
Windows Embedded Compact 7
Boot Time Performance

Douglas Boling

Boling Consulting Inc.

About Douglas Boling

• Independent consultant specializing in Windows Mobile and
Windows Embedded Compact (Windows CE)
– On-Site Instruction

– Consulting and Development

• Author
– Programming Embedded Windows CE

• Fourth Edition

Agenda

• Boot sequence explained

• Instrumenting the boot

• Speeding up the boot sequence

The Boot Sequence Summary

• Machine Startup

• Kernel Boot

• System Startup

Machine Startup

• BIOS/EFI startup

– On x86 and some ARM systems

– For fast boot, disable startup tests

• Boot loader launch

– If NAND flash

• initial program load (IPL) code reads boot loaded into RAM

– If Disk based

• Boot sector in disk boot partition finds boot loader and reads it into RAM

Kernel Boot

• Bootloader loads operating system Image into RAM

– Typically NK.BIN

– Speed depends on the speed of flash and the size of the image

• Initial Kernel startup

– Typically quite fast

– Kernel (NK) and FileSys modules loaded and initialized

– This is the place to configure metering code

System Startup

• Driver loading

– Drivers load serially

– User mode drivers load in unique driver manager instances

– Driver load driven by registry

• Services startup

– Services load serially

– Very similar to driver initialization

– Network access typical

System Startup (2)

• Shell startup

– Explorer

– XAML-based “Home screen”

– Thin client shell

• Application startup

– If Explorer shell

• Applications in Startup Folder launched

– Otherwise, launch driven by registry

Configuring the Boot Sequence

• Machine Startup

– Configured in BIOS / EFI settings

– IPL or boot sector code

– Boot loader code

• Kernel Boot

– Not really configurable

– Componentization decisions can help

• System Startup

– In the registry

Registry Configuration

• System Boot sequence configured in [HKLM\Init]

– Configures the launch sequence of the operating system

– Values “Launchxx” define kernel DLLs and Applications to load

– Values “Dependxx” serialize the load sequence to support
dependencies

• Driver load sequence configured in [HKLM\Drivers\BuiltIn]

– Each subkey represents a driver to load

– The “Order” value in the subkeys define the load order of the drivers

HKEY_LOCAL_MACHINE\Init

[HKLM]\Drivers\BuiltIn

The Key to Boot Optimization

Know what is going on!

Know what is going on!

• The CeLog tool is great for this

– CELog is a kernel level logging infrastructure

• Will log everything

– Interrupts

– TLB misses (on MIPs and SH4 CPUs)

– Thread switches

– Memory allocations

– Kernel sync objects

– OEM defined events

CeLog Architecture

Kernel

CeLog.DLL

RAM Buffer
(default 128K)

CeLogFlush.exe
or

OSCapture.exe

File On
Disk

Log data

On Device
or
attached PC

On Device

CELog Internal Design

• CELog collects information in circular memory buffer

– 128 KB by default

– Configurable at load via registry

• Flush utility (CELogFlush) copies data in buffer to file

– File is in root or release directory

– *.clg files

– Source in public\common\sdk\samples\CeLog\flush

• Another utility (OSCapture) copies data to file on device

– Same file format

CELog Zones

CELZONE_INTERRUPT 0x00000001 Events related to interrupts.

CELZONE_RESCHEDULE 0x00000002 Events related to the scheduler.

CELZONE_MIGRATE 0x00000004 Events related to migration of threads between processes.

CELZONE_TLB 0x00000008 Events related to translation look-aside buffer (TLB). (MIPS and SH4)

CELZONE_DEMANDPAGE 0x00000010 Events related to paging.

CELZONE_THREAD 0x00000020 Events related to threads, except for thread switches.

CELZONE_PROCESS 0x00000040 Events related to processes.

CELZONE_PRIORITYINV 0x00000080 Events related to priority inversion.

CELZONE_CRITSECT 0x00000100 Events related to critical sections.

CELZONE_SYNCH 0x00000200 Events related to synchronization.

CELZONE_PROFILER 0x00000400 Events related to profiling.

CELZONE_HEAP 0x00000800 Events related to heaps.

CELZONE_VIRTMEM 0x00001000 Events related to virtual memory.

CELZONE_GWES 0x00002000 Events related to the Graphics, Windowing, and Event system.

CELZONE_LOADER 0x00004000 Events related to the loader.

CELZONE_MEMTRACKING 0x00008000 Events related to memory tracking.

CELZONE_BOOT_TIME 0x00010000 Events in the boot process

CELZONE_GDI 0x00020000 Events related to GDI.

