a popular
approach.

Unfortunately, the ease of collecting information from a provider’s Web page over
the Internet has caused some application providers to intentionally exploit the
biggest weakness of Presentation Integration: brittleness. Because Presentation Integra-
tion usually depends on the exact geometric layout of the information, rearranging
data fields can easily break a Presentation Integration solution. The graphical nature
of HTML allows a provider to easily modify the HTML code that describes the
layout of the information on the screen. The layout changes then block any attempt
to collect information from the Web page.

Presentation Integration is based on the interaction between the components that are
described in Table 4.5.

Chapter 4: System Connections 209

Table 4.5: Presentation Integration Components

Component Responsibilities Collaborators

Presentation layers – Render a visual presentation Terminal emulator
to be displayed on a user terminal
– Accept user input and translate
it into commands to be executed
by the business logic

Terminal emulator – Impersonates a user session Presentation layer and
to the presentation layer other applications
– Makes screen information
available through an API
– Allows other applications to
issue commands to the
presentation tier

Other applications – Consume application data Terminal emulator
– Issue commands

Example
A big challenge faced by government agencies is the lack of integrated data across
multiple state agencies. For example, integrated data gives an income tax agency a
more holistic view of a business because the integrated data might show the number
of employees that the business has and the amount of sales tax that the business
reports, if any. This type of information can be used to identify businesses where
there is a difference between the tax owed and the tax actually collected; this com-
mon issue is referred to as a tax gap. However, integrating information from multiple
state agencies is often constrained by political and security concerns. In most cases,
it is easier for an agency to obtain end-user access to another agency’s data as
opposed to obtaining direct database access. In these situations, you can use Presen-
tation Integration to gain end-user access to a remote data source in the context of an
automated integration solution.

Integration Patterns210

Resulting Context
Presentation Integration is almost always an option and has certain advantages, but
also suffers from a number of limitations:

Benefits
● Low-risk. In Presentation Integration, a source application is the application that

the other applications extract data from. It is unlikely that the other applications
that access the source application can corrupt it because the other applications
access the data the same way that a user accesses the data. This means that all
business logic and validations incorporated into the application logic protect the
internal integrity of the source application’s data store. This is particularly
important with older applications that are poorly documented or understood.

● Non-intrusive. Because other applications appear to be a regular user to the
source application, no changes to the source application are required. The only
change that might be required is a new user account.

● Works with monolithic applications. Many applications do not cleanly separate
the business and presentation logic. Presentation Integration works well in these
situations because it executes the complete application logic regardless of where
the logic is located.

Liabilities
● Brittleness. User interfaces tend to change more frequently than published

programming interfaces or database schemas. Additionally, Presentation Integra-
tion may depend on the specific position of fields on the screen so that even
minor changes such as moving a field can cause the integration solution to break.
This effect is exacerbated by the relative wordiness of HTML.

● Limited access to data. Presentation Integration only provides data that is dis-
played in the user interface. In many cases, other applications are interested in
internal codes and data elements such as primary keys that are not displayed in
the user interface. Presentation Integration cannot provide access to these elements
unless the source application is modified.

● Unstructured information. In most cases, the presentation layer displays all data
values as a collection of string elements. Much of the internal metadata is lost in
this conversion. The internal metadata that is lost includes data types, con-
straints, and the relationship between data fields and logical entities. To make the
available data meaningful to other applications, a semantic enrichment layer has
to be added. This layer is typically dependent on the specifics of the source
application and may add to the brittleness of the solution.

Chapter 4: System Connections 211

● Inefficient. Presentation Integration typically goes through a number of unneces-
sary steps. For example, the source application’s presentation logic has to render
a visual representation of the data even though it is never displayed. The termi-
nal emulation software in turn has to parse the visual representation to turn it
back into a data stream.

● Slow. In many cases, the information that you want to obtain is contained in
multiple user screens because of limited screen space. For example, information
may be displayed on summary and detail screens because of limited screen space.
This requires the emulator to go to multiple screens to obtain a coherent set of
information. Going to multiple screens to obtain information requires multiple
requests to the source application and slows down the data access.

● Complex. Extracting information from a screen is relatively simple compared to
locating the correct screen or screens. Because the integration solution simulates a
live user, the solution has to authenticate to the system, change passwords
regularly according to the system policy, use cursor keys and function keys to
move between screens, and so on. This type of input typically has to be hard-
coded or manually configured so that external systems can access the presenta-
tion integration as a meaningful business function, such as “Get Customer
Address.” This translation between business function and keystrokes can add a
significant amount of overhead. The same issues of complexity also affect error
handling and the control of atomic business transactions.

Testing Considerations
One advantage of using Presentation Integration is that most user interfaces execute a
well-defined and generally well-understood business function. This can be an
enormous advantage when dealing with monolithic systems that might be poorly
documented or understood.

Unfortunately, this advantage is often offset by the fact that testing usually depends
on the ability to isolate individual components so that they can be tested individu-
ally with a minimum of external dependencies. Such a testing approach is generally
not possible when using Presentation Integration.

Integration Patterns212

Security Considerations
Presentation Integration uses the same security model as an end user who logs into
the application. This can be an asset or a liability depending on the needs of the
applications that are participating in the integration solution. An end-user security
model typically enforces a fine-grained security scheme that includes the specific
data records or fields that a user is permitted to see. This makes exposing the func-
tions through presentation integration relatively secure.

The disadvantage of the fine-grained security scheme is that it can be difficult to
create a generic service that can retrieve information from a variety of data sources.
In those cases, a special user account has to be created that has access rights to all
the data resources that are needed by the external applications.

Acknowledgments
[Ruh01] Ruh, William. Enterprise Application Integration. A Wiley Tech Brief. Wiley,
2001.

5
Integration Topologies

“Always design a thing by considering it in its next larger context — a chair in a room, a
room in a house, a house in an environment, an environment in a city plan.” — Eliel
Saarinen, a Finnish-American architect and city planner

Earlier chapters covered integration layers and the various approaches used to
connect layered applications. Making these connections and creating integration
layers are important parts of your integration design. Equally important, however, is
the larger context that these connections and layers form as you join them together.
The design of this integration context should specify the locations, structure, and
channels that you use to connect these elements together to form a coherent whole.
This context is called an integration topology.

As you consider integration designs, you will notice key differences between design-
ing for conventional applications and designing for integration. During application
design, you are usually in control of synchronous request and reply interactions,
message flow, and the multiplicities of messages. You have a fairly straightforward
programming model that you can use to coordinate elements, exceptions, and
retries. This is not always true when you design for integration.

As you design for integration, your application becomes a computational resource
that provides and consumes services as part of a larger integration architecture. And
while your system may be simply connected point-to-point with another service,
your system may also be a provider or publisher of business events to other systems.
If your system is a provider or publisher, your event message might be sent to a
message broker or to a message bus. These components may then send copies of the
message to many other subscribed applications or systems. Other systems may be
connected or removed from these message brokers or message buses without any
modifications to your system. In fact, your system may not have any direct knowl-
edge of these other systems at all.

Integration Patterns214

To understand how to design systems as service providers and consumers, it is
important to have a working knowledge of integration topologies. These topologies
cover the flow of messages though an integration architecture, and they introduce
elements such as message brokers and message buses. Although topics like physical
topologies may seem unimportant at this level of abstraction, it turns out that some
integration elements, such as message buses, are tightly coupled to lower-level
topologies. Therefore, it is important to understand how these lower levels work in
order to fully understand the higher-level topologies.

This chapter starts, as many integration architectures do, by considering a basic
Point-to-Point Connection pattern. It then progresses to a more complex integration
pattern – the Broker (and its variants). Unlike the coupled endpoints in a Point-to-
Point Connection, the Broker decouples the source from the target by inserting
 intermediaries. After the Broker, the next pattern is the Message Bus. The Message
Bus pattern further decouples endpoints by using agreed-upon message schemas,
command messages, and shared infrastructure. Finally, the chapter examines
another pattern used by all three of the previous patterns to notify interested
subscribers – Publish/Subscribe. After describing these four patterns, the chapter
takes a more detailed look at logical and physical topologies to help you better
understand the collaborations within the Point-to-Point Connection, the Broker, and
the Message Bus patterns.

Point-to-Point Connection
Many integration projects start with the need to connect two systems, and the easiest
way to do so is to use the Point-to-Point Connection pattern. A point-to-point connec-
tion ensures that only one receiver receives a particular message. For this to work,
the sending system must know the location of the receiving node. The sending
system often must translate the message into a format that the receiving system
understands.

When you use point-to-point connections, each system determines the address of
all the other nodes that it needs to communicate with. When target addresses or
protocol details change, all the systems that communicate with the target server
must be updated. As the size of your integration network grows and as the
frequency of change increases, the operational cost associated with this approach
becomes significant.

Most integration scenarios require you to transform the data between the source
system and the target systems. Additionally, in many scenarios, developers want to
take advantage of some conditional logic when they configure message routing. If
you use point-to-point connections, this logic is often duplicated on each server that
requires transformation and routing. Duplicate code is expensive to write, and it is
difficult to maintain, to extend, to test, and to manage.

Chapter 5: Integration Topologies 215

The strength of the Point-to-Point Connection pattern is how simple it is to imple-
ment. The weakness of the Point-to-Point Connection pattern is the duplication of
transformation and routing code between systems, and the high configuration cost
of endpoint address changes. To minimize these weaknesses, you can add another
layer of indirection between endpoints that contains a broker.

Broker
The Broker pattern and its variants are often used in both application design and
integration design. The foundation work for this pattern is contained in Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns [Buschmann96]. The
original pattern presented in this work is rather large in scope and contains four
themes of particular interest for integration:
● Creating client-side proxies, server-side proxies, and the related infrastructure to

encapsulate the complexities of distributed communication
● Providing a means for systems to register services with a broker so they can be

consumed by other systems
● Providing a means for systems to locate necessary services
● Describing how brokers and endpoints can collaborate using both direct and

indirect communication

In the first work in this pattern series, Enterprise Solution Patterns using Microsoft
.NET [Trowbridge03], Broker is discussed in the context of client proxies and server
proxies using Distributed Object Integration. However, that discussion did not empha-
size direct and indirect communication or naming services. This chapter breaks the
primary Broker pattern down to a hierarchy of specialized patterns where each
specialized pattern has particular responsibilities that refine the responsibilities of
the primary Broker pattern.

The intent of a broker is to decouple source systems from target systems. In the
context of Distributed Object Integration, the source system may send a marshaled set
of parameters when the source system requests a method invocation from the target
system. In the context of Service-Oriented Integration, the source system may send a
message that requests a service from a target system. While the contexts vary signifi-
cantly, both use a Broker pattern to decouple the source systems and the target
systems.

A broker decouples source systems and target systems by assuming responsibility
for coordinating communication between endpoints. There are three responsibilities
that are involved in communication. These three responsibilities include the
following:
● Routing. Routing involves determining the location of a target system, and it is

performed by using direct and indirect communication.

Integration Patterns216

● Endpoint registration. Endpoint registration is the mechanism that a system can use
to register itself with the Broker so that other systems can discover that system.

● Transformation. Transformation is the process where an element is converted
from one format to another.

In this case, the source element is the message that is sent by the source system, and
the target element is the message that is received by the target system. Figure 5.1
shows the Broker pattern and the three related patterns that refine the basic Broker
pattern: Direct Broker, Indirect Broker, and Message Broker [Hohpe04].

Broker

Encapsulates distributed communication
Transforms data formats
Locates endpoints (routing)
Registers endpoints

Indirect Broker

Forwards communication to
endpoints
Maintains central control of
communication

Message Broker

Forwards message-based
communication to endpoints

Direct Broker

Establishes initial connection
Subsequent communication is
direct to endpoint

A pattern refinement

Figure 5.1
Broker and related patterns

Chapter 5: Integration Topologies 217

A direct broker establishes initial communication between endpoints. After the
initial communication, the two endpoints communicate directly by using client-
side and server-side Proxies [Gamma95]. Figure 5.2 illustrates a Direct Broker
implementation.

LocateEndpoint

EndpointLocation

SourceSystem DirectBroker TargetSystem

DoSomething

DoSomethingElse

Figure 5.2
Sequence diagram for a Direct Broker implementation

In contrast, an indirect broker is a middleman, and all the communication between
endpoints passes through it. Using an indirect broker allows a sender to be unaware
of target details and provides central control of the message flow. In this way,
Indirect Broker is similar to Mediator [Gamma95]. Mediator “keeps objects from refer-
ring to each other explicitly, and it lets you vary their interaction independently”
[Gamma95]. Figure 5.3 shows how an indirect broker acts as a mediator between
source systems and target systems.

Integration Patterns218

SendMessage
ToTargetSystem

SourceSystem IndirectBroker TargetSystem

SendMessage

Figure 5.3
Sequence diagram for an Indirect Broker implementation

While the Indirect Broker pattern is useful when you need to control communications,
Direct Broker offers better performance, especially when an additional intermediary
is not needed for all communications.

The Message Broker pattern is a specialized version of the Broker pattern
[Buschmann96, Trowbridge03]. A message broker communicates exclusively by
using messages and indirect communication. The Message Broker is an important
and frequently used integration pattern. It is often referred to as a hub-and-spoke
architecture.

Let’s examine several Broker implementations to see how this pattern and its varia-
tions work in practice.

Broker Examples
To illustrate how the Broker pattern is used, let’s look at the following five examples
of the Broker pattern in action:
● Microsoft Distributed Common Object Model (DCOM)
● Microsoft .NET Framework Remoting
● Common Object Request Broker Architecture (CORBA)
● Universal Description Discovery and Integration (UDDI)
● Microsoft BizTalk Server 2004

Chapter 5: Integration Topologies 219

DCOM
Microsoft’s Distributed Common Object Model (DCOM) is an example of Distributed
Object Integration that uses a direct broker. When a calling application on a source
server wants to create and use an object on a target server, DCOM coordinates
communications between these endpoints. To coordinate this communication,
DCOM first locates the target server by using configuration information that is
stored in the registry. DCOM then creates a client proxy on the source system and a
server proxy (stub) on the target system. Subsequent communication occurs directly
between the client proxy and the server proxy (stub) using point-to-point connec-
tions as shown in Figure 5.4.

Application 1

Application 2 Message Broker

Application 4

Application 5Application 3

Figure 5.4
Sequence diagram showing DCOM acting as a direct broker

.NET Framework Remoting

.NET Framework remoting is another example of Distributed Object Integration that
uses Direct Broker. The collaboration is the same as the collaboration that is shown in
Figure 5.4. However, unlike DCOM, .NET Framework remoting does not retrieve the
server location from the registry. Instead, the URL for the server is passed as a
parameter to the Activator.GetObject() method call. This call then sets up communi-
cation between proxies. After the channels are registered and the proxies have been
set up, subsequent communication occurs directly between proxies by using a point-
to-point connection. This implementation uses the server and client proxies’ portion
of the Broker pattern, but does not directly use a naming service to register and to
locate endpoints.

Integration Patterns220

The programming model for both the client and the server is very straightforward.
For more information, see Implementing Broker with .NET Remoting Using Server-
Activated Objects [Trowbridge03] and Implementing Broker with .NET Remoting Using
Client-Activated Objects [Trowbridge03].

CORBA
The Common Object Request Broker Architecture (CORBA) is a specification that
has multiple implementations. While these implementations vary in practice, this
section focuses on an implementation that uses Distributed Object Integration with a
direct broker.

Upon startup, an object request broker (ORB) acting as a client sends a User
Datagram Packet (UDP) broadcast on its local subnet to find a naming service. The
ORB then stores the location of the first naming service that responds to this request.
Because this is a broadcast, the communication uses a bus-based logical topology.
(See the topology section later in this section for more information about topologies.)

Using this naming service, the ORB requests the location of the target server on
behalf of the client. Assuming the server has previously registered with the naming
service, the naming service then returns the server location to the ORB. After the
ORB obtains the server location, it sets up a client proxy and a server proxy (skel-
eton). All subsequent communication occurs directly between the client proxy and
the server proxy by using a point-to-point connection.

UDDI
The Universal Description Discovery and Integration (UDDI) specification defines a
SOAP-based Web service for finding and registering Web services. UDDI is also a
publicly accessible set of implementations of the specification. These implementa-
tions enable businesses to register and to discover Web services. UDDI implementa-
tions can be either private or public.

At run time, a UDDI server can act as a Direct Broker between two Web services. The
interaction starts with the consuming service. The consuming service then contacts
the UDDI server. The UDDI server locates the target service and returns it to the
consuming service. After receiving the target’s location in the UDDI binding tem-
plate and after receiving the target’s configuration, the consuming service communi-
cates directly with the providing service.

For more information about how to use UDDI at run time, see “Using UDDI at Run
Time, Part I” and “Using UDDI at Run Time, Part II” by Karsten Januszewski
[Januszewski01, Januszewski02].

Chapter 5: Integration Topologies 221

BizTalk Server 2004
BizTalk Server 2004 is a versatile platform infrastructure component that you can
configure in many different ways. Most importantly, you can use BizTalk Server
2004 as the component that implements Message Broker. Unlike the previous ex-
amples that used direct brokers, Message Broker is a refinement of the Indirect Broker
pattern. Systems that use Indirect Broker do not communicate directly with each
other. Instead, they communicate through a middleman — the indirect broker. The
source system communicates the logical name of the target to the indirect broker.
The indirect broker then looks up the target system that is registered under the
logical name and passes the communication to the target system. A message broker
is a specialized type of indirect broker that communicates by using messages. For a
detailed example, see Implementing Message Broker with BizTalk Server 2004.

The preceding five examples demonstrate that the Broker pattern and its variants are
frequently used for systems integration. Compared to Point-to-Point Connection, it
effectively decouples source systems and target systems by adding another level of
indirection. There are situations, however, that call for even greater decoupling. In
these situations, you often want a data format and a message structure that are
common across multiple systems. You also want a shared infrastructure that can
communicate these common messages to any interested system. At this point, it is
time to consider Message Bus.

Message Bus
The notion of a bus originated in the field of electrical engineering where a common
bus is used to carry current of a specific voltage and frequency. This notion is ex-
tended with the buses that are found in computer hardware systems so that it
includes not only common voltages, but also agreed-upon messages such as a data
bus and an address bus. A message bus extends this concept to provide a common
communication mechanism between disparate systems. To provide this common
mechanism, the systems must have three elements:
● A set of agreed-upon message schemas
● A set of common command messages [Hohpe04]
● A shared infrastructure for sending bus messages to recipients

This shared infrastructure can be achieved either by using a Message Router
[Hohpe04] or by using a Publish/Subscribe mechanism. In this book, the focus is on
message buses that use Publish/Subscribe mechanisms. For details on how to design a
message bus that uses message-oriented middleware and a message router, see
Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions
[Hohpe04].

Integration Patterns222

Figure 5.5 shows a Message Bus associated with a Publish/Subscribe implementation.

Message Bus

Uses a common data model
Uses common command messages
Uses a shared infrastructure

Publish/Subscribe

When message is published,
sends messages to subscribed nodes

Figure 5.5
Message Bus associated with a Publish/Subscribe pattern implementation

The Publish/Subscribe pattern describes a collaboration where one system subscribes
to change messages or to event messages that are produced by another system. In
the Message Bus context, a system can subscribe to bus messages. After the system
subscribes, the system is then sent all the messages that are addressed to this com-
mon bus. Although message buses often use Publish/Subscribe implementations,
these implementations are used by other topologies as well. For example, Point-to-
Point Connection and Message Broker can also use Publish/Subscribe collaborations.

The advantage of a message bus is that once it is established, the cost of adding new
applications is minimal. A new application can subscribe to bus messages without
affecting other subscribers. Because all systems, including the new system, under-
stand common message schemas and command messages, there is no need for
additional translation. However, as you add a new system to the bus, it may be
useful to use an Adapter [Gamma95] to encapsulate any translation needed to ini-
tially connect with the message bus.

Chapter 5: Integration Topologies 223

The disadvantage of a message broker is the significant amount of work that is
involved in creating common message schemas, command messages, and shared
infrastructure within an enterprise. Because these systems typically cross organiza-
tional boundaries and systems, gaining agreement on these key areas may be ex-
tremely difficult, time consuming, or impossible.

Message Bus implementations vary significantly depending on the kind of Publish/
Subscribe mechanism they employ. Because a Publish/Subscribe mechanism is such an
integral part of a Message Bus implementation, the next section looks at this pattern
more closely.

Publish/Subscribe
At a high level, the Publish/Subscribe [Buschmann96] pattern helps keep cooperating
systems synchronized by one-way propagation of messages because one publisher
sends a message to any number of intended subscribers. However, there are signifi-
cant differences in the next level of design within the pattern. These differences lead
to three refinements of the Publish/Subscribe pattern: List-Based Publish/Subscribe,
Broadcast-Based Publish/Subscribe, and Content-Based Publish/Subscribe.

List-Based Publish/Subscribe
A List-Based Publish/Subscribe pattern advises you to identify a subject and to main-
tain a list of subscribers for that subject. When events occur, you have the subject
notify each subscriber on the subscription list. A classic way to implement this
design is described in the Observer [Gamma95] pattern. When you use this pattern,
you identify two classes: subjects and observers. Assuming you use a push model
update, you add three methods to the subject: Attach(), Detach(), and Notify(). You
add one method to the observer — Update().

To use an observer, all interested observers register with the subject by using the
Attach() method. As changes occur to the subject, the subject then calls each regis-
tered observer by using the Notify() method. For a detailed explanation of the
Observer pattern, see Design Patterns: Elements of Reusable Object-Oriented Software
[Gamma95].

An observer works fine if you have created instances of objects that reify all your
observers and subjects. An observer is especially well suited to situations where you
have one-to-many relationships between your subjects and your observers. How-
ever, in the context of integration, you often have many observers that are linked to
many subjects, which complicates the basic Observer pattern. One way to implement
this many-to-many relationship is to create many subjects and to have each subject
contain a list of observers.

Integration Patterns224

If you use this object structure to implement Publish/Subscribe, you must write these
relationships to persistent storage between process executions. To do so within a
relational database, you must add an associative table to resolve the many-to-many
dependencies between subject and observer. After you write this information to
persistent storage in a set of tables, you can directly query the database for the list of
subscribers for a topic.

Maintaining lists of published topics (subjects) and subscribers (observers) and then
notifying each one individually as events occur is the essence of List-Based Publish/
Subscribe implementations. A very different means of achieving the same result is a
Broadcast-Based Publish/Subscribe implementation.

Broadcast-Based Publish/Subscribe
When you use a Broadcast-Based Publish/Subscribe approach [Tannebaum01, Oki93],
an event publisher creates a message and broadcasts it to the local area network
(LAN). A service on each listening node inspects the subject line. If the listening
node matches the subject line to a subject that it subscribes to, the listening node
processes the message. If the subject does not match, the listening node ignores the
message.

Subject lines are hierarchical and may contain multiple fields that are separated by
periods. Listening nodes that are interested in a particular subject can subscribe to
these fields by using wildcards, if required.

Although this Broadcast-Based Publish/Subscribe implementation is an effective
method for decoupling producers from consumers, it is sometimes useful to identify
particular topic subscribers. To identify topic subscribers, a coordinating process
sends a message that asks listening nodes to reply if they subscribe to a particular
topic. Responses are then returned by each listening node to the provider to identify
the subscribers.

Because all messages are sent to all listening nodes, and because each node is re-
sponsible for filtering unwanted messages, some authors refer to this as a publish/
subscribe channel with reactive filtering [Hohpe04].

Content-Based Publish/Subscribe
Both Broadcast-Based Publish/Subscribe implementations and List-Based Publish/
Subscribe implementations can be broadly categorized as topic-based because they
both use predefined subjects as many-to-many channels. Publish/Subscribe imple-
mentations have recently evolved to include a new form — Content-Based Publish/
Subscribe. The difference between topic-based and content-based approaches is as
follows:

Chapter 5: Integration Topologies 225

In a topic-based system, processes exchange information through a set of pre-
defined subjects (topics) which represent many-to-many distinct (and fixed)
logical channels. Content-based systems are more flexible as subscriptions are
related to specific information content and, therefore, each combination of infor-
mation items can actually be seen as a single dynamic logical channel. This
exponential enlargement of potential logical channels has changed the way to
implement a pub/sub system. [Baldoni03]

The practical implication of this approach is that messages are intelligently routed to
their final destination based on the content of the message. This approach over-
comes the limitation of a broadcast-based system, where distribution is coupled to a
multicast tree that is based on Transmission Control Protocol (TCP). It also gives the
integration architect a great deal of flexibility when deciding on content-based
routing logic.

A More Detailed Look at Topologies
To fully understand how collaborations that are based on Point-to-Point Connection,
Broker, and Message Bus work together with other parts of your technical architec-
ture, it is useful to view your system’s topologies from three discrete topology
levels: physical, logical, and integration.

Note: This section discusses low-level layers of the Open Systems Interconnection (OSI) stack.
It then moves on to discuss the top layer (Application), bypassing many important layers. This
is intentional because this section only discusses the relationship between these low-level
layers and the integration topology pattern choices. It does not mean that these layers are not
important. However, they are not architecturally significant for this particular discussion.

Topology Levels
Because the terms point-to-point, bus, and hub were first defined at the physical
level, this section starts with a review of the physical network topology level. In
addition to a physical connection, you also need a logical communication protocol.
That logical communication protocol also implies a topology. After logical and
physical topology levels are established, it is possible to establish patterns of com-
munication between the collaborating nodes. These patterns of communication and
collaboration form an integration topology level that is described by the Point-to-
Point Connection, the Broker, and the Message Bus patterns.

Integration Patterns226

In some cases, the topology used at the integration topology level and the topology
used at the physical topology level may be the same topology. In other cases, a
system may use different topologies at the integration topology level, the logical
topology level, and the physical topology level. It therefore is useful to separate
topologies from topology levels to avoid potential confusion. This section discusses
the physical, logical, and integration topology levels in more detail.

Note: The term topology is used within the industry to refer to both the arrangement of nodes
within a network (for example, bus or hub) and to the physical and logical network levels of
elements. However, the remainder of this chapter uses the following convention. Topology
describes the arrangement of elements (for example, bus or hub). Topology level is used to
indicate the levels of elements, such as the physical versus the logical levels. This convention
permits clarity if, for example, the chapter refers to a system that uses a bus-based topology at
the physical topology level.

Physical Topology Level
The first level to consider is the physical topology. The physical topology level
describes the way that each system node physically connects to the network. The
topology choices are point-to-point, bus, hub, and ring. These four topologies are
illustrated in Figure 5.6.

Point-to-Point Bus Hub Ring

Figure 5.6
Four physical topologies

You can determine the topology that is used at the physical topology level of any set
of hardware nodes by observing the arrangement of the network cables and the
devices that connect the nodes. Logical network protocols use this topology to
facilitate communication between the nodes. Because these protocols assume a
particular sequence of communication and a logical structure between nodes, these
collaborations form topologies at the physical topology level.

Logical Topology Level
A logical topology level describes the means, the sequence, and the protocol that
physical nodes use to communicate. The most popular network protocol today is the
Ethernet standard (IEEE 802.3). Ethernet uses a bus-based topology at the logical
topology level. Ethernet is bus based because the original protocol was designed so
that all packets on a network or on a subnetwork were sent to all nodes on the same

Chapter 5: Integration Topologies 227

network segment. This configuration requires each listening node to filter unwanted
packets. The protocol provides for collisions that may occur if more than one node
transmits simultaneously. Since the original protocol was developed, advances in
network hardware have enabled devices to route messages to selected nodes to
improve performance. One such advance is the development of switches. The
Ethernet protocol also has evolved to take advantage of these developments, but it
still supports a bus-based logical topology.

A less-used network protocol is token passing (IEEE 802.5). Token passing uses a
ring-based topology at the logical topology level. With this topology, each node
connects to the next node in the ring and passes a message in a circular fashion until
it arrives at the intended destination.

As shown in Figure 5.7, the topology of the logical topology level and the topology
of the physical topology level correspond exactly in some cases.

Physical
Topology

Point-to-Point Bus Hub

Mapping

Ring

Logical
Topology

Point-to-Point Bus Hub Ring

Figure 5.7
Direct mapping of topologies at the logical and physical topology levels

For example, a set of nodes that are connected with a bus-based topology at the
physical topology level might also be connected with a bus-based topology at the
logical topology level. This topology is the topology that often exists when you use
the Ethernet protocol. Or, a set of nodes that are connected with a ring-based topol-
ogy at the physical topology level might also be connected with a ring-based topol-
ogy at the logical topology level. This is the topology that exists when you use token
passing. However, it is important to understand that the topologies used at the
physical and logical topology levels do not have to be the same. In practice, they are
often different.

Integration Patterns228

For example, multiple nodes might be connected in a hub-based topology (100Base-
T) at the physical topology level, and a bus-based topology (Ethernet) might be used
at the logical topology level. In this case, an incoming packet is broadcast to all the
nodes that are physically connected to the hub, and the hub effectively acts as a bus.
Each listening node is then responsible for filtering the unwanted messages. Figure
5.8 shows a bus-based topology at the logical topology level. The bus-based topol-
ogy is mapped to both a bus-based topology and to a hub-based topology at the
physical topology level.

Physical
Topology

Logical
Topology

Point-to-Point Bus Hub Ring

Point-to-Point Bus Hub

Mapping

Ring

Figure 5.8
A bus-based topology at the logical topology level mapped to both a bus-based topology and a hub-based
topology at the physical topology level

Another example of different topologies at the logical and physical topology levels is
a ring-based topology at the logical topology level that runs on top of a bus topol-
ogy at the physical topology level. This configuration is described in IEEE 802.4. In
this configuration, messages are passed in the logical topology level through a ring
of nodes, but the nodes are connected by using a bus-based or a hub-based topology
at the physical topology level.

As you analyze a set of connected systems in detail, it is useful to clarify the topol-
ogy level you are referring to. This helps to separate the logical issues from the
physical issues. Above the logical level, the integration topology level describes the
arrangement of integrated systems.

Integration Topology Level
The integration topology level describes the arrangement of channels, collabora-
tions, and mechanisms that different systems and services use to communicate. This
topology level consists of different combinations of three patterns: Point-to-Point

Chapter 5: Integration Topologies 229

Connection, Broker, and Message Bus. These patterns, along with the related Publish/
Subscribe pattern, are illustrated in Figure 5.9 by using circles.

Integration
Patterns

List-Based
Publish/Subscribe

Broadcast-Based
Publish/Subscribe

Publish/Subscribe

Content-Based
Publish/Subscribe

Direct
Broker

Indirect
Broker

Point-to-Point
Connection

A pattern refinement

Message
Bus

Broker

Bus HubPoint-to-Point

Message
Broker

Figure 5.9
Integration patterns related to topologies

Now let’s look at how integration topologies interact with logical and physical
topologies in more detail.

Using Topologies Together
To design an integration architecture, you must decide on high-level collaborations
in the integration topology level. These collaborations use other combinations of
collaborations and topologies in the logical topology level. In turn, these collabora-
tions use, and in some situations are constrained by, the topologies used in the

Integration Patterns230

physical topology level. Note that each level has its own set of concerns and respon-
sibilities. Let’s now look at these collaborations in more detail.

Point-to-Point Connection
Figure 5.10 shows how to implement the Point-to-Point Connection pattern. Given the
popularity of Ethernet, point-to-point connections are often connected by a bus in
the logical topology level. Using common network devices like routers, hubs, and
switches, the physical topology level is usually either hub based or bus based.
Regardless of the topologies used at the physical and logical topology levels, from
an integration pattern perspective, the nodes are using a Point-to-Point Connection
pattern if both of the following are true:
● Exactly one message is sent to and received by one target node.
● The responsibility for determining the target location and protocol lies with the

sender.

Physical
Topology

Point-to-Point Bus Hub

Integration
Topology

Logical
Topology

Point-to-Point Bus Hub

Point-to-Point Connection

Figure 5.10
Topologies stack for a Point-to-Point Connection integration pattern

Chapter 5: Integration Topologies 231

Breaking these topologies into discrete levels lets you qualify topology discussions
by using a frame of reference. For example, using the configuration that is shown in
Figure 5.10, you might have a Point-to-Point Connection topology at the integration
topology level that is connected to a bus topology at the logical topology level and
to a bus or hub topology at the physical topology level.

Broker
The collaboration described in the Broker pattern uses a combination of many other
topologies. For example, let’s review the CORBA direct broker example that is
discussed earlier in this chapter.

“Upon startup, an object request broker (ORB) acting as a client sends a UDP broadcast
on its local subnet to find a naming service.”

Here, a broker uses a bus topology at the logical topology level to send a broadcast
to all the systems that are connected to its subnet. In this case, the topology used at
the physical topology level is irrelevant, but it is likely to be hub based or bus based
due to the ubiquity of Ethernet. Note that the naming service must be located on the
same subnet as the ORB for this scheme to work.

“Using this naming service, the ORB requests the location of the target server on behalf of
the client.”

This is a standard broker collaboration. The main requirement here is that the source
system be able to connect point-to-point with the naming service. Therefore, the
topologies used at the logical and physical topology levels are less important. Again,
due to the ubiquity of Ethernet, the topology used at the logical topology level is
likely to be bus based, but the topology used at the physical topology level is likely
to be either hub based or bus based.

“All subsequent communication occurs directly between the client proxy and the server
proxy by using a point-to-point connection.”

Again, the main requirement is that the source system be able to connect point-to-
point to the target. This also is likely to be a bus topology at the logical topology
level and a hub or bus topology at the physical topology level.

Although the Broker collaboration may have some amount of coupling to underlying
topologies at both the physical and logical topology levels, the amount of coupling
is much more pronounced when you use Message Bus in conjunction with a Publish/
Subscribe implementation.

Message Bus and Publish/Subscribe
Message Bus implementations can vary greatly depending on the Publish/Subscribe
mechanism that they employ. Now let’s examine the practical implications of using
the three Publish/Subscribe variations together with Message Bus.

Integration Patterns232

Message Bus with Broadcast-Based Publish/Subscribe
To use a Message Bus implementation that contains a Broadcast-Based Publish/
Subscribe implementation, a system sends a command message to the message bus.
The message bus broadcasts the message to all the nodes that are listening to the
bus. The message bus makes no attempt to determine the appropriate subscribers.
Instead, each listening node filters any unwanted messages and processes only the
messages that it is interested in. Any data associated with the messages is in a
common format so that all systems can interpret the command message and the
data, and then respond appropriately.

