
Download your 30-day trial
at www.DevExpress.com Copyright 1998-2013 Developer Express, Inc. All rights reserved. All trademarks are property of their respective owners.

Imagine.
Create.
Deploy.
Inspired? So Are We.
Inspiration is all around us. From beautiful screens on the web to well-designed reports. New devices push the development
envelope and ask that we consider new technologies. The latest release, DevExpress 12.2, delivers the tools you need to build
the multi-channel solutions you can imagine: Windows 8-inspired applications with live tiles perfect for Microsoft Surface,
multi-screen iOS and Android apps. It’s all possible. Let’s see what develops.

Untitled-9 1 1/8/13 2:10 PM

http://www.DevExpress.com

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS FEBRUARY 2013 VOL 28 NO 2

Exploring the New JavaScript API for Offi ce
Stephen Oliver and Eric Schmidt . 20

Async Causality Chain Tracking
Andrew Stasyuk . 32

Building a Simple Comet Application
in the Microsoft .NET Framework
Derrick Lau . 42

Detecting Abnormal Data Using
k-Means Clustering
James McCaffrey . 54

Taming the Event Stream:
Fast Approximate Counting
Michael Meijer . 64

COLUMNS
CUTTING EDGE
Essential Facebook
Programming:
The JavaScript SDK
Dino Esposito, page 6

WINDOWS WITH C++
Creating Desktop Apps
with Visual C++ 2012
Kenny Kerr, page 12

TEST RUN
Naive Bayes Classifi cation
with C#
James McCaffrey, page 70

THE WORKING
PROGRAMMER
.NET Collections, Part 2:
Working with C5
Ted Neward, page 76

MODERN APPS
Create Windows Store Apps
with HTML5 and JavaScript
Rachel Appel, page 80

DIRECTX FACTOR
Constructing Audio Oscillators
for Windows 8
Charles Petzold, page 84

DON’T GET ME STARTED
What’s Up, Doc?
David Platt, page 88

JavaScript API
for Offi ce.........................20

At Your Fingertips

Compatible with
Microsoft® Visual Studio® 2012

Untitled-1 2 12/5/12 11:08 AM

www.infragistics.com/experience

Copyright 1996-2013 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc.

The Infragistics logo is a trademark of Infragistics, Inc. All other trademarks or registered trademarks are the respective property of their owners.

infragistics.com/

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC +61 3 9982 4545

Download your free trial

Untitled-1 3 12/5/12 11:08 AM

www.infragistics.com/experience

Printed in the USA

BJÖRN RETTIG Director
MOHAMMAD AL-SABT Editorial Director/mmeditor@microsoft.com
PATRICK O’NEILL Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor
SHARON TERDEMAN Features Editor
WENDY HERNANDEZ Group Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

SENIOR CONTRIBUTING EDITOR Dr. James McCaffrey
CONTRIBUTING EDITORS Rachel Appel, Dino Esposito, Kenny Kerr,
Julie Lerman, Ted Neward, Charles Petzold, David S. Platt,
Bruno Terkaly, Ricardo Villalobos

Henry Allain President, Redmond Media Group
Michele Imgrund Sr. Director of Marketing & Audience Engagement
Tracy Cook Director of Online Marketing
Irene Fincher Audience Development Manager

ADVERTISING SALES: 818-674-3416/dlabianca@1105media.com

Dan LaBianca Group Publisher
Chris Kourtoglou Regional Sales Manager
Danna Vedder Regional Sales Manager/Microsoft Account Manager
Jenny Hernandez-Asandas Director, Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

magazineFEBRUARY 2013 VOLUME 28 NUMBER 2

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:818-674-3416/dlabianca@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

Untitled-13 1 1/7/13 12:56 PM

www.leadtools.com

msdn magazine4

This month MSDN Magazine welcomes Rachel Appel and her
Modern Apps column. Readers of the magazine and Web site might
be familiar with Appel’s work. She wrote the popular Web Dev
Report column on the MSDN Magazine Web site up until Sep-
tember of last year. And she appeared in our Windows 8 Special
Edition, published in October, with a look at the unique aspects
of the Windows Store application lifecycle.

Th is month, Modern Apps debuts with a quick rundown of what
you need to get started with Windows Store app development, and
explores the new features and capabilities that enable developers
to create powerful applications for Windows 8 and the Windows
Runtime. Going forward, you can expect Appel to dig deeper into
the Windows Store app dev experience. In the March issue, look
for the column to explore the important topic of data access and
storage for Windows Store apps.

Appel’s column arrives a few short months aft er Bruno Terkaly
and Ricardo Villalobos came on board as authors of the new
Windows Azure Insider column. And just last month Charles
Petzold re-branded his column as DirectX Factor, refl ecting his
focus on the powerful DirectX development infrastructure in the
Windows Runtime.

The changes reflect the significant progress we’ve seen from
Microsoft in updating its developer infrastructure. Windows 8
and the Windows Runtime present a compelling target for an
incredibly broad range of software developers, and the new
columns from Appel and Petzold aim to empower those people—
from business devs working with C# to Web programmers working
with JavaScript to native coders working with C++. Similarly, major
updates in developer tooling for Windows Azure have changed the
game in the cloud development space, and Terkaly and Villalobos
are here to help guide you through it.

‘It’s New and Shiny’
As for Rachel Appel, she’s been writing for MSDN Magazine and its
Web site for more than a year now, and was a Microsoft technical
evangelist for years before that. A veteran programmer, Appel has
been in the soft ware development racket since the late 1980s, fi rst

writing back-end enterprise applications in COBOL. She struck
out on her own as an independent consultant, trainer and mentor,
earning MVP recognition from Microsoft , before joining Microsoft
as a technical evangelist. Today, she spends a great deal of her time
giving talks at conferences, working with customers and blogging
about development issues.

When I asked Appel how a former COBOL programmer ends
up helping lead the charge on Windows Store app development,
she couldn’t resist a joke—“Th e short answer? It’s new and shiny”—
before providing a more serious response.

“I enjoy learning about new technologies and the latest in soft -
ware development,” Appel says. “As a tech evangelist, being out in
the public allows me to see and work with all kinds of awesome
ideas and code.”

She goes on to praise some of the built-in features of Windows 8,
including Search and Share contracts, the rich sensor platforms and
the device APIs. “You can access it all through open, standard HTML5
and ES5 [ECMAScript 5] if you want, or you can use C#/Visual
Basic/C++ and XAML, as all languages have parity.”

In her community engagements, Appel says she sometimes fi elds
questions about the Windows Runtime and its relationship to the
Microsoft .NET Framework. Her message: Th e .NET Framework
is not going anywhere.

“Windows Runtime is not a .NET replacement. Rather, many of the
WinRT APIs are wrappers around classic .NET or Win32 libraries,
so those underlying frameworks are still available,” Appel says. “Yes,
you can write WinRT apps in HTML5. And, yes, it’s real HTML5.”

Appel urges readers of her Modern Apps column to also check
out the GenerationApp site (bit.ly/W8GenAppDev), which features
articles and tutorials aimed at developers building Windows 8 and
Windows Phone 8 apps.

Th ere’s a whole lot going on with the emergence of Windows 8
and the Windows Runtime, and our new columns are designed
to address that activity. Is there something you want to see Appel
cover in her Modern Apps
column? E-mail her at
rachel@rachelappel.com.

Inside Modern Apps

MICHAEL DESMONDEDITOR’S NOTE

© 2013 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
mailto:rachel@rachelappel.com
http://msdn.microsoft.com/magazine
www.bit.ly/W8GenAppDev

Untitled-8 1 12/6/12 2:37 PM

www.OnTimeNow.com/msdn
www.ontimenow.com
www.axosoft.com
www.axosoft.com

msdn magazine6

I’ll be honest: I don’t know exactly what a
social strategy might look like and I have
no more than a faint idea about the tricks
that social experts can play to make your
content more popular. Likewise, I never
paid much attention to search engine
optimization (SEO) in Web sites, but I do
believe that social optimization is today
much more relevant and rewarding than
SEO ever was.

In the past two installments of this
column, I discussed how to authenticate
users of a Web or Windows application
using Facebook and how to post to the
social network on behalf of a consenting
user. (Th ose two columns can be found at
msdn.microsoft.com/magazine/jj863128 and msdn.microsoft.com/magazine/jj883950.)

As far as Facebook is concerned, there’s a lot more you can do
to add a “social layer” to a Web site. A social layer results from the
combination of three main ingredients: identity, community and
interaction. In those previous columns, I addressed identity and
a bit of interaction. Here, I’m going to explore the principal tools
you can leverage to add a true social layer onto your existing Web
site. According to Facebook, these tools are collectively known
as social plug-ins. A social plug-in is a powerful mix of HTML
markup, CSS and JavaScript code. It’s your responsibility as a Web
developer to fuse these elements into the UX.

The Ubiquitous Like Button
The primary purpose of social plug-ins is to create a bridge
between the content of the Web site visited by a user and the user’s
Facebook page. By hosting one or more social plug-ins, the Web
site enables users to share specific content with friends. The
most immediate way for a Web site to let users share content via
Facebook is the Like button.

By simply clicking the Like button, a user can let friends know
that she likes something at a given URL. Hosting the Like button
on a page couldn’t be simpler; fusing the button to the existing UI
may require a few extra steps.

Th ere are a few diff erent ways to embed a Like button. Th e simplest
and most direct way is using an iframe element:

<iframe src="http://www.facebook.com/plugins/like.php?href=your-site"
 scrolling="no" frameborder="0"
 style="border:solid 1px #000; width:450px; height:80px"></iframe>

The href query string parameter refers to the URL you want
to like. The URL must be expressed in a fully qualified manner,
something like http://www.contoso.com/cool.

Most of the markup is aimed at styling the iframe. Usually, you
don’t want the iframe to scroll or be framed. You also want it to
take up an appropriate area. Th e preceding markup produces the
output in Figure 1.

If the height of the iframe is too small (less than 25 pixels or so), you
lose the panel containing the button to post an additional comment.
If you’re using the Like button within a horizontal menu bar, then
the height is a critical issue. Otherwise, giving users a chance to also
post their own comment augments the penetration of the feature.

Th ere are several parameters you can leverage to customize the look,
feel and functionality of the button. Figure 2 lists the options available.
All will be assigned through an additional query string parameter.

While Figure 1 shows the standard layout, Figure 3 shows the
button_count and box_count layouts.

Another parameter you should look into is the ref parameter. It
helps you track use of the Like button in your Web site. By giving
each Like button (even in diff erent pages of the site) a diff erent ref
value—a plain alphanumeric string—you can easily track referrers
in the server log that can be traced back to that specifi c Like button.
In particular, for any click back from Facebook to your site, you’ll

 Essential Facebook Programming:
The JavaScript SDK

CUTTING EDGE DINO ESPOSITO

Code download available at archive.msdn.microsoft.com/
mag201302CuttingEdge.

Figure 1 The Standard Interface of the Like Button

http://msdn.microsoft.com/magazine/jj863128
http://msdn.microsoft.com/magazine/jj883950
http://msdn.microsoft.com/mag201302CuttingEdge

Untitled-1 1 1/4/13 10:51 AM

http://www.aspose.com

msdn magazine8 Cutting Edge

receive a referrer URL with two extra parameters. The fb_ref
query string parameter is just your original ref string; the fb _source
query string parameter is a string that gives you information about
the context from within Facebook where the click originated.

Localizing the Like Button
Even though the Like button can be considered universal, there still
might be situations in which you want to translate the Like plug-in
to a given language. As shown in Figure 2, all you need to do is
add the locale parameter to the query string and set it to a custom
string that indicates the desired language and culture.

To make things a bit trickier, you can’t express culture using the
canonical xx-XX format where xx indicates the language and XX
the culture. In the Microsoft .NET Framework, you get this string
from the following expression:

var name = Thread.CurrentThread.CurrentUICulture.Name;

For this string to be usable with Facebook, you need to replace
the dash with an underscore. Also note that the sole language token
isn’t suffi cient in itself and the whole locale setting will be ignored.
Th is point leads me to another interesting consideration: What’s the
default behavior of the Like button as far as the language is concerned?

Facebook, as well as Twitter, defaults to the language the user
has chosen as the primary language in her profi le. If the user isn’t
currently logged in, then the UI is based on the language settings
detected on the browser.

Introducing the JavaScript SDK
In general, you can confi gure Facebook’s plug-ins in a few diff erent
ways: using a plain URL from a custom hyperlink; using an iframe
(as shown in this article); using HTML5 markup; and using the
eXtended Facebook Markup Language (XFBML). HTML5 and
XFBML are equivalent in many ways; HTML5 is just a more-
recent syntax supported for completeness. Both HTML5 and
XFBML require the use of the Facebook JavaScript SDK.

Most sophisticated social plug-ins are only available through
HTML5 and XFBML markup. Th is is the case for the Send button
for sending content directly to friends and the Comments box to

see the comments on a given post. Other
plug-ins such as Like, the Like box and the
Activity feed (the small list of notifi cations
from all friends you usually have on the top-
right corner of your page) also can be quickly
confi gured and embedded via an iframe.

Plug-ins not implemented through iframes
or direct URLs require the use of the Face-
book JavaScript SDK. As you can imagine,
the SDK is a client front-end for a number
of Facebook endpoints for you to perform
tasks such as authentication, posting and
retrieving comments, likes, and other actions.

In order to use the JavaScript SDK, even
before you download it, you must have an
app ID. I thoroughly discussed this point in previous columns,
but in a nutshell, for any interaction with the Facebook site that
goes beyond basic operations such as Like, you need to register an
app and get a unique ID. Th e app plays the role of the connector
between your client (for example, a Web site) and the Facebook
back end. Th e Facebook App Dashboard for registering an app is
available at bit.ly/mly4xs.

The second step consists of adding some code to your
Web pages that downloads the SDK. The URL to invoke is:
/con nect.facebook.net/xx_XX/all.js.

Th e xx_XX in the URL is a placeholder for the desired locale. An
option is linking this URL from within a static script tag. Because the
size of the fi le is far more than 180KB, it might not be a good idea to
download it synchronously through a static script tag. Th e fi le gets
cached soon and most of the successive requests for it will receive an
HTTP 304 “not modifi ed” status code; however, Facebook recommends
you download the fi le asynchronously. Th is is a pattern common to all
script blocks required for social interactions—for example, it works
the same for Twitter plug-ins. Here’s the code you need:

<script type="text/javascript">
 (function (d, s, id) {
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s);
 js.id = id;
 js.async = true;
 js.src = "//connect.facebook.net/en_US/all.js#xfbml=1&appId=xxx";
 fjs.parentNode.insertBefore(js, fjs);
 } (document, 'script', 'facebook-jssdk'));
</script>

Th e code is defi ned as a JavaScript immediate function and runs as
soon as it’s found. Note that you place this code preferably right aft er
the opening body tag and you should fi ll the appId parameter with
your app ID. (Note that many developers advocate placing scripts
at the bottom of the body section in order to prevent any blocking
of the rendering of the page.)

Parameter Description
action Indicates the text of the button and the subsequent action

to be taken. It can be Like or Recommend. Default is Like.
colorscheme Styles the button differently. It can be light or dark.

Default is light.
font Sets the desired font for the plug-in. Possible options

include Arial, Tahoma, Trebuchet MS and a few others.
layout Changes the layout of the button. Possible values are

standard (as in Figure 1), button_count and box_count (as
in Figure 3).

locale Indicates the language of the UI. It must be a string in the
format xx_XX. Note the use of the underscore to separate
the two parts of a culture name.

show_faces Boolean fl ag to indicate whether you want the picture of
the user rendered once a user has liked the content.

width Indicates the width of the plug-in. The minimum width
also depends on the layout used.

Figure 2 Customizing Look, Feel and Functionality

Figure 3 Additional
Layout Formats
(Button Count and
Box Count) for the
Like Button

Most sophisticated social plug-ins
are only available through

HTML5 and XFBML markup.

Telerik DevCraft
The all-in-one toolset for professional
developers targeting Microsoft platforms.

www.telerik.com/all-in-one

Untitled-2 1 1/8/13 10:24 AM

http://www.telerik.com/all-in-one

msdn magazine10 Cutting Edge

At this point, you’re ready to use HTML5 and XFBML tags to
integrate Facebook plug-ins in your pages. Let’s start with a look
at the Login button.

The Login Button
Th e SDK contains a method on the root FB object through which
you can programmatically trigger the login process. Th e simplest
option consists of adding your own link or button and binding its
click handler to the following code:

FB.login(function(response) {
 if (response.authResponse) {
 // Display some wait message
 // ...
 FB.api('/me', function(response) {
 $("#username").html('Welcome, ' + response.name + '.');
 });
 }
});

Th is code is far simpler than any other analogous code in the past
two columns. In this way, authenticating users against Facebook is
a breeze (see Figure 4).

Th e Login plug-in can make the login process even easier. In addition
to linking the SDK, all you need is the following HTML5 markup (or
analogous XFBML markup as demonstrated on the Facebook site):

<div class="fb-login-button"
 data-show-faces="true"
 data-width="200"
 data-max-rows="1"></div>

The data-* attributes let you configure the appearance and
behavior of the button. The blue button in the page of Figure
4 gives an idea of the standard look and feel. In particular, the
data-show-faces attribute enables you to display the pictures of
users (and some of their friends) that used your app to connect
to Facebook. Th e data-max-rows attribute determines the num-
ber of rows (given the width of the plug-in) to be fi lled with faces.

It should also be noted that if data-show-faces is on and the user
is already logged in, then no login button is shown. Th e user can’t

log out from Facebook through your app. If data-show-faces is
false, then the login button stays visible all the time and it doesn’t
react if clicked.

As a Web developer, you should see the profound diff erence
between using the JavaScript SDK or the Login plug-in and server-
side code and the Facebook C# SDK. If you work the client side,
then you’re essentially targeting Facebook, and login is prob-
ably the necessary first step in order to do more specific work.
Facebook is the goal here.

C# code is preferable if you’re using Facebook as just one way
of authenticating users and still need to handle the authentica-
tion cookie of ASP.NET and the standard membership system.
Facebook is the means here.

Coming Up
Provided that it’s not already so, authentication via social networks
will become a must-have feature for all sites needing authentica-
tion. Th is means the C# SDK probably remains the most fl exible
approach. In this regard, the new social classes in ASP.NET MVC
4 are just icing on the cake. In terms of Web site development, I
likewise see no reason for not populating page layouts with social

buttons and plug-ins to tweet or
post immediate content. Next time,
I’ll be back with Facebook program-
ming covering more advanced
social plug-ins such as Comments
and the Like box. Meanwhile, for
more information on Facebook
social plug-ins, you can have a look
at bit.ly/fAU7Xe.

DINO ESPOSITO is the author of “Architect-
ing Mobile Solutions for the Enterprise”
(Microsoft Press, 2012) and “Program-
ming ASP.NET MVC 3” (Microsoft Press,
2011), and coauthor of “Microsoft .NET:
Architecting Applications for the Enter-
prise” (Microsoft Press, 2008). Based in
Italy, Esposito is a frequent speaker at
industry events worldwide. Follow him on
Twitter at twitter.com/despos.

THANKS to the following technical
experts for reviewing this article:
Christopher Bennage and Scott DensmoreFigure 4 Authenticating Users via JavaScript

Provided that it’s not
already so, authentication via
social networks will become a
must-have feature for all sites

needing authentication.

www.bit.ly/fAU7Xe
www.twitter.com/despos

Untitled-4 1 11/30/12 11:37 AM

www.melissaData.com/global

msdn magazine12

With all the hype over Windows 8 and what are now known as
Windows Store apps, I’ve received some questions about the rele-
vance of desktop apps and whether Standard C++ is still a viable
choice going forward. These questions are sometimes hard to
answer, but what I can tell you is that the Visual C++ 2012 compil-
er is more committed than ever to Standard C++ and it remains
the best toolchain, in my humble opinion, for building great
desktop apps for Windows whether you’re targeting Windows 7,
Windows 8 or even Windows XP.

A follow-up question I inevitably receive is how best to approach
desktop app development on Windows and where to begin. Well,
in this month’s column, I’m going to explore the fundamentals of
creating desktop apps with Visual C++. When I was fi rst introduced
to Windows programming by Jeff Prosise (bit.ly/WmoRuR), Microsoft
Foundation Classes (MFC) was a promising new way to build apps.
While MFC is still available, it really is showing its age, and a need
for modern and fl exible alternatives has driven programmers to
search for new approaches. Th is issue has been compounded by a
shift away from USER and GDI (msdn.com/library/ms724515) resources
and toward Direct3D as the primary foundation by which content
is rendered on the screen.

For years I’ve been promoting the Active Template Library (ATL)
and its extension, the Windows Template Library (WTL), as great
choices for building apps. However, even these libraries are now
showing signs of aging. With the shift away from USER and GDI
resources, there’s even less reason to use them. So where to begin?
With the Windows API, of course. I’ll show you that creating a
desktop window without any library at all isn’t actually as daunting
as it might seem at fi rst. I’ll then show you how you can give it a bit
more of a C++ fl avor, if you so desire, with a little help from ATL
and WTL. ATL and WTL make a lot more sense once you have a
good idea of how it all works behind the templates and macros.

The Windows API
Th e trouble with using the Windows API to create a desktop win-
dow is that there are myriad ways you could go about writing it—far
too many choices, really. Still, there’s a straightforward way to create
a window, and it starts with the master include fi le for Windows:

#include <windows.h>

You can then defi ne the standard entry point for apps:
int __stdcall wWinMain(HINSTANCE module, HINSTANCE, PWSTR, int)

If you’re writing a console app, then you can just continue to
use the standard C++ main entry point function, but I’ll assume

that you don’t want a console box popping up every time your app
starts. Th e wWinMain function is steeped in history. Th e __stdcall
calling convention clarifi es matters on the confusing x86 archi-
tecture, which provides a handful of calling conventions. If you’re
targeting x64 or ARM, then it doesn’t matter because the Visual
C++ compiler only implements a single calling convention on those
architectures—but it doesn’t hurt, either.

Th e two HINSTANCE parameters are particularly shrouded in
history. In the 16-bit days of Windows, the second HINSTANCE was
the handle to any previous instance of the app. Th is allowed an app
to communicate with any previous instance of itself or even to switch
back to the previous instance if the user had accidentally started it
again. Today, this second parameter is always a nullptr. You may also
have noticed that I named the fi rst parameter “module” rather than
“instance.” Again, in 16-bit Windows, instances and modules were
two separate things. All apps would share the module containing
code segments but would be given unique instances containing the
data segments. Th e current and previous HINSTANCE parameters
should now make more sense. 32-bit Windows introduced separate
address spaces and along with that the necessity for each process to
map its own instance/module, now one and the same. Today, this
is just the base address of the executable. Th e Visual C++ linker
actually exposes this address through a pseudo variable, which you
can access by declaring it as follows:

extern "C" IMAGE_DOS_HEADER __ImageBase;

The address of __ImageBase will be the same value as the
HINSTANCE parameter. Th is is in fact the way that the C Run-
Time Library (CRT) gets the address of the module to pass to your
wWinMain function in the fi rst place. It’s a convenient shortcut
if you don’t want to pass this wWinMain parameter around your
app. Keep in mind, though, that this variable points to the current
module whether it’s a DLL or an executable and is thus useful for
loading module-specifi c resources unambiguously.

Creating Desktop Apps with Visual C++ 2012

WINDOWS WITH C++ KENNY KERR

I’ll show you that creating a
desktop window without any
library at all isn’t actually as

daunting as it might seem at fi rst.

www.bit.ly/WmoRuR
http://msdn.com/library/ms724515

Untitled-1 1 1/4/13 11:10 AM

www.aspose.com

msdn magazine14 Windows with C++

Th e next parameter provides any command-line arguments, and
the last parameter is a value that should be passed to the Show-
Window function for the app’s main window, assuming you’re
initially calling ShowWindow. Th e irony is that it will almost always
be ignored. Th is goes back to the way in which an app is launched
via CreateProcess and friends to allow a shortcut—or some other
app—to defi ne whether an app’s main window is initially minimized,
maximized or shown normally.

Inside the wWinMain function, the app needs to register a
window class. Th e window class is described by a WNDCLASS
structure and registered with the RegisterClass function. Th is reg-
istration is stored in a table using a pair made up of the module
pointer and class name, allowing the CreateWindow function to
look up the class information when it’s time to create the window:

WNDCLASS wc = {};
wc.hCursor = LoadCursor(nullptr, IDC_ARROW);
wc.hInstance = module;
wc.lpszClassName = L"window";

wc.lpfnWndProc = []
 (HWND window, UINT message, WPARAM wparam, LPARAM lparam) -> LRESULT
{
 ...
};

VERIFY(RegisterClass(&wc));

To keep the examples brief, I’ll just use the common VERIFY
macro as a placeholder to indicate where you’ll need to add some
error handling to manage any failures reported by the various API
functions. Just consider these as placeholders for your preferred
error-handling policy.

Th e earlier code is the minimum that’s required to describe a stan-
dard window. Th e WNDCLASS structure is initialized with an empty
pair of curly brackets. Th is ensures that all the structure’s members
are initialized to zero or nullptr. Th e only members that must be
set are hCursor to indicate which mouse pointer, or cursor, to use
when the mouse is over the window; hInstance and lpszClassName
to identify the window class within the process; and lpfnWndProc
to point to the window procedure that will process messages sent
to the window. In this case, I’m using a lambda expression to keep
everything inline, so to speak. I’ll get back to the window procedure
in a moment. Th e next step is to create the window:

VERIFY(CreateWindow(wc.lpszClassName, L"Title",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 nullptr, nullptr, module, nullptr));

Th e CreateWindow function expects quite a few parameters, but
most of them are just defaults. Th e fi rst and second-to-last parameters,

as I mentioned, together represent the key that the RegisterClass
function creates to let CreateWindow fi nd the window class infor-
mation. Th e second parameter indicates the text that will be displayed
in the window’s title bar. Th e third indicates the window’s style. Th e
WS_OVERLAPPEDWINDOW constant is a commonly used style
describing a regular top-level window with a title bar with buttons,
resizable borders and so on. Combining this with the WS_VISIBLE
constant instructs CreateWindow to go ahead and show the window.
If you omit WS_VISIBLE, then you’ll need to call the ShowWindow
function before your window will make its debut on the desktop.

Th e next four parameters indicate the window’s initial position
and size, and the CW_USEDEFAULT constant used in each case
just tells Windows to choose appropriate defaults. The next two
parameters provide the handle to the window’s parent window and
menu, respectively (and neither are needed). Th e fi nal parameter
provides the option of passing a pointer-sized value to the window
procedure during creation. If all goes well, a window appears on
the desktop and a window handle is returned. If things go south,
then nullptr is returned instead and the GetLastError function
may be called to fi nd out why. With all the talk about the hardships
of using the Windows API, it turns out that creating a window is
actually quite simple and boils down to this:

WNDCLASS wc = { ... };
RegisterClass(&wc);
CreateWindow(...);

Once the window appears, it’s important that your app starts
dispatching messages as soon as possible—otherwise your app will
appear unresponsive. Windows is fundamentally an event-driven,
message-based OS. Th is is particularly true of the desktop. While
Windows creates and manages the queue of messages, it’s the app’s
responsibility to dequeue and dispatch them, because messages are
sent to a window’s thread rather than directly to the window. Th is
provides a great deal of fl exibility, but a simple message loop need
not be complicated, as shown here:

MSG message;
BOOL result;

while (result = GetMessage(&message, 0, 0, 0))
{
 if (-1 != result)
 {
 DispatchMessage(&message);
 }
}

Perhaps not surprisingly, this seemingly simple message loop is
oft en implemented incorrectly. Th is stems from the fact that the
GetMessage function is prototyped to return a BOOL value, but in
fact, this is really just an int. GetMessage dequeues, or retrieves, a
message from the calling thread’s message queue. Th is may be for
any window or no window at all, but in our case, the thread is only
pumping messages for a single window. If the WM_QUIT message
is dequeued, then GetMessage will return zero, indicating that the
window has disappeared and is done processing messages and that
the app should terminate. If something goes terribly wrong, then
GetMessage might return -1 and you can again call GetLastError to
get more information. Otherwise, any nonzero return value from
GetMessage indicates that a message was dequeued and is ready
to be dispatched to the window. Naturally, this is the purpose of
the DispatchMessage function. Of course, there are many variants

Once the window appears, it’s
important that your app starts

dispatching messages as soon as
possible—otherwise your app

will appear unresponsive.

Untitled-1 1 1/4/13 11:12 AM

www.scaleoutsoftware.com

msdn magazine16 Windows with C++

to the message loop, and having the ability to construct your own
aff ords you many choices for how your app will behave, what input
it will accept and how it will be translated. Apart from the MSG
pointer, the remaining parameters to GetMessage can be used to
optionally fi lter messages.

Th e window procedure will start receiving messages before the
CreateWindow function even returns, so it had better be ready and
waiting. But what does that look like? A window requires a message
map or table. Th is could literally be a chain of if-else statements or a
big switch statement inside the window procedure. Th is does, how-
ever, quickly become unwieldy, and much eff ort has been spent in
diff erent libraries and frameworks to try to manage this somehow.
In reality, it doesn’t have to be anything fancy, and a simple static
table will suffi ce in many cases. First, it helps to know what a window
message consists of. Most importantly, there’s a constant—such as
WM_PAINT or WM_SIZE—that uniquely identifi es the message.
Two arguments, so to speak, are provided for every message, and
these are called WPARAM and LPARAM, respectively. Depending
on the message, these might not provide any information. Finally,
Windows expects the handling of certain messages to return a value,
and this is called the LRESULT. Most messages that your app handles,
however, won’t return a value and should instead return zero.

Given this defi nition, we can build a simple table for message
handling using these types as building blocks:

typedef LRESULT (* message_callback)(HWND, WPARAM, LPARAM);

struct message_handler
{
 UINT message;
 message_callback handler;
};

At a minimum, we can then create a static table of message
handlers, as shown in Figure 1.

The WM_PAINT message arrives when the window needs
painting. Th is happens far less oft en than it did in earlier versions
of Windows thanks to advances in rendering and composition of
the desktop. Th e BeginPaint and EndPaint functions are relics of
the GDI but are still needed even if you’re drawing with an entirely
diff erent rendering engine. Th is is because they tell Windows that
you’re done painting by validating the window’s drawing surface.

Without these calls, Windows wouldn’t consider the WM_PAINT
message answered and your window would receive a steady stream
of WM_PAINT messages unnecessarily.

The WM_DESTROY message arrives after the window has
disappeared, letting you know that the window is being destroyed.
Th is is usually an indicator that the app should terminate, but the
GetMessage function inside the message loop is still waiting for
the WM_QUIT message. Queuing this message is the job of the
PostQuitMessage function. Its single parameter accepts a value
that’s passed along via WM_QUIT’s WPARAM, as a way to return
diff erent exit codes when terminating the app.

Th e fi nal piece of the puzzle is to implement the actual window
procedure. I omitted the body of the lambda that I used to prepare
the WNDCLASS structure previously, but given what you now
know, it shouldn’t be hard to fi gure out what it might look like:

wc.lpfnWndProc =
 [] (HWND window, UINT message,
 WPARAM wparam, LPARAM lparam) -> LRESULT
{
 for (auto h = s_handlers; h != s_handlers +
 _countof(s_handlers); ++h)
 {
 if (message == h->message)
 {
 return h->handler(window, wparam, lparam);
 }
 }

 return DefWindowProc(window, message, wparam, lparam);
};

Th e for loop looks for a matching handler. Fortunately, Windows
provides default handling for messages that you choose not to
process yourself. Th is is the job of the DefWindowProc function.

And that’s it—if you’ve gotten this far, you’ve successfully created
a desktop window using the Windows API!

The ATL Way
Th e trouble with these Windows API functions is that they were designed
long before C++ became the smash hit that it is today, and thus weren’t
designed to easily accommodate an object-oriented view of the world.
Still, with enough clever coding, this C-style API can be transformed

static message_handler s_handlers[] =
{
 {
 WM_PAINT, [] (HWND window, WPARAM, LPARAM) -> LRESULT
 {
 PAINTSTRUCT ps;
 VERIFY(BeginPaint(window, &ps));

 // Dress up some pixels here!

 EndPaint(window, &ps);
 return 0;
 }
 },
 {
 WM_DESTROY, [] (HWND, WPARAM, LPARAM) -> LRESULT
 {
 PostQuitMessage(0);
 return 0;
 }
 }
};

Figure 1 A Static Table of Message Handlers

class Window : public CWindowImpl<Window, CWindow,
 CWinTraits<WS_OVERLAPPEDWINDOW | WS_VISIBLE>>
{
 BEGIN_MSG_MAP(Window)
 MESSAGE_HANDLER(WM_PAINT, PaintHandler)
 MESSAGE_HANDLER(WM_DESTROY, DestroyHandler)
 END_MSG_MAP()

 LRESULT PaintHandler(UINT, WPARAM, LPARAM, BOOL &)
 {
 PAINTSTRUCT ps;
 VERIFY(BeginPaint(&ps));

 // Dress up some pixels here!

 EndPaint(&ps);
 return 0;
 }

 LRESULT DestroyHandler(UINT, WPARAM, LPARAM, BOOL &)
 {
 PostQuitMessage(0);
 return 0;
 }
};

Figure 2 Expressing a Window in ATL

Untitled-1 1 11/26/12 3:03 PM

www.xceed.com

msdn magazine18 Windows with C++

into something a little more suited to the average C++ programmer.
ATL provides a library of class templates and macros that do
just that, so if you need to manage more than a handful of
window classes or still rely on USER and GDI resources for your
window’s implementation, there’s really no reason not to use ATL. Th e
window from the previous section can be expressed with ATL as
shown in Figure 2.

The CWindowImpl class provides the necessary routing of
messages. CWindow is a base class that provides a great many
member function wrappers, mainly so you don’t need to provide
the window handle explicitly on every function call. You can see
this in action with the BeginPaint and EndPaint function calls in
this example. Th e CWinTraits template provides the window style
constants that will be used during creation.

