
Untitled-2 1 6/3/13 10:06 AM

www.DevExpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS JULY 2013 VOL 28 NO 7

How Microsoft’s Next-Gen Compiler
Project Can Improve Your Code
Jason Bock . 34

Leveraging Windows 8 Features with MVVM
Brent Edwards . 42

Create a Windows Phone 8
Company Hub App
Tony Champion . 56

Building Apps for Windows 8
and Windows Phone 8
Joel Reyes . 64

Build Modern Business Productivity Apps
with Visual Studio LightSwitch
Jan Van der Haegen and Beth Massi . 70

COLUMNS
CUTTING EDGE
Creating Mobile-Optimized
Views in ASP.NET MVC 4
Dino Esposito, page 6

DATA POINTS
Behavior-Driven Design
with SpecFlow
Julie Lerman, page 12

WINDOWS AZURE INSIDER
Meter and Autoscale
Multi-Tenant Applications
in Windows Azure
Bruno Terkaly and
Ricardo Villalobos, page 22

MODERN APPS
Mastering Controls and
Settings in Windows Store Apps
Built with JavaScript
Rachel Appel, page 78

DIRECTX FACTOR
Simulating an
Analog Synthesizer
Charles Petzold, page 82

DON’T GET ME STARTED
Activation Energy
David Platt, page 88

Inside the “Roslyn”
Project Compiler..................34

Desktop

Native
Mobile

Download Your Free Trial
infragistics.com/enterprise-READY

Deliver high performance, scalable
and stylable touch-enabled

enterprise applications in the
platform of your choice.

Develop rich, device-specific user experience for
iOS, Android, and Windows Phone, as well as

mobile cross-platform apps with Mono-Touch.

Untitled-6 2 5/1/13 2:31 PM

http://www.infragistics.com/enterprise-READY

Cross-
Device

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC (+61) 3 9982 4545

UX
Prototyping

Build standards-based, touch-enabled
HTML5 & jQuery experiences for desktop,
tablet, and mobile delivery, including multi-
device targeting with frameworks such as
PhoneGap and MVC.

Explore design ideas through rapid, user-centered
wireframing, prototyping, and evaluation before
investing a single line of code.

Copyright 1996-2013 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

Untitled-6 3 5/1/13 2:32 PM

http://www.infragistics.com/enterprise-READY

Printed in the USA

magazineJULY 2013 VOLUME 28 NUMBER 7

BJÖRN RETTIG Director
MOHAMMAD AL-SABT Editorial Director/mmeditor@microsoft.com
PATRICK O’NEILL Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor
SHARON TERDEMAN Features Editor
WENDY HERNANDEZ Group Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

SENIOR CONTRIBUTING EDITOR Dr. James McCaffrey
CONTRIBUTING EDITORS Rachel Appel, Dino Esposito, Kenny Kerr,
Julie Lerman, Ted Neward, Charles Petzold, David S. Platt,
Bruno Terkaly, Ricardo Villalobos

Henry Allain President, Redmond Media Group
Michele Imgrund Sr. Director of Marketing & Audience Engagement
Tracy Cook Director of Online Marketing
Irene Fincher Audience Development Manager

ADVERTISING SALES: 818-674-3416/dlabianca@1105media.com

Dan LaBianca Vice President, Group Publisher
Chris Kourtoglou Regional Sales Manager
Danna Vedder Regional Sales Manager/Microsoft Account Manager
Jenny Hernandez-Asandas Director, Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct, Attn: Jane Long. Phone:
913-685-1301; E-mail: jlong@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:818-674-3416/dlabianca@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

Untitled-2 1 4/30/13 10:48 AM

www.amyuni.com

msdn magazine4

In case you haven’t noticed, Microsoft has been extremely busy of
late improving and promoting its Windows Azure cloud platform
as a compelling tool for development. Most recently, the Windows
Azure group has been preaching the benefi ts of Windows Azure in
dev and test operations, citing the fl exibility and rapid scalability
provided by Windows Azure virtual machines (VMs).

Craig Kitterman, product manager for the Windows Azure
Team at Microsoft , gave a keynote address at the Visual Studio
Live! Chicago conference in May. When I asked Kitterman about
aspects of Windows Azure that developers fi nd most compelling,
he singled out dev and test.

“We’re seeing the most buzz around core scenarios that devel-
opers can get started with quickly. Th e primary one here is the
ability to use Windows Azure virtual machines for doing dev and
test in the cloud,” Kitterman told me. “Many developers think
they have to be deploying into the cloud for production to get any
benefi t, but with on-demand, scriptable VMs, anyone can stand
up and tear down a complete dev/test environment in minutes.
MSDN subscribers can actually do it for free today by activating
their Azure benefi t in just a few minutes.”

Kitterman stressed that developers oft en look at the cloud as
“an all-or-nothing proposition,” when it in fact allows them to
start small and go big with things such as dev/test environments.

“Hybrid is a core design point for Azure,” Kitterman said, “so
we’ve built it from the ground up to make the on-ramp easy,
allowing customers to leverage existing IT investments while
taking advantage of some Azure services.”

Th is benefi t is certainly visible in the dev/test cycle, where Windows
Azure can help dev organizations break time- and budget-sapping
bottlenecks. Tasks that once demanded steep investments in phys-
ical infrastructure can now be serviced from the cloud.

“Generally speaking, you want your test environment to mirror
exactly your production environment. This makes your testing
environment realistic. But this also is very expensive because you’re
essentially doubling the cost of all your hardware,” says Bruno
Terkaly, coauthor of the MSDN Magazine Windows Azure Insider
column and a Microsoft technical evangelist. “Being able to quickly
deploy to a staging environment, and with the click of a mouse,
moving it to production is a seamless process. Companies don’t
need to invest in these large test environments.”

Terkaly adds that Microsoft is investing heavily in automation,
enabling the use of Windows PowerShell scripts to automate appli-
cation testing and deployment, for instance. He also notes that many
developers he talks to aren’t aware that the cloud, by way of Visual
Studio Team Foundation Service, can be used to leverage applica-
tion lifecycle management (ALM) features such as source control,
bug tracking, build automation, test-case management and test labs.

Windows Azure has been a bit slow to earn uptake in the develop-
ment space, but that trend by all accounts is changing, and off erings
like Team Foundation Service are making cloud-based development
hard to ignore. Still, Kitterman said, Microsoft has “a ways to go.”

“Naturally, it’s going to take some time as enterprise application
lifecycles are long, and new applications are where developers will
see the most benefi t,” Kitterman said. “Driving awareness of scenarios
like dev/test and VM migration that developers can take advantage
of immediately will be my focus in the short term.”

Is your dev organization looking into Windows Azure? What
would you like to see Microsoft do to make Windows Azure more
compelling for your needs?

Dev/Test in the Cloud

MICHAEL DESMONDEDITOR’S NOTE

© 2013 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

Kitterman stressed that
developers often look at the cloud
as “an all-or-nothing proposition,”
when it in fact allows them to start
small and go big with things such

as dev/test environments.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Untitled-2 1 5/29/13 12:15 PM

www.ontimenow.com/MSDN
www.ontimenow.com
www.axosoft.com
www.axosoft.com

msdn magazine6

If you scratch the surface of common-sense considerations about
programming mobile sites, you find an inherent contradiction.
On one hand, you hear people screaming about being (or willing
to be) mobile-fi rst in their approach to programming applications
and sites. On the other hand, you oft en hear the same people praise
CSS media queries and liquid layouts. Th e contradiction I see is
that the common use being made of CSS media queries and liquid
layouts doesn’t put the mobile perspective before everything—it’s
not a mobile-fi rst technique. In this article I’ll explain how to use
server-side logic to offer up the best display for a given device,
incorporating a new feature of ASP.NET MVC 4 called display modes.

Th e problem isn’t CSS media queries as a technology. Th e prob-
lem isn’t even responsive Web design (RWD) as the supporting
methodology of CSS media queries—if not the technology’s
inspiring philosophy. So what makes the use of CSS media queries
and liquid layouts a “mobile-last” approach? A clue can be found
right in the slogan used to push this approach: A single codebase
can serve multiple views. In this perspective, CSS—a client-side
technology—is used to switch between views, and JavaScript is
used to adapt views further when CSS isn’t enough.

As I see things, in this approach there’s the underlying proposi-
tion of serving all devices the same content, just adjusting the page
layout to fi t the screen size. In doing so, you might not be able to
off er the best possible experience to users. I believe you reasonably
should aim at having a single codebase—a common ground of Web
APIs—but should defi nitely focus on specifi c use cases for each
class of devices you intend to support. Th e term “mobile” makes
little sense today, as it’s being replaced by classes of devices such
as smartphones, tablets, laptops and smart TVs—not to mention
wearable devices such as eyeglass displays and smart wristwatches.

About a year ago, I presented in this column a server-side
approach to take with ASP.NET MVC site development: to build
ad hoc views for each class of supported devices (“Mobile Site
Development: Markup,” msdn.microsoft.com/magazine/jj133814). I did
that in the context of ASP.NET MVC 3. Nicely enough, ASP.NET
MVC 4 comes with the aforementioned display modes, which
easily can be employed to implement server-side logic that intel-
ligently serves the best view and content for a given device. To be
really eff ective, this approach requires that you know as much as
possible about the capabilities of the requesting device. However,
besides basic information about the screen size and current orien-
tation, there’s not much else that can be detected on the client. You
then need to resort to a server repository of device information.

Introducing Display Modes in ASP.NET MVC 4
Before I start delving deep into display modes, let me state up front
that this article (as well as display mode technology itself) is mainly
concerned with building a new, unique site that dynamically binds
the same URL to diff erent views. If you already have a Web site and
want to provide a companion site optimized for some (mobile)
devices, well, that’s a diff erent story. You can still use this column
as a guide for building the companion site, but unifying URLs with
an existing parent site requires diff erent tools.

In ASP.NET MVC 4, display modes are a system feature that ex-
tends the classic behavior of view engines with the ability to pick
the view fi le that’s most appropriate for the requesting device. In
the aforementioned article for ASP.NET MVC 3, I used a custom
view engine for this purpose. In that solution I also was limited to

 Creating Mobile-Optimized Views
in ASP.NET MVC 4

CUTTING EDGE DINO ESPOSITO

<h2>
 Display Modes currently active
 (@DisplayModeProvider.Instance.Modes.Count mode(s))
</h2>

@{
 foreach(var d in DisplayModeProvider.Instance.Modes)
 {
 @(String.IsNullOrEmpty(d.DisplayModeId)
 ?"default" :d.DisplayModeId)
 }
}

Figure 1 The Standard List of Supported Display Modes

Figure 2 Default List of Display Modes

http://msdn.microsoft.com/magazine/jj133814

Learn more and download a free trial at www.altova.com/server

Manage Information Workflows

with Altova® FlowForce® Server

Introducing FlowForce Server, the powerful new

 server software for managing today’s multi-step,

 enterprise-level data validation, aggregation,

 processing, and reporting tasks. This flexible workflow orchestration tool

 provides easy-to-manage automation of essential business processes on

 high-performance servers.

• FlowForce® Server for orchestrating

 events, triggers, and the automation

 of processes

• MapForce® Server for automating

 any-to-any data mapping and

 aggregation processes

• StyleVision® Server for automating

 business report generation in HTML,

 PDF, and Word

• RaptorXML® Server for hyper-fast

 validation/processing of XML, XBRL,

 XSLT, and XQuery

FlowForce Server is at the center of

Altova’s new line of cross-platform

server products optimized for today’s

high-performance, parallel computing

environments:

StyleVision Server

HTML, PDF, Word,

OOXML, RTF

 MapForce Server

 XML, SQL DBs,

 EDI, flat files,

XBRL, Web services

RaptorXML
 Server
 XML and XBRL

validation/processing

FlowForce Server

Job triggers

User management

Access control

Untitled-2 1 5/29/13 12:14 PM

http://www.altova.com/server

msdn magazine8 Cutting Edge

Razor views. With display modes,
your controller methods will still
invoke, say, a view named Index,
and the ASP.NET MVC runtime
will instead pick up a view file
named index.mobile.cshtml if the
requesting device is known to be a
mobile device.

Th is is great news, as it means
you can still have a single codebase
for your site. You just need to add
extra CSHTML view fi les for each
class of device you intend to sup-
port. To start playing with display
modes, let’s have a look at the code
sample in Figure 1.

Th e page in the code in Figure 1
shows the standard list of supported
display modes. Figure 2 shows the output generated by the page.

ASP.NET MVC 4 display modes follow a few conventions.
In particular, each display mode is associated with a keyword.
Th e keyword is used to compose the name of the corresponding
view fi le. Th e default display mode is bound to an empty string.
As a result, the following view fi les are correctly handled by any
ASP.NET MVC 4 application without any further intervention
from you: index.cshtml and index.mobile.cshtml.

To see a demo, copy the index.cshtml fi le to a new fi le named
index.mobile.cshtml and add it to the project. To distinguish
between the two fi les, add the following to the mobile fi le:

<div style="border-bottom: solid 1px #000">Mobile view</div>

If you run the application and test it using Internet Explorer or
another desktop browser, nothing changes. Try hitting F12 to bring up
Internet Explorer Developer Tools and set a mobile user agent (UA)
by selecting Tools | Change user agent string, as shown in Figure 3.

I’ve already confi gured a few mobile and tablet UAs. For example,
you can use the following, which identifi es the requesting browser
as an HTC Desire Android smartphone:

Mozilla/5.0 (Linux; U; Android 2.1; xx-xx; HTC Desire Build/ERE27)
AppleWebKit/525.10+ (KHTML, like Gecko) Version/3.0.4 Mobile Safari/523.12.2

Figure 4 shows what you get from the ASP.NET MVC 4 site.
Th e page being served from the same pair of controller and action
methods is index.mobile.cshtml. More important, all of this took
place without any change in the programming style and without
learning any new skills.

Going Beyond the Basics
What’s been discussed so far is the bare minimum of what you
can—and should—do in your mobile site development. Two key
points need to be addressed to turn display modes into a solution
for a realistic site. One is exploring ways to add multiple display

modes. Th e other is exploring ways to inject some ad hoc logic to
detect devices more reliably.

Th e built-in logic used by ASP.NET MVC to detect mobile devices
isn’t all that reliable. It probably works with most smartphones, but it
fails with older cell phones. For example, consider the following UA:

SAMSUNG-GT-S3370/S3370DDJD4 SHP/VPP/R5 Dolfin/1.5 Qtv/5.3
SMM-MMS/1.2.0 profile/MIDP-2.1 configuration/CLDC-1.1 OPN-N

Th is UA refers to a legacy phone (fairly popular a couple years ago)
running a proprietary OS and a WebKit-based custom browser. Th e
phone doesn’t support Wi-Fi connectivity, but it does have surpris-
ingly good HTML-rendering capabilities. Th e screen is tinier than
most smartphones, but it’s touch-enabled. With the basic display
mode support from ASP.NET MVC, this phone isn’t recognized as
a mobile device and is served the full versions of pages. Th is has two
drawbacks. First, users can hardly view content because it will be
stretched and wrapped around the screen. Second, a lot of content
will be downloaded, and because the phone doesn’t support Wi-Fi
connectivity, all of this likely happens on a 3G connection—certainly
slow and possibly expensive for the user.

When I raise this point, some people reply that their sites just
don’t support these types of legacy phones. Th at’s perfectly sound,

Figure 3 Forcing a Mobile User Agent into Internet Explorer for Testing Purposes

Figure 4 Switching to a Mobile View

Each display mode is associated
with a keyword.

Activate your Windows Azure MSDN Benefits
http://aka.ms/AzureContest

*No purchase necessary. Open to eligible Visual Studio Professional, Premium or Ultimate with MSDN subscribers as of June 1, 2013. Ends 11:59 p.m. PT
on September 30, 2013. For full official rules including odds, eligibility and prize restrictions see website. Sponsor: Microsoft Corporation. Aston Martin is a
trademark owned and licensed by Aston Martin Lagonda Limited. Image copyright Evox Images. All rights reserved.
**Actual credits based on subscription level.

You’ve got it, now use it.
Accelerate development & test.
You could win* an Aston Martin.

Eligible MSDN subscribers now receive up to $150** in Windows Azure credits every
month for no additional fee. Use virtual machines to accelerate development and
test in the cloud. You can activate your benefits in less than five minutes.

Untitled-5 1 5/29/13 4:00 PM

http://aka.ms/AzureContest

msdn magazine10 Cutting Edge

but wouldn’t it be nice to send a polite message to the user in that
case instead of letting things go uncontrolled? To be able to send a
message such as, “Sorry, the site can’t be viewed on your device,” you
still need to recognize the device properly and understand that it’s
diff erent from, say, an iPhone. Furthermore, whether you can safely
ignore legacy devices is a business—not implementation—decision.
Not serving older generations of devices could aff ect your business
beyond imagination. So, let’s see how to add multiple display modes
to a site to properly serve multiple classes of devices.

Classes of Devices
A modern Web site off ers the best possible experience regardless
of the device type. “Best possible experience” means providing ad
hoc use cases, selected data and specifi c functions. Th e resulting
markup has to be device-specifi c. If you adjust things on the client,
instead—as happens when you rely on CSS media queries—you
actually have a unifi ed vision of the pages and then just adapt them
to tinier screens. Th is mostly means hiding some blocks, fl owing
some others vertically and perhaps requesting a lighter set of
visuals. Th e unifi ed vision of the page is oft en the desktop page.
Personally, I wouldn’t call this a mobile-fi rst approach.

By saying “device type,” I don’t mean distinguishing an iPhone
device from a Windows Phone device. Rather, I aim to use logic that

can serve diff erent markup to smartphones, tablets and laptops. So in
ASP.NET MVC 4, I’d have at least three display modes: smartphone,
tablet and default (for desktop browsers). I’ll add a new DisplayCon-
fi g class to be invoked in App_Start (see Figure 5).

Th e class fi rst empties the provided collection of display modes.
In this way, it gets rid of default modes. Next, the code fi lls up the
provided system collection with a newly created list of display
modes. A new display mode is an instance of the DefaultDisplay-
Mode class. Th e name of the mode is set through the constructor.
Th e logic that determines whether a given UA is matched is set
through the property ContextCondition.

The ContextCondition property is a delegate that accepts an
HttpContextBase object and returns a Boolean. The body of
the delegate is all about snooping into the HTTP context of the
current request in order to determine whether the given display
mode is appropriate. In Figure 5, I use a few extension methods to
keep code highly readable. Figure 6 lists those extensions methods.

All the code discussed so far is pure infrastructure. You end up
with one method to write for each display mode. Each method
takes a UA and must return a Boolean answer. Here’s a very basic
routine to check for tablets:

private static Boolean IsTabletInternal(String userAgent)
{
 var ua = userAgent.ToLower();
 return ua.Contains("ipad") || ua.Contains("gt-");
}

Th is routine is only guaranteed to successfully detect iPad and
Galaxy Tab devices, but you can see the point about how these con-
text condition routines should be written. You might want to add
more code to check for smartphones, at the very least. To detect
tablets and smartphones, you can take advantage of any open source
or commercial Device Description Repository (DDR) framework.
I’ll discuss that in more detail in my next column.

Serious Business
A server-side approach to mobile sites may not always be necessary,
but it’s a serious matter whenever there’s some business behind
the site. I wouldn’t recommend a server-side approach for, say, a
conference site or any sort of short-lived site. However, a business
site aimed at the largest possible audience needs to emphasize
optimization for devices beyond just plain rendering for mobile.

On the client, you’re limited to browser window size and orienta-
tion, and you can’t check the OS or touch capabilities—or check for
more advanced things such as whether the device supports wireless,
streaming, inline images, SMS and more. Display modes make it partic-
ularly easy to implement a multi-view approach in ASP.NET MVC 4.

In my next column I’ll cap off my argument by showing how to
integrate the DDR used by Facebook—Wireless Universal Resource
File (WURFL)—with ASP.NET MVC 4.

DINO ESPOSITO is the author of “Architecting Mobile Solutions for the Enterprise”
(Microsoft Press, 2012) and “Programming ASP.NET MVC 3” (Microsoft
Press, 2011), and coauthor of “Microsoft .NET: Architecting Applications for the
Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent speaker
at industry events worldwide. Follow him on Twitter at twitter.com/despos.

THANKS to the following technical expert for reviewing this article:
Mani Subramanian (Microsoft)

public static class HttpRequestBaseExtensions
{
 public static Boolean IsDesktop(this HttpRequestBase request)
 {
 return true;
 }
 public static Boolean IsSmartphone(this HttpRequestBase request)
 {
 return IsSmartPhoneInternal(request.UserAgent);
 }
 public static Boolean IsTablet(this HttpRequestBase request)
 {
 return IsTabletInternal(request.UserAgent);
 }

 // More code here.
}

Figure 6 Extension Methods to Keep Code Clear

public class DisplayConfig
{
 public static void RegisterDisplayModes(IList<IDisplayMode> displayModes)
 {
 var modeDesktop = new DefaultDisplayMode("")
 {
 ContextCondition = (c => c.Request.IsDesktop())
 };
 var modeSmartphone = new DefaultDisplayMode("smart")
 {
 ContextCondition = (c => c.Request.IsSmartphone())
 };
 var modeTablet = new DefaultDisplayMode("tablet")
 {
 ContextCondition = (c => c.Request.IsTablet())
 };

 displayModes.Clear();
 displayModes.Add(modeSmartphone);
 displayModes.Add(modeTablet);
 displayModes.Add(modeDesktop);
 }
}

Figure 5 The DisplayConfi g Class

www.twitter.com/despos

Untitled-3 1 6/4/13 1:44 PM

http://marketdash.componentone.com/redirect.ashx?rdtl=2178

msdn magazine12

By now you’re familiar with my penchant to
invite developers to give talks on topics I’ve
been curious about at the user group I lead
in Vermont. Th is has resulted in columns on
topics such as Knockout.js and Breeze.js. Th ere
are still more topics, such as Command Query
Responsibility Segregation (CQRS), that I’ve
been chewing on for a while. But recently
Dennis Doire, an architect and tester, spoke on
SpecFlow and Selenium, two tools for testers
doing behavior-driven development (BDD).
Once again, my eyes got wide and my mind
started looking for excuses to play with the tools. Really, though,
it was BDD that got my attention. Even though I’m a data-driven
person, my days of designing applications from the database up are
far behind me and I’ve become interested in focusing on the domain.

BDD is a twist on test-driven development (TDD) that focuses
on user stories and building up logic and tests around those stories.
Rather than satisfying a single rule, you satisfy sets of activities.
It’s very holistic, which I love, so this perspective interests me a
great deal. Th e idea is that while a typical unit test might ensure
that a single event on a customer object works properly, BDD
focuses on the broader story of the behavior that I, the user, expect
when I’m using the system you’re building for me. BDD is oft en
used to defi ne acceptance criteria during discussions with clients.
For example, when I sit in front of the computer and fi ll out a New
Customer form and then hit the Save button, the system should
store the customer information and then show me a message that
the customer has been successfully stored.

Or perhaps when I activate the Customer Management portion
of the soft ware, it should automatically open up the most recent
Customer I worked on in my last session.

You can see from these user stories that BDD might be a UI-
oriented technique for designing automated tests, but many of the
scenarios are written before a UI has been designed. And thanks to
tools such as Selenium (docs.seleniumhq.org) and WatiN (watin.org), it’s
possible to automate tests in the browser. But BDD isn’t just about
describing user interaction. To get a view of the bigger picture of
BDD, check out the panel discussion on InfoQ among some of the
authorities on BDD, TDD and Specifi cation by Example at bit.ly/10jp6ve.

I want to step away from worrying about
button clicks and such and redefi ne the user
stories a little. I can remove the UI-dependent
elements of the story and focus on the part of
the process that isn’t dependent on the screen.
And, of course, the stories I’m interested in are
the ones related to data access.

Building up the logic to test that a particu-
lar behavior is being satisfi ed can be tedious.
One of the tools Doire demonstrated in his
presentation was SpecFlow (specfl ow.org). Th is
tool integrates with Visual Studio and enables

you to defi ne user stories—called scenarios—using its simple rules.
It then automates some of the creation and execution of the meth-
ods (some with tests and some without). Th e goal is to validate that
the rules of the story are being satisfi ed.

I’m going to walk you through creating a few behaviors to whet
your appetite, and then if you’re looking for more, you’ll fi nd some
resources at the end of the article.

First you need to install SpecFlow into Visual Studio, which you
can do from the Visual Studio Extensions and Updates Manager.
Because the point of BDD is to begin your project development
by describing behaviors, the fi rst project in your solution is a test
project in which you’ll describe these behaviors. Th e rest of the
solution will fl ow from that point.

Create a new project using the Unit Test Project template. Your
project will need a reference to TechTalk.SpecFlow.dll, which
you can install using NuGet. Th en create a folder called Features
inside this project.

My fi rst feature will be based on a user story about adding a
new customer, so inside the Features folder, I create another called
Add (see Figure 1). Here’s where I’ll defi ne my scenario and ask
SpecFlow to help me out.

SpecFlow follows a specifi c pattern that relies on keywords that
help describe the feature whose behavior you’re defi ning. Th e key-
words come from a language called Gherkin (yes, as in pickle), and
this all originates from a tool called Cucumber (cukes.info). Some
of these keywords are Given, And, When, and Th en, and you can
use them to build a scenario. For example, here’s a simple scenario,
which is encapsulated in a feature—Adding a New Customer:

Given a user has entered information about a customer
When she completes entering more information
Th en that customer should be stored in the system

Behavior-Driven Design with SpecFlow

DATA POINTS JULIE LERMAN

Code download available at archive.msdn.microsoft.com/mag201307DataPoints.

Figure 1 Test Project with Features
and Add Sub-Folders

http://archive.msdn.microsoft.com/mag201307DataPoints
http://docs.seleniumhq.org
www.watin.org
www.bit.ly/10jp6ve
www.specflow.org
www.cukes.info

Untitled-3 1 6/4/13 1:45 PM

http://marketdash.componentone.com/redirect.ashx?rdtl=2179

msdn magazine14 Data Points

You could be more elaborate, for example:
Given a user has entered information about a customer
And she has provided a fi rst name and a last name as required
When she completes entering more information
Th en that customer should be stored in the system

Th at last statement is where I’ll be doing some data persistence.
SpecFlow doesn’t care about how any of this happens. Th e goal is
to write scenarios to prove the outcome is and remains successful.
Th e scenario will drive the set of tests and the tests will help you
fl esh out your domain logic:

Given that you have used the proper keywords
When you trigger SpecFlow
Th en a set of steps will be generated for you to populate
with code
And a class fi le will be generated that will automate the
execution of these steps on your behalf

Let’s see how this works.
Right-click the Add folder to add a new item. If you’ve installed

SpecFlow, you can fi nd three SpecFlow-related items by searching
on specflow. Select the SpecFlow Feature File item and give it a
name. I’ve called mine AddCustomer.feature.

A feature file starts out with a sample—the ubiquitous math
feature. Notice that the Feature is described at the top, and on the
bottom a Scenario (which represents a key example of the feature)
is described using Given, And, When and Then. The SpecFlow
add-in ensures that the text is color-coded so you can easily discern
the step terms from your own statements.

I’ll replace the canned feature and steps with my own:
F eature: Add Customer
Allow users to create and store new customers
As long as the new customers have a first and last name

Scenario: HappyPath
Given a user has entered information about a customer
And she has provided a first name and a last name as required
When she completes entering more information
Then that customer should be stored in the system

(Th anks to David Starr for the Scenario name! I stole it from his
Pluralsight video.)

What if the required data isn’t provided? I’ll create another
scenario in this feature to handle that possibility:

S cenario: Missing Required Data
Given a user has entered information about a customer
And she has not provided the first name and last name
When she completes entering more information
Then that user will be notified about the missing data
And the customer will not be stored into the system

Th at will do for now.

From User Story to Some Code
So far you’ve seen the Feature item and the color-coding that
SpecFlow provides. Note that there’s a codebehind fi le attached
to the feature fi le, which has some empty tests that were created
based on the features. Each of those tests will execute the steps in
your scenario, but you do need to create those steps. Th ere are a
few ways to do that. You could run the tests, and SpecFlow will
return the code listing for the Steps class in the test output for you
to copy and paste. Alternatively, you could use a tool in the feature
fi le’s context menu. I’ll describe the second approach:

1. Right-click in the text editor window of the feature fi le.
On the context menu, you’ll see a section dedicated to
SpecFlow tasks.

2. Click Generate Step Defi nitions. A window will pop up
verifying the steps to create.

3. Click the Copy methods to clipboard button and use
the defaults.

4. In the AddCustomer folder in your project, create a new
class fi le named Steps.cs.

5. Open the fi le and, inside the class defi nition, paste the
clipboard contents.

6. Add a namespace reference to the top of the fi le, using
TechTalk.SpecFlow.

7. Add a Binding annotation to the class.
Th e new class is listed in Figure 2.
If you look at the two scenarios I’ve created, you’ll notice that while

there’s some overlap in what’s defi ned (such as “a user has entered
infor mation about a customer”), the generated methods do not create
duplicate steps. It’s also notable that SpecFlow will leverage the con-
stants in the method attributes. Th e actual method names are irrelevant.

At this point, you could let SpecFlow run its tests that will call
these methods. While SpecFlow supports a number of unit-testing

[Binding]
public class Steps
{
 [Given(@"a user has entered information about a customer")]
 public void GivenAUserHasEnteredInformationAboutACustomer()
 {
 ScenarioContext.Current.Pending();
 }

 [Given(@"she has provided a first name and a last name as required")]
 public void GivenSheHasProvidedAFirstNameAndALastNameAsRequired
 ()
 {
 ScenarioContext.Current.Pending();
 }

 [When(@"she completes entering more information")]
 public void WhenSheCompletesEnteringMoreInformation()
 {
 ScenarioContext.Current.Pending();
 }

 [Then(@"that customer should be stored in the system")]
 public void ThenThatCustomerShouldBeStoredInTheSystem()
 {
 ScenarioContext.Current.Pending();
 }

 [Given(@"she has not provided both the firstname and lastname")]
 public void GivenSheHasNotProvidedBothTheFirstnameAndLastname()
 {
 ScenarioContext.Current.Pending();
 }

 [Then(@"that user will get a message")]
 public void ThenThatUserWillGetAMessage()
 {
 ScenarioContext.Current.Pending();
 }

 [Then(@"the customer will not be stored into the system")]
 public void ThenTheCustomerWillNotBeStoredIntoTheSystem()
 {
 ScenarioContext.Current.Pending();
 }

}

Figure 2 The Steps.cs File

Untitled-2 1 5/31/13 10:54 AM

www.telerik.com

msdn magazine16 Data Points

frameworks, I’m using MSTest, so if you’re looking at this solution
in Visual Studio, you’ll see that Feature’s codebehind fi le defi nes
a TestMethod for each scenario. Each TestMethod executes the
correct combination of step methods with a TestMethod that’s run
for the HappyPath scenario.

If I were to run this now, by right-clicking the Feature fi le and
choosing “Run SpecFlow Scenarios,” the test would be incon-
clusive, with the message: “One or more step defi nitions are not
implemented yet.” Th at’s because each of the methods in the Steps
fi le are all still calling Scenario.Current.Pending.

So, it’s time to fl esh out the methods. My scenarios tell me I’ll need
a Customer type with some required data. Th anks to other docu-
mentation, I know that the fi rst and last name are currently required,
so I’ll need those two properties in the Customer type. I also need
a mechanism for storing that customer, as well as a place to store it.
My tests don’t care how or where it’s stored, just that it is, so I’ll use
a repository that will be responsible for getting and storing data.

I’ll start by adding _customer and _repository variables to my
Steps class:

private Customer _customer;
private Repository _repository;

And then stub out a Customer class:
public class Customer
{
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

Th at’s enough to let me add code to my step methods. Figure 3
shows the logic added to the steps related to HappyPath. I create a
new customer in one, then I provide the required fi rst and last names
in the next. Th ere’s not really anything I need to do to elaborate on
the WhenSheCompletesEnteringMoreInformation step.

Th e last step is the most interesting. Th is is where I not only store
the customer, but prove that it has indeed been stored. I’ll need an
Add method in my repository to store the customer, a Save to push
it into the database and then a way to see if that customer can, in
fact, be found by the repository. So I’ll add an Add method, a Save
and a FindById method to my repository, like so:

public class CustomerRepository
{
 public void Add(Customer customer)
 { throw new NotImplementedException(); }

 public int Save()
 { throw new NotImplementedException(); }

 public Customer FindById(int id)
 { throw new NotImplementedException(); }
}

Now I can add logic to the fi nal step that will be called by my
HappyPath scenario. I’ll add the customer to the repository and test
to see if it can be found in the repository. Th is is where I fi nally use
an assertion to determine if my scenario is succeeding. If a customer
is found (that is, IsNotNull), the test passes. Th is is a very common
pattern for testing that data has been stored. However, from my
experience with Entity Framework, I see a problem that won’t get
caught by the test. I’ll start with the following code so I can show
you the problem in a way that may be more memorable than just
showing you the correct way to begin with (I’m mean that way):

[Then(@"that customer should be stored in the system")]
public void ThenThatCustomerShouldBeStoredInTheSystem()
{
 _repository = new CustomerRepository();
 _repository.Add(_newCustomer);
 _repository.Save();
 Assert.IsNotNull(_repository.FindById(_newCustomer.Id));
}

When I run my HappyPath test again, the test fails. You can see
in Figure 4 that the test output shows how my SpecFlow scenario
is working out so far. But pay attention to the reason the test failed:
It’s not because the FindById didn’t fi nd the customer, it’s because
my repository methods are not yet implemented.

