
Understanding CEPC Boot Sequence in 
Windows Embedded Compact 7

Douglas Boling

Boling Consulting Inc.



About Douglas Boling

• Independent consultant specializing in Windows Mobile and 
Windows Embedded Compact (Windows CE)

– On-Site Instruction

– Consulting and Development

• Author

– Programming Embedded Windows CE 

• Fourth Edition



Agenda

• Storage Basics

• PC Boot Basics

• Building the Bootloader

• Extending the Bootloader



Storage

• Can be floppys, hard disks, USB sticks, SD/CF cards, Raw Flash

• Physical devices can be logically partitioned

• x86 systems need one storage device to contain operating 
system files

– “Boot drive”



The Partition Table (Master Boot Record)

• Logically divides storage medium into ‘partitions’

– Table allows 4 partitions

• Each partition is considered a “Logical Disk”

– Partitions are each formatted to whatever file system is desired

• One partition must be marked “Active” for bootable storage

– Almost all PCs won’t boot unless the an Active partition is found

• Windows Embedded Compact can support all 4 partitions

• Windows Desktop has strict limitations on partitions



FAT File System

• FAT == File Allocation Table

• Intergalactic standard for storage

• Fairly simple to understand

• ExFAT sparsely documented

• Boot sectors differ across versions
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Desktop limitations on The Partition Table

• Windows expects 2 partitions

– Primary

– Extended

• Windows expects the ‘extended’ partition to be sub-
partitioned into 2 partitions

– Secondary, Extended

– Each ‘extended’ partition can be subdivided allowing for numerous 
partitions

• Windows ignores other partitions



The Boot Sector

• First sector on the storage device

– 512 bytes by defacto PC standard

• BIOS loads first sector into RAM (in real mode) at 0:7C00

– Then jumps to address 0:7C00

• Bootsector searches disk for specific file and loads it into RAM

– Name of file and search method depends on format type

– Boot code then jumps to first byte of loaded sectors

• If code fails to find specific file, it displays message and halts



The Directory Structure

• FAT storage has at least one “root” directory

– At a known location 

– Other directories stored as data and located by entries in their parent 
directories

• Directories are tables of 32 byte entries

– Each entry can describe a file in 8.3 name format

– For long file names, multiple entries are used



FAT Table Entries

• Large table that describes sector assignments

• Table entries are either 12, 16 or 32 bits in size

– The very definition of FAT12/FAT16/FAT32

• Zero indicates free sector

• Non-zero number < 0xffff fff0 indicates sector used

– Number points to next sector of file

– Value >= 0xffff fff8 indicates last sector of file



PC Boot Basics

• PCs come with one of two interfaces to firmware

– BIOS – Basic Input Output System Interface

• Historic

• Well understood

• Massive acceptance

• Register based, 16 bit interface

– (U)EFI – (Universal) Extensible Firmware Interface

• New, Intel defined standard

• 32 bit interface

• Extensible 

• Intel has a UEFI loader for Windows Embedded Compact



BIOS Interface

• Interrupt based interface

– Int 10, Int 13, Int 15

• On boot, reads first sector of primary storage system into 
RAM at 0:7C00

– 1 sector == 512 bytes

– Yes, that is a 16 bit, segmented address



BIOS Interrupts

• Interrupt 10 Video Display

• Interrupt 13 Storage I/O

• Interrupt 14 Serial Port

• Interrupt 15 System level control

• Interrupt 16 Keyboard services

• Interrupt 1A RTC and PCI Services



Calling BIOS Interrupts

• Must be called in 16 bit, Real Mode

– Code must transition back into real mode before call

• Register calling model

– Command in AH

– Subcommand in AL

• Buffers must be in RAM < 0x10000 (<1Meg)



CEPC Bootloaders

• LoadCEPC

– DOS based bootloader

– Requires a formatted FAT12/16 partition with DOS system files

• BIOSLOADER (BLDR)

– No need for DOS

– Works with FAT12/16/32 and ExFAT

• WCELDR  (XLDR / BLDR)

