 DevExpress

Imagine.
Create.
Deploy.
Inspired? So Are We.

Inspiration is all around us. From beautiful screens on the web to well-designed reports. New devices push the development
envelope and ask that we consider new technologies. The latest release, DevExpress 12.2, delivers the tools you need to build
the multi-channel solutions you can imagine: Windows 8-inspired applications with live tiles perfect for Microsoft Surface,
multi-screen iOS and Android apps. It's all possible. Let's see what develops.

») P

The next generation of inspiring tools. Today.

pra—

u dxp dxt |asp ‘win wpf ‘sl & E& cr vl

Download your 30-day trial
at www.DevExpress.com

http://www.DevExpress.com

FEBRUARY 2013 VOL 28 NO 2

THE MICROSOFT JOURNAL FOR DEVELOPERS
magazine

msan

Exploring the New JavaScript API for Office
Stephen Oliver and Eric Schmidt.. 20

Async Causality Chain Tracking
Andrew Stasyuk.................ccooiiiiiiiiin i 32

Building a Simple Comet Application

in the Microsoft .NET Framework
DErFiCK LaU ..o e 42

Detecting Abnormal Data Using

k-Means Clustering
James McCaffreyooeeiiiiiiiieeiiiiiiiiee e 54

Taming the Event Stream:

Fast Approximate Counting
Michael Meijeroooouiiiiiiiiee e 64

COLUMNS

CUTTING EDGE

Essential Facebook
Programming:

The JavaScript SDK
Dino Esposito, page 6

WINDOWS WITH C++

Creating Desktop Apps
with Visual C++ 2012

Kenny Kerr, page 12

TEST RUN

Naive Bayes Classification
with C#
James McCaffrey, page 70

THE WORKING
PROGRAMMER

.NET Collections, Part 2:
Working with C5
Ted Neward, page 76

MODERN APPS

Create Windows Store Apps
with HTML5 and JavaScript
Rachel Appel, page 80

DIRECTX FACTOR

Constructing Audio Oscillators
for Windows 8
Charles Petzold, page 84

DON'T GET ME STARTED

What's Up, Doc?
David Platt, page 88

5 Microsoft

Compatible witl
Microsoft® Visua

Inl Personal Finance

Expenses o o N R

a06s

MM ommos ¢ 4+ EF O Budget 1/1/2012 v | |8/21/2012

DRILLIANI UA

At Your Fingertips

www.infragistics.com/experience

h
L]

Download your free trial

infragistics.com/EXPERIENCE

1" INFRAGISTICS

DESIGN / DEVELOP / EXPERIENCE

Infragistics Sales US 800 2318588 « Europe +44 (0) 800 298 9055 « India +9180 41518042 « APAC +613 9982 4545

Copyright 1996-2013 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc
Theldnfragistieslogerisartiademarkofinfragistics inc. All other trademarks or registered trademarks are the respective property of their owners.

www.infragistics.com/experience

tSearch

Instantly Search
Terabytes of Text

« 25+ fielded and full-text search types

« dtSearch's own document filters
support “Office,” PDF, HTML, XML,
ZIP, emails (with nested attachments),
and many other file types

« Supports databases as well as static
and dynamic websites

« Highlights hits in all of the above
* APIs for .NET, Java, C++, SQL, etc.
» 64-bit and 32-bit; Win and Linux

w4
"lightning fast" Redmond Magazine

A IWIEEE'NF U S BN T
“covers all data sources” eWeek
"results in less than a second”

InfoWorId

hundreds more reviews and developer
case studies at www.dtsearch.com

il AN T N T A

dtSearch products:

© Desktop with Spider © Web with Spider
@ Network with Spider @ Engine for Win & .NET
@ Publish (portable media) € Engine for Linux

@ Document filters also available for separate licensing

Ask about fully-functional evaluations

The Smart Choice for Text Retrieval® since 1991

www.dtSearch.com 1-800-IT-FINDS

msdn

FEBRUARY 2013 VOLUME 28 NUMBER 2 m a g a Z | n e

BIORN RETTIG Director
MOHAMMAD AL-SABT Editorial Director/mmeditor@microsoft.com
PATRICK O’NEILL Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor

SHARON TERDEMAN Features Editor

WENDY HERNANDEZ Group Managing Editor

KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

SENIOR CONTRIBUTING EDITOR Dr. James McCaffrey
CONTRIBUTING EDITORS Rachel Appel, Dino Esposito, Kenny Kerr,
Julie Lerman, Ted Neward, Charles Petzold, David S. Platt,

Bruno Terkaly, Ricardo Villalobos

"% RedmondMediaGroup

Henry Allain President, Redmond Media Group

Michele Imgrund Sr. Director of Marketing & Audience Engagement
Tracy Cook Director of Online Marketing

Irene Fincher Audience Development Manager

ADVERTISING SALES: 818-674-3416/dlabianca@1105media.com

Dan LaBianca Group Publisher

Chris Kourtoglou Regional Sales Manager

Danna Vedder Regional Sales Manager/Microsoft Account Manager

Jenny Hernandez-Asandas Director, Print Production

Serena Barnes Production Coordinator/msdnadproduction@1105media.com

%1105 MEDIAZ

Neal Vitale President & Chief Executive Officer
Richard Vitale Senior Vice President & Chief Financial Officer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offices. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
PO. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, PO. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: PO. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” ¢/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed orimplied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc.,9201 Oakdale Ave.,Ste 101, Chatsworth, CA91311,www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

B Microsoft

@BPA

Printed in the USA

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:818-674-3416/dlabianca@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

LEADTOOLS VI8 . C++ C# VB JavaScript
THE WORLD LEADER IN IMAGING SDKs ANYWHERE OBJECTIVE C, JAVA, .NET & HTMLS5

: e
it : hnology
< Annotation SDKTEC
rL(ADFOOi.SMedﬂ
, = = sy, oo B2

€ 91 . L

=

o

——] == reROoBERTO AL

RO c-eucsras

The world’'s leading Imaging SDK
NOW RUNS ANYWHERE

FORMS RECOGNITION &

OCR BARCODE PDF & PDF/A St
PREPROCESSING ANNOTATIONS FILE FORMATS SCANNING
DICOM & PACS w oh;i%fgfou IMAGE PROCESSING VIRTUAL PRINTER

MPEG-:TLI;AAI:ISPORT MULTIM%[::T%L:Q'BACK & SNEEIBR COBEES

COMPREHENSIVE IMAGING SDK FOR WIN 32/64 WinRT, MAC, iOS, ANDROID & LINUX

DOWNLOAD OUR 60 DAY EVALUATION

Ok=410
vLEAD _ SALES@LEADTOOLS.COM %
WWW.LEADTOOLS.COM O 800.637.1840 [3

www.leadtools.com

MICHAEL DESMOND

Inside Modern Apps

This month MSDN Magazine welcomes Rachel Appel and her
Modern Apps column. Readers of the magazine and Web site might
be familiar with Appel’s work. She wrote the popular Web Dev
Report column on the MSDN Magazine Web site up until Sep-
tember of last year. And she appeared in our Windows 8 Special
Edition, published in October, with a look at the unique aspects
of the Windows Store application lifecycle.

This month, Modern Apps debuts with a quick rundown of what
you need to get started with Windows Store app development, and
explores the new features and capabilities that enable developers
to create powerful applications for Windows 8 and the Windows
Runtime. Going forward, you can expect Appel to dig deeper into
the Windows Store app dev experience. In the March issue, look
for the column to explore the important topic of data access and
storage for Windows Store apps.

Appels column arrives a few short months after Bruno Terkaly
and Ricardo Villalobos came on board as authors of the new
Windows Azure Insider column. And just last month Charles
Petzold re-branded his column as DirectX Factor, reflecting his
focus on the powerful DirectX development infrastructure in the
Windows Runtime.

The changes reflect the significant progress we've seen from
Microsoft in updating its developer infrastructure. Windows 8
and the Windows Runtime present a compelling target for an
incredibly broad range of software developers, and the new
columns from Appel and Petzold aim to empower those people—
from business devs working with C# to Web programmers working
with JavaScript to native coders working with C++. Similarly, major
updates in developer tooling for Windows Azure have changed the
game in the cloud development space, and Terkaly and Villalobos
are here to help guide you through it.

‘It's New and Shiny’

Asfor Rachel Appel, shes been writing for MSDN Magazine and its
Web site for more than a year now, and was a Microsoft technical
evangelist for years before that. A veteran programmer, Appel has
been in the software development racket since the late 1980s, first

writing back-end enterprise applications in COBOL. She struck
out on her own as an independent consultant, trainer and mentor,
earning MVP recognition from Microsoft, before joining Microsoft
asa technical evangelist. Today, she spends a great deal of her time
giving talks at conferences, working with customers and blogging
about development issues.

When [asked Appel how a former COBOL programmer ends
up helping lead the charge on Windows Store app development,
she couldn't resist a joke—“The short answer? Its new and shiny”—
before providing a more serious response.

“I enjoy learning about new technologies and the latest in soft-
ware development,” Appel says. ‘As a tech evangelist, being out in
the public allows me to see and work with all kinds of awesome
ideas and code”

She goes on to praise some of the built-in features of Windows 8,
including Search and Share contracts, the rich sensor platforms and
the device APIs. “You can access it all through open, standard HTML5
and ES5 [ECMAScript 5] if you want, or you can use C#/Visual
Basic/C++ and XAML, as all languages have parity”

In her community engagements, Appel says she sometimes fields
questions about the Windows Runtime and its relationship to the
Microsoft .NET Framework. Her message: The NET Framework
is not going anywhere.

“Windows Runtime is nota .NET replacement. Rather, many of the
WinRT APIs are wrappers around classic. NET or Win32 libraries,
so those underlying frameworks are still available;” Appel says. “Yes,
you can write WinRT apps in HTML5. And, yes, its real HTML5”

Appel urges readers of her Modern Apps column to also check
out the GenerationApp site (bit.ly/W8GenAppDev), which features
articles and tutorials aimed at developers building Windows 8 and
Windows Phone 8 apps.

Theres a whole lot going on with the emergence of Windows 8
and the Windows Runtime, and our new columns are designed
to address that activity. Is there something you want to see Appel
cover in her Modern Apps
column? E-mail her at
rachel@rachelappel.com. %p

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

© 2013 Microsoft Corporation. All rights reserved.

Complymg with all applicable copynght laws is the responsibility of the user. Without limiting the rights under copyright, you are not itted to rep!
i properly acquired a copy of MSDN Magazine in paper format, you are permmed to phy5|cally transfer thls paper copy in unmodified form. Otherwise, you are not permitted to transmit

If you have pi d or have otherwi
copies of MSDN Magazme (or any part of MSDN Magazine) in any form or by any means without the express written

, store, Or i into a retrieval system MSDN Magazine or any part of MSDN

of M|

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Mi

recommendations and technical guidelines in MSDN Magazine are based on specific envi and

any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other inf

used by 1105 Media, Inc. under license from owner.

4 msdn magazine

Corporati i Corp is solely for the edltonal contents of this magazine. The
These dations or guidelines may not apply to dissimilar configl i ft Corporation does not make
MSDN M: MSDN, and Mi logos are

mailto:mmeditor@microsoft.com
mailto:rachel@rachelappel.com
http://msdn.microsoft.com/magazine
www.bit.ly/W8GenAppDev

Agil ject t
{3 Orime Scrum e

Orilime
Organize w7l o PPt Eakiog™ Dofect Backiog

Emain
Aleris
® Histery
Creatad by: Donsid Rowiett (PM]

Edied by: Donald Rowlatt (P}

e by: Donald Rowlsts (FM)

Ednes by Rowlets PH)

Total: 5% Usor Siories « S42.8 Fours Worked « 4744 Hours Remain:

Introducing OnTime 13.

Ditch your sticky notes. The Card View is now here.

The OnTime Card View is the ideal planning board tool for

per month
Kanban or Scrum teams. It adds a whole new dimension to $834 for up to 10 users
user story management, bug tracking and workflow AR
automation. special small-team pricing

Learn more about Card View and the many other features of

per user
OnTime Scrum that your dev team will love. $584 per month

billed annually

OnTimeNow.com/MSDN for teams of 11+ users

4

o=
: c}?"aXOSOﬂ 800.653.0024 ¢ www.ontimenow.com ® www.axosoft.com ® @axosoft

www.OnTimeNow.com/msdn
www.ontimenow.com
www.axosoft.com
www.axosoft.com

'CuTTING EDGE

DINO ESPOSITO

Fssential Facebook Programming:
The JavaScript SDK

T'll be honest: T don't know exactly what a
social strategy might look like and I have
no more than a faint idea about the tricks
that social experts can play to make your
content more popular. Likewise, I never
paid much attention to search engine
optimization (SEO) in Web sites, but I do
believe that social optimization is today
much more relevant and rewarding than
SEO ever was.

In the past two installments of this
column, I discussed how to authenticate
users of a Web or Windows application
using Facebook and how to post to the

What you see below is the output of the Like

Y Like [E] Be the first of your friends to like this.

Rest of the view goes here.

What you see below is the output of the Like button

K} You like this.

1 really love this page ..|

Rest of the view goes here.

social network on behalf of a consenting
user. (Those two columns can be found at
msdn.microsoft.com/magazine/jj863128 and msdn.microsoft.com/magazine/[j883950.)

As far as Facebook is concerned, theres a lot more you can do
to add a “social layer” to a Web site. A social layer results from the
combination of three main ingredients: identity, community and
interaction. In those previous columns, I addressed identity and
a bit of interaction. Here, I'm going to explore the principal tools
you can leverage to add a true social layer onto your existing Web
site. According to Facebook, these tools are collectively known
as social plug-ins. A social plug-in is a powerful mix of HTML
markup, CSS and JavaScript code. Its your responsibility as a Web
developer to fuse these elements into the UX.

The Ubiquitous Like Button

The primary purpose of social plug-ins is to create a bridge
between the content of the Web site visited by a user and the user’s
Facebook page. By hosting one or more social plug-ins, the Web
site enables users to share specific content with friends. The
most immediate way for a Web site to let users share content via
Facebook is the Like button.

By simply clicking the Like button, a user can let friends know
that she likes something at a given URL. Hosting the Like button
on a page couldn't be simpler; fusing the button to the existing Ul
may require a few extra steps.

Code download available at archive.msdn.microsoft.com/
mag201302CuttingEdge.

6 msdn magazine

Figure 1 The Standard Interface of the Like Button

There are a few different ways to embed a Like button. The simplest
and most direct way is using an iframe element:

<iframe src="http://www.facebook.com/plugins/1ike.php?href=your-site"
scrolling="no" frameborder="0"
style="border:solid 1px #000; width:450px; height:80px"></iframe>

The href query string parameter refers to the URL you want
to like. The URL must be expressed in a fully qualified manner,
something like http://www.contoso.com/cool.

Most of the markup is aimed at styling the iframe. Usually, you
don't want the iframe to scroll or be framed. You also want it to
take up an appropriate area. The preceding markup produces the
output in Figure 1.

Ifthe height of the iframe is too small (less than 25 pixels or so), you
lose the panel containing the button to post an additional comment.
If you're using the Like button within a horizontal menu bar, then
the height is a critical issue. Otherwise, giving users a chance to also
post their own comment augments the penetration of the feature.

There are several parameters you can leverage to customize the look,
feel and functionality of the button. Figure 2 lists the options available.
All will be assigned through an additional query string parameter.

While Figure 1 shows the standard layout, Figure 3 shows the
button_count and box_count layouts.

Another parameter you should look into is the ref parameter. It
helps you track use of the Like button in your Web site. By giving
each Like button (even in different pages of the site) a different ref
value—a plain alphanumeric string—you can easily track referrers
in the server log that can be traced back to that specific Like button.
In particular, for any click back from Facebook to your site, you'll

http://msdn.microsoft.com/magazine/jj863128
http://msdn.microsoft.com/magazine/jj883950
http://msdn.microsoft.com/mag201302CuttingEdge

CoNVERT PRINT CReaTE Mobiry & COMBINE

Aspose.Words Aspose.Pdf

DOC, DOCX, RTF, HTML, PDF, PDF, XML, XLS-FO, HTML, BMP,

XPS & other document formats. JPG, PNG & other image formats.
Aspose.Cells Aspose.Email

XLS, XLSX, XLSM, XLTX, CSV, MSG, EML, PST, EMLX &
SpreadsheetML & image formats. other formats.
Aspose.BarCode Aspose.Slides

JPG, PNG, BMP, GIF, TIF, WMF, PPT, PPTX, POT, POTX, XPS,

ICON & other image formats. HTML, PNG, PDF & other formats.

Scan our QR Code
for an exclusive

Follow us on \(.v')\ ASPOSE

Facebook & Twitter Your File Format Experts

Get your FREE evaluation copy at hitp://www.aspose.com

US Sales: 1.888.277.6734 EU Sales: +44 (0) 141 416 1112 AU Sales: +61 2 8003 5926
sales@aspose.com sales.europe@aspose.com sales.asiapacific@aspose.com

http://www.aspose.com

receive a referrer URL with two extra parameters. The fb_ref
query string parameter is just your original ref string; the fb_source
query string parameter is a string that gives you information about
the context from within Facebook where the click originated.

Localizing the Like Button

Even though the Like button can be considered universal, there still
might be situations in which you want to translate the Like plug-in
to a given language. As shown in Figure 2, all you need to do is
add the locale parameter to the query string and set it to a custom
string that indicates the desired language and culture.

To make things a bit trickier, you can't express culture using the
canonical xx-XX format where xx indicates the language and XX
the culture. In the Microsoft NET Framework, you get this string
from the following expression:

var name = Thread.CurrentThread.CurrentUICulture.Name;

For this string to be usable with Facebook, you need to replace
the dash with an underscore. Also note that the sole language token
isn't suthcient in itself and the whole locale setting will be ignored.
This point leads me to another interesting consideration: Whats the
defaultbehavior of the Like button as far as the language is concerned?

Facebook, as well as Twitter, defaults to the language the user
has chosen as the primary language in her profile. If the user isn't
currently logged in, then the UT is based on the language settings
detected on the browser.

Introducing the JavaScript SDK
In general, you can configure Facebooks plug-ins in a few different
ways: using a plain URL from a custom hyperlink; using an iframe
(as shown in this article); using HTML5 markup; and using the
eXtended Facebook Markup Language (XFBML). HTML5 and
XFBML are equivalent in many ways; HTMLS5 is just a more-
recent syntax supported for completeness. Both HTML5 and
XFBML require the use of the Facebook JavaScript SDK.

Most sophisticated social plug-ins are only available through
HTML5 and XFBML markup. This is the case for the Send button
for sending content directly to friends and the Comments box to

Figure 2 Customizing Look, Feel and Functionality

Parameter Description

action Indicates the text of the button and the subsequent action

to be taken. It can be Like or Recommend. Default is Like.

colorscheme Styles the button differently. It can be light or dark.

Default is light.

font Sets the desired font for the plug-in. Possible options
include Arial, Tahoma, Trebuchet MS and a few others.

layout Changes the layout of the button. Possible values are
standard (as in Figure 1), button_count and box_count (as
in Figure 3).

locale Indicates the language of the Ul. It must be a string in the
format xx_XX. Note the use of the underscore to separate
the two parts of a culture name.

show_faces Boolean flag to indicate whether you want the picture of
the user rendered once a user has liked the content.

width Indicates the width of the plug-in. The minimum width

also depends on the layout used.

8 msdn magazine

see the comments on a given post. Other
plug-ins such as Like, the Like box and the
Activity feed (the small list of notifications
fromall friends you usually have on the top-
right corner of your page) also can be quickly
configured and embedded via an iframe.
Plug-ins notimplemented through iframes
or direct URLSs require the use of the Face-
book JavaScript SDK. As you can imagine,
the SDK is a client front-end for a number
of Facebook endpoints for you to perform

EiLike ©

0

Ei Like

Figure 3 Additional
Layout Formats

tasks such as authentication, postingand (Button Count and
retrievingcomments, likes,and otheractions. Box Count) for the
Inorder to use the JavaScript SDK, even |jke Button

before you download it, you must have an
app ID. I thoroughly discussed this point in previous columns,
but in a nutshell, for any interaction with the Facebook site that
goes beyond basic operations such as Like, you need to register an
app and get a unique ID. The app plays the role of the connector
between your client (for example, a Web site) and the Facebook
back end. The Facebook App Dashboard for registering an app is
available at bit.ly/mly4xs.

The second step consists of adding some code to your
Web pages that downloads the SDK. The URL to invoke is:
/connect.facebook.net/xx_XX/alljs.

Most sophisticated social plug-ins
are only available through
HTML5 and XFBML markup.

The xx_XX in the URL is a placeholder for the desired locale. An
option is linking this URL from within a static script tag. Because the
size of the file is far more than 180KB, it might not be a good idea to
download it synchronously through a static script tag. The file gets
cached soon and most of the successive requests for it will receive an
HTTP 304 “not modified” status code; however, Facebook recommends
you download the file asynchronously. This isa pattern common toaall
script blocks required for social interactions—for example, it works

the same for Twitter plug-ins. Heres the code you need:
<script type="text/javascript">
(function (d, s, id) {
var js, fjs = d.getElementsByTagName(s)[0];
if (d.getElementById(id)) return;
js = d.createElement(s);
js.id = id;
js.async = true;
js.src = "//connect.facebook.net/en_US/all. js#xfbml=18appId=xxx";
fjs.parentNode.insertBefore(js, fjs);
} (document, 'script', 'facebook-jssdk'));
{/script>

The code is defined as a JavaScriptimmediate function and runs as
soon as its found. Note that you place this code preferably right after
the opening body tag and you should fill the appld parameter with
your app ID. (Note that many developers advocate placing scripts
at the bottom of the body section in order to prevent any blocking
of the rendering of the page.)

Cutting Edge

Telerik DevCraft

The all-in-one toolset for professional
developers targeting Microsoft platforms.

WeaDADC] MDD

 Create web, mobile and desktop applications that impress
« Cover any .NET platform and any device
+ Code faster and smarter without cutting corners

www.telerik.com/all-in-one

Stelerik

http://www.telerik.com/all-in-one

At this point, youTe ready to use HTML5 and XFBML tags to
integrate Facebook plug-ins in your pages. Lets start with a look
at the Login button.

The Login Button

The SDK contains a method on the root FB object through which
you can programmatically trigger the login process. The simplest
option consists of adding your own link or button and binding its
click handler to the following code:

FB.Togin(function(response) {
if (response.authResponse) {
// Display some wait message
/...
FB.api('/me', function(response) {
$("fusername™).html('Welcome, ' + response.name + '.');
1)
}
1

This code is far simpler than any other analogous code in the past
two columns. In this way, authenticating users against Facebook is
abreeze (see Figure 4).

The Login plug-in can make the login process even easier. Inaddition
to linking the SDK, all you need is the following HTML5 markup (or
analogous XFBML markup as demonstrated on the Facebook site):

<div class="fb-login-button"
data-show-faces="true"
data-width="200"
data-max-rows="1"></div>

The data-* attributes let you configure the appearance and
behavior of the button. The blue button in the page of Figure
4 gives an idea of the standard look and feel. In particular, the
data-show-faces attribute enables you to display the pictures of
users (and some of their friends) that used your app to connect
to Facebook. The data-max-rows attribute determines the num-
ber of rows (given the width of the plug-in) to be filled with faces.

It should also be noted that if data-show-faces is on and the user
is already logged in, then no login button is shown. The user can't

log out from Facebook through your app. If data-show-faces is
false, then the login button stays visible all the time and it doesn't
react if clicked.

As a Web developer, you should see the profound difference
between using the JavaScript SDK or the Login plug-in and server-
side code and the Facebook C# SDK. If you work the client side,
then you're essentially targeting Facebook, and login is prob-
ably the necessary first step in order to do more specific work.
Facebook is the goal here.

Provided thatit's not
already so, authentication via
social networks will become a
must-have feature for all sites

needing authentication.

C# code is preferable if youre using Facebook as just one way
of authenticating users and still need to handle the authentica-
tion cookie of ASPNET and the standard membership system.
Facebook is the means here.

Coming Up

Provided that its not already so, authentication via social networks
will become a must-have feature for all sites needing authentica-
tion. This means the C# SDK probably remains the most flexible
approach. In this regard, the new social classes in ASPNET MVC
4 are just icing on the cake. In terms of Web site development, I
likewise see no reason for not populating page layouts with social
buttons and plug-ins to tweet or
postimmediate content. Next time,
I'llbe back with Facebook program-

= : e | @ nitp://localhost1452/home/fb2

{2 Home Page [1 Welcome to Facebook - Log L...

ming covering more advanced
social plug-ins such as Comments
and the Like box. Meanwhile, for
more information on Facebook
social plug-ins, you can have alook

f Facebook Login
Log in to use your Facebook account with Memento.

Be the first of your friend
Memento.

Email or Phone:

Password:
Rest of the view gof [¥] Keep me logged in

Forgat your password?
Sign up for Facebook

at bit.ly/fAUTXe. n

Dino EsposiTo is the author of ‘Architect-
ing Mobile Solutions for the Enterprise”
(Microsoft Press, 2012) and “Program-
ming ASPNET MVC 3" (Microsoft Press,
2011), and coauthor of “Microsoft .NET:
Architecting Applications for the Enter-
prise” (Microsoft Press, 2008). Based in
Italy, Esposito is a frequent speaker at
industry events worldwide. Follow him on
Twitter at twitter.com/despos.

THANKS to the following technical
experts for reviewing this article:

Log In JeT 7.}

Figure 4 Authenticating Users via JavaScript

10 msdn magazine

Christopher Bennage and Scott Densmore

Cutting Edge

www.bit.ly/fAU7Xe
www.twitter.com/despos

ﬁ...\‘

L
Hi2l h I

L

Melissa Data can help you globalize your applications as you

expand operations to other countries or reach new customers in Address Verification

emerging markets. As a world leading data quality vendor, we ID Verification
offer solutions to verify, correct and standardize addresses in
. - Email Verfication
over 240 countries. Eliminate returns, cut postage expenses,

prevent fraud and keep your customers happy by verifying their GeoCoding

address before you send a package. IP Location

*Reduce address correction fees — save up to $10 per package Name Parsing

e Efficiently validate and correct addresses every time you ship Phone Verification

*Maintain high customer satisfaction

SN KKSN

Record Matching
Accurate data. Delivered.

www.MelissaData.com/global MELISSA 1DJ;N VN

or call 1-800-MELISSA (635-4772) Your Partner in Data Quality

C# | VB.NET | SQL Server 2012-Data Quality Services | SQL Server® SSIS

www.melissaData.com/global

. \WWIiNDOWS WITH C+ +

KENNY KERR

Creating Desktop Apps with Visual C++ 2012

With all the hype over Windows 8 and what are now known as
Windows Store apps, I've received some questions about the rele-
vance of desktop apps and whether Standard C++ is still a viable
choice going forward. These questions are sometimes hard to
answer, but what I can tell you is that the Visual C++ 2012 compil-
er is more committed than ever to Standard C++ and it remains
the best toolchain, in my humble opinion, for building great
desktop apps for Windows whether you're targeting Windows 7,
Windows 8 or even Windows XP.

A follow-up question I inevitably receive is how best to approach
desktop app development on Windows and where to begin. Well,
in this months column, I'm going to explore the fundamentals of
creating desktop apps with Visual C++. When I was first introduced
to Windows programming by Jeft Prosise (bit.ly/WmoRuR), Microsoft
Foundation Classes (MFC) was a promising new way to build apps.
While MFC is still available, it really is showing its age, and a need
for modern and flexible alternatives has driven programmers to
search for new approaches. This issue has been compounded by a
shiftaway from USER and GDI (msdn.com/library/ms724515) resources
and toward Direct3D as the primary foundation by which content
is rendered on the screen.

For years I've been promoting the Active Template Library (ATL)
and its extension, the Windows Template Library (WTL), as great
choices for building apps. However, even these libraries are now
showing signs of aging. With the shift away from USER and GDI
resources, theres even less reason to use them. So where to begin?
With the Windows API, of course. T'll show you that creating a
desktop window without any library at all isn't actually as daunting
as it might seem at first. I'll then show you how you can give it a bit
more of a C++ flavor, if you so desire, with a little help from ATL
and WTL. ATL and WTL make a lot more sense once you have a
good idea of how it all works behind the templates and macros.

The Windows API

The trouble with using the Windows API to create a desktop win-
dow is that there are myriad ways you could go about writing it—far
too many choices, really. Still, theres a straightforward way to create
a window, and it starts with the master include file for Windows:

#include <windows.h>

You can then define the standard entry point for apps:

int __stdcall whinMain(HINSTANCE module, HINSTANCE, PHSTR, int)

If you're writing a console app, then you can just continue to
use the standard C++ main entry point function, but I'll assume

12 msdn magazine

that you don't want a console box popping up every time your app
starts. The wWinMain function is steeped in history. The __stdcall
calling convention clarifies matters on the confusing x86 archi-
tecture, which provides a handful of calling conventions. If you're
targeting x64 or ARM, then it doesn't matter because the Visual
C++ compiler only implements a single calling convention on those
architectures—but it doesn't hurt, either.

Il show you that creating a
desktop window without any
library atallisn't actually as
daunting as it might seem at first.

The two HINSTANCE parameters are particularly shrouded in
history. In the 16-bit days of Windows, the second HINSTANCE was
the handle to any previous instance of the app. This allowed an app
to communicate with any previous instance of itself or even to switch
back to the previous instance if the user had accidentally started it
again. Today, this second parameter is always a nullptr. You may also
have noticed that I named the first parameter “module” rather than
“instance” Again, in 16-bit Windows, instances and modules were
two separate things. All apps would share the module containing
code segments but would be given unique instances containing the
data segments. The currentand previous HINSTANCE parameters
should now make more sense. 32-bit Windows introduced separate
address spaces and along with that the necessity for each process to
map its own instance/module, now one and the same. Today, this
is just the base address of the executable. The Visual C++ linker
actually exposes this address through a pseudo variable, which you
can access by declaring it as follows:

extern "C" IMAGE_DOS_HEADER __ImageBase;

The address of __ImageBase will be the same value as the
HINSTANCE parameter. This is in fact the way that the C Run-
Time Library (CRT) gets the address of the module to pass to your
wWinMain function in the first place. Its a convenient shortcut
if you don't want to pass this wWinMain parameter around your
app. Keep in mind, though, that this variable points to the current
module whether its a DLL or an executable and is thus useful for
loading module-specific resources unambiguously.

www.bit.ly/WmoRuR
http://msdn.com/library/ms724515

Aspose.Diagram

Working with Visio files?
Easily create, modify and
convert diagrams

in your applications.

*

Supported Files

VSD VTX
VSS VDW
VST VDX

VSX

Aspose.Total
just got

BIGGER

Aspose.OCR

Extract text from images.

Supports popular fonts
and styles. Scan a whole
image or part of an

image.
w

Supported Files

BMP
TIFF

Aspose.lmaging

Add advanced drawing
features to your
applications, plus
support for PSD files.

*

Supported Files

PSD BMP
TIFF PNG
JPEG

GIF

Already own Aspose.Total for .NET?
These are yours for FREE!

Free Evaluations at www.aspose.com

EU Sales: +44 (0) 141 416 1112
sales.europe@aspose.com

AU Sales: +61 2 8003 5926
sales.asiapacific@aspose.com

US Sales: 1.888.277.6734
sales@aspose.com

& ASPOSE

Your File Format Experts

www.aspose.com

The next parameter provides any command-line arguments, and
the last parameter is a value that should be passed to the Show-
Window function for the apps main window, assuming you're
initially calling ShowWindow. The irony is that it will almost always
be ignored. This goes back to the way in which an app is launched
via CreateProcess and friends to allow a shortcut—or some other
app—to define whether an apps main window is initially minimized,
maximized or shown normally.

Inside the wWinMain function, the app needs to register a
window class. The window class is described by a WNDCLASS
structure and registered with the RegisterClass function. This reg-
istration is stored in a table using a pair made up of the module
pointer and class name, allowing the CreateWindow function to
look up the class information when it’s time to create the window:

WNDCLASS we = (};

wc.hCursor = LoadCursor(nullptr, IDC_ARROW);
wc.hInstance = module;

wc.1pszClassName = L"window";

wc. 1pfnlindProc = []
(HWND window, UINT message, WPARAM wparam, LPARAM Tparam) -> LRESULT
{

};...

VERIFY(RegisterClass(&wc));

To keep the examples brief, T'll just use the common VERIFY
macro as a placeholder to indicate where you'll need to add some
error handling to manage any failures reported by the various API
functions. Just consider these as placeholders for your preferred
error-handling policy.

Once the window appears, it's
important that your app starts
dispatching messages as soon as
possible—otherwise your app
will appear unresponsive.

The earlier code is the minimum thats required to describe a stan-
dard window. The WNDCLASS structure is initialized with an empty
pair of curly brackets. This ensures that all the structures members
are initialized to zero or nullptr. The only members that must be
setare hCursor to indicate which mouse pointer, or cursor, to use
when the mouse is over the window; hinstance and IpszClassName
to identify the window class within the process; and IpfnWndProc
to point to the window procedure that will process messages sent
to the window. In this case, I'm using a lambda expression to keep
everything inline, so to speak. I'll get back to the window procedure
in a moment. The next step is to create the window:

VERIFY(CreateWindow(wc.1pszClassName, L"Title",
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
nullptr, nullptr, module, nullptr));

The CreateWindow function expects quite a few parameters, but
most of themare just defaults. The firstand second-to-last parameters,

14 msdn magazine

as I mentioned, together represent the key that the RegisterClass
function creates to let CreateWindow find the window class infor-
mation. The second parameter indicates the text that will be displayed
in the windows title bar. The third indicates the windows style. The
WS_OVERLAPPEDWINDOW constant isa commonly used style
describing a regular top-level window with a title bar with buttons,
resizable borders and so on. Combining this with the WS_VISIBLE
constant instructs CreateWindow to go ahead and show the window.
Ifyou omit WS_VISIBLE, then you'll need to call the ShowWindow
function before your window will make its debut on the desktop.

The next four parameters indicate the windowss initial position
and size, and the CW_USEDEFAULT constant used in each case
just tells Windows to choose appropriate defaults. The next two
parameters provide the handle to the window’s parent window and
menu, respectively (and neither are needed). The final parameter
provides the option of passing a pointer-sized value to the window
procedure during creation. If all goes well, a window appears on
the desktop and a window handle is returned. If things go south,
then nullptr is returned instead and the GetLastError function
may be called to find out why. With all the talk about the hardships
of using the Windows APL, it turns out that creating a window is
actually quite simple and boils down to this:

WNDCLASS we = { ... };
RegisterClass(&wc);
CreateWindow(...);

Once the window appears, its important that your app starts
dispatching messages as soon as possible—otherwise your app will
appear unresponsive. Windows is fundamentally an event-driven,
message-based OS. This is particularly true of the desktop. While
Windows creates and manages the queue of messages, it's the apps
responsibility to dequeue and dispatch them, because messages are
sent to a window’s thread rather than directly to the window. This
provides a great deal of flexibility, but a simple message loop need
not be complicated, as shown here:

MSG message;

BOOL result;

while (result = GetMessage(&message, 0, 0, 0))
{ if (-1 != result)

{ DispatchMessage(&message);
. }

Perhaps not surprisingly, this seemingly simple message loop is
often implemented incorrectly. This stems from the fact that the
GetMessage function is prototyped to return a BOOL value, but in
fact, this is really just an int. GetMessage dequeues, or retrieves, a
message from the calling thread’s message queue. This may be for
any window or no window atall, but in our case, the thread is only
pumping messages for a single window. If the WM_QUIT message
is dequeued, then GetMessage will return zero, indicating that the
window has disappeared and is done processing messages and that
the app should terminate. If something goes terribly wrong, then
GetMessage might return -1 and you can again call GetLastError to
get more information. Otherwise, any nonzero return value from
GetMessage indicates that a message was dequeued and is ready
to be dispatched to the window. Naturally, this is the purpose of
the DispatchMessage function. Of course, there are many variants

Windows with C++

Take application
\”C«-JJJIJJ to hew heights.
SGdIE! O tatese ﬁr};w oﬁdata grid delivers application

SGalailitythat r-a,J-:;"mw the Jmim Now you caWe terabytes of data
onhundredsiororidServersfor.ultra-fast access and perform near real-

ImedndlysisAieachiyourscalability’goals with ScaleOut StateServer.