From a topology perspective, this combination of the Message Bus pattern and the
Publish/Subscribe patterns uses a bus-based topology at the logical topology level
(Ethernet) to make a bus-based broadcast communication from the message bus to
all the listening nodes. The physical topology at this point is irrelevant, but it is
usually either hub based or bus based.

Message Bus with List-Based Publish/Subscribe
To use a message bus that contains a List-Based Publish/Subscribe implementation, a
system sends a command message to the message bus. The message bus then looks
up all interested bus subscribers and sends each one a copy of the original message.
Any data associated with the message is in a common format so that all systems can
interpret the command message and the data, and then respond appropriately.

From a topology perspective, this combination of the Message Bus and Publish/
Subscribe patterns is likely to use (but not to be coupled to) a bus topology at the
logical topology level (Ethernet) to make point-to-point connections from the mes-
sage bus to the subscribing nodes, as shown in Figure 5.11. At this point, the topol-
ogy used at the physical topology level is irrelevant, but it is usually either hub
based or bus based.

Chapter 5: Integration Topologies 233

Physical
Topology

Point-to-Point Bus Hub

Integration
Topology

Logical
Topology

Point-to-Point Bus Hub

Message Bus

Figure 5.11
A message bus using a bus topology at the logical topology level and a bus or hub topology at the
physical topology level

Integration Patterns234

Message Bus with Content-Based Publish/Subscribe
To use a Message Bus pattern that contains a Content-Based Publish/Subscribe imple-
mentation, a system sends a command message to the message bus. After the mes-
sage bus receives the message, it is responsible for matching the message against a
set of subscribers. The message bus then forwards the message to each of the appro-
priate subscribers.

To match the message against a set of subscribers, the message bus must determine
if there are any subscribers interested in this particular message. If an interested
subscriber exists, the subscriber matches a particular message field or fields and a
set of values. If a match exists between the message content and a subscriber, the
message is then forwarded to each matching subscriber.

After a subscribing system receives a bus message, the subscribing system is able to
process the message because the message contains the common command message
and the agreed-upon message schemas.

Although the Message Bus using List-Based Publish/Subscribe and the Message Bus
using Content-Based Publish/Subscribe patterns both check for subscriptions before
forwarding messages, there are key differences. The list-based approach matches
subscriptions on subjects. The content-based approach allows you to identify one or
more fields in the message and to identify a set of acceptable values for each field.
As a result, you can create very intelligent routing capabilities. This makes the
content-based approach more flexible than the list-based approach.

To make Content-Based Publish/Subscribe work, you need a high performance infra-
structure component that can read each message, query a set of potential subscrib-
ers, and efficiently route the message to each subscriber. In practice, you can think of
this as a message switch. This is exactly how Microsoft BizTalk Server 2004 is de-
signed.

Figure 5.12 shows the Message Bus pattern using a Publish/Subscribe pattern or one of
the Publish/Subscribe variants.

Chapter 5: Integration Topologies 235

Message Bus

Uses a common data model
Uses common command
messages
Uses a shared infrastructure

List-Based
Publish/Subscribe

Maintain a list of
subscribers
As messages arrive,
send them to listed
subscribers

Publish/Subscribe

When message is published,
sends messages to subscribed
nodes

Broadcast-Based
Publish/Subscribe

Send messages to
all nodes
Each node
responsible for
filtering unwanted
messages

Content-Based
Publish/Subscribe

For each message,
execute a query
based on message
content to determine
subscribed nodes
Send messages only
to subscribed nodes

A pattern refinement

Figure 5.12
Message Bus using a Publish/Subscribe pattern

Integration Patterns236

Integration Topology Level Patterns
The following table summarizes the integration patterns that are discussed in this
chapter.

Table 5.1: Integration Network Patterns

Pattern Problem Associated implementations

Message Broker How do you integrate applications Implementing Message Broker
without enforcing a common interface with BizTalk 2004
and also allow each application to
initiate interactions with several
other applications?

Message Bus As an integration solution grows,
how can you lower the cost of adding
or removing applications?

Publish/Subscribe How can an application in an
integration architecture only send
messages to the applications that are
interested in receiving the messages
without knowing the identities of
the receivers?

Chapter 5: Integration Topologies 237

Message Broker

Aliases
Hub and Spoke

Context
You have an online store that integrates several systems, such as the Web-based
front-end system, the credit card verification system, the retail system, and the
shipping system. The control flow usually originates in the front end. For example, a
customer placing an order causes the online store to send a request message to the
credit card verification system. If the credit card information is validated, the online
store sends request messages to the various retail systems, depending on the or-
dered items. An order for books translates into a purchase order message for the
book retailer; an order for electronics translates into a purchase order message for
the electronics retailer; and an order for gardening supplies translates into a pur-
chase order message for the home and garden supplier.

The control flow could also originate in a retail or shipping system. For example,
when a retailer updates a catalog, the retail system sends catalog update messages to
the store so that the store can display the new items. When a shipper changes the
shipping rates, the shipping system sends a rate update message to the store so that
the store can compute the correct shipping charges. Similarly, when a shipper
changes pickup times, the shipping system sends update messages to all the retailers
the system serves so that they can have the shipments ready in time.

Problem
How do you integrate applications without enforcing a common interface and also
allow each application to initiate interactions with several other applications?

Forces
To integrate applications without changing their interfaces, you must balance the
following forces:
● Point-to-point integration requires a large number of connections between appli-

cations. Many connections usually translate into many interfaces.
● Message Bus integration facilitates adding new applications, but it requires a

common bus interface. Because integration solutions usually involve applications
that have proprietary interfaces provided by multiple vendors, Message Bus
integration is difficult.

Integration Patterns238

● Run-time control of qualities such as availability and performance may require
dynamic reconfiguration.

● The applications in an integration solution could have conflicting quality of
service (QoS) requirements.

● The applications in an integration solution could belong to different security
realms.

Solution
Extend the integration solution by using Message Broker. A message broker is a
physical component that handles the communication between applications. Instead
of communicating with each other, applications communicate only with the message
broker. An application sends a message to the message broker, providing the logical
name of the receivers. The message broker looks up applications registered under
the logical name and then passes the message to them.

Communication between applications involves only the sender, the message broker,
and the designated receivers. The message broker does not send the message to any
other applications. From a control-flow perspective, the configuration is symmetric
because the message broker does not restrict the applications that can initiate calls.
Figure 5.13 illustrates this configuration.

Application 1

Application 2 Message Broker

Application 4

Application 5Application 3

Figure 5.13
A message broker mediating the collaboration between participating applications

The message broker can expose different interfaces to the collaborating applications,
and it can translate messages between these interfaces. In other words, the message
broker does not enforce a common interface on the applications.

Chapter 5: Integration Topologies 239

Prior to using a message broker, you must register the applications that receive
communications so that the message broker can dispatch requests to them. The
message broker may provide its own registration mechanism, or it may rely on an
external service such as a directory.

Placing the message broker between the sender and the receiver provides flexibility in
several ways. First, the message broker allows the integration solution to dynamically
change its configuration. For example, if an application must be shut down for main-
tenance, the message broker could start routing requests to a failover application.
Likewise, if the receiver cannot keep up with the incoming messages, the message
broker could start load balancing between several receivers.

Second, the message broker can choose between applications that have different QoS
levels. This resembles the dynamic configuration, but the message broker selects the
application based on specified criteria. For example, an application for premium
accounts may fulfill requests quickly, but an application for general use may have a
longer processing time.

Third, the message broker allows the sender and the receiver to reside in different
security realms. In other words, the message broker can reside on the boundary
between two security realms and bridge requests between those two realms. Table
5.2 shows the responsibilities and collaborations of a message broker.

Table 5.2: Message Broker Responsibilities and Collaborations

Responsibilities Collaborations

 – Receive message – Senders: applications that send messages
 – Determine the message recipients to the message broker
and perform the routing – Receivers: applications that receive
 – Handle any interface-level differences messages from the message broker
 – Send the message to the recipients

Example
Consider an online store that allows shoppers to browse a variety of retail catalogs
and to place orders. When an order is placed, the online store groups the shopping
cart items by retailer and places appropriate orders with each retailer. As each
retailer fulfills and ships the order, it sends the online store a tracking number. The
online store updates its records so that this information is presented on the Check
Order Status page. If the customer has configured e-mail alerts, the store also sends
an e-mail message that contains the tracking information.

Integration Patterns240

The online store that is illustrated in Figure 5.14 uses a message broker to communi-
cate with the individual retailers. The broker knows how to reach each retailer and
how to place orders, to cancel orders, and to check the order status. Likewise, the
retailers communicate with the broker when they send tracking numbers. Each
retailer must know how to reach the broker and how to send the tracking number. In
other words, both the store side and the retailer side can initiate a communication,
and the data flows in both directions.

Retailer 1

Retailer 2

Retailer 3

Message
Broker

Online
Store

Shopper’s
Client

Retailer 4

Figure 5.14
Online store communicating with retailers through a message broker

Resulting Context
The decision to use a message broker for integration entails balancing the benefits of
removing inter-application coupling against the effort associated with using the
message broker. Use the following benefits and liabilities to evaluate the balance:

Benefits
● Reduced coupling. The message broker decouples the senders and the receivers.

Senders communicate only with the message broker, and the potential grouping
of many receivers under a logical name is transparent to them.

Chapter 5: Integration Topologies 241

● Improved integrability. The applications that communicate with the message
broker do not need to have the same interface. Unlike integration through a bus,
the message broker can handle interface-level differences. In addition, the mes-
sage broker can also act as a bridge between applications that are from different
security realms and that have different QoS levels.

● Improved modifiability. The message broker shields the components of the
integration solution from changes in individual applications. It also enables the
integration solution to change its configuration dynamically.

● Improved security. Communication between applications involves only the
sender, the broker, and the receivers. Other applications do not receive the mes-
sages that these three exchange. Unlike bus-based integration, applications
communicate directly in a manner that protects the information without the use
of encryption.

● Improved testability. The message broker provides a single point for mocking.
Mocking facilitates the testing of individual applications as well as of the interac-
tion between them.

Liabilities
● Increased complexity. Communicating through a message broker is more com-

plex than direct communication for the following reasons:
● The message broker must communicate with all the parties involved. This

could mean providing many interfaces and supporting many protocols.
● The message broker is likely to be multithreaded, which makes it hard to trace

problems.
● Increased maintenance effort. Broker-based integration requires that the integra-

tion solution register the applications with the broker. Bus-based integration does
not have this requirement.

● Reduced availability. A single component that mediates communication between
applications is a single point of failure. A secondary message broker could solve
this problem. However, a secondary message broker adds the issues that are
associated with synchronizing the states between the primary message broker
and the secondary message broker.

● Reduced performance. The message broker adds an intermediate hop and incurs
overhead. This overhead may eliminate a message broker as a feasible option for
solutions where fast message exchange is critical.

Integration Patterns242

Testing Considerations
A mock message broker can receive requests and send back canned responses.
In effect, the mock message broker allows system testers to verify individual appli-
cations without removing the individual applications from the integration solution.

Likewise, a mock message broker that emulates some of the message broker’s
functionality allows testers to verify and to profile the interplay between a few
applications, for example, a subset of the integration solution. In other words, a
mock message broker allows you to test individual applications and to test sub-
systems.

Figure 5.15 shows these configurations; the shading indicates the areas under test.

Application 1
Mock

Message Broker

Application 1 Application 3

Application 2

Application 4

Mock
Message Broker

Figure 5.15
Using a mock message broker to test applications and subsystems

Security Considerations
Integration by using a message broker places a component between senders and
receivers. On one hand, this configuration accommodates management of the
security context through consolidation as well as impersonation. On the other hand,
the message broker represents a central point of attack. Compromising the message
broker compromises the communication between all the applications that use it.

Chapter 5: Integration Topologies 243

Operational Considerations
The message broker can dynamically change the configuration. It can direct mes-
sages to a failover application if necessary or perform load balancing between
applications, or the message broker can do both.

Known Uses
Broker-based integration products such as Microsoft BizTalk Server 2004 extend the
traditional broker functionality with additional features. For example, BizTalk Server
2004 provides orchestration services, messaging services, and other features associ-
ated with these services such as business activity monitoring, transaction and
exception handling, correlation, and graphic editing.

Variants
A message broker variant trades ease of integration for performance. The perfor-
mance-optimized message broker looks up the receiver and then connects it to the
sender, thus allowing the sender and the receiver to communicate directly. The
direct connection eliminates the performance penalty that is associated with an
intermediary between the communicating parties. However, this performance
optimization only works if the sender and the receiver have the same interface.

Related Patterns
For more information, see the following related patterns:
● Broker [Buschmann96]. In a distributed setting, the Broker pattern tries to make

distribution transparent. Client-side and server-side proxies mediate between the
broker and the clients and server.

● Implementing Message Broker with BizTalk Server 2004. This pattern uses the Global
Bank scenario to show how you can use BizTalk Server 2004 to implement Mes-
sage Broker.

● Client-Dispatcher-Server [Buschmann96]. The Client-Dispatcher-Server pattern is a
Broker variant that uses the direct communication optimization mentioned earlier
in “Variants.”

● Content-Based Router [Hohpe04]. The Content-Based Router pattern is a Broker
variant that specializes in routing communications to different applications based
on the content of the communication.

● Mediator [Gamma95]. The Mediator pattern separates objects so that they are only
aware of the mediator but not each other. The Broker deals with similar concerns,
but it can only be used in the context of enterprise applications.

Integration Patterns244

Acknowledgments
[Buschmann96] Buschmann, Frank; Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns. John Wiley & Sons Ltd, 1996.

[Gamma95] Gamma, Erich; Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Hohpe04] Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns: Design-
ing, Building and Deploying Messaging Solutions. Addison-Wesley, 2004.

[Trowbridge03] Trowbridge, David; Dave Mancini, Dave Quick, Gregor Hohpe,
James Newkirk, and David Lavigne. Enterprise Solution Patterns Using Microsoft
.NET. Microsoft Press, 2003. Also available on the MSDN Architecture Center at:
http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us/
dnpatterns/html/Esp.asp.

Chapter 5: Integration Topologies 245

Implementing Message Broker with BizTalk Server 2004

Context
Your application is interacting with multiple other applications through a Message
Broker so that each application only needs to communicate with the Message Broker,
rather than all the other applications. The Message Broker is implemented by using
Microsoft BizTalk Server 2004.

Background
Global Bank is implementing an Execute Scheduled Payment business process that
customers can use to schedule payments. Each payment is transacted through a
payment authority. The payment authority is determined when that payee is first
configured. Currently, there are three different payment authorities:
● There is an internal payment authority that Global Bank uses to handle payments

itself.
● There is an external payment authority where payment requests are sent to an

external bill payment authority.
● There is a manual payment authority where payment requests are handled

manually.

Bank growth, acquisitions, and mergers may increase the number of payment
authorities.

To implement the Execute Scheduled Payment business process, Global Bank chose
to use Microsoft BizTalk Server 2004 as an implementation of the Message Broker
pattern. As Figure 5.16 shows, requests for payment are sent directly to the message
broker, and the message broker then sends the request to the correct payment
authority.

Integration Patterns246

Internal Payment
Authority

Global Bank
External Payment

Authority

Manual Payment
Authority

Message Broker:
BizTalk Server 2004

Figure 5.16
BizTalk Server 2004 as Message Broker in Global Bank

Apart from sending any message received to the appropriate recipient, the Message
Broker implementation also must do the following:
● The implementation must parse the message to determine where to send it.
● The implementation must convert the message from the source format to the

destination format.
● The implementation must allow receivers (applications) to register with the

broker so that the broker can send messages to them.

Implementation Strategy
BizTalk Server 2004 uses a Publish/Subscribe messaging architecture that can easily be
used to implement Message Broker. BizTalk Server 2004 uses Pipes and Filters for the
message transformation.

Chapter 5: Integration Topologies 247

Receive Port

Receive Adapter

Receive Pipeline

XML, Flat File, EDI

MessageBox
Database

Send Port

Send Adapter

Send Pipeline

XML, Flat File, EDI

XML XML

Figure 5.17
BizTalk Server 2004 internal publish-subscribe architecture

Figure 5.17 shows how BizTalk Server 2004 receives, processes, routes, and sends
messages. A client application (the publisher) sends a message to a receive port
through a predefined protocol. For example, the publisher may send a message to
the message broker by writing a file into a directory on the server. The message is
received by the receive adapter. The following two types of adapters are available:
● Transport adapters. Transport adapters receive messages by using standard

transport mechanisms. BizTalk Server 2004 includes many standard transport
adapters such as HTTP, Simple Mail Transfer Protocol (SMTP), File, and File
Transfer Protocol (FTP).

● Application adapters. Application adapters connect with common business
applications. You usually purchase these adapters from a vendor, or you develop
them yourself.

Integration Patterns248

The receive adapter passes the message to a receive pipeline, and the receive
pipeline then parses and converts the incoming message to XML (except when using
the pass-through pipeline). XML is the format that BizTalk Server 2004 uses
internally. As the receive adapter receives the message and as the receive pipeline
processes it, additional data about the message is collected. This message metadata
includes information about the transport the message was received on, such as the
original name of the file in the case of a file transport. It also includes information
from each of the components in the pipeline. For example, the Party Resolution
component stores information it receives from a digital certificate attached to the
message. This metadata is known as the context properties.

The receive pipeline uses an XML schema that the developer created. This schema
disassembles and converts the message to XML and then validates the message
against the schema specification. The schema describes the type, the cardinality, and
the other attributes of every record and every field that is contained in the message.
As the receive pipeline parses the message, it collects data from within the message
itself. To do this, the developer creates a second schema that is known as a property
schema. The property schema allows specific portions of the message to be promoted
as additional metadata. This metadata is known as the promoted properties. For an
example of how promotion occurs, see the “Example” section later in this pattern.
After preprocessing in the receive pipeline, the message is submitted to the
MessageBox database complete with all additional metadata.

The MessageBox database sends the message to the message recipients by using a
message subscription. To implement a message subscription, the developer creates a
send port that represents the message recipient. A send port usually consists of a
send pipeline for post-processing of the message, a send adapter that transmits the
message to its destination, and a filter expression that defines whether the message
will be sent through this send port. The filter expression is a query against the
context properties of messages in the MessageBox database. A copy of the message
is only sent to this send port if there is a match between the filter expression and the
context properties. For example, the filter expression on the send port might state,
“send all documents that are of type ExecutePayment.Payment, where the fulfillmentTypeId
is equal to 1.”

The MessageBox database sends a copy of the messages to each send port that has a
filter expression that matches the context properties. The message is received by the
send port (the subscriber process), processed by the send pipeline, and then
transmitted through the send adapter. The send adapter can be a transport adapter
such as File, FTP, HTTP, BizTalk Message Queuing (MSMQT), SMTP, SOAP, or
MQSeries. Or, the send adapter can be an application adapter that connects directly
to the destination application.

To implement the Message Broker, the Global Bank developer must do the following:

Chapter 5: Integration Topologies 249

1. The developer must define the format of the message sent by the source
application to the Message Broker.

2. The developer must define the formats of the messages sent from the Message
Broker to each of the external systems and specify how the source message is
translated to the formats that are required by the external systems.

3. The developer must define how messages are sent from the Message Broker to
each external system.

Example
Figure 5.18 shows the Global Bank Message Broker implementation based on BizTalk
Server 2004. The numbers mark the areas that the following implementation steps
focus on.

MessageBox

BizTalk Server 2004

Global
Bank

Mapper

Mapper

Mapper

F
ilt

er

F
ilt

er

F
ilt

er

Send Port

Send Port

Send Port

Internal
Payment
Authority

External
Payment
Authority

Manual
Payment
Authority

1b

1b

1b

3a

3a

3a

2

2

2

1a
3b3b3b

Receive
Port

Figure 5.18
Global Bank Message Broker implementation with BizTalk Server 2004

Integration Patterns250

Step 1: Create the Receive Port and Define Message Schemas
The first step in the implementation of the Message Broker is to create the receive port
in BizTalk Explorer. This receive port defines the location that the client application
will send messages to so that the messages are published to the message broker.
Virtually any transport can be used to send messages from the client to the message
broker. This example uses the BizTalk Message Queuing (MSMQT) adapter because
MSMQT provides guaranteed delivery.

� To create the receive port for the message broker
1. Create a receive port called Payment Broker RP.
2. Create a receive location on this receive port called Payment Broker RL.
3. Set the transport for the receive location to MSMQT with a queue named

Payments.
4. Specify the BizTalkServerApplication as the receive handler, and specify XML

Receive as the receive pipeline.
5. After following the remaining steps to implement the message broker, enable the

receive location.

This completes the creation of the receive port.

Next, the payment messages sent by Global Bank and the messages going to each of
the three payment channels have to be defined. The payment messages are marked
1a in Figure 5.18, and the payment channels are marked 1b. BizTalk Server uses
these definitions (XML schemas) to parse and to convert messages into XML if they
are not already in XML. A disassembler component in the receive pipeline parses
and converts these messages.

For the Execute Scheduled Payment implementation, the schema is actually
generated automatically by the SQL Transport Schema Generation Wizard (see
Implementing Process Integration with BizTalk Server 2004). Figure 5.19 shows the
generated schema in the BizTalk Server Schema Editor.

Chapter 5: Integration Topologies 251

Figure 5.19
The Payment schema in the BizTalk Server 2000 Schema Editor

You can also create a special second schema that is known as a property schema. This
property schema defines one or more fields that are linked to specific fields in the
message schema. Linking fields in this way is known as promoting properties. This
link between the message schema and the property schema is established in the
Promote Properties dialog box in the BizTalk Server Schema Editor. In Figure 5.19,
the unique symbol next to the fulfillmentTypeId field denotes a promoted property
field.

Figure 5.20 shows the Promote Properties dialog box where you promote
the fulfillmentTypeId field that is in the payment message. The value of the
fulfillmentTypeId field is used later to determine the payment authority that the
message is sent to.

Integration Patterns252

Figure 5.20
Creating a promoted property field

The format of the message that is sent to the message broker is specified by the XML
schema shown in Figure 5.19. The format of the messages for each of the payment
authorities is likely to be different from the source format. The format of the mes-
sages is also likely to vary between different payment authorities. Therefore, schema
definitions for each of the outgoing message formats also have to be built. For
brevity, these schema definitions are not presented here.

Step 2: Define Maps to Convert Between Message Formats
For each of the destination message formats specified in the previous section, an
XSLT map must be developed. This XSLT map specifies how the source message
format is translated to the destination message format (number 2 in Figure 5.18).
These message format translations may be merely structural. For example,
 converting an XML message to a comma-separated-values (CSV) message is struc-
tural. Or, the translation may require the generation of new message content. For
example, the source message may not contain any information about the time or
date that the message was sent, but this information may be required in the destina-
tion format. New message content also has to be generated when a field in the
source message is used as a key to a specific row in a database table, and fields in
the destination message are filled from fields in this database row. This is a common
requirement.

Chapter 5: Integration Topologies 253

Figure 5.21
Payment authority map in the BizTalk Mapper

You can use the BizTalk Mapper to create the XSLT maps. The BizTalk Mapper
provides a graphical view of source and destination schemas and of the conversion
from one to the other. The output from the BizTalk Mapper is the XSLT map. Figure
5.21 shows the development of a payment authority map from the source XML
schema in the BizTalk Mapper. Three separate maps are created, one for each of the
payment authorities:
● PaymentRequest2InternalPayee.btm is created for the internal payee.
● PaymentRequest2ExternalPayee.btm is created for the external payee.
● PaymentRequest2ManualPayee.btm is created for the manual payee.

Step 3: Create Subscriptions to Messages
To configure the BizTalk Server message broker for the Execute Scheduled Payment
scenario, three send ports must be configured. Each send port is configured with its
own specific transport type and transport address, send pipeline, and BizTalk map
(number 3a in Figure 5.18). In addition, the port filter has to be specified appropri-
ately on each send port to set up the correct subscription for this payment authority
to the MessageBox database (number 3b in Figure 5.18).

� To configure one of the send ports (Internal Payment)
1. Create a new send port that is called InternalPayee_SP.
2. Select SOAP (Web Services) for the transport type. Use the following as the

transport address (the Uniform Resource Identifier [URI]):
http://EAIPayee/InternalPayee/Payee.asmx

Depending on the transport chosen, different transport address information can
be specified.

Integration Patterns254

3. Specify XML Pipeline as the send pipeline. The send pipeline defines the post-
processing that is performed on the message just before the message is sent, such
as attachment of a digital signature to the message.

4. Specify PaymentRequest2InternalPayee.btm as the XSLT map to be applied to
the source messages.

5. Specify the filters for this send port. These filters define the subscription for this
send port in the MessageBox database, and they control the criteria that the
MessageBox database uses to determine the messages that are sent to this port.
For the Execute Scheduled Payment scenario, the filter specifies the following
two criteria as shown in Figure 5.22:
● All messages of type http://GlobalBank#payment.
● Messages that have a promoted fulfillmentTypeId property that is equal to 1

(internal fulfillment).

Figure 5.22
Specifying the filter (subscription) for a send port

Chapter 5: Integration Topologies 255

With this configuration, all messages of type http://GlobalBank#payment that have
a fulfillmentTypeId property that is set to 1 (internal fulfillment) are sent to this
send port. This send port is configured to transmit the payment authorization to
the internal payment application by using a SOAP call.

6. Configure the remaining ports in a similar way. Each port has its own unique
transport address and its own unique XSLT map. In addition, the filters on these
two ports specify a different value for the fulfillmentTypeId property.
A value of 2 denotes external fulfillment, and a value of 3 denotes manual
fulfillment.

7. Finally, enlist and then start each of the send ports.

Resulting Context
The implementation of the Message Broker pattern with BizTalk Server 2004 results in
the following benefits and liabilities:

Benefits
● Message routing is determined at run time. Destination applications can be

added or deleted from the system at run time without affecting the source appli-
cation or other destination applications.

● Message tracking and archiving. All messages transmitted through the message
broker can be automatically tracked and archived. The tracking, archiving, and
reporting functionalities are implemented only once, and they are shared by all
applications that use the message broker. In BizTalk Server 2004, these
functionalities are provided by the BizTalk Server Health and Activity Tracker
(HAT).

● Centralized management. The messaging for an application is configured and
managed from a central location and is not coded into the applications.

Liabilities
● Additional message processing steps. This Message Broker implementation adds

extra steps in the processing of a message. These extra steps could prevent some
fully synchronous messaging scenarios from being implemented, and they could
lead to higher latency than a straight-through processing solution. BizTalk Server
2004 has an alternate message processing mechanism that is known as a request-
response port. The request-response port is specifically designed to solve prob-
lems caused by these synchronous messaging scenarios.

● Routing rules are not centralized. Decentralized routing rules are an inherent
weakness in this Message Broker solution. The routing rules are spread between all
the send port configurations in the filter rules that are specified. Therefore,
configuration errors are harder to debug, and the configuration is more complex
to manage.

Integration Patterns256

Testing Considerations
You can use several strategies to test the Message Broker implementation:
● Create a mock destination application (in other words, set up a send port) that

subscribes to all messages of a specific type sent to the message broker. These
messages are written to a test directory. This process allows the message schemas
and message maps to be validated.

● Enable or disable send ports to test individual subscribers in isolation.
● Use the HAT to track all incoming and outgoing messages, to analyze the mes-

sage flow through the MessageBox database, to report exception conditions, and
to analyze message throughput.

● Use the Microsoft Visual Studio .NET environment to test schemas and maps by
validating sample documents, or use the schemas and maps to generate sample
message instances.

Security Considerations
The following security considerations apply when implementing Message Broker:
● Controlling the visibility of messages in the message broker. If many different

groups in an organization are using the message broker, it may be necessary to
implement access security to control who can view messages that are sent to the
message broker and to control who can set up subscriptions to messages. Re-
member that these messages may all be tracked and held in the Microsoft SQL
Server database. BizTalk Server 2004 provides a very detailed security model that
allows this type of access security to be enforced. For example, message traffic
can be partitioned across multiple host instances, where each host instance runs
by using different security credentials.

● Passing digitally signed messages. In a point-to-point processing scenario, a
message originator may digitally sign and encrypt a message by using a certifi-
cate issued by the receiver of the message. However, if this message is transmit-
ted through a message broker, the message broker usually cannot decrypt the
message. To overcome this problem, the encrypted message can be wrapped in a
clear text envelope. The envelope contains metadata about the message, such as
the address. The metadata allows the message broker to pass the message to the
intended recipient.

● Validating senders and receivers. Under some circumstances, the message
broker may need to validate the publishers or the subscribers. This means the
message broker must be able to validate a message that has been digitally signed
and then attach a digital signature to a message. BizTalk Server 2004 provides
these capabilities.

Chapter 5: Integration Topologies 257

Operational Considerations
The following operational considerations apply when implementing Message Broker:
● Dynamic configuration. One of the big benefits of the Message Broker pattern is

that it is easy to configure dynamically at run time. New publishers can easily be
added at run time, and subscribers can be added or removed easily.

● Load-balancing and fault tolerance. As Message Broker becomes central to an
organization’s integration solution, it is essential for the message broker to be
fault-tolerant and for the message processing workload to be spread across
multiple nodes. BizTalk Server 2004 works in conjunction with Microsoft SQL
Server 2000 so that all the configuration information, the messages, and the
tracking data are held within SQL Server 2000. BizTalk Server 2004 also works in
conjunction with Microsoft SQL Server 2000 so that all processing is distributed
across all the servers running BizTalk Server 2004 that are part of the same
BizTalk Server 2004 group. (A BizTalk Server 2004 group is a group of servers that
share the same set of SQL Server tables).

● Store and forward. Rather than send a message immediately, some message
brokers can hold onto a message until a subscriber requests it. This is useful in
situations where subscribers are not connected all the time, or where network
issues cause problems. BizTalk Server 2004 does not provide this functionality
directly, although it can easily be implemented by using database staging tables
or Microsoft Message Queuing (MSMQ).

Variants
Using promoted properties in the message and using filters on the send port is the
simplest way to implement a message broker by using Microsoft BizTalk Server
2004. However, other more complex implementations may be preferable in certain
circumstances.

Business Rule Engine
In some situations, the logic used to determine where the message is sent is more
sophisticated than the simple example used here, or the logic is subject to frequent
change. For example, a business may use a number of suppliers. The business may
determine which supplier to send a purchase order to based on the current relation-
ship of the business with that supplier. For example, the business might select the
supplier based on the level of discounts. This cannot be calculated by using informa-
tion in the message, so business logic has to be written to determine this. This logic
could be coded in a Microsoft .NET Framework assembly and referenced from a
map, but if the business rule is subject to frequent change, each time the rules
change a new version of the business component must be deployed.

Integration Patterns258

BizTalk Server 2004 solves this issue by providing a Business Rules Engine. The
Business Rules Engine enables a user to define a vocabulary that is based on infor-
mation contained in the message and in a database, and that is held in .NET Frame-
work components. This vocabulary may then be used to define a series of business
rules. These rules can implement sophisticated business logic, and this business
logic can then be changed and deployed easily.

Roles and Parties
As the number of publishers and subscribers increases, it becomes increasingly
difficult to manage and to maintain the receive ports, the send ports, and the sub-
scriptions. In a scenario where there are thousands of potential subscribers for a
message, BizTalk Server 2004 uses roles and parties. For example, you may have
configured thousands of subscribers (suppliers) to send purchase orders to in your
order processing system.

For this example, the Supplier role is created, and a port type is associated with this
role. In this case, that is the PurchaseOrderToSupplierType port type. The outgoing
message is then sent to an abstract PurchaseOrderToSupplierType port type.

Independently of this, parties are created to represent individual suppliers. After
parties are created, a party can be enlisted in a role. For example, a party called
Northwind Traders may be created and then enlisted in the Supplier role. When this
is done, a physical port of type PurchaseOrderToSupplier must be configured to
send the document to the actual supplier.

The roles and parties implementation is more complex and requires the message
broker to use BizTalk Orchestration instead of using BizTalk Messaging. However,
when many potential message recipients are involved, it provides a much simpler
mechanism for maintaining the recipients in the system.

Related Patterns
Of particular note among related patterns, Enterprise Integration Patterns [Hohpe04]
examines the difference between the Publish/Subscribe implementation (reactive
filtering) and a content-based router. A content-based router examines the message
and sends it to a recipient by using a process that is known as predictive routing. For
more information, see the following patterns:
● Broker [Buschmann96]. In a distributed setting, the Broker pattern tries to make

distribution transparent. Client-side and server-side proxies mediate between the
broker and the clients and server.

● Content-Based Router [Hohpe04]. The Content-Based Router pattern is a Broker
variant that specializes in routing communications to different applications based
on the communication’s content.

Chapter 5: Integration Topologies 259

● Mediator [Gamma95]. The Mediator pattern separates objects so that they are only
aware of the mediator but not each other. The Broker deals with similar concerns,
but it can only be used in the context of enterprise applications.

Acknowledgments
[Buschmann96] Buschmann, Frank; Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns. John Wiley & Sons Ltd, 1996.

[Gamma95] Gamma, Erich; Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Hohpe04] Hohpe, Gregor, and Bobby Woolf, Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

Integration Patterns260

Message Bus

Context
You have an integration solution that consists of applications that are provided by
different vendors. These applications run on a variety of platforms. Some of these
applications generate messages and many other applications consume the
messages.

For example, consider a financial application that integrates trading tools, portfolio
management applications, modeling and risk analysis tools, trend indicators, and
tickers. Market activity causes interaction between these systems. For example, a
trading system communicates the completion of a sell transaction by sending a
message to all other trading applications. The trading system could have individual
connections to each trading application. This works well for a few applications, but
becomes a burden as the number of applications increases. Managing the addition or
removal of trading applications should not interfere with processing trades.

Problem
As an integration solution grows, how can you lower the cost of adding or
removing applications?

Forces
Adding an application to an integration solution or removing an application from an
integration solution entails balancing the following forces:
● Communication between applications usually creates dependencies between the

applications. The sender must communicate with the receivers. The receiver must
recognize the messages from all the senders. These dependencies translate into
coupling between the participants.

● In a configuration where point-to-point connectivity exists, the coupling has a
quadratic (or O[n2]) growth with the number of applications [Chandra03,
Levine03]. For example, three fully connected applications need three connec-
tions, but 10 applications need 45 connections. This quadratic growth hampers
maintainability, modifiability, and integrability.

● Usually, the applications of an integration solution have different interfaces.
Changing the interfaces of proprietary applications is difficult. Even if you
change the interface of one application, it is not feasible to change the interface
for all the applications of your integration solution.

● Some integration solutions consist of a fixed set of applications. An integration
solution that has low extensibility and modifiability requirements typically does
not need to accommodate new applications.

