

Guide to Migrating from Oracle to SQL Server 2014

and Azure SQL Database

SQL Server Technical Article

Writers: Yuri Rusakov (DB Best Technologies), Igor Yefimov (DB Best Technologies),

Anna Vynograd (DB Best Technologies), Galina Shevchenko (DB Best Technologies)

Technical Reviewer: Dmitry Balin (DB Best Technologies)

Published: November 2014

Applies to: SQL Server 2014

Summary: This white paper explores challenges that arise when you migrate from an

Oracle 7.3 database or later to SQL Server 2014. It describes the implementation

differences of database objects, SQL dialects, and procedural code between the two

platforms. The entire migration process using SQL Server Migration Assistant (SSMA)

v6.0 for Oracle is explained in depth, with a special focus on converting database

objects and PL/SQL code.

Created by: DB Best Technologies LLC

2535 152nd Ave NE, Redmond, WA 98052

Tel: +1-855-855-3600

E-mail: info@dbbest.com

Web: www.dbbest.com

mailto:info@dbbest.com
http://www.dbbest.com/

Copyright

This is a preliminary document and may be changed substantially prior to final

commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft

Corporation on the issues discussed as of the date of publication. Because Microsoft

must respond to changing market conditions, it should not be interpreted to be a

commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of

any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO

WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN

THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without

limiting the rights under copyright, no part of this document may be reproduced, stored

in or introduced into a retrieval system, or transmitted in any form or by any means

(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,

without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other

intellectual property rights covering subject matter in this document. Except as

expressly provided in any written license agreement from Microsoft, the furnishing of

this document does not give you any license to these patents, trademarks, copyrights,

or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain

names, e-mail addresses, logos, people, places and events depicted herein are

fictitious, and no association with any real company, organization, product, domain

name, email address, logo, person, place or event is intended or should be inferred.

© 2014 Microsoft Corporation. All rights reserved.

Microsoft and SQL Server are registered trademarks of Microsoft Corporation in the

United States and other countries.

The names of actual companies and products mentioned herein may be the trademarks

of their respective owners.

Contents

Introduction ... 6

Overview of Oracle-to-SQL Server 2014 Migration ... 7

Main Migration Steps .. 7

Conversion of Database Objects ... 8

Differences in SQL Languages ... 9

PL/SQL Conversion .. 9

Data Migration Architecture of SSMA for Oracle ... 11

Implementation in SSMA ... 11

Solution Layers ... 11

Client Application .. 12

Stored Procedures Interface ... 12

Database Layer ... 12

Migration Executable... 12

Message Handling .. 13

Validation of the Results ... 13

Migrating Oracle Data Types .. 14

Numeric Data Types ... 15

Character Data Types ... 16

Date and Time .. 16

Boolean Type .. 17

Large Object Types ... 17

XML Type ... 17

ROWID Types ... 18

Migrating Oracle Spatial Data ... 19

Emulating Oracle System Objects .. 21

Converting Oracle System Views .. 21

Converting Oracle System Functions .. 28

Converting Oracle System Packages .. 40

Converting Nested PL/SQL Subprograms .. 60

Inline Substitution .. 60

Emulation by Using Transact-SQL Subprograms .. 64

Migrating Oracle User-Defined Functions ... 68

Conversion Algorithm .. 68

Converting Function Calls When a Function Has Default Values for Parameters and

with Various Parameter Notations ... 74

PRAGMA INLINE .. 76

Migrating Oracle Triggers ... 78

Conversion Patterns ... 80

The Execution Order of Triggers ... 99

Compound Triggers .. 100

Emulating Oracle Packages ... 102

Converting Procedures and Functions .. 102

Converting Overloaded Procedures .. 103

Converting Packaged Variables .. 104

Converting Packaged Cursors .. 104

Converting Initialization Section .. 106

Package Conversion Code Example ... 107

Converting Packages to Azure SQL DB .. 108

Conversion of Oracle Materialized Views ... 114

Sequences Conversion... 117

Migrating Hierarchical Queries .. 121

Emulating Oracle Exceptions .. 125

Exception Raising ... 125

Exception Handling ... 127

SSMA Exceptions Migration to SQL Server 2014 .. 128

SSMA Exceptions Migration to Azure SQL DB .. 130

Migrating Oracle Cursors .. 133

Syntax ... 133

Declaring a Cursor .. 135

Opening a Cursor .. 137

Fetching Data ... 137

CURRENT OF Clause .. 142

Closing a Cursor ... 142

Examples of SSMA for Oracle V6.0 Conversion .. 143

CONTINUE Statement of a LOOP .. 148

Simulating Oracle Transactions in SQL Server 2014 .. 150

Choosing a Transaction Management Model .. 150

Autocommit Transactions .. 150

Implicit Transactions ... 150

Explicit Transactions ... 150

Choosing a Concurrency Model .. 151

Make Transaction Behavior Look Like Oracle ... 151

Simulating Oracle Autonomous Transactions ... 152

Simulating Autonomous Procedures and Packaged Procedures 153

Simulating Autonomous Functions and Packaged Functions 154

Simulation of Autonomous Triggers .. 155

Code Example .. 155

Migrating Oracle Records and Collections .. 157

Implementing Collections .. 157

Implementing Records .. 167

Implementing Records and Collections via XML ... 168

Sample Functions for XML Record Emulation ... 171

Emulating Records and Collections via CLR UDT ... 173

SSMA Records and Collections Migration to Azure SQL DB 179

Migrating Tables to Memory-Optimized Tables ... 182

Conclusion.. 187

About DB Best Technologies .. 187

Introduction
Migrating from an Oracle database to Microsoft® SQL Server® 2014 frequently gives

organizations benefits that range from lowered costs to a more feature-rich

environment. The free Microsoft SQL Server Migration Assistant (SSMA) for Oracle

speeds the migration process. SSMA for Oracle V6.0 converts Oracle database objects

(including stored procedures) to SQL Server database objects, loads those objects into

SQL Server, migrates data from Oracle to SQL Server, and then validates the migration

of code and data.

This white paper explores the challenges that arise during migration from an Oracle

database to SQL Server 2014. It describes the implementation differences of database

objects, SQL dialects, and procedural code between the two platforms.

Overview of Oracle-to-SQL Server 2014 Migration
This section explains the entire SSMA for Oracle migration process, with a special focus

on converting database objects and PL/SQL code.

Main Migration Steps

The first migration step is to decide on the physical structure of the target SQL Server

database. In the simplest case, you can map the Oracle tablespaces to SQL Server

filegroups. However, because the files in the filegroups and the information stored in the

files are usually different, this is not usually possible.

The next step is to choose how to map the Oracle schemas to the target. In

SQL Server, schemas are not necessarily linked to a specific user or a login, and one

server contains multiple databases.

You can follow one of two typical approaches to schema mapping:

¶ By default in SSMA, every Oracle schema becomes a separate SQL Server

database. The target SQL Server schema in each of these databases is set to

dbo—the predefined name for the database owner. Use this method if there are

few references between Oracle schemas.

¶ Another approach is to map all Oracle schemas to one SQL Server database. In

this case, an Oracle schema becomes a SQL Server schema with the same

name. To use this method, you change the SSMA default settings. Use this

method if different source schemas are deeply linked with each other (for

instance if there are cross-references between Oracle tables in different

schemas, when trigger is on the table and the tables itself are in different

schemas…).

SSMA applies the selected schema-mapping method consistently when it converts both

database objects and the references to them.

After you chose your optimal schema mapping, you can start creating the target

SQL Server database and its required schemas. Because the SQL Server security

scheme is quite different from Oracle’s, we chose not to automate the security item

migration in SSMA. That way, you can consider all possibilities and make the proper

decisions yourself.

The typical SSMA migration includes connecting to the source Oracle server, selecting

the server that is running SQL Server as the target, and then performing the Convert

Schema command. When the target objects are created in the SSMA workspace, you

can save them by using the Load to Database command. Finally, execute the Migrate

Data command, which transfers the data from the source to the target tables, making

the necessary conversions. The data migration process is executed on the server that is

running SQL Server. The internal implementation of this feature is described in Data

Migration Architecture of SSMA for Oracle.

Conversion of Database Objects

Not all Oracle database objects have direct equivalents in SQL Server. In many cases,

SSMA creates additional objects to provide the proper emulation. General conversion

rules are as follows:

¶ Each Oracle table is converted to a SQL Server table. During the conversion, all

indexes, constraints, and triggers defined for a table are also converted. When

determining the target table's structure, SSMA uses type mapping definitions.

Data type conversion is described in Migrating Oracle Data Types. Now,

conversion to memory-optimized tables is supported.

¶ An Oracle view is converted to a SQL Server view. This also concerns

materialized views which are migrated to indexed ones. SSMA creates

emulations for commonly used Oracle system views. For more information about

system view conversion, see Emulating Oracle System Objects.

¶ Oracle stored procedures are converted to SQL Server stored procedures. Note

that Oracle procedures can use nested subprograms, which means that another

procedure or function can be declared and called locally within the main

procedure. SSMA can convert inline subprograms automatically, see Converting

Nested PL/SQL Subprograms.

¶ Oracle user-defined functions are converted to SQL Server functions if the

converted function can be compatible with SQL Server requirements. Otherwise,

SSMA creates two objects: one function and one stored procedure. The

additional procedure incorporates all the logic of the original function and is

invoked in a separate process. For more information, see Migrating Oracle User-

Defined Functions. SSMA emulates most of the Oracle standard functions. See

the complete list in Emulating Oracle System Objects.

¶ Oracle DML triggers are converted to SQL Server triggers, but because the

trigger functionality is different, the number of triggers and their types can be

changed. See a description of trigger conversion in Migrating Oracle Triggers.

¶ Some Oracle object categories, such as packages, do not have direct

SQL Server equivalents. SSMA converts each packaged procedure or function

into separate target subroutines and applies rules for stand-alone procedures or

functions. Other issues related to package conversion, such as converting

packaged variables, cursors, and types are explained in Emulating Oracle

Packages. In addition, SSMA can emulate some commonly used Oracle system

packages. See their description in Emulating Oracle System Objects.

¶ SQL Server 2014 has a sequences mechanism, though some features of Oracle

sequences (e.g. CURRVAL) are not supported in SQL Server, but you can find

methods to manually convert them in Sequences Conversion.

¶ Oracle private synonyms are converted to SQL Server synonyms stored in the

target database. SSMA converts public synonyms to synonyms defined in the

ssma_oracle schema.

Differences in SQL Languages

Oracle and SQL Server use different dialects of the SQL language, but SSMA can solve

most of the problems introduced by this difference. For example, Oracle uses

CONNECT BY statements for hierarchical queries, while SQL Server implements

hierarchical queries by using common table expressions. The syntax of common table

expressions does not resemble the Oracle format, and the order of tree traversal is

different. To learn how SSMA converts hierarchical queries, see Migrating Hierarchical

Queries.

Or consider how SSMA handles another nonstandard Oracle feature: the special outer

join syntax with the (+) qualifier. SSMA converts these queries by transforming them into

ANSI format.

Oracle pseudocolumns, such as ROWID or ROWNUM, present a special problem.

When converting ROWNUM, SSMA emulates it with the TOP keyword of the SELECT

statement if this pseudocolumn is used only to limit the size of the result set. If the row

numbers appear in a SELECT list, SSMA uses the ROW_NUMBER() function. The

ROWID problem can be solved by an optional column named ROWID, which stores a

unique identifier in SQL Server.

SSMA does not convert dynamic SQL statements because the actual statement is not

known until execution time and, in most cases, it cannot be reconstructed at conversion

time. There is a workaround: The Oracle metabase tree displayed in SSMA contains a

special node named Statements in which you can create and convert ad hoc SQL

statements. If you can manually reproduce the final form of a dynamic SQL command,

you can convert it as an object in the Statements node.

PL/SQL Conversion

The syntax of Oracle’s PL/SQL language is significantly different from the syntax of

SQL Server’s procedural language, Transact-SQL. This makes converting PL/SQL code

from stored procedures, functions, or triggers a challenge. SSMA, however, can resolve

most of the problems related to these conversions. SSMA also allows establishing

special data type mappings for PL/SQL variables.

Some conversion rules for PL/SQL are straightforward, such as converting assignment,

IF, or LOOP statements. Other SSMA conversion algorithms are more complicated.