Introducing

ScaleQut StateServer

« Parallel LINQ Query
» Integrated Viap/Reduce

» Supportfor AWS &Azure

- SCALEOUT SOFTWARE

In-Memory Data Grids for the Enterprise

www.scaleoutsoftware.com | 503.643.3422

www.scaleoutsoftware.com

Figure 1 A Static Table of Message Handlers

static message_handler s_handlers[] =
{
{
WM_PAINT, [] (HWND window, WPARAM, LPARAM) -> LRESULT
{
PAINTSTRUCT ps;
VERIFY(BeginPaint(window, &ps));

// Dress up some pixels here!

EndPaint(window, &ps);
return 0;
}
IE
{
WM_DESTROY, [] (HWND, WPARAM, LPARAM) -> LRESULT
{
PostQuitMessage(0);
return 0;
}
}
e

to the message loop, and having the ability to construct your own
affords you many choices for how your app will behave, what input
it will accept and how it will be translated. Apart from the MSG
pointer, the remaining parameters to GetMessage can be used to
optionally filter messages.

The window procedure will start receiving messages before the
CreateWindow function even returns, so it had better be ready and
waiting. But what does thatlook like? A window requires a message
map or table. This could literally be a chain of if-else statements or a
big switch statement inside the window procedure. This does, how-
ever, quickly become unwieldy, and much effort has been spent in
different libraries and frameworks to try to manage this somehow.
In reality, it doesn't have to be anything fancy, and a simple static
table will suffice in many cases. First, it helps to know what a window
message consists of. Most importantly, theres a constant—such as
WM_PAINT or WM_SIZE—that uniquely identifies the message.
Two arguments, so to speak, are provided for every message, and
these are called WPARAM and LPARAM, respectively. Depending
on the message, these might not provide any information. Finally,
Windows expects the handling of certain messages to return a value,
and this is called the LRESULT. Most messages that your app handles,
however, won' return a value and should instead return zero.

Given this definition, we can build a simple table for message
handling using these types as building blocks:

typedef LRESULT (* message_callback)(HWND, WPARAM, LPARAM);

struct message_handler

{ UINT message;

message_callback handler;
b

Ata minimum, we can then create a static table of message
handlers, as shown in Figure 1.

The WM_PAINT message arrives when the window needs
painting. This happens far less often than it did in earlier versions
of Windows thanks to advances in rendering and composition of
the desktop. The BeginPaint and EndPaint functions are relics of
the GDI butare still needed even if youre drawing with an entirely
different rendering engine. This is because they tell Windows that
youre done painting by validating the window’s drawing surface.

16 msdn magazine

Without these calls, Windows wouldn't consider the WM_PAINT
message answered and your window would receive a steady stream
of WM_PAINT messages unnecessarily.

The WM_DESTROY message arrives after the window has
disappeared, letting you know that the window is being destroyed.
This is usually an indicator that the app should terminate, but the
GetMessage function inside the message loop is still waiting for
the WM_QUIT message. Queuing this message is the job of the
PostQuitMessage function. Its single parameter accepts a value
that’s passed along via WM_QUITs WPARAM, as a way to return
different exit codes when terminating the app.

The final piece of the puzzle is to implement the actual window
procedure. I omitted the body of the lambda that I used to prepare
the WNDCLASS structure previously, but given what you now
know, it shouldn' be hard to figure out what it might look like:

we. TpfnlndProc =
[1 (HWND window, UINT message,
WPARAM wparam, LPARAM l1param) -> LRESULT
{
for (auto h = s_handlers; h != s_handlers +
_countof(s_handlers); +th)
{
if (message == h->message)
{
return h->handler(window, wparam, Tparam);
}
}

return DefWindowProc(window, message, wparam, Tparam);
b
The for loop looks for a matching handler. Fortunately, Windows
provides default handling for messages that you choose not to
process yourself. This is the job of the DefWindowProc function.

And thats it—if you've gotten this far, you've successfully created
a desktop window using the Windows API!

The ATL Way

Thetroublewith these Windows API functionsis thatthey were designed
long before C++ became the smash hit that it is today, and thus werent
designed to easily accommodate an object-oriented view of the world.
Still, with enough clever coding, this C-style API can be transformed

Figure 2 Expressing a Window in ATL

class Window : public CWindowImpl1<Window, CWindow,
CHinTraits<WS_OVERLAPPEDWINDOW | WS_VISIBLE>>

BEGIN_MSG_MAP(Window)
MESSAGE_HANDLER(WM_PAINT, PaintHandler)
MESSAGE_HANDLER(WM_DESTROY, DestroyHandler)

END_MSG_MAP ()

LRESULT PaintHandler(UINT, WPARAM, LPARAM, BOOL &)
{

PAINTSTRUCT ps;

VERIFY(BeginPaint(&ps));

// Dress up some pixels here!

EndPaint (&ps);
return 0;
}

LRESULT DestroyHandler(UINT, WPARAM, LPARAM, BOOL &)
(
PostQuitMessage(0);
return 0;
}
I8

Windows with C++

©,

The essential set of WPF controls for all your line-of-business
solutions. Includes the industry-leading Xceed DataGrid for WPF.
A total of 85 tools!

X*EEd

<TALENTED COMPONE

www.xceed.com

into something a little more suited to the average C++ programmer.
ATL provides a library of class templates and macros that do
just that, so if you need to manage more than a handful of
window classes or still rely on USER and GDI resources for your
window’s implementation, theres really no reason not to use ATL. The
window from the previous section can be expressed with ATL as
shown in Figure 2.

The CWindowImpl class provides the necessary routing of
messages. CWindow is a base class that provides a great many
member function wrappers, mainly so you don't need to provide
the window handle explicitly on every function call. You can see
this in action with the BeginPaint and EndPaint function calls in
this example. The CWinTraits template provides the window style
constants that will be used during creation.

Although it's simple to drop
into your app and use, WTL
packs alot of power if you have
sophisticated message filtering
and routing needs.

The macros harken back to MFC and work with CWindowImpl
to match incoming messages to the appropriate member functions
for handling. Each handler is provided with the message constant as
its firstargument. This can be useful if you need to handle a variety
of messages with a single member function. The final parameter
defaults to TRUE and lets the handler decide at run time whether
it actually wants to process the message or let Windows—or even
some other handler—take care of it. These macros, along with
CWindowlImpl, are quite powerful and let you handle reflected
messages, chain message maps together and so on.

To create the window, you must use the Create member function
that your window inherits from CWindowlImpl, and this in turn
will call the good old RegisterClass and CreateWindow functions
on your behalf:

Window window;
VERIFY(window.Create(nullptr, 0, L"Title"));

At this point, the thread again needs to quickly begin dispatching
messages, and the Windows API message loop from the previous
section will suffice. The ATL approach certainly comes in handy if
you need to manage multiple windows on a single thread, but with
a single top-level window; its much the same as the Windows API
approach from the previous section.

WTL: An Extra Dose of ATL

While ATL was designed primarily to simplify the development of
COM servers and only provides a simple—yet extremely eftective—
window-handling model, WTL consists of a slew of additional class
templates and macros specifically designed to support the creation
of more-complex windows based on USER and GDI resources.
WTL is now available on SourceForge (wtl.sourceforge.net), but for a

18 msdn magazine

new app usinga modern rendering engine, it doesn't provide a great
deal of value. Still, there are a handful of useful helpers. From the
WTLatlapp.h header, you can use its message loop implementation
to replace the hand-rolled version I described earlier:

CMessageLoop Toop;
Toop.Run();

Although it's simple to drop into your app and use, WTL packs
a lot of power if you have sophisticated message filtering and
routing needs. WTL also provides atlcrack.h with macros designed to
replace the generic MESSAGE_HANDLER macro provided by
ATL. These are merely conveniences, but they do make it easier to
get up and running with a new message because they take care of
cracking open the message, so to speak, and avoid any guesswork
in figuring out how to interpret WPARAM and LPARAM. A good
example is WM_SIZE, which packs the window’s new client area
as the low- and high-order words of its LPARAM. With ATL, this
might look as follows:

BEGIN_HSG_MAP (Hindow)

MESSAGE_HANDLER(WM_SIZE, SizeHandler)
END_MSG_MAP()

LRESULT SizeHandler(UINT, WPARAM, LPARAM Tparam, BOOL &)
{

auto width = LOWORD(Tparam);

auto height = HIWORD(Tparam);

// Handle the new size here ...

return 0;
}
With the help of WTL, this is a little simpler:
BEGIN_MSG_MAP(Window)

MSG_WM_SIZE(SizeHandler)
END_MSG_MAP()

void SizeHandler(UINT, SIZE size)
{

auto width = size.cx;

auto height = size.cy;

// Handle the new size here ...

}

Notice the new MSG_WM_SIZE macro that replaced the
generic MESSAGE_HANDLER macro in the original message map.
The member function handling the message is also simpler. As you
can see, there aren't any unnecessary parameters or a return value.
The first parameter is just the WPARAM, which you can inspect
if you need to know what caused the change in size.

The beauty of ATL and WTL is that they're just provided as a set
ofheader files that you can include at your discretion. You use what
you need and ignore the rest. However, as I've shown you here, you
can get quite far without relying on any of these libraries and just
write your app using the Windows API. Join me next time, when
I'll show you a modern approach for actually rendering the pixels
in your apps window. u

Kenny Kerr is a computer programmer based in Canada, an author for Plural-
sight and a Microsoft MVP. He blogs at kennykerr.ca and you can follow him on
Twitter at twitter.com/kennykerr.

THANKS to the following technical expert for reviewing this article:
Worachai Chaoweeraprasit

Windows with C++

http://wtl.sourceforge.net
www.twitter.com/kennykerr

5% 18
s T \ e
____________________ : e) /”_/\/. 5‘1‘ @5_‘1?
e =F\(§ y B“‘s(

Download your free trial @
ComponentOne componentone.com/ar7

a division of GrapeCity®

http://marketdash.componentone.com/redirect.ashx?rdtl=1367

MICROSOFT OFFICE

Explorir
JavaScri

Stephen Oliver and Eric Schmidt

This article is the first in a series of in-depth looks at the
JavaScript API for Office, newly introduced in Microsoft Ofhice
2013. It presupposes that you're familiar with apps for Office.
If not, the MSDN documentation page, “Overview of apps for
Oftice” (bit.ly/12nBWHG), provides a broad overview of and general
introduction to the APL

This article and the others in this series, while not exhaustive,
go deep into the API, touching on key aspects that will give you a
solid, richer understanding of how the apps for Otfice API works.

In this first article, we review the apps for Office object model.
Part 2 will focus on the core task of how to access Office file content
and will review the event model. Part 3 will consider the concept
of data binding and examine the basics of working with custom
XML parts. Finally, Part 4 will close the series with a focused look
at mail apps.

Throughout this series, we often make reference to the apps for
Ofhice APl documentation. You can find the official documentation,

This article discusses:

= Overview of the JavaScript API for Office
* The asynchronous programming pattern
+ Object model hierarchy

« Testing for host application support
Technologies discussed:

JavaScript API for Office

20 msdn magazine

g the New
ot API for Office

code samples and community resources at the Apps for Office and
SharePoint Developer Center on MSDN (dev.office.com).

Overview of the JavaScript API for Office

The JavaScript API for Office comprises a complete object model.
The API is contained within a set of JavaScript files, starting with
the office.js file. An app must include a reference to the office.js file
to use the JavaScript API for Ofhice. On load, the office.js file loads
the other required scripts that it needs to operate, including the
scripts needed for the host environment and the locale strings. For-
tunately, you can add a reference to the office.js file using a content
delivery network (CDN), so you don't need to deploy a copy of the
office.js file along with your app. Heres an example:

<!-- When deploying an app, you should always
Toad the CDN version of the office.js file. -->
{script src=
"https://appsforoffice.microsoft.com/1ib/1.0/hosted/office.js">
</script>

The object model was designed around several goals:

1. “Write once, run everywhere.” It had to be extensible—
not tied to a specific host application, but built around
capabilities available in multiple host applications. Apps
access host-specific functionality in a consistent way.

2. Cross-platform. Compatibility ranked high on this list,
too; thus, the object model isn't tied to a specific version of
Office. As well, the same code works on the Web App ver-
sions of the Office client applications, where supported. For
example, an app for Excel can work on the Excel Web App
justas well as in the Excel client application.

www.bit.ly/12nBWHG
http://dev.office.com

Download your free trial @
ComponentOne componentone.com/sp

a division of GrapeCity”

http://marketdash.componentone.com/redirect.ashx?rdtl=1368

CONTEXT

contentlanguage
displaylanguage

mode
document

mailbox

I
roamingSettings el

Item

userProfile

3. Performance and security. It needed to be maximized
for performance, so that apps can be as unobtrusive to
users as possible. Also, the JavaScript APT was designed to
interact directly with document content without having to
automate the Office applications, improving the stability
and security of the solutions.

Another key goal for the JavaScript API was to attract Web devel-
opers to the Office platform. Thus, the object model was built with
modern Web programming in mind. You can leverage your current
skills and knowledge of other JavaScript libraries, such as jQuery,
when creating apps in conjunction with the JavaScript API for Office.

The Asynchronous Programming Pattern

As mentioned, performance was a key goal in the design of the
apps for Office API. One of the ways that the designers enhanced
the performance of the API was through the heavy use of asyn-
chronous functions.

The use of asynchronous functions avoids blocking an app during
execution in the event a function takes a while to return. The asyn-
chronous function is invoked, but program execution doesnt wait for
the function to return. Instead, it continues while the asynchronous
function is still executing. This allows the user to continue to use the
Office document while the app is potentially still working.

Some key points for understanding the asynchronous design in
the apps for Office API covered in this section are:

« The common signature of asynchronous functions in the
apps for Office API

« The use of optional parameters in asynchronous functions

« Therole of the AsyncResult object in asynchronous functions

We'll discuss each in turn.

Common Signature of Asynchronous Functions in the Apps
for Office API All asynchronous functions in the apps for Office
APT have the same naming convention and the same basic sig-
nature. Every asynchronous function name ends in “Async;” for
example, like this: Document.getSelectedDataAsync.

22 msdn magazine

settings

DOCUMENT

The signature for all asynchro-
nous functions adheres to the
following basic pattern:

functionNameAsync(
requiredParameters,
[, options], [callbackl);

The required parameters are fol-
lowed by two other parameters: an
object that holds optional param-
etersand a callback function, both
of which are always optional.

Optional Parameters in Asyn-
chronous Functions The optional
JavaScript object in the signature
of asynchronous functions is a
collection of key/value pairs, sep-
arated by a colon, where the key is
the name of the parameter and the
value is the data that you want to
use for that parameter. The order of
the key/value pairs doesn't matter
as long as the parameter name is correct. The MSDN documenta-
tion for each asynchronous function details what parameters are
available to use in the options object for that particular function.

For example, the Document.setSelectedDataAsync method has
the same basic signature common to all asynchronous functions
in the apps for Office:

Office.context.document.setSelectedDataAsync(
data [, options], callback);

customXmiParts

One of the ways that the
designers enhanced the
performance of the APl was
through the heavy use of
asynchronous functions.

Like all asynchronous functions in the API, Document.set-
SelectedDataAsync has an options object that holds optional
parameters, but the parameters for its options object are different
from those for other asynchronous functions in the API, because
the point of this function is to set data. So the optional parameters
for Document.setSelectedDataAsync are related to setting data:

« coercionType: A CoercionType enumeration that specifies
the format for the data you insert (text, HTML, OOXML,
table or matrix)

« asyncContext: A user-defined object that’s returned
unchanged in the AsyncResult object thats passed in to
the callback function as its only parameter

That same concept applies to all the other asynchronous functions.

You can either supply the object that contains the optional param-
eters as an object literal inline in the asynchronous function call, or

Microsoft Office

dDevExpress

L4
| |
o, \h 0 {

DXSK8

OVERVIEW

1D

o e
- AT

,,,,,,,,

DX
TamenyK Pro Modal
sz

You used to think "Impossible’

Your Apps, Any Device

Now you think—game on!! The new tools in 12.2 help you envision and
create engaging applications for the Web that can be accessed by mobile
users on the go. And, with our Windows 8 XAML and JS tools you will begin
to create highly interactive applications that address your customer needs
today and build next generation touch enabled solutions for tomorrow.

») .

The next generation of inspiring tools. Today.

B

Download your 30-day trial at
www.DevExpress.com

http://www.DevExpress.com

Figure 2 Availability of Capabilities in the JavaScript API for Office by Host Application

anonymous function callback to get a refer-

ence to the File object. Then it displays the

Excel/Excel Outlook/Outlook))))
Capability Word ~ Web App PowerPoint Web App Project size thhe filein the spe‘c1ﬁed- elementius?ng
Get/set data as Al Al sy sy thesize Property of the File object. Ina similar
text, table, matrix way, you Il use the AsyncResult.value property
Settings Al Al Al (RoamingSettings) to get the return value of any asynchronous
y function in the apps for Office API.
Get file All Compressed only
— You can read more about the Docu-
Bindings All All . .
ment.getFileAsync method in the next
Custom XML Parts Al . . .
article of this series.
HTML and OOXML All
Mailbox All

create an object firstand then pass that object in for the parameter.
Followingare two code samples that show both ways of supplying the
options object using the Document.setSelected DataAsync function.

Passing the options parameter inline:

function setData(data) {
Office.context.document.setSelectedDataAsync(data, {
coercionType: Office.CoercionType.Text }
)H

}

Passing the options parameter in a JavaScript object:

function setData(data) {
var options = { coercionType: Office.CoercionType.Text };
0ffice.context.document.setSelectedDataAsync(data, options);
}

The Role of the AsyncResult Object in Asynchronous Functions
The third parameter in the common signature for asynchronous
functions in the JavaScript API for Office is the optional callback
parameter. The callback parameter is exactly as it sounds: a func-
tion you provide thats invoked when the asynchronous operation
completes. Of course, you can provide either a named function
or an anonymous function inline in the call to the asynchronous
function. The key thing to note here is the role of the AsyncResult
object with respect to the callback function.

When the runtime invokes your callback, it passes in an Async-
Result object as the only argument for the callback. The AsyncResult
object contains information about the asynchronous operation,
such as: whether or not the operation succeeded; what errors, ifany,
occurred; and the return value, if any, of the asynchronous func-
tion. In fact, in all asynchronous functions that return some kind
of data or object, the AsyncResult is the only way you can get at the
returned value. You do this using the AsyncResult.value property.

For example, the following code snippet gets the size of the
document and displays it in the specified HTML element on the
app UL In order to get the file size, you first get the file object
that the Document.getFileAsync method returns through the

AsyncResult.value property. Heres how to do this:
function getFileData(elementId) {
0ffice.context.document.getFileAsync(0ffice.FileType.Text,
function (asyncResult) {
if (asyncResult.status === 'succeeded') {
var myFile = asyncResult.value;
$(elementId).val(myFile.size);
}
1)
}

The getFileData function calls the Document.getFileAsync method,
specifying that it should return the file content as text. It then
uses the value property of the AsyncResult object passed in to the

24 msdn magazine

Object Model Hierarchy

The JavaScript API for Office aims to
provide compatibility across versions of Office and symmetry
across different host applications. To support these goals, the
JavaScript API has a lean object model with a distinct hierarchy
that isn't directly tied to any specific host application. Instead, the
object model hosts a targeted set of capabilities for interacting with
Ofhice documents, scoped to the type of app (task pane, content
or mail app) using them.

Figure 1 provides an abbreviated overview of the top-level
hierarchy of objects in the JavaScript API for Ofhice (note that the
entire object model isn't shown). Specifically, the diagram demon-
strates the relationships between the Office, Context, Document,
Settings, Mailbox and RoamingSettings objects.

Each host application (Word, Excel, Excel Web App, PowerPoint,
Project, Outlook and Outlook Web App) can use a subset of the
capabilities included in the APIL For example, roughly 40 percent
of the object model pertains solely to mail apps that can only be
used in Outlook and the Outlook Web App. Another portion of the
object model allows interaction with Custom XML Parts, which is
only available in Word 2013.

Figure 2 shows the capabilities available to specific hostapplications.

Shared Objects in the Object Model The JavaScript API
for Ofhice has a definitive entry point, the Ofhice object, which is
available to all types of apps and in all of the host applications. The

Figure 3 Storing a Reference to the
Document Object When the App Initializes

// Add a handler to the initialize event of the Office object
0ffice.initialize = function (reason) {
$(document).ready(function () {
app.get_Document (0ffice.context.document);

// Other initialization logic goes here
b
}

// Use a self-executing anonymous function to encapsulate the
// functionality that the app uses
var app = (function () {

var _document;

function get_Document(officeDocument) {
_document = officeDocument;

}

// Other fields and functions associated with the app

return {

get_Document: get_Document
/] Other exposed members
I8
Ho

Microsoft Office

Oftice object represents a specific instance of an app inserted into
a document, workbook, presentation, project, e-mail message or
appointment. It can access bindings between the app and the doc-
ument using the select method. (We'll discuss bindings in greater
depthina futurearticle.) Most importantly, the Office object exposes
the initialize event for the app, which allows you to build initializa-
tion logic for the app (more on that in a future article). Finally, the
Ofhice object contains a reference to the Context object for the app.

The Context object, which isalso available to all types of apps and

Also exposed by the Document object is the Settings object, which
represents the “property bag” for an app. Anapp can store and per-
sist custom properties across app sessions in the same document
using the Settings object. The properties travel with the document:
If you share an Office file that contains an app with someone else,
the custom properties stored in the app will be available when the
other person reads the file.

Storing and retrieving settings using the property bag is simple.
The Settings.set method creates the setting in memory as a key/

in all of the host applications, exposes infor-
mation about the runtime environment that's
hosting the app. Inaddition to storing the lan-
guage settings for the app, the Context object
provides the entry point to runtime capabilities
inthe JavaScript API for Office that are specific
to the host in which the app was activated.

For example, you can access the document
(Document object) associated with the app
through the Context.document property.
However, this property returns a value only
when called from within a host application
that supports it, that is, from within a task
pane or content app. If we attempt to access
the Context.document property from a mail
app, well getan “undefined object” error. Like-
wise with the Context.mailbox property: In
a mail app, it returns the mailbox (Mailbox
object) opened in the host application. In a
task pane app, its undefined.

Support for Task Pane and Content
Apps in the Object Model For task pane
and content apps, the Document object
represents the document, workbook, presen-
tation or project into which the app has been
inserted. The Document object provides the
highest degree ofaccess to the files content—
in essence, its the primary point of contact
between an app and an Office document.

Almostall of the techniques for accessing
the content in the Office document require
use of the Document object. For this reason,
you might want to capture a reference to the
Document object when the app initializes as
shown in Figure 3.

When an app is activated within a Project
tile, the Document object exposes addi-
tional, specific capabilities targeted for
Project files. Through the Document object,
an app can get data for specific tasks, views,
fields and resources in the project. An app
canalso add event listeners to monitor when
the user changes the selected view, task or
resource selected in the project. (We'll talk
more about using the Document object in
an app for Project in the next article.)

msdnmagazine.com

LESS PLUMBING CODE,
MORE FEATURES

7 4 CodeFluent
Entities

CodeFluent Entities is a Visual Studio 2008/2010/2012 integrated environment that
allows you to model your business entities, and generate consistent foundation code,
continuously, across all chosen layers (database, business tier,
services, user interface).

- .

» UML FREE

« TEMPLATE FREE

v FRAMEWORK FREE
" ORM FREE

VISUAL STUDIO
2012 AND

WINDOWS 8
READY

Using this model-first approach, your business logic is decoupled from the technology
and your foundations will automatically benefit from upcoming innovation.

Your application deserves rock-solid foundations, let CodeFluent Entities generate
them, and keep the fun part for you! Focus on what makes the
difference.

(e

DOWNLOAD YOUR FREE LICENSE

-1

(=174

www.softfluent.com/landings_cfe msdn

5 SoftFiuent

SoftFluent is a software publisher providing solutions to help developers produce software code
fluently, with users in more than 100 countries.

TOOLS FOR DEVELOPERS, BY DEVELOPERS

More information: www.softfiuent.com - Contact: info@softfluent.com
CodeFluent Entities is a trademark of SoftFluent SAS. Other names may be trademark of their respective owners.

February 2013 25

www.softfluent.com/landings_cfe_msdn
www.softfluent.com
www.msdnmagazine.com

value pair. To get the properties out of the property bag, we use
the Settings.get method, passing in the setting’s name (key), to get
the value. Both the set and get methods are synchronous. To store
the settings across sessions, we need to call the Settings.save Async
method, which saves all of the custom properties contained in the
app when the document is saved.

The code sample, ‘Apps for Office: Persist custom settings” (bit.ly/
UEiZff), provides additional examples of how to use the Settings object
and how to store data in an app.

Support for Mail Apps in the Object Model For mail apps,
the Mailbox object provides the entry point of data access for
mail-app-specific functionality. As the name implies, the Mailbox
object corresponds to the mailbox of the current user and travels
to wherever users read their e-mail—either in the Outlook client
application or in the Outlook Web App. In addition to providing
access to individual e-mail messages and appointments (through
the Mailbox.item property), the Mailbox object allows the app to
create new appointments, access the profile of the local user and
even get the users local time.

Like the Document object for content and task pane apps, you
might want to capture a reference to the Mailbox object when the
app initializes, as shown in Figure 4.

The RoamingSettings object, which is also available only in
mail apps, is similar to the Settings object for document-centric
apps (task pane and content apps). It allows apps to persist custom
properties as name/value pairs across sessions. However, unlike the
Settings object, which saves the custom properties within the host
Offtice file, the RoamingSettings object saves the custom settings
to the current users mailbox. This makes the custom properties
available to the app no matter what message the user is looking
at or how the user has accessed his mailbox (in Outlook or the
Outlook Web App).

For more information about the object model hierarchy in the
JavaScript API for Office, see the MSDN documentation page,
“Understanding the JavaScript API for Office” (bit.ly/UV2POY).

Figure 4 Storing a Reference to the Mailbox Object
in a Global Variable When the App Initializes

// Add a handler to the initialize event of the Office object
Office.initialize = function (reason) {
$(document).ready(function () {
app.get_Mailbox(0ffice.context.mailbox);

// Other initialization logic goes here
b
}

// Use a self-executing anonymous function to encapsulate the
// functionality that the app uses
var app = (function () {

var _mailbox;

function get_Mailbox(mailbox) {
_mailbox = mailbox;

}

// Other fields and functions associated with the app

return {

get_Mailbox: get_Mailbox
// Other exposed members
IE
HO

26 msdn magazine

Testing Whether a Capability

Can Be Used in a Host Application

As we alluded to earlier, one of the strengths of the JavaScript API
for Office is the “develop once, host many places” nature of apps
for Office. For example, the same task pane app can be activated
within Word, Excel, Project and PowerPoint (provided that its
manifest allows all of those capabilities).

Yet, because not all apps have access to the exact same list of
capabilities, an app could be inserted into a host application that
doesn't allow the capabilities that the app requires. For example,
Project currently doesn't provide access to the Settings object.
An app that tries to access the Settings object when inserted into
Project will raise an “undefined object” error.

Thus, developers must include logic in their apps for testing
the availability of the capabilities they need. In the example with
Project, the best technique for detecting capabilities in a host
application is through a simple if block:

/] Test for Settings object in host application

if (0ffice.context.document.settings) {

// Provide implementation that uses the Settings object

}
else {

/] Use some other technique for saving custom properties,
// 1ike localStorage, sessionStorage or cookies

}

For more information about how to detect whether a member
is available in the host application, see the MSDN documentation
page, “How to: Determine host application support for specific AP
members, at bit.ly/TR5ZIB.

To summarize this article, we've discussed the meat and
potatoes of the JavaScript API for Office. We described the object
model hierarchy at a high level and discussed the asynchronous
pattern as its implemented in the object model. We also described
how to test whether a capability is supported in a host application.

In the next article in this series, well take a closer look at the
simplest, yet most powerful ways for working with data in an
app for Office. Well describe how to get and set selected data in
more depth. Well look at getting all of the file content and how to
parse it. Also, we'll discuss apps in Project and how to read task,
resource and view data. Finally, we'll review the event model in the
JavaScript API for Office: what events you can code against and
how to handle the results. u

STEPHEN OLIVER is a programming writer in the Office Division and a Microsoft
Certified Professional Developer (SharePoint 2010). He writes the developer
documentation for the Excel Services and Word Automation Services, along with
PowerPoint Automation Services developer documentation. He helped curate and
design the Excel Mashup site at ExcelMashup.com.

Eric ScHMIDT is a programming writer in the Office Division. He has created
several code samples for apps for Office, including the popular “Persist custom
settings” code sample. In addition, he has written articles and created videos about
other products and technologies within Office programmability.

THANKS to the following technical experts for reviewing this article:
Mark Brewster, Shilpa Kothari and Juan Balmori Labra

Microsoft Office

www.bit.ly/UEiZff
www.bit.ly/UEiZff
www.bit.ly/UV2POY
www.bit.ly/TR5ZlB
www.ExcelMashup.com

PRECISELY
PROGRAMMED

FOR

ceTe Software’'s DynamicPDF products provide real-time PDF generation, manipulation, conversion,
printing, viewing, and much more. Providing the best of both worlds, the object models are extremely
flexible but still supply the rich features you need as a developer. Reliable and efficient, the high-
performance software is easy to learn and use. If you do encounter a question with any of our

components, simply contact ceTe Software's readily available, industry-leading support team.

OynamicPOF Core Sulle

TRY OUR PDF SOLUTIONS FREE TODAY!

www.DynamicPDF.com/eval or call 800.631.5006 | +1 410.772.8620

DynamicPDF

WWW.DYNAMICPDF.COM

& ceTesoftware

www.dynamicpdf.com
www.DynamicPDF.com/eval
www.cete.com

Visual StUdiO YOUR BACKSTAGE PASS TO

EXPERT SOLUTIONS FOR .NET DEVELOPERS
S FN

i

| CELEBRATING
{ TWENTY YEARS |

I/
Intense Take-Home /
Training for Developers,
Software Architects |
and Designers

MiCI’OSOft M Visual StUd|O m§qn Visual §Fl{(;l\!8 ,"‘_!“1105 MEDIAZ

www.vslive.com/lasvegas

LAS VEGAS J2R%H, .15

MGM Grand Hotel & Casino

EARLY BIRD SPECIAL

Register before
(T February 27 and
2013 TOUR save $300!

Use Promo Code LVFEB4

s V EG‘# Everyone knows all the *really*
YK w cool stuff happens behind the
- scenes. Get an all-access look at

Visual StUd|O LIVE! the I\/.Ilcrosoft.PIatform and
Expmsowﬂo“”"““““ - practical, unbiased, developer
XX '" training at Visual Studio Live!
Las Vegas.

Topics will include:

» ASPNET

> Azure / Cloud Computing

> Cross-Platform Mobile

» Data Management

> HTML5 / JavaScript

> Developer Deep Dive: SharePoint / Office 365
> Developer Deep Dive: SQL Server
> Windows 8 / WinRT

> WPF / Silverlight

> Visual Studio 2012 / .NET 4.5

ﬁURN THE PAGE FOR MORE EVENT DETAILS

www.vslive.com/lasvegas

EXPERT SOLUTIONS FOR .NET DEVELOPER

Visual StUdiOs@ YOUR BACKSTAGE PASS TO THE MICROSO

AGENDA AT-A-GLANCE

Windows 8/ WinRT WPF/ Silverlight ASP.NET _ SharePoint / Office

START TIME |END TIME |Visua| Studio Live! Pre-Conference Workshops: Monday, March 25,

CODE WITH .NET ROCKSTARS AND
LEARN HOW TO MAXIMIZE THE
DEVELOPMENT CAPABILITIES OF

Vl S UA |_ STU D I O AN D) N ET D U RI N G _ 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

5 ACTION-PACKED DAYS OF
PRE- AND POST-CONFERENCE

WORKSHOPS, 70+ SESSIONS LED BY
EXPERT INSTRUCTORS AND KEYNOTES

BY INDUSTRY HEAVYWEIGHTS.

DEVELOPER DEEP DiVi
ON SHAREPOINT ANL
SGL SERVER — BROU
TO YOU BY:

SharePoint'@

TRAINING FOR COLLABORATION

SQL Server

TRAINING FOR DBAs AND IT PROS

0 AM 6:00 PM MWO1 - Workshop: Build a Windows 8
Application in a Day - Rockford Lhotka

MWO02 - Workshop: Services - Using WCF
and ASP.NET Web API - Miguel Castro

STARTTIME |eND TIME | Visual Studio Live! Day 1: Tuesday, March 26, 2013

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:00 AM Keynote: To Be Announced

TO1 - A Primer in Windows 8 Development
with WinJS$ -
Philip Japikse

TO2 - jQuery Fundamentals -
Robert Boedigheimer

10:45 AM PN Y TO6 - Windows 8 Style Apps - Design
Essentials - Billy Hollis

12:00 PM 2:30 PM Lunch & Expo Hall

5PM T11 - Chalk Talk: MVVM in Practice aka

""Code behind""-free XAML -
Tiberiu Covaci

2:30 PM T15 - New XAML controls in Windows 8 -
Billy Hollis

:45 PM 4:15 PM Networking Break

5PM 5:30 PM T20 - Make your App Alive with Tiles and
Notifications - Ben Dewey

5:30 PM 7:00 PM Welcome Reception

TO7 - Hate JavaScript? Try TypeScript. -
Ben Hoelting

T12 - Chalk Talk: Neural Networks for
Developers - James McCaffrey

T16 - Tips for building Multi-Touch
Enabled Web Sites - Ben Hoelting

T21 - Build Speedy Azure Applications
with HTML 5 and Web Sockets Today -
Rick Garibay

START TIME | END TIME |Visua| Studio Live! Day 2: Wednesday, March 27, 2013

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:00 AM Keynote: To Be Announced

9:15 AM W01 - Building Your First Windows Phone
8 Application - Brian Peek

W02 - Azure - Vishwas Lele

W06 - Cross Win8/WP8 Apps -
Ben Dewey

Birds-of-a-Feather Lunch & Expo Hall

W11 - Chalk Talk: Moving Web Apps to the
Cloud - Eric D. Boyd

W07 - Azure - Vishwas Lele

W12 - Chalk Talk: Improving Web
Performance - Robert Boedigheimer

2:30 PM 3:45 PM W15 - Designing Your Windows Phone
Apps for Multitasking and Background
Processing - Nick Landry

3:45 PM 4:15 PM Sponsored Break - Exhibitor Raffle

5PM 5:30 PM W20 - Building a Windows Runtime
Component with C# - Brian Peek

6:30 PM 8:30 PM Evening Event

W16 - laa$ in Windows Azure with
Virtual Machines - Eric D. Boyd

W21 - Bringing Open Source to
Windows Azure: A Match Made in
Heaven - Jesus Rodriguez

sTARTTIME [EnDTIME | Visual Studio Live! Day 3: Thursday, March 28, 2013

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM THO1 - Building Extensible XAML Client
Apps - Brian Noyes

9:30 AM 10:45 AM THO6 - Migrating from WPF or Silverlight
to WinRT - Rockford Lhotka

11:00 AM 12:15PM

12:15 PM 1:30 PM

1:30 PM 2:45 PM

THO2 - JavaScript, Meet Cloud: Node.js
on Windows Azure - Sasha Goldshtein

THO7 - Using Windows Azure to Build
the Next Generation of Mobile
Applications - Jesus Rodriguez

TH12 - Cloud Backends for Your Mobile
Apps: Windows Azure Mobile Services
and Parse - Sasha Goldshtein

TH17 - Using Windows Azure for
Solving Identity Management
Challenges - Michael Collier

3:00 PM 4:15 PM

TH22 - Elevating Windows Azure
Deployments - Michael Collier

START TIME |END TiMe | Visual Studio Live! Post-Conference Workshops: Friday, March 29,
Post-Conference Workshop Registration - Coffee and Morning Pastries

Speakers and sessions subject to change

www.vslive.com/lasvegas
www.vslive.com/lasvegas

Azure / Cloud Computing Data Management W:I'IEVAFVEL{NIEN Cross-Platform Mobile | SQL Server

2013 (separate entry fee required)

MWO03 - Workshop: HTML5
+ Cloud - Reach Everyone,
Everywhere - Eric D. Boyd

TO3 - Busy Developer's Guide to

MongoDB - Ted Neward

TO8 - Busy Developer's Guide to

Cassandra - Ted Neward

T13 - Chalk Talk: Building a
URL Shortening Service with
Node.js - Rick Garibay

T17 - What's New in
ASP.NET 4.5 - Adam Tuliper

T22 - 25 Tips and Tricks for the
ASP.NET Developer -
Adam Tuliper

W03 - Controlling ASP.NET
MVC4 - Philip Japikse

W08 - MVC For WebForms
Developers: Comparing and
Contrasting - Miguel Castro

W13 - Chalk Talk: NoSQL for the

SQL Guy - Ted Neward

W17 - ASP.NET MVC - AJAX in
your Views - Walt Ritscher

W22 - Patterns for Parallel
Programming - Tiberiu Covaci

THO3 - To Be Announced

THO8 - ASP.NET MVC - Routing
in the spotlight - Walt Ritscher

TH13 - From 0 to Web Site in
60 Minutes with Web Matrix -
Mark Rosenberg

TH18 - Creating Web Sites
Using Visual Studio
LightSwitch -

Michael Washington

TH23 - Building Single Page
Web Applications with HTML5,
ASP.NET MVC4 and Web API -
Marcel de Vries

2013 (Separate entry fee required)

FWO02 - Workshop: SQL Server 2012 - Andrew Brust & Leonard Lobel

MW04 - Workshop: SharePoint 2013 Developer Boot Camp -

Andrew Connell

TO04 - Mastering Visual Studio
2012 - Deborah Kurata

TO09 - IntelliTrace, What is it and
How Can | Use it to My Benefits? -
Marcel de Vries

TO5 - Building Your First SharePoint

2013 Application Using Visual
Studio 2012 - Darrin Bishop

T10 - Getting Started with Microsoft

Office 365 SharePoint Online
Development

T14 - Chalk Talk: Acing Application Lifecycle Management

in SharePoint

T18 - Team Foundation Server
2012 Builds: Understand,
Configure, and Customize -
Benjamin Day

T23 - Design for Testability:
Mocks, Stubs, Refactoring, and
User Interfaces - Benjamin Day

W04 - Modern ALM and the
DevOps Story - Brian Randell

W09 - OData - Sergey Barskiy

T19 - Unit Testing in SharePoint -
Jim Wooley

T24 - Better Together -
SharePoint 2013 and Mobile
Development - Darrin Bishop

W05 - Developing and
Extending Enterprise Content
Management Features with
SharePoint 2013 - Paul Swider

W10 - Use 2012 (and Beyond)
Technology with SharePoint
2010 - Ryan Mcintyre

W14 - Demystifying the Microsoft Ul Technology Roadmap -

Brian Noyes

W18 - Code First and Entity
Framework - Sergey Barskiy

W23 - LINQ performance and
Scalability - Jim Wooley

THO4 - Sharing up to 80% of
code building Mobile apps for
i0S, Android, WP 8 and Windows
8 - Marcel de Vries

THO9 - iOS Development
Survival Guide for the .NET Guy -
Nick Landry

TH14 - To Be Announced

TH19 - Building Multi-Platform
Mobile Apps with Push
Notifications - Nick Landry

TH24 - Create HTML 5 Mobile
websites with Visual Studio
LightSwitch -

Michael Washington

W19 - Build Modern
Collaborative Solutions with
Office 2013, "Napa" Office

365 Development Tools, and
SharePoint 2013 - Brian Randell

W24 - Intro to Windows Azure
SQL Database and What's New -
Eric D. Boyd

THOS5 - SQL Server Data Tools -
Leonard Lobel

TH10 - Programming the T-SQL
Enhancements in SQL Server
2012 - Leonard Lobel

TH15 - Getting to know the Bl
Semantic Model - Andrew Brust

TH20 - Big Data-BI Fusion:
Microsoft HDInsight & MS BI -
Andrew Brust

TH25 - Optimizing Stored
Procedures - Mark Rosenberg

LAS VEGAS D8R 5013

CONNECT WITH
VISUAL STUDIO LIVE!