Chapter 5: Integration Topologies 261

Solution
Connect all applications through a logical component known as a message bus. A
message bus specializes in transporting messages between applications. A message
bus contains three key elements:
● A set of agreed-upon message schemas
● A set of common command messages [Hohpe04]
● A shared infrastructure for sending bus messages to recipients

When you use a message bus, an application that sends a message no longer has
individual connections to all the applications that must receive the message. Instead,
the application merely passes the message to the message bus, and the message bus
transports the message to all the other applications that are listening for bus mes-
sages through a shared infrastructure. Likewise, an application that receives a
message no longer obtains it directly from the sender. Instead, it takes the message
from the message bus. In effect, the message bus reduces the fan-out of each applica-
tion from many to one.

Usually, the bus does not preserve message ordering. Internal optimizations, rout-
ing, buffering, or even the underlying transport mechanism might affect how the
messages travel to the receiving applications. Therefore, the order in which mes-
sages reach each receiver is nondeterministic. Preserving the order of messages
requires additional logic. This additional logic can be provided by the participating
applications. For example, the sending application could insert sequence numbers
into the outgoing messages, and the receivers could use those numbers to reorder
the incoming messages. The logic could also be provided by the bus, and the logic
could therefore be transparent for the participating applications. However, this
additional logic is not required.

Figure 5.23 shows an integration solution that uses a message bus. An application
that sends messages through the bus must prepare the messages so that the mes-
sages comply with the type of messages the bus expects. Similarly, an application
that receives messages must be able to understand (syntactically, although not
necessarily semantically) the message types. If all applications in the integration
solution implement the bus interface, adding applications or removing applications
from the bus incurs no changes.

Integration Patterns262

Application 4 Application 5 Application 6

Application 1 Application 2 Application 3

Message Bus

Figure 5.23
Applications communicating through a message bus

The shared infrastructure between a message bus and the listening applications can
be achieved by using a Message Router [Hohpe04] or by using a Publish/Subscribe
mechanism. This book focuses on message buses that use Publish/Subscribe mecha-
nisms. For details on how to design a message bus that uses message-oriented
middleware and a Message Router, see Enterprise Integration Patterns [Hohpe04].

Figure 5.24 shows the Message Bus pattern associated with the Publish/Subscribe
pattern.

Message Bus

Uses a common data model
Uses common command messages
Uses a shared infrastructure

Publish/Subscribe

When message is published,
sends messages to subscribed nodes

Figure 5.24
The Message Bus pattern associated with the Publish/Subscribe pattern

Chapter 5: Integration Topologies 263

The kind of Publish/Subscribe implementation that you decide to use with a particu-
lar message bus has a profound impact on the message bus architecture. There are
three types of Publish/Subscribe implementations: List-Based Publish/Subscribe, Broad-
cast-Based Publish/Subscribe, and Content-Based Publish/Subscribe.

Note: Although the Publish/Subscribe pattern is an important part of a message bus, Publish/
Subscribe implementations are also used independently of message buses. For example,
Publish/Subscribe mechanisms are used with the Point-to-Point Connection and Message Broker
patterns. See the Publish/Subscribe pattern for more details.

Message Bus with List-Based Publish/Subscribe
Maintaining lists of published topics (subjects) and subscribers (observers) and then
notifying each one individually as events occur is the essence of List-Based Publish/
Subscribe implementations.

To use a message bus that contains a List-Based Publish/Subscribe implementation, a
system sends a command message to the message bus. The message bus then looks
up all interested message bus subscribers and sends each message bus subscriber a
copy of the original message. Any data that is associated with the message is in a
common format so that all systems can interpret the command message and the
data, and then respond appropriately.

Message Bus with Broadcast-Based Publish/Subscribe
To use a Message Bus implementation that contains a Broadcast-Based Publish/Sub-
scribe implementation, a system sends a command message to the message bus. The
message bus broadcasts the message to all the nodes that are listening to the bus.
The message bus makes no attempt to determine the appropriate subscribers.
Instead, each listening node filters any unwanted messages and processes only the
messages that it is interested in. Any data that is associated with the message is in a
common format so that all systems can interpret the command message and the
data, and then respond appropriately.

Message Bus with Content-Based Publish/Subscribe
To use a Message Bus pattern that contains a Content-Based Publish/Subscribe imple-
mentation, a system sends a command message to the message bus. After the mes-
sage bus receives the message, it is responsible for matching the message against a
set of subscribers and then forwarding the message to each of the appropriate
subscribers. To match the message against a set of subscribers, the message bus must
determine if there are any subscribers interested in this particular message. If an
interested subscriber exists, the subscriber matches a particular message field or
fields and a set of values. If a match exists between the message content and a
subscriber, the message is then forwarded to each matching subscriber.

Integration Patterns264

After a subscribing system receives a bus message, the subscribing system is able to
process the message because the message contains the common command message
and the agreed-upon message schemas.

While the Message Bus using List-Based Publish/Subscribe and the Message Bus using
Content-Based Publish/Subscribe patterns both check for subscriptions before forward-
ing messages, there are key differences. The list-based approach matches subscrip-
tions on subjects. However, the content-based approach is much more flexible.
Because the content-based approach allows you to identify one or more fields in the
message and a set of acceptable values for each field, you can create very intelligent
routing capabilities.

To make Content-Based Publish/Subscribe work, you need a high-performance infra-
structure component that can read each message, query a set of potential subscrib-
ers, and efficiently route the message to each subscriber. In practice, you can think of
this as a message switch. This is exactly how Microsoft BizTalk Server 2004 is de-
signed.

Figure 5.25 shows the Message Bus pattern using a Publish/Subscribe pattern or one of
the Publish/Subscribe variants.

Chapter 5: Integration Topologies 265

Message Bus

Uses a common data model
Uses common command
messages
Uses a shared infrastructure

Publish/Subscribe

When message is published,
sends messages to subscribed
nodes

List-Based
Publish/Subscribe

Maintain a list of
subscribers
As messages arrive,
send them to listed
subscribers

Broadcast-Based
Publish/Subscribe

Send messages to
all nodes
Each node
responsible for
filtering unwanted
messages

Content-Based
Publish/Subscribe

For each message,
execute a query
based on message
content to determine
subscribed nodes
Send messages only
to subscribed nodes

A pattern refinement

Figure 5.25
Message Bus pattern using a Publish/Subscribe pattern or one of the Publish/Subscribe variants

Integration Patterns266

Table 5.3 shows the responsibilities and collaborations that are associated with the
message bus.

Table 5.3: Message Bus Responsibilities and Collaborations

Responsibilities Collaborations

 – Provides a common set of message – Senders tag outgoing messages and pass
formats to the participating applications. them to the bus.
 – Transports messages from the sender – Receivers inspect the incoming messages and
to the other applications that are connected discard the messages that are of no interest to
to the bus. any application.

Choosing a message bus for communication between the components of an integra-
tion solution lowers the coupling, but it introduces other problems. The following
are some questions you should ask when considering a message bus for an integra-
tion solution:
● Bus latency. How long does it take the message bus to deliver a message to all

the applications that are connected to it? What happens if a sender tries to pass a
message to the bus before the bus completes message delivery?

● Bus contention. How do you prevent some applications from monopolizing the
message bus? If some applications monopolize the message bus, other applica-
tions cannot use it.

● Bus arbitration. How do you deal with multiple applications that want to pass
messages to the message bus at the same time?

Example
Consider an integration solution that integrates two trading systems, a portfolio
manager, a risk analysis application, a modeling application, a trend indicator, and a
stock ticker. The trading systems communicate with each other whenever they
process a transaction. They also send updates to the other applications.

A point-to-point configuration requires individual connections between each trading
system and all six applications. In other words, integrating the participating applica-
tions involves 11 connections between the participating applications. Figure 5.26
shows this topology (top) and the connections that are required to extend the solu-
tion to include an additional trading system (bottom). The dotted lines represent the
new connections.

Chapter 5: Integration Topologies 267

Portfolio
Manager

Risk
Analysis

Trading
System 2

Trend
Indicator

TickerModeling

Trading
System 1

Trading
System 2

Trading
System 1

Trading
System 3

Portfolio
Manager

Risk
Analysis

Trend
Indicator

TickerModeling

Figure 5.26
Trading applications that use point-to-point connectivity

A message bus reduces the number of connections between the trading applications;
Figure 5.27 (top) shows this topology. As you can see from the figure, each trading
application has a single connection to the bus. Each trading system is unaware of
how many applications are interested in its transactions. With this topology (bot-
tom), adding a new trading system requires a single connection and does not affect
the existing applications.

Integration Patterns268

Risk
Analysis

Modeling
Trend

Indicator
Ticker

Trading
System 1

Portfolio
Manager

Trading
System 2

Risk
Analysis

Modeling
Trend

Indicator
Ticker

Trading
System 1

Portfolio
Manager

Trading
System 2

Trading
System 3

New Trading System

Message Bus

Message Bus

Figure 5.27
Trading systems communicating through a message bus

Chapter 5: Integration Topologies 269

Resulting Context
When considering integration through a message bus, you should weigh the follow-
ing benefits and liabilities that are associated with it:

Benefits
● Improved modifiability. Each application has a single connection to the message

bus instead of multiple dedicated connections to each of the other applications.
Adding or removing an application has no impact on the existing applications. In
addition, upgrading the bus interface does not require changing any applications
as long as the messages remain compatible with existing ones. For example, this
is the case when you add new message types.

● Reduced application complexity. The message bus transports messages between
senders and receivers. Senders no longer interact with all the receivers that they
need to send messages to.

● Improved performance. There are no intermediaries between the communicating
applications. Communication latency depends only on how fast the message bus
can move messages.

● Improved scalability. Adding applications has a constant low cost. In addition,
you can add applications to the message bus until the message bus is saturated.
A message bus is saturated when it cannot keep up with the data that it has to
move between applications.

Liabilities
● Increased complexity. Integrating through a message bus increases the complex-

ity of the integration solution for the following reasons:
● Architectural mismatch. The applications of an integration solution typically

make conflicting architectural assumptions [Garlan95]. Designing the message
bus interface and solving the mismatch around the data model is a difficult
endeavor.

● Message bus access policies. Communication through a shared resource such
as a message bus requires you to implement policies that ensure fair access
and that resolve concurrency conflicts.

● Lowered modifiability when the bus interface breaks compatibility. Changing
the message bus interface in a way that breaks compatibility typically affects all
the applications that use the bus. In other words, the bus interface represents an
extreme example of a published interface. Designing it requires foresight.

Integration Patterns270

● Lowered integrability. All the applications that are hooked to the message bus
must have the same message bus interface. Applications that have incompatible
interfaces cannot use the message bus. Because the message bus interface in-
cludes a common set of command messages, message schemas, and shared
infrastructure, these elements together define a common subset that may some-
what restrict the operation of the participating applications.

● Lowered security. A message bus that uses the Broadcast-Based Publish/Subscribe
pattern reaches all the applications that are connected to the bus, regardless of the
applications that the message is intended for. Broadcasting to all participants may
not be acceptable if the messages contain sensitive data.

● Low tolerance for application unavailability. The receiver must be able to
process messages when the sender passes the messages to the bus. This solution
does not tolerate receiver downtime. In addition, it does not provide direct
support for disconnected operation.

Security Considerations
Before you use a message bus that uses Broadcast-Based Publish/Subscribe, you should
consider whether this configuration meets your security requirements. The applica-
tions that are connected to the bus receive every message that goes through the
message bus. Participants that require a private conversation must encrypt their
communication. Also, applications that communicate through the message bus do
not have intermediate components between them. In other words, no physical
component exists for mapping between different security contexts. Consequently,
this configuration is appropriate when the security context is managed through
impersonation.

Operational Considerations
When a message bus becomes saturated, message delivery may take a long time or
even fail. Saturation could occur after you add new applications or after you make
changes to the communication profile of existing applications. For example, changes
to the communication profile include changes in the message size and rate. Because
both situations are common in bus-centered integration solutions, it is important to
prevent saturation. This translates into monitoring the operation of the message bus
and proactively keeping the message volume below the maximum capacity of the
message bus.

Chapter 5: Integration Topologies 271

Related Patterns
For more information, see the following related patterns:
● Publish/Subscribe. This pattern helps keep cooperating systems synchronized by

one-way propagation of messages; one publisher sends a message to any number
of intended subscribers.

● Message Bus Architecture [Hohpe04]. This pattern revolves around a messaging
infrastructure, and it relies on a canonical data model and a common command
set that is mentioned earlier in “Liabilities.”

● Blackboard [Buschmann96]. The Blackboard pattern describes a shared storage area
that the components of the pattern use to communicate. Consumer components
monitor the blackboard and grab the data that matches their interest. Producers
put their output on the blackboard so that it becomes available to the others.
Typically, integration applications such as rule engines and expert systems use
this pattern.

Acknowledgments
[Buschmann96] Buschmann, Frank; Regine Meunier, Hans Rohnert, Peter
Sommerland, and Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns. John Wiley & Sons Ltd, 1996.

[Chandra03] Chandra, David; Anna Liu, Ulrich Roxburgh, Andrew Mason, E. G.
Nadhan, Paul Slater. Guidelines for Application Integration, Microsoft Patterns &
Practices, December 2003. Available on MSDN at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/eappint.asp.

[Garlan95] Garlan, David; Robert Allen, and John Ockerbloom. “Architectural
Mismatch: Why Reuse Is So Hard,” in IEEE Software, Volume 12, Issue 6, November
1995: 17-26.

[Hohpe04] Hohpe, Gregor and Bobby Woolf, Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[Levine03] Levine, Russell. “The Myth of the Disappearing Interfaces,” in Business
Integration Journal, November 2003.

Integration Patterns272

Publish/Subscribe

Aliases
Pub/Sub

Context
You have an integration architecture consisting of several applications. A communi-
cation infrastructure connects these applications in a bus, broker, or point-to-point
topology. Some applications send multiple message types. Other applications are
interested in different combinations of these types.

For example, consider a financial system where several applications maintain
customer information. A Customer Relationship Management (CRM) application
holds the master customer information. However, a typical situation for integration
scenarios exists — customer information also resides in other systems that perform
their own customer information management functions. A customer-facing applica-
tion generates update messages for changes to customer information, such as
changes to customer addresses. The messages must reach the CRM application as
well as the other applications that manage customer information. However, this
message type is meaningless to the integrated applications that do not manage
customer information.

Problem
How can an application in an integration architecture only send messages to the
applications that are interested in receiving the messages without knowing the
identities of the receivers?

Forces
Integrating applications so that they receive only the messages they are interested in
involves balancing the following forces:
● The applications in an integration architecture consume different message types.

For example, applications that manage customer information are interested in
customer information updates. Trading applications are interested in buy and sell
transactions. Applications that participate in two-phase commit transactions are
interested in commit messages.

Chapter 5: Integration Topologies 273

● An application in an integration architecture may send several message types.
For example, the application may send customer information messages and
operational messages about its status. (Status is also referred to as health in this
context). Likewise, an application in an integration architecture is usually inter-
ested only in a subset of the messages that are sent by the other applications. For
example, a portfolio manager is interested only in the financial transactions that
affect the stocks that it manages.

● The extent to which applications let you add information to their messages varies
widely. Fixed binary messages usually provide no flexibility or limited flexibility
in this area. In contrast, it is usually easy to extend SOAP messages through
envelope elements.

● Most integration architectures integrate proprietary applications. These applica-
tions often make strong assumptions about the messages that they use to commu-
nicate with other applications in the environment. Even with a flexible message
format, it may be difficult to insert or to process message elements that the
application does not know about.

Solution
Extend the communication infrastructure by creating topics or by dynamically
inspecting message content. Enable listening applications to subscribe to specific
messages. Create a mechanism that sends messages to all interested subscribers. The
three variations of the Publish/Subscribe pattern you can use to create a mechanism
that sends messages to all interested subscribers are List-Based Publish/Subscribe,
Broadcast-Based Publish/Subscribe, and Content-Based Publish/Subscribe.

List-Based Publish/Subscribe
A List-Based Publish/Subscribe pattern advises you to identify a subject and to main-
tain a list of subscribers for that subject. When events occur, you have the subject
notify each subscriber on the subscription list. A classic way to implement this
design is described in the Observer [Gamma95] pattern. When you use this pattern,
you identify two classes: subjects and observers. Assuming you use a push model
update, you add three methods to the subject: Attach(), Detach(), and Notify().You
add one method to the observer — Update().

To use an observer, all interested observers register with the subject by using the
Attach() method. As changes occur to the subject, the subject then calls each regis-
tered observer by using the Notify() method. For a detailed explanation of the
Observer pattern, see Design Patterns: Elements of Reusable Object-Oriented Software
[Gamma95].

Integration Patterns274

An observer works fine if you have created instances of objects that reify all your
observers and subjects. An observer is especially well suited to situations where you
have one-to-many relationships between your subjects and your observers. How-
ever, in the context of integration, you often have many observers that are linked to
many subjects, which complicates the basic Observer pattern. One way to implement
this many-to-many relationship is to create many subjects and to have each subject
contain a list of observers.

If you use this object structure to implement Publish/Subscribe, you must write these
relationships to persistent storage between process executions. To do so within a
relational database, you must add an associative table to resolve the many-to-many
dependencies between subject and observer. After you write this information to
persistent storage in a set of tables, you can directly query the database for the list of
subscribers for a topic.

Maintaining lists of published topics (subjects) and subscribers (observers) and then
notifying each one individually as events occur is the essence of List-Based Publish/
Subscribe implementations. A very different means of achieving the same result is a
Broadcast-Based Publish/Subscribe implementation.

Broadcast-Based Publish/Subscribe
When you use a Broadcast-Based Publish/Subscribe approach [Tannebaum01, Oki93],
an event publisher creates a message and broadcasts it to the local area network
(LAN). A service on each listening node inspects the subject line. If the listening
node matches the subject line to a subject that it subscribes to, the listening node
processes the message. If the subject does not match, the listening node ignores the
message.

Subject lines are hierarchical and may contain multiple fields that are separated by
periods. Listening nodes that are interested in a particular subject can subscribe to
these fields by using wildcards, if required.

Although this Broadcast-Based Publish/Subscribe implementation is an effective
method for decoupling producers from consumers, it is sometimes useful to identify
particular topic subscribers. To identify topic subscribers, a coordinating process
sends a message that asks listening nodes to reply if they subscribe to a particular
topic. Responses are then returned by each listening node to the provider to identify
the subscribers.

Because all messages are sent to all listening nodes, and because each node is re-
sponsible for filtering unwanted messages, some authors refer to this as a publish/
subscribe channel with reactive filtering [Hohpe04].

Chapter 5: Integration Topologies 275

Content-Based Publish/Subscribe
Both Broadcast-Based Publish/Subscribe implementations and List-Based Publish/
Subscribe implementations can be broadly categorized as topic-based because they
both use predefined subjects as many-to-many channels. Publish/Subscribe imple-
mentations have recently evolved to include a new form — Content-Based Publish/
Subscribe. The difference between topic-based and content-based approaches is as
follows:

In a topic-based system, processes exchange information through a set of pre-
defined subjects (topics) which represent many-to-many distinct (and fixed) logical
channels. Content-based systems are more flexible as subscriptions are related to
specific information content and, therefore, each combination of information items
can actually be seen as a single dynamic logical channel. This exponential enlarge-
ment of potential logical channels has changed the way to implement a pub/sub
system. [Baldoni03]

The practical implication of this approach is that messages are intelligently routed
to their final destination based on the content of the message. This approach over-
comes the limitation of a broadcast-based system, where distribution is coupled to a
multicast tree that is based on Transmission Control Protocol (TCP). It also gives the
integration architect a great deal of flexibility when deciding on content-based
routing logic.

Applying Publish/Subscribe
Figure 5.28 shows an integration solution that consists of four applications. The
sender (also called a publisher) uses a topic-based approach to publish messages to
topic A and to topic B. Three receivers (also called subscribers) subscribe to these
topics; one receiver subscribes to topic A, one receiver subscribes to topic B, and one
receiver subscribes to both topic A and to topic B. The arrows show messages flow-
ing from the publisher to each subscriber according to these subscriptions.

Integration Patterns276

Communication Infrastructure

Subscriber 1

Subscriber 2

Subscriber 3

Publisher

Topic A

Topic B

Figure 5.28
Subscription to topics controls the message types that reach each subscriber

Implementing Publish/Subscribe usually affects the messages, the integrated applica-
tions, and the communication infrastructure.

First, you must identify the topics or the content of interest to the receiving applica-
tions. This translates into partitioning the set of message types into different subsets.
For example, consider the types of messages that are sent by a trading system. Some
trading applications track buy transactions, some track sell transactions, and other
applications track both types of transaction. Separating the message by creating a
buy topic and a sell topic partitions the trading system messages into subsets aimed
at these applications.

Next, you must add information to the messages that indicates the topic or that
identifies specific content information. Sometimes you can store the topic-related
information in an unused message field. Alternatively, you may be able to add a
new field for the topic. For example, you may be able to insert a new element in a
SOAP header. If you can neither use an existing field nor add a new one, you must
find other ways to encode the topic into the message, or you must use a content-
based approach instead.

Chapter 5: Integration Topologies 277

You must then extend the communication infrastructure so that it delivers messages
according to each subscriber’s subscription. The approach that you use depends on
the topology of the integration solution. For example, consider the three common
topologies. For bus integration, you can implement the subscription mechanism in
the bus interface. For broker integration, you can implement the mechanism through
subscription lists to the broker. For point-to-point integration, you can implement
the mechanism through subscription lists in the publisher.

Finally, you must modify the integrated applications. The publisher must add the
topic-related information to each message that it publishes. For example, if the topic
is encoded as a header element, the publisher must insert the topic-related informa-
tion into the appropriate element. Likewise, the subscriber must specify the topics of
interest.

Subscriptions can be either fixed or dynamic. With fixed subscriptions, the integra-
tion architect sets the topics that an application subscribes to. Applications have no
control over their subscriptions. Usually, the subscriptions are specified when each
application is added to the integration solution. Figure 5.29 shows a fixed subscrip-
tion to Topic A.

Subscriber 1

Publisher

Topic A

Topic C

Topic B
Fixed Subscription

Figure 5.29
Publish/Subscribe with fixed subscription

In contrast, dynamic subscriptions enable applications to control their own subscrip-
tions through a set of control messages. Applications can remove existing subscrip-
tions by sending messages to the communication infrastructure that remove the
application from the subscription list. Applications can add new subscriptions by
sending messages to the communication infrastructure that add the application to a
subscription list. Most communication infrastructures that have Publish/Subscribe
capabilities provide this feature. However, supporting dynamic subscriptions is not
a requirement.

Integration Patterns278

Subscriber 1

Publisher

Topic A

Topic C

Topic B

Subscriber 1

Publisher

Topic A

Initial Subscription

Final Subscription

Topic B

Topic C

Figure 5.30
Publish/Subscribe with dynamic subscriptions

Figure 5.30 shows how dynamic subscriptions function. The top part of Figure 5.30
shows the initial subscription to topic A. The application then sends a message that
removes it from the subscription list for topic A. The application then sends two
messages that subscribe the application to topic B and topic C. The bottom part of
Figure 5.30 shows the final subscription after these control messages are sent.

Chapter 5: Integration Topologies 279

Related Decisions

After you decide to use Publish/Subscribe, you must make the following decisions:
● Initial subscription. You must decide how subscribers communicate their sub-

scriptions to the communication infrastructure when they are first added to the
solution.

● Wildcard subscriptions. You must decide if your publish/subscribe mechanism
needs to support wildcard subscriptions. Wildcard subscriptions enable subscrib-
ers to subscribe to multiple topics through one subscription.

● Static or dynamic subscriptions. You must decide if the applications in your
integration solution need to change their subscriptions dynamically.

● Topic discovery. You must decide how subscribers discover the available topics if
the solution supports dynamic subscriptions.

Responsibilities and Collaborations

Table 5.4 summarizes the responsibilities and collaborations of the parties involved
in Publish/Subscribe.

Table 5.4: Responsibilities and Collaborations Among Publish/Subscribe Components

Components Responsibilities Collaborations

Communication – Maintains the subscribers’ – The publisher publishes messages.
infrastructure subscriptions. – The subscriber subscribes to

– Inspects the topic-related topics and receives messages.
information or the content information
that is included in each published
message.
– Transports the message to the
subscribed applications.

Publisher – Inserts topic-related information or – The communication infrastructure
content information in each message. transports messages to subscribers.
– Publishes the message to the
communication infrastructure.

Subscriber – Subscribes to one or more topics – The communication infrastructure
or message content types. transports published messages
– Consumes messages published from the publisher.
to the subscribed topics.

Integration Patterns280

Example
Microsoft BizTalk Server 2004 uses the Publish/Subscribe pattern internally to receive,
to route, and to send messages. BizTalk Server receives messages through input
ports and stores them in the MessageBox database. Orchestration ports and send
ports consume messages from this database based on their subscriptions. Figure 5.31
illustrates this arrangement.

Orchestration
Port 1

Orchestration
Port 2

Subscribe

Publish

Send Port 1

Send Port 2

Send Port 3

Receive Port

MessageBox
Database

Figure 5.31
Publish/Subscribe in BizTalk Server 2004

Resulting Context
Using Publish/Subscribe has the following benefits and liabilities. Evaluate this
information to help you decide whether you should implement Publish/Subscribe:

Benefits
● Lowered coupling. The publisher is not aware of the number of subscribers, of

the identities of the subscribers, or of the message types that the subscribers are
subscribed to.

● Improved security. The communication infrastructure transports the published
messages only to the applications that are subscribed to the corresponding topic.
Specific applications can exchange messages directly, excluding other applica-
tions from the message exchange.

● Improved testability. Topics usually reduce the number of messages that are
required for testing.

Chapter 5: Integration Topologies 281

Liabilities
● Increased complexity. Publish/Subscribe requires you to address the following:

● You have to design a message classification scheme for topic implementation.
● You have to implement the subscription mechanism.
● You have to modify the publisher and the subscribers.

● Increased maintenance effort. Managing topics requires maintenance work.
Organizations that maintain many topics usually have formal procedures for
their use.

● Decreased performance. Subscription management adds overhead. This over-
head increases the latency of message exchange, and this latency decreases
performance.

Testing Considerations
The topics of a Publish/Subscribe implementation facilitate the testing of an integra-
tion solution. Subscriptions provide isolation by segmenting the message space. By
subscribing only to the topics or to the content of interest, testers and testing tools
have fewer messages to sift through. Likewise, by subscribing to other topics or
content, testers can catch messages that are published to the wrong topic.

Security Considerations
An integration solution that uses Publish/Subscribe can restrict the participants of a
message exchange, thus enabling applications to have private message exchanges.
Depending on the topology, the messages may still be physically transported to all
the applications in the integration architecture. For example, all the messages are
transported to all the applications if your integration solution uses the Message Bus
using Broadcast-Based Publish/Subscribe pattern. However, the interface between the
communication infrastructure and the application enforces filtering according to
each application’s subscriptions.

Operational Considerations
Many integration solutions that use Publish/Subscribe have topics or content that is
dedicated to messages about the applications’ health. This separation facilitates your
ability to monitor various operational parameters and to control the applications in
the integration solution.

Integration Patterns282

Related Patterns
For more information about Publish/Subscribe, see other similar patterns:
● Message Bus and Message Broker describe two common integration topologies.
● Observer [Gamma95] provides a mechanism for decoupling dependencies be-

tween applications.
● Publisher-Subscriber [Buschmann96] facilitates state synchronization between

cooperating components.
● Publish-Subscribe Channel [Hohpe04] provides a way to broadcast events to all the

receivers (subscribers) that subscribe to a specific topic.

Acknowledgments
[Baldoni03] Baldoni, R.; M. Contenti, and A. Virgillito. “The Evolution of Publish/
Subscribe Communication Systems.” Future Directions of Distributed Computing.
Springer Verlag LNCS Vol. 2584, 2003.

[Buschmann96] Buschmann, Frank; Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns. John Wiley & Sons Ltd, 1996.

[Gamma95] Gamma, Erich; Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Hohpe04] Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns: Design-
ing, Building and Deploying Messaging Solutions. Addison-Wesley, 2004.

[Oki93] Oki, B.; M. Pfluegel, A. Siegel, and D. Skeen. “The Information Bus - An
Architecture for Extensive Distributed Systems.” Proceedings of the 1993 ACM
Symposium on Operating Systems Principles, December 1993.

[Tannebaum01] Tannebaum, Andrew. Modern Operating Systems. 2nd ed. Prentice-
Hall, 2001.

6
Additional Integration Patterns

This chapter completes this investigation of integration patterns by exploring the
Pipes and Filters pattern and the Gateway pattern. Both patterns are simple but
valuable for resolving integration problems.

Even though this chapter completes this discussion, you can obtain information
about additional integration patterns in the Appendix.

Pipes and Filters
Pipes and Filters provides a solution for moving the output of one system into an-
other system. The pipe is the portion of the code that is connected to the source
system and to the sink or the receiving system. The filter is the portion of the code
that transforms the data so that the sink program can process it.

This pattern is useful when you need to transform the data from one system into a
different format to integrate that data into another system. A simple example is the
conversion of data from ASCII to Extended Binary Coded Decimal Interchange Code
(EBCDIC) that occurs when data moves from a desktop computer to a mainframe.

Figure 6.1 shows a source system integrated with a sink system. The source
system uses multiple filters to transform the data to the format that the sink
system requires.

Integration Patterns284

Source

Pipe

Filter 1

Pipe

Filter 2

Pipe

Sink

Figure 6.1
A source system integrated with the sink system through Pipes and Filters

In the Global Bank scenario, the Pipes and Filters pattern is used to handle the com-
munication between Microsoft BizTalk Server 2004 and external payment channels.

Gateway
The Gateway pattern abstracts the access to an external system to a single interface.
The pattern eliminates the need for multiple systems to understand how to connect
to the external system. Therefore, the Gateway pattern simplifies the development
and maintenance processes that are related to accessing external systems.

Chapter 6: Additional Integration Patterns 285

Common uses for the Gateway pattern include accessing mainframe programs and
processing credit card transactions. For each of these common uses, the gateway
replaces direct access to the external resource or system, as shown in Figure 6.2.

Application 2 Gateway External
Resource

Application 1

Application 3

Figure 6.2
Gateway replaces direct access to the external resource

In the Global Bank scenario, the Gateway pattern is implemented by using Microsoft
Host Integration Server 2004. Host Integration Server 2004 provides the solution for
integrating the mainframe to the enterprise.

Integration Layers Patterns
The following table summarizes the two patterns just discussed and shows the
corresponding implementation patterns.

Table 6.1: Integration Layers Patterns

Pattern Problem Associated implementations

Gateway How can you make the applications of an Implementing Gateway with
integration solution access an external Host Integration Server 2004
system without introducing many-to-one
coupling between the applications and the
external system?

Pipes and Filters How do you implement a sequence of Implementing Pipes and Filters
transformations so that you can combine with BizTalk Server 2004
and reuse them independently?

Integration Patterns286

Pipes and Filters

Aliases
Data Flow Architecture

Context
You have an integration solution that consists of several financial applications. The
applications use a wide range of formats — such as the Interactive Financial Ex-
change (IFX) format, the Open Financial Exchange (OFX) format, and the Electronic
Data Interchange (EDI) format — for the messages that correspond to payment,
withdrawal, deposit, and funds transfer transactions.

Integrating these applications requires processing the messages in different ways.
For example, converting an XML-like message into another XML-like message
involves an XSLT transformation. Converting an EDI data message into an XML-like
message involves a transformation engine and transformation rules. Verifying
the identity of the sender involves verifying the digital signature attached to the
message. In effect, the integration solution applies several transformations to
the messages that are exchanged by its participants.

Problem
How do you implement a sequence of transformations so that you can combine and
reuse them independently?

Forces
Implementing transformations that can be combined and reused in different applica-
tions involves balancing the following forces:
● Many applications process large volumes of similar data elements. For example,

trading systems handle stock quotes, telecommunication billing systems handle
call data records, and laboratory information management systems (LIMS)
handle test results.

● The processing of data elements can be broken down into a sequence of indi-
vidual transformations. For example, processing XML messages typically in-
volves a series of XSLT transformations.

● The functional decomposition of a transformation f(x) into g(x) and h(z) (where
f[x]=g[x]?h[z]) does not change the transformation. However, when separate
components implement g and h, the communication between them (that is,
passing the output of g[x] to h[z]) incurs overhead. This overhead increases the
latency of a g(x)?h(z) implementation compared to an f(x) implementation.

Chapter 6: Additional Integration Patterns 287

Solution
Implement the transformations by using a sequence of filter components, where
each filter component receives an input message, applies a simple transformation,
and sends the transformed message to the next component. Conduct the messages
through pipes [McIlroy64] that connect filter outputs and inputs and that buffer the
communication between the filters.

The left side of Figure 6.3 shows a configuration that has two filters. A source appli-
cation feeds messages through the pipe into filter 1. The filter transforms each
message it receives and then sends each transformed message as output into the
next pipe. The pipe carries the transformed message to filter 2. The pipe also buffers
any messages that filter 1 sends and that filter 2 is not ready to process. The second
filter then applies its transformation and passes the message through the pipe to the
sink application. The sink application then consumes the message. This configura-
tion requires the following:
● The output of the source must be compatible with the input of filter 1.
● The output of filter 1 must be compatible with the input of filter 2.
● The output of filter 2 must be compatible with the input of the sink.

Integration Patterns288

Pipe

Source

Pipe

Filter 1

Pipe

Filter 2

Pipe

Sink

Source

Pipe

Filter 12

Sink

Figure 6.3
Using Pipes and Filters to break processing into a sequence of simpler transformations

Chapter 6: Additional Integration Patterns 289

The right side of Figure 6.3 shows a single filter. From a functional perspective, each
configuration implements a transfer function. The data flows only one way and the
filters communicate solely by exchanging messages. They do not share state; there-
fore, the transfer functions have no side effects. Consequently, the series configura-
tion of filter 1 and filter 2 is functionally equivalent to a single filter that implements
the composition of the two transfer functions (filter 12 in the figure).

Comparing the two configurations illustrates their tradeoffs:
● The two-filter configuration breaks the transformation between the source and

the sink into two simpler transformations. Lowering the complexity of the indi-
vidual filters makes them easier to implement and improves their testability. It
also increases their potential for reuse because each filter is built with a smaller
set of assumptions about the environment that it operates in.

● The single-filter configuration implements the transformation by using one
specialized component. The one hop that exists between input and output and
the elimination of the interfilter communication translate into low latency and
overhead.