Consider one difficult case: converting Oracle exceptions, which is described in

Emulating Oracle Exceptions. The solution detailed there allows emulating Oracle

behavior as exactly as possible, but you may need to review the code in order to

eliminate dependencies on Oracle error codes and to simplify the processing of such

conditions as NO_DATA_FOUND.

Oracle cursor functionality is not identical to cursor functionality in SQL Server. SSMA

handles the differences as described in Migrating Oracle Cursors.

Oracle transactions are another conversion issue, especially autonomous transactions.

In many cases you must review the code generated by SSMA to make the transaction

implementation best suited to your needs. For instructions, see Simulating Oracle

Transactions in SQL Server 2014 and Simulating Oracle Autonomous Transactions.

Finally, many PL/SQL types do not have equivalents in Transact-SQL. Records and

collections are examples of this. SSMA can process most cases of PL/SQL record and

collections usage. We also propose several approaches to the manual emulation of

PL/SQL collections in Migrating Oracle Collections and Records.

Data Migration Architecture of SSMA for Oracle
This section describes SSMA for Oracle V6.0 components and their interaction during

data migration. The components execute on different computers and use Microsoft SQL

Server 2014 database objects for communication. This architecture produces the best

migration performance and flexibility. Understanding this mechanism can help you set

up the proper environment for SSMA data migration. It also helps you to better control,

monitor, and optimize the process.

Implementation in SSMA

We based the SSMA for Oracle V6.0 implementation on the SqlBulkCopy class,

defined in the .NET Framework 2.0. SqlBulkCopy functionality resembles the bcp

utility, which allows transferring large amounts of data quickly and efficiently. Access to

the source database is established by the .NET Framework Data Provider for Oracle,

which uses the Oracle Call Interface (OCI) from Oracle client software. Optionally, you

can use .NET Framework Data Provider for OLE DB, which requires an installed Oracle

OLE DB provider.

We considered the following when designing SSMA for Oracle data migration:

¶ The data transfer process must run on SQL Server. That limits the number of

installed Oracle clients and reduces network traffic.

¶ The client application controls the process by using SQL Server stored

procedures. Therefore, you do not need any additional communication channels

with the server and can reuse the existing server connection for this purpose.

¶ All tables that are selected for migration are transferred by a single execution

command from the SSMA user.

¶ The user monitors the data flow progress and can terminate it at any time.

Solution Layers

Four layers participate in the data migration process:

¶ Client application, an SSMA executable

¶ Stored procedures that serve as interfaces to all server actions

¶ The database layer, which comprises two tables:

¶ The package information table

¶ The status table

¶ The server executable, which starts as part of a SQL Server job, executes the

data transfer, and reflects its status

Client Application

SSMA lets users choose an arbitrary set of source tables for migration. The batch size

for bulk copy operations is a user-defined setting.

When the process starts, the program displays the progress bar and a Stop button. If

any errors are found, SSMA shows the appropriate error message and terminates the

transfer. In addition, the user can click Stop to terminate the process. If the transfer is

completed normally, SSMA compares the number of rows in each source with the

corresponding target table. If they are equal, the transfer is considered to be successful.

As the client application does not directly control the data migration process, SSMA

uses a Messages table to receive feedback about the migration status.

Stored Procedures Interface

The following SQL Server stored procedures control the migration process:

¶ bcp_save_migration_package writes the package ID and XML parameters into

the bcp_migration_packages table.

¶ bcp_start_migration_process creates the SQL Server job that starts the

migration executable and returns the ID of the job created.

¶ bcp_read_new_migration_messages returns the rows added by the migration

executable, filtered by known job ID.

¶ stop_agent_process stops the migration job, including closing the original

connections and killing the migration executable. The data will be migrated

partially.

¶ bcp_clean_migration_data is a procedure that cleans up a migration job.

¶ bcp_post_process is a procedure that runs all post-processing tasks related to

the single migrated table.

Database Layer

SSMA uses a Packages table, named [ssma_oracle].[bcp_migration_packages], to

store information about the current package. Each row corresponds to one migration

run. It contains package GUID and XML that represents RSA-encrypted connection

strings and the tables that should be migrated.

A Messages table, named [ssma_oracle].[ssmafs_bcp_migration_messages]

accumulates messages coming from migration executables during their work.

Migration Executable

The migration application, SSMA for Oracle Data Migration Assistant.exe, is executed

on a SQL Server host. The executable's directory is determined during the Extension

Pack installation. When bcp_start_migration_package starts the application, it uses

hard-coded file names and retrieves the directory name from a server environment

variable.

When it starts, the migration application gets the package ID from the command string

and reads all other package-related information from the Packages table. That

information includes source and destination connection strings, and a list of the tables to

migrate. Then the tables are processed one at a time. You get source rows via the

IDataReader interface and move them to the target table with the WriteToServer

method.

The BatchSize setting defines the number of rows in a buffer. When the buffer is full, all

rows in it are committed to the target.

To notify you about the progress of a bulk copy operation, the data migration executable

uses the SqlRowsCopied event and NotifyAfter property. When a SqlRowsCopied

event is generated, the application inserts new rows, sending information about the

progress to the Messages table. The NotifyAfter property defines the number of rows

that are processed before generating a SqlRowsCopied event. This number is

25 percent of the source table's row count.

Another type of output record—the termination message—is written to the Messages

table when the application terminates either successfully or because of an exception. In

the latter case, the error text is included. If BatchSize = 1, additional information about

the columns of the row where the problem occurred is extracted, so that you can locate

the problematic row.

Message Handling

The client application receives feedback from the migration executable by means of the

Messages table. During migration, the client is in the loop, polling this table and verifying

that new rows with the proper package ID appear there. If there are no new rows during

a significant period of time, this may indicate problems with the server executable and

the process terminates with a time-out message.

When the table migration completes, the server executable writes a successful

completion message. If the table is large enough, you may see many intermediate

messages, which show that the next batch was successfully committed. If an error

occurs, the client displays the error message that was received from the server process.

Validation of the Results

Before the migration starts, the client application calculates the number of rows in each

table that will be migrated. With this data, you can evaluate the correct progress

position.

After the migration completes, the client must calculate the target table's row counts. If

they are equal, the overall migration result is considered to be successful. Otherwise,

the user is notified of the discrepancy and can view the source and destination counts.

Migrating Oracle Data Types
Most data types used in Oracle do not have exact equivalents in Microsoft

SQL Server 2014. They differ in scale, precision, length, and functionality. This section

explains the data type mapping implemented in SSMA for Oracle V6.0, and it includes

remarks about conversion issues.

SSMA supports all built-in Oracle types. SSMA type mapping is applied to table

columns, subprogram arguments, a function's returned value, and to local variables.

Usually the mapping rules are the same for all these categories, but in some cases

there are differences. In SSMA, you can adjust mapping rules for some predefined

limits. You can establish custom mappings for the whole schema, for specific group of

objects, or to a single object on the Oracle view pane's Type Mapping tab (Figure 1).

Figure 1: The Type Mapping tab in Oracle

This section does not describe migrating complex data types such as object types,

collections, or records. It does not cover ANY types and some specific structures, such

as spatial or media types.

Oracle allows you to create subtypes that are actually aliases of some basic types.

SSMA does not process subtypes, but you can emulate that functionality manually if you

can convert the basic type. Generally it is enough to replace the Oracle declaration:

SUBTYPE <type - name> IS <basic - type> [NOT NULL]

With the SQL Server 2014 declaration:

CREATE TYPE <type - name> FROM <basic - type - converted> [NOT NULL]

You may need to change the target <type - name> if the subtype is defined in the Oracle

package. To establish the scope of this name, add a package prefix such as

PackageName$<type-name>.

Numeric Data Types

The basic fixed point numeric type in Oracle is NUMBER(<precision>, <scale>). Its

variation for integer numbers is NUMBER(<precision>), and a floating point value can

be stored in NUMBER.

By default, SSMA maps NUMBER(<precision>, <scale>) to numeric(<precision>,

<scale>) and NUMBER(<precision>) to numeric(<precision>). NUMBER becomes

float(53), which has the maximum precision from SQL Server floating-point numbers.

In Oracle, INTEGER(<precision>) and INTEGER types are treated like

NUMBER(<precision>, 0). Because SQL Server has a special int type that stores

integers more efficiently, SSMA maps INTEGER to int. PL/SQL types such as

BINARY_INTEGER and PLS_INTEGER are also mapped to int by default.

You may want to customize the default mapping of numeric types if you know the exact

range of actual values. In fact, you can choose any SQL Server numeric type as the

target for the mapping. Be cautious when mapping a source type to a type that has less

precision, such as NUMBER -> smallint or NUMBER(20) -> int. Doing so could create

overflows or loss of precision during data migration or during code execution. In some

cases, you may want to set the precision to larger than the default, such as when

mapping INTEGER to bigint.

You may find another reason to change default number mappings: when you convert a

NUMBER field to a SQL Server identity column. Because SQL Server does not support

float numbers as identities, change it to an int or numeric type.

SSMA recognizes various synonyms of NUMBER types such as NUMERIC, DECIMAL,

NATURAL, POSITIVE, DOUBLE_PRECISION, REAL, BINARY_FLOAT, and

BINARY_DOUBLE and applies the proper mapping for each one.

SIGNTYPE is mapped to smallint to allow storing -1 as a possible value.

Character Data Types

SSMA converts the basic character types VARCHAR2 and CHAR to SQL Server

varchar and char, correspondingly preserving their length. If a PL/SQL variable is

declared with a constant size greater than 8,000, SSMA maps to varchar(max).

If some formal parameter of a procedure or a function has a character type, Oracle does

not require that its length be explicitly declared. Meanwhile, SQL Server always wants to

know the exact size of varchar or char parameters. As a result, SSMA has no other

choice than to apply the maximum length by default. That means that VARCHAR2 or

CHAR parameters are automatically declared as varchar(max) in the target code. If you

know the exact length of the source data, you can change the default mapping.

Use customized mappings when Oracle is configured to store multibyte strings in

VARCHAR2/CHAR columns or variables. In that case, map the character types to

Unicode types in SQL Server. For example:

 VARCHAR2 - > nvarchar

 CHAR - > nchar

Otherwise, non-ASCII strings can be distorted during data migration or target code

execution. Note that source strings declared as national (NVARCHAR2 and NCHAR)

are automatically mapped to nvarchar and nchar.

A similar approach is applied to Oracle RAW strings. This type can be mapped to binary

or varbinary (the default), but if their size exceeds the 8,000-byte limit, map them to

varbinary(max).

SSMA recognizes various synonyms of these types, namely VARCHAR, CHARACTER,

CHARACTER VARYING, NATIONAL CHARACTER, NATIONAL CHARACTER

VARYING, and STRING.

Date and Time

The default conversion target for DATE is datetime2[0]. Note that the SQL Server

datetime type can store dates from 01/01/1753 to 12/31/9999 and datetime2 type can

store dates from 01/01/0001 to 12/31/9999. This range is not as wide as Oracle’s DATE,

which starts from 4712 BC. This can create problems if these early dates are used in

the application. However, SQL Server can store contemporary dates more efficiently

with the smalldatetime type, which supports dates from 01/01/1900 to 06/06/2079. To

customize the mapping, in SSMA choose smalldatetime as the target type.

Another Oracle type that holds the date and time is TIMESTAMP. It resembles DATE

except that it has greater precision (up to nanoseconds). The SQL Server timestamp is

a completely different type not related to a moment in time. Thus, the best way to

convert TIMESTAMP is to use the default SSMA mapping to datetime2. The accuracy

of datetime2 is 100 nanoseconds. In most cases, the loss of precision caused by this

conversion is acceptable. The SQL Server 2014 can store time zone information in

dates. This is supported by the datetimeoffset data type.

http://msdn.microsoft.com/en-us/library/bb630289.aspx

The Oracle INTERVAL data type does not have a corresponding type in SQL Server,

but you can emulate any operations with intervals by using the SQL Server functions

DATEADD and DATEDIFF. The syntax of DATEADD is quite different from the syntax

of DATEDIFF, and as of this writing SSMA does not perform these conversions

automatically.

Boolean Type

SQL Server does not have a Boolean type. Statements containing Boolean values are

transformed by SSMA to replace the value with conditional expressions. SSMA

emulates stored Boolean data by using the SQL Server bit type.