’ twitter.com/vslive - @VSLive

_-E facebook.com - Search “VSLive”

o
IN linkedin.com - Join the “VSLive” group!

Scan the QR
code to register
or for more
event details.

~ai

B 4 :
Register at vslive.com/
L 4 ¢ lasvegas

Use Promo Code LVFEB4

www.vslive.com/lasvegas
www.vslive.com/lasvegas

ASYNCHRONOUS PROGRAMMING

Async Causali
Chain Tracking

Andrew Stasyuk

With the advent of C#5, Visual Basic NET 11, the Microsoft
NET Framework 4.5 and .NET for Windows Store apps, the asyn-
chronous programming experience has been streamlined greatly.
New async and await keywords (Async and Await in Visual Basic)
allow developers to maintain the same abstraction they were used
to when writing synchronous code.

Alot of effort was put into Visual Studio 2012 to improve asyn-
chronous debugging with tools such as Parallel Stacks, Parallel
Tasks, Parallel Watch and the Concurrency Visualizer. However,
in terms of being on par with the synchronous code debugging
experience, were not quite there yet.

One of the more prominent issues that breaks the abstraction and
reveals internal plumbing behind the async/await fagade is the lack
of call stack information in the debugger. In this article, 'm going

This article discusses:

« Causality chains versus return stacks

« Asynchronous debugging with existing tools

* Preserving causality chains in classic and Windows Store apps
« Using EventSource and EventListener

« Emulating async-local storage

« Comparison of causality tracking approaches and caveats
Technologies discussed:

Visual Studio 2012, Microsoft .NET Framework 4.5, NET for
Windows Store Apps

Code download available at:

archive.msdn.microsoft.com/mag201302Causality

32 msdn magazine

to provide means to bridge this gap and improve the asynchronous
debugging experience in your .NET 4.5 or Windows Store app.
Lets settle on essential terminology first.

Definition of a Call Stack

MSDN documentation (bit.ly/Tukvkm) used to define call stack as “the
series of method calls leading from the beginning of the program
to the statement currently being executed at run time”” This notion
was perfectly valid for the single-threaded, synchronous program-
ming model, but now that parallelism and asynchrony are gaining
momentum, more precise taxonomy is necessary.

For the purpose of this article, its important to distinguish the
causality chain from the return stack. Within the synchronous
paradigm, these two terms are mostly identical (I'll mention the
exceptional case later). In asynchronous code, the aforementioned
definition describes a causality chain.

On the other hand, the statement currently being executed, when
finished, will lead to a series of methods continuing their execution.
This series constitutes the return stack. Alternatively, for readers
familiar with the continuation passing style (Eric Lippert has a fab-
ulous series on this topic, starting at bit.ly/d9V0Dc), the return stack
might be defined as a series of continuations that are registered to
execute, should the currently executing method complete.

In a nutshell, the causality chain answers the question, “How
did I get here?” while return stack is the answer for, “Where do [
gonext?” For example, if you've got a deadlock in your application,
you might be able to find out what caused it from the former, while
the latter would let you know what the consequences are. Note
that while a causality chain always tracks back to the program
entry point, the return stack is cut off at the point where the result

http://archive.msdn.microsoft.com/mag201302Causality
www.bit.ly/Tukvkm
www.bit.ly/d9V0Dc

of asynchronous operation is not observed (for example, async void
methods or work scheduled via ThreadPool. QueueUserWorklItem).

Theres also a notion of stack trace being a copy of a synchronous call
stack preserved for diagnostics; Il use these two terms interchangeably.

Be aware that there are several unspoken assumptions in the
preceding definitions:

« “Method calls” referred to in the first definition generally
imply “methods that have not completed yet,” which bear
the physical meaning of “being on stack” in the synchro-
nous programming model. However, while were generally
not interested in methods that have already returned, it's
not always possible to distinguish them during asynchro-
nous debugging. In this case, theres no physical notion of
“being on stack” and all continuations are equally valid
elements of a causality chain.

Even in synchronous code, a causality chain and return
stack aren't always identical. One particular case when a
method might be present in one, but missing from the other,
is a tail call. Though not directly expressible in C# and
Visual Basic .NET, it may be coded in Intermediate Lan-
guage (IL) (“tail” prefix) or produced by the just-in-time
(JIT) compiler (especially in a 64-bit process).

Last, but not least, causality chains and return stacks can be
nonlinear. That is, in the most general case, they're directed
graphs having current statement as a sink (causality graph)
or source (return graph). Nonlinearity in asynchronous
code is due to forks (parallel asynchronous operations
originating from one) and joins (continuation scheduled
to run upon completion of a set of parallel asynchronous
operations). For the purpose of this article, and due to plat-
form limitations (explained later), I'll consider only linear
causality chains and return stacks, which are subsets of
corresponding graphs.

Luckily, ifasynchrony is introduced into a program by using async
and await keywords with no forks or joins, and all async methods
are awaited, the causality chain is still identical to the return stack,
just as in synchronous code. In this case, both of them are equally
useful in orienting yourself in the control flow.

On the other hand, causality chains are rarely equal to return
stacks in programs employing explicitly scheduled continuations,
anotable example being Task Parallel Library (TPL) dataflow. This
is due to the nature of data flowing from a source block to a target
block, never returning to the former.

Existing Tools
Consider a quick example:

static void Main()
{

OperationAsync().Wait();
}

async static Task OperationAsync()
{
await Task.Delay(1000);
Console.WriteLine("Where is my call stack?");
}

By extrapolating the abstraction developers were used to in
synchronous debugging, they would expect to see the following

msdnmagazine.com

causality chain/return stack when execution is paused at the

Console.WriteLine method:

ConsoleSample.exe!ConsoleSample.Program.OperationAsync() Line 19
ConsoleSample.exe!ConsoleSample.Program.Main() Line 13

But if you try this, you'll find that in the Call Stack window the
Main method is missing, while the stack trace starts directly in the
OperationAsync method preceded by [Resuming Async Method].
Parallel Stacks has both methods; however, it doesn't show that Main
calls OperationAsync. Parallel Tasks doesn' help either, showing
“No tasks to display”

Note: At this point the debugger is aware of the Main method being
partof the call stack—you might have noticed that by the gray back-
ground behind the call to OperationAsync. The CLR and Windows
Runtime (WinRT) have to know where to continue execution after
the topmost stack frame returns; thus, they do indeed store return
stacks. In this article, though, I'll only delve into causality tracking,
leaving return stacks as a topic for another article.

Preserving Causality Chains

In fact, causality chains are never stored by the runtime. Even
call stacks that you see when debugging synchronous code are, in
essence, return stacks—as was just said, theyre necessary for the
CLR and Windows Runtime to know which methods to execute
after the topmost frame returns. The runtime doesn't need to know
what caused a particular method to execute.

To be able to view causality chains during live and post-mortem
debugging, you have to explicitly preserve them along the way.
Presumably, this would require storing (synchronous) stack trace
information at every point where continuation is scheduled and
restoring this data when continuation starts to execute. These
stack trace segments could then be stitched together to form a
causality chain.

Were more interested in transferring causality information
across await constructs, as this is where abstraction of similarity
with synchronous code breaks. Lets see how and when this data
can be captured.

As Stephen Toub points out (bit.ly/yF8eGu), provided that FooAsync

returns a Task, the following code:

await FooAsync();
RestOfMethod();

is transformed by the compiler to a rough equivalent of this:

var t = FooAsync();
var currentContext = SynchronizationContext.Current;
t.ContinueWith(delegate
{
if (currentContext == null)
Rest0fMethod();
else
currentContext.Post(delegate { RestOfMethod(); 1},
}, TaskScheduler.Current);

From looking at the expanded code, it appears there are at least
two extension points that mightallow for capturing causality infor-
mation: TaskScheduler and SynchronizationContext. Indeed, both
offer similar pairs of virtual methods where it should be possible
to capture call stack segments at the right moments: QueueTask/
TryDequeue on TaskScheduler and Post/OperationStarted on
SynchronizationContext.

Unfortunately, you can only substitute default TaskScheduler
when explicitly scheduling a delegate via the TPL API, such

null);

February 2013 33

www.bit.ly/yF8eGu
www.msdnmagazine.com

as Task.Run, Task.ContinueWith, TaskFactory.StartNew and
so on. This means that whenever continuation is scheduled
outside a running task, the default TaskScheduler will be in force.
Thus, the TaskScheduler-based approach won't be able to capture
necessary information.

As for SynchronizationContext, although its possible to override
the default instance of this class for the current thread by calling
the SynchronizationContext.SetSynchronizationContext method,
this has to be done for every thread in the application. Thus, youd
have to be able to control thread lifetime, which is infeasible if
you aren't planning to re-implement a thread pool. Moreover,
Windows Forms, Windows Presentation Foundation (WPF) and
ASPNET all provide their own implementations of Synchroniza-
tionContext in addition to SynchronizationContext.Default, which
schedules work to the thread pool. Hence, your implementation
would have to behave differently depending on the origin of the
thread in which its working.

Also note that when awaiting a custom awaitable, its entirely
up to implementation whether to use SynchronizationContext to
schedule a continuation.

Luckily, there are two extension points suitable for our scenario:
subscribing to TPL events without having to modify the existing
codebase, or explicitly opting in by slightly modifying every await
expression in the application. The first approach only works in
desktop .NET applications, while the second can accommodate
Windows Store apps. I'll detail both in the following sections.

Introducing EventSource

The NET Framework supports Event Tracing for Windows (ETW),
having defined event providers for practically every aspect of
the runtime (bit.ly/VDfrtP). Particularly, TPL fires events that allow
you to track Task lifetime. Although not all of these events are
documented, you can obtain their definitions yourself by delving
into mscorlib.dll with a tool such as ILSpy or Reflector or peeking
into framework reference source (bit.ly/HRU3) and searching for the
TplEtwProvider class. Of course, the usual reflection disclaimer
applies: If the API isnt documented, theres no guarantee that
empirically observed behavior will be retained in the next release.

TplEtwProvider inherits from System.Diagnostics. Tracing.Event-
Source, which was introduced in the NET Framework 4.5 and is
now a recommended way to fire ETW events in your application
(previously you had to deal with manual ETW manifest genera-
tion). In addition, EventSource allows for consumption of events
in process, by subscribing to them via EventListener, also new in
the NET Framework 4.5 (more on this momentarily).

The event provider can be identified by eitheraname or GUID. Each
particular event type s in turn identified by event ID and, optionally,
akeyword to distinguish from other unrelated types of events fired
by this provider (TplEtwProvider doesnt use keywords). There are
optional Task and Opcode parameters that you might find useful
for filtering, but I'll rely solely on event ID. Each event also defines
the level of verbosity.

TPL events have a variety of uses besides causality chains, such
as tracking of tasks in-flight, telemetry and so on. They don' fire
for custom awaitables, though.

34 msdn magazine

Introducing EventListener

In the NET Framework 4, in order to capture ETW events, you had
to be running an out-of-process ETW listener, such as Windows
Performance Recorder or Vance Morrisons PerfView, and then cor-
relate captured data with the state you observed in the debugger.
This posed additional problems, as data was stored outside process
memory space and crash dumps didn't include it, which made this
solution less suitable for post-mortem debugging. For example, if
you rely on Windows Error Reporting to provide dumps, you wont
getany ETW traces and thus causality information will be missing.

However, starting in the .NET Framework 4.5, its possible to
subscribe to TPL events (and other events fired by EventSource
inheritors) via System. Diagnostics. Tracing EventListener (bit.ly/XJelwF).
Thisallows the capture and preservation of stack trace segments in the
process memory space. Therefore, a mini-dump with heap should be
enough to extract causality information. In this article, I'll only detail
EventListener-based subscriptions.

Its worth mentioning that the advantage of an out-of-process
listener is that you can always get the call stacks by listening to the Stack
ETW Events (either relying on an existing tool or doing tedious stack
walking and module address tracking yourself). When subscribing
to the events using EventListener, you cant get call stack information
in Windows Store apps, because the StackTrace API is prohibited.
(Anapproach that works for Windows Store apps is described later.)

In order to subscribe to events, you have to inherit from Event-
Listener, override the OnEventSourceCreated method and
make sure that an instance of your listener gets created in every
AppDomain of your program (subscription is per application
domain). After EventListener is instantiated, this method will be
called to notify the listener of event sources that are being created.
It will also provide notifications for all event sources that existed
before the listener was created. After filtering event sources either
byname or GUID (performance-wise, comparing GUIDs is a better
idea), a call to EnableEvents subscribes the listener to the source:

private static readonly Guid tplGuid =

new Guid("2e5dba47-a3d2-4d16-8ee0-6671ffdcd7b5");

protected override void OnEventSourceCreated(EventSource eventSource)
{
if (eventSource.Guid == tplGuid)
EnableEvents(eventSource, Eventlevel.LogATways);
}

To process events, you need to implement abstract method
OnEventWritten. For the purpose of preserving and restoring
stack trace segments, you need to capture the call stack right
before an asynchronous operation is scheduled, and then, when it
starts execution, associate a stored stack trace segment with it. To
correlate these two events, you can use the TaskID parameter.
Parameters passed to a corresponding event-firing method in an
eventsource are boxed into a read-only object collection and passed
in as the Payload property of EventWrittenEventArgs.

Interestingly, there are special fast paths for EventSource events that
are consumed as ET'W (not via EventListener), where boxing doesn't
occur for theirarguments. This does provide a performance improve-
ment, but its mostly zeroed out due to cross-process machinery.

In the OnEventWritten method, you need to distinguish between
event sources (in case you subscribe to more than one) and identify

Asynchronous Programming

www.bit.ly/HRU3
www.bit.ly/XJelwF

/update/2013/02

G Source

BEST SELLER

154 1m

BEST SELLER

BEST SELLER

BEST SELLER e
- [=t e -

© 1996-2013 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

ﬂ!""“

ComponentOne Studio Enterprise \ from $1,315.60

The Definitive Source of Software Components

www.componentsource.com

. Compongntgng‘

Help & Manual Professional \ from $583.10

.NET Tools for the Smart Developer: Windows, Web, and XAML.

« Hundreds of Ul controls for all .NET platforms including grids, charts, reports and schedulers
« Supports Visual Studio 2012 and Windows 8

« Now includes Windows 8 Studios for WinRT XAML and WinJS

« New Cosmopolitan (Windows 8 Ul) theme provides a modern look and feel

« Royalty-free deployment and distribution

Aspose.Total for .NET ‘ from $2,449.02

Easily create documentation for Windows, the Web and iPad.

« Powerful features in an easy accessible and intuitive user interface

« As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor
- Single source, multi-channel publishing with conditional and customized output features
« Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

- Styles and Templates give you full design control

b ASPOSE

Your File Format Experts

Code Compare Pro \ from $48.95

Every Aspose .NET component in one package.

« Programmatically manage popular file formats including Word, Excel, PowerPoint and PDF

+ Add charting, email, spell checking, barcode creation, OCR, diagramming, imaging, project
management and file format management to your .NET applications

« Common uses also include mail merge, adding barcodes to documents, building dynamic
Excel reports on the fly and extracting text from PDF files

cd'devart

An advanced visual file comparison tool with Visual Studio integration.

+ Code oriented comparison, including syntax highlighting, unique structure and lexical
comparison algorithms, for the most popular programming languages

» Smooth Visual Studio integration to develop and merge within one environment in the
context of current solution, using native IDE editors

- Three-way file merge, folder comparison and synchronization

We accept purchase orders.
Contact us to apply for a credit account.

US Headquarters
ComponentSource

650 Claremore Prof Way
Suite 100

Woodstock

GA 30188-5188

USA

European Headquarters
ComponentSource

30 Greyfriars Road
Reading

Berkshire

RG1 1PE

United Kingdom

Asia / Pacific Headquarters
ComponentSource

3F Kojimachi Square Bldg
3-8 Kojimachi Chiyoda-ku

Sales Hotline - US & Canada: -® = VISAES

(888) 850-9911

www.componen’rsource.com

[eBYN Schedule

http://www.componentsource.com

Figure 1 Handling of TPL Events
in the OnEventWritten Method

protected override void OnEventWritten(EventWrittenEventArgs eventData)
{
if (eventData.EventSource.Guid == tplGuid)
{
int taskld;
switch (eventData.EventId)
{
case 7: // Task scheduled
taskId = (int)eventData.Payload[2];
stackStorage.StoreStack(taskId);
break;
case 10: // Task wait begin
taskId = (int)eventData.Payload[2];
bool waitBehaviorIsSynchronous =
(int)eventData.Payload[3] == 1;
if (lwaitBehaviorIsSynchronous)
stackStorage.StoreStack(taskId);
break;
case 11: // Task wait end
taskId = (int)eventData.Payload[2];
stackStorage.RestoreStack(taskId);
break;

the event itself. The stack trace will be captured (stored) when
TaskScheduled or TaskWaitBegin events fire, and associated with
a newly started asynchronous operation (restored) in TaskWait-
End. You also need to pass in taskld as the correlation identifier.
Figure 1 shows the outline of how the events will be handled.

Note: Explicit values (‘magic numbers”) in code are abad program-
ming practice and are used here only for brevity. The accompanying
sample code project has them conveniently structured in constants
and enumerations to avoid duplication and risk of typos.

Note that in TaskWaitBegin, I check for TaskWaitBehavior being
synchronous, which happens when a task being awaited is executed
synchronously or has already completed. In this case, a synchronous
call stack is still in place, so it doesn't need to be stored explicitly.

Async-Local Storage

Whatever data structure you choose to preserve call stack segments
needs the following quality: Stored value (causality chain) should be
preserved for every asynchronous operation, following control flow
along the way across await boundaries and continuations, bearing in
mind that continuations may execute on difterent threads.

This suggests a thread-local-like variable that would preserve its
value pertaining to the current asynchronous operation (a chain
of continuations), instead of a particular thread. It can be roughly
named “async-local storage”

The CLR already has a data structure called ExecutionContext
that's captured on one thread and restored on the other (where
continuation gets to execute), thus being passed along with con-
trol flow. This is essentially a container that stores other contexts
(SynchronizationContext, CallContext and so on) that might be
needed to continue execution in exactly the same environment,
where they were interrupted. Stephen Toub has the details at bit.ly/MOamHk.
Most importantly, you can store arbitrary data in CallContext (by
calling its static methods LogicalSetData and LogicalGetData),
which seems to suit the aforementioned purpose.

36 msdn magazine

Bear in mind that CallContext (actually, internally there are two
of them: LogicalCallContext and IllogicalCallContext) is a heavy
object, designed to flow across remoting boundaries. When no
custom data is stored, the runtime doesnt initialize the contexts,
sparing the cost of maintaining them with the control flow. As soon
as you call the CallContext.LogicalSetData method, a mutable
ExecutionContext and several Hashtables have to be created and
passed along or cloned from then on.

Unfortunately, ExecutionContext (together with all its constitu-
ents) is captured before the described TPL events fire and restored
shortly afterward. Thus, any custom data saved in CallContext in
between is discarded after ExecutionContext is restored, which
makes it unsuitable for our particular purpose.

In addition, the CallContext class isn't available in the NET
for Windows Store apps subset, so an alternative is needed for
this scenario.

One way to build an async-local storage that would work around
these problems is to maintain the value in thread-local storage (TLS)
while the synchronous portion of code is executing. Then, when
the TaskWaitStart event fires, store the value in a shared (non-TLS)
dictionary, keyed by the TaskID. When the counterpart event,
TaskWaitEnd, fires, remove the preserved value from the dictionary
and save it back to TLS, possibly on a different thread.

As you might know, values stored in TLS are preserved even
after a thread is returned to the thread pool and gets new work to
execute. So, at some point, the value has to be removed from TLS
(otherwise, some other asynchronous operation executing on this
thread later might access the value stored by the previous operation
as if it were its own). You can't do this in the TaskWaitBegin event
handler because, in case of nested awaits, TaskWaitBegin and Task-
WaitEnd events occur multiple times, once per await, and a stored
value might be needed in between, such as in the following snippet:

async Task OuterAsync()

: await InnerAsync();
Zsync Task InnerAsync()

i await Task.Delay(1000);

Instead, its safe to consider that the value in TLS is eligible to
be cleared when the current asynchronous operation is no longer
being executed on a thread. Because the CLR doesnt have an in-
process event that would notify of a thread being recycled back to
the thread pool (theres an ETW one—bit.ly/ZfAWrb), for this purpose
I'luse ThreadPoolDequeueWork fired by FrameworkEventSource
(also undocumented), which occurs when a new operation is
started on a thread pool thread. This leaves out non-pooled threads,
for which youd have to manually clean the TLS, such as when a Ul
thread returns to the message loop.

For a working implementation of this concept together with
stack segments capturing and concatenation, please refer to the
StackStorage class in the accompanying source code download.
Theres also a cleaner abstraction, AsyncLocal<T>, which allows
you to store any value and transfer it with the control flow to
subsequentasynchronous continuations. I'll use it as causality chain
storage for Windows Store apps scenarios.

Asynchronous Programming

www.bit.ly/M0amHk
www.bit.ly/ZfAWrb

We didn't invent the Internet..

2 software

...but our components help you power the apps that bring it to business.

v
NET

E-Business
AS2, EDI/X12, NAESB, OFTP ...

Credit Card Processing
Authorize.Net, TSYS, FDMS ...

Shipping & Tracking
FedEx, UPS, USPS ...

Accounting & Banking
QuickBooks, OFX ...

Internet Business
Amazon, eBay, PayPal ...

 Biztalk server 2> $0Lserver A8 Mobile activex

TOOLS « COMPONENTS « ENTERPRISE ADAPTERS

Internet Protocols
FTP, SMTP, IMAP, POP, WebDav ...

Secure Connectivity
SSH, SFTP, SSL, Certificates ...

Secure Email
S/MIME, OpenPGP ...

Network Management
SNMP, MIB, LDAP, Monitoring ...

Compression & Encryption
Zip, Gzip, Jar, AES ...

S

& S
7 SharePoint 2010 E0ewoHi BPSE Co+BUILDER =, -

— Java

The Market Leader in Internet Communications, Security, & E-Business Components

Each day, as you click around the Web or use any connected
application, chances are that directly or indirectly some bits are
flowing through applications that use our components, on a server,
on a device, or right on your desktop. It's your code and our code
working together to move data, information, and business. We
give you the most robust suite of components for adding Internet
Communications, Security, and E-Business Connectivity to

connectivity

i?owaraé b7

any application, on any platform, anywhere, and you do the rest.

Since 1994, we have had one goal: to provide the very best

connectivity solutions for our professional developer customers.
With more than 100,000 developers worldwide using our software

and millions of installations in almost every Fortune 500 and

Global 2000 company, our business is to connect business, one

application at a time.

To learn more please visit our website - www.nsoftware.com

Microsoft .NET, | Java | ActiveX | C++ | Delphi | C++ Builder | PHP | Objective-C | Windows | Windows Mobile | Mac OS X | Linux/Unix | iPhone

www.nsoftware.com

Tracing Causality in Windows Store Apps
The described approach would still hold up in a Windows Store sce-
nario if the System.Diagnostics.StackTrace API were available. For
better or for worse, it isnt, which means you cant get any information
about call stack frames above the current one from within your code.
Thus, even while TPL events are still supported, a call to TaskWaitStart
or TaskWaitEnd is buried deep in the framework method calls, so you
have no information about your code that caused these events to fire.
Luckily, .NET for Windows Store apps (as well as the NET
Framework 4.5) provides CallerMemberNameAttribute
(bit.ly/PsDHOp) and its peers CallerFilePath Attribute and CallerLine-
NumberAttribute. When optional method arguments are deco-
rated with these, the compiler will initialize the arguments with
corresponding values at compile time. For example, the following

code will output “Main() in ¢:\Full\Path\To\Program.cs at line 14™:

static void Main(string[] args)
{

LogCurrentFrame();
}

static void LogCurrentFrame([CallerMemberName] string name = null,
[CallerFilePath] string path = null, [CallerLineNumber] int Tine = 0)
{
Console.WriteLine("{0}() in {1} at Tine {2}",
}

This only allows the logging method to get information about
the calling frame, which means you have to ensure it gets called
from all the methods you want captured in the causality chain.
One convenient location for this would be decorating each await
expression with a call to an extension method, like this:

await WorkAsync().WithCausality();

Here, the WithCausality method captures the current frame,
appends it to causality chain and returns a Task or awaitable
(depending on what WorkAsync returns), which upon completion
of the original one removes the frame from the causality chain.

As multiple different things can be awaited, there should be
multiple overloads of WithCausality. This is straightforward for a

Task<T> (and even easier for a Task):

public static Task<T> WithCausality<T>(this Task<T> task,

[CallerMemberName] string member = null,

[CallerFilePath] string file = null,

[CallerLineNumber] int Tine = 0)
{

var removeAction =

AddFrameAndCreateRemoveAction(member, file, Tine);

return task.ContinueWith(t => { removeAction(); return t.Result; });

}

However, its trickier for custom awaitables. As you might know,
the C# compiler allows you to await an instance of any type that
follows a particular pattern (see bit.ly/AmAUIF), which makes writing
overloads that would accommodate any custom awaitable impossible
using static typing only. You may make a few shortcut overloads for
awaitables predefined in the framework, such as Yield Awaitable or
Configured TaskAwaitable—or the ones defined in your solution—
but in general you have to resort to the Dynamic Language Runtime
(DLR). Handling all the cases requires a lot of boilerplate code,
so feel free to look into the accompanying source code for details.

Its also worth noting that in case of nested awaits, WithCausality
methods will be executed from inner to outer (as await expressions
are evaluated), so care must be taken to assemble the stack in the
correct order.

name, path, line);

38 msdn magazine

Viewing Causality Chains

Both described approaches keep causality information in memory
as lists of call stack segments or frames. However, walking them
and concatenating into a single causality chain for display is
tedious to do by hand.

The easiest option to automate this is to leverage the debugger eval-
uator. In this case, youauthor a public static property (or method) on
a public class, which, when called, walks the list of stored segments
and returns a concatenated causality chain. Then you can evaluate this
property during debugging and see the result in the text visualizer.

Unfortunately, this approach doesn't work in two situations.
One occurs when the topmost stack frame is in native code, which
is quite a common scenario for debugging application hangs, as
kernel-based synchronization primitives do call into native code.
The debugger evaluator would just display, “Cannot evaluate
expression because the code of the current method is optimized”
(Mike Stall describes these limitations in detail at bit.ly/SLINuT).

The other issue is with post-mortem debugging. You can actu-
ally open a mini-dump in Visual Studio and, surprisingly (given
that theres no process to debug, only its memory dump), you're
allowed to examine property values (run property getters) and
even call some methods! This amazing piece of functionality is
built into the Visual Studio debugger and works by interpreting a
watch expression and all methods that it calls into (in contrast to
live debugging, where compiled code gets executed).

Obviously, there are limitations. For example, while doing dump
debugging, you can't in any way call into native methods (meaning
that you can't even execute a delegate, because its Invoke method is
generated in native code) or access some restricted APIs (such as
System.Reflection). Interpreter-based evaluation is also expectedly
slow—and, sadly, due to a bug, the evaluation timeout for dump
debugging islimited to 1 second in Visual Studio 2012, regardless of
configuration. This, given the number of method calls required to
traverse the list of stack trace segments and iterate over all frames,
prohibits the use of the evaluator for this purpose.

Luckily, the debugger always allows access to field values (even
in dump debugging or when the top stack frame is in native code),
which makes it possible to crawl through the objects constituting a
stored causality chain and reconstruct it. This is obviously tedious,
so I wrote a Visual Studio extension that does this for you (see
accompanying sample code). Figure 2 shows what the final experi-
encelooks like. Note that the graph on the right is also generated by
this extension and represents the async equivalent of Parallel Stacks.

Comparison and Caveats

Both causality-tracking approaches are not free. The second one
(caller-info-based) is more lightweight, as it doesn't involve the
expensive StackTrace API, relying instead on the compiler to provide
caller frame information during compile time, which means “free”
in a running program. However, it still uses eventing infrastructure
with its cost to support AsyncLocal<T>. On the other hand, the first
approach provides more data, not skipping frames without awaits. It
also automatically tracks several other situations where Task-based
asynchrony arises without await, such as the Task.Run method; on
the other hand, it does not work with custom awaitables.

Asynchronous Programming

www.bit.ly/AmAUIF
www.bit.ly/SLlNuT

WHAT IF DEVELOPING
FORHUNDREDS OF
SERVERS WAS AS
EASY AS ONE?

ITIS...

MEET FATCLOUD

The next generation cloud enabled application platform
for .NET is here. For a free three-node developer download
visit FATCLOUD.COM.

FAT

=
| —

Tube

www.fatcloud.com

An additional benefit of the TPL events-based tracker is that
existing asynchronous code doesn't have to be moditfied, while
for the caller info attributes-based approach, you have to alter
every await statement in your program. But only the latter supports
Windows Store apps.

The TPL events tracker also suffers from alot of boilerplate frame-
work code in stack trace segments, though it can be easily filtered
out by frame namespace or class name. See the sample code for a
list of common filters.

Another caveat concerns loops in asynchronous code. Consider

the following snippet:

async static Task Loop()
{
for (int i =0; 1 < 10; i++)
{
await FirstAsync();
await SecondAsync();
await ThirdAsync();
}
}

By the end of the method, its causality chain would grow to
more than 30 segments, repeatedly alternating between FirstAsync,
SecondAsync and ThirdAsync frames. For a finite loop, this may
be tolerable, though it’ still a waste of memory to store duplicate
frames 10 times. However, in some cases, a program might intro-
duce a valid infinite loop, for example, in the case of a message
loop. Moreover, infinite repetition might be introduced without
loop or await constructs—a timer rescheduling itself on every tick
is a perfect example. Tracking an infinite causality chain is a sure
way to run out of memory, so the amount of data stored has to be
reduced to a finite amount somehow.

This issue doesn't affect the caller-info-based tracker, as it
removes a frame from the list immediately upon the start of a
continuation. There are two (combinable) approaches to fix this
for the TPL events scenario. One is to cut older data based on the
rolling maximum storage amount. The other is to represent loops
efficiently and avoid duplication. For both approaches, you might
also detect common infinite loop patterns and cut the causality
chain explicitly at these points.

Feel free to refer to the accompanying sample project to see how
loop folding might be implemented.

As stated, the TPL events API only lets you capture a cau-
sality chain, not a graph. This is because the Task.WaitAll and
Task. WhenAll methods are implemented as countdowns, where
continuation is scheduled only when the last task comes in com-
pleted and the counter reaches zero. Thus, only the last completed
task forms a causality chain.

Wrapping Up
In this article, you've learned the difference between a call stack,
areturn stack and a causality chain. You should now be aware of exten-
sion points that the NET Framework provides to track scheduling
and execution of asynchronous operations and be able to leverage
these to capture and preserve causality chains. The approaches
described cover tracking causality in classic and Windows Store
apps, both in live and post-mortem debugging scenarios. You also
learned about the concept of async-local storage and its possible
implementation for Windows Store apps.
Now you can go ahead and incorporate causality tracking into
your asynchronous codebase or

= tmp3C2mpdgml B X
Show Related ftems = Layout= 42

*aFlowDemoSimple Pragram - PalnnerAgmel)
= static vold Main(stcing(] acgs) +
t -
FlowReservoir.Enroll{):
Task.Uaitkll(Fiesc (), Second{), Loopil):
)

= async static Task Firsc()

avait Task.Delay(1): etz sy
avait Common()s

¥

Fiaralimgn i e

Bitamttmsin Besgram Samree
{ ¢ Ipezsg ol robn temobmsn bngrm

S-0wmas=ge S aze.

use async-local storage in parallel
calculations; explore the event
sources that the NET Framework
4.5 and NET for Windows Store
apps ofter to build something new,
such as a tracker for unfinished
tasks in your program; or use this

Share= B8 6325 Legend

: SRS
= msync static Task Second() A Fiin
t Eotestogn et

b}
o teaton g o

e e i
o ey

extension point to fire your own

await Task.Delay(1); R
avait Cosmon():

= async static Tesk Common() EE =t
t
avait Task.Delay(l):
] while (true) { }
¥

-~ async static Task Loop()
t
for (int 1 = O0; 1 € 105 1+4)
await Task.Delay(l):

Watch 1

it T hmt Frpnm s Byl
P e -

events to fine-tune the perfor-
mance of your application. u

AnpRriv (ANDREW) STASYUK is a software
o development engineer in test II on the
Tipe Managed Languages team at Microsoft.

avait Common(): s as
) &

W% - 4 3

Output

Show output from: AgyncFlow - = m

Execution flow for thresd 336d:

FlovbesoSimple. Progras. Common()

1 3

FlowDenoSinple. Progras. Comnon () € d:\Pe AsyncFlow Progras. ca: line

FlovbemoSimple. Progras. Loop(.) & d:\l
O 10 times |
[e
FlouDenoSinple. Frogras. Loop() & di\Pro Fl P

Flow\F]

cailine
3

FlowDenoSinple. Progran. Main(Steing[] args) & di\P: AsyncFlow\F:

Pre ©)= dWPraj = thing

13 - OxDE byves (0x4C IL)
Frogeas.cs:line 4l:colusn 13 ~ Ox168 bytes (0xC8 IL)

A7 ~ OxFB bytes (0x71 IL)

\Progras.cs:line 161colusn 13 — OxAE bytes (0x20 IL)

He has seven years of experience as a
participant, task author, jury member, and
coach at various national and international
programming contests. He worked in
financial software development at Paladyne/
Broadridge Financial Solutions Inc. and
Deutsche Bank AG before movingto Microsofi.
His main interests in programming are
algorithms, parallelism and brainteasers.

