
Understanding CEPC Boot Sequence in
Windows Embedded Compact 7

Douglas Boling

Boling Consulting Inc.

About Douglas Boling

• Independent consultant specializing in Windows Mobile and
Windows Embedded Compact (Windows CE)

– On-Site Instruction

– Consulting and Development

• Author

– Programming Embedded Windows CE

• Fourth Edition

Agenda

• Storage Basics

• PC Boot Basics

• Building the Bootloader

• Extending the Bootloader

Storage

• Can be floppys, hard disks, USB sticks, SD/CF cards, Raw Flash

• Physical devices can be logically partitioned

• x86 systems need one storage device to contain operating
system files

– “Boot drive”

The Partition Table (Master Boot Record)

• Logically divides storage medium into ‘partitions’

– Table allows 4 partitions

• Each partition is considered a “Logical Disk”

– Partitions are each formatted to whatever file system is desired

• One partition must be marked “Active” for bootable storage

– Almost all PCs won’t boot unless the an Active partition is found

• Windows Embedded Compact can support all 4 partitions

• Windows Desktop has strict limitations on partitions

FAT File System

• FAT == File Allocation Table

• Intergalactic standard for storage

• Fairly simple to understand

• ExFAT sparsely documented

• Boot sectors differ across versions

Master Boot Record
Boot Sector

Root Directory

File Data

File Allocation Table (FAT) x2

Entire Storage
Device

FAT
Partition

Other Partitions

Desktop limitations on The Partition Table

• Windows expects 2 partitions

– Primary

– Extended

• Windows expects the ‘extended’ partition to be sub-
partitioned into 2 partitions

– Secondary, Extended

– Each ‘extended’ partition can be subdivided allowing for numerous
partitions

• Windows ignores other partitions

The Boot Sector

• First sector on the storage device

– 512 bytes by defacto PC standard

• BIOS loads first sector into RAM (in real mode) at 0:7C00

– Then jumps to address 0:7C00

• Bootsector searches disk for specific file and loads it into RAM

– Name of file and search method depends on format type

– Boot code then jumps to first byte of loaded sectors

• If code fails to find specific file, it displays message and halts

The Directory Structure

• FAT storage has at least one “root” directory

– At a known location

– Other directories stored as data and located by entries in their parent
directories

• Directories are tables of 32 byte entries

– Each entry can describe a file in 8.3 name format

– For long file names, multiple entries are used

FAT Table Entries

• Large table that describes sector assignments

• Table entries are either 12, 16 or 32 bits in size

– The very definition of FAT12/FAT16/FAT32

• Zero indicates free sector

• Non-zero number < 0xffff fff0 indicates sector used

– Number points to next sector of file

– Value >= 0xffff fff8 indicates last sector of file

PC Boot Basics

• PCs come with one of two interfaces to firmware

– BIOS – Basic Input Output System Interface

• Historic

• Well understood

• Massive acceptance

• Register based, 16 bit interface

– (U)EFI – (Universal) Extensible Firmware Interface

• New, Intel defined standard

• 32 bit interface

• Extensible

• Intel has a UEFI loader for Windows Embedded Compact

BIOS Interface

• Interrupt based interface

– Int 10, Int 13, Int 15

• On boot, reads first sector of primary storage system into
RAM at 0:7C00

– 1 sector == 512 bytes

– Yes, that is a 16 bit, segmented address

BIOS Interrupts

• Interrupt 10 Video Display

• Interrupt 13 Storage I/O

• Interrupt 14 Serial Port

• Interrupt 15 System level control

• Interrupt 16 Keyboard services

• Interrupt 1A RTC and PCI Services

Calling BIOS Interrupts

• Must be called in 16 bit, Real Mode

– Code must transition back into real mode before call

• Register calling model

– Command in AH

– Subcommand in AL

• Buffers must be in RAM < 0x10000 (<1Meg)

CEPC Bootloaders

• LoadCEPC

– DOS based bootloader

– Requires a formatted FAT12/16 partition with DOS system files

• BIOSLOADER (BLDR)

– No need for DOS

– Works with FAT12/16/32 and ExFAT

• WCELDR (XLDR / BLDR)