Large Object Types

The best choice for migrating Oracle large object types (LOBs) are SQL Server variable-

length types with maximum storage size: varchar(max), nvarchar(max), and

varbinary(max).

Oracle SQL Server 2014

LONG, CLOB varchar(max)

NCLOB nvarchar(max)

LONG RAW, BLOB, BFILE varbinary(max)

You can change SSMA mapping to use the older-style text, ntext, and image types, but
this is not recommended. SQL Server 2014 operations over the variable-length types
with maximum storage size are simple compared to the approaches in both Oracle and
SQL Server 2014. Currently, SSMA does not automatically convert operations on large
types. Still, it can migrate the data of all the above types. The BFILE type is somewhat
different; because SSMA does not convert the Oracle concept of saving data out of the
database, the result of the data migration is that the file contents are loaded into a
SQL Server table in binary format. You may consider converting that result into a
varchar format if the file is a text file. If you need to store large binary fields in file
system, you can manually convert them by using new SQL Server FILESTREAM
attribute with the varbinary(max) data type. New SQL Server FileTable table type
which builds on the FILESTREAM functionality will allow access through Windows to the
properties of files stored on the NT file system. You can apply this new table type in
manual conversion. Note that FILESTREAM data is not supported by Azure SQL DB.

If the Oracle server supports multibyte encoding of characters, map LONG and CLOB

types to nvarchar(max) to preserve the Unicode characters.

XML Type

The default mapping of the Oracle XMLType is to SQL Server xml. All XML data in

XMLType columns can be successfully migrated by using SSMA. Note that XQuery

operations on these types are similar in Oracle and SQL Server, but differences exist

and you should handle them manually.

ROWID Types

The ROWID and UROWID types are mapped to uniqueidentifier, which is a GUID that

could be generated for each row. Before you convert any code that relies on the ROWID

pseudocolumn, ensure that SSMA added the ROWID column (see option Generate

ROWID column in the SSMA project settings). You can migrate data in columns of

ROWID type to SQL Server as is, but their correspondence with the SSMA-generated

ROWID column will be broken because uniqueidentifier no longer represents the

physical address of a row like it was in Oracle.

Migrating Oracle Spatial Data
Oracle Spatial is an Oracle subsystem which provides SQL functions to facilitate the

handling of spatial features in an Oracle database. The geometric description of a

spatial object is stored in a single row, in a column of dedicated object type

MDSYS.SDO_GEOMETRY.

SQL Server 2014 also supports spatial data. They are implemented as SQL CLR types

named geography and geometry. The geography type allows you to store objects

defined by coordinates on Earth's surface, and the geometry type is used for planar

objects. SQL Server 2014 spatial data types implement methods for importing and

exporting data in Well Known Text (WKT) and Well Known Binary (WKB) formats that

are defined by Open Geospatial Consortium (OGC) specification. Spatial functionality is

supported in all editions of SQL Server 2014, including Express.

SSMA for Oracle V6.0 does not support migration of table columns that have

SDO_GEOMETRY type. Straightforward use of SQL Server Integration Services (SSIS)

does not help much, because the Oracle Spatial types are not recognized by existing

OLE DB, ADO.NET or ODBC providers.

The proposed solution is based on the fact that both Oracle Spatial and SQL Server

2014 support conversion to WKT format. Next, we are assuming that the source

SDO_GEOMETRY column is mapped to SQL Server column of the geography type.

Before transferring the data, we should create a SQL Server linked server pointing at

the source Oracle instance. To perform the migration, we need to convert the source

column value into WKT format, which makes it a plain text, and insert the result into the

target geography column using OPENQUERY statement.

Example:

Suppose we have an Oracle table defined as:

CREATE TABLE geoinfo (id NUMBER(10) NOT NULL, geo MDSYS.SDO_GEOMETRY);

Its SQL Server counterpart will be:

CREATE TABLE geoinfo (id NUMERIC(10) NOT NULL, geo geography);

In this case, the following INSERT statement will correctly copy the spatial data.

INSERT INTO geoinfo (id, geo)

SELECT id, geography::STGeomFromText(CAST(geo as nvarchar(max)), srid)

FROM OPENQUERY(ORACLE_LS,

ôSELECT id, SDO_UTIL.TO_WKTGEOMETRY(g.geo) geo, g.geo.sdo_srid srid

 FROM geoinfo gô)

Here ORACLE_LS is the name of linked server referencing the source Oracle instance.

The Oracle function TO_WKTGEOMETRY returns a Well Known Text representation of

the Spatial geometry object. The spatial reference ID (srid) is necessary to define the

way the WKT string is interpreted by SQL Server.

Azure SQL DB supports spatial data and allows storing and processing it, but you

should use another way to retrieve the data from Oracle spatial table as Azure SQL DB

doesn’t support OPENQUERY function.

Emulating Oracle System Objects
This section describes how SSMA for Oracle V6.0 converts Oracle system objects

including views, standard functions, and packaged subroutines. You will also find hints

about how to convert packages that are currently unsupported.

Converting Oracle System Views

SSMA for Oracle V6.0 can convert Oracle system views, which are frequently used. It

does not convert columns that are too closely linked with Oracle physical structures or

have no equivalent in SQL Server 2014. The following views can be migrated

automatically to SQL Server views:

¶ ALL_INDEXES

¶ DBA_INDEXES

¶ ALL_OBJECTS

¶ DBA_OBJECTS

¶ ALL_SYNONYMS

¶ DBA_SYNONYMS

¶ ALL_TAB_COLUMNS

¶ DBA_TAB_COLUMNS

¶ ALL_TABLES

¶ DBA_TABLES

¶ ALL_CONSTRAINTS

¶ DBA_ CONSTRAINTS

¶ ALL_SEQUENCES

¶ DBA_SEQUENCES

¶ ALL_VIEWS

¶ DBA_VIEWS

¶ ALL_USERS

¶ DBA _USERS

¶ ALL_SOURCE

¶ DBA_SOURCE

¶ GLOBAL_NAME

¶ ALL_JOBS

¶ DBA_ JOBS

¶ V$SESSION

In this section, we describe ways to manually convert the following views:

¶ ALL_EXTENTS

¶ V$LOCKED_OBJECT

¶ DBA_FREE_SPACE

¶ DBA_SEGMENTS

Location of Generated System View Emulations for SSMA for Oracle V6.0

Views emulating Oracle DBA_* views and ALL_* views are created in

<target_db>.ssma_oracle.DBA_* and <target_db>.ssma_oracle.ALL_*,

correspondingly.

USER_* views are created in each scheme where these views are used, and they have

additional WHERE conditions with the format:

OWNER = <target_schema>

Note that SSMA creates only those target views that are actually referenced in the

generated code.

Note In the following code we assume that SSMA creates DBA_* and USER_* views

based on ALL_* and therefore we do not describe DBA_* and USER_*in this document.

Example:

CREATE VIEW ssma_oracle.ALL_TRIGGERS

AS

select

 UPPER(t.name) as TRIGGER_NAME,

 UPPER(s.name) as TABLE_OWNER,

 UPPER(o.name) as TABLE_NAME,

 CASE

 WHEN t.is_disabled = 0 THEN 'ENABLED'

 ELSE 'DISABLED'

 END as STATUS

 from sys.triggers t, sys.tables o, sys.schemas AS s

where t.parent_id = o.object_id

 and o.schema_id = s.schema_id

GO

CREATE VIEW USER1.USER_TRIGGERS

AS

SELECT * FROM ssma_oracle.ALL_TRIGGERS v

 WHERE v.OWNER = N'TEST_USER'

CREATE SYNONYM ssma_oracle.DBA_TRIGGERS

FOR TEST_DATABASE.ssma_oracle.ALL_TRIGGERS

ALL_INDEXES System View

SSMA converts owner, index_name, index_type, table_owner, table_name, table_type,

uniqueness, compression, and prefix_length columns.

ALL_OBJECTS System View

SSMA converts owner, object_name, object_type, created, last_ddl_time, and

generated columns.

ALL_SYNONYMS System View

SSMA converts all columns for this view.

ALL_TAB_COLUMNS System View

SSMA converts OWNER, table_name, column_name, DATA_TYPE, data_length,

data_precision, data_scale, nullable, and column_id columns.

ALL_TABLES System View

SSMA for Oracle V6.0 converts owner and table_name columns.

ALL_CONSTRAINTS System View

SSMA converts owner, constraint_name, constraint_type, table_name,

search_condition, r_owner, r_constraint_name, delete_rule, status, deferable, and

generated columns.

ALL_SEQUENCES System View

SSMA converts sequence_owner, sequence_name, minvalue, increment_by,

cycle_flag, order_flag, cache_size, and last_number columns.

ALL_VIEWS System View

SSMA converts owner, view_name, text_length, and text columns.

ALL_USERS System View

SSMA converts all columns for this view.

ALL_SOURCE System View

SSMA converts owner, name, and text columns.

GLOBAL_NAME System View

SSMA converts all columns for this view.

ALL_JOBS System View

SSMA converts job, last_date, last_sec, next_date, next_sec, total_time, broken, and

what columns.

V$SESSION System View

SSMA converts sid, username, status, schemaname, program, logon_time, and

last_call_et columns.

DBA_EXTENTS System View

SSMA does not automatically convert DBA_EXTENTS. You can emulate owner,

segment_name, segment_type, bytes, and blocks.

The following code produces the result similar to DBA_EXTENTS:

insert #extentinfo

exec('

dbcc extentinfo (0) with tableresults

')

select

 UPPER(s.name) AS owner,

 UPPER(t.name) AS object_name,

 'TABLE' AS segment_type,

 ext_size*8192 as bytes,

 ext_size as blocks

 from #extentinfo AS e, sys.tables AS t, sys.schemas AS s

WHERE t.schema_id = s.schema_id

 AND e.obj_id = t.object_id

UNION ALL

select

 UPPER(s.name) AS owner,

 UPPER(i.name) AS object_name,

 'INDEX' AS segment_type,

 ext_size*8192 as bytes,

 ext_size as blocks

 from #extentinfo AS e, sys.indexes AS i,

 sys.tables AS t, sys.schemas AS s

WHERE t.schema_id = s.schema_id

 AND i.object_id = t.object_id

 AND e.obj_id = t.object_id

Note that this emulation cannot be applied to Azure SQL DB as DBCC command
'extentinfo' is not supported in this version of SQL Server.

V$LOCKED_OBJECT System View

SSMA does not automatically convert V$LOCKED_OBJECT. You can emulate

V$LOCKED_OBJECT data by using the following columns in SQL Server 2014:

os_user_name, session_id, oracle_username, locked_mode.

The following view provides the emulation:

CREATE VIEW ssma_oracle.V$LOCK_OBJECT AS

SELECT

 s.hostname as OS_USER_NAME,

 s.spid as SESSION_ID,

 UPPER(u.name) as ORACLE_USERNAME,

 CASE

 WHEN d.request_mode = 'IX' THEN 3

 WHEN d.request_mode = 'IS' THEN 2

 WHEN d.request_mode = 'X' THEN 6

 WHEN d.request_mode = 'S' THEN 4

 ELSE 0

 END as LOCKED_MODE

 FROM sys.dm _tran_locks as d LEFT OUTER JOIN

 (master..sysprocesses as s LEFT OUTER JOIN sysusers as u

 ON s.uid = u.uid) ON d.request_session_id = s.spid

 WHERE resource_type = 'OBJECT' and request_mode NOT IN ('Sch - M',

'Sch - S')

Note that this emulation cannot be applied to Azure SQL DB as reference to
master..sysprocesses is not supported in this version of SQL Server.

DBA_FREE_SPACE System View

SSMA does not automatically convert DBA_FREE_SPACE. You can emulate it in SQL

Server 2014 in the following columns: file_id, bytes, blocks.

The following code performs the emulation:

CREATE VIEW DBA_FREE_SPACE AS

SELECT

 a.data_space_id as FILE_ID,

 SUM(a.total_pages - a.used_pages)*8192 as BYTES,

 SUM(a.total_pages - a.u sed_pages) as BLOCKS

 FROM sys.allocation_units as a

 GROUP BY a.data_space_id

Note that this emulation cannot be applied to Azure SQL DB as reference to
sys.allocation_units is not supported in this version of SQL Server.