In summary, the key tradeoffs in choosing between a combination of generic filters
and a single specialized filter are reusability and performance.

In the context of pipes and filters, a transformation refers to any transfer function
that a filter might implement. For example, transformations that are commonly used
in integration solutions include the following:
● Conversion, such as converting Extended Binary Coded Decimal Interchange

Code (EBCDIC) to ASCII
● Enrichment, such as adding information to incoming messages
● Filtering, such as discarding messages that match a specific criteria
● Batching, such as aggregating 10 incoming messages and sending them together

in a single outgoing message
● Consolidation, such as combining the data elements of three related messages

into a single outgoing message

In practice, the transfer function corresponds to a transformation that is specific
enough to be useful, yet simple enough to be reused in a different context. Identify-
ing the transformations for a problem domain is a difficult design problem.

Integration Patterns290

Table 6.2 shows the responsibilities and collaborations that are associated with pipes
and filters.

Table 6.2: Responsibilities and Collaborations of Pipes and Filters

Responsibilities Collaborations

 – A filter takes a message from its input, – A filter produces and consumes messages.
applies a transformation, and sends the
transformed message as output.

 – A pipe transports messages between filters. – A pipe connects the filter with the producer
(Sources and sinks are special filters without and the consumer. A pipe transports and
inputs or outputs.) buffers messages.

Example
Consider a Web service for printing insurance policies. The service accepts XML
messages from agency management systems. Incoming messages are based on the
ACORD XML specification, an insurance industry standard. However, each agency
has added proprietary extensions to the standard ACORD transactions. A print
request message specifies the type of document to be generated, for example, an
HTML document or a Portable Document Format (PDF) document. The request also
includes policy data such as client information, coverage, and endorsements. The
Web service processes the proprietary extensions and adds the jurisdiction-specific
information that should appear on the printed documents, such as local or regional
requirements and restrictions. The Web service then generates the documents in the
requested format and returns them to the agency management system.

You could implement these processing steps as a single transformation within the
Web service. Although viable, this solution does not let you reuse the transformation
in a different context. In addition, to accommodate new requirements, you would
have to change several components of the Web service. For example, you would
have to change several components if a new requirement calls for decrypting some
elements of the incoming messages.

An implementation that is based on Pipes and Filters provides an elegant alternative
for the printing Web service. Figure 6.4 illustrates a solution that involves three
separate transformations. The transformations are implemented as filters that
handle conversion, enrichment, and rendering.

Chapter 6: Additional Integration Patterns 291

Internal XML

Document
Generation

HTML/PDF

XML

Conversion

Internal XML

Enrichment

Style sheets

Jurisdiction-specific
documents and forms

ACORD XML with
proprietary extensions

Figure 6.4
Printing Web service that uses Pipes and Filters

The printing service first converts the incoming messages into an internal vendor-
independent format. This first transformation lowers the dependencies on the
proprietary ACORD XML extensions. In effect, changing the format of the incoming
messages only affects the conversion filter.

After conversion, the printing service retrieves documents and forms that depend on
the jurisdiction and adds them to the request message. This transformation encapsu-
lates the jurisdiction-specific enrichment.

Integration Patterns292

When the message contains all the information that comprises the final electronic
document, a document generation filter converts the message to HTML or PDF
format. A style sheet repository provides information about the appearance of each
document. This last transformation encapsulates the knowledge of rendering legally
binding documents.

In this example, the Pipes and Filters implementation of the printing Web service has
the following benefits that make it preferable to implementing the Web service as a
single monolithic transformation:
● Separation of concerns. Each filter solves a different problem.
● Division of labor. ACORD XML experts implement the conversion of the

proprietary extensions into an internal vendor-independent format. People
who specialize in dealing with the intricacies of each jurisdiction assist with the
implementation of the filter that handles those aspects. Formatters and layout
experts implement document generation.

● Specialization. Document-rendering is CPU intensive and, in the case of a PDF
document, uses floating point operations. You can deploy the rendering to
hardware that meets these requirements.

● Reuse. Each filter encapsulates fewer context-specific assumptions. For example,
the document generator takes messages that conform to some schema and gener-
ates an HTML or PDF document. Other applications can reuse this filter.

Resulting Context
Using Pipes and Filters results in the following benefits and liabilities:

Benefits
● Improved reusability. Filters that implement simple transformations typically

encapsulate fewer assumptions about the problem they are solving than filters
that implement complex transformations. For example, converting a message
from one XML encapsulation to another encapsulates fewer assumptions about
that conversion than generating a PDF document from an XML message. The
simpler filters can be reused in other solutions that require similar transforma-
tions.

● Improved performance. A Pipes and Filters solution processes messages as soon
as they are received. Typically, filters do not wait for a scheduling component to
start processing.

● Reduced coupling. Filters communicate solely through message exchange. They
do not share state and are therefore unaware of other filters and sinks that con-
sume their outputs. In addition, filters are unaware of the application that they
are working in.

Chapter 6: Additional Integration Patterns 293

● Improved modifiability. A Pipes and Filters solution can change the filter configu-
ration dynamically. Organizations that use integration solutions that are subject
to service level agreements usually monitor the quality of the services they
provide on a constant basis. These organizations usually react proactively to offer
the agreed-upon levels of service. For example, a Pipes and Filters solution makes
it easier for an organization to maintain a service level agreement because a filter
can be replaced by another filter that has different resource requirements.

Liabilities
● Increased complexity. Designing filters typically requires expert domain knowl-

edge. It also requires several good examples to generalize from. The challenge of
identifying reusable transformations makes filter development an even more
difficult endeavor.

● Lowered performance due to communication overhead. Transferring messages
between filters incurs communication overhead. This overhead does not contrib-
ute directly to the outcome of the transformation; it merely increases the latency.

● Increased complexity due to error handling. Filters have no knowledge of the
context that they operate in. For example, a filter that enriches XML messages
could run in a financial application, in a telecommunications application, or in an
avionics application. Error handling in a Pipes and Filters configuration usually is
cumbersome.

● Increased maintainability effort. A Pipes and Filters configuration usually has
more components than a monolithic implementation (see Figure 6.4). Each
component adds maintenance effort, system management effort, and opportuni-
ties for failure.

● Increased complexity of assessing the state. The Pipes and Filters pattern distrib-
utes the state of the computation across several components. The distribution
makes querying the state a complex operation.

Testing Considerations
Breaking processing into a sequence of transformations facilitates testing because
you can test each component individually.

Known Uses
The input and output pipelines of Microsoft BizTalk Server 2004 revolve around
Pipes and Filters. The pipelines process messages as they enter and leave the engine.
Each pipeline consists of a sequence of transformations that users can customize. For
example, the receive pipeline provides filters that perform the following actions:
● The filters decode MIME and S/MIME messages.

Integration Patterns294

● The filters disassemble flat files, XML messages, and BizTalk Framework (BTF)
messages.

● The filters validate XML documents against XML schemas.
● The filters verify the identity of a sender.

The BizTalk Pipeline Designer allows developers to connect and to configure these
filters within the pipeline. Figure 6.5 shows a pipeline that consists of Pre-
Assemble, Assemble, and Encode filters. The toolbox shows the filters than can be
dropped into this configuration.

Figure 6.5
A Microsoft BizTalk Server2004 send pipeline in Pipeline Designer

Chapter 6: Additional Integration Patterns 295

Many other integration products use Pipes and Filters for message transformation. In
particular, XML-based products rely on XSL processors to convert XML documents
from one schema to another. In effect, the XSL processors act as programmable filters
that transform XML.

Related Patterns
For more information about Pipes and Filters, see the following related patterns:
● Implementing Pipes and Filters with BizTalk Server 2004. This pattern uses the Global

Bank scenario to show how you can use BizTalk Server 2004 to implement Pipes
and Filters.

● Pipes and Filters [Shaw96, Buschmann96, Hohpe03].
● Intercepting Filter [Trowbridge03]. This version of Intercepting Filter discusses the

pattern in the context of Web applications built using the Microsoft .NET Frame-
work. Developers can chain filters to implement preprocessing and post-process-
ing tasks such as extracting header information and rewriting URLs.

● In-band and Out-of-band Partitions [Manolescu97]. This pattern remedies the lack
of a component that has a global context in Pipes and Filters systems. The out-of-
band partition is context-aware; therefore, it can configure the filters and handle
errors.

Acknowledgments
[Buschmann96] Buschmann, Frank; Regine Meunier, Hans Rohnert, Peter
Sommerland, and Michael Stal. Pattern-Oriented Software Architecture. John Wiley &
Sons Ltd, 1996.

[Hohpe04] Hohpe, Gregor and Bobby Woolf, Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

[Manolescu97] Manolescu, Dragos. “A Data Flow Pattern Language,” in Proceedings
of the 4th Pattern Languages of Programming, September 1997, Monticello, Illinois.

[McIlroy64] The fluid-flow analogy dates from the days of the first UNIX systems
and is attributed to Douglas McIlroy; see
http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.html.

[Trowbridge03] Trowbridge, David; Dave Mancini, Dave Quick, Gregor Hohpe,
James Newkirk, and David Lavigne. Enterprise Solution Patterns Using Microsoft
.NET. Microsoft Press, 2003. Also available on the MSDN Architecture Center at:
http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us
/dnpatterns/html/Esp.asp.

[Shaw96] Shaw, Mary, and David Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

Integration Patterns296

Implementing Pipes and Filters with BizTalk Server 2004

Context
You are implementing Pipes and Filters by using Microsoft BizTalk Server 2004.

Background
The Global Bank scenario includes the Execute Scheduled Payment use case. This
use case permits Global Bank to transfer funds from a customer’s account to a
specified target account. The target account can reside in one of three systems:
● An internal banking system that uses an internal Global Bank payment channel.
● An external banking system that uses encrypted and signed e-mail messages to

transfer funds. One such system is the Society for Worldwide Interbank Financial
Telecommunication (SWIFT) payment channel.

● An external banking system that cannot accept an electronic funds transfer and
therefore has to receive a paper check. This is an external manual payment
channel.

This pattern describes how to implement the Execute Scheduled Payment use case in
the Global Bank scenario by using the Pipes and Filters pattern that is described
earlier in this guide. This implementation uses BizTalk Server 2004 to transform and
to route funds to the target accounts by using the correct channel, as shown in
Figure 6.6.

Internal Bank
Payment Channel

External Bank
Payment Channel

External Manual
Payment Channel

SWIFT

Manual Business
Process Traditional Mail

Encrypted and
Signed E-mail

Pipes and Filters:
BizTalk Server 2004

Global
Bank

Figure 6.6
BizTalk Server2004 as Pipes and Filters

Chapter 6: Additional Integration Patterns 297

Specifically, this pattern focuses on how to implement BizTalk Server 2004 to send
payment information to target accounts through channels such as the SWIFT bank
payment channel. The communication on the external payment channel sends
confidential information across public networks; that information should be pro-
tected against unauthorized use. To address this issue, the business requirements
require you to encrypt the messages to avoid eavesdropping by third parties. The
business requirements also require you to add a certificate to ensure the authenticity
of messages. A certificate prevents third parties from generating false messages that
are designed to credit bank accounts.

This implementation uses the S/MIME protocol and the Triple Data Encryption
Standard (DES3) encryption algorithm. Signing and encrypting the messages for
the external payment channel involves applying a pair of transformations to the
message data. One transformation digitally signs the message by computing a
checksum. Another transformation uses a 168-bit secret key to encrypt the
message.

Implementation Strategy
When BizTalk Server 2004 receives a message, the incoming data can be processed
by a receive pipeline before it enters the MessageBox database, as shown in Figure
6.7. The typical functions that are performed in a receive pipeline include the
following:
● Decoding and parsing of incoming data such as an XML file or a flat file
● Validation; for example, verifying the incoming data against an XML schema
● Party resolution

Likewise, any message subscriber can configure a send pipeline to preassemble the
message data before it is transferred out on the physical send port. Typical functions
that are performed in a send pipeline include the following:
● Validation
● Assembly of an XML document
● Encoding
● Digital signing

Receive Pipeline

Receive Port

Send Pipeline

Send Port

MessageBox
Figure 6.7
BizTalk Server 2004 MessageBox database architecture

Integration Patterns298

Even though all the filters (transformation components) in a pipeline have the same
interface, some filters function independently and do not depend on other filters.
For example, a filter may be used to transform data or to filter for a consuming
service. In contrast, some filters inherently depend on other filters. For example, in
some cases a message cannot be decoded by a filter until it has been encoded by
another filter first. To make it easier to manage the semantic dependencies between
filters, BizTalk Server 2004 defines stages for each pipeline. A stage is the portion of a
pipeline that is dedicated to a certain type of work. Each available filter is assigned
to a specific stage of the pipeline. A receive pipeline consists of the following stages:
● Decode
● Disassemble
● Validate
● Resolve Party

A send pipeline contains the following stages:
● Pre-Assemble
● Assemble
● Encode

Naturally, decoding the message is the first step that is performed in the receive
pipeline, and encoding is the last step that is performed in the send pipeline. This
design ensures that all other filters in the pipeline can work on messages that are not
encoded.

BizTalk Server 2004 supplies default pipelines for frequently recurring needs, such
as parsing an incoming XML message. If you need a more tailored functionality, you
have the following options:
● You can configure a custom pipeline by using the pipeline components (also

known as filters) that are supplied in BizTalk Server 2004.
● You can configure a custom pipeline by writing custom filters in C# or Microsoft

Visual Basic .NET.

This pattern focuses on the first option because the standard BizTalk Server 2004
pipeline components provide the functionality that is required for the Global Bank
scenario without any custom coding. To assemble a custom pipeline that uses the
pipeline components that are included in BizTalk Server 2004, you have to complete
the following steps:
1. Create a custom send pipeline.

First, you have to define a new pipeline. A pipeline definition is stored as a
separate project file in Microsoft Visual Studio .NET.

Chapter 6: Additional Integration Patterns 299

2. Assign and configure the filters.
The Pipeline Designer in BizTalk Server 2004 enables you to drag filters into the
new pipeline. You can configure each filter by using the properties editor.

3. Build and deploy the pipeline.
Pipeline definitions are compiled into a .NET Framework assembly. Before you
can configure a send port or a receive port by using the custom pipeline
definition, you have to deploy the assembly.

4. Assign a certificate to BizTalk Server 2004.
This step is needed because the business requirement includes signing the
outbound message with a certificate. Such a certificate is usually obtained from
an outside certificate authority and is loaded into the certificate store of the local
operating system. After the certificate is loaded, the certificate thumbprint has to
be entered into the BizTalk Administration console. The thumbprint is a unique
identifier.
For a detailed description of certificates, see “Certificate Stores” in Windows XP
Professional Product Documentation [Microsoft04].

5. Configure the send port to use the custom pipeline.
After the custom pipeline is deployed, you can reference the custom pipeline in
the configuration settings of a send port.

Example
To make the communication on Global Bank’s external payment channel secure, you
must create a custom send pipeline that signs and encrypts the outbound messages.
This pipeline is used in conjunction with the Message Broker described in Implement-
ing Message Broker with BizTalk Server 2004.

Based on the implementation strategy, you have to complete the following steps to
implement the new custom pipeline by using BizTalk Server 2004.

Step 1: Create a Custom Send Pipeline
Pipeline definitions are created in Visual Studio .NET and are compiled into a.NET
Framework assembly by using the Pipeline Designer. First, create a new BizTalk
Server 2004 solution in Visual Studio .NET. Next, select Send Pipeline in the item
list, and then add it to the solution. This opens the Pipeline Designer.

Step 2: Assign and Configure the Filters
In this step, you use the Pipeline Designer to drag predefined filter components
from the Toolbox into the pipeline, as shown in Figure 6.8.

Integration Patterns300

Figure 6.8
BizTalk Server 2004 Pipeline Designer and Toolbox

A send pipeline has three predefined stages: Pre-Assemble, Assemble, and Encode.
The Global Bank solution requires only the Assemble and Encode stages, so leave
the Pre-Assemble stage empty. The Assemble stage contains filters that convert
message data from the BizTalk Server 2004 internal format to an external format,
such as a flat file structure or an XML document. Because you want to send XML
messages to the external bank payment system, add the XML assembler filter to this
stage. You can use the default configuration for this filter.

The encryption and signing occurs in the Encode stage. This stage is the last stage.
Add a MIME/SMIME encoder filter to this stage so that you can configure the
encryption properties. Configure the properties as shown in Table 6.3.

Chapter 6: Additional Integration Patterns 301

Table 6.3: Properties for the MIME/SMIME Encoder Filter

Property Value

Enable encryption True

Encryption algorithm DES3

Add signing certification to message True

Signature type BlobSign

The filter has built-in capability for DES3 and enables you to sign the message
simply by selecting True for the Add signing certification to message property. The
BlobSign value means that a signature is appended to the message and that the
signature is encoded. When a message passes through this pipeline, the MIME/
SMIME encoder uses the certificate to sign the message.

Step 3: Build and Deploy the Pipeline
Save the pipeline definition. Then, build and deploy the project from Visual Studio
.NET to make the pipeline definition available for port configuration.

Step 4: Assign Certificates to BizTalk Server 2004
BizTalk Server 2004 uses two distinct certificate stores in this scenario. A certificate
store is the system area where certificates are stored. To sign outgoing documents,
BizTalk Server 2004 uses certificates from the Personal certificate store. For a detailed
description of how to import certificates, see “Certificate Stores” in Windows XP
Professional Product Documentation [Microsoft04]. Each certificate has a thumbprint
that is generated by running a hash algorithm across the public key portion of the
certificate.

First, view the thumbprint on the Details tab in the Certificate dialog box for the
certificate, as shown in Figure 6.9.

Integration Patterns302

Figure 6.9
A certificate thumbprint

Next, configure the server running BizTalk Server 2004 with the certificate thumb-
print. To do so, start the BizTalk Administration console. Then, configure the signing
certificate thumbprint on the General tab in the Microsoft BizTalk Server 2004
(Local) Properties dialog box, as shown in Figure 6.10.

Chapter 6: Additional Integration Patterns 303

Figure 6.10
BizTalk Server 2004 properties

Use the same certificate to sign outgoing messages for all servers in the BizTalk
Server 2004 group.

To encrypt outgoing messages, BizTalk Server 2004 uses the Local Machine\Other
People certificate store. This certificate store holds public key certificates. Multiple
certificates can be stored and then used to encrypt messages to specific parties. The
certificate used to encrypt the message is specified in the send port configuration.

Integration Patterns304

Step 5: Configure the Send Port to Use the Custom Pipeline
Now that the custom pipeline definition is deployed in a global assembly, you can
use it in the configuration of the send port, as shown in Figure 6.11.

Figure 6.11
BizTalk Server 2004 send port properties

You can now connect the new send port to the MessageBox database as described in
Implementing Message Broker with BizTalk Server 2004.

Chapter 6: Additional Integration Patterns 305

Resulting Context
Using Pipes and Filters with BizTalk Server 2004 results in the following benefits and
liabilities:

Benefits
● Filter reuse. BizTalk Server 2004 users can reuse both the pipeline definitions and

the set of pipeline filters across different ports. For example, the MIME/SMIME
encoder filter is suitable for any application that needs to send MIME or S/MIME
messages.

● Amenable for graphical tools. Programming the pipeline involves connecting
and configuring filters by dragging components rather than by writing source
code.

● Developer specialization. Pipes and Filters fosters the division of labor between
different types of users. For example, C# developers build filters by using the
Microsoft Small Business Customer Manager Filter SDK. Business users and
developers who use BizTalk Server 2004 can assemble them without any pro-
gramming.

Liabilities
● Restricts the filter types. BizTalk Server 2004 pipelines use filters that have a

single input and a single output. This implementation of Pipes and Filters cannot
accommodate filters that do not fit within this constraint.

● Overhead cost. BizTalk Server 2004 pipelines are very powerful when there are
business rules and other types of processes on the data. However, the business
rules and processes on the data are overhead if all that is required is a simple pipe
between applications.

Testing Considerations
There are two main test scenarios when you use BizTalk Server 2004 to implement
Pipes and Filters. The test scenario that applies to you depends on the customization
option that you choose as your implementation strategy:
● Configure a custom pipeline by using the filters that are supplied with BizTalk

Server 2004. In this case, you build the custom pipeline and configure the filters
by using the Pipeline Designer. You then create a test configuration that uses this
custom pipeline in either a receive port or a send port. You can then submit test
messages and validate the resulting output.

Integration Patterns306

● Configure a custom pipeline by writing custom filters in C# or Visual Basic
.NET. In this case, you can test the pipeline component by creating a test
configuration that uses the component in a custom pipeline as described earlier.
You can also use Microsoft Visual Studio .NET to review the pipeline component
code.

Security Considerations
In addition to security features that are provided by the transports, such as encryp-
tion when using HTTPS, BizTalk Server 2004 provides security at the message level.
BizTalk Server 2004 can receive decrypted messages and validate digital signatures
that are attached to these messages. Similarly, BizTalk Server 2004 can encrypt
messages and attach digital signatures to messages before sending them. You can
also purchase or develop custom security components as required.

Note: The BizTalk Server 2004 host instance runs the send pipelines and the receive pipelines
within a specific security context. Therefore, any processing that the pipeline components
perform operates within this security context. This security context may impose constraints on
the way that the custom component accesses a database. The security context may also
impose constraints on the location in the certificate store that the component can access a
digital signature from.

Operational Considerations
BizTalk Server 2004 provides extensive support for application monitoring. Users
can monitor the messages that are going through each pipeline. Users can therefore
also monitor the ports the pipeline uses. BizTalk Server 2004 users can configure
each send port or receive port to track messages, as shown in Figure 6.12.

Chapter 6: Additional Integration Patterns 307

Figure 6.12
BizTalk Server 2004 port-level tracking

The Health and Activity Tracker (HAT) tool in BizTalk Server 2004 provides access to
port-level tracking information that allows you to see what is happening in the
system. It also allows you to examine archived data for patterns or trends.

Acknowledgments
[Microsoft04] Microsoft Corporation. “Certificate Stores.” Windows XP Professional
Product Documentation. Available from Microsoft.com at
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us
/sag_cmuncertstor.mspx.

Integration Patterns308

Gateway

Context
You have an integration solution that consists of several applications that are pro-
vided by different vendors and that run on a variety of platforms. Some applications
use an external resource and therefore have to communicate with it.

For example, consider the software that insurance carriers use to rate insurance
policies. Although many carriers have upgraded to client-server or service-
oriented architectures, some still rely on mainframe code for lines of business and
for jurisdictions where the upgrade is not feasible. For example, quoting uses main-
frame rating code to quote premiums. Endorsing uses the mainframe rating code to
endorse policies. Renewal also uses the mainframe rating code to renew policies. In
other words, several applications must integrate with the mainframe code.

Problem
How can you make the applications of an integration solution access an external
system without introducing many-to-one coupling between the applications and the
external system?

Forces
Accessing an external resource from an integration solution involves balancing the
following forces:
● All applications that communicate directly with the external resource must have

intimate knowledge of communication details such as application protocols,
messaging protocols, and communication protocols. Each connection to the
external resource adds dependencies between the integration solution and the
resource.

● The external resource may use a different communication protocol than the
communication protocol that the applications support natively. Implementing
communication protocols and protocol translators is difficult and error-prone.

● Testing the integration solution involves both the external resource and the
internal applications. However, because the external resource may not be acces-
sible from the testing environment, it may not be possible to involve the external
resource in tests. Also, including the external resource in tests may prevent
testing error or boundary conditions.

Chapter 6: Additional Integration Patterns 309

Solution
Add a Gateway component that abstracts the access to the external resource. The
gateway presents a single interface to the integrated applications while hiding the
external resource interface. In addition, the gateway encapsulates any protocol
translation that may be necessary to communicate with the external resource.

Figure 6.13 shows the gateway replacing direct access to the external resource. The
applications that collaborate with the gateway and with the external resource are
highlighted in blue, and the shapes at the end of the connectors denote different
interfaces.

Application 2 Gateway External
Resource

Application 1

Application 3

Figure 6.13
Gateway abstracting access to the external resource

The applications that need to communicate with the external resource do so by
sending messages to the gateway interface. The gateway handles any protocol
translation that is needed and then passes the message to the external resource. In
effect, the gateway encapsulates all access to the external resource. Consequently, the
applications do not require information about what it takes to communicate with the
external resource.

The gateway also catches errors signaled by the external resource. The gateway may
be able to handle errors such as communication timeouts and retries internally.
Otherwise, it passes any errors that it cannot handle locally to the appropriate
application. In effect, the gateway centralizes some error processing, but it probably
does not centralize all that error processing. This frees applications from dealing
with these errors. Moving the error handling logic from applications to the gateway
guarantees consistency.

Integration Patterns310

The communication through the gateway is asymmetric. The control flows from the
applications to the external resource. In other words, the gateway only provides a
point through which applications call the external resource. The gateway does not
support inbound access to the applications. Table 6.4 shows the responsibilities and
collaborations of the gateway.

Table 6.4: Gateway Responsibilities and Collaborations

Responsibilities Collaborations

 – To provide an internal interface through which – Applications send requests addressed
the applications access the external resource. to the external resource.
 – To perform message transformations (if any). – External resource fulfills requests
 – To relay the message to the external resource coming from the applications.
and to return the reply message to the sending
application (if there is a reply message).
 – To handle errors signaled by the external resource
or to pass them to the appropriate component.

After you decide to use a gateway, you have to decide where the gateway will
reside. The following are two possibilities:
● Internal gateway for enterprise integration. An internal gateway resides in the

same jurisdiction as the applications. Therefore, external applications do not use
the gateway, and you have full control over it.

● External gateway for business-to-business (B2B) integration. An external
gateway serves other enterprise applications. An external gateway may even be
provided by a third party, such as the resource owner. This configuration, which
is shown in Figure 6.14, means that you no longer have to implement the gate-
way. However, using an external gateway adds a dependency on an
outside component.

Chapter 6: Additional Integration Patterns 311

Application 2

Application 1

External
Gateway

External
Resource

System
Boundary

Figure 6.14
An external gateway that resides outside system boundaries (B2B integration)

An internal gateway provides the most flexible solution. You make the decisions
about its interface, about the protocol translations it performs, and about the errors
it handles. If you have an external gateway, and you want to reduce the coupling
with it, you can use an internal gateway and regard the external gateway as the
resource. This configuration is known as gateway chaining. Figure 6.15
illustrates this configuration.

Integration Patterns312

Application 2

Application 1

Internal
Gateway

External
Gateway

External
Resource

System
Boundary

Figure 6.15
Gateway chaining: removing dependencies between applications and an external gateway

Gateway chaining translates into functional composition. If you have several gate-
ways, and each gateway is specialized to handle a different aspect such as protocol
translation or encryption, you can chain them together to create a composite gate-
way that handles each aspect sequentially. Chaining gateways might be complicated
if the gateways make conflicting assumptions about tasks in the environment such
as error handling.

Example
Consider a property and casualty system where separate applications implement
policy management, general ledger, accounts payable, billing, and claims
functionalities. The policy management, the claims, and the billing applications

Chapter 6: Additional Integration Patterns 313

connect through sockets to an external print system to print policies, claims, and
statements. This configuration is illustrated in Figure 6.16.

Accounts
Payable

Billing

General
Ledger

Claims

Policy
Management

Print
System

Figure 6.16
Property and casualty system without a gateway

In Figure 6.16, the billing, claims, and policy management applications access the
print system directly. The round connectors denote a socket-based interface. Print
system upgrades, such as replacing the socket-based interface with a Web service
interface, require upgrading three systems: the policy management system, the
claims system, and the billing system. These changes are expensive. Additionally, if
the print system belongs to a different organization, the owners of the property and
casualty system cannot control the timing of the upgrade. An upgrade during the
peak renewal season would have a negative impact on the business.

Figure 6.17 shows the property and casualty system modified to use a gateway. The
billing, claims, and policy management applications no longer access the print
system directly. Instead, the billing, claims, and policy management applications
access the print system through a gateway. The round connectors denote a
socket-based interface, and the square connectors denote a Web services-based
interface. This configuration reduces the costs that are associated with a print system
upgrade.

Integration Patterns314

Accounts
Payable

Billing

General
Ledger

Claims

Policy
Management

Gateway Print
System

Figure 6.17
Property and casualty system with a gateway

Resulting Context
Using a gateway to provide a single point of access to an external resource has the
following benefits and liabilities:

Benefits
● Reduced coupling. The gateway encapsulates access to the external resource.

Applications that use the resource no longer require information about how to
access that external resource.

● Reduced application complexity. Individual applications do not have to imple-
ment the communication protocols required to communicate with the external
resource. In addition, the gateway can implement some of the error handling that
each application would otherwise have to perform.

● Improved integrability. The gateway provides a single point of access for the
external resource. This facilitates integration with external resources such as an
Enterprise Resource Planning (ERP) system, a Customer Relationship Manage-
ment (CRM) system, or another similar system.

● Improved security. A single point of access represents a single point of control.
You can use this single point of access to implement security policies and to
bridge between different security realms. It also allows you to meter access to the
external resource and to implement business rules that control access.

Chapter 6: Additional Integration Patterns 315

● Improved performance through optimization. The gateway provides a logical
place to optimize the communication protocol for use with the external resource.
Optimization might include batching similar requests or caching results.

Liabilities
● Reduced performance through overhead. The gateway replaces direct communi-

cation, adding an intermediate layer. This translates into increased latency com-
pared to direct communication.

● Increased maintainability effort. A gateway extends your integration solution
with another component. This translates into additional implementation, configu-
ration, testing, deployment, and management work.

● Dependency of the gateway interface. Designing the gateway requires foresight
about the interactions between the applications and the external resource. If you
have to change the gateway’s interface in a way that breaks compatibility, you
have to change all the applications that access it.

● Reduced availability. All access to the external resource passes through the
gateway. From an availability perspective, the gateway represents a single point
of failure.

Testing Considerations
Using a gateway improves testability on both sides in the following ways:
● Applications access the external resource solely through the gateway. A mock

gateway can receive messages, return predefined responses, and exercise error
handling logic. In other words, you can test the system without accessing the
external resource.

● Because the external resource receives requests from the gateway, you can test
the gateway by relaying requests to the external resource independent of the
applications.

Figure 6.18 shows these test areas. The top diagram shows a mock gateway for
testing the interaction with the applications. The bottom diagram shows a mock
gateway for testing the interaction with the external resources. The shaded arrows
indicate the test areas.

Integration Patterns316

Mock Gateway

External
Resource

Application 2

Application 1

Mock
Gateway

Figure 6.18
Using a mock gateway for testing

A gateway also facilitates load testing. Testers can use the gateway to insert test
loads into the integration solution to measure the external resource’s performance.

Security Considerations
Accessing an external resource through a gateway has the following security
implications:
● A single point of access facilitates enforcement of a uniform security policy.

However, it also represents a central point of attack.
● A gateway allows bridging between different security realms. For example, a

gateway can mix different security context management policies, such as imper-
sonation on one side and consolidation on the other. However, the gateway only
provides a place where the mapping between the two can be handled. You must
implement the mapping separately.

Chapter 6: Additional Integration Patterns 317

Operational Considerations
A gateway represents a single point of access and may cause contention among the
applications that communicate with the external resource. You should monitor
access to the external resource and act proactively when the first signs of contention
appear. This single point of access also helps you to meter access to the external
resource, to monitor the external resource, and to audit the external resource.

Related Patterns
The Gateway pattern described here relates to the following patterns:
● Implementing Gateway with Host Integration Server 2004. This pattern uses the

Global Bank scenario to show how you can use Host Integration Server 2004 to
implement Gateway.

● Gateway [Fowler03]. Martin Fowler discusses Gateway in the context of enterprise
applications. He also covers the relationship with Façade and Adapter [Gamma95].
Fowler’s Gateway is fine-grained at the object level. However, in the context of
integration, Gateway is coarse-grained at the platform level.

● Messaging Gateway [Hohpe04]. Messaging Gateway wraps message-specific method
calls, exposes domain-specific methods, and encapsulates access to the messaging
system. Hohpe and Woolf also explain how to create composite gateways by
using gateway chaining. A composite gateway permits you to use a gateway that
encapsulates a single aspect together with other gateways to deal with several
aspects.

● Remote Proxy [Buschmann96]. Gateway can be regarded as a refinement of the
Remote Proxy pattern. Remote Proxy deals with distributed components in the
general sense and provides the interprocess communication (IPC) mechanisms
for communication with remote objects. Gateway is designed for integration
solutions and therefore assumes that the integration infrastructure is available.

● Service Interface [Trowbridge03]. Service Interface exposes functionality as a service
and provides an entry point for inbound requests. In effect, the control flows in
the opposite direction compared to Gateway.

Integration Patterns318

Acknowledgments
[Buschmann96] Buschmann, Frank; Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns. John Wiley & Sons Ltd, 1996.

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Gamma95] Gamma, Erich; Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Hohpe04] Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

[Trowbridge03] Trowbridge, David; Dave Mancini, Dave Quick, Gregor Hohpe,
James Newkirk, and David Lavigne. Enterprise Solution Patterns Using Microsoft
.NET. Microsoft Press, 2003. Also available on the MSDN Architecture Center at:
http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us
/dnpatterns/html/Esp.asp.

Chapter 6: Additional Integration Patterns 319

Implementing Gateway with Host Integration Server 2004

Context
Most medium-sized to large-sized organizations rely on a distributed environment
where business logic operates on many different computing technologies.
To the dismay of the software developers in these organizations, two of the most
commonly used technologies can be difficult to integrate. These technologies are the
Microsoft .NET Framework and the IBM Customer Information Control System
(CICS) application subsystem. Implementing the Gateway pattern allows developers
to overcome incompatibility issues by integrating existing mainframe business logic
into .NET Framework applications without having to redevelop the code that
already exists in CICS.

You have decided to implement the Gateway pattern by using Microsoft Host Inte-
gration Server 2004 and its Transaction Integrator (TI) feature to enable .NET Frame-
work applications to invoke mainframe transactions, to pass the proper input
parameters to the transactions, and to finally receive the output parameters that are
returned from the executing transactions.

Background
The Global Bank infrastructure integrates applications that run on several platforms.
The account management system runs on a mainframe. Account management opera-
tions such as Create Account, Check Balance and Debit, Credit Account, Delete Ac-
count, and Get Account Information are implemented as CICS transactions. The
integration solution must be capable of executing these transactions from the
Microsoft Windows operating system. Global Bank decided to use Microsoft Host
Integration Server 2004 and its Transaction Integrator (TI) feature as a Gateway imple-
mentation to invoke the individual CICS transactions included in the mainframe
account management system. Using TI to call mainframe programs from a .NET
Framework application is known as Windows-initiated processing.