So, my next step is to provide logic to my repository. Eventually
I’ll use this repository to interact with the database and, as I hap-
pen to be a fan of Entity Framework, I’ll use an Entity Framework
DbContext in my repository. I’ll start by creating a DbContext class
that exposes a Customers DbSet:

public class CustomerContext:DbContext
{
 public DbSet<Customer> Customers { get; set; }
}

Th en I can refactor my CustomerRepository to use the Customer-
Context for persistence. For this demo, I’ll work directly against the
context rather than worrying about abstractions. Here’s the updated
CustomerRepository:

public class CustomerRepository
{
 private CustomerContext _context = new CustomerContext();

 public void Add(Customer customer
 { _context.Customers.Add(customer); }

 public int Save()
 { return _context.SaveChanges(); }

 public Customer FindById(int id)
 { return _context.Customers.Find(id); }
}

[Given(@"a user has entered information about a customer")]
public void GivenAUserHasEnteredInformationAboutACustomer()
{
 _newCustomer = new Customer();
}

[Given(@"she has provided a first name and a last name as required")]
public void GivenSheHasProvidedTheRequiredData()
{
 _newCustomer.FirstName = "Julie";
 _newCustomer.LastName = "Lerman";
}

[When(@"she completes entering more information")]
public void WhenSheCompletesEnteringMoreInformation()
{
}

Figure 3 Some of the SpecFlow Step Methods

I’m pretty sure that if it weren’t for
all of the tools that have been built
to support BDD, my path into it
wouldn’t have been so easy.

Untitled-3 1 3/1/13 11:00 AM

www.melissaData.com

msdn magazine18 Data Points

Now when I rerun the HappyPath test, it passes and all of my
steps are marked as done. But I’m still not happy.

Make Sure Those Integration Tests
Understand EF Behavior
Why am I not happy when my tests pass and I see the pretty green
circle? Because I know that the test is not truly proving that the
customer was stored.

In the Th enTh atCustomerShouldBeStoredInTh eSystem method,
comment out the call to Save and run the test again. It still passes. And
I didn’t even save the customer into the database! Now do you smell
that funny odor? It’s the smell of what’s known as a “false positive.”

Th e problem is that the DbSet Find method that I’m using in my
repository is a special method in Entity Framework that fi rst checks
the in-memory objects being tracked by the context before going to
the database. When I called Add, I made the CustomerContext aware
of that customer instance. Th e call to Customers.Find discovered that
instance and skipped a wasted trip to the database. In fact, the ID of
the customer is still 0 because it hasn’t been stored yet.

So, because I’m using Entity Framework (and you should take
into account the behavior of any object-relational mapping [ORM]
framework you’re using), I have a simpler way to test to see if the
customer truly got into the database. When the EF SaveChanges
instruction inserts the customer into the database, it will pull back
the new database-generated ID of the customer and apply it to the
instance that it inserted. Th erefore, if the new customer’s ID is no
longer 0, I know my customer really did get into the database. I
don’t have to re-query the database.

I’ll revise the Assert for that method accordingly. Here’s the method
I know will do a proper test:

[Then(@"that customer should be stored in the system")]
 public void ThenThatCustomerShouldBeStoredInTheSystem()
 {
 _repository = new CustomerRepository();
 _repository.Add(_newCustomer);
 _repository.Save();
 Assert.IsNotNull(_newCustomer.Id>0);
 }

It passes, and I know it’s passing for the right reasons. It’s
not uncommon to define a failing test, for example, using
Assert.IsNull(FindById(customer.Id) to make sure you’re not
passing for the wrong reason. But in this case, the problem still
wouldn’t have shown up until I removed the call to Save. If you’re
not confident about how EF works, it would be wise to also

create some specifi c integration tests, unrelated to the user stories,
to ensure that your repositories are behaving the way you expect.

Behavior Test or Integration Test?
As I traversed the learning curve of working out this fi rst SpecFlow
scenario, I encountered what I thought was a slippery slope. My
scenario states that the customer should be stored in “the system.”

The problem is that I wasn’t confident about the definition of
the system. My background tells me the database or at least some
persistence mechanism is a very important part of the system.

The user doesn’t care about repositories and databases—just
her application. But she won’t be very happy if she logs back into
her application and can’t find that customer again because it
never really got stored in the database (because I didn’t think that
_repository.Save was necessary for fulfi lling her scenario).

I consulted with yet another Dennis, Dennis Doomen, the
author of Fluent Assertions and a heavy practitioner of BDD,
TDD and more in large enterprise systems. He confi rmed that, as a
developer, I should certainly apply my knowledge to the steps and
tests even if this means going beyond the intent of the user who
defi ned the original scenario. Users provide their knowledge and
I add mine in a way that doesn’t push my technical perspective
into the user’s face. I continue to speak her language and commu-
nicate well with her.

Keep Digging into BDD and SpecFlow
I’m pretty sure that if it weren’t for all of the tools that have been
built to support BDD, my path into it wouldn’t have been so easy.
Even though I’m a data geek, I care very much about working with
my clients, understanding their businesses and ensuring they have
a happy experience using the soft ware I help build for them. Th is
is why Domain Driven Design and Behavior Driven Design speak
so loudly to me. I think many developers feel the same way—even
if it’s deep down in their gut (or heart)—and may also be inspired
by these techniques.

Besides the friends who helped me get to this point, here
are some of the resources I found useful. Th e MSDN Magazine
article, “Behavior-Driven Development with SpecFlow and WatiN,”
which can be found at msdn.microsoft.com/magazine/gg490346, was quite
helpful. I also watched an excellent module from David Starr’s Test
First Development course on Pluralsight.com. (In fact, I watched
that module a number of times.) I found the Wikipedia entry on
BDD (bit.ly/LCgkxf) to be interesting in that it presented the bigger
picture of BDD’s history and where it fi ts in with other practices.
And I’m eagerly awaiting the book, “BDD and Cucumber,” which
Paul Rayner (who also advised me here) is coauthoring.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can fi nd her presenting on data access and other Microsoft
.NET topics at user groups and conferences around the world. She blogs at
thedatafarm.com/blog and is the author of “Programming Entity Framework”
(2010) as well as a Code First edition (2011) and a DbContext edition (2012), all
from O’Reilly Media. Follow her on Twitter at twitter.com/julielerman.

THANKS to the following technical experts for reviewing this article:
Dennis Doomen (Aviva Solutions) and Paul Rayner (Virtual Genius)

Test Name: HappyPath
Test Outcome: Failed
Result Message:
Test method UnitTestProject1.UserStories.Add.AddCustomerFeature.HappyPath
threw exception:
System.NotImplementedException: The method or operation is not implemented.

Result StandardOutput:
Given a user has entered information about a customer
-> done: Steps.GivenAUserHasEnteredInformationAboutACustomer() (0.0s)
And she has provided a first name and a last name as required
-> done: Steps. GivenSheHasProvidedAFirstNameAndALastNameAsRequired() (0.0s)
When she completes entering more information
-> done: Steps.WhenSheCompletesEnteringMoreInformation() (0.0s)
Then that customer should be stored in the system
-> error: The method or operation is not implemented.

Figure 4 Output from Failed Test Showing Status of Each Step

http://msdn.microsoft.com/magazine/gg490346
www.bit.ly/LCgkxf
www.twitter.com/julielerman

Untitled-1 1 11/26/12 3:02 PM

www.xceed.com

Untitled-1 2 6/4/13 11:50 AM

www.aspose.com

Untitled-1 3 6/4/13 11:50 AM

www.aspose.com

msdn magazine22

In our previous column (msdn.microsoft.com/magazine/dn201743), we
introduced concepts relating to creating multi-tenant apps, covering
two of the four pillars that should be considered when building this
type of system: identity and security, and data isolation and segrega-
tion. Th is month, we concentrate on two other important areas that
are deeply interwined: metering and autoscaling. Metering allows
companies to gather information about the diff erent components that
are being shared among all the tenants; autoscaling guarantees that
the end-user experience isn’t aff ected during periods of high traffi c,
and that servers are deprovisioned when resource demand is lower.

Gathering information on resource usage is common when trouble-
shooting applications, especially during the development and testing
processes. By doing this, thresholds and hardware requirements
that will guarantee optimal performance of the solution can be set,
and minimum hardware requirements can be recommended. In
Windows, this task is accomplished by using performance counters
that help determine system bottlenecks and error conditions.

Metering becomes particularly important when running multi-
tenant solutions in the cloud, and not only during the development
stages. Supporting multiple users sharing common resources pres-
ents specifi c challenges, such as how to enforce quotas for tenants,
identify any users who might be consuming excessive resources,
or decide if the pricing tiers need to be redefi ned. Keep in mind
that metering multi-tenant solutions is not only about determining
or validating the usage bill from your cloud provider—in this case
Windows Azure—but also about optimizing resources in your
deployment that guarantee the level of service tenants expect,
typically expressed in a service-level agreement (SLA).

In this article, we’ll concentrate on metering and autoscaling the
compute portion of a multi-tenant solution, which is the solution
type that’s most affected by variations in the number of users
accessing the application. Now that Windows Azure supports mul-
tiple cloud deployment models (Cloud Services, Virtual Machines
and Web Sites), it’s important to understand the diff erent logging
and diagnostics options that each one off ers, and how they can be
autoscaled based on this information. In case you need to better
understand the basic diff erences, benefi ts and limitations of these
deployment models, you’ll fi nd a good guide at bit.ly/Z7YwX0.

Collecting Data from Windows Azure Cloud Services
Cloud Services (based on the Platform as a Service concept), collects data
via the Windows Azure Diagnostics (WAD) infrastructure, which is built
on the Event Tracing for Windows (ETW) framework. Because Cloud
Services is based on stateless virtual machines (VMs), WAD allows
you to save data locally and, based on a schedule, transfer it to a central
repository in Windows Azure storage using blobs and tables. Once
the diagnostics data has been collected from the multiple instances
in the role, it can be analyzed and used for multiple purposes.
Figure 1 shows how this process works.

Metering and Autoscaling Multi-Tenant
Applications in Windows Azure

WINDOWS AZURE INSIDER
BRUNO TERKALY AND

RICARDO VILLALOBOS

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="MyHostedService" xmlns=
 "http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"
 schemaVersion="2012-10.1.8">
 <WebRole name="WebRole1">
 <!--<Sites> ... </Sites> -->
 <!-- <Endpoints> ... </Endpoints> -->
 <Imports>
 <Import moduleName="Diagnostics" />
 </Imports>
 </WebRole>
</ServiceDefinition>

<?xml version="1.0" encoding="utf-8" ?>
<DiagnosticMonitorConfiguration xmlns=
 "http://schemas.microsoft.com/ServiceHosting/2010/10/DiagnosticsConfiguration"
 configurationChangePollInterval="PT1M"
 overallQuotaInMB="4096">
 <Directories bufferQuotaInMB="0" scheduledTransferPeriod="PT30M">
 <IISLogs container="wad-iis" directoryQuotaInMB="0" />
 </Directories>
</DiagnosticMonitorConfiguration>

Figure 2 Basic Service Defi nition and Diagnostics
Confi guration Files for Cloud Services

Figure 1 Windows Azure Diagnostics for Cloud Services

Blob Storage

Table Storage

Windows Azure
Role Instance

Windows Azure Deployment

Diagnostic Monitor Based on EWS

- Event Logs
- IIS Logs
- Failed Request Logs
- Performance Counters

Local Storage

Other Cloud
Metering Services

On-Premises
Computers

DEVELOP AND TEST IN THE CLOUD WITH WINDOWS AZURE

Deliver better-tested apps faster, on-premises or in the cloud. Activate your
MSDN Windows Azure benefi t now. You could win an Aston Martin!

aka.ms/AzureContest

http://msdn.microsoft.com/magazine/dn201743
www.bit.ly/Z7YwX0
www.aka.ms/AzureContest

Untitled-1 1 6/3/13 10:02 AM

www.DevExpress.com/try

msdn magazine24 Windows Azure Insider

To enable diagnostics for Cloud Services, the corresponding
module should be imported into the role deployment (via the
ServiceDefinition.csdef file), and then enabled via the WAD
configuration file (diagnostics.wadcfg). Another approach is
to programmatically configure diagnostics inside the OnStart
method for the role, but using the confi guration fi le is preferred
because it’s loaded fi rst and errors related to startup tasks can be
caught and logged. Also, changes to the confi guration don’t require
the code to be rebuilt. Figure 2 shows the most basic version of the
service defi nition and diagnostics confi guration fi les.

The configurationChangePollInterval attribute defines how
oft en an instance checks for confi guration changes, while the sched-
uledTransferPeriod specifi es the interval for the local fi les to be
transferred to Windows Azure Storage (in the example shown in
Figure 2, to the “wad-iis” blob container). Consider that one minute
(PT1M) is the default and minimum value for the scheduled transfer
of fi les parameter, but that it might be overkill for most scenarios.
The overallQuotaInMB attribute defines the total amount of
file system storage allocated for logging buffers. The buffer-
QuotaInMB attribute for each data source can either be left at the
default of zero—which means it’s less than the overallQuotaInMB
property—or it can be explicitly set. Th e OverallQuotaInMB must
be less than the sum of all the buff erQuotainMB properties.

Even though diff erent data sources can be used to collect diagnos-
tics information for cloud services, using them to determine which
specifi c tenants are consuming most of the compute resources isn’t
easy. Th e closest metric that can be used for this purpose is provided
by the IIS World Wide Web Consortium (W3C) logs, assuming
traffic from the different users and tenants is tracked via URL
parameters or specifi c virtual directories. In order to activate it, you
can add the IISLogs XML node to the diagnostics confi guration fi le
(also included in Figure 2), but be warned that these IIS logs can get
huge quickly. Keep in mind that diagnostics information is stored in
a Windows Azure storage account, and confi guration changes can
be made on deployed and running services.

To learn more about other types
of data sources via the confi gura-
tion fi le—including Windows event
logs and performance counters,
among others—you can review
the Windows Azure documenta-
tion at bit.ly/GTXAvo. Also, starting
with version 2.0 of the Windows
Azure SDK, the process of confi g-
uring diagnostics in Visual Studio
has been greatly improved. The
diagnostics section now offers a
Custom plan that can be modifi ed
to include one or more data sources
to be logged and transferred to the
specifi ed Windows Azure storage
account (Figure 3).

By clicking on the Edit button,
you can defi ne specifi c data to be
collected, including Windows per-

formance counters, event logs and log directories (Figure 4). In this
example, diagnostics information for percentage of processor time
being used, available megabytes of memory, and number of requests
per second will be collected and transferred to the Windows storage
account every 30 minutes (the transfer period setting). Th is new
interface simplifi es the process of confi guring diagnostics for cloud
services and obtaining metering data for later use.

In addition to the Cloud Services monitoring options provided
by the Windows Azure platform, you might want to take a look at
the Cloud Ninja Metering Block released by the Windows Azure
Incubation team, which encompasses many of these features in an
easy-to-use library. It’s available at cnmb.codeplex.com.

Collecting Data from Windows Azure
Virtual Machines
Virtual Machines are stateful instances running on the Windows
Azure platform and can be deployed individually or connected
to Cloud Services via virtual networks. Because these instances

Figure 3 New Diagnostics Confi guration Options in Windows Azure SDK 2.0

Figure 4 Confi guring Performance Counters in Visual Studio
with the Windows Azure SDK 2.0

www.bit.ly/GTXAvo
http://cnmb.codeplex.com

Untitled-1 1 6/4/13 11:24 AM

www.leadtools.com

msdn magazine26 Windows Azure Insider

run full versions of Windows and Linux, gathering diagnostics
information is similar to the process for on-premises machines,
using performance counters and persisting to local storage. Th e
process of extracting this information varies, but it’s usually
accomplished by installing local agents that transfer this informa-
tion to external services.

Collecting Data from Windows Azure Web Sites
Now let’s turn our attention to Windows Azure Web Sites. Gathering
diagnostics information from Web Sites is a simple process that can
be enabled directly in the management portal.
For the purpose of monitoring multi-tenant
applications, Web Server Logging (the W3C
extended log fi le format) should be activated,
and log fi les downloaded via FTP. Here are
the steps to follow:

1. Access manage.windowsazure.com.
2. Select Web Sites, and then the specifi c

site that needs to be confi gured.
3. Click on Confi gure and scroll down

to the “site diagnostics” section. Turn
on Web Server Logging.

4. You can download the logs from
/LogFiles/http/RawLogs. Log Parser
2.2, available from the Microsoft
Download Center (bit.ly/119mefJ), can
be used to parse and query IIS logs.

As with Windows Azure Cloud Services,
information from the log fi les can be used to
determine the usage of resources by diff erent

tenants, by tracking either URL parameters
or individual virtual directories.

Metering as a Service
In addition to the diagnostics options
natively provided by Windows Azure, a
few companies off er metering services for
Windows Azure. For example, Dell Inc.
has created a product called Foglight that
delivers real-time data on the health of
applications and ties it back to the UX. It
also includes a notifi cation service that alerts
developers of critical problems. Today, Fog-
light supports Cloud Services and Windows
Azure SQL Database, based on the WAD
infrastructure, as shown in Figure 5.

Autoscaling Options
Once the metering and performance counter
data has been collected, it can be used to
determine the level of provisioning that’s
needed to meet the performance require-
ments of the application. Autoscaling in
Windows Azure refers to the act of adding
or subtracting instances from a specific

deployment (scaling out), with the idea of keeping solutions up and
running for the lowest possible cost. Even though it’s possible to
scale up (increase the resources for a single machine), this usually
implies application downtime, which is never desirable. Th ere are
basically three ways to autoscale a Windows Azure deployment.

Use an Autoscaling Block One approach to autoscaling a
Windows Azure deployment, which specifi cally applies to Windows
Azure Cloud Services, is to add an autoscaling application block
to the solution. Th ere are a couple of ready-to-be-used libraries for
this purpose. One library is part of the Enterprise Integration Pack

for Windows Azure, and it uses a collection
of user-defi ned rules, setting limits for the
minimum and maximum number of role
instances in the deployment based on count-
ers or measurements collected by WAD. Th is
approach has been extensively documented
by the Microsoft patterns & practices team,
and can be found at bit.ly/18cr5mD. Figure 6
shows a basic multi-tenant architecture with
an autoscaling block added to the solution.

Use an External Service Th ere are some
scaling-out services available for Windows
Azure deployments that act as external auto-
scaling application blocks. Microsoft recently
acquired MetricsHub (metricshub.com), which
provides a free monitoring and autoscaling
service for Windows Azure subscribers. Th e
logic for scaling out is based on sustained aver-
ages, leading indicators, trailing data and spe-
cifi c schedules. You can add the service directly

Figure 5 The Dell Foglight Monitoring Portal

Figure 6 Using an Autoscaling
Application Block Approach for
Cloud Services

Windows Azure Deployment

Scaling Actions

Monitored
Data Points

Web/Worker Role 1

Web/Worker Role N

••••
Windows

Azure
Storage

Autoscaling Application Block
with Constraint/Reactive Rules

http://manage.windowsazure.com
www.bit.ly/119mefJ
www.bit.ly/18cr5mD
www.metricshub.com

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BarCoa C de bbarCoarCCode =de = newn EEanEan113SuS pp5(“12234556789001212345”, x, y + 21); barCode.X += (204 - barCodee.Get

ddUPCVersionA(GrouGroup elemenem ts, float x, floatfloa y) { AddCaptionAndRectangle(elemente s, “UPC Version A Bar Code”, x, y, 2y, 204, 99);9)99);9) Bar BarB rBa CodeC barbarCCode = neew UpcVepcVersionAA(“12345678901”, x, y + 21); barCode.X += (204 - baarCo

ddUPCVersionASSup2(up2 Grououpp elements,, floatoa xx, float y) { AddCaptionAndRectangle(ele(ments, “UPC Version E Bar Code, 2 digit git supsuppsuppup lement”nt”, x,x, x y, 204, 999); BaarCodde barCCode = new UpcVersionASup2(“123456787 90112”, xx, yx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup5(Group elements, float x, floato y) { AddCaptionAndRectangle(eleementmmentm s, “s, “UPC UPC VerVersion EE Bar Code, 5 diggit suupplemment”, x, y, 204, 99); BarCode barCode = n ew UpcVeeersio

ode.GetSymbolWWidth(dth)) / 2; 2 elements.AddAdd(bar(ba Code); } privatee voi v d AddEANEAN8(Group p elements, float x, float y) { AddCddCaptitionAnonAn dRecReccecttaangle(elemments, “EANN/JANN 8 BBar Codde”, x, y, 204, 99); BarCode barCode == newn Ean8(“123434

g(); fileDialog.Title =le = “Op “Open Fen File Dialogg”; filfi eDialog.Filter = “AdAdobe PDFF fileses (*.pdf)f)|*.pdf|All Files (*.*)|*.*”; if (fileDieDialog.log.ShSSShowwDDiallog()og == DialoggResult.OK) { pdfVieweewer.OppenFile(fileDialog.FileName, “”); } SaveSav FileF Diallog saavaveFa

File Dialog”; s saveFveFileDialoal gg.Filter = “AdoAdobee PDF files (*.pdf)f)|*.pdf|All Files (**.*)|*.*”; if (saveFileDialog.ShowDowDialoialoa g()=g()==DiaDi=DiaDi logResulsule t .OOK) {{ pdfVfVieweewerr.SaveAs(saveFileDiaDialog.FileNamee);); } } if (p(dfVidfV ewewer.PPagP e

WithDialog(); } e else se { MessMe aageBox.SShow(w “PPlease open a fifile tto printt”); } OOpenFileF Dialog fileDiD aloglog = n = nnnew Oew Oe pepenpenFileDDialog(); fifile Dialog.Tiitle = “Open File Dialoog”; filleDialog.InitialDirecectoory = @”c:\”:\ ; fi fileDleDialoglo .Filterter = “= “All F

) == DialogResules t.Ot.OK) { Dy D nnamicPDFFViewewerrClass test = new Dew DynammicPDFVieewerCr lass(); PDFDFPrinPrintter prinprinninterter er = = test.OpenFpe ileForPorPrinnter (file(fileDiaalog.FileName); pprinnter.PrintQuieQuiet();() } bytbybytby ee[] contcontentst =

pServices; GCHGC andandle gcchh = GCHandled .AllAl occ(contents, GCHHandndleTypType.Pinnedd); IntIntPtr contcontentsentsIntPtr ===gcch.ch.h.AAAddrOfPinnednn Objeect()ct ;ppdf Viewer.O.OpenBpepe ufffefeuff r(cor(r(cor(ntentsIntPtrt ,

kmark Page Elemelement:”, x,x, y); y); p pageEleementen s.AAdd(new Bookkmarrk(“(BBookB marked Text”x , x , x + 5,+ 5, y + 20,0 parpareenenttOe utline)); pageElg emennts.Ats.Add (new Label(“This tes texxt is bookmaokmaokmarkedrked ”, .”, xx + 5, y + 20, 2

ageElements, fls, float a x, float at y) {{ // Addsdss a circltt to the pageEllemeents AddCaptioonnAndRAndRectaectangle(paggpagpaggeEleeEl mentmen s, “Circle PPaage Elemment:ent:”, x, y); pageElgeElements.As.Add(ndddd(ndd ew CCircle(x (x + 112.5f2 ,

shLarge)); } pprivavate te void AddFAd orormattedteede TextArrea(Group pp ageeEg lemennts, float x,x, floafloat yt y)t { /{ / AdA dsds ads a for forfofoo matttedd text area too tthepageEeElle ments strring formattm edHtedHtml = “<p“<p><<i>Dynamic</i>PDb>P F</bb>&tm>&tmmtm; Generaeraaator oro v6.0 foror .NE

matting suppoort for or text thath t aappears s in the ddocument. Yt. Youuu havve “ + “comcompletetple e cooontrorol ovovovovver 8r 8e parar agraph pph properties: ssppacing befoeforee, spacingg after, firfirst liine “ + “indentantation, left indentatitation, righr t ininndentdentdentntatiotionn, a, aaliignment, alalllowi

fontt fac f e, </fonnt>t>><f> ont ppoino tSizSize=’6’>fffont “ + “““size, </</fonfonntn ><fo<f nt ct coolorloolorlol =’FF000000 ’>>coloor, >b old, </b<<i>italic aannd </i><<u>uunderline</u>>; “ + “and 2 line proopertrties: leaeadingng, anndd leleeeaadinaad g type. Text

extArea = neew FoFormatrm tedTdTextAArea(fororrmmattedHHtmtml, x + 5, y +++ 20,, 21555, 60, F, FontontFamilmmi y.HeHeelvvelveteticaica, 9, ffalse)e); // SSets the the indent properoperty foformatteatt ddTextAreeaa.Styyle.PParagrapph.Inndent = 18; AddCCapttionAndRectRectanglgle(pae(papa(paapae geEgeElements, ts, “F

ageElemem ntts, “Fo“FormmattedTdTextAtArea OOvvverflow flow TText:”, x + 27999, y); pagpaggeEleeEleementmen ss.AdAdAdd(fod(foodd ormrrmatrmatmatatttedTextAtArea)); // CCreate e an oa verflow formatteded t text art a ea for tr the ooverflflow textt FoormattedTextArea ova oveerflowForFormattma edTeTTeextArxtArxtArtxttArea =ea =e formatte

a(x + 284, y + 20)20); pap geEElemenements.Adddd(o(overflverflowwFowFoow rmatarm tedTeextAe rrea); } privprivate ate vvooidov AddAddA dA Imagmagmagmage(Group up paggeElememeents, float x, float y) { // A/ dds an in magee tto thhe paageElemmenents AddCaptionAndRedRectangle((pagpageElemmmentsenntstsnts, “Imagegee Pag

es/DPDFLoogo.pn.png”), x ++ 1112.55f, y ++ 550f,50f, 0.20.244f);4f // Image is sizeed annnd centeenteredd in tn tthe rrrrectataec nglengle imam ge.SetBoB unds(215, 60); image.VAlign = VAlign.Cenenterr; imaage.Alignn = Align.Center; paggeEeElements.Ad.Addd(imaggee)g ;; } } privvate ate vvoidv A

pageElemennts AdAddCapdC tiononAndRectaannglengle(pag(paggeeEleeElements, “LLabell & PPagePageNumbeerinerine gLgLabg bel PPage ElememE entts:”, x, y); string labelText = “Labels can be rottaated”; strring numbermbe Text = “PageNummbeeringLabelsels contcontaiain ppage nummbeerib ngTT

xt, x + 5, y + 12+ 12, 22220, 80, F0 ontt.TimemessRomRoman,an, 12, TextAlign..Cennter);; l lababel.AngAngglle = 8; 8; 8; PagePageeNNumNumbN erinri gLagLabel pageNumLabel = new PageNumberb ingLabelab (nnumbberText, x +x + 5, y + 55, 220, 880, FFont.TimesResRoman, 1212, TextAltAligignign.n Ce

mem nts.Add(labeabel); l); } private voe id AAddLdLinne(Gne(Groupp pageElemennts, flflfloat x, floaoat y) {{{) { / // Addss a l a lla inne to the phe pageEag lements AddCaptionAndRectangle(p(ageElemee nnts, ““Line Paage Element:”, x, y); ppageeElemennts.As.Add(neew Lw ine(x +x + + x 5, y5 +

w Liw ne(xx + 2+ 220, y + 20, x + + 5, yy + 8 + 0,0, 30, 3, Rg, RgbCoolor.Green)); } prprivivaate vvoid Ad AddLiinknk(Groupup p pagpap eElementments, float x, float y) { // Adds a link to the ppageElemeem ntts Foont font == Foont.TimesRoman;; st string text = “TThisT iss s a lia nk tnk tk o o Dynaamic

mentm :”, x, y); Label label == newne LaLabbbel(textt, x + 5, y + 20, 2155,5, 800, fonnnnt, 1t, 2, R2, RgbbColor.or.BBluelu); l; abel.UndUndererline = true; Link link = new Link(x + 5, y + 20, font.on GGetTeextWidthh(texxt, 12), 12 - font.GGetDDescendder(1r(12), neeww ee UrlUrlAlAction(“n(“hhttp

EleE mennts.Add(li(nk);; } p } privavate ve voidd AAddPath(ath Grroup pageElemmentts, floatoatfl x, floatt y) y) {{ // AddAd s a s pathh to the pageElements ceTe.DynamicPDF.PageElementen s.Pathh path = nneww ceTe.DynamicPDPDF.PF.PageElemenmennnts.Ps.Paaath(h(x + x + 55, y, y + + 2+ 20, R

PathP s.AAdd(new LineeSubPatPa h(xx ++ 2215, y + 4+ 0))); path.Suh.S bPatths.Ahs.AAAdddd((new CurvurveeToSubPatPa h(x h(x + 1008, y + 80, x + 160, y + 80)); path.SubPaths.Add(neww CCurvveSuubPath(x + 55, y + 40, x + 65, 6 y + y + 80, x + 5, y5, yy + + 60))); AddAddCCaCaptC ionAAnd

AAdd(ppaaath); } privatee void AAddRReccttaangle(GrG oupp pageeEElemennnts, flflflofloatat x, float yat y)) oorderee dLisdL t = t = ordderedList.GetOverFlowList(x + 5, y + 20); AddCaptionAnAndRRectaanggle(pagge.Elements, “Orderr ed Led List Pagegee Ele EleEl mentttn OOOve Ovev rflowrfl :”, x, y, 2

88; /8; // C/ Create an unoordereedd list UUnnornorderede List uunorderere edListt =t =stt neeew UUnonorderrderedLLied st(xx + 55, yy + 20+ 20, 400, 90, Font.Helvetica, 10); unorderedList.Items.Add(Add(“Fruits””); uunorderedere List.Items.Add(“d “VegeVegeg tablees””); UnU U ordeeer redSreedSd ubbList unord

tt((); (); unorderedSubList.Items.ms.Add(“dd((““ Citrus”); unordorderededederedSuSubLiist.Iteeemss.AdAddd(“ Nonn-Citrt us”)s” ; AdAddCCaptionAndRectangle(page.Elemennts, “Unordered Lisst Pagee Elemmente :”, x, yx, y, 225, 110); Unonn rddereedSubLisbLisst ununnu ordederedSredSdredSdd ubLiub st2 = uno

rederer SubbbList2.Items.Add((“PoPotato”); unorderedSSubLiiubLisstt2.Itemmms.Addddd(“BBeans”); Unorno derederedSubdSubLisst subUnorderedSubList = unorderede SubLS ist.Items[0]].SuubLists.AAddddUnorderrde edSubList(); subs bUnorUnorderedSubdSSubbLListLLL .Iteteeems.Ams.Am Addd(“Lime”); s

LList subbbUnorderedSSubList2st = unorderedSubLbLS iist.ist.Itemss[1].SuubLissts.AAddUnordeeredSuedS bLisbL t();t() suubUnorderedSubList2.Items.Add(“Mana go”); subUnorrdereedSSubList2.It2 temms.AAdd(“Banana”);); UnUnordderedSSuSubdS ListLissLis sububUnorn derede dSubList

tt(()(); subUUnordereddSSubList3.Items.Add(“SweSweew t PoPotato””); Unoorderred dSSubList subbUnorUno dereer dSubdSubListList44 = unorrderedSubList2.It2 ems[1].S].SubLists.AddUnoordeereddSubbList(s); subUnubU orderedSubLibubListst4.s Iteems.AdAdAdA d(“Sd(“S“Strining BeeBeean”)an” ; subUnoU rde

AAdddd(“Kiddney Beanean”); x += 279; paga e.Elemeements.Addd(ud nnordereedLisst); uunorderedListLis == unordnorderedere List.GetOvere FlowList(x + 5, y + 20);) AddA CaptionAndRecctanngle(ppageag .Elemeents, “UnorUnorderederer d Lid st PPage e ElemElemmmeent ee Oveverve flow:flow:flo ”, x, y, 225

ooiddd AdddTedTextFxtField(Group pageElemenme ts, , flofloat x,, flooat y)) { TexxtField txtt = new TextFixtF eeld(“txt“t fnafname”, x + 20, y + 40, 120, 20); txt.Defaulu tValue = “This iis s a Scrrollabble Te extFFieldd”; txt.BordederColrColC or =o RgbRgbCColoor.Br.Br.Br.Black; txtxttxtxt.BacackgrokgroundCun o

(td(d xt); TTexTextField txt1 = new TextFiField(ld “txxtf1naf1 me”,me” x + 175, yy + 440, 120, 20); txtt1.DefDe aultu Valualue = “TextField”; txt1.Password = true; ttxt1.MaxLength = = 99; txtt1.BoordderColor = RgbCollor.BBor.Black; txt1.B1.Backgckgrounou dCololor =oror =or = RgbRgbR ColoColor Alr.Al

eree ies(); pieSeries.DataLabel == da;a;da plop tAreAreaa.Sea riesrie .Add(pieSSeriess); ppieSeries.Elemelementss.Add(Add(27,27, “Website A”); pieSeries.Elements.Addd (19, “Website BB”)); pieSerrieses.Elementmen s.Add(21d(21, “WWWebsiseb te Cee ”); ”);); pieSpieSp eries.ElElemenmeements[0ts[0s[0s[0].Co].C lor or == a

esess.Elements[2].Color = aututograog diendientt3;”RgbCRgbColoor.AliceeBlue; txt2.Too.ToolTip = “Multilinnee”; pagepageElElements.Add(txt2); AddCaptionAndRectangle(pageElememennts, “TexxtFiField Formorm PagPage Ele Elemenemenemennnt:”,:”, x, y, 5, 5y 0404, 85);5) } p} rivaate ve ve ooid oid AddCdCombomb

CombCCC ooBox(“cmmbnambna e”, e”, x + x + 51, 51, y + y + 40,40, 150,15 220); cb.BBorderColoor = RgbColor.BlacBlack; ccb.Bab.BackckgroundColor = RgbColor.AliceBlue; cb.Font = Font.Helveelveticaa; cbb.FonFo tSizzSizze = e 12; cb.Icb.Itemsstemsstems.AddA (“Item 1eme ”);); cb.cb.Itemstems.AddAdAd.Add(“It(“It(“It(Item 2em ”); ”); cbcb

didd table””)”); cb.Itemms[s[“[“Editaabble”].Selectcteded = true; c; cb.Editable = truue; ccb.ToolTip == “Edi“Ed tablab e CoC mmbo Box”; pageElements.Add(cb); ComboBox cb1 = new Cew omboombbb Box(B x(“cmbmb1nammee”, x + 303,3303, y + y + 40, 150, 20 20); c); cb1.BBb1 ordedederderrColor == R

= F== ont.HHHelveticca;a; ca; cbb1.FontSnt ize = 122; cb1.Itemss.AAdd(“IItem 1”); ccb1.Ittems.Add(“It“Item 2em ”); ”) cb1.cb1.ItItems.Add(“Item 3”); cb1.Items.Add(“Item 4”); cb1.Itemss.AAddd(“Noon-Ediditabtablee”);); c cb1.Items[““[“Non-Non-EditEditableable”].S”].Seelected = tr= ue; ue; cb1.1 Edita

ntnntts.Ads dd(cb(cb(cb1); Converter.CoC nvert(“http://www.gogoogogle.ccom”, “Outputt.pdf”);Convertve er.Cer.Conveonvert(GetDocPath(“DocumentA.rtf”), “Output.pdf”);System.Diaiagnooosticscss.ProoPP cesssess.SStart(“Outptput.pput.pdf”)df”); As; AsyncCncConverterrt aCooCoonnvenverteer = new A

errr((aC(aCo(nverrter_Converted); aConverter.ConversionErroor += nnew ConnversionErrorEvventHtHandler(aConverter_ConversionError); aConverter.Convert(@”C:\tC:\ emmp\mpmm DDocummenmenttAA.rtf”, @”C:\tememmmp\Oup\OutputtputA.pdA.pdf”);f”);) aConverv rter.ter.Coonvert(@”C

verve t(@”C:\temp\DocumentC.rtf”, @”C:\temp\OutputCC.pdf”)); aCoonveerter.Convert(e “hhttp://p://www.yahoo.com”, @”C:\Temp\yahoo.pdf”); ConversionOptionsoni ooptop ionnsnsns = = new CConversiosionOptnOpttionsions(720(720, 72, 720, 72, ttrue); ceeTe.DTe. yynamicPDF

tempte \\ooutput.pdf”, options); ceTe.DynamicPDF.Conveersion.Connvertter.Convert(“C:\\\teemp\\Document2.docx”, “C:\\temp\\output.pdf”, options); string sg ammmpamplmpam eHtmH ml = l “<hth ml><ml><bodybody><p>><p>pp TThis is a very ssimplm e HTML ML strring includ

<tab<t le bborder=\”1\”>1 <tr><td>100</td><td>200</td>”” + “<ttd>3300<</td></tr><tr><<td>>400</td><td>500</td><td>600</t< d></tr></table><></bod/body><y><//</</hhthtmhtmlhtmhtm >”;Conveveo rsion.Con.CoCC nvernverter.ter.CConvvertHtmlString(saamplempleHtmll, “C“C:\\\temp\emp\\Sam\Sam

ererNamee”, Path.Combo ine(GetPath(), “LetterPortrait.pdff”)); prrintJoob.DDocumentNamee = “LettLetter Pe ortrait”; if (printJob.Pob. rinter.Color) prinprinprinprinpri tJobtJob P.PrintOpntOn tions.Cos. lor o = trtrue; ue; if (if (prinprinri tJobtJo .Printer.ColC late) printJob.Pb.P.PPrrintr OOptiOptip ons.ons.onons CoCoollollate at = tr= tr= uurr

innt

;ppd

t:: ,

Untitled-1 1 9/8/11 12:41 PM

www.dynamicpdf.com

msdn magazine28 Windows Azure Insider

from the management portal in the Add-Ons section (Windows
Azure Store). MetricsHub supports both Windows Azure Cloud
Services and Windows Azure Virtual Machines, based on an archi-
tecture that extracts information from WAD and receives informa-
tion from agents installed on single stateful instances (see Figure 7).