THANKS to the following technical
experts for reviewing this article:

Figure 2 Causality Chain for an Asynchronous Method and “Parallel” Causality for All Threads

40 msdn magazine

Vance Morrison and Lucian Wischik

Asynchronous Programming

Nevron Data Visualization

The leading data visualization components for a wide range of .NET platforms.

14+ years of refinement, complete feature sets, highly customizable design and great support.

530 £16 166 C 0 C3 £
uuuuu = v

=
=
= I I
cllddd Sl

N>
Nevron Vision for .NET Nevron Vision for SharePoint Nevron Vision for SSRS
Incorporates components The leading data The leading data visualization
that help you create visualization web parts for report items for SSRS 2005,
enterprise grade digital SharePoint 2007 and 2010. 2008 and 2012.
dashboards, scorecards, Helps you convert your SharePoint Helps you deliver deeper
diagrams, maps, MMI pages into interactive data insights with more
interfaces and much more. dashboards and reports. engaging looks.

ORAEE e &

Nevron components integrate seamlessly in Web and Desktop .NET applications,
SQL Server Reporting Services 2005/2008/2012 reports and SharePoint 2007/2010
portals and deliver an unmatched set of enterprise-grade features. That is why
Nevron is the trusted vendor by many Fortune 500 companies for their most
demanding data visualization needs.

Make sure that your data is making the visual statement
it deserves by downloading your free evaluation copy

from www.nevron.com today.

Microsoft, .NET, ASP.NET, SharePoint, SQL Server and Visual Studio are registered trademarks of Microsoft Corporation in the United States and/or other countries.
Some Nevron components only available for certain platforms. For details visit www.nevron.com or send an email to support@nevron.com.

www.nevron.com

ASP.NET

Buildir
Comet
N tr
-ramework

Derrick Lau

Comet is a technique for pushing content froma Web
server to a browser without an explicit request, using long-lived
AJAX connections. It allows for a more interactive UX and uses
less bandwidth than the typical server round-trip triggered by a
page postback to retrieve more data. Although there are plenty
of Comet implementations available, most are Java-based. In this
article T'll focus on building a C# service based on the cometbox
code sample available at code.google.com/p/cometbox.

There are newer methods for implementing the same behavior
using HTMLS5 features such as WebSockets and server-side events,
but these are available only in the latest browser versions. If you
must support older browsers, Comet is the most-compatible

This article discusses:

+ Combining .NET and Windows services technologies with AJAX
to enable Comet-style communication

« Pitfalls inimplementing Comet-style architecture
« Testing the application
Technologies discussed:

ASPNET 4, Windows Services, C#, JavaScript, JSON,
Microsoft .NET Framework

Code download available at:

archive.msdn.microsoft.com/mag201302Comet

42 msdn magazine

gaSimple
Application
e Microsoft.N

solution. However, the browser must support AJAX by implementing
the xmIHttpRequest object; otherwise it won't be able to support
Comet-style communication.

The High-Level Architecture

Figure 1 shows basic Comet-style communication, while
Figure 2 depicts the architecture of my example. Comet uses the
browser’s xmlHttpRequest object, which is essential for AJAX
communication, to establish a long-lived HTTP connection
to a server. The server holds the connection open, and pushes
content to the browser when available.

Between the browser and the server is a proxy page, which resides
in the same Web application path as the Web page containing the
client code and does nothing except forward the messages from
browser to server and from server to browser. Why do you need a
proxy page? I'll explain in a bit.

The first step is to select a format for the messages exchanged
between the browser and server—JSON, XML or a custom format.
For simplicity’s sake, I picked JSON because its naturally supported
in JavaScript, jQuery and the Microsoft NET Framework, and can
transmit the same amount of data as XML using fewer bytes and,
therefore, less bandwidth.

To set up Comet-style communication, you open an AJAX con-
nection to the server. The easiest way to do this is to use jQuery
because it supports multiple browsers and provides some nice
wrapper functions such as $.ajax. This function is essentially a

http://code.google.com/p/cometbox
http://archive.msdn.microsoft.com/mag201302Comet

Proxy

[Browser j [] [Comet Server]
| |
" alAx Request #1 !

|
|
) |
| |
|
AJAX Request #1 |
i.- -

@ -

N
Long-Lived HTTP
Request Held

Message to

Comet Response #1 Broadcast Received

|

|

|

|

)

|

Comet Response #1 :
Iii I
|

|

|

1

Figure 1 Comet-Style Communication

wrapper for each browsers xmlHttpRequest object, and neatly pro-
vides event handlers that can be implemented to process incoming
messages from the server.

Before starting the connection, you instantiate the message
to send. To do this, declare a variable and use JSON.stringify to
format the data as a JSON message, as shown in Figure 3.

Next, initialize the function with the URL to connect to, the
HTTP method of communication to use, the communication
style and the connection timeout parameter. JQuery supplies this
functionality in a library call named ajaxSetup. I set the timeout
in this example to 10 minutes because I'm only building a proof
of concept solution here; you can change the timeout setting to
whatever you want.

Now open a connection to the server using the jQuery $.ajax
method, with the definition of the success event handler as the
only parameter:

$.ajax({
success: function (msg) {
/] Alert("ajax.success().");

if (msg == null || msg.Message == null) {
getResponse();
return;

}

The handler tests the message object returned to ensure it
contains valid information before parsing; this is necessary because
if an error code is returned, jQuery will fail and display an unde-
fined message to the user. Upon a null message, the handler should

recursively call the AJAX function again and return; I've found that
adding the return stops the code from continuing. If the message is
OK, you simply read the message and write the contents to the page:
$("#_receivedMsglabel").append(msg.Message + "
");
getResponse();
return;
}
1
This creates a simple client that illustrates how Comet-style
communication works, as well as providing a means for run-
ning performance and scalability tests. For my example, I put the
getResponse JavaScript code in a Web user control and registered
itin the codebehind so the AJAX connection opens immediately
when the control is loaded onto the ASPNET page:

public partial class JqueryJdsonCometClientControl :
System.Web.UI.UserControl
{
protected void Page_Load(object sender, EventArgs e)
{
string getResponseScript =
@"<script type=text/javascript>getResponse();</script>";
Page.ClientScript.RegisterStartupScript(GetType(),
"GetResponseKey", getResponseScript);
}
}

The Server
Now that I have a client that can send and receive messages, T'll
build a service that can receive and respond to them.

I tried implementing several different techniques for Comet-style
communication, including the use of ASPNET pages and HTTP
handlers, none of which were successful. What I couldn't seem to
do was geta single message to broadcast to multiple clients. Luckily,
after a lot of research I stumbled across the cometbox project and
found it to be the easiest approach. I did some tinkering to make
it run as a Windows service so it would be easier to use, then gave
it the ability to hold a long-lived connection and push content to
the browser. (Unfortunately, in doing so, I wrecked some of the
cross-platform compatibility.) Finally, I added support for JSON
and my own HTTP content message types.

To get started, create a Windows service project in your Visual
Studio solution and add a service installer component (you'll
find the instructions at bit.ly/TrHQ80) so you can turn your service
on and off in the Services applet of the Administrative Tools in
Control Panel. Once this is done, you need to create two threads:
one that will bind to the TCP port and receive as well

s N e N e
Web Browser ASP.NET Proxy

ASP.NET Page

Web User Control

I $.ajax >
o

L

A J & J o

Windows Service

TCP Listener (Holds

TCP Network

N
as transmit messages; and one that will block on a

message queue to ensure that content is transmitted
only when a message is received.

First, you must create a class that listens on the TCP
port for new messages and transmits the responses.
Now, there are several styles of Comet communi-
cation that can be implemented, and in the imple-
mentation theres a Server class (see the code file
Comet_Win_Service HT'TP\Server.cs in the sample
code) to abstract these. For simplicity’s sake, how-
ever, I'll focus on whats required to do a very basic

receive of a JSON message over HTTP, and to hold

Figure 2 Architecture of the Comet Application

msdnmagazine.com

the connection until theres content to push back.

February 2013 43

www.bit.ly/TrHQ8O
www.msdnmagazine.com

Figure 3 Format the Data as a JSON Message

function getResponse() {
var currentDate = new Date();
var sendMessage = JSON.stringify({
SendTimestamp: currentDate,
Message: "Message 1"
)8
.ajaxSetup({
url: "CometProxy.aspx",
type: "POST",
async: true,
global: true,
timeout: 600000

-

In the Server class, I'll create some protected members to hold
objects I'll need to access from the Server object. These include
the thread that will bind to and listen on the TCP port for HT'TP
connections, some semaphores and a list of client objects, each of
which will represent a single connection to the server. Of impor-
tance is _isListenerShutDown, which will be exposed as a public
property so it can be modified in the service Stop event.

Next, in the constructor, I'll instantiate the TCP Listener object
against the port, set it for exclusive use of the port, and then start

Figure 4 Listening for Client Connections

private void Loop()
{
try
{
while (true)
{
TepClient client = null;
bool isServerStopped = false;
_listenerMutex.WaitOne();
isServerStopped = _isListenerShutDown;
_listenerMutex.ReleaseMutex();
if (!isServerStopped)
{
client = Tistener.AcceptTcpClient();
}
else
{
continue;
}

Trace.WriteLineIf(_traceSwitch.TraceInfo, "TCP client accepted.”,
"COMET Server");

bool addClientFlag = true;

Client dc = new Client(client, this, authconfig, _currentClientld);
_currentClientId++;
foreach (Client currentClient in clients)
{
if (dc.TCPClient == currentClient.TCPClient)
{

Tock (_Tock0bj)
{
addClientFlag = false;
}
}

}

if (addClientFlag)
{
Tock (_Tock0bj)
{
clients.Add(dc);
}
}

44 msdn magazine

it. Then I'll start a thread to receive and handle clients that connect
to the TCP listener.

The thread that listens for client connections contains a while
loop that continually resets a flag indicating whether the service
Stop event was raised (see Figure 4). I set the first part of this loop
to a mutex to block on all listening threads to check whether the
service Stop event was raised. If so, the _isListenerShutDown prop-
erty will be true. When the check completes, the mutex is released
and if the service is still running, I call the TepListener. Accept-
TepClient, which will return a TepClient object. Optionally, I
check existing TepClients to ensure I don't add an existing client.
However, depending on the number of clients you expect, you
might want to replace this with a system where the service generates
a unique ID and sends it to the browser client, which remembers
and resends the ID each time it communicates with the server to
ensure it holds only a single connection. This can become problem-
atic, though, if the service fails; it resets the ID counter and could
give new clients already-used IDs.

Finally, the thread goes through the list of clients and removes
any that are no longer alive. For simplicity, I put this code in the
method that’s called when the TCP listener accepts a client connec-
tion, but this can affect performance when the number of clients
gets into the hundreds of thousands. If you intend on using this in
public-facing Web applications, I suggest adding a timer that fires
every so often and doing the cleanup in that.

When a TepClient object is returned in the Server class Loop
method, its used to create a client object that represents the browser
client. Because each client object is created in a unique thread, as
with the server constructor, the client class constructor must wait
on a mutex to ensure the client hasn't been closed before continu-
ing. Afterward, I check the TCP stream and begin reading it, and
initiate a callback handler to be executed once the read has been
completed. In the callback handler, I simply read the bytes and
parse them using the Parselnput method, which you can see in
the sample code provided with this article.

Figure 5 The Default XML Message Handler

if (request.Headers["Content-Type"].Contains("xml"))

Trace.WriteLineIf(_traceSwitch.TraceVerbose, "Received XML content from client.");
_messageFormat = MessageFormat.xml;

#region Process HTTP message as XML

try
(
/1 Picks up message from HTTP
XmiSerializer s = new XmlSerializer(typeof(Derrick.Web.SIServer.SIRequest));

// Loads message into object for processing
Derrick.Web.SIServer.SIRequest data =
(Derrick.Web.SIServer.SIRequest)s.Deserialize(mem);
}
catch (Exception ex)
(
Trace.WriteLineIf(_traceSwitch.TraceVerbose,
"During parse of client XML request got this exception: " + ex.ToString());
}

fendregion Process HTTP message as XML

ASPNET

Does yo ur Team do more

Free Trial and Single User

tha N J USt traCk b ug S ¢ ? FreePack™ available at

www.alexcorp.com
-

7

Alexsys Team does! Alexsys Team 2 is a multi-user Team management system that provides a powerful o
yet easy way to manage all the members of your team and their tasks - including defect tracking. a
Use Team right out of the box or tailor it to your needs.

Track all your project tasks in one database so
you can work together to get projects done.

- Quality Control / Compliance Tracking

- Project Management

- End User Accessible Service Desk Portal
- Bugs and Features

- Action Items

- Sales and Marketing
- Help Desk

New in Team 2.11 L

- Full Windows 7 Support
- Windows Single Sign-on
- System Audit Log

- Trend Analysis

- Alternate Display Fields for Data Normalization T =

- Lookup Table Filters B s # m 8 w»

- XML Export Actonliem AdmnSenie Defect Document... EmadSupport Enhancement
- Network Optimized for Enterprise Deployment [o @ P =
: e w1

Service Desk Feature

- Fully Secure

- Unlimited Users Self Registered or Active Directory
- Integrated ito Your Web Site

- Fast/ AJAX Dynamic Content

- Unlimited Service Desks Lamiini
- Visual Service Desk Builder

S
we - Save - Cancel | Goto I |
Edit Tables | Refresh |

T heH PrieRy Dy Open

Team 2 Features | — : =

Datwct S

Difact Vaesson

- Windows and Web Clients

- Multiple Work Request Forms Z ol Bbets e, (0 1 | P e paey T - —
; . 4 =" 5 : = o Vecsion
- Customizable Database Tl = — —
- Point and Click Workflows — =
& 8 L Do immend dllon Dl&dul‘ﬁ-—
- Role Based Security -

- Clear Text Database Vo e scme ol coniurng Aecss T i Exchargs
- Project Trees

- Time Recording

- Notifications and Escalations
- Outlook Integration

Free Trial and Single User FreePack™ available at www.alexcorp.com.

FreePack™ includes a free single user Team Pro and Team-Web license.
Need more help? Give us a call at 1-888-880-ALEX (2539).

Team 2 works with its own standard database, while Team Pro works with Microsoft SQL, MySQL, and Oracle Servers.

Team 2 works with Windows 7/2008/2003/Vista/XP.
Team-Web works with Internet Explorer, Firefox, Netscape, Safari, and Chrome.

www.alexcorp.com

Figure 6 Deserializing a JSON Message

else if (request.Headers["Content-Type"].Contains("json"))
{
Trace.WriteLineIf(_traceSwitch.TraceVerbose,
"Received json content from client.");
_messageFormat = MessageFormat.json;

#region Process HTTP message as JSON

try
{
JavaScriptSerializer jsonSerializer = new JavaScriptSerializer();
ClientMessage3 clientMessage =
JjsonSerializer.Deserialize<ClientMessage3>(request.Body);
_lastUpdate = clientMessage.SendTimestamp;
Trace.WriteLinelf(_traceSwitch.TraceVerbose,
"Received the following message: ");
Trace.WriteLineIf(_traceSwitch.TraceVerbose, "SendTimestamp: " +
clientMessage.SendTimestamp.ToString());
Trace.WriteLineIf(_traceSwitch.TraceVerbose, "Browser: " +
clientMessage.Browser);
Trace.WriteLinelf(_traceSwitch.TraceVerbose, "Message: " +
clientMessage.Message);

}
catch (Exception ex)
{
Trace.WriteLineIf(_traceSwitch.TraceVerbose,
"Error deserializing JSON message: " + ex.ToString());

fendregion Process HTTP message as JSON

In the Parselnput method of the Client class, I build a Request
object with members that correspond to the different parts of the
typical HTTP message and populate those members appropri-
ately. First, I parse the header information by searching for the
token characters, such as “\r\n; determining the pieces of header
information from the format of the HT'TP header. Then I call the
ParseRequestContent method to get the body of the HT TP message.
The first step of Parselnput is to determine the method of HTTP
communication used and the URL the request was sent to. Next,
the HTTP message headers are extracted and stored in the Request
object Headers property, which isa Dictionary of header types and
values. Once again, take alook at the downloadable sample code to
see how this is done. Finally, Iload the contents of the request into
the Request objects Body property, which is just a String variable
containing all the bytes of the content. The content has yet to be
parsed at this point. At the end, if there are any problems with the

Figure 7 Content-Type "Ping”

else if (request.Headers["Content-Type"].Contains("ping"))
{
string msg = request.Body;
Trace.Writelinelf(_traceSwitch.TraceVerbose, "Ping received.");
if (msg.Equals("PING"))
{
SendMessageEventArgs args = new SendMessageEventArgs();
args.Client = this;
args.Message = "PING";
args.Request = request;
args.Timestamp = DateTime.Now;
SendResponse(args);

46 msdn magazine

HTTP request received from the client, I send out an appropriate
error response message.

I separated the method for parsing the HTTP requests content
so I could add in support for different message types, such as plain
text, XML, JSON and so forth:

public void ParseRequestContent()

{

if (String.IsNull0rEmpty(request.Body))
{

Trace.WriteLineIf(_traceSwitch.TraceVerbose,
"No content in the body of the request!");
return;
}

try
{
First the contents are written toa MemoryStream so, if necessary,
they can be deserialized into object types depending on the request’s
Content-Type, as certain deserializers only work with streams:

MemoryStream mem = new MemoryStream();

mem.Write(System.Text.Encoding.ASCII.GetBytes(request.Body), 0,
request.Body.Length);

mem. Seek(0, 0);

if (!lrequest.Headers.ContainsKey("Content-Type"))
{
_lastUpdate = DateTime.Now;
_messageFormat = MessageFormat.json;
}
else
{

As shown in Figure 5, I kept the default action of handling
XML-formatted messages because XML is still a popular format.

For Web applications, however, I highly recommend formatting
the messages in JSON as, unlike XML, it doesn't have the over-
head of beginning and cancel tags and its natively supported in
JavaScript. I just use the Content-Type header of the HT TP request
to indicate whether the message was sent in JSON, and deserialize
the contents using the System.Web.Script.Serialization namespace
JavaScriptSerializer class. This class makes it very easy to deserialize
aJSON message into a C# object, as shown in Figure 6.

Finally, for testing purposes I added a ping Content-Type that simply
responds with a text HTTP response containing only the word PING.
This way I can easily test to see if my Comet server is running by send-
ingita JSON message with Content-Type “ping, asshown in Figure 7.

Ultimately, ParseRequestContent is just a string parsing method—
nothing more, nothing less. As you can see, parsing XML dataisalittle
more involved because the content has to be written to a Memory-
Stream first and then deserialized, using the XmlSerializer class, into
a class created to represent the message from the client.

To better organize the source code, I create a Request class,
shown in Figure 8, that simply contains members to hold the
headers and other information sent in the HT TP request in a manner
easily accessible within the service. If you wish, you can add helper
methods to determine if the request has any content or not, and
authentication checks, too. However, I didn't do this here to keep
this service simple and easy to implement.

The Response class, like the Request class, contains methods to
store the HT TP response information in a manner easily accessible
by a C# Windows service. In the SendResponse method, I added
logic to attach custom HTTP headers as required for cross-origin
resource sharing (CORS), and had those headers loaded from a

ASPNET

@ EXpeﬂse DaShband January 1 - December 31, 2011

Last Year Year-to-Date Month-to- Date Last 7 Days
' -lll - ‘, 1.
s el gmRRRRRE | ol)| EREG :
pagunpiniall !!!!!!!! Al nm..nm.ml EEmic=
$10.5M $9.4M $799.5K = $487.5K
2 $52.2K (0.5%) 766.4K (3% v$2.24K (2 +$9.77M (8%)
Total Expenses From Target

$9,221,481

Breakdown

4$6,143,435
(5%)

M Actual == Projected

Employee Wages and Benefits P ¢ ¢ 15
w__—:’_—__:_-cm\.«.—-m;ﬂ-:ﬂ'—"

Advertising and Promotion

£1,634,880

Consulting and Contracted Services T BRI

Equipment Leases
Bank Charges and Interest I 50559
Office and General I 536220
e
Professional Fees B 5327714
Rent and Utilites

Miscellaneous [l $108.568

2011
-|II = ll'l'-
—--—----
= = R
Jan | Feb | Mar | Apr May Jun Jul ﬁ_:‘

Sales Analysis

$100K

$90K

$80K

$70K

$60K

$50K

$40K

$30K r

$20K

$10K

componentart.com/windows8

-8,698

Jan

| |
L g;gl ;;3

-2,698
Feb

4,701

Mar

'\

|

[

4

Apr May

www.componentart.com/windows8

Figure 8 The Request Class

public class Request
{
public string Method;
public string Url;
public string Version;
public string Body;
public int Contentlength;
public Dictionary<string, string> Headers = new Dictionary<string, string>();

public bool HasContent()

{
if (Headers.ContainsKey("Content-Length"))
{
ContentlLength = int.Parse(Headers["Content-Length"]);
return true;
}
return false;
}

configuration file so they can be easily modified. The Response
class also contains methods to output messages for some common
HTTP statuses, such as 200, 401, 404, 405 and 500.

The SendResponse member of the Response class simply writes
the message to the HT TP response stream that should still be alive,
as the timeout set by the client is quite long (10 minutes):

public void SendResponse(NetworkStream stream, Client client)
{

As shown in Figure 9, the appropriate headers are added to the
HTTP response to fit with the W3C specification for CORS. For
simplicity, the headers are read from the configuration file so the
header contents can be easily modified.

Now I add the regular HT'TP response headers and content, as
shown in Figure 10.

Here the entire HTTP response message, which was built as a
String, is now written to the HTTP response stream, which was
passed in as a parameter to the SendResponse method:

byte[] htext = Encoding.ASCII.GetBytes(r.ToString());
stream.Write(htext, 0, htext.lLength);

Transmitting Messages
The thread to transmit messages is essentially nothing more than
a While loop that blocks on a Microsoft message queue. It has a
SendMessage event thats raised when the thread picks up a mes-
sage from the queue. The event is handled by a method in the server
object that basically calls the SendResponse method of each client,
thus broadcasting the message to every browser connected to it.
The thread waits on the appropriate message queue until theres
a message placed on it, indicating the server has some content it
wishes to broadcast to the clients:

Message msg = _intranetBannerQueue.Receive();

// Holds thread until message received

Trace.WriteLinelf(_traceSwitch.Tracelnfo,
"Message retrieved from the message queue.");

SendMessageEventArgs args = new SendMessageEventArgs();

args.Timestamp = DateTime.Now.ToUniversalTime();

When the message is received, its converted into the expected
object type:

msg.Formatter = new XmiMessageFormatter(new Type[] { typeof(string) });

string cometMsg = msg.Body.ToString();
args.Message = cometMsg;

After determining what will be sent to the clients, I raisea Windows
event on the server indicating theres a message to be broadcast:

48 msdn magazine

if (SendMessageEvent != null)
{
SendMessageEvent(this, args);
Trace.WriteLineIf(_traceSwitch.TraceVerbose,
"Message Toop raised SendMessage event.");
}

Next, I need amethod that will build theactual HT'TP response body—
the contents of the message the server will broadcast to all the clients.
The preceding message takes the message contents dumped onto the
Microsoft message queue and formats itasa JSON object for transmis-
sion to the clients viaan HT'TP response message, asshown in Figure 11.

Next, I need to instantiate an instance of the JavaScriptSerializer
object to put the message contents into JSON format. I add the
following try/catch error handling because sometimes there are
difficulties instantiating an instance of a JavaScriptSerializer object:

try
{
JsonSerializer = new JavaScriptSerializer();
}
catch (Exception ex)
{

errorInSendResponse = true;
Trace.WriteLine("Cannot instantiate JSON serializer: " + ex.ToString());
}

Figure 9 Adding the CORS Headers

if (client.Request.Headers.ContainsKey("Origin"))

AddHeader("Access-Control-Allow-Origin", client.Request.Headers["Origin"]);
Trace.WriteLineIf(_traceSwitch.TraceVerbose,
"Access-Control-Allow-0rigin from client: " +
client.Request.Headers["0rigin"]);
}
else
(
AddHeader("Access-Control-Allow-0rigin",
ConfigurationManager.AppSettings["RequestOriginUri™]);
Trace.WriteLineIf(_traceSwitch.TraceVerbose,
"Access-Control-Allow-Origin from config: " +
ConfigurationManager.AppSettings["RequestOriginUri™]);
}

AddHeader("Access-Control-AlTow-Methods", "POST, GET, OPTIONS");
AddHeader("Access-Control-Max-Age", "1000");

// AddHeader("Access-Control-Allow-Headers", "Content-Type");

string allowHeaders = ConfigurationManager.AppSettings["AllowHeaders"];

/] AddHeader("Access-Control-AlTow-Headers", "Content-Type, x-requested-with");
AddHeader("Access-Control-AlTow-Headers", allowHeaders);

StringBuilder r = new StringBuilder();

Figure 10 Adding the Regular HTTP Response Headers

r.Append("HTTP/1.1 " + GetStatusString(Status) + "\r\n");

r.Append("Server: Derrick Comet\r\n");

r.Append("Date: " + DateTime.Now.ToUniversalTime().ToString(
"ddd, dd MMM yyyy HH':'mm':'ss 'GMT'") + "\r\n");

r.Append("Accept-Ranges: none\r\n");

foreach (KeyValuePair<string, string> header in Headers)
{

r.Append(header.Key + ":
}

if (File != null)
(
r.Append("Content-Type: " + Mime + "\r\n");
r.Append("Content-Length: " + File.Length + "\r\n");
}
else if (Body.Length > 0)
{
r.Append("Content-Type: " + Mime + "\r\n");
r.Append("Content-Length: " + Body.Length + "\r\n");
}
r.Append("\r\n");

" + header.Value + "\r\n");

ASPNET

V|Sua| StUle YOUR BACKSTAGE PASS T

EXPERT SOLUTIONS FOR .NET DEVELOPERS

LAS VEGAS 2255 2013

MGM Grand Hotel & Casino

| CELEBRATING
{ TWENTY YEARS

70+ Sessions
and Workshops!

Visual Studio 2012 / .NET 4.5
ASPNET | SharePoint
SQL Server | Windows 8 / WinRT

Intense Take-Home
Training for Developers,
Software Architects
and Designers

|\! E AR " %mm@®™ . Register before
I »)N IS February 27
yuﬂ F 3 and save $300!
A 1 £ vslive.co m/lasvegas Use Promo Code TIP2
OE <
s FLIP OVER FOR MORE EVENT TOPICS @

GOL

o - =

i ‘. 7 G el . Sa- 2
s R T, TR L

www.vslive.com/lasvegas

Visual Studio

EXPERT SOLUTIONS FOR .NET DEVELOPERS

> ASPNET

> Azure / Cloud Computing

> Cross-Platform Mobile

> Data Management

»HTMLS5 / JavaScript

> Deep Dive: SharePoint / Office 365
> Deep Dive: SQL Server

> Windows 8 / WinRT

> WPF / Silverlight

> Visual Studio 2012 / .NET 4.5

vslive.com/lasvegas
Use Promo Code TIP2

BT Vil N AP

Microsoft bq Visual Studio msdn

YOUR BACKSTAGE PASS TO 1

DEVELOPER D
ON SHAREPO
SGL SERVER
TO YOU BY:

SharePoin

TRAINING FOR COLLABORATION

SQL Serve

TRAINING FOR DBAs AND IT PROS

Visual Studio

magazine

2013 TOUR

Scan the QR

code for more
information on
Visual Studio Live!

i

241105 MEDIAZ

www.vslive.com/lasvegas

Figure 11 Building the HTTP Response Body

public void SendResponse(SendMessageEventArgs args)
{

Trace.WriteLineIf(_traceSwitch.TraceVerbose,
"Client.SendResponse(args) called...");

if (args == null || args.Timestamp == null)

return;
}
if (_lastUpdate > args.Timestamp)
{
return;
}

bool errorInSendResponse = false;

JavaScriptSerializer jsonSerializer = null;

Then I create astring variable to hold the JSON-formatted message
and an instance of the Response class to send the JSON message.

[immediately do some basic error checking to make sure I'm
working with a valid HTTP request. Because this Comet service
spawns a thread for each TCP client, as well as for the server
objects, I felt it safest to include these safety checks every so often,
to make debugging easier.

Once I verify thatits a valid request, I put together a JSON message
tosend to the HTTP response stream. Note that I just create the JSON
message, serialize itand use it to create an HTML response message:

if (request.HasContent())

{

if (_messagefFormat == MessageFormat.json)

{
ClientMessage3 jsonObjectToSend = new ClientMessage3();
jsonObjectToSend.SendTimestamp = args.Timestamp;
jsonObjectToSend.Message = args.Message;
jsonMessageToSend = jsonSerializer.Serialize(jsonObjectToSend);
response = Response.GetHtmlResponse(jsonMessageToSend,

args.Timestamp, _messageFormat);

response.SendResponse(stream, this);

}

To hookitall together, I first create instances of the message loop
objectand the server loop object during the service Start event. Note
that these objects should be protected members of the service class
so that methods on them can be called during other service events.
Now the message loop send message event should be handled by
the server object BroadcastMessage method:

public override void BroadcastMessage(Object sender, SendMessageEventArgs args)
{
// Throw new NotImplementedException();
Trace.WriteLinelf(_traceSwitch.TraceVerbose,
"Broadcasting message [" + args.Message + "] to all clients.");

int num0fClients = clients.Count;
for (int i =0; i < num0OfClients; i++)
{
clients[i].SendResponse(args);
}
}

The BroadcastMessage just sends the same message to all clients.
If you wish, you can modity it to send the message only to the
clients you want; in this way you can use this service to handle, for
instance, multiple online chat rooms.

The OnStop method is called when the service is stopped. It subse-
quently calls the Shutdown method of the server object, which goes
through thelist of client objects that are still valid and shuts them down.

msdnmagazine.com

At this point, T have a reasonably decent working Comet service,
which I can install into the services applet from the command
prompt using the installutil command (for more information, see
bit.ly/0tQCBT7). You could also create your own Windows installer to
deploy it, as you've already added the service installer components
to the service project.

Why Doesn’t It Work? The Problem with CORS

Now, try setting the URL in the $.ajax call of the browser client
to point to the Comet service URL. Start the Comet service and
open the browser client in Firefox. Make sure you have the Firebug
extension installed in the Firefox browser. Start Firebug and
refresh the page; you'll notice you get an error in the console output
area stating “Access denied” This is due to CORS, where for security
reasons, JavaScript can't access resources outside the same Web
application and virtual directory its housing page resides in. For
example, ifyourbrowser client pageisin http://www.somedomain.com/
somedirl/somedir2/client.aspx, then any AJAX call made on that
page can go only to resources in the same virtual directory or a
subdirectory. This is great if you're calling another page or HTTP
handler within the Web application, but you don't want pages and
handlers to block on a message queue when transmitting the same
message to all clients, so you need to use the Windows Comet ser-
vice and you need a way of getting around the CORS restriction.

Figure 12 Writing to the HttpWebRequest Stream

Stream stream = null;
if (cometRequest.ContentLength > 0 && !cometRequest.Method.Equals("OPTIONS"))
{

stream = cometRequest.GetRequestStream();
stream.Write(bytes, 0, bytes.Length);
}

if (stream != null)
{

stream.Close();
}

// Console.WriteLine(System.Text.Encoding.ASCII.GetString(bytes));
System.Diagnostics.Trace.WriteLineIf(_proxySwitch.TraceVerbose,
"Forwarding message: " + System.Text.Encoding.ASCII.GetString(bytes));

Figure 13 Writing the Server Message
to the HTTP Response Stream

string msgSizeStr = ConfigurationManager.AppSettings["MessageSize"];
int messageSize = Convert.ToInt32(msgSizeStr);

byte[] read = new byte[messageSize];

/] Reads 256 characters at a time

int count = s.Read(read, 0, messageSize);

while (count > 0)

(
// Dumps the 256 characters on a string and displays the string to the console
byte[] actualBytes = new byte[count];
Array.Copy(read, actualBytes, count);
string cometResponseStream = Encoding.ASCII.GetString(actualBytes);
Response.Write(cometResponseStream);
count = s.Read(read, 0, messageSize);

}

Response.End();
System.Diagnostics.Trace.WriteLinelf(_proxySwitch.TraceVerbose, "Sent Message.");

s.Close();
}

February 2013 49

www.bit.ly/OtQCB7
www.msdnmagazine.com

Figure 14 Varying the Number of Users

Message Size Response Time

Users Repetitions (in Bytes) (in Milliseconds)
1,000 10 512 2.56
5,000 10 512 4404
10,000 10 512 18.406
15,000 10 512 26.368
20,000 10 512 36.612
25,000 10 512 48,674
30,000 10 512 64.016
35,000 10 512 79.972
40,000 10 512 99.49
45,000 10 512 122.777
50,000 10 512 137.434

To do this, T recommend building a proxy page in the same
virtual directory, whose only function is to intercept the HTTP
message from the browser client, extract all the relevant headers
and content, and build another HTTP request object that connects
to the Comet service. Because this connection is done on the
server, it isnt impacted by CORS. Thus, through a proxy, you can
keep a long-lived connection between your browser client and
the Comet service. Moreover, you can now transmit a single mes-
sage when it arrives on a message queue to all connected browser
clients simultaneously.

First, T take the HTTP request and stream it into an array
of bytes so I can pass it to a new HTTP request object that I'll
instantiate shortly:

byte[] bytes;
using (Stream reader = Request.GetBufferlessInputStream())
{
bytes = new byte[reader.Length];
reader.Read(bytes, 0, (int)reader.Length);
}

Next, I create a new HttpWebRequest object and point it to the
Comet server, whose URL I put in the web.config file so it can be
easily modified later:

string newUrl = ConfigurationManager.AppSettings["CometServer"];
HttpWebRequest cometRequest = (HttpWebRequest)HttpWebRequest.Create(newlrl);

160
140

120 /
100 /

. /

“ e

o rd

) -

0 Oi/

0 10,000

20000 30000 40000 50000 60,000

Figure 15 Response Times for Varying Numbers of Users for a
512-Byte Message

50 msdn magazine

This creates a connection to the Comet server for each user, but
since the same message is being broadcast to each user, you can just
encapsulate the cometRequest object in a double locking singleton
to reduce the connection load on the Comet server, and let IIS do
the connection load balancing for you.

Then I populate the HttpWebRequest headers with the same values
I received from the jQuery client, especially setting the KeepAlive
property to true so maintain along-lived HT TP connection, which
is the fundamental technique behind Comet-style communication.

Here I check for an Origin header, which is required by the W3C
specification when dealing with CORS-related issues:

for (int i = 0; i < Request.Headers.Count; i++)

{
if (Request.Headers.GetKey(i).Equals("Origin"))
{

containsOriginHeader = true;
break;
}
}

I then pass the Origin header on to the HttpWebRequest so the
Comet server will receive it:

if (containsOriginHeader)
{
// cometRequest.Headers["Origin"] = Request.Headers["Origin"];
cometRequest.Headers.Set("0rigin", Request.Headers["Origin"]);
}
else
{
cometRequest.Headers.Add("0rigin", Request.Url.AbsoluteUri);
}

System.Diagnostics.Trace.WriteLinelf(_proxySwitch.TraceVerbose,
"Adding Origin header.");

Next, I take the bytes from the content of the HTTP request
from the jQuery client and write them to the request stream of
the HttpWebRequest, which will be sent to the Comet server, as
shown in Figure 12.