Th e macros harken back to MFC and work with CWindowImpl
to match incoming messages to the appropriate member functions
for handling. Each handler is provided with the message constant as
its fi rst argument. Th is can be useful if you need to handle a variety
of messages with a single member function. Th e fi nal parameter
defaults to TRUE and lets the handler decide at run time whether
it actually wants to process the message or let Windows—or even
some other handler—take care of it. These macros, along with
CWindowImpl, are quite powerful and let you handle refl ected
messages, chain message maps together and so on.

To create the window, you must use the Create member function
that your window inherits from CWindowImpl, and this in turn
will call the good old RegisterClass and CreateWindow functions
on your behalf:

Window window;
VERIFY(window.Create(nullptr, 0, L"Title"));

At this point, the thread again needs to quickly begin dispatching
messages, and the Windows API message loop from the previous
section will suffi ce. Th e ATL approach certainly comes in handy if
you need to manage multiple windows on a single thread, but with
a single top-level window, it’s much the same as the Windows API
approach from the previous section.

WTL: An Extra Dose of ATL
While ATL was designed primarily to simplify the development of
COM servers and only provides a simple—yet extremely eff ective—
window-handling model, WTL consists of a slew of additional class
templates and macros specifi cally designed to support the creation
of more-complex windows based on USER and GDI resources.
WTL is now available on SourceForge (wtl.sourceforge.net), but for a

new app using a modern rendering engine, it doesn’t provide a great
deal of value. Still, there are a handful of useful helpers. From the
WTL atlapp.h header, you can use its message loop implementation
to replace the hand-rolled version I described earlier:

CMessageLoop loop;
loop.Run();

Although it’s simple to drop into your app and use, WTL packs
a lot of power if you have sophisticated message fi ltering and
routing needs. WTL also provides atlcrack.h with macros designed to
replace the generic MESSAGE_HANDLER macro provided by
ATL. Th ese are merely conveniences, but they do make it easier to
get up and running with a new message because they take care of
cracking open the message, so to speak, and avoid any guesswork
in fi guring out how to interpret WPARAM and LPARAM. A good
example is WM_SIZE, which packs the window’s new client area
as the low- and high-order words of its LPARAM. With ATL, this
might look as follows:

BEGIN_MSG_MAP(Window)
 ...
 MESSAGE_HANDLER(WM_SIZE, SizeHandler)
END_MSG_MAP()

LRESULT SizeHandler(UINT, WPARAM, LPARAM lparam, BOOL &)
{
 auto width = LOWORD(lparam);
 auto height = HIWORD(lparam);

 // Handle the new size here ...

 return 0;
}

With the help of WTL, this is a little simpler:
BEGIN_MSG_MAP(Window)
 ...
 MSG_WM_SIZE(SizeHandler)
END_MSG_MAP()

void SizeHandler(UINT, SIZE size)
{
 auto width = size.cx;
 auto height = size.cy;

 // Handle the new size here ...
}

Notice the new MSG_WM_SIZE macro that replaced the
generic MESSAGE_HANDLER macro in the original message map.
Th e member function handling the message is also simpler. As you
can see, there aren’t any unnecessary parameters or a return value.
Th e fi rst parameter is just the WPARAM, which you can inspect
if you need to know what caused the change in size.

Th e beauty of ATL and WTL is that they’re just provided as a set
of header fi les that you can include at your discretion. You use what
you need and ignore the rest. However, as I’ve shown you here, you
can get quite far without relying on any of these libraries and just
write your app using the Windows API. Join me next time, when
I’ll show you a modern approach for actually rendering the pixels
in your app’s window.

KENNY KERR is a computer programmer based in Canada, an author for Plural-
sight and a Microsoft MVP. He blogs at kennykerr.ca and you can follow him on
Twitter at twitter.com/kennykerr.

THANKS to the following technical expert for reviewing this article:
Worachai Chaoweeraprasit

Although it’s simple to drop
into your app and use, WTL

packs a lot of power if you have
sophisticated message fi ltering

and routing needs.

http://wtl.sourceforge.net
www.twitter.com/kennykerr

Untitled-1 1 1/4/13 11:27 AM

http://marketdash.componentone.com/redirect.ashx?rdtl=1367

msdn magazine20

This article is the fi rst in a series of in-depth looks at the
JavaScript API for Offi ce, newly introduced in Microsoft Offi ce
2013. It presupposes that you’re familiar with apps for Office.
If not, the MSDN documentation page, “Overview of apps for
Offi ce” (bit.ly/12nBWHG), provides a broad overview of and general
introduction to the API.

Th is article and the others in this series, while not exhaustive,
go deep into the API, touching on key aspects that will give you a
solid, richer understanding of how the apps for Offi ce API works.

In this fi rst article, we review the apps for Offi ce object model.
Part 2 will focus on the core task of how to access Offi ce fi le content
and will review the event model. Part 3 will consider the concept
of data binding and examine the basics of working with custom
XML parts. Finally, Part 4 will close the series with a focused look
at mail apps.

Th roughout this series, we oft en make reference to the apps for
Offi ce API documentation. You can fi nd the offi cial documentation,

code samples and community resources at the Apps for Offi ce and
SharePoint Developer Center on MSDN (dev.offi ce.com).

Overview of the JavaScript API for Offi ce
Th e JavaScript API for Offi ce comprises a complete object model.
Th e API is contained within a set of JavaScript fi les, starting with
the offi ce.js fi le. An app must include a reference to the offi ce.js fi le
to use the JavaScript API for Offi ce. On load, the offi ce.js fi le loads
the other required scripts that it needs to operate, including the
scripts needed for the host environment and the locale strings. For-
tunately, you can add a reference to the offi ce.js fi le using a content
delivery network (CDN), so you don’t need to deploy a copy of the
offi ce.js fi le along with your app. Here’s an example:

 <!-- When deploying an app, you should always
 load the CDN version of the office.js file. -->
<script src=
 "https://appsforoffice.microsoft.com/lib/1.0/hosted/office.js">
</script>

Th e object model was designed around several goals:
1. “Write once, run everywhere.” It had to be extensible—

not tied to a specifi c host application, but built around
capabilities available in multiple host applications. Apps
access host-specifi c functionality in a consistent way.

2. Cross-platform. Compatibility ranked high on this list,
too; thus, the object model isn’t tied to a specifi c version of
Offi ce. As well, the same code works on the Web App ver-
sions of the Offi ce client applications, where supported. For
example, an app for Excel can work on the Excel Web App
just as well as in the Excel client application.

MICROS OF T OFF IC E

Exploring the New
JavaScript API for Offi ce
Stephen Oliver and Eric Schmidt

This article discusses:
• Overview of the JavaScript API for Offi ce

• The asynchronous programming pattern

• Object model hierarchy

• Testing for host application support

Technologies discussed:
JavaScript API for Offi ce

www.bit.ly/12nBWHG
http://dev.office.com

Untitled-1 1 1/4/13 11:37 AM

http://marketdash.componentone.com/redirect.ashx?rdtl=1368

msdn magazine22 Microsoft Offi ce

3. Performance and security. It needed to be maximized
for performance, so that apps can be as unobtrusive to
users as possible. Also, the JavaScript API was designed to
interact directly with document content without having to
automate the Offi ce applications, improving the stability
and security of the solutions.

Another key goal for the JavaScript API was to attract Web devel-
opers to the Offi ce platform. Th us, the object model was built with
modern Web programming in mind. You can leverage your current
skills and knowledge of other JavaScript libraries, such as jQuery,
when creating apps in conjunction with the JavaScript API for Offi ce.

The Asynchronous Programming Pattern
As mentioned, performance was a key goal in the design of the
apps for Offi ce API. One of the ways that the designers enhanced
the performance of the API was through the heavy use of asyn-
chronous functions.

Th e use of asynchronous functions avoids blocking an app during
execution in the event a function takes a while to return. Th e asyn-
chronous function is invoked, but program execution doesn’t wait for
the function to return. Instead, it continues while the asynchronous
function is still executing. Th is allows the user to continue to use the
Offi ce document while the app is potentially still working.

Some key points for understanding the asynchronous design in
the apps for Offi ce API covered in this section are:

• Th e common signature of asynchronous functions in the
apps for Offi ce API

• Th e use of optional parameters in asynchronous functions
• Th e role of the AsyncResult object in asynchronous functions

We’ll discuss each in turn.
Common Signature of Asynchronous Functions in the Apps

for Offi ce API All asynchronous functions in the apps for Offi ce
API have the same naming convention and the same basic sig-
nature. Every asynchronous function name ends in “Async,” for
example, like this: Document.getSelectedDataAsync.

Th e signature for all asynchro-
nous functions adheres to the
following basic pattern:
 functionNameAsync(
 requiredParameters,
 [, options], [callback]);

Th e required parameters are fol-
lowed by two other parameters: an
object that holds optional param-
eters and a callback function, both
of which are always optional.

Optional Parameters in Asyn-
chronous Functions Th e optional
JavaScript object in the signature
of asynchronous functions is a
collection of key/value pairs, sep-
arated by a colon, where the key is
the name of the parameter and the
value is the data that you want to
use for that parameter. Th e order of
the key/value pairs doesn’t matter

as long as the parameter name is correct. Th e MSDN documenta-
tion for each asynchronous function details what parameters are
available to use in the options object for that particular function.

For example, the Document.setSelectedDataAsync method has
the same basic signature common to all asynchronous functions
in the apps for Offi ce:

Office.context.document.setSelectedDataAsync(
 data [, options], callback);

Like all asynchronous functions in the API, Document.set-
SelectedDataAsync has an options object that holds optional
parameters, but the parameters for its options object are diff erent
from those for other asynchronous functions in the API, because
the point of this function is to set data. So the optional parameters
for Document.setSelectedDataAsync are related to setting data:

• coercionType: A CoercionType enumeration that specifi es
the format for the data you insert (text, HTML, OOXML,
table or matrix)

• asyncContext: A user-defi ned object that’s returned
unchanged in the AsyncResult object that’s passed in to
the callback function as its only parameter

Th at same concept applies to all the other asynchronous functions.
You can either supply the object that contains the optional param-

eters as an object literal inline in the asynchronous function call, or

Figure 1 The Object Model Hierarchy in the JavaScript API for Offi ce

One of the ways that the
designers enhanced the

performance of the API was
through the heavy use of
asynchronous functions.

The next generation of inspiring tools. Today.

Copyright 1998-2013 Developer Express Inc. All rights reserved. All trademarks are property of their respective owners.

Download your 30-day trial at
www.DevExpress.com

Now you think—game on!! The new tools in 12.2 help you envision and
create engaging applications for the Web that can be accessed by mobile
users on the go. And, with our Windows 8 XAML and JS tools you will begin
to create highly interactive applications that address your customer needs
today and build next generation touch enabled solutions for tomorrow.

You used to think "Impossible"

Your Apps, Any Device

Untitled-13 1 1/7/13 12:52 PM

http://www.DevExpress.com

msdn magazine24 Microsoft Offi ce

create an object fi rst and then pass that object in for the parameter.
Following are two code samples that show both ways of supplying the
options object using the Document.setSelectedDataAsync function.

Passing the options parameter inline:
function setData(data) {
 Office.context.document.setSelectedDataAsync(data, {
 coercionType: Office.CoercionType.Text }
);
}

Passing the options parameter in a JavaScript object:
function setData(data) {
 var options = { coercionType: Office.CoercionType.Text };
 Office.context.document.setSelectedDataAsync(data, options);
}

The Role of the AsyncResult Object in Asynchronous Functions
Th e third parameter in the common signature for asynchronous
functions in the JavaScript API for Offi ce is the optional callback
parameter. Th e callback parameter is exactly as it sounds: a func-
tion you provide that’s invoked when the asynchronous operation
completes. Of course, you can provide either a named function
or an anonymous function inline in the call to the asynchronous
function. Th e key thing to note here is the role of the AsyncResult
object with respect to the callback function.

When the runtime invokes your callback, it passes in an Async-
Result object as the only argument for the callback. Th e AsyncResult
object contains information about the asynchronous operation,
such as: whether or not the operation succeeded; what errors, if any,
occurred; and the return value, if any, of the asynchronous func-
tion. In fact, in all asynchronous functions that return some kind
of data or object, the AsyncResult is the only way you can get at the
returned value. You do this using the AsyncResult.value property.

For example, the following code snippet gets the size of the
document and displays it in the specifi ed HTML element on the
app UI. In order to get the file size, you first get the file object
that the Document.getFileAsync method returns through the
AsyncResult.value property. Here’s how to do this:

function getFileData(elementId) {
 Office.context.document.getFileAsync(Office.FileType.Text,
 function (asyncResult) {
 if (asyncResult.status === 'succeeded') {
 var myFile = asyncResult.value;
 $(elementId).val(myFile.size);
 }
 });
}

Th e getFileData function calls the Document.getFileAsync method,
specifying that it should return the file content as text. It then
uses the value property of the AsyncResult object passed in to the

anonymous function callback to get a refer-
ence to the File object. Th en it displays the
size of the fi le in the specifi ed element using
the size property of the File object. In a similar
way, you’ll use the AsyncResult.value property
to get the return value of any asynchronous
function in the apps for Offi ce API.

You can read more about the Docu-
ment.getFileAsync method in the next
article of this series.

Object Model Hierarchy
The JavaScript API for Office aims to

provide compatibility across versions of Office and symmetry
across different host applications. To support these goals, the
JavaScript API has a lean object model with a distinct hierarchy
that isn’t directly tied to any specifi c host application. Instead, the
object model hosts a targeted set of capabilities for interacting with
Offi ce documents, scoped to the type of app (task pane, content
or mail app) using them.

Figure 1 provides an abbreviated overview of the top-level
hierarchy of objects in the JavaScript API for Offi ce (note that the
entire object model isn’t shown). Specifi cally, the diagram demon-
strates the relationships between the Offi ce, Context, Document,
Settings, Mailbox and RoamingSettings objects.

Each host application (Word, Excel, Excel Web App, PowerPoint,
Project, Outlook and Outlook Web App) can use a subset of the
capabilities included in the API. For example, roughly 40 percent
of the object model pertains solely to mail apps that can only be
used in Outlook and the Outlook Web App. Another portion of the
object model allows interaction with Custom XML Parts, which is
only available in Word 2013.

Figure 2 shows the capabilities available to specifi c host applications.
Shared Objects in the Object Model The JavaScript API

for Offi ce has a defi nitive entry point, the Offi ce object, which is
available to all types of apps and in all of the host applications. Th e

// Add a handler to the initialize event of the Office object
Office.initialize = function (reason) {
 $(document).ready(function () {
 app.get_Document(Office.context.document);

 // Other initialization logic goes here
 })
}

// Use a self-executing anonymous function to encapsulate the
// functionality that the app uses
var app = (function () {

 var _document;
 function get_Document(officeDocument) {
 _document = officeDocument;
 }

 // Other fields and functions associated with the app

 return {
 get_Document: get_Document
 // Other exposed members
 };
})()

Figure 3 Storing a Reference to the
Document Object When the App Initializes

Capability Word
Excel/Excel
Web App PowerPoint

Outlook/Outlook
Web App Project

Get/set data as
text, table, matrix

All All Text only Text only

Settings All All All (RoamingSettings)
Get fi le All Compressed only
Bindings All All
Custom XML Parts All
HTML and OOXML All
Mailbox All

Figure 2 Availability of Capabilities in the JavaScript API for Offi ce by Host Application

25February 2013msdnmagazine.com

Offi ce object represents a specifi c instance of an app inserted into
a document, workbook, presentation, project, e-mail message or
appointment. It can access bindings between the app and the doc-
ument using the select method. (We’ll discuss bindings in greater
depth in a future article.) Most importantly, the Offi ce object exposes
the initialize event for the app, which allows you to build initializa-
tion logic for the app (more on that in a future article). Finally, the
Offi ce object contains a reference to the Context object for the app.

Th e Context object, which is also available to all types of apps and
in all of the host applications, exposes infor-
mation about the runtime environment that’s
hosting the app. In addition to storing the lan-
guage settings for the app, the Context object
provides the entry point to runtime capabilities
in the JavaScript API for Offi ce that are specifi c
to the host in which the app was activated.

For example, you can access the document
(Document object) associated with the app
through the Context.document property.
However, this property returns a value only
when called from within a host application
that supports it, that is, from within a task
pane or content app. If we attempt to access
the Context.document property from a mail
app, we’ll get an “undefi ned object” error. Like-
wise with the Context.mailbox property: In
a mail app, it returns the mailbox (Mailbox
object) opened in the host application. In a
task pane app, it’s undefi ned.

Support for Task Pane and Content
Apps in the Object Model For task pane
and content apps, the Document object
represents the document, workbook, presen-
tation or project into which the app has been
inserted. Th e Document object provides the
highest degree of access to the fi le’s content—
in essence, it’s the primary point of contact
between an app and an Offi ce document.

Almost all of the techniques for accessing
the content in the Offi ce document require
use of the Document object. For this reason,
you might want to capture a reference to the
Document object when the app initializes as
shown in Figure 3.

When an app is activated within a Project
file, the Document object exposes addi-
tional, specific capabilities targeted for
Project fi les. Th rough the Document object,
an app can get data for specifi c tasks, views,
fi elds and resources in the project. An app
can also add event listeners to monitor when
the user changes the selected view, task or
resource selected in the project. (We’ll talk
more about using the Document object in
an app for Project in the next article.)

Also exposed by the Document object is the Settings object, which
represents the “property bag” for an app. An app can store and per-
sist custom properties across app sessions in the same document
using the Settings object. Th e properties travel with the document:
If you share an Offi ce fi le that contains an app with someone else,
the custom properties stored in the app will be available when the
other person reads the fi le.

Storing and retrieving settings using the property bag is simple.
Th e Settings.set method creates the setting in memory as a key/

www.softfluent.com/landings_cfe_msdn
www.softfluent.com
www.msdnmagazine.com

msdn magazine26 Microsoft Offi ce

value pair. To get the properties out of the property bag, we use
the Settings.get method, passing in the setting’s name (key), to get
the value. Both the set and get methods are synchronous. To store
the settings across sessions, we need to call the Settings.saveAsync
method, which saves all of the custom properties contained in the
app when the document is saved.

Th e code sample, “Apps for Offi ce: Persist custom settings” (bit.ly/

UEiZff), provides additional examples of how to use the Settings object
and how to store data in an app.

Support for Mail Apps in the Object Model For mail apps,
the Mailbox object provides the entry point of data access for
mail-app-specifi c functionality. As the name implies, the Mailbox
object corresponds to the mailbox of the current user and travels
to wherever users read their e-mail—either in the Outlook client
application or in the Outlook Web App. In addition to providing
access to individual e-mail messages and appointments (through
the Mailbox.item property), the Mailbox object allows the app to
create new appointments, access the profi le of the local user and
even get the user’s local time.

Like the Document object for content and task pane apps, you
might want to capture a reference to the Mailbox object when the
app initializes, as shown in Figure 4.

The RoamingSettings object, which is also available only in
mail apps, is similar to the Settings object for document-centric
apps (task pane and content apps). It allows apps to persist custom
properties as name/value pairs across sessions. However, unlike the
Settings object, which saves the custom properties within the host
Offi ce fi le, the RoamingSettings object saves the custom settings
to the current user’s mailbox. Th is makes the custom properties
available to the app no matter what message the user is looking
at or how the user has accessed his mailbox (in Outlook or the
Outlook Web App).

For more information about the object model hierarchy in the
JavaScript API for Office, see the MSDN documentation page,
“Understanding the JavaScript API for Offi ce” (bit.ly/UV2POY).

Testing Whether a Capability
Can Be Used in a Host Application
As we alluded to earlier, one of the strengths of the JavaScript API
for Offi ce is the “develop once, host many places” nature of apps
for Offi ce. For example, the same task pane app can be activated
within Word, Excel, Project and PowerPoint (provided that its
manifest allows all of those capabilities).

Yet, because not all apps have access to the exact same list of
capabilities, an app could be inserted into a host application that
doesn’t allow the capabilities that the app requires. For example,
Project currently doesn’t provide access to the Settings object.
An app that tries to access the Settings object when inserted into
Project will raise an “undefi ned object” error.

Thus, developers must include logic in their apps for testing
the availability of the capabilities they need. In the example with
Project, the best technique for detecting capabilities in a host
application is through a simple if block:

// Test for Settings object in host application
if (Office.context.document.settings) {

 // Provide implementation that uses the Settings object

}
else {

 // Use some other technique for saving custom properties,
 // like localStorage, sessionStorage or cookies

}

For more information about how to detect whether a member
is available in the host application, see the MSDN documentation
page, “How to: Determine host application support for specifi c API
members,” at bit.ly/TR5ZlB.

To summarize this article, we’ve discussed the meat and
potatoes of the JavaScript API for Offi ce. We described the object
model hierarchy at a high level and discussed the asynchronous
pattern as it’s implemented in the object model. We also described
how to test whether a capability is supported in a host application.

In the next article in this series, we’ll take a closer look at the
simplest, yet most powerful ways for working with data in an
app for Offi ce. We’ll describe how to get and set selected data in
more depth. We’ll look at getting all of the fi le content and how to
parse it. Also, we’ll discuss apps in Project and how to read task,
resource and view data. Finally, we’ll review the event model in the
JavaScript API for Offi ce: what events you can code against and
how to handle the results.

STEPHEN OLIVER is a programming writer in the Offi ce Division and a Microsoft
Certified Professional Developer (SharePoint 2010). He writes the developer
documentation for the Excel Services and Word Automation Services, along with
PowerPoint Automation Services developer documentation. He helped curate and
design the Excel Mashup site at ExcelMashup.com.

ERIC SCHMIDT is a programming writer in the Offi ce Division. He has created
several code samples for apps for Offi ce, including the popular “Persist custom
settings” code sample. In addition, he has written articles and created videos about
other products and technologies within Offi ce programmability.

THANKS to the following technical experts for reviewing this article:
Mark Brewster, Shilpa Kothari and Juan Balmori Labra

// Add a handler to the initialize event of the Office object
Office.initialize = function (reason) {
 $(document).ready(function () {
 app.get_Mailbox(Office.context.mailbox);

 // Other initialization logic goes here
 })
}

// Use a self-executing anonymous function to encapsulate the
// functionality that the app uses
var app = (function () {

 var _mailbox;
 function get_Mailbox(mailbox) {
 _mailbox = mailbox;
 }

 // Other fields and functions associated with the app

 return {
 get_Mailbox: get_Mailbox
 // Other exposed members
 };
})()

Figure 4 Storing a Reference to the Mailbox Object
in a Global Variable When the App Initializes

www.bit.ly/UEiZff
www.bit.ly/UEiZff
www.bit.ly/UV2POY
www.bit.ly/TR5ZlB
www.ExcelMashup.com

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1 9/8/11 11:56 AM

www.dynamicpdf.com
www.DynamicPDF.com/eval
www.cete.com

LET US
HEAR
YOU
CODE

Intense Take-Home
Training for Developers,
Software Architects
and Designers

YOURR BAACKKSTAGGE PAASS TTO TTHHE MICROOSOFFT PLLATFFORMM

PRODUCED BYSUPPORTED BY

magazine

Untitled-9 2 1/2/13 1:46 PM

www.vslive.com/lasvegas

vslive.com/lasvegas

Everyone knows all the *really*
cool stuff happens behind the
scenes. Get an all-access look at
the Microsoft Platform and
practical, unbiased, developer
training at Visual Studio Live!
Las Vegas.

las vegas MARCH
25-29, 2013

MGM Grand Hotel & Casino

Register before
February 27 and
save $300!
Use Promo Code LVFEB4

EARLY BIRD SPECIAL

TURN THE PAGE FOR MORE EVENT DETAILS

Topics will include:
 ASP.NET
 Azure / Cloud Computing
 Cross-Platform Mobile
 Data Management
 HTML5 / JavaScript
 Developer Deep Dive: SharePoint / Of ce 365
 Developer Deep Dive: SQL Server
 Windows 8 / WinRT
 WPF / Silverlight
 Visual Studio 2012 / .NET 4.5

Untitled-9 3 1/2/13 1:46 PM

www.vslive.com/lasvegas

YOURR BAACKKSTAGGE PAASS TTO TTHHE MICROOSOFFT PLLATFFORMM

CODE WITH .NET ROCKSTARS AND
LEARN HOW TO MAXIMIZE THE
DEVELOPMENT CAPABILITIES OF
VISUAL STUDIO AND .NET DURING
5 ACTION-PACKED DAYS OF
PRE- AND POST-CONFERENCE
WORKSHOPS, 70+ SESSIONS LED BY
EXPERT INSTRUCTORS AND KEYNOTES
BY INDUSTRY HEAVYWEIGHTS.

Bonus Las Vegas
Content!
Developer Deep Dives
on sharepoint and
SQL server – brought
to you by:

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, March 25, 2
7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries
9:00 AM 6:00 PM MW01 - Workshop: Build a Windows 8

Application in a Day - Rockford Lhotka
MW02 - Workshop: Services - Using WCF
and ASP.NET Web API - Miguel Castro

START TIME END TIME Visual Studio Live! Day 1: Tuesday, March 26, 2013
7:00 AM 8:00 AM Registration - Coffee and Morning Pastries
8:00 AM 9:00 AM Keynote: To Be Announced
9:15 AM 10:30 AM T01 - A Primer in Windows 8 Development

with WinJS -
Philip Japikse

T02 - jQuery Fundamentals -
Robert Boedigheimer

10:45 AM 12:00 PM T06 - Windows 8 Style Apps - Design
Essentials - Billy Hollis

T07 - Hate JavaScript? Try TypeScript. -
Ben Hoelting

12:00 PM 2:30 PM Lunch & Expo Hall
1:15 PM 2:15 PM T11 - Chalk Talk: MVVM in Practice aka

""Code behind""-free XAML -
Tiberiu Covaci

T12 - Chalk Talk: Neural Networks for
Developers - James McCaffrey

2:30 PM 3:45 PM T15 - New XAML controls in Windows 8 -
Billy Hollis

T16 - Tips for building Multi-Touch
Enabled Web Sites - Ben Hoelting

3:45 PM 4:15 PM Networking Break
4:15 PM 5:30 PM T20 - Make your App Alive with Tiles and

Noti cations - Ben Dewey
T21 - Build Speedy Azure Applications
with HTML 5 and Web Sockets Today -
Rick Garibay

5:30 PM 7:00 PM Welcome Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, March 27, 2013
7:00 AM 8:00 AM Registration - Coffee and Morning Pastries
8:00 AM 9:00 AM Keynote: To Be Announced
9:15 AM 10:30 AM W01 - Building Your First Windows Phone

8 Application - Brian Peek
W02 - Azure - Vishwas Lele

10:45 AM 12:00 PM W06 - Cross Win8/WP8 Apps -
Ben Dewey

W07 - Azure - Vishwas Lele

12:00 PM 2:30 PM Birds-of-a-Feather Lunch & Expo Hall
1:15 PM 2:15 PM W11 - Chalk Talk: Moving Web Apps to the

Cloud - Eric D. Boyd
W12 - Chalk Talk: Improving Web
Performance - Robert Boedigheimer

2:30 PM 3:45 PM W15 - Designing Your Windows Phone
Apps for Multitasking and Background
Processing - Nick Landry

W16 - IaaS in Windows Azure with
Virtual Machines - Eric D. Boyd

3:45 PM 4:15 PM Sponsored Break - Exhibitor Raf e
4:15 PM 5:30 PM W20 - Building a Windows Runtime

Component with C# - Brian Peek
W21 - Bringing Open Source to
Windows Azure: A Match Made in
Heaven - Jesus Rodriguez

6:30 PM 8:30 PM Evening Event

START TIME END TIME Visual Studio Live! Day 3: Thursday, March 28, 2013
7:00 AM 8:00 AM Registration - Coffee and Morning Pastries
8:00 AM 9:15 AM TH01 - Building Extensible XAML Client

Apps - Brian Noyes
TH02 - JavaScript, Meet Cloud: Node.js
on Windows Azure - Sasha Goldshtein

9:30 AM 10:45 AM TH06 - Migrating from WPF or Silverlight
to WinRT - Rockford Lhotka

TH07 - Using Windows Azure to Build
the Next Generation of Mobile
Applications - Jesus Rodriguez

11:00 AM 12:15 PM TH11 - Managing the .NET Compiler -
Jason Bock

TH12 - Cloud Backends for Your Mobile
Apps: Windows Azure Mobile Services
and Parse - Sasha Goldshtein

12:15 PM 1:30 PM Lunch
1:30 PM 2:45 PM TH16 - Understanding Dependency

Injection and Those Pesky Containers -
Miguel Castro

TH17 - Using Windows Azure for
Solving Identity Management
Challenges - Michael Collier

3:00 PM 4:15 PM TH21 - Static Analysis in .NET -
Jason Bock

TH22 - Elevating Windows Azure
Deployments - Michael Collier

START TIME END TIME Visual Studio Live! Post-Conference Workshops: Friday, March 29, 2
7:30 AM 8:00 AM Post-Conference Workshop Registration - Coffee and Morning Pastries
8:00 AM 5:00 PM FW02 - Workshop: Happy ALM with Visual Studio 2012 and Team Foundation

Server 2012 - Brian Randell
Speakers and sessions subject to change

Windows 8/ WinRT WPF/ Silverlight ASP.NET Visual Studio 2012/ .NET 4.5 SharePoint / Of ce A

AGENDA AT-A-GLANCE

Untitled-9 4 1/2/13 1:53 PM

www.vslive.com/lasvegas
www.vslive.com/lasvegas

CONNECT WITH
VISUAL STUDIO LIVE!

las vegas MARCH
25-29, 2013

Scan the QR
code to register
or for more
event details.

Register at vslive.com/
lasvegas

Use Promo Code LVFEB4

5, 2013 (Separate entry fee required)

MW03 - Workshop: HTML5
+ Cloud - Reach Everyone,
Everywhere - Eric D. Boyd

MW04 - Workshop: SharePoint 2013 Developer Boot Camp -
Andrew Connell

T03 - Busy Developer's Guide to
MongoDB - Ted Neward

T04 - Mastering Visual Studio
2012 - Deborah Kurata

T05 - Building Your First SharePoint
2013 Application Using Visual
Studio 2012 - Darrin Bishop

T08 - Busy Developer's Guide to
Cassandra - Ted Neward

T09 - IntelliTrace, What is it and
How Can I Use it to My Bene ts? -
Marcel de Vries

T10 - Getting Started with Microsoft
Of ce 365 SharePoint Online
Development

T13 - Chalk Talk: Building a
URL Shortening Service with
Node.js - Rick Garibay

T14 - Chalk Talk: Acing Application Lifecycle Management
in SharePoint

T17 - What's New in
ASP.NET 4.5 - Adam Tuliper

T18 - Team Foundation Server
2012 Builds: Understand,
Con gure, and Customize -
Benjamin Day

T19 - Unit Testing in SharePoint -
Jim Wooley

T22 - 25 Tips and Tricks for the
ASP.NET Developer -
Adam Tuliper

T23 - Design for Testability:
Mocks, Stubs, Refactoring, and
User Interfaces - Benjamin Day

T24 - Better Together -
SharePoint 2013 and Mobile
Development - Darrin Bishop

W03 - Controlling ASP.NET
MVC4 - Philip Japikse

W04 - Modern ALM and the
DevOps Story - Brian Randell

W05 - Developing and
Extending Enterprise Content
Management Features with
SharePoint 2013 - Paul Swider

W08 - MVC For WebForms
Developers: Comparing and
Contrasting - Miguel Castro

W09 - OData - Sergey Barskiy W10 - Use 2012 (and Beyond)
Technology with SharePoint
2010 - Ryan McIntyre

W13 - Chalk Talk: NoSQL for the
SQL Guy - Ted Neward

W14 - Demystifying the Microsoft UI Technology Roadmap -
Brian Noyes

W17 - ASP.NET MVC - AJAX in
your Views - Walt Ritscher

W18 - Code First and Entity
Framework - Sergey Barskiy

W19 - Build Modern
Collaborative Solutions with
Of ce 2013, "Napa" Of ce
365 Development Tools, and
SharePoint 2013 - Brian Randell

W22 - Patterns for Parallel
Programming - Tiberiu Covaci

W23 - LINQ performance and
Scalability - Jim Wooley

W24 - Intro to Windows Azure
SQL Database and What's New -
Eric D. Boyd

TH03 - To Be Announced TH04 - Sharing up to 80% of
code building Mobile apps for
iOS, Android, WP 8 and Windows
8 - Marcel de Vries

TH05 - SQL Server Data Tools -
Leonard Lobel

TH08 - ASP.NET MVC - Routing
in the spotlight - Walt Ritscher

TH09 - iOS Development
Survival Guide for the .NET Guy -
Nick Landry

TH10 - Programming the T-SQL
Enhancements in SQL Server
2012 - Leonard Lobel

TH13 - From 0 to Web Site in
60 Minutes with Web Matrix -
Mark Rosenberg

TH14 - To Be Announced TH15 - Getting to know the BI
Semantic Model - Andrew Brust

TH18 - Creating Web Sites
Using Visual Studio
LightSwitch -
Michael Washington

TH19 - Building Multi-Platform
Mobile Apps with Push
Noti cations - Nick Landry

TH20 - Big Data-BI Fusion:
Microsoft HDInsight & MS BI -
Andrew Brust

TH23 - Building Single Page
Web Applications with HTML5,
ASP.NET MVC4 and Web API -
Marcel de Vries

TH24 - Create HTML 5 Mobile
websites with Visual Studio
LightSwitch -
Michael Washington

TH25 - Optimizing Stored
Procedures - Mark Rosenberg

9, 2013 (Separate entry fee required)

FW02 - Workshop: SQL Server 2012 - Andrew Brust & Leonard Lobel

Azure / Cloud Computing Data Management HTML5 / JavaScript Cross-Platform Mobile SQL Server

twitter.com/vslive – @VSLive

facebook.com – Search “VSLive”

linkedin.com – Join the “VSLive” group!