Once the service has been set up, the MetricsHub portal off ers
diff erent thresholds for maintaining a healthy cloud environment,
based on parameters such as target CPU range and number of
messages in a queue. It also provides a cost forecast before and
after applying the autoscaling options, truly automating the
provisioning process in the smartest way possible, balancing cost
with performance (see Figure 8).

Use Automated Windows PowerShell Scripts Th e third method
is based on Windows PowerShell scripts that are manually created

Figure 8 The MetricsHub Architecture Autoscaling Portal

Figure 7 MetricsHub Architecture

Web Browsers

Monitored Web and Worker Roles
(Windows Azure Diagnostics)

Local

Monitored Virtual Machines
(MetricsHub Agent)

MetricsHub
Jobs Worker Role

MetricsHub
Portal Web Role

MetricsHub
Web API Web Role

MetricsHub
Storage

MetricsHub

and directly executed against the Windows Azure
Management API. This approach provides a high
level of control and fl exibility, because these scripts
can be used inside custom applications or contin-
uous integration frameworks. Moreover, Windows
PowerShell cmdlets for Windows Azure support the
three deployment models, including the automation
of the provisioning process for Windows Azure Web
Sites. For example, changing the number of instances
for a specifi c deployment is as easy as executing the
following command:
PS C:\> Set-AzureWebsite –Name {WebSiteName} –NumberOfWorkers
{Instances}

For instructions on how to set up and install Windows
Azure cmdlets, see bit.ly/QqctsU. You can fi nd documen-
tation on how to use each of the cmdlets at bit.ly/U0vOEp.

Wrapping Up
Th is article concludes our two-part series on building

multi-tenant solutions in Windows Azure. In addition to identity
and data isolation in the fi rst article, we introduced you to the pro-
cess of confi guring and extracting performance information from
each of the Windows Azure deployment models—Cloud Services,
Virtual Machines and Web Sites. At the same time, we analyzed
three diff erent ways of autoscaling deployments via internal and
external components and services. By taking advantage of the
cloud economic model—which is based on usage cost and pools
of shared resources—more companies are releasing solutions that
can be effi ciently adapted to their needs.

BRUNO TERKALY is a developer evangelist for Microsoft . His depth of knowledge comes
from years of experience in the fi eld, writing code using a multitude of platforms,
languages, frameworks, SDKs, libraries and APIs. He spends time writing code,

blogging and giving live presentations on building
cloud-based applications, specifi cally using the
Windows Azure platform. You can read his blog
at blogs.msdn.com/b/brunoterkaly.

RICARDO VILLALOBOS is a seasoned software
architect with more than 15 years of experience
designing and creating applications for companies
in the supply chain management industry.
Holding diff erent technical certifi cations, as well
as a master’s degree in business administration
from the University of Dallas, he works as a cloud
architect in the Windows Azure CSV incubation
group for Microsoft . You can read his blog at blog.
ricardovillalobos.com.

Terkaly and Villalobos jointly present at
large industry conferences. They encourage
readers of Windows Azure Insider to contact
them for availability. Terkaly can be reached at
bterkaly@microsoft .com and Villalobos can be
reached at Ricardo.Villalobos@microsoft .com.

THANKS to the following technical expert
for reviewing this article:
Trent Swanson (Full Scale 180)

http://blogs.msdn.com/b/brunoterkaly
http://blog.ricardovillalobos.com
http://blog.ricardovillalobos.com
mailto:bterkaly@microsoft.com
mailto:Ricardo.Villalobos@microsoft.com
www.bit.ly/U0vOEp

(888) 850-9911
Sales Hotline - US & Canada:

/update/2013/07

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2013 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Aspose.Total for .NET from $2,449.02
Every Aspose .NET component in one package.

• Programmatically manage popular fi le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, Project plans, emails, barcodes, OCR, and document
management in .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the fl y and extracting text from PDF fi les

BEST SELLER

BEST SELLER ComponentOne Studio Enterprise from $1,315.60
.NET Tools for the Smart Developer: Windows, HTML5/Web, and XAML.

• Hundreds of UI controls for all .NET platforms including grids, charts, reports and schedulers

• Supports Visual Studio 2012 and Windows 8

• Now includes MVC 4 Scaff olding and new MVC 4 project templates (C# & VB)

• New Tile controls for WinForms, WPF, Silverlight, WinRT and Windows Phone

• Royalty-free deployment and distribution

BEST SELLER

Help & Manual Professional from $583.10
Easily create documentation for Windows, the Web and iPad.

• Powerful features in an easy accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

• Styles and Templates give you full design control

BEST SELLER

GdPicture.NET from $3,919.47
All-in-one AnyCPU document-imaging and PDF toolkit for .NET and ActiveX.

• Document viewing, processing, printing, scanning, OMR, OCR, Barcode Recognition

• Annotate image and PDF within your Windows & Web applications

• Read, write and convert vector & raster images in more than 90 formats, including PDF

• Includes sample code for: .NET, VB6, Delphi, VC++, C++ Builder, VFP, HTML, Access...

• 100% royalty-free and world leading Imaging SDK

BEST SELLER

Untitled-2 1 5/29/13 12:16 PM

http://www.componentsource.com

Intense Take-Home
Training for Developers,
Software Architects
and Designers

Celebrating 20 years of education and training for the developer community,
Visual Studio Live! is back on the Microsoft Campus – backstage passes
in hand! Over 5 days and 65 sessions and workshops, you’ll get an
all-access look at the Microsoft Platform and practical, unbiased, developer
training at Visual Studio Live! Redmond.

C l b ti 20 f d ti d t i i f th d

Rock
Your
CODE On
Campus!

YOURR BAACCKSTAAGEE PPASS TOO TTHE MICCROSSOFTT PLAATFORMMM

EVENT SPONSOR PRODUCED BYSUPPORTED BY

magazine

PLATINUM SPONSORS

Untitled-3 2 5/29/13 3:18 PM

www.vslive.com/redmond

TOPICS WILL INCLUDE:
 Web Development
 Azure / Cloud Computing
 Cross-Platform Mobile
 Data Management
 SharePoint / Of ce
 Windows 8 / WinRT
 Visual Studio 2012 / .NET 4.5
 SQL Server

vslive.com/redmond

REDMOND, WA August
19-23, 2013

MICROSOFT CAMPUS

REGISTER
BEFORE
JULY 17 &
SAVE $300
USE PROMO CODE REDJUL4

Scan the QR code
to register or for
more event details.

TURN THE PAGE FOR
MORE EVENT DETAILS

Untitled-3 3 5/29/13 3:18 PM

www.vslive.com/redmond

START TIME END TIME

7:30 AM 8:00 AM

8:00 AM 12:00 PM FW01 - Workshop: Rich Data HTML Mobile and

12:00 PM 1:00 PM

1:00 PM 5:00 PM FW01 - Workshop: Rich Data HTML Mobile and

*Speakers and sessions subject to change

START TIME END TIME

7:00 AM 8:00 AM

8:00 AM 12:00 PM MW01 - Workshop: Building Windows 8
Applications - Rockford Lhotka

12:00 PM 2:30 PM

2:30 PM 6:00 PM MW01 - Workshop: Building Windows 8
Applications - Rockford Lhotka

START TIME END TIME

7:30 AM 8:30 AM

8:30 AM 9:30 AM

9:45 AM 11:00 AM T01 - Interaction and Navigation Patterns in
Windows 8 Applications - Billy Hollis

11:15 AM 12:30 PM T06 - Introduction to the WinRT API
- Jason Bock

12:30 PM 2:30 PM

2:30 PM 3:45 PM T11 - A Primer in Windows 8 Development
with WinJS - Philip Japikse

3:45 PM 4:15 PM

4:15 PM 5:30 PM T16 - Getting Beyond the Datagrid in Windows 8
- Billy Hollis

5:30 PM 7:30 PM

START TIME END TIME

7:30 AM 8:00 AM

8:00 AM 9:00 AM

9:15 AM 10:30 AM W01 - Expression Blend 5 for Developers: Design
Your XAML or HTML5\CSS3 UI Faster - Ben Hoelting

10:45 AM 12:00 PM W06 - Using Your Favorite JavaScript Frameworks
When Developing Windows Store Apps - Keith Burnell

12:00 PM 1:30 PM

1:30 PM 2:45 PM W11 - Migrating from WPF or Silverlight
to WinRT - Rockford Lhotka

2:45 PM 3:15 PM

3:15 PM 4:30 PM
W16 - Sharing Code Between Windows 8

and Windows Phone 8 apps
- Ben Dewey

8:00 PM 10:00 PM

START TIME END TIME

7:30 AM 8:00 AM

8:00 AM 9:15 AM
TH01 - Windows Azure Mobile Services: Backend

for Your Windows 8, iOS, and Android Apps
- Sasha Goldshtein

9:30 AM 10:45 AM TH06 - Win8 + Cloud Services
- Rockford Lhotka

11:00 AM 12:15 PM TH11 - Demystifying LOB Deployments in
Windows 8 and Windows Phone 8 - Tony Champion

12:15 PM 2:45 PM

2:45 PM 4:00 PM
TH16 - Deep Dive into the Windows 8

Background APIs
- Tony Champion

4:15 PM 5:30 PM
TH21 - Windows 8 Apps with MVVM, HTML/JS,

and Web API (An eCommerce Story)
- Ben Dewey

YOURR BAACKKSTAGGE PAASS TTO TTHHE MICROOSOFFT PLLATFFORMM

AGENDA AT-A-GLANCE
Windows 8 / WinRT Web and JavaScript

DevelopmentVisual Studio Live! has partnered with the
Hyatt Regency Bellevue for conference
attendees at a special reduced rate.

CONNECT WITH
VISUAL STUDIO LIVE!

twitter.com/vslive – @VSLive

facebook.com – Search “VSLive”

linkedin.com – Join the “Visual Studio Live” group!

Register at
vslive.com/redmond
Use Promo Code REDJUL4

Scan the QR
code to register or for more event details.

Untitled-3 4 5/29/13 3:18 PM

www.vslive.com/redmond
www.vslive.com/redmond
www.twitter.com/vslive
https://www.facebook.com/pages/VSLive/190107439474
http://www.linkedin.com/groups?gid=1844781&trk=hb_side_g

Visual Studio Live! Post Conference Workshops: Friday, August 23, 2013 (Separate entry fee required)

Post Conference Workshop Registration - Coffee and Morning Pastries

Browser Clients with Knockout, JQuery, Breeze, and Web API - Brian Noyes FW02 - Workshop: SQL Server for Developers - Andrew Brust & Leonard Lobel

Lunch

Browser Clients with Knockout, JQuery, Breeze, and Web API - Brian Noyes FW02 - Workshop: SQL Server for Developers - Andrew Brust & Leonard Lobel

Visual Studio Live! Pre-Conference Workshops: Monday, August 19, 2013 (Separate entry fee required)

Pre-Conference Workshop Registration - Coffee and Morning Pastries

MW02 - Workshop: End-to-End Service Orientation - Designing, Developing, & Implementing
Using WCF and the Web API - Miguel Castro

MW03 - Workshop: UX Design Bootcamp for Developers and Analysts
- Billy Hollis

Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

MW02 - Workshop: End-to-End Service Orientation - Designing, Developing, & Implementing
Using WCF and the Web API - Miguel Castro

MW03 - Workshop: UX Design Bootcamp for Developers and Analysts
- Billy Hollis

Visual Studio Live! Day 1: Tuesday, August 20, 2013
Registration - Coffee and Morning Pastries

Keynote: To Be Announced

T02 - Controlling ASP.NET MVC4
- Philip Japikse

T03 - What’s New in Windows Azure
- Vishwas Lele

T04 - Data Visualization with SharePoint
and SQL Server - Paul Swider

T05 - Building Windows 8 Line of
Business Apps - Robert Green

T07 - I’m Not Dead Yet! AKA The Resurgence of
Web Forms - Philip Japikse

T08 - Building LOB Apps in Windows Azure
- Vishwas Lele

T09 - A Developers Perspective on the Social
Architecture of SharePoint 2013 - Paul Swider

T10 - Working With Data in Windows
Store Apps - Robert Green

Lunch - Visit Exhibitors

T12 - jQuery Fundamentals
- Robert Boedigheimer

T13 - Moving Web Apps to the Cloud
- Eric D. Boyd

T14 - Developing Using the SharePoint 2013
REST Services - Matthew DiFranco T15 - Session To Be Announced

Sponsored Break - Visit Exhibitors

T17 - Fiddler and Your Website
- Robert Boedigheimer

T18 - JavaScript, Meet Cloud: Node.js on
Windows Azure - Sasha Goldshtein

T19 - What’s New in SharePoint 2013 Work ow
Development? - Matthew DiFranco

T20 - Windows Store Application Contracts
and Extensibility - Brian Peek

Microsoft Ask the Experts & Exhibitor Reception – Attend Exhibitor Demos

Visual Studio Live! Day 2: Wednesday, August 21, 2013
Registration - Coffee and Morning Pastries

Keynote: To Be Announced

W02 - Web API 101
- Deborah Kurata

W03 - EF Code First: Magic: Unicorns
and Beyond - Keith Burnell

W04 - Building SharePoint Hosted Apps as
Single Page Apps - Andrew Connell

W05 - What’s New in the .NET 4.5 BCL
- Jason Bock

W07 - Exposing Data Services with ASP.NET
Web API - Brian Noyes

W08 - Display Maps in Windows Phone 8
- Al Pascual

W09 - Deep Dive into the Cloud App Model
for SharePoint - Keenan Newton

W10 - Understanding Dependency Injection
and Those Pesky Containers - Miguel Castro

Luncheon Round Table - Visit Exhibitors

W12 - Knocking It Out of the Park,
with Knockout.js - Miguel Castro

W13 - Busy Developer’s Guide to Cassandra
- Ted Neward

W14 - A Deep Dive into Creating Apps
for Of ce - Keenan Newton

W15 - Mastering Visual Studio 2012
- Deborah Kurata

Sponsored Break - Exhibitor Raf e @ 3:00 pm (Must be present to win)

W17 - Tips for Building Multi-Touch
Enabled Web Sites

- Ben Hoelting
W18 - Busy Developer’s Guide to MongoDB

- Ted Neward
W19 - Real World Work ows with Visual

Studio 2012, Custom Forms, Tasks, Events and
Work ow CSOM - Andrew Connell

W20 - TFS vs Team Foundation Service
- Brian Randell

Lucky Strike Evening Out Party

Visual Studio Live! Day 3: Thursday, August 22, 2013
Registration - Coffee and Morning Pastries

TH02 - Building Rich Data HTML Client
Apps with Breeze.js

- Brian Noyes

TH03 - Building Your First Windows
Phone 8 Application

- Brian Peek
TH04 - Introducing SQL Server Data Tools

- Leonard Lobel
TH05 - Build It So You Can Ship It!

- Brian Randell

TH07 - Busy Developer’s Guide to AngularJS
- Ted Neward

TH08 - From Prototype to the Store: How to
Truly Finish a Windows Phone App - Nick Landry

TH09 - Big Data-BI Fusion: Microsoft HDInsight
& MS BI - Andrew Brust

TH10 - Better Process and Tools with
Microsoft ALM - Brian Randell

TH12 - Session To Be Announced TH13 - Connecting to Data from Windows
Phone 8 - Christopher Woodruff

TH14 - Programming the T-SQL Enhancements
in SQL Server 2012 - Leonard Lobel

TH15 - Building Great Windows Store Apps
with XAML and C# - Pete Brown

Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

TH17 - Get your Node.js Under Control
with TypeScript
- Yaniv Rodenski

TH18 - Developing Mobile Solutions with
Azure and Windows Phone

- Christopher Woodruff
TH19 - Getting to Know the BI Semantic Model

- Andrew Brust
TH20 - WebMatrix 3: The Code Editor

for the Cloud – Justin Beckwith

TH22 - SignalRity
- Yaniv Rodenski

TH23 - Designing Your Windows Phone Apps
for Multitasking and Background Processing

- Nick Landry

TH24 - Intro to Windows Azure SQL Database
and What’s New

- Eric D. Boyd

TH25 - Web API 2 – Web Services for Websites,
Modern Apps, and Mobile Apps

- Daniel Roth

REDMOND, WA August
19-23, 2013

MICROSOFT CAMPUS

Visual Studio 2012 /
.NET 4.5 SharePoint / Of ce Azure / Cloud Computing Data Management Mobile Development SQL Server

Untitled-3 5 5/29/13 3:19 PM

www.vslive.com/redmond

msdn magazine34

I believe every developer wants to write good code.
Nobody wants to create bug-ridden, unmaintainable systems that
require endless hours to add features or fi x problems. I’ve been on
projects that felt like they were in a constant state of chaos, and
they’re not fun. Long hours are lost in a code base that’s barely
comprehensible due to inconsistent approaches. I like being on
projects where layers are well-defi ned, unit tests are in abundance
and build servers are constantly running to ensure everything
works. Projects like that usually have a set of guidelines and stan-
dards in place that the developers follow.

I’ve seen teams put such guidelines in place. Maybe the developers
are supposed to avoid calling certain methods in their code because
they’ve been deemed problematic. Or maybe they want to make

sure the code follows the same patterns in certain situations. For
example, developers on projects may agree on standards like these:

• No one should use local DateTime values. All DateTime
values should be in Universal Time Coordinate (UTC).

• Th e Parse method found on value types (such as int.Parse)
should be avoided; int.TryParse should be used instead.

• All of the entity classes created should support equality—
that is, they should override Equals and GetHashCode
and implement the == and != operators, and the
IEquatable<T> interface.

I’m sure you’ve seen similar rules in a standards document.
Consistency is a good thing, and if everyone follows the same
practices, it becomes easier to maintain the code. Th e trick is to
quickly express that knowledge to all the developers on the team
in a reusable, eff ective way.

Code reviews are one way to fi nd potential issues. It’s common
for people with a fresh perspective on a given implementation to
see issues that the original author is not aware of. Having another
set of eyes review what you did can be benefi cial, especially when
the reviewer isn’t familiar with the work. However, it’s still easy to
miss issues during development. Furthermore, code reviews are
time-consuming—developers have to spend hours reviewing code
and meeting with other developers to communicate the problems
they fi nd. I want a process that’s quicker. I want to know as soon as
possible that I’ve done something wrong. Failing as fast as possible
saves time and money in the long run.

Th ere are tools in Visual Studio, such as Code Analysis, that can
analyze your code and inform you of potential problems. Code

RO S LYN

How Microsoft’s Next-Gen
Compiler Project Can
Improve Your Code
Jason Bock

Microsoft “Roslyn” is still in CTP mode; all information
is subject to change.

This article discusses:
• Rules and tools for developing good code

• The Microsoft “Roslyn” project

• Syntax trees

• Finding and solving code issues

Technologies discussed:
Microsoft “Roslyn,” Visual Studio 2012

Code download available at:
archive.msdn.microsoft.com/mag201307Roslyn

http://archive.msdn.microsoft.com/mag201307Roslyn

Untitled-1 1 10/13/11 11:25 AM

www.nSoftware.com

msdn magazine36 Roslyn

Analysis has a number of predefi ned rules that can uncover cases
where you haven’t disposed your object, or when you have unused
method arguments. Unfortunately, Code Analysis doesn’t run its
rules until compilation is complete, and that’s not soon enough! I
want to know as soon as I’m typing that my new code has a mistake
in it according to my standards. Failing as fast as I can is a good thing.
Time (and therefore money) is saved, and I avoid committing code
that can potentially lead to numerous problems in the future. To do
that, I need to be able to codify my rules such that they’re executed as
I type, and that’s where the Microsoft “Roslyn” CTP comes into play.

What’s Microsoft “Roslyn”?
One of the best tools .NET developers can use to analyze their
code is the compiler. It knows how to parse code into tokens,
and turn those tokens into something that’s meaningful based on
their placement in the code. Th e compiler does this by emitting an
assembly to disk as its output. Th ere’s a lot of hard-won knowl-
edge that’s gleaned in the compilation pipeline that you’d love
to be able to use, but, alas, that’s not possible in the .NET world
because the C# and Visual Basic compilers don’t provide an API for
you to access. Th is changes with Roslyn. Roslyn is a set of compiler
APIs that provides you with full access to every stage the compiler
moves through. Figure 1 is a diagram of the diff erent stages in the
compiler process that are now available in Roslyn.

Even though Roslyn is still in CTP mode (I used the September
2012 version for this article), it’s worth taking the time to investigate
the functionality available in its assemblies, and to learn what you
can do with Roslyn. A good place to start is to look at its scripting
facility. With Roslyn, C# and Visual Basic code are now scriptable.
Th at is, there’s a scripting engine available in Roslyn into which you
can input snippets of code. Th is is handled via the ScriptEngine
class. Here’s a sample that illustrates how this engine can return the
current DateTime value:

class Program
{
 static void Main(string[] args)
 {
 var engine = new ScriptEngine();
 engine.ImportNamespace("System");
 var session = engine.CreateSession();
 Console.Out.WriteLine(session.Execute<string>(
 "DateTime.Now.ToString();"));
 }
}

In this code, the engine is creating and importing the System
namespace so Roslyn will be able to resolve what DateTime means.
Once a session is created, all it takes is to call Execute, and then
Roslyn will parse the given code. If it can parse it correctly, it will
run it and return the result.

Making C# into a scripting language is a powerful concept. Even
though Roslyn is still in CTP mode, people are creating amazing

projects and frameworks using its bits, such as scriptcs
(scriptcs.net). However, where I think Roslyn really shines
is in letting you create Visual Studio extensions to warn
you of issues while you write code. In the previous
snippet, I used DateTime.Now. If I were on a project
that enforced the first bullet point I made at the
beginning of the article, I’d be in violation of that stan-
dard. I’ll explore how that rule can be enforced using

Roslyn. But before I do that, I’ll cover the fi rst stage of compilation:
parsing code to get tokens.

Syntax Trees
When Roslyn parses a piece of code, it returns an immutable syntax
tree. Th is tree contains everything about the given code, including
trivia such as spaces and tabs. Even if the code has errors, it’ll still
try as best it can to give you as much information as possible.

Th is is all well and good, but how do you fi gure out where in
the tree the pertinent information is? Currently, the documenta-
tion on Roslyn is fairly light, which is understandable given that
it’s still a CTP. You can use the Roslyn forums to post questions
(bit.ly/16qNf7w), or use the #RoslynCTP tag in a Twitter post. Th ere’s
also a sample called SyntaxVisualizerExtension when you install
the bits, which is an extension for Visual Studio. As you type code
in the IDE, the visualizer automatically updates with the current
version of the tree.

Th is tool is indispensable in fi guring out what you’re looking
for and how to navigate the tree. In the case of using .Now on
the DateTime class, I fi gured out that I needed to fi nd Member-
AccessExpression (or, to be precise, a MemberAccessExpression-
Syntax-based object), where the last Identifi erName value equals
Now. Of course, that’s for the simple case where you’d type “var now
= DateTime.Now;”—you could put “System.” in front of DateTime,
or use “using DT = System.DateTime;”; furthermore, there may be
a property in the system in a diff erent class called Now. All of the
cases must be processed correctly.

public IEnumerable<CodeIssue> GetIssues(
 IDocument document, CommonSyntaxNode node, CancellationToken cancellationToken)
{
 var memberNode = node as MemberAccessExpressionSyntax;

 if (memberNode.OperatorToken.Kind == SyntaxKind.DotToken &&
 memberNode.Name.Identifier.ValueText == "Now")
 {
 var symbol = document.GetSemanticModel().GetSymbolInfo(memberNode.Name).Symbol;

 if (symbol != null &&
 symbol.ContainingType.ToDisplayString() ==
 Values.ExpectedContainingDateTimeTypeDisplayString &&
 symbol.ContainingAssembly.ToDisplayString().Contains(
 Values.ExpectedContainingAssemblyDisplayString))
 {
 return new [] { new CodeIssue(CodeIssueKind.Error,
 memberNode.Name.Span,
 "Do not use DateTime.Now",
 new ChangeNowToUtcNowCodeAction(document, memberNode))};
 }
 }

 return null;
}

Figure 2 Finding DateTime.Now Usages

Figure 1 The Roslyn Compiler Pipeline

Compiler API

Compiler Pipeline

Syntax
Tree API

Symbol API Binding and Flow
Analysis APIs

Emit API

Parser
Symbols

Metadata Import
Binder IT Emitter

www.bit.ly/16qNf7w

msdnmagazine.com

Finding and Solving Code Issues
Now that I know what to find, I need to
create a Roslyn-based Visual Studio exten-
sion to hunt down DateTime.Now property
usage. To do this, you simply select the Code
Issue template under the Roslyn option in
Visual Studio.

Once you do this, you’ll get a project that
contains one class called CodeIssue Pro-
vider. Th is class implements the ICodeIssue-
Provider interface, though you don’t have
to implement each of its four members. In
this case, only the members that work with
SyntaxNode types are used; the others can
throw NotImplementedException. You
implement the SyntaxNodeTypes property
by specifying which syntax node types you
want to handle with the corresponding
GetIssues method. As was mentioned in
the previous example, MemberAccess-
ExpressionSyntax types are the ones that
matter. Th e following code snippet shows
how you implement SyntaxNodeTypes:

public IEnumerable<Type> SyntaxNodeTypes
{
 get
 {
 return new[] {
typeof(MemberAccessExpressionSyntax) };
 }
}

This is an optimization for Roslyn. By
having you specify which types you care
to examine in more detail, Roslyn doesn’t
have to call the GetIssues method for each
syntax type. If Roslyn didn’t have this fi l-
tering mechanism in place and called your
code provider for every node in the tree, the
performance would be appalling.

Now all that’s left is to implement Get-
Issues such that it will only report use of the
Now property. As I mentioned in the pre-
vious section, you only want to fi nd cases
where Now has been used on DateTime.
When you’re using tokens, you don’t
have a lot of information besides the text.
How ever, Roslyn provides what’s called a
semantic model, which can provide a lot more
information about the code under exam-
ination. Th e code in Figure 2 demonstrates
how you can fi nd DateTime.Now usages.

You’ll notice the cancellationToken argu-
ment isn’t used, nor is it used anywhere in
the sample project that accompanies this
article. Th is is a deliberate choice, because
putting code into the sample that constantly
checks the token to see if the processing
should stop can be distracting. But if you’re

going to create Roslyn-based extensions that
are production-ready, you should make sure
you check the token often and stop if the
token is in the canceled state.

Once you’ve determined that your
member access expression is trying to get
a property called Now, you can get symbol
information for that token. You do this by
getting the semantic model for the tree, and
then you get a reference to an ISymbol-based
object via the Symbol property. Th en, all you
have to do is get the containing type and see
if its name is System.DateTime and if its
containing assembly name includes
mscorlib. If that’s the case, that’s the issue
you’re looking for, and you can fl ag it as an
error by returning a CodeIssue object.

Th is is good progress so far, because you’ll
see a red squiggly error line underneath the
Now text in the IDE. But it doesn’t go far
enough. It’s nice when the compiler tells you
your code is missing a semicolon or a curly
brace. Getting error information is better
than nothing at all, and with simple errors
it’s usually pretty easy to fi x them based on
the error message. However, wouldn’t it be
nice if tools could just fi gure out errors all
by themselves? I like being told when I’m
wrong—and I’m much happier when the
error message gives me detailed informa-
tion explaining how I can fi x the issue. And
if that information could be automated
such that a tool could resolve the issues for
me, that’s less time I have to spend on the
problem. Th e more time saved, the better.

Th at’s why you see in the previous code
snippet a reference to a class called Change-
NowToUtcNowCodeAction. This class
implements the ICodeAction interface, and
its job is to change Now to UtcNow. The
main method you have to implement is
called GetEdit. In this case, the Name token
in the MemberAccessExpressionSyntax
object needs to be changed to a new token.
As the following code shows, it’s pretty easy
to make this replacement:

public CodeActionEdit
GetEdit(CancellationToken cancellationToken)
{
 var nameNode = this.nowNode.Name;
 var utcNowNode =
 Syntax.IdentifierName("UtcNow");
 var rootNode = this.document.
 GetSyntaxRoot(cancellationToken);
 var newRootNode =
 rootNode.ReplaceNode(nameNode, utcNowNode);
 return new CodeActionEdit(
 document.UpdateSyntaxRoot(newRootNode));
}

www.vsipprogram.com/partners
www.msdnmagazine.com

msdn magazine38 Roslyn

All you need to do is create a new identifier with the Utc-
Now text, and replace the Now token with this new identifi er via
ReplaceNode. Remember that syntax trees are immutable, so you
don’t change the current document tree. You create a new tree, and
return that tree from the method call.

With all of this code in place, you can test it out in Visual
Studio by simply pressing F5. This launches a new instance of
Visual Studio with the extension automatically installed.

Analyzing DateTime Constructors
Th is is a good start, but there are more cases that have to be handled.
Th e DateTime class has a number of constructors defi ned that can
cause issues. Th ere are two cases in particular to be aware of:

1. Th e constructor may not take a DateTimeKind enumer-
ation type as one of its parameters, which means the
resulting DateTime will be in the Unspecifi ed state.

2. Th e constructor may take a DateTimeKind value with
one of its parameters, which means you may specify an
enumeration value other than Utc.

You can write code to fi nd both conditions. However, I’ll only
create a code action for the second one.

Figure 3 lists the code for the GetIssues method in the
ICodeIssue-based class that will fi nd bad DateTime constructor calls.