DBA_SEGMENTS System View

SSMA does not automatically convert the DBA_SEGMENTS view. You can emulate it in

SQL Server 2014 with the following columns: owner, segment_name, segment_type,

bytes.

We propose the following emulation:

CREATE VIEW ssma_ora cle .DBA_SEGMENTS AS

SELECT

 UPPER(s.name) AS owner,

 UPPER(o.name) AS SEGMENT_NAME,

 'TABLE' AS SEGMENT_TYPE,

 SUM(a.used_pages*8192) as BYTES

 FROM sys.tables AS o INNER JOIN

 sys.schemas AS s ON s.schema_id = o.schema_id left join

 (sys.partitions as p join sys.allocation_units a on

p.partition_id = a.container_id

 left join sys.internal_tables it on p.object_id =

it.object_id)

 on o.object_id = p.object_id

WHERE (o.is_ms_shipped = 0)

GROUP BY s.name, o.name

UNION ALL

SELECT

 UPPER(s.name) AS owner,

 UPPER(i.name) AS SEGMENT_NAME,

 'INDEX' AS OBJECT_TYPE,

 SUM(a.used_pages*8192) as BYTES

FROM sys.indexes AS i INNER JOIN

 sys.objects AS o ON i.object_id = o.object_id and

 o.type = 'U' INNER JOIN

 sys.schemas AS s ON o.schema_id = s.schema_id left join

 (sys.partitions as p join sys.allocation_units a on

p.partition_id = a.container_id

 left join sys.internal_tables it on p.object_id =

it.object_id)

 on o.object_id = p.object_id

GROUP BY s.name, i.name

Note that this emulation cannot be applied to Azure SQL DB as reference to
sys.allocation_units, sys.partitions and sys.internal_tables is not supported in this
version of SQL Server.

Converting Oracle System Functions

SSMA converts Oracle system functions to either SQL Server system functions or to

user-defined functions from the Microsoft Extension Library for SQL Server. The library

is created in the ssma_oracle schema when you convert your database. The following

table lists the Oracle system functions and SQL Server mappings.

Function conversion status (S) Type of conversion (T)

Y: The function is fully converted. M: Using standard Transact-SQL mapping.

P: The function is partially converted. F: Using database user-defined functions.

Note: The prefix [ssma_oracle] is placed before functions in the ssma_oracle schema,

as required for SQL Server functions that are part of the SSMA conversion.

Oracle System

Function

S T Conversion to SQL Server Comment

ABS(p1) Y M ABS(p1)

ACOS(p1) Y M ACOS(p1)

ADD_MONTHS(p1,

p2)

Y M DATEADD(m, p2, p1)

ASCII(p1) Y M ASCII(p1)

ASIN(p1) Y M ASIN(p1)

AVG(p1) Y M AVG(p1)

ATAN(p1) Y M ATAN(p1)

BITAND(p1, p2) Y F ssma_oracle.BITAND(p1, p2)

CAST(p1 AS t1) Y M CAST(p1 AS t1)

CEIL(p1) Y M CEILING(p1)

Oracle System

Function

S T Conversion to SQL Server Comment

CHR(p1 [USING

NCHAR_CS])

P M CHAR(p1) USING

NCHAR_CS is

currently not

supported.

COALESCE(p1, …) Y M COALESCE(p1, …)

CONCAT(p1, p2) Y M Into expression (p1 + p2) or

CONCAT(p1, p2)

CONCAT function
performs a
concatenation of
values,
allowing for NULL
values

COS(p1) Y M COS(p1)

COSH(p1) Y F ssma_oracle.COSH(p1) no

spaces are allowed in

ssma_oracle user name.

COUNT(p1) Y M COUNT(p1)

CUME_DIST() Y M CUME_DIST()
 OVER ([partition_by_clause]
order_by_clause)

CURRENT_DATE P M SYSDATETIME() Limitation:

CURRENT_DATE

returns date in the

time zone of DB

session, but

SYSDATETIME()

returns date on

SQL Server

instance machine

DECODE(p1, p2, p3 [,

p4])

Y M CASE p1 WHEN p2 THEN p3

[ELSE p4] END

DENSE_RANK() Y M DENSE_RANK()

EXP(p1) Y M EXP(p1)

EXTRACT(p1 FROM

p2)

P M DATEPART(part-p1, p2) Only p1 = (YEAR,

MONTH, DAY,

HOUR, MINUTE,

SECOND) is

converted. For p1 =

(TIMEZONE_HOU

Oracle System

Function

S T Conversion to SQL Server Comment

R,

TIMEZONE_MINU

TE,

TIMEZONE_REGI

ON,

TIMEZONE_ABBR)

a message is

generated saying

that it is impossible

to convert.

FIRST_VALUE() Y M FIRST_VALUE (

[scalar_expression])

 OVER ([partition_by_clause]

order_by_clause [

rows_range_clause])

FLOOR(p1) Y M FLOOR(p1)

FROM_TZ(p1, p2)

Y M TODATETIMEOFFSET(p1, p2)

GREATEST(p1,p2 P F ssma_oracle. Function type is

based on the p1

data type. If the

Oracle source is

[,p3…pn]) GREATEST_DATETIME(p1, p2) GREATEST(p1,p2,

p3), SSMA

transforms it as

 GREATEST_FLOAT(p1, p2) GREATEST(p1,

GREATEST(p2,p3)

) and so on.

 GREATEST_INT(p1, p2)

 GREATEST_NVARCHAR(p1,

p2)

 GREATEST_REAL(p1, p2)

 GREATEST_VARCHAR(p1, p2)

INITCAP(p1) Y F ssma_oracle. Function type is

Oracle System

Function

S T Conversion to SQL Server Comment

INITCAP _VARCHAR(p1) based on the p1

data type. Currently

supports the

following argument

types: CHAR,

NCHAR,

VARCHAR2,

NVARCHAR2. For

other types, a

message is

generated.

INITCAP _NVARCHAR(p1)

INSTR(p1,p2[,p3,p4]) P F ssma_oracle. INSTRB, INSTRC,

INSTR2, INSTR4

currently not

converted.

INSTR2_CHAR(p1, p2)

INSTR2_NCHAR(p1, p2)

INSTR2_NVARCHAR(p1, p2)

INSTR2_VARCHAR(p1, p2)

INSTR3_CHAR(p1, p2, p3)

INSTR3_NCHAR(p1, p2, p3)

INSTR3_NVARCHAR(p1, p2, p3)

INSTR3_VARCHAR(p1, p2, p3)

INSTR4_CHAR(p1, p2, p3, p4)

INSTR4_NCHAR(p1, p2, p3, p4)

INSTR4_NVARCHAR(p1, p2, p3,

p4)

INSTR4_VARCHAR(p1, p2, p3,

p4)

LAG() Y M LAG (scalar_expression [,offset]

[,default])

 OVER ([partition_by_clause]

order_by_clause)

LAST_DAY(p1) Y M EOMONTH (start_date [,

month_to_add])

If you do not need

time part in result it

Oracle System

Function

S T Conversion to SQL Server Comment

ssma_oracle.LAST_DAY(p1)

is better to use this

built-in function. Or

LAST_VALUE() Y M LAST_VALUE (

[scalar_expression)

 OVER ([partition_by_clause]

order_by_clause rows_range_cla

use)

LEAD() Y M LEAD (scalar_expression [

,offset] , [default])

 OVER ([partition_by_clause]

order_by_clause)

LEAST(p1, p2 [, p3 …

pn])

P F ssma_oracle.

LEAST_DATETIME (p1, p2)

LEAST_FLOAT (p1, p2)

LEAST_INT (p1, p2)

LEAST_NVARCHAR (p1, p2)

LEAST_REAL (p1, p2)

LEAST_VARCHAR (p1, p2)

Function type is

based on the p1

data type. If Oracle

source is

 LEAST (p1,p2,p3),

SSMA transforms it

as

LEAST (p1,

LEAST (p2,p3))

and so on.

LENGTH(p1) P F ssma_oracle. LENGTHB,

LENGTHC,

LENGTH2,

LENGTH4 currently

not converted.

LENGTH_CHAR(p1) Function type

determined based

on the p1 data type.

LENGTH_NCHAR(p1)

Oracle System

Function

S T Conversion to SQL Server Comment

LENGTH_NVARCHAR(p1)

LENGTH_VARCHAR(p1)

LN(p1) Y M LOG(p1)

LOCALTIMESTAMP

Y M SYSDATETIME()

LOG(p1, p2) Y F ssma_oracle.LOG_ANYBASE(p1

, p2)

LOWER(p1) Y M LOWER(p1)

LPAD(p1, p2) Y F ssma_oracle. Function type is

based on the p1

data type. P3 = ‘ ’

(by default).

Currently supports

the following

argument types:

CHAR, NCHAR,

VARCHAR2,

NVARCHAR2. For

other types a

message is

generated.

LPAD_VARCHAR(p1, p2, p3)

LPAD_NVARCHAR(p1, p2, p3)

LPAD(p1, p2, p3) Y F ssma_oracle. Function type is

based on the p1

data type. Currently

supports the

following argument

types: CHAR,

NCHAR,

VARCHAR2,

NVARCHAR2.

LPAD_VARCHAR(p1, p2, p3)

LPAD_NVARCHAR(p1,p2,p3)

LTRIM(p1) Y M LTRIM(p1)

LTRIM(p1, p2) Y F ssma_oracle. Function type is

based on the p1

data type. Currently

supports the

following argument

types: CHAR,

LTRIM2_VARCHAR(p1, p2)

LTRIM2_NVARCHAR(p1, p2)

Oracle System

Function

S T Conversion to SQL Server Comment

NCHAR,

VARCHAR2,

NVARCHAR2.

MOD(p1, p2) Y M Into expression (p1 % p2) No check of

parameter data

types.

MONTHS_BETWEEN

(p1, p2)

Y M DATEDIFF(MONTH, CAST(p2

AS float), CAST(

DATEADD(DAY, (-

CAST(DATEPART(DAY, p2) AS

float(53)) + 1), p1) AS float))

NEXT_DAY (p1, p2) Y F ssma_oracle.NEXT_DAY (p1,

p2)

NEW_TIME(p1, p2,

p3)

Y F ssma_oracle.NEW_TIME(p1, p2,

p3)

NLS_INITCAP(p1[,

p2])

P F ssma_oracle. Only function calls

with one argument

are currently

supported. The

type of function is

determined by the

first argument data

type. The following

data types of the

first argument are

currently supported:

NCHAR,

NVARCHAR2. For

other data types a

message is

generated.

NLS_INITCAP_NVARCHAR(p1)

NTILE() Y M NTILE()

NULLIF(p1, p2) Y M NULLIF(p1, p2)

NVL(p1, p2) Y M ISNULL(p1, p2)

PERCENTILE_DISC() Y M PERCENTILE_DISC (

numeric_literal) WITHIN

GROUP (ORDER BY

Oracle System

Function

S T Conversion to SQL Server Comment

order_by_expression [ASC |

DESC])

 OVER ([

<partition_by_clause>])

PERCENT_RANK() Y M PERCENT_RANK()

 OVER ([partition_by_clause]

order_by_clause)

PERCENTILE_CONT(

)

Y M PERCENTILE_CONT (

numeric_literal)

 WITHIN GROUP (ORDER BY

order_by_expression [ASC |

DESC])

 OVER ([

<partition_by_clause>])

POWER(p1,p2) Y M POWER(p1,p2)

RANK() Y M RANK()

RAWTOHEX (p1) Y F ssma_oracle.RAWTOHEX_VAR

CHAR (p1)

varchar is

supported as the

returned value type.

REMINDER (n2, n1) Y F n2 -

(n1*round(cast(n2

as float)/cast(n1 as

float), 0))

REPLACE(p1, p2)

REPLACE(p1, p2, p3)

P M REPLACE(p1, p2 , ‘’)

REPLACE(p1, p2 , p3)

ROUND(p1) [p1 date

]

ROUND(p1, p2) [p1

date]

Y F ssma_oracle.ROUND_DATE (p1,

NULL)

ssma_oracle.ROUND_DATE (p1,

p2)

ROUND(p1) [p1

numeric]

Y F ssma_oracle.ROUND_NUMERIC

_0 (p1)

ROUND (p1, p2) [p1 Y M ROUND (p1, p2)

Oracle System

Function

S T Conversion to SQL Server Comment

numeric]

ROW_NUMBER() Y M ROW_NUMBER()

RPAD(p1, p2) Y F ssma_oracle. The type of function

is determined by

the first argument

data type. P3 = ‘ ’

(by default). The

following data types

of the first

argument are

currently supported:

CHAR, NCHAR,

VARCHAR2,

NVARCHAR2. For

other data types a

message is

generated.