After forwarding the message to the Comet server, I call the
GetResponse method of the HttpWebRequest object, which pro-
vides an HttpWebResponse object that allows me to process the
servers response. I also add the required HTTP headers that I'll
send with the message back to the client:

try
{
Response.ClearHeaders();
HttpWebResponse res = (HttpWebResponse)cometRequest.GetResponse();
for (int i =0; i < res.Headers.Count; i++)
{
string headerName = res.Headers.GetKey(i);
/1 Response.Headers.Set(headerName, res.Headers[headerName]);
Response.AddHeader(headerName, res.Headers[headerName]);
}

System.Diagnostics.Trace.WritelineIf(_proxySwitch.TraceVerbose,
"Added headers.");
I then wait for the server’s response:
Stream s = res.GetResponseStream();
When I receive the Comet servers message, I write it to the
original HTTP requests response stream so the client can receive
it, as shown in Figure 13.

Test the Application

To test your application, create a Web site to hold the sample
application pages. Make sure the URL to your Windows service is
correctand the message queue is properly configured and useable.
Start the service and open the Comet client page in one browser

ASPNET

WINDOWS FORMS | WPF | ASP.NET

FLOW TYPE LAYOUT

REPORTING

B Hep B ChartTools | ObjectTools TX Text Control Words Ribbon — F\stock...
“ Home Insert Page Layout Mailing: Vi

Layout Format

2]

e Preview | First preyigys Next |
Codes Field Text Merge Fields| Record Record Record Ry

Report

AIR LIQUIDE

Reuse MS Word document; Integrate dynamic 2p and 3D
or templates as your reporting charting to your reports.

templates.

9 N Create print-ready, digitally
Nam? 25y database connection with :
.v, Master-detail nested blocks. % #9ned Adobe PDF ang PDF/A

documents.

Powerful, programmable -7 Create flow type layouts with

template designer with fyl| S/ tables, columns, images,

headers and footers and more.,

pq Visual Studio
® Partner
US +1877-462-4772
X EU +49 421-4270671-0

word processing components WWW.TEXTCONTROL.COM

sources for Visug| Studio®,

www.textcontrol.com

Figure 16 Testing with a Message Size of 1,024 Bytes

Response Time (in

Users Repetitions Milliseconds)
1,000 10 144.227
5,000 10 169.648
10,000 10 233.031
15,000 10 272919
20,000 10 279.701
25,000 10 220.209
30,000 10 271.799
35,000 10 230114
40,000 10 381.29
45,000 10 344129
50,000 10 342452

and the page to send messages in another. Type in a message
and press send; after roughly 10 ms you should see the message
appear in the other browser window. Try this with various brows-
ers—especially some of the older ones. As long as they support
the xmlHttpRequest object, it should work. This provides almost
real-time Web behavior (en.wikipedia.org/wiki/Real-time_web), where
content is pushed to the browser almost instantaneously without
requiring action from the user.

Before any new application is deployed, you have to do perfor-
mance and load testing. To do this, you should first identify the
metrics you want to gather. I suggest measuring usage load against
both response times and data-transfer size. Additionally, you should
test usage scenarios that are relevant to Comet, in particular broad-
casting a single message to multiple clients without postback.

To do the testing, I constructed a utility that opens multiple
threads, each with a connection to the Comet server, and waits
until the server fires a response. This test utility allows me to
set a few parameters, such as the total number of users that will
connect to my Comet server and the number of times they
reopen the connection (currently the connection is closed after
the server’s response is sent).

450

400
350 i\
300 /

250 3 \ A /
200

150 /

100

50

0 10000 20000 30000 40000 50,000 60,000

Figure 17 User Load vs Response Time for a 1KB Message

52 msdn magazine

I then created a utility that dumps a message of x number of bytes
to the message queue, with the number of bytes set by a text field
on the main screen, and a text field to set the number of millisec-
onds to wait between messages sent from the server. I'll use this
to send the test message back to the client. I then started the test
client, specified the number of users plus the number of times the
client will reopen the Comet connection, and the threads opened
the connections against my server. [waited a few seconds for all the
connections to be opened, then went to the message-sending utility
and submitted a certain number of bytes. I repeated this for various
combinations of total users, total repetitions and message sizes.

The first data sampling I took was for a single user with increasing
repetitions but with the response message a consistent (small) size
throughout the testing. As you can see in Figure 14, the number of
repetitions doesn't seem to have an impact on system performance
or reliability.

The times are gradually increasing in a linear/constant manner,
which means the code on the Comet server is generally robust.
Figure 15 graphs the number of users against the response time
for a 512-byte message. Figure 16 shows some statistics for a mes-
sage size of 1,024 bytes. Finally, Figure 17 shows the chart from
Figure 16 in graphical format.All of these tests were done on a
single laptop with 8GB of RAM and a 2.4 GHz Intel Core i3 CPU.

The numbers don't show any particular trend, except that response
times are reasonable, remaining at below one second for message
sizes up to 1KB. I didnt bother tracking bandwidth use because that's
affected by the message format. Also, because all testing was done
on a single computer, network latency was eliminated as a factor. [
couldve tried it against my home network, but I didnt think it would
be worthwhile because the public Internet is far more complex than my
wireless router and cable modem setup. However, because the key point
of Comet communication techniques is to reduce server round-trips
by pushing content from the server as updated, theoretically half the
network bandwidth usage should be reduced through Comet techniques.

Wrapping Up

T hope you can now successfully implement your own Comet-style
applications and use them effectively to reduce network bandwidth
and increase Web site application performance. Of course, you'll
want to check out the new technologies included with HTML5,
which can replace Comet, such as WebSockets (bit.ly/UVMcBg) and
Server-Sent Events (SSE) (bit.ly/UVMhoD). These technologies hold
the promise of providing a simpler way of pushing content to the
browser, but they do require the user to have a browser that sup-
ports HTMLS5. If you still have to support users on older browsers,
Comet-style communication remains the best choice. u

Derrick LAv is an experienced software development team leader with approxi-
mately 15 years of relevant experience. He has worked in the IT shops of financial
Sfirms and the government, as well as in the software development sections of
technology-focused companies. He won the grand prize in an EMC development
contest in 2010 and came in as a finalist in 2011. He is also certified as an MCSD
and as an EMC content management developer.

THANKS to the following technical expert for reviewing this article:
Francis Cheung

ASPNET

http://en.wikipedia.org/wiki/Real-time_web
www.bit.ly/UVMcBg
www.bit.ly/UVMhoD

SpreadsheellLear

SpreadsheelGear 2012
Now Available

WPF and Silverlight controls,
multithreaded recalc, 64 new
Excel compatible functions, save
to XPS, improved efficiency and
performance, Windows 8 support,
Windows Server 2012 support, Visual Studio
2012 support and more.

Excel Compalible Windows Forms,

Performance Spreadsheel Components

Excel Reporting for ASP.NET,
WinForms, WPF and Silverlight

Easily create richly formatted
Excel reports without Excel
from any ASP.NET, Windows
Forms, WPF or Silverlight
application using spreadsheet
technology built from the ground up for
performance, scalability and reliability.

Excel Dashboards, Calculations,

WPF and Silverlight Controls Charting and More

| Add powerful Excel
compatible viewing, editing,
formatting, calculating,
filtering, charting, printing
and more to your Windows
Forms, WPF and Silverlight applications with
the easy to use WorkbookView controls.

You and your users can
=| design dashboards, reports,
charts, and models in Excel
or the SpreadsheetGear
- — Workbook Designer rather
than hard to learn developer tools and you
can easily deploy them with one line of code.

=

Download our fully functional 30-Day evaluation and bring Excel Reporting, Excel

Free compatible charting, Excel compatible calculations and much more to your ASP.NET,
30 Day Windows Forms, WPF, Silverlight and other Microsoft .NET Framework solutions.
Trial

www.SpreadsheelGear.com

pq Visual Studio

Partner

== SpreadsheelGear

Toll Free USA (888) 774-3273 | Phone (913) 390-4797 | sales@spreadsheetgear.com

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com

DATA CLUSTERING

James McCaffrey

Consider the problem ofidentifying abnormal data items
inavery large data set, for example, identifying potentially fraudu-
lent credit-card transactions, risky loan applications and so on. One
approach to detecting abnormal data is to group the data items into
similar clusters and then seek data items within each cluster that
are different in some sense from other data items within the cluster.

There are many different clustering algorithms. One of the
oldest and most widely used is the k-means algorithm. In this
article I'll explain how the k-means algorithm works and present
acomplete C# demo program. There are many existing standalone
data-clustering tools, so why would you want to create k-means
clustering code from scratch? Existing clustering tools can be
difficult or impossible to integrate into a software system, they
might not be customizable to deal with unusual scenarios, and the
tools might have copyright or other intellectual property issues.

This article discusses:

* The k-means clustering algorithm
« Computing cluster centroids

« Euclidian distance

« Looking for abnormal data
Technologies discussed:

C#, Visual Studio 2010

Code download available at:

archive.msdn.microsoft.com/mag201302kmeans

54 msdn magazine

Detecting Abnormal Data
<-Means C

ustering

After reading this article you'll be able to experiment with k-means
clustering and have the base knowledge to add clustering function-
ality to a NET application.

The best way to get a feel for what k-means clustering is and to
see where I'm headed in this article is to take a look at Figure 1. The
demo program begins by creating a dummy set of 20 data items. In
clustering terminology, data items are sometimes called tuples. Each
tuple here represents a person and has two numeric attribute values,
aheight in inches and a weight in pounds. One of the limitations of
the k-means algorithm is that it applies only in cases where the data
tuples are completely numeric.

The dummy data is loaded into an array in memory. Next, the
number of clusters is set to three. Although there are advanced
clustering techniques that can suggest the optimal number of clus-
ters to use, in general data clustering is an exploratory process and
the best number of clusters to use is typically found through trial
and error. As you'll see shortly, k-means clustering is an iterative
process. The demo program has a variable maxCount, which is
used to limit the number of times the main clustering loop will
execute. Here that value is arbitrarily set to 30.

Next, behind the scenes, the demo program uses the k-means
algorithm to place each data tuple into one of three clusters. There
are many ways to encode a clustering. In this case, a clustering is
defined by an array of int where the array index represents a tuple,
and the associated array value represents the 0-based cluster ID.
So, in Figure 1, tuple 0 (65.0, 220.0) is assigned to cluster 0, tuple 1
(73.0,160.0) is assigned to cluster 1, tuple 2 (59.0, 110.0) is assigned
to cluster 2, tuple 3 (61.0, 120.0) is assigned to cluster 2 and so on.

http://archive.msdn.microsoft.com/mag201302kmeans

Notice there are eight tuples assigned to cluster 0, five tuples
assigned to cluster 1, and seven tuples assigned to cluster 2.

Next, the demo program displays the data, grouped by cluster.
If you examine the clustered data you'll see that cluster 0 might be
called the heavy people cluster, cluster 1 might be called the tall
people cluster, and cluster 2 might be called the short people clus-
ter. The demo program concludes by analyzing the tuples assigned
to cluster 0 and determines that by some criterion, tuple 5 (67.0,
240.0) is the most abnormal tuple.

In the sections that follow, I'll walk you through the code that
produced the screenshot in Figure 1 so that you'll be able to
modify this code to meet your own needs. This article assumes
you have at least intermediate-level programming skill with a
C-family language, but does not assume you know anything
about data clustering. I coded the demo program using C#, but
I used a non-OOP style so you shouldn't have too much
difficulty refactoring the demo to another language if
you wish. I present all the source code for the demo pro-
gram in this article. The source code is also available
at archive.msdn.microsoft.com/mag201302kmeans.

The k-Means Algorithm

In principle, at least, the k-means algorithm is quite
simple. But as you'll see, some of the implementation
details are a bit tricky. The central concept in the k-means
algorithm is the centroid. In data clustering, the centroid
ofaset of data tuples is the one tuple that's most represen-
tative of the group. The idea is best explained by example.
Suppose you have three height-weight tuples similar to
those shown in Figure 1:

[al (61.0, 100.0)
[b] (64.0, 150.0)
[c] (70.0, 140.0)

Which tuple is most representative? One approach is to
compute a mathematical average (mean) tuple, and then
select as the centroid the tuple that is closest to that aver-
age tuple. So, in this case, the average tuple is:

[m] = ((61.0 + 64.0 +70.0) / 3, (100.0 + 150.0 + 140.0) / 3)
(195.0 / 3, 390.0 / 3)
(65.0, 130.0)

And now, which of the three tuples is closest to (65.0,
130.0)? There are several ways to define closest. The most
common approach, and the one used in the demo program,
is to use the Euclidean distance. In words, the Euclidean
distance between two tuples is the square root of the sum
of the squared differences between each component of
the tuples. Again, an example is the best way to explain.
The Euclidean distance between tuple (61.0,100.0) and the
average tuple (65.0, 130.0) is:

Begin outlier data detection using k-means clustering demo

Loading all (height—weight? data into memory

Begin clustering data with k = 3 and

Clustering complete

Clustering in internal format:

1221860020111 022802802

Clustered data:

Qutlier for

Because the smallest of the three distances is the distance between
the math average and tuple [c], the centroid of the three tuples is
tuple [c]. You might wish to experiment with the demo program
by using different definitions of the distance between two tuples
to see how those affect the final clustering produced.

With the notion of a cluster centroid established, the k-means

algorithm is relatively simple. In pseudo-code:
assign each tuple to a randomly selected cluster
compute the centroid for each cluster
Toop until no improvement or until maxCount
assign each tuple to best cluster
(the cluster with closest centroid to tuple)
update each cluster centroid
(based on new cluster assignments)
end Toop
return clustering

If you search the Web, you can find several good online anima-
tions of the k-means algorithm in action. The image in Figure 2

ClusteringkMeans /bin/Debug/ClusteringkMeans.EXE

eI EE®

138.

maxCount = 38

dist(m,a) = sqrt((65.0 - 61.0)*2 + (130.0 - 100.0)"2)

= sqrt(4.072 + 30.0"2)

= sqrt(16.0 + 900.0)

= sqrt(916.0)

= 30.27 67.8 248.8
Similarly: End demo
dist(m,b) = sqrt((65.0 - 64.0)*2 + (130.0 - 150.0)"2)

=20.02 I
dist(m,c) = sqrt((65.0 - 70.0)*2 + (130.0 - 140.0)"2)

11.18

msdnmagazine.com

Figure 1 Clustering Using k-Means

February 2013 55

http://archive.msdn.microsoft.com/mag201302kmeans
www.msdnmagazine.com

260

240

220
Cluster 0

\
200 M /
N A /

xR
*
o<

:g: 180 ‘\
.'E" 160 Cluster 2 (\‘©I /)
=
140 / ‘\ Cluster 1
120 ’—é
RIS
55 60 o . " i

Height (inches)

Figure 2 Clustered Data and Centroids

shows the clustering produced by the demo program. The circled
data item in each cluster is the cluster centroid.

Overall Program Structure

The overall program structure for the demo shown in Figure 1, with
afew minor edits, is listed in Figure 3. I used Visual Studio 2010 to
create a new C# console application named ClusteringKMeans; any
recent version of Visual Studio should work, too. In the Solution
Explorer window I renamed file Program.cs to ClusteringKMeans-
Program.cs, which automatically renamed the template-generated
class. I removed unneeded using statements at the top of the file.

Figure 3 Overall Program Structure

For simplicity I used a static method approach and removed all
error-checking. The first part of the demo code sets up the height
and weight data to be clustered. Because there are only 20 tuples,
I hardcoded the data and stored the data in memory in an array
named rawData. Typically, your data will be stored in a text file or
SQL table. In those cases you'll have to write a helper function to
load the data into memory. If your data source is too large to fit into
machine memory, you'll have to modify the demo code to iterate
through an external data source rather than a data array.

In principle, atleast,
the k-means algorithm is quite
simple. Butasyou'll see,
some of the implementation
details are a bit tricky.

After setting up the raw data, the demo program calls helper
function ShowMatrix to display the data. Next, variables num-
Attributes, numClusters, and maxCount are assigned values of 2
(heightand weight), 3 and 30, respectively. Recall maxCount limits
the number of iterations in the main algorithm processing loop.
The k-means algorithm tends to converge quickly, but you might
have to experiment a bit with the value of maxCount.

All the clustering work is performed by method Cluster.
The method returns an int array that defines how each tuple is

using System;
namespace ClusteringKMeans

class ClusteringkMeansProgram
{
static void Main(string[] args)
{
try
{
Console.WriteLine("\nBegin outlier data detection demo\n");

Console.WriteLine("Loading all (height-weight) data into memory");
string[] attributes = new string[] { "Height", "Weight" };
double[][] rawData = new double[20][];

rawData[0] = new double[] { 65.0, 220.0 };
rawData[1] = new double[] { 73.0, 160.0 };
rawData[2] = new double[] { 59.0, 110.0 };
rawData[3] = new double[] { 61.0, 120.0 };
rawData[4] = new double[] { 75.0, 150.0 };
rawDatal[5] = new double[] { 67.0, 240.0 };
rawData[6] = new double[] { 68.0, 230.0 };
rawDatal[7] = new double[] { 70.0, 220.0 };
rawData[8] = new double[] { 62.0, 130.0 };
rawData[9] = new double[] { 66.0, 210.0 };
rawData[10] = new double[] { 77.0, 190.0 };
rawData[11] = new double[] { 75.0, 180.0 };
rawData[12] = new double[] { 74.0, 170.0 };
rawData[13] = new double[] { 70.0, 210.0 };
rawData[14] = new double[] { 61.0, 110.0 };
rawData[15] = new double[] { 58.0, 100.0 };
rawData[16] = new double[] { 66.0, 230.0 };
rawData[17] = new double[] { 59.0, 120.0 };
rawData[18] = new double[] { 68.0, 210.0 };

56 msdn magazine

rawData[19] = new double[] { 61.0, 130.0 };

Console.WriteLine("\nRaw data:\n");
ShowMatrix(rawData, rawData.Length, true);

int numAttributes = attributes.Llength;
int numClusters = 3;
int maxCount = 30;

Console.WriteLine("\nk = " + numClusters + " and maxCount = " + maxCount);
int[] clustering = Cluster(rawData, numClusters, numAttributes, maxCount);
Console.WriteLine("\nClustering complete");

Console.WriteLine("\nClustering in internal format: \n");
ShowVector(clustering, true);

Console.WriteLine("\nClustered data:");
ShowClustering(rawData, numClusters, clustering, true);

double[] outlier = Qutlier(rawData, clustering, numClusters, 0);
Console.WriteLine("Outlier for cluster 0 is:");
ShowVector(outlier, true);

Console.WriteLine("\nEnd demo\n");
iatch (Exception ex)
(Console.Writeline(ex.Message);
} }/ Main

// 14 short static method definitions here

}
}

Data Clustering

Are your .NET apps slowing down?

Are your .NET apps slowing down as you increase user activity or transaction load on them? If so then consider
using NCache. NCache is an extremely fast and scalable in-memory distributed cache for .NET.

Performance & Scalability thru Data Caching
Cache app data, reduce expensive database trips, and scale your .NET apps.

« Performance: extremely fast in-memory cache

o Linear Scalability: just add servers and keep growing

o 100% uptime: self-healing dynamic cache cluster

» Mirrored, Replicated, Partitioned, and Client Cache topologies

Use for Following in Web Farms

* ASP.NET Session Storage: Replicate sessions for reliability

* ASP.NET View State: Cache it to reduce payload sent to the browser
* ASP.NET Output Cache: Cache page output & improve response time
* NHibernate Level-2 Cache: Plug-in without any code change

o Entity Framework Cache: Plug-in without any code change

Fast Runtime Data Sharing between Apps

e Powerful event notifications for pub/sub data sharing
e Continuous Query and group based events

Download a 60-day FREE trial today!

fNCaché‘

Distributed Cache for .NET & Java www.alachisoft.com 1-800-253-8195

http://www.alachisoft.com

Figure 4 Method UpdateMeans

static void UpdateMeans(double[][] rawData, int[] clustering,
doubTe[][] means)
{
int numClusters = means.lLength;
for (int k = 0; k < means.Length; ++k)
for (int j = 0; j < means[k].Length; ++j)
means[k1[j1 = 0.0;

int[] clusterCounts = new int[numClusters];
for (int i = 0; i < rawData.length; ++i)
{
int cluster = clustering[i];
+t+clusterCounts[cluster];

for (int j = 0; j < rawDatal[i].Length; ++j)
means[cluster][j] += rawDatal[i][j];
}

for (int k = 0; k < means.Length; ++k)
for (int j = 0; j < means[k].Length; ++j)
means[k1[j] /= clusterCounts[k]; // danger

return;

assigned to one cluster. After finishing, the demo program displays
the encoded clustering and also displays the raw data, grouped
according to cluster.

The demo program concludes by analyzing the clustered data
for outlier, possibly abnormal, tuples using method Outliers. That
method accepts a cluster ID and returns the values of the data tuple
that's the farthest (as measured by Euclidean distance) from
the cluster centroid (most representative tuple). In this case, for
cluster 0, the heavy person cluster, the outlier tuple is (67.0, 240.0),
the heaviest person.

Computing Cluster Centroids
Recall that a cluster centroid is a tuple that is most representative
of the tuples assigned to a cluster, and that one way to determine a
cluster centroid is to compute a math average tuple and then find
the one tuple thats closest to the average tuple. Helper method
UpdateMeans computes the math average tuple for each cluster
and is listed in Figure 4.

Method UpdateMeans assumes that an array of arrays named
means already exists, as opposed to creating the array and then

Figure 5 Method ComputeCentroid

static double[] ComputeCentroid(double[I[] rawData, int[] clustering,
int cluster, double[][] means)
{
int numAttributes = means[0].Length;
double[] centroid = new double[numAttributes];
doubTe minDist = double.MaxValue;
for (int i = 0; i < rawData.length; ++i) // walk thru each data tuple
{
int ¢ = clustering[il;
if (c != cluster) continue;

doubTe currDist = Distance(rawDatali], means[cluster]);
if (currDist < minDist)
{
minDist = currDist;
for (int j = 0; j < centroid.Length; ++j)
centroid[j] = rawDatali1[j];
}
}
return centroid;
}

58 msdn magazine

returning it. Because array means is assumed to exist, you might
want to make it a ref parameter. Array means is created using helper
method Allocate:

static double[][] Allocate(int numClusters, int numAttributes)
{
doubTe[1[] result = new double[numClusters]I[];
for (int k = 0; k < numClusters; ++k)
result[k] = new double[numAttributes];
return result;
}

The first index in the means array represents a cluster ID and
the second index indicates the attribute. For example, if means|0]
[1] =150.33 then the average of the weight (1) values of the tuples
in cluster 0 is 150.33.

Method UpdateMeans first zeros out the existing values in array
means, then iterates through each data tuple and tallies the count
of tuples in each cluster and accumulates the sums for each attri-
bute, and then divides each accumulated sum by the appropriate
cluster count. Notice that the method will throw an exception if
any cluster count is 0, so you might want to add an error-check.

Method ComputeCentroid (listed in Figure 5) determines the
centroid values—the values of the one tuple thats closest to the
average tuple values for a given cluster.

Method ComputeCentroid iterates through each tuple in the data
set, skipping tuples that aren't in the specified cluster. For each tuple
in the specified cluster, the Euclidean distance between the tuple
and the cluster mean is calculated using helper method Distance.
The tuple values that are closest (having the smallest distance) to
the mean values are stored and returned.

Method UpdateCentroids calls ComputeCentroid for each clus-
ter to give the centroids for all clusters:

static void UpdateCentroids(double[][] rawData, int[] clustering,
doubTe[][] means, double[][] centroids)

{
for (int k = 0; k < centroids.Length; ++k)

double[] centroid = ComputeCentroid(rawData, clustering, k, means);
centroids[k] = centroid;
}
}

Method UpdateCentroids assumes that an array of arrays named
centroids exists. Array centroids is very similar to array means: The
first index represents a cluster ID and the second index indicates
the data attribute.

Figure 6 Method Assign

static bool Assign(double[][] rawData, int[] clustering, double[][] centroids)
(

int numClusters = centroids.Length;

bool changed = false;

double[] distances = new double[numClusters];
for (int i = 0; i < rawData.Length; ++i)
(
for (int k = 0; k < numClusters; ++k)
distances[k] = Distance(rawDatal[i], centroids[kl);

int newCluster = MinIndex(distances);
if (newCluster != clustering[il])
(
changed = true;
clustering[i] = newCluster;
}
}
return changed;

Data Clustering

All these data sources at your fingertips — and that is just a start.

RSSBus Data Providers [ADO.NET] 14,,, SELECT CONNECTOR

M GuickBooksCustom. .ssbut/pubyTables)
. A S duluAs aname
Build cutting-edge .NET applications that connect to any - Abescrombie, Kty
. . Allard, Rebert
data source with ease. J o Subcock's Maic Shop
Baker, Chrig
. Mm
« Easily “databind” to applications, databases, and services st
1 aman, Mark
using standard Visual Studio wizards. otk Rl
Bristol, Sonya
Burch, Jason me-b@samplename.com

« Comprehensive support for CRUD (Create, Read, Update, R A e

and Delete operations). = Sipsmseratri ey P Y

. 1 QuickBesksTransactions Ceok, Brian beockPamplename.com
« Industry standard ADO.NET Data Provider, fully B Gt Cravn, Pon pomc@samplensmecom
o . n 0 it Dinvies, Asron adwiiesGmyemad.com
integrated with Visual Studio. i e Dumcan, Dove DoutleD@samplensecom

Databind to the Web...

The RSSBus Data Providers give your .NET applications the

2 DATABIND
power to databind (just like SQL) to Amazon, PayPal, eBay, :

’) _ Choose Your Database Objects __GO
QuickBooks, FedEx, Salesforce, MS-CRM, Twitter, Share- =0 am oo
Point, Windows Azure, and much more! Leverage your B i

2 ActiveDirectoryGeoups

existing knowledge to deliver cutting-edge WinForms,
ASP.NET, and Windows Mobile solutions with full readwrite
functionality quickly and easily.

Databind to Local Apps...

The RSSBus Data Providers make everything look like a
SQL table, even local application data. Using the RSSBus
Data Providers your .NET applications interact with local
applications, databases, and services in the same way
you work with SQL Tables and Stored Procedures. No
code required. It simply doesn’t get any easier!

“Databind to anything... B i
...just like you do with SQL” e =

1Burch, Jason . 4155552051
Campbel. Hesther 3 BE0455 423
505550258
4155556188
155552248
4154557264
6505559283

Also available for:
JDBC | ODBC | SQL SSIS | Excel | OData | SharePoint ...

Hrssous Download a free 30-day trial online at: www.rssbus.com

© Copyright 2013 RSSBus Inc. All rights reserved. All trademarks and registered trademarks are the property of their respective owners.

http://www.rssbus.com

Figure 7 The Cluster Method

static int[] Cluster(double[I[] rawData, int numClusters,
int numAttributes, int maxCount)

{
bool changed = true;
int ct = 0;

int numTuples = rawData.Length;

int[] clustering = InitClustering(numTuples, numClusters, 0);
doubTe[][] means = Allocate(numClusters, numAttributes);
doubTe[][] centroids = Allocate(numClusters, numAttributes);
UpdateMeans(rawData, clustering, means);
UpdateCentroids(rawData, clustering, means, centroids);

while (changed == true && ct < maxCount)
{
et
changed = Assign(rawData, clustering, centroids);
UpdateMeans(rawData, clustering, means);
UpdateCentroids(rawData, clustering, means, centroids);
}
return clustering;

To summarize, each cluster has a centroid, which is the most
representative tuple in the cluster. Centroid values are computed
by finding the one tuple in each cluster that’s closest to the average
tuple (the mean) in each cluster. Each data tuple is assigned to the
cluster whose cluster centroid is closest to the tuple.

The Distance Function and Data Normalization
Method ComputeCentroid calls a Distance method to determine
which data tuple is closest to a cluster mean. As described earlier,
the most common way to measure distance from tuples to means
is to use Euclidean distance:

static double Distance(double[] tuple, double[] vector)
{
double sumSquaredDiffs = 0.0;
for (int j = 0; j < tuple.Length; ++j)
sumSquaredDiffs += Math.Pow((tuple[j] - vector[jl), 2);
return Math.Sqrt(sumSquaredDiffs);
}

You might want to consider alternative ways to define distance.
A very common option is to use the sum of the absolute values

Figure 8 The Outlier Method

static double[] Outlier(double[][] rawData, int[] clustering,
int numClusters, int cluster)

{
int numAttributes = rawData[0].Length;

double[] outlier = new double[numAttributes];
doubTe maxDist = 0.0;

double[][] means = Allocate(numClusters, numAttributes);
doubTe[][] centroids = Allocate(numClusters, numAttributes);
UpdateMeans(rawData, clustering, means);
UpdateCentroids(rawData, clustering, means, centroids);

for (int i = 0; i < rawData.length; ++i)
{
int ¢ = clustering[il;
if (c != cluster) continue;
double dist = Distance(rawData[i], centroids[cluster]);
if (dist > maxDist)
{
maxDist = dist;
Array.Copy(rawData[i], outlier, rawData[i].Length);
}
}
return outlier;

60 msdn magazine

of the differences between each component. Because Euclidean
distance squares differences, larger differences are weighted much
more heavily than smaller differences.

Another important factor related to the choice of distance func-
tion in the k-means clustering algorithm is data normalization.
The demo program uses raw, un-normalized data. Because tuple
weights are typically values such as 160.0 and tuple heights are
typically values like 67.0, differences in weights have much more
influence than differences in heights. In many situations, in addi-
tion to exploring clustering on raw data, it's useful to normalize the
raw data before clustering. There are many ways to normalize data.
A common technique is to compute the mean (m) and standard
deviation (sd) for each attribute, then for each attribute value (v)
compute a normalized value nv = (v-m)/sd.

Assigning Each Tuple to a Cluster

With a method to compute the centroid of each cluster in hand, it's
possible to write a method to assign each tuple to a cluster. Method
Assign is listed in Figure 6.

Method Assign accepts an array of centroid values and iterates
through each data tuple. For each data tuple, the distance to each
of the cluster centroids is computed and stored in a local array
named distances, where the index of the array represents a cluster
ID. Then helper method MinIndex determines the index in array
distances that has the smallest distance value, which is the cluster
ID of the cluster that has centroid closest to the tuple.

Heres helper method MinIndex:

static int MinIndex(double[] distances)
{
int index0fMin = 0;
double smallDist = distances[0];
for (int k = 0; k < distances.Length; ++k)
{
if (distances[k] < smallDist)
{
smallDist = distances[k]; indexOfMin = k;
}
}
return index0fMin;
}

In Assign, if the computed cluster ID is different from the existing
cluster ID stored in array clustering, array clustering is updated and
aBoolean flag to indicate that there has been at least one change in
the clustering is toggled. This flag will be used to determine when
to stop the main algorithm loop—when the maximum number of
iterations is exceeded or when theres no change in the clustering.

This implementation of the k-means algorithm assumes that
theres always at least one data tuple assigned to each cluster. As given
in Figure 6, method Assign does not prevent a situation where a
cluster has no tuples assigned. In practice, this usually isn'ta prob-
lem. Preventing the error condition is a bit tricky. The approach I
generally use is to create an array named centroidIndexes that works
in conjunction with array centroids. Recall that array centroids
holds centroid values, for example (61.0, 120.0) is the centroid for
cluster 2 in Figure 2. Array centroidIndexes holds the associated
tuple index, for example [3]. Then in the Assign method, the
first step is to assign to each cluster the data tuple that holds the
centroid values, and only then does the method iterate through
each remaining tuple and assign each to a cluster. This approach
guarantees that every cluster has at least one tuple.

Data Clustering

HTMLS5+JQUERY

Any App - Any Browser - Any Platform - Any Device

IGSAITEWUI

INFRAGISTICS JQUERY CONTROLS

Dowload Your Free Trial!
www.infragistics.com/igniteui-trial

iﬂ INFRAGISTICS

DESIGN / DEVELOP / EXPERIENCE

Infragistics Sales US 800 2318588 « Europe +44 (0) 800 298 9055 India +9180 41518042 « APAC +613 9982 4545

Copyright 1996-2013 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc.
The Infragistics logo is a trademark of Infragistics, Inc. All other trademarks or registered trademarks are the respective property of their owners

http://www.infragistics.com/igniteui-trial

The Cluster Method

Method Cluster, listed in Figure 7, is the high-level routine that
calls all the helper and sub-helper methods to actually perform
the data clustering.

The main while loop repeatedly assigns each data tuple to a cluster,
computes the new tuple means for each cluster, then uses the new
means to compute the new centroid values for each cluster. The loop
exits when theres no change in cluster assignment or some maximum
count is reached. Because the means array is used only to compute
centroids, you might want to refactor Cluster by placing the call to
UpdateMeans inside method UpdateCentroids.

Before kicking the processing loop off, the clustering array is
initialized by method InitClustering:

static int[] InitClustering(int numTuples, int numClusters, int
randomSeed)
{
Random random = new Random(randomSeed);
int[] clustering = new int[numTuples];
for (int i =0; 1 < numClusters; ++i)
clustering[i] = 1;
for (int i = numClusters; i < clustering.Length; ++i)
clustering[i] = random.Next(0, numClusters);
return clustering;
}

The InitClustering method first assigns tuples 0 through
numClusters-1 to clusters 0 through numClusters-1, respectively,
so that every cluster will start with at least one tuple assigned. The
remaining tuples are assigned to a randomly selected cluster.

A somewhat surprising amount of research has been done on
k-means clustering initialization and you may want to experiment
with alternatives to the approach given here. In many cases, the
final clustering produced by the k-means algorithm depends on
how the clustering is initialized.

Looking for Abnormal Data

One way to use data clustering is to simply explore different clus-
terings and look for unexpected or surprising results. Another
possibility is to look for unusual data tuples within a cluster. The
demo program checks cluster 0 to find the tuple in that cluster that's
farthest from the cluster centroid using a method named Outlier,
which is listed in Figure 8.

After initializing means and centroids arrays, method Outlier
iterates through each tuple in the specified cluster and computes
the Euclidean distance from the tuple to the cluster centroid, then
returns the values of the tuple that has the greatest distance to
the centroid values. A minor alternative for you to consider is to
return the index of the farthest data tuple.

There are many other ways you can examine clustered data for
abnormalities. For example, you might want to determine the
average distance between each tuple and its assigned cluster cen-
troid, or you might want to examine the distances of the cluster
centroids from each other.

Display Routines

For the sake of completeness, here are some simplified display rou-
tines. The code download has slightly fancier versions. If you use
these simplified routines, you'll have to modify their calls in the
Main method. To display raw data, means and centroids you can use:

62 msdn magazine

static void ShowMatrix(double[][] matrix)
{
for (int i =0; i < numRows; ++i)
{
Console.Write("[" + 1.ToString().Padleft(2) + "1 ");
for (int j =0; j < matrix[i].Length; ++j)
Console.Write(matrix[1][j1.ToString("F1") + " ");
Console.WriteLine("");
}
}

To display the clustering array you can use:

static void ShowVector(int[] vector)
{
for (int i = 0; i < vector.Length; ++i)
Console.Write(vector[i] + " ");
Console.WriteLine("");
}

To display an outliers values you can use:

static void ShowVector(double[] vector)
{
for (int i = 0; i < vector.Length; ++i)
Console.Write(vector[i].ToString("F1") + " ");
Console.WriteLine("");
}

And to display raw data grouped by cluster you can use:

static void ShowClustering(double[][] rawData, int numClusters, int[] clustering)
{
for (int k = 0; k < numClusters; ++k) // Each cluster
{
for (int i = 0; i < rawData.length; ++i) // Each tuple
if (clustering[i] == k)
{
for (int j =0; j < rawData[i].Length; ++j)
Console.Write(rawDatal[i][j].ToString("F1") + " ");
Console.WriteLine("");

Console.WriteLine("");
}
}

Wrapping Up

Data clustering is closely related to and sometimes confused
with data classification. Clustering is an unsupervised technique
that groups data items together without any foreknowledge
of what those groups might be. Clustering is typically an explor-
atory process. Classification, in contrast, is a supervised technique
that requires the specification of known groups in training data,
after which each data tuple is placed into one of these groups.
Classification is typically used for prediction purposes.