It’s very similar to the other issue. Once you know the constructor
comes from a DateTime, you need to evaluate the arguments. (I’ll
explain what GetInvalidArgument does in a moment.) If you fi nd
an argument of the DateTimeKind type and it doesn’t specify Utc,
you have a problem. Otherwise, you know you’re using a constructor
that won’t have the DateTime in Utc, so that’s another issue to report.
Figure 4 shows what GetInvalidArgument looks like.

Th is search is very similar to the others. If the argument type
is DateTimeKind, you know you have a potentially invalid argu-
ment value. To fi x the argument, the code is virtually identical to
the fi rst code action you saw, so I won’t repeat it here. Now, if other
developers try to get around the DateTime.Now restriction, you
can catch them in the act, and correct the constructor calls, too!

In the Future
It’s wonderful to think about all the tools that will be created with
Roslyn, but work still needs to be done. One of the biggest frustra-
tions I think you’ll have with Roslyn right now is the lack of docu-
mentation. Th ere are good samples online and in the installation
bits, but Roslyn is a large API set and it can be confusing fi nding
out exactly where to start and what to use to accomplish a partic-
ular task. It’s not uncommon to have to dig around for a while to
fi gure out the right calls to use. Th e encouraging aspect is that I’m
usually able to do something in Roslyn that seems fairly complex
at fi rst but ends up being fewer than 100 or 200 lines of code.

I believe that as Roslyn gets closer to release, everything
surrounding it will improve. And I’m also convinced that Roslyn
has the potential to underpin many frameworks and tools in the
.NET ecosystem. I don’t see every .NET developer using the Roslyn
APIs on a day-to-day basis directly, but you’ll probably end up using
bits that use Roslyn at some level. Th is is why I’m encouraging you
to dive into Roslyn and see how things work. Being able to codify
idioms into reusable rules that every developer on a team can take
advantage of helps everyone quickly produce better code.

JASON BOCK is a practice lead at Magenic (magenic.com) and recently coauthored
“Metaprogramming in .NET” (Manning Publications, 2013). Reach him at
jasonb@magenic.com.

THANKS to the following technical expert for reviewing this article:
Kevin Pilch-Bisson (Microsoft)

public IEnumerable<CodeIssue> GetIssues(
 IDocument document, CommonSyntaxNode node, CancellationToken cancellationToken)
{
 var creationNode = node as ObjectCreationExpressionSyntax;
 var creationNameNode = creationNode.Type as IdentifierNameSyntax;

 if (creationNameNode != null && creationNameNode.Identifier.ValueText == "DateTime")
 {
 var model = document.GetSemanticModel();
 var creationSymbol = model.GetSymbolInfo(creationNode).Symbol;

 if (creationSymbol != null &&
 creationSymbol.ContainingType.ToDisplayString() ==
 Values.ExpectedContainingDateTimeTypeDisplayString &&
 creationSymbol.ContainingAssembly.ToDisplayString().Contains(
 Values.ExpectedContainingAssemblyDisplayString))
 {
 var argument = FindingNewDateTimeCodeIssueProvider.GetInvalidArgument(
 creationNode, model);

 if (argument != null)
 {
 if (argument.Item2.Name == "Local" ||
 argument.Item2.Name == "Unspecified")
 {
 return new [] { new CodeIssue(CodeIssueKind.Error,
 argument.Item1.Span,
 "Do not use DateTimeKind.Local or DateTimeKind.Unspecified",
 new ChangeDateTimeKindToUtcCodeAction(document, argument.Item1)) };
 }
 }
 else
 {
 return new [] { new CodeIssue(CodeIssueKind.Error,
 creationNode.Span,
 "You must use a DateTime constuctor that takes a DateTimeKind") };
 }
 }
 }

 return null;
}

Figure 3 Finding Bad DateTime Constructor Calls

private static Tuple<ArgumentSyntax, ISymbol> GetInvalidArgument(
 ObjectCreationExpressionSyntax creationToken, ISemanticModel model)
{
 foreach (var argument in creationToken.ArgumentList.Arguments)
 {
 if (argument.Expression is MemberAccessExpressionSyntax)
 {
 var argumentSymbolNode = model.GetSymbolInfo(argument.Expression).Symbol;

 if (argumentSymbolNode.ContainingType.ToDisplayString() ==
 Values.ExpectedContainingDateTimeKindTypeDisplayString)
 {
 return new Tuple<ArgumentSyntax,ISymbol>(argument, argumentSymbolNode);
 }
 }
 }

 return null;
}

Figure 4 The GetInvalidArgument Method

mailto:jasonb@magenic.com

Untitled-1 1 6/5/13 10:57 AM

www.alexcorp.com

PRODUCED BYSUPPORTED BY

amplify your
knowledge
Live! 360 is back to turn your conference experience up to 11.
Spanning 5 days at the Royal Paci c Resort in sunny Orlando, Live! 360
gives you the ultimate IT and Developer line-up, offering hundreds
of sessions on the most relevant topics affecting your business today.

LIVE EVENT
orlando • november • 18-22, 2013

magazine

Untitled-3 2 5/31/13 10:59 AM

www.live360events.com

Calling all .NET Developers! We’ve got
your ticket to Code for the nal stop on
the Visual Studio Live! 2013 Tour.
vslive.com/orlando

Bringing SQL Server to Your World.
Fine tune your skills to solve your biggest
data challenges at SQL Server Live!.
sqllive360.com

Collaborate and Listen. SharePoint
Live! returns to rock its newest release,
SharePoint 2013. splive360.com

orlando november
18-22, 2013

Royal Pacifi c Resort at Universal Orlando

 live360events.com

The Future of Software Development is Back,
Modern Apps Live! will break down the latest
techniques in low cost, high value application
development. modernappslive.com

5 Days.
4 Events.
22 Tracks.
175+ Sessions.
The Ultimate IT and

 Developer Line-up.

CONNECT WITH LIVE!360
twitter.com/@live360events
facebook.com – Search “Live 360”
linkedin.com – Join the “Live 360” group!

Scan the QR code
to register or
for more event
details.

••

••

Summer special!
save $500!
register before august 7
Use Promo Code LIVE360

Untitled-3 3 5/31/13 10:59 AM

www.live360events.com
www.live360events.com
www.vslive.com/orlando
www.splive360.com
www.sqllive360.com
www.modernappslive.com
www.twitter.com/live360events
https://www.facebook.com/live360events
http://www.linkedin.com/groups?gid=4974888&trk=hb_side_g

msdn magazine42

Windows 8 brings many new features that developers can
leverage to create compelling applications and a rich UX. Unfor-
tunately, these capabilities aren’t always very unit-test friendly.
Features such as sharing and secondary tiles can make your app
more interactive and enjoyable, but also less testable.

In this article, I’ll look at diff erent ways to let an application use
features such as sharing, settings, secondary tiles, application set-
tings and application storage. Using the Model-View-ViewModel
(MVVM) pattern, dependency injection and some abstraction, I’ll
show you how to leverage these features while keeping the presen-
tation layer unit-test friendly.

About the Sample App
To illustrate the concepts I’ll be talking about in this article, I’ve
used MVVM to write a sample Windows Store app that lets a user
view blog posts from the RSS feed of his favorite blogs. Th e app
illustrates how to:

• Share information about a blog post with other apps via
the Share charm

• Change which blogs the user wants to read with the
Settings charm

• Pin a favorite blog post to the Start screen for reading
later with secondary tiles

• Save favorite blogs to view across all devices with
roaming settings

In addition to the sample app, I’ve taken the specifi c Windows
8 functionality I’ll be talking about in this article and abstracted
it into an open source library called Charmed. Charmed can
be used as a helper library or just as a reference. The goal of
Charmed is to be a cross-platform MVVM support library for
Windows 8 and Windows Phone 8. I’ll be talking more about the
Windows Phone 8 side of the library in a future article. Check out
the progress of the Charmed library at bit.ly/17AzFxW.

My goal with this article and the sample code is to demonstrate
my approach to testable applications with MVVM, using some of
the new features that Windows 8 off ers.

MVVM Overview
Before diving into the code and specifi c Windows 8 features,
I’ll take a quick look at MVVM. MVVM is a design pattern that
has gained enormous popularity in recent years for XAML-
based technologies, such as Windows Presentation Foundation
(WPF), Silverlight, Windows Phone 7, Windows Phone 8 and
Windows 8 (the Windows Runtime, or WinRT). MVVM breaks
an application’s architecture into three logical layers: Model, View
Model and View, as shown in Figure 1.

Th e Model layer is where the business logic of the application
lives—business objects, data validation, data access and so forth. In
reality, the Model layer is typically broken up into more layers and
possibly even multiple tiers. As Figure 1 shows, the Model layer is
the logical bottom, or foundation, of the application.

WIN DOWS 8

Leveraging Windows 8
Features with MVVM
Brent Edwards

This article discusses:
• The basics of MVVM
• The Sharing and Settings contracts
• The message bus
• Roaming settings
• Secondary tiles

Technologies discussed:
Windows 8, Visual Studio

Code download available at:
archive.msdn.microsoft.com/mag201307MVVM

http://archive.msdn.microsoft.com/mag201307MVVM
www.bit.ly/17AzFxW

43July 2013msdnmagazine.com

Th e View Model layer holds the presenta-
tion logic of the appli cation, which includes
data to be displayed, properties to help enable
UI elements or make them visible, and meth-
ods that will interact with both the Model and
the View layers. Basically, the View Model layer
is a view-agnostic representation of the current
state of the UI. I say “view-agnostic” because
it merely provides data and methods for the
view to interact with, but it doesn’t dictate how
the view will represent that data or allow the
user to interact with those methods. As Figure
1 shows, the View Model layer logically sits
between the Model layer and the View layer
and can interact with both. Th e View Model
layer contains code that would previously be
in the codebehind of the View layer.

Th e View layer contains the actual presentation of the applica-
tion. For XAML-based applications, such as those for the Windows
Runtime, the View layer consists mostly, if not entirely, of XAML.
Th e View layer leverages the powerful XAML data-binding engine
to bind to properties on the view model, applying a look-and-feel
to data that would otherwise have no visual representation. As
Figure 1 shows, the View layer is the logical top of the application.
Th e View layer interacts directly with the View Model layer, but
has no knowledge of the Model layer.

The main purpose of the MVVM pattern is to separate an
application’s presentation from its functionality. Doing so makes
the application more conducive to unit tests because the function-
ality now lives in Plain Old CLR
Objects (POCOs), rather than in
views that have their own lifecycles.

Contracts
Windows 8 introduces the concept
of contracts, which are agreements
among two or more apps on a
user’s system. These contracts
provide consistency across all
apps, allowing developers to lever-
age functionality from any app
that supports them. An app can
declare what contracts it supports
in the Package.appxmanifest fi le,
as shown in Figure 2.

While it’s optional to support
contracts, it’s generally a good
idea. There are three contracts
in particular that an application
should support—Share, Settings
and Search—because they’re always
available via the charms menu,
shown in Figure 3.

I’ll focus on two contract types:
Sharing and Settings.

Sharing
Th e Share contract enables an app to share context-specifi c data
with other apps on the user’s system. Th ere are two sides to the
Share contract: the source and the target. Th e source is the app that’s
doing the sharing. It provides some data to be shared, in whatever
format is necessary. Th e target is the app that receives the shared
data. Because the Share charm is always available to the user via
the charms menu, I want the sample app to be a share source, at
the very least. Not every app needs to be a share target because not
every app has a need to accept input from other sources. However,
there’s a pretty good chance that any given app will have at least one
thing that’s worth sharing with other apps. So, a majority of apps
will likely fi nd it useful to be a share source.

When the user presses the Share charm, an object called the Share
Broker begins the process of taking the data an app shares (if any)
and sending it to the share target as specifi ed by the user. Th ere’s
an object called the DataTransferManager that I can use to share
data during that process. Th e DataTransferManager has an event
called DataRequested, which is raised when the user presses the
Share charm. Th e following code shows how to get a reference to the
DataTransferManager and subscribe to the DataRequested event:

public void Initialize()
{
 this.DataTransferManager = DataTransferManager.GetForCurrentView();
 this.DataTransferManager.DataRequested += this.DataTransferManager_DataRequested;
}

private void DataTransferManager_DataRequested(
 DataTransferManager sender, DataRequestedEventArgs args)
{
 // Do stuff ...
}

Figure 2 Contracts in the Package.appxmanifest File

Figure 1 The Three
Logical Layers
of Model- View-
ViewModel

View Model
Presentation Logic

Model
Business Logic

View
Presentation

www.msdnmagazine.com

msdn magazine44 Windows 8

Calling DataTransferManager.GetForCurrentView returns a
reference to the active DataTransferManager for the current view.
While it’s possible to put this code in a view model, it creates a hard
dependency on the DataTransferManager, a sealed class that can’t
be mocked in unit tests. Because I really want my app to stay as
testable as possible, this isn’t ideal. A better solution is to abstract
the DataTransferManager interaction out into a helper class and
defi ne an interface for that helper class to implement.

Before abstracting this interaction, I must decide what parts
really matter. There are three parts of the interaction with the
DataTransferManager I care about:

1. Subscribing to the DataRequested event when my view
is activated.

2. Unsubscribing from the DataRequested event when my
view is deactivated.

3. Being able to add shared data to the DataPackage.
With those three points in mind, my interface materializes:
public interface IShareManager
{
 void Initialize();
 void Cleanup();
 Action<DataPackage> OnShareRequested { get; set; }
}

Initialize should get a reference to the DataTransferManager and
subscribe to the DataRequested event. Cleanup should unsubscribe
from the DataRequested event. OnShareRequested is where I can
defi ne what method gets called when the DataRequested event has been
raised. Now I can implement IShareManager, as shown in Figure 4.

When the DataRequested event is raised, the event args that come
through contain a DataPackage. Th at DataPackage is where the
actual shared data needs to be placed, which is why the Action for
OnShareRequested takes a DataPackage as a parameter. With my
IShareManager interface defi ned and ShareManager implement-
ing it, I’m now ready to include sharing in my view model, without
sacrifi cing the unit testability for which I’m aiming.

Once I’ve used my Inversion of Control (IoC) container of choice
to inject an instance of IShareManager into my view model, I can
put it to use, as shown in Figure 5.

LoadState is called when the page
and view model are activated, and
SaveState is called when the page
and view model are deactivated.
Now that the ShareManager is
all set up and ready to handle
sharing, I need to implement the
ShareRequested method that will
be called when the user initiates
sharing. I want to share some
info about a particular blog post
(FeedItem), as shown in Figure 6.

I chose to share several diff erent
data types. Th is is generally a good
idea because you have no control
over what apps a user has on his
system or what data types those
apps support. It’s important to
remember that sharing is essen-

tially a fi re-and-forget scenario. You have no idea what app the
user will choose to share to and what that app will do with the shared
data. To share with the broadest possible audience, I provide a title,
a URI, a text-only version and an HTML version.

Settings
Th e Settings contract allows the user to change context-specifi c
settings in an app. Th ese can be settings that aff ect the app as a
whole, or just specific items that relate to the current context.
Users of Windows 8 will become conditioned to using the Settings
charm to make changes to the app, and I want the sample app to
support it because it’s always available to the user via the charms
menu. In fact, if an app declares Internet capability via the
Package.appxmanifest fi le, it must implement the Settings contract
by providing a link to a Web-based privacy policy somewhere in

public sealed class ShareManager : IShareManager
{
 private DataTransferManager DataTransferManager { get; set; }

 public void Initialize()
 {
 this.DataTransferManager = DataTransferManager.GetForCurrentView();
 this.DataTransferManager.DataRequested +=
 this.DataTransferManager_DataRequested;
 }

 public void Cleanup()
 {
 this.DataTransferManager.DataRequested -=
 this.DataTransferManager_DataRequested;
 }

 private void DataTransferManager_DataRequested(
 DataTransferManager sender, DataRequestedEventArgs args)
 {
 if (this.OnShareRequested != null)
 {
 this.OnShareRequested(args.Request.Data);
 }
 }

 public Action<DataPackage> OnShareRequested { get; set; }
}

Figure 4 Implementing IShareManager

Figure 3 The Charms Menu

WINDOWS FORMS | WPF | ASP.NET

WWW.TEXTCONTROL.COM

US +1 855 - 533 - 8398
EU +49 421 - 4270671 - 0

Reuse MS Word documents or templates as your reporting templates.

Easy database connection with master-detail nested blocks.

Powerful, programmable template designer with full sources for Visual Studio®.

Integrate dynamic 2D and 3D charting to your reports.

Create print-ready, digitally signed Adobe PDF and PDF/A documents.

tables, columns, images, headers and footers and more.

FLOW TYPE LAYOUT
REPORTING

Untitled-2 1 4/30/13 10:54 AM

www.textcontrol.com

msdn magazine46 Windows 8

the Settings menu. Because apps using Visual Studio 2012 templates
automatically declare Internet capability right out of the box, this
is something that should not be overlooked.

When a user presses the Settings charm, the OS begins
dynamically building the menu that will be displayed. Th e menu
and the associated fl yout are controlled by the OS. I can’t control
what the menu and fl yout look like, but I can add options to the
menu. An object called SettingsPane will notify me when the user
selects the Settings charm via the CommandsRequested event.
Getting a reference to the SettingsPane and subscribing to the
CommandsRequested event is quite straightforward:

public void Initialize()
{
 this.SettingsPane = SettingsPane.GetForCurrentView();
 this.SettingsPane.CommandsRequested += SettingsPane_CommandsRequested;
}

private void SettingsPane_CommandsRequested(
 SettingsPane sender, SettingsPaneCommandsRequestedEventArgs args)
{
 // Do stuff ...
}

Th e catch with this is another hard dependency. Th is time the
dependency is SettingsPane, which is another class that can’t be
mocked. Because I want to be able to unit test the view model that
uses SettingsPane, I need to abstract out references to it, just as I
did for references to DataTransferManager. As it turns out, my
interactions with SettingsPane are very similar to my interactions
with DataTransferManager:

1. Subscribing to the CommandsRequested event for the
current view.

2. Unsubscribing from the CommandsRequested event
for the current view.

3. Adding my own SettingsCommand objects when the
event is raised.

So, the interface I need to abstract looks a lot like the IShare-
Manager interface:

public interface ISettingsManager
{
 void Initialize();
 void Cleanup();
 Action<IList<SettingsCommand>> OnSettingsRequested { get; set; }
}

Initialize should get a reference to the SettingsPane and subscribe to
the CommandsRequested event. Cleanup should unsubscribe from
the CommandsRequested event. OnSettingsRequested is where I
can defi ne what method gets called when the CommandsRequested
event has been raised. Now I can implement ISettings Manager, as
shown in Figure 7.

When the CommandsRequested event is raised, the event args
ultimately give me access to the list of SettingsCommand objects
that represent the Settings menu options. To add my own Settings
menu options, I just need to add a SettingsCommand instance to

public FeedItemViewModel(IShareManager shareManager)
{
 this.shareManager = shareManager;
}

public override void LoadState(
 FeedItem navigationParameter, Dictionary<string, object> pageState)
{
 this.shareManager.Initialize();
 this.shareManager.OnShareRequested = ShareRequested;
}

public override void SaveState(Dictionary<string, object> pageState)
{
 this.shareManager.Cleanup();
}

Figure 5 Wiring up IShareManager

private void ShareRequested(DataPackage dataPackage)
{
 // Set as many data types as possible.
 dataPackage.Properties.Title = this.FeedItem.Title;

 // Add a Uri.
 dataPackage.SetUri(this.FeedItem.Link);

 // Add a text-only version.
 var text = string.Format(
 "Check this out! {0} ({1})", this.FeedItem.Title, this.FeedItem.Link);
 dataPackage.SetText(text);

 // Add an HTML version.
 var htmlBuilder = new StringBuilder();
 htmlBuilder.AppendFormat("<p>Check this out!</p>", this.FeedItem.Author);
 htmlBuilder.AppendFormat(
 "<p>{1}</p>", this.FeedItem.Link, this.FeedItem.Title);
 var html = HtmlFormatHelper.CreateHtmlFormat(htmlBuilder.ToString());
 dataPackage.SetHtmlFormat(html);
}

Figure 6 Populating the DataPackage on ShareRequested

public sealed class SettingsManager : ISettingsManager
{
 private SettingsPane SettingsPane { get; set; }

 public void Initialize()
 {
 this.SettingsPane = SettingsPane.GetForCurrentView();
 this.SettingsPane.CommandsRequested += SettingsPane_CommandsRequested;
 }

 public void Cleanup()
 {
 this.SettingsPane.CommandsRequested -= SettingsPane_CommandsRequested;
 }

 private void SettingsPane_CommandsRequested(
 SettingsPane sender, SettingsPaneCommandsRequestedEventArgs args)
 {
 if (this.OnSettingsRequested != null)
 {
 this.OnSettingsRequested(args.Request.ApplicationCommands);
 }
 }

 public Action<IList<SettingsCommand>> OnSettingsRequested { get; set; }
}

Figure 7 Implementing ISettingsManager

public ShellViewModel(ISettingsManager settingsManager)
{
 this.settingsManager = settingsManager;
}

public void Initialize()
{
 this.settingsManager.Initialize();
 this.settingsManager.OnSettingsRequested = OnSettingsRequested;
}

public void Cleanup()
{
 this.settingsManager.Cleanup();
}

Figure 8 Wiring up ISettingsManager

www.alachisoft.com 1-800-253-8195

Extreme Performance
 & Linear Scalability

Download a 60-day FREE trial today!

Enterprise Distributed Cache

ASP.NET Optimization in Web Farms

Runtime Data Sharing

Extremely fast & linearly scalable with 100% uptime

Mirrored, Replicated, Partitioned, and Client Cache

NHibernate & Entity Framework Level-2 Cache

ASP.NET Session State storage

ASP.NET View State cache

ASP.NET Output Cache provider

ASP.NET JavaScript & image merge/minify

Remove data storage and database performance bottlenecks and scale your applications to extreme transaction
processing (XTP). NCache lets you cache data in memory and reduce expensive database trips. It also scales
linearly by letting you add inexpensive cache servers at runtime.

Powerful event notifications for pub/sub data sharing

NCache
Distributed Cache for .NET & Java

TM

Untitled-2 1 1/31/13 12:27 PM

http://www.alachisoft.com

msdn magazine48 Windows 8

that list. A SettingsCommand object doesn’t ask for much, just
a unique identifi er, label text and code to execute when the user
selects the option.

I use my IoC container to inject an instance of ISettingsManager
to my view model, then set it up to initialize and clean up, as shown
in Figure 8.

I’ll be using the Settings to allow users to change which RSS feeds
they can view with the sample app. Th is is something I want the
user to be able to change from anywhere in the app, so I’ve included
the ShellViewModel, which is instantiated when the app starts up.
If I wanted the RSS feeds to be changed only from one of the other
views, I’d include the settings code in the associated view model.

Built-in functionality for creating and maintaining a fl yout for
settings is lacking in the Windows Runtime. There’s a lot more
manual coding required than there should be to get functionality

that’s supposed to be consistent across all apps. Luckily, I’m not the
only one who feels this way. Tim Heuer, a program manager on the
Microsoft XAML team, has created an excellent framework called
Callisto, which helps with this pain point. Callisto is available on
GitHub (bit.ly/Kijr1S) and on NuGet (bit.ly/112ehch). I use it in the
sample app and I recommend checking it out.

Because I have the SettingsManager all wired up in my view
model, I just need to provide the code to execute when the settings
are requested, as shown in Figure 9.

I create a new SettingsCommand, giving it the id “FeedsSetting”
and the label text “Feeds.” Th e lambda I use for the callback, which
gets called when the user selects the “Feeds” menu item, leverages
Callisto’s SettingsFlyout control. Th e SettingsFlyout control does
the heavy lift ing of where to put the fl yout, how wide to make it,
and when to open and close it. All I have to do is tell it whether I
want the wide or narrow version, give it some header text and the
content, then set IsOpen to true to open it up. I also recommend
setting the HorizontalContentAlignment and the VerticalContent-
Alignment to Stretch. Otherwise, your content won’t match the
size of the SettingsFlyout.

Message Bus
One important point when dealing with the Settings contract
is that any changes to settings are expected to be applied to and
refl ected in the app immediately. Th ere are a number of ways you
can accomplish broadcasting the settings changes made by the

public sealed class Settings : ISettings
{
 public void AddOrUpdate(string key, object value)
 {
 ApplicationData.Current.RoamingSettings.Values[key] = value;
 }

 public bool TryGetValue<T>(string key, out T value)
 {
 var result = false;
 if (ApplicationData.Current.RoamingSettings.Values.ContainsKey(key))
 {
 value = (T)ApplicationData.Current.RoamingSettings.Values[key];
 result = true;
 }
 else
 {
 value = default(T);
 }

 return result;
 }

 public bool Remove(string key)
 {
 return ApplicationData.Current.RoamingSettings.Values.Remove(key);
 }

 public bool ContainsKey(string key)
 {
 return ApplicationData.Current.RoamingSettings.Values.ContainsKey(key);
 }
}

Figure 10 Implementing ISettings

public SettingsViewModel(
 ISettings settings,
 IMessageBus messageBus)
{
 this.settings = settings;
 this.messageBus = messageBus;

 this.Feeds = new ObservableCollection<string>();

 string[] feedData;
 if (this.settings.TryGetValue<string[]>(Constants.FeedsKey, out feedData))
 {
 foreach (var feed in feedData)
 {
 this.Feeds.Add(feed);
 }
 }
}

public void AddFeed()
{
 this.Feeds.Add(this.NewFeed);
 this.NewFeed = string.Empty;

 SaveFeeds();
}

public void RemoveFeed(string feed)
{
 this.Feeds.Remove(feed);

 SaveFeeds();
}

private void SaveFeeds()
{
 this.settings.AddOrUpdate(Constants.FeedsKey, this.Feeds.ToArray());

 this.messageBus.Publish<FeedsChangedMessage>(new FeedsChangedMessage());
}

Figure 11 Loading and Saving the User’s Feeds

private void OnSettingsRequested(IList<SettingsCommand> commands)
{
 SettingsCommand settingsCommand =
 new SettingsCommand("FeedsSetting", "Feeds", (x) =>
 {
 SettingsFlyout settings = new Callisto.Controls.SettingsFlyout();
 settings.FlyoutWidth =
 Callisto.Controls.SettingsFlyout.SettingsFlyoutWidth.Wide;
 settings.HeaderText = "Feeds";

 var view = new SettingsView();
 settings.Content = view;
 settings.HorizontalContentAlignment = HorizontalAlignment.Stretch;
 settings.VerticalContentAlignment = VerticalAlignment.Stretch;
 settings.IsOpen = true;
 });
 commands.Add(settingsCommand);
}

Figure 9 Showing the SettingsView on SettingsRequested
with Callisto

www.bit.ly/Kijr1S
www.bit.ly/112ehch

Untitled-7 1 4/4/13 1:35 PM

www.installaware.com

msdn magazine50 Windows 8

user. Th e method I prefer
to use is a message bus
(also known as an event
aggregator). A message
bus is an app-wide mes-
sage publication system.
Th e concept of the mes-
sage bus is not built in to
the Windows Runtime,
which means I have to
either create one or
use one from another
framework. I’ve included
a message bus implemen-

tation that I’ve used on several projects with the Charmed framework.
You can fi nd the source at bit.ly/12EBHrb. Th ere are several other
good implementations out there as well. Caliburn.Micro has
the EventAggregator and MVVM Light has the Messenger. All
implementations typically follow the same pattern, providing a way
to subscribe to, unsubscribe from and publish messages.

Using the Charmed message bus in the settings scenario, I
confi gure my MainViewModel (the one that displays the feeds) to
subscribe to a FeedsChangedMessage:

this.messageBus.Subscribe<FeedsChangedMessage>((message) =>
 {
 LoadFeedData();
 });

Once MainViewModel is set up to listen for changes to the feeds,
I configure SettingsViewModel to publish the FeedsChanged-
Message when the user adds or removes an RSS feed:

this.messageBus.Publish<FeedsChangedMessage>(new FeedsChangedMessage());

Whenever a message bus is involved, it’s important that every
part of the app uses the same message bus instance. So, I made
sure to confi gure my IoC container to give a singleton instance for
every request to resolve an IMessageBus.

Now the sample app is set up to let the user make changes to the
RSS feeds displayed via the Settings charm and update the main
view to refl ect these changes.

Roaming Settings
Another cool thing Windows 8 introduced is the concept of roam-
ing settings. Roaming settings allow app developers to transition
small amounts of data among all of a user’s devices. Th is data must
be less than 100KB and should be limited to bits of information
needed to create a persistent, customized UX across all devices. In
the case of the sample app, I want to be able to persist the RSS feeds
the user wants to read across all his devices.

The Settings contract I talked about earlier typically goes
hand-in-hand with roaming settings. It only makes sense that the
customizations I allow the user to make using the Settings contract
be persisted across devices with roaming settings.

Gaining access to roaming settings, like the other issues I’ve
looked at so far, is pretty straightforward. The ApplicationData
class gives access to both LocalSettings and RoamingSettings.
Putting something into RoamingSettings is as simple as providing
a key and an object:

ApplicationData.Current.RoamingSettings.Values[key] = value;

While ApplicationData is easy to work with, it’s another sealed
class that can’t be mocked in unit tests. So, in the interest of keeping
my view models as testable as I can, I need to abstract the interac-
tion with ApplicationData. Before defi ning an interface to abstract
the roaming settings functionality behind, I need to decide what
I want to do with it:

1. See if a key exists.
2. Add or update a setting.
3. Remove a setting.
4. Get a setting.

Now I have what I need to create an interface I’ll call ISettings:
public interface ISettings
{
 void AddOrUpdate(string key, object value);
 bool TryGetValue<T>(string key, out T value);
 bool Remove(string key);
 bool ContainsKey(string key);
}

With my interface defi ned, I need to implement it, as Figure
10 shows.

TryGetValue will fi rst check whether a given key exists and assign
the value to the out parameter if it does. Rather than throw an excep-
tion if the key isn’t found, it returns a bool indicating whether the key
was found. Th e rest of the methods are fairly self-explanatory.

public sealed class TileInfo
{
 public TileInfo(
 string tileId,
 string shortName,
 string displayName,
 TileOptions tileOptions,
 Uri logoUri,
 string arguments = null)
 {
 this.TileId = tileId;
 this.ShortName = shortName;
 this.DisplayName = displayName;
 this.Arguments = arguments;
 this.TileOptions = tileOptions;
 this.LogoUri = logoUri;
 this.Arguments = arguments;
 }

 public TileInfo(
 string tileId,
 string shortName,
 string displayName,
 TileOptions tileOptions,
 Uri logoUri,
 Uri wideLogoUri,
 string arguments = null)
 {
 this.TileId = tileId;
 this.ShortName = shortName;
 this.DisplayName = displayName;
 this.Arguments = arguments;
 this.TileOptions = tileOptions;
 this.LogoUri = logoUri;
 this.WideLogoUri = wideLogoUri;
 this.Arguments = arguments;
 }

 public string TileId { get; set; }
 public string ShortName { get; set; }
 public string DisplayName { get; set; }
 public string Arguments { get; set; }
 public TileOptions TileOptions { get; set; }
 public Uri LogoUri { get; set; }
 public Uri WideLogoUri { get; set; }
}

Figure 13 The TileInfo Helper Class

Figure 12 SecondaryTile Requesting
Permission to Pin a Tile to the
Start Screen

www.bit.ly/12EBHrb

SpreadsheetGear

Toll Free USA (888) 774-3273 | Phone (913) 390-4797 | sales@spreadsheetgear.com

SpreadsheetGear

SpreadsheetGear 2012
Now Available

WPF and Silverlight controls,

to XPS, improved

2012 support and more.

Excel Reporting for ASP.NET,
WinForms, WPF and Silverlight

Forms, WPF or Silverlight

Free
30 Day

Trial

Performance Spreadsheet Components

Excel Compatible Windows Forms,
WPF and Silverlight Controls

Forms, WPF and

Excel Dashboards, Calculations,
Charting and More

charts, and models in Excel
or the SpreadsheetGear

NEW!

www.SpreadsheetGear.com

Untitled-3 1 11/30/12 11:25 AM

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com

msdn magazine52 Windows 8

Now I can let my IoC container resolve ISettings and give it to
my SettingsViewModel. Once I do, the view model will use the
settings to load the user’s feeds to be edited, as shown in Figure 11.

One thing to note about the code in Figure 11 is that the data
I actually save in the settings is a string array. Because roaming
settings are limited to 100KB, I need to keep things simple and
stick to primitive types.

Secondary Tiles
Developing apps that engage users can be enough of a challenge.
But how do you keep users coming back once they install your app?
One thing that can help with this challenge is secondary tiles. A
secondary tile provides the ability to deep link into an application,
letting the user bypass the rest of the app and go straight to what he
cares about most. A secondary tile gets pinned to the user’s home
screen, with an icon of your choosing. Once tapped, the second-
ary tile launches your app with arguments that tell the app exactly
where to go and what to load. Providing secondary tile function-
ality to your users is a good way to let them customize their
experience, making them want to come back for more.

Secondary tiles are more complicated than the other topics I cover in
this article, because there are several things that have to be implemented
before the full experience of using secondary tiles will work correctly.

Pinning a secondary tile involves instantiating the SecondaryTile
class. Th e SecondaryTile constructor takes several parameters that
help it determine what the tile will look like, including a display
name, a URI to the logo image fi le to use for the tile, and string
arguments that will be given to the app when the tile is pressed.
Once the SecondaryTile has been instantiated, I must call a

method that will ultimately show a little pop-up window asking the
user for permission to pin the tile, as shown in Figure 12.