RPAD_VARCHAR(p1, p2, p3)

RPAD_NVARCHAR(p1, p2, p3)

RPAD(p1, p2, p3) Y F ssma_oracle. The type of function

is determined by

the first argument

data type. The

following data types

of the first

argument currently

supported: CHAR,

NCHAR,

VARCHAR2,

NVARCHAR2. For

other data types a

message is

generated

RPAD_VARCHAR(p1, p2, p3)

RPAD_NVARCHAR(p1,p2,p3)

RTRIM(p1) Y M RTRIM(p1)

RTRIM(p1,p2) Y F ssma_oracle. The function type is

based on the p1

data type. Currently

supported following

argument types

are: CHAR,

NCHAR,

RTRIM2_VARCHAR(p1,p2)

RTRIM2_NVARCHAR(p1,p2)

Oracle System

Function

S T Conversion to SQL Server Comment

VARCHAR2,

NVARCHAR2.

SIGN(p1) Y M SIGN(p1)

SIN(p1) Y M SIN(p1)

SINH(p1) Y F ssma_oracle.SINH(p1)

SQRT(p1) Y M SQRT (p1)

SUBSTR(p1, p2[, p3]) P F ssma_oracle. The function type is

based on the p1

data type. SUBSTR2_CHAR(p1,p2)

SUBSTR2_NCHAR(p1,p2)

SUBSTR2_NVARCHAR(p1,p2)

SUBSTR2_VARCHAR(p1,p2)

SUBSTR3_CHAR(p1,p2,p3)

SUBSTR3_NCHAR(p1,p2,p3)

SUBSTR3_NVARCHAR(p1,p2,p

3)

SUBSTR3_VARCHAR(p1,p2,p3)

 SUM() Y M SUM()

SYS_GUID() P M NEWID() Not guaranteed to

work correctly. For

example, SELECT

SYS_GUID() from

dual differs from

SELECT NEWID().

SYSDATE Y M SYSDATETIME()

SYSTIMESTAMP Y M SYSDATETIMEOFFSET()

TAN(p1) Y M TAN(p1)

TANH(p1) Y F ssma_oracle.TANH(p1)

TO_CHAR(p1) Y M CAST(p1 AS CHAR) Not guaranteed to

Oracle System

Function

S T Conversion to SQL Server Comment

work correctly.

TO_CHAR(p1, p2) Y M FORMAT (value, format [,

culture])

ssma_oracle.

For the

overwhelming

majority of cases it

is better to use the

built-in function. Or

p1 can have date or

numeric type.

Formats currently

not supported are

E, EE, TZD, TZH,

TZR. Allowable

numeric formats

are comma, period,

‘0’, ‘9,’ and ‘fm.’

TO_CHAR_DATE (p1, p2) Character value of

p1 is not supported.

TO_CHAR_NUMERIC (p1, p2)

TO_DATE(p1)

TO_DATE(p1, p2)

P F CAST(p1 AS datetime)

ssma_oracle.TO_DATE2 (p1, p2)

Only 1- or 2-

argument format is

converted.

TO_NUMBER(p1[,

p2[, p3]])

P M CAST(p1 AS NUMERIC) Currently supported

with only one

argument. The

conversion is not

guaranteed to be

fully equivalent.

TRANSLATE(p1, p2,

p3)

Y F ssma_oracle. The type of function

is determined by

the first argument

data type. The

following data types

of the first

argument are

currently supported:

CHAR, NCHAR,

VARCHAR2,

NVARCHAR2. For

other data types a

TRANSLATE_VARCHAR(p1, p2,

p3)

TRANSLATE_NVARCHAR(p1,

p2, p3)

Oracle System

Function

S T Conversion to SQL Server Comment

message is

generated.

TRUNC(p1[, p2]) Y F ssma_oracle. Currently supported

only for p1 of

NUMERIC and

DATE types.

TRUNC(p1[, p2])

TRUNC_DATE(p1)

TRUNC_DATE2(p1, p2)

TRIM Y F ssma_oracle.TRIM2,

ssma_oracle.TRIM3

The parameters are

transformed.

UID P M SUSER_SID() The conversion is

not guaranteed to

be fully equivalent.

UPPER(p1) Y M UPPER(p1)

USER Y M SESSION_USER

WIDTH_BUCKET(p1,

p2, p3, p4)

Y F ssma_oracle.WIDTH_BUCKET(p

1, p2, p3, p4)

Note that the following functions are not supported on Azure SQL DB: CUME_DIST,

LAG, LEAD, FIRST_VALUE, LAST_VALUE, PERCENTILE_DISC,

PERCENTILE_RANK, PERCENTILE_COST.

Converting Oracle System Packages

This section covers the migration of commonly used subroutines in Oracle standard

packages. Some of the modules are migrated automatically by SSMA, and some should

be handled manually. Examples illustrate our approach for the conversion.

DBMS_SQL Package

SSMA automatically covers cases where the statement is not SELECT. The dynamic

SQL is processed manually.

Oracle Function

or Procedure

Conversion to SQL Server Comment

OPEN_CURSOR() [ssma_oracle].DBMS_SQL_OPEN_CURSOR The conversion is

not guaranteed to

be fully equivalent.

PARSE(p1,p2,p3) [ssma_oracle].DBMS_SQL_PARSE p1,p2,p3 The conversion is

not guaranteed to

be fully equivalent.

EXECUTE(p1) [ssma_oracle].DBMS_SQL_EXECUTE -p1 The conversion is

not guaranteed to

be fully equivalent.

CLOSE_CURSOR(p1) [ssma_oracle].DBMS_SQL_CLOSE_CURSOR

-p1

The conversion is

not guaranteed to

be fully equivalent.

Example:

Oracle

declare

 cur int;

 ret int;

begin

 cur := dbms_sql.open_cursor();

 dbms_sql.parse(cur, ' select col1 from t1', dbms_sql.NATIVE);

 ret := dbms_sql.execute(cur);

 dbms_sql.close_cursor(cur);

end;

SQL Server

Declare

 @cur numeric(38),

 @ret numer ic(38)

begin

 EXECUTE ssma_oracle.dbms_ sql_open_cursor @result = @cur O UTPUT

 EXECUTE ssma_oracle.dbms_sql_parse @cur, 'SELECT t1.col1 FROM

dbo.t1'

 EXECUTE ssma_oracle.dbms_sql_execute @cur,

@ssma$rows_processed = @ret OUTPUT

 EXECUTE ssma_oracle.dbms_sql_close_cursor @cur

End

Conversion of DBMS_SQL Package to Azure SQL DB

There is a pequliarity of DBMS_SQL package conversion to Azure SQL DB as the latest

doesn’t support the usage of xp_ora2ms_exec extended stored procedure.

This procedure is used when Oracle DBMS_SQL.FETCH_ROWS function is converted

to ssma_oracle.DBMS_SQL_FETCH_ROWS function. As there are DML operations are

to be performed by the function and SQL Server doesn’t allow DML operations in

function code, it is rewritten as ssma_oracle.DBMS_SQL_FETCH_ROWS$IMPL stored

procedure. Thus, conversion of DBMS_SQL.FETCH_ROWS function is implemented

both as a procedure and a function. In this case, the procedure is used in a call via an

extended procedure in the function body.

In Azure SQL DB, we have to get rid of this function and use implementation procedure

directly.

Depending on the usage of DBMS_SQL.FETCH_ROWS function, SSMA performs two

approaches in the conversion to Azure SQL DB:

¶ Changes calling code to use implementation procedure instead of the function;

¶ Marks calling code with error message.

In case SSMA marked the call to procedure with error, it is suggested to rewrite it to

ssma_oracle.DBMS_SQL_FETCH_ROWS$IMPL procedure call manually where

possible.

DBMS_OUTPUT Package

SSMA can handle commonly used PUT_LINE functions.

Oracle function

or procedure

T Conversion

to

SQL Server

Comment

PUT_LINE(p1) M PRINT p1 The conversion is not guaranteed to be

fully equivalent.

Example:

Oracle

declare

 tname varchar2(255);

begin

 tname:='Hello, world!';

 dbms_output.put_line(tname);

end;

SQL Server

DECLARE

 @tname varchar(255)

BEGIN

 SET @tname = 'Hello, world!'

 PRINT @tname

END

UTL_FILE Package

The following table lists the UTL_FILE subprograms that SSMA processes

automatically.

Oracle function

or procedure

T Conversion to SQL Server Comment

IS_OPEN(p1) S UTL_FILE_IS_OPEN(p1)

FCLOSE(p1) S UTL_FILE_FCLOSE p1

FFLUSH (p1) S UTL_FILE_FFLUSH p1

FOPEN (p1,p2,p3,

p4)

S UTL_FILE_FOPEN$IMPL(p1,p2,p3,p4,p5) p5 return

value

GET_LINE S UTL_FILE_GET_LINE(p1,p2,p3) p2 return

value

PUT S UTL_FILE_PUT(p1,p2)

PUTF(p1, p2) S UTL_FILE_PUTF(p1,p2)

PUT_LINE S UTL_FILE_PUT_LINE(p1,p2)

Example:

Oracle

DECLARE

 outfile utl_file.file_type;

 my_world varchar2(4) := 'Zork';

 V1 VARCHAR2(32767);

Begin

 outfile := utl_file.fopen('USER_DIR','1.txt','w',1280);

 utl_file.put_line(outfile,'Hello, world!');

 utl_file.PUT(outfile, 'Hello, world NEW! ');

 UTL_FILE.FFLUSH (outfile);

 IF utl_file.is_open(outfile) THEN

 Utl_file.fclose(outfile);

 END IF;

 outfile := utl_file.fopen('USER_DIR','1.txt','r');

 UTL_FILE.GET_LINE(outfile,V1,32767);

 DBMS_OUTPUT.put_line('V1= '||V1);

 IF utl_file.is_open(outfile) THEN

 Utl_file.fclose(outfile);

 END IF;

End write_log_file;

SQL Server

DECLARE

 @outfile XML,

 @my_world varchar(4),

 @V1 varchar(max)

 SET @my_world = 'Zork'

BEGIN

 EXEC ssma_oracle.UTL_FILE_FOPEN$IMPL 'USER_DIR', '1.txt',

'w', 1280, @outfile OUTPUT

 EXEC ssma_oracle.UTL_FILE_PUT_LINE @outfile, 'Hello,

world!'

 EXEC ssma_oracle.UTL_FILE_PUT @outfile, 'Hello, world NEW!

'

 EXEC ssma_oracle.UTL_FILE_FFLUSH @outfile

 IF (ssma_oracle.UTL_FILE_IS_OPEN(@outfile) != /* FALSE */

0)

 EXEC ssma_oracle.UTL_FILE_FCLOSE @outfile

 EXEC ssma_oracle.UTL_FILE_FOPEN$IMPL 'USER_DIR', '1.txt',

'r', 1024, @outfile OUTPUT

 EXEC ssma_oracle.UTL_FILE_GET_LINE @outfile, @V1 OUTPUT,

32767

 PRINT ('V1= ' + isnull(@V1, ''))

 IF (ssma_oracle.UTL_FILE_IS_OPEN(@outfile) != /* FALSE */

0)

 EXEC ssma_oracle.UTL_FILE_FCLOSE @outfile

END

Note that this code is not applicable on Azure SQL DB as this version of SQL Server

doesn’t support working with file system.

DBMS_UTILITY Package

SSMA supports only the GET_TIME function.

Oracle function or

procedure

T Conversion to SQL Server Comment

GET_TIME M SELECT CONVERT(NUMERIC(38, 0),

(CONVERT(NUMERIC(38, 10), getdate()) *

8640000))

DBMS_SESSION Package

SSMA supports only the UNIQUE_SESSION_ID function.