The code and explanation presented in this article should
give you enough information to experiment with k-means data
clustering, or to create a fully customizable standalone clustering
tool, or to add clustering features to a .NET application without
relying on any external dependencies. There are many other clus-
tering algorithms in addition to k-means and I'll present some of
these in future MSDN Magazine articles, including data entropy
minimization, category utility and Naive Bayes inference. L]

DRr. James McCarrReY works for Volt Information Sciences Inc., where he manages
technical training for software engineers working at the Microsoft Redmond,
Wash., campus. He has worked on several Microsoft products including Internet
Explorer and MSN Search. Hes the author of “NET Test Automation Recipes”
(Apress, 2006), and can be reached at jammc@microsoft.com.

THANKS to the following technical expert for reviewing this article:
Darren Gehring

Data Clustering

mailto:jammc@microsoft.com

EXPERT SOLUTIONS FOR .NET DEVELOPERS

Visual Studio@

YOUR BACKSTAGE PASS TO THE MICRO

| CELEBRATING
| TWENTY YEARS

Intense Take-Home Training for Developers,
Software Architects and Designers

127 oeg$ [Py w e
LRTRNIEE a0
Chlcago! "

Visual Studio Live! is thrilled to be back in Chicago! Register for your
backstage pass to the Microsoft Platform and join your fellow
developers, software architects, designers and more for 4 days of
unbiased training at Visual Studio Live! Chicago.

oy~ REGISTER TODAY
> Azure / Cloud Computing AN D SAVE $ 300

> Cross-Platform Mobile USE PROMO CODE CHFEB1
» Data Management

» HTMLS / JavaScript
> Windows 8 / WinRT VISUAL STUDIO LIVEE CHICAGOD

> WPF / Silverlight HILTON CHICAGO | MAY 13-16, 2013
» Visual Studio 2012 / .NET 4.5

vslive.com/chicago

Microsoft B VisualStudio MSAN VisualStudio 441105 mepia:

magazine

www.vslive.com/chicago

STREAMINSIGHT

Taming the Event Stream:
~ast Approximate

Counting

Michael Meijer

So you have avoluminous and potentially infinite stream of
events such as a clickstream, sensor data, credit-card transaction
data or Internet traffic. Its infeasible to store all events or analyze
them in multiple passes. Why not resort to a window of recent
events to simplify analysis?

Suppose you want to count the number of interesting events in
alarge window covering the latest N events of the stream. A naive
approach to counting requires all N events to be in memory and a
full iteration over them. As the window slides upon the arrival of
anew event, its oldest event expires and the new event is inserted.
Counting over the new window from scratch wastes the processing
time spent on N-2 events shared. Yuck! This article explains a data
structure to reduce memory space usage and processing time to a
small fraction of what would be required with that method, while
supporting an event rate exceeding many thousands of events per

This article discusses:

« Approximate event counting basics
« Using buckets for counting

« Using StreamInsight for counting

Technologies discussed:

StreamlInsight 2.1

Code download available at:

archive.msdn.microsoft.com/mag201302StreamInsight

64 msdn magazine

second on commodity hardware. This article also shows how to
embed the data structure in a user-defined stream operator in
C# for the Microsoft streaming data processor, StreamInsight 2.1.
Intermediate programming skills are required to follow along, and
some experience with StreamInsight can come in handy.

ATale of Counting

Before diving into StreamInsight, T'll investigate the seemingly
trivial problem of counting. For simplicity, assume the stream has
events with payloads of 0 or I—uninteresting and interesting events,
respectively (regardless of what constitutes “interesting” in your
specific scenario). The number of Is is counted over a (fixed-size)
count-based window containing the most recent N events. Naive
counting takes O(N) time and space.

Asanastute reader, you probably came up with the idea of main-
taining the count between consecutive windows and incrementing
it for new Is and decrementing it for expired 1s, sharing the N-2
events already processed. Good thinking! Maintaining the count
now takes O(1) time. However, should you decrement for an expired
event or not? Unless you know the actual event, the count cant
be maintained. Unfortunately, to know the events until they have
expired requires the entire window in memory—that is, it takes
O(N) space. Another strategy might be to filter out the uninter-
esting events and count only the remaining interesting events. But
that doesn't reduce computational complexity and leaves you with
a variable-size window.

http://archive.msdn.microsoft.com/mag201302StreamInsight

Figure 1 The Exponential Histogram Class Outline

[DataContract]
public class ExponentialHistogram
{

[DataMember]

private long n;

[DataMember]
private double epsilon;

[DataMember]
private long total;

[DataMember]
private LinkedList<Bucket> buckets;

public ExponentialHistogram(long n, double epsilon)
{

this.n = n;

this.epsilon = epsilon;

this.buckets = new LinkedList<Bucket>();
}

public void Update(Tong timestamp, bool e) { ... }
protected void ExpireBuckets(long timestamp) { ... }
protected void PrependNewBucket(long timestamp) { ... }
protected void MergeBuckets() { ... }

public Tong Query() { ...}

Can the memory beast be tamed? Yes, it can! However, it requires
a compromise between processing time and memory space at the
expense of accuracy. The seminal paper by Mayur Datar, Aristides
Gionis, Piotr Indyk and Rajeev Motwani titled “Maintaining Stream
Statistics over Sliding Windows” (stanford.io/ SRIWTO) describes a data
structure called the exponential histogram. It maintains an approx-
imate count over the last N events with a bounded relative error €.
This means that at all times:

|exact couné;aecxtppcéﬁiitmate count| <& where0<g<1

Conceptually, the histogram stores events in buckets. Every bucket
initially covers one event, so it has a count of 1 and a timestamp of
the event it covers. When an event arrives, expired buckets (cov-
ering expired events) are removed. A bucket is created only for an
interesting event. As buckets are created over time, they're merged
to save memory. Buckets are merged so they have exponentially
growing counts from the most recent to the last bucket, that is, 1,
L,...2,2,..,4,4,..,8 8 and so on. This way, the number of buckets
is logarithmic in the window size N. More precisely, it requires
o(} log N) time and space for maintenance. All but the last bucket
cover only non-expired events. The last bucket covers at least one
non-expired event. Its count must be estimated, which causes the
error in approximating the overall count. Hence, the last bucket
must be kept small enough to respect the relative error upper bound.

In the next section, the implementation of the exponential
histogram in C# is discussed with a bare minimum of math. Read
the aforementioned paper for the intricate details. I'll explain the
code and follow up with a pen-and-paper example. The histogram
is a building block for the StreamInsight user-defined stream
operator developed later in this article.

msdnmagazine.com

To Bucket or Not to Bucket
Heres the bucket class:

[DataContract]
public class Bucket
{
[DataMember]
private long timestamp;

[DataMember]
private long count;

public Tong Timestamp {
get { return timestamp; }
set { timestamp = value; } }

public Tong Count { get { return count; } set { count = value; } }

}

It has a count of the (interesting) events it covers and a time-
stamp of the most recent event it covers. Only the last bucket can
cover expired events, as mentioned, but it must cover at least one
non-expired event. Hence, all but the last bucket counts are exact.
The last bucket count must be estimated by the histogram. Buckets
containing only expired events are themselves expired and can be
removed from the histogram.

Using just two operations, the exponential histogram ensures
a relative error upper bound € on the count of interesting events
over the N most recent events. One operation is for updating the
histogram with new and expired events, maintaining the buckets.
The other is for querying the approximate count from the buckets.
The histogram class outline is shown in Figure 1. Next to the linked
list of buckets, its key variables are the window size (n), the relative
error upper bound (epsilon) and the cached sum of all bucket counts
(total). In the constructor, the given window size, the given relative
error upper bound and an initial empty list of buckets are set.

A naive approach to counting
requires all N events to be
inmemory and a full iteration
over them.

The maintenance of the histogram is performed by this update method:

public void Update(Tong timestamp, bool eventPayload)
{
RemoveExpiredBuckets(timestamp);

/1 No new bucket required; done processing
if (leventPayload)
return;

PrependNewBucket (timestamp);
MergeBuckets();

}

It accepts a discrete timestamp, as opposed to wall-clock time,
to determine what the latest N events are. This is used to find and
remove expired buckets. If the new event has a payload of 0 (false),
processing stops. When the new event has a payload of 1 (true), a
new bucket is created and prepended to the list of buckets. The real
fireworks are in merging the buckets. The methods called by the
update method are discussed in sequence.

February 2013 65

www.stanford.io/SRjWT0
www.msdnmagazine.com

Heres the code for the removal of buckets:

protected void RemoveExpiredBuckets(long timestamp)
{

LinkedListNode<Bucket> node = buckets.Llast;

/] A bucket expires if its timestamp

/1 is before or at the current timestamp - n

while (node != null && node.Value.Timestamp <= timestamp - n)
{

total -= node.Value.Count;

buckets.Removelast();
node = buckets.Last;
}
}

The traversal starts from the oldest (last) bucket and ends at the
first non-expired bucket. Each bucket whose most recent events
timestamp is expired—that is, whose timestamp is no greater than
the current timestamp minus the window size—is removed from
the list. This is where the discrete timestamp comes in. The sum
of all bucket counts (total) is decremented by the count of each
expired bucket.

After expired events and buckets are accounted for, the new

event is processed:
protected void PrependNewBucket(long timestamp)
{
Bucket newBucket = new Bucket()
{
Timestamp =
Count =1
1

buckets.AddFirst(newBucket);

timestamp,

total++;
}

Figure 2 Merging Buckets in the Histogram

protected void MergeBuckets()

{
LinkedListNode<Bucket> current = buckets.First;
LinkedListNode<Bucket> previous = null;

int k = (int)Math.Ceiling(1 / epsilon);
int kDiv2Add2 = (int)(Math.Ceiling(0.5 * k) + 2);
int numberOfSameCount = 0;

// Traverse buckets from first to last, hence in order of
// descending timestamp and ascending count
while (current != null)
{
f (previous != null & previous.Value.Count ==
number0fSameCount++;
else
numberOfSameCount = 1;

current.Value.Count)

// Found k/2+2 buckets of the same count?

if (numberOfSameCount == kDiv2Add2)

{
// Merge oldest (current and previous) into current
current.Value.Timestamp = previous.Value.Timestamp;
current.Value.Count = previous.Value.Count + current.Value.Count;

buckets.Remove(previous);

// A merged bucket can cause a cascade of merges due to
// its new count, continue iteration from merged bucket
// otherwise the cascade might go unnoticed
previous = current.Previous;

}

else

{
// No merge, continue iteration with next bucket
previous = current;
current = current.Next;

}

}
}

66 msdn magazine

A new bucket for the event with a payload of 1 (true) is created
with a count of 1 and a timestamp equal to the current timestamp.
The new bucket is prepended to the list of buckets and the sum of
all bucket counts (total) is incremented.

The memory space-saving and error-bounding magic is in the
merging of buckets. The code is listed in Figure 2. Buckets are
merged so that consecutive buckets have exponentially growing
counts, thatis, 1, 1, ..., 2,2, ..., 4, 4, ..., 8, 8 and so on. The number
of buckets with the same count is determined by the choice of the
relative error upper bound €. The total number of buckets grows
logarithmically with the size of the window n, which explains the
memory space savings. As many buckets as possible are merged, but
the last bucket’s count is kept small enough (compared to the sum
of the other bucket counts) to ensure the relative error is bounded.

More formally, buckets have non-decreasing counts from the
first (most recent) to the last (oldest) bucket in the list The bucket
counts are constrained to powers of two. Let k = ¢ and be an
integer, or else replace the latter by 5> . Except for the last buckets
count, let there be at least]5 and at most 12< + 1 buckets of the same
count. Whenever there are 2 + 2 buckets of the same count, the
oldest two are merged into one bucket with twice the count
of the oldest bucket and the most recent of their timestamps.
Whenever two buckets are merged, traversal continues from the
merged bucket. The merge can cause a cascade of merges. Other-
wise traversal continues from the next bucket.

To get a feeling for the count approximation, look at the histo-

grams query method:

public Tong Query()
{
Tong last =
return (long)Math.Ceiling(tota
}

The sum of the bucket counts up to the last bucket is exact. The
last bucket must cover at least one non-expired event, otherwise
the bucket is expired and removed. Its count must be estimated
because it can cover expired events. By estimating the actual count
of the last bucket as half the last buckets count, the absolute error
of that estimate is no larger than half that bucket’s count. The
overall count is estimated by the sum of all bucket counts (total)
minus half the last buckets count. To ensure the absolute error is
within bounds of the relative error, the last buckets influence must
be small enough compared to the sum of the other bucket counts.
Thankfully, this is ensured by the merge procedure.

Do the code listings and explanations up to this point leave you
puzzled about the workings of the histogram? Read through the
following example.

Suppose you have a newly initialized histogram with window
size n =7 and relative error upper bound € = 0.5, so k = 2. The his-
togram develops as shown in Figure 3, and a schematic overview
of this histogram is depicted in Figure 4. In Figure 3, merges are
at timestamps 5,7 and 9. A cascaded merge is at timestamp 9. An
expired bucket is at timestamp 13. T'll go into more detail about this.

The first event has no effect. At the ﬁfth event, a merge of the
oldest buckets occurs because there are 2 + 2 buckets with the
same count of 1. Again, a merge happens at the seventh event. At
the ninth event, a merge cascades into another merge. Note that
after the seventh event, the first event expires. No bucket carries

buckets.Last != null ? buckets.lLast.Value.Count : 0;
- last / 2.0);

StreamlInsight

Figure 3 Example of the Exponential Histogram

A Beauty Called

Streamlnsight

Buckets (Timestamp, Count) Relative

Timestamp Event Newest~> ... > Oldest Total Query Exact Error Perhaps youre wondering what
1 0 0 0 0 0 Microsoft StreamInsight is and where
2 1 1) 1 1 1 0 it fits in. This section provides some
3 1 61> 21) 7 P P 0 basics. StreamlInsight is a robust,
4 0 515 2l p p 5 5 high-performance, low-overhead,
near-zero-latency and extremely flex-

5 61> GhH~> @1 . . .
(merge) 1 3 2 3 0333.. ible engine for processing on streams.
J 6D > 62) It's currently at version 2.1. The full
6 1 61> 6l > B2) 4 3 4 0.25 version requires a SQL Server license,
7 | 71> 61> (1) > B2 c p : . though a trial version is available. Its
(merge) 71n>62~> 62 ’ run either as a stand-alone service or

8 1 8)>01~>62>362 6 5 6 0.166... embedded in-process.
9 9ODn>81)~>71)>62)->32) At the heart ofstreaming data pro-
(merge) 1 91> 2> 62> 62 7 5 6 0.166.. cessing is a model with tempf),ral
(cascaded merge) ©1) = 82 > (64 streams of events. Conceptually, its a
' ' ' potentially infinite and voluminous

10 0 91> 82 > (64) 7 5 5 0 . - .

collection of data arriving over time.
u L G > @2 > 64 / 2 s v Think of stock exchange prices, weather
L 0 01> 82> 64 / > 4 0.25 telemetry, power monitoring, Web
13 0 91> @82 3 2 3 0333.. clicks, Internet traffic, toll booths and

an expired timestamp until the 13th event. At the 13th event, the
bucket with timestamp 6 no longer covers at least one non-expired
event and thus expires. Note that the observed relative error is
clearly less than the relative error upper bound.

The memory savings of the
histogram are huge compared
to windows.

In Figure 4, a dotted box is the window size at that point; it con-
tains the buckets and implies the span of events covered. A solid box
is a bucket with timestamp on top and count on bottom. Situation
A shows the histogram at timestamp 7 with arrows to the counted
events. Situation B shows the histogram at timestamp 9. The last
bucket covers expired events. Situation C shows the histogram at
timestamp 13. The bucket with timestamp 6 expired.

After putting it all together, T wrote a small demonstration program
for the exponential histogram (check out the source code down-
load for this article). The results are shown in Figure 5. It simulates
astream of 100 million events with a count-based window size N of
1 million events. Each event has a payload of 0 or 1 with 50 percent
chance. It estimates the approximate count of Is with an arbitrarily
chosen relative error upper bound € of 1 percent, or 99 percent
accuracy. The memory savings of the histogram are huge compared
to windows; the number of buckets is far less than the number of
events in the window. An event rate of a few hundred thousand
events per second is achieved on a machine with an Intel 2.4 GHz
dual-core processor and 3GB of RAM running Windows 7.

msdnmagazine.com

so on. Each event in the stream has a

header with metadata and a payload

of data. In the header of the event, a timestamp is kept, at a mini-
mum. Events can arrive steadily, intermittently or perhaps in bursts
of up to many thousands per second. Events come in three flavors:
An event can be confined to a point in time; be valid for a certain
interval; or be valid for an open-ended interval (edge). Besides
events from the stream, a special punctuation event is issued by the
engine called the Common Time Increment (CTI). Events can't be
inserted into the stream with a timestamp less than the CTTs time-
stamp. Effectively, CTI events determine the extent to which events
canarrive out of order. Thankfully, StreamInsight takes care of this.
Heterogeneous sources of input and sinks of output streams must
somehow be adapted to fitinto this model. The eventsin the (query-
able) temporal streams are captured in an IQStreamable<TPayload>.

Timestamp 1

Event

Figure 4 A Schematic Overview of the Histogram
Depicted in Figure 3

February 2013 67

www.msdnmagazine.com

B C\Windows\system32\cmd.exe

1000808008
1660860
A.61
A.88485

8

{Press ENTER to quit>

Figure 5 Empirical Results for the Exponential Histogram

Event payloads are conceptually pulled by enumeration or pushed by
observation into the stream. Hence, underlying data can be exposed
through an IEnumerable<T>/IQueryable<T> (Reactive Extension)
or [Observable<T>/IQbservable<T> (Reactive Extension), respec-
tively, parameterized with the type of data exposed. They leave the
maintenance of temporal aspects to the processing engine. Conver-
sion from and to the various interfaces is possible.

The sources and sinks just discussed live on the boundaries,
whereas the actual processing happens within queries. A query
is a basic unit of composition written in LINQ. It continuously
processes events from one or more streams and outputs another
stream. Queries are used to project, filter, group-apply, multicast,
operate/aggregate, join, union and window events. Operators can
be user-defined. They work on events (incremental) or on windows
(non-incremental) as they arrive.

A note on windowing is in order. Windowing partitions a stream
into finite subsets of events that might overlap between consecutive
windows. Windowing effectively produces a stream of windows,
reflected by an IQWindowedStreamable<TPayload> in Stream-
Insight. Currently, three different kinds of windowing constructs
are supported: count-based, time-based and snapshot windows.

Figure 6 User-Defined Stream Operator Implementation

[DataContract]
public class ApproximateCountUDSO : CepPointStreamOperator<bool, Tong>
{

[DataMember]

private ExponentialHistogram histogram;

[DataMember]

private long currentTimestamp; // Current (discrete) timestamp

public ApproximateCountUDSO(Tong n, double epsilon)
{

histogram = new ExponentialHistogram(n
}

, epsilon);

public override IEnumerable<long> ProcessEvent(
PointEvent<bool> inputEvent)

{
currentTimestamp+t;

histogram.Update(currentTimestamp, inputEvent.Payload);

yield return histogram.Query();
}

public override bool IsEmpty
{
get { return false; }
}
}

68 msdn magazine

M , W T T T TS S———

Count-based windows cover the most recent N events
and slide upon the arrival of a new event, expiring the
oldest and inserting the newest. Time-based windows
cover the most recent events in the most recent inter-
val of time and slide by some interval (also called
hopping or tumbling). Snapshot windows are driven
by event start and end times; that is, for every pair of
closest event start and end times, a window is created.
In contrast to time-based windows driven by inter-
vals along the timeline, regardless of events, snapshot
windows aren' fixed along the timeline.

That just scratches the surface. More information is available
from several sources, including the online Developer’s Guide
(bit.ly/T7Trrx), ‘A Hitchhiker’s Guide to StreamInsight 2.1 Queries”
(bit.ly/NbybvY), CodePlex examples, the StreamInsight team blog
(blogs.msdn.com/b/streaminsight) and others.

Windowing partitions a stream
into finite subsets of events
that might overlap between
consecutive windows.

Putting It All Together

The foundations are laid. At this point, youre probably wondering
how approximate counting is brought to life in StreamInsight. In
short, some (temporal) source stream of point-in-time events,
carrying a payload of 0 or 1, is required. Its fed into a query that
computes the approximate count of Is over the N most recent events
using the exponential histogram. The query produces some (tem-
poral) stream of point-in-time events—carrying the approximate
count—thats fed into a sink.

Lets start with a user-defined operator for approximate counting.
You might be tempted to capture the N most recent events using
the count-based windowing construct. Think again! That would
defy the memory-saving benefits of the exponential histogram.
Why? The construct forces entire windows of events to be kept in
memory. Its not required by the exponential histogram, because it
has an equivalent implicit notion of windowing through the main-
tenance of buckets. Moreover, having an operator over windows
is non-incremental, that is, with no processing of events as they
arrive, but only when a (next) window is available. The solution
is a user-defined stream operator without explicit windowing
constructs on the query. The code is listed in Figure 6.

The operator derives from the abstract CepPointStreamOpera-
tor<TInputPayload, TOutputPayload>. It has an exponential his-
togram instance variable. Note the decoration with DataContract
and DataMember attributes. This informs StreamInsight how to
serialize the operator—for example, for resiliency purposes. The
operator overrides the sSEmpty operator to indicate its non-empty,
that is, the operator is stateful. This prevents StreamInsight from
messing with the operator when minimizing memory utilization.

StreamlInsight

http://blogs.msdn.com/b/streaminsight

The ProcessEvent method is the operator’s core. It increments the
current (discrete) timestamp and passes it along with the event
payload to the histograms update method. The histogram handles
the bucketing and is queried for the approximate count. Make sure
to use the yield-return syntax, which makes the operator enumer-
able. Operators are generally wrapped in some extension method
hidden in a utility class. This code shows how its done:

public static partial class Utility
{ public static IQStreamable<long> ApproximateCount(
this IQStreamable<bool> source, long n, double epsilon)
{ return source.Scan(() => new ApproximateCountUDSO(n, epsilon));
) }

Thats it! Plug the operator into a query via the extension method.
Abit of extra code is required to actually demonstrate its use. Here's
a trivial source stream:

public static partial class Utility
{
private static Random random = new Random((int)DateTime.Now.Ticks);

public static IEnumerable<bool> EnumeratePayloads()
{

while (true) // ad infinitum

bool payload = random.NextDouble() >= 0.5;

yield return payload;
}
}
}

This generates random payloads of Osand 1s. The yield-return syntax
turns it into an enumerable source. Put it in a utility class, if you will.

Figure 7Embedding and Executing in StreamInsight

class Program
{
public const Tong N = 10000;
public const double Epsilon = 0.05;

static void Main(string[] args)
{
using (Server server = Server.Create("StreamInsight21"))
{
var app = server.CreateApplication("ApproximateCountDemo");

// Define an enumerable source
var source = app.DefineEnumerable(() =>
Utility.EnumeratePayloads());

// Wrap the source in a (temporal) point-in-time event stream

// The time settings determine when CTI events

// are generated by StreamInsight

var sourceStream = source.ToPointStreamable(e =>
PointEvent.CreateInsert(DateTime.Now, e),
AdvanceTimeSettings.IncreasingStartTime);

// Produces a stream of approximate counts
/1 over the latest N events with relative error bound Epsilon
var query =

from e in sourceStream.ApproximateCount(N, Epsilon) select e;

// Unwrap the query's (temporal) point-in-time
// stream to an enumerable sink
var sink = query.ToEnumerable<long>();

foreach (lTong estimatedCount in sink)
{
Console.WriteLine(string.Format(
"Enumerated Approximate count: {0}", estimatedCount));

msdnmagazine.com

The infamous Program class is shown in Figure 7. It creates the
in-process embedded StreamInsight server instance. A so-called
application instance named ApproximateCountDemo is created
as a streaming processing (metadata) container, for example,
for named streams, queries and so on. An enumerable source of
point-in-time events is defined, using the payload-generating
utility method described earlier. Its transformed into a temporal
stream of point-in-time events. The query is defined with LINQand
selects the operator approximate counts computed over the source
stream. This is where the extension method for the user-defined
operator comes in handy. It's bootstrapped with a window
size and relative error upper bound. Next, the query output is
transformed into an enumerable sink, stripping the temporal
properties. Finally, the sink is iterated over, thereby actively pulling
the events through the pipeline. Execute the program and enjoy its
number-crunching output on the screen.

The histogram and operator
can be extended to support
variable-size windows, such as
time-based windows.

To briefly recap, this article explains how to approximate the
count over a window of events in logarithmic time and space with
upper-bounded error using an exponential histogram data structure.
The histogram is embedded in a StreamInsight user-defined operator.

The histogram and operator can be extended to support variable-
size windows, such as time-based windows. This requires the
histogram to know the window interval/timespan rather than the
window size. Buckets are expired when their timestamp is before
the new events timestamp minus the window timespan. An exten-
sion to compute variance is proposed in the paper, “Maintaining
Variance and k-Medians over Data Stream Windows, by Brian
Babcock, Mayur Datar, Rajeev Motwani and Liadan O'Callaghan
(stanford.io/UEUGOI). Apart from histograms, other so-called synop-
sis structures are described in literature. You can think of random
samples, heavy hitters, quantiles and so on.

The source code accompanying this article is written in C# 4.0
with Visual Studio 2010 and requires StreamInsight 2.1. The code
is free for use under the Microsoft Public License (Ms-PL). Note
that it was developed for educational purposes and was neither
optimized nor tested for production environments. u

MicHaeL MEUER is as a software engineer at CIMSOLUTIONS BV, where he
provides IT consulting services and software development solutions to compa-
nies throughout the Netherlands. His interests in StreamInsight and streaming
data processing started during his research at the University of Twente, Enschede,
Netherlands, where he received a Master of Science degree in Computer Science—
Information Systems Engineering.

THANKS to the following technical experts for reviewing this article:
Erik Hegeman, Roman Schindlauer and Bas Stemerdink

February 2013 69

www.stanford.io/UEUG0i
www.msdnmagazine.com

TesT RuN

JAMES MCCAFFREY

Naive Bayes Classification with C#

Naive Bayes classification is a machine-learning technique that can
be used to predict to which category a particular data case belongs.
In this article T explain how Naive Bayes classification works and

present an example coded with the C# language.

There are plenty of standalone tools available that can perform

Naive Bayes classification. However, these tools
can be difficult or impossible to integrate directly
into your application, and difficult to customize
to meet specific needs. And they might have hid-
den copyright issues. This article will give you a
solid foundation for adding Naive Bayes classi-
fication features to a NET application, without
relying on any external dependencies.

The best way to understand what Naive Bayes
classification is and to see where I'm headed in
thearticle is to examine the screenshot of a demo
programin Figure 1. The demo program begins
by generating 40 lines of data that will be used to
train the classifier. In most cases youd be using an
existing data source, but I generated dummy data
to keep the demo simple. The first line of data is
“administrative,right,72.0,female” The first field
isan occupation, the second is hand dominance,
the third is height in inches and the fourth is sex.
The goal of the classifier is to predict sex from a
given set of values for occupation, dominance
and height. Because the dependent variable sex
has two possible values, this is an example of
binary classification.

After generating raw data, the demo pro-
gram converts each numeric height field to a
category—short, medium or tall—by binning
height. AsI'll explain, binning numeric data into
categorical data is an approach that has pros and
cons. After the training data has been binned, the
demo program scans the 40 lines of categorical
data and computes joint counts. For example,
the number of data cases where the persons
occupation is administrative and the persons
sex is male is 2. Additionally, the total numbers

Code download available at
archive.msdn.microsoft.com/mag201302TestRun.

70 msdn magazine

of each dependent value (the attribute to be predicted, male or
female in this example) are computed. You can see that there are
24 males and 16 females in the training data.

The demo program then has all the information needed to clas-
sify the sex of a new data case where the occupation is education,

(o] i

NaiveBayes/bin/Debug/NaiveBayes.EXE

Begin Naive Bayes Classification demo

Demo will classify sex based on occupation, dominance, height
Generating 4@ lines of occupation, dominance., height. sex data
First 4 lines of training data are:
administrative,.right,.72.8.female

construction,.right,.63.8,.male

technology,.right . 65.9 . female
administrative,.right.69.8,.female

Converting numeric height data to categorical data on 64.8 71.8
First 4 lines of bhinned training data are:
administrative.right.tall.female

construction,.right,.short, male

technology, right medium. female
administrative,right . medium,female

Scanning binned data to compute joint and dependent counts

= 24
= 16

Total male
Total female

male
male
male
male
male
male
male
male
male

administrative &
construction

w o3 o

female
female
female
female
female
female
female
female
female

administrative
construction
education

MNEOMEMNULLE~] o b b o = DO LA
-

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

Using Naive Bayes with Laplacian smoothing to classify when:
occupation = education

dominance = right

height = tall

B.3855
B.6145

Probabhility of male
Probability of female

Data case is most likely female

Figure 1 Naive Bayes Classification Demo

http://archive.msdn.microsoft.com/mag201302TestRun

Figure 2 Naive Bayes Program Structure

using System;
namespace NaiveBayes
{
class Program
{
static Random ran = new Random(25); // Arbitrary

static void Main(string[] args)
{
try
{
string[] attributes = new string[] { "occupation", "dominance",
"height", "sex"};

string[][] attributeValues = new string[attributes.Length][];
attributeValues[0] = new string[] { "administrative",
"construction", "education", "technology" };
attributeValues[1] = new string[] { "left", "right" }
attributeValues[2] = new string[] { "short", "medium", "tall" };
attributeValues[3] = new string[] { "male", "female" };

doubTe[1[] numericAttributeBorders = new double[1][];
numericAttributeBorders[0] = new double[] { 64.0, 71.0 };

string[] data = MakeData(40);
for (int 1 =0; i < 4; ++)
Console.WriteLine(datali]);

string[] binnedData = BinData(data, attributeValues,
numericAttributeBorders);

for (int i =0; i < 4; ++i)
Console.WriteLine(binnedDatali]);

int[1[1[] jointCounts = MakedointCounts(binnedData, attributes,
attributeValues);

int[] dependentCounts = MakeDependentCounts(jointCounts, 2);

Console.WriteLine("Total male = " + dependentCounts[0]1);

the dominance is right and the height is tall. In this example, it
turns out the demo determined the probability that the data case is
amaleis 0.3855 and the probability that the case is female is 0.6145,
and so the system concludes the data case is most likely a female.

In the sections that follow I'll first explain exactly how Naive
Bayes classification works, walk you through the code in the demo
program, and describe how to modify the demo to meet your
own needs. This article assumes you have at least beginning pro-
gramming skills with a C-family language, but doesntassume you
know anything about Naive Bayes classification. The code for the
demo program is a bit too long to present in its entirety here, but
the complete source is available from the MSDN download site
at archive.msdn.microsoft.com/mag201302TestRun.

How Naive Bayes Classification Works

Using the example shown in Figure 1, the goal is to predict the sex
(male or female) of a person whose occupation is education, who
is right-handed and whose height is tall (greater than or equal to
71.0 inches). To do this, we can compute the probability that the
person is male given that information, and the probability the
person is female given the information, and then predict the sex
with the larger probability. Expressed symbolically, we want to
know P(male | X), usually read as, “the probability of male given
independent variable values X”) and P(female | X), where X is
(education, right, tall). The term “naive” in Naive Bayes means thatall
Xattributes are assumed to be mathematically independent, which
greatly simplifies classification. You can find many online references

msdnmagazine.com

Console.WriteLine("Total female = " + dependentCounts[1]);
ShowdJointCounts(jointCounts, attributeValues);

string occupation = "education";
string dominance = "right";
string height = "tall";

bool withLaplacian = true;

Console.WriteLine(" occupation = " + occupation);
Console.WriteLine(" dominance = " + dominance);
Console.WriteLine(" height = " + height);

int ¢ = Classify(occupation, dominance, height, jointCounts,
dependentCounts, withLaplacian, 3);

if (¢ =0)
Console.WriteLine("\nData case is most likely male");

else if (c = 1)
Console.WriteLine("\nData case is most 1ikely female");

Console.WriteLine("\nEnd demo\n");
iatch (Exception ex)
(Console.Writeline(ex.Message);
} }/ End Main

// Methods to create data

// Method to bin data

// Method to compute joint counts

// Helper method to compute partial probabilities
// Method to classify a data case

~

}/
}

End class Program

that explain the rather interesting mathematics behind Naive Bayes
classification, but the result is relatively simple. Symbolically:

P(male | X) =
[P(education | male) * P(right | male) * P(tall | male) * P(male) 1/
[PP(male | X) + PP(female | X) 1]

The term "naive” in Naive Bayes
means that all X attributes are
assumed to be mathematically
independent, which greatly
simplifies classification.

Notice the equation is a fraction. The numerator, sometimes
loosely called a partial probability, consists of four terms multi-
plied together. In this article I use the nonstandard notation of PP
for a partial probability term. The denominator is the sum of two
terms, one of which is the numerator. The first piece to compute
is P(education | male), or the probability that a persons occupa-
tion is education, given that he is male. This, as it turns out, can
be estimated by the count of training cases where occupation is
education and sex is male, divided by the number of cases that are
male (with any occupation), so:

P(education | male) = count(education & male) / count(male) = 2/24 = 0.0833

February 2013 71

http://archive.msdn.microsoft.com/mag201302TestRun
www.msdnmagazine.com

Figure 3 Method BinData for Categorizing Height

static string[] BinData(string[] data, string[][] attributeValues,
doubTle[1[] numericAttributeBorders)
{
string[] result = new string[data.Length];
string[] tokens;
double heightAsDouble;
string heightAsBinnedString;

for (int i = 0; i < data.length; ++i)
{
tokens = data[i].Sp1it(',");
heightAsDouble = double.Parse(tokens[2]);
if (heightAsDouble <= numericAttributeBorders[0][0]) // Short
heightAsBinnedString = attributeValues[2][0];
else if (heightAsDouble >= numericAttributeBorders[0][1]) // Tall
heightAsBinnedString = attributeValues[2][2];
else
heightAsBinnedString = attributeValues[21[1]; // Medium

string s = tokens[0] + "," + tokens[1] + "," + heightAsBinnedString +
"," + tokens[3];
result[i] = s;
}
return result;
}

Using the same logic:

P(right | male) = count(right & male) / count(male) = 17/24 = 0.7083
P(tall | male) = count(tall & male) / count(male) = 4/24 = 0.1667

The next piece of the puzzle is P(male). In Naive Bayes termi-
nology, this is called a prior. There’s some debate about how best to
compute priors. On the one hand, we can hypothesize that theres
no reason to believe that the presence of males is more or less
likely than the presence of females and so assign 0.5 to P(male).
On the other hand, we can use the fact that the training data has 24

Figure 4 Method MakeJointCounts

static int[1[J[] MakeJointCounts(string[] binnedData, string[] attributes,
string[J[] attributeValues)

int[1[][] jointCounts = new int[attributes.Length - 11[1[]; // -1 (no sex)

jointCounts[0] = new int[41[1; // 4 occupations
JjointCounts[1] = new int[2][]1; // 2 dominances
jointCounts[2] = new int[31[1; // 3 heights

JjointCounts[0J[0] = new int[2]; // 2 sexes for administrative
jointCounts[0][1] = new int[2]; // construction
jointCounts[01[2] = new int[2]; // education
jointCounts[0][3] = new int[2]; // technology

jointCounts[11[0] = new int[2]; // left
jointCounts[1][1] = new int[2]; // right

jointCounts[2][0] = new int[2]; // short
jointCounts[21[1] = new int[2]; // medium
jointCounts[21[2] = new int[2]; // tall

for (int i = 0; i < binnedData.Length; ++i)
{
string[] tokens = binnedData[i].Split("',");

int occupationIndex = AttributeValueToIndex(0, tokens[0]);
int dominancelndex = AttributeValueToIndex(1l, tokens[1]);
int heightIndex = AttributeValueToIndex(2, tokens[2]);

int sexIndex = AttributeValueToIndex(3, tokens[31]);

++jointCounts[0][occupationIndex][sexIndex];
++jointCounts[1][dominanceIndex][sexIndex];
++jointCounts[2][heightIndex][sexIndex];

}

return jointCounts;
}

72 msdn magazine

males and 16 females and estimate a probability of 24/40 = 0.6000
for P(male). I prefer this approach, where priors are estimated
using training data.