Once the user has pressed Pin to Start, the fi rst half of the work
is done. Th e second half is confi guring the app to actually support
the deep linking by using the arguments the tile provides when it’s

public FeedItemViewModel(
 IShareManager shareManager,
 ISecondaryPinner secondaryPinner)
{
 this.shareManager = shareManager;
 this.secondaryPinner = secondaryPinner;
}

public async Task Pin(FrameworkElement anchorElement)
{
 var tileInfo = new TileInfo(
 FormatSecondaryTileId(),
 this.FeedItem.Title,
 this.FeedItem.Title,
 TileOptions.ShowNameOnLogo | TileOptions.ShowNameOnWideLogo,
 new Uri("ms-appx:///Assets/Logo.png"),
 new Uri("ms-appx:///Assets/WideLogo.png"),
 this.FeedItem.Id.ToString());

 this.IsFeedItemPinned = await this.secondaryPinner.Pin(
 anchorElement,
 Windows.UI.Popups.Placement.Above,
 tileInfo);
}

public async Task Unpin(FrameworkElement anchorElement)
{
 this.IsFeedItemPinned = !await this.secondaryPinner.Unpin(
 anchorElement,
 Windows.UI.Popups.Placement.Above,
 this.FormatSecondaryTileId());
}

Figure 15 Pinning and Unpinning with ISecondaryPinner

Figure 14 Implementing ISecondaryPinner

public sealed class SecondaryPinner : ISecondaryPinner
{
 public async Task<bool> Pin(
 FrameworkElement anchorElement,
 Placement requestPlacement,
 TileInfo tileInfo)
 {
 if (anchorElement == null)
 {
 throw new ArgumentNullException("anchorElement");
 }
 if (tileInfo == null)
 {
 throw new ArgumentNullException("tileInfo");
 }

 var isPinned = false;

 if (!SecondaryTile.Exists(tileInfo.TileId))
 {
 var secondaryTile = new SecondaryTile(
 tileInfo.TileId,
 tileInfo.ShortName,
 tileInfo.DisplayName,
 tileInfo.Arguments,
 tileInfo.TileOptions,
 tileInfo.LogoUri);

 if (tileInfo.WideLogoUri != null)
 {
 secondaryTile.WideLogo = tileInfo.WideLogoUri;
 }

 isPinned = await secondaryTile.RequestCreateForSelectionAsync(
 GetElementRect(anchorElement), requestPlacement);

 }

 return isPinned;
 }

 public async Task<bool> Unpin(
 FrameworkElement anchorElement,
 Placement requestPlacement,
 string tileId)
 {
 var wasUnpinned = false;

 if (SecondaryTile.Exists(tileId))
 {
 var secondaryTile = new SecondaryTile(tileId);
 wasUnpinned = await secondaryTile.RequestDeleteForSelectionAsync(
 GetElementRect(anchorElement), requestPlacement);
 }

 return wasUnpinned;
 }

 public bool IsPinned(string tileId)
 {
 return SecondaryTile.Exists(tileId);
 }

 private static Rect GetElementRect(FrameworkElement element)
 {
 GeneralTransform buttonTransform =
 element.TransformToVisual(null);
 Point point = buttonTransform.TransformPoint(new Point());
 return new Rect(point, new Size(
 element.ActualWidth, element.ActualHeight));
 }
}

Untitled-2 1 5/31/13 10:57 AM

www.rssbus.com

msdn magazine54 Windows 8

pressed. Before I get into the second half, let me talk about how I’ll
implement the fi rst half in a testable way.

Because SecondaryTile uses methods that interact directly
with the OS—which, in turn, shows UI components—I can’t use it
directly from my view models without sacrifi cing testability. So,
I’ll abstract out another interface, which I’ll call ISecondaryPinner
(it should allow me to pin and unpin a tile, and check if a tile has
already been pinned):

public interface ISecondaryPinner
{
 Task<bool> Pin(FrameworkElement anchorElement,
 Placement requestPlacement, TileInfo tileInfo);
 Task<bool> Unpin(FrameworkElement anchorElement,
 Placement requestPlacement, string tileId);
 bool IsPinned(string tileId);
}

Notice that both Pin and Unpin return Task<bool>. That’s
because the SecondaryTile uses async tasks to prompt the user to
pin or unpin a tile. It also means that my ISecondaryPinner Pin
and Unpin methods can be awaited.

Also notice that both Pin and Unpin take a FrameworkElement
and a Placement enumeration value as parameters. Th e reason is
that the SecondaryTile needs a rectangle and a Placement to tell
it where to put the pin request pop-up. I plan to have my imple-
mentation of SecondaryPinner calculate that rectangle based on
the FrameworkElement that’s passed in.

Finally, I create a helper class, TileInfo, to pass around the
required and optional parameters used by SecondaryTile, as shown
in Figure 13.

TileInfo has two constructors that can be used, depending on the
data. Now, I implement ISecondaryPinner, as shown in Figure 14.

Pin will fi rst make sure the requested tile doesn’t already exist,
then it will prompt the user to pin it. Unpin will fi rst make sure the

requested tile does exist, then it will prompt the user to unpin it. Both
will return a bool indicating whether the pin or unpin was successful.

Now I can inject an instance of ISecondaryPinner into my view
model and put it to use, as shown in Figure 15.

In Pin, I create a TileInfo helper instance, giving it a uniquely
formatted id, the feed title, URIs to the logo and wide logo, and
the feed id as the launch argument. Pin takes the button that
was clicked as the anchor element to base the location of the
pin request pop-up. I use the result of the SecondaryPinner.Pin
method to determine whether the feed item has been pinned.

In Unpin, I give the uniquely formatted id of the tile, using the
inverse of the result to determine whether the feed item is still
pinned. Again, the button that was clicked is passed to Unpin as
the anchor element for the unpin request pop-up.

Aft er I have this in place and I use it to pin a blog post (FeedItem)
to the Start screen, I can tap the newly created tile to launch the app.
However, it will launch the app in the same way as before, taking
me to the main page, displaying all blog posts. I want it to take me
to the specifi c blog post that I pinned. Th at’s where the second half
of the functionality comes into play.

Th e second half of the functionality goes into app.xaml.cs, from
which the app is launched, as shown in Figure 16.

I add some code to the end of the overridden OnLaunched
method to check whether arguments have been passed in during
the launch. If arguments have been passed, I parse the arguments
into an int to be used as the feed id. I get the feed with that id from
my saved feeds and pass it to FeedItemViewModel to be displayed.
One thing to note is that I make sure the app already has the main
page displayed, and I navigate to it fi rst if it hasn’t been displayed.
Th at way the user can press the back button and land on the main
page whether or not he was already running the app.

Wrapping Up
In this article, I talked about my approach to implementing a
testable Windows Store app using the MVVM pattern, while still
leveraging some of the cool new features that Windows 8 brings
to the table. Specifi cally, I looked at abstracting sharing, settings,
roaming settings and secondary tiles into helper classes that
implement mockable interfaces. Using this technique, I’m able
to unit test as much of my view model functionality as possible.

In future articles, I’ll dive into more of the specifi cs of how I
can actually write unit tests for these view models now that I’ve
set them up to be more testable. I’ll also explore how these same
techniques can be applied to make my view models cross-platform
with Windows Phone 8, while keeping them testable.

With a little planning, you can create a compelling application with
an innovative UX that leverages new key features of Windows 8—and
do so without sacrifi cing best practices or unit tests.

BRENT EDWARDS is an associate principal consultant for Magenic, a custom
application development fi rm that focuses on the Microsoft stack and mobile
application development. He’s also a cofounder of the Twin Cities Windows 8 User
Group in Minneapolis, Minn. Reach him at brente@magenic.com.

THANKS to the following technical expert for reviewing this article:
Rocky Lhotka (Magenic)

protected override async void OnLaunched(LaunchActivatedEventArgs args)
{
 Frame rootFrame = Window.Current.Content as Frame;
 if (rootFrame.Content == null)
 {
 Ioc.Container.Resolve<INavigator>().
 NavigateToViewModel<MainViewModel>();
 }

 if (!string.IsNullOrWhiteSpace(args.Arguments))
 {
 var storage = Ioc.Container.Resolve<IStorage>();
 List<FeedItem> pinnedFeedItems =
 await storage.LoadAsync<List<FeedItem>>(Constants.PinnedFeedItemsKey);
 if (pinnedFeedItems != null)
 {
 int id;
 if (int.TryParse(args.Arguments, out id))
 {
 var pinnedFeedItem = pinnedFeedItems.FirstOrDefault(fi => fi.Id == id);
 if (pinnedFeedItem != null)
 {

 Ioc.Container.Resolve<INavigator>().
 NavigateToViewModel<FeedItemViewModel>(
 pinnedFeedItem);
 }
 }
 }
 }

 Window.Current.Activate();
}

Figure 16 Launching the App

mailto:brente@magenic.com

HTML5+jQUERY
Any App - Any Browser - Any Platform - Any Device

Download Your Free Trial!
www.infragistics.com/igniteui-trial

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC +61 3 9982 4545
Copyright 1996-2013 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc.

The Infragistics logo is a trademark of Infragistics, Inc. All other trademarks or registered trademarks are the respective property of their owners.

Untitled-1 1 6/3/13 10:01 AM

http://www.infragistics.com/igniteui-trial

msdn magazine56

Prior to the release of Windows Phone 8, companies had
only a couple of options for deploying enterprise apps to their
employees’ devices. Th ey could release the apps to the Windows
Phone Store and require user authentication, allowing the apps
to be successfully deployed while securing their usage. Of course,
the app would then be available in the store and available to the
general public for download. The other approach was to use a
mobile device management (MDM) solution to directly manage the

devices. Microsoft currently off ers two MDMs: Windows Intune
and System Center 2012 Confi guration Manager. While MDMs are
still the preferred approach for many large-scale enterprises, they
might not align with a company’s deployment goals.

Windows Phone 8 brings a new, unmanaged option for deploy-
ing enterprise apps that allows devices to install apps directly from
an e-mail attachment or by downloading the app from a URL. Th is
direct approach to deploying enterprise apps opens enterprise app
development and deployment to more companies.

A drawback to this unmanaged approach is that installation and
app management for the user is not altogether intuitive. When it
comes to mobile devices, users expect to be able to install apps
with the push of a button. Having to manually install apps from an
e-mail or a Web site goes against the normal app experience and
can cause uncertainty in users and training issues for the IT staff .
Luckily, there’s a solution—a company hub app.

Windows Phone 8 includes some additions to the SDK that
support this new concept. A company hub app gives the enterprise
a mechanism for presenting and delivering apps to the user for
installation. And it gives users a familiar experience to discover
and install company apps.

Requirements for Company Hub Apps
Before you can publish a company hub app to your employees, there
are a few administrative steps that need to be taken. Th e fi rst step is to
register for a company account on the Windows Phone Dev Center. Th e
registration process is similar to a regular development account, but a
company account goes through some additional account verifi cation.

WIN DOWS PHONE 8

Creating a Windows
Phone 8 Company
Hub App
Tony Champion

This article discusses:
• Options for deploying enterprise apps to employee devices
• Requirements for company hub apps
• Getting necessary information from the manifest fi le
• Classes in the Windows Phone SDK 8.0 for managing

company apps
• The company hub app demo

Technologies discussed:
Windows Phone 8, Visual Studio

Code download available at:
archive.msdn.microsoft.com/mag201307Hub

GET HELP BUILDING YOUR WINDOWS PHONE APP

Receive the tools, help and support you need to develop your
Windows Phone 8 app.

bit.ly/12hQbO0

www.bit.ly/12hQbO0
http://archive.msdn.microsoft.com/mag201307Hub

57July 2013msdnmagazine.com

After creating an account, you must purchase an Enterprise
Mobile Code Signing Certifi cate from Symantec Corp. Th e certifi cate-
purchasing process requires a valid Symantec ID from the Dev
Center, so this can only be completed aft er the company account has
been established and verifi ed. Once the certifi cate is purchased and
installed on a machine, you’ll need to export the certifi cate in a PFX
format that includes the private key. Th is certifi cate will be used for
generating an application enrollment token (AET) and for signing
any apps developed by the company. When installing the certifi cate
on your development machine, it’s important to follow the steps
outlined at bit.ly/1287H8j. Otherwise, you’ll end up with an incomplete
PFX fi le that won’t validate correctly during deployment. Skipping
these steps is a common headache for many developers.

An AET must be installed on a device before that device can
install any apps developed by a company. By installing the AET, the
device is enrolled in the previously established company account. Th e
Windows Phone SDK 8.0 includes a tool, AETGenerator, that can be
used to create the AET from the exported certifi cate. Th e generator
creates three diff erent forms of the AET: a raw version containing
the AET in XML format (.xml), a Base64-encoded version used with
an MDM such as Windows Intune or System Center 2012 Confi g-
uration Manager (.aet), and an XML format that can be installed
directly on the device through e-mail or Internet Explorer (.aetx).

When deciding which method to use to distribute the AET and
your company apps, there’s an important point to consider. When
a device installs an AET, it’s valid until its expiration date, which by
default is one year. Once the AET expires, the device won’t be able
to run any apps signed and distributed by the company—including
hub apps—until a new, valid AET is installed. Th is creates two items
you need to add to your deployment strategy planning.

Th e fi rst is how to handle the expiration of the AET. If you’re using
an MDM to manage your devices, an updated AET can be published
to the devices directly from the MDM. Th is will help to minimize
the impact of the expiration of the original AET on the devices. If
the AET is installed via an unmanaged process—e-mail or Internet
Explorer—the new AET will need to be installed manually by the user.
Because the user won’t be able to run any apps from the company,
including the hub app, once the AET expires, it’s a good practice to
create and distribute a new AET before the original expires. Th is will
prevent the user from losing access to company apps.

Th e second item to consider is the removal of the AET as well
as any company apps installed on the device. In the current Bring
Your Own Device (BYOD) world, this can be a major consider-
ation. Using an MDM gives the company complete control over
its apps installed on a device. Apps and the AET can be remotely

removed directly from the MDM. However, in an unmanaged
deployment, this isn’t possible. Once an AET is added to the device,
it’s valid and can’t be removed prior to its expiration. Similarly, the
SDK doesn’t provide a way to remove an app from a device through
code. Th e best practice for addressing this issue is requiring users
to authenticate to all company apps. Th is enables you to prevent a
user’s account from launching an app. While this isn’t the same as
being able to remove the app, it does give you a way to manage the
security of your app once it’s deployed to a device.

Aft er you’ve completed the initial steps, you’re ready to begin
creating apps that can be deployed to your company’s employees
without needing to go through the store. You’ll fi nd a more com-
plete look at creating a company account, obtaining an Enterprise
Mobile Code Signing Certifi cate and generating an AET at bit.ly/SBN6Tf.

Preparing for Development
A company hub app requires a bit more setup than most Windows
Phone apps. For one thing, it’s quite handy to have at least a few
apps available to install and use as test cases within the app. While
the apps themselves can be blank Windows Phone apps, they all
have to have one thing in common: a Publisher ID.

If you’ve already created a Windows Phone app, you’re proba-
bly familiar with the Windows Phone app manifest fi le, which by
default is the WMAppManifest.xml fi le located in the Properties
folder of the solution. Th is fi le contains information Windows
Phone and the store need to know about your app. Opening the
WMAppManifest.xml fi le from within Visual Studio launches
a designer to make it easier to maintain the file. The designer
contains four tabs, one of which is the Packaging tab.

Th e Packaging tab provides information about the developer of
the app, versioning info and supported languages. For the purposes
of this article, the Version, Product ID and Publisher ID are the
most important items on this tab. By default, the Windows Phone
project templates generate a new GUID for the Product ID and
Publisher ID when the project is created. When working with an
app such as a company hub, the app will have visibility only into
other apps that have the same Publisher ID it does. Th is Publisher
ID is commonly set to the Publisher GUID that’s assigned to your
developer account in the Dev Center. Th e Publisher GUID can be
found on your Account Summary page in the Dev Center.

Th e downloadable fi le for this article contains seven solutions. Th e
fi rst six are named CDSAPP[1-6]. Each of these apps was created from

Figure 1 The Company Hub App

An AET must be installed on a
device before that device

can install any apps developed
by a company.

www.msdnmagazine.com
www.bit.ly/1287H8j
www.bit.ly/SBN6Tf

msdn magazine58 Windows Phone 8

the Windows Phone App project template and only has the app title
on the main page and the Publisher ID modifi ed. If you’re going to use
these apps for your testing, it’s important to use the same Publisher ID
for your company hub app or to change the app IDs to yours.

The Version and Product ID are two important pieces of
information to know when creating a company hub solution. Th e
Version allows you to determine when apps need to be upgraded
on a device, and the Product ID is used for identifying the app.

Th e next thing to consider is your method of testing. Generally,
you can do most of your testing on the Windows Phone Emula-
tor. It does a great job and allows you to test most of the things you
need to test during the development process. Th e diffi culty with
testing a company hub app is that your app needs to have additional
apps installed on the emulator to test with. However, each time you
launch a new instance of the emulator, it starts from a clean version

of the OS. Th is means that anything you’ve previously installed for
testing is no longer there.

Th ere are two ways to approach this problem. Th e fi rst is to leave
the emulator running, install some test apps, and then do develop-
ment of your company hub app while the emulator is still running.
Of course, if the emulator gets restarted for any reason, you have
to reinstall those apps to begin testing again.

The preferred approach is to do your development testing
against a real device. Th is provides a more stable platform for your
testing. If you’re going to do your testing on a live device, you’ll
need to make sure the Publisher ID of that device corresponds to
the Publisher ID of your account.

The Company Hub SDK
Th e Windows Phone SDK 8.0 includes two classes that are primarily
responsible for managing and interacting with the company apps
that are installed on the machine. While there are some supporting
objects that you’ll be introduced to along the way, understanding
these two classes is critical to your hub app.

The Package Class Each app installed on the device is represented
by the Package class, which is located in the Windows.Application-
Model namespace. Th e Package class contains a couple of important
members that I’ll discuss here. Th e fi rst is the Id property, which
returns a PackageId class. Th e class contains most of the manifest
information that was entered into the Packaging tab in the manifest
designer, including the Product Id that was assigned to the app, the
app name, publisher information and the current version.

Th e other important member of the Package class is the Launch
method, which enables you to launch the app that the Package
represents from the current app. Not only is this a great tool for
constructing a company hub app, it can also be useful for other
line-of-business (LOB) apps.

InstallationManager Class InstallationManager, in the
Windows.Phone.Management.Deployment namespace, is the class
responsible for installing packages on the device. Th is is accomplished
through the AddPackageAsync method. A list of all apps from the same
PublisherId as the current app, including the Package representing the
current app, is returned by the FindPackagesFromCurrentPublisher
method. In addition, the class can also be used to get the installation
progress of any apps with the same PublisherId.

Building a Company Hub App
I’m going to introduce you to the core principles of developing a com-
pany hub app, using the demo shown in Figure 1. Th e demo contains
a three-page panorama app that lists available company apps in three
categories: apps that are currently not installed, apps with an available
update and apps that have the latest version installed. In addition, the
app will have a detail page that presents the information about the app
and provides the commands to install the latest version and launch
the app from within the hub. Th e working solution can be found as
a downloadable resource from archive.msdn.microsoft.com/mag201307Hub.

What’s Missing For the sake of completeness, it’s important
to point out a few items that aren’t included in the demo app but
would have to be created for any real-world solution. The first
is the source of the available company apps. If you examine the

public class CompanyPackageViewModel : INotifyPropertyChanged
{
 private IEnumerable<CompanyPackage> _packages;

 public CompanyPackageViewModel()
 {
 LoadData();
 }

 private void LoadData()
 {
 // Get list of packages and populate properties
 _packages = CompanyPackage.GenerateData();

 UpdatePackageStatus();

 }

 private IEnumerable<CompanyPackage> _newPackages;
 public IEnumerable<CompanyPackage> NewPackages
 {
 get
 {
 return _newPackages;
 }
 }

 private IEnumerable<CompanyPackage> _updatePackages;
 public IEnumerable<CompanyPackage> UpdatePackages
 {
 get
 {
 return _updatePackages;
 }
 }

 private IEnumerable<CompanyPackage> _installedPackages;
 public IEnumerable<CompanyPackage> InstalledPackages
 {
 get
 {
 return _installedPackages;
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 private void NotifyPropertyChanged(String propertyName)
 {
 PropertyChangedEventHandler handler = PropertyChanged;
 if (null != handler)
 {
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

Figure 2 The CompanyPackage View Model

http://archive.msdn.microsoft.com/mag201307Hub

59July 2013msdnmagazine.com

CompanyPackage class, you’ll see it contains a GenerateData
method. Th is method is used to fake the available company apps
by generating a list of the installed company apps on the device,
modifying some of the data and creating some fi ctional data, as well.

Th e second missing piece is a Web site to host the .xap fi les to
be downloaded and installed on the device. For the company hub
to be functional, it must be able to download the apps from some
location. Th is Web solution would have to be created as well.

The CompanyPackage Class In order to represent the list of
available apps to install on the device, the fi rst thing to defi ne is a

CompanyPackage class that’s modeled aft er the Package class. Th e
CompanyPackage class contains the display information and the
location of the installation package:

public class CompanyPackage
{
 public string Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public string Thumbnail { get; set; }
 public string Version { get; set; }
 public Uri SourceUri { get; set; }
 public CompanyPackageStatus Status { get; set; }
}

Th e Status property is used to determine if the app is currently
installed on the device and if there’s a newer version. CompanyPack-
ageStatus is an enum that I’ll explore later in the article:

public enum CompanyPackageStatus
{
 Unknown,
 New,
 Update,
 Installed
};

Creating a View Model For this company hub app, you have to
create a single view model, CompanyPackageViewModel, shown
in Figure 2. The view model should have three properties that
return an IEnumerable collection of CompanyPackage objects:
NewPackage, UpdatePackages and InstalledPackages. Th e New-
Package property contains any apps that are available that aren’t
currently installed on the machine. UpdatePackages represents
any apps that are currently installed on the machine, but have a
newer version available. Finally, InstalledPackages contains all of
the apps that are currently installed and up-to-date on the device.

Defi ning the Three Statuses Before you can populate the three
diff erent properties of the view model, you need to generate the list
of available apps represented as a collection of CompanyPackages.
In the view model shown in Figure 2, the data is loaded and popu-
lated in the LoadData method. Th e LoadData method pulls a list of
test data and stores it in the private _packages variable. It then calls
the UpdatePackageStatus method shown in Figure 3.

The UpdatePackageStatus method has two responsibilities:
determine the current status of each available CompanyPackage
class and then populate the three collection properties of the view
model based on that status.

The Status property is determined by comparing each Com-
panyPackage against the apps that are currently installed on the
device. A list of installed apps is obtained from the Installation-
Manager.FindPackagesForCurrentPublisher static method. If a
Package object with the same Id as the CompanyPackage doesn’t
exist, it’s marked with a “New” status.

If a Package with the same Id does exist, then the Package Version
property is compared to the Version of the CompanyPackage. Th e
PackageId Version property returns a PackageVersion struct. Unlike
the System.Version class, this struct is missing a couple of features. Th e
fi rst feature is the ability to convert the struct to a string representation.
If you call the ToString method, it returns the type name and not the
actual version number. Th e second missing feature is the ability to com-
pare two instances of PackageVersion to determine which one is newer.

Figure 4 shows a helper class that implements both of these miss-
ing features. Th e VersionToString method returns a proper string

public void UpdatePackageStatus()
{
 var devicePkgs = InstallationManager.FindPackagesForCurrentPublisher();

 foreach (var pkg in _packages)
 {
 var qry = devicePkgs.Where(p => p.Id.ProductId == pkg.Id);
 if (qry.Count() > 0)
 {
 var devicePkg = qry.First();
 var devicePkgVersion =
 PackageVersionHelper.VersionToString(devicePkg.Id.Version);

 pkg.Status = PackageVersionHelper.IsNewer(
 pkg.Version, devicePkgVersion) ?
 CompanyPackageStatus.Update : CompanyPackageStatus.Installed;
 }
 else
 {
 pkg.Status = CompanyPackageStatus.New;
 }

 }

 _newPackages = _packages.Where(
 p => p.Status == CompanyPackageStatus.New).ToList();
 _updatePackages = _packages.Where(
 p => p.Status == CompanyPackageStatus.Update).ToList();
 _installedPackages = _packages.Where(
 p => p.Status == CompanyPackageStatus.Installed).ToList();

 // Fire notifications for all properties
 NotifyPropertyChanged("NewPackages");
 NotifyPropertyChanged("UpdatePackages");
 NotifyPropertyChanged("InstalledPackages");

}

Figure 3 Method for Determining
the Status of Each CompanyPackage

public static class PackageVersionHelper
{
 public static string VersionToString(PackageVersion version)
 {
 return String.Format("{0}.{1}.{2}.{3}",
 version.Major,
 version.Minor,
 version.Build,
 version.Revision);
 }

 public static bool IsNewer(string newVersion, string oldVersion)
 {
 var newVer = Version.Parse(newVersion);
 var oldVer = Version.Parse(oldVersion);

 return newVer.CompareTo(oldVer) > 0;
 }
}

Figure 4 A Helper Class for PackageVersion

www.msdnmagazine.com

msdn magazine60 Windows Phone 8

representation of a PackageVersion. Th e IsNewer method takes
two string representations of a version number and determines if
the newVersion argument is newer than the oldVersion argument.
It accomplishes this by converting the strings to System.Version
objects and using the available CompareTo method.

Once the UpdatePackageStatus method has calculated the
Status property for each Company-
Package object, it populates the
three collection properties using
LINQ queries. Finally, the view
model raises the PropertyChanged
event for each of the properties.

Displaying the List of Apps
The three lists of available apps
are displayed within a Panorama
control with three Panorama-
Items, each containing a LongList-
Selector bound to one of the lists.
Each uses the same DataTemplate
for displaying a CompanyPackage,
and the complete Panorama
XAML can be found in Figure 5.
In the downloadable project, you’ll
see that the DataContext of the
Panorama control inherits the

DataContext of the parent PhoneApplicationPage, which is set
to an instance of the CompanyPackageViewModel. You saw the
result of this in Figure 1.

The CompanyPackage Detail View
Each LongListSelector shares the same event handler for the
SelectionChanged event, ItemSelected. The event handler uses
the NavigationService to navigate to a detail PhoneApplication-
Page, PackagePage, and passes in the Id of the CompanyPackage.
Because the current page will be cached in the navigation, the
SelectedItem of the LongListSelector is reset to null to insure
proper event fi ring each time:

private void ItemSelected(object sender, SelectionChangedEventArgs e)
{
 if (e.AddedItems.Count > 0 && e.AddedItems[0] != null)
 {
 var pkg = e.AddedItems[0] as CompanyPackage;
 NavigationService.Navigate(
 new Uri("/PackagePage.xaml?id=" + pkg.Id, UriKind.Relative));

 (sender as LongListSelector).SelectedItem = null;

 }
}

Because the PackagePage class only receives the Id of the
CompanyPackage to be displayed, it has to use that Id to fi nd the
appropriate object. Th is is done by adding a FindPackage method
to the CompanyPackageViewModel:

public CompanyPackage FindPackage(string id)
{
 return _packages.Where(p => p.Id == id).FirstOrDefault();
}

Th e Windows Phone Panorama App project exposes a global view
model by adding a ViewModel property to the App class. Th is project
uses that property to expose its view model to the main and detail pages.

Th e PackagePage class overrides the OnNavigatedTo method
to set its DataContext to the CompanyPackage matching the
provided Id. It then calls an UpdateUI method that toggles the
Visibility and Content of two buttons that are added to the screen
based on the Status of the CompanyPackage. Th e results of each
Status type can be seen in Figure 6.

Figure 6 The Different Detail Pages

<phone:Panorama Title="my company hub">
 <phone:Panorama.Resources>
 <DataTemplate x:Key="listItemTemplate">
 <StackPanel Margin="0,-6,0,12" Orientation="Horizontal">
 <Image Source="{Binding Thumbnail,
 Converter={StaticResource debugConv}}"/>
 <TextBlock Text="{Binding Name}" TextWrapping="Wrap"
 VerticalAlignment="Center"
 Style="{StaticResource PhoneTextExtraLargeStyle}"
 FontSize="{StaticResource PhoneFontSizeExtraLarge}"/>
 </StackPanel>
 </DataTemplate>
 </phone:Panorama.Resources>

 <!--Panorama New Apps-->
 <phone:PanoramaItem Header="New Apps">
 <!--Single line list with text wrapping-->
 <phone:LongListSelector Margin="0,0,-22,0"
 ItemsSource="{Binding NewPackages}"
 SelectionChanged="ItemSelected"
 ItemTemplate="{StaticResource listItemTemplate}"/>
 </phone:PanoramaItem>

 <!--Panorama Update Apps-->
 <phone:PanoramaItem Header="Update Apps">
 <!--Single line list with text wrapping-->
 <phone:LongListSelector Margin="0,0,-22,0"
 ItemsSource="{Binding UpdatePackages}"
 SelectionChanged="ItemSelected"
 temTemplate="{StaticResource listItemTemplate}"/>
 </phone:PanoramaItem>

 <!--Panorama Installed Apps-->
 <phone:PanoramaItem Header="Installed Apps">
 <!--Single line list with text wrapping-->
 <phone:LongListSelector Margin="0,0,-22,0"
 ItemsSource="{Binding InstalledPackages}"
 SelectionChanged="ItemSelected"
 ItemTemplate="{StaticResource listItemTemplate}"/>
 </phone:PanoramaItem>
</phone:Panorama>

Figure 5 Panorama to Display the Available Apps

61July 2013msdnmagazine.com

Th e two buttons expose the two actions available within the
company hub classes. Th e fi rst is the ability to launch the app. If
the app is currently installed on the device, the Launch button is
visible. Th e event handler of the button fi nds
the correct Package object that matches the
current CompanyPackage and calls the
Launch method:

private void btnLaunch_Click(
 object sender, RoutedEventArgs e)
{
 var pkg = DataContext as CompanyPackage;

 var devicePkgs = InstallationManager.
 FindPackagesForCurrentPublisher();

 var devicePkg = devicePkgs.Where(p =>
 p.Id.ProductId == pkg.Id).FirstOrDefault();

 if (devicePkg != null)
 {
 devicePkg.Launch("");
 }
}

If the CompanyPackage Status is “New”
or “Update,” an Install button is visible on
the page. Th e event handler for this button
attempts to install the latest version of the
app from the Uri provided in the Source-
Uri property of the CompanyPackage.
Th is is accomplished with the Installation-
Manager.AddPackageAsync method. Th e
same method is called whether the app
is being updated or it’s a new install. This
method can be very temperamental and
you need to make sure to take care of any
errors that are generated. Figure 7 shows the
event handler and the installation process.
If the app is installed successfully, the

UpdatePackage Status method of the CompanyPackageView Model
is called to update the status collections being displayed in the main
page and the UpdateUI method of the page to update the page.

Next Steps
In this article I took a quick look at developing a company hub app
while exposing the details necessary to create a more robust solu-
tion. Some of the details that were omitted for the sake of brevity
can be found in the included download. However, it’s important
to remember that this is just the beginning.

Th ere are a lot of features that can be added to a company hub
to provide great benefi ts to your users, such as taking advantage of
live tiles to inform the user when new apps are available. You can
create solutions that only expose certain apps to certain users based
on their roles within the company. An app can provide additional
functionality, such as company news and notifi cations. While the
possibilities might not be limitless, there are more than enough to
keep you busy for quite some time.

TONY CHAMPION is president of Champion DS, is a Microsoft MVP, and
active in the community as a speaker, blogger, and author. He maintains a blog
at tonychampion.net and can be reached via e-mail at tony@tonychampion.net.

THANKS to the following technical expert for reviewing this article:
Cliff Strom (Microsoft)

private async void btnInstall_Click(object sender, RoutedEventArgs e)
{
 var pkg = DataContext as CompanyPackage;
 if (MessageBox.Show("Install " + pkg.Name + "?", "Install app",
 MessageBoxButton.OKCancel) == MessageBoxResult.OK)
 {
 try
 {
 var result =
 await InstallationManager.AddPackageAsync(pkg.Name, pkg.SourceUri);
 if (result.InstallState ==
 Windows.Management.Deployment.PackageInstallState.Installed)
 {
 MessageBox.Show(pkg.Name + " was installed.");
 App.ViewModel.UpdatePackageStatus();
 UpdateUI();
 }
 else
 {
 MessageBox.Show("An error occurred during installation.");
 }
 }
 catch (Exception)
 {
 MessageBox.Show("An error occurred during installation.");
 }
 }
}

Figure 7 Install and Update Button Event Handler

mailto:tony@tonychampion.net
www.shiprush.com/developer
www.msdnmagazine.com
www.tonychampion.net

collABORATE
AND LISTEN

Whether you've implemented SharePoint 2013, or you're still using
and supporting older versions, SharePoint Live! is THE place to
gather and learn how to customize, deploy and maintain SharePoint
Server and SharePoint foundation to maximize business value.

No-hype, Practical, Independent SharePoint Training

LIVE EVENT
orlando • november • 18-22, 2013

PRODUCED BYSUPPORTED BY

magazine

Untitled-3 2 5/31/13 11:01 AM

www.splive360.com

AMPLIFY
YOUR
KNOWLEDGE

Scan the QR code
to register or
for more event
details.

orlando november
18-22, 2013

Royal Pacifi c Resort at Universal Orlando

CONNECT WITH SHAREPOINT LIVE!
twitter.com/SPlive360 – @SPLIVE360
facebook.com – Search “SharePoint Live”
linkedin.com – Join the “SharePoint Live” group!

SharePoint Live! is part of Live! 360,
the ultimate IT and Developer line-up.
This means you’ll have access to four
(4) events, 22 tracks, and hundreds
of sessions to choose from – mix and
match sessions to create your own,
custom event line-up – it’s like no other
conference available today!