Oracle function or

procedure

T Conversion to SQL Server Comment

UNIQUE_SESSION_ID M ssma_oracle.unique_session_id() Return value is

different

DBMS_PIPE Package

SSMA for Oracle V6.0 does not convert the DBMS_PIPE system package. To emulate it

manually, follow these suggestions.

The DBMS_PIPE package has the following subprograms:

¶ function Create_Pipe()

¶ procedure Pack_Message()

¶ function Send_Message()

¶ function Receive_Message()

¶ function Next_Item_Type()

¶ procedure Unpck_Message()

¶ procedure Remove_Pipe()

¶ procedure Purge()

¶ procedure Reset_Buffer()

¶ function Unique_Session_Name()

Use a separate table to store data that is transferred via pipe.

Here’s an example:

CREATE TABLE ssma_oracle .Pipes(

ID Bigint Not null Identity(1, 1),

PipeName Varchar(128) Not Null Default 'Default',

DataValue Varchar(8000)

);

GO

GRANT SELECT, INSERT, DELETE ON ssma _oracle .Pipes TO PUBLIC

GO

The pack-send and receive-unpack commands are usually used in pairs. Therefore, you

can do the following replacement:

Oracle

 s := dbms_pipe.receive_me ssage('<Pipe_Name>');

 if s = 0 then

 dbms_pipe.unpack_message(chr);

 end if;

SQL Server

DECLARE

 @s bigint,

 @chr varchar(8000)

BEGIN

 SET @chr = ''

 Select @s = Min(ID) from ssma _oracle .Pipes where

PipeName = '<Pi pe_Name>'

 If @s is not null

 Begin

 Select @chr = DataValue From ssma _oracle .Pipes where

ID = @s

 Delete From ssma _oracle .Pipes where ID = @s

 End

END

Oracle

dbms_pipe.pack_message(info);

status := dbms_pipe.send_message('<Pipe_Name>');

SQL Server

INSERT INTO ssma _oracle .Pipes (PipeName, DataValue) Values

('<Pipe_Name>', @info)

Note that in order this emulation work on Azure SQL DB, you should create clustered

index on ssma_oracle.Pipes table. Thus, the code for creating the pipes table will be as

follow on Azure SQL DB:

CREATE TABLE ssma_oracle .Pipes(

ID Bigint Not null Identity(1, 1),

PipeName Varchar(128) Not Null Default 'Default',

DataValue Varchar(8000)

);

GO

CREATE CLUSTERED INDEX idxc_pipes ON ssma_oracle.Pipes (ID)

GO

GRANT SELECT, INSERT, DELETE ON ssma _oracle .Pipes TO PUBLIC

GO

Here are some considerations for the package conversion:

¶ Create_Pipe(). Can be ignored.

¶ Pack_Message(), Unpack_Message(). Add storage as a buffer or ignore.

¶ Send_Message(), Receive_Message(). Will be emulated as insert/select on the

Pipes table (as shown in earlier example code).

¶ Next_Item_Type(). The system requires the addition of a datatype field to your

Pipes table.

¶ Remove_Pipe() Emulate as Delete From Pipes where PipeName =

'<PipeName>'

¶ Purge(). In our emulation, this means the same as Remove_Pipe().

¶ Reset_Buffer(). Needed if you emulate the buffer (and pack and unpack

procedures).

¶ Unique_Session_Name(). Returns session name. It is possible to emulate it as

SessionID.

DBMS_LOB Package

SSMA can automatically convert some functions of DBMS_LOB package. Their

emulation is performed by SSMA procedures and functions, generated in ssma_oracle

schema.

The following table lists the DBMS_LOB subprograms that SSMA processes

automatically.

Oracle function or

procedure

T Conversion to SQL Server Comment

DBMS_LOB.READ S ssma_oracle.dbms_lob$read_blob

ssma_oracle.dbms_lob$read_clob

DBMS_LOB.WRITE S ssma_oracle.dbms_lob$write_blob

ssma_oracle.dbms_lob$write_clob

DBMS_LOB.WRITEAPPE

ND

S ssma_oracle.dbms_lob$writeappend

blob

ssma_oracle.dbms_lob$writeappend

clob

DBMS_LOB.GETLENGTH S ssma_oracle.dbms_lob$getlength_blob

ssma_oracle.dbms_lob$getlength_clob

-

DBMS_LOB.SUBSTR S ssma_oracle.dbms_lob$substr_blob

ssma_oracle.dbms_lob$substr_clob

-

DBMS_LOB.OPEN S This procedure is ignored during the

conversion

DBMS_LOB.CLOSE S This procedure is ignored during the

conversion

DBMS_JOB System Package

Both Oracle and SQL Server support jobs, but how they are created and executed is

quite different. SSMA does not support conversion of the DBMS_JOB package, so this

paper provides a description of manual conversion. The following example shows how

to create the equivalent to an Oracle job in SQL Server. The subroutines are discussed

below.

Submit a job to the job queue:

DBMS_JOB.SUBMIT (

<job_id> OUT binary_integer,

<what> IN varchar2,

<next_date> IN date DEFAULT sysdate,

<interval> IN varchar2 DEFAULT 'NULL',

<no_parse> IN boolean DEFAULT false,

<instance> IN DEFAULT any_instance,

<force> IN boolean DEFAULT false);

Remove a job from the queue:

DBMS_JOB.REMOVE (<job_id> IN binary_integer);

Where:

¶ <job_id> is the identifier of the job just created; usually it is saved by the

program and used afterwards to reference this job (in a REMOVE statement).

¶ <what> is the string representing commands to be executed by the job process.

To run it, Oracle puts this parameter into a BEGIN…END block, like this: BEGIN

<what> END.

¶ <next_date> is the moment when the first run of the job is scheduled.

¶ <interval> is a string with an expression of DATE type, which is evaluated during

the job run. Its value is the date + time of the next run.

The <instance> and <force> parameters are related to the Oracle clustering mechanism

and we ignore them here. Also, we don’t convert the <no_parse> parameter, which

controls when Oracle parses the command.

Note Convert the <what> and <interval> dynamic SQL strings independently. The

important thing is to add the [database].[owner] qualifications to all object names that

are referenced by this code. This is necessary because DB defaults are not effective

during job execution.

Convert the SUBMIT and REMOVE routines into new stored procedures named

DBMS_JOB_SUBMIT and DBMS_JOB_REMOVE, respectively. In addition, create a

new special wrapper procedure _JOB_WRAPPER for implementing intime evaluations

and scheduling the next run.

Note that Oracle and SQL Server use different identification schemes for jobs. In

Oracle, the job is identified by sequential binary integer (job_id). In SQL Server, job

identification is by uniqueidentifier job_id and by unique job name.

In our emulation scheme, we create three SQL Server stored procedures, which are

described here.

DBMS_JOB_SUBMIT procedure

This SQL Server procedure creates a job and schedules its first execution. Find the full

text of the procedure later in this section.

To submit a job in SQL Server:

1. Create a job and get its identifier by using sp_add_job.

2. Add an execution step to the job by using sp_add_jobstep (we use a single

step).

3. Attach the job to the local server by using sp_add_jobserver.

4. Schedule the first execution by using sp_add_jobschedule (we use one-time

execution at the specific time).

To save Oracle job information, store the Oracle <job_id> in the Transact-SQL

job_name parameter and the <what> command as the job description. Because the job

description is nvarchar(512), you cannot convert any command that is longer than

512 Unicode characters. The MS SQL identifier is generated automatically as job_id

during execution of sp_add_job.

DBMS_JOB_REMOVE procedure

This procedure locates the SQL Server job ID by using the supplied Oracle job number,

and it removes the job and all associated information by using sp_delete_job.

JOB_WRAPPER procedure

This procedure executes the job command and changes the job schedule so that the

next run is set according to the <interval> parameter.

DBMS_JOB.SUBMIT

Convert a call to the SUBMIT procedure into the following SQL Server code:

EXEC DBMS_JOB_SUBMIT

 <job - id - ora> OUTPUT,

 <ms- command>,

 <next_date>,

 <interval>,

 <ora_command>

Where:

¶ <job-id-ora> is the Oracle-type job number; its declaration must be present in the

source program.

¶ <ms-command> is the command in the source <what> parameter (dynamic SQL

statement) that is converted to SQL Server independently. If the converted code

contains several statements, divide them with semicolons (;). Because <ms-

command> will run out of the current context (asynchronously inside of

the_JOB_WRAPPER procedure), put all generated declarations into this string.

¶ <next_date> is the date of first scheduled run. Convert it as normal date

expression.

¶ <interval> is the string with a dynamic SQL expression, which is evaluated at

each job run to get the next execution date/time. Like <ms-command>, convert it

to the corresponding SQL Server expression.

¶ <ora_command> is the parameter that is not present in Oracle format. This is

the original <what> parameter without any changes. You save it for reference

purposes.

Note that the <no_parse>, <instance>, and <force> parameters are not included in the

converted statement. Instead the new <ora_command> item is used.

DBMS_JOB.REMOVE

Convert a call to the REMOVE procedure into the following code:

EXEC DBMS_JOB_REMOVE <job- id - ora>

<job-id-ora> is the Oracle-type number of the job that you want to delete. The source

program must supply its declaration.

Example of an Oracle Job Conversion

This section contains a two-step example of a job conversion and the source of the new

ssma_oracle procedures it references.

Step 1: Submit a job

Oracle PL/SQL

¶ Table the job will modify:

create table ticks (d date);

¶ Procedure executed at each step:

create or replace procedure ticker (curr_date date) as

begin

 insert into ticks values (curr_date);

 commit;

end;

¶ Job submitting:

declare j number;

 sInterval varchar2(50);

begin

 sInterval := 'sysdate + 1/8640'; -- 10 sec

 dbms_job.submit(job => j,

 what => 'ticker(sysdate);',

 next_date => sysdate + 1/8640, -- 10 sec

 interval => sInterval);

 dbms_output.put_line('job no = ' || j);

end;

SQL Server

In this example, commands are executed by the sa user in a database called AUS:

USE AUS

GO

¶ Table the job will modify:

CREATE TABLE ticks (d datetime)

GO

¶ Procedure executed at each step:

CREATE PROCEDURE ticker (@curr_date datetime) AS

BEGIN

 INSERT INTO ticks VALUES (@curr_date);

END;

GO

¶ Job submitting:

declare @j float(53),

 @sInterval varchar(50)

begin

set @sInterval = 'getdate() + 1./8640'

/* parameter calculation is normally generated by the converter*/

declare @param_expr_0 datetime

set @param_expr_0 = getdate() + 1./8640 -- 10 sec

/* note AUS.DBO.ticker */

exec DBMS_JOB_SUBMIT

 @j OUTPUT,

 N'DECLARE @param_expr_1 DATETIME; SET @param_expr_1 =

getdate(); EXEC AUS.DBO.TICKER @param_expr_1',

 @param_expr_0,

 @sInterval,

 N'ticker(sysdate);' /* parameter to save the original command

*/

print 'job no = ' + cast (@j as varchar)

end

go

Step 2: Locate and remove a job

This solution uses emulation of the Oracle USER_JOBS system view, which can be

generated by SSMA for Oracle V6.0.