CELZONE_KCALL 0x00400000 Events related to KCALLs. Used by profilier

CELZONE_DEBUG 0x00800000 Duplicate debug output strings in log.

Zones For Boot Time Performance – 0x14266

CELZONE_INTERRUPT 0x00000001 Events related to interrupts.

CELZONE_RESCHEDULE 0x00000002 Events related to the scheduler.

CELZONE_MIGRATE 0x00000004
Events related to migration of threads

between processes.
CELZONE_TLB 0x00000008 Events related to the translation look-aside buffer (TLB).

CELZONE_DEMANDPAGE 0x00000010 Events related to paging.

CELZONE_THREAD 0x00000020
Events related to threads, except for thread

switches.

CELZONE_PROCESS 0x00000040 Events related to processes.
CELZONE_PRIORITYINV 0x00000080 Events related to priority inversion.

CELZONE_CRITSECT 0x00000100 Events related to critical sections.

CELZONE_SYNCH 0x00000200 Events related to synchronization.
CELZONE_PROFILER 0x00000400 Events related to profiling.

CELZONE_HEAP 0x00000800 Events related to heaps.

CELZONE_VIRTMEM 0x00001000 Events related to virtual memory.

CELZONE_GWES 0x00002000 Events related to the Graphics, Windowing, and Event system.

CELZONE_LOADER 0x00004000 Events related to the loader.
CELZONE_MEMTRACKING 0x00008000 Events related to memory tracking.

CELZONE_BOOT_TIME 0x00010000 Events in the boot process
CELZONE_GDI 0x00020000 Events related to GDI.

CELZONE_KCALL 0x00400000 Events related to KCALLs.

CELZONE_DEBUG 0x00800000 Duplicate debug output strings in log.

Using CELog

• CELog needs the CELog.DLL in the image

– Needs to be there when kernel starts

• Mask unneeded logging zones to reduce data

• Enlarge RAM buffer to eliminate data loss

• Start CeLogFlush on boot

• CeLog source in private directory

– Private\winceos\coreos\nk\celog

Including CeLog in Image

• Configure image by setting

• To use OsCapture.EXE instead of CeLogFlush

• Don’t set both IMGAUTOFLUSH and IMGOSCAPTURE

REM Include CeLog files in image

Set IMGCELOGENABLE=1

REM Configure CeLogFlush to launch after FileSys

Set IMGAUTOFLUSH=1

REM Configure OsCapture to launch after FileSys

Set IMGOSCAPTURE=1

CeLog Configuration at Boot Time

• Registry not available when CeLog.DLL loads at boot

• CeLog buffer size main issue

– Defaults to 128K, easily too small

• Embedded CE 6: Buffer size can not be configured

– Should work with FIXUPVAR to dwCeLogLargeBuf however variable
wasn’t marked “const volatile” and was optimized out

– Solution: rebuild kernel.dll or CeLog.dll to change

• Compact 7: OAL fields IOCTL_HAL_GET_CELOG_PARAMETERS

IOCTL_HAL_GET_CELOG_PARAMETERS

• IOCTL sent to OAL from CeLog DLL on boot

– Pointer to OEMCeLogParameters structure passed in Output buffer

• Structure prepopulated.

– Only update what you need to change

typedef struct {

 DWORD dwVersion; // Version of this structure, set to 1

 DWORD MainBufferAddress; // Virtual address for buffer (0 for no address)

 DWORD MainBufferSize; // Size of the buffer

 DWORD SyncDataSize; // Portion of the main buffer to use for

 // thread/process/module info

 BOOL ClearExistingData; // Says whether to wipe buffer from a previous boot

 // (only used if MainBufferAddress != 0)

 BOOL AutoEraseMode; // Indicates to discard old data to make room for new

 DWORD ZoneCE; // CeLog zone settings

} OEMCeLogParameters_V1;

CELogFlush Registry Entries

• CeLogFlush registry entries

[HKEY_LOCAL_MACHINE\System\CeLog]

 "FileName“ = <Path & file name of .clg file>

 "Transport"= "Local File" | "RAM" | “CESH"

 "FlushTimeout"= dword:<flush timeout in mS>

 “FileSize"= dword:<Max size of .clg before new file>

 “FileFlags"= dword:<0, 1, 2>

 0 = Close .clg file after some idle time (def.)