SharePoint Live! brings together the
best the industry has to offer for 5 days
of workshops, keynotes, and sessions
to help you work through your most
pressing SharePoint projects.

Whether you are an:
IT Manager
IT Pro

Administrator
Developer

splive360.com | live360events.com

Summer special!
save $500!
register before august 7
Use Promo Code SPJUL2

••

••

Untitled-3 3 5/31/13 11:02 AM

www.live360events.com
www.splive360.com
www.splive360.com
www.twitter.com/SPlive360
www.facebook.com/SharePointLive
http://www.linkedin.com/groups/SharePoint-Live-4322785?trk=myg_ugrp_ovr
www.vslive.com
www.splive360.com
www.sqllive360.com
www.modernappslive.com

msdn magazine64

Windows 8 and Windows Phone 8 are on a path
toward convergence. In the meantime, developers interested in
building for both platforms must understand the major similarities
and diff erences between the two. Learning where the Windows 8
and Windows Phone Runtime APIs currently intersect gives you
the best opportunity to deliver applications for both, leveraging
much of the same knowledge, tools, code and assets. In this
article I’ll explore these diff erences and commonalties to help you
understand what is and is not possible before you start building a
solution that targets both platforms.

Th e consistency in the UX—the use of tiles, the rich touch inter-
face, the app bar and navigation—simplifi es application design and
implementation for both platforms. And the adoption of a common
API surface area facilitates code sharing for a lot of scenarios.

You can choose the right technologies for your apps: C#, Visual
Basic or C++, or a hybrid for both platforms. Th e resources found at
aka.ms/sharecode contain great info about creating applications
that run on Windows Phone 8 and Windows 8, and present
code-sharing techniques to maximize code reuse when building
for both.

Specifi c Areas of Comparison
In order to eff ectively write for both platforms, you need to under-
stand the major feature diff erences, as well as the features that at a high
level appear similar, but have diff erent APIs and implementations.
For those features, code reuse should not be attempted. I’ll examine
three key areas of concern:

• UX
• Data model and supporting code
• Platform-specifi c features

UX
Form factors are a major consideration when designing the UI for
a cross-platform app. You need to consider attributes such as screen
resolutions, screen sizes and default device orientation. Careful UI
decisions must be made to ensure that the experience is optimized
for the user given the constraints of the particular device.

You’ll quickly realize that it doesn’t make sense to include all
features of a Windows Store app in a Windows Phone 8 app and
that you must design a native UX for each platform. Figure 1 shows
examples of the kind of UX diff erences you’ll have to consider to
build the best experience possible.

WIN DOWS 8 / W INDOW S PHO NE 8

Building Apps for
Windows 8 and
Windows Phone 8
Joel Reyes

This article discusses:
• UX considerations

• Features for which code reuse shouldn’t be attempted

• Platform-specifi c features

Technologies discussed:
Windows 8, Windows Phone 8

GET HELP BUILDING YOUR WINDOWS STORE APP!

Receive the tools, help and support you need to develop your
Windows Store apps.

bit.ly/XLjOrx

www.bit.ly/XLjOrx
www.aka.ms/sharecode

65July 2013msdnmagazine.com

XAML Namespaces Even though both Windows 8 and
Windows Phone 8 use XAML for UI design, don’t expect to
reuse XAML across your apps. Th ere are major diff erences in the
platforms—page layout and orientation, XAML namespaces and
XAML controls—that make this challenging.

Although many controls exist for both platforms, they reside in
different namespaces. For instance, Windows 8 controls equivalents
for Windows Phone can be found in Windows.UIXaml.Controls,
as well as in the Microsoft .Phone.Controls and Microsoft .Phone.Shell,
while System.Windows.Controls contains Windows 8 controls
and some shared controls. Luckily, the XAML editor will alert you
when you attempt to add an unsupported control. However, XAML
doesn’t support conditional compilation, so there’s no easy way
to include namespaces for one platform or the other at run time.

XAML Controls Each library of controls is optimized for its
corresponding platform. Consequently, it’s highly recommended
that you design your own user controls separately for each plat-
form. Th is will help maintain a consistent UX on each platform
while reducing the likelihood of bugs from porting the XAML.
Figure 2 shows some basic controls.

Th e Windows 8 Visual Studio templates create a LayoutAwarePage,
which is a subclass of the Page in the raw API, providing the follow-
ing additional features and ensuring consistency of design and UX:

• Application view state to visual state mapping
• GoBack, GoForward and GoHome event handlers
• Mouse and keyboard shortcuts for navigation
• State management for navigation and process

lifetime management
• A default view model

Data Model and Supporting Code
All applications have to manage data, and data models provide
the best way for doing so. Th ey help ensure higher maintainability,
modularity, project organization, and portability, and the APIs
that support them are good candidates for code reuse. Still, you
shouldn’t sacrifi ce application architecture or maintainability for
code reuse. Shared libraries, code-sharing techniques and patterns
such as Model-View-ViewModel (MVVM) will likely serve you
better. For more information on these, see Doug Holland’s June
issue article, “Code-Sharing Strategies for Windows Store and
Windows Phone Apps” (msdn.microsoft.com/magazine/dn201744).

Platform-Specifi c Features
Th ere are many features that behave similarly in both Windows 8
and Windows Phone 8 but are implemented diff erently. Because
of this, you should avoid reusing code across platforms for certain
processes and features, including:

• Application Lifecycle
• System Tasks and Contracts
• Tiles
• Toast Notifi cations
• Local Storage
• Networking
• Background Processing
• Camera
• App Bar

Application Lifecycle Although there are strong parallels
between the application lifecycle on Windows Phone 8 and on
Windows 8, the two platforms have diff erent APIs. As you can see
in Figure 3, the high-level program states and fl ow between states
are similar on both platforms, but resources on Windows Phone
8 are far more constrained, which is the reason for most of the
diff erences in the lifecycle. On both platforms, only the foreground
app can consume CPU resources (except for background tasks,
which are managed by the OS).

Figure 4 shows differences in lifecycle behavior between the
two platforms.

Figure 5 shows the namespaces where application lifecycle
events are found.

Th ere are several app entry points on each platform, as Figure
6 shows.

Windows Phone 8 Windows 8
One-handed touch most common One or two-handed touch, mouse
Guaranteed hardware, such as
camera and accelerometer

No guarantee of any specifi c
hardware, must check at run time

Avoid multiple columns of content Rows and columns of content
can work well

Scroll vertically for more content;
limited room on the app bar

Scroll horizontally for more
content; signifi cant room on
the app bar

Hardware back button On-screen back button
No semantic zoom Semantic zoom

Figure 1 A Comparison of Windows Phone 8 and Windows 8
UX Features

Windows Phone 8 Windows 8
PhoneApplicationPage control is
the root page element

Page control is the root
page element

Use the LongListSelector control to
show vertically scrolling content

Use the GridView control to show
vertically scrolling content

Use the Pivot control for paging
content horizontally

Use the SemanticZoom control for
grouping many items into grouped
segments (it’s also possible to use
the Grouped Items Page control)

Use the ApplicationBar control Use the AppBar control

Figure 2 Basic Windows Phone 8 and Windows 8 Controls

Figure 3 Windows Phone 8 and Windows 8 Lifecycles

Windows Phone 8

Launching

Deactivating

ActivatingActivating

Closing

Dormant

Running

Tombstoned

Not Running

Suspending

Terminating

Windows 8

Activating

Suspended

Running

Not Running

Resuming

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/dn201744

msdn magazine66 Windows 8/Windows Phone 8

System Tasks and Contracts Both Windows 8 and Windows
Phone 8 have built-in support for common operations that involve
coordinating with the OS. Windows 8 handles these using con-
tracts, while Windows Phone 8 uses tasks (such as Launchers and
Choosers). Contracts and tasks provide similar capabilities to the
user, but development is different. The functionality they each
expose doesn’t necessarily map one-to-one, so you need to carefully
consider tasks and contracts when porting an app.

Windows Phone 8 task APIs are found in the Microsoft .Phone.Tasks
namespace: PhotoChooserTask, EmailAddressChooseTask, Save-
ContractTask and so on. In contrast, Windows 8 contracts have
individual APIs related to the panes opened by charms (search
pane, share pane and the like); support for contracts is declared in
the application manifest. Contracts are essentially agreements and
implementing them involves overriding methods in the Applica-
tion class or handling events from classes in the Windows API.

Tiles Tiles are entry points for Windows Store and Windows Phone
8 apps. Primary tiles simply launch apps, while secondary tiles can be
pinned to the Start screen; they’re eff ectively a “deep link” that can take
the user to a specifi c page in the app. Both platforms support live tiles,
in which content is periodically updated, but the APIs are completely
diff erent. Figure 7 describes Windows Phone 8 and Windows 8 tiles.

Figure 8A and Figure 8B show a code comparison of second-
ary tile creation. On Windows Phone 8, the ShellTile class provides
a static interface for creating (and removing) secondary tiles. You
can provide this using one of several classes that encapsulate a tile’s
data: StandardTile, CycleTileData, FlipTileData or IconicTileData.
Windows 8 has only one data structure to defi ne a secondary tile
(SecondaryTile). Tile creation is done with an asynchronous request,
which asks the user if he would like to pin the tile to the Start screen.

Toast Notifi cations Windows 8 toast notifi cations are similar
to Windows Phone 8 reminders and alarms. Th ey let an app notify
the user of an event at a given time. Clicking a toast notifi cation
launches the app if it’s closed and resumes the app if it’s suspended.

Windows Phone 8 supports two types of notifi cations: alarm and
reminder. It can also display toasts (even from the background)
using ShellToast. Alarms and reminders are found in Micro-
soft .Phone.Scheduler, while ShellToast is in Microsoft .Phone.Shell.

Windows 8 uses toast notifications via ToastNotification-
Manager and ScheduledToastNotifi cation, which are found in the
Windows.UI.Notifications namespace and are enabled via the
application manifest.

Local Storage Th e Windows.Storage namespace provides a new
set of shared APIs that let applications handle local fi le management.
On Windows Phone 8, System.IO.IsolatedStorage.IsolatedStorage-
File provides backward compatibility with earlier Windows Phone
versions, but you should move toward using the new APIs. You
can use serialization and Windows.Storage.ApplicationData.Cur-
rent.LocalFolder to persist app data to local app storage.

Both platforms support storage of key/value pairs (settings), and
files and folders. However, Windows Phone 8 APIs are a subset
of the full APIs and don’t provide support for the roaming data
store, the temporary data store, local settings or roaming settings.
Figure 9 is a summary of storage options for each platform.

Networking Most applications rely heavily on the Internet
capabilities of the devices they reside on to function properly. For
both Windows 8 and Windows Phone 8, this capability is declared
in the manifest. Figure 10 shows the relevant networking APIs.

Windows 8 introduces HttpClient, which acts as session to send
requests to a server (HTTP, GET, POST and PUT). Each instance
of HttpClient has its own connection pool to avoid interference

Windows Phone 8 Windows 8
Derive from:
System.Windows.Application

Derive from:
Windows.UI.Xaml.Application

Application_Launching
Application_Activated OnLaunched
Application_Deactivated OnSuspending
Application_Closing

 Figure 5 Application Lifecycle Namespaces

Windows Phone 8 Tiles Windows 8 Tiles
Three sizes: small, medium, wide Two sizes: smaller, larger
Standard tiles, fl ip tiles, cyclic tiles and
iconic tiles (Microsoft.Phone.Shell)

SecondaryTile can be customized
using XML templates
(Windows.UI.StartScreen)

Provide tile images in the manifest Provide tile images in the manifest
Create secondary tiles using the static
method ShellTile.Create

Create secondary tiles using the
SecondaryTile.Re questCreateAsync
method

Update app tile using ShellTile.
Update (Microsoft.Phone.Shell); push
notifi cation using ShellTileSchedule
(ShellTileToast also updates tiles)

Update app tile using
TileUpdateManager
and TileNotifi cation
(Windows.UI.Notifi cations)

User can unpin the app tile User can turn off the live tile

Figure 7 Comparison of Windows Phone 8 and Windows 8 Tiles

Windows Phone 8 Windows 8 Both
Speech launch Search App tile
App Connect Share Secondary tiles

Toasts
Protocol and fi le association

Figure 6 App Entry Points

Windows Phone 8 Windows 8
Windows Phone 8 apps are
always launched or relaunched.

Windows Store apps are resumed
without page navigation.

Windows Phone 8 may
tombstone apps.

Windows 8 either suspends or
completely terminates apps. Windows
Store apps can support hosted-view
activation, in which the app performs a
single task inside a system-provided UI.

Windows Phone 8 supports
Fast Application Resume.

Windows 8 has no need for the
Fast Application Resume feature
because apps are kept in a suspended
state for as long as possible; otherwise,
they’re terminated.

Figure 4 Differences in Windows Phone 8 and
Windows 8 Lifecycles

67July 2013msdnmagazine.com

from others. Data is returned as a string, HttpRequestMessage,
stream or byte array.

WebClient, on the other hand, is not available in Windows 8
(except for desktop apps). It’s used in Windows Phone 8 apps and
its implementation is slightly diff erent from the WebClient in ear-
lier versions of Windows. In Windows Phone 8, you can also use
HttpWebRequest/HttpWebResponse with an async wrapper. A
release preview of a portable HttpClient is now available for both
platforms. You can get this preview from the NuGet Gallery.

Background Processing In some situations you might want to
run code in the background: Streaming music, pinging a server for
updates, downloading a fi le and so on. Both platforms can give the
OS a task to be run when some trigger occurs. Th ese tasks are inde-
pendent from the app and the OS has complete control over them.

Th ere can only be one background agent per application, but
that agent can run one or both of these tasks:

• Periodic tasks: short tasks that the OS might run
every 30 minutes.

• Resource-intensive tasks: longer tasks that run when the
phone is plugged in or has ample battery life.

Figure 11 shows what you need in order to implement back-
ground tasks on both platforms. Note that Windows Store apps
that use background tasks must declare this in the app manifest.

Now I’ll demonstrate how to implement a background task, fi rst
in Windows 8 and then in Windows Phone 8.

Here are the high-level steps for Windows 8:
1. Implement IBackgroundTask interface and Run method
2. Declare background task use in the manifest
3. Check that the task is not already registered
4. Use BackgroundTaskBuilder to create and register a

task instance
5. Handle the BackgroundTaskCompleted event to get

data from task:
 using Windows.ApplicationModel.Background;
 namespace MyTaskExample
 {
 public class SimpleBackgroundTask : IBackgroundTask
 {
 public void Run(IBackGroundTaskInstance task)
 {
 // Do stuff ...
 }
 }
 }

6. Declare that the app uses a background task:
 <Extensions>
 <Extension Category="windows.backgroundTasks"
 EntryPoint="Tasks.MyTask">
 <BackgroundTasks>
 <Task Type="systemEvent" />
 </BackgroundTasks>
 </Extension>
 </Extensions>

7. And check the registration:
 foreach (var task in Background.BackgroundTaskRegistration.AllTasks)
 {
 // Use if (task.Value.Name == taskName) to see if
 // the task has already been registered
 }
 // If not ...
 var taskBuilder = new BackgroundTaskBuilder();
 taskBuilder.Name = taskName;
 taskBuilder.TaskEntryPoint = "Tasks.MyTask";
 taskBuilder.SetTrigger(
 new SystemTrigger(SystemTriggerType.TimeZoneChange, false));
 BackgroundTaskRegistration myTaskRegistration =
 taskBuilder.Register();

Here are the high-level steps for Windows Phone 8:
1. Create ScheduledTaskAgent (Windows Phone Scheduled

Task Agent template):
 public class ScheduledAgent : ScheduledTaskAgent
 {
 protected override void OnInvoke(ScheduledTask task)
 {
 // Write code here to perform task ...
 NotifyComplete();
 }
 }

2. Check that task has already been scheduled to run, and
if not, create a new one; otherwise, remove the existing
task (the task scheduled to run periodically for 10 days):

 PeriodicTask task =
 ScheduledActionService.Find(taskName) as PeriodicTask;
 bool found = (task != null);
 if (!found)
 task = new PeriodicTask(taskName);
 else
 ScheduledActionService.Remove(taskName);
 task.Description = description;
 task.ExpirationTime = DateTime.Now.AddDays(10);
 ScheduledActionService.Add(task);

Unlike with Windows 8, there’s no need to declare
support for background tasks in the manifest.

Camera Both Windows Phone 8 and Windows
8 support capturing images and videos but, as with
other features, the APIs are diff erent.

Feature and Namespace Purpose
Windows
Phone 8 Windows 8

Windows.Storage Local app fi le storage Yes Yes
System.IO.IsolatedStorage.
Isolated StorageFile

Local app fi le storage Yes No

ApplicationData settings
(LocalFolder)

Key/value storage No Yes

System.IO.IsolatedStorage.
IsolatedStorageSettings

Key/value storage Yes No

SQL CE Database Yes No

Figure 9 Storage Options in Windows Phone 8 and Windows 8

CycleTileData tileData = new CycleTileData()
{
 Title = item.Title,
 SmallBackgroundImage = new Uri(item.GetImageUri(),
 UriKind.RelativeOrAbsolute),
 CycleImages = list
};

ShellTile.Create(new Uri(navDataSource,
 UriKind.Relative), tileData, true);

Figure 8A Tile Creation in Windows Phone 8

var tile = new SecondaryTile(
 item.UniqueId, // Tile ID
 item.ShortTitle, // Tile short name
 item.Title, // Tile display name
 item.UniqueId, // Activation argument
 TileOptions.ShowNameOnLogo, // Tile options
 uri // Tile logo URI
);
await tile.RequestCreateAsync();

Figure 8B Tile Creation in Windows 8

www.msdnmagazine.com

msdn magazine68 Windows 8/Windows Phone 8

Capturing photos on Windows Phone 8 is a task handled by the
OS. You can register a callback to handle the result when the user
exits the camera UI. You may or may not have a photo as a result,
so check before using the result. Video recording is not built-in to
the camera-capture task, so it requires more work.

Unique to Windows Phone 8 is the ability to create a camera
app called lens. You can also create rich media lenses, which pro-
vide a unique experience for viewing or editing photos. Moreover,
the camera can be used as a gateway to other experiences. For
instance, barcode-reader apps use the camera to scan a barcode
and then display its associated data. All these lens apps are possible
using lens extensibility, which allows launching directly from the

private readonly CameraCaptureTask cameraTask;
public Init() {
 cameraTask = new CameraCaptureTask();
 cameraTask.Completed += PhotoCaptured;
}
public void TakePhoto() {
 cameraTask.Show();
}
private async void PhotoCaptured (object sender, PhotoResult result) {
 await Task.Run(() => {
 // Do something with the result...
 });
}

Figure 12 Enabling ID_CAP_ISV_CAMERA and
ID_CAP_MICROPHONE in the Windows Phone 8 Manifest

Windows Phone 8 Windows 8
Derive from BackgroundAgent or
one of its subclasses:
• Microsoft.Phone and Microsoft.

Phone.Scheduler namespaces

Windows.ApplicationModel.
Background

Override the OnInvoke method and
call NotifyComplete when fi nished

Implement the IBackgroundTask
interface and its Run method

Check that the task is not
already registered

Declare background tasks in the
manifest; check that the task isn’t
already registered

Use ScheduledActionService to add
and remove background agents

Use BackgroundTaskBuilder
to create and register an instance
of your task
Handle the BackgroundTask-
Completed event to get data back
from the task

Figure 11 Using Background Tasks in Windows Phone 8 vs.
Windows 8

Windows Phone 8 Windows 8 Both
ConnectionManager
• System.Net

NetworkInterface
• System.Net.

Net work Information

HttpWebRequest,
HttpWebResponse
• System.Net

DatagramSocket,
StreamSocket
• Windows.

Networking.Sockets

Socket (TCP or UDP),
StreamSocket
• System.Net.Sockets

HttpClient
• System.Net.Http

WebClient
• System.Net

Figure 10 Networking API Differences in Windows Phone 8
and Windows 8

lens picker into a viewfi nder experience. You can also use special
APIs to programmatically access the camera sensor. For more
info, see “Lens extensibility for Windows Phone 8” (aka.ms/Vdgk8e)
and “Capturing photos for Windows Phone” (aka.ms/Owcwpl) in the
Windows Phone Dev Center.

Windows 8 uses the CameraCaptureUI (Windows.Media.Capture)
for photos and videos. Th is requires enabling Webcam and Micro-
phone in the manifest:

private async void OnCapturePhoto(object sender, TappedRoutedEventArgs e)
{
 var camera = new CameraCaptureUI();
 var file = await camera.CaptureFileAsync(CameraCaptureUIMode.Photo);

 if (file != null)
 {
 // Do something with the result ...
 }
}

Windows Phone 8 uses CameraCaptureTask (Microsoft .Phone.Tasks)
to take photos. Th is requires enabling ID_CAP_ISV_CAMERA and
ID_CAP_MICROPHONE in the manifest, as shown in Figure 12.

App Bar Windows 8 app bars are much more powerful than
Windows Phone 8 app bars. Commonly used actions—such as
adding, editing and deleting items—can be placed on an app bar.
An app can be notifi ed when the user opens or closes an app bar
by handling the Opened and Closed events.

Th ere are signifi cant diff erences in how the app bar works for
each platform, as shown in Figure 13.

Th e app bar declaration in Windows 8 is shown in Figure 14.
Notice that two stack panels are used to group the buttons, with
one group on the left and the other on the right.

Figure 15 shows the app bar declaration in Windows Phone 8
(note that only four ApplicationBarIconButton elements are
allowed on the phone ApplicationBar, and no containers are placed
within the ApplicationBar element).

Wrapping Up
Increasingly, consumers expect continuity of experience between
their smartphones and other devices. Th e Windows 8 and Windows
Phone 8 common core allows for a reasonable level of reuse when
building solutions for both platforms. However, as you’ve seen in
this article, it’s important to recognize the major diff erences in the

Windows Phone 8 Windows 8
One app bar at the bottom
of the page

Two app bars: one at the bottom
and one at the top

Only four items allowed
• Put additional items on the menu
• No grouping

Behaves like any container
• No menu
• Can group items in nested containers

ApplicationBar control inside
PhoneApplicationPage.
ApplicationBar

AppBar control inside Page.
BottomAppBar or Page.TopAppBar

Set Mode to Default to show the
app bar when the page loads

Set IsOpen to true to show the app
bar when the page loads

Set IsMenuEnabled to enable
the menu

Set IsSticky to true to force an app
bar to always remain open

Figure 13 Differences in How the App Bar Works in
Windows Phone 8 and Windows 8

www.aka.ms/Vdgk8e
www.aka.ms/Owcwpl

physical devices and the way in which users interact with them,
as well as the diff erences in the APIs for each. Th ese diff erences
mean application designers must account for building a separate
UI and UX, which in turn means little or no reuse of XAML
across the platforms. Although some APIs are available for both
platforms, as with Windows.Store.StorageFile, many features are
externally similar but implemented diff erently. Th at’s the case for
lifecycle events, tiles, media capture, tasks and contracts, settings,
background tasks, and the app bar.

Once you grasp these diff erences, you can confi dently exploit
cross-platform code-reuse techniques such as Portable Class Libraries,

runtime components and so forth. To learn more about these
techniques, please refer to Doug Holland’s code-sharing article I
mentioned earlier, as well as to the Windows Phone Dev Center
article at aka.ms/sharecode. And you’ll want to download the sample
code showing sharing in action from aka.ms/gxcvq3.

JOEL REYES is a technology evangelist in DPE Public Sector focused on Windows
Phone 8 and Windows 8. You can reach him at joel.reyes@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Andrew Byrne (Microsoft) and Matthias Shapiro (Microsoft)

<Page.BottomAppBar IsOpen="True">
 <AppBar x:Name="bottomAppBar" Opened="AppBar_Opened" Padding="10,0,10,0">
 <Grid>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Left">
 <Button Style="{StaticResource TakePictureAppBarButtonStyle}"
 Click="TakePicture_Click"/>
 <Button Style="{StaticResource ShareTaskAppBarButtonStyle}"
 Click="ShareImage_Click"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right">
 <Button Style="{StaticResource StartCoookingAppBarButtonStyle}"
 Click="StartCooking_Click"/>
 <Button Style="{StaticResource PinToStartAppBarButtonStyle}"
 Click="PinToStart_Click"/>
 </StackPanel>
 </Grid>
 </AppBar>
</Page.BottomAppBar>

Figure 14 The App Bar Declaration in Windows 8

<phone:PhoneApplicationPage.ApplicationBar x:name="ddd">
 <shell:ApplicationBar x:Name="bottomAppBar" IsVisible="True"
 IsMenuEnabled="True" Mode="Default" Opacity="1.0">
 <shell:ApplicationBarIconButton x:Name="btnTakePicture"
 IconUri="/Assets/Icons/camera.png" Click="btnTakePicture_Click"
 Text="Take Picture"/>
 <shell:ApplicationBarIconButton x:Name="btnShareTask"
 IconUri="/Assets/Icons/share.png" Click="btnShareShareTask_Click"
 Text="Share Image"/>
 <shell:ApplicationBarIconButton x:Name="btnStartCooking"
 IconUri="/Assets/Icons/alarm.png" Click="btnStartCooking_Click"
 Text="Start Cooking"/>
 <shell:ApplicationBarIconButton x:Name="btnPinToStart"
 IconUri="/Assets/Icons/like.png" Click="btnPinToStart_Click"
 Text="Pin To Start"/>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

Figure 15 The App Bar Declaration in Windows Phone 8

www.junnark.com
www.aka.ms/sharecode
www.aka.ms/gxcvq3
mailto:joel.reyes@microsoft.com

msdn magazine70

In this article we’ll take a look at some of the new features
in Visual Studio LightSwitch that help you build modern, mobile,
business productivity apps.

Visual Studio LightSwitch (just LightSwitch from here on for
brevity) is designed to simplify and shorten the development of
businesses apps. LightSwitch apps can consume a variety of data
sources, provide business and authorization logic, and create
clients that can run on a variety of devices—all without the need
to write plumbing code.

LightSwitch can aggregate multiple data sources, and it exposes
a set of open data services (the Open Data protocol, or OData)

automatically to support custom clients and self-service business
intelligence (BI) scenarios. LightSwitch also lets you write code to
customize the apps as necessary, whether that’s the UI controls,
business logic, data services or other components.

With the release of Visual Studio 2012 Update 2 in April,
LightSwitch also has added the ability to quickly build touch-centric
HTML5 clients that run well on modern mobile devices. LightSwitch
HTML clients are built on standards-compliant HTML5 and JavaScript
and provide modern, touch-first experiences on Windows RT,
Windows Phone 8, iPhones and iPads with iOS 5 and 6, and
Android 4.x devices.

Additionally, with the new SharePoint 2013 app model, LightSwitch
is also bringing the simplicity and ease of building custom business
apps into SharePoint and Offi ce 365. Many enterprises today use
SharePoint as a hub to enable better collaboration between people,
content and processes. Although you can still choose to host your
apps on your own or in Windows Azure, enabling SharePoint in
your LightSwitch apps allows you to take advantage of the app life-
cycle management, identity and access control capabilities within
SharePoint—not to mention the business data and processes
already running in SharePoint in your enterprise.

The LightSwitch HTML Client
In LightSwitch you always start with the data model, whether you’re
modeling new data or connecting to existing data sources. Because
in this article we’re focusing on new features, we’ve already created

L IGH TS WITC H

Build Modern Business
Productivity Apps with
Visual Studio LightSwitch
Jan Van der Haegen and Beth Massi

This article discusses:
• The LightSwitch HTML client

• Screen templates and navigation

• App customization

• Integrating with SharePoint 2013 and Offi ce 365

• Working with the SharePoint Client-Side Object Model

• SharePoint deployment considerations

Technologies discussed:
Visual Studio LightSwitch, SharePoint 2013, Offi ce 365

Code download available at:
archive.msdn.microsoft.com/mag201307LightSwitch

http://archive.msdn.microsoft.com/mag201307LightSwitch

71July 2013msdnmagazine.com

a simple data model and fi lled the database with some initial data.
Th is way, you’re all set up and ready to start creating a client that
you can use to make sure you sit in on the most interesting sessions
when attending an exciting conference, such as Visual Studio Live!
In case this is your first introduction to LightSwitch, make sure
you don’t miss out on the wealth of data modeling, self-service BI,
concurrency handling and multithreading goodness it has to off er
by reading MSDN Magazine’s previous articles—such as “Shape Up
Your Data with Visual Studio LightSwitch 2012” in the September
2012 issue (msdn.microsoft.com/magazine/jj618303)—or by checking out
the LightSwitch Developer Center (msdn.com/lightswitch).

Th e HTML client provides an approach to building touch-fi rst
single-page apps that run on a broad range of mobile devices,
oft en referred to as “companion apps” to signify that these apps
play just one specifi c role in a larger architecture. Creating such
a companion app to browse data on location—as we do in this
article—is a great exercise to get started with the HTML client, but
is in no way representative of the broad range of problems these
apps can solve. Th ese companion apps can help your business save
time and money by allowing data not only to be consulted, but also
modifi ed and stored back (collecting a customer’s signature when
a package is delivered, for example), and sometimes even making
use of some device-specifi c capabilities such as geolocation (cap-
turing the location where a soil sample is collected, for example).

Screen Templates and Navigation No matter what type of
client you create, LightSwitch takes the same approach to defi n-
ing screens using a set of predefi ned templates from which you
can choose. To add a screen, simply right-click on the project in
Solution Explorer and select the Add Screen option. Th is opens a
dialog where you can select a screen template and some additional
options such as the name of the screen and the data it will use. Th is

screen then will be generated based on the chosen template and
opened in the screen designer.

For the somewhat-experienced LightSwitch developer, this
already feels familiar, because the design-time experience is almost
exactly the same as when using LightSwitch to create screens in an
out-of-browser Silverlight app, simplifying the already easy learn-
ing process. LightSwitch has stayed faithful to the app’s underlying
Model-View-ViewModel (MVVM) architecture and the way the
screen designer shows view models on the left -hand side and a
representation of the corresponding views on the right.

One notable change is that setting up navigation from one screen to
another (or binding any other action to events caused by the user tap-
ping on elements in the screen) has really become a fi rst-class citizen in
the screen designer. Th is is an obvious improvement, not only because
apps are so touch-focused, but also because the LightSwitch HTML
client produces a single-page application (SPA). Th e Silverlight client
had a Multiple Document Interface (MDI) shell that allowed many
screens to be open at the same time; hence, in LightSwitch HTML apps,
navigating between screens becomes incrementally more important.

For example, if you use the Browse
Data template on the session entity
to create the fi rst screen in this app,
a screen is generated that contains
a list of sessions. (Th is list is selected
in the screen designer, and then the
Edit Item Tap Action link is clicked in
the Properties window.) Th is opens
up a dialog that’s highly adaptive in
its suggestions: Because the user is
browsing the sessions and has tapped
on a single item, the dialog suggests
the action of opening a screen where
the user can view the details of the
selected session. Because such a
screen hasn’t been created yet, the
dialog is suggesting that you go
ahead and create that screen as well.
Th is is shown in Figure 1.

After accepting, pressing F5
builds the app and starts a new
debugging session in the default
browser. Th e home screen opens
and displays a simple list of sessions. Figure 1 Setting Up Actions for Touch Events Is Now a First-Class Citizen in the Screen Designer

With the new SharePoint 2013
app model, LightSwitch is also

bringing the simplicity and ease
of building custom business apps
into SharePoint and Offi ce 365.

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/jj618303
http://msdn.com/lightswitch

msdn magazine72 LightSwitch

When you tap on a session, the app smoothly navigates to the
newly generated detail screen that displays the details of the par-
ticular session in a simple two-column layout, shown in Figure 2.

Although this screen looks simple, there’s a lot going on behind
the scenes. Th is “simple list of sessions” is actually backed by a com-
pletely virtualized collection that loads more elements as the user
scrolls down, to avoid unnecessarily transferring large amounts of
data over a mobile connection. Th e two-column layout dynamically
adapts to the available size, changing to a single- column layout
on smaller devices. Th is is a vital element in the strategy to write
a single HTML app and run it on a variety of tablets and phones,
each with its own form factor. Th e Visual Studio
LightSwitch Team Blog post, “Designing for
Multiple Form Factors” (bit.ly/18F320N) by Pro-
gram Manager Heinrich Wendel, provides more
detail about the vision behind this adaptive design,
which normally requires a great deal of work
from the developer, but which LightSwitch simply
off ers with little eff ort.

Other notable elements in the screen designer
include the promoted usage of pop-ups and tabs,
which each have their own command bar. One
example of how these can make life easier for the
end user is to add a fi lter on the sessions. To do
this, you fi rst select the Sessions query element in
the view model (the left -hand side of the screen
designer) and click Edit Query, which opens the
query editor where you can quickly modify the
query that’s used by adding some optional argu-
ments. Next, hit the Add Data Item button to add a
local Speaker property called FilterBySpeaker, set
up data binding of this Speaker’s Id to the corre-
sponding query argument, and repeat this process
for the other entities: Room, Time Slot and Track.

To complete the screen, simply drag
these four new view model properties onto
a newly created pop-up in the view (the
right-hand side of the screen designer).
By default, LightSwitch will suggest to
visualize each property as a Modal Picker
control, which is just fi ne for this app.
Finally, add a new button to the command
bar and use the same dialog that appears
when setting up the Edit Item Tap Action
to open the newly created pop-up.