Oracle

declare j number;

begin

 SELECT job INTO j

 FROM user_jobs

 WHERE (what = 'ticker(sysdate);');

 dbms_output.put_line(j);

 dbms_job.remove(j);

end;

SQL Server

declare @j float(53);

begin

 SELECT @j = job

 FROM USER_JOBS

 WHERE (what = 'ticker(sysdate);'); -- note Oracle expression left

here

 print @j

 exec DBMS_JOB_REMOVE @j

end

Source of new procedures

------------------------ S U B M I T -------------------

create procedure DBMS_JOB_SUBMIT (

 @p_job_id int OUTPUT, -- Oracle job id

 @p_what nvarchar(4000), -- command converted to SQL Server

 @p_next_date datetime, -- date of the first run

 @p_interval nvarchar(4000), -- interval expression converted to

SQL Server

 @p_what_ora nvarchar(512) -- original Oracle command

) as

begin

declare @v_name nvarchar(512),

 @v_job_ora int,

 @v_job_ms uniqueiden tifier,

 @v_command nvarchar(4000),

 @v_buf varchar(40),

 @v_nextdate int,

 @v_nexttime int

-- 1. Create new job

select @v_job_ora =

 max(

 case isnumeric(substring(name,6,100))

 when 1 then cast(substring(name,6,100) as in t)

 else 0

 end

)

 from msdb..sysjobs

where substring(name,1,5)='_JOB_'

set @v_job_ora = isnull(@v_job_ora,0) + 1

set @v_name = '_JOB_' + cast(@v_job_ora as varchar(12))

exec msdb..sp_add_job

 @job_name = @v_name,

 @description = @p_what_ora, -- saving non - converted Oracle

command for reference

 @job_id = @v_job_ms OUTPUT

-- 2. Add a job step

set @v_command = N'exec _job_wrapper '''

 + cast(@v_job_ms as varchar(40)) + ''', N'''

 + @p_what + ''', N'''

 + @p_interval +''''

exec msdb..sp_add_jobstep

 @job_id = @v_job_ms,

 @step_name = N'oracle job emulation',

 @command = @v_command

-- 3. Attach to local server

exec msdb..sp_add_jobserver

 @job_id = @v_job_ms,

 @server_name = N'(LOCAL)'

-- 4. Make schedule for the first run

/* date format is YYYY - MM- DD hh:mm:ss */

set @v_buf = convert(varchar, @p_next_date, 20)

set @v_nextdate =

substring(@v_buf,1,4)+substring(@v_buf,6,2)+substring(@v_buf,9,2)

set @v_nexttime =

substring(@v_buf,12,2)+subs tring(@v_buf,15,2)+substring(@v_buf,18,2)

exec msdb..sp_add_jobschedule

 @job_id = @v_job_ms,

 @name = 'oracle job emulation',

 @freq_type = 1,

 @freq_subday_type = 1,

 @active_start_date = @v_nextdate,

 @active_start_time = @v_nexttime

end

go

----------------------------- R E M O V E ----------------------------

create procedure DBMS_JOB_REMOVE (

 @p_job_id int -- Oracle - style job id

)

as

begin

declare @v_job_id uniqueidentifier -- SQL Server job id

select @v_job_id = job_id

 from msdb..sysjobs

where name = '_JOB_' + cast(@p_job_id as varchar(12))

if @v_job_id is not null

 exec msdb..sp_delete_job @v_job_id

end

go

-------------------------- W R A P P E R-----------------------------

create procedure _JOB_WRAPPER (

 @p_job_id_ms uniqueidentifier,

 @p_what nvarchar(512),

 @p_interval nvarchar(4000)

) as

begin

declare @v_command nvarchar(4000),

 @v_buf varchar(40),

 @v_nextdate int,

 @v_nexttime int

-- 1. Execute job command

execute (@p_what)

-- 2. Evaluate next run date

set @v_command =

 'set @buf = convert(varchar, ' + @p_interval + ', 20)'

exec sp_executesql @v_command, N'@buf varchar(40) output', @v_buf

output

-- 3. Redefine the schedule

/* ODBC date format: YYYY - MM- DD hh:mm:ss */

set @v_nextdate =

substr ing(@v_buf,1,4)+substring(@v_buf,6,2)+substring(@v_buf,9,2)

set @v_nexttime =

substring(@v_buf,12,2)+substring(@v_buf,15,2)+substring(@v_buf,18,2)

exec msdb..sp_update_jobschedule

 @job_id = @p_job_id_ms,

 @name = 'oracle job emulation',

 @enabled = 1,

 @freq_type = 1,

 @freq_subday_type = 1,

 @active_start_date = @v_nextdate,

 @active_start_time = @v_nexttime

end

Note that Azure SQL DB doesn’t support jobs and the above example is not subject to

this version of SQL Server.

Converting Nested PL/SQL Subprograms
Oracle allows PL/SQL subprogram (procedure or function) definitions to be nested

within another subprogram. These subprograms can be called only from inside the

PL/SQL block or the subprogram in which they were declared. There are no special

limitations for parameters or the functionality of nested procedures or functions. That

means that any of these subprograms can in turn include other subprogram

declarations, which makes multiple levels of nesting possible. In addition, the nested

modules can be overloaded; that is, they can use the same name a few times with

different parameter sets.

Microsoft SQL Server 2014 does not provide similar functionality. It is possible to create

a stand-alone SQL Server procedure or function that emulates Oracle nested

subprograms. But doing so presents the problem of how to handle local variables. In

PL/SQL, a nested subprogram declared at level N has full access to all local variables

declared at levels N, N-1, . . . 1. In SQL Server, the local declarations of other

procedures are not visible.

SSMA can convert inline subprograms automatically. A Type of local modules

conversion option is provided in Project Settings. You can adjust this option to convert

local modules either inline or by creating a separate stored procedure.

Inline Substitution

If the type of local modules conversion is set to inline substitution, a nested module itself

is not converted to any target object, but each call of the module is expanded to inline

blocks in the outermost subprogram. The inline block is formed according to the

following pattern:

<parameter_declaration>

<return_value_parameter_declaration>

<parameters_assignments>

<module_body>

<output_parameters_assignments>

<return_value_assignment>

Example 1

Oracle

create procedure Proc1 is

on_year int := 2000;

dept_sales int := 0;

 procedure DeptSales(dept_id int) is

 lv_sales int;

 procedure Add is

 begin

 dept_sales := dept_sales + lv_sales;

 end Add;

 procedure Add(i int) is

 begin

 dept_sales := dept_sales + i;

 end Add;

begin

select sales into lv_sales from departmentsales

where id = dept_id and year = on_year;

Add;

Add(200);

end DeptSales;

begin

DeptSales(100);

end Proc1;

SQL Server

CREATE PROCEDURE Proc1

CREATE PROCEDURE ATEST.PROC1

AS

 BEGIN

 DECLARE @on_year int

 SET @on_year = 2000

 DECLARE @dept_sales int

 SET @dept_sales = 0

 BEGIN

 DECLARE

 @DeptSales$dept_id int

 SET @DeptSales$dept_id = 100

 BEGIN

 DECLARE

 @DeptSales$lv_sales int

 SELECT @DeptSales$lv_sales = DEPARTMENTSALES.SALES

 FROM dbo.DEPARTMENTSALES

 WHERE DEPARTMENTSALES.ID = @DeptSales$dept_id AND

DEPARTMENTSALES.YEAR = @on_year

 BEGIN

 BEGIN

 SET @dept_sales = @dept_sales +

@DeptSales$lv_sales

 END

 END

 BEGIN

 DECLARE @DeptSalesADDi int

 SET @DeptSalesADDi = 200

 BEGIN

 SET @dept_sales = @dept_sales +

@DeptSalesADDi

 END

 END

 END

 END

 END

Example 2

To convert an output parameter, SSMA adds an assignment statement that saves the

output value stored in the intermediate variable.

Oracle

create procedure Proc1 is

on_year int := 2000;

dept_sales int;

lv_out_sales int;

 procedure DeptSales(dept_id int, lv_sales out int) is

 begin

 select sales into lv_sales from departmentsales

 where id = dept_id and year = on_year;

 end DeptSales;

begin

DeptSales(dept_sales, lv_out_sales);

end Proc1;

SQL Server

CREATE PROCEDURE PROC1

AS

 BEGIN

 DECLARE @on_year int

 SET @on_year = 2000

 DECLARE

 @dept_sales int,

 @lv_out_sales int

 BEGIN

 DECLARE

 @DeptSales$dept_id int

 DECLARE

 @DeptSales$lv_sales int

 SET @DeptSales$dept_id = @dept_sales

 SET @DeptSales$lv_sales = @lv_out_sales

 BEGIN

 SET @DeptSales$lv_sales = NULL

 SELECT @DeptSales$lv_sales = DEPARTMENTSALES.SALES

 FROM dbo.DEPARTMENTSALES

 WHERE DEPARTMENTSALES.ID = @DeptSales$dept_id AND

DEPARTMENTSALES.YEAR = @on_year

 END

 SET @lv_out_sales = @DeptSales$lv_sale s

 END

 END

Emulation by Using Transact-SQL Subprograms

If the Type of local modules conversion option is set to create a separate stored

procedure, SSMA converts nested PL/SQL subprograms into separate stored

procedures and functions with special naming rules. This is reasonable if you are

working with large nested subprograms with a limited number of variables.

SSMA analyzes the original module and collects the following information:

¶ A list of all locally declared subroutines

¶ References of each nested subroutine to outer modules

¶ Calls of each nested module from other modules

¶ A list of the variables and parameters of outer modules used in each nested

module

¶ The type of access to the external variables in a nested module—the type can

be read/write or read-only

After that, SSMA creates a set of procedures that emulate Oracle nested modules and

adds additional input/output parameters for access to external variables.

 SELECT @lv_sales = DEPARTMENTSALES.SALES

 FROM dbo.DEPARTMENTSALES

 WHERE DEPARTMENTSALES.ID = @dept_id AND

DEPARTMENTSALES.YEAR = @on_year

Example

In this example, the nested module calls another nested module that is defined at the

same level. In this case, all external variables used in the caller module should also be

passed to the called module.

Oracle

create procedure Proc1 is

on_year int := 2000;

dept_sales i nt;

 procedure DeptSales(dept_id int) is

 lv_sales int;

 begin

 select sales into lv_sales from departmentsales

 where id = dept_id and year = on_year;

 dept_sales := lv_sales;

 end DeptSales;

 procedure DeptSales_300 is

 begin

 DeptSales(300);

 end DeptSales_300;

begin

DeptSales(100);

DeptSales_300;

end Proc1;

SQL Server

CREATE PROCEDURE Proc1$DeptSales

@dept_id int,

@on_year int, -- Proc1.on_year

@dept_sales int OUTPUT -- Proc1.dept_sales

AS

BEGIN

declare @lv_sales int

 SELECT @lv_sales = DEPARTMENTSALES.SALES

 FROM dbo.DEPARTMENTSALES

 WHERE DEPARTMENTSALES.ID = @dept_id AND

 DEPARTMENTSALES.YEAR = @on_year

 SET @dept_sales = @lv_sales

END

GO

CREATE PROCEDURE Proc1$DeptSales_300

@on_year int , -- Proc1.on_year

@dept_sales int OUTPUT -- Proc1.dept_sales

AS

BEGIN

Execute Proc1$DeptSales

300,

@on_year,

@dept_sales = @ dept_sales OUTPUT

END

GO

CREATE PROCEDURE Proc1

AS

BEGIN

declare @on_year int

set @on_year = 2000

declare @dept_sales int

Execute Proc1$DeptSales

100,

@on_year,

@$dept_sales = @dept_sales OUTPUT

Execute Proc1$DeptSales_300

@on_year,

@$dept_sales = @dept_sales OUTPUT

END

GO

Migrating Oracle User-Defined Functions
This section describes how SSMA for Oracle V6.0 converts Oracle user-defined

functions. While Oracle functions closely resemble Transact-SQL functions, significant

differences do exist. The main difference is that Transact-SQL functions cannot contain

DML statements and cannot invoke stored procedures. In addition, Transact-SQL

functions do not support transaction-management commands. These are stiff

restrictions. A workaround implements a function body as a stored procedure and

invokes it within the function by means of an extended procedure. Note that some

Oracle function features, such as output parameters, are not currently supported.

Conversion Algorithm

The general format of an Oracle user-defined function is:

FUNCTION [schema.]name [({@parameter_name [IN | OUT | IN OUT]

 [NOCOPY] [type_schema_name.] p arameter_data_type [:= |

DEFAULT] default_value } [,...n]

)]

 RETURN <return_data_type>

 [AUTHID {DEFINER | CURRENT_USER}]

 [DETERMINISTIC]

 [PARALLEL ENABLE ...]

 [AGGREGATE | PIPELINED]

{ IS | AS } { LANGUAGE { Java_declaration | C_declara tion } | {

 [<declaration statements>]

BEGIN

 <executable statements>

RETURN <return statement>

[EXCEPTION

 exception handler statements]

END [name]; }}

And the proper Transact-SQL format of a scalar function is:

CREATE FUNCTION [schema_name.] function_name

([{ @parameter_name [AS][type_schema_name.] parameter_data_type

 [= default_value] } [,...n]

]

)

RETURNS <return_data_type>

 [WITH { EXEC | EXECUTE } AS { CALLER | OWNER }]

 [AS]

 BEGIN

 <function_body>

 RETURN <scalar_expression>

 END

[;]

The following clauses and arguments are not supported by SSMA and are ignored

during conversion:

¶ AGGREGATE

¶ DETERMINISTIC

¶ LANGUAGE

¶ PIPELINED

¶ PARALLEL_ENABLE

For the remaining function options, the following rules are applied during conversion:

¶ The OUT qualifier is used when a function is implemented as a procedure.