Untitled-9 5 1/2/13 1:47 PM

www.vslive.com/lasvegas
www.vslive.com/lasvegas

msdn magazine32

With the advent of C# 5, Visual Basic .NET 11, the Microsoft
.NET Framework 4.5 and .NET for Windows Store apps, the asyn-
chronous programming experience has been streamlined greatly.
New async and await keywords (Async and Await in Visual Basic)
allow developers to maintain the same abstraction they were used
to when writing synchronous code.

A lot of eff ort was put into Visual Studio 2012 to improve asyn-
chronous debugging with tools such as Parallel Stacks, Parallel
Tasks, Parallel Watch and the Concurrency Visualizer. However,
in terms of being on par with the synchronous code debugging
experience, we’re not quite there yet.

One of the more prominent issues that breaks the abstraction and
reveals internal plumbing behind the async/await façade is the lack
of call stack information in the debugger. In this article, I’m going

to provide means to bridge this gap and improve the asynchronous
debugging experience in your .NET 4.5 or Windows Store app.

Let’s settle on essential terminology fi rst.

Defi nition of a Call Stack
MSDN documentation (bit.ly/Tukvkm) used to defi ne call stack as “the
series of method calls leading from the beginning of the program
to the statement currently being executed at run time.” Th is notion
was perfectly valid for the single-threaded, synchronous program-
ming model, but now that parallelism and asynchrony are gaining
momentum, more precise taxonomy is necessary.

For the purpose of this article, it’s important to distinguish the
causality chain from the return stack. Within the synchronous
paradigm, these two terms are mostly identical (I’ll mention the
exceptional case later). In asynchronous code, the aforementioned
defi nition describes a causality chain.

On the other hand, the statement currently being executed, when
fi nished, will lead to a series of methods continuing their execution.
Th is series constitutes the return stack. Alternatively, for readers
familiar with the continuation passing style (Eric Lippert has a fab-
ulous series on this topic, starting at bit.ly/d9V0Dc), the return stack
might be defi ned as a series of continuations that are registered to
execute, should the currently executing method complete.

In a nutshell, the causality chain answers the question, “How
did I get here?” while return stack is the answer for, “Where do I
go next?” For example, if you’ve got a deadlock in your application,
you might be able to fi nd out what caused it from the former, while
the latter would let you know what the consequences are. Note
that while a causality chain always tracks back to the program
entry point, the return stack is cut off at the point where the result

A S YN CHR ONOUS PR OGR AM M I NG

 Async Causality
Chain Tracking
Andrew Stasyuk

This article discusses:
• Causality chains versus return stacks

• Asynchronous debugging with existing tools

• Preserving causality chains in classic and Windows Store apps

• Using EventSource and EventListener

• Emulating async-local storage

• Comparison of causality tracking approaches and caveats

Technologies discussed:
Visual Studio 2012, Microsoft .NET Framework 4.5, .NET for
Windows Store Apps

Code download available at:
archive.msdn.microsoft.com/mag201302Causality

http://archive.msdn.microsoft.com/mag201302Causality
www.bit.ly/Tukvkm
www.bit.ly/d9V0Dc

33February 2013msdnmagazine.com

of asynchronous operation is not observed (for example, async void
methods or work scheduled via Th readPool.QueueUserWorkItem).

Th ere’s also a notion of stack trace being a copy of a synchronous call
stack preserved for diagnostics; I’ll use these two terms interchangeably.

Be aware that there are several unspoken assumptions in the
preceding defi nitions:

• “Method calls” referred to in the fi rst defi nition generally
imply “methods that have not completed yet,” which bear
the physical meaning of “being on stack” in the synchro-
nous programming model. However, while we’re generally
not interested in methods that have already returned, it’s
not always possible to distinguish them during asynchro-
nous debugging. In this case, there’s no physical notion of
“being on stack” and all continuations are equally valid
elements of a causality chain.

• Even in synchronous code, a causality chain and return
stack aren’t always identical. One particular case when a
method might be present in one, but missing from the other,
is a tail call. Though not directly expressible in C# and
Visual Basic .NET, it may be coded in Intermediate Lan-
guage (IL) (“tail.” prefi x) or produced by the just-in-time
(JIT) compiler (especially in a 64-bit process).

• Last, but not least, causality chains and return stacks can be
nonlinear. Th at is, in the most general case, they’re directed
graphs having current statement as a sink (causality graph)
or source (return graph). Nonlinearity in asynchronous
code is due to forks (parallel asynchronous operations
originating from one) and joins (continuation scheduled
to run upon completion of a set of parallel asynchronous
operations). For the purpose of this article, and due to plat-
form limitations (explained later), I’ll consider only linear
causality chains and return stacks, which are subsets of
corresponding graphs.

Luckily, if asynchrony is introduced into a program by using async
and await keywords with no forks or joins, and all async methods
are awaited, the causality chain is still identical to the return stack,
just as in synchronous code. In this case, both of them are equally
useful in orienting yourself in the control fl ow.

On the other hand, causality chains are rarely equal to return
stacks in programs employing explicitly scheduled continuations,
a notable example being Task Parallel Library (TPL) datafl ow. Th is
is due to the nature of data fl owing from a source block to a target
block, never returning to the former.

Existing Tools
Consider a quick example:

static void Main()
{
 OperationAsync().Wait();
}

async static Task OperationAsync()
{
 await Task.Delay(1000);
 Console.WriteLine("Where is my call stack?");
}

By extrapolating the abstraction developers were used to in
synchronous debugging, they would expect to see the following

causality chain/return stack when execution is paused at the
Console.WriteLine method:

ConsoleSample.exe!ConsoleSample.Program.OperationAsync() Line 19
ConsoleSample.exe!ConsoleSample.Program.Main() Line 13

But if you try this, you’ll fi nd that in the Call Stack window the
Main method is missing, while the stack trace starts directly in the
OperationAsync method preceded by [Resuming Async Method].
Parallel Stacks has both methods; however, it doesn’t show that Main
calls OperationAsync. Parallel Tasks doesn’t help either, showing
“No tasks to display.”

Note: At this point the debugger is aware of the Main method being
part of the call stack—you might have noticed that by the gray back-
ground behind the call to OperationAsync. Th e CLR and Windows
Runtime (WinRT) have to know where to continue execution aft er
the topmost stack frame returns; thus, they do indeed store return
stacks. In this article, though, I’ll only delve into causality tracking,
leaving return stacks as a topic for another article.

Preserving Causality Chains
In fact, causality chains are never stored by the runtime. Even
call stacks that you see when debugging synchronous code are, in
essence, return stacks—as was just said, they’re necessary for the
CLR and Windows Runtime to know which methods to execute
aft er the topmost frame returns. Th e runtime doesn’t need to know
what caused a particular method to execute.

To be able to view causality chains during live and post-mortem
debugging, you have to explicitly preserve them along the way.
Presumably, this would require storing (synchronous) stack trace
information at every point where continuation is scheduled and
restoring this data when continuation starts to execute. These
stack trace segments could then be stitched together to form a
causality chain.

We’re more interested in transferring causality information
across await constructs, as this is where abstraction of similarity
with synchronous code breaks. Let’s see how and when this data
can be captured.

As Stephen Toub points out (bit.ly/yF8eGu), provided that FooAsync
returns a Task, the following code:

await FooAsync();
RestOfMethod();

is transformed by the compiler to a rough equivalent of this:
var t = FooAsync();
var currentContext = SynchronizationContext.Current;
t.ContinueWith(delegate
{
 if (currentContext == null)
 RestOfMethod();
 else
 currentContext.Post(delegate { RestOfMethod(); }, null);
}, TaskScheduler.Current);

From looking at the expanded code, it appears there are at least
two extension points that might allow for capturing causality infor-
mation: TaskScheduler and SynchronizationContext. Indeed, both
off er similar pairs of virtual methods where it should be possible
to capture call stack segments at the right moments: QueueTask/
TryDequeue on TaskScheduler and Post/OperationStarted on
SynchronizationContext.

Unfortunately, you can only substitute default TaskScheduler
when explicitly scheduling a delegate via the TPL API, such

www.bit.ly/yF8eGu
www.msdnmagazine.com

msdn magazine34 Asynchronous Programming

as Task.Run, Task.ContinueWith, TaskFactory.StartNew and
so on. This means that whenever continuation is scheduled
outside a running task, the default TaskScheduler will be in force.
Th us, the TaskScheduler- based approach won’t be able to capture
necessary information.

As for SynchronizationContext, although it’s possible to override
the default instance of this class for the current thread by calling
the SynchronizationContext.SetSynchronizationContext method,
this has to be done for every thread in the application. Th us, you’d
have to be able to control thread lifetime, which is infeasible if
you aren’t planning to re-implement a thread pool. Moreover,
Windows Forms, Windows Presentation Foundation (WPF) and
ASP.NET all provide their own implementations of Synchroniza-
tionContext in addition to SynchronizationContext.Default, which
schedules work to the thread pool. Hence, your implementation
would have to behave diff erently depending on the origin of the
thread in which it’s working.

Also note that when awaiting a custom awaitable, it’s entirely
up to implementation whether to use SynchronizationContext to
schedule a continuation.

Luckily, there are two extension points suitable for our scenario:
subscribing to TPL events without having to modify the existing
codebase, or explicitly opting in by slightly modifying every await
expression in the application. The first approach only works in
desktop .NET applications, while the second can accommodate
Windows Store apps. I’ll detail both in the following sections.

Introducing EventSource
Th e .NET Framework supports Event Tracing for Windows (ETW),
having defined event providers for practically every aspect of
the runtime (bit.ly/VDfrtP). Particularly, TPL fi res events that allow
you to track Task lifetime. Although not all of these events are
documented, you can obtain their defi nitions yourself by delving
into mscorlib.dll with a tool such as ILSpy or Refl ector or peeking
into framework reference source (bit.ly/HRU3) and searching for the
TplEtwProvider class. Of course, the usual refl ection disclaimer
applies: If the API isn’t documented, there’s no guarantee that
empirically observed behavior will be retained in the next release.

TplEtwProvider inherits from System.Diagnostics.Tracing.Event-
Source, which was introduced in the .NET Framework 4.5 and is
now a recommended way to fi re ETW events in your application
(previously you had to deal with manual ETW manifest genera-
tion). In addition, EventSource allows for consumption of events
in process, by subscribing to them via EventListener, also new in
the .NET Framework 4.5 (more on this momentarily).

Th e event provider can be identifi ed by either a name or GUID. Each
particular event type is in turn identifi ed by event ID and, optionally,
a keyword to distinguish from other unrelated types of events fi red
by this provider (TplEtwProvider doesn’t use keywords). Th ere are
optional Task and Opcode parameters that you might fi nd useful
for fi ltering, but I’ll rely solely on event ID. Each event also defi nes
the level of verbosity.

TPL events have a variety of uses besides causality chains, such
as tracking of tasks in-fl ight, telemetry and so on. Th ey don’t fi re
for custom awaitables, though.

Introducing EventListener
In the .NET Framework 4, in order to capture ETW events, you had
to be running an out-of-process ETW listener, such as Windows
Performance Recorder or Vance Morrison’s PerfView, and then cor-
relate captured data with the state you observed in the debugger.
Th is posed additional problems, as data was stored outside process
memory space and crash dumps didn’t include it, which made this
solution less suitable for post-mortem debugging. For example, if
you rely on Windows Error Reporting to provide dumps, you won’t
get any ETW traces and thus causality information will be missing.

However, starting in the .NET Framework 4.5, it’s possible to
subscribe to TPL events (and other events fi red by EventSource
inheritors) via System.Diagnostics.Tracing.EventListener (bit.ly/XJelwF).
Th is allows the capture and preservation of stack trace segments in the
process memory space. Th erefore, a mini-dump with heap should be
enough to extract causality information. In this article, I’ll only detail
EventListener-based subscriptions.

It’s worth mentioning that the advantage of an out-of-process
listener is that you can always get the call stacks by listening to the Stack
ETW Events (either relying on an existing tool or doing tedious stack
walking and module address tracking yourself). When subscribing
to the events using EventListener, you can’t get call stack information
in Windows Store apps, because the StackTrace API is prohibited.
(An approach that works for Windows Store apps is described later.)

In order to subscribe to events, you have to inherit from Event-
Listener, override the OnEventSourceCreated method and
make sure that an instance of your listener gets created in every
AppDomain of your program (subscription is per application
domain). Aft er EventListener is instantiated, this method will be
called to notify the listener of event sources that are being created.
It will also provide notifi cations for all event sources that existed
before the listener was created. Aft er fi ltering event sources either
by name or GUID (performance-wise, comparing GUIDs is a better
idea), a call to EnableEvents subscribes the listener to the source:

private static readonly Guid tplGuid =
 new Guid("2e5dba47-a3d2-4d16-8ee0-6671ffdcd7b5");

protected override void OnEventSourceCreated(EventSource eventSource)
{
 if (eventSource.Guid == tplGuid)
 EnableEvents(eventSource, EventLevel.LogAlways);
}

To process events, you need to implement abstract method
OnEventWritten. For the purpose of preserving and restoring
stack trace segments, you need to capture the call stack right
before an asynchronous operation is scheduled, and then, when it
starts execution, associate a stored stack trace segment with it. To
correlate these two events, you can use the TaskID parameter.
Parameters passed to a corresponding event-fi ring method in an
event source are boxed into a read-only object collection and passed
in as the Payload property of EventWrittenEventArgs.

Interestingly, there are special fast paths for EventSource events that
are consumed as ETW (not via EventListener), where boxing doesn’t
occur for their arguments. Th is does provide a performance improve-
ment, but it’s mostly zeroed out due to cross-process machinery.

In the OnEventWritten method, you need to distinguish between
event sources (in case you subscribe to more than one) and identify

www.bit.ly/HRU3
www.bit.ly/XJelwF

(888) 850-9911
Sales Hotline - US & Canada:

/update/2013/02

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2013 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Aspose.Total for .NET from $2,449.02
Every Aspose .NET component in one package.

• Programmatically manage popular fi le formats including Word, Excel, PowerPoint and PDF

• Add charting, email, spell checking, barcode creation, OCR, diagramming, imaging, project
management and fi le format management to your .NET applications

• Common uses also include mail merge, adding barcodes to documents, building dynamic
Excel reports on the fl y and extracting text from PDF fi les

BEST SELLER

BEST SELLER ComponentOne Studio Enterprise from $1,315.60
.NET Tools for the Smart Developer: Windows, Web, and XAML.

• Hundreds of UI controls for all .NET platforms including grids, charts, reports and schedulers

• Supports Visual Studio 2012 and Windows 8

• Now includes Windows 8 Studios for WinRT XAML and WinJS

• New Cosmopolitan (Windows 8 UI) theme provides a modern look and feel

• Royalty-free deployment and distribution

BEST SELLER

Help & Manual Professional from $583.10
Easily create documentation for Windows, the Web and iPad.

• Powerful features in an easy accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

• Styles and Templates give you full design control

BEST SELLER

Code Compare Pro from $48.95
An advanced visual fi le comparison tool with Visual Studio integration.

• Code oriented comparison, including syntax highlighting, unique structure and lexical
comparison algorithms, for the most popular programming languages

• Smooth Visual Studio integration to develop and merge within one environment in the
context of current solution, using native IDE editors

• Three-way fi le merge, folder comparison and synchronization

BEST SELLER

Untitled-8 1 1/2/13 1:15 PM

http://www.componentsource.com

msdn magazine36 Asynchronous Programming

the event itself. The stack trace will be captured (stored) when
TaskScheduled or TaskWaitBegin events fi re, and associated with
a newly started asynchronous operation (restored) in TaskWait-
End. You also need to pass in taskId as the correlation identifi er.
Figure 1 shows the outline of how the events will be handled.

Note: Explicit values (“magic numbers”) in code are a bad program-
ming practice and are used here only for brevity. Th e accompanying
sample code project has them conveniently structured in constants
and enumerations to avoid duplication and risk of typos.

Note that in TaskWaitBegin, I check for TaskWaitBehavior being
synchronous, which happens when a task being awaited is executed
synchronously or has already completed. In this case, a synchronous
call stack is still in place, so it doesn’t need to be stored explicitly.

Async-Local Storage
Whatever data structure you choose to preserve call stack segments
needs the following quality: Stored value (causality chain) should be
preserved for every asynchronous operation, following control fl ow
along the way across await boundaries and continuations, bearing in
mind that continuations may execute on diff erent threads.

Th is suggests a thread-local-like variable that would preserve its
value pertaining to the current asynchronous operation (a chain
of continuations), instead of a particular thread. It can be roughly
named “async-local storage.”

Th e CLR already has a data structure called ExecutionContext
that’s captured on one thread and restored on the other (where
continuation gets to execute), thus being passed along with con-
trol fl ow. Th is is essentially a container that stores other contexts
(SynchronizationContext, CallContext and so on) that might be
needed to continue execution in exactly the same environment,
where they were interrupted. Stephen Toub has the details at bit.ly/M0amHk.
Most importantly, you can store arbitrary data in CallContext (by
calling its static methods LogicalSetData and LogicalGetData),
which seems to suit the aforementioned purpose.

Bear in mind that CallContext (actually, internally there are two
of them: LogicalCallContext and IllogicalCallContext) is a heavy
object, designed to flow across remoting boundaries. When no
custom data is stored, the runtime doesn’t initialize the contexts,
sparing the cost of maintaining them with the control fl ow. As soon
as you call the CallContext.LogicalSetData method, a mutable
ExecutionContext and several Hashtables have to be created and
passed along or cloned from then on.

Unfortunately, ExecutionContext (together with all its constitu-
ents) is captured before the described TPL events fi re and restored
shortly aft erward. Th us, any custom data saved in CallContext in
between is discarded after ExecutionContext is restored, which
makes it unsuitable for our particular purpose.

In addition, the CallContext class isn’t available in the .NET
for Windows Store apps subset, so an alternative is needed for
this scenario.

One way to build an async-local storage that would work around
these problems is to maintain the value in thread-local storage (TLS)
while the synchronous portion of code is executing. Th en, when
the TaskWaitStart event fi res, store the value in a shared (non-TLS)
dictionary, keyed by the TaskID. When the counterpart event,
TaskWaitEnd, fi res, remove the preserved value from the dictionary
and save it back to TLS, possibly on a diff erent thread.

As you might know, values stored in TLS are preserved even
aft er a thread is returned to the thread pool and gets new work to
execute. So, at some point, the value has to be removed from TLS
(otherwise, some other asynchronous operation executing on this
thread later might access the value stored by the previous operation
as if it were its own). You can’t do this in the TaskWaitBegin event
handler because, in case of nested awaits, TaskWaitBegin and Task-
WaitEnd events occur multiple times, once per await, and a stored
value might be needed in between, such as in the following snippet:

async Task OuterAsync()
{
 await InnerAsync();
}
async Task InnerAsync()
{
 await Task.Delay(1000);
}

Instead, it’s safe to consider that the value in TLS is eligible to
be cleared when the current asynchronous operation is no longer
being executed on a thread. Because the CLR doesn’t have an in-
process event that would notify of a thread being recycled back to
the thread pool (there’s an ETW one—bit.ly/ZfAWrb), for this purpose
I’ll use Th readPoolDequeueWork fi red by FrameworkEventSource
(also undocumented), which occurs when a new operation is
started on a thread pool thread. Th is leaves out non-pooled threads,
for which you’d have to manually clean the TLS, such as when a UI
thread returns to the message loop.

For a working implementation of this concept together with
stack segments capturing and concatenation, please refer to the
StackStorage class in the accompanying source code download.
Th ere’s also a cleaner abstraction, AsyncLocal<T>, which allows
you to store any value and transfer it with the control flow to
subsequent asynchronous continuations. I’ll use it as causality chain
storage for Windows Store apps scenarios.

protected override void OnEventWritten(EventWrittenEventArgs eventData)
{
 if (eventData.EventSource.Guid == tplGuid)
 {
 int taskId;
 switch (eventData.EventId)
 {
 case 7: // Task scheduled
 taskId = (int)eventData.Payload[2];
 stackStorage.StoreStack(taskId);
 break;
 case 10: // Task wait begin
 taskId = (int)eventData.Payload[2];
 bool waitBehaviorIsSynchronous =
 (int)eventData.Payload[3] == 1;
 if (!waitBehaviorIsSynchronous)
 stackStorage.StoreStack(taskId);
 break;
 case 11: // Task wait end
 taskId = (int)eventData.Payload[2];
 stackStorage.RestoreStack(taskId);
 break;
 }
 }
}

Figure 1 Handling of TPL Events
in the OnEventWritten Method

www.bit.ly/M0amHk
www.bit.ly/ZfAWrb

Untitled-1 1 10/13/11 11:25 AM

www.nsoftware.com

msdn magazine38 Asynchronous Programming

Tracing Causality in Windows Store Apps
Th e described approach would still hold up in a Windows Store sce-
nario if the System.Diagnostics.StackTrace API were available. For
better or for worse, it isn’t, which means you can’t get any information
about call stack frames above the current one from within your code.
Th us, even while TPL events are still supported, a call to TaskWaitStart
or TaskWaitEnd is buried deep in the framework method calls, so you
have no information about your code that caused these events to fi re.

Luckily, .NET for Windows Store apps (as well as the .NET
Framework 4.5) provides CallerMemberNameAttribute
(bit.ly/PsDH0p) and its peers CallerFilePathAttribute and CallerLine-
NumberAttribute. When optional method arguments are deco-
rated with these, the compiler will initialize the arguments with
corresponding values at compile time. For example, the following
code will output “Main() in c:\Full\Path\To\Program.cs at line 14”:

static void Main(string[] args)
{
 LogCurrentFrame();
}

static void LogCurrentFrame([CallerMemberName] string name = null,
 [CallerFilePath] string path = null, [CallerLineNumber] int line = 0)
{
 Console.WriteLine("{0}() in {1} at line {2}", name, path, line);
}

Th is only allows the logging method to get information about
the calling frame, which means you have to ensure it gets called
from all the methods you want captured in the causality chain.
One convenient location for this would be decorating each await
expression with a call to an extension method, like this:

await WorkAsync().WithCausality();

Here, the WithCausality method captures the current frame,
appends it to causality chain and returns a Task or awaitable
(depending on what WorkAsync returns), which upon completion
of the original one removes the frame from the causality chain.

As multiple diff erent things can be awaited, there should be
multiple overloads of WithCausality. Th is is straightforward for a
Task<T> (and even easier for a Task):

public static Task<T> WithCausality<T>(this Task<T> task,
 [CallerMemberName] string member = null,
 [CallerFilePath] string file = null,
 [CallerLineNumber] int line = 0)
{
 var removeAction =
 AddFrameAndCreateRemoveAction(member, file, line);
 return task.ContinueWith(t => { removeAction(); return t.Result; });
}

However, it’s trickier for custom awaitables. As you might know,
the C# compiler allows you to await an instance of any type that
follows a particular pattern (see bit.ly/AmAUIF), which makes writing
overloads that would accommodate any custom awaitable impossible
using static typing only. You may make a few shortcut overloads for
awaitables predefi ned in the framework, such as YieldAwaitable or
Confi guredTaskAwaitable—or the ones defi ned in your solution—
but in general you have to resort to the Dynamic Language Runtime
(DLR). Handling all the cases requires a lot of boilerplate code,
so feel free to look into the accompanying source code for details.

It’s also worth noting that in case of nested awaits, WithCausality
methods will be executed from inner to outer (as await expressions
are evaluated), so care must be taken to assemble the stack in the
correct order.

Viewing Causality Chains
Both described approaches keep causality information in memory
as lists of call stack segments or frames. However, walking them
and concatenating into a single causality chain for display is
tedious to do by hand.

Th e easiest option to automate this is to leverage the debugger eval-
uator. In this case, you author a public static property (or method) on
a public class, which, when called, walks the list of stored segments
and returns a concatenated causality chain. Th en you can evaluate this
property during debugging and see the result in the text visualizer.

Unfortunately, this approach doesn’t work in two situations.
One occurs when the topmost stack frame is in native code, which
is quite a common scenario for debugging application hangs, as
kernel-based synchronization primitives do call into native code.
The debugger evaluator would just display, “Cannot evaluate
expression because the code of the current method is optimized”
(Mike Stall describes these limitations in detail at bit.ly/SLlNuT).

Th e other issue is with post-mortem debugging. You can actu-
ally open a mini-dump in Visual Studio and, surprisingly (given
that there’s no process to debug, only its memory dump), you’re
allowed to examine property values (run property getters) and
even call some methods! Th is amazing piece of functionality is
built into the Visual Studio debugger and works by interpreting a
watch expression and all methods that it calls into (in contrast to
live debugging, where compiled code gets executed).

Obviously, there are limitations. For example, while doing dump
debugging, you can’t in any way call into native methods (meaning
that you can’t even execute a delegate, because its Invoke method is
generated in native code) or access some restricted APIs (such as
System.Refl ection). Interpreter-based evaluation is also expectedly
slow—and, sadly, due to a bug, the evaluation timeout for dump
debugging is limited to 1 second in Visual Studio 2012, regardless of
confi guration. Th is, given the number of method calls required to
traverse the list of stack trace segments and iterate over all frames,
prohibits the use of the evaluator for this purpose.

Luckily, the debugger always allows access to fi eld values (even
in dump debugging or when the top stack frame is in native code),
which makes it possible to crawl through the objects constituting a
stored causality chain and reconstruct it. Th is is obviously tedious,
so I wrote a Visual Studio extension that does this for you (see
accompanying sample code). Figure 2 shows what the fi nal experi-
ence looks like. Note that the graph on the right is also generated by
this extension and represents the async equivalent of Parallel Stacks.

Comparison and Caveats
Both causality-tracking approaches are not free. Th e second one
(caller-info-based) is more lightweight, as it doesn’t involve the
expensive StackTrace API, relying instead on the compiler to provide
caller frame information during compile time, which means “free”
in a running program. However, it still uses eventing infrastructure
with its cost to support AsyncLocal<T>. On the other hand, the fi rst
approach provides more data, not skipping frames without awaits. It
also automatically tracks several other situations where Task-based
asynchrony arises without await, such as the Task.Run method; on
the other hand, it does not work with custom awaitables.

www.bit.ly/AmAUIF
www.bit.ly/SLlNuT

WHAT IF DEVELOPING
FOR HUNDREDS OF
SERVERS WAS AS
EASY AS ONE?

IT IS...
MEET FATCLOUD
The next generation cloud enabled application platform
for .NET is here. For a free three-node developer download
visit FATCLOUD.COM.

Untitled-13 1 1/7/13 12:54 PM

www.fatcloud.com

msdn magazine40 Asynchronous Programming

An additional benefi t of the TPL events-based tracker is that
existing asynchronous code doesn’t have to be modified, while
for the caller info attributes-based approach, you have to alter
every await statement in your program. But only the latter supports
Windows Store apps.

Th e TPL events tracker also suff ers from a lot of boilerplate frame-
work code in stack trace segments, though it can be easily fi ltered
out by frame namespace or class name. See the sample code for a
list of common fi lters.

Another caveat concerns loops in asynchronous code. Consider
the following snippet:

async static Task Loop()
{
 for (int i = 0; i < 10; i++)
 {
 await FirstAsync();
 await SecondAsync();
 await ThirdAsync();
 }
}

By the end of the method, its causality chain would grow to
more than 30 segments, repeatedly alternating between FirstAsync,
SecondAsync and Th irdAsync frames. For a fi nite loop, this may
be tolerable, though it’s still a waste of memory to store duplicate
frames 10 times. However, in some cases, a program might intro-
duce a valid infi nite loop, for example, in the case of a message
loop. Moreover, infi nite repetition might be introduced without
loop or await constructs—a timer rescheduling itself on every tick
is a perfect example. Tracking an infi nite causality chain is a sure
way to run out of memory, so the amount of data stored has to be
reduced to a fi nite amount somehow.

This issue doesn’t affect the caller-info-based tracker, as it
removes a frame from the list immediately upon the start of a
continuation. Th ere are two (combinable) approaches to fi x this
for the TPL events scenario. One is to cut older data based on the
rolling maximum storage amount. Th e other is to represent loops
effi ciently and avoid duplication. For both approaches, you might
also detect common infi nite loop patterns and cut the causality
chain explicitly at these points.

Feel free to refer to the accompanying sample project to see how
loop folding might be implemented.

As stated, the TPL events API only lets you capture a cau-
sality chain, not a graph. This is because the Task.WaitAll and
Task.WhenAll methods are implemented as countdowns, where
continuation is scheduled only when the last task comes in com-
pleted and the counter reaches zero. Th us, only the last completed
task forms a causality chain.

Wrapping Up
In this article, you’ve learned the diff erence between a call stack,
a return stack and a causality chain. You should now be aware of exten-
sion points that the .NET Framework provides to track scheduling
and execution of asynchronous operations and be able to leverage
these to capture and preserve causality chains. The approaches
described cover tracking causality in classic and Windows Store
apps, both in live and post-mortem debugging scenarios. You also
learned about the concept of async-local storage and its possible
implementation for Windows Store apps.

Now you can go ahead and incorporate causality tracking into
your asynchronous codebase or
use async-local storage in parallel
calculations; explore the event
sources that the .NET Framework
4.5 and .NET for Windows Store
apps off er to build something new,
such as a tracker for unfinished
tasks in your program; or use this
extension point to fi re your own
events to fine-tune the perfor-
mance of your application.

ANDRIY (ANDREW) STASYUK is a software
development engineer in test II on the
Managed Languages team at Microsoft.
He has seven years of experience as a
participant, task author, jury member, and
coach at various national and international
programming contests. He worked in
fi nancial soft ware development at Paladyne/
Broadridge Financial Solutions Inc. and
Deutsche Bank AG before moving to Microsoft .
His main interests in programming are
algorithms, parallelism and brainteasers.

THANKS to the following technical
experts for reviewing this article:
Vance Morrison and Lucian WischikFigure 2 Causality Chain for an Asynchronous Method and “Parallel” Causality for All Threads

Untitled-13 1 1/7/13 12:58 PM

www.nevron.com

msdn magazine42

Comet is a technique for pushing content from a Web
server to a browser without an explicit request, using long-lived
AJAX connections. It allows for a more interactive UX and uses
less bandwidth than the typical server round-trip triggered by a
page postback to retrieve more data. Although there are plenty
of Comet implementations available, most are Java-based. In this
article I’ll focus on building a C# service based on the cometbox
code sample available at code.google.com/p/cometbox.

Th ere are newer methods for implementing the same behavior
using HTML5 features such as WebSockets and server-side events,
but these are available only in the latest browser versions. If you
must support older browsers, Comet is the most-compatible

solution. However, the browser must support AJAX by implementing
the xmlHttpRequest object; otherwise it won’t be able to support
Comet-style communication.

The High-Level Architecture
Figure 1 shows basic Comet-style communication, while
Figure 2 depicts the architecture of my example. Comet uses the
browser’s xmlHttpRequest object, which is essential for AJAX
communication, to establish a long-lived HTTP connection
to a server. The server holds the connection open, and pushes
content to the browser when available.

Between the browser and the server is a proxy page, which resides
in the same Web application path as the Web page containing the
client code and does nothing except forward the messages from
browser to server and from server to browser. Why do you need a
proxy page? I’ll explain in a bit.

The first step is to select a format for the messages exchanged
between the browser and server—JSON, XML or a custom format.
For simplicity’s sake, I picked JSON because it’s naturally supported
in JavaScript, jQuery and the Microsoft .NET Framework, and can
transmit the same amount of data as XML using fewer bytes and,
therefore, less bandwidth.

To set up Comet-style communication, you open an AJAX con-
nection to the server. Th e easiest way to do this is to use jQuery
because it supports multiple browsers and provides some nice
wrapper functions such as $.ajax. This function is essentially a

A S P. N E T

Building a Simple
Comet Application
in the Microsoft .NET
Framework
Derrick Lau

This article discusses:
• Combining .NET and Windows services technologies with AJAX

to enable Comet-style communication

• Pitfalls in implementing Comet-style architecture

• Testing the application

Technologies discussed:
ASP.NET 4, Windows Services, C#, JavaScript, JSON,
Microsoft .NET Framework

Code download available at:
archive.msdn.microsoft.com/mag201302Comet

http://code.google.com/p/cometbox
http://archive.msdn.microsoft.com/mag201302Comet

43February 2013msdnmagazine.com

wrapper for each browser’s xmlHttpRequest object, and neatly pro-
vides event handlers that can be implemented to process incoming
messages from the server.

Before starting the connection, you instantiate the message
to send. To do this, declare a variable and use JSON.stringify to
format the data as a JSON message, as shown in Figure 3.

Next, initialize the function with the URL to connect to, the
HTTP method of communication to use, the communication
style and the connection timeout parameter. JQuery supplies this
functionality in a library call named ajaxSetup. I set the timeout
in this example to 10 minutes because I’m only building a proof
of concept solution here; you can change the timeout setting to
whatever you want.

Now open a connection to the server using the jQuery $.ajax
method, with the defi nition of the success event handler as the
only parameter:

$.ajax({
 success: function (msg) {
 // Alert("ajax.success().");
 if (msg == null || msg.Message == null) {
 getResponse();
 return;
 }

The handler tests the message object returned to ensure it
contains valid information before parsing; this is necessary because
if an error code is returned, jQuery will fail and display an unde-
fi ned message to the user. Upon a null message, the handler should

recursively call the AJAX function again and return; I’ve found that
adding the return stops the code from continuing. If the message is
OK, you simply read the message and write the contents to the page:

$("#_receivedMsgLabel").append(msg.Message + "
");
getResponse();
return;
 }

 });

This creates a simple client that illustrates how Comet-style
communication works, as well as providing a means for run-
ning performance and scalability tests. For my example, I put the
getResponse JavaScript code in a Web user control and registered
it in the codebehind so the AJAX connection opens immediately
when the control is loaded onto the ASP.NET page:

public partial class JqueryJsonCometClientControl :
 System.Web.UI.UserControl
{
 protected void Page_Load(object sender, EventArgs e)
 {
 string getResponseScript =
 @"<script type=text/javascript>getResponse();</script>";
 Page.ClientScript.RegisterStartupScript(GetType(),
 "GetResponseKey", getResponseScript);
 }
}

The Server
Now that I have a client that can send and receive messages, I’ll
build a service that can receive and respond to them.