Hitting Save and refreshing the browser
is all it takes to view the newly added
filter in action (JavaScript doesn’t
need recompilation, as do traditional
Microsoft .NET Framework apps). Th e
home screen opens, showing all sessions
in a virtualized collection—and this time
also showing a blue command bar with
a single Filter button. When this button
is clicked, a pop-up is displayed showing

the four fi lter options (shown in Figure 3) on a couple diff erent
devices. As soon as you actually make a selection, the optional query
arguments are automatically updated because of the data binding.
Th is in turn automatically triggers a new HTTP GET operation to
be sent to the back-end OData service, which fi lters the sessions
by the correct arguments and returns the result.

In summary, the screen designer does an excellent job of making
the correct abstractions so you can focus on setting up a pro-
fessional HTML app with minimal eff ort. For example, this app
includes a virtualized list that can be fi ltered, all of which has been
set up without having to write a single line of code.

Figure 3 The Added Filter in Action

Figure 2 Adaptive Design Helps to Write a Single App for Multiple Form Factors

www.bit.ly/18F320N

73July 2013msdnmagazine.com

Note, however, that as a developer you shouldn’t get too hung
up on that no-code philosophy.

Yes, it’s true that the screen designer focuses on abstracting the
actual technology to increase developer velocity, and that like all
rapid-application development (RAD) environments, this implies
sacrifi cing some customizability. However, LightSwitch off ers many

scenarios in the screen designer, as well as a large number of exten-
sion points, so you can roll up your sleeves and override, alter or
append to the HTML, JavaScript and CSS mix that forms an app.

As an example, you can add a new query to the app that
returns only those sessions in the next Time Slot as a Data
Item on the screen, and drag that query onto a new tab in
the home screen. Again, you can keep the List control to
show the sessions, but instead of having a one-line summary
per session (the title), the screen designer is used to nest
some row and column layouts and display some additional
information about the session, which results in the fi rst (on
the left -hand side) layout in Figure 4.

Branding, Theming and Further Customization When
it comes time to start mixing in custom code, it’s quick and
easy to apply some global theming and branding. Th e logo,
in fact, is nothing more than a .png fi le that you can replace
from Windows Explorer, and the theme is nothing more
than a standard JQuery Mobile theme. LightSwitch ships
with a light (default) and a dark theme, both of which
you can further modify using the online JQuery Mobile

Th emeRoller. Changing both the
logo and the theme results in the
center layout in Figure 4.

Finally, you can further defi ne
the look of your app by using
Render or PostRender methods.
By selecting any LightSwitch con-
trol in the screen designer, a link in
the Properties window labeled Edit
PostRender Code becomes avail-
able. When you click this link, a
JavaScript method stub is gener-
ated that will be executed at run
time, directly aft er the LightSwitch
JavaScript library has rendered the
required HTML elements for the
particular control. A possible use

of this extension point is to alter the background of each row in the
list, depending on the track that the session is a part of, by writing
the following code in that method:

myapp.Home.NextSessionsTemplate_postRender =
 function (element, contentItem) {
 $(element).parent("li").css("background", contentItem.value.Track.Color);
};

Th is code grabs the parent of the HTML element that LightSwitch
added and sets the CSS background property to the color of the
track of the current session (contentItem.value), resulting in the
right-most layout in Figure 4.

Figure 4 reveals an obvious fault in design: If the track has a bright
color associated with it, then because of the contrast between the con-
tent and the background, an item can become unreadable. To correct
this, add two reusable CSS classes to the user-customization.css fi le
and alter the code so that it appends one of these classes:

myapp.Home.NextSessionsTemplate_postRender =
 function (element, contentItem) {
 $(element).parent("li").css("background", contentItem.value.Track.Color);
 $(element).addClass(
 (parseInt(contentItem.value.Track.Color.replace(
 "#", ""), 16) > 0xffffff / 2)
 ? 'darkForeground' : 'lightForeground'
);
};

Figure 4 Three Different Designs for the Home Screen

LightSwitch does an excellent
job of making the correct

abstractions so you can focus on
setting up a professional HTML

app with minimal effort.

Figure 5 Enabling SharePoint in a LightSwitch App

www.msdnmagazine.com

msdn magazine74 LightSwitch

Customizing the rendering process by writing PostRender
methods can be used for a variety of options, ranging from sim-
ple CSS tricks such as changing the background color to applying
a reusable JQuery UI widget that hides all items in the list but one,
turning the list into a dynamic banner or image carousel. Visible
items are changed with a set timer, as described in the blog post
(written by coauthor Jan Van der Haegen), “Create a JQuery slider
for LightSwitch HTML pages” (bit.ly/WJwnPw).

Aft er turning the list of upcoming sessions into a banner with a
color-coded background, it’s easy to forget which track has which
color. Besides altering standard LightSwitch controls using this
PostRender option, you can also take complete control over the
entire rendering of specifi c elements by indicating they’re custom
controls in the screen designer and then writing your own code in
the similarly generated JavaScript Render method. To add a legend
of tracks and their color code, add a query on all tracks as a date
item to the screen view model and display it as a Tile List (a built-in
alternative collection control). In the template of each tile, render
the color of each track as a simple square, using this JavaScript code:

myapp.Home.Color_render = function (element, contentItem) {
 $("<div style='background-color: "+ contentItem.value
 +";'> </div>").appendTo($(element));
};

Besides various visual customizations, LightSwitch also off ers
numerous code extension points in the ViewModel and Model layers
to help you tweak the control fl ow and business rules of your apps.

Th is app now has a fi rst tab that features the upcoming sessions
(in the form of a banner) and has a legend of colors per track, along
with a second tab with an overview of all the sessions, including an
easy-to-use fi lter. Because the home screen already shows all of the
tracks, it’s a good idea to fi ll in the fi lter on the second tab when the
user taps on one of the tracks in the fi rst tab, then focus this tab to
show only the sessions in the selected track.

Th is control fl ow can’t be set up directly from the screen designer,
but it’s easily accomplished by selecting the Tile List of tracks and
in the Properties Window binding the item tab to execute to a
custom method. Th is generates a JavaScript method stub where
you can write the following:

myapp.Home.BrowseByTrack_ItemTap_execute = function (screen) {
 screen.getTracks().then(function (tracks) {
 screen.FilterByTrack = tracks.selectedItem;
 screen.showTab("AllSessions");
 });
};

Th e app now has three diff erent perspectives to slice the sessions:
see the upcoming sessions in a banner; click on a track to see the list
of sessions fi ltered by that track; or adjust track, time slot, speaker
or room on that same fi lter manually.

One last perspective you can add is an overview of your favorite
sessions. To accomplish this, add a simple entity called Favorite-
Sessions. Favorite sessions are those in which an entry in Favorite-
Sessions exists with a particular name.

When the screen to view a particular session is opened, determine
if such an entry exists by asynchronously executing a specialized
FindFavoriteSessions query on the server and storing the existence
of this result in a Boolean screen property called IsFavorite:

myapp.ViewSession.created = function (screen) {
 myapp.activeDataWorkspace
 .ApplicationData.FindFavoriteSessions(screen.Session.Id)
 .execute().then(
 function (result) {
 screen.IsFavorite = result.results.length != 0;
 }
);
};

Th en add two buttons to the tab’s command bar: Favorite and
Unfavorite. Only one of these buttons can be active at the same time,
so use the button’s CanExecute code extension point. Th e LightSwitch
JavaScript library calls these methods at the appropriate times and
makes sure the UI is updated accordingly. Although this behavior
can be overridden for each screen from the Properties window, it
does so by default by hiding buttons that can’t be executed at the
moment, saving precious screen real estate on small devices:

myapp.ViewSession.Favorite_canExecute = function (screen) {
 return !screen.IsFavorite;
};
myapp.ViewSession.Unfavorite_canExecute = function (screen) {
 return screen.IsFavorite;
};

One amazing highlight about such simple code snippets is that
the LightSwitch JavaScript library keeps track of when these Can-
Execute methods should be reevaluated. Just like in Silverlight out-
of-browser apps, you don’t need to take care of throwing events when
a property changes. Just set a new value for the IsFavorite property
from anywhere within the app and the LightSwitch runtime will
automatically know to reevaluate these particular CanExecute
methods and update the view (show or hide the buttons) as required.

All that’s left to do now is to write some code that creates a new
FavoriteSession (or removes it) when the button is clicked:

myapp.ViewSession.Favorite_execute = function (screen) {
 var favored = myapp.activeDataWorkspace.ApplicationData.
 FavoriteSessions.addNew();
 favored.setSession(screen.Session);
 myapp.applyChanges().then(screen.IsFavorite = true);
};

After adding the list of FavoriteSessions to a new tab on the
homepage, the app is ready for packaging and deployment.

It turns out that LightSwitch does a great job of keeping a
balance between designing the app in a simple but powerful screen
designer and the amount of customizability you need to sacrifi ce
for this simplifi ed and speedy development. It achieves this balance
by introducing a large number of extension points where you can
write custom code to alter, override or append the default design,
control fl ow or behavior of the app.

Integrating with SharePoint 2013 and Offi ce 365
SharePoint 2013 introduces a new cloud-based app model that
allows you to create apps that extend the capabilities of a SharePoint
Web site and supports a tiered architecture in which the app’s

You can roll up your sleeves and
override, alter or append to the
HTML, JavaScript and CSS mix

that forms an app.

www.bit.ly/WJwnPw

75July 2013msdnmagazine.com

business logic, data and UI can be distrib-
uted. Users discover and download apps
from the Offi ce store or from their orga-
nization’s private app catalog and install
them on their SharePoint sites. Because of
this new distributed model, you can build
LightSwitch apps that target SharePoint
2013 on-premises and on Offi ce 365. You
can deploy the LightSwitch Silverlight
in-browser clients or the new mobile-based
HTML clients into SharePoint.

Building upon the Visual Studio Live!
example, you can take advantage of
Office 365 services in order to allow
conference staff to set up the conference
schedule using a SharePoint calendar
within the LightSwitch app. When a new
session is approved and a time slot is
chosen, this will add a new calendar entry.
You can then imagine a series of possible
workflows that may trigger additional
actions that are common with SharePoint.
Th us, LightSwitch apps allow you to create touch-enabled experi-
ences that take advantage of business data and processes that are
already running in SharePoint in your business.

Enabling SharePoint in LightSwitch Apps In the project prop-
erties you click the Enable SharePoint button and provide a local or
remote SharePoint 2013 site you want to use for development. When
you do this, you’re indicating to LightSwitch that the app should
be deployed to SharePoint and can work with SharePoint assets.
Th is adds the appropriate SharePoint references to your project.

LightSwitch will also handle authentication to SharePoint
automatically for you via OAuth. You can confi gure Access Control
Service (ACS), which is another server that brokers authentication
between your app and SharePoint. Your app will have a “secret”
known to SharePoint and can use it to authenticate via ACS, as is
the case with Offi ce 365. You can also choose a high-trust confi g-
uration if you have that set up on-premises, as shown in Figure 5.

To get started developing SharePoint apps quickly, you can
sign up for a free trial of the Offi ce 365 developer subscription at
dev.office.com. MSDN subscribers can also sign up for a free year
through their subscription benefi ts site.

SharePoint Lists as LightSwitch
Entities Using the Data Designer, you can
bring in SharePoint lists as entities into
the LightSwitch data model. Th is allows
you to manipulate list data directly through
the LightSwitch data context. Th is means
you can create screens directly against
SharePoint list data that you already
have set up, and LightSwitch will handle
the authentication and data operations
automatically. For example, in the Visual
Studio Live! scenario, any of the data could
be stored in SharePoint lists and the UI
wouldn’t change.

When you bring SharePoint lists into the
LightSwitch data model, it also allows you
to access the list data via code in a stream-
lined way using the LightSwitch API. For
example, in the Visual Studio Live! app,
we wanted to write code to automatically
add a SharePoint calendar entry when a
new session is added. To do this, right-click

on the Server node in the Solution Explorer and choose “Add data
source,” then select SharePoint as the data source type. Aft er indi-
cating the SharePoint site address and selecting to automatically
choose the user identity, the SharePoint lists are displayed.

Th e site being used already contains a calendar called Confer-
enceSchedule. When this is brought into the data model you can
set up a virtual relationship to the session table data. Simply click
the Relationship button at the top of the data designer and defi ne
a One-to-Zero-or-one relationship (see Figure 6).

Now you can create a new screen that allows staff to enter new
sessions. You could include the ConferenceSchedule data directly
on the screen, but in this case some server code will be written so

Private Sub Sessions_Updated(entity As Session)
 Me.UpdateCalendar(entity)
End Sub

Private Sub Sessions_Inserting(entity As Session)
 Me.UpdateCalendar(entity)
End Sub

Private Sub UpdateCalendar(entity As Session)
 If entity.Timeslot IsNot Nothing AndAlso
 entity.Room IsNot Nothing Then

 If entity.ConferenceSchedule Is Nothing Then
 entity.ConferenceSchedule = New ConferenceSchedule()
 End If

 entity.ConferenceSchedule.Title = entity.Title
 entity.ConferenceSchedule.Description = entity.Description
 entity.ConferenceSchedule.StartTime = entity.Timeslot.StartTime
 entity.ConferenceSchedule.EndTime = entity.Timeslot.EndTime
 entity.ConferenceSchedule.Location = entity.Room.Name

 Me.DataWorkspace.VSliveData.SaveChanges()
 End If
End Sub

Figure 7 Code to Add a New Entry to the
SharePoint Calendar Using Visual Basic .NET

Figure 6 Setting Up a Virtual Relationship
Between Multiple Data Sources

When you bring SharePoint lists
into the LightSwitch data model,
it also allows you to access the

list data via code in a streamlined
way using the LightSwitch API.

www.msdnmagazine.com
http://dev.office.com

msdn magazine76 LightSwitch

it happens transparently in the background. When the session data
is saved, use the save pipeline’s _Inserting and _Updated methods
on the Session entity to add a new entry to the schedule from
the server using Visual Basic .NET or C# code (see Figure 7 and
Figure 8, respectively). Th ere are many hooks on the server that
allow you to control business logic and
data processing this way.

When you debug the app (F5) you’ll fi rst
be asked if you trust it. Once you confi rm that
you do, you’ll see a SharePoint chrome con-
trol at the top that allows users to navigate up
to the SharePoint site from the LightSwitch
app. Add a new session, then click “Back to
site” in the chrome to see the Conference
Schedule. If you click on the Event item,
you’ll see it was created by the LightSwitch
app on behalf of the user. Th is shows that
the SharePoint user credentials fl ow through
the LightSwitch app automatically.

The SharePoint Project and Client-
Side Object Model Using lists as entities
isn’t the only way to access SharePoint
data. When you enable SharePoint in
your LightSwitch apps, you have the full
SharePoint Client-Side Object Model
(CSOM) available to you, as well. You can
manipulate not only lists this way but also
access other SharePoint assets. For exam-
ple, if you wanted to create a general app
that you could sell in the SharePoint store,
you might need to deploy and manipulate
SharePoint lists in a more generic way.

When you enable SharePoint, a SharePoint project is added to
your LightSwitch solution. If you fl ip to File View on the Solution
Explorer, you’ll see it as shown in Figure 9. You can add a variety
of SharePoint-specific items to your app this way that will get
deployed when you package your app. Th en you can use CSOM
to manipulate these items in code. For example, you can add a
custom list to your project and then interact with that list via CSOM.
LightSwitch exposes a SharePoint object on the Application object
that you can use to get at the host and app webs.

For example, we added a custom list to the VSLive.SharePoint
project that’s used to write audit entries anytime a session is added,
updated or deleted. We can tap into the save pipeline again and use
the list via CSOM. First, import the Microsoft .SharePoint.Client
namespace, and then you can write the code shown in Figure 10
(Visual Basic .NET) or Figure 11 (C#).

For more information on using CSOM with LightSwitch, as well
as other tips and tricks, see the SharePoint
topics on the Visual Studio LightSwitch
Team Blog at bit.ly/16JIWn6.

SharePoint Deployment Consider-
ations LightSwitch apps are just Web apps,
so you can host them on your own IIS Web
servers or in a cloud such as Windows
Azure. When you install a SharePoint app,
a manifest is installed that has information
on where your app runs. As part of the new
SharePoint app model, any apps that contain
server-side code—which all LightSwitch
apps do—must run on a separate server
outside of SharePoint. Th is isolation pro-
vides better stability to the SharePoint farm.

LightSwitch supports two types of
SharePoint deployment: autohosted and
provider-hosted. You need to consider
these options when building your app
because they might directly affect the
architecture of your data.

With autohosted apps, the Web site and
database are provisioned automatically
into Windows Azure each time the app is
installed. Th e data is provisioned into SQL
Azure, and the middle tier is provisioned into
a Windows Azure Web site. Th is means that

Figure 9 Adding Custom Lists and Other
SharePoint Items via the Solution Explorer

When you enable SharePoint
in your LightSwitch apps,

you have the full SharePoint
Client-Side Object Model
(CSOM) available to you.

private void Sessions_Updated(Session entity)
{
 this.UpdateCalendar(entity);
}

private void Sessions_Inserting(Session entity)
{
 this.UpdateCalendar(entity);
}

private void UpdateCalendar(Session entity)
{

 if (entity.Timeslot != null && entity.Room != null)
 {
 if (entity.ConferenceSchedule == null)
 {
 entity.ConferenceSchedule = new ConferenceSchedule();
 }

 entity.ConferenceSchedule.Title = entity.Title;
 entity.ConferenceSchedule.Description = entity.Description;
 entity.ConferenceSchedule.StartTime = entity.Timeslot.StartTime;
 entity.ConferenceSchedule.EndTime = entity.Timeslot.EndTime;
 entity.ConferenceSchedule.Location = entity.Room.Name;

 this.DataWorkspace.VSliveData.SaveChanges();
 }
}

Figure 8 Code to Add a New Entry
to the SharePoint Calendar Using C#

www.bit.ly/16JIWn6

77July 2013msdnmagazine.com

each instance of your LightSwitch app that’s installed into SharePoint
is isolated from all other instances on other SharePoint sites. Th is
is a quick and easy type of deployment. However, if your app is
uninstalled, then everything is deleted, even the data.

Provider-hosted apps give you the fl exibility of hosting the Web
app and database wherever you want. However, with this model,
all SharePoint app instances share the same middle tier and data, so
you’ll need to provide your own tenant isolation. LightSwitch pro-
vides row-level fi ltering mechanisms in the query pipeline to help
build multi-tenant apps. You also need to manage availability—if your
server goes down, all your SharePoint apps stop working.

You also need to specify how you want your app to authenticate.
Th is is the “ACS versus high trust” choice you make when you start
developing with SharePoint. If your SharePoint server or farm is
using ACS, as is the case with Offi ce 365, then all that’s required is a
ClientID and secret that’s shared between your app and SharePoint.

You use the LightSwitch Publish Wizard to specify these settings
and package your app. Depending on the type of hosting, it will
either deploy your app service and database to a server you spec-
ify (or Windows Azure), as is the case with provider-hosting, or
it will wrap everything into the SharePoint deployment package.
You then take that package and install it onto your SharePoint site
catalog. From there, users can add your app to their sites.

For more information on hosting LightSwitch apps in
SharePoint, see the following Visual Studio LightSwitch Team
Blog posts: “SharePoint Hosting and Authentication Options for
LightSwitch” (bit.ly/10vEJez) and “Publishing LightSwitch apps for
SharePoint to the Catalog” (bit.ly/11wSFqo).

Wrapping Up
As you can see, there are a ton of new features in the latest release of
LightSwitch in Visual Studio 2012 Update 2. Th ese features comple-
ment the desktop-based Silverlight client that’s been available since
the fi rst release—and still is today. However, with many employees
bringing their own devices to the workplace, building a native
client for every device and deploying each implementation to
separate app stores is rarely feasible. LightSwitch HTML clients are
built on standards-compliant HTML5 and JavaScript and provide
modern, touch-fi rst experiences for today’s mobile devices.

Additionally, enabling SharePoint in your LightSwitch apps allows
you to take advantage of the business data, processes, app lifecycle man-
agement, identity and access-control capabilities within SharePoint
that are already embedded into many enterprises today.

JAN VAN DER HAEGEN is a green geek who turns coff ee into soft ware. He’s a loving
husband, .NET addict, LightSwitch lover, blogger, independent consultant and col-
umnist for MSDN Magazine online. He secretly dreams of becoming a professional
goat herder one day. You can fi nd his coding experiments at switchtory.com/janvan.

BETH MASSI is a senior program manager on the Visual Studio team at Microsoft
and is a community champion for business application developers. She’s a fre-
quent speaker at various software development events, and you can find her
on a variety of developer sites including MSDN.com, Channel 9 and her blog,
bethmassi.com. Follow her on Twitter at twitter.com/BethMassi.

THANKS to the following technical experts for reviewing this article:
Brian Moore (Microsoft) and John Stallo (Microsoft)

private void Sessions_Inserted(Session entity)
{
 this.LogAuditEntry(entity, "inserted");
}

private void Sessions_Updated(Session entity)
{
 this.LogAuditEntry(entity, "updated");
}

private void Sessions_Deleted(Session entity)
{
 this.LogAuditEntry(entity, "deleted");
}

private void LogAuditEntry(Session entity, string actionDescription)
{
 using (ClientContext ctx =
 this.Application.SharePoint.GetAppWebClientContext())
 {
 Web web = ctx.Web;
 ListCollection lists = web.Lists;
 List auditLog = lists.GetByTitle("AuditList");
 ListItemCreationInformation ci = new ListItemCreationInformation();
 ListItem auditEntry = auditLog.AddItem(ci);

 auditEntry["Title"] = string.Format("Session {0} {1}",
 actionDescription,
 entity.Title);

 auditEntry["Name"] = this.Application.User.FullName;
 auditEntry["Date"] = DateTime.Now;

 auditEntry.Update();
 ctx.ExecuteQuery();
 }
}

Figure 11 Manipulating a SharePoint List via CSOM in C#

Private Sub Sessions_Inserted(entity As Session)
 Me.LogAuditEntry(entity, "inserted")
End Sub

Private Sub Sessions_Updated(entity As Session)
 Me.LogAuditEntry(entity, "updated")
End Sub

Private Sub Sessions_Deleted(entity As Session)
 Me.LogAuditEntry(entity, "deleted")
End Sub

Private Sub LogAuditEntry(
 entity As Session, actionDescription As String)

 Using ctx = Me.Application.SharePoint.GetAppWebClientContext()

 Dim web As Web = ctx.Web
 Dim lists As ListCollection = web.Lists
 Dim auditLog As List = lists.GetByTitle("AuditList")
 Dim ci As New ListItemCreationInformation()
 Dim auditEntry As ListItem = auditLog.AddItem(ci)

 auditEntry("Title") = String.Format("Session {0} {1}",
 actionDescription,
 entity.Title)

 auditEntry("Name") = Me.Application.User.FullName
 auditEntry("Date") = DateTime.Now

 auditEntry.Update()
 ctx.ExecuteQuery()
 End Using
End Sub

Figure 10 Manipulating a SharePoint List via CSOM
in Visual Basic .NET

www.msdnmagazine.com
www.bit.ly/10vEJez
www.bit.ly/11wSFqo
www.switchtory.com/janvan
www.bethmassi.com
www.twitter.com/BethMassi

msdn magazine78

Great user experiences present data to users in natural and intu-
itive ways regardless of form factor. Presenting data and content
requires updated APIs, controls and tools for building modern
experiences. In Windows Store apps, the amount of code required
and the complexity of controls depends on what kind of app you
create, whether it’s a productivity app, game, social app or fi nan-
cial app. Windows Library for JavaScript (WinJS) controls are easy
to master for any developer building Windows Store apps with
JavaScript, and they’re what I’ll discuss here.

Windows 8 Brings a New UI
Paradigm and New UI Controls
Windows Store apps look and behave much diff erently than programs
running in previous versions of Windows. Th ere have been some
major renovations in Windows, starting with the new Start page full
of live tiles as your fi rst interaction with apps. Other obvious changes
are that Windows Store apps run in full-screen mode or snapped
view, putting content at the front and center while commands and
menus stay out of sight until the user requests them.

Windows UI elements such as the minimize, maximize, and close
buttons that were once ubiquitous no longer exist in Windows Store
apps, as touch swipes and mouse movements have rendered them
useless. To close an app you need only swipe or mouse down from the
top of the screen to the bottom. Even
menus are no longer a fundamental
fi xture at the top of every screen. In
Windows Store apps menus remain
tucked away until a touch swipe or
mouse gesture reveals them from the
bottom in an AppBar as shown in
Figure 1, using a small countdown
timer app as an example.

As you can see in Figure 1,
menus are out, and commanding
elements are graphics-first with
some text rather than traditional
text-first menus with occasional
graphics. Th ese elements are also
perfectly fi nger-sized. If you need
more room for options than just
the bottom, you can place a nav
bar, which is simply an AppBar at
the top of the page.

Navigating in traditional Windows menus can be downright painful
at times. We’ve all cringed at a program with a cascading menu that
takes you 13 levels deep, causing you to forget what you were looking
for in the fi rst place. In Windows Store apps, navigation weaves itself
into the content, because touch and mouse gestures on ListView items
invoke other pages. Pinch gestures and control key+mouse wheel
activate zooming with semantic zoom (bit.ly/16IDtdi), which is both a
control and navigation paradigm in Windows Store apps. Semantic-
Zoom is part of the complete listing of WinJS controls (bit.ly/w1jLM5).

Working with HTML and WinJS Controls
Th ere are two primary kinds of controls in Windows Store apps
using JavaScript: standard HTML elements and WinJS controls.
WinJS controls are HTML combined with prebuilt JavaScript that
extends how HTML elements look or behave. Because they’re
HTML, you can style WinJS controls with CSS. Figure 2 is an
example of a basic WinJS control, the WinJS DatePicker, which is a
control comprising multiple DropDown controls representing the
day, month and year, showing the default output from this code:

Of course, the DatePicker control in Figure 2 has no styling
outside of the default WinJS styles, but you can change that by
overriding the .win-datepicker-date, .win-datepicker-month

Mastering Controls and Settings in Windows
Store Apps Built with JavaScript

MODERN APPS RACHEL APPEL

Figure 1 The AppBar at the Bottom of the App

www.bit.ly/16IDtdi
www.bit.ly/w1jLM5

79July 2013msdnmagazine.com

and .win-datepicker-year WinJS CSS selectors as well. Use
.win-datepicker to style the entire control.

Th e reason the DatePicker (or any WinJS control) works the way it
does is due to the HTML5 data-* attributes, namely data-win-control.
Th e data-win-control attribute signifi es the type of control that
WinJS will render, in place, so when you set the value of the data-
win-control attribute to WinJS.UI.DatePicker, the control renders
the dropdowns in Figure 2. Th e data-win-options attribute allows
you to set additional properties on controls. For example, on the
DatePicker you can set data-win-options for the default display
date and minimum and maximum date ranges. Although it’s named
DatePicker, you can change the control to capture the time
instead—for example, hours, minutes and seconds.

Because WinJS builds and renders the fi nal control output, the
design-time HTML and the HTML at run time look quite different.
Figure 3 demonstrates the HTML that WinJS injects into the host
element at run time. This is viewable from the DOM Explorer
(Debug | Windows | DOM Explorer).

Th e code backing WinJS controls such as the DatePicker lives in
a fi le located at <ProjectRoot>\References\Windows Library for
JavaScript 1.0\js\ui.js, alongside some core WinJS friends. Notice
that this is the same <script> reference as the one required in the
<head> element of Windows Store app pages, that is:

<script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

Modify these files at your own peril, as they’re composed of
core WinJS code.

Any WinJS control, including the DatePicker, is accessible at run
time through a property named winControl. WinJS appends child
properties to the winControl property at run time that are specifi c
to the type of WinJS control. As an example, a ListView contains
its list of items, or you can query a WinJS.UI.Ratings control for
the user-selected rating. You can access the element’s winControl
property like so:

var control = document.getElementById("WinJSElementId").winControl

Buttons,CheckBoxes, RadioButtons, DropDowns, TextBoxes and
the like all work exactly the way they do in any plain old HTML
page; however, the WinJS.UI namespace is full of UI controls for
many complex scenarios, including the ever-important list controls.

List and Grid Controls
Many types of apps need to present data in a grid or in a list, so of course
there’s a control for those scenarios called the ListView, which can ren-
der itself as a grid or a list, complete with grouping and variable item
sizes. Th e ListView is not only highly fl exible, but it works perfectly in
the new Windows experience by doing things such as automatically
scaling to fi t the screen and placing list items in varying-sized rows and
columns depending on resolution and device-display size.

While most other WinJS controls stand alone, ListViews work
in tandem with corresponding HTML as a template. Th is means
you need to set up both template HTML and the control container
itself, as shown in Figure 4. Notice the template’s data-win-control

and the ListView’s data-win-options attributes contain settings that
link the ListView and its template together.

Figure 4 contains two <div> elements, one for the template with
an id of listViewTemplate and the ListView itself, named listView.
Th e listViewTemplate element contains child elements that represent
diff erent fi elds for each item in the list or grid, such as the eventTitle
or eventDate. Looking at the ListView in Figure 4 reveals the item-
DataSource property set to Data.items.dataSource, meaning that
Data is a namespace and items is a WinJS.Binding.List object pop-
ulated with data. Because JavaScript works with loosely typed data,
all you need to do is stuff an array of objects into the List constructor
and it’s then ready to bind to ListView controls, similar to this code:

var items = [
 { eventTitle: "Rachel's Birthday", eventDate: new Date(2014, 1, 13) },
 { eventTitle: "Rachel's BFF's Birthday", eventDate: new Date(2013, 5, 29) }
];
var list = new WinJS.UI.list(events);

Alternatively, you can use the push method to push items onto
the List object rather than passing an array to the List’s constructor.
Th e best way to manage data in a ListView is by exposing relevant
options (add, delete and so on) via an AppBar control.

<span class="win-datepicker" id="eventDate" role="group"
 lang="en-US" dir="ltr" data-win-control="WinJS.UI.DatePicker">
<select tabindex="0" class="win-datepicker-month win-order0"
 aria-label="Select Month">
<option value="January">January</option>
<option value="February">February</option>
<option value="March">March</option>
<option value="April">April</option>
<!-- more <options> that show the other months -->
</select>
<select tabindex="0" class="win-datepicker-date win-order1"
 aria-label="Select Day">
<option value="1"> 1</option>
<option value="2"> 2</option>
<option value="3"> 3</option>
<option value="4"> 4</option>
<!-- more <options> that show day numbers -->
</select>
<select tabindex="0" class="win-datepicker-year win-order2"
 aria-label="Select Year">
<option value="1913"> 1913</option>
<option value="1914"> 1914</option>
<option value="1915"> 1915</option>
<option value="1916"> 1916</option>
<!—more <options> that show years -->
<option value="2112"> 2112</option>
<option value="2113"> 2113</option>
</select>

Figure 3 The DatePicker Renders Three DropDowns Filled
with Options for Date/Month/Year

<div id="maincontent">
 <div id="listViewTemplate" data-win-control="WinJS.Binding.Template" >
 <div data-win-bind="style.background: color" class="win-item">
 <h1 data-win-bind=" innerText: daysToGo"></h1>
 <h2 class="subtitle" data-win-bind="innerText: eventTitle"></h2>

 <h2 class="subtitle-bottom" data-win-bind=" innerText: eventDate"></h2>
 </div>
 </div>
 <div id="listView" data-win-control="WinJS.UI.ListView" class="win-listview"
 data-win-options="{ itemDataSource: Data.items.dataSource,
 itemTemplate: select('#listViewTemplate'),
 selectionMode: 'single'}">
 </div>
</div>

Figure 4 The HTML Required to Create a WinJS ListView

Figure 2 The WinJS DatePicker Control

www.msdnmagazine.com

msdn magazine80 Modern Apps

AppBars and Commands
Content over chrome is an important Microsoft design principle.
AppBars are an integral part of this design principle, as they
stay out of sight, waiting to present their options when you need
them. In code, an AppBar is just a <div> that contains one or
more <button> elements, named “app bar commands,” with their
data-win-control attributes set to
WinJS.UI.AppBarCommand. Th e
distinguishing feature between the
individual AppBar commands lies
in the data-win-options, as you
might have guessed.

Inspecting the data-win-options
in Figure 5 for each AppBar com-
mand reveals the id, label, icon and
section for each command. You can
assign AppBar buttons to the global
section of the AppBar (which dis-
plays on the bottom right of the app’s
screen), or set the section option to
“selection” (to display on the bottom
left). Setting the section option of
AppBar commands to “selection”
makes them contextual, for use when
a user selects an item in the ListView
by swiping or clicking.

In the HTML page’s related JavaScript fi le, attach event listeners
to the AppBar buttons just as you would any other HTML element.
You need no listeners for the AppBar itself to appear, as it shows
and hides itself automatically in response to user commands—
although you also can invoke it programmatically. Th e sample in
Figure 5 shows a complete AppBar with buttons to add, delete
and refresh data.

You can write code to show, hide, enable and disable AppBar
buttons, as the scenario demands.

Flyouts
Because a touchscreen is a fi rst-class citizen, you may have noticed
that when UI elements and dialog boxes show themselves, you can
easily send them away simply by tapping or clicking on any part
of the screen other than the dialog itself. Th is notion of implicitly
closing the dialog is called a “light dismiss,” and it’s the default
behavior of MessageDialogs and PopupMenus in Windows 8, because a
light dismiss is far easier on the user than dealing with close buttons.

Just as with the previous controls, the Flyout uses the data-
win-control attribute to specify that it’s indeed a WinJS.UI.Flyout
control. Children of the Flyout <div> element render inside the
Flyout. For example, you might put an HTML form in a Flyout so
the user can fi ll in a title and date for an upcoming event, as the
code in Figure 6 illustrates, producing what you see in Figure 7.