Figure 6.19 depicts a high-level view of this configuration.

Integration Patterns320

Gateway: Server
Running Host Integration

Server 2004 and
Windows 2003

Account Management
System Running on

Mainframe Computer

Global Bank .NET
Framework
Application 1

Global Bank .NET
Framework

Application 3

Global Bank .NET
Framework

Application 2

Figure 6.19
Global Bank implementation of Gateway

Although it does not apply in the case of Global Bank, a mainframe application
developer can also use TI to access .NET Framework applications from a mainframe
application. Using TI in this manner is known as host-initiated processing.

Note: The TI feature of Host Integration Server 2004 was named COM Transaction Integrator
for CICS and IMS (COMTI) in previous releases of Microsoft Host Integration Server.

Implementation Strategy
Using Host Integration Server 2004 to implement Gateway typically requires the
expertise of many different people, including a .NET Framework developer, a
Microsoft network infrastructure engineer, a mainframe CICS developer, and a
mainframe systems administrator, just to name a few. It is important for all person-
nel involved to clearly understand the Host Integration Server 2004 components and
the implementation steps that are required to successfully deploy this Gateway
implementation.

Chapter 6: Additional Integration Patterns 321

Host Integration Server 2004 includes the following components that are required to
access mainframe CICS transactions:
● TI Manager. TI Manager is the administrative component that allows developers

to configure TI options. In a Windows-initiated processing scenario, these options
include configuring the mainframe transaction’s operating environment. This
operating environment is known as the remote environment. These options also
include configuring Windows-initiated processing objects that are used to associ-
ate the metadata file with the remote environment. The metadata file is addressed
later in this pattern.

● TI Designer. TI Designer is a Microsoft Visual Studio .NET plug-in that develop-
ers can use to build TI client objects. TI client objects are used to specify the
methods to invoke on the mainframe transactions and to specify the input and
output parameters to use with those methods.

● TI run-time component. The TI run-time component intercepts the method calls
to and from the mainframe and uses the information in the TI metadata file to
perform the actual conversion and formatting of the method parameters.

Because the implementation strategy relies primarily on the TI feature of Host
Integration Server 2004, most of the strategy involves configuring TI. To properly
configure TI, follow these steps:
1. Select the TI programming model. A TI programming model determines the

method used to access and to integrate host transactions. You must determine
which of the eleven available programming models you need to use to access the
transactions.

2. Configure the mainframe environment. Ensure that the mainframe environment
is properly configured to allow access by TI.

3. Configure the TI metadata file. The TI metadata file defines the methods, pa-
rameters, and data type mappings that are used when mainframe transactions are
invoked.

4. Configure network protocol connectivity. You must implement the appropriate
network protocol to provide network communications between TI and the
mainframe. You can use Systems Network Architecture (SNA) Logical Unit 6.2
(LU 6.2) or Transmission Control Protocol/Internet Protocol (TCP/IP).

5. Configure a TI remote environment. A remote environment is a collection of
properties that describes a region on the mainframe. You must configure a remote
environment.

6. Add a Microsoft Internet Information Services (IIS) virtual directory. This
virtual directory is the virtual directory where the TI request is processed.
The virtual directory is used to store the Windows-initiated processing object that
you configure in the next step.

Integration Patterns322

7. Configure a Windows-initiated processing object. A Windows-initiated process-
ing object establishes a relationship between the metadata file, the IIS virtual
directory, and the remote environment. You must configure a Windows-initiated
processing object.

8. Implement a .NET Framework client application to invoke the TI client inter-
faces. Finally, after all the TI-specific configuration is finished, you must imple-
ment the .NET Framework applications that use TI to invoke the mainframe
transactions.

The following paragraphs describe these implementation steps in greater detail.

Step 1: Select the Programming Model
A TI programming model determines the method used to access host transactions
and the TI configuration requirements. You must coordinate with the mainframe
CICS developer and with the mainframe systems administrator to select the appro-
priate programming model.

The first decision to make when selecting a TI programming model is to determine
which of the three supported transactions — CICS, Information Management System
(IMS), or AS/400 — is being accessed. TI supports eleven programming models. Six of
these models are used to access the CICS mainframe transactions that are the subject
of this implementation. The six programming models used to access CICS transac-
tions are the following:
● LU 6.2 Link
● LU 6.2 User Data
● TCP/IP Enhanced Listener Mode (ELM) Link
● TCP/IP ELM User Data
● TCP/IP Transaction Request Message (TRM) Link
● TCP/IP TRM User Data

The other five models are used for accessing IMS transactions or OS/400 transac-
tions. They are not discussed here.

The next critical decision in selecting the programming model is to choose the
network protocol to use. TI can use either the TCP/IP network protocol or the LU
6.2 network protocol to communicate between the mainframe environment and the
.NET Framework environment. LU 6.2 is the recommended protocol to use with TI
for the following reasons:
● CICS transactions run more efficiently in an LU 6.2 environment than they do in a

TCP/IP environment. CICS transactions run more efficiently because of the costly
task-swapping techniques that CICS employs for executing transaction programs
initiated by TCP/IP.

● It is easier to configure LU 6.2 on the mainframe than it is to configure TCP/IP.

Chapter 6: Additional Integration Patterns 323

● The LU 6.2 protocol supports two-phase commit transactions; the two-phase
commit protocol is required to allow transactions to execute in a distributed
environment across multiple systems. Two-phase commit transactions are only
supported when the TI metadata file (addressed later in this pattern) is config-
ured to use a Component Object Model (COM) type library.

● LU 6.2 supports the IBM Parallel Sysplex technology for network redundancy.
Parallel Sysplex provides a mechanism that allows mainframe sessions to be
reestablished automatically across a different route when an established route is
interrupted.

● You can use LU 6.2 over an existing TCP/IP network as long as the Enterprise
Extender is deployed on the mainframe. The Enterprise Extender is a feature of
IBM mainframes that supports running LU 6.2 over the TCP/IP protocol. This
configuration also supports two-phase commit transactions when using COM
type libraries.

The two programming models that support the LU 6.2 protocol are LU 6.2 Link and
LU 6.2 User Data. The key difference between these two programming models is
how each handles data communications between TI and the CICS transactions. The
LU 6.2 Link is the only one of the two models that uses the COMMAREA. The
COMMAREA is a feature of CICS that allows COBOL transactions to pass data
between them without requiring developers to incorporate the data communication
logic into their code. Input and output parameters are easily passed in and out of the
COMMAREA. When the COMMAREA is not in use, all data exchanged between
transactions must be explicitly handled in the transaction code. Because many of the
existing CICS transactions that are deployed in mainframe production environments
are already coded to use the COMMAREA, using the COMMAREA is the simplest
way for a TI developer to access CICS transactions. Therefore, LU 6.2 Link is the
recommended programming model for using TI to access CICS transactions.

Note: If the existing CICS transactions are not coded to use the COMMAREA, or if they contain
code that is used for something other than for processing business logic, the CICS developer
must modify the transaction code to use the COMMAREA. The COMMAREA limits the amount of
data that can be passed in and out of invoked transactions to 32 kilobytes (KB).

LU 6.2 Link Model: Components

The LU 6.2 Link model relies on a number of critical run-time components that
support its functionality. Figure 6.20 depicts the TI run-time environment and
components for the LU 6.2 Link programming model. Following the figure are
descriptions of each of these components.

Integration Patterns324

Transaction Integrator

IIS

TI Client Object TI Run-Time Proxy

TI Remote
Environment

.NET Framework
Application

Mainframe

Mirror TP CSMI

CICS
Link-to-Program

COMMAREA

CICS

DPL LU 6.2

VSAM or DB2
Figure 6.20
TI run-time environment for the LU 6.2 Link model

Chapter 6: Additional Integration Patterns 325

The LU 6.2 Link model uses the following components, as shown in Figure 20, to
access mainframe transactions:
● .NET Framework application. The .NET Framework application invokes the TI

client object for access to mainframe transactions.
● TI client object. The TI client object contains the necessary data and logic re-

quired to communicate with the CICS transactions.
● TI run-time proxy. The TI run-time component is used to establish the connection

between the TI client object and the CICS mainframe transaction at run time.
● TI remote environment. The TI remote environment component is used to

specify host connection parameters such as the network address, the security
settings, and the communications model to use for accessing host transactions.

● Distributed Program Link (DPL) LU 6.2. DPL is the protocol that TI uses to
communicate with CSMI.

● Mirror TP CSMI. The mirror CICS transaction is a special CICS transaction that
acts as a gateway between transactions running in different CICS regions. The
mirror transaction allows the transactions in the different regions to exchange
data through the COMMAREA. TI takes advantage of this standard method of
communication between CICS transactions to access mainframe transactions. The
CICS transaction ID for the mirror transaction is CSMI. CSMI handles all LU 6.2
and transactional properties required on the communication.

● COMMAREA. The COMMAREA is an area of the mainframe transaction code
that many CICS transactions that are written in COBOL use to exchange data.
When using this model, TI appears to the mainframe transaction as a CICS
transaction that exchanges data through the COMMAREA.

● CICS link-to-program. The CICS link-to-program is the CICS transaction that TI
invokes on behalf of the client application. It contains the business logic being
executed and is identified by its link-to-program name in the TI method call.

● DB2/VSAM. CICS usually uses the IBM SQL database that is named DB2 or the
older Virtual Storage Access Method (VSAM) as the data storage mechanism for
storing the data that is used by CICS transactions.

Using a Model Other Than LU 6.2 Link

If you cannot use the recommended LU 6.2 Link model because your existing
environment does not allow you to use it, you can select one of the other five models
to access CICS transactions:

Integration Patterns326

● LU 6.2 User Data. Although this model uses the efficient LU 6.2 protocol, it does
not use the COMMAREA. It therefore is more complex to implement. This model
is best for situations where the mainframe transactions are not coded to use the
COMMAREA and where the transaction code does contain communication
handling data and business logic data. Because this model does not use the
COMMAREA, it is not subject to the 32-KB COMMAREA limit. Instead, it sup-
ports an unlimited amount of data.

● TCP/IP Enhanced Listener Mode Link. This model is similar to the LU 6.2 Link
model because it uses the COMMAREA. However, it uses TCP/IP instead of LU
6.2. The model also employs the mainframe’s Enhanced Listener Mode (ELM).
You would use this model when LU 6.2 is not configured for access to the main-
frame and when CICS transactions are coded to use the COMMAREA.

● TCP/IP Transaction Request Message Link. This model is similar to the TCP/IP
ELM Link model. The only difference is that it does not implement the ELM. ELM
is preferred over Transaction Request Message (TRM); however, the newer ELM
functionality may not be implemented in older versions of CICS.

● TCP/IP ELM User Data. This model is similar to the LU 6.2 User Data model
because it does not use the COMMAREA. It therefore is more complex to imple-
ment. This model is best for situations where mainframe transactions are not
coded to use the COBOL COMMAREA and where the mainframe only supports
TCP/IP access.

● TCP/IP TRM User Data. This model is similar to the TCP/IP ELM User Data
model. The difference is that it does not implement the Enhanced Listener Mode.

The remainder of this implementation focuses on the LU 6.2 Link model when
programming models are mentioned. For more information about other program-
ming models, see the Host Integration Server 2004 product documentation.

Step 2: Configure the Mainframe Environment
Mainframes are often already configured with everything that TI requires to gain
access to the transactions, because most of what TI requires is used for internal
integration between mainframe programs. The mainframe systems programmer and
the CICS developer must make any changes that are required. .NET Framework
developers are rarely capable of performing such configurations themselves. The
following are the minimum CICS versions that must be installed on the mainframe
to support TI in specific mainframe operating system environments:
● IBM CICS for MVS version 3 release 3, or later, to support an SNA LU 6.2 net-

work connection
● IBM CICS Transaction Server for VSE/ESA version 2 release 1, or later, to support

an SNA LU 6.2 network connection

Chapter 6: Additional Integration Patterns 327

● IBM CICS Transaction Server for OS/390 version 1, or later, to support an SNA
LU 6.2 or TCP/IP network connection

● IBM CICS Transaction Server for z/OS version 2, or later, to support an SNA LU
6.2 or TCP/IP network connection

● IBM CICS Transaction Server for z/OS version 2 release 2, or later, to support
Enhanced Listener Mode for a TCP/IP network connection

For more information about how to properly configure the mainframe for this or
other programming models, see the Host Integration Server 2004 documentation.

Determine If Changes Are Required to the Existing Transactions
In some cases, CICS transactions may require some modification before you can use
TI to access them. In the case of the LU 6.2 Link model, transactions that are not
coded to use the COMMAREA must be modified by the CICS developer. Addition-
ally, any embedded terminal-handling code must be removed before using TI with
LU 6.2 Link.

Step 3: Configure the TI Metadata File
The TI metadata file is used to specify the methods, parameters, and data type
mappings that are used when mainframe transactions are invoked. You must gather
the pertinent information that is required to configure the file. This information is
typically provided by the mainframe systems programmer, the mainframe CICS
developer, and the .NET Framework developers who invoke the mainframe transac-
tions.

The metadata file can be configured as a Component Object Model (COM) compo-
nent library or as a .NET Framework client library by using the TI Designer plug-in
for Visual Studio .NET.

� To configure the TI metadata file
1. Create a Visual Studio .NET project. When you create the Visual Studio .NET

project, choose HIS as the project type and TI Project as the template.
2. Add a .NET Framework client library or a COM client library. You use either

the Add .NET Client Library Wizard or the Add COM Client Library Wizard to
add the client library. When using a wizard to add either a .NET Framework
client library or a COM client library, you must specify the following properties
for the remote environment that this library will be associated with:
● Vendor. Specify the vendor for this remote environment. In the Global Bank

scenario, the vendor is Microsoft.
● Protocol. Specify the protocol used to access the remote environment. This

could be either TCP/IP or LU 6.2. In this scenario, the protocol is LU 6.2.

Integration Patterns328

● Target Environment. Specify whether the target environment is CICS, IMS, or
AS/400. In this scenario, the target environment is CICS.

● Programming Model. Specify the programming model to use. In this scenario,
the programming model is LU 6.2 Link.

3. Develop the interface methods. A method in the TI metadata file has a direct
correlation to a CICS transaction program on the mainframe. You must define a
number of method properties. One important method property is Return Type.
The Return Type property enables you to specify whether the method has a
return value and, if so, to specify the data type for the value. Whether a method
has a return value or not depends on the existing COBOL program and on how
you want to handle the output data. Another important method property is Tran
ID. The Tran ID method property enables you to specify the link-to-program
name of the mainframe transaction. The link-to-program name is how CICS
identifies this transaction in its tables. CICS uses this name to invoke the transac-
tion for execution.

4. Configure method parameters. You must configure the parameters for the
method. The parameters are the input and output values that the method uses
when communicating with the mainframe transaction. Before configuring the
parameters, you must identify the input and output parameters in the existing
COBOL source code. You must then determine the data type to use for each
parameter.

Determining the Transaction’s Link-to-Program Name

CICS transactions are usually invoked using their link-to-program name. You must
consult with the mainframe developer to obtain the names of the transactions that
you want to invoke.

Importing COBOL by Using the COBOL Import Wizard in TI Designer

You can use the COBOL Import Wizard in the TI Designer to import COBOL source
code to configure a method. As you move through the pages of the wizard, you
extract the data declarations specified in the COMMAREA. The data declarations
describe the input that is sent to the mainframe transaction and the output that is
received from the mainframe transaction. The wizard uses the parameters specified
in the COMMAREA and ignores all other content in the source file. When the
wizard finishes, a new method is added to your client library. The method uses the
parameters specified in the source file’s COMMAREA.

Step 4: Configure Network Protocol Connectivity
Assuming that the physical network that connects the server running Host Integra-
tion Server 2004 TI and the mainframe is in place, the first step to establish connec-
tivity is to configure the protocol you are using to access the mainframe. You can use
either LU 6.2 or TCP/IP.

Chapter 6: Additional Integration Patterns 329

Configuring LU 6.2 Access

The LU 6.2 protocol is based on IBM Systems Network Architecture (SNA) - Ad-
vanced Program-to-Program Communications (APPC) protocol for network commu-
nications. When using LU 6.2 to access the host applications, you must configure
Host Integration Server 2004 for LU 6.2 access to the proper CICS region. Although a
full description of how to configure Host Integration Server 2004 for LU 6.2 access to
the CICS region is not part of this pattern, it is important to know the following
when configuring LU 6.2 access:
● The name of the local APPC LU that is configured on Host Integration Server

2004 for access to the CICS region corresponds to the independent LU 6.2 config-
ured on the Virtual Telecommunications Access Method (VTAM) PU definition
for that Host Integration Server 2004 connection.

● The name of the remote APPC LU configured on the Host Integration Server 2004
connection to the mainframe corresponds to the APPLID as configured on the
VTAM APPL definition for the CICS region.

● The APPC mode configured for the LU 6.2 communications must correspond to
the mode configured on the VTAM LU definition for the local APPC LU and on
the mode used by the APPL definition in VTAM. The APPC mode typically
specifies parameters such as the number of parallel sessions supported and the
communication partner that is the contention winner.

Note: For more information about the steps to configure Host Integration Server 2004 for LU
6.2 access to a mainframe computer, see the Host Integration Server 2004 product documen-
tation.

Configuring TCP/IP Access to Mainframe Transactions

If you are using TCP/IP, you must determine the TCP/IP address and the port
number to use to access the proper CICS region. You must specify the TCP/IP
address of the mainframe you want to access and the port number of the CICS
region you want to access. A TCP/IP port number is associated with a CICS region
on the mainframe. The port statement is used to define this relationship. The IBM-
supplied Concurrent Listener (program EZACIC02, transaction ID CSKL) binds a
socket to the port specified for a given CICS region and then waits for a client
request on that port. When a client makes a request on a port associated with that
CICS region, TCP/IP forwards the connection request to the Concurrent Listener in
that CICS region.

Integration Patterns330

Step 5: Configure a Remote Environment
A remote environment is a collection of properties that describes a region on the
mainframe. You must configure a remote environment to specify the programming
model to use with a TI component, to specify the protocol used to access the main-
frame, and to specify other connectivity properties. You use the Remote Environ-
ment Wizard in TI Manager to create a remote environment.

The wizard allows you to specify values for the following properties:
● Remote environment name. Specify a name for this remote environment.
● Network protocol to use. Specify LU 6.2 or TCP/IP. In this scenario, the protocol

is LU 6.2.
● Target host. Specify whether this remote environment is used to access CICS,

IMS, or OS/400 transactions. The target host is the name of the Global Bank
mainframe.

● Programming model. Specify one of the eleven programming models to use with
this remote environment. In this scenario, the programming model is LU 6.2 Link.

● Local LU alias. Specify the name of the local APPC LU that corresponds to the
independent LU 6.2 configured on the VTAM PU definition for the Host Integra-
tion Server 2004 connection.

● Remote APPC LU alias. The remote APPC LU corresponds to the APPLID as
configured on the VTAM APPL definition for the CICS region.

● Mode name. The APPC mode configured for LU 6.2 communications must
correspond to the mode configured on the VTAM LU definition for the local
APPC LU, and it must correspond to the mode used by the APPL definition in
VTAM.

Note: For specific instructions on how to create a remote environment, see the Host Integra-
tion Server 2004 product documentation.

Step 6: Add an IIS Virtual Directory
The IIS virtual directory is used to store the Windows-initiated processing object
configured in the following step. This IIS virtual directory is associated with Win-
dows-initiated processing and with the remote environment. The IIS virtual direc-
tory is then made available to .NET Framework applications that use this TI
configuration to access mainframe transactions.

Chapter 6: Additional Integration Patterns 331

Step 7: Configure a Windows-Initiated Processing Object
A Windows-initiated processing object is used to establish a relationship between
the metadata file developed using the Visual Studio .NET TI designer plug-in, the
IIS virtual directory, and the remote environment configured in the TI manager.

The New WIP Object Wizard allows you to specify values for the following
properties:
● Path. Specify the path to the metadata file you created in step 3.
● File. Specify the name of the metadata file.
● Virtual directory. Specify the virtual directory where this object is stored.
● Remote environment. Specify the name of the remote environment.

Step 8: Implement a .NET Framework Client Application to Invoke the TI Client
Interfaces
At this point, TI has been configured to provide access to the CICS mainframe
transactions. All that is left is to develop the .NET Framework client application that
invokes the mainframe transactions.

Example
The Global Bank scenario discussed in this pattern serves as a perfect example of
how to deploy TI into production. The following example describes the specific
functions and configurations that are required to meet Global Bank’s needs. The
steps in the example follow the same implementation strategy described earlier and
explain the decisions you would make along the way if you were actually deploying
TI into production.

Global Bank needs a solution that enables its .NET Framework applications to
invoke business logic that resides on mainframe CICS transactions. The CICS trans-
actions are used for handling typical banking operations, such as obtaining account
balances and processing debits and credits. This example illustrates how the TI
Windows-initiated processing features can be implemented to meet Global Bank’s
requirements.

Components
To deploy TI into production, the following components must be available:
● Host Integration Server 2004 with TI installed
● Visual Studio .NET with the TI Designer plug-in installed
● An ASP.NET Web application used by bank staff to manage accounts
● Mainframe CICS transactions that can be used to implement the required account

management functions

Integration Patterns332

Functions
The business logic implemented in the CICS transactions performs the following
functions:
● It creates accounts.
● It obtains account details.
● It obtains lists of accounts.
● It deposits funds into existing accounts.
● It withdraws funds from existing accounts.

This example illustrates how the functionality currently implemented in mainframe
CICS transactions can be invoked for execution from a .NET Framework application
environment.

The following are the steps required for configuring TI for this example.

Step 1: Select the Programming Model
To access the mainframe applications for Global Bank, you must first select the
appropriate programming model. The first thing to determine is whether the CICS
transactions that you want to access use the COMMAREA. You then have to deter-
mine whether to use the LU 6.2 or the TCP/IP protocol for communications.

After conferring with the CICS developer, you learn that each of these transactions is
coded to use the COMMAREA. You also learn from the mainframe systems pro-
grammer that LU 6.2 is configured for access to the CICS region on the mainframe.
Based on this information, which you collected from the mainframe personnel, you
determine that it is best to use the LU 6.2 Link programming model for access to the
transactions.

Step 2: Configure the Mainframe Environment
Although this step is crucial to the successful deployment of a TI solution, it usually
cannot be performed by the .NET Framework developer. You must rely on the
mainframe personnel to properly configure the mainframe environment. Fortu-
nately, the software required by TI is usually already installed in most mainframe
environments. The mainframe systems programmer only needs to give you access to
the transactions.

When contacting the mainframe personnel, you learn that they were able to review
the Host Integration Server 2004 documentation and verify that all mainframe
components are properly configured to allow access to the CICS transactions by
using TI.

Chapter 6: Additional Integration Patterns 333

Step 3: Configure the TI Metadata File
You now have to develop the TI metadata file. In this case, you will implement the
metadata file as a .NET Framework client library because the solution is being
implemented in the .NET Framework, and you do not have a requirement to pro-
vide two-phase commit capabilities. To develop the TI metadata file, you must
complete the following steps:
1. Create a Visual Studio .NET project. When you create the project, choose HIS as

the project type and TI Project as the template. Name the project GlobalBank.
2. Add a new .NET Framework client library. Add a .NET Framework client library

to the GlobalBank project and use the parameters specified in the following steps:
a. On the Library page of the New .NET Client Library Wizard, type

GlobalBank as the interface name, and then type a description for the inter-
face.

b. On the Remote Environment page of the wizard, select the following informa-
tion regarding the host environment:
● Vendor: Microsoft
● Protocol: LU 6.2
● Target environment: CICS
● Programming model: Link

c. On the next Remote Environment page, type CSMI in the Transaction ID box,
and then type MSTX in the Source box.

The new client library appears in the Visual Studio .NET main pane. The wizard
uses the parameters you specified to create the default interface.

3. Add the methods for the example. After adding the .NET Framework client
library, you can add the methods to the new library. The methods hold a one-to-
one relationship with the CICS transactions being invoked. Table 1 lists all the
transactions available to the client through Windows-initiated processing and the
corresponding method name. You must configure one method for each of the
transactions that appear in this table. All the transactions have an integer return
value that is an error code.
To add a method, follow these steps:
a. In the Visual Studio .NET main pane, expand the GlobalBank component, and

then select the GlobalBank interface.
b. Right-click the GlobalBank interface, and then click Add Method.

The Method1 method appears.
c. Configure the method properties for this first method and for the other meth-

ods used in this example.

Integration Patterns334

The following table lists the property values to use for each method. You can
accept the default value for any of the properties not included in Table 6.5.

Table 6.5: Transactions Available to the Client Through Windows-Initiated Processing

CICS transaction
link-to-program

Method name/ name
transaction name (Link-to-ProgramLink-to-ProgramLink-to-ProgramLink-to-ProgramLink-to-Program
(Name PropertyName PropertyName PropertyName PropertyName Property) Name PropertyName PropertyName PropertyName PropertyName Property) Input parameters Output parameters Description

MCreateAccount GBCREACC AccountNumber None Creates an
AccountName account with a

zero balance.

GetAccountDetails GBGETACC AccountNumber AccountName Retrieves
Balance details of a

single account.

GetAccountList GBACCLST TotalCount Array of Account Gets list of
Received Number, accounts.

AccountName,
and Balance

Deposit GBDEP AccountNumber NeGBalance Deposits money
Amount in the account.

Withdraw GBWDL AccountNumber NeGBalance Withdraws
Amount money from the

account if the
funds are
available.

Figure 6.21 shows the way that the Global Bank client object should appear after
you configure the interface and all its methods.

Chapter 6: Additional Integration Patterns 335

Figure 6.21
Global Bank client object with methods configured

4. Add the method parameters. The method parameters establish a mapping
between the parameter types in the .NET Framework environment and the
COBOL data types in the mainframe environment. Add the method parameters
for each transaction according to the information in Table 6.6.

Integration Patterns336

Table 6.6: Global Bank Method Parameters

.NET
Input/ Framework

Transaction Input parameters output data type COBOL data type

CreateAccount AccountNumber Input Decimal PIC S9(n)V9(n) COMP-3

CreateAccount AccountName Input String PIC X(n)

GetAccountDetails AccountNumber Input Decimal PIC S9(n)V9(n) COMP-3

GetAccountDetails AccountName Output String PIC X(n)

GetAccountDetails Balance Output Decimal PIC S9(n)V9(n) COMP-3

GetAccountList TotalCountReceived Input Integer PIC S9(n) COMP

GetAccountList Array of Output Decimal, PIC S9(n)V9(n)
AccountNumber, String, COMP-3, PIC X(n),
AccountName, Deciman PIC S9(n)V9(n) COMP-3
and Balance

Deposit AccountNumber Input Decimal PIC S9(n)V9(n) COMP-3

Deposit Amount Input Decimal PIC S9(n)V9(n) COMP-3

Deposit NewBalance Output Decimal PIC S9(n)V9(n) COMP-3

Withdraw AccountNumber Input Decimal PIC S9(n)V9(n) COMP-3
Amount

Figure 6.22 shows the way that the Global Bank client object should appear after
you configure the method parameters.

Chapter 6: Additional Integration Patterns 337

Figure 6.22
Global Bank client object with parameters configured

Step 4: Configure Network Protocol Connectivity
You have already learned that LU 6.2 communications to the Global Bank main-
frame are available and that the mainframe systems programmer has configured the
proper mainframe applications to allow access to CICS transactions. The mainframe
systems programmer also informed you that you should set your local APPC LU
name to Local and your remote APPC LU name to GBCICS1. The mode name is
PA62TKNU. Using this information, you configure LU 6.2 communications by using
Host Integration Server 2004. For more information about how to configure LU 6.2
communications, see the Host Integration Server 2004 documentation.

Integration Patterns338

Step 5: Configure a TI Remote Environment
Use the TI Manager to implement the remote environment for Global Bank. In the
Remote Environment Wizard, specify the values for the properties according to
Table 6.7. Accept the default values for any properties that are not listed in the
table.

Table 6.7: Global Bank Property Values

Property Value

Name Global Bank Host

Network type LU 6.2

Target host CICS

Programming model Link

Local LU alias Local

Remote LU alias GBCICS1

Mode name PA62TKNU

Step 6: Add an IIS Virtual Directory
The IIS virtual directory is used to store the Windows-initiated processing object that
you configure in the next step. This IIS virtual directory is associated with the
Windows-initiated processing object and with the remote environment. It is then
made available to .NET Framework applications that use this TI configuration to
access mainframe transactions. In this example, you create an IIS virtual directory
named GlobalBank in the C:\Inetpub\Wwroot\GlobalBank physical directory.

Step 7: Configure a Windows-Initiated Processing Object
Complete the following steps to configure a Windows-initiated processing object. In
the TI Manager, add a Windows-initiated processing object by using the parameters
and values listed in Table 6.8.

Table 6.8: Windows-Initiated Processing Object Property Values

Property Value

Path C:\GlobalBankSource\GlobalBank\DotNetTIObjects

File ServerWIP.dll

Virtual directory DefaultWebSite/GlobalBankWIP

Remote environment Global Bank Host

Chapter 6: Additional Integration Patterns 339

Step 8: Implement a .NET Framework Client Application
At this point, TI has been configured to provide access to the CICS mainframe
transactions. All that is left is to develop the .NET Framework client application that
invokes the mainframe transactions.

Resulting Context
The Gateway implementation described here results in the following benefits and
liabilities:

Benefits
● Reduced complexity. The gateway encapsulates data and protocol translations

required to use the account management system.
● Reduced redevelopment efforts. Business logic that already exists on the main-

frame transactions does not have to be redeveloped in the .NET Framework
environment.

● Reduced need for retraining. .NET Framework developers do not have to
become familiar with CICS or COBOL to use the existing mainframe transactions.

Liabilities
● Increased maintenance effort. Host Integration Server 2004 is an additional

system that must be maintained.
● Lack of support for two-phase commit transactions when using .NET Frame-

work client libraries. The .NET Framework client library used in this scenario
does not support two-phase commit transactions. Many organizations rely on
two-phase commit transactions for day-to-day operations, so this configuration
may not suit them. Instead, they would have to use a COM type library that does
support two-phase commit transactions.

Tests
To fully test the deployment of TI in this scenario, you must have access to a main-
frame computer that is running the proper CICS transactions. However, you can use
the TI host-initiated processing capabilities to simulate this access. For instructions
on how to configure this simulation, see the Host Integration Server 2004 online
documentation at http://www.microsoft.com/hiserver/techinfo/productdoc
/default.asp.

7
Project Notebook

“A business architecture is just an instruction set for extracting value. To extract value, a
business must first create value for its customers; then extract some of the customer
transaction value for itself.” — Richard Sears, engineer and entrepreneur

While constructing the baseline architecture for Global Bank, the architecture team
created numerous artifacts ranging in scope from business process models to execut-
able bits. The team created these artifacts so that they could understand the business
with sufficient clarity to create a technical architecture that would meet the needs of
the business.

As they designed the technical architecture for Global Bank, they wanted to take
advantage of reusable design elements (patterns) to mitigate technical risk and make
the project more predictable. In addition, they knew that these patterns embodied
design principles that would make it easier to evolve the architecture as the needs of
the business changed over time. They wanted to take advantage of this extensibility
after the system was delivered to lower the cost of new application development in
the future.

This chapter presents some of the artifacts that the team produces while designing
the baseline architecture. It starts with an overview of Global Bank’s business
environment, and then describes the viewpoints of five key business stakeholders.
These viewpoints are captured in a set of models, which trace a path from business
requirements to the technical solution. The chapter also presents some pattern-
driven design models that capture the team’s use of patterns during the process.

Integration Patterns342

Interpreting the Artifacts
This chapter presents Global Bank team artifacts in a logical top-down progression,
by starting with the high-level organizational processes and then disassembling
these processes in progressive levels of detail. The order in which the chapter pre-
sents these artifacts does not, however, reflect the order in which the team produced
them. The team produced the artifacts through an iterative process — building first
cut approximations and then progressively refining them in subsequent iterations.
They are presented here in logical order only to enhance readability.

The scenario presented in this book is intentionally incomplete. And although the
artifacts presented here were used to build out an actual running system, it is impor-
tant to remember that both Global Bank and the scenario portrayed are fictitious.
They are intended only to demonstrate the application of patterns to the problems of
integration within a representative enterprise scenario.

Let’s examine the overall business context in more detail.

Global Bank Business Context
Global Bank is a midsize, traditional bank that has acquired a complete range of
financial services capabilities through a series of acquisitions. The bank currently
has a limited online presence that is fragmented across its various divisions. As part
of its expansion strategy, Global Bank has decided to innovate in the online banking
market by providing a host of value-added services on top of a fully integrated
financial management capability. Some banks currently offer, or are developing the
capability to offer, integrated online banking across all accounts (such as savings,
checking, and credit cards). But no other bank offers a full range of value-added
services such as financial advice, financial analysis and planning, and tax planning
and filing. In addition, Global Bank has not seen the synergies it anticipated from
offering a complete line of products. This lack of synergy is caused by its inability to
effectively cross-sell based upon existing relationships and customer knowledge.

Convergence in the Banking Industry
In the late 1990s, the United States Congress began the process of deregulating the
financial services industry. The Depression-era regulations restricted what services
could be provided by specific types of financial services companies. Banking could
only provide banking products and insurance companies could only provide insur-
ance products. The deregulation of the industry had the effect of removing the legal
barriers between various product types and between the companies that provided
them. This triggered a mergers and acquisitions frenzy to broaden service offering
portfolios.

Chapter 7: Project Notebook 343

Because he is familiar with the notion of profit patterns, the CEO of Global Bank
quickly recognizes a particular pattern unfolding within his industry. He strongly
believes that this Convergence pattern [Slywotsky99] will not only impact the global
and national banks, but the whole industry.

The Convergence pattern describes the phenomenon in which businesses expand
their offerings to related products and services along the value chain. Customers
may forsake traditional suppliers in search of higher value, if not lower price (for
example, the modern financial services industry). This complicates the market and
presents a challenge because you must meet the new market by expanding your
deliveries, which takes you outside your expertise. Convergence occurs when suppli-
ers do one or more of the following:
● Expand up or down the value chain
● Substitute new products in place of existing ones
● Bundle products together

To apply the supplier Convergence pattern, you must do three things: first, success-
fully promote your product offerings; second, emphasize the portions of the chain
which command the highest perceived value and; third, upgrade your delivery of
the lower value products. Convergence requires gaining access to the other aspects of
the bundled product. This usually involves mergers and acquisitions. It is wise to
jump into mergers and acquisition activity early, when the choice of business combi-
nations is best.