I tried implementing several diff erent techniques for Comet-style
communication, including the use of ASP.NET pages and HTTP
handlers, none of which were successful. What I couldn’t seem to
do was get a single message to broadcast to multiple clients. Luckily,
aft er a lot of research I stumbled across the cometbox project and
found it to be the easiest approach. I did some tinkering to make
it run as a Windows service so it would be easier to use, then gave
it the ability to hold a long-lived connection and push content to
the browser. (Unfortunately, in doing so, I wrecked some of the
cross-platform compatibility.) Finally, I added support for JSON
and my own HTTP content message types.

To get started, create a Windows service project in your Visual
Studio solution and add a service installer component (you’ll
fi nd the instructions at bit.ly/TrHQ8O) so you can turn your service
on and off in the Services applet of the Administrative Tools in
Control Panel. Once this is done, you need to create two threads:

one that will bind to the TCP port and receive as well
as transmit messages; and one that will block on a
message queue to ensure that content is transmitted
only when a message is received.

First, you must create a class that listens on the TCP
port for new messages and transmits the responses.
Now, there are several styles of Comet communi-
cation that can be implemented, and in the imple-
mentation there’s a Server class (see the code file
Comet_Win_Service HTTP\Server.cs in the sample
code) to abstract these. For simplicity’s sake, how-
ever, I’ll focus on what’s required to do a very basic
receive of a JSON message over HTTP, and to hold
the connection until there’s content to push back.

Figure 1 Comet-Style Communication

AJAX Request #1

AJAX Request #1

Comet Response #1

Comet Response #1

Browser Proxy Comet Server

Long-Lived HTTP
Request Held

Message to
Broadcast Received

Figure 2 Architecture of the Comet Application

Web Browser

ASP.NET Page

Web User Control

$.ajax
(xmlHttpRequest)

$.ajax success
handler

Windows Service

TCP Network
Stream

TCP Listener (Holds
onto Connection)

Message Queue

ASP.NET Proxy

www.bit.ly/TrHQ8O
www.msdnmagazine.com

msdn magazine44 ASP.NET

In the Server class, I’ll create some protected members to hold
objects I’ll need to access from the Server object. Th ese include
the thread that will bind to and listen on the TCP port for HTTP
connections, some semaphores and a list of client objects, each of
which will represent a single connection to the server. Of impor-
tance is _isListenerShutDown, which will be exposed as a public
property so it can be modifi ed in the service Stop event.

Next, in the constructor, I’ll instantiate the TCP Listener object
against the port, set it for exclusive use of the port, and then start

it. Th en I’ll start a thread to receive and handle clients that connect
to the TCP listener.

Th e thread that listens for client connections contains a while
loop that continually resets a fl ag indicating whether the service
Stop event was raised (see Figure 4). I set the fi rst part of this loop
to a mutex to block on all listening threads to check whether the
service Stop event was raised. If so, the _isListenerShutDown prop-
erty will be true. When the check completes, the mutex is released
and if the service is still running, I call the TcpListener.Accept-
TcpClient, which will return a TcpClient object. Optionally, I
check existing TcpClients to ensure I don’t add an existing client.
However, depending on the number of clients you expect, you
might want to replace this with a system where the service generates
a unique ID and sends it to the browser client, which remembers
and resends the ID each time it communicates with the server to
ensure it holds only a single connection. Th is can become problem-
atic, though, if the service fails; it resets the ID counter and could
give new clients already-used IDs.

Finally, the thread goes through the list of clients and removes
any that are no longer alive. For simplicity, I put this code in the
method that’s called when the TCP listener accepts a client connec-
tion, but this can aff ect performance when the number of clients
gets into the hundreds of thousands. If you intend on using this in
public-facing Web applications, I suggest adding a timer that fi res
every so oft en and doing the cleanup in that.

When a TcpClient object is returned in the Server class Loop
method, it’s used to create a client object that represents the browser
client. Because each client object is created in a unique thread, as
with the server constructor, the client class constructor must wait
on a mutex to ensure the client hasn’t been closed before continu-
ing. Aft erward, I check the TCP stream and begin reading it, and
initiate a callback handler to be executed once the read has been
completed. In the callback handler, I simply read the bytes and
parse them using the ParseInput method, which you can see in
the sample code provided with this article.

if (request.Headers["Content-Type"].Contains("xml"))
{
 Trace.WriteLineIf(_traceSwitch.TraceVerbose, "Received XML content from client.");
 _messageFormat = MessageFormat.xml;

 #region Process HTTP message as XML

 try
 {
 // Picks up message from HTTP
 XmlSerializer s = new XmlSerializer(typeof(Derrick.Web.SIServer.SIRequest));

 // Loads message into object for processing
 Derrick.Web.SIServer.SIRequest data =
 (Derrick.Web.SIServer.SIRequest)s.Deserialize(mem);
 }
 catch (Exception ex)
 {
 Trace.WriteLineIf(_traceSwitch.TraceVerbose,
 "During parse of client XML request got this exception: " + ex.ToString());
 }

 #endregion Process HTTP message as XML

}

Figure 5 The Default XML Message Handler

function getResponse() {
 var currentDate = new Date();
 var sendMessage = JSON.stringify({
 SendTimestamp: currentDate,
 Message: "Message 1"
 });
 $.ajaxSetup({
 url: "CometProxy.aspx",
 type: "POST",
 async: true,
 global: true,
 timeout: 600000
 });

Figure 3 Format the Data as a JSON Message

private void Loop()
{
 try
 {
 while (true)
 {
 TcpClient client = null;
 bool isServerStopped = false;
 _listenerMutex.WaitOne();
 isServerStopped = _isListenerShutDown;
 _listenerMutex.ReleaseMutex();
 if (!isServerStopped)
 {
 client = listener.AcceptTcpClient();
 }
 else
 {
 continue;
 }

 Trace.WriteLineIf(_traceSwitch.TraceInfo, "TCP client accepted.",
 "COMET Server");

 bool addClientFlag = true;

 Client dc = new Client(client, this, authconfig, _currentClientId);
 _currentClientId++;
 foreach (Client currentClient in clients)
 {
 if (dc.TCPClient == currentClient.TCPClient)
 {
 lock (_lockObj)
 {
 addClientFlag = false;
 }
 }

 }

 if (addClientFlag)
 {
 lock (_lockObj)
 {
 clients.Add(dc);
 }
 }

Figure 4 Listening for Client Connections

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine46 ASP.NET

In the ParseInput method of the Client class, I build a Request
object with members that correspond to the diff erent parts of the
typical HTTP message and populate those members appropri-
ately. First, I parse the header information by searching for the
token characters, such as “\r\n,” determining the pieces of header
information from the format of the HTTP header. Th en I call the
ParseRequestContent method to get the body of the HTTP message.
Th e fi rst step of ParseInput is to determine the method of HTTP
communication used and the URL the request was sent to. Next,
the HTTP message headers are extracted and stored in the Request
object Headers property, which is a Dictionary of header types and
values. Once again, take a look at the downloadable sample code to
see how this is done. Finally, I load the contents of the request into
the Request object’s Body property, which is just a String variable
containing all the bytes of the content. Th e content has yet to be
parsed at this point. At the end, if there are any problems with the

HTTP request received from the client, I send out an appropriate
error response message.

I separated the method for parsing the HTTP request’s content
so I could add in support for diff erent message types, such as plain
text, XML, JSON and so forth:

public void ParseRequestContent()
{

 if (String.IsNullOrEmpty(request.Body))
 {
 Trace.WriteLineIf(_traceSwitch.TraceVerbose,
 "No content in the body of the request!");
 return;
 }

 try
 {

First the contents are written to a MemoryStream so, if necessary,
they can be deserialized into object types depending on the request’s
Content-Type, as certain deserializers only work with streams:

MemoryStream mem = new MemoryStream();
mem.Write(System.Text.Encoding.ASCII.GetBytes(request.Body), 0,
 request.Body.Length);
mem.Seek(0, 0);

if (!request.Headers.ContainsKey("Content-Type"))
{
 _lastUpdate = DateTime.Now;
 _messageFormat = MessageFormat.json;
}
else
{

As shown in Figure 5, I kept the default action of handling
XML-formatted messages because XML is still a popular format.

For Web applications, however, I highly recommend formatting
the messages in JSON as, unlike XML, it doesn’t have the over-
head of beginning and cancel tags and it’s natively supported in
JavaScript. I just use the Content-Type header of the HTTP request
to indicate whether the message was sent in JSON, and deserialize
the contents using the System.Web.Script.Serialization namespace
JavaScriptSerializer class. Th is class makes it very easy to deserialize
a JSON message into a C# object, as shown in Figure 6.

Finally, for testing purposes I added a ping Content-Type that simply
responds with a text HTTP response containing only the word PING.
Th is way I can easily test to see if my Comet server is running by send-
ing it a JSON message with Content-Type “ping,” as shown in Figure 7.

Ultimately, ParseRequestContent is just a string parsing method—
nothing more, nothing less. As you can see, parsing XML data is a little
more involved because the content has to be written to a Memory-
Stream fi rst and then deserialized, using the XmlSerializer class, into
a class created to represent the message from the client.

To better organize the source code, I create a Request class,
shown in Figure 8, that simply contains members to hold the
headers and other information sent in the HTTP request in a manner
easily accessible within the service. If you wish, you can add helper
methods to determine if the request has any content or not, and
authentication checks, too. However, I didn’t do this here to keep
this service simple and easy to implement.

Th e Response class, like the Request class, contains methods to
store the HTTP response information in a manner easily accessible
by a C# Windows service. In the SendResponse method, I added
logic to attach custom HTTP headers as required for cross-origin
resource sharing (CORS), and had those headers loaded from a

else if (request.Headers["Content-Type"].Contains("json"))
{
 Trace.WriteLineIf(_traceSwitch.TraceVerbose,
 "Received json content from client.");
 _messageFormat = MessageFormat.json;

 #region Process HTTP message as JSON

 try
 {
 JavaScriptSerializer jsonSerializer = new JavaScriptSerializer();
 ClientMessage3 clientMessage =
 jsonSerializer.Deserialize<ClientMessage3>(request.Body);
 _lastUpdate = clientMessage.SendTimestamp;
 Trace.WriteLineIf(_traceSwitch.TraceVerbose,
 "Received the following message: ");
 Trace.WriteLineIf(_traceSwitch.TraceVerbose, "SendTimestamp: " +
 clientMessage.SendTimestamp.ToString());
 Trace.WriteLineIf(_traceSwitch.TraceVerbose, "Browser: " +
 clientMessage.Browser);
 Trace.WriteLineIf(_traceSwitch.TraceVerbose, "Message: " +
 clientMessage.Message);

 }
 catch (Exception ex)
 {
 Trace.WriteLineIf(_traceSwitch.TraceVerbose,
 "Error deserializing JSON message: " + ex.ToString());
 }

 #endregion Process HTTP message as JSON

}

Figure 6 Deserializing a JSON Message

else if (request.Headers["Content-Type"].Contains("ping"))
{
 string msg = request.Body;
 Trace.WriteLineIf(_traceSwitch.TraceVerbose, "Ping received.");
 if (msg.Equals("PING"))
 {
 SendMessageEventArgs args = new SendMessageEventArgs();
 args.Client = this;
 args.Message = "PING";
 args.Request = request;
 args.Timestamp = DateTime.Now;
 SendResponse(args);
 }

}

Figure 7 Content-Type “Ping”

Untitled-2 1 9/13/12 12:51 PM

www.componentart.com/windows8

msdn magazine48 ASP.NET

confi guration fi le so they can be easily modifi ed. Th e Response
class also contains methods to output messages for some common
HTTP statuses, such as 200, 401, 404, 405 and 500.

Th e SendResponse member of the Response class simply writes
the message to the HTTP response stream that should still be alive,
as the timeout set by the client is quite long (10 minutes):

public void SendResponse(NetworkStream stream, Client client)
{

As shown in Figure 9, the appropriate headers are added to the
HTTP response to fi t with the W3C specifi cation for CORS. For
simplicity, the headers are read from the confi guration fi le so the
header contents can be easily modifi ed.

Now I add the regular HTTP response headers and content, as
shown in Figure 10.

Here the entire HTTP response message, which was built as a
String, is now written to the HTTP response stream, which was
passed in as a parameter to the SendResponse method:

byte[] htext = Encoding.ASCII.GetBytes(r.ToString());
stream.Write(htext, 0, htext.Length);

Transmitting Messages
Th e thread to transmit messages is essentially nothing more than
a While loop that blocks on a Microsoft message queue. It has a
SendMessage event that’s raised when the thread picks up a mes-
sage from the queue. Th e event is handled by a method in the server
object that basically calls the SendResponse method of each client,
thus broadcasting the message to every browser connected to it.

Th e thread waits on the appropriate message queue until there’s
a message placed on it, indicating the server has some content it
wishes to broadcast to the clients:

Message msg = _intranetBannerQueue.Receive();
// Holds thread until message received
Trace.WriteLineIf(_traceSwitch.TraceInfo,
 "Message retrieved from the message queue.");

SendMessageEventArgs args = new SendMessageEventArgs();
args.Timestamp = DateTime.Now.ToUniversalTime();

When the message is received, it’s converted into the expected
object type:

msg.Formatter = new XmlMessageFormatter(new Type[] { typeof(string) });
string cometMsg = msg.Body.ToString();
args.Message = cometMsg;

Aft er determining what will be sent to the clients, I raise a Windows
event on the server indicating there’s a message to be broadcast:

if (SendMessageEvent != null)
{
 SendMessageEvent(this, args);
 Trace.WriteLineIf(_traceSwitch.TraceVerbose,
 "Message loop raised SendMessage event.");
}

Next, I need a method that will build the actual HTTP response body—
the contents of the message the server will broadcast to all the clients.
Th e preceding message takes the message contents dumped onto the
Microsoft message queue and formats it as a JSON object for transmis-
sion to the clients via an HTTP response message, as shown in Figure 11.

Next, I need to instantiate an instance of the JavaScriptSerializer
object to put the message contents into JSON format. I add the
following try/catch error handling because sometimes there are
diffi culties instantiating an instance of a JavaScriptSerializer object:

try
{
 jsonSerializer = new JavaScriptSerializer();
}
catch (Exception ex)
{
 errorInSendResponse = true;
 Trace.WriteLine("Cannot instantiate JSON serializer: " + ex.ToString());
}

public class Request
{
 public string Method;
 public string Url;
 public string Version;
 public string Body;
 public int ContentLength;
 public Dictionary<string, string> Headers = new Dictionary<string, string>();

 public bool HasContent()
 {
 if (Headers.ContainsKey("Content-Length"))
 {
 ContentLength = int.Parse(Headers["Content-Length"]);
 return true;
 }
 return false;
 }

Figure 8 The Request Class

if (client.Request.Headers.ContainsKey("Origin"))
{
 AddHeader("Access-Control-Allow-Origin", client.Request.Headers["Origin"]);
 Trace.WriteLineIf(_traceSwitch.TraceVerbose,
 "Access-Control-Allow-Origin from client: " +
 client.Request.Headers["Origin"]);
}
else
{
 AddHeader("Access-Control-Allow-Origin",
 ConfigurationManager.AppSettings["RequestOriginUrl"]);
 Trace.WriteLineIf(_traceSwitch.TraceVerbose,
 "Access-Control-Allow-Origin from config: " +
 ConfigurationManager.AppSettings["RequestOriginUrl"]);
}

AddHeader("Access-Control-Allow-Methods", "POST, GET, OPTIONS");
AddHeader("Access-Control-Max-Age", "1000");
// AddHeader("Access-Control-Allow-Headers", "Content-Type");
string allowHeaders = ConfigurationManager.AppSettings["AllowHeaders"];
// AddHeader("Access-Control-Allow-Headers", "Content-Type, x-requested-with");
AddHeader("Access-Control-Allow-Headers", allowHeaders);

StringBuilder r = new StringBuilder();

Figure 9 Adding the CORS Headers

r.Append("HTTP/1.1 " + GetStatusString(Status) + "\r\n");
r.Append("Server: Derrick Comet\r\n");
r.Append("Date: " + DateTime.Now.ToUniversalTime().ToString(
 "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'") + "\r\n");
r.Append("Accept-Ranges: none\r\n");

foreach (KeyValuePair<string, string> header in Headers)
{
 r.Append(header.Key + ": " + header.Value + "\r\n");
}

if (File != null)
{
 r.Append("Content-Type: " + Mime + "\r\n");
 r.Append("Content-Length: " + File.Length + "\r\n");
}
else if (Body.Length > 0)
{
 r.Append("Content-Type: " + Mime + "\r\n");
 r.Append("Content-Length: " + Body.Length + "\r\n");
}
r.Append("\r\n");

Figure 10 Adding the Regular HTTP Response Headers

LET US
HEAR
YOU
CODE

Intense Take-Home
Training for Developers,
Software Architects
and Designers

YOURR BAACKKSTAGGE PAASS TTO THHE MMICRROSOOFTT PPLATTFORRM

Register before
February 27
and save $300!

70+ Sessions
and Workshops!

las vegas
MARCH

25-29, 2013

MGM Grand Hotel & Casino

vslive.com/lasvegas

Visual Studio 2012 / .NET 4.5
ASP.NET l SharePoint
SQL Server l Windows 8 / WinRT

FLIP OVER FOR MORE EVENT TOPICS

Use Promo Code TIP2

www.vslive.com/lasvegas

Scan the QR
code for more

information on
Visual Studio Live!vslive.com/lasvegas

PRODUCED BYSUPPORTED BY

magazine

YOURR BAACKSTAGEE PPASS TOO TTHE MMICROSSOFFT PLAATFOORMM

Bonus Las Vegas

Content!

Developer Deep Dives

on sharepoint and

SQL server – brought

to you by:

➤ ASP.NET
➤ Azure / Cloud Computing
➤ Cross-Platform Mobile
➤ Data Management
➤ HTML5 / JavaScript
➤ Deep Dive: SharePoint / Offi ce 365
➤ Deep Dive: SQL Server
➤ Windows 8 / WinRT
➤ WPF / Silverlight
➤ Visual Studio 2012 / .NET 4.5

Use Promo Code TIP2

www.vslive.com/lasvegas

49February 2013msdnmagazine.com

Th en I create a string variable to hold the JSON-formatted message
and an instance of the Response class to send the JSON message.

I immediately do some basic error checking to make sure I’m
working with a valid HTTP request. Because this Comet service
spawns a thread for each TCP client, as well as for the server
objects, I felt it safest to include these safety checks every so oft en,
to make debugging easier.

Once I verify that it’s a valid request, I put together a JSON message
to send to the HTTP response stream. Note that I just create the JSON
message, serialize it and use it to create an HTML response message:

if (request.HasContent())
{

 if (_messageFormat == MessageFormat.json)
 {
 ClientMessage3 jsonObjectToSend = new ClientMessage3();
 jsonObjectToSend.SendTimestamp = args.Timestamp;
 jsonObjectToSend.Message = args.Message;
 jsonMessageToSend = jsonSerializer.Serialize(jsonObjectToSend);
 response = Response.GetHtmlResponse(jsonMessageToSend,
 args.Timestamp, _messageFormat);
 response.SendResponse(stream, this);
 }

To hook it all together, I fi rst create instances of the message loop
object and the server loop object during the service Start event. Note
that these objects should be protected members of the service class
so that methods on them can be called during other service events.
Now the message loop send message event should be handled by
the server object BroadcastMessage method:

public override void BroadcastMessage(Object sender, SendMessageEventArgs args)
{
 // Throw new NotImplementedException();
 Trace.WriteLineIf(_traceSwitch.TraceVerbose,
 "Broadcasting message [" + args.Message + "] to all clients.");

 int numOfClients = clients.Count;
 for (int i = 0; i < numOfClients; i++)
 {
 clients[i].SendResponse(args);
 }
}

Th e BroadcastMessage just sends the same message to all clients.
If you wish, you can modify it to send the message only to the
clients you want; in this way you can use this service to handle, for
instance, multiple online chat rooms.

Th e OnStop method is called when the service is stopped. It subse-
quently calls the Shutdown method of the server object, which goes
through the list of client objects that are still valid and shuts them down.

At this point, I have a reasonably decent working Comet service,
which I can install into the services applet from the command
prompt using the installutil command (for more information, see
bit.ly/OtQCB7). You could also create your own Windows installer to
deploy it, as you’ve already added the service installer components
to the service project.

Why Doesn’t It Work? The Problem with CORS
Now, try setting the URL in the $.ajax call of the browser client
to point to the Comet service URL. Start the Comet service and
open the browser client in Firefox. Make sure you have the Firebug
extension installed in the Firefox browser. Start Firebug and
refresh the page; you’ll notice you get an error in the console output
area stating “Access denied.” Th is is due to CORS, where for security
reasons, JavaScript can’t access resources outside the same Web
application and virtual directory its housing page resides in. For
example, if your browser client page is in http://www.somedomain.com/
somedir1/somedir2/client.aspx, then any AJAX call made on that
page can go only to resources in the same virtual directory or a
subdirectory. Th is is great if you’re calling another page or HTTP
handler within the Web application, but you don’t want pages and
handlers to block on a message queue when transmitting the same
message to all clients, so you need to use the Windows Comet ser-
vice and you need a way of getting around the CORS restriction.

Stream stream = null;

if (cometRequest.ContentLength > 0 && !cometRequest.Method.Equals("OPTIONS"))
{
 stream = cometRequest.GetRequestStream();
 stream.Write(bytes, 0, bytes.Length);
}

if (stream != null)
{
 stream.Close();
}

// Console.WriteLine(System.Text.Encoding.ASCII.GetString(bytes));
System.Diagnostics.Trace.WriteLineIf(_proxySwitch.TraceVerbose,
"Forwarding message: " + System.Text.Encoding.ASCII.GetString(bytes));

Figure 12 Writing to the HttpWebRequest Stream

string msgSizeStr = ConfigurationManager.AppSettings["MessageSize"];
int messageSize = Convert.ToInt32(msgSizeStr);

byte[] read = new byte[messageSize];
// Reads 256 characters at a time
int count = s.Read(read, 0, messageSize);
while (count > 0)
{
 // Dumps the 256 characters on a string and displays the string to the console
 byte[] actualBytes = new byte[count];
 Array.Copy(read, actualBytes, count);
 string cometResponseStream = Encoding.ASCII.GetString(actualBytes);
 Response.Write(cometResponseStream);
 count = s.Read(read, 0, messageSize);
}

Response.End();
System.Diagnostics.Trace.WriteLineIf(_proxySwitch.TraceVerbose, "Sent Message.");

s.Close();
}

Figure 13 Writing the Server Message
to the HTTP Response Stream

public void SendResponse(SendMessageEventArgs args)
{

 Trace.WriteLineIf(_traceSwitch.TraceVerbose,
 "Client.SendResponse(args) called...");

 if (args == null || args.Timestamp == null)
 {
 return;
 }
 if (_lastUpdate > args.Timestamp)
 {
 return;
 }

 bool errorInSendResponse = false;

 JavaScriptSerializer jsonSerializer = null;

Figure 11 Building the HTTP Response Body

www.bit.ly/OtQCB7
www.msdnmagazine.com

msdn magazine50 ASP.NET

To do this, I recommend building a proxy page in the same
virtual directory, whose only function is to intercept the HTTP
message from the browser client, extract all the relevant headers
and content, and build another HTTP request object that connects
to the Comet service. Because this connection is done on the
server, it isn’t impacted by CORS. Th us, through a proxy, you can
keep a long-lived connection between your browser client and
the Comet service. Moreover, you can now transmit a single mes-
sage when it arrives on a message queue to all connected browser
clients simultaneously.

First, I take the HTTP request and stream it into an array
of bytes so I can pass it to a new HTTP request object that I’ll
instantiate shortly:

byte[] bytes;
using (Stream reader = Request.GetBufferlessInputStream())
{
 bytes = new byte[reader.Length];
 reader.Read(bytes, 0, (int)reader.Length);
}

Next, I create a new HttpWebRequest object and point it to the
Comet server, whose URL I put in the web.confi g fi le so it can be
easily modifi ed later:

string newUrl = ConfigurationManager.AppSettings["CometServer"];
HttpWebRequest cometRequest = (HttpWebRequest)HttpWebRequest.Create(newUrl);

Th is creates a connection to the Comet server for each user, but
since the same message is being broadcast to each user, you can just
encapsulate the cometRequest object in a double locking singleton
to reduce the connection load on the Comet server, and let IIS do
the connection load balancing for you.

Th en I populate the HttpWebRequest headers with the same values
I received from the jQuery client, especially setting the KeepAlive
property to true so I maintain a long-lived HTTP connection, which
is the fundamental technique behind Comet-style communication.

Here I check for an Origin header, which is required by the W3C
specifi cation when dealing with CORS-related issues:

for (int i = 0; i < Request.Headers.Count; i++)
{
 if (Request.Headers.GetKey(i).Equals("Origin"))
 {
 containsOriginHeader = true;
 break;
 }
}

I then pass the Origin header on to the HttpWebRequest so the
Comet server will receive it:

if (containsOriginHeader)
{
 // cometRequest.Headers["Origin"] = Request.Headers["Origin"];
 cometRequest.Headers.Set("Origin", Request.Headers["Origin"]);
}
else
{
 cometRequest.Headers.Add("Origin", Request.Url.AbsoluteUri);
}

System.Diagnostics.Trace.WriteLineIf(_proxySwitch.TraceVerbose,
 "Adding Origin header.");

Next, I take the bytes from the content of the HTTP request
from the jQuery client and write them to the request stream of
the HttpWebRequest, which will be sent to the Comet server, as
shown in Figure 12.

After forwarding the message to the Comet server, I call the
GetResponse method of the HttpWebRequest object, which pro-
vides an HttpWebResponse object that allows me to process the
server’s response. I also add the required HTTP headers that I’ll
send with the message back to the client:

try
{
 Response.ClearHeaders();
 HttpWebResponse res = (HttpWebResponse)cometRequest.GetResponse();
 for (int i = 0; i < res.Headers.Count; i++)
 {
 string headerName = res.Headers.GetKey(i);
 // Response.Headers.Set(headerName, res.Headers[headerName]);
 Response.AddHeader(headerName, res.Headers[headerName]);
 }

 System.Diagnostics.Trace.WriteLineIf(_proxySwitch.TraceVerbose,
 "Added headers.");

I then wait for the server’s response:
Stream s = res.GetResponseStream();

When I receive the Comet server’s message, I write it to the
original HTTP request’s response stream so the client can receive
it, as shown in Figure 13.

Test the Application
To test your application, create a Web site to hold the sample
application pages. Make sure the URL to your Windows service is
correct and the message queue is properly confi gured and useable.
Start the service and open the Comet client page in one browser

Users Repetitions
Message Size
(in Bytes)

Response Time
(in Milliseconds)

1,000 10 512 2.56
5,000 10 512 4.404
10,000 10 512 18.406
15,000 10 512 26.368
20,000 10 512 36.612
25,000 10 512 48.674
30,000 10 512 64.016
35,000 10 512 79.972
40,000 10 512 99.49
45,000 10 512 122.777
50,000 10 512 137.434

Figure 14 Varying the Number of Users

Figure 15 Response Times for Varying Numbers of Users for a
512-Byte Message

0 10,000 20,000 30,000

100

80

60

40

20

0

120

140

160

40,000 50,000 60,000

WINDOWS FORMS | WPF | ASP.NET

WWW.TEXTCONTROL.COM

US +1 877 - 462 - 4772
EU +49 421 - 4270671 - 0

Reuse MS Word documents or templates as your reporting templates.

Easy database connection with master-detail nested blocks.

Powerful, programmable template designer with full sources for Visual Studio®.

Integrate dynamic 2D and 3D charting to your reports.

Create print-ready, digitally signed Adobe PDF and PDF/A documents.

tables, columns, images, headers and footers and more.

FLOW TYPE LAYOUT
REPORTING

Untitled-2 1 12/7/12 10:48 AM

www.textcontrol.com

msdn magazine52 ASP.NET

and the page to send messages in another. Type in a message
and press send; aft er roughly 10 ms you should see the message
appear in the other browser window. Try this with various brows-
ers—especially some of the older ones. As long as they support
the xmlHttpRequest object, it should work. Th is provides almost
real-time Web behavior (en.wikipedia.org/wiki/Real-time_web), where
content is pushed to the browser almost instantaneously without
requiring action from the user.

Before any new application is deployed, you have to do perfor-
mance and load testing. To do this, you should fi rst identify the
metrics you want to gather. I suggest measuring usage load against
both response times and data-transfer size. Additionally, you should
test usage scenarios that are relevant to Comet, in particular broad-
casting a single message to multiple clients without postback.

To do the testing, I constructed a utility that opens multiple
threads, each with a connection to the Comet server, and waits
until the server fires a response. This test utility allows me to
set a few parameters, such as the total number of users that will
connect to my Comet server and the number of times they
reopen the connection (currently the connection is closed aft er
the server’s response is sent).

I then created a utility that dumps a message of x number of bytes
to the message queue, with the number of bytes set by a text fi eld
on the main screen, and a text fi eld to set the number of millisec-
onds to wait between messages sent from the server. I’ll use this
to send the test message back to the client. I then started the test
client, specifi ed the number of users plus the number of times the
client will reopen the Comet connection, and the threads opened
the connections against my server. I waited a few seconds for all the
connections to be opened, then went to the message-sending utility
and submitted a certain number of bytes. I repeated this for various
combinations of total users, total repetitions and message sizes.

Th e fi rst data sampling I took was for a single user with increasing
repetitions but with the response message a consistent (small) size
throughout the testing. As you can see in Figure 14, the number of
repetitions doesn’t seem to have an impact on system performance
or reliability.

Th e times are gradually increasing in a linear/constant manner,
which means the code on the Comet server is generally robust.
Figure 15 graphs the number of users against the response time
for a 512-byte message. Figure 16 shows some statistics for a mes-
sage size of 1,024 bytes. Finally, Figure 17 shows the chart from
Figure 16 in graphical format.All of these tests were done on a
single laptop with 8GB of RAM and a 2.4 GHz Intel Core i3 CPU.

Th e numbers don’t show any particular trend, except that response
times are reasonable, remaining at below one second for message
sizes up to 1KB. I didn’t bother tracking bandwidth use because that’s
aff ected by the message format. Also, because all testing was done
on a single computer, network latency was eliminated as a factor. I
could’ve tried it against my home network, but I didn’t think it would
be worthwhile because the public Internet is far more complex than my
wireless router and cable modem setup. However, because the key point
of Comet communication techniques is to reduce server round-trips
by pushing content from the server as updated, theoretically half the
network bandwidth usage should be reduced through Comet techniques.

Wrapping Up
I hope you can now successfully implement your own Comet-style
applications and use them eff ectively to reduce network bandwidth
and increase Web site application performance. Of course, you’ll
want to check out the new technologies included with HTML5,
which can replace Comet, such as WebSockets (bit.ly/UVMcBg) and
Server-Sent Events (SSE) (bit.ly/UVMhoD). Th ese technologies hold
the promise of providing a simpler way of pushing content to the
browser, but they do require the user to have a browser that sup-
ports HTML5. If you still have to support users on older browsers,
Comet-style communication remains the best choice.

DERRICK LAU is an experienced soft ware development team leader with approxi-
mately 15 years of relevant experience. He has worked in the IT shops of fi nancial
fi rms and the government, as well as in the soft ware development sections of
technology-focused companies. He won the grand prize in an EMC development
contest in 2010 and came in as a fi nalist in 2011. He is also certifi ed as an MCSD
and as an EMC content management developer.

THANKS to the following technical expert for reviewing this article:
Francis Cheung

Users Repetitions
Response Time (in
Milliseconds)

1,000 10 144.227
5,000 10 169.648
10,000 10 233.031
15,000 10 272.919
20,000 10 279.701
25,000 10 220.209
30,000 10 271.799
35,000 10 230.114
40,000 10 381.29
45,000 10 344.129
50,000 10 342.452

Figure 16 Testing with a Message Size of 1,024 Bytes

Figure 17 User Load vs Response Time for a 1KB Message

0 10,000 20,000 30,000

250

200

150

100

50

0

300

350

400

450

40,000 50,000 60,000

http://en.wikipedia.org/wiki/Real-time_web
www.bit.ly/UVMcBg
www.bit.ly/UVMhoD

SpreadsheetGear

Toll Free USA (888) 774-3273 | Phone (913) 390-4797 | sales@spreadsheetgear.com

SpreadsheetGear

SpreadsheetGear 2012
Now Available

WPF and Silverlight controls,

to XPS, improved

2012 support and more.

Excel Reporting for ASP.NET,
WinForms, WPF and Silverlight

Forms, WPF or Silverlight

Free
30 Day

Trial

Performance Spreadsheet Components

Excel Compatible Windows Forms,
WPF and Silverlight Controls

Forms, WPF and

Excel Dashboards, Calculations,
Charting and More

charts, and models in Excel
or the SpreadsheetGear

NEW!

www.SpreadsheetGear.com

Untitled-3 1 11/30/12 11:25 AM

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com

msdn magazine54

Consider the problem of identifying abnormal data items
in a very large data set, for example, identifying potentially fraudu-
lent credit-card transactions, risky loan applications and so on. One
approach to detecting abnormal data is to group the data items into
similar clusters and then seek data items within each cluster that
are diff erent in some sense from other data items within the cluster.

There are many different clustering algorithms. One of the
oldest and most widely used is the k-means algorithm. In this
article I’ll explain how the k-means algorithm works and present
a complete C# demo program. Th ere are many existing standalone
data-clustering tools, so why would you want to create k-means
clustering code from scratch? Existing clustering tools can be
diffi cult or impossible to integrate into a soft ware system, they
might not be customizable to deal with unusual scenarios, and the
tools might have copyright or other intellectual property issues.

Aft er reading this article you’ll be able to experiment with k-means
clustering and have the base knowledge to add clustering function-
ality to a .NET application.

Th e best way to get a feel for what k-means clustering is and to
see where I’m headed in this article is to take a look at Figure 1. Th e
demo program begins by creating a dummy set of 20 data items. In
clustering terminology, data items are sometimes called tuples. Each
tuple here represents a person and has two numeric attribute values,
a height in inches and a weight in pounds. One of the limitations of
the k-means algorithm is that it applies only in cases where the data
tuples are completely numeric.