Notice that the Flyout in Figure 7 is just an HTML form. When
the user taps or clicks on the Add AppBar command, the Flyout
appears, as directed in the addButtonClick function in Figure 6.
Flyouts appear on screen in relation to other controls, so when you
call the winControl.show method, you pass the control anchor
element’s name as well as where to place the control—that is, next
to the anchor control’s top or bottom edge.

Th e user can tap or click anywhere away from the Flyout to make
it go away because it’s a light-dismiss control. You’ll notice a distinct
lack of modal dialog boxes in Windows Store apps, which is part of
the Microsoft design philosophy. Th e folks in design circles frown

Figure 7 A Flyout to Collect Information

<!-- HTML -->
<div id="eventFlyoutPanel" data-win-control="WinJS.UI.Flyout">
 <table width="100%" height="100%">
 <tr><td>Event Title:</td><td><input type="text" id="eventTitle"/></td></tr>
 <tr><td>Event Date:</td><td id="eventDate"
 data-win-control="WinJS.UI.DatePicker"></td></tr>
 <tr><td> </td><td align="right">
 <input type="button" id="confirmButton" value="Submit" /></td></tr>
 </table>
</div>
// JavaScript
addButtonClick: function () {
 document.getElementById("eventFlyoutPanel").winControl.show(
 "addButton", "top");
}

Figure 6 A Light-Dismiss Flyout to
Collect Information with WinJS Controls

<!-- HTML -->
<div id="appbar" class="win-appbar" data-win-control="WinJS.UI.AppBar">
<button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id:'deleteButton', label:'Delete',
 icon:'delete', section:'selection'}" type="button"></button>
<button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id:'addButton', label:'Add',
 icon:'add', section:'global'}" type="button"></button>
<button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id:'refreshButton', label:'Refresh',
 icon:'refresh', section:'global'}" type="button"></button>
</div>
// JavaScript
document.getElementById("addButton").addEventListener(
 "click", this.addButtonClick);
document.getElementById("deleteButton").addEventListener(
 "click", this.deleteButtonClick);
document.getElementById("refreshButton").addEventListener(
 "click", this.refreshButtonClick);

Figure 5 Building an AppBar

81July 2013msdnmagazine.com

upon modal dialog boxes for good reason—anything that annoys a
user or blocks him from free movement is considered poor design.

Another type of Flyout is the SettingsFlyout, which is a big shift
from the way apps in earlier versions of Windows manage user
preferences.

App Settings
Windows users are no strangers to the customary Tools | Options
or Help | About menu options that launch dialogs with a labyrinth
of settings. Fortunately, what has replaced these dialogs in the
land of Windows Store apps is more intuitive for the user. Both
settings and about pages operate as tall, vertical Flyout controls,
invoked when the user selects the Settings icon from the Windows
charms (bit.ly/146cniM).

Settings work consistently across Windows Store apps. When
the user invokes the Settings charm, the same SettingsFlyout
appears on the right no matter which app is running. Links to
your privacy policy, user preferences, help and so on belong in the
SettingsFlyout. Creating links to your privacy or options pages
takes only a few lines of code in the app.onactivated event normally
found in /js/default.js:

// In default.js, app.onactivated
WinJS.Application.onsettings = function (e) {
 e.detail.applicationcommands =
 { "privacypolicy": { title: "Privacy Policy", href: "privacy.html" } };
 WinJS.UI.SettingsFlyout.populateSettings(e);
};

Once the user taps or clicks on one of the Settings links, its
corresponding Flyout appears. Figure 8 contains the HTML for
a SettingsFlyout containing privacy policy information (a clear
and concise privacy policy is a requirement for publishing in the
Windows Store).

Don’t forget to name the privacy policy settings fi le the same as
the href argument used to register the Flyout (see Figure 8).

Privacy policies aren’t the only things you can put in Settings.
SettingsFlyouts can contain any valid HTML and oft en are host to
ToggleSwitches, CheckBoxes, and DropDowns, and function just
as the Tools | Options dialogs do now. However, as mentioned,
SettingsFlyouts are light-dismiss controls, so a simple tap elsewhere
makes them vanish, quite the opposite of modal dialogs. Another
simple yet new paradigm in Windows Store app development is
the SemanticZoom control, a handy navigation helper.

Semantic Zoom
Some apps are data-intensive. Navigating those apps can be quite
diffi cult, especially when they handle a lot of data. Th is is where
semantic zoom comes to the rescue. Semantic zoom lets you
express two modes of data visualization: zoomed in and zoomed
out. Th e zoomed-in mode, the default, shows all the data possi-
ble, and the user must pan or scroll through it. Th e zoomed-out
mode usually forms an aggregate representation of data, making
it easy for the user to navigate to an area of data and then zoom in
to a specifi c data item.

A SemanticZoom is a set of three controls: the host control and
the two zoomed controls, as shown in Figure 9. Th e child controls
must implement IZoomable to participate in semantic zoom, so for
WinJS apps, the ListView is the only one that will work.

As you can see, semantic zoom is just flipping between two
ListViews, making it a great alternative mode of transportation for
users—and easy to implement for developers.

More Controls
There are more controls—such as the Progress bar, FlipView,
pop-up menus, MessageDialog and Ratings—that are all part of the
new Windows experience, but I don’t have room here to discuss
them all. Open standards such as HTML5 and ECMAScript 5 (ES5)
are the base for all things WinJS, so everything from Web staples to
anchors and inputs to HTML5 audio and video all work nicely as
part of the Windows Store app development platform.

RACHEL APPEL is a consultant, author, mentor and former Microsoft employee with
more than 20 years of experience in the IT industry. She speaks at top industry
conferences such as Visual Studio Live!, DevConnections, MIX and more. Her
expertise lies within developing solutions that align business and technology
focusing on the Microsoft dev stack and open Web. For more about Appel, visit
her Web site at rachelappel.com.

 THANKS to the following technical expert for reviewing this article:
Keith Boyd (Microsoft)

<div id="settingsFlyout" data-win-control="WinJS.UI.SettingsFlyout"
 data-win-options="{settingsCommandId:'privacypolicy', width:'narrow'}">
 <div class="win-header" style="background-color:#312e2e">
 <button type="button" onclick="WinJS.UI.SettingsFlyout.show()"
 class="win-backbutton"></button>
 <div class="win-label">Privacy Policy</div>
 </div>
 <div class="win-content">
 <div class="win-settings-section">
 <p>This application does not collect any personal information.</p>
 <p>Internet access is only used to retrieve data from the web,
 or to allow you to contact the developer:</p>
 <p>
 Email Rachel Appel

 <a href="http://rachelappel.com/privacy-policy"
 target="_blank">View privacy statement online
 </p>
 </div>
 </div>
</div>

Figure 8 The HTML for a Settings Flyout Containing Privacy
Policy Information

<div id="semanticZoomDiv" data-win-control="WinJS.UI.SemanticZoom">
 <!-- The zoomed-in view. -->
 <div id="zoomedInListView"
 data-win-control="WinJS.UI.ListView"
 data-win-options="{ itemDataSource:
 myData.groupedItemsList.dataSource,
 itemTemplate: select('#mediumListIconTextTemplate'),
 groupHeaderTemplate: select('#headerTemplate'), groupDataSource:
 myData.groupedItemsList.groups.dataSource, selectionMode: 'none',
 tapBehavior: 'none', swipeBehavior: 'none' }">
 </div>
 <!-- The zoomed-out view. -->
 <div id="zoomedOutListView"
 data-win-control="WinJS.UI.ListView"
 data-win-options="{ itemDataSource:
 myData.groupedItemsList.groups.dataSource, itemTemplate:
 select('#semanticZoomTemplate'), selectionMode: 'none',
 tapBehavior: 'invoke', swipeBehavior: 'none' }">
 </div>
</div>

Figure 9 Code for the SemanticZoom Control

www.msdnmagazine.com
www.bit.ly/146cniM
www.rachelappel.com

msdn magazine82

About 50 years ago, a physicist and engineer named Robert Moog
created an electronic music synthesizer with a rather unusual fea-
ture: an organ-type keyboard. Some composers of electronic music
disparaged such a prosaic and old-fashioned control device, while
other composers—and particularly performers—welcomed this
development. By the end of the 1960s, Wendy Carlos’ Switched-On
Bach had become one of the best-selling classical albums of all time,
and the Moog synthesizer had entered the mainstream.

Th e early Moog synthesizers were modular and programmed with
patch cables. In 1970, however, the Minimoog was released—small,
easy to use and play, and priced at just $1,495. (A good history of
these early synthesizers is the book, “Analog Days: Th e Invention
and Impact of the Moog Synthesizer” [Harvard University Press,
2004], by Trevor Pinch and Frank Trocco.)

We classify the Moog and similar synthesizers as “analog” devices
because they create sounds using varying voltages generated from
circuitry built from transistors, resistors and capacitors. In contrast,
more modern “digital” synthesizers create sound through algorithmic
computations or digitized samples. Older devices are further classi-
fi ed as “subtractive” synthesizers: Rather than building a composite
sound through the combination of sine waves (a technique called
additive synthesis), subtractive synthesizers begin with a waveform
rich in harmonics—such as a sawtooth or square wave—and then
run it through fi lters to eliminate some harmonics and alter the
timbre of the sound.

A crucial concept pioneered by Robert Moog was “voltage
control.” Consider an oscillator, which is the component of a
synthesizer that generates a basic audio waveform of some sort.
In earlier synthesizers, the frequency of this waveform might be
controlled by the value of a resistor somewhere in the circuitry,
and that variable resistor might be controlled by a dial. But in a
voltage-controlled oscillator (VCO), the frequency of the oscilla-
tor is governed by an input voltage. For example, each increase of
one volt to the oscillator might double the oscillator’s frequency.
In this way, the frequency of the VCO can be controlled by a key-
board that generates a voltage that increases by one volt per octave.

In analog synthesizers, the output from one or more VCOs goes
into a voltage-controlled filter (VCF) for altering the harmonic
content of the waveform. Input voltages to the VCF control the
filter’s cutoff frequency, or the sharpness of the filter’s response
(the filter’s quality, or Q). The output from the VCF then goes
into a voltage-controlled amplifier (VCA), the gain of which is
controlled by another voltage.

Envelope Generators
But once you start talking about VCFs and VCAs, things get
complicated, and a little background is necessary.

Back in the 19th century, some scientists (most notably Hermann
von Helmholtz) began making significant inroads into the
exploration of both the physics and perception of sound.
Characteristics of sound such as frequency and loudness turned
out to be relatively simple compared with the knotty problem
of timbre—that quality of sound that allows us to distinguish a
piano from a violin or trombone. It was hypothesized (and
somewhat demonstrated) that timbre was related to the sound’s
harmonic content, which is the various degrees of intensity of the
sine curves that constitute the sound.

But when 20th century researchers began investigating further,
they discovered it wasn’t this simple. Harmonic content changes
over the course of a musical tone, and this contributes to the
instrument’s timbre. In particular, the very beginning of a note from
a musical instrument is crucial to auditory perception. When a
piano hammer or violin bow fi rst touches a string, or vibrating air
is propelled into a metal or wooden tube, very complex harmonic
activity occurs. Th is complexity decreases very quickly, but without
it, musical tones sound dull and far less interesting and distinctive.

To mimic the complexity of real musical tones, a synthesizer can’t
simply turn a note on and off like a switch. (To hear what such a
simple synthesizer sounds like, check out the ChromaticButton-
Keyboard program in the February 2013 installment of this column
at msdn.microsoft.com/magazine/jj891059.) At the onset of each note, the
sound must have a brief “blip” of high volume and varying timbre
before stabilizing. When the note ends, the sound must not sim-
ply stop, but die out with a decrease in volume and complexity.

For loudness, there’s a general pattern to this process: For a note
played on a string, brass or woodwind instrument, the sound
rises to a maximum loudness quickly, then dies off a bit and holds

Simulating an Analog Synthesizer

DIRECTX FACTOR CHARLES PETZOLD

Code download available at archive.msdn.microsoft.com/mag201307DXF.

Figure 1 An Attack-Decay-Sustain-Release Envelope

Sustain Level

Attack
Time

Decay
Time

Release
Time

•••

http://archive.msdn.microsoft.com/mag201307DXF
http://msdn.microsoft.com/magazine/jj891059

83July 2013msdnmagazine.com

steady. When the note ends, it rapidly decreases in volume. Th ese
two phases are known as the “attack” and “release.”

For more percussive instruments—including the piano—the
note reaches maximum volume quickly during the attack but then
dies off slowly if the instrument remains undamped, for example,
while holding the piano key down. Once the key is released, the
note quickly dies off .

To achieve these eff ects, synthesizers implement something called
an “envelope generator.” Figure 1 shows a fairly standard exam-
ple called an attack-decay-sustain-release (ADSR) envelope. Th e
horizontal axis is time, and the vertical axis is loudness.

When a key on a keyboard is pressed and the note begins to
sound, you hear the attack and decay sections that give a burst
of sound at the outset, and then the note stabilizes at the sustain
level. When the key is released and the note ends, the release section
occurs. For a piano-type sound, the decay time could be a couple
seconds, and the sustain level is set at zero so the sound continues
to decay as long as the key is held down.

Even the simplest analog synthesizers have two ADSR envelopes:
One controls the volume and the other controls the fi lter. Th is is
usually a low-pass fi lter. As a note is struck, the cutoff frequency is
rapidly increased to allow more high-frequency harmonics through,
and then the cutoff frequency decreases somewhat. Emphasized a
lot, this creates the distinctive analog synthesizer chirping sound.

The AnalogSynth Project
Some nine months ago, as I was contemplating using XAudio2 to
program a digital simulation of a small 1970s-era analog synthesizer,
I realized that the envelope generators would be one of the more chal-
lenging aspects of the job. It wasn’t even clear to me whether these
envelope generators would be external to the audio-processing stream
(and therefore access the SetVolume and SetFilterParameters methods
of an XAudio2 voice), or somehow be built in to the audio stream.

I eventually settled on implementing the envelopes as XAudio2
audio eff ects—more formally known as Audio Processing Objects
(APOs). Th is means the envelope logic works directly on the audio
stream. I became more confident with this approach after cod-
ing filter logic that duplicates the digital biquad filters built into
XAudio2. By using my own fi lter code, I thought I might be able to

change the fi lter algorithm in the future without major
disruptions to the program structure.

Figure 2 shows the screen of the resultant Analog-
Synth program, whose source code you can download
at archive.msdn.microsoft.com/mag201307DXF. Although I was
infl uenced by the layout of the controls on the Minimoog, I
kept the actual UI rather simple, using, for example, sliders
rather than dials. Most of my focus was on the internals.

The keyboard is a series of custom Key controls
processing Pointer events and grouped into Octave
controls. Th e keyboard is actually six octaves in width
and can be scrolled horizontally using the thick gray
stripe below the keys. A red dot identifi es middle C.

Th e program can play 10 simultaneous notes, but that’s
changeable with a simple #defi ne in MainPage.xaml.cs.
(Early analog synthesizers like the Minimoog were

monophonic.) Each of these 10 voices is an instance of a class I
called SynthVoice. SynthVoice has methods to set all the various
parameters of the voice (including frequency, volume and enve-
lopes), as well as methods named Trigger and Release to indicate
when a key has been pressed or released.

Th e Minimoog achieved its characteristic “punchy” sound in
part by having two oscillators running in parallel and oft en slightly
mistuned, either deliberately or as a result of the frequency drift
common in analog circuitry.

For that reason, each SynthVoice creates two instances of an
Oscillator class, which are controlled from the upper-left of the
control panel shown in Figure 2. Th e control panel lets you set the
waveform and relative volume for these two oscillators, and you
can transpose the frequency by one or two octaves up or down. In
addition, you can off set the frequency of the second oscillator by
up to half an octave.

Each Oscillator instance creates an IXAudio2SourceVoice object,
and exposes methods named SetFrequency, SetAmplitude and
SetWaveform. SynthVoice routes the two IXAudio2SourceVoice
outputs to an IXAudio2SubmixVoice, and then instantiates two
custom audio eff ects called FilterEnvelopeEff ect and Amplitude-
EnvelopeEff ect that it applies to this submix voice. Th ese two eff ects
share a class called EnvelopeGenerator that I’ll describe shortly.

Figure 3 shows the organization of components in each SynthVoice.
For the 10 SynthVoice objects, there are a total of 20 IXAudio2Source-
Voice instances going into 10 IXAudio2SubmixVoice instances, which
are then routed to a single IXAudio2MasteringVoice. I use a sampling
rate of 48,000 Hz and 32-bit fl oating-point samples throughout.

Figure 3 The Structure of the SynthVoice Class

IXAudio2SourceVoice
(Oscillator Class)

IXAudio2SourceVoice
(Oscillator Class)

IXAudio2SubmixVoice

FilterEnvelopeEffect AmplitudeEnvelopeEffect

Figure 2 The AnalogSynth Screen

www.msdnmagazine.com
http://archive.msdn.microsoft.com/mag201307DXF

msdn magazine84 DirectX Factor

Th e user controls the fi lter from the center section of the control
panel. A ToggleButton allows the fi lter to be bypassed; otherwise, the
Cutoff frequency is relative to the note that’s being played. (In other
words, the cutoff frequency of the fi lter tracks the keyboard.) Th e Emph-
asis slider controls the fi lter’s Q setting. Th e Envelope slider controls
the degree to which the envelope aff ects the fi lter cutoff frequency.

The four sliders associated with the filter envelope and the
loudness envelope work similarly. Th e Attack, Decay and Release

sliders are all durations from 10 milliseconds to 10 seconds in a log-
arithmic scale. Th e sliders have tool-tip value converters to display
the duration associated with the settings.

AnalogSynth makes no volume adjustments for the 20 potential
simultaneous IXAudio2SourceVoice instances, or to counteract
the tendency of digital biquad filters to amplify audio near the
cutoff frequency. Consequently, AnalogSynth makes it easy to
overload the audio. To help the user avoid this, the program uses the
XAudio2 CreateVolumeMeter function to create an audio eff ect that
monitors the outgoing sound. If the green dot in the upper-right
corner changes to red, output audio is being clipped and you should
use the slider at the far right to decrease the volume.

Early synthesizers used patch cords to connect components. As
a result of this legacy, a particular synthesizer setup is still known as
a “patch.” If you fi nd a patch that makes a sound you want to keep,
press the Save button and assign a name. Press the Load button to
get a list of previously saved patches and select one. Th ese patches
(as well as the current setup) are stored in the local settings area.

The Envelope Generator Algorithm
Code that implements an envelope generator is basically a state
machine, with fi ve sequential states that I called Dormant, Attack,
Decay, Sustain and Release. From a UI perspective, it seems most
natural to specify attack, decay, and sustain in terms of time dura-
tions, but when actually performing the calculations you need

class EnvelopeGenerator
{
private:
 enum class State
 {
 Dormant, Attack, Decay, Sustain, Release
 };

 EnvelopeGeneratorParameters params;
 float level;
 State state;
 bool isReleased;
 float releaseRate;

public:
 EnvelopeGenerator();
 void SetParameters(const EnvelopeGeneratorParameters params);
 void Attack();
 void Release();
 bool GetNextValue(float interval, float& value);
};

Figure 4 The EnvelopeGenerator Header File

Figure 5 The Implementation of EnvelopeGenerator

EnvelopeGenerator::EnvelopeGenerator() : state(State::Dormant)
{
 params.baseLevel = 0;
}

void EnvelopeGenerator::SetParameters(const EnvelopeGeneratorParameters params)
{
 this->params = params;
}

void EnvelopeGenerator::Attack()
{
 state = State::Attack;
 level = params.baseLevel;
 isReleased = false;
}

void EnvelopeGenerator::Release()
{
 isReleased = true;
}

bool EnvelopeGenerator::GetNextValue(float interval, float& value)
{
 bool completed = false;

 // If note is released, go directly to Release state,
 // except if still attacking
 if (isReleased &&
 (state == State::Decay || state == State::Sustain))
 {
 state = State::Release;
 releaseRate = (params.baseLevel - level) / params.releaseTime;
 }

 switch (state)
 {
 case State::Dormant:
 level = params.baseLevel;
 completed = true;
 break;

 case State::Attack:
 level += interval * params.attackRate;

 if ((params.attackRate > 0 && level >= params.peakLevel) ||
 (params.attackRate < 0 && level <= params.peakLevel))
 {
 level = params.peakLevel;
 state = State::Decay;
 }
 break;

 case State::Decay:
 level += interval * params.decayRate;

 if ((params.decayRate > 0 && level >= params.sustainLevel) ||
 (params.decayRate < 0 && level <= params.sustainLevel))
 {
 level = params.sustainLevel;
 state = State::Sustain;
 }
 break;

 case State::Sustain:
 break;

 case State::Release:
 level += interval * releaseRate;

 if ((releaseRate > 0 && level >= params.baseLevel) ||
 (releaseRate < 0 && level <= params.baseLevel))
 {
 level = params.baseLevel;
 state = State::Dormant;
 completed = true;
 }
 }

 value = level;
 return completed;
}

Untitled-1 1 3/18/13 10:15 AM

www.nevron.com

msdn magazine86 DirectX Factor

to convert that to a rate—an increase or decrease of loudness (or
filter cutoff frequency) per unit time. The two audio effects in
AnalogSynth use these changing levels to implement the eff ect.

Th is state machine is not always as sequential as the diagram in
Figure 1 would seem to imply. For example, what happens when
a key is pressed and released so quickly that the envelope has not
yet reached the sustain section when the key is released? At fi rst
I thought the envelope should be allowed to complete its attack
and decay sections and then go right into the release section,
but this did not work well for a piano-type envelope. In a piano
envelope, the sustain level is zero and the decay time is relatively
long. A key quickly pressed and released still had a long decay—as
if it were not released at all!

I decided that for a quick press and release, I would let the
attack section complete, but then immediately jump to the release
section. Th is meant that the fi nal rate of decrease would need to
be calculated based on the current level. Th is explains why there’s
a diff erence in how the release is handled in the structure for the
envelope parameters, shown here:

struct EnvelopeGeneratorParameters
{
 float baseLevel;
 float attackRate; // in level/msec
 float peakLevel;
 float decayRate; // in level/msec
 float sustainLevel;
 float releaseTime; // in msec
};

For the amplitude envelope, baseLevel is set to 0, peakLevel is set
to 1 and sustainLevel is somewhere between those values. For the

fi lter envelope, the three levels refer to a multiplier applied to the
fi lter cutoff frequency: baseLevel is 1, and peakLevel is governed
by the slider labeled “Envelope” and can range from 1 to 16. Th at
frequency multiplier of 16 corresponds to four octaves.

Both AmplitudeEnvelopeEff ect and FilterEnvelopeEff ect share
the EnvelopeGenerator class. Figure 4 shows the EnvelopeGen-
erator header fi le. Notice the public method to set the envelope
parameters, and two public methods named Attack and Release that
trigger the envelope to begin and fi nish up. Th ese three methods
should be called in that order. Th e code is not written to deal with
an envelope whose parameters change midway through its progress.

The current calculated value from the envelope generator is
obtained through repeated calls to GetNextValue. Th e interval argu-
ment is in milliseconds, and the method computes a new value
based on that interval, possibly switching states in the process.
When the envelope has completed with the Released section, Get-
NextValue returns true to indicate that the envelope has completed,
but I don’t actually use that return value elsewhere in the program.

Figure 5 shows the implementation of the EnvelopeGenerator
class. Near the top of the GetNextValue method is the code to skip
directly to the Release state when a key is released, and the calcula-
tion of a release rate based on the current level and the release time.

A Pair of Audio Effects
Both the AmplitudeEnvelopeEff ect and FilterEnvelopeEff ect classes
derive from CXAPOParametersBase so they can accept parameters,
and both classes also maintain an instance of the EnvelopeGenerator
class for performing the envelope calculations. The parameter

Figure 6 The Process Override in AmplitudeEnvelopeEffect

void AmplitudeEnvelopeEffect::Process(UINT32 inpParamCount,
 const XAPO_PROCESS_BUFFER_PARAMETERS *pInpParam,
 UINT32 outParamCount,
 XAPO_PROCESS_BUFFER_PARAMETERS *pOutParam,
 BOOL isEnabled)
{
 // Get effect parameters
 AmplitudeEnvelopeParameters * pParams =
 reinterpret_cast<AmplitudeEnvelopeParameters *>
 (CXAPOParametersBase::BeginProcess());

 // Get buffer pointers and other information
 const float * pSrc = static_cast<float const*>(pInpParam[0].pBuffer);
 float * pDst = static_cast<float *>(pOutParam[0].pBuffer);
 int frameCount = pInpParam[0].ValidFrameCount;
 int numChannels = waveFormat.nChannels;

 switch(pInpParam[0].BufferFlags)
 {
 case XAPO_BUFFER_VALID:
 if (!isEnabled)
 {
 for (int frame = 0; frame < frameCount; frame++)
 {
 for (int channel = 0; channel < numChannels; channel++)
 {
 int index = numChannels * frame + channel;
 pDst[index] = pSrc[index];
 }
 }
 }
 else
 {
 // Key being pressed
 if (!this->keyPressed && pParams->keyPressed)
 {
 this->keyPressed = true;

 this->envelopeGenerator.SetParameters(pParams->envelopeParams);
 this->envelopeGenerator.Attack();
 }
 // Key being released
 else if (this->keyPressed && !pParams->keyPressed)
 {
 this->keyPressed = false;
 this->envelopeGenerator.Release();
 }

 // Calculate interval in msec
 float interval = 1000.0f / waveFormat.nSamplesPerSec;

 for (int frame = 0; frame < frameCount; frame++)
 {
 float volume;
 envelopeGenerator.GetNextValue(interval, volume);

 for (int channel = 0; channel < numChannels; channel++)
 {
 int index = numChannels * frame + channel;
 pDst[index] = volume * pSrc[index];
 }
 }
 }
 break;

 case XAPO_BUFFER_SILENT:
 break;
 }

 // Set output parameters
 pOutParam[0].ValidFrameCount = pInpParam[0].ValidFrameCount;
 pOutParam[0].BufferFlags = pInpParam[0].BufferFlags;

 CXAPOParametersBase::EndProcess();
}

87July 2013msdnmagazine.com

structures for these two audio eff ects are named AmplitudeEnvel-
opeParameters and FilterEnvelopeParameters.

Th e AmplitudeEnvelopeParameters structure is merely an Envel-
opeGeneratorParameters structure and a Boolean keyPressed fi eld
that’s true when the key associated with this voice is pressed and
false when it’s released. (Th e Filter EnvelopeParameters structure is
just a bit more complex because it needs to incorporate a base-level
fi lter cutoff frequency and Q setting.) Both eff ects classes maintain
their own keyPressed data members that can be compared with the
parameters value to determine when the enve-
lope attack or release state should be triggered.

You can see how this works in Figure 6,
which shows the code for the Process over-
ride in AmplitudeEnvelopeEff ect. If the eff ect
is enabled and the local keyPressed value is
false but the keyPressed value in the eff ect
parameters is true, then the eff ect makes calls
to the SetParameters and Attack methods of
the EnvelopeGenerator instance. If the oppo-
site is the case—the local keyPressed value is
true but the one in the parameters is false—
then the eff ect calls the Release method.

The effect could call the GetNextValue
method of EnvelopeGenerator either for
every Process call (in which case the interval
argument would indicate 10 milliseconds) or
for every sample (in which case the interval is
more like 21 microseconds). Although the fi rst
approach should be adequate, I decided on the
second for theoretically smoother transitions.

Th e fl oating-point volume value returned
from the GetNextValue call ranges from 0
(when a note is fi rst beginning or ending) to
1 for the culmination of the attack. Th e eff ect
simply multiplies the fl oating-point samples
by this number.

Now the Fun Begins
I’ve spent so much time coding the Analog-
Synth program that I haven’t had much time
to play around with it. It could very well be that
some of the controls and parameters need some
fi ne-tuning, or perhaps rather coarser tuning!
In particular, long decay and release times on
the volume don’t sound quite right, and they
suggest that the envelope changes to ampli-
tudes should be logarithmic rather than linear.

I’m also intrigued by the use of touch input
with the on-screen keyboard. Th e keys on a
real piano are sensitive to the velocity with
which they are struck, and synthesizer key-
boards have attempted to emulate that same
feel. Most touchscreens, however, can’t detect
touch velocity or pressure. But they can be
made sensitive to slight fi nger movements

on the screen, which is beyond the capability of a real keyboard.
Can on-screen keyboards be made more responsive in this way?
Th ere’s only one way to fi nd out!

CHARLES PETZOLD is a longtime contributor to MSDN Magazine and the author
of “Programming Windows, 6th edition” (O’Reilly Media, 2012), a book about
writing applications for Windows 8. His Web site is charlespetzold.com.

THANKS to the following technical expert for reviewing this article:
James McNellis (Microsoft)

http://www.softfluent.com/forms/msdn-q3-special-offer
www.msdnmagazine.com
www.charlespetzold.com

msdn magazine88

Regular readers of this column know how I love analogies. Here’s
another good one: You can understand user needs and user accep-
tance of your UI strategies by applying a concept from chemical
engineering—activation energy versus released energy.

Both coal and paper will burn, releasing energy, as shown in
Figure 1. But you need to supply some energy to start the process.
My hot air probably will not ignite the paper magazine in your
hand; for that, you need a match. Th e activation energy for coal
is higher. You need to get it hotter, perhaps by starting a small fi re
with paper and then adding some kindling. On the other hand, the
energy released by burning coal is greater than that released by
burning paper, which is why we burn coal in power plants.

Your users’ operations are also governed by the calculus of
activation energy versus released energy. Consider airlines. The
ones that are making money (or at least losing it more slowly than
the others) are the ones that sell the greatest proportion of their
tickets online. Th e easiest way to do this is a simple browser inter-
face. Just type delta.com into your address bar, and there it is, asking
where you want to go and when. Th at activation energy is about as
low as it gets. Th e released energy isn’t bad, although you’re subject
to a browser interface’s foibles, such as not using the back button
where you’re not supposed to.

Now suppose you had to download and install some sort of
add-in before Delta would talk to you. Who would bother? You’d
go to Orbitz, or you’d pick a diff erent airline that valued its users’
time. Th e success of this casual e-commerce scenario is very much

limited by the height of the activation energy hump. You need a
paper fi re, because you have to light many new ones every day.

Now suppose you were a travel agent, writing airline tickets for
a living: 10 minutes each, six per hour, 48 per day. Suppose that a
rich client application could lower this to eight minutes per ticket,
improving your productivity from 48 tickets per day to 60. Th e
app would have a higher activation energy: time to download
and install, and you might also need some training. But you’d be
willing to pay that higher activation energy price (or perhaps
tunnel through it—see last month’s column on Heisenberg at
msdn.microsoft.com/magazine/dn201756) because you harvest that released-
energy advantage with each ticket you write. Once you’ve gotten
the coal fi re burning, it’s easy to keep going.

A mobile app occupies an interesting middle ground. Th e brutal
size constraints of smartphones oft en render a browser interface
unusable, even one that’s tailored for mobile. Users are comfortable
with the idea of downloading and installing apps. Furthermore, a
user’s needs on the mobile platform oft en require more intimate
control of the hardware than a browser allows. For example, the
Amazon mobile-oriented Web site strives mightily to off er good
service. But one of the main things mobile Amazon users do is
comparison shop in physical stores before ordering online—a
process called “showrooming” that’s now killing stores such as Best
Buy. Th e Amazon mobile app lets you fi nd a price by scanning an
item’s UPC code or even just snapping a picture of the item.

MS-DOS had a high activation energy. You had to learn the
basic DOS commands, and then the diff erent commands for each
program you ran. Windows was better because you didn’t have to
memorize as much to get started. Menus showed you what pro-
grams could do, and each program worked sort of like the other
ones. So the activation energy was lower.

Now comes Windows 8. It’s harder to learn because less of it is
visible. The activation energy is higher than that of an iPad, for
example. But the released energy is higher in Windows 8, with
standardization of common application features such as search-
ing and sharing. Microsoft desperately hopes that the promise
of greater released energy will cause users to swallow the greater
activation energy. Th e question is, will they?

DAVID S. PLATT teaches programming .NET at Harvard University Extension School
and at companies all over the world. He’s the author of 11 programming books,
including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006) and “Intro-
ducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Soft ware
Legend in 2002. He wonders whether he should tape down two of his daughter’s
fi ngers so she learns how to count in octal. You can contact him at rollthunder.com.

Activation Energy

DON’T GET ME STARTED DAVID S. PLATT

Figure 1 Higher Initial Energy Input Can Yield Greater Overall
Energy Release

Activation
Energy

Released
Energy

Final
Energy

Paper

Coal

Initial
Energy

www.delta.com
http://msdn.microsoft.com/magazine/dn201756
www.rollthunder.com

Untitled-3 1 6/4/13 1:45 PM

http://marketdash.componentone.com/redirect.ashx?rdtl=2180

Untitled-2 1 5/29/13 12:16 PM

www.syncfusion.com/typescriptebook

	Back
	Print
	MSDN Magazine, July 2013
	Cover Tip
	Contents
	CUTTING EDGE: Creating Mobile-Optimized Views in ASP.NET MVC 4
	DATA POINTS: Behavior-Driven Design with SpecFlow
	WINDOWS AZURE INSIDER: Meter and Autoscale Multi-Tenant Applications in Windows Azure
	How Microsoft’s Next-Gen Compiler Project Can Improve Your Code
	Leveraging Windows 8 Features with MVVM
	Create a Windows Phone 8 Company Hub App
	Building Apps for Windows 8 and Windows Phone 8
	Build Modern Business Productivity Apps with Visual Studio LightSwitch
	MODERN APPS: Mastering Controls and Settings in Windows Store Apps Built with JavaScript
	DIRECTX FACTOR: Simulating an Analog Synthesizer
	DON’T GET ME STARTED: Activation Energy

