
Windows Embedded Compact 7
Boot Time Performance

Douglas Boling

Boling Consulting Inc.

About Douglas Boling

Å Independent consultant specializing in Windows Mobile and
Windows Embedded Compact (Windows CE)
ïOn-Site Instruction

ïConsulting and Development

ÅAuthor
ïProgramming Embedded Windows CE

ÅFourth Edition

Agenda

ÅBoot sequence explained

Å Instrumenting the boot

ÅSpeeding up the boot sequence

The Boot Sequence Summary

ÅMachine Startup

ÅKernel Boot

ÅSystem Startup

Machine Startup

ÅBIOS/EFI startup

ïOn x86 and some ARM systems

ïFor fast boot, disable startup tests

ÅBoot loader launch

ï If NAND flash

Åinitial program load (IPL) code reads boot loaded into RAM

ï If Disk based

ÅBoot sector in disk boot partition finds boot loader and reads it into RAM

Kernel Boot

ÅBootloader loads operating system Image into RAM

ïTypically NK.BIN

ïSpeed depends on the speed of flash and the size of the image

Å Initial Kernel startup

ïTypically quite fast

ïKernel (NK) and FileSys modules loaded and initialized

ïThis is the place to configure metering code

System Startup

ÅDriver loading

ïDrivers load serially

ïUser mode drivers load in unique driver manager instances

ïDriver load driven by registry

ÅServices startup

ïServices load serially

ïVery similar to driver initialization

ïNetwork access typical

System Startup (2)

ÅShell startup

ïExplorer

ïXAML-based “Home screen”

ïThin client shell

ÅApplication startup

ï If Explorer shell

ÅApplications in Startup Folder launched

ïOtherwise, launch driven by registry

Configuring the Boot Sequence

ÅMachine Startup

ïConfigured in BIOS / EFI settings

ï IPL or boot sector code

ïBoot loader code

ÅKernel Boot

ïNot really configurable

ïComponentization decisions can help

ÅSystem Startup

ï In the registry

Registry Configuration

ÅSystem Boot sequence configured in [HKLM\Init]

ïConfigures the launch sequence of the operating system

ïValues “Launchxx” define kernel DLLs and Applications to load

ïValues “Dependxx” serialize the load sequence to support
dependencies

ÅDriver load sequence configured in [HKLM\Drivers\BuiltIn]

ïEach subkey represents a driver to load

ïThe “Order” value in the subkeys define the load order of the drivers

HKEY_LOCAL_MACHINE\ Init

[HKLM]\Drivers\BuiltIn

The Key to Boot Optimization

Know what is going on!

Know what is going on!

ÅThe CeLog tool is great for this

ïCELog is a kernel level logging infrastructure

ÅWill log everything

ï Interrupts

ïTLB misses (on MIPs and SH4 CPUs)

ïThread switches

ïMemory allocations

ïKernel sync objects

ïOEM defined events

CeLog Architecture

Kernel

CeLog.DLL

RAM Buffer
(default 128K)

CeLogFlush.exe
or

OSCapture.exe

File On
Disk

Log data

On Device
or
attached PC

On Device

CELog Internal Design

ÅCELog collects information in circular memory buffer

ï128 KB by default

ïConfigurable at load via registry

ÅFlush utility (CELogFlush) copies data in buffer to file

ïFile is in root or release directory

ï *.clg files

ïSource in public\common\sdk\samples\CeLog\ flush

ÅAnother utility (OSCapture) copies data to file on device

ïSame file format

CELog Zones

CELZONE_INTERRUPT 0x00000001 Events related to interrupts.

CELZONE_RESCHEDULE 0x00000002 Events related to the scheduler.

CELZONE_MIGRATE 0x00000004 Events related to migration of threads between processes.

CELZONE_TLB 0x00000008 Events related to translation look -aside buffer (TLB). (MIPS and SH4)

CELZONE_DEMANDPAGE 0x00000010 Events related to paging.

CELZONE_THREAD 0x00000020 Events related to threads, except for thread switches.

CELZONE_PROCESS 0x00000040 Events related to processes.

CELZONE_PRIORITYINV 0x00000080 Events related to priority inversion.

CELZONE_CRITSECT 0x00000100 Events related to critical sections.

CELZONE_SYNCH 0x00000200 Events related to synchronization.

CELZONE_PROFILER 0x00000400 Events related to profiling.

CELZONE_HEAP 0x00000 800 Events related to heaps.

CELZONE_VIRTMEM 0x0000 10 00 Events related to virtual memory.

CELZONE_GWES 0x0000 2000 Events related to the Graphics, Windowing, and Event system.

CELZONE_LOADER 0x0000 4000 Events related to the loader.

CELZONE_MEMTRACKING 0x0000 8000 Events related to memory tracking.

CELZONE_BOOT_TIME 0x000 10 000 Events in the boot process

CELZONE_GDI 0x000 20 000 Events related to GDI.