Th e dummy data is loaded into an array in memory. Next, the
number of clusters is set to three. Although there are advanced
clustering techniques that can suggest the optimal number of clus-
ters to use, in general data clustering is an exploratory process and
the best number of clusters to use is typically found through trial
and error. As you’ll see shortly, k-means clustering is an iterative
process. The demo program has a variable maxCount, which is
used to limit the number of times the main clustering loop will
execute. Here that value is arbitrarily set to 30.

Next, behind the scenes, the demo program uses the k-means
algorithm to place each data tuple into one of three clusters. Th ere
are many ways to encode a clustering. In this case, a clustering is
defi ned by an array of int where the array index represents a tuple,
and the associated array value represents the 0-based cluster ID.
So, in Figure 1, tuple 0 (65.0, 220.0) is assigned to cluster 0, tuple 1
(73.0, 160.0) is assigned to cluster 1, tuple 2 (59.0, 110.0) is assigned
to cluster 2, tuple 3 (61.0, 120.0) is assigned to cluster 2 and so on.

DATA CLUST ER ING

Detecting Abnormal Data
Using k-Means Clustering
James McCaffrey

This article discusses:
• The k-means clustering algorithm

• Computing cluster centroids

• Euclidian distance

• Looking for abnormal data

Technologies discussed:
C#, Visual Studio 2010

Code download available at:
archive.msdn.microsoft.com/mag201302kmeans

http://archive.msdn.microsoft.com/mag201302kmeans

55February 2013msdnmagazine.com

Notice there are eight tuples assigned to cluster 0, five tuples
assigned to cluster 1, and seven tuples assigned to cluster 2.

Next, the demo program displays the data, grouped by cluster.
If you examine the clustered data you’ll see that cluster 0 might be
called the heavy people cluster, cluster 1 might be called the tall
people cluster, and cluster 2 might be called the short people clus-
ter. Th e demo program concludes by analyzing the tuples assigned
to cluster 0 and determines that by some criterion, tuple 5 (67.0,
240.0) is the most abnormal tuple.

In the sections that follow, I’ll walk you through the code that
produced the screenshot in Figure 1 so that you’ll be able to
modify this code to meet your own needs. Th is article assumes
you have at least intermediate-level programming skill with a
C-family language, but does not assume you know anything
about data clustering. I coded the demo program using C#, but
I used a non-OOP style so you shouldn’t have too much
difficulty refactoring the demo to another language if
you wish. I present all the source code for the demo pro-
gram in this article. The source code is also available
at archive.msdn.microsoft.com/mag201302kmeans.

The k-Means Algorithm
In principle, at least, the k-means algorithm is quite
simple. But as you’ll see, some of the implementation
details are a bit tricky. Th e central concept in the k-means
algorithm is the centroid. In data clustering, the centroid
of a set of data tuples is the one tuple that’s most represen-
tative of the group. Th e idea is best explained by example.
Suppose you have three height-weight tuples similar to
those shown in Figure 1:

[a] (61.0, 100.0)
[b] (64.0, 150.0)
[c] (70.0, 140.0)

Which tuple is most representative? One approach is to
compute a mathematical average (mean) tuple, and then
select as the centroid the tuple that is closest to that aver-
age tuple. So, in this case, the average tuple is:

[m] = ((61.0 + 64.0 + 70.0) / 3, (100.0 + 150.0 + 140.0) / 3)
 = (195.0 / 3, 390.0 / 3)
 = (65.0, 130.0)

And now, which of the three tuples is closest to (65.0,
130.0)? Th ere are several ways to defi ne closest. Th e most
common approach, and the one used in the demo program,
is to use the Euclidean distance. In words, the Euclidean
distance between two tuples is the square root of the sum
of the squared differences between each component of
the tuples. Again, an example is the best way to explain.
Th e Euclidean distance between tuple (61.0, 100.0) and the
average tuple (65.0, 130.0) is:

dist(m,a) = sqrt((65.0 - 61.0)^2 + (130.0 - 100.0)^2)
 = sqrt(4.0^2 + 30.0^2)
 = sqrt(16.0 + 900.0)
 = sqrt(916.0)
 = 30.27

Similarly:
dist(m,b) = sqrt((65.0 - 64.0)^2 + (130.0 - 150.0)^2)
 = 20.02

dist(m,c) = sqrt((65.0 - 70.0)^2 + (130.0 - 140.0)^2)
 = 11.18

Because the smallest of the three distances is the distance between
the math average and tuple [c], the centroid of the three tuples is
tuple [c]. You might wish to experiment with the demo program
by using diff erent defi nitions of the distance between two tuples
to see how those aff ect the fi nal clustering produced.

With the notion of a cluster centroid established, the k-means
algorithm is relatively simple. In pseudo-code:

assign each tuple to a randomly selected cluster
compute the centroid for each cluster
loop until no improvement or until maxCount
 assign each tuple to best cluster
 (the cluster with closest centroid to tuple)
 update each cluster centroid
 (based on new cluster assignments)
end loop
return clustering

If you search the Web, you can fi nd several good online anima-
tions of the k-means algorithm in action. Th e image in Figure 2

Figure 1 Clustering Using k-Means

http://archive.msdn.microsoft.com/mag201302kmeans
www.msdnmagazine.com

msdn magazine56 Data Clustering

shows the clustering produced by the demo program. Th e circled
data item in each cluster is the cluster centroid.

Overall Program Structure
Th e overall program structure for the demo shown in Figure 1, with
a few minor edits, is listed in Figure 3. I used Visual Studio 2010 to
create a new C# console application named ClusteringKMeans; any
recent version of Visual Studio should work, too. In the Solution
Explorer window I renamed fi le Program.cs to ClusteringKMeans-
Program.cs, which automatically renamed the template-generated
class. I removed unneeded using statements at the top of the fi le.

For simplicity I used a static method approach and removed all
error-checking. Th e fi rst part of the demo code sets up the height
and weight data to be clustered. Because there are only 20 tuples,
I hardcoded the data and stored the data in memory in an array
named rawData. Typically, your data will be stored in a text fi le or
SQL table. In those cases you’ll have to write a helper function to
load the data into memory. If your data source is too large to fi t into
machine memory, you’ll have to modify the demo code to iterate
through an external data source rather than a data array.

Aft er setting up the raw data, the demo program calls helper
function ShowMatrix to display the data. Next, variables num-
Attributes, numClusters, and maxCount are assigned values of 2
(height and weight), 3 and 30, respectively. Recall maxCount limits
the number of iterations in the main algorithm processing loop.
Th e k-means algorithm tends to converge quickly, but you might
have to experiment a bit with the value of maxCount.

All the clustering work is performed by method Cluster.
The method returns an int array that defines how each tuple is

Figure 3 Overall Program Structure

using System;
namespace ClusteringKMeans
{
 class ClusteringKMeansProgram
 {
 static void Main(string[] args)
 {
 try
 {
 Console.WriteLine("\nBegin outlier data detection demo\n");

 Console.WriteLine("Loading all (height-weight) data into memory");
 string[] attributes = new string[] { "Height", "Weight" };
 double[][] rawData = new double[20][];

 rawData[0] = new double[] { 65.0, 220.0 };
 rawData[1] = new double[] { 73.0, 160.0 };
 rawData[2] = new double[] { 59.0, 110.0 };
 rawData[3] = new double[] { 61.0, 120.0 };
 rawData[4] = new double[] { 75.0, 150.0 };
 rawData[5] = new double[] { 67.0, 240.0 };
 rawData[6] = new double[] { 68.0, 230.0 };
 rawData[7] = new double[] { 70.0, 220.0 };
 rawData[8] = new double[] { 62.0, 130.0 };
 rawData[9] = new double[] { 66.0, 210.0 };
 rawData[10] = new double[] { 77.0, 190.0 };
 rawData[11] = new double[] { 75.0, 180.0 };
 rawData[12] = new double[] { 74.0, 170.0 };
 rawData[13] = new double[] { 70.0, 210.0 };
 rawData[14] = new double[] { 61.0, 110.0 };
 rawData[15] = new double[] { 58.0, 100.0 };
 rawData[16] = new double[] { 66.0, 230.0 };
 rawData[17] = new double[] { 59.0, 120.0 };
 rawData[18] = new double[] { 68.0, 210.0 };

 rawData[19] = new double[] { 61.0, 130.0 };

 Console.WriteLine("\nRaw data:\n");
 ShowMatrix(rawData, rawData.Length, true);

 int numAttributes = attributes.Length;
 int numClusters = 3;
 int maxCount = 30;

 Console.WriteLine("\nk = " + numClusters + " and maxCount = " + maxCount);
 int[] clustering = Cluster(rawData, numClusters, numAttributes, maxCount);
 Console.WriteLine("\nClustering complete");

 Console.WriteLine("\nClustering in internal format: \n");
 ShowVector(clustering, true);

 Console.WriteLine("\nClustered data:");
 ShowClustering(rawData, numClusters, clustering, true);

 double[] outlier = Outlier(rawData, clustering, numClusters, 0);
 Console.WriteLine("Outlier for cluster 0 is:");
 ShowVector(outlier, true);

 Console.WriteLine("\nEnd demo\n");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 } // Main

 // 14 short static method definitions here
 }
}

Figure 2 Clustered Data and Centroids

W
ei

gh
t (

po
un

ds
)

Height (inches)
55 60 65 70

180

160

140

120

100

80

200

220

240

260

75 80

Cluster 0

Cluster 1

Cluster 2

In principle, at least,
the k-means algorithm is quite

simple. But as you’ll see,
some of the implementation

details are a bit tricky.

www.alachisoft.com 1-800-253-8195

Are your .NET apps slowing down?
Are your .NET apps slowing down as you increase user activity or transaction load on them? If so then consider
using NCache. NCache is an extremely fast and scalable in-memory distributed cache for .NET.

Download a 60-day FREE trial today!

Performance & Scalability thru Data Caching
Cache app data, reduce expensive database trips, and scale your .NET apps.

 Performance: extremely fast in-memory cache

 Linear Scalability: just add servers and keep growing

 100% uptime: self-healing dynamic cache cluster

 Mirrored, Replicated, Partitioned, and Client Cache topologies

Use for Following in Web Farms
 ASP.NET Session Storage: Replicate sessions for reliability

 ASP.NET View State: Cache it to reduce payload sent to the browser

 ASP.NET Output Cache: Cache page output & improve response time

 NHibernate Level-2 Cache: Plug-in without any code change

 Entity Framework Cache: Plug-in without any code change

Fast Runtime Data Sharing between Apps
 Powerful event notifications for pub/sub data sharing

 Continuous Query and group based events

NCache
Distributed Cache for .NET & Java

TM

http://www.alachisoft.com

msdn magazine58 Data Clustering

assigned to one cluster. Aft er fi nishing, the demo program displays
the encoded clustering and also displays the raw data, grouped
according to cluster.

Th e demo program concludes by analyzing the clustered data
for outlier, possibly abnormal, tuples using method Outliers. Th at
method accepts a cluster ID and returns the values of the data tuple
that’s the farthest (as measured by Euclidean distance) from
the cluster centroid (most representative tuple). In this case, for
cluster 0, the heavy person cluster, the outlier tuple is (67.0, 240.0),
the heaviest person.

Computing Cluster Centroids
Recall that a cluster centroid is a tuple that is most representative
of the tuples assigned to a cluster, and that one way to determine a
cluster centroid is to compute a math average tuple and then fi nd
the one tuple that’s closest to the average tuple. Helper method
UpdateMeans computes the math average tuple for each cluster
and is listed in Figure 4.

Method UpdateMeans assumes that an array of arrays named
means already exists, as opposed to creating the array and then

returning it. Because array means is assumed to exist, you might
want to make it a ref parameter. Array means is created using helper
method Allocate:

static double[][] Allocate(int numClusters, int numAttributes)
{
 double[][] result = new double[numClusters][];
 for (int k = 0; k < numClusters; ++k)
 result[k] = new double[numAttributes];
 return result;
}

Th e fi rst index in the means array represents a cluster ID and
the second index indicates the attribute. For example, if means[0]
[1] = 150.33 then the average of the weight (1) values of the tuples
in cluster 0 is 150.33.

Method UpdateMeans fi rst zeros out the existing values in array
means, then iterates through each data tuple and tallies the count
of tuples in each cluster and accumulates the sums for each attri-
bute, and then divides each accumulated sum by the appropriate
cluster count. Notice that the method will throw an exception if
any cluster count is 0, so you might want to add an error-check.

Method ComputeCentroid (listed in Figure 5) determines the
centroid values—the values of the one tuple that’s closest to the
average tuple values for a given cluster.

Method ComputeCentroid iterates through each tuple in the data
set, skipping tuples that aren’t in the specifi ed cluster. For each tuple
in the specifi ed cluster, the Euclidean distance between the tuple
and the cluster mean is calculated using helper method Distance.
Th e tuple values that are closest (having the smallest distance) to
the mean values are stored and returned.

Method UpdateCentroids calls ComputeCentroid for each clus-
ter to give the centroids for all clusters:

static void UpdateCentroids(double[][] rawData, int[] clustering,
 double[][] means, double[][] centroids)
{
 for (int k = 0; k < centroids.Length; ++k)
 {
 double[] centroid = ComputeCentroid(rawData, clustering, k, means);
 centroids[k] = centroid;
 }
}

Method UpdateCentroids assumes that an array of arrays named
centroids exists. Array centroids is very similar to array means: Th e
fi rst index represents a cluster ID and the second index indicates
the data attribute.

static void UpdateMeans(double[][] rawData, int[] clustering,
 double[][] means)
{
 int numClusters = means.Length;
 for (int k = 0; k < means.Length; ++k)
 for (int j = 0; j < means[k].Length; ++j)
 means[k][j] = 0.0;

 int[] clusterCounts = new int[numClusters];
 for (int i = 0; i < rawData.Length; ++i)
 {
 int cluster = clustering[i];
 ++clusterCounts[cluster];

 for (int j = 0; j < rawData[i].Length; ++j)
 means[cluster][j] += rawData[i][j];
 }

 for (int k = 0; k < means.Length; ++k)
 for (int j = 0; j < means[k].Length; ++j)
 means[k][j] /= clusterCounts[k]; // danger

 return;
}

Figure 4 Method UpdateMeans

static double[] ComputeCentroid(double[][] rawData, int[] clustering,
 int cluster, double[][] means)
{
 int numAttributes = means[0].Length;
 double[] centroid = new double[numAttributes];
 double minDist = double.MaxValue;
 for (int i = 0; i < rawData.Length; ++i) // walk thru each data tuple
 {
 int c = clustering[i];
 if (c != cluster) continue;

 double currDist = Distance(rawData[i], means[cluster]);
 if (currDist < minDist)
 {
 minDist = currDist;
 for (int j = 0; j < centroid.Length; ++j)
 centroid[j] = rawData[i][j];
 }
 }
 return centroid;
}

Figure 5 Method ComputeCentroid

static bool Assign(double[][] rawData, int[] clustering, double[][] centroids)
{
 int numClusters = centroids.Length;
 bool changed = false;

 double[] distances = new double[numClusters];
 for (int i = 0; i < rawData.Length; ++i)
 {
 for (int k = 0; k < numClusters; ++k)
 distances[k] = Distance(rawData[i], centroids[k]);

 int newCluster = MinIndex(distances);
 if (newCluster != clustering[i])
 {
 changed = true;
 clustering[i] = newCluster;
 }
 }
 return changed;
}

Figure 6 Method Assign

Download a free 30-day trial online at: www.rssbus.com
© Copyright 2013 RSSBus Inc. All rights reserved. All trademarks and registered trademarks are the property of their respective owners.

RSSBus Data Providers [ADO.NET]
Build cutting-edge .NET applications that connect to any
data source with ease.

The RSSBus Data Providers give your .NET applications the
power to databind (just like SQL) to Amazon, PayPal, eBay,
QuickBooks, FedEx, Salesforce, MS-CRM, Twitter, Share-
Point, Windows Azure, and much more! Leverage your
existing knowledge to deliver cutting-edge WinForms,
ASP.NET, and Windows Mobile solutions with full readwrite
functionality quickly and easily.

The RSSBus Data Providers make everything look like a
SQL table, even local application data. Using the RSSBus
Data Providers your .NET applications interact with local
applications, databases, and services in the same way
you work with SQL Tables and Stored Procedures. No
code required. It simply doesn’t get any easier!

All these data sources at your fingertips – and that is just a start.

Also available for:
JDBC | ODBC | SQL SSIS | Excel | OData | SharePoint ...

Untitled-1 1 1/11/13 1:55 PM

http://www.rssbus.com

msdn magazine60 Data Clustering

To summarize, each cluster has a centroid, which is the most
representative tuple in the cluster. Centroid values are computed
by fi nding the one tuple in each cluster that’s closest to the average
tuple (the mean) in each cluster. Each data tuple is assigned to the
cluster whose cluster centroid is closest to the tuple.

The Distance Function and Data Normalization
Method ComputeCentroid calls a Distance method to determine
which data tuple is closest to a cluster mean. As described earlier,
the most common way to measure distance from tuples to means
is to use Euclidean distance:

static double Distance(double[] tuple, double[] vector)
{
 double sumSquaredDiffs = 0.0;
 for (int j = 0; j < tuple.Length; ++j)
 sumSquaredDiffs += Math.Pow((tuple[j] - vector[j]), 2);
 return Math.Sqrt(sumSquaredDiffs);
}

You might want to consider alternative ways to defi ne distance.
A very common option is to use the sum of the absolute values

of the differences between each component. Because Euclidean
distance squares diff erences, larger diff erences are weighted much
more heavily than smaller diff erences.

Another important factor related to the choice of distance func-
tion in the k-means clustering algorithm is data normalization.
Th e demo program uses raw, un-normalized data. Because tuple
weights are typically values such as 160.0 and tuple heights are
typically values like 67.0, diff erences in weights have much more
infl uence than diff erences in heights. In many situations, in addi-
tion to exploring clustering on raw data, it’s useful to normalize the
raw data before clustering. Th ere are many ways to normalize data.
A common technique is to compute the mean (m) and standard
deviation (sd) for each attribute, then for each attribute value (v)
compute a normalized value nv = (v-m)/sd.

Assigning Each Tuple to a Cluster
With a method to compute the centroid of each cluster in hand, it’s
possible to write a method to assign each tuple to a cluster. Method
Assign is listed in Figure 6.

Method Assign accepts an array of centroid values and iterates
through each data tuple. For each data tuple, the distance to each
of the cluster centroids is computed and stored in a local array
named distances, where the index of the array represents a cluster
ID. Th en helper method MinIndex determines the index in array
distances that has the smallest distance value, which is the cluster
ID of the cluster that has centroid closest to the tuple.

Here’s helper method MinIndex:
static int MinIndex(double[] distances)
{
 int indexOfMin = 0;
 double smallDist = distances[0];
 for (int k = 0; k < distances.Length; ++k)
 {
 if (distances[k] < smallDist)
 {
 smallDist = distances[k]; indexOfMin = k;
 }
 }
 return indexOfMin;
}

In Assign, if the computed cluster ID is diff erent from the existing
cluster ID stored in array clustering, array clustering is updated and
a Boolean fl ag to indicate that there has been at least one change in
the clustering is toggled. Th is fl ag will be used to determine when
to stop the main algorithm loop—when the maximum number of
iterations is exceeded or when there’s no change in the clustering.

This implementation of the k-means algorithm assumes that
there’s always at least one data tuple assigned to each cluster. As given
in Figure 6, method Assign does not prevent a situation where a
cluster has no tuples assigned. In practice, this usually isn’t a prob-
lem. Preventing the error condition is a bit tricky. Th e approach I
generally use is to create an array named centroidIndexes that works
in conjunction with array centroids. Recall that array centroids
holds centroid values, for example (61.0, 120.0) is the centroid for
cluster 2 in Figure 2. Array centroidIndexes holds the associated
tuple index, for example [3]. Then in the Assign method, the
fi rst step is to assign to each cluster the data tuple that holds the
centroid values, and only then does the method iterate through
each remaining tuple and assign each to a cluster. Th is approach
guarantees that every cluster has at least one tuple.

static int[] Cluster(double[][] rawData, int numClusters,
 int numAttributes, int maxCount)
{
 bool changed = true;
 int ct = 0;

 int numTuples = rawData.Length;
 int[] clustering = InitClustering(numTuples, numClusters, 0);
 double[][] means = Allocate(numClusters, numAttributes);
 double[][] centroids = Allocate(numClusters, numAttributes);
 UpdateMeans(rawData, clustering, means);
 UpdateCentroids(rawData, clustering, means, centroids);

 while (changed == true && ct < maxCount)
 {
 ++ct;
 changed = Assign(rawData, clustering, centroids);
 UpdateMeans(rawData, clustering, means);
 UpdateCentroids(rawData, clustering, means, centroids);
 }
 return clustering;
}

Figure 7 The Cluster Method

static double[] Outlier(double[][] rawData, int[] clustering,
 int numClusters, int cluster)
{
 int numAttributes = rawData[0].Length;

 double[] outlier = new double[numAttributes];
 double maxDist = 0.0;

 double[][] means = Allocate(numClusters, numAttributes);
 double[][] centroids = Allocate(numClusters, numAttributes);
 UpdateMeans(rawData, clustering, means);
 UpdateCentroids(rawData, clustering, means, centroids);

 for (int i = 0; i < rawData.Length; ++i)
 {
 int c = clustering[i];
 if (c != cluster) continue;
 double dist = Distance(rawData[i], centroids[cluster]);
 if (dist > maxDist)
 {
 maxDist = dist;
 Array.Copy(rawData[i], outlier, rawData[i].Length);
 }
 }
 return outlier;
}

Figure 8 The Outlier Method

HTML5+jQUERY
Any App - Any Browser - Any Platform - Any Device

Dowload Your Free Trial!
www.infragistics.com/igniteui-trial

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC +61 3 9982 4545
Copyright 1996-2013 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc.

The Infragistics logo is a trademark of Infragistics, Inc. All other trademarks or registered trademarks are the respective property of their owners.

Untitled-2 1 12/5/12 10:49 AM

http://www.infragistics.com/igniteui-trial

msdn magazine62 Data Clustering

The Cluster Method
Method Cluster, listed in Figure 7, is the high-level routine that
calls all the helper and sub-helper methods to actually perform
the data clustering.

Th e main while loop repeatedly assigns each data tuple to a cluster,
computes the new tuple means for each cluster, then uses the new
means to compute the new centroid values for each cluster. Th e loop
exits when there’s no change in cluster assignment or some maximum
count is reached. Because the means array is used only to compute
centroids, you might want to refactor Cluster by placing the call to
UpdateMeans inside method UpdateCentroids.

Before kicking the processing loop off , the clustering array is
initialized by method InitClustering:

static int[] InitClustering(int numTuples, int numClusters, int
randomSeed)
{
 Random random = new Random(randomSeed);
 int[] clustering = new int[numTuples];
 for (int i = 0; i < numClusters; ++i)
 clustering[i] = i;
 for (int i = numClusters; i < clustering.Length; ++i)
 clustering[i] = random.Next(0, numClusters);
 return clustering;
}

The InitClustering method first assigns tuples 0 through
num Clusters-1 to clusters 0 through numClusters-1, respectively,
so that every cluster will start with at least one tuple assigned. Th e
remaining tuples are assigned to a randomly selected cluster.

A somewhat surprising amount of research has been done on
k-means clustering initialization and you may want to experiment
with alternatives to the approach given here. In many cases, the
fi nal clustering produced by the k-means algorithm depends on
how the clustering is initialized.

Looking for Abnormal Data
One way to use data clustering is to simply explore diff erent clus-
terings and look for unexpected or surprising results. Another
possibility is to look for unusual data tuples within a cluster. Th e
demo program checks cluster 0 to fi nd the tuple in that cluster that’s
farthest from the cluster centroid using a method named Outlier,
which is listed in Figure 8.

Aft er initializing means and centroids arrays, method Outlier
iterates through each tuple in the specifi ed cluster and computes
the Euclidean distance from the tuple to the cluster centroid, then
returns the values of the tuple that has the greatest distance to
the centroid values. A minor alternative for you to consider is to
return the index of the farthest data tuple.

Th ere are many other ways you can examine clustered data for
abnormalities. For example, you might want to determine the
average distance between each tuple and its assigned cluster cen-
troid, or you might want to examine the distances of the cluster
centroids from each other.

Display Routines
For the sake of completeness, here are some simplifi ed display rou-
tines. Th e code download has slightly fancier versions. If you use
these simplifi ed routines, you’ll have to modify their calls in the
Main method. To display raw data, means and centroids you can use:

static void ShowMatrix(double[][] matrix)
{
 for (int i = 0; i < numRows; ++i)
 {
 Console.Write("[" + i.ToString().PadLeft(2) + "] ");
 for (int j = 0; j < matrix[i].Length; ++j)
 Console.Write(matrix[i][j].ToString("F1") + " ");
 Console.WriteLine("");
 }
}

To display the clustering array you can use:
static void ShowVector(int[] vector)
{
 for (int i = 0; i < vector.Length; ++i)
 Console.Write(vector[i] + " ");
 Console.WriteLine("");
}

To display an outlier’s values you can use:
static void ShowVector(double[] vector)
{
 for (int i = 0; i < vector.Length; ++i)
 Console.Write(vector[i].ToString("F1") + " ");
 Console.WriteLine("");
}

And to display raw data grouped by cluster you can use:
static void ShowClustering(double[][] rawData, int numClusters, int[] clustering)
{
 for (int k = 0; k < numClusters; ++k) // Each cluster
 {
 for (int i = 0; i < rawData.Length; ++i) // Each tuple
 if (clustering[i] == k)
 {
 for (int j = 0; j < rawData[i].Length; ++j)
 Console.Write(rawData[i][j].ToString("F1") + " ");
 Console.WriteLine("");
 }
 Console.WriteLine("");
 }
}

Wrapping Up
Data clustering is closely related to and sometimes confused
with data classifi cation. Clustering is an unsupervised technique
that groups data items together without any foreknowledge
of what those groups might be. Clustering is typically an explor-
atory process. Classifi cation, in contrast, is a supervised technique
that requires the specifi cation of known groups in training data,
aft er which each data tuple is placed into one of these groups.
Classifi cation is typically used for prediction purposes.

The code and explanation presented in this article should
give you enough information to experiment with k-means data
clustering, or to create a fully customizable standalone clustering
tool, or to add clustering features to a .NET application without
relying on any external dependencies. Th ere are many other clus-
tering algorithms in addition to k-means and I’ll present some of
these in future MSDN Magazine articles, including data entropy
minimization, category utility and Naive Bayes inference.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he manages
technical training for soft ware engineers working at the Microsoft Redmond,
Wash., campus. He has worked on several Microsoft products including Internet
Explorer and MSN Search. He’s the author of “.NET Test Automation Recipes”
(Apress, 2006), and can be reached at jammc@microsoft .com.

THANKS to the following technical expert for reviewing this article:
Darren Gehring

mailto:jammc@microsoft.com

vslive.com/chicago

Topics will include:
 ASP.NET
 Azure / Cloud Computing
 Cross-Platform Mobile
 Data Management
 HTML5 / JavaScript
 Windows 8 / WinRT
 WPF / Silverlight
 Visual Studio 2012 / .NET 4.5

Intense Take-Home Training for Developers,
Software Architects and Designers

REGISTER TODAY
AND SAVE $300
USE PROMO CODE CHFEB1

visual studio live! chicago
HILTON CHICAGO|MAy 13-16, 2013

PRODUCED BYSUPPORTED BY

magazine

Sweet
127.0.0.1
Chicago!
Visual Studio Live! is thrilled to be back in Chicago! Register for your
backstage pass to the Microsoft Platform and join your fellow
developers, software architects, designers and more for 4 days of
unbiased training at Visual Studio Live! Chicago.

SS

YOURR BAACCKSTAAGEE PPASS TOO TTHE MICCROSSOFTT PLAATFORMMM

Untitled-8 1 1/2/13 1:33 PM

www.vslive.com/chicago

msdn magazine64

So you have a voluminous and potentially infi nite stream of
events such as a clickstream, sensor data, credit-card transaction
data or Internet traffi c. It’s infeasible to store all events or analyze
them in multiple passes. Why not resort to a window of recent
events to simplify analysis?

Suppose you want to count the number of interesting events in
a large window covering the latest N events of the stream. A naïve
approach to counting requires all N events to be in memory and a
full iteration over them. As the window slides upon the arrival of
a new event, its oldest event expires and the new event is inserted.
Counting over the new window from scratch wastes the processing
time spent on N-2 events shared. Yuck! Th is article explains a data
structure to reduce memory space usage and processing time to a
small fraction of what would be required with that method, while
supporting an event rate exceeding many thousands of events per

second on commodity hardware. Th is article also shows how to
embed the data structure in a user-defined stream operator in
C# for the Microsoft streaming data processor, StreamInsight 2.1.
Intermediate programming skills are required to follow along, and
some experience with StreamInsight can come in handy.

A Tale of Counting
Before diving into StreamInsight, I’ll investigate the seemingly
trivial problem of counting. For simplicity, assume the stream has
events with payloads of 0 or 1—uninteresting and interesting events,
respectively (regardless of what constitutes “interesting” in your
specifi c scenario). Th e number of 1s is counted over a (fi xed-size)
count-based window containing the most recent N events. Naïve
counting takes O(N) time and space.

As an astute reader, you probably came up with the idea of main-
taining the count between consecutive windows and incrementing
it for new 1s and decrementing it for expired 1s, sharing the N-2
events already processed. Good thinking! Maintaining the count
now takes O(1) time. However, should you decrement for an expired
event or not? Unless you know the actual event, the count can’t
be maintained. Unfortunately, to know the events until they have
expired requires the entire window in memory—that is, it takes
O(N) space. Another strategy might be to fi lter out the uninter-
esting events and count only the remaining interesting events. But
that doesn’t reduce computational complexity and leaves you with
a variable-size window.

S TRE A MINS IG HT

Taming the Event Stream:
Fast Approximate
Counting
Michael Meijer

This article discusses:
• Approximate event counting basics
• Using buckets for counting
• Using StreamInsight for counting

Technologies discussed:
StreamInsight 2.1

Code download available at:
archive.msdn.microsoft.com/mag201302StreamInsight

http://archive.msdn.microsoft.com/mag201302StreamInsight

65February 2013msdnmagazine.com

Can the memory beast be tamed? Yes, it can! However, it requires
a compromise between processing time and memory space at the
expense of accuracy. Th e seminal paper by Mayur Datar, Aristides
Gionis, Piotr Indyk and Rajeev Motwani titled “Maintaining Stream
Statistics over Sliding Windows” (stanford.io/SRjWT0) describes a data
structure called the exponential histogram. It maintains an approx-
imate count over the last N events with a bounded relative error ε.
Th is means that at all times:

 |exact count – approximate count| ≤ ε, where 0 < ε < 1 exact count

Conceptually, the histogram stores events in buckets. Every bucket
initially covers one event, so it has a count of 1 and a timestamp of
the event it covers. When an event arrives, expired buckets (cov-
ering expired events) are removed. A bucket is created only for an
interesting event. As buckets are created over time, they’re merged
to save memory. Buckets are merged so they have exponentially
growing counts from the most recent to the last bucket, that is, 1,
1, ..., 2, 2, ..., 4, 4, ..., 8, 8 and so on. Th is way, the number of buckets
is logarithmic in the window size N. More precisely, it requires
O(1 ε log N) time and space for maintenance. All but the last bucket
cover only non-expired events. Th e last bucket covers at least one
non-expired event. Its count must be estimated, which causes the
error in approximating the overall count. Hence, the last bucket
must be kept small enough to respect the relative error upper bound.

In the next section, the implementation of the exponential
histogram in C# is discussed with a bare minimum of math. Read
the aforementioned paper for the intricate details. I’ll explain the
code and follow up with a pen-and-paper example. Th e histogram
is a building block for the StreamInsight user-defined stream
operator developed later in this article.

To Bucket or Not to Bucket
Here’s the bucket class:

[DataContract]
public class Bucket
{
 [DataMember]
 private long timestamp;

 [DataMember]
 private long count;

 public long Timestamp {
 get { return timestamp; }
 set { timestamp = value; } }

 public long Count { get { return count; } set { count = value; } }
}

It has a count of the (interesting) events it covers and a time-
stamp of the most recent event it covers. Only the last bucket can
cover expired events, as mentioned, but it must cover at least one
non-expired event. Hence, all but the last bucket counts are exact.
Th e last bucket count must be estimated by the histogram. Buckets
containing only expired events are themselves expired and can be
removed from the histogram.

Using just two operations, the exponential histogram ensures
a relative error upper bound ε on the count of interesting events
over the N most recent events. One operation is for updating the
histogram with new and expired events, maintaining the buckets.
Th e other is for querying the approximate count from the buckets.
Th e histogram class outline is shown in Figure 1. Next to the linked
list of buckets, its key variables are the window size (n), the relative
error upper bound (epsilon) and the cached sum of all bucket counts
(total). In the constructor, the given window size, the given relative
error upper bound and an initial empty list of buckets are set.

Th e maintenance of the histogram is performed by this update method:
public void Update(long timestamp, bool eventPayload)
{
 RemoveExpiredBuckets(timestamp);

 // No new bucket required; done processing
 if (!eventPayload)
 return;

 PrependNewBucket(timestamp);

 MergeBuckets();
}

It accepts a discrete timestamp, as opposed to wall-clock time,
to determine what the latest N events are. Th is is used to fi nd and
remove expired buckets. If the new event has a payload of 0 (false),
processing stops. When the new event has a payload of 1 (true), a
new bucket is created and prepended to the list of buckets. Th e real
fi reworks are in merging the buckets. Th e methods called by the
update method are discussed in sequence.

