
Device Driver Best Practices in
Windows Embedded Compact 7

Douglas Boling

Boling Consulting Inc.

About Douglas Boling

• Independent consultant specializing in Windows Mobile and
Windows Embedded Compact (Windows CE)

– On-Site Instruction

– Consulting and Development

• Author

– Programming Embedded Windows CE

• Fourth Edition

Agenda

• Basic drivers

• General Tips

• Threading and Drivers

• Stable Drivers

What is a Windows Embedded Compact Driver?

• It’s a DLL

– Loaded by the Device Manager

• Kernel mode or User mode drivers

– Kernel mode drivers

• Faster

– User mode drivers

• More secure

• Most drivers expose a “Stream Interface”

– How the OS interfaces with the driver

Major Stream Interface Functions

• xxx_Init xxx_PreDeinit xxx_Deinit

– Called when initializing/deinitializing the device driver

• xxx_Open xxx_PreClose xxx_Close

– Called when an application opens and closes a device

• xxx_Read xxx_Write xxx_Seek

– Called to read and write data to and from the device

• xxx_IOControl

– Catchall API for functions not anticipated by standard interface

“Plug and Play” Loading?

• Drivers are loaded (and unloaded) as needed

– Boot time

– Device Discovery

• USB Device plug in / remove

• SD Card insert / remove

• PC Card insert / remove

– Application request

• OS ‘finds’ drivers using the registry

Driver Tips

Use Debug Zones

• Debug Zones are runtime configurable diagnostic messages

– Configurable at

• Compile time

• Load time

• Interactively

• Zones in all the Microsoft code

– Use to learn what is going on

– Zones allow your driver to be debugged

• Take care with performance using too many messages

Use the Registry

• Interrupt thread priority

• System Interrupt / hardware interrupt mapping

• Base Address of hardware

• Size of hardware window(s)

Using the Registry

• The xxx_Init function is passed the name of the Active key

• Open this key and read the “Key” value

– This is the name of the registry key that caused the driver to load

– This can be

• \drivers\builtin\<drivername>

• \drivers\usb\clientdrivers\<drivername>

• Others. All under HKEY_LOCAL_MACHINE

• Store configuration information under this key

xxx_Init Code Must Be Quick

• The boot sequence serializes load of drivers

– One thread calls each _Init function in sequence

• Don’t block

– Major parts of the OS API isn’t available at driver load during boot

– Kernel, Filesys, some driver support available

– GWES, Shell, everything else not available

• Don’t spend time waiting on hardware

– Spin off separate thread to wait on hardware

– Fail open of device until secondary thread completes wait

Never Use Global Data in a Driver

• Drivers are DLLs loaded by the device manager

• Multiple instances of the driver can be loaded

– But only one copy of the code is loaded

• Global data will be shared across all instances

– Probability not what you want

• Use ‘handle’ returned by xxx_Init to store ptr to instance data

– Handle is passed back in other calls (Open, DeInit, PreDeinit)

– Open returns ‘handle’ that can is returned in other calls

Quick Note on Performance

• Drivers are DLLs

• System notifies DLLs when threads are created and destroyed

• Typically, drivers don’t need this information

• In LibMain, in Process Attach notification call
BOOL DisableThreadLibraryCalls (HMODULE hLibModule);

Threading and Drivers

• Drivers are implicitly multithreaded

– Multiple applications can call a driver at the ‘same time’

• Drivers must protect internal data structures from corruption

– Use Critical Sections to protect shared data structures

• Drivers must have a method of unblocking blocked threads

– When the driver closes

– When the application unexpectedly terminates

Use PreClose and PreDeinit

• Allows driver to free threads blocked within driver code

• PreClose is called before Close

– Driver should unblock any blocked threads within driver

– Driver should cancel any pending IO

• PreDeinit is called before Deinit

– Allows driver to unblock any threads

– Allows driver to inform others it is unloading

• Driver already unhooked from driver list when Deinit called

Unexpected Application Termination

• Applications that die unexpectedly can cause problems

• Application threads blocked with drivers can prevent process
from being removed from memory

• When an application is terminated

– Drivers will receive IOCTL_PSL_NOTIFY IoControl call

• Once for each time driver opened by application

– Driver will then receive one PreClose call

Know the Thread Priority APIs

Priority Bug 1

• What is wrong with this code?

// save current priority

int oldPri = GetThreadPriority (hThread);

// Elevate our thread priority

CeSetThreadPriority (hThread, 100);

// Do work...