CELZONE_KCALL 0x00 400000 Events related to KCALLs. Used by profilier

CELZONE_DEBUG 0x00 800000 Duplicate debug output strings in log.

Zones For Boot Time Performance – 0x14266

CELZONE_INTERRUPT 0x00000001 Events related to interrupts.

CELZONE_RESCHEDULE 0x00000002 Events related to the scheduler.

CELZONE_MIGRATE 0x00000004
Events related to migration of threads

between processes.
CELZONE_TLB 0x00000008 Events related to the translation look -aside buffer (TLB).

CELZONE_DEMANDPAGE 0x00000010 Events related to paging.

CELZONE_THREAD 0x00000020
Events related to threads, except for thread

switches.

CELZONE_PROCESS 0x00000040 Events related to processes.
CELZONE_PRIORITYINV 0x00000080 Events related to priority inversion.

CELZONE_CRITSECT 0x00000100 Events related to critical sections.

CELZONE_SYNCH 0x00000200 Events related to synchronization.
CELZONE_PROFILER 0x00000400 Events related to profiling.

CELZONE_HEAP 0x00000 800 Events related to heaps.

CELZONE_VIRTMEM 0x0000 10 00 Events related to virtual memory.

CELZONE_GWES 0x0000 2000 Events related to the Graphics, Windowing, and Event system.

CELZONE_LOADER 0x0000 4000 Events related to the loader.
CELZONE_MEMTRACKING 0x0000 8000 Events related to memory tracking.

CELZONE_BOOT_TIME 0x000 10 000 Events in the boot process
CELZONE_GDI 0x000 20 000 Events related to GDI.

CELZONE_KCALL 0x00 400000 Events related to KCALLs.

CELZONE_DEBUG 0x00 800000 Duplicate debug output strings in log.

Using CELog

ÅCELog needs the CELog.DLL in the image

ïNeeds to be there when kernel starts

ÅMask unneeded logging zones to reduce data

ÅEnlarge RAM buffer to eliminate data loss

ÅStart CeLogFlush on boot

ÅCeLog source in private directory

ïPrivate\winceos\coreos\nk\celog

Including CeLog in Image

ÅConfigure image by setting

ÅTo use OsCapture.EXE instead of CeLogFlush

ÅDon’t set both IMGAUTOFLUSH and IMGOSCAPTURE

REM Include CeLog files in image

Set IMGCELOGENABLE=1

REM Configure CeLogFlush to launch after FileSys

Set IMGAUTOFLUSH=1

REM Configure OsCapture to launch after FileSys

Set IMGOSCAPTURE=1

CeLog Configuration at Boot Time

ÅRegistry not available when CeLog.DLL loads at boot

ÅCeLog buffer size main issue

ïDefaults to 128K, easily too small

ÅEmbedded CE 6: Buffer size can not be configured

ïShould work with FIXUPVAR to dwCeLogLargeBuf however variable
wasn’t marked “const volatile” and was optimized out

ïSolution: rebuild kernel.dll or CeLog.dll to change

ÅCompact 7: OAL fields IOCTL_HAL_GET_CELOG_PARAMETERS

IOCTL_HAL_GET_CELOG_PARAMETERS

Å IOCTL sent to OAL from CeLog DLL on boot

ïPointer to OEMCeLogParameters structure passed in Output buffer

ÅStructure prepopulated.

ïOnly update what you need to change

typedef struct {

 DWORD dwVersion ; // Version of this structure, set to 1

 DWORD MainBufferAddress ; // Virtual address for buffer (0 for no address)

 DWORD MainBufferSize ; // Size of the buffer

 DWORD SyncDataSize ; // Portion of the main buffer to use for

 // thread/process/module info

 BOOL ClearExistingData ; // Says whether to wipe buffer from a previous boot

 // (only used if MainBufferAddress != 0)

 BOOL AutoEraseMode ; // Indicates to discard old data to make room for new

 DWORD ZoneCE; // CeLog zone settings

} OEMCeLogParameters_V1 ;

CELogFlush Registry Entries

ÅCeLogFlush registry entries

[HKEY_LOCAL_MACHINE\ System \ CeLog]

 " FileName ò = < Path & file name of . clg file>

 "Transport"= "Local File" | "RAM" | òCESH"

 " FlushTimeout "= dword :<flush timeout in mS>

 òFileSize "= dword :<Max size of . clg before new file>

 òFileFlags "= dword :<0, 1, 2>

 0 = Close . clg file after some idle time (def.)