Bundling products together also increases efficiency due to economies of scope. That
is, the cost of performing multiple business functions simultaneously should prove
to be more efficient than performing each business function independently, and
therefore drive down overall costs.

Applying the strategy of convergence, the CEO convinces the board of Global Bank
to embark on a series of financial service acquisitions, which in effect creates a
midsize, full-service financial company. To turn this strategy into concrete action, the
CEO needs to charter several projects. For each one of these projects, there are key
stakeholders, each with a unique viewpoint.

One of the key initiatives involves strengthening the bank’s online presence. The
online channel is an effective means of adding new services at relatively low cost.
With many customers using online checking and savings today, it will be easy to
move them to other value-added services if the bank can make the online services
work better together. A key new service is the addition of an online bill payment
feature. Let’s take a closer look at the stakeholders in this initiative.

Integration Patterns344

Stakeholder Viewpoints
There are five key stakeholders for the online bill payment initiative: the Board of
Directors, the Chief Executive Officer (CEO), the General Manager of Banking
Services, the Director of Electronic Bill Presentment and Payment (EBPP), and the
Supervisor of EBPP.

Board of Directors Viewpoint
There are five members of the Board of Directors for Global Bank. One member is an
experienced executive within the financial services industry and the others come
from other industries. Members of the board are elected by shareholders to oversee
management of the company. In this capacity, the board meets every six weeks with
Global Bank’s executive team to review operations and make critical decisions that
affect the future direction of the firm.

The board is primarily concerned with the overall assets within the bank, and how
these assets are used to create wealth. They want to understand what drives the
return on capital invested and what the investment risks are.

The board is very interested in understanding how current and potential customers
benefit by doing business with Global Bank. They know that satisfied customers are
a key ingredient for any sustainable enterprise. For clarity and operational effective-
ness, Global Bank’s value to customers is clearly stated in a series of value proposi-
tions, one of which is for online services.

Value Proposition for Online Services
Global Bank’s value proposition for online services is to provide an integrated,
online financial portal for affluent clients that will enable them to view all of their
financial assets at once. From this integrated view, clients will be able to seamlessly
execute all of their financial transactions including those associated with savings
and checking accounts, loans, stock trading, domestic and international bill payment
and funds transfer. Clients will use this portal to save their most precious commod-
ity: time. Through efficient operations, the bank will be able to offer this capability
to clients without irritating service fees for each transaction.

In addition to serving affluent clients, the bank will also serve mass market custom-
ers with simplified services such as checking, savings, and mortgage origination.
Customers will benefit from the intuitive user experience and integration with home
mortgage loans and credit cards.

Providing this integrated service to customers will allow the bank to provide a
higher rate of return on assets than other banks. Focusing on high-net-worth indi-
viduals means that the bank can manage more assets with fewer transactions. Fewer
transactions result in lower total operations cost. Providing an integrated portal to
customers enables effective cross selling from low margin service offerings (such as

Chapter 7: Project Notebook 345

savings accounts) to high margin service offerings (such as loan and portfolio
management services).

A compelling online user experience will drive adoption and attract new customers,
including high-net-worth individuals and lower income, mass market accounts.
Although the mass market accounts are less profitable, they will more than cover
costs; the higher margins, however, will come from the wealthy individual segment.
After the user experience is developed for high-end customers, it will be easy to
offer a reduced-service version for the mass market.

Capital Expenditure
Delivering on this value proposition requires significant capital investment in new
capabilities. In the past, technology investments have represented a high percentage
of the bank’s capital expenses. The Board also considers technology investments to
be somewhat risky, due to the difficulty in predicting cost and schedule for both
custom software development and system integration projects.

The Board wants better visibility into these projects at a high level. Recently, the
Chief Technical Officer (CTO) briefed the board on a major project and visually
presented a set of decision points related to the proposed technical architecture. The
decisions points he presented (shown later in this chapter in Figure 16) reflected a
set of choices containing proven design elements assembled together in a cohesive
set. These elements were considered proven because they were harvested from other
software engineering projects and had withstood scrutiny from the software design
community. Creating a design based on these elements would mitigate some of the
project’s risk, making it more predictable. Of course, he explained, just using these
design elements (patterns) was no guarantee of success — the real success would
depend on the skill and experience of the team and how they implemented the
actual system.

As the CTO presented, he talked through some of the design elements such as
gateways to credit bureaus and message brokers. Although the board was not
particularly technical, they got a sense of how the capabilities they were investing in
were realized with technology at a high level. This understanding, and the vocabu-
lary that went with it, allowed them to ask clarifying questions about the approach
without getting bogged down with lower-level details. It also helped them to see the
connection between the firm’s value propositions and technical investments, and
they expected this alignment to occur at various levels within the organization. The
primary person they held accountable for driving this alignment throughout the
organization is the CEO.

Integration Patterns346

Chief Executive Officer
The CEO perspective focuses on defining the strategy and formulating a strategic
portfolio of initiatives to take advantage of, or defend against, the opportunities and
threats in the marketplace. The CEO of Global Bank defines a strategy and a set of
initiatives that reflects his firm’s approach in the financial services sector — a sector
that is currently experiencing significant growth.

Evaluating the Current Situation
Driven by the explosive growth in home refinancing activity and the improved
margins of full-service financial institutions, the banking industry is one of the few
bright spots in this slow-growth economy. The CEO of Global Bank, however, has
been frustrated by his company’s lackluster profit margins and anemic growth in
revenues. If the bank doesn’t correct these trends quickly, its shareholders may miss
out on the impressive returns of the rest of the industry.

Global Bank has been suffering from the growth in customer churn, which is defined
as the loss of old customers and the acquisition of new customers where the net
change in number of customers is close to zero. Customer churn has raised the
bank’s customer acquisition cost by 3 percent, which is a substantial increase. The
loss in customers is believed to be caused by the lack of awareness and the inconve-
nient access to the firm’s full suite of services offerings. Especially troubling is the
loss of high-net-worth individuals. Many studies show that this particular market
segment is the most likely to use fully integrated financial services; this segment
also creates, on average, a 6 percent higher rate of profitability than other market
segments.

Figure 7.1 correlates the bank’s current portfolio allocation against average growth
and profitability rates for the industry.

Chapter 7: Project Notebook 347

14%

B

CM

CN

F

12%

10%

8%

6%

4%

2%
40%

10%

20%

20%

10%

0%

-5%

Savings

"As-Is" Portfolio vs Industry

Industry Profitability

In
du

st
ry

 G
ro

w
th

 R
at

e

0% 5% 10% 15%

S

S

Commercial LendingCM

BrokerageB

Financial PlanningF

Consumer LendingCN

Figure 7.1
Initial allocation of Global Bank portfolio, according to service type

The bubbles in Figure 7.1 represent the share of the bank’s portfolio. Current portfo-
lio allocation shows that more than two-thirds of the bank’s portfolio is invested
into savings, the lowest-growth and lowest-profit of all service offerings based on
current industry average growth and returns. Only 20 percent of the bank’s portfolio
is allocated to consumer lending, which is a high growth/high profit category. Table
7.1 shows the specific numbers associated with Figure 7.1.

Integration Patterns348

Table 7.1: Global Bank Portfolio Compared to Average Profitability and Growth Rates for the
Industry Segment

Services Average profitability Average growth rate Share of Global Bank
for the industry for the industry portfolio
segment

Savings 1% 2% 40%

Commercial lending 3% 8% 20%

Consumer lending 4% 12% 20%

Brokerage 7% 3% 10%

Financial planning 9% 7% 10%

Formulating a Strategy
The CEO wants to change the bank’s portfolio mix so that a higher percentage of the
portfolio is in high growth and high profit categories. Specifically, the CEO believes
that the bank could increase deposits, reduce churn, and dramatically increase loan
origination by offering an integrated savings, checking, and mortgage solution.

There are four critical success factors for this initiative:
● Make the bank’s complete suite of services easily accessible, both online and

offline.
● Make the online services work better together to provide a richer, more inte-

grated experience between offerings.
● Build awareness of the suite of services, both online and offline.
● Attract and retain high-net-worth individuals.

The CEO believes that the first two measures could reduce churn costs by 2 percent
and increase loan origination to 40 percent of their business portfolio. The multiple
entry points and the exposure of the bank’s services to a wider array of customers
will help drive the growth in these segments of the portfolio. Based on estimated
customer value and acquisition costs, he projects that focusing on attracting and
retaining high-net-worth individuals will affect profit margins by as much as 10
percent.

Chapter 7: Project Notebook 349

The overall strategy will be to bundle higher-profit services such as consumer
lending (also known as mortgage) together with the basics (savings) to change the
portfolio mix to things that are more profitable industry wide. By doing so, the CEO
believes that he can increase customer loyalty and increase the cost the customer
would incur to switch banks (switching costs). He also believes this integrated
approach has the potential to increase the very profitable financial planning offering
to 20 percent of the bank’s portfolio. Figure 7.2 shows the CEO’s projected portfolio
allocation after the successful execution of these key initiatives.

14%

B

CM
F

12%

10%

8%

6%

4%

2% 10%

10%

20%

40%

20%

0%

-5%

Savings

"To Be" Portfolio vs Industry

Industry Profitability

In
du

st
ry

 G
ro

w
th

 R
at

e

0% 5% 10% 15%

S

S

Commercial LendingCM

BrokerageB

Financial PlanningF

Consumer LendingCN

CN

Figure 7.2
Projected allocation of Global Bank portfolio, after convergence

Integration Patterns350

Table 7.2 compares Global Bank’s projected portfolio to average industry segment
growth rates and profitability after the successful execution of the consolidation
initiative.

Table 7.2: Global Bank Projected Portfolio Compared to Average Profitability and Growth Rates
for the Industry Segment

Services Average profitability Average growth Share of Global Bank
for the industry rate for the industry portfolio
segment

Savings 1% 2% 10%

Commercial lending 3% 8% 20%

Consumer lending 4% 12% 40%

Brokerage 7% 3% 10%

Financial planning 9% 7% 20%

The CEO realizes that the firm needs to bundle together services that may never
have been previously integrated. Given his convergence strategy, he also knows that
the firm must aggressively and quickly acquire new capabilities. He expects to
pursue partnering agreements, mergers, and acquisitions as soon as possible, but
knows from past experience how challenging the integration issues could be. He is
also aware of high-level service-oriented-architecture concepts that he’s learned
from his CTO and wonders if they might be applicable here. If so, they may have an
impact on the execution of his strategy.

To move forward with this initiative, the CEO calls a two-day working session with
bank executives who report directly to him. The session includes both general and
administrative executive leadership. The CEO knows that this initiative requires
significant capital investment and that the organization must focus on delivering
as much customer value as possible for each dollar invested. To start, he will work
with the General Manager of Banking to shape a more detailed customer value
proposition.

Chapter 7: Project Notebook 351

General Manager of Banking
During the working session, the CEO briefs the service-line general managers,
including the General Manager (GM) of Banking about his plan for dealing with
convergence. To act on this plan, two teams are formed: banking services and
financial planning services. The teams are organized as follows:
● Banking services. The GM of Banking will lead a team to create a service bundle

that will integrate checking, savings, bill payment, and mortgage loan origina-
tion.

● Financial planning services. The GM of Financial Planning Services will lead a
team to focus on creating a service bundle that will integrate financial planning,
non-mortgage lending, investing, and insurance.

Other executives, including the CTO, and the Chief Financial Officer (CFO), are
expected to support and report into each team. Each team is expected to find areas
of synergy between service lines to enable cross-selling convenience and compatibil-
ity. The teams must also identify and support all real competitive differentiators.

The rest of the Global Bank scenario described here and earlier in Chapter 2, “Using
Patterns to Design the Baseline Architecture,” focuses on the effort to create the
banking services bundle.

Banking Services Bundle
The GM for Banking Services is excited about the prospect of offering a more robust
set of services to the general public. She believes the direct impact of the integrated
service bundle will be a doubling of the consumer loan portfolio.

Zeroing in on the changes she wants to affect, the GM creates two visual models to
communicate with her team. Figure 7.3 shows the current “as-is” situation with 40
percent of the firm’s service offerings in savings, which is a low growth and low
profit category.

Integration Patterns352

14%

CM

12%

10%

8%

6%

4%

2%

20%

CN
20%

0%

Savings

"As-Is" Portfolio vs Industry

Industry Profitability

In
du

st
ry

 G
ro

w
th

 R
at

e

0% 2% 4% 6%

S

Commercial LendingCM

Consumer LendingCN

40%
S

Figure 7.3
Current portfolio allocation of services in the banking services bundle

Figure 7.4 shows the desired “to-be” situation after changes have been implemented.
Notice that the portfolio has shifted, moving the majority of the service offerings to
high growth and high profit categories.

Chapter 7: Project Notebook 353

14%

CM

12%

10%

8%

6%

4%

2%

20%

40%

0%

Savings

"To Be" Portfolio vs Industry

Industry Profitability

In
du

st
ry

 G
ro

w
th

 R
at

e

0% 2% 4% 6%

S

Commercial LendingCM

Consumer LendingCN

10%
S

CN

Figure 7.4
Projected portfolio allocation of services in the banking services bundle, after changes

The GM believes that the critical success factor to attracting and retaining new
customers rests chiefly on the success of their bill payment service. Studies show
that as customers successfully use online bill payment (which is the next logical
service after online savings and checking services) they are much more likely to
explore and use additional value-added services. From there, the GM believes that
customers will naturally turn to Global Bank for loans.

Integration Patterns354

The GM knows she must collaborate with two key members of the team. First, she
must work with the CTO to smoothly integrate the value-added services with online
bill payment. Next, she knows the online bill payment feature would require high
level involvement of the electronic bill presentment and payment department. She
would need to work closely with the director of that department.

Director of Electronic Bill Presentment and Payment
The Director of Electronic Bill Presentment and Payment (EBPP) is very excited
about the prospect of the bank investing strongly in his area. Currently, only 3
percent of the bank’s customers use online banking services. He believes that with a
similar look and feel to the checking and savings offering, the online bill payment
service will help increase the use of the online banking services to over 20 percent of
the bank’s customers.

To reach this 20 percent usage target, the director has identified the following
requirements that are critical to the success of the system:
● Similar user experience to the current checking and savings site. More specifi-

cally, the number of key strokes required to complete a bill payment transaction
must be less than or equal to the number required to complete a checking and
savings transaction.

● The time required to add a new payee to the system must be minimized. The
time needed to add payees (known as billers) to the system was expected to be a
key barrier to adoption. Making this experience quick and painless would make
the service very compelling for customers to use.

● Bill payment must be prominent on the Global Bank portal page. The bill
payment service must be in an inviting and logical location on the portal main
page (in relation to the checking and savings page).

To achieve these requirements, he would have to collaborate closely with the archi-
tects, designers, and analysts from the CTO’s team. He would also have to work
closely with the supervisor of electronic bill presentment and payment operations.
Behind the user interface, it is the supervisor who has detailed knowledge of the
processes and systems needed to make this system operational.

Chapter 7: Project Notebook 355

Electronic Bill Presentment and Payment Supervisor
The Supervisor of Electronic Bill Presentment and Payment Operations has just
learned of the new strategic focus on EBPP as a key capability in the overall bank
strategy and he is a bit concerned. The EBPP capability must be enhanced in several
ways to meet the bank’s growth objectives.

The focus of the Director of EBPP is primarily on the user experience and how the
presentation and navigation of the EBPP functions should be similar to the existing
checking and savings functionality. The main underlying issue for EBPP operations,
however, is how to integrate the existing systems to provide a seamless experience
without tightly coupling all of the systems together. In the past, the Supervisor of
EBPP has been frustrated by systems that could not be replaced or changed because
of tight interdependencies between systems. He wants to avoid that frustration in
the future.

To meet its objective, the EBPP implementation must also streamline the addition of
new billers and simplify the integration and processing for existing billers. This
simplification will help control the operations costs of the EBPP system. One of the
supervisor’s goals is to automate the entire EBPP process, including the subscription
management of EBPP users. The current manual subscription management process
can take as long as 30 days to enroll a new EBPP participant. The manager considers
this 30-day process to be a loss in revenue, as well as a barrier to adoption.

From Business Scenario to Technical Solution
The technical team at Global Bank now has enough business context to start their
technical planning sessions. Now they need a way to organize their thinking about
the overall enterprise. Although there are many valid models that they could use,
the team started with an enterprise architecture stack as shown in Figure 7.5.

Integration Patterns356

Business Architecture

Integration Architecture

Application Architecture

Operational Architecture

Development Architecture

Figure 7.5
Enterprise architecture stack used by the Global Bank technical team

At the top of the stack is the business architecture, which captures the resources,
processes, goals, and rules that the enterprise uses to generate revenue and profit.
Underneath the business architecture are several levels of technical architecture that
together enable the enterprise to realize its business architecture.

After business architecture, the next level on the stack is the integration architecture.
This architecture describes an integrated portfolio of applications that support the
business architecture. Underneath the integration architecture is the application
architecture. For each application described in the integration architecture, there is a
detailed description of the application in the application architecture. This includes
(but is not limited to) platform infrastructure components such as application
servers, Web servers, and databases.

After an instance of an application is built, it must be deployed into production,
operated, and maintained. These concerns are described in the operational architec-
ture. Finally, the development architecture describes how teams build instances of
applications and integrations. This development level includes (but is not limited to)
developer and lifecycle tools, build environments, and processes.

As teams make decisions within each level of architecture, they should verify
whether they directly support the enterprise’s value proposition. To make very
detailed decisions about architecture, it is helpful to have a more granular perspec-
tive than architectural levels provide — such as a perspective based on
viewpoints.

Chapter 7: Project Notebook 357

Viewpoints Within the Enterprise Architecture
Although the enterprise architecture stack in Figure 5 is useful to organize and
classify initial architectural concerns, the team needed a more granular classification
scheme. The team realized that the artifacts they produced to describe their systems
would differ according to discrete viewpoints. A viewpoint is really just a lens into
the enterprise, and from the perspective of these lenses, many snapshots, or pictures
might be taken. They decided to organize these viewpoints from the perspective of
various roles within the enterprise. Figure 7.6 shows three layers of the resulting
model, which added some of the roles identified for the business, integration, and
application architecture levels.

Business Architecture

Chief Executive Officer

General Manager

Process Owner

Process Worker

Integration Architecture
Enterprise Architect

Designer

Developer

Application Architecture

Enterprise Architect

Architect

Designer

Developer

Figure 7.6
Levels and viewpoints within the architecture stack

Figure 7.6 concentrates on the three layers of the architecture stack that are the focus
of this guide. The business architecture includes the views of key stakeholders as
well those involved with business processes. The focus on process is important,
because processes are key interfaces between people and systems. Processes also
enable the enterprise to complete the work from which it derives revenue.

In the areas of application and integration, viewpoints are organized according to
traditional information technology roles. These viewpoints reflect the different
concerns of various roles. For example, as a team builds an application an architect’s
concerns will be different from a developer’s concerns.

Now that the team had a model with which to organize their approach, they built
more detailed visual models that captured their stakeholder concerns.

Integration Patterns358

Business Architecture Views
To model the business architecture views, they used the Erikkson/Penker Business
Extensions to the Unified Modeling Language (UML) [Erikkson2000]. These exten-
sions to the UML provide stereotypes for business concepts such as processes,
events, resources (including people), goals, and rules.

To draw these models, they used the Microsoft Office Visio® Professional 2003
drawing and diagramming software as their tool of choice. They used a template
created by Pavel Hruby (available at http://www.phruby.com/stencildownload.html) that
contains more of the UML stereotypes than the standard Visio templates. Using
these tools, the team created a series of views of enterprise processes.

CEO’s View
The first model they created was the highest-level enterprise view, which reflected
the CEO’s viewpoint. Figure 7.7 shows this CEO view of the business architecture.

Chapter 7: Project Notebook 359

<<enterprise process portfolio>>

Global Bank

Customer Clearinghouse Brokerage

<<creates>>

<<supply>>

Federal

Reserve

<<resources>>

<<physical>>

Output

<<physical>>

Capital

<<information>>

Strategy

<<business

service>>

Basic Banking

<<business

service>>

Insuring

<<business

service>>

Investing

<<mission>> <<vision>>
<<guiding

principles>>

<<guides>>

<<guides>><<guides>>

<<information>>

Regulation

Credit

Bureau

Third-Party

Services

Other Financial

Institutions

Incomplete

Incomplete

<<people>>

<<control>>

<<achieves>>

<<goal>>

Process Goal:

Quantitative Goal

<<goal>>

Process Goal:

Qualitative Goal<<achieves>>

<<business

service>>

Lending

<<business

service>>

Sales,

General, and

Administrative

Figure 7.7
CEO’s view of the high-level enterprise processes

In Figure 7.7, resources on the left are inputs into the bank. The elements on the top
guide and constrain the activities of the bank, while the center contains groups of
processes needed to run the bank. Beneath the Global Bank box are the entities with
which the bank collaborates. The bank’s output is modeled on the right.

Notice the core process groups within the bank include basic banking, insuring,
lending, investing, and sales, general, and administrative (SGA). The processes of
interest to the online bank initiative are in the basic banking group, headed by the
General Manager of Banking. Let’s now look into this group (shown in gray) in
more detail.

Integration Patterns360

General Manager’s View
For the basic banking group of processes, the team created a model that describes
the bank from the GM of Banking’s view, as shown in Figure 7.8.

<<business service>>

Basic Banking - Commercial

Customer

<<creates>>

<<supply>>

<<resources>>

<<abstract>>

Output

<<physical>>

Capital

<<abstract>>

Banking

Strategy

<<mission>> <<vision>>
<<guiding

principles>>

<<guides>><<guides>> <<guides>>

<<information>>

Banking

Regulation

<<business service>>

Basic Banking - Consumer

<<business service>>

Consumer Lending

<<business service>>

Consumer Banking

Other

Financial

Institutions

Credit

Bureau

Incomplete

Incomplete

<<people>>

<<control>>

<<goal>>

Process

Goal:

Quantitative

Goal

<<goal>>

Process

Goal:

Qualitative

Goal

<<business

service>>

Payment

Processing

<<business

service>>

Electronic Bill

Presentment

and Payment

(Online Bill

Payment)

<<business service>>

Loan Servicing

<<business

service>>

Account

Management

<<business

service>>

Loan

Origination

<<achieves>>

<<achieves>>

<<business

service>>

Electronic

Funds Transfer

<<business

service>>

Cash

Management

(Checking and

Savings)

<<business

service>>

Card Services

achieves>><<

<<achieves>>

Figure 7.8
General Manager of Banking’s high-level view of processes

Similar to the CEO’s view, this view shows resource inputs on the left, guidelines
and constraints on the top, outputs on the right, and entities (collaborators) on
the bottom. Notice that basic banking includes both consumer (foreground) and

Chapter 7: Project Notebook 361

commercial (background). Within consumer, there are processes related to consumer
banking and consumer lending. Consumer Banking is highlighted in Figure 8
because the online application is oriented towards consumers. Figure 7.9 narrows
the focus further to EBPP.

<<business service>>

Consumer Banking

<<creates>>

<<physical>>

Output

<<business

service>>

Cash

Management

(Checking and

Savings)

<<business service>>

Electronic Bill

Presentment and

Payment

(Online Bill Payment)

Customer

<<goal>>

Process Goal:

Quantitative

Goal

<<achieves>>

<<mission>> <<vision>>
<<guiding

principles>>

<<guides>>
<<guides>><<guides>>

<<physical>>

Capital

<<abstract>>

Consumer

Banking

Strategy

<<information>>

Banking

Regulation

Incomplete

Credit

Bureau

ClearinghouseOther

Financial

Institutions

<<supply>>

<<resources>>

<<people>>

<<control>>

<<goal>>

Process Goal:

Qualitative

Goal<<achieves>>

<<business

service>>

Payment

Processing

<<business

service>>

Account

Management

<<business

service>>

Electronic

Funds Transfer

<<business

service>>

Card Services

Incomplete

Figure 7.9
General Manager’s view of Consumer Banking

Similar to the basic banking model, this view shows resource inputs on the left,
guidelines and constraints on the top, outputs on the right, and entities (collaborators)
on the bottom. Notice that there are six groups of processes within consumer banking:
payment processing, account management, electronic funds transfer, electronic bill
presentment and payment, cash management and card services. Because the online
application involves electronic bill presentment and payment (shown in gray), this
group of processes requires a closer examination. The individual responsible for this
area is the Director of Electronic Bill Presentment and Payment.

Integration Patterns362

Process Owner’s View
The technical team is very interested in the business processes within the enterprise
because they are key inputs into technical design. The team uses the role of process
owner to indicate the individual directly responsible for the successful execution of a
specific process within any given enterprise. With respect to electronic bill present-
ment and payment (EBPP) within Global Bank, this individual is the Director of
Electronic Bill Presentment and Payment. The model representing this view is
shown in Figure 7.10.

<<business service>>

Electronic Bill Presentment and Payment

(Online Bill Payment)

<<goal>>

Process Goal:

Quantitative Goal

<<achieves>>

<<goal>>

Process Goal:

Qualitative Goal<<achieves>>

<<business

service>>

Maintain Payee

<<business

service>>

Presentment

<<business

service>>

Payment

[Payment Requested]

<<physical>>

Capital

<<abstract>>

Consumer

Banking

Strategy

<<information>>

Banking

Regulation

<<supply>>

<<resources>>

Customer ClearinghouseOther Financial Institutions

<<mission>> <<vision>> <<guiding principles>>

<<guides>>
<<guides>><<guides>>

<<people>>

<<control>>

Figure 7.10
Director of EBPP’s view of high-level processes

The Director of EBPP’s view further refines the higher level process diagrams
showing the subprocesses that the Director of Electronic Bill Presentment and
Payment (EBPP) is responsible for. Like previous diagrams, this view shows re-
source inputs on the left, guidelines and constraints on the top, outputs on the right,
and entities (collaborators) on the bottom.

This view provides a way to tie the specific unit’s mission, vision, guiding prin-
ciples, resources, and goals to the specific processes in the department. This linkage

Chapter 7: Project Notebook 363

allows both the business owner and the technical architects to evaluate specific cost-
benefit tradeoffs for the design and implementation based on the business value and
goals while maintaining traceability to the organizational guidelines and goals.

This view is helpful because it breaks down processes to granular subprocesses, and
approaches the level needed for detailed technical analysis. However, subprocesses
are not granular enough. The team needs to identify the level at which a person or
system (actor) interacts directly with another system. This actor/system boundary is
the level which use cases describe, and the person who interacts directly with the
system to perform part or all of a business process is called a process worker. One
important process worker in Global Bank is the EBPP Supervisor.

Process Worker’s View
The EBPP Supervisor works with his team to review the Director of EBPP’s view
(shown in Figure 7.10) and identify all of the related use cases as shown in Figure
7.11. For each use case, a description is created that includes preconditions, post-
conditions and the steps involved in the use case. Steps are included for normal and
exception scenarios.

Integration Patterns364

Notification Package

Bill Payment

System Package

Customer

Package

Customer

Sign Up for EBPP

Get Potential EBPP

Payees

Get Current EBPP

Payees

Add EBPP Payee

Remove EBPP

Payee

View Scheduled

Payments

Request Bill

Payment

Quit EBPP

Payee

Register as EBPP

Payee

Bill Payment

System

Submit Bills for

EBPP Customers

Send Notifications

Bills Due

EBPP

Administrator

Notification

System

Execute Scheduled

Payments

Register Customer

with Payee

Manage

Notification Profile

Add Notification

Event

New Bills

Get Customer Data

Update Bill Status

Receive Payment

Response

Figure 7.11
Significant EBPP use cases

The use cases outlined in gray are key parts of the online bill payment application.
To further define these use cases, the team creates activity diagrams that show the
details needed to realize the use case, such as conditional branching, transitions,
forks, and joins.

Chapter 7: Project Notebook 365

Integration Architecture Views
Although architects were involved in understanding and modeling the previous
views, more analysis is needed before the team can design a technical solution that
meets the needs of the bank. Before the team spends time designing a technical
solution, they want to make sure that the business processes that they want to
automate will add as much value as possible to the enterprise. To determine this
value, the architects work with business analysts to examine the business processes
in more detail.

Process Value Analysis
Before rushing into defining requirements for the technical solution, the team wants
to make sure that the processes they are automating are aligned with the enterprise’s
overall value proposition. To do so, they analyze each significant use case and
business process according to the value it adds to the enterprise. To quantify value,
they estimate the number of full-time employees and the cycle time needed for each
step of the most important processes. They categorize each step as a value-add for
the customer, a value-add for the business, or not a value-add.

The team tunes their processes to be as efficient as possible given the enterprise’s
value proposition. Working with the executive team where necessary, they are able
to improve the firm’s overall business process design and thereby avoid automating
inefficient processes with technology. Also, during this analysis process they identify
use cases that greatly enable the customer value proposition yet are inexpensive to
implement. These items become high priority work items in early iterations. After
they create a set of prioritized and well-designed processes expressed as use cases,
they consider how to realize these use cases. A key step in the realization of these
use cases is to identify the appropriate logical services.

Logical Services
The team reviews the EBPP process groups and identifies use cases for each process
group. They step through each use case and design a collaboration of services that
allows them to realize each use case. As they see multiple use cases using a particu-
lar service, they factor the service interface to make it as flat and stable as possible.
They know that once they create these published interfaces, they will be much more
difficult to change in the future. Therefore, time spent factoring these interfaces now
will pay off with fewer versioning headaches later and allow them to support more
use cases with each service. To communicate these relationships, they create the
assembly line drawing in Figure 7.12.

Integration Patterns366

Account Services

<<business service>>

Electronic Bill Presentment and Payment

(Online Bill Payment)

<<goal>>

Process Goal:

Quantitative Goal

<<achieves>>

<<goal>>

Process Goal:

Qualitative Goal

<<achieves>>

Profile Services

Payment Services

<<business

service>>

Maintain Payee

<<business

service>>

Presentment

<<business

service>>

Payment

S
c

h
e

d
u

le
 P

a
y

m
e

n
t

E
x

e
c
u

te
 S

c
h

e
d

u
le

d
 P

a
y

m
e

n
t

R
e

c
e

iv
e

 P
a

y
m

e
n

t
R

e
s

p
o

n
s

e

G
e

t
C

u
s
to

m
e

r
D

a
ta

[Payment

Requested]

A
d

d
/R

e
m

o
v
e

 P
a

y
e

e
s

G
e

t
C

u
rr

e
n

t
P

a
y
e

e
s

G
e

t
C

u
rr

e
n

t
B

ill
s

G
e

t
C

u
s
to

m
e

r
D

a
ta

V
ie

w
 S

c
h

e
d

u
le

d
 P

a
y

m
e

n
ts

G
e

t
B

ill
 D

a
ta

G
e
t

A
c
c
o

u
n

t
D

a
ta

G
e
t

A
c
c
o

u
n

t
D

a
ta

G
e

t
A

c
c
o

u
n

t
D

a
ta

Figure 7.12
Assembly line drawing showing a candidate set of logical services for Global Bank

At the top of the assembly line diagram are the groups of processes within EBPP and
their associated use cases. On the left side of the diagram are candidate logical
services that will play a role in realizing the intersecting use cases. By identifying
sets of use cases that must interact with a specific service, it is easier to design
services that eliminate duplication and are more extensible.

Chapter 7: Project Notebook 367

With a set of prioritized use cases and an initial set of logical services needed to
realize those use cases, the team then spends time deciding how to allocate these
logical services to physical servers.

Technical Architecture
To allocate logical services to physical servers, the team starts by reviewing the
enterprise’s existing technical architecture. They want to use these existing invest-
ments as much as possible, and extend them to take advantage of commercial
infrastructure platform components such as Web servers, databases, and integration
servers.

Taking all of these factors and constraints into consideration, they arrive at a techni-
cal architecture as shown in Figure 7.13.

Integration Patterns368

Data
Firewall

External Partner
(SWIFT)

External Partner
(Manual Fulfillment)

Customer

SMTP Integration
Server

Web Server

Firewall

Integration
Server

Networked
Bank

System

Networked
Bank

System

Payment Directory
Services

Gateway
Service

Gateway

Mainframe

CRM

Ethernet

Ethernet

Firewall

Remote Data Center

Data

Figure 7.13
Global Bank’s initial technical architecture

Chapter 7: Project Notebook 369

Given the system use cases and a first cut technical architecture, the team is able to
identify some areas that represent high technical risks for the project. They want to
make sure and tackle these areas first so they can “retire” these risks early in the
project life cycle. To exercise these areas, they identify a set of architecturally signifi-
cant use cases.

Architecturally Significant Use Cases
As described in Chapter 2, “Using Patterns to Design the Baseline Architecture,” the
architecturally significant use cases for Global Bank include the following:
● Schedule Payments
● View Scheduled Payments
● Execute Scheduled Payment
● Receive Payment Response
● Add Payee

For each one of these use cases, the team identifies how a set of server processes and
nodes collaborate to realize each use case. They capture this high-level interaction
with collaboration diagrams. In addition to collaboration diagrams, the team also
creates a “port and wire” style model that shows service encapsulation and commu-
nication through ports, as shown in Chapter 2.

With high-level collaborations defined for server processes and nodes, the team
needs to refine these collaborations down to more detailed design elements.

Integration Patterns
At this point, the team has a set of use cases that describe how users will interact
with the system and how the system will respond. These use cases are prioritized so
they represent the riskiest part of the technical implementation. Now the team has to
consider various design alternatives and make a series of technical decisions and
tradeoffs to design an integration architecture.

As the team considers the technical challenges and problems they must solve during
the design process, their discussion naturally leads to patterns. Patterns contain
concise, reusable elements of design knowledge and are organized as problem-
solution pairs. The team uses patterns because they know reusable design elements
can mitigate risk and make a project more predictable.

To think about their design alternatives for a given challenge, the team uses the
visual model shown in Figure 7.14. This model shows a related set of patterns in the
area of integration. These patterns are represented in the model as circles; the lines
between circles indicate associations between the patterns.