Now, if you refer to the earlier equation for P(male | X), you'll
note that it contains the PP(female | X). The bottom sum, PP(male
| X) + PP(female | X), is sometimes called the evidence. The pieces
for PP(female | X) are computed like so:

P(education | female) = count(education & female) / count(female) = 4/16 = 0.2500
P(right | female) = count(right & female) / count(female) = 14/16 = 0.8750
P(tall | female) = count(tall & female) / count(female) = 2/16 = 0.1250
P(female) = 16/40 = 0.4000

So the partial probability numerator for P(male | X) is:

PP(male | X) = 0.0833 * 0.7083 * 0.1667 * 0.6000 = 0.005903

Using the same logic, the partial probability for female given X
= (education, right, tall) is:

PP(female | X) = 0.2500 * 0.8750 * 0.1250 * 0.4000 = 0.010938

And, finally, the overall probabilities of male and female are:

P(male | X) = 0.005903 / (0.005903 + 0.010938) = 0.3505
P(female | X) = 0.010938 / (0.005903 + 0.010938) = 0.6495

These overall probabilities are sometimes called the posteriors.
Because P(female | X) is greater than P(male | X), the system con-
cludes the sex of the unknown person is female. But wait. These two
probabilities, 0.3505 and 0.6495, are close to but definitely not the
same as the two probabilities, 0.3855 and 0.6145, shown in Figure
1. The reason for this discrepancy is that the demo program uses
an important optional modification of basic Naive Bayes called
Laplacian smoothing.

Laplacian Smoothing
Ifyou refer to Figure 1, you'll see that the count of training cases in
which the person has occupation = construction and sex = female is
0. In the demo, the X values are (education, right, tall), which doesn't
include construction. But suppose X had been (construction, right,
tall). In the computation of PP(female | X) it would be necessary to
compute P(construction | female) = count(construction & female)
/ count(female), which would be 0, and which in turn would
zero-out the entire partial probability. In short, its bad when a joint
count is 0. The most common technique to avoid this situation is
to simply add 1 to all joint counts. This has the feel of a hack but,
in fact, has a solid mathematical basis. The technique is called add-
one smoothing, which is a specific kind of Laplacian smoothing.
With Laplacian smoothing, if X = (education, right, tall) as in
the previous section, P(male | X) and P(female | X) are calculated
as follows:

P(education | male) =

count(education & male) + 1 / count(male) + 3 = 3/27 = 0.1111
P(right | male) =

count(right & male) + 1 / count(male) + 3 = 18/27 = 0.6667
P(tall | male) =

count(tall & male) + 1 / count(male) + 3 = 5/27 = 0.1852
P(male) = 24/40 = 0.6000

P(education | female) =

count(education & female) + 1 / count(female) + 3 =5/19 = 0.2632
P(right | female) =

count(right & female) + 1 / count(female) + 3 = 15/19 = 0.7895
P(tall | female) =

count(tall & female) + 1 / count(female) + 3 = 3/19 = 0.1579
P(female) = 16/40 = 0.4000

The partial probabilities are:
PP(male | X) = 0.1111 * 0.6667 * 0.1852 * 0.6000 = 0.008230
PP(female | X) = 0.2632 * 0.7895 * 0.1579 * 0.4000 = 0.013121

Test Run

Figure 5 Method Classify

static int Classify(string occupation, string dominance, string height,
int[J[1[] jointCounts, int[] dependentCounts, bool withSmoothing,
int xClasses)

double partProbMale = PartialProbability("male", occupation, dominance,
height, jointCounts, dependentCounts, withSmoothing, xClasses);

double partProbFemale = PartialProbability("female", occupation, dominance,
height, jointCounts, dependentCounts, withSmoothing, xClasses);

double evidence = partProbMale + partProbFemale;

double probMale = partProbMale / evidence;

double probFemale = partProbFemale / evidence;

if (probMale > probFemale) return 0;
else return 1;

And so the two final probabilities are:

P(male | X) = 0.008230 / (0.008230 + 0.013121) = 0.3855
P(female | X) = 0.013121 / (0.008230 + 0.013121) = 0.6145

These are the values shown in the screenshot in Figure 1. Notice
that 1 is added to each joint count but that 3 is added to denom-
inators count(male) and count(female). The 3 is to some extent
arbitrary in the sense that Laplacian smoothing doesnt specify any
particular value to be used. In this case, its the number of X attri-
butes (occupation, dominance, height). This is the most common
value to add to denominators of partial probabilities in Laplacian
smoothing, but you may wish to experiment with other values.
The value to add to the denominator is often given the symbol
k in math literature on Naive Bayes. Also, notice that the priors,
P(male) and P(female), are typically not modified in Naive Bayes
Laplacian smoothing.

Overall Program Structure

The demo program shown running in Figure 1 is a single C# con-
soleapplication. The Main method, with some WriteLine statements
removed, is listed in Figure 2.

The program begins by setting up the hardcoded X attributes
occupation, dominance, and height, and the dependent attribute
sex. In some situations you may prefer to scan your existing data
source to determine the attributes, especially when the source is
a data file with headers or a SQL table with column names. The
demo program also specifies the nine categorical X attribute values:
(administrative, construction, education, technology) for occupa-
tion; (left, right) for dominance; and (short, medium, tall) for height.
In this example there are two dependent variable attribute values:
(male, female) for sex. Again, you may want to programmatically
determine attribute values by scanning your data.

The demo sets up hardcoded boundary values of 64.0 and 71.0
to bin the numeric height values so that values less than or equal
to 64.0 are categorized as short; heights between 64.0 and 71.0 are
medium; and heights greater than or equal to 71.0 are tall. When
binning numeric data for Naive Bayes, the number of boundary val-
ues will be one less than the number of categories. In this example,
the 64.0 and 71.0 were determined by scanning the training data for
minimum and maximum height values (57.0 and 78.0), computing
the difference, 21.0, and then computing interval size by dividing by
number of height categories, 3, giving 7.0. In most situations, you'll
want to the determine boundary values for numeric X attributes
programmatically rather than manually.

msdnmagazine.com

The demo program calls a helper method MakeData to gen-
erate somewhat random training data. MakeData calls helpers
MakeSex, MakeOccupation, MakeDominance and MakeHeight.
For example, these helpers generate data so that male occupations
are more likely to be construction and technology, male dominance
is more likely to be right, and male height is most likely to be
between 66.0 and 72.0 inches.

The key methods called in Main are BinData to categorize height
data; MakeJointCounts to scan binned data and compute the joint
counts; MakeDependentCounts to compute total number of males
and females; and Classify, which uses joint counts and dependent
counts to perform a Naive Bayes classification.

Binning Data

Method BinData is listed in Figure 3. The method accepts an array
of comma-delimited strings where each string looks like “educa-
tion,left,67.5,male” In many situations, you'll be reading training
data from a text file where each line is a string. The method uses
String.Split to parse each string into tokens. Token|[2] is the height.
Its converted from a string into type double using the double.Parse
method. The numeric height is compared against the boundary
values until the heights interval is found, and then the correspond-
ing height category as a string is determined. A result string is
stitched together using the old tokens, comma delimiters and the
new computed-height category string.

It's not a requirement to bin
numeric data when performing
Naive Bayes classification.

It's not a requirement to bin numeric data when performing
Naive Bayes classification. Naive Bayes can deal with numeric data
directly, but those techniques are outside the scope of this article.
Binning data has the advantages of simplicity and avoiding the need
to make any particular explicit assumptions about the mathemati-
cal distribution (such as Gaussian or Poisson) of the data. However,
binning essentially loses information and does require you to
determine and specify into how many categories to divide the data.

Determining Joint Counts

The key to Naive Bayes classification is computing joint counts. In
the demo example, there are nine total independent X attribute
values (administrative, construction, ... tall) and two dependent
attribute values (male, female), so a total of 9 * 2 = 18 joint counts
must be computed and stored. My preferred approach is to store
joint countsin a three-dimensional array int[][][] jointCounts. The
firstindex indicates the independent X attribute; the second index
indicates the independent X attribute value; and the third index
indicates the dependent attribute value. For example, jointCounts|[0]
[3][1] means attribute 0 (occupation), attribute value 3 (technology)
and sex 1 (female), or in other words the value at jointCounts[0] 3]

February 2013 73

www.msdnmagazine.com

(1] is the count of training cases where occupation is technology
and sex is female. Method MakeJointCounts is listed in Figure 4.

The implementation has many hardcoded values to make it
easier to understand. For example, these three statements could
be replaced by a single for loop that allocates space using Length
properties in array attributeValues:

jointCounts[0] = new int[4][]; // 4 occupations
jointCounts[1] = new int[2][]; // 2 dominances
jointCounts[2] = new int[3][1; // 3 heights

Helper function AttributeValueTolndex accepts an attribute
index and an attribute value string and returns the appropriate
index. For example, AttributeValueTolndex(2, “medium’) returns
the index of “medium” in the height attribute, which is 1.

The demo program uses a method MakeDependentCounts to
determine the number of male and number of female data cases.
There are several ways to do this. If you refer to Figure 1, you'll
observe that one approach is to add the number of joint counts
ofany of the three attributes. For example, the number of males is
the sum of count(administrative & male), count(construction &
male), count(education & male) and count(technology & male):

static int[] MakeDependentCounts(int[I[J[] jointCounts,
int numDependents)
{
int[] result = new int[numDependents];
for (int k = 0; k < numDependents; ++k)
/] Male then female
for (int j = 0; j < jointCounts[0].Length; ++j)
// Scanning attribute 0
result[k] += jointCounts[0J[J1[k];

return result;
}

Classifying a Data Case
Method Classify, shown in Figure 5, is short because it relies on
helper methods.

Method Classity accepts the jointCounts and dependentCounts
arrays; a Boolean field to indicate whether or not to use Laplacian
smoothing; and parameter xClasses, which in this example will
be 3 because there are three independent variables (occupation,
dominance, height). This parameter could also be inferred from
the jointCounts parameter.

Method Classify returns an int that represents the index of the
predicted dependent variable. Instead, you might want to return
an array of probabilities for each dependent variable. Notice that
the classification is based on probMale and probFemale, both of
which are computed by dividing partial probabilities by the evi-
dence value. You might want to simply omit the evidence term and
just compare the values of the partial probabilities by themselves.

Method Classify returns the index of the dependent variable that
has the largest probability. An alternative is to supply a threshold
value. For example, suppose probMale is 0.5001 and probFemale is
0.4999. You may wish to consider these values too close to call and
return a classification value representing “undetermined”

Method PartialProbability does most of the work for Classify
and is listed in Figure 6.

Method PartialProbability is mostly hardcoded for clarity. For
example, there are four probability pieces, p0, p1, p2 and p3. You can
make PartialProbability more general by usingan array of probabilities
where the size of the array is determined from the jointCounts array.

74 msdn magazine

Figure 6 Method PartialProbability

static double PartialProbability(string sex, string occupation, string dominance,
string height, int[J[1[] jointCounts, int[] dependentCounts,
bool withSmoothing, int xClasses)

int sexIndex = AttributeValueToIndex(3, sex);

int occupationIndex = AttributeValueToIndex(0, occupation);
int dominancelndex = AttributeValueToIndex(1, dominance);
int heightIndex = AttributeValueToIndex(2, height);

int totalMale = dependentCounts[0];
int totalFemale = dependentCounts[1];
int totalCases = totalMale + totalFemale;

int totalToUse = 0;
if (sex == "male") totalToUse = totalMale;

else if (sex == "female") totalToUse = totalFemale;

double p0 = (totalToUse * 1.0) / (totalCases); // Prob male or female
double pl = 0.0;

double p2 = 0.0;

double p3 = 0.0;

if (withSmoothing == false)

pl = (jointCounts[0][occupationIndex][sexIndex] * 1.0) / totalToUse
(jointCounts[1]1[dominanceIndex][sexIndex] * 1.0) / totalToUse;
(jointCounts[2][heightIndex][sexIndex] * 1.0) / totalToUse;

o
<o
[}

else if (withSmoothing == true)
{
pl = (jointCounts[0][occupationIndex][sexIndex] + 1) /
((totalToUse + xClasses) * 1.0);
p2 = (jointCounts[1][dominanceIndex][sexIndex] + 1) /
((totalToUse + xClasses) * 1.0 ;
p3 = (jointCounts[2][heightIndex][sexIndex] + 1) /
((totalToUse + xClasses) * 1.0);
}

//return p0 * pl * p2 * p3; // Risky if any very small values
return Math.Exp(Math.Log(p0) + Math.Log(pl) + Math.Log(p2) + Math.Log(p3));

Notice that instead of returning the product of the four probabil-
ity pieces, the method returns the equivalent Exp of the sum of the
Log of each piece. Using log probabilities is a standard technique in
machine-learning algorithms thats used to prevent numeric errors
that can occur with very small real numeric values.

Wrapping Up

The example presented here should give you a good foundation for
adding Naive Bayes classification features to your NET applications.
Naive Bayes classification is a relatively crude technique, but it does
have several advantages over more-sophisticated alternatives such
as neural network classification, logistic regression classification
and support vector machine classification. Naive Bayes is simple,
relatively easy to implement and scales well to very large data
sets. And Naive Bayes easily extends to multinomial classification
problems—those with three or more dependent variables. L

DRr. James McCAFFREY works for Volt Information Sciences Inc., where he manages
technical training for software engineers working at the Microsoft Redmond,
Wash., campus. He has worked on several Microsoft products including Internet
Explorer and MSN Search. Hes the author of “NET Test Automation Recipes”
(Apress, 2006), and can be reached at jammc@microsoft.com.

THANKS to the following Microsoft technical expert for reviewing this article:
Rich Caruana

Test Run

mailto:jammc@microsoft.com

I
MINTIR =15k

C ONFER ANNIVERSARY

/\

Celebrating 15 years of IT education, TechMentor
returns in 2013 with immediately usable training that will keep
you relevant in the workforce. Get inside the IT classroom and
learn how you can build a more productive IT environment.

| Choose Your Campus |

TECH TH

NFERENCES CONFERENTCES

2013 2013

T CLASg
< R\ 1 300
) é
<, o
<% Ve
= () Vo
I o
). L*
March 4 - 8 | Buena Vista Palace Sept 30-Oct 4 | The Tropicana

TECHMENTOREVENTS.COM

SUPPORTED BY PRODUCED BY

Redmond .)
Redmond CHAMEIPartner VIRTUALIZATION 'fimios venia

www.techmentorevents.com

THE WORKING PROGRAMMER

TED NEWARD

NET Collections, Part 2: Working with C5

Welcome back.

In the first part of this series, I looked briefly at the Copenhagen
Comprehensive Collection Classes for C# (C5) library, aset of classes
designed to supplement (if not replace) the System.Collections
classes that ship with the Microsoft .NET Framework runtime
library. Theres a fair amount of overlap between the two libraries,
partly because C5 wants to follow many of the same idioms that
the NET Framework Class Library (FCL) uses, and partly because
there are only so many ways one can reasonably represent a particu-
lar collection type. (Its hard to imagine an indexed collection—such
as a Dictionary or a List—not supporting the language syntax for
indexed properties: the “[]” operator in C# and the “()” operator in
Visual Basic.) Where the FCL collections are utilitarian, however,
the C5 collections go a step or two beyond that, and thats where
we want to spend our time.

Where the FCL collections are
utilitarian, however, the C5
collections go a step or two
beyond that.

(Note that theres also very likely some performance difterences
between the two libraries that proponents or critics of each will
be quick to point out—the C5 collection manual discusses some
of the performance implications, for example. That said, I eschew
most performance benchmarks on the grounds that, generally; all
a benchmark proves is that for one particular case or set of cases,
somebody got one of the two to run faster than the other, which
doesnt really say whether that will hold true for all cases between
the two. This doesnt mean all benchmarks are useless, just that the
context matters to the benchmark. Readers are strongly encouraged
to take their own particular scenarios, turn them into a benchmark
and have a shootout between the two, just to see if theres a marked
difference in those particular cases.)

Implementations

First ofall, lets take a quick look at the different collection implemen-
tations that C5 provides. Again, as we discussed last time, developers
using C5 shouldnt generally worry about the implementation in use
except when deciding which implementation to create—the rest of

76 msdn magazine

the time, the collection should be referenced by interface type. (For
adescription of the interface types, see the previous column in the
series at msdn.microsoft.com/magazine/[j883961, or the C5 documentation
at bit.ly/UcOczH.) Here are the implementations:

« CircularQueue<T> implements both IQueue<T> and
[Stack<T> to provide either the first-in-first-out semantics
of [Queue<T> (via Enqueue and Dequeue) or the last-
in-first-out semantics of [Stack<T> (via Push and Pop),
backed by a linked list. It grows in capacity as needed.

« ArrayList<T> implements [List<T>, IStack<T> and
IQueue<T>, backed by an array.

« LinkedList<T> implements IList<T>, [Stack<T> and
IQueue<T>, using a doubly linked list of nodes.

« HashedArrayList<T> implements IList<T>, backed by an
array, butalso maintains a hash table internally to efficiently
find the position of an item within the list. Also, it doesn't
allow duplicates in the list (because duplicates would screw
up the hash table lookup).

« HashedLinkedList<T> implements IList<T>, backed by
a linked list, and like its array-backed cousin, it uses an
internal hash table to optimize lookups.

« WrappedArray<T> implements [List<T>, wrapping around
a single-dimensional array. The advantage of this class is
that it simply “decorates” the array, making it far faster to
obtain C5 functionality, as opposed to copying the elements
out of the array and into an ArrayList<T>.

« SortedArray<T> implements [IndexedSorted<T>, which
means the collection can be indexed as well as sorted—we'll
get to thisin a second. It keeps its items sorted and doesn't
allow duplicates.

Figure 1 Creating Views on a Collection

[TestMethod]
public void GettingStarted()
(
IList<String> names = new ArrayList<String>();
names.AddA11(new String[]
{ "Hoover", "Roosevelt", "Truman", "Eisenhower", "Kennedy" });

// Print item 1 ("Roosevelt") in the Tist
Assert.AreEqual("Roosevelt", names[1]);
Console.WriteLine(names[1]);

// Create a list view comprising post-WW2 presidents
IList<String> postWWII = names.View(2, 3);

// Print item 2 ("Kennedy") in the view
Assert.AreEqual ("Kennedy", postWWII[2]);

http://msdn.microsoft.com/magazine/jj883961

-

u) |
NET Resources

~ msdn

magazine

Visual Studio

MAGAZINE

Visual Studlo LIVE!

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ONLINE | NEWSLETTERS | PRINT | CONFERENCES

www.msdnmagazine.com
www.vslive.com
www.visualstudiomagazine.com

Figure 2 Views Are Potentially Mutable

[TestMethod]
public void ViewExploration()
{
IList<String> names = new ArraylList<String>();
names.AddA11(new String[]
{ "Washington", "Adams", "Jefferson",
"Hoover", "Roosevelt", "Truman",
"Eisenhower", "Kennedy" });

IList<String> postWWII = names.View(4,
Assert.AreEqual(postWWII.Count, 4);
IList<String> preWWII = names.View(0, 5);
Assert.AreEqual(preWWII.Count, 5);
Assert.AreEqual("Washington", preWWII[0]);

names.Count - 4);

names.Insert(3, "Jackson");
Assert.AreEqual("Jackson", names[3]);
Assert.AreEqual("Jackson", preWWII[3]);

« TreeSet<T> implements IIndexedSorted<T> and
[PersistedSorted<T> and is backed by a balanced
red-black tree, which is great for insertion, removal and
sorting. Like all sets, it doesn't allow duplicates.

« TreeBag<T> implements IIndexedSorted<T> and
[PersistedSorted<T>, is backed by a balanced red-black
tree, but is essentially a “bag” (sometimes called a
“multiset”), meaning it allows duplicates.

« HashSet<T> implements IExtensible<T>, and backs the set
(meaning no duplicates) by a hash table with linear chain-
ing. This means lookups will be fast, modifications less so.

« HashBag<T> implements [Extensible<T>, and backs the
bag (meaning duplicates are allowed) by a hash table with
linear chaining, again making lookups fast.

« IntervalHeap<T> implements [PriorityQueue<T>,
using an interval heap stored as an array of pairs, making
it eflicient to pull from either the “max” or “min” end of
the priority queue.

There are a few more implementations, and the C5 manual and
docs have more details if youTe interested. However, aside from the
performance implications, the critical thing to know is which imple-
mentations implement which interfaces, so that you can have a good

Figure 3 Guarded (Immutable) Collections

public void IWannaBePresidentToo(IList<String> presidents)
{
presidents.Add("Neward");
}
[TestMethod]
public void NeverModifiedCollection()
{
IList<String> names = new Arraylist<String>();
names.AddAT1(new String[]
{ "Hoover", "Roosevelt", "Truman","Eisenhower", "Kennedy" });
try
{
IWannaBePresidentToo(new GuardedList<String>(names));
}
catch (Exception x)
{
// This is expected! Should be a ReadOnlyException
}

Assert.IsFalse(names.Contains("Neward"));

78 msdn magazine

idea of each when it’s time to choose one to instantiate. (You can always
switch it around to a different implementation later, assuming you
follow the C5 design guideline of always referencing the collections
by the interfaces rather than their implementation types.)

Functionality

If C5 were just a larger collection of collection implementations, it
would be interesting, but probably not enough to warrant signifi-
cant interest or discussion. Fortunately, it offers a few new features
to developers that deserve discussion.

Views One of the interesting little tidbits of the C5 library is
the notion of “views”: subcollections of elements from the source
collection that are, in fact, not copies but backed by the original
collection. This was actually what the code from the previous
column did, in the exploration test. See Figure 1 for how to create
views on a collection.

The view is backed by the original list, which means that if the
original list changes for whatever reason, the view on it is also
affected. See Figure 2 to see how views are potentially mutable.

As this test shows, changing the underlying list (“names”) means
that the views defined on it (in this case, the “preWWII” view) also
find their contents changing, so that now the first element in the
view is “Washington,” instead of “Hoover”

However, when possible, C5 will preserve the sanctity of the
view; so, for example, if the insertion occurs at the front of the col-
lection (where C5 can insert it without changing the contents of
the “preWWII” view), then the view’s contents remain unchanged:

[TestMethod]
public void ViewUnchangingExploration()
{
IList<String> names = new Arraylist<String>();
names.AddA11(new String[]
{ "Hoover", "Roosevelt", "Truman", "Eisenhower", "Kennedy" });

IList<String> preWWII = names.View(0, 2);
Assert.AreEqual(preWWII.Count, 2);

names.InsertFirst("Jackson");

Assert.AreEqual("Jackson", names[0]);

Assert.AreEqual("Hoover", preWWII[0]);
}

Immutable (Guarded) Collections With the rise of functional
concepts and programming styles, a lot of emphasis has swung to
immutable data and immutable objects, largely because immutable
objects offer a lot of benefits vis-a-vis concurrency and parallel

Figure 4 “When | Become President...”

[TestMethod]
public void InaugurationDay()
{
IList<String> names = new ArrayList<String>();
names.AddA11(new String[]
{ "Hoover", "Roosevelt", "Truman", "Eisenhower", "Kennedy" });

names.ItemsAdded +=
delegate (Object c, ItemCountEventArgs<string> args)
{
testContextInstance.WriteLine(
"Happy Inauguration Day, {0}!", args.Item);
names.Add("Neward");

Assert.IsTrue(names.Contains("Neward"));

The Working Programmer

programming, but also because many developers find immutable
objects easier to understand and reason about. Corollary to that
concept, then, follows the concept of immutable collections—the
idea that regardless of whether the objects inside the collection are
immutable, the collection itself is fixed and unable to change (add
or remove) the elements in the collection. (Note: You can see a pre-
view of immutable collections released on NuGet in the MSDN
Base Class Library (BCL) blog at bit.ly/ 12AXD78.)

All collections in C5 offer the
ability to hang delegates off the
collection.

Within C5, immutable collections are handled by instantiating
“wrapper” collections around the collection containing the data of
interest; these collections are “Guarded” collections and are used
in classic Decorator pattern style:

public void ViewImmutableExploration()
{
IList<String> names = new ArraylList<String>();
names.AddA11(new String[]
{ "Hoover", "Roosevelt", "Truman", "Eisenhower", "Kennedy" });
names = new GuardedList<String>(names);

IList<String> preWWII = names.View(0, 2);
Assert.AreEqual("Hoover", preWWII[0]);

names.InsertFirst("Washington");
Assert.AreEqual("Washington", names[0]);
}

Ifanyone tries to write code that adds or removes elements from
the list, C5 quickly disabuses said developer of the idea: An excep-
tion is thrown as soon as any of the “modifying” methods (Add,
Insert, InsertFirst and so on) are called.

This offers a pretty powerful opportunity, by the way. In the pre-
vious column, I mentioned that one of the key design points that
went into C5is the idea that collections should only be used through
interfaces. Assuming developers using C5 carry that design idea
forward, it now becomes really simple to ensure that a collection
is never modified by a method to which it is passed (see Figure 3).

Again, when the IWannaBePresidentToo method tries to modify
the collection passed in (which, arguably, is bad design on the part
of the programmer who wrote it, but unfortunately theres a lot of
that kind of code out there), an exception is thrown.

By the way, should you prefer that the collection not throw an
exception and instead silently fail the modification (which I think
is too subtle, but some developers may need that functionality),
its relatively easy to put together your own version of Guarded-
Array<T> that doesn't throw.

Events Sometimes, modifications to collections are, in fact,
what you want to allow—only you want to know when a collection
is modified. Granted, you could spin up a thread and have it spin
indefinitely over the collection, comparing the contents to the
previous iterations contents, but not only is this a horrible waste
of CPU resources, but its a pain to write and maintain, making it
probably the worst possible design solution—and certainly a sight

msdnmagazine.com

poorer than simply using a collection that supports events natively.
All collections in C5 offer the ability to hang delegates off the col-
lection, to be invoked when certain operations take place against
the collection (see Figure 4).

Of course, the event handler can be written as a lambda; its justa
little more descriptive to show you the actual argument types. The
first argument is—as is canon—the collection itself.

Justa NuGet Away
No part of C5 couldn’t be built around the .NET FCL (aside
from the emphasis on interfaces, which the FCL supports, but
doesn't really endorse that strongly, it seems), but the nice
thing about C5 is that it's done, its tested and its just a NuGet
“Install-Package” away.

Happy coding! =

Tep NEwARD is a principal with Neward & Associates LLC. He has written more
than 100 articles and authored and co-authored a dozen books, including “Profes-
sional F#2.0” (Wrox, 2010). He is an F# MVP and noted Java expert, and speaks
at both Java and .NET conferences around the world. He consults and mentors
regularly—reach him at ted@tedneward.com or Ted. Neward@neudesic.com
if you're interested in having him come work with your team. He blogs at
blogs.tedneward.com and can be followed on Twitter at twitter.com/tedneward.

THANKS to the following technical expert for reviewing this article:
Immo Landwerth

Add powerful diagramming
capabilities to your applications in
less time than you ever imagined
with GoDiagram Components.

The first and still the best. We
were the first to create diagram
controls for .NET and we continue
to lead the industry.

Fully customizable interactive
diagram components save
countless hours of programming
enabling you to build applications
in a fraction of the time.

New! GoJS for
HTML 5 Canvas.

A cross-platform JavaScript
library for desktops, tablets,
and phones.

For HTML 5 Canvas, .NET, WPF and Silverlight

Specializing in diagramming products for programmers for 15 years!

Powerful, flexible, and easy to use.

Find out for yourself with our FREE Trial Download
with full support at: www.godiagram.com

February 2013 79

mailto:ted@tedneward.com
mailto:Ted.Neward@neudesic.com
www.godiagram.com
www.bit.ly/12AXD78
http://blogs.tedneward.com
www.twitter.com/tedneward
www.msdnmagazine.com

A MoDERN APPs

RACHEL APPEL

Create Windows Store Apps with HTML5
and JavaScript

Not only has Bill Gates’ dream of a computer on every desk and
in every home come to fruition, but the advent of devices such as
the Surface tablet has taken his dream even further. In addition
to the Surface, there has been an explosion of new consumer-
oriented devices in every form factor possible. In other words,
computers are everywhere.

Consider that on those computers are more than 1 billion existing
Windows installations worldwide, with 300 million Windows 7
licenses sold each year in the previous two years. Combine the
current, upgradable Windows installation base with the rapidly
growing market of Windows 8 devices such as the Surface and
you have the formula for monetization success. This is Windows
reimagined—the unparalleled opportunity for you to make money

by publishing apps in the Windows Store.

The Platform, Language and Toolset
for Creating Windows Store Apps

In order to create a Windows Store app, you need Windows 8,
Visual Studio 2012 and any SDKs specific to the requirements of
your app, such as the Windows Live SDK or Bing Maps SDK. This
minimal system setup and configuration makes app development
on Windows 8 easy, from installation to deployment.

Once you've installed the requisite software, its time to move
onto choosing a language. If your development background lies
in the Microsoft stack as a Microsoft .NET Framework developer
writing Windows Forms, Windows Presentation Foundation (WPF)
or Silverlight apps with C# or Visual Basic, then creating Windows
Store apps with XAML and C# or Visual Basic is the path of least
resistance. C++ developers can also use C++ as the compiled
language with XAML as its GUI companion.

If youre a Web developer—including ASPNET—you can apply
your existing knowledge of open standard HTMLS5, JavaScript and
CSS3 directly to Windows Store app development. Web developers
may continue to use many popular third-party JavaScript libraries
such as jQuery or Knockout. For this article, I'll use JavaScript as
the language of choice.

No matter where your development background lies, the bar-
rier to entry is low when developing native Windows 8 apps. This

Code download available at archive.msdn.microsoft.com/
mag201302ModernApps.

80 msdn magazine

is because the Windows Runtime (WinRT) is a platform that
contains APIs that sit on top of the Windows core services, as
illustrated in Figure 1.

The WinRT APIs give you access to everything Windows 8 has
to offer, including APIs for hardware such as built-in webcams,
geolocation, light sensors and accelerometers. Of course, platform
fundamentals such as memory management, authentication, glo-
balization and asynchronous processing—as well as Windows Store
app features such as search, share and communications—are also
readily available. There are even APIs for manipulating audio and
video; however, if you're writing JavaScript apps, HTML5 <audio>
and <video> elements work great. You can browse the complete API
on the “API reference for Windows Store apps” page at bit.ly/ZCwcJE.

Tenets of a Windows Store App

Windows Store apps run as fully immersive, full-screen experiences
that deliver streamlined content to the user, without the app or
its commands getting in the way of the user. Windows Store apps
offer a clean, straightforward visualization of data that draws the
users attention to the content.

Windows Store apps do things traditional Windows or Web apps
couldn't do before, such as sharing, searching and communicating
with each other in an easy and unified way, using elements of the
Windows Runtime called contracts as liaisons between apps.

Great UX is a key facet of Windows Store app development,
from presentation and layout to navigation and app performance.

Windows Store Apps Desktop Apps

=

WinRT APIs
! Communication I Graihlcs l Devices &
L L
[Windows Core OS Services]

Figure 1 Architecture of Windows Store Apps

http://archive.msdn.microsoft.com/mag201302ModernApps
www.bit.ly/ZCwcJE

Users expect consistency between apps and between apps and the
OS. Windows Store apps are all about UX, and employing design
principles—such as using a consistent font, the Windows Ul
silhouette and a scalable grid system—enhance the users comfort
level when using your app. This consistency is carried throughout
both apps and Windows 8 itself.

Ensuring both touch and mouse input work reliably and
consistently is important because users now have more ways to
interact with their computing devices in the form of mice, pens,
touch, cameras and sensors.

While many apps will work nicely
as a Windows Store app, not
every app is a good candidate.

Because battery-powered devices with processors such as ARM
are becoming a major part of the computing landscape, Windows
8 must manage the overall and per-app memory in a strict fash-
ion to enable a fast and fluid experience even when resources are
low. Windows 8 apps enjoy a straightforward and simple process
lifecycle to ensure the best experience.

While many apps will work nicely as a Windows Store app, not
every app is a good candidate. For example, while Visual Studio
itself embraces many modern UT design principles, its purpose is
to allow the user to execute commands (in other words, program-
ming). That’s not a good fit for a Windows Store app.

Visual Studio 2012 Windows Store
App Project Templates

Visual Studio 2012 introduced a set of new templates for Windows
Store app development in C#, Visual Basic, C++ and JavaScript.
Regardless of language, the following template styles are available:

« Blank: A bare-bones template with the minimum files
required to build a Windows Store app.

o Grid: A template that displays a grid that uses the
Windows 8 Ul silhouette along with template code for
several features, including navigation and snapped-view
support (more on this later).

o Split: A template that displays a list of items and item
details in a two-column view, making it easy for the user
to switch quickly among the items.

« Fixed: A Blank template that uses a ViewBox object in
the default.html page. A ViewBox is a WinRT object used
in games.

« Navigation: A template with a Blank project structure
plus navigation and a set of basic app assets (that is,
home html, home.jsand home.css) under the /home directory.

Because the Grid template contains code that touts many great
Windows 8 features such as support for snapped view, screen
scaling and navigation, its the perfect way to get started writing
Windows Store apps.

msdnmagazine.com

After you create a new JavaScript Grid project template, examining
its structure reveals a project full of standard Web file types—such
as .html, .css and js files—organized in folders under the projects
root. You can then debug and run a Windows Store app by pressing
F5 or selecting Start Debugging from the Debug menu.

In the Windows Store app templates, default.html is the starting
page for a Windows Store app and has a companion script file,
/js/default.js, which contains basic process lifecycle management
code. As with any other HTML file, default.html has code you might
expect, including script references and new HTML5 semantic
markup that defines the page structure. The following code frag-
ment lives inside the default.html <body> tag and uses WinJS
controls for navigation and to load the groupedItems.html page:

<div id="contenthost"
data-win-control="Application.PageControlNavigator"
data-win-options=
"{home: '/pages/groupedItems/groupedItems.html'}"></div>

The data-* attributes are the HTML5 way to apply custom code
or behavior toan HTML element, and in Windows Store app devel-
opment, data-win-* attributes usually refer to Windows JavaScript
controls. Windows JavaScript controls are built-in WinRT compo-
nents that you apply to HTML elements to enhance or modify their
behavior or style. Data-win-* attributes are prevalent in Windows
Store JavaScript apps, especially when data binding.

Figure 2 Data Binding the List Object
to HTML Elements with WinJS Controls

<!-- These templates are used to display each
item in the ListView declared below. -->
<div class="headertemplate" data-win-control="WinJS.Binding.Template">
<button class="group-header win-type-x-large win-type-interactive"
data-win-bind="groupKey: key"
onclick="Application.navigator.pageControl.navigateToGroup(
event.srcElement.groupKey)"
role="Tink" tabindex="-1" type="button">
<span class="group-title win-type-ellipsis"
data-win-bind="textContent: title">

</button>
</div>
<div class="itemtemplate" data-win-control="WinJS.Binding.Template" >
<div id="myitem" class="item"
data-win-bind="style.background: color">
<img class="item-image" src="#"
data-win-bind="src: image; alt: title" />
<div class="item-overlay">
<h2 class="item-title" data-win-bind="innerText: message"></h2>
<h6 class="item-subtitle"
data-win-bind="textContent: eventDate"></h6>
</div>
</div>
</div>
<!-- The content that will be loaded and displayed. -->
<div class="fragment groupeditemspage">
<header aria-label="Header content" role="banner">
<button class="win-backbutton" aria-label="Back"
disabled type="button"></button>
<hl class="titlearea win-type-ellipsis">
How Tong until...
<D
</header>
<section aria-label="Main content" role="main">
<div id="TistView" class="groupeditemslist"
aria-label="List of groups"
data-win-control="WinJS.UI.ListView"
data-win-options="{ selectionMode: 'multi’',
tapBehavior:'toggleSelect' }"></div>
{/section>
</div>

February 2013 81

www.msdnmagazine.com

Data Access in Windows Store Apps

As part of the Grid template, a file named data.js in the /js folder
contains code that builds a data set of arrays as well as functions for
grouping and manipulating the data. The data.js file also contains
sample data that you should replace with your own. In this article,
I'll use data for a countdown app that shows the number of days
remaining until an event such as a holiday or vacation.

Live tiles are called “live” for

a reason, and that's because

you can dynamically display
information and images in them.