[DataContract]
public class ExponentialHistogram
{
 [DataMember]
 private long n;

 [DataMember]
 private double epsilon;

 [DataMember]
 private long total;

 [DataMember]
 private LinkedList<Bucket> buckets;

 public ExponentialHistogram(long n, double epsilon)
 {
 this.n = n;
 this.epsilon = epsilon;
 this.buckets = new LinkedList<Bucket>();
 }

 public void Update(long timestamp, bool e) { ... }

 protected void ExpireBuckets(long timestamp) { ... }

 protected void PrependNewBucket(long timestamp) { ... }

 protected void MergeBuckets() { ... }

 public long Query() { ... }
}

Figure 1 The Exponential Histogram Class Outline

A naïve approach to counting
requires all N events to be

in memory and a full iteration
over them.

www.stanford.io/SRjWT0
www.msdnmagazine.com

msdn magazine66 StreamInsight

Here’s the code for the removal of buckets:
protected void RemoveExpiredBuckets(long timestamp)
{
 LinkedListNode<Bucket> node = buckets.Last;

 // A bucket expires if its timestamp
 // is before or at the current timestamp - n
 while (node != null && node.Value.Timestamp <= timestamp - n)
 {
 total -= node.Value.Count;

 buckets.RemoveLast();
 node = buckets.Last;
 }
}

Th e traversal starts from the oldest (last) bucket and ends at the
fi rst non-expired bucket. Each bucket whose most recent event’s
timestamp is expired—that is, whose timestamp is no greater than
the current timestamp minus the window size—is removed from
the list. Th is is where the discrete timestamp comes in. Th e sum
of all bucket counts (total) is decremented by the count of each
expired bucket.

After expired events and buckets are accounted for, the new
event is processed:

protected void PrependNewBucket(long timestamp)
{
 Bucket newBucket = new Bucket()
 {
 Timestamp = timestamp,
 Count = 1
 };

 buckets.AddFirst(newBucket);

 total++;
}

A new bucket for the event with a payload of 1 (true) is created
with a count of 1 and a timestamp equal to the current timestamp.
Th e new bucket is prepended to the list of buckets and the sum of
all bucket counts (total) is incremented.

Th e memory space-saving and error-bounding magic is in the
merging of buckets. Th e code is listed in Figure 2. Buckets are
merged so that consecutive buckets have exponentially growing
counts, that is, 1, 1, ..., 2, 2, ..., 4, 4, ..., 8, 8 and so on. Th e number
of buckets with the same count is determined by the choice of the
relative error upper bound ε. Th e total number of buckets grows
logarithmically with the size of the window n, which explains the
memory space savings. As many buckets as possible are merged, but
the last bucket’s count is kept small enough (compared to the sum
of the other bucket counts) to ensure the relative error is bounded.

More formally, buckets have non-decreasing counts from the
fi rst (most recent) to the last (oldest) bucket in the list. Th e bucket
counts are constrained to powers of two. Let k = 1 ε and k 2 be an
integer, or else replace the latter by k

2 . Except for the last bucket’s
count, let there be at least k 2 and at most k 2 + 1 buckets of the same
count. Whenever there are k 2 + 2 buckets of the same count, the
oldest two are merged into one bucket with twice the count
of the oldest bucket and the most recent of their timestamps.
Whenever two buckets are merged, traversal continues from the
merged bucket. Th e merge can cause a cascade of merges. Other-
wise traversal continues from the next bucket.

To get a feeling for the count approximation, look at the histo-
gram’s query method:

public long Query()
{
 long last = buckets.Last != null ? buckets.Last.Value.Count : 0;
 return (long)Math.Ceiling(total - last / 2.0);
}

Th e sum of the bucket counts up to the last bucket is exact. Th e
last bucket must cover at least one non-expired event, otherwise
the bucket is expired and removed. Its count must be estimated
because it can cover expired events. By estimating the actual count
of the last bucket as half the last bucket’s count, the absolute error
of that estimate is no larger than half that bucket’s count. The
overall count is estimated by the sum of all bucket counts (total)
minus half the last bucket’s count. To ensure the absolute error is
within bounds of the relative error, the last bucket’s infl uence must
be small enough compared to the sum of the other bucket counts.
Th ankfully, this is ensured by the merge procedure.

Do the code listings and explanations up to this point leave you
puzzled about the workings of the histogram? Read through the
following example.

Suppose you have a newly initialized histogram with window
size n = 7 and relative error upper bound ε = 0.5, so k = 2. Th e his-
togram develops as shown in Figure 3, and a schematic overview
of this histogram is depicted in Figure 4. In Figure 3, merges are
at timestamps 5, 7 and 9. A cascaded merge is at timestamp 9. An
expired bucket is at timestamp 13. I’ll go into more detail about this.

Th e fi rst event has no eff ect. At the fi ft h event, a merge of the
oldest buckets occurs because there are k 2 + 2 buckets with the
same count of 1. Again, a merge happens at the seventh event. At
the ninth event, a merge cascades into another merge. Note that
aft er the seventh event, the fi rst event expires. No bucket carries

protected void MergeBuckets()
{
 LinkedListNode<Bucket> current = buckets.First;
 LinkedListNode<Bucket> previous = null;

 int k = (int)Math.Ceiling(1 / epsilon);
 int kDiv2Add2 = (int)(Math.Ceiling(0.5 * k) + 2);
 int numberOfSameCount = 0;

 // Traverse buckets from first to last, hence in order of
 // descending timestamp and ascending count
 while (current != null)
 {
 if (previous != null && previous.Value.Count == current.Value.Count)
 numberOfSameCount++;
 else
 numberOfSameCount = 1;

 // Found k/2+2 buckets of the same count?
 if (numberOfSameCount == kDiv2Add2)
 {
 // Merge oldest (current and previous) into current
 current.Value.Timestamp = previous.Value.Timestamp;
 current.Value.Count = previous.Value.Count + current.Value.Count;

 buckets.Remove(previous);

 // A merged bucket can cause a cascade of merges due to
 // its new count, continue iteration from merged bucket
 // otherwise the cascade might go unnoticed
 previous = current.Previous;
 }
 else
 {
 // No merge, continue iteration with next bucket
 previous = current;
 current = current.Next;
 }
 }
}

Figure 2 Merging Buckets in the Histogram

67February 2013msdnmagazine.com

an expired timestamp until the 13th event. At the 13th event, the
bucket with timestamp 6 no longer covers at least one non-expired
event and thus expires. Note that the observed relative error is
clearly less than the relative error upper bound.

In Figure 4, a dotted box is the window size at that point; it con-
tains the buckets and implies the span of events covered. A solid box
is a bucket with timestamp on top and count on bottom. Situation
A shows the histogram at timestamp 7 with arrows to the counted
events. Situation B shows the histogram at timestamp 9. Th e last
bucket covers expired events. Situation C shows the histogram at
timestamp 13. Th e bucket with timestamp 6 expired.

Aft er putting it all together, I wrote a small demonstration program
for the exponential histogram (check out the source code down-
load for this article). Th e results are shown in Figure 5. It simulates
a stream of 100 million events with a count-based window size N of
1 million events. Each event has a payload of 0 or 1 with 50 percent
chance. It estimates the approximate count of 1s with an arbitrarily
chosen relative error upper bound ε of 1 percent, or 99 percent
accuracy. Th e memory savings of the histogram are huge compared
to windows; the number of buckets is far less than the number of
events in the window. An event rate of a few hundred thousand
events per second is achieved on a machine with an Intel 2.4 GHz
dual-core processor and 3GB of RAM running Windows 7.

A Beauty Called
StreamInsight
Perhaps you’re wondering what
Microsoft StreamInsight is and where
it fits in. This section provides some
basics. StreamInsight is a robust,
high-performance, low-overhead,
near-zero-latency and extremely fl ex-
ible engine for processing on streams.
It’s currently at version 2.1. The full
version requires a SQL Server license,
though a trial version is available. It’s
run either as a stand-alone service or
embedded in-process.

At the heart of streaming data pro-
cessing is a model with temporal
streams of events. Conceptually, it’s a
potentially infinite and voluminous
collection of data arriving over time.
Th ink of stock exchange prices, weather
telemetry, power monitoring, Web
clicks, Internet traffi c, toll booths and
so on. Each event in the stream has a
header with metadata and a payload

of data. In the header of the event, a timestamp is kept, at a mini-
mum. Events can arrive steadily, intermittently or perhaps in bursts
of up to many thousands per second. Events come in three fl avors:
An event can be confi ned to a point in time; be valid for a certain
interval; or be valid for an open-ended interval (edge). Besides
events from the stream, a special punctuation event is issued by the
engine called the Common Time Increment (CTI). Events can’t be
inserted into the stream with a timestamp less than the CTI’s time-
stamp. Eff ectively, CTI events determine the extent to which events
can arrive out of order. Th ankfully, StreamInsight takes care of this.

Heterogeneous sources of input and sinks of output streams must
somehow be adapted to fi t into this model. Th e events in the (query-
able) temporal streams are captured in an IQStreamable<TPayload>.

Timestamp Event
Buckets (Timestamp, Count)
Newest … Oldest Total Query Exact

Relative
Error

1 0 0 0 0 0
2 1 (2,1) 1 1 1 0
3 1 (3,1) (2,1) 2 2 2 0

4 0 (3,1) (2,1) 2 2 2 0

5
(merge) 1

(5,1) (3,1) (2,1)
3 2 3 0.333...

(5,1) (3,2)
6 1 (6,1) (5,1) (3,2) 4 3 4 0.25

7
(merge) 1

(7,1) (6,1) (5,1) (3,2)
5 4 5 0.2

(7,1) (6,2) (3,2)
8 1 (8,1) (7,1) (6,2) (3,2) 6 5 6 0.166...

9
(merge)
(cascaded merge)

1

(9,1) (8,1) (7,1) (6,2) (3,2)

7 5 6 0.166...(9,1) (8,2) (6,2) (3,2)

(9,1) (8,2) (6,4)
10 0 (9,1) (8,2) (6,4) 7 5 5 0

11 0 (9,1) (8,2) (6,4) 7 5 5 0

12 0 (9,1) (8,2) (6,4) 7 5 4 0.25

13 0 (9,1) (8,2) 3 2 3 0.333...

Figure 3 Example of the Exponential Histogram

F igure 4 A Schematic Overview of the Histogram
Depicted in Figure 3

Timestamp 1 2 3 4 5 6 7 8 9 10 11 12 13

Event 0 1 1 0 1 1 1 1 1 0 0 0 0

B 6
4

8
2

9
1

C 8
2

9
1

A 3
2

6
2

7
1

The memory savings of the
histogram are huge compared

to windows.

www.msdnmagazine.com

msdn magazine68 StreamInsight

Event payloads are conceptually pulled by enumeration or pushed by
observation into the stream. Hence, underlying data can be exposed
through an IEnumerable<T>/IQueryable<T> (Reactive Extension)
or IObservable<T>/IQbservable<T> (Reactive Extension), respec-
tively, parameterized with the type of data exposed. Th ey leave the
maintenance of temporal aspects to the processing engine. Conver-
sion from and to the various interfaces is possible.

The sources and sinks just discussed live on the boundaries,
whereas the actual processing happens within queries. A query
is a basic unit of composition written in LINQ. It continuously
processes events from one or more streams and outputs another
stream. Queries are used to project, fi lter, group-apply, multicast,
operate/aggregate, join, union and window events. Operators can
be user-defi ned. Th ey work on events (incremental) or on windows
(non-incremental) as they arrive.

A note on windowing is in order. Windowing partitions a stream
into fi nite subsets of events that might overlap between consecutive
windows. Windowing eff ectively produces a stream of windows,
refl ected by an IQWindowedStreamable<TPayload> in Stream-
Insight. Currently, three diff erent kinds of windowing constructs
are supported: count-based, time-based and snapshot windows.

Count-based windows cover the most recent N events
and slide upon the arrival of a new event, expiring the
oldest and inserting the newest. Time-based windows
cover the most recent events in the most recent inter-
val of time and slide by some interval (also called
hopping or tumbling). Snapshot windows are driven
by event start and end times; that is, for every pair of
closest event start and end times, a window is created.
In contrast to time-based windows driven by inter-
vals along the timeline, regardless of events, snapshot
windows aren’t fi xed along the timeline.

Th at just scratches the surface. More information is available
from several sources, including the online Developer’s Guide
(bit.ly/T7Trrx), “A Hitchhiker’s Guide to StreamInsight 2.1 Queries”
(bit.ly/NbybvY), CodePlex examples, the StreamInsight team blog
(blogs.msdn.com/b/streaminsight) and others.

Putting It All Together
Th e foundations are laid. At this point, you’re probably wondering
how approximate counting is brought to life in StreamInsight. In
short, some (temporal) source stream of point-in-time events,
carrying a payload of 0 or 1, is required. It’s fed into a query that
computes the approximate count of 1s over the N most recent events
using the exponential histogram. Th e query produces some (tem-
poral) stream of point-in-time events—carrying the approximate
count—that’s fed into a sink.

Let’s start with a user-defi ned operator for approximate counting.
You might be tempted to capture the N most recent events using
the count-based windowing construct. Th ink again! Th at would
defy the memory-saving benefi ts of the exponential histogram.
Why? Th e construct forces entire windows of events to be kept in
memory. It’s not required by the exponential histogram, because it
has an equivalent implicit notion of windowing through the main-
tenance of buckets. Moreover, having an operator over windows
is non-incremental, that is, with no processing of events as they
arrive, but only when a (next) window is available. Th e solution
is a user-defined stream operator without explicit windowing
constructs on the query. Th e code is listed in Figure 6.

Th e operator derives from the abstract CepPointStreamOpera-
tor<TInputPayload, TOutputPayload>. It has an exponential his-
togram instance variable. Note the decoration with DataContract
and DataMember attributes. Th is informs StreamInsight how to
serialize the operator—for example, for resiliency purposes. Th e
operator overrides the IsEmpty operator to indicate it’s non-empty,
that is, the operator is stateful. Th is prevents StreamInsight from
messing with the operator when minimizing memory utilization.

[Dat aContract]
public class ApproximateCountUDSO : CepPointStreamOperator<bool, long>
{
 [DataMember]
 private ExponentialHistogram histogram;

 [DataMember]
 private long currentTimestamp; // Current (discrete) timestamp

 public ApproximateCountUDSO(long n, double epsilon)
 {
 histogram = new ExponentialHistogram(n, epsilon);
 }

 public override IEnumerable<long> ProcessEvent(
 PointEvent<bool> inputEvent)
 {
 currentTimestamp++;

 histogram.Update(currentTimestamp, inputEvent.Payload);

 yield return histogram.Query();
 }

 public override bool IsEmpty
 {
 get { return false; }
 }
}

Figure 6 User-Defi ned Stream Operator Implementation

Figu re 5 Empirical Results for the Exponential Histogram

Windowing partitions a stream
into fi nite subsets of events
that might overlap between

consecutive windows.

http://blogs.msdn.com/b/streaminsight

69February 2013msdnmagazine.com

Th e ProcessEvent method is the operator’s core. It increments the
current (discrete) timestamp and passes it along with the event
payload to the histogram’s update method. Th e histogram handles
the bucketing and is queried for the approximate count. Make sure
to use the yield-return syntax, which makes the operator enumer-
able. Operators are generally wrapped in some extension method
hidden in a utility class. Th is code shows how it’s done:

publ ic static partial class Utility
{
 public static IQStreamable<long> ApproximateCount(
 this IQStreamable<bool> source, long n, double epsilon)
 {
 return source.Scan(() => new ApproximateCountUDSO(n, epsilon));
 }
}

Th at’s it! Plug the operator into a query via the extension method.
A bit of extra code is required to actually demonstrate its use. Here’s
a trivial source stream:

publ ic static partial class Utility
{
 private static Random random = new Random((int)DateTime.Now.Ticks);

 public static IEnumerable<bool> EnumeratePayloads()
 {
 while (true) // ad infinitum
 {
 bool payload = random.NextDouble() >= 0.5;

 yield return payload;
 }
 }
}

Th is generates random payloads of 0s and 1s. Th e yield-return syntax
turns it into an enumerable source. Put it in a utility class, if you will.

Th e infamous Program class is shown in Figure 7. It creates the
in-process embedded StreamInsight server instance. A so-called
application instance named ApproximateCountDemo is created
as a streaming processing (metadata) container, for example,
for named streams, queries and so on. An enumerable source of
point-in-time events is defined, using the payload-generating
utility method described earlier. It’s transformed into a temporal
stream of point-in-time events. Th e query is defi ned with LINQ and
selects the operator approximate counts computed over the source
stream. Th is is where the extension method for the user-defi ned
operator comes in handy. It’s bootstrapped with a window
size and relative error upper bound. Next, the query output is
transformed into an enumerable sink, stripping the temporal
properties. Finally, the sink is iterated over, thereby actively pulling
the events through the pipeline. Execute the program and enjoy its
number-crunching output on the screen.

To briefly recap, this article explains how to approximate the
count over a window of events in logarithmic time and space with
upper-bounded error using an exponential histogram data structure.
Th e histogram is embedded in a StreamInsight user-defi ned operator.

Th e histogram and operator can be extended to support variable-
size windows, such as time-based windows. This requires the
histogram to know the window interval/timespan rather than the
window size. Buckets are expired when their timestamp is before
the new event’s timestamp minus the window timespan. An exten-
sion to compute variance is proposed in the paper, “Maintaining
Variance and k–Medians over Data Stream Windows,” by Brian
Babcock, Mayur Datar, Rajeev Motwani and Liadan O’Callaghan
(stanford.io/UEUG0i). Apart from histograms, other so-called synop-
sis structures are described in literature. You can think of random
samples, heavy hitters, quantiles and so on.

Th e source code accompanying this article is written in C# 4.0
with Visual Studio 2010 and requires StreamInsight 2.1. Th e code
is free for use under the Microsoft Public License (Ms-PL). Note
that it was developed for educational purposes and was neither
optimized nor tested for production environments.

MICHAEL MEIJER is as a soft ware engineer at CIMSOLUTIONS BV, where he
provides IT consulting services and soft ware development solutions to compa-
nies throughout the Netherlands. His interests in StreamInsight and streaming
data processing started during his research at the University of Twente, Enschede,
Netherlands, where he received a Master of Science degree in Computer Science–
Information Systems Engineering.

THANKS to the following technical experts for reviewing this article:
Erik Hegeman, Roman Schindlauer and Bas Stemerdink

cla ss Program
{
 public const long N = 10000;
 public const double Epsilon = 0.05;

 static void Main(string[] args)
 {
 using (Server server = Server.Create("StreamInsight21"))
 {
 var app = server.CreateApplication("ApproximateCountDemo");

 // Define an enumerable source
 var source = app.DefineEnumerable(() =>
 Utility.EnumeratePayloads());

 // Wrap the source in a (temporal) point-in-time event stream
 // The time settings determine when CTI events
 // are generated by StreamInsight
 var sourceStream = source.ToPointStreamable(e =>
 PointEvent.CreateInsert(DateTime.Now, e),
 AdvanceTimeSettings.IncreasingStartTime);

 // Produces a stream of approximate counts
 // over the latest N events with relative error bound Epsilon
 var query =
 from e in sourceStream.ApproximateCount(N, Epsilon) select e;

 // Unwrap the query's (temporal) point-in-time
 // stream to an enumerable sink
 var sink = query.ToEnumerable<long>();

 foreach (long estimatedCount in sink)
 {
 Console.WriteLine(string.Format(
 "Enumerated Approximate count: {0}", estimatedCount));
 }
 }
 }
}

Figure 7 Embedding and Executing in StreamInsight

The histogram and operator
can be extended to support

variable-size windows, such as
time-based windows.

www.stanford.io/UEUG0i
www.msdnmagazine.com

msdn magazine70

Naive Bayes classifi cation is a machine-learning technique that can
be used to predict to which category a particular data case belongs.
In this article I explain how Naive Bayes classifi cation works and
present an example coded with the C# language.

Th ere are plenty of standalone tools available that can perform
Naive Bayes classifi cation. However, these tools
can be diffi cult or impossible to integrate directly
into your application, and diffi cult to customize
to meet specifi c needs. And they might have hid-
den copyright issues. Th is article will give you a
solid foundation for adding Naive Bayes classi-
fi cation features to a .NET application, without
relying on any external dependencies.

Th e best way to understand what Naive Bayes
classifi cation is and to see where I’m headed in
the article is to examine the screenshot of a demo
program in Figure 1. Th e demo program begins
by generating 40 lines of data that will be used to
train the classifi er. In most cases you’d be using an
existing data source, but I generated dummy data
to keep the demo simple. Th e fi rst line of data is
“administrative,right,72.0,female.” Th e fi rst fi eld
is an occupation, the second is hand dominance,
the third is height in inches and the fourth is sex.
Th e goal of the classifi er is to predict sex from a
given set of values for occupation, dominance
and height. Because the dependent variable sex
has two possible values, this is an example of
binary classifi cation.

After generating raw data, the demo pro-
gram converts each numeric height field to a
category—short, medium or tall—by binning
height. As I’ll explain, binning numeric data into
categorical data is an approach that has pros and
cons. Aft er the training data has been binned, the
demo program scans the 40 lines of categorical
data and computes joint counts. For example,
the number of data cases where the person’s
occupation is administrative and the person’s
sex is male is 2. Additionally, the total numbers

of each dependent value (the attribute to be predicted, male or
female in this example) are computed. You can see that there are
24 males and 16 females in the training data.

Th e demo program then has all the information needed to clas-
sify the sex of a new data case where the occupation is education,

Naive Bayes Classifi cation with C#

TEST RUN JAMES MCCAFFREY

Code download available at
archive.msdn.microsoft.com/mag201302TestRun.

Figure 1 Naive Bayes Classifi cation Demo

http://archive.msdn.microsoft.com/mag201302TestRun

71February 2013msdnmagazine.com

the dominance is right and the height is tall. In this example, it
turns out the demo determined the probability that the data case is
a male is 0.3855 and the probability that the case is female is 0.6145,
and so the system concludes the data case is most likely a female.

In the sections that follow I’ll fi rst explain exactly how Naive
Bayes classifi cation works, walk you through the code in the demo
program, and describe how to modify the demo to meet your
own needs. Th is article assumes you have at least beginning pro-
gramming skills with a C-family language, but doesn’t assume you
know anything about Naive Bayes classifi cation. Th e code for the
demo program is a bit too long to present in its entirety here, but
the complete source is available from the MSDN download site
at archive.msdn.microsoft.com/mag201302TestRun.

How Naive Bayes Classifi cation Works
Using the example shown in Figure 1, the goal is to predict the sex
(male or female) of a person whose occupation is education, who
is right-handed and whose height is tall (greater than or equal to
71.0 inches). To do this, we can compute the probability that the
person is male given that information, and the probability the
person is female given the information, and then predict the sex
with the larger probability. Expressed symbolically, we want to
know P(male | X), usually read as, “the probability of male given
independent variable values X”) and P(female | X), where X is
(education, right, tall). Th e term “naive” in Naive Bayes means that all
X attributes are assumed to be mathematically independent, which
greatly simplifi es classifi cation. You can fi nd many online references

that explain the rather interesting mathematics behind Naive Bayes
classifi cation, but the result is relatively simple. Symbolically:

P(male | X) =
 [P(education | male) * P(right | male) * P(tall | male) * P(male)] /
 [PP(male | X) + PP(female | X)]

Notice the equation is a fraction. The numerator, sometimes
loosely called a partial probability, consists of four terms multi-
plied together. In this article I use the nonstandard notation of PP
for a partial probability term. Th e denominator is the sum of two
terms, one of which is the numerator. Th e fi rst piece to compute
is P(education | male), or the probability that a person’s occupa-
tion is education, given that he is male. Th is, as it turns out, can
be estimated by the count of training cases where occupation is
education and sex is male, divided by the number of cases that are
male (with any occupation), so:

P(education | male) = count(education & male) / count(male) = 2/24 = 0.0833

Figure 2 Naive Bayes Program Structure

using System;
namespace NaiveBayes
{
 class Program
 {
 static Random ran = new Random(25); // Arbitrary

 static void Main(string[] args)
 {
 try
 {
 string[] attributes = new string[] { "occupation", "dominance",
 "height", "sex"};

 string[][] attributeValues = new string[attributes.Length][];
 attributeValues[0] = new string[] { "administrative",
 "construction", "education", "technology" };
 attributeValues[1] = new string[] { "left", "right" };
 attributeValues[2] = new string[] { "short", "medium", "tall" };
 attributeValues[3] = new string[] { "male", "female" };

 double[][] numericAttributeBorders = new double[1][];
 numericAttributeBorders[0] = new double[] { 64.0, 71.0 };

 string[] data = MakeData(40);
 for (int i = 0; i < 4; ++i)
 Console.WriteLine(data[i]);

 string[] binnedData = BinData(data, attributeValues,
 numericAttributeBorders);
 for (int i = 0; i < 4; ++i)
 Console.WriteLine(binnedData[i]);

 int[][][] jointCounts = MakeJointCounts(binnedData, attributes,
 attributeValues);
 int[] dependentCounts = MakeDependentCounts(jointCounts, 2);
 Console.WriteLine("Total male = " + dependentCounts[0]);

 Console.WriteLine("Total female = " + dependentCounts[1]);

 ShowJointCounts(jointCounts, attributeValues);

 string occupation = "education";
 string dominance = "right";
 string height = "tall";

 bool withLaplacian = true;

 Console.WriteLine(" occupation = " + occupation);
 Console.WriteLine(" dominance = " + dominance);
 Console.WriteLine(" height = " + height);

 int c = Classify(occupation, dominance, height, jointCounts,
 dependentCounts, withLaplacian, 3);
 if (c == 0)
 Console.WriteLine("\nData case is most likely male");
 else if (c == 1)
 Console.WriteLine("\nData case is most likely female");

 Console.WriteLine("\nEnd demo\n");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 } // End Main

 // Methods to create data
 // Method to bin data
 // Method to compute joint counts
 // Helper method to compute partial probabilities
 // Method to classify a data case

 } // End class Program
}

The term “naive” in Naive Bayes
means that all X attributes are
assumed to be mathematically

independent, which greatly
simplifi es classifi cation.

http://archive.msdn.microsoft.com/mag201302TestRun
www.msdnmagazine.com

msdn magazine72 Test Run

Using the same logic:
P(right | male) = count(right & male) / count(male) = 17/24 = 0.7083
P(tall | male) = count(tall & male) / count(male) = 4/24 = 0.1667

Th e next piece of the puzzle is P(male). In Naive Bayes termi-
nology, this is called a prior. Th ere’s some debate about how best to
compute priors. On the one hand, we can hypothesize that there’s
no reason to believe that the presence of males is more or less
likely than the presence of females and so assign 0.5 to P(male).
On the other hand, we can use the fact that the training data has 24

males and 16 females and estimate a probability of 24/40 = 0.6000
for P(male). I prefer this approach, where priors are estimated
using training data.

Now, if you refer to the earlier equation for P(male | X), you’ll
note that it contains the PP(female | X). Th e bottom sum, PP(male
| X) + PP(female | X), is sometimes called the evidence. Th e pieces
for PP(female | X) are computed like so:

P(education | female) = count(education & female) / count(female) = 4/16 = 0.2500
P(right | female) = count(right & female) / count(female) = 14/16 = 0.8750
P(tall | female) = count(tall & female) / count(female) = 2/16 = 0.1250
P(female) = 16/40 = 0.4000

So the partial probability numerator for P(male | X) is:
PP(male | X) = 0.0833 * 0.7083 * 0.1667 * 0.6000 = 0.005903

Using the same logic, the partial probability for female given X
= (education, right, tall) is:

PP(female | X) = 0.2500 * 0.8750 * 0.1250 * 0.4000 = 0.010938

And, fi nally, the overall probabilities of male and female are:
P(male | X) = 0.005903 / (0.005903 + 0.010938) = 0.3505
P(female | X) = 0.010938 / (0.005903 + 0.010938) = 0.6495

Th ese overall probabilities are sometimes called the posteriors.
Because P(female | X) is greater than P(male | X), the system con-
cludes the sex of the unknown person is female. But wait. Th ese two
probabilities, 0.3505 and 0.6495, are close to but defi nitely not the
same as the two probabilities, 0.3855 and 0.6145, shown in Figure
1. Th e reason for this discrepancy is that the demo program uses
an important optional modifi cation of basic Naive Bayes called
Laplacian smoothing.

Laplacian Smoothing
If you refer to Figure 1, you’ll see that the count of training cases in
which the person has occupation = construction and sex = female is
0. In the demo, the X values are (education, right, tall), which doesn’t
include construction. But suppose X had been (construction, right,
tall). In the computation of PP(female | X) it would be necessary to
compute P(construction | female) = count(construction & female)
/ count(female), which would be 0, and which in turn would
zero-out the entire partial probability. In short, it’s bad when a joint
count is 0. Th e most common technique to avoid this situation is
to simply add 1 to all joint counts. Th is has the feel of a hack but,
in fact, has a solid mathematical basis. Th e technique is called add-
one smoothing, which is a specifi c kind of Laplacian smoothing.

With Laplacian smoothing, if X = (education, right, tall) as in
the previous section, P(male | X) and P(female | X) are calculated
as follows:

P(education | male) =
count(education & male) + 1 / count(male) + 3 = 3/27 = 0.1111
P(right | male) =
count(right & male) + 1 / count(male) + 3 = 18/27 = 0.6667
P(tall | male) =
count(tall & male) + 1 / count(male) + 3 = 5/27 = 0.1852
P(male) = 24/40 = 0.6000

P(education | female) =
count(education & female) + 1 / count(female) + 3 = 5/19 = 0.2632
P(right | female) =
count(right & female) + 1 / count(female) + 3 = 15/19 = 0.7895
P(tall | female) =
count(tall & female) + 1 / count(female) + 3 = 3/19 = 0.1579
P(female) = 16/40 = 0.4000

Th e partial probabilities are:
PP(male | X) = 0.1111 * 0.6667 * 0.1852 * 0.6000 = 0.008230
PP(female | X) = 0.2632 * 0.7895 * 0.1579 * 0.4000 = 0.013121

static string[] BinData(string[] data, string[][] attributeValues,
 double[][] numericAttributeBorders)
{
 string[] result = new string[data.Length];
 string[] tokens;
 double heightAsDouble;
 string heightAsBinnedString;

 for (int i = 0; i < data.Length; ++i)
 {
 tokens = data[i].Split(',');
 heightAsDouble = double.Parse(tokens[2]);
 if (heightAsDouble <= numericAttributeBorders[0][0]) // Short
 heightAsBinnedString = attributeValues[2][0];
 else if (heightAsDouble >= numericAttributeBorders[0][1]) // Tall
 heightAsBinnedString = attributeValues[2][2];
 else
 heightAsBinnedString = attributeValues[2][1]; // Medium

 string s = tokens[0] + "," + tokens[1] + "," + heightAsBinnedString +
 "," + tokens[3];
 result[i] = s;
 }
 return result;
}

Figure 3 Method BinData for Categorizing Height

static int[][][] MakeJointCounts(string[] binnedData, string[] attributes,
 string[][] attributeValues)
{
 int[][][] jointCounts = new int[attributes.Length - 1][][]; // -1 (no sex)

 jointCounts[0] = new int[4][]; // 4 occupations
 jointCounts[1] = new int[2][]; // 2 dominances
 jointCounts[2] = new int[3][]; // 3 heights

 jointCounts[0][0] = new int[2]; // 2 sexes for administrative
 jointCounts[0][1] = new int[2]; // construction
 jointCounts[0][2] = new int[2]; // education
 jointCounts[0][3] = new int[2]; // technology

 jointCounts[1][0] = new int[2]; // left
 jointCounts[1][1] = new int[2]; // right

 jointCounts[2][0] = new int[2]; // short
 jointCounts[2][1] = new int[2]; // medium
 jointCounts[2][2] = new int[2]; // tall

 for (int i = 0; i < binnedData.Length; ++i)
 {
 string[] tokens = binnedData[i].Split(',');

 int occupationIndex = AttributeValueToIndex(0, tokens[0]);
 int dominanceIndex = AttributeValueToIndex(1, tokens[1]);
 int heightIndex = AttributeValueToIndex(2, tokens[2]);
 int sexIndex = AttributeValueToIndex(3, tokens[3]);

 ++jointCounts[0][occupationIndex][sexIndex];
 ++jointCounts[1][dominanceIndex][sexIndex];
 ++jointCounts[2][heightIndex][sexIndex];
 }

 return jointCounts;
}

Figure 4 Method MakeJointCounts

73February 2013msdnmagazine.com

And so the two fi nal probabilities are:
P(male | X) = 0.008230 / (0.008230 + 0.013121) = 0.3855
P(female | X) = 0.013121 / (0.008230 + 0.013121) = 0.6145

Th ese are the values shown in the screenshot in Figure 1. Notice
that 1 is added to each joint count but that 3 is added to denom-
inators count(male) and count(female). Th e 3 is to some extent
arbitrary in the sense that Laplacian smoothing doesn’t specify any
particular value to be used. In this case, it’s the number of X attri-
butes (occupation, dominance, height). Th is is the most common
value to add to denominators of partial probabilities in Laplacian
smoothing, but you may wish to experiment with other values.
Th e value to add to the denominator is oft en given the symbol
k in math literature on Naive Bayes. Also, notice that the priors,
P(male) and P(female), are typically not modifi ed in Naive Bayes
Laplacian smoothing.

Overall Program Structure
Th e demo program shown running in Figure 1 is a single C# con-
sole application. Th e Main method, with some WriteLine statements
removed, is listed in Figure 2.

Th e program begins by setting up the hardcoded X attributes
occupation, dominance, and height, and the dependent attribute
sex. In some situations you may prefer to scan your existing data
source to determine the attributes, especially when the source is
a data fi le with headers or a SQL table with column names. Th e
demo program also specifi es the nine categorical X attribute values:
(administrative, construction, education, technology) for occupa-
tion; (left , right) for dominance; and (short, medium, tall) for height.
In this example there are two dependent variable attribute values:
(male, female) for sex. Again, you may want to programmatically
determine attribute values by scanning your data.