Integration Patterns370

Maintain
Data Copies

Data
Integration

File
Transfer

Point-to-
Point

Connection

Message
Bus Broker

Distributed
Object

Integration

Message-
Oriented

Middleware
Integration

Functional
Integration

Service-
Oriented

Integration

Presentation
Integration

Entity
Integration

1

2

3

Portal
Integration

Process
Integration

Indirect
Broker

Shared
Database

Broadcast-Based
Publish/Subscribe

Content-Based
Publish/Subscribe

List-Based
Publish/Subscribe

Direct
Broker

Publish/Subscribe

Message
Broker

Figure 7.14
Integration patterns and their relationships

Chapter 7: Project Notebook 371

Row one (1) in the model shows patterns that represent three types of integrating
layers: Entity Aggregation, Portal Integration, and Process Integration (for more infor-
mation, see Chapter 3, “Integrating Layer”). As in many other areas of computer
science, adding another level of indirection solves many problems in the integration
space. These patterns describe specific integration problems and how the introduc-
tion of very specific new layers would solve these kinds of problems.

For each of these integrating layers to work, they must make one or more individual
connections to target systems. Row two (2) in the model shows three logical levels at
which these system connections could be made: data, functional (business logic),
and presentation; each logical connection type represents a pattern. For Data Integra-
tion and Functional Integration, there are several pattern variations that further refine
each pattern. These refinement relationships are shown as triangles.

Integrating at the logical data level, for example, has three variations: Shared Data-
base, Maintain Data Copies, and File Transfer. Integrating at the functional (business
logic) layer has three other distinct variations: Distributed Object Integration, Message-
Oriented-Middleware Integration and Service-Oriented Integration. These patterns are
discussed in more depth in Chapter 4, “System Connections.”

As you decide about integrating layers and the various kinds of system connections
you will need to make, you inherently must also determine a topology with which
to connect these elements. Row three (3) in Figure 7.14 shows patterns (and their
variations) that represent three different integration topologies: Point-To-Point
Connection, Broker, and Message Bus. Any time two or more systems are connected, a
topology decision must be made. The result may be a single topology or a combina-
tion of topologies depending upon requirements.

After systems are connected using a particular topology, it is possible to use a
publish/subscribe mechanism to synchronize systems. The Publish/Subscribe pattern
is shown at the bottom of Figure 7.14, along with three patterns that refine the basic
Publish/Subscribe pattern: List-Based Publish/Subscribe, Broadcast-Based Publish/Sub-
scribe, and Content-Based Publish/Subscribe. Chapter 5, “Integration Topologies,”
discusses these patterns in detail.

Pattern Types
Until now, this chapter has discussed patterns conversationally as is often done
during typical whiteboard design sessions. To be a bit more precise about how the
team uses patterns to explain their application, it is necessary to make a distinction
between pattern types and pattern instances.

In object-oriented programming, the common example of type and instance is class
and object. That is, a class defines a type of abstraction and an object is an instance
of that abstraction. Because design patterns have been associated traditionally with

Integration Patterns372

objects, the distinction has not been important for patterns. For example, the Single-
ton [Gamma95] pattern contains advice that tells you how to create a singleton
object.

In the integration space, patterns often provide advice that is much broader than
classes and objects. To apply these patterns, it is helpful to clarify when you are
talking about types and when you are talking about instances. Unlike typical design
patterns, these pattern instances occur at several levels of abstraction, including
objects, processes, and subsystems. Think of the pattern narrative as providing
information about a type of compositional design element. When you choose to
include some finite number of these compositional design elements in your specific
design, think of these as instances.

Note: Because patterns contain a wide variety of design knowledge, not all patterns are about
compositional elements of design. Thus the type/instance distinction will not apply to all
patterns. Other authors have referred to similar categories of patterns as constructional design
patterns [Yacoub04]. All patterns contained in this guide, however, are compositional elements
of design.

Taken together, Figure 7.14 shows the patterns and their relationships as pattern
types used in the integration space. These are types of patterns because they contain
advice about a particular kind of integration problem. For this kind of problem, the
patterns contain generative advice that tells you what to do, along with the pros and
cons associated with following that advice.

For example, as the Global Bank team discusses their particular design problems,
they know they need a portal integration layer that connects with multiple back-end
systems. For each target system, they need an individual system connection. As they
consider which type of connection they will use, they use the model in Figure 7.14 to
narrow their choices down to three possibilities for where to make the connection: at
the logical data layer, at the functional layer, or at the presentation layer. The team
prefers to integrate directly to the functional layer whenever possible to present the
most up-to-date information as directly as possible.

As they consider the types of Functional Integration they might use, they evaluate as
alternatives Distributed Object Integration, proprietary Message-Oriented Middleware
Integration, and Service-Oriented Integration. Because interoperability between plat-
forms is important to them, they prefer to use Service-Oriented Integration whenever
practical.

After deciding on the type of system connection to use for each system, they realize
that they need a topology with which to connect these elements. A set of Point-to-
Point Connections is the simplest to consider initially, but upon further reflection they
realize they will have to connect with an unreliably connected data center and
external trading partners. These different locations will use different systems and
different data formats.

Chapter 7: Project Notebook 373

They could implement a Message Bus, but that would require defining a canonical
data model and command messages between trading partners and acquired banks.
This seems an unwieldy alternative when compared to a Message Broker approach.

In the end, they decide on a Message Broker topology and a Publish/Subscribe mecha-
nism. The specific Publish/Subscribe mechanism they use is Content-Based Publish/
Subscribe. All of these choices are shown in Figure 7.15.

Integration Patterns374

Maintain
Data Copies

Data
Integration

File
Transfer

Point-to-
Point

Connection

Message
Bus Broker

Distributed
Object

Integration

Message-
Oriented

Middleware
Integration

Functional
Integration

Service-
Oriented

Integration

Presentation
Integration

Entity
Integration

1

2

3

Portal
Integration

Process
Integration

Indirect
Broker

Shared
Database

Broadcast-Based
Publish/Subscribe

Content-Based
Publish/Subscribe

List-Based
Publish/Subscribe

Direct
Broker

Publish/Subscribe

Message
Broker

Figure 7.15
Types of patterns chosen by the Global Bank team

Chapter 7: Project Notebook 375

During the design sessions, the team uses the model in Figure 7.15 to help them
think through the range of potential design alternatives that might apply to a par-
ticular design challenge that they are experiencing at the time. However, during the
process of designing the architecture for Global Bank, they need more than design
options. They need to make a set of specific design decisions that reflect instances of
design elements.

Patterns Instances
Now that the team has identified the types of patterns that apply to their design,
they need to decide which (and how many) specific instances of these patterns they
will actually use. For example, the team decides that the Message Broker pattern
(from Chapter 5) is a good choice for Global Bank because it solves the problems
involved in integrating applications that do not have a common interface. The
Message Broker pattern narrative describes how to solve this particular type of prob-
lem, but it does not specify if or where to place it in a specific design. These kinds of
decisions are the responsibility of the Global Bank architecture team.

After careful consideration, the team decides to use two instances of Message Broker
in their design; both instances are implemented with BizTalk Server 2004. One
Message Broker instance integrates applications between their local and remote data
centers for loan applications. The other Message Broker instance integrates applica-
tions between their payment system and external payment gateways.

These two Message Broker instances are shown in Figure 7.16 along with all of the
other instances of design elements that the team identifies for their integration
architecture. This pattern-based design model shows the architecture at a higher
level of abstraction than conventional models. With each design element represent-
ing a named pattern, this model provides a rich set of abstractions and a vocabulary
with which the team can reason about their system. It also allows them to have a
high-level design dialog with other project stakeholders, without debating extrane-
ous technical detail. Should these other stakeholders not understand a particular
element, the team can point them to pattern catalogs that define these terms in more
detail.

Integration Patterns376

External Partner
(SWIFT)

SOI*

External Partner
(Manual Fulfillment)

Customer

Loan
Services

CRM
System

Payment
System

Model-View-
Controller

SOI*

SOI*

Service
Interface

Gateway
(subsystem)

Message
Broker

SOI*

SOI* = Service-Oriented Integration

Remote Data Center

Half Synch/
Half Asynch

Gateway
(object level)

Gateway
(object level)

Gateway
(object level)

SOI*

Pub/
Sub

Message
Broker

Process
Integration

Pub/
Sub

SOI*

Service
Interface

Intercepting
Filter

Portal Integration

Loan
Services

Directory
Services

Account
Services

(mainframe)

Data
Integration

Figure 7.16
Pattern-based design model of the Global Bank bill payment system

With an initial set of high-level design decisions made, the team then needs to bind
these decisions to specific implementation platforms. Although this binding may
seem to be a top-down approach, it is actually an iterative process that requires full
team involvement. For key design elements, platform infrastructure components are
evaluated in terms of how well specific patterns can be implemented. Although this
mapping from high-level design to technology often is quite straightforward, it is
often not. Difficult cases require the team to either change their design to optimize a

Chapter 7: Project Notebook 377

particular platform or choose an alternative platform that better fits their architec-
ture. When the team is finished, they produce the diagram shown in Figure 7.17.

Customer

Model-View-
Controller

SOI*

Service
Interface

Gateway
(subsystem)SOI*

SOI* = Service-Oriented Integration

Half Synch/
Half Asynch

Gateway
(object level)

Gateway
(object level)

Gateway
(object level)

SOI*

SOI*

Intercepting
Filter

Portal Integration

ASP.NET &
.NET Framework

IBM OS390Microsoft
CRM?

SQL Server
(Yukon)

Pub/
Sub

Message
Broker

Process
Integration

Pub/
Sub

Remote Data Center

BizTalk Server 2004

External Partner
(SWIFT)

SOI*

External Partner
(Manual Fulfillment)

SOI*

Message
Broker

BizTalk Server 2004

Service
Interface

Host Integration
Server 2004

.NET Framework

Data
Integration

IBM WebSphere J2EE

Active
Directory

Figure 7.17
Mapping the patterns to implementation technologies

Integration Patterns378

Figure 7.17 shows Global Bank’s integration architecture to be composed of numer-
ous pattern-based design elements implemented on the Microsoft platform. To trace
the implementation of these elements down to running bits, refer to the appropriate
implementation pattern in previous chapters. For example, to understand how to
implement the gateway to the mainframe, refer to Implementing Gateway with Host
Integration Server 2004 in Chapter 5, “Integration Topologies.” This pattern includes
the details of connecting Global Bank’s .NET Framework – based portal application
with their existing COBOL-based CICS transactions.

Going Forward
The last few pages of this chapter focused on distinctions between pattern types
and instances that may not be important for many design conversations. In conver-
sations that require a precise distinction, it is helpful to clarify how you are using
patterns. In these cases, using a pattern type model to enumerate design options
and a pattern instance model to articulate specific design elements can be a very
effective communication tool. Even if you are not interested in types and instances,
however, patterns are a useful vehicle for communication among different levels of
the enterprise.

This communication aspect of patterns is the main message of this chapter. The
progression of pattern models discussed here will become increasingly important in
the future as developers, architects, and business leaders increasingly use patterns to
build technology that meets business requirements.

Appendix

List of Patterns and Pattlets
This appendix contains a table that lists patterns and pattlets that are referenced in
this book. Pattlets are actual patterns that this book refers to; however, the book does
not discuss them in detail. The table also provides a reference to the original work
that identified the pattern or pattlet, if applicable.

Table A.1: List of Patterns and Pattlets

Pattern or pattlet Problem Solution Source

Entity Aggregation How can enterprise Introduce an Entity
data that is redundantly Aggregation layer
distributed across that provides a
multiple repositories logical representation
be effectively of the entities at an
maintained by enterprise level with
applications? physical connections

that support the
access and that update
to their respective
instances in back-end
repositories.

Process Integration How do you coordinate Define a business
the execution of a process model that
long-running business describes the individual
function that spans steps that make
multiple disparate up the complex business
applications? function. Create a

separate process
manager component
that can interpret
multiple concurrent
instances of this model
and that can interact
with the existing
applications to perform
the individual steps
of the process.

(continued)

 Appendix380

Pattern or pattlet Problem Solution Source

Portal Integration How can users efficiently Create a portal
perform tasks that require application that displays
access to information that the information that
resides in multiple is retrieved from
disparate systems? multiple applications

in a unified user
interface. The user can
then perform the
required tasks based
on the information that
appears in this portal.

Data Integration How do you integrate Integrate applications at
information systems that the logical data layer.
were not designed to Use a Shared Database,
work together? a File Transfer, or

a Maintain Data Copies
implementation.

Shared Database How can multiple Have multiple applications Shared Database
(a kind of data applications work store their data in a pattern [Hohpe04].
integration) together to exchange single database. Define

information? a schema that handles
the needs of all the
relevant applications.

Maintain Data How can multiple Have multiple applications Maintain Data
Copies applications work access multiple copies of Copies is the root
(a kind of data together to exchange the same data. Maintain pattern for twelve
integration) information? state integrity between patterns (the data

copies. movement cluster)
that are presented
in “Data Patterns”
[Teale03].

File Transfer How can multiple At regular intervals, File Transfer
(a kind of data applications work make each application pattern [Hohpe04].
integration) together to exchange produce files that contain

information? the information that the
other applications must
consume. After a file is
created, do not maintain
the file.

Appendix 381

Pattern or pattlet Problem Solution Source

Functional How do you integrate Integrate applications at
Integration information systems the logical business layer.

that were not designed Use Distributed Object
to work together? Integration, (proprietary)

Message-Oriented
Middleware Integration,
or Service-Oriented
Integration.

Presentation How do you integrate Access the application’s
Integration information systems functionality through the

that were not designed user interface by
to work together? simulating a user’s input

and by reading data
from the screen.

Message Broker How do you integrate Extend the integration
applications without solution by using Message
enforcing a common Broker. A message broker
interface and also allow is a physical component
each application to initiate that handles the
interactions with several communication between
other applications? applications. Instead of

communicating with each
other, applications
communicate only with
the message broker.
An application sends a
message to the message
broker to give the mes-
sage broker the logical
name of the receivers.
The message broker
looks up applications
that are registered under
the logical name and then
passes the message to
them.

Distributed Object How do you integrate Develop systems that Remote Procedure
Integration applications at the have object interfaces Invocation
(a kind of functional logical business layer? that can be consumed [Hohpe04].
integration) remotely by other

systems.

(continued)

 Appendix382

Pattern or pattlet Problem Solution Source

Message-Oriented How do you integrate Use proprietary Messaging
Middleware applications at the message-oriented [Hohpe04].
Integration logical business layer? middleware to send
(a kind of functional messages asynchronously.
integration)

Service-Oriented How do you integrate Use Web services to
Integration applications at the expose interfaces that
(a kind of functional logical business layer? can be consumed remotely
integration) by other systems.

Point-to-Point How do you ensure that Use Point-to-Point When you use
Connection exactly one receiver Connection to integrate point-to-point

receives a message? two systems. The connections, each
sending system must system determines
translate the message the address of all
into a format that the the other nodes
receiving system that it communi-
understands. cates with.

Broker How can you structure Introduce a broker [Buschmann96].
a distributed system whose tasks are to
so that application locate services, to
developers do not have forward requests, and
to concern themselves to return responses to
with the details of remote clients. Services register
communication? themselves with the

broker. Clients access
services by making a
service request through
the broker.

Direct Broker How do you integrate Extend the integration
applications without solution by using a direct
enforcing a common broker component that
interface, allow each handles the communication
application to initiate between applications.
interactions with several Initially, the application
other applications, and asks the broker to locate
reduce hot spots the other registered
(performance problems applications based on
that occur under high the logical names of those
loads in specific areas)? applications. From this

point forward, all
communication is made
directly between
applications.

Appendix 383

Pattern or pattlet Problem Solution Source

Indirect Broker How do you integrate Extend the integration
applications without solution by using an
enforcing a common indirect broker compo-
interface, but allow each nent that handles the
application to initiate communication between
interactions with several applications. Instead of
others? communicating directly,

applications communi-
cate only with the mes-
sage broker. An applica-
tion sends a message to
the broker. This message
provides the logical name
of the receivers. The
broker then looks up
applications that are
registered under the
logical name and passes
the message to that
application.

Publish/Subscribe How can an application Extend the communica-
in an integration tion infrastructure by cre-
architecture only send ating topics or by dynami-
messages to the cally inspecting message
applications that are content. Enable listening
interested in receiving applications to subscribe
the messages without to specific messages.
knowing the identities Create a mechanism that
of the receivers? sends messages to all

interested subscribers.
There are three variations
of the Publish/Subscribe
pattern that you can use
to create a mechanism
that sends messages to
all interested subscribers.
The three variations are
List-Based Publish/
Subscribe, Broadcast-
Based Publish/
Subscribe, and
Content-Based
Publish/Subscribe.

(continued)

 Appendix384

Pattern or pattlet Problem Solution Source

Message Bus As an integration solution Connect all applications
grows, how can you through a logical component
lower the cost of known as a message bus.
adding or removing A message bus specializes
applications? in transporting messages

between applications.
A message bus contains
three key elements: a set
of agreed-upon message
schemas; a set of common
command messages
[Hohpe04], and a shared
infrastructure for sending
bus messages to recipients.

Pipes and Filters How do you implement a Implement the transforma-
sequence of transforma- tions by using a sequence
tions so that you can of filter components, where
combine and reuse them each filter component re-
independently? ceives an input message,

applies a simple transforma-
tion, and sends the trans-
formed message to the next
component. Conduct the
messages through pipes
[McIlroy64] that connect filter
outputs and inputs, and that
buffer the communication
between the filters.

Gateway How can you make the Add a Gateway component
applications of an that abstracts the access
integration solution access to the external resource.
an external system without The gateway presents a
introducing many-to-one single interface to the
coupling between the integrated applications
applications and while hiding the external
the external system? resource interface. In

addition, the gateway
encapsulates any protocol
translation that may be
necessary to communicate
with the external resource.

Bibliography
[Alexander79] Alexander, Christopher. The Timeless Way of Building. Oxford
University Press, 1979.

[Alur01] Alur, Deepak; John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices
and Design Strategies. Prentice Hall, 2001.

[Baldoni03] Baldoni, R.; M. Contenti, and A. Virgillito. “The Evolution of Publish/
Subscribe Communication Systems.” Future Directions of Distributed Computing.
Springer Verlag LNCS Vol. 2584, 2003.

[Bertrand00] Meyer, Bertrand. Object-Oriented Software Construction. 2nd ed. Prentice-
Hall, 2000.

[Box04] Box, Don. “Code Name Indigo: A Guide to Developing and Running
Connected Systems with Indigo.” MSDN Magazine. January 2004. Available from
the MSDN Windows Code-Named “Longhorn” Developer’s Center at: http://
msdn.microsoft.com/longhorn/understanding/pillars/indigo/default.aspx?pull=/msdnmag
/issues/04/01/Indigo/default.aspx.

[Britton01] Britton, Chris. IT Architectures and Middleware — Strategies for Building
Large, Integrated Systems. Addison-Wesley, 2001.

[Buschmann96] Buschmann, Frank; Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns. John Wiley & Sons Ltd, 1996.

[Chandra03] Chandra, David; Anna Liu, Ulrich Roxburgh, Andrew Mason, E. G.
Nadhan, Paul Slater. Guidelines for Application Integration, Microsoft Patterns &
Practices, December 2003. Available on MSDN at: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnpag/html/eappint.asp.

[Chapell03] David Chappell, Chappell & Associates. “Understanding BizTalk Server
2004.” Microsoft Corporation, 2003. Available at http://go.microsoft.com/fwlink
/?LinkId=21313.

[Crocker02] Crocker, Angela; Andy Olsen, and Edward Jezierski. “Designing Data
Tier Components and Passing Data Through Tiers.” MSDN Library, August 2002.
Available at: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/boagag.asp.

[Erikkson00] Eriksson, Hans-Erik, and Magnus Penker. Business Modeling with UML:
Business Patterns at Work. John Wiley & Sons, Inc., 2000.

[Firesmith95] Firesmith, Donald G., and Edward M. Eykholt. Dictionary of Object
Technology. Signature Sounds Recording, 1995.

[Fowler01] Fowler, Martin. “To Be Explicit.” IEEE Software, November/December
2001.

Bibliography386

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Gamma95] Gamma, Erich; Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Garlan95] Garlan, David; Robert Allen, and John Ockerbloom. “Architectural
Mismatch: Why Reuse Is So Hard,” in IEEE Software, Volume 12, Issue 6, November
1995: 17-26.

[Hohpe04] Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

[Januszewski01] Januszewski, Karsten. “Using UDDI at Run Time, Part I.” Decem-
ber, 2001. Available on MSDN at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnuddi/html/runtimeuddi1.asp.

[Januszewski02] Januszewski, Karsten. “Using UDDI at Run Time, Part II.” May,
2002. Available on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnuddi/html/runtimeuddi2.asp.

[Kent00] Kent, William. Data and Reality. 1stBooks Library, 2000.

[Larman02] Larman, Craig. Applying UML and Patterns. Prentice-Hall PTR, 2002.

[Levine03] Levine, Russell. “The Myth of the Disappearing Interfaces,” in Business
Integration Journal, November 2003.

[Linthicum04] Linthicum, David. Next Generation Application Integration. Addison-
Wesley, 2004.

[Mackinnon00] Mackinnon, Tim, et al. “Endo-Testing: Unit Testing with Mock
Objects.” eXtreme Programming and Flexible Processes in Software Engineering —
XP2000 conference.

[Manolescu97] Manolescu, Dragos. “A Data Flow Pattern Language,” in Proceedings
of the 4th Pattern Languages of Programming, September 1997, Monticello, Illinois.

[Marcus00] Marcus, Evan, and Hal Stern. Blueprints for High Availability: Designing
Resilient Distributed Systems. John Wiley & Sons, 2000.

[Martin02] Martin, Robert. Agile Software Development: Principles, Patterns, and
Practices. Prentice-Hall, 2002.

[McIlroy64] The fluid-flow analogy dates from the days of the first UNIX systems
and is attributed to Douglas McIlroy; see http://cm.bell-labs.com/cm/cs/who/dmr
/mdmpipe.html.

[Microsoft02-1] Microsoft Corporation. “XML Web Services Overview.” .NET Frame-
work Developer’s Guide. Available on MSDN at: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconwebservicesoverview.asp.

Bibliography 387

[Microsoft02-2] Microsoft Corporation. “Application Architecture: Conceptual
View.” .NET Architecture Center. Available on MSDN at: http://msdn.microsoft.com
/architecture/default.aspx?pull=/library/en-us/dnea/html/eaappconland.asp.

[Microsoft02-3] Microsoft Press. Microsoft Computer Dictionary, Fifth Edition.
Microsoft Press, 2002.

[Microsoft04] Microsoft Corporation. “Certificate Stores.” Windows XP Professional
Product Documentation. Available from Microsoft.com at http://www.microsoft.com
/resources/documentation/windows/xp/all/proddocs/en-us/sag_cmuncertstor.mspx.

[Mowbray97] Mowbray, Thomas J. Corba Design Patterns. John Wiley & Sons, 1997.

[Newcomer02]. Newcomer, Eric. Understanding Web Services: XML, WSDL, SOAP, and
UDDI. Addison-Wesley, 2002.

[Noble98] Noble, J. “Classifying Relationships Between Object-Oriented Design
Patterns.” Proceedings of the Australian Software Engineering Conference (ASWEC),
1998.

[Oki93] Oki, B.; M. Pfluegel, A. Siegel, and D. Skeen. “The Information Bus - An
Architecture for Extensive Distributed Systems.” Proceedings of the 1993 ACM Sympo-
sium on Operating Systems Principles, December 1993.

[PnP02] Patterns & Practices, Microsoft Corporation. “Application Architecture
for .NET: Designing Applications and Services.” MSDN Library, December 2002.
Available at: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/distapp.asp.

[Reilly02] Reilly, Douglas J. Designing Microsoft ASP.NET Applications. Microsoft
Press, 2002.

[Ruh01] Ruh, William. Enterprise Application Integration. A Wiley Tech Brief. Wiley,
2001.

[Schmidt00] Schmidt, Douglas; Michael Stal, Hans Rohnert, Frank Buschmann.
Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent and Networked
Objects. John Wiley & Sons, 2000.

[Shaw96] Shaw, Mary, and David Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[Skonnard03] Skonnard, Aaron. “How ASP.NET Web Services Work.” MSDN Library,
May 2003. Available at: http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnwebsrv/html/howwebmeth.asp.

[Skonnard03-2] Skonnard, Aaron. “Understanding SOAP.” MSDN Web Services
Developer Center, March 2003. Available at: http://msdn.microsoft.com/webservices
/understanding/webservicebasics/default.aspx?pull=/library/en-us//dnsoap/html
/understandsoap.asp.

Bibliography388

[Slywotsky99] Slywotsky, Adrian J. Profit Patterns: 30 Ways to Anticipate and Profit
from Strategic Forces Reshaping your Business. John Wiley & Son Ltd, 1999.

[Tannebaum01] Tannebaum, Andrew. Modern Operating Systems. 2nd ed. Prentice-
Hall, 2001.

[Teale03] Teale, Philip, Christopher Etz, Michael Kiel, and Carsten Zeitz. “Data
Patterns.” .NET Architecture Center. June 2003. Available at: http://msdn.microsoft.com
/architecture/patterns/default.aspx.

[Trowbridge03] Trowbridge, David; Dave Mancini, Dave Quick, Gregor Hohpe,
James Newkirk, and David Lavigne. Enterprise Solution Patterns Using Microsoft
.NET. Microsoft Press, 2003. Also available on the MSDN Architecture Center at: http://
msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us/dnpatterns/html
/Esp.asp.

[W3C04] “Web Services Architecture W3C Working Draft 11 February 2004.” Avail-
able on the W3C Web site at: http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[Wanagel03] Wanagel, Jonathan, et al. “Building Interoperable Web Services: WS-I
Basic Profile 1.0.” MSDN Library, August 2003. Available at: http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnsvcinter/html/wsi-bp_msdn_landingpage.asp.

[Yacoub04] Yacoub, M. Shreif and Hany H. Ammar. Pattern-Oriented Analysis and
Design: Composing Patterns to Design Software Systems. Addison-Wesley, 2004.

A
3270 terminal standard, 208
<types> element, 177
ABA routing numbers, 35
abstraction level, 56
account services

accessing on the mainframe, 44–
46

tradeoffs, 46
ACID

Data Integration pattern, 130
Process Integration pattern, 81

ACORD XML, 290–292
Activator.GetObject() method call,

219
Active Directory directory service,

46–50
Adapter pattern, 142, 222
adapters

Message Broker pattern, 247–248
SQL Server, 90

American Bankers Association See
ABA

Application vs. Integration patterns,
48, 213

applications
adapters, 247–249
communication with Message

Bus pattern, 262
dependencies, 260
monitoring with BizTalk Server

2004, 306
redefining concept of, 3

architecture
approaches to Entity Aggregation

pattern, 66–67
enterprise architecture stack,

355–356
integration architecture views,

365–378

technical architecture, 51, 367–
369

See also baseline architecture
artifacts

interpreting, 342
purpose of, 341

ASCII, 283
ASP.NET See Service-Oriented

Integration pattern with
ASP.NET

Assembly Key File name property,
101

associative tables, 224
asynchronous interaction

with callback, 189–190
with polling, 189–190

asynchronous Web services, 188–
190

atomic transactions, 81
Atomicity, Consistency, Isolation,

and Durability See ACID
audience for this book, xi–xii
authoritative source, 71
authors, xvi

contributors, xv
automation level, 55–56

B
B2B integration, 310–311
BAM, 60
banking services bundle, 351–354
baseline architecture

basic purpose of, 33
mapping to technologies, 52–53
SWIFT gateway, 35–43
using patterns to design, 19–53
See also architecture

bibliography, 385–388
integration patterns and their

relationships, 389

binding files, 101
BizTalk Server 2004, 86–105

background, 86
benefits and liabilities, 103–104
and Broker pattern, 221
context, 86
correlating messages and

process instances, 88
diagram, 87
Execute Scheduled Payments

orchestration, 90–103
example, 91–103

handling exceptions and
compensating transactions,
89–90

implementation strategy, 86–90
Indirect Broker pattern, 221
Message Broker pattern, 221, 243,

245–259
operational considerations, 105
orchestration, 86–88
Orchestration Designer, 87
with port-level tracking

monitoring, 306–307
process managers, 104
process modeling, 86–88
Publish/Subscribe pattern

example, 280
related patterns, 105
Scope shape, 89
security considerations, 104–105
Send shape, 88
and subscriptions, 253–255, 280
testing considerations, 104
See also Message Broker pattern;

Pipes and Filters pattern;
Service-Oriented Integration
pattern with BizTalk Server
2004

Index

Index390

Blackboard pattern, 271
books, 48
BPEL, 82
BPML, 82
Broadcast-Based Publish/Subscribe

pattern, 223–224, 232
List-Based Publish/Subscribe

pattern, 274
Message Bus pattern, 263, 265
Publish/Subscribe pattern, 274
security considerations, 281

Broker pattern, 215–221, 231
communication responsibilities

of, 215–216
diagram of related patterns, 216
Distributed Object Integration

pattern, 215
and Ethernet, 231
examples, 218–221

BizTalk Server 2004, 221
CORBA, 220
DCOM, 219
.NET Framework remoting,

219–220
UDDI, 220

intent of brokers, 215
logical topology, 231
physical topology, 231
Service-Oriented Integration

pattern, 215
UDP, 220, 231
vs. Point-to-Point Connection

pattern, 221
bus arbitration, 266
bus contention, 266
bus latency, 266
Business Activity Monitoring See

BAM
business logic, 132
Business Process Execution

Language See BPEL
Business Process Modeling

Language See BPML
Business Rule Engine, 257–258

C
canonical schema, 68
capital expenditure, 345
Catch SOAP Exception, 96
CEO

scenario context, 4
viewpoints, 346–351

certificate thumbprints, 299
change management, 71–72
CheckBalanceAndDebit, 95–96
chief executive officer See CEO
chief technical officer See CTO
churn, 346, 348
CICS

acronym defined, 5
business logic, 332
compatability with .NET

Framework, 319
mainframe connections, 25
transactions, 322–327

choices, 322
class-responsibility-collaboration

See CRC
Client-Dispatcher-Server pattern, 243
client-side asynchrony, 188, 190
COBOL Import Wizard, 328
COMMAREA, 323, 325, 332
commercial off-the-shelf software

See COTS
Common Object Request Broker

Architecture See CORBA
communication in Broker pattern,

215–216
community, xiv–xv
compensation in Entity Aggregation

pattern, 70–71
composite applications, 78
configuration in Entity Aggregation

pattern, 71
Content-Based Publish/Subscribe

pattern, 223–225, 234–235
Message Bus pattern, 263–265
Publish/Subscribe pattern, 275
routing, 264, 275

Content-Based Router pattern, 243,
258

content-based systems, 224–225,
275–276

context properties, 248
contributors, xv
conventions, xiv, 20
convergence, 342
Convergence pattern, 343
CORBA

acronym defined, 38
Broker pattern, 220
Direct Broker pattern, 231
Service-Oriented Integration

pattern, 147
correlation set, 88
COTS, 11
coupling, 57

Gateway pattern, 314
Message Broker pattern, 240
Pipes and Filters pattern, 292
Service-Oriented Integration

pattern, 146–147
CRC, 14
CreditAccount web method, 100
CRM

Gateway object, 49–50
in Global Bank scenario, 5
overview of system connections,

24–25
cross-pane interactivity, 108
CTO

decision points, 345
scenario context, 4–5, 11
scenario requirements, 21

Cunningham, Ward, 19
custom pipelines, 298–299
customer churn, 346, 348
customer information, 69
Customer Information Control

System See CICS
Customer Relationship

Management See CRM

D
Data and Reality, 57
Data Consistency Integration pattern,

134

Index 391

Data Flow architecture See Pipes and
Filters pattern

data governance in Entity
Aggregation pattern, 67

data identification in Entity
Aggregation pattern, 67

Data Integration pattern, 124–134
benefits, 130–131
choosing between alternatives,

129–130
design tradeoffs, 126
diagram, 115, 125
example, 127
File Transfer pattern, 129
layered applications, 113
liabilities, 131–132
maintain data copies approach,

128–129
Message Broker pattern, 38
payment systems, 34
problem, 124–125
related patterns, 134
resulting context, 127–130
security considerations, 133
shared database approach, 127–

128
solution, 125–126
system connections, 23–26, 114–

117, 124–134
testing considerations, 133
vs. Functional Integration pattern,

132
data layer integration, 114–117

major patterns, 114–115
data model in Entity Aggregation

pattern, 72
data operation in Entity

Aggregation pattern, 67
Data Patterns, 48, 129
Data Replication pattern, 116
data representation in Entity

Aggregation pattern, 67
data store diagrams, 116
Data Transfer Object pattern, 140
data values in Entity Aggregation

pattern, 72

data warehouses, 66–67
DCOM in Broker pattern, 219
Decide shape, 96–97, 99
decision points, 345
diagrams

alternative Functional Integration
pattern, 120

Application patterns vs.
Integration Patterns, 48

asynchronous Web services
implementation choices, 188

BizTalk Server 2004, 87
customer information, 69
Data Integration patterns, 115,

125
data replication in Data

Integration pattern, 128
Data Replication pattern, 116
data store, 116
Direct Broker implementation,

217
Entity Aggregation pattern, 59,

63–65
Execute Scheduled Payment use

case, 40–41
family of Broker patterns, 216
Functional Integration pattern, 25,

39, 136
Gateway object, 50
Global Bank’s final pattern

choice, 374, 376, 377
Indirect Broker pattern, 218
initial network diagram with

server types, 12
integrating layer patterns, 60
of integration patterns, 370
integration patterns and their

relationships, 389
Intercepting Filter pattern, 47
Layered Application pattern, 112,

113
Message Broker pattern, 27–29
Message Bus pattern, 28, 265
network diagram with server

types, 51–53
pattern diagram mapped to

implementation technology,
16–17

pattern model, 15
Pipeline Designer, 294
Pipes and Filters pattern

configurations, 288
Point-to-Point Connection pattern,

27, 230
port-and-wire model, 31–33
Portal Integration pattern, 22, 58–

59, 108
Presentation Integration pattern,

117–118
process integration layer, 59–60
Process Integration pattern, 36–37,

77, 79, 80, 84–85
Publish/Subscribe pattern

implementation with Message
Bus, 222

related patterns, 85
schema reconciliation in Entity

Aggregation pattern, 69
Service Interface pattern and

Gateway pattern, 45
Service-Oriented Integration

pattern, 148
with ASP.NET, 157, 158, 160

shared database approach, 127–
128

stubs to test the process
manager, 85

of SWIFT message process, 152
system connection pattern

relationships, 121
system connection patterns, 114
test driver, 84
Three-Layered Services Application

pattern, 23, 112
View Scheduled Payments, 30–

31
View Scheduled Payments

collaboration, 13–14
Direct Broker pattern

CORBA, 231
diagram of implementation, 217
diagram of relationships, 216
UDDI, 220

director of EBPP, 355
display-only, 108

Index392

Distributed Common Object Model
See DCOM

Distributed Object Integration
pattern

Broker pattern, 215
CORBA, 220
DCOM, 219
Functional Integration pattern,

119–120, 138, 140, 143
Global Bank alternative, 372
programming models, 141, 143
vs. Service-Oriented Integration

pattern, 159
DMZ, 44
document/literal SOAP styles,

149–150
documentation conventions, xiv
domain knowledge, 34
duplicate messages, 141
dynamic configuration, 257
dynamic subscriptions See

subscriptions

E
EBCDIC, 283
EBPP, 354–355
EBPP Supervisor, 355, 363
Einstein, Albert, 1, 11
Electronic Bill Presentment and