In the data js file you can find the only // TODO comment near
the beginning of the file. Replace the code under the comment with
your own, so the code looks something like the following code
snippet, which makes an XMLHttpRequest call to retrieve JSON
data, then also creates the data set, including dynamic properties
such as the daysToGo and message fields:

var list = new WinJS.Binding.List();

w%ﬁJS.xhr({ url: "data.json" }).then(function (xhr) {

var items = JSON.parse(xhr.responseText);
items.forEach(function (item) {
item.daysToGo = Math.floor(
(Date.parse(item.eventDate) -
item.message = item.daysToGo + " days until "
if (item.daysToGo >= 0) {
Tist.push(item);
N

h
h

In the beginning of data.js is a line of code that instantiates a
WinJS.Binding,List object aptly named list, and the preceding code
pushes individual items onto this List.

The List object enables binding between JSON data or JavaScript
arrays and HTML elements. Once the list variable is populated with

new Date()) / 86400000);
+ item.title;

Figure 3 Replace the Sample Data to Make a Basic App

82 msdn magazine

data, use binding expressions in HTML markup to bind the List
members to HTML elements.

When you read JSON data with a call to JSON.parse, the names
in name/value pairs match properties of JavaScript objects at run
time. The following JSON data shows how the JSON structure maps
to members of the items variable in the preceding code snippet.
The key, title, eventDate, image, color and group fields all map to

the item objects properties:

[{"key":"1","group": {"key":"groupl","tit1e":"Important Dates"},"title":"Rachel's
Birthday","eventDate":"01/13/2013","image":"/images/birthday.png","color": "#6666FF"},

{"key":"2","group": {"key":"groupl","title":"Important Dates"},"title":"Ada
Lovelace Day","eventDate":"10/16/2013","image":"/images/ada. jpg","color": "#fff"},

{"key":"3","group": {"key":"group2","title":"Holidays"},"title":"Christmas
","eventDate":"12/25/2013","image":"/images/tree.png","color": "#ef0d0d"},

{"key":"4","group": {"key":"group3","title":"School"},"title":"School
Ends","eventDate":"6/10/2013","image":"/images/schoolbus.png","color": "ffff"}

{"key":"5","group": {"key":"group2","tit1e":"Holidays"},"tit1e":"Thanksgiving",
"eventDate":"11/29/2012","image":"/images/thanksgiving.png","color": "#FFCC00"},

{"key":"6","group": {"key":"group2","title":"Holidays"},"tit1e":"New Year's Day",

"eventDate":"1/1/2013","image":"/images/celebrate.png","color":"#f8baba"}]

Now that you've loaded the data, you need to ensure the List
object is bound to the correct HTML elements. Modifications to
the /pages/groupedItems/groupedItems.html page in Figure 2
shows data binding in action.

Each HTML element in Figure 2 that contains a data-win-bind
attribute has a binding expression that matches a property name of
the item variable from the preceding code snippet, so all you need
to do is make sure that the binding expressions match the names
of the fields. Don't forget to ensure that you also modify the bind-
ing expressions in the groupedDetail. html and itemDetails.html
pages so correct data will show when a user navigates to them.

Running the project in the Windows Simulator yields results
similar to that in Figure 3. (You can learn more about using the
simulator at bit.ly/M1nWOY.)

Asyou can see, you can simply replace the code from the Visual
Studio template for quick data access. However, projects are often
quite large or complex, making maintenance difficult. If this is the
case, then use the Model-View-ViewModel (MVVM) pattern to
make maintenance easier. This pattern is extremely
well-documented on the Web.

While your app now works, it’s time take advantage
of the many great Windows 8 features that can make
your app stand out in the crowd.

Branding Your Windows Store App
Considering that the focal point of Windows 8 is the
Start page, it makes sense to start branding there. The
Start page is filled with live tiles, and they arent just a
bunch of square icons, either. Instead, they're the best
way to show offand attract users to your app. Live tiles
are called “live” for a reason, and that’s because you can
dynamically display information and images in them,
making your app even more attractive.

Windows Store apps require three separate tile
images with the following pixel dimensions:

Modern Apps

www.bit.ly/M1nWOY

Figure 4 Countdown App Standard and Wide Tiles

« Logo: 150 x 150 (standard tile)
« Wide Logo: 150 x 310 (wide tile)
« Small Logo: 30 x 30 (this shows only in app lists in the store)

The images can be any popular image format, and those with
transparent backgrounds work best. Opening the package.appx-
manifest file from the projects root reveals the configuration palette,
where you can select the tile images and set the background colors.
Figure 4 illustrates both a standard and wide tile.

When you're setting up the tiles is a good time to configure the
splash screen by selecting just an image and background color—
no code is used. Although tiles and splash screens are important
factors in branding your app, you can do many more things to
brand and polish your app, which you can read about at bit.ly/ MAHYmL.

Windows 8 ‘Must-Have' Features for Your App
While your app might work at this point, there are many new
features and APIs in the Windows 8 app ecosystem that you can
tap into to really make your app stand out. I'll briefly discuss each.

AppBar An essential feature for every app is the AppBar, which isa
WinJS control found in defaulthtml. Normally, the AppBar stays out
of sight, but when users right-click or swipe from the top or bottom
of the screen, the AppBar displays as a bar across the bottom of the
screen. Figure 5 shows the markup for an AppBar containing three
buttons as well as their corresponding event listeners.

Global AppBar commands should be located on the right side
of the AppBar, while contextual commands should go on the left.
Style the AppBar with CSS, as its only a <div>.

Snapped View Windows Store apps can run in full screen or a
mode called snapped view that happens when the user “sticks” the
app to the left or right side of the screen. Because the app now has
less screen real estate, your app should display only necessary data.

Figure 5 An AppBar with Buttons
for Adding, Deleting and Exporting Data

// AppBar markup in default.html
<div id="appbar" data-win-control="WinJS.UI.AppBar">
<button data-win-control="WinJS.UI.AppBarCommand"
data-win-options="{id:'addItem', Tabel:'Add",
icon:'add', section:'global'}" type="button"></button>
<button data-win-control="WinJS.UI.AppBarCommand"
data-win-options="{id:'exportData', Tabel:'Save',
icon:'save', section:'global'}" type="button"></button>
<button data-win-control="WinJS.UI.AppBarCommand"
data-win-options="{id:'deleteltem', Tabel:'Delete’,
icon:'delete', section:'selection'}" type="button"></button>
</div>
// Script in groupedItems.js
document.getElementById("exportData").addEventListener("click", Data.exportData);
document.getElementById("addItem").addEventListener("click", this.addItem);
document.getElementById("deleteltem").addEventListener("click", this.deleteltem);

msdnmagazine.com

Because snapped-view support is built into the Grid template,
you need to verify that the data displays nicely while snapped, showing
pertinentand readable information. The AppBar also works while
the app is snapped, so that also might need style adjustments.

Semantic Zoom This new touch-friendly feature of Windows 8
is a way to aggregate large amounts of data in a single, easy-to-digest
view. Users invoke Semantic Zoom in the following ways:

« Touch: Pinch gesture
« Mouse: Ctrl+Scroll Wheel
« Keyboard: Ctrl - and Ctrl +

Semantic Zoom is more about visualizing data in a meaningful
way that assists with navigation than simply exposing a zoomed view
ofit. If theres a lot of data, its better for the user to have a bird's-eye
view rather than having to scroll through an overload of information.
Consider how to best present the data so it's the most meaningful.

Search and Share Searching and sharing data between apps are
core aspects of modern apps. Users can now search across multiple
appsatone time and then share the data they find. Or your app can
register itselfas a share target and accept data that users share from
other Windows Store apps. Never before has app-to-app commu-
nication been so straightforward and consistent.

Picker Controls These are traditional Windows controls that
have been updated for a modern Ul—such as the File Open Picker
or File Save Picker—or print settings dialogs that have been staples
of Windows apps for many versions.

Media Because Windows Store apps built with JavaScript fully
support HTMLS5, the <audio> and <video> elements work the
same way as they do in ordinary Web pages.

Toast Notifications Toast notifications are a way to provide a
momentary message to the user, regardless of whether the app is in
use or not. The most popular forms of toast notifications are e-mail
alert pop-upsand text messages on phones. Toast messages can con-
tain text and images and can serve as another way to attract users
to your app. You can post the same notifications to the Windows 8
lock screen for a quick glimpse of any waiting messages.

Generation App

To recap, Windows 8 is Windows reimagined, sporting some of the
biggest changes in the OS since Windows 95, in an unprecedented
market. The built-in Visual Studio project templates enable you to
get started publishing moneymaking apps easier and faster than
ever in the largest market for app creators.

Theres not enough space here to discuss all of the awesome
teatures you could and should use in your Windows Store app,
so I highly recommend that you check out the Generation App
program (bit.ly/ W8GenAppDev). It guides you through the process of
building a Windows Store (or Windows Phone) app in 30 days,
offering free technical and design consultations and assistance
along with exclusive tips and resources. u

RacHeL APPEL is a developer evangelist at Microsoft New York City. Reach her via
her Web site at rachelappel.com or by e-mail at rachel.appel@microsoft.com. You
can also follow her latest updates on Twitter at twitter.com/rachelappel.

THANKS to the following technical expert for reviewing this article: Ian LeGrow

February 2013 83

www.bit.ly/M4HYmL
www.bit.ly/W8GenAppDev
www.rachelappel.com
mailto:rachel.appel@microsoft.com
www.twitter.com/rachelappel
www.msdnmagazine.com

., DIRECTX FACTOR

CHARLES PETZOLD

Constructing Audio Oscillators for Windows 8

I've been making electronic music instruments as a hobby for
about 35 years now. I started in the late 1970s wiring up CMOS
and TTL chips, and much later went the software route—first with
the Multimedia Extensions to Windows in 1991 and more recently
with the NAudio library for Windows Presentation Foundation
(WPF), and the MediaStreamSource class in Silverlight and
Windows Phone 7. Just last year, I devoted a couple installments of
my Touch & Go column to applications for Windows Phone that
play sound and music.

I should probably be jaded by this time, and perhaps reluctant
to explore yet another sound-generation APL. But I'm not,
because I think Windows 8 is probably the best Windows platform
yet for making musical instruments. Windows 8 combines a high-
performance audio API—the XAudio2 component of DirectX—
with touchscreens on handheld tablets. This combination offers
much potential, and I'm particularly interested in exploring how
touch can be exploited as a subtle and intimate interface to a
musical instrument implemented entirely in software.

Oscillators, Samples and Frequency

At the heart of the sound-generation facility of any music synthesizer
are multiple oscillators, so called because they generate a more or
less periodic oscillating waveform at a particular frequency and
volume. In generating sounds for music, oscillators that create un-
varying periodic waveforms usually sound rather boring. More
interesting oscillators incorporate vibrato, tremolo or changing
timbres, and theyre only roughly periodic.

A program that wishes to create oscillators using XAudio2
begins by calling the XAudio2Create function. This provides an
object that implements the IXAudio2 interface. From that object
you can call CreateMasteringVoice just once to obtain an instance
of IXAudio2MasteringVoice, which functions as the main audio
mixer. Only one IXAudio2MasteringVoice exists at any time. In
contrast, you'll generally call CreateSourceVoice multiple times to
create multiple instances of the IXAudio2SourceVoice interface.
Each of these IXAudio2SourceVoice instances can function as an
independent oscillator. Combine multiple oscillators for a multi-
phonic instrument, an ensemble or a full orchestra.

An IXAudio2SourceVoice object generates sound by creating
and submitting buffers containing a sequence of numbers that
describe a waveform. These numbers are often called samples.
They're often 16 bits wide (the standard for CD audio), and they

Code download available at archive.msdn.microsoft.com/mag201302DXF.

84 msdn magazine

come at a constant rate—usually 44,100 Hz (also the standard for
CD audio) or thereabouts. This technique has the fancy name Pulse
Code Modulation, or PCM.

Although this sequence of samples can describe a very complex wave-
form, often a synthesizer generates a fairly simple stream of samples—
most commonlya square wave, a triangle wave or a sawtooth—witha
periodicity corresponding to the waveforms frequency (perceived as
pitch) and an average amplitude that is perceived as volume.

Figure 1 Much of the SawtoothOscillatorl Class

SawtoothOscillatorl::SawtoothOscillatorl(IXAudio2* pXAudio2)
(
// Create a source voice
WAVEFORMATEX waveFormat;
waveFormat.wFormatTag = WAVE_FORMAT_PCM;
waveFormat.nChannels = 1;
waveFormat.nSamplesPerSec = 44100;
waveFormat.nAvgBytesPerSec = 44100 * 2;
waveFormat.nBlockAlign = 2;
waveFormat.wBitsPerSample = 16;
waveFormat.cbSize = 0;

HRESULT hr = pXAudio2->CreateSourceVoice(&pSourceVoice, &waveFormat,
0, XAUDIO2_MAX_FREQ_RATIO);
if (FAILED(hr))
throw ref new COMException(hr, "CreateSourceVoice failure");

// Initialize the waveform buffer
for (int sample = 0; sample < BUFFER_LENGTH; samplet++)
waveformBuffer[sample] =
(short) (65535 * sample / BUFFER_LENGTH - 32768);

// Submit the waveform buffer
XAUDIO2_BUFFER buffer = {0};
buffer.AudioBytes = 2 * BUFFER_LENGTH;
buffer.pAudioData = (byte *)waveformBuffer;
buffer.Flags = XAUDIOZ_END_OF_STREAM;
buffer.PlayBegin = 0;

buffer.Playlength = BUFFER_LENGTH;
buffer.LoopBegin = 0;

buffer.LoopLength = BUFFER_LENGTH;
buffer.LoopCount = XAUDIO2_LOOP_INFINITE;

hr = pSourceVoice->SubmitSourceBuffer(&buffer);

if (FAILED(hr))
throw ref new COMException(hr, "SubmitSourceBuffer failure");

// Start the voice playing
pSourceVoice->Start();
}

void SawtoothOscillatorl::SetFrequency(float freq)
(

pSourceVoice->SetFrequencyRatio(freq / BASE_FREQ);
}

void SawtoothOscillatorl::SetAmplitude(float amp)
{

pSourceVoice->SetVolume(amp);
}

http://archive.msdn.microsoft.com/mag201302DXF

Figure 2 OnVoiceProcessingPassStart in SawtoothOscillator2

void _stdcall SawtoothOscillator2::0nVoiceProcessingPassStart(UINT32 bytesRequired)
{
if (bytesRequired == 0)
return;

int startIndex = index;
int endIndex = startIndex + bytesRequired / 2;

if (endIndex <= BUFFER_LENGTH)
{
Fi11AndSubmit(startIndex, endIndex -
}
else

startIndex);

Fi11AndSubmit(startIndex, BUFFER_LENGTH - startIndex);
Fi11AndSubmit(0, endIndex % BUFFER_LENGTH);
}
index = (index + bytesRequired / 2) % BUFFER_LENGTH;
}

void SawtoothOscillator2::Fil1AndSubmit(int startIndex, int count)
{
for (int i = startIndex; i < startIndex + count; i++)
{
pWaveformBuffer[i] = (short)(angle / WAVEFORM_LENGTH - 32768);
angle = (angle + anglelncrement) % (WAVEFORM_LENGTH * 65536);
}

XAUDIO2_BUFFER buffer = {0};
buffer.AudioBytes = 2 * BUFFER_LENGTH;
buffer.pAudioData = (byte *)pWaveformBuffer;
buffer.Flags = 0;

buffer.PlayBegin = startIndex;
buffer.Playlength = count;

HRESULT hr = pSourceVoice->SubmitSourceBuffer(&buffer);

if (FAILED(hr))
throw ref new COMException(hr, "SubmitSourceBuffer");
}

For example, if the sample rate is 44,100 Hz, and every cycle of
100 samples has values that get progressively larger, then smaller,
then negative, and back to zero, the frequency of the resultant
sound is 44,100 divided by 100, or 441 Hz—a frequency close to the
perceptual center of the audible range for humans. (A frequency of
440 Hz is the A above middle C and is used as a tuning standard.)

The IXAudio2SourceVoice interface inherits a method named
SetVolume from IXAudio2Voice and defines a method of its own
named SetFrequencyRatio. I was particularly intrigued by this
latter method, because it seemed to provide a way to create an
oscillator that generates a particular periodic waveform at a vari-
able frequency with a minimum of fuss.

Figure 1 shows the bulk of a class named SawtoothOscillatorl
that implements this technique. Although T use familiar 16-bit
integer samples for defining the waveform, internally XAudio2
uses 32-bit floating point samples. For performance-crit-
ical applications, you'll probably want to explore the per-

After creating the IXAudio2SourceVoice object, the Sawtooth-
Oscillatorl constructor fills up a bufter with one cycle of a sawtooth
waveform—asimple waveform that goes from an amplitude of -32,768
toanamplitude of 32,767. This buffer is submitted to the IXAudio-
2SourceVoice with instructions that it should be repeated forever.

Withoutany further code, this isan oscillator that plays a 441 Hz
sawtooth wave forever. Thats great, but its not very versatile. To give
SawtoothOscillatorl a bit more versatility, I've also included a SetFre-
quency method. Theargument to this is a frequency that the class uses
to call SetFrequencyRatio. The value passed to SetFrequencyRatio
can range from float values of XAUDIO2_MIN_FREQ_RATIO (or
1/1,024.0) up to a maximum value earlier specified as an argument
to CreateSourceVoice. [used XAUDIO2_MAX_FREQ_RATIO (or
1,024.0) for that argument. The range of human hearing—about 20
Hz to 20,000 Hz—is well within the bounds defined by those two
constants applied to the base frequency of 441.

Buffers and Callbacks

I must confess that I was initially somewhat skeptical of the Set-
FrequencyRatio method. Digitally increasing and decreasing the
frequency of a waveform is not a trivial task. I felt obliged to
compare the results with a waveform generated algorithmically.
This is the impetus behind the OscillatorCompare project, which
is among the downloadable code for this column.

The OscillatorCompare project includes the SawtoothOscilla-
torl class I've already described as well as a SawtoothOscillator2
class. This second class has a SetFrequency method that controls
how the class dynamically generates the samples that define the
waveform. This waveform is continuously constructed in a buffer
and submitted in real time to the IXAudio2SourceVoice object in
response to callbacks.

A class can receive callbacks from IXAudio2SourceVoice by
implementing the IXAudio2VoiceCallback interface. An instance
of the class that implements this interface is then passed as an argu-
ment to the CreateSourceVoice method. The SawtoothOscillator2
class implements this interface itself and it passes its own instance
to CreateSourceVoice, also indicating that it won't be making use

of SetFrequencyRatio:

pXAudio2->CreateSourceVoice(&pSourceVoice, &waveFormat,
XAUDI02_VOICE_NOPITCH, 1.0f,
this);

A class that implements IXAudio2VoiceCallback can use the
OnBufferStart method to be notified when its time to submit a
new buffer of waveform data. Generally when using OnBufferStart
to keep waveform data up-to-date, you'll want to maintain a pair

formance differences between integer and floating-point.

In the header file, a base frequency is set that divides
cleanly into the 44,100 sampling rate. From that, a
buffer size can be calculated that is the length of a
single cycle of a waveform of that frequency:

static const int BASE_FREQ = 441;
static const int BUFFER_LENGTH = (44100 / BASE_FREQ);

Also in the header file is the definition of that buffer
as a field:

@OO®OO®@O OO HO®G
0/0/G] 000 000G 0G| /00,
OBOOOOHOS OO O
9000000000000
0/0/GC0/0/G©0/0000GCO,

short waveformBuffer[BUFFER_LENGTH];

msdnmagazine.com

Figure 3 The ChromaticButtonKeyboard Program
February 2013 85

www.msdnmagazine.com

of buffers and alternate them. This is probably the best solution
if you're obtaining audio data from another source, such as an
audio file. The goal is to not let the audio processor become “starved.”
Keeping a buffer ahead of the processing helps prevent starvation,
but does not guarantee it.

But I gravitated toward another method defined by IXAudio-
2VoiceCallback—OnVoiceProcessingPassStart. Unless you're work-
ing with very small buffers, generally OnVoiceProcessingPassStart
is called more frequently than OnBufferStart and indicates when a
chunk of audio data is about to be processed and how many bytes
are needed. In the XAudio2 documentation, this callback method
is promoted as the one with the lowest latency, which is often
highly desirable for interactive electronic music instruments. You
don't want a delay between pressing a key and hearing the note!

The SawtoothOscillator2 header file defines two constants:

static const int BUFFER_LENGTH = 1024;
static const int WAVEFORM_LENGTH = 8192;

The first constant is the length of the buffer used to submit
waveform data. Here it functions as a circular buffer. Calls to the
OnVoiceProcessingPassStart method request a particular number
of bytes. The method responds by putting those bytes in the bufter
(starting from where it left off the last time) and calling SubmitSource-
Buffer just for that updated segment of the bufter. You want this
buffer to be sufficiently large so your program code isn't overwriting
the part of the buffer still being played in the background.

It turns out that for a voice with a sample rate 0of 44,100 Hz, calls
to OnVoiceProcessingPassStart always request 882 bytes, or 441
16-bit samples. In other words, OnVoiceProcessingPassStart is
called at the constant rate of 100 times per second, or every 10 ms.
Although not documented, this 10 ms duration can be treated as
an XAudio2 audio processing “‘quantum,” and its a good figure to
keep in mind. Consequently, the code you write for this method
cant dawdle. Avoid API calls and runtime library calls.

Figure 4 The IsPressedChanged Handler for the Key Instances

void MainPage::0nKeyIsPressedChanged(Object” sender, bool isPressed)
{

Key” key = dynamic_cast<Key">(sender);

int keyNum = (int)key->Tag;

if (isPressed)
{
if (availableOscillators.size() > 0)
{
SawtoothOscillator* pOscillator = availableOscillators.back();
availableOscillators.pop_back();

double freq = 440 * pow(2, (keyNum % 1000 - 69) / 12.0);
pOscillator->SetFrequency((float)freq);
pOscillator->SetAmplitude(1.0f / NUM_OSCILLATORS);
playingOscillators[keyNum] = pOscillator;
}
}
else
{
SawtoothOscillator * pOscillator = playingOscillators[keyNum];

if (pOscillator != nullptr)

{
pOscillator->SetAmplitude(0);
availableOscillators.push_back(pOscillator);
playingOscillators.erase(keyNum);

}

}
}

86 msdn magazine

The second constant is the length of a single cycle of the
desired waveform. It could be the size of an array containing the
samples of that waveform, but in SawtoothOscillator2 its used
only for calculations.

The SetFrequency method in SawtoothOscillator2 uses that
constant to calculate an angle increment that's proportional to the
desired frequency of the waveform:

angleIncrement = (int)(65536.0
* WAVEFORM_LENGTH
* freq / 44100.0);

Although angleIncrement is an integer, its treated as though it
comprises integral and fractional words. This is the value used to
determine each successive sample of the waveform.

For example, suppose the argument to SetFrequency is 440 Hz.
The angleIncrement is calculated as 5,356,535. In hexadecimal, this
is 0x51BBF7, which is treated as an integer of 0x51 (or 81 decimal),
with a fractional part of 0xBBF7, equivalent to 0.734. If the com-
plete cycle of a waveform is 8,192 bytes and you use only the inte-
ger part and skip 81 bytes for each sample, the resultant frequency
is about 436.05 Hz. (Thats 44,100 times 81 divided by 8,192.) If
you skip 82 bytes, the resultant frequency is 441.43 Hz. You want
something between these two frequencies.

This is why a fractional part also needs to enter the calculation.
The whole thing would probably be easier in floating point, and
floating point might even be faster on some modern processors,
but Figure 2 shows a more “traditional” integer-only approach.
Notice that only the updated section of the circular buffer is
specified with each call to SubmitSourceBuffer.

SawtoothOscillatorl and SawtoothOscillator2 can be compared
side-by-side in the OscillatorCompare program. MainPage has
two pairs of Slider controls to change the frequency and volume of
each oscillator. The Slider control for the frequency generates only
integer values ranging from 24 to 132. Tborrowed these values from
the codes used in the Musical Instrument Digital Interface (MIDI)
standard to represent pitches. The value of 24 corresponds to the C
three octaves below middle-C, which is called C1(C in octave 1)
in scientific pitch notation and has a frequency of about 32.7 Hz.
The value 0f 132 corresponds to C 10, six octaves above middle-C,
and a frequency of about 16,744 Hz. A tooltip converter on these
sliders displays the current value in both scientific pitch notation
and the frequency equivalent.

As T experimented with these two oscillators, T couldn' hear a
difference. I also installed a software oscilloscope on another
computer to visually examine the resultant waveforms, and I couldn't
seeany difference either. This indicates to me that the SetFrequency-
Ratio method is implemented intelligently, which of course we
should expectin a system as sophisticated as DirectX. I suspect that
interpolations are being performed on resampled waveform data
to shift the frequency. If youre nervous, you can set the BASE_FREQ
very low—for example, to 20 Hz—and the class will generate a
detailed waveform consisting of 2,205 samples. You can also
experiment with a high value: For example, 8,820 Hz will cause a
waveform of just five samples to be generated! To be sure, this has
a somewhat different sound because the interpolated waveform
lies somewhere between a sawtooth and a triangle wave, but the
resultant waveform is still smooth without “jaggies”

DirectX Factor

This is not to imply that everything works hunky dory. With
either sawtooth oscillator, the top couple octaves get rather cha-
otic. The sampling of the waveform tends to emit high and low
frequency overtones of a sort I've heard before, and which I plan
to investigate more fully in the future.

Keep the Volume Down!

The SetVolume method defined by IXAudio2Voice and inherited by
IXAudio2SourceVoice is documented asa floating-point multiplier that
can be set to values ranging from -2* to 2%, which equals 16,777,216.

In real life, however, you'll probably want to keep the volume on
an IXAudio2SourceVoice object to a value between 0 and 1. The
0 value corresponds to silence and 1 corresponds to no gain or
attenuation. Keep in mind that whatever the source of the wave-
form associated with an IXAudio2SourceVoice—whether its being
generated algorithmically or originates in an audio file—it probably
has 16-bit samples that quite possibly come close to the minimum
and maximum values of -32,768 and 32,767. If you try to amplify
those waveforms with a volume level greater than 1, the samples
will exceed the width of a 16-bit integer and will be clipped at the
minimum and maximum values. Distortion and noise will result.

This becomes critical when you start combining multiple
IXAudio2SourceVoice instances. The waveforms of these multiple
instances are mixed by being added together. If you allow each
of these instances to have a volume of 1, the sum of the voices
could very well result in samples that exceed the size of the 16-bit
integers. This might happen sporadically—resulting only in inter-
mittent distortion—or chronically, resulting in a real mess.

When using multiple IXAudio2SourceVoice instances that gen-
erate full 16-bit-wide waveforms, one safety measure is setting the
volume of each oscillator to 1divided by the number of voices. That
guarantees that the sum never exceeds a 16-bit value. An overall
volume adjustment can also be made via the mastering voice. You
might also want to look into the XAudio2CreateVolumeMeter
function, which lets you create an audio processing object that can
help monitor volume for debugging purposes.

Our First Musical Instrument

Its common for musical instruments on tablets to have a piano-style
keyboard, but I've been intrigued recently by a type of button
keyboard found on accordions such as the Russian bayan (which
I'm familiar with from the work of Russian composer Sofia
Gubaidulina). Because each key is a button rather than a long
lever, many more keys can be packed within the limited space of
the tablet screen, as shown in Figure 3.

The bottom two rows duplicate the keys on the top two rows and
are provided to ease the fingering of common chords and melodic
sequences. Otherwise, each group of 12 keys in the top three rows
provide all the notes of the octave, generally ascending from left
to right. The total range here is four octaves, which is about twice
what youd get with a piano keyboard of the same size.

A real bayan has an additional octave, but I couldnt fit it in with-
out making the buttons too small. The source code allows you to
set constants to try out that extra octave, or to eliminate another
octave and make the buttons even larger.

msdnmagazine.com

Because I cant claim that this program sounds like any instrument
that exists in the real world, I simply called it ChromaticButton-
Keyboard. The keys are instances of a custom control named Key
that derives from ContentControl but performs some touch pro-
cessing to maintain an IsPressed property and generate an IsPressed-
Changed event. The difference between the touch handling in this
control and the touch handling in an ordinary button (which also
has an IsPressed property) is noticeable when you sweep your
finger across the keyboard: A standard button will set the IsPressed
property to true only if the finger press occurs on the surface of
the button, while this custom Key control considers the key to be
pressed if a finger sweeps in from the side.

The program creates six instances of a SawtoothOscillator class
thats virtually identical to the SawtoothOscillatorl class from the
earlier project. If your touchscreen supports it, you can play six
simultaneous notes. There are no callbacks and the oscillator fre-
quency is controlled by calls to the SetFrequencyRatio method.

To keep track of which oscillators are available and which oscil-
lators are playing, the MainPage.xamLh file defines two standard
collection objects as fields:

std::vector<SawtoothOscillator *> availableOscillators;
std::map<int, SawtoothOscillator *> playingOscillators;

Originally, each Key object had its Tag property set to the MIDI
note code I discussed earlier. That's how the IsPressedChanged
handler determines what key is being pressed, and what frequency
to calculate. That MIDI code was also used as the map key for the
playingOscillators collection. It worked fine until T played a note
from the bottom two rows that duplicated a note already playing,
which resulted in a duplicate key and an exception. I easily solved
that problem by incorporating a value into the Tag property indi-
cating the row in which the key is located: The Tag now equals the
MIDI note code plus 1,000 times the row number.

Figure 4 shows the IsPressedChanged handler for the Key
instances. When a key is pressed, an oscillator is removed from the
availableOscillators collection, given a frequency and non-zero
volume, and put into the playingOscillators collection. When a key
is released, the oscillator is given a zero volume and moved back
to availableOscillators.

That's about as simple as a multi-voice instrument can be, and
of course its flawed: Sounds should not be turned offand on like a
switch. The volume should glide up rapidly but smoothly when a
note starts, and fall back when it stops. Many real instruments also
have a change in volume and timbre as the note progresses. There's
still plenty of room for enhancements.

But considering the simplicity of the code, it works surprisingly
welland is very responsive. If you compile the program for the ARM
processor, you can deploy it on the ARM-based Microsoft Surface and
walk around cradling the untethered tablet in one arm while playing
on it with the other hand, which I must say is a bit of a thrill. u

CHaRLES PETZOLD is a longtime contributor to MSDN Magazine and the author
of “Programming Windows, 6th edition” (O'Reilly Media, 2012), a book about
writing applications for Windows 8. His Web site is charlespetzold.com.

THANKS to the following technical experts for reviewing this article:
Tom Mathews and Thomas Petchel

February 2013 87

www.charlespetzold.com
www.msdnmagazine.com

DoN'T GET ME STARTED

DAVID S. PLATT

What's Up, Doc?

The Internet hasn't notably cracked the health-care industry yet.
Its nibbled around the edges a little bit—for example, I can renew
prescriptions online instead of phoning them in—but it hasn't
fundamentally changed the business model or the relationships
between the players as in other industries. I'll begin my fourth year
as MSDN Magazine's resident Diogenes (bit.ly/Xr3x) by predicting
how it soon will.

The forces currently tearing apart the structure of higher educa-
tion are also gathering in the medical industry. Health care in the
United States consumes about $3 trillion per year, approximately
one-sixth of the U.S. gross domestic product. The providers are
partying like it's 2006 and costs are spiraling. The population is
aging and getting fatter; the boomer bulge is making its way through
the demographic snake. Disruptive technologies are ready to
rock. Unstoppable forces are slamming into immovable objects.
Something is about to give.

Why hasn't it happened yet? Partly because of the medical
establishments famed inertia. Consider Ignaz Semmelweis, the 19th
century Viennese obstetrician who lowered maternal mortality
by 90 percent, simply by insisting that doctors wash their hands
before examining childbirth patients. As reward for this spectacu-
lar improvement, his colleagues threw him into an insane asylum
where he quickly died (see bit.ly/S03jd4).

Perhaps faster technological change in medicine had to wait until
kids who grew up with the Internet had finished medical school.
That’s starting to happen now. A young doctor who attended a class
I taught on Microsoft HealthVault told me: “My kids’ babysitter
makes better use of the Internet in her business than we do here
at [a major teaching hospital]. 'm here to learn how to fix that”
The tipping point where these guys accumulate enough power to
change things is not far off.

Last month I explored how massive open online courses (MOOCs)
are successful in education because they combine higher quality
with lower cost. This virtuous combination is now approaching
for the medical industry. Consider your child waking up saying,
‘T don't feel good” Instead of schlepping to the doctor’s office,
suppose you could talk to a nurse on a Skype video link.

The worlds finest doctors would work out the diagnostic pro-
tocols for a sick kid, and a software wizard would walk the nurse
through it. She would have trained extensively on this specific
scenario, using excellent simulators, so shed be an expert oniit. The
programs would continuously update the diagnostic probabilities
based on the latest results seen in the local area, making her more

88 msdn magazine

current and precise than an unaided pediatrician today. Yet her
time would cost far less than that of an MD.

Whats more, you would own a small instrument to measure
and transmit your child’s temperature, blood pressure, pulse oxy-
genation and other vital signs. A camera on the instrument would
transmit pictures of the throat or ear canal or skin rashes, and a
microphone would transmit breath sounds and heartbeats. All this
is under development, with prototypes already emerging and first
commercial releases within the year (see econ.st/X5mq3e). Perhaps
algorithms could compare the pictures and sounds you transmit
to every other captured sample. Doctors wouldnt misdiagnose dis-
eases such as measles (which is rare in the United States) because
they had never seen a case.

Patients with viral infections would be told to stay home, keep
warm, take Tylenol and call back if they didn't improve. Patients with
bacterial infections or more severe symptoms would have prescrip-
tions transmitted to a pharmacy for delivery that day. You wouldn't
have to take the whole day off from work to drive your kid to the
doctor and exchange germs with everyone in the waiting room.

Patients with more serious conditions, or conditions that can't
be evaluated over the wire, would get appointments with the doc-
tor that afternoon. Each doctor’s time would be far better utilized
as well—mornings for follow-ups, afternoons for new cases from
the Web nurses.

Just as the education industry will still need mentor classes for
advanced topics, the medical industry will always need specialists
and surgeons for when people get really sick. But the mass of day-
to-day grunt work will be automated faster than anyone imagines,
in the same way and for the same reasons as the teaching of fresh-
man calculus is being transformed today.

The medical industry’s dam hasn't yet cracked the way the
education industry’s has. But theres far more force building up be-
hind the medical dam. The burst will be all the more spectacular
when it comes, with concomitantly larger profit opportunities for
developers and companies who are thinking forward. Call me if
youd like to discuss it. L]

Davip S. PLATT teaches programming .NET at Harvard University Extension
School and at companies all over the world. Hes the author of 11 programming
books, including “Why Software Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft NET" (Microsoft Press, 2002). Microsoft named
him a Software Legend in 2002. He wonders whether he should tape down two
of his daughters fingers so she learns how to count in octal. You can contact him
at rollthunder.com.

www.bit.ly/Xr3x
www.bit.ly/SO3jd4
www.econ.st/X5mq3e
www.rollthunder.com

Download your free trial @
ComponentOne componentone.com/se

a division of GrapeCity®

http://marketdash.componentone.com/redirect.ashx?rdtl=1366

PAY LESS

. FOR MORE.
'\ WAY MORE.

685.09

‘m||||‘“H\’hlh||u||||||m||m||||

Competitive Upgrade Offer

#* Get Essential Studio Enterprise Edition for $299 (Normally priced at $1,995)

Includes 400+ controls across 8 platforms

Fixed renewal pricing for 3 years

No limit on the number of licenses that can be purchased

Offer applies to anyone who owns licenses from major competitors

I E-N (WAl syncfusion.com/compoffer

www.syncfusion.com/compoffer

	Back
	Print
	MSDN Magazine, February 2013
	Cover Tip
	Contents
	CUTTING EDGE: Essential Facebook Programming:The JavaScript SDK
	WINDOWS WITH C++: Creating Desktop Apps with Visual C++ 2012
	Exploring the New JavaScript API for Office
	Async Causality Chain Tracking
	Building a Simple Comet Application in the Microsoft .NET Framework
	Detecting Abnormal Data Using k-Means Clustering
	Taming the Event Stream: Fast Approximate Counting
	TEST RUN: Naive Bayes Classification with C#
	THE WORKING PROGRAMMER: .NET Collections, Part 2: Working with C5
	MODERN APPS: Create Windows Store Apps with HTML5 and JavaScript
	DIRECTX FACTOR: Constructing Audio Oscillatorsfor Windows 8
	DON’T GET ME STARTED: What’s Up, Doc?

	Visual Studio Live! Las Vegas Insert