– Rewritten loader for WEC 7

– Allows for a larger and more functional bootloader

– Can’t mix BIOSLOADER and WCELDR components



Modifying LoadCEPC

• Need access to a 16 bit compiler

– MSVC 1.52 available from MSDN

• Code location

– WINCE700\platform\CEPC\src\bootloader\dos\loadcepc



Installing LoadCEPC

• Typically device is booted into DOS with system diskette

• Format permanent storage with DOS system

– Must be a FAT12/FAT16 partition or disk

• Partition must be marked bootable

– DOS can do this with FDISK

• CESys application can run under DOS to initialize disk

• Image files for floppy disks included in WINCE tree



BIOSLoader

• Relatively fast boot

– No need for DOS

• Uses BIOS for system I/O

– Works on all BIOS based x86 systems

• Supports all FAT formats 12,16,32,Ex

– With supporting source code

• Configurable with text file on boot disk

• Available on CE R2 and later



BIOSLoader Limitations

• Code designed to communicate via serial port only

• No way to change configuration information from bootloader

• Difficult to build

– Requires patch scripts that won’t run under Win64 systems

• Code size limitations

– Current memory layout limits code size to 32 KBytes of smaller

– Difficult to use full error message version of loader



WCELDR

• Combination of XLDR and updated BLDR components

– XLDR – Simple loader that loads remainder of BLDR

• Provides optional menu based interaction with user

• Can save configuration information across reboots

• Supports both serial and console (display) interaction

• New to Windows Embedded Compact



WCELDR Limitations

• No documented method for building boot sectors

• Boot sector code for FAT16 and FAT32 only

• No simple way to preconfigure bootloader settings

• Incompatible with original BLDR boot sector code

– Don’t mix boot sectors from one loader to the other

• This is not a simple boot loader

– Lots of features means complexity



WCELDR Sequence

• Boot sector 

– Finds WCELDR in the root directory

– Loads 68 sectors of WECLDR into RAM at address 0x1000

– Jumps to 0x1000, entry point of XLDR component

• XLDR component

– Switches to protected mode

– Finds WCELDR in root directory

– Scans file for 0xB000FF signature which is start of .bin file

– Reads packets of .bin file and places in RAM

– Jumps to start of new .bin image (BLDR)



WCELDR Sequence (2)

• BLDR

– Displays prompt for menu mode vs download

– If download, downloads from current download source (Ethernet/disk)

– If menu, displays menu and executes command

• Show Current Settings

• Set Boot Device

• Select KITL Device

• Network Settings

• Display Settings

• Debug Port Settings

• Save Settings

• Exit and Continue



Modifying WCELDR

• Modifications would generally be made to BLDR component

– XLDR really doesn’t know much except the directory structure

• BLDR mods can be made as in any other BSP component

– No special build steps needed

• Main modification will be to add available Ethernet device



Adding an Ethernet Lib to WCELDR

• Modify Init.C in WINCE700\platform\CEPC\src\boot\bldr

– Add new BootEdbgDriver_t structure for your Ethernet controller

• Same Entry points as used in earlier EBOOT bootloaders

static const BootEdbgDriver_t s_Ne2000 = 
{

NULL, // InitDMABuffer
NE2000Init, // InitNICControler
NULL, // DeInitNICControler
NE2000SendFrame, // SendFrame
NE2000GetFrame, // GetFrame
NULL // Filter

};



Modifying WCELDR (2)

• Modify init.c to include structure in “devices” table

• Add EthDbg library for your Ethernet controller

– Modify sources in

• .\boot\bldr\serial 

• .\boot\bldr\console

static const Device_t s_devices[] = {
{ L"Boot Disk", DeviceTypeStore, (enum_t)IfcTypeUndefined, 0,    NULL    },
{ L"RTL8139",   DeviceTypeEdbg,  IfcTypePci, 0x12111113,  &s_Rtl8139   },
{ L"RTL8139",   DeviceTypeEdbg,  IfcTypePci, 0x13001186,  &s_Rtl8139   },
{ L"RTL8139",   DeviceTypeEdbg,  IfcTypePci, 0x813910EC, &s_Rtl8139   },
{ L"DEC21140",  DeviceTypeEdbg,  IfcTypePci, 0x00091011, &s_Dec21140  },
{ L"NE2000",    DeviceTypeEdbg,  IfcTypePci, 0x09401050, &s_Ne2000    },
{ L"NE2000",    DeviceTypeEdbg,  IfcTypePci, 0x802910EC, &s_Ne2000    }

};



WCELDR Construction

• Created from 3 separate files

– XLDR.nb0

• Binary image of XLDR

– BLDRCfg.nb0

• Mostly empty file 512 byte file with 
“BLDRCFG” as the header characters

• Used to save configuration changes

– BLDR.BIN

• Actual bootloader

• Automatically loads from configured 
boot device or goes to menu

• Menu driven commands can 
persistently configure the loader

BLDRCfg.nb0

BLDR.BIN

XLDR.nb0

Base of file

Top of file



Building WCELDR

• Builds must be made from the boot directory

– NOT from the BLDR directory

– This allows the final build step in the XLDR directory to build the final 
WCELDR image

• Final step combines XLDR.nb0, BLDRCfg.nb0 and BLDR.BIN

• Two resulting files

– WCELDRC – The console version

– WCELDRS – The serial version

• Rename the file you want to WCELDR

– Install with WINCE700\platform\CEPC\src\boot\tools\bin\i386\CeSys



Installing BLDR/WCELDR On A Disk

• Platform Builder has new Windows-based CeSys

– Can be used to update boot sector and transfer WCELDR

• Need to add nk.bin *after* using CeSys

• No documented method of preconfiguring WCELDR

– BLDRCfg could be pre-written but no tool currently exists



Summary

• Lots of choices for boot loading

– Choices can lead to confusion

• Don’t mix the bootloader solutions

• Pick the solution that works for you

• Modifications to add Ethernet libraries fairly simple
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Building A Boot Sector

• Need access to an older assembler

– MASM 6 available from MSDN

– Take care to use the proper linker

• Understand GetBSect.scr

– A script for DEBUG.EXE (Won’t run on Win64 systems)

– Trims the length of image to code

• You will need a way to install the code on a boot disk

– CESys for WEC 7 has a prebuilt boot sector internally