 1 = Never close .clg file

 2 = Close .clg file after every flush

 "ThreadPriority“= dword:<flush thread priority>

Using CeLog for Boot Analysis

• Demo

Kernel Tracker View of Boot

Kernel Tracker View of Boot

Kernel
Threads

Kernel Tracker View of Boot

New Threads
Starting

Kernel Tracker View of Boot

Device Manager
Main Thread

(DevMainEntry)

Kernel Tracker View of Boot

User Mode
Device Managers

Kernel Tracker View of Boot

“Idle Thread”
(time all threads blocked)

Kernel Tracker View of Boot

DMA Driver
In the emulator

Inserting Custom Data in CeLog

• This API logs data

– fTimeStamp TRUE to add timestamp to entry

– wID Log ID – See next slide

– pData Pointer to data to log

– wLen Length of data

– dwZoneUser User defined zones

– dwZoneCE Zone the event relates to

– wFlag User defined flag

– fFlagged TRUE to logging wFlag field

void CeLogData (BOOL fTimeStamp, WORD wID, PVOID pData,

 WORD wLen, WORD dwZoneUser, DWORD dwZoneCE,

 WORD wFlag, BOOL fFlagged);

Inserting Custom Data in CeLog

• Predefined data types

– Each predefined data type can log an array of that type

– Character unsigned character wide char

– Short unsigned short

– Long unsigned long

– Float double

• Custom types can be logged as well using IDs ranging from
CELID_USER to CELID_MAX

– All are defined in ..\public\common\oak\sdk\celog.h

– Custom types can be interpreted using ReadLog extensions

Boot Time Tips

Tune Machine Startup

• Disable memory tests unless needed

• Hide BIOS / EFI messages

– The user doesn’t need to see the PCI device enumeration

• Disable floppy and other disk checks

• If using BIOS / EFI, extend to add splash screen

Tune the Loader Code

• Bootloaders typically copy the .bin file from storage to RAM

– Optimizing this copy can shave seconds off the boot

– Look at hardware interface to optimize read from flash

• Keep the image as small as possible

– Remove unneeded components

– Consider breaking the .bin file into parts

• Multiple bin files or a single bin file and discreet files in the file system

• Display a splash screen with a progress bar as quickly as
possible.

– If possible, design OAL so splash screen remains until display driver up

Smaller Images

• Smaller images are better images

– Faster to load a small image than a large one

– Less code means smaller RAM footprint

– Less ‘black box’ code doing things you don’t know about

• Break up the image if necessary

– Balance boot speed requirement with engineering resources

• Understanding of the build process

• Need to package all parts of image and deliver it to device

• Develop an update strategy

Optimize the Driver Initialization

• Driver loading is a major component of the boot process

• Remove unneeded drivers

– Do you need all drivers in shipping version?

• Group user mode drivers in one or two UM Driver Managers

– By default each UM driver gets its own process

– The more processes that start, the longer the boot takes

Driver Init Procedure Optimization

• Driver Init procedures are called serially during boot

– A single driver can slow down the boot

• Put Interrupt Service Thread initialization in that thread

– IST should read its own registry entries, set its own priorities and such

• Don’t wait on hardware

– Use another thread to wait on the hardware

– Have the driver fail open calls until hardware is ready

Only Load the Services You Need

• Many services are added by the default configurations

– OBEX

– TimeService

• Unless you need a specific service, don’t use it

• If all services can be eliminated remove the services manager

– If you need one ‘service’ consider writing it as a driver

Remove Explorer unless absolutely needed

• The Explorer is very useful during bring up

– Much less so when the system has shipped

• While pretty quick, it does take time to launch

– Save time, eliminate it

• Launch apps on boot using registry

– Use Init key instead of Explorer startup folder

• Frees custom application to handle “system keys”

– “Windows” key combinations and select Alt-key combinations

Manage application startup

• Don’t install the application on cold boot

– Don’t laugh, I’ve seen this!

• Use registry initialization file to provide needed registry keys

– You’ll need to teach the application developers how to do this

• Use a custom .bib file to allow application to prepopulate files

– Or provide a method to prepopulate file on storage device

Other Thoughts…

• RAM based registry is much faster than Hive based registry

• May need to consider suspend / resume if system too big

– Yes, the operating system still supports this (quite well actually)

• Consider Hibernate

– Suspend with RAM saved on storage device

– No Microsoft provided code but fairly easy conceptually

• Don’t expose technical boot messages to user

– Think what your Mom would like to see

Summary

• Boot time has a huge impact of “First Impression”

• Every second of every boot of every device…

 … can save “Lives” of time.

• Use CeLog

– The best source for boot time information

• Get it right

Questions…

Doug Boling

Boling Consulting Inc.

www.bolingconsulting.com

dboling @ bolingconsulting.com

© 2011 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in
this summary.