Th e demo sets up hardcoded boundary values of 64.0 and 71.0
to bin the numeric height values so that values less than or equal
to 64.0 are categorized as short; heights between 64.0 and 71.0 are
medium; and heights greater than or equal to 71.0 are tall. When
binning numeric data for Naive Bayes, the number of boundary val-
ues will be one less than the number of categories. In this example,
the 64.0 and 71.0 were determined by scanning the training data for
minimum and maximum height values (57.0 and 78.0), computing
the diff erence, 21.0, and then computing interval size by dividing by
number of height categories, 3, giving 7.0. In most situations, you’ll
want to the determine boundary values for numeric X attributes
programmatically rather than manually.

The demo program calls a helper method MakeData to gen-
erate somewhat random training data. MakeData calls helpers
MakeSex, MakeOccupation, MakeDominance and MakeHeight.
For example, these helpers generate data so that male occupations
are more likely to be construction and technology, male dominance
is more likely to be right, and male height is most likely to be
between 66.0 and 72.0 inches.

Th e key methods called in Main are BinData to categorize height
data; MakeJointCounts to scan binned data and compute the joint
counts; MakeDependentCounts to compute total number of males
and females; and Classify, which uses joint counts and dependent
counts to perform a Naive Bayes classifi cation.

Binning Data
Method BinData is listed in Figure 3. Th e method accepts an array
of comma-delimited strings where each string looks like “educa-
tion,left ,67.5,male.” In many situations, you’ll be reading training
data from a text fi le where each line is a string. Th e method uses
String.Split to parse each string into tokens. Token[2] is the height.
It’s converted from a string into type double using the double.Parse
method. Th e numeric height is compared against the boundary
values until the height’s interval is found, and then the correspond-
ing height category as a string is determined. A result string is
stitched together using the old tokens, comma delimiters and the
new computed-height category string.

It’s not a requirement to bin numeric data when performing
Naive Bayes classifi cation. Naive Bayes can deal with numeric data
directly, but those techniques are outside the scope of this article.
Binning data has the advantages of simplicity and avoiding the need
to make any particular explicit assumptions about the mathemati-
cal distribution (such as Gaussian or Poisson) of the data. However,
binning essentially loses information and does require you to
determine and specify into how many categories to divide the data.

Determining Joint Counts
Th e key to Naive Bayes classifi cation is computing joint counts. In
the demo example, there are nine total independent X attribute
values (administrative, construction, … tall) and two dependent
attribute values (male, female), so a total of 9 * 2 = 18 joint counts
must be computed and stored. My preferred approach is to store
joint counts in a three-dimensional array int[][][] jointCounts. Th e
fi rst index indicates the independent X attribute; the second index
indicates the independent X attribute value; and the third index
indicates the dependent attribute value. For example, jointCounts[0]
[3][1] means attribute 0 (occupation), attribute value 3 (technology)
and sex 1 (female), or in other words the value at jointCounts[0][3]

static int Classify(string occupation, string dominance, string height,
 int[][][] jointCounts, int[] dependentCounts, bool withSmoothing,
 int xClasses)
{
 double partProbMale = PartialProbability("male", occupation, dominance,
 height, jointCounts, dependentCounts, withSmoothing, xClasses);
 double partProbFemale = PartialProbability("female", occupation, dominance,
 height, jointCounts, dependentCounts, withSmoothing, xClasses);
 double evidence = partProbMale + partProbFemale;
 double probMale = partProbMale / evidence;
 double probFemale = partProbFemale / evidence;

 if (probMale > probFemale) return 0;
 else return 1;
}

Figure 5 Method Classify

It’s not a requirement to bin
numeric data when performing

Naive Bayes classifi cation.

www.msdnmagazine.com

msdn magazine74 Test Run

[1] is the count of training cases where occupation is technology
and sex is female. Method MakeJointCounts is listed in Figure 4.

The implementation has many hardcoded values to make it
easier to understand. For example, these three statements could
be replaced by a single for loop that allocates space using Length
properties in array attributeValues:

jointCounts[0] = new int[4][]; // 4 occupations
jointCounts[1] = new int[2][]; // 2 dominances
jointCounts[2] = new int[3][]; // 3 heights

Helper function AttributeValueToIndex accepts an attribute
index and an attribute value string and returns the appropriate
index. For example, AttributeValueToIndex(2, “medium”) returns
the index of “medium” in the height attribute, which is 1.

Th e demo program uses a method MakeDependentCounts to
determine the number of male and number of female data cases.
Th ere are several ways to do this. If you refer to Figure 1, you’ll
observe that one approach is to add the number of joint counts
of any of the three attributes. For example, the number of males is
the sum of count(administrative & male), count(construction &
male), count(education & male) and count(technology & male):

static int[] MakeDependentCounts(int[][][] jointCounts,
 int numDependents)
{
 int[] result = new int[numDependents];
 for (int k = 0; k < numDependents; ++k)
 // Male then female
 for (int j = 0; j < jointCounts[0].Length; ++j)
 // Scanning attribute 0
 result[k] += jointCounts[0][j][k];

 return result;
}

Classifying a Data Case
Method Classify, shown in Figure 5, is short because it relies on
helper methods.

Method Classify accepts the jointCounts and dependentCounts
arrays; a Boolean fi eld to indicate whether or not to use Laplacian
smoothing; and parameter xClasses, which in this example will
be 3 because there are three independent variables (occupation,
dominance, height). Th is parameter could also be inferred from
the jointCounts parameter.

Method Classify returns an int that represents the index of the
predicted dependent variable. Instead, you might want to return
an array of probabilities for each dependent variable. Notice that
the classifi cation is based on probMale and probFemale, both of
which are computed by dividing partial probabilities by the evi-
dence value. You might want to simply omit the evidence term and
just compare the values of the partial probabilities by themselves.

Method Classify returns the index of the dependent variable that
has the largest probability. An alternative is to supply a threshold
value. For example, suppose probMale is 0.5001 and probFemale is
0.4999. You may wish to consider these values too close to call and
return a classifi cation value representing “undetermined.”

Method PartialProbability does most of the work for Classify
and is listed in Figure 6.

Method PartialProbability is mostly hardcoded for clarity. For
example, there are four probability pieces, p0, p1, p2 and p3. You can
make PartialProbability more general by using an array of probabilities
where the size of the array is determined from the jointCounts array.

Notice that instead of returning the product of the four probabil-
ity pieces, the method returns the equivalent Exp of the sum of the
Log of each piece. Using log probabilities is a standard technique in
machine-learning algorithms that’s used to prevent numeric errors
that can occur with very small real numeric values.

Wrapping Up
Th e example presented here should give you a good foundation for
adding Naive Bayes classifi cation features to your .NET applications.
Naive Bayes classifi cation is a relatively crude technique, but it does
have several advantages over more-sophisticated alternatives such
as neural network classifi cation, logistic regression classifi cation
and support vector machine classifi cation. Naive Bayes is simple,
relatively easy to implement and scales well to very large data
sets. And Naive Bayes easily extends to multinomial classifi cation
problems—those with three or more dependent variables.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he manages
technical training for soft ware engineers working at the Microsoft Redmond,
Wash., campus. He has worked on several Microsoft products including Internet
Explorer and MSN Search. He’s the author of “.NET Test Automation Recipes”
(Apress, 2006), and can be reached at jammc@microsoft .com.

THANKS to the following Microsoft technical expert for reviewing this article:
Rich Caruana

static double PartialProbability(string sex, string occupation, string dominance,
 string height, int[][][] jointCounts, int[] dependentCounts,
 bool withSmoothing, int xClasses)
{
 int sexIndex = AttributeValueToIndex(3, sex);
 int occupationIndex = AttributeValueToIndex(0, occupation);
 int dominanceIndex = AttributeValueToIndex(1, dominance);
 int heightIndex = AttributeValueToIndex(2, height);

 int totalMale = dependentCounts[0];
 int totalFemale = dependentCounts[1];
 int totalCases = totalMale + totalFemale;

 int totalToUse = 0;
 if (sex == "male") totalToUse = totalMale;
 else if (sex == "female") totalToUse = totalFemale;

 double p0 = (totalToUse * 1.0) / (totalCases); // Prob male or female
 double p1 = 0.0;
 double p2 = 0.0;
 double p3 = 0.0;

 if (withSmoothing == false)
 {
 p1 = (jointCounts[0][occupationIndex][sexIndex] * 1.0) / totalToUse
 p2 = (jointCounts[1][dominanceIndex][sexIndex] * 1.0) / totalToUse;
 p3 = (jointCounts[2][heightIndex][sexIndex] * 1.0) / totalToUse;
 }
 else if (withSmoothing == true)
 {
 p1 = (jointCounts[0][occupationIndex][sexIndex] + 1) /
 ((totalToUse + xClasses) * 1.0);
 p2 = (jointCounts[1][dominanceIndex][sexIndex] + 1) /
 ((totalToUse + xClasses) * 1.0 ;
 p3 = (jointCounts[2][heightIndex][sexIndex] + 1) /
 ((totalToUse + xClasses) * 1.0);
 }

 //return p0 * p1 * p2 * p3; // Risky if any very small values
 return Math.Exp(Math.Log(p0) + Math.Log(p1) + Math.Log(p2) + Math.Log(p3));
}

Figure 6 Method PartialProbability

mailto:jammc@microsoft.com

Celebrating 15 years of IT education, TechMentor
returns in 2013 with immediately usable training that will keep
you relevant in the workforce. Get inside the IT classroom and
learn how you can build a more productive IT environment.

PRODUCED BYSUPPORTED BY

Choose Your Campus

YEARS OF IT EDUCATION

A N N I V E R S A RY

TECHMENTOREVENTS.COM

REGISTRATION OPEN

Untitled-1 1 1/11/13 10:02 AM

www.techmentorevents.com

msdn magazine76

Welcome back.
In the fi rst part of this series, I looked briefl y at the Copenhagen

Comprehensive Collection Classes for C# (C5) library, a set of classes
designed to supplement (if not replace) the System.Collections
classes that ship with the Microsoft .NET Framework runtime
library. Th ere’s a fair amount of overlap between the two libraries,
partly because C5 wants to follow many of the same idioms that
the .NET Framework Class Library (FCL) uses, and partly because
there are only so many ways one can reasonably represent a particu-
lar collection type. (It’s hard to imagine an indexed collection—such
as a Dictionary or a List—not supporting the language syntax for
indexed properties: the “[]” operator in C# and the “()” operator in
Visual Basic.) Where the FCL collections are utilitarian, however,
the C5 collections go a step or two beyond that, and that’s where
we want to spend our time.

(Note that there’s also very likely some performance diff erences
between the two libraries that proponents or critics of each will
be quick to point out—the C5 collection manual discusses some
of the performance implications, for example. Th at said, I eschew
most performance benchmarks on the grounds that, generally, all
a benchmark proves is that for one particular case or set of cases,
somebody got one of the two to run faster than the other, which
doesn’t really say whether that will hold true for all cases between
the two. Th is doesn’t mean all benchmarks are useless, just that the
context matters to the benchmark. Readers are strongly encouraged
to take their own particular scenarios, turn them into a benchmark
and have a shootout between the two, just to see if there’s a marked
diff erence in those particular cases.)

Implementations
First of all, let’s take a quick look at the diff erent collection implemen-
tations that C5 provides. Again, as we discussed last time, developers
using C5 shouldn’t generally worry about the implementation in use
except when deciding which implementation to create—the rest of

the time, the collection should be referenced by interface type. (For
a description of the interface types, see the previous column in the
series at msdn.microsoft.com/magazine/jj883961, or the C5 documentation
at bit.ly/UcOcZH.) Here are the implementations:

• CircularQueue<T> implements both IQueue<T> and
IStack<T> to provide either the fi rst-in-fi rst-out semantics
of IQueue<T> (via Enqueue and Dequeue) or the last-
in-fi rst-out semantics of IStack<T> (via Push and Pop),
backed by a linked list. It grows in capacity as needed.

• ArrayList<T> implements IList<T>, IStack<T> and
IQueue<T>, backed by an array.

• LinkedList<T> implements IList<T>, IStack<T> and
IQueue<T>, using a doubly linked list of nodes.

• HashedArrayList<T> implements IList<T>, backed by an
array, but also maintains a hash table internally to effi ciently
fi nd the position of an item within the list. Also, it doesn’t
allow duplicates in the list (because duplicates would screw
up the hash table lookup).

• HashedLinkedList<T> implements IList<T>, backed by
a linked list, and like its array-backed cousin, it uses an
internal hash table to optimize lookups.

• WrappedArray<T> implements IList<T>, wrapping around
a single-dimensional array. Th e advantage of this class is
that it simply “decorates” the array, making it far faster to
obtain C5 functionality, as opposed to copying the elements
out of the array and into an ArrayList<T>.

• SortedArray<T> implements IIndexedSorted<T>, which
means the collection can be indexed as well as sorted—we’ll
get to this in a second. It keeps its items sorted and doesn’t
allow duplicates.

.NET Collections, Part 2: Working with C5

THE WORKING PROGRAMMER TED NEWARD

[TestMethod]
public void GettingStarted()
{
 IList<String> names = new ArrayList<String>();
 names.AddAll(new String[]
 { "Hoover", "Roosevelt", "Truman", "Eisenhower", "Kennedy" });

 // Print item 1 ("Roosevelt") in the list
 Assert.AreEqual("Roosevelt", names[1]);
 Console.WriteLine(names[1]);

 // Create a list view comprising post-WW2 presidents
 IList<String> postWWII = names.View(2, 3);

 // Print item 2 ("Kennedy") in the view
 Assert.AreEqual("Kennedy", postWWII[2]);
}

Figure 1 Creating Views on a Collection

Where the FCL collections are
utilitarian, however, the C5
collections go a step or two

beyond that.

http://msdn.microsoft.com/magazine/jj883961

Untitled-1 1 10/13/11 1:15 PM

www.msdnmagazine.com
www.vslive.com
www.visualstudiomagazine.com

msdn magazine78 The Working Programmer

• TreeSet<T> implements IIndexedSorted<T> and
IPersistedSorted<T> and is backed by a balanced
red-black tree, which is great for insertion, removal and
sorting. Like all sets, it doesn’t allow duplicates.

• TreeBag<T> implements IIndexedSorted<T> and
IPersistedSorted<T>, is backed by a balanced red-black
tree, but is essentially a “bag” (sometimes called a
“multiset”), meaning it allows duplicates.

• HashSet<T> implements IExtensible<T>, and backs the set
(meaning no duplicates) by a hash table with linear chain-
ing. Th is means lookups will be fast, modifi cations less so.

• HashBag<T> implements IExtensible<T>, and backs the
bag (meaning duplicates are allowed) by a hash table with
linear chaining, again making lookups fast.

• IntervalHeap<T> implements IPriorityQueue<T>,
using an interval heap stored as an array of pairs, making
it effi cient to pull from either the “max” or “min” end of
the priority queue.

Th ere are a few more implementations, and the C5 manual and
docs have more details if you’re interested. However, aside from the
performance implications, the critical thing to know is which imple-
mentations implement which interfaces, so that you can have a good

idea of each when it’s time to choose one to instantiate. (You can always
switch it around to a diff erent implementation later, assuming you
follow the C5 design guideline of always referencing the collections
by the interfaces rather than their implementation types.)

Functionality
If C5 were just a larger collection of collection implementations, it
would be interesting, but probably not enough to warrant signifi -
cant interest or discussion. Fortunately, it off ers a few new features
to developers that deserve discussion.

Views One of the interesting little tidbits of the C5 library is
the notion of “views”: subcollections of elements from the source
collection that are, in fact, not copies but backed by the original
collection. This was actually what the code from the previous
column did, in the exploration test. See Figure 1 for how to create
views on a collection.

Th e view is backed by the original list, which means that if the
original list changes for whatever reason, the view on it is also
aff ected. See Figure 2 to see how views are potentially mutable.

As this test shows, changing the underlying list (“names”) means
that the views defi ned on it (in this case, the “preWWII” view) also
fi nd their contents changing, so that now the fi rst element in the
view is “Washington,” instead of “Hoover.”

However, when possible, C5 will preserve the sanctity of the
view; so, for example, if the insertion occurs at the front of the col-
lection (where C5 can insert it without changing the contents of
the “preWWII” view), then the view’s contents remain unchanged:

[TestMethod]
public void ViewUnchangingExploration()
{
 IList<String> names = new ArrayList<String>();
 names.AddAll(new String[]
 { "Hoover", "Roosevelt", "Truman", "Eisenhower", "Kennedy" });

 IList<String> preWWII = names.View(0, 2);
 Assert.AreEqual(preWWII.Count, 2);

 names.InsertFirst("Jackson");
 Assert.AreEqual("Jackson", names[0]);
 Assert.AreEqual("Hoover", preWWII[0]);
}

Immutable (Guarded) Collections With the rise of functional
concepts and programming styles, a lot of emphasis has swung to
immutable data and immutable objects, largely because immutable
objects offer a lot of benefits vis-à-vis concurrency and parallel

[TestMethod]
public void ViewExploration()
{
 IList<String> names = new ArrayList<String>();
 names.AddAll(new String[]
 { "Washington", "Adams", "Jefferson",
 "Hoover", "Roosevelt", "Truman",
 "Eisenhower", "Kennedy" });

 IList<String> postWWII = names.View(4, names.Count - 4);
 Assert.AreEqual(postWWII.Count, 4);
 IList<String> preWWII = names.View(0, 5);
 Assert.AreEqual(preWWII.Count, 5);
 Assert.AreEqual("Washington", preWWII[0]);

 names.Insert(3, "Jackson");
 Assert.AreEqual("Jackson", names[3]);
 Assert.AreEqual("Jackson", preWWII[3]);
}

Figure 2 Views Are Potentially Mutable

public void IWannaBePresidentToo(IList<String> presidents)
{
 presidents.Add("Neward");
}
[TestMethod]
public void NeverModifiedCollection()
{
 IList<String> names = new ArrayList<String>();
 names.AddAll(new String[]
 { "Hoover", "Roosevelt", "Truman","Eisenhower", "Kennedy" });
 try
 {
 IWannaBePresidentToo(new GuardedList<String>(names));
 }
 catch (Exception x)
 {
 // This is expected! Should be a ReadOnlyException
 }

 Assert.IsFalse(names.Contains("Neward"));
 }

Figure 3 Guarded (Immutable) Collections

[TestMethod]
public void InaugurationDay()
{
 IList<String> names = new ArrayList<String>();
 names.AddAll(new String[]
 { "Hoover", "Roosevelt", "Truman", "Eisenhower", "Kennedy" });

 names.ItemsAdded +=
 delegate (Object c, ItemCountEventArgs<string> args)
 {
 testContextInstance.WriteLine(
 "Happy Inauguration Day, {0}!", args.Item);
 };
 names.Add("Neward");

 Assert.IsTrue(names.Contains("Neward"));
}

Figure 4 “When I Become President ...”

79February 2013msdnmagazine.com

programming, but also because many developers fi nd immutable
objects easier to understand and reason about. Corollary to that
concept, then, follows the concept of immutable collections—the
idea that regardless of whether the objects inside the collection are
immutable, the collection itself is fi xed and unable to change (add
or remove) the elements in the collection. (Note: You can see a pre-
view of immutable collections released on NuGet in the MSDN
Base Class Library (BCL) blog at bit.ly/12AXD78.)

Within C5, immutable collections are handled by instantiating
“wrapper” collections around the collection containing the data of
interest; these collections are “Guarded” collections and are used
in classic Decorator pattern style:

public void ViewImmutableExploration()
{
 IList<String> names = new ArrayList<String>();
 names.AddAll(new String[]
 { "Hoover", "Roosevelt", "Truman", "Eisenhower", "Kennedy" });
 names = new GuardedList<String>(names);

 IList<String> preWWII = names.View(0, 2);
 Assert.AreEqual("Hoover", preWWII[0]);

 names.InsertFirst("Washington");
 Assert.AreEqual("Washington", names[0]);
}

If anyone tries to write code that adds or removes elements from
the list, C5 quickly disabuses said developer of the idea: An excep-
tion is thrown as soon as any of the “modifying” methods (Add,
Insert, InsertFirst and so on) are called.

Th is off ers a pretty powerful opportunity, by the way. In the pre-
vious column, I mentioned that one of the key design points that
went into C5 is the idea that collections should only be used through
interfaces. Assuming developers using C5 carry that design idea
forward, it now becomes really simple to ensure that a collection
is never modifi ed by a method to which it is passed (see Figure 3).

Again, when the IWannaBePresidentToo method tries to modify
the collection passed in (which, arguably, is bad design on the part
of the programmer who wrote it, but unfortunately there’s a lot of
that kind of code out there), an exception is thrown.

By the way, should you prefer that the collection not throw an
exception and instead silently fail the modifi cation (which I think
is too subtle, but some developers may need that functionality),
it’s relatively easy to put together your own version of Guarded-
Array<T> that doesn’t throw.

Events Sometimes, modifications to collections are, in fact,
what you want to allow—only you want to know when a collection
is modifi ed. Granted, you could spin up a thread and have it spin
indefinitely over the collection, comparing the contents to the
previous iteration’s contents, but not only is this a horrible waste
of CPU resources, but it’s a pain to write and maintain, making it
probably the worst possible design solution—and certainly a sight

poorer than simply using a collection that supports events natively.
All collections in C5 off er the ability to hang delegates off the col-
lection, to be invoked when certain operations take place against
the collection (see Figure 4).

Of course, the event handler can be written as a lambda; it’s just a
little more descriptive to show you the actual argument types. Th e
fi rst argument is—as is canon—the collection itself.

Just a NuGet Away
No part of C5 couldn’t be built around the .NET FCL (aside
from the emphasis on interfaces, which the FCL supports, but
doesn’t really endorse that strongly, it seems), but the nice
thing about C5 is that it’s done, it’s tested and it’s just a NuGet
“Install-Package” away.

Happy coding!

TED NEWARD is a principal with Neward & Associates LLC. He has written more
than 100 articles and authored and co-authored a dozen books, including “Profes-
sional F# 2.0” (Wrox, 2010). He is an F# MVP and noted Java expert, and speaks
at both Java and .NET conferences around the world. He consults and mentors
regularly—reach him at ted@tedneward.com or Ted.Neward@neudesic.com
if you’re interested in having him come work with your team. He blogs at
blogs.tedneward.com and can be followed on Twitter at twitter.com/tedneward.

THANKS to the following technical expert for reviewing this article:
Immo Landwerth

All collections in C5 offer the
ability to hang delegates off the

collection.

mailto:ted@tedneward.com
mailto:Ted.Neward@neudesic.com
www.godiagram.com
www.bit.ly/12AXD78
http://blogs.tedneward.com
www.twitter.com/tedneward
www.msdnmagazine.com

msdn magazine80

Not only has Bill Gates’ dream of a computer on every desk and
in every home come to fruition, but the advent of devices such as
the Surface tablet has taken his dream even further. In addition
to the Surface, there has been an explosion of new consumer-
oriented devices in every form factor possible. In other words,
computers are everywhere.

Consider that on those computers are more than 1 billion existing
Windows installations worldwide, with 300 million Windows 7
licenses sold each year in the previous two years. Combine the
current, upgradable Windows installation base with the rapidly
growing market of Windows 8 devices such as the Surface and
you have the formula for monetization success. This is Windows
reimagined—the unparalleled opportunity for you to make money
by publishing apps in the Windows Store.

The Platform, Language and Toolset
for Creating Windows Store Apps
In order to create a Windows Store app, you need Windows 8,
Visual Studio 2012 and any SDKs specifi c to the requirements of
your app, such as the Windows Live SDK or Bing Maps SDK. Th is
minimal system setup and confi guration makes app development
on Windows 8 easy, from installation to deployment.

Once you’ve installed the requisite soft ware, it’s time to move
onto choosing a language. If your development background lies
in the Microsoft stack as a Microsoft .NET Framework developer
writing Windows Forms, Windows Presentation Foundation (WPF)
or Silverlight apps with C# or Visual Basic, then creating Windows
Store apps with XAML and C# or Visual Basic is the path of least
resistance. C++ developers can also use C++ as the compiled
language with XAML as its GUI companion.

If you’re a Web developer—including ASP.NET—you can apply
your existing knowledge of open standard HTML5, JavaScript and
CSS3 directly to Windows Store app development. Web developers
may continue to use many popular third-party JavaScript libraries
such as jQuery or Knockout. For this article, I’ll use JavaScript as
the language of choice.

No matter where your development background lies, the bar-
rier to entry is low when developing native Windows 8 apps. Th is

is because the Windows Runtime (WinRT) is a platform that
contains APIs that sit on top of the Windows core services, as
illustrated in Figure 1.

Th e WinRT APIs give you access to everything Windows 8 has
to off er, including APIs for hardware such as built-in webcams,
geolocation, light sensors and accelerometers. Of course, platform
fundamentals such as memory management, authentication, glo-
balization and asynchronous processing—as well as Windows Store
app features such as search, share and communications—are also
readily available. Th ere are even APIs for manipulating audio and
video; however, if you’re writing JavaScript apps, HTML5 <audio>
and <video> elements work great. You can browse the complete API
on the “API reference for Windows Store apps” page at bit.ly/ZCwcJE.

Tenets of a Windows Store App
Windows Store apps run as fully immersive, full-screen experiences
that deliver streamlined content to the user, without the app or
its commands getting in the way of the user. Windows Store apps
off er a clean, straightforward visualization of data that draws the
user’s attention to the content.

Windows Store apps do things traditional Windows or Web apps
couldn’t do before, such as sharing, searching and communicating
with each other in an easy and unifi ed way, using elements of the
Windows Runtime called contracts as liaisons between apps.

Great UX is a key facet of Windows Store app development,
from presentation and layout to navigation and app performance.

Create Windows Store Apps with HTML5
and JavaScript

MODERN APPS RACHEL APPEL

Code download available at archive.msdn.microsoft.com/
mag201302ModernApps.

Figure 1 Architecture of Windows Store Apps

XAML

C/C++

Win32

C/
C++

C#/
VB

.NET/SL

HTML/CSS

JavaScript

Windows Store Apps Desktop Apps

C#/VB

WinRT APIs

Application Model

Windows Core OS Services

Communication
& Data

Graphics
& Media

Devices &
Printing

http://archive.msdn.microsoft.com/mag201302ModernApps
www.bit.ly/ZCwcJE

81February 2013msdnmagazine.com

Users expect consistency between apps and between apps and the
OS. Windows Store apps are all about UX, and employing design
principles—such as using a consistent font, the Windows UI
silhouette and a scalable grid system—enhance the user’s comfort
level when using your app. Th is consistency is carried throughout
both apps and Windows 8 itself.

Ensuring both touch and mouse input work reliably and
consistently is important because users now have more ways to
interact with their computing devices in the form of mice, pens,
touch, cameras and sensors.

Because battery-powered devices with processors such as ARM
are becoming a major part of the computing landscape, Windows
8 must manage the overall and per-app memory in a strict fash-
ion to enable a fast and fl uid experience even when resources are
low. Windows 8 apps enjoy a straightforward and simple process
lifecycle to ensure the best experience.

While many apps will work nicely as a Windows Store app, not
every app is a good candidate. For example, while Visual Studio
itself embraces many modern UI design principles, its purpose is
to allow the user to execute commands (in other words, program-
ming). Th at’s not a good fi t for a Windows Store app.

Visual Studio 2012 Windows Store
App Project Templates
Visual Studio 2012 introduced a set of new templates for Windows
Store app development in C#, Visual Basic, C++ and JavaScript.
Regardless of language, the following template styles are available:

• Blank: A bare-bones template with the minimum fi les
required to build a Windows Store app.

• Grid: A template that displays a grid that uses the
Windows 8 UI silhouette along with template code for
several features, including navigation and snapped-view
support (more on this later).

• Split: A template that displays a list of items and item
details in a two-column view, making it easy for the user
to switch quickly among the items.

• Fixed: A Blank template that uses a ViewBox object in
the default.html page. A ViewBox is a WinRT object used
in games.

• Navigation: A template with a Blank project structure
plus navigation and a set of basic app assets (that is,
home.html, home.js and home.css) under the /home directory.

Because the Grid template contains code that touts many great
Windows 8 features such as support for snapped view, screen
scaling and navigation, it’s the perfect way to get started writing
Windows Store apps.

Aft er you create a new JavaScript Grid project template, examining
its structure reveals a project full of standard Web fi le types—such
as .html, .css and .js fi les—organized in folders under the project’s
root. You can then debug and run a Windows Store app by pressing
F5 or selecting Start Debugging from the Debug menu.

In the Windows Store app templates, default.html is the starting
page for a Windows Store app and has a companion script file,
/js/default.js, which contains basic process lifecycle management
code. As with any other HTML fi le, default.html has code you might
expect, including script references and new HTML5 semantic
markup that defi nes the page structure. Th e following code frag-
ment lives inside the default.html <body> tag and uses WinJS
controls for navigation and to load the groupedItems.html page:

<div id="contenthost"
 data-win-control="Application.PageControlNavigator"
 data-win-options=
 "{home: '/pages/groupedItems/groupedItems.html'}"></div>

Th e data-* attributes are the HTML5 way to apply custom code
or behavior to an HTML element, and in Windows Store app devel-
opment, data-win-* attributes usually refer to Windows JavaScript
controls. Windows JavaScript controls are built-in WinRT compo-
nents that you apply to HTML elements to enhance or modify their
behavior or style. Data-win-* attributes are prevalent in Windows
Store JavaScript apps, especially when data binding.

<!-- These templates are used to display each
 item in the ListView declared below. -->
<div class="headertemplate" data-win-control="WinJS.Binding.Template">
 <button class="group-header win-type-x-large win-type-interactive"
 data-win-bind="groupKey: key"
 onclick="Application.navigator.pageControl.navigateToGroup(
 event.srcElement.groupKey)"
 role="link" tabindex="-1" type="button">
 <span class="group-title win-type-ellipsis"
 data-win-bind="textContent: title">

 </button>
</div>
<div class="itemtemplate" data-win-control="WinJS.Binding.Template" >
 <div id="myitem" class="item"
 data-win-bind="style.background: color">
 <img class="item-image" src="#"
 data-win-bind="src: image; alt: title" />
 <div class="item-overlay">
 <h2 class="item-title" data-win-bind="innerText: message"></h2>
 <h6 class="item-subtitle"
 data-win-bind="textContent: eventDate"></h6>
 </div>
 </div>
</div>
<!-- The content that will be loaded and displayed. -->
<div class="fragment groupeditemspage">
 <header aria-label="Header content" role="banner">
 <button class="win-backbutton" aria-label="Back"
 disabled type="button"></button>
 <h1 class="titlearea win-type-ellipsis">
 How long until...
 </h1>
 </header>
 <section aria-label="Main content" role="main">
 <div id="listView" class="groupeditemslist"
 aria-label="List of groups"
 data-win-control="WinJS.UI.ListView"
 data-win-options="{ selectionMode: 'multi',
 tapBehavior:'toggleSelect' }"></div>
 </section>
</div>

Figure 2 Data Binding the List Object
to HTML Elements with WinJS Controls

While many apps will work nicely
as a Windows Store app, not

every app is a good candidate.

www.msdnmagazine.com

msdn magazine82 Modern Apps

Data Access in Windows Store Apps
As part of the Grid template, a fi le named data.js in the /js folder
contains code that builds a data set of arrays as well as functions for
grouping and manipulating the data. Th e data.js fi le also contains
sample data that you should replace with your own. In this article,
I’ll use data for a countdown app that shows the number of days
remaining until an event such as a holiday or vacation.

In the data.js fi le you can fi nd the only // TODO comment near
the beginning of the fi le. Replace the code under the comment with
your own, so the code looks something like the following code
snippet, which makes an XMLHttpRequest call to retrieve JSON
data, then also creates the data set, including dynamic properties
such as the daysToGo and message fi elds:

var list = new WinJS.Binding.List();
...
WinJS.xhr({ url: "data.json" }).then(function (xhr) {
 var items = JSON.parse(xhr.responseText);
 items.forEach(function (item) {
 item.daysToGo = Math.floor(
 (Date.parse(item.eventDate) - new Date()) / 86400000);
 item.message = item.daysToGo + " days until " + item.title;
 if (item.daysToGo >= 0) {
 list.push(item);
 };
 })
})

In the beginning of data.js is a line of code that instantiates a
WinJS.Binding.List object aptly named list, and the preceding code
pushes individual items onto this List.

Th e List object enables binding between JSON data or JavaScript
arrays and HTML elements. Once the list variable is populated with

data, use binding expressions in HTML markup to bind the List
members to HTML elements.

When you read JSON data with a call to JSON.parse, the names
in name/value pairs match properties of JavaScript objects at run
time. Th e following JSON data shows how the JSON structure maps
to members of the items variable in the preceding code snippet.
Th e key, title, eventDate, image, color and group fi elds all map to
the item object’s properties:

[{"key":"1","group":{"key":"group1","title":"Important Dates"},"title":"Rachel's
Birthday","eventDate":"01/13/2013","image":"/images/birthday.png","color":"#6666FF"},

{"key":"2","group":{"key":"group1","title":"Important Dates"},"title":"Ada
Lovelace Day","eventDate":"10/16/2013","image":"/images/ada.jpg","color":"#fff"},

{"key":"3","group":{"key":"group2","title":"Holidays"},"title":"Christmas
","eventDate":"12/25/2013","image":"/ images/ tree.png","color":"#ef0d0d"},

{"key":"4","group":{"key":"group3","title":"School"},"title":"School
Ends","eventDate":"6/10/2013","image":"/images/schoolbus.png","color":"#fff"},

{"key":"5","group":{"key":"group2","title":"Holidays"},"title":"Thanksgiving",
"eventDate":"11/29/2012","image":"/ images/ thanksgiving.png","color":"#FFCC00"},

{"key":"6","group":{"key":"group2","title":"Holidays"},"title":"New Year's Day",
"eventDate":"1/1/2013","image":"/images/celebrate.png","color":"#f8baba"}]

Now that you’ve loaded the data, you need to ensure the List
object is bound to the correct HTML elements. Modifi cations to
the /pages/groupedItems/groupedItems.html page in Figure 2
shows data binding in action.