Payment See EBPP
encapsulation, 24–25, 132, 143
endpoint registration, 216
Enterprise Application Architecture,

49
enterprise architecture stack,

355–356
Enterprise Information Integration,

75
enterprise integration, 310
Enterprise Integration Patterns:

Designing, Building, and
Deploying Messaging Solutions,
221

Enterprise Integration Patterns, 128,
191

Enterprise Resource Planing See
ERP

Enterprise Solution Patterns Using
Microsoft .NET, xi, xvi, 6, 44,
215

class-level Gateways, 49
other patterns in, 48

Entity Aggregation pattern, 59, 61–
75

architectural approaches, 66–67
benefits and liabilities of, 73
change management, 71–72
compensating, 70–71
configuration, 71
context, 61–62
data governance, 67
data identification, 67
data model, 72
data operation, 67
data representation, 67
data values, 72
design considerations, 67
diagrams, 63–65
entities, 61
entity representation, 67–68
inquiring vs. updating, 70
integration layer types, 59
known uses, 75
operational considerations, 74
ownership, 71
Phone Number entity example,

64–66
Portal Integration pattern, 62
process, 63–66
references, 70
related patterns, 75
schema reconciliation, 67–69
schema reconciliation diagram,

69
security considerations, 74
solution, 62–66
testing considerations, 74

entity references in Entity
Aggregation pattern, 70

entity representation in Entity
Aggregation pattern, 67–68

ERP, 104–105, 127
error handling, 92

Ethernet, 226–229
Broker pattern, 231

Execute Scheduled Payment use
case, 33–35

baseline architecture, 33
models, 40–43
Pipes and Filters pattern with

BizTalk Server 2004, 296–297
Execute Scheduled Payments

orchestration, 90–103
example, 91–103
process model, 92
SQL Server adapter, 90, 101–103

experience, 11
external gateway for B2B

integration, 310–311

F
far links, 26
fault tolerance, 257
feedback and support, xv
File Transfer pattern, 114–117

Data Integration pattern, 129
logical data layer, 126

filter reuse, 305
filters See Pipes and Filters pattern
financial planning services team,

351
fixed subscriptions See

subscriptions
Following Correlation Set, 88
Fowler, Martin, 44, 49, 128
Functional Integration pattern, 24–26

accessing account services on
the mainframe, 44

Data Integration pattern, 132
Data Transfer Object pattern, 140
diagram, 39
diagram of alternatives, 120
Distributed Object Integration

pattern, 119–120
for functionality sharing, 38
layered applications, 113
Message Broker pattern, 38
Message-Oriented Middleware

Integration pattern, 119–120,
140–141

Index 393

privacy and encryption issues,
133

Process Integration pattern, 79
programming models, 143, 144
relation to Data Integration

pattern, 134
Remote Facade pattern, 140
requirements, 137
Service-Oriented Integration

pattern, 119–120, 138–139,
141–142

system connections, 118–120,
135–145
benefits, 142–143
choosing between

alternatives, 139–140
choosing Distributed Objects,

140
credit scoring example, 119
diagram, 136
Distributed Object Integration

pattern, 138, 140
forces, 135–136
integrating external

applications, 137
kinds of functional

integration, 119–120
liabilities, 143–144
Message-Oriented Middleware

Integration pattern, 138, 140
problem, 135
resulting context, 138
security considerations, 144
Service-Oriented Integration

pattern, 139, 141–142
solution, 136–137
table, 137
testing considerations, 144

functionality sharing, 38

G
gateway chaining, 311–312
Gateway object

CRM, 49–50
diagram, 50

Gateway pattern, 33–35, 308–318
account system testing, 46
benefits, 314–315
context, 308
described, 44–45
example, 312–314
gateway choices, 310–311
with Host Integration Server

2004, 319–339
background, 319–320
benefits, 339
components, 331
context, 319
example, 331
functions, 332

 selecting the programming
model, 332

 configuring the mainframe
environment, 332

 configuring the TI
metadata file, 333–337

 configuring network
protocol connectivity,
337

 configuring a TI remote
environment, 338

 adding an IIS virtual
directory, 338

 configuring a Windows-
initiated processing
object, 338

 implementing a .NET
Framework client
application, 339

Global Bank property values
table, 338

implementation strategy, 320–
331
 selecting the programming

model, 322–326
 configuring the mainframe

environment, 326–327
 configuring the TI

Metadata File, 327–328
 configuring network

protocol connectivity,
328–329

 configuring a remote
environment, 330

 adding an IIS virtual
directory, 330

 configuring a Windows-
initiated processing
object, 331

 implementing a .NET
Framework client
application, 331

liabilities, 339
processing object property

values, 338
tests, 339

liabilities, 315
operational considerations, 317
overview, 44–45, 284–285
problem, 308
related patterns, 317
responsibilities and

collaborations, 310
security considerations, 316
Service Interface pattern, 44–45
solution, 309–312
testing considerations, 315–316

General Manager of banking See
GM of banking

Global Bank scenario
asynchronous business practice,

151–152
baseline architecture role design,

21–50
account services on the

mainframe, 44–46
Execute Scheduled Payment

and Receive Payment
Response, 35–43

implementing the Global
Bank scenario, 50–53

message broker for the loan
systems, 29–33

portal Web application, 46–50
scheduled payment use case,

33–35
View Scheduled Payments

use case, 21–33

Index394

Global Bank scenario (continued)
context, 4, 342–343
described, 4–6
enterprise architecture stack,

355–358
Execute Scheduled Payments

orchestration, 90–103
example, 91–103

final pattern choice, 374, 376, 377
method parameters, 336
network diagram with server

types, 51–53
next steps, 6
pattern instances, 376
patterns, 11–17
patterns to communicate design

decisions, 20
requirements, 4–5, 19–21
See also project notebook; View

Scheduled Payments use case
GM of banking, 351–354, 359
GotDotNet community, xiv–xv
granularity, 126

H
Half Synch/Half Asynch pattern, 49–

50
HAT tool, 203, 204, 255, 307
health, 273
HLLAPI, 208
host-initiated processing, 320
how this book is organized, xii–xiii
Hruby, Pavel, 358
hub-and-spoke architecture, 218, 237

See also Message Broker pattern

I
idempotent messages, 141
IDL, 147
IIS, 161, 321

virtual directory, 330
Implementing Broker with .NET

Remoting Using Client-
Activated Objects, 220

Implementing Broker with .NET
Remoting Using Server-
Activated Objects, 220

Implementing Gateway with Host
Integration Server 2004 pattern,
317

Implementing Pipes and Filters with
BizTalk Server 2004 pattern,
295

Implementing Process Integration
with BizTalk Server 2004
pattern, 85

Implementing Service-Oriented
Integration with ASP.NET
pattern, 155

Implementing Service-Oriented
Integration with BizTalk Server
2004, 155, 179, 243

IMS transactions, 322
In-band and Out-of-band Partitions

pattern, 295
Indirect Broker pattern

and BizTalk Server 2004, 221
diagram of relationships, 216
implementation diagram, 218
similarity to Mediator pattern,

217
initial network diagram with

server types, 12
initial subscriptions See

subscriptions
Initializing Correlation Set, 88
inquiring vs. updating in Entity

Aggregation pattern, 70
instance-based collaboration, 119
instance-based integration, 159
instances, 375–378
integrating layer, 55–110

choosing an integration layer
type, 57–60

coupling, 57
integrating layer patterns, 60
level of abstraction, 56
level of automation, 55–56
maintaining state, 56–57
semantic dissonance, 57
types, 370–371
See also BizTalk Server 2004;

Entity Aggregation pattern;
Portal Integration pattern;
Process Integration pattern

integration
applications, 3
patterns, 1–17
problem of, 1–3

integration layer types, 57–60
Entity Aggregation pattern, 59
Portal Integration pattern, 58–59
process integration layer, 59–60

integration layers patterns table,
285

Integration patterns, 369–378
types of patterns, 371
vs. Application patterns, 48, 213

integration topologies, 26–28, 213–
282

Broker pattern, 215–221, 231
examples, 218–221

integration topology level, 229
logical topology, 226–230
Message Broker implementation

with BizTalk Server 2004, 245–
259

Message Broker pattern, 237–244
Message Bus and Publish/

Subscribe patterns, 231–235
Message Bus pattern, 221–223,

260–271
physical topology, 226
Point-to-Point Connection pattern,

214–215, 229–230
Publish/Subscribe pattern, 223–

225, 272–282
subscription mechanisms, 277
table of integration patterns, 236
topology levels, 225–229
using topologies together, 229–

235
See also Broker pattern; Message

Broker pattern; Message Bus
pattern; Publish/Subscribe
pattern

integration topology, 226
Intercepting Filter pattern, 295

diagram, 47
further information on, 48, 295
portal Web application, 46–50

Index 395

internal gateway for enterprise
integration, 310

interprocess communication
mechanisms, 317

J
Januszewski, Karsten, 220

K
Kent, William, 57

L
languages for defining process

models, 82
latency tolerance, 126
Layered Application pattern

Presentation Integration pattern,
206

system connections, 111–112
layers

Process Integration pattern, 36–37
Three-Layered Services Application

pattern, 23
See also integrating layer

link-to-program name, 328
list of patterns and pattlets, 379–

384
List-Based Publish/Subscribe pattern,

223, 232–233
Broadcast-Based Publish/Subscribe

pattern, 274
Message Bus pattern, 263, 265
Publish/Subscribe pattern, 273–

274
load-balancing, 257
loan system

connection, 26
Message Broker pattern, 29–33

logical data layer, 126
logical services, 365–367
logical topology

Broker pattern, 231
CORBA, 220
integration topologies, 226–230

loose coupling, 57

LU 6.2 protocol, 322–323
alternatives, 326
components, 324–325

M
mainframes

accessing account services on
the mainframe, 44–46

connection overview, 25
Maintain Data Copies pattern, 114–

117
considerations, 130
Data Replication pattern, 116
list of other patterns, 129
logical data layer, 126

master references in Entity
Aggregation pattern, 70

master/subordinate relationships,
126

Mediator pattern, 217, 243
MEP, 150–151
mergers and acquisitions, 342–343
Message Broker pattern, 27–28, 237–

243
benefits, 240–241
and BizTalk Server 2004, 221,

243, 245–259
adapter types, 247–248
benefits, 255
business rule engine, 257–258
context, 245
context and background, 245–

246
diagram of internal publish-

subscribe architecture, 247
example, 249–255

 creating the receive port
and defining message
schemas, 250–252

 defining maps to convert
between message
formats, 252–253

 creating subscriptions to
messages, 253–255

implementation strategy, 246–
249

liabilities, 255
operational considerations,

257
related patterns, 258–259
security considerations, 256
testing considerations, 256
variants, 257

business rule engine, 257–258
characteristics of, 218
context, 237
and coupling, 240
Data Integration, 38
diagram of relationships, 216
example, 239–240
Functional Integration pattern,

38–39
known uses, 243
liabilities, 241
for loan system, 29–33
loan system, 29–33
operational considerations, 243
for payment channels, 37–38
problem, 237–238
routing, 255
security considerations, 239, 242
Service-Oriented Integration

pattern, 38–39
solution, 238–239
subscriptions, 256, 258
testing considerations, 242
variants and related patterns,

243
Message Bus pattern, 28, 221–223,

260–271
application communication, 262
benefits, 269
with Broadcast-Based Publish/

Subscribe, 263
with Content-Based Publish/

Subscribe, 263–264
context, 260
difficulties of, 237
example, 266–268
liabilities, 269–270
with List-Based Publish/Subscribe,

263

Index396

Message Bus pattern (continued)
Message Router, 262
operational considerations, 270
physical topology, 232–233
with Publish/Subscribe, 222–225,

231–235, 262
related patterns, 271
responsibilities and

collaborations, 266
routing, 234
security considerations, 270
solution, 261–266
subscriptions, 264

message buses, 214
message exchange patterns See

MEP
Message Router pattern, 262
message switch, 264
Message-Oriented Middleware

Integration pattern, 119–120,
138, 143

Functional Integration pattern,
119–120, 140–141

Global Bank alternatives, 372
Messaging Gateway pattern, 317
Microsoft books, 48
models for Execute Scheduled

Payment use case, 40–43
MSMQT, 248, 250

N
near links, 26
.NET Framework, 159–161

compatability with CICS, 319
LU 6.2 protocol, 324–325

.NET Framework remoting, 219–
220

network diagram with server
types, 51–53

NUnit, 144, 178, 202, 204

O
object request broker See ORB
object-oriented design and

abstraction, 56
Observer pattern, 223, 273–274

Open Systems Interconnection See
OSI

ORB
Broker pattern, 220
Service-Oriented Integration

pattern, 147
See also CORBA

orchestration
BizTalk Server 2004, 86–88
Execute Scheduled Payments, 90
Orchestration Debugger, 204
Orchestration Designer, 87

organization of this book, xii–xiii
OS/400 transactions, 322
OSI stack, 225
ownership in Entity Aggregation

pattern, 71

P
Party Resolution component, 248
pattern-based design, 10
Pattern-Oriented Software

Architecture, Volume 1: A
System of Patterns, 215

patterns
applying, 11
communication aspect of, 378
data layer integration, 114–115
derived from Maintain Data

Copies pattern, 129
diagrams

implementation technology,
16

of integration patterns, 370
Global Bank, 11–17, 374, 376, 377
instances, 375–378
instances in project notebook,

375–378
model diagram, 15
in music, 9
other Microsoft guides, 48
overview, 7–11
pattern-based design, 10
in sports, 7–8
structure of, 9–10
system interactions, 11–13
table of system connection

patterns, 122–123

types, 371–375
types and instances, 372

patterns and pattlets list, 379–384
Patterns of Enterprise Application

Architecture, 44
pattlets list, 379–384
payment channels, 33–34
payment system connection, 24
perimeter network, 44
Phone Number entity, 64–66
physical topology, 214

Broker pattern, 231
choices, 225
integration topologies, 225–228
Message Bus pattern, 232–233

Pipeline Designer, 294
Pipes and Filters pattern

benefits, 292–293
with BizTalk Server 2004, 296–

307
background, 296–297
benefits, 305
custom pipelines, 298–299
example, 299–304

 creating a custom send
pipeline, 299

 assigning and configuring
the filters, 299–301

 building and deploying
the pipeline, 301

 assigning certificates,
301–303

 configuring the send port
to use the custom
pipeline, 304

implementation strategy, 297–
299

liabilities, 305
operational considerations,

306–307
Pipeline Designer, 294
receive pipeline, 298
security considerations, 306
send pipelines, 300
testing considerations, 305–

306
transformation components,

298

Index 397

context, 286
diagram of different

configurations, 288
example, 290–292
forces, 286
liabilities, 293
overview, 283
problem, 286
related patterns, 295
responsibilities and

collaborations, 290
SLA, 293
solution, 287–290
testing considerations, 293–295

Point-to-Point Connection pattern,
26–27

diagrams, 27, 230
Global Bank alternatives, 372
integration topologies, 229–230
payment system, 34
strengths and weaknesses, 214–

215
vs. Broker pattern, 221

port management, 258
port-and-wire model, 31–32, 40–43,

369
port-level tracking, 306–307
Portal Integration pattern, 58–59,

106–110
and amibiguity, 57
analogy to Entity Aggregation

pattern, 62
benefits and liabilities, 109–110
context, 106
diagram, 22, 108
example, 109
flavors, 108
integration layer types, 58–59
and semantic dissonance, 57
solution, 107–109
table of solution components,

109
vs. Process Integration pattern,

107, 110
portal Web application

Global Bank, 46–50

Half Synch/Half Asynch pattern,
49–50

Intercepting Filter pattern, 46–50
predictive routing, 258
preface, xi–xvi
Presentation Integration pattern,

24–26
diagram, 117
HLLAPI, 208
Layered Application pattern, 206
layered applications, 113
system connections, 117–118,

206–212
benefits, 210
brittleness of, 208
context, 206
example, 209
forces, 206–207
liabilities, 210–211
security considerations, 212
solution, 207–209
table of components, 209
testing considerations, 211

privacy and security issues, 133
Process Integration pattern, 76–85

ACID, 81
benefits and liabilities, 83
choosing, 59–60
collaboration table, 79
context, 76
correlating messages and

process instances, 81
diagrams, 36–37, 77, 80, 84–85
Execute Scheduled Payment and

Receive Payment Response,
35–43

Functional Integration pattern, 79
handling exceptions and

compensating transaction, 82
implementation details, 80–82
integration layer types, 59–60
pattern described, 36–37
problem, 76–77
process integration components

table, 79
process managers, 79–80, 82–83,

85

process model, 107–108
solution, 77–80
straight-through processing, 82
testing considerations, 84
transaction, 81
vs. Portal Integration pattern, 107,

110
Process Manager pattern, 85, 105
process managers

BizTalk Server 2004, 104
pattern, 105
Process Integration pattern, 79–80,

82–83, 85
process model

BizTalk Server 2004, 86–88
Execute Scheduled Payments

orchestration, 92
Portal Integration pattern, 107–

108
Process Integration pattern, 77–79

process value analysis, 365
programming models

to access CICS transactions, 322–
327

and BizTalk Server 2004, 103
Distributed Object Integration

pattern, 141
Functional Integration pattern,

143, 144
and Gateway pattern, 49
.NET Framework remoting, 219–

220
TI, 321–323

project notebook, 341–378
banking services bundle, 351–

354
banking services team, 351
bundling services, 350
business architecture views,

358–364
business context, 342–343
from business scenario to

technical solution, 355–369
current portfolio vs. industry

average, 346–348
current services bundle vs.

industry average, 350–354

Index398

enterprise architecture stack,
355–356

Global Bank business context,
342–343

going forward, 378
integration architecture views,

365–378
architecturally significant use

cases, 369
integration patterns, 369–371
logical services, 365–367
process value analysis, 365
technical architecture, 367–369

integration patterns, 369–378
interpreting the artifacts, 342
pattern types, 371–375
patterns instances, 375–378
stakeholder viewpoints, 344–355

board of directors viewpoint,
344

CEO viewpoint, 346–351
director of EBPP, 354, 362–363
EBPP supervisor, 355
GM of banking, 351–354

strategy formulation, 348–350
value proposition for online

services, 344–345
viewpoints

of CEO, 358–359
described, 357
of GM, 360–361
integration architecture, 365
of process owner, 362–363
of process worker, 363–364
within the enterprise

architecture, 357–369
See also Global Bank scenario

promoted properties, 248
property schema, 248
Pub/Sub See Publish/Subscribe

pattern
Publish-Subscribe Channel pattern,

282
Publish/Subscribe pattern

applying, 275–278
benefits, 280
BizTalk Server 2004, 280

Broadcast-Based Publish/Subscribe
pattern, 274

Content-Based Publish/Subscribe
pattern, 275

context, 272
dynamic subscriptions, 277–278
example, 280
fixed subscriptions, 277
integration topologies, 272–282
liabilities, 281
List-Based Publish/Subscribe

pattern, 273–274
Message Bus pattern, 222–225,

231–235, 262
operational considerations, 281
problem, 272–273
refinements, 223
related decisions, 279
related patterns, 271, 282
responsibilities and

collaborations, 279
security considerations, 281
solution, 273–279
subscriptions, 225, 234, 275, 277–

278
testing considerations, 281
See also Broadcast-Based Publish/

Subscribe pattern; Content-
Based Publish/Subscribe
pattern; List-Based Publish/
Subscribe pattern

purpose of this book, 1–2
push vs. pull, 126

Q
QoS, 238, 239, 241
quality of service See QoS

R
Receive Payee Response shape, 98
Receive Payment Response use

case, 35–44
receive pipeline, 298
Receive shape, 92
ReceiveDebitResponse shape, 95
ReceivePaymentRequest

orchestration port, 92, 101

ReceivePaymentResponse, 98, 101
receiver adapters, 248–249
references in Entity Aggregation

pattern, 70
remote environment, 321, 330
Remote Facade pattern, 140
Remote Method Invocation See

RMI
Remote Procedure Call See RPC
Remote Proxy pattern, 317
replication approach, 66–67
RMI, 38
ROM, 4
rough-order-of magnitude See

ROM
routing

Content-Based Publish/Subscribe
pattern, 264, 275

Content-Based Router pattern, 243
described, 214–215
Message Broker pattern, 255
Message Bus pattern, 234
SWIFT, 35

RPC, 149–150

S
Saarinen, Eliel, 213
sales, general, and administrative

See SGA
scenarios See Global Bank scenario
schema reconciliation, 67–69
Scope shape, 89, 96, 100
screen scraping, 24, 113, 206, 207
screened subnet, 44
Sears, Richard, 341
security and Message Broker

pattern, 239, 242
security and privacy issues, 133
semantic dissonance, 57, 132
send pipelines, 300
Send shape, 88
SendDebitRequest shape, 95
SendPaymentRequest, 98, 101
server types network diagram,

51–53
service, definition of, 120, 139, 148

Index 399

Service Gateway pattern
further information on, 48
Service-Oriented Integration

pattern, 139
Service Interface pattern

account system testing, 46
further information on, 48
Gateway pattern, 44–45, 317
Global Bank portal application,

49–50
related patterns, 317
Service-Oriented Integration

pattern, 41, 139, 141–142
Web services, 148

service level agreement See SLA
service stubs, 84–85
Service-Oriented Integration pattern

acronym, 15
alternate implementations, 53
Broker pattern, 215
Functional Integration pattern,

119–120, 138–139, 141–142
functional integration with

Message Broker pattern, 38–39
with Gateway pattern, 44
Global Bank alternatives, 372
system connections, 141–142,

146–156
benefits, 154
context, 146
diagram, 148
document/literal SOAP styles

and encoding, 149–150
example, 153
explicit boundaries, 153
interoperability concerns,

149–150
liabilities, 155
problem, 146–147
related patterns, 155
resulting context, 153–154
security considerations, 155
services, 153
solution, 148
temporal coupling, 150
Web services, 149

vs. Distributed Object Integration
pattern, 159

WSDL, 148

Service-Oriented Integration pattern
with ASP.NET, 157–181

system connections, 157–181
accessing mainframe gateway

example, 164–178
binding element, 177–178
build and run the Web

service, 176–178
connect the service

interface, 169–175
 interface creation, 172
 service implementations

creation, 173
 plug-in factory creation,

174
 Web service method

implementing, 175
define operations that the

service exposes, 168–169
develop XSD documents,

166–167
generate data transfer

classes, 167
messages section, 177
services section, 178
test client creating, 178
<types> element, 177

ASP.NET Web services, 159–
161

background, 157–158
benefits and liabilities, 179
building ASP.NET Web

services, 162–163
developing code first, 162
developing WSDL first, 163
implementation strategy, 158–

159
security considerations, 181
specifying XML Schemas first,

163
testing considerations,

179–181
service interface separation,

179–180
service stubs, 180–181

Service-Oriented Integration pattern
with BizTalk Server 2004, 182–
205

system connections, 182–205
asynchronous interaction,

186–187
asynchronous Web services

choices, 188–190
asynchronous interaction

with polling, 189
client-side asynchrony,

188
implementation, 187–190

background, 182–183
benefits, 203
example, 186–203

 defining message schemas,
190–192

 defining logical request-
response ports, 192–193

 defining orchestration and
connecting to logical
port, 194–200

 building and deploying
the orchestration, 200

 running BizTalk Web
services publishing
wizard, 200

 binding orchestration’s
logical port to the
physical port, 200–201

 starting orchestration, 201
 creating a test client that

invokes the Web service,
201–203

exposing as a Web service,
184–186

implementation choices,
asynchronous interaction
with callback, 189

implementation strategy, 183
liabilities, 204
operational considerations,

205
security considerations, 204–

205
service-oriented integration,

183
testing considerations, 204

Index400

Set Error Status Expression shape,
96

SGA, 359
Shared Database pattern, 114–117

considerations, 130
logical data layer, 126

simple post-processing, 108
single application interaction, 108
single sign-on See SSO
Singleton pattern, 371–372
sink system, 283–284
SLA

in Global Bank scenario, 5
Pipes and Filters pattern, 293

Society for World-wide Interbank
Financial Telecommunication
See SWIFT

SOI See Service-Oriented Integration
pattern

source system, 283–284
SQL Server 2000, 257
SQL Server adapter, 90, 101–103
SSO, 105
state, 56–57
static or dynamic subscriptions, 279
status, 273
STP See straight-through

processing
straight-through processing, 66, 82
strategy formulation, 348–350
structure of patterns, 9
stubs, 84–85
style conventions table, xiv
subscriptions

and BizTalk Server 2004, 253–
255, 280

initial subscription, 279
integration topologies, 277
Message Broker pattern, 256, 258
Message Bus pattern, 264
Publish/Subscribe pattern, 225,

234, 275, 277–278
dynamic subscriptions in,

277–278
fixed subscriptions in, 277

static or dynamic subscriptions,
279

topic discovery, 279
wildcard subscriptions, 279

SWIFT
described, 33–34
diagram of message process, 152
Gateway pattern, 33–35
gateway use for baseline

architecture, 35–43
routing, 35

swivel chair integration, 106
synchronization logic vs. latency,

126
system connections, 111–212

connecting to layered
applications, 111–114

CRM, 24–25
designing baseline architecture,

23–26
Layered Application pattern, 111–

112
diagrams, 112, 113

loan system, 26
mainframes, 25
patterns, 120–123

diagram of patterns, 114
diagram of relationships, 121
table, 122–123

payment system, 24
See also Data Integration pattern;

Functional Integration pattern;
Presentation Integration
pattern; service-oriented
integration; Service-Oriented
Integration pattern with
ASP.NET; Service-Oriented
Integration pattern with
BizTalk Server 2004; Three-
Layered Services Application
pattern

system interactions, 11–13

T
tables

components of Presentation
Integration pattern, 209

Functional Integration pattern,
137

Gateway pattern, 310
Global Bank method

parameters, 336
Global Bank property values,

338
integration layers patterns, 285
integration topology patterns,

236
Message Bus pattern, 266
Process Integration pattern, 79
processing object property

values, 338
system connection patterns, 122–

123
target audience for this book, xi–xii
technical architecture, 367–369
Terminate shape, 97
terminological conventions, xiv
test stubs, 84–85
3270 terminal standard, 208
Three-Layered Services Application

pattern
diagram, 112
system connections, 23–24, 111–

112
thumbprints, 299
TI, 319

CICS link-to-program, 324–325
client object, 324–325
COMMAREA, 324–325
DB2/VSAM, 324–325
DPL, 324–325
metadata file configuring, 327–

328, 333–337
Mirror TP CSMI, 324–325
programming models, 321–323
remote environment, 324–325
run-time component, 321
run-time proxy, 324–325
table of Global Bank method

parameters, 336
table of transactions, 334
transaction choices, 322

TI Designer, 321
TI Manager, 321
topic discovery, 279
topic-based systems, 224–225, 275–

276
topology See integration topologies

Index 401

Transaction Integrator See TI
Transform shape, 95
transformations

components, 298
described, 216
implementing, 286

TransformPayment2DebitRequest,
95

transport adapters, 247–249
<types> element, 177

U
UDDI, 155

Direct Broker pattern, 220
UDP, 220, 231
UML

asynchronous interaction,
example, 187

Erikkson/Penker Business
Extensions, 358

Unified Modeling Language See
UML

unified view, 68
unit test cases, 179–180
Universal Description Discovery

and Integration See UDDI
updating vs. inquiring, 70
User Datagram Packet See UDP

V
value proposition for online

services, 344–345
View Scheduled Payments use

case, 21–33
collaboration diagram, 13–14, 30
system connections, 23–26

viewpoints
of CEO, 358–359
enterprise architecture stack, 357
of GM, 360–361
of process owner, 362–363
of process worker, 363–364
within the enterprise

architecture, 357–369

W
Web services

defining, 149
for printing, 290–292
Service Interface pattern, 148

Web Services Choreography

Interface See WSCI
Web Services Description

Language See WSDL
WebServiceHandler, 161
Wheeler, David, 55
who should read this book, xi–xii
wildcard subscriptions, 279
Windows-initiated processing, 319
WIP, 331
WMI interface, 185
WS-I, 148
WS-Security specification, 181, 205
WSCI, 82
WSDL

components, 176–178
Service-Oriented Integration

pattern, 148, 162
style and serialization, 149

X
XML

Service-Oriented Integration
pattern, 141–163

transformations, 286

Maintain
Data Copies

Data
Integration

File
Transfer

Point-to-
Point

Connection

Message
Bus Broker

Distributed
Object

Integration

Message-
Oriented

Middleware
Integration

Functional
Integration

Service-
Oriented

Integration

Presentation
Integration

Entity
Integration

1

2

3

Portal
Integration

Process
Integration

Indirect
Broker

Shared
Database

Broadcast-Based
Publish/Subscribe

Content-Based
Publish/Subscribe

List-Based
Publish/Subscribe

Direct
Broker

Publish/Subscribe

Message
Broker

Integration patterns and their relationships

	Front Cover
	List of Patterns
	Contents
	Preface
	Who Should Read This Book
	How This Book Is Organized
	Documentation Conventions
	Community
	Feedback and Support
	Contributors
	About the Principal Authors

	Chapter 1: Integration and Patterns
	The Problem of Integration
	Integration Architecture
	Applications

	The Global Bank Scenario
	Context
	Requirements
	Next Steps

	Patterns
	Patterns in Sports
	Patterns in Music
	Pattern Structure
	Pattern-Based Design

	Patterns at Global Bank
	Next Chapter

	Chapter 2: Using Patterns to Design the Baseline Architecture
	Meeting the Requirements of Global Bank
	Using Patterns to Communicate Design Decisions
	The Role of a Baseline Architecture

	Designing the Global Bank Baseline Architecture
	View Scheduled Payments Use Case
	Adding a Message Broker for the Loan Systems
	Execute Scheduled Payment Use Case
	Designing for Execute Scheduled Payment and Receive Payment Response
	Accessing Account Services on the Mainframe
	The Portal Web Application
	Global Bank Portal Application
	Implementing the Global Bank Scenario

	Next Chapter

	Chapter 3: Integrating Layer
	Level of Automation
	Level of Abstraction
	Maintaining State
	Coupling
	Semantic Dissonance
	Choosing an Integration Layer Type
	Portal Integration
	Entity Aggregation
	Process Integration

	Integrating Layer Patterns
	Entity Aggregation
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Operational Considerations
	Known Uses
	Related Patterns

	Process Integration
	Context
	Problem
	Forces
	Solution
	Implementation Details
	Example
	Resulting Context
	Testing Considerations
	Related Patterns
	Acknowledgments

	Implementing Process Integration with BizTalk Server 2004
	Context
	Background
	Implementation Strategy
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Operational Considerations
	Related Patterns
	Acknowledgments

	Portal Integration
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context

	Chapter 4: System Connections
	Connecting to Layered Applications
	Data Integration
	Presentation Integration
	Functional Integration
	Credit Scoring Example
	Kinds of Functional Integration

	System Connection Patterns
	Data Integration
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Acknowledgments

	Functional Integration
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Testing Considerations
	Security Considerations
	Acknowledgments

	Service-Oriented Integration
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Security Considerations
	Related Patterns
	Acknowledgments

	Implementing Service-Oriented Integration with ASP.NET
	Context
	Background
	Implementation Strategy
	Example: Building an ASP.NET Web Service to Access the Mainframe Gateway
	Resulting Context
	Testing Considerations
	Security Considerations
	Acknowledgments

	Implementing Service-Oriented Integration with BizTalk Server 2004
	Context
	Background
	Implementation Strategy
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Operational Considerations
	Acknowledgments

	Presentation Integration
	Aliases
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Acknowledgments

	Chapter 5: Integration Topologies
	Point-to-Point Connection
	Broker
	Broker Examples

	Message Bus
	Publish/Subscribe
	List-Based Publish/Subscribe
	Broadcast-Based Publish/Subscribe
	Content-Based Publish/Subscribe

	A More Detailed Look at Topologies
	Topology Levels

	Using Topologies Together
	Point-to-Point Connection
	Broker
	Message Bus and Publish/Subscribe

	Integration Topology Level Patterns
	Message Broker
	Aliases
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Operational Considerations
	Known Uses
	Variants
	Related Patterns
	Acknowledgments

	Implementing Message Broker with BizTalk Server 2004
	Context
	Background
	Implementation Strategy
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Operational Considerations
	Variants
	Business Rule Engine
	Related Patterns
	Acknowledgments

	Message Bus
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Security Considerations
	Operational Considerations
	Related Patterns
	Acknowledgments

	Publish/Subscribe
	Aliases
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Operational Considerations
	Related Patterns
	Acknowledgments

	Chapter 6: Additional Integration Patterns
	Pipes and Filters
	Gateway
	Integration Layers Patterns
	Pipes and Filters
	Aliases
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Testing Considerations
	Known Uses
	Related Patterns
	Acknowledgments

	Implementing Pipes and Filters with BizTalk Server 2004
	Context
	Background
	Implementation Strategy
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Operational Considerations
	Acknowledgments

	Gateway
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Operational Considerations
	Related Patterns
	Acknowledgments

	Implementing Gateway with Host Integration Server 2004
	Context
	Background
	Implementation Strategy
	Example
	Resulting Context
	Tests

	Chapter 7: Project Notebook
	Interpreting the Artifacts
	Global Bank Business Context
	Convergence in the Banking Industry

	Stakeholder Viewpoints
	Board of Directors Viewpoint
	Chief Executive Officer
	General Manager of Banking
	Director of Electronic Bill Presentment and Payment
	Electronic Bill Presentment and Payment Supervisor

	From Business Scenario to Technical Solution
	Viewpoints Within the Enterprise Architecture
	Business Architecture Views
	Integration Architecture Views
	Integration Patterns

	Going Forward

	Appendix
	List of Patterns and Pattlets

	Bibliography
	Index