 1 = Never close . clg file

 2 = Close . clg file after every flush

 " ThreadPriority ò= dword :<flush thread priority>

Using CeLog for Boot Analysis

ÅDemo

Kernel Tracker View of Boot

Kernel Tracker View of Boot

Kernel
Threads

Kernel Tracker View of Boot

New Threads
Starting

Kernel Tracker View of Boot

Device Manager
Main Thread

(DevMainEntry)

Kernel Tracker View of Boot

User Mode
Device Managers

Kernel Tracker View of Boot

òIdle Threadó
(time all threads blocked)

Kernel Tracker View of Boot

DMA Driver
In the emulator

Inserting Custom Data in CeLog

ÅThis API logs data

ï fTimeStamp TRUE to add timestamp to entry

ïwID Log ID – See next slide

ïpData Pointer to data to log

ïwLen Length of data

ïdwZoneUser User defined zones

ïdwZoneCE Zone the event relates to

ïwFlag User defined flag

ï fFlagged TRUE to logging wFlag field

void CeLogData (BOOL fTimeStamp , WORD wID, PVOID pData ,

 WORD wLen, WORD dwZoneUser , DWORD dwZoneCE,

 WORD wFlag , BOOL fFlagged);

Inserting Custom Data in CeLog

ÅPredefined data types

ïEach predefined data type can log an array of that type

ïCharacter unsigned character wide char

ïShort unsigned short

ïLong unsigned long

ïFloat double

ÅCustom types can be logged as well using IDs ranging from
CELID_USER to CELID_MAX

ïAll are defined in ..\public\common\oak\sdk\celog.h

ïCustom types can be interpreted using ReadLog extensions

Boot Time Tips

Tune Machine Startup

ÅDisable memory tests unless needed

ÅHide BIOS / EFI messages

ïThe user doesn’t need to see the PCI device enumeration

ÅDisable floppy and other disk checks

Å If using BIOS / EFI, extend to add splash screen

Tune the Loader Code

ÅBootloaders typically copy the .bin file from storage to RAM

ïOptimizing this copy can shave seconds off the boot

ïLook at hardware interface to optimize read from flash

ÅKeep the image as small as possible

ïRemove unneeded components

ïConsider breaking the .bin file into parts

ÅMultiple bin files or a single bin file and discreet files in the file system

ÅDisplay a splash screen with a progress bar as quickly as
possible.

ï If possible, design OAL so splash screen remains until display driver up

Smaller Images

ÅSmaller images are better images

ïFaster to load a small image than a large one

ïLess code means smaller RAM footprint

ïLess ‘black box’ code doing things you don’t know about

ÅBreak up the image if necessary

ïBalance boot speed requirement with engineering resources

ÅUnderstanding of the build process

ÅNeed to package all parts of image and deliver it to device

ÅDevelop an update strategy

Optimize the Driver Initialization

ÅDriver loading is a major component of the boot process

ÅRemove unneeded drivers

ïDo you need all drivers in shipping version?

ÅGroup user mode drivers in one or two UM Driver Managers

ïBy default each UM driver gets its own process

ïThe more processes that start, the longer the boot takes

Driver Init Procedure Optimization

ÅDriver Init procedures are called serially during boot

ïA single driver can slow down the boot

ÅPut Interrupt Service Thread initialization in that thread

ï IST should read its own registry entries, set its own priorities and such

ÅDon’t wait on hardware

ïUse another thread to wait on the hardware

ïHave the driver fail open calls until hardware is ready

Only Load the Services You Need

ÅMany services are added by the default configurations

ïOBEX

ïTimeService

ÅUnless you need a specific service, don’t use it

Å If all services can be eliminated remove the services manager

ïIf you need one ‘service’ consider writing it as a driver

Remove Explorer unless absolutely needed

ÅThe Explorer is very useful during bring up

ïMuch less so when the system has shipped

ÅWhile pretty quick, it does take time to launch

ïSave time, eliminate it

ÅLaunch apps on boot using registry

ïUse Init key instead of Explorer startup folder

ÅFrees custom application to handle “system keys”

ï“Windows” key combinations and select Alt-key combinations

Manage application startup

ÅDon’t install the application on cold boot

ïDon’t laugh, I’ve seen this!

ÅUse registry initialization file to provide needed registry keys

ïYou’ll need to teach the application developers how to do this

ÅUse a custom .bib file to allow application to prepopulate files

ïOr provide a method to prepopulate file on storage device

Other Thoughts…

ÅRAM based registry is much faster than Hive based registry

ÅMay need to consider suspend / resume if system too big

ïYes, the operating system still supports this (quite well actually)

ÅConsider Hibernate

ïSuspend with RAM saved on storage device

ïNo Microsoft provided code but fairly easy conceptually

ÅDon’t expose technical boot messages to user

ïThink what your Mom would like to see

Summary

ÅBoot time has a huge impact of “First Impression”

ÅEvery second of every boot of every device…

 … can save “Lives” of time.

ÅUse CeLog

ïThe best source for boot time information

ÅGet it right

Questions…

Doug Boling

Boling Consulting Inc.

www.bolingconsulting.com

dboling @ bolingconsulting.com

© 2011 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in
this summary.