– Rewritten loader for WEC 7

– Allows for a larger and more functional bootloader

– Can’t mix BIOSLOADER and WCELDR components

Modifying LoadCEPC

• Need access to a 16 bit compiler

– MSVC 1.52 available from MSDN

• Code location

– WINCE700\platform\CEPC\src\bootloader\dos\loadcepc

Installing LoadCEPC

• Typically device is booted into DOS with system diskette

• Format permanent storage with DOS system

– Must be a FAT12/FAT16 partition or disk

• Partition must be marked bootable

– DOS can do this with FDISK

• CESys application can run under DOS to initialize disk

• Image files for floppy disks included in WINCE tree

BIOSLoader

• Relatively fast boot

– No need for DOS

• Uses BIOS for system I/O

– Works on all BIOS based x86 systems

• Supports all FAT formats 12,16,32,Ex

– With supporting source code

• Configurable with text file on boot disk

• Available on CE R2 and later

BIOSLoader Limitations

• Code designed to communicate via serial port only

• No way to change configuration information from bootloader

• Difficult to build

– Requires patch scripts that won’t run under Win64 systems

• Code size limitations

– Current memory layout limits code size to 32 KBytes of smaller

– Difficult to use full error message version of loader

WCELDR

• Combination of XLDR and updated BLDR components

– XLDR – Simple loader that loads remainder of BLDR

• Provides optional menu based interaction with user

• Can save configuration information across reboots

• Supports both serial and console (display) interaction

• New to Windows Embedded Compact

WCELDR Limitations

• No documented method for building boot sectors

• Boot sector code for FAT16 and FAT32 only

• No simple way to preconfigure bootloader settings

• Incompatible with original BLDR boot sector code

– Don’t mix boot sectors from one loader to the other

• This is not a simple boot loader

– Lots of features means complexity

WCELDR Sequence

• Boot sector

– Finds WCELDR in the root directory

– Loads 68 sectors of WECLDR into RAM at address 0x1000

– Jumps to 0x1000, entry point of XLDR component

• XLDR component

– Switches to protected mode

– Finds WCELDR in root directory

– Scans file for 0xB000FF signature which is start of .bin file

– Reads packets of .bin file and places in RAM

– Jumps to start of new .bin image (BLDR)

WCELDR Sequence (2)

• BLDR

– Displays prompt for menu mode vs download

– If download, downloads from current download source (Ethernet/disk)

– If menu, displays menu and executes command

• Show Current Settings

• Set Boot Device

• Select KITL Device

• Network Settings

• Display Settings

• Debug Port Settings

• Save Settings

• Exit and Continue

Modifying WCELDR

• Modifications would generally be made to BLDR component

– XLDR really doesn’t know much except the directory structure

• BLDR mods can be made as in any other BSP component

– No special build steps needed

• Main modification will be to add available Ethernet device

Adding an Ethernet Lib to WCELDR

• Modify Init.C in WINCE700\platform\CEPC\src\boot\bldr

– Add new BootEdbgDriver_t structure for your Ethernet controller

• Same Entry points as used in earlier EBOOT bootloaders

static const BootEdbgDriver_t s_Ne2000 =
{

NULL, // InitDMABuffer
NE2000Init, // InitNICControler
NULL, // DeInitNICControler
NE2000SendFrame, // SendFrame
NE2000GetFrame, // GetFrame
NULL // Filter

};

Modifying WCELDR (2)

• Modify init.c to include structure in “devices” table

• Add EthDbg library for your Ethernet controller

– Modify sources in

• .\boot\bldr\serial

• .\boot\bldr\console

static const Device_t s_devices[] = {
{ L"Boot Disk", DeviceTypeStore, (enum_t)IfcTypeUndefined, 0, NULL },
{ L"RTL8139", DeviceTypeEdbg, IfcTypePci, 0x12111113, &s_Rtl8139 },
{ L"RTL8139", DeviceTypeEdbg, IfcTypePci, 0x13001186, &s_Rtl8139 },
{ L"RTL8139", DeviceTypeEdbg, IfcTypePci, 0x813910EC, &s_Rtl8139 },
{ L"DEC21140", DeviceTypeEdbg, IfcTypePci, 0x00091011, &s_Dec21140 },
{ L"NE2000", DeviceTypeEdbg, IfcTypePci, 0x09401050, &s_Ne2000 },
{ L"NE2000", DeviceTypeEdbg, IfcTypePci, 0x802910EC, &s_Ne2000 }

};

WCELDR Construction

• Created from 3 separate files

– XLDR.nb0

• Binary image of XLDR

– BLDRCfg.nb0

• Mostly empty file 512 byte file with
“BLDRCFG” as the header characters

• Used to save configuration changes

– BLDR.BIN

• Actual bootloader

• Automatically loads from configured
boot device or goes to menu

• Menu driven commands can
persistently configure the loader

BLDRCfg.nb0

BLDR.BIN

XLDR.nb0

Base of file

Top of file

Building WCELDR

• Builds must be made from the boot directory

– NOT from the BLDR directory

– This allows the final build step in the XLDR directory to build the final
WCELDR image

• Final step combines XLDR.nb0, BLDRCfg.nb0 and BLDR.BIN

• Two resulting files

– WCELDRC – The console version

– WCELDRS – The serial version

• Rename the file you want to WCELDR

– Install with WINCE700\platform\CEPC\src\boot\tools\bin\i386\CeSys

Installing BLDR/WCELDR On A Disk

• Platform Builder has new Windows-based CeSys

– Can be used to update boot sector and transfer WCELDR

• Need to add nk.bin *after* using CeSys

• No documented method of preconfiguring WCELDR

– BLDRCfg could be pre-written but no tool currently exists

Summary

• Lots of choices for boot loading

– Choices can lead to confusion

• Don’t mix the bootloader solutions

• Pick the solution that works for you

• Modifications to add Ethernet libraries fairly simple

Questions…

Doug Boling

Boling Consulting Inc.

www.bolingconsulting.com

dboling @ bolingconsulting.com

© 2011 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in
this summary.

© 2011 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

Building A Boot Sector

• Need access to an older assembler

– MASM 6 available from MSDN

– Take care to use the proper linker

• Understand GetBSect.scr

– A script for DEBUG.EXE (Won’t run on Win64 systems)

– Trims the length of image to code

• You will need a way to install the code on a boot disk

– CESys for WEC 7 has a prebuilt boot sector internally

