readme: windows azure sample
Joshy Joseph (jojoseph@microsoft.com), Architect, Microsoft Corporation.
INTRODUCTIOn
 This sample illustrates the concepts discussed in the MSDN May 2009 article titled “Cloud Computing: Patterns for High Availability, Scalability, And Computing Power with Windows Azure”. Sample illustrates a simple digital asset management service hosted in Windows Azure. The users and clients interact with the service through Web portal and Web Services SDK.
WHAT DO YOU NEED
1. Windows Azure SDK: http://www.microsoft.com/downloads/details.aspx?FamilyID=b44c10e8-425c-417f-af10-3d2839a5a362&displaylang=en
1. Visual Studio Tools for Windows Azure: http://www.microsoft.com/downloads/details.aspx?FamilyID=59e8fc0c-c399-4ab7-8a93-882d8e74b67a&displaylang=en
1. Azure Cloud deployment: Visit http://lx.azure.microsoft.com/ to register and obtain Windows Azure tokens
SCENARIO OVERVIEW
Fabrikam, an ISV, would like to build a hosted digital asset management Web application. This application enables end users to store digital images in the cloud. Users must be able to preview the pictures submitted, tag them, and annotate them. For example, tag the assets with originating location information and user tags. The application must allow users to use their own desktop applications to access these pictures directly from the storage.

Figure: Fabrikam Hosted in Windows Azure
Figure represents a high-level architectural view of the services exposed by Fabrikam. As shown in the diagram, Fabrikam exposes a Web application and a Web service to the end users for managing their digital assets. These services store and retrieve digital assets from the asset store implemented on top of Windows Azure Blob services. Fabrikam implements a background processor to execute tasks such as tagging, thumbnail generation, and so on.

DEVELOPING SOLUTION
Developing applications for Azure is very similar to developing normal ASP Web or Web service application. We will start with developing a Web application and a Web services.
1. Developing A Web Application
There are “Cloud Service” project templates available with Visual Studio once you deploy the Visual Studio Tools for Windows Azure (shown below).
[image:]
In this sample I have already created a solution, “CloudDigitalAssetStorageService”, with the following four projects:
· CloudDigitalAssetStorageManagementWorker: worker project responsible for thumbnail generation
· CloudDigitalAssetStorageService: This project contains reference to Web and Worker roles. In addition contains service definition and configuration information. This is the default startup project and gets executed in the local development fabric.
· CloudDigitalAssetStorageService_WebRole: Hosts a simple ASP Web application and a Web service
· Utilities: Utility services provide helper methods to manage Blob/Queue storage interactions

Note 1: Utility project is referencing “StorageClient” libraries which are supplied as part of the Azure SDK. This library hides some REST based calls to Windows Azure Blob/Queue Storage.
Note 2: You should start the Visual Studio with Administrator privilege to enable debugging and execution in the local development environment.
The figure below shows all the projects:
[image:]
Now you should be able to compile and run the application in the local development environment by pressing F5. The figure below shows 1. Local development environment, 2. Local storage and 3. Default Web application.
[image:]
You could upload images or documents using the user interfaces as shown in the diagram. You could see the logs and tracing information in Development Fabric UI.
2. Adding a Web Service
This sample application exposes a Web service supporting the following interface
[ServiceContract]
public interface ICloudDigitalAssetStorageWebService
{
// store any asset to the cloud storage and returns the asset identifier
 [OperationContract]
string StoreAsset(Stream asset);

// associate meta data with a previously created asset
 [OperationContract]
bool SetAssetMetadata(AssetMetadata metadata);

// process an asset ; for example create a thumbnail
 [OperationContract]
bool ProcessAsset(string assetId);

// get all asset meta data
 [OperationContract]
 IEnumerable<AssetMetadata> GetAllAssetsMetaData();

 // get asset meta data
 [OperationContract]
 AssetMetadata GetMetaData(string assetId);