Each HTML element in Figure 2 that contains a data-win-bind
attribute has a binding expression that matches a property name of
the item variable from the preceding code snippet, so all you need
to do is make sure that the binding expressions match the names
of the fi elds. Don’t forget to ensure that you also modify the bind-
ing expressions in the groupedDetail.html and itemDetails.html
pages so correct data will show when a user navigates to them.

Running the project in the Windows Simulator yields results
similar to that in Figure 3. (You can learn more about using the
simulator at bit.ly/M1nWOY.)

As you can see, you can simply replace the code from the Visual
Studio template for quick data access. However, projects are oft en
quite large or complex, making maintenance diffi cult. If this is the
case, then use the Model-View-ViewModel (MVVM) pattern to

make maintenance easier. This pattern is extremely
well-documented on the Web.

While your app now works, it’s time take advantage
of the many great Windows 8 features that can make
your app stand out in the crowd.

Branding Your Windows Store App
Considering that the focal point of Windows 8 is the
Start page, it makes sense to start branding there. Th e
Start page is fi lled with live tiles, and they aren’t just a
bunch of square icons, either. Instead, they’re the best
way to show off and attract users to your app. Live tiles
are called “live” for a reason, and that’s because you can
dynamically display information and images in them,
making your app even more attractive.

Windows Store apps require three separate tile
images with the following pixel dimensions:Figure 3 Replace the Sample Data to Make a Basic App

Live tiles are called “live” for
a reason, and that’s because
you can dynamically display

information and images in them.

www.bit.ly/M1nWOY

83February 2013msdnmagazine.com

• Logo: 150 x 150 (standard tile)
• Wide Logo: 150 x 310 (wide tile)
• Small Logo: 30 x 30 (this shows only in app lists in the store)

The images can be any popular image format, and those with
transparent backgrounds work best. Opening the package.appx-
manifest fi le from the project’s root reveals the confi guration palette,
where you can select the tile images and set the background colors.
Figure 4 illustrates both a standard and wide tile.

When you’re setting up the tiles is a good time to confi gure the
splash screen by selecting just an image and background color—
no code is used. Although tiles and splash screens are important
factors in branding your app, you can do many more things to
brand and polish your app, which you can read about at bit.ly/M4HYmL.

Windows 8 ‘Must-Have’ Features for Your App
While your app might work at this point, there are many new
features and APIs in the Windows 8 app ecosystem that you can
tap into to really make your app stand out. I’ll briefl y discuss each.

AppBar An essential feature for every app is the AppBar, which is a
WinJS control found in default.html. Normally, the AppBar stays out
of sight, but when users right-click or swipe from the top or bottom
of the screen, the AppBar displays as a bar across the bottom of the
screen. Figure 5 shows the markup for an AppBar containing three
buttons as well as their corresponding event listeners.

Global AppBar commands should be located on the right side
of the AppBar, while contextual commands should go on the left .
Style the AppBar with CSS, as it’s only a <div>.

Snapped View Windows Store apps can run in full screen or a
mode called snapped view that happens when the user “sticks” the
app to the left or right side of the screen. Because the app now has
less screen real estate, your app should display only necessary data.

Because snapped-view support is built into the Grid template,
you need to verify that the data displays nicely while snapped, showing
pertinent and readable information. Th e AppBar also works while
the app is snapped, so that also might need style adjustments.

Semantic Zoom Th is new touch-friendly feature of Windows 8
is a way to aggregate large amounts of data in a single, easy-to-digest
view. Users invoke Semantic Zoom in the following ways:

• Touch: Pinch gesture
• Mouse: Ctrl+Scroll Wheel
• Keyboard: Ctrl - and Ctrl +

Semantic Zoom is more about visualizing data in a meaningful
way that assists with navigation than simply exposing a zoomed view
of it. If there’s a lot of data, it’s better for the user to have a bird’s-eye
view rather than having to scroll through an overload of information.
Consider how to best present the data so it’s the most meaningful.

Search and Share Searching and sharing data between apps are
core aspects of modern apps. Users can now search across multiple
apps at one time and then share the data they fi nd. Or your app can
register itself as a share target and accept data that users share from
other Windows Store apps. Never before has app-to-app commu-
nication been so straightforward and consistent.

Picker Controls Th ese are traditional Windows controls that
have been updated for a modern UI—such as the File Open Picker
or File Save Picker—or print settings dialogs that have been staples
of Windows apps for many versions.

Media Because Windows Store apps built with JavaScript fully
support HTML5, the <audio> and <video> elements work the
same way as they do in ordinary Web pages.

Toast Notifi cations Toast notifi cations are a way to provide a
momentary message to the user, regardless of whether the app is in
use or not. Th e most popular forms of toast notifi cations are e-mail
alert pop-ups and text messages on phones. Toast messages can con-
tain text and images and can serve as another way to attract users
to your app. You can post the same notifi cations to the Windows 8
lock screen for a quick glimpse of any waiting messages.

Generation App
To recap, Windows 8 is Windows reimagined, sporting some of the
biggest changes in the OS since Windows 95, in an unprecedented
market. Th e built-in Visual Studio project templates enable you to
get started publishing moneymaking apps easier and faster than
ever in the largest market for app creators.

There’s not enough space here to discuss all of the awesome
features you could and should use in your Windows Store app,
so I highly recommend that you check out the Generation App
program (bit.ly/W8GenAppDev). It guides you through the process of
building a Windows Store (or Windows Phone) app in 30 days,
offering free technical and design consultations and assistance
along with exclusive tips and resources.

RACHEL APPEL is a developer evangelist at Microsoft New York City. Reach her via
her Web site at rachelappel.com or by e-mail at rachel.appel@microsoft .com. You
can also follow her latest updates on Twitter at twitter.com/rachelappel.

THANKS to the following technical expert for reviewing this article: Ian LeGrow

// AppBar markup in default.html
<div id="appbar" data-win-control="WinJS.UI.AppBar">
 <button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id:'addItem', label:'Add',
 icon:'add', section:'global'}" type="button"></button>
 <button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id:'exportData', label:'Save',
 icon:'save', section:'global'}" type="button"></button>
 <button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id:'deleteItem', label:'Delete',
 icon:'delete', section:'selection'}" type="button"></button>
</div>
// Script in groupedItems.js
document.getElementById("exportData").addEventListener("click", Data.exportData);
document.getElementById("addItem").addEventListener("click", this.addItem);
document.getElementById("deleteItem").addEventListener("click", this.deleteItem);

Figure 5 An AppBar with Buttons
for Adding, Deleting and Exporting Data

Figure 4 Countdown App Standard and Wide Tiles

www.bit.ly/M4HYmL
www.bit.ly/W8GenAppDev
www.rachelappel.com
mailto:rachel.appel@microsoft.com
www.twitter.com/rachelappel
www.msdnmagazine.com

msdn magazine84

I’ve been making electronic music instruments as a hobby for
about 35 years now. I started in the late 1970s wiring up CMOS
and TTL chips, and much later went the soft ware route—fi rst with
the Multimedia Extensions to Windows in 1991 and more recently
with the NAudio library for Windows Presentation Foundation
(WPF), and the MediaStreamSource class in Silverlight and
Windows Phone 7. Just last year, I devoted a couple installments of
my Touch & Go column to applications for Windows Phone that
play sound and music.

I should probably be jaded by this time, and perhaps reluctant
to explore yet another sound-generation API. But I’m not,
because I think Windows 8 is probably the best Windows platform
yet for making musical instruments. Windows 8 combines a high-
performance audio API—the XAudio2 component of DirectX—
with touchscreens on handheld tablets. Th is combination off ers
much potential, and I’m particularly interested in exploring how
touch can be exploited as a subtle and intimate interface to a
musical instrument implemented entirely in soft ware.

Oscillators, Samples and Frequency
At the heart of the sound-generation facility of any music synthesizer
are multiple oscillators, so called because they generate a more or
less periodic oscillating waveform at a particular frequency and
volume. In generating sounds for music, oscillators that create un-
varying periodic waveforms usually sound rather boring. More
interesting oscillators incorporate vibrato, tremolo or changing
timbres, and they’re only roughly periodic.

A program that wishes to create oscillators using XAudio2
begins by calling the XAudio2Create function. Th is provides an
object that implements the IXAudio2 interface. From that object
you can call CreateMasteringVoice just once to obtain an instance
of IXAudio2MasteringVoice, which functions as the main audio
mixer. Only one IXAudio2MasteringVoice exists at any time. In
contrast, you’ll generally call CreateSourceVoice multiple times to
create multiple instances of the IXAudio2SourceVoice interface.
Each of these IXAudio2SourceVoice instances can function as an
independent oscillator. Combine multiple oscillators for a multi-
phonic instrument, an ensemble or a full orchestra.

An IXAudio2SourceVoice object generates sound by creating
and submitting buffers containing a sequence of numbers that
describe a waveform. These numbers are often called samples.
Th ey’re oft en 16 bits wide (the standard for CD audio), and they

come at a constant rate—usually 44,100 Hz (also the standard for
CD audio) or thereabouts. Th is technique has the fancy name Pulse
Code Modulation, or PCM.

Although this sequence of samples can describe a very complex wave-
form, oft en a synthesizer generates a fairly simple stream of samples—
most commonly a square wave, a triangle wave or a sawtooth—with a
periodicity corresponding to the waveform’s frequency (perceived as
pitch) and an average amplitude that is perceived as volume.

Constructing Audio Oscillators for Windows 8

DIRECTX FACTOR CHARLES PETZOLD

Code download available at archive.msdn.microsoft.com/mag201302DXF.

SawtoothOscillator1::SawtoothOscillator1(IXAudio2* pXAudio2)
{
 // Create a source voice
 WAVEFORMATEX waveFormat;
 waveFormat.wFormatTag = WAVE_FORMAT_PCM;
 waveFormat.nChannels = 1;
 waveFormat.nSamplesPerSec = 44100;
 waveFormat.nAvgBytesPerSec = 44100 * 2;
 waveFormat.nBlockAlign = 2;
 waveFormat.wBitsPerSample = 16;
 waveFormat.cbSize = 0;

 HRESULT hr = pXAudio2->CreateSourceVoice(&pSourceVoice, &waveFormat,
 0, XAUDIO2_MAX_FREQ_RATIO);
 if (FAILED(hr))
 throw ref new COMException(hr, "CreateSourceVoice failure");

 // Initialize the waveform buffer
 for (int sample = 0; sample < BUFFER_LENGTH; sample++)
 waveformBuffer[sample] =
 (short)(65535 * sample / BUFFER_LENGTH - 32768);

 // Submit the waveform buffer
 XAUDIO2_BUFFER buffer = {0};
 buffer.AudioBytes = 2 * BUFFER_LENGTH;
 buffer.pAudioData = (byte *)waveformBuffer;
 buffer.Flags = XAUDIO2_END_OF_STREAM;
 buffer.PlayBegin = 0;
 buffer.PlayLength = BUFFER_LENGTH;
 buffer.LoopBegin = 0;
 buffer.LoopLength = BUFFER_LENGTH;
 buffer.LoopCount = XAUDIO2_LOOP_INFINITE;

 hr = pSourceVoice->SubmitSourceBuffer(&buffer);

 if (FAILED(hr))
 throw ref new COMException(hr, "SubmitSourceBuffer failure");

 // Start the voice playing
 pSourceVoice->Start();
}

void SawtoothOscillator1::SetFrequency(float freq)
{
 pSourceVoice->SetFrequencyRatio(freq / BASE_FREQ);
}

void SawtoothOscillator1::SetAmplitude(float amp)
{
 pSourceVoice->SetVolume(amp);
}

Figure 1 Much of the SawtoothOscillator1 Class

http://archive.msdn.microsoft.com/mag201302DXF

85February 2013msdnmagazine.com

For example, if the sample rate is 44,100 Hz, and every cycle of
100 samples has values that get progressively larger, then smaller,
then negative, and back to zero, the frequency of the resultant
sound is 44,100 divided by 100, or 441 Hz—a frequency close to the
perceptual center of the audible range for humans. (A frequency of
440 Hz is the A above middle C and is used as a tuning standard.)

Th e IXAudio2SourceVoice interface inherits a method named
SetVolume from IXAudio2Voice and defi nes a method of its own
named SetFrequencyRatio. I was particularly intrigued by this
latter method, because it seemed to provide a way to create an
oscillator that generates a particular periodic waveform at a vari-
able frequency with a minimum of fuss.

Figure 1 shows the bulk of a class named SawtoothOscillator1
that implements this technique. Although I use familiar 16-bit
integer samples for defining the waveform, internally XAudio2
uses 32-bit fl oating point samples. For performance-crit-
ical applications, you’ll probably want to explore the per-
formance diff erences between integer and fl oating-point.

In the header fi le, a base frequency is set that divides
cleanly into the 44,100 sampling rate. From that, a
buffer size can be calculated that is the length of a
single cycle of a waveform of that frequency:

static const int BASE_FREQ = 441;
static const int BUFFER_LENGTH = (44100 / BASE_FREQ);

Also in the header fi le is the defi nition of that buff er
as a fi eld:

short waveformBuffer[BUFFER_LENGTH];

Aft er creating the IXAudio2SourceVoice object, the Sawtooth-
Oscillator1 constructor fi lls up a buff er with one cycle of a sawtooth
waveform—a simple waveform that goes from an amplitude of -32,768
to an amplitude of 32,767. Th is buff er is submitted to the IXAudio-
2SourceVoice with instructions that it should be repeated forever.

Without any further code, this is an oscillator that plays a 441 Hz
sawtooth wave forever. Th at’s great, but it’s not very versatile. To give
SawtoothOscillator1 a bit more versatility, I’ve also included a SetFre-
quency method. Th e argument to this is a frequency that the class uses
to call SetFrequencyRatio. Th e value passed to SetFrequencyRatio
can range from fl oat values of XAUDIO2_MIN_FREQ_RATIO (or
1/1,024.0) up to a maximum value earlier specifi ed as an argument
to CreateSourceVoice. I used XAUDIO2_MAX_FREQ_RATIO (or
1,024.0) for that argument. Th e range of human hearing—about 20
Hz to 20,000 Hz—is well within the bounds defi ned by those two
constants applied to the base frequency of 441.

Buffers and Callbacks
I must confess that I was initially somewhat skeptical of the Set-
FrequencyRatio method. Digitally increasing and decreasing the
frequency of a waveform is not a trivial task. I felt obliged to
compare the results with a waveform generated algorithmically.
Th is is the impetus behind the OscillatorCompare project, which
is among the downloadable code for this column.

Th e OscillatorCompare project includes the SawtoothOscilla-
tor1 class I’ve already described as well as a SawtoothOscillator2
class. Th is second class has a SetFrequency method that controls
how the class dynamically generates the samples that defi ne the
waveform. Th is waveform is continuously constructed in a buff er
and submitted in real time to the IXAudio2SourceVoice object in
response to callbacks.

A class can receive callbacks from IXAudio2SourceVoice by
implementing the IXAudio2VoiceCallback interface. An instance
of the class that implements this interface is then passed as an argu-
ment to the CreateSourceVoice method. Th e SawtoothOscillator2
class implements this interface itself and it passes its own instance
to CreateSourceVoice, also indicating that it won’t be making use
of SetFrequencyRatio:

pXAudio2->CreateSourceVoice(&pSourceVoice, &waveFormat,
 XAUDIO2_VOICE_NOPITCH, 1.0f,
 this);

A class that implements IXAudio2VoiceCallback can use the
OnBuff erStart method to be notifi ed when it’s time to submit a
new buff er of waveform data. Generally when using OnBuff erStart
to keep waveform data up-to-date, you’ll want to maintain a pair

Figure 3 The ChromaticButtonKeyboard Program

void _stdcall SawtoothOscillator2::OnVoiceProcessingPassStart(UINT32 bytesRequired)
{
 if (bytesRequired == 0)
 return;

 int startIndex = index;
 int endIndex = startIndex + bytesRequired / 2;

 if (endIndex <= BUFFER_LENGTH)
 {
 FillAndSubmit(startIndex, endIndex - startIndex);
 }
 else
 {
 FillAndSubmit(startIndex, BUFFER_LENGTH - startIndex);
 FillAndSubmit(0, endIndex % BUFFER_LENGTH);
 }
 index = (index + bytesRequired / 2) % BUFFER_LENGTH;
}

void SawtoothOscillator2::FillAndSubmit(int startIndex, int count)
{
 for (int i = startIndex; i < startIndex + count; i++)
 {
 pWaveformBuffer[i] = (short)(angle / WAVEFORM_LENGTH - 32768);
 angle = (angle + angleIncrement) % (WAVEFORM_LENGTH * 65536);
 }

 XAUDIO2_BUFFER buffer = {0};
 buffer.AudioBytes = 2 * BUFFER_LENGTH;
 buffer.pAudioData = (byte *)pWaveformBuffer;
 buffer.Flags = 0;
 buffer.PlayBegin = startIndex;
 buffer.PlayLength = count;

 HRESULT hr = pSourceVoice->SubmitSourceBuffer(&buffer);

 if (FAILED(hr))
 throw ref new COMException(hr, "SubmitSourceBuffer");
}

Figure 2 OnVoiceProcessingPassStart in SawtoothOscillator2

www.msdnmagazine.com

msdn magazine86 DirectX Factor

of buff ers and alternate them. Th is is probably the best solution
if you’re obtaining audio data from another source, such as an
audio fi le. Th e goal is to not let the audio processor become “starved.”
Keeping a buff er ahead of the processing helps prevent starvation,
but does not guarantee it.

But I gravitated toward another method defi ned by IXAudio-
2VoiceCallback—OnVoiceProcessingPassStart. Unless you’re work-
ing with very small buff ers, generally OnVoiceProcessingPassStart
is called more frequently than OnBuff erStart and indicates when a
chunk of audio data is about to be processed and how many bytes
are needed. In the XAudio2 documentation, this callback method
is promoted as the one with the lowest latency, which is often
highly desirable for interactive electronic music instruments. You
don’t want a delay between pressing a key and hearing the note!

Th e SawtoothOscillator2 header fi le defi nes two constants:
static const int BUFFER_LENGTH = 1024;
static const int WAVEFORM_LENGTH = 8192;

The first constant is the length of the buffer used to submit
waveform data. Here it functions as a circular buff er. Calls to the
OnVoiceProcessingPassStart method request a particular number
of bytes. Th e method responds by putting those bytes in the buff er
(starting from where it left off the last time) and calling SubmitSource-
Buff er just for that updated segment of the buff er. You want this
buff er to be suffi ciently large so your program code isn’t overwriting
the part of the buff er still being played in the background.

It turns out that for a voice with a sample rate of 44,100 Hz, calls
to OnVoiceProcessingPassStart always request 882 bytes, or 441
16-bit samples. In other words, OnVoiceProcessingPassStart is
called at the constant rate of 100 times per second, or every 10 ms.
Although not documented, this 10 ms duration can be treated as
an XAudio2 audio processing “quantum,” and it’s a good fi gure to
keep in mind. Consequently, the code you write for this method
can’t dawdle. Avoid API calls and runtime library calls.

The second constant is the length of a single cycle of the
desired waveform. It could be the size of an array containing the
samples of that waveform, but in SawtoothOscillator2 it’s used
only for calculations.

The SetFrequency method in SawtoothOscillator2 uses that
constant to calculate an angle increment that’s proportional to the
desired frequency of the waveform:

angleIncrement = (int)(65536.0
 * WAVEFORM_LENGTH
 * freq / 44100.0);

Although angleIncrement is an integer, it’s treated as though it
comprises integral and fractional words. Th is is the value used to
determine each successive sample of the waveform.

For example, suppose the argument to SetFrequency is 440 Hz.
Th e angleIncrement is calculated as 5,356,535. In hexadecimal, this
is 0x51BBF7, which is treated as an integer of 0x51 (or 81 decimal),
with a fractional part of 0xBBF7, equivalent to 0.734. If the com-
plete cycle of a waveform is 8,192 bytes and you use only the inte-
ger part and skip 81 bytes for each sample, the resultant frequency
is about 436.05 Hz. (Th at’s 44,100 times 81 divided by 8,192.) If
you skip 82 bytes, the resultant frequency is 441.43 Hz. You want
something between these two frequencies.

Th is is why a fractional part also needs to enter the calculation.
Th e whole thing would probably be easier in fl oating point, and
fl oating point might even be faster on some modern processors,
but Figure 2 shows a more “traditional” integer-only approach.
Notice that only the updated section of the circular buffer is
specifi ed with each call to SubmitSourceBuff er.

SawtoothOscillator1 and SawtoothOscillator2 can be compared
side-by-side in the OscillatorCompare program. MainPage has
two pairs of Slider controls to change the frequency and volume of
each oscillator. Th e Slider control for the frequency generates only
integer values ranging from 24 to 132. I borrowed these values from
the codes used in the Musical Instrument Digital Interface (MIDI)
standard to represent pitches. Th e value of 24 corresponds to the C
three octaves below middle-C, which is called C 1 (C in octave 1)
in scientifi c pitch notation and has a frequency of about 32.7 Hz.
Th e value of 132 corresponds to C 10, six octaves above middle-C,
and a frequency of about 16,744 Hz. A tooltip converter on these
sliders displays the current value in both scientifi c pitch notation
and the frequency equivalent.

As I experimented with these two oscillators, I couldn’t hear a
difference. I also installed a software oscilloscope on another
computer to visually examine the resultant waveforms, and I couldn’t
see any diff erence either. Th is indicates to me that the SetFrequency-
Ratio method is implemented intelligently, which of course we
should expect in a system as sophisticated as DirectX. I suspect that
interpolations are being performed on resampled waveform data
to shift the frequency. If you’re nervous, you can set the BASE_FREQ
very low—for example, to 20 Hz—and the class will generate a
detailed waveform consisting of 2,205 samples. You can also
experiment with a high value: For example, 8,820 Hz will cause a
waveform of just fi ve samples to be generated! To be sure, this has
a somewhat diff erent sound because the interpolated waveform
lies somewhere between a sawtooth and a triangle wave, but the
resultant waveform is still smooth without “jaggies.”

void MainPage::OnKeyIsPressedChanged(Object^ sender, bool isPressed)
{
 Key^ key = dynamic_cast<Key^>(sender);
 int keyNum = (int)key->Tag;

 if (isPressed)
 {
 if (availableOscillators.size() > 0)
 {
 SawtoothOscillator* pOscillator = availableOscillators.back();
 availableOscillators.pop_back();

 double freq = 440 * pow(2, (keyNum % 1000 - 69) / 12.0);
 pOscillator->SetFrequency((float)freq);
 pOscillator->SetAmplitude(1.0f / NUM_OSCILLATORS);
 playingOscillators[keyNum] = pOscillator;
 }
 }
 else
 {
 SawtoothOscillator * pOscillator = playingOscillators[keyNum];

 if (pOscillator != nullptr)
 {
 pOscillator->SetAmplitude(0);
 availableOscillators.push_back(pOscillator);
 playingOscillators.erase(keyNum);
 }
 }
}

Figure 4 The IsPressedChanged Handler for the Key Instances

87February 2013msdnmagazine.com

Th is is not to imply that everything works hunky dory. With
either sawtooth oscillator, the top couple octaves get rather cha-
otic. Th e sampling of the waveform tends to emit high and low
frequency overtones of a sort I’ve heard before, and which I plan
to investigate more fully in the future.

Keep the Volume Down!
Th e SetVolume method defi ned by IXAudio2Voice and inherited by
IXAudio2SourceVoice is documented as a fl oating-point multiplier that
can be set to values ranging from -224 to 224, which equals 16,777,216.

In real life, however, you’ll probably want to keep the volume on
an IXAudio2SourceVoice object to a value between 0 and 1. Th e
0 value corresponds to silence and 1 corresponds to no gain or
attenuation. Keep in mind that whatever the source of the wave-
form associated with an IXAudio2SourceVoice—whether it’s being
generated algorithmically or originates in an audio fi le—it probably
has 16-bit samples that quite possibly come close to the minimum
and maximum values of -32,768 and 32,767. If you try to amplify
those waveforms with a volume level greater than 1, the samples
will exceed the width of a 16-bit integer and will be clipped at the
minimum and maximum values. Distortion and noise will result.

This becomes critical when you start combining multiple
IXAudio2SourceVoice instances. Th e waveforms of these multiple
instances are mixed by being added together. If you allow each
of these instances to have a volume of 1, the sum of the voices
could very well result in samples that exceed the size of the 16-bit
integers. Th is might happen sporadically—resulting only in inter-
mittent distortion—or chronically, resulting in a real mess.

When using multiple IXAudio2SourceVoice instances that gen-
erate full 16-bit-wide waveforms, one safety measure is setting the
volume of each oscillator to 1 divided by the number of voices. Th at
guarantees that the sum never exceeds a 16-bit value. An overall
volume adjustment can also be made via the mastering voice. You
might also want to look into the XAudio2CreateVolumeMeter
function, which lets you create an audio processing object that can
help monitor volume for debugging purposes.

Our First Musical Instrument
It’s common for musical instruments on tablets to have a piano-style
keyboard, but I’ve been intrigued recently by a type of button
keyboard found on accordions such as the Russian bayan (which
I’m familiar with from the work of Russian composer Sofia
Gubaidulina). Because each key is a button rather than a long
lever, many more keys can be packed within the limited space of
the tablet screen, as shown in Figure 3.

Th e bottom two rows duplicate the keys on the top two rows and
are provided to ease the fi ngering of common chords and melodic
sequences. Otherwise, each group of 12 keys in the top three rows
provide all the notes of the octave, generally ascending from left
to right. Th e total range here is four octaves, which is about twice
what you’d get with a piano keyboard of the same size.

A real bayan has an additional octave, but I couldn’t fi t it in with-
out making the buttons too small. Th e source code allows you to
set constants to try out that extra octave, or to eliminate another
octave and make the buttons even larger.

Because I can’t claim that this program sounds like any instrument
that exists in the real world, I simply called it ChromaticButton-
Keyboard. Th e keys are instances of a custom control named Key
that derives from ContentControl but performs some touch pro-
cessing to maintain an IsPressed property and generate an IsPressed-
Changed event. Th e diff erence between the touch handling in this
control and the touch handling in an ordinary button (which also
has an IsPressed property) is noticeable when you sweep your
fi nger across the keyboard: A standard button will set the IsPressed
property to true only if the fi nger press occurs on the surface of
the button, while this custom Key control considers the key to be
pressed if a fi nger sweeps in from the side.

Th e program creates six instances of a SawtoothOscillator class
that’s virtually identical to the SawtoothOscillator1 class from the
earlier project. If your touchscreen supports it, you can play six
simultaneous notes. Th ere are no callbacks and the oscillator fre-
quency is controlled by calls to the SetFrequencyRatio method.

To keep track of which oscillators are available and which oscil-
lators are playing, the MainPage.xaml.h fi le defi nes two standard
collection objects as fi elds:

std::vector<SawtoothOscillator *> availableOscillators;
std::map<int, SawtoothOscillator *> playingOscillators;

Originally, each Key object had its Tag property set to the MIDI
note code I discussed earlier. That’s how the IsPressedChanged
handler determines what key is being pressed, and what frequency
to calculate. Th at MIDI code was also used as the map key for the
playingOscillators collection. It worked fi ne until I played a note
from the bottom two rows that duplicated a note already playing,
which resulted in a duplicate key and an exception. I easily solved
that problem by incorporating a value into the Tag property indi-
cating the row in which the key is located: Th e Tag now equals the
MIDI note code plus 1,000 times the row number.

Figure 4 shows the IsPressedChanged handler for the Key
instances. When a key is pressed, an oscillator is removed from the
availableOscillators collection, given a frequency and non-zero
volume, and put into the playingOscillators collection. When a key
is released, the oscillator is given a zero volume and moved back
to availableOscillators.

Th at’s about as simple as a multi-voice instrument can be, and
of course it’s fl awed: Sounds should not be turned off and on like a
switch. Th e volume should glide up rapidly but smoothly when a
note starts, and fall back when it stops. Many real instruments also
have a change in volume and timbre as the note progresses. Th ere’s
still plenty of room for enhancements.

But considering the simplicity of the code, it works surprisingly
well and is very responsive. If you compile the program for the ARM
processor, you can deploy it on the ARM-based Microsoft Surface and
walk around cradling the untethered tablet in one arm while playing
on it with the other hand, which I must say is a bit of a thrill.

CHARLES PETZOLD is a longtime contributor to MSDN Magazine and the author
of “Programming Windows, 6th edition” (O’Reilly Media, 2012), a book about
writing applications for Windows 8. His Web site is charlespetzold.com.

THANKS to the following technical experts for reviewing this article:
Tom Mathews and Th omas Petchel

www.charlespetzold.com
www.msdnmagazine.com

msdn magazine88

Th e Internet hasn’t notably cracked the health-care industry yet.
It’s nibbled around the edges a little bit—for example, I can renew
prescriptions online instead of phoning them in—but it hasn’t
fundamentally changed the business model or the relationships
between the players as in other industries. I’ll begin my fourth year
as MSDN Magazine’s resident Diogenes (bit.ly/Xr3x) by predicting
how it soon will.

Th e forces currently tearing apart the structure of higher educa-
tion are also gathering in the medical industry. Health care in the
United States consumes about $3 trillion per year, approximately
one-sixth of the U.S. gross domestic product. The providers are
partying like it’s 2006 and costs are spiraling. The population is
aging and getting fatter; the boomer bulge is making its way through
the demographic snake. Disruptive technologies are ready to
rock. Unstoppable forces are slamming into immovable objects.
Something is about to give.

Why hasn’t it happened yet? Partly because of the medical
establishment’s famed inertia. Consider Ignaz Semmelweis, the 19th
century Viennese obstetrician who lowered maternal mortality
by 90 percent, simply by insisting that doctors wash their hands
before examining childbirth patients. As reward for this spectacu-
lar improvement, his colleagues threw him into an insane asylum
where he quickly died (see bit.ly/SO3jd4).

Perhaps faster technological change in medicine had to wait until
kids who grew up with the Internet had fi nished medical school.
Th at’s starting to happen now. A young doctor who attended a class
I taught on Microsoft HealthVault told me: “My kids’ babysitter
makes better use of the Internet in her business than we do here
at [a major teaching hospital]. I’m here to learn how to fi x that.”
Th e tipping point where these guys accumulate enough power to
change things is not far off .

Last month I explored how massive open online courses (MOOCs)
are successful in education because they combine higher quality
with lower cost. Th is virtuous combination is now approaching
for the medical industry. Consider your child waking up saying,
“I don’t feel good.” Instead of schlepping to the doctor’s office,
suppose you could talk to a nurse on a Skype video link.

Th e world’s fi nest doctors would work out the diagnostic pro-
tocols for a sick kid, and a soft ware wizard would walk the nurse
through it. She would have trained extensively on this specific
scenario, using excellent simulators, so she’d be an expert on it. Th e
programs would continuously update the diagnostic probabilities
based on the latest results seen in the local area, making her more

current and precise than an unaided pediatrician today. Yet her
time would cost far less than that of an MD.

What’s more, you would own a small instrument to measure
and transmit your child’s temperature, blood pressure, pulse oxy-
genation and other vital signs. A camera on the instrument would
transmit pictures of the throat or ear canal or skin rashes, and a
microphone would transmit breath sounds and heartbeats. All this
is under development, with prototypes already emerging and fi rst
commercial releases within the year (see econ.st/X5mq3e). Perhaps
algorithms could compare the pictures and sounds you transmit
to every other captured sample. Doctors wouldn’t misdiagnose dis-
eases such as measles (which is rare in the United States) because
they had never seen a case.

Patients with viral infections would be told to stay home, keep
warm, take Tylenol and call back if they didn’t improve. Patients with
bacterial infections or more severe symptoms would have prescrip-
tions transmitted to a pharmacy for delivery that day. You wouldn’t
have to take the whole day off from work to drive your kid to the
doctor and exchange germs with everyone in the waiting room.

Patients with more serious conditions, or conditions that can’t
be evaluated over the wire, would get appointments with the doc-
tor that aft ernoon. Each doctor’s time would be far better utilized
as well—mornings for follow-ups, aft ernoons for new cases from
the Web nurses.

Just as the education industry will still need mentor classes for
advanced topics, the medical industry will always need specialists
and surgeons for when people get really sick. But the mass of day-
to-day grunt work will be automated faster than anyone imagines,
in the same way and for the same reasons as the teaching of fresh-
man calculus is being transformed today.

The medical industry’s dam hasn’t yet cracked the way the
education industry’s has. But there’s far more force building up be-
hind the medical dam. Th e burst will be all the more spectacular
when it comes, with concomitantly larger profi t opportunities for
developers and companies who are thinking forward. Call me if
you’d like to discuss it.

DAVID S. PLATT teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Soft ware Legend in 2002. He wonders whether he should tape down two
of his daughter’s fi ngers so she learns how to count in octal. You can contact him
at rollthunder.com.

What’s Up, Doc?

DON’T GET ME STARTED DAVID S. PLATT

e:
e

www.bit.ly/Xr3x
www.bit.ly/SO3jd4
www.econ.st/X5mq3e
www.rollthunder.com

Untitled-1 1 1/4/13 11:28 AM

http://marketdash.componentone.com/redirect.ashx?rdtl=1366

Untitled-13 1 1/7/13 12:59 PM

www.syncfusion.com/compoffer

	Back
	Print
	MSDN Magazine, February 2013
	Cover Tip
	Contents
	CUTTING EDGE: Essential Facebook Programming:The JavaScript SDK
	WINDOWS WITH C++: Creating Desktop Apps with Visual C++ 2012
	Exploring the New JavaScript API for Office
	Async Causality Chain Tracking
	Building a Simple Comet Application in the Microsoft .NET Framework
	Detecting Abnormal Data Using k-Means Clustering
	Taming the Event Stream: Fast Approximate Counting
	TEST RUN: Naive Bayes Classification with C#
	THE WORKING PROGRAMMER: .NET Collections, Part 2: Working with C5
	MODERN APPS: Create Windows Store Apps with HTML5 and JavaScript
	DIRECTX FACTOR: Constructing Audio Oscillatorsfor Windows 8
	DON’T GET ME STARTED: What’s Up, Doc?

	Visual Studio Live! Las Vegas Insert