// Restore original priority... (really?)

CeSetThreadPriority (hThread, oldPri);

Priority Bug 1 Answer

• Code mixing new and old APIs, thread ends up at priority 0 - 7

// save current priority (typically normal == 3)

int oldPri = GetThreadPriority (hThread);

// Elevate our thread priority

CeSetThreadPriority (hThread, 100);

// Do work...

// Using saved priority (3) with new API. BADBAD!

CeSetThreadPriority (hThread, oldPri);

Bug 1, Proper Code

• Moral: Don’t mix the priority APIs!

// save current priority

int oldPri = CeGetThreadPriority (hThread);

// Elevate our thread priority

CeSetThreadPriority (hThread, 100);

// Do work...

// Properly restoring original priority

CeSetThreadPriority (hThread, oldPri);

Priority Bug 2

• What is wrong with this code?

CeSetThreadPriority (h, THREAD_PRIORITY_NORMAL);

Priority Bug 2 Answer

• Using constants defined for SetThreadPriority

• Defines are used by SetThreadPriority, not CeSetThreadPriority

CeSetThreadPriority (h, THREAD_PRIORITY_NORMAL);

#define THREAD_PRIORITY_TIME_CRITICAL 0

#define THREAD_PRIORITY_HIGHEST 1

#define THREAD_PRIORITY_ABOVE_NORMAL 2

#define THREAD_PRIORITY_NORMAL 3

#define THREAD_PRIORITY_BELOW_NORMAL 4

#define THREAD_PRIORITY_LOWEST 5

#define THREAD_PRIORITY_ABOVE_IDLE 6

#define THREAD_PRIORITY_IDLE 7

Basic Steps to Stable Drivers

• You must check return codes

• You must check memory allocations

• Never trust a pointer

– Most data is passed to the driver via pointers

– There is sure way to test the validity of a pointer

– The driver must be able to tolerate a bad pointer

• The OS catches all thread exceptions at the call to the driver

– The driver should catch them first

• Expression values

– EXCEPTION_CONTINUE_EXECUTION

– EXCEPTION_CONTINUE_SEARCH

– EXCEPTION_EXECUTE_HANDLER

__try

{

// guarded code

}

__except (expression)

{

// exception handler code

}

The __try __except Block

Use __try __except

• Wrap every entry point in your code

– Callbacks

– DLL entry points

– Driver entry points

– Around all accesses to buffers passed to the driver

• Don’t use C++ exception handling in drivers / OAL code

What is Wrong Here?

CRITICAL_SECTION cs;

__try

{

EnterCriticalSection (&cs);

// Some code here

LeaveCriticalSection (&cs);

}

__except (EXCEPTION_EXECUTE_HANDLER)

{

// Process exception

}

CRITICAL_SECTION cs;

__try

{

EnterCriticalSection (&cs);

// Some code here

}

__finally

{

LeaveCriticalSection (&cs);

}

The __try __finally Block

CRITICAL_SECTION cs;

__try

{

EnterCriticalSection (&cs);

// Some code here

__leave;

// Code here not executed

}

__finally

{

LeaveCriticalSection (&cs);

}

The __try __finally Block

Use __try __finally

• __finally clause always executes

– If you fall out the end of the __try block

– If you return in the middle of the __try block

– If an exception occurs

• Don’t return out of a __try, __finally block

– It generates lots of code

• When it works at all

– Use the __leave keyword

CRITICAL_SECTION cs;

__try

{

EnterCriticalSection (&cs);

// Some code here

}

__except (EXCEPTION_EXECUTE_HANDLER)

{

// Exception handling code here

}

__finally

{

LeaveCriticalSection (&cs);

}

Much Better Code

Good Drivers Are Written in C not C++

• I’m not a language bigot

– I just speak from experience

• One of the goals of C++ is to obfuscate interior function

– If the hardware is new (or failing) its this interior function that is
failing

“In other words, the only way to do good, efficient, and system-level
and portable C++ ends up to limit yourself to all the things that are
basically available in C. “

Linus Torvalds

Summary

• Basic stream interface makes drivers simple

• Use the registry to query configuration information

• Check xxx_Init performance

• Take care to protect data structures from thread conflicts

• NEVER TRUST A POINTER!

Questions…

Doug Boling

Boling Consulting Inc.

www.bolingconsulting.com

dboling @ bolingconsulting.com

© 2011 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in
this summary.

© 2011 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