 // get asset
 [OperationContract]
 Stream GetAsset(string assetId);
 }
The service is implemented using an ASP .NET Web Service, “CloudDigitalAssetStorageService.svc”. This service is exposing a BasicHTTPBinding and HTTP streaming support (See Web.xml for details).
Note 3: As of this writing generating WSDL from a deployed Azure service is not possible. Workaround is to run the project as normal Web application (i.e., by setting Web Role which hosts the Web service as the default StartUp project) and pointing the client to that endpoint to generate proxies. Once the proxies are generated reset the StartUp project to “CloudDigitalAssetStorageService” (main cloud service project with deployment and configuration information).
A sample console client (CloudDigitalAssetAccessClient) application is included which demonstrates communication with Azure hosted Web service and executes all the methods listed in the interface (see below for details about the Web service).
3. Adding a blob storage
First you need to setup the blob storage account information
· AccountName: Specify the name of your Windows Azure account.
· AccountSharedKey: Specify the key used to authenticate a request made against Windows Azure storage. To authenticate a request, you must sign the request with the key for the account that is making the request.
· BlobStorageEndpoint: Specifies the base URI of the blob storage service.
· ContainerName: Specifies the name of the blob container used to store images for this application.
In our scenario (for local execution) we used the following information:
<ConfigurationSettings>
<Setting name="AccountName" value="Fabrikam" />
<Setting name="AccountSharedKey" value="Eby111M02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBekso45Gw==" />
<Setting name="BlobStorageEndpoint" value="http://127.0.0.1:10000"/>
<Setting name="QueueStorageEndpoint" value="http://127.0.0.1:10000"/>
<Setting name="ContainerName" value="fabrikamImagegallery"/>
</ConfigurationSettings>
Blob Content Organization

The above diagram shows how the assets are organized in the resulting blob store. Assets and Thumbnails are stored with different paths.
4. Worker Role
This project contains a worker role. This worker is responsible for generating thumbnails for the assets. Worker listens for messages (asset path id) in the queue. Once message arrives, it retrieves the blobs from the blob store using asset id and generates the thumbnail from the image and stores the thumbnail in the blob. For images it uses the image asset itself as a source to generate thumbnail. However for documents the sample leverages a preexisting image included with the assembly to generate the thumbnail.

DEPLOYMENT CONSIDERTAIONS
1. Trust Permissions
This project needs “full trust permissions” to execute HTTP streaming services and to enable reflection to retrieve resources from the assembly. This is possible by enabling both roles to execute with enableNativeCodeExecution="true". This deployment attribute is turned-on in the service definition file (ServiceDefinition.csdef).
<WebRole name="WebRole" enableNativeCodeExecution="true" >

</WebRole>

<WorkerRole name="Worker" enableNativeCodeExecution="true">

</ WorkerRole >

2. Publishing Process
In order to deploy the application to cloud you need to create a package (.cspkg). This could be done by the publish menu option or using command line tool (CSPack).
[image:]
3. Uploading to Windows Azure
Once published you could upload the service to the Azure cloud using the “Azure Services Developer Portal “ accessible through “Browse To Portal” option as shown above or connecting to http://lx.azure.microsoft.com/. You need to supply your LiveID to access the site.
4. Changing Service Configuration (.cscfg)
You need to change the service configuration (.cscfg) information with appropriate storage configuration information (rather than using local storage) received while creating a new storage project in Windows Azure.
<Setting name="AccountName" value="oneidastorage" />
 <Setting name="AccountSharedKey" value="Gd6PR8E0NMy8xsfU3HJtZweP3lhlMkwOhz8cIvDbnLzeBOiaCHmEAps9ronibEQz7+QqA5dgS+AJk2r+O9celg==" />
 <Setting name="BlobStorageEndpoint" value="http://blob.core.windows.net" />
 <Setting name="QueueStorageEndpoint" value="http://queue.core.windows.net" />
 <Setting name="TableStorageEndpoint" value="http://blob.table.windows.net" />

You should upload the assets using the “deploy” option available in the Azure portal. Another option is to store the deployment package and configuration file in the azure storage itself and deploy from there.
[image:]
Once deployed, the application will be initially deployed to a staging environment as shown below.

[image:]
You could test the application using the Web Site Url. In addition you could connect the sample cosole client to the Azure srevice by changing the endpoint information in the App.config file.
<client>
<!--
Local Cloud = http://localhost:81/CloudDigitalAssetStorageService.svc"
Azure Cloud = http://8906b110-e48a-4203-97f4-f86d6916613d.cloudapp.net/CloudDigitalAssetStorageService.svc
-->
<endpoint address="http://dfcc0c98-5dc6-4680-8646-01c52c65a30e.cloudapp.net/CloudDigitalAssetStorageService.svc"
 binding="basicHttpBinding" bindingConfiguration="BasicHttpBinding_ICloudDigitalAssetStorageWebService"
 contract="CloudDigitalStorageService.ICloudDigitalAssetStorageWebService"
 name="BasicHttpBinding_ICloudDigitalAssetStorageWebService" />
<Client/>
REFERENCES
· Windows Azure SDK : http://msdn.microsoft.com/en-us/library/dd179367.aspx
· Azure Services Platform Developer Center : http://msdn.microsoft.com/en-us/azure/default.aspx
· Windows Azure Developer Portal : http://go.microsoft.com/fwlink/?LinkID=128009
· Windows Azure MSDN center: http://msdn.microsoft.com/en-us/azure/cc994380.aspx

image3.png

image4.png

image5.png

image6.png

image1.png

image2.png