¶ The [:= | DEFAULT] option of a function parameter is converted to an equals

sign (=).

¶ The AUTHID clause is converted to an EXECUTE AS clause.

¶ The CURRENT_USER argument is converted to a CALLER argument.

¶ The DEFINER argument is converted to an OWNER argument.

As a result of the conversion, you get one of the following:

¶ One Transact-SQL function body

¶ Two objects:

¶ Implementation of a function in the form of a procedure

¶ A function that is a wrapper for the procedure calling

Following are the conditions when this additional procedure is created:

¶ The source function is defined as an autonomous transaction by PRAGMA

AUTONOMOUS_TRANSACTION.

¶ A function contains statements that are not valid in SQL Server user-defined

functions, such as:

¶ DML operations (UPDATE, INSERT, DELETE) that modify tables, except

for local table variables

¶ A call of a stored procedure

¶ Transaction-management commands

¶ The raise exception command

¶ Exception-handling statements

¶ FETCH statements that return data to the client

¶ Cursor operations that reference global cursors

If any of these conditions are present, the function is implemented both as a procedure

and a function. In this case, the procedure is used in a call via an extended procedure in

the function body. The function body is implemented according to the following pattern:

CREATE FUNCTION [schema.] <function_name>

 (

 <parameters list>

)

RETURNS <return_type>

AS

BEGIN

 declare @spid int, @login_time datetime

 select @spid = ssma_ora cle .get_active_spid(),@login_time =

ssma_ora cle .get_active_login_time()

 DECLARE

 @return_value_variable <function_return_type>

 EXEC master.dbo.xp_ora2ms_exec2_ex @@spid,@login_time,

<database_name>, <schema_name>,

<function_implementation_as_procedure_name>,

bind_to_transaction_flag, [parameter1, parameter2, ... ,]

@return_value_variable OUTPUT

 RETURN @return_valu e_variable

END

The syntax of the xp_ora2ms_exec2_ex procedure is:

xp_ora2ms_exec2_ex

 <active_spid> int,

 <login_time> datetime,

 <ms_db_name> varchar,

 <ms_schema_name> varchar,

 <ms_procedure_name> varchar,

 <bind_to_transaction_flag> varchar,

 [option al_parameters_for_procedure]

Where:

¶ <active_spid> [input parameter] is the session ID of the current user process.

¶ <login_time> [input parameter] is the login time of the current user process.

¶ <ms_db_name> [input parameter] is the database name owner of the stored

procedure.

¶ <ms_schema_name> [input parameter] is the schema name owner of the stored

procedure.

¶ <ms_procedure_name> [input parameter] is the name of the stored procedure.

¶ <bind_to_transaction_flag> [input parameter] binds or unbinds a connection to

the current transaction. Valid values are 'TRUE,' 'true,’ 'Y,’ 'y.’ Other values are

ignored.

¶ optional_parameters_for_procedure [input/output parameter] are the procedure

parameters.

If PRAGMA AUTONOMOUS_TRANSACTION is used, the xp_ora2ms_exec2_ex

procedure’s bind to transaction parameter is set to true. Otherwise, it is set to false. For

details about autonomous transactions, see Simulating Oracle Autonomous

Transactions.

Azure SQL DB doesn’t support extended stored procedures functionality and thus all the

calls to the converted functions that use the xp_ora2ms_exec2_ex should be replaced

with the calls to the corresponding implementation procedures where possible.

A function’s procedure implementation is converted according to the following pattern:

CREATE PROCEDURE [schema.] <function_name>$IMPL

 <parameters list> ,

 @return_value_argument <function_return_type> OUTPUT

 AS

 BEGIN

 set implicit_transactions on /*only in c ase of PRAGMA

AUTONOMOUS_TRANSACTION*/

 <function implementation>

 SET @return_value_argument = <return_expression>

RETURN

END

Where <return_expression> is an expression that a function uses in the RETURN

operator. So, the RETURN statement in a function’s procedure implementation is

converted according to this pattern:

PL-SQL code

RETURN <return_expresion>;

Transact-SQL code

SET @return_value_argument = <return_expression>

RETURN

Convert multiple RETURNs in the same way:

PL-SQL code

...

IF <condition> THEN

 RETURN <return_expresion_1>;

ELSE

 RETURN <return_expresion_2>;

ENDIF

...

Transact-SQL code

...

IF <condition>

BEGIN

 SET @return_value_argument = <return_expression_1>

 RETURN

END

ELSE

BEGIN

 SET @return_value_argument = <return_expression_ 2>

 RETURN

END

...

Example

PL-SQL code

declare i int :=fn_test1();

begin

i:=fn_test2();

DBMS_OUTPUT.PUT_LINE(i);

end;

Transact-SQL code

DECLARE @i int

exec FN_TEST1$IMPL @i out

BEGIN

exec FN_TEST2$IMPL @i out

PRINT @i

END

Converting Function Calls When a Function Has Default Values for

Parameters and with Various Parameter Notations

When calling functions in Oracle, you can pass parameters by using:

¶ Positional notation. Parameters are specified in the order in which they are

declared in the procedure.

¶ Named notation. The name of each parameter is specified along with its value.

An arrow (=>) serves as the association operator. The order of the parameters is

not significant.

¶ Mixed notation. The first parameters are specified with positional notation, and

then they are switched to named notation for the last parameters.

Because SQL Server does not support named notation for parameters that are passed

to functions, the named notation is converted to the positional notation call. In addition,

SQL Server functions do not support omitted parameters, so if the default parameters

are omitted, the statement is converted by adding the keyword, default, instead of the

omitted parameters.

Examples

PL-SQL code

CREATE OR REPLACE FUNCTION fn_test (

p_1 VARCHAR2,

p_2 VARCHAR2 DEFAULT 'p_2',

p_3 VARCHAR2 DEFAULT 'p_3')

RETURN VARCHAR2 IS

BEGIN

 return null;

END;

/

select fn_test('p1') from dual;

declare a varchar2(50);

begin

a:= fn_test('p_1','hello','world');

a:= fn_test('p_1');

a:= fn_test('p_1',p_3=>'world');

a:= fn_test(p_2=>'hello',p_3=>'world',p_1=>'p_1');

end;

Transact-SQL code

CREATE FUNCTION fn_test (

@p_1 VARCHAR(max),

@p_2 VARCHAR(max)= 'p_2',

@p_3 VARCHAR(max)= 'p_3')

RETURNS VARCHAR(max) as

BEGIN

 return null;

END;

GO

select dbo.fn_test('p1',default,default)

declare @a varchar(50)

begin

set @a = dbo.fn_test('p_1','hello','world')

set @a = dbo.fn_test('p_1', default, default)

set @a = dbo.fn_test('p_1',default, 'worl d')

set @a = dbo.fn_test('p_1','hello','world')

end;

PRAGMA INLINE

The INLINE pragma specifies that a subprogram call is, or is not, to be inlined. Inlining

replaces a subprogram call (to a subprogram in the same program unit) with a copy of

the called subprogram.

In this case it is necessary to remove this PL/SQL code.

Examples

PL-SQL code

create or replace function fn_Test return varchar2

as

begin

 RETURN 'fffff';

end fn_Test ;

create or replace procedure Test

as

 x varchar2(100) ;

begin

 PRAGMA INLINE(fn_TEST, 'YES');

 x:= fn_TEST() ;

 dbms_output.put_line(x);

 PRAGMA INLINE(fn_TEST, 'NO');

end Test ;

Transact-SQL code

CREATE FUNCTION dbo.FN_TEST() RETURNS varchar(max)

AS

BEGIN

 RETURN 'fffff'

END

GO

CREATE PROCEDURE dbo.TEST

AS

BEGIN

 DECLARE @x varchar(100)

 SET @x = dbo.FN_TEST()

 PRINT @x

END

GO

Migrating Oracle Triggers
This section describes the differences between Oracle and Microsoft SQL Server 2014

triggers, and how SSMA for Oracle V6.0 handles them when it converts Oracle triggers

to SQL Server. (This section does not cover DDL or system triggers. The discussion is

limited to DML triggers, that is, triggers on INSERT, UPDATE, or DELETE statements.)

The first major difference between Oracle and SQL Server triggers is that the most

common Oracle trigger is a row-level trigger (FOR EACH ROW), which fires for each

row of the source statement. SQL Server, however, supports only statement-level

triggers, which fire only once per statement, irrespective of the number of rows affected.

In a row-level trigger, Oracle uses an :OLD alias to refer to column values that existed

before the statement executes, and to the changed values by using a :NEW alias.

SQL Server uses two pseudotables, inserted and deleted, which can each have

multiple rows. If the triggering statement is UPDATE, a row's older version is present in

deleted, and the newer in inserted. But it is not easy to tell which pair belongs to the

same row if the updated table does not have a primary key or the primary key was

modified.

You can resolve this problem only if SSMA generates a special ROWID column for the

table. Therefore, if you are converting tables with UPDATE triggers, we recommend

setting the Generate ROWID column option to Yes or Add ROWID column for tables

with triggers in the SSMA project settings (See Figure 2). To emulate row-level

triggers, SSMA processes each row in a cursor loop.

Figure 2: Set up the Generate ROWID column option

The second major difference between Oracle and SQL Server triggers comes from

Oracle BEFORE triggers. Because Oracle fires these triggers before the triggering

statement, it is possible to modify the actual field values that will be stored in the table,

or even cancel the execution of the triggering statement if it is found to be unnecessary.

To emulate this in SQL Server, you must create INSTEAD OF triggers. That means you

must incorporate the triggering statement into the target trigger's body. Because multiple

rows can be affected, SSMA puts the statement in a separate cursor loop.

In some cases, you cannot convert Oracle triggers to SQL Server triggers with one-to-

one correspondence. If an Oracle trigger is defined for several events at once (for

example, INSERT or UPDATE), you must create two separate target triggers, one for

INSERT and one for UPDATE. In addition, because SQL Server supports only one

INSTEAD OF trigger per table, SSMA combines the logic of all BEFORE triggers on that

table into a single target trigger. This means that triggers are not converted

independently of each other; SSMA takes the entire set of triggers belonging to a table

and converts them into another set of SQL Server triggers so that the general relation is

many-to-many.

In brief, the conversion rules are:

¶ All BEFORE triggers for a table are converted into one INSTEAD OF trigger.

¶ AFTER triggers remain AFTER triggers in SQL Server.

¶ INSTEAD OF triggers on Oracle views remain INSTEAD OF triggers.

¶ Row-level triggers are emulated with a cursor loop.

¶ Triggers that are defined for multiple events are split into separate target

triggers.

Sometimes an Oracle trigger is defined for a specific column with the UPDATE OF

column [, column]...] clause. To emulate this, SSMA wraps the trigger body with the

following SQL Server construction:

IF (UPDATE(column) [OR UPDATE(column) . . .]

BEGIN

 <trigger body>

END

SSMA emulates the trigger-specific functions performing INSERT, UPDATE, and

DELETE operations by saving the current trigger type in a variable, and then checking

that value. For example:

DECLARE @triggerType char(1)

SELECT @triggerType = 'I' /* if the current type is inserting

*/

. . .

IF (@triggerType = 'I') . . . /* emulation of INSERTING */

IF (@triggerType = 'U') . . . /* emulation of UPDATING */

IF (@triggerType = 'D') . . . /* emulation of DELETING */

The UPDATING function can have a column name as an argument. SSMA can convert

such usage if the argument is a character literal. In this case, the Oracle expression:

UPDATING (ócolumn_nameô)

Is transformed into:

UPDATE (columns_name)

Note that the original quotes are removed.

Conversion Patterns

This section illustrates the conversion algorithms SSMA uses to convert various types of

Oracle triggers. Each example schematically outlines a particular type of trigger.

Comments describe the typical contents of source triggers and the structure of the

corresponding target triggers as generated by SSMA.

AFTER Triggers

Table-level triggers

Table-level AFTER triggers fire only once per table, resembling the behavior of

SQL Server AFTER triggers. Thus, the required changes are minimal. Table-level

triggers are converted according to this pattern:

CREATE TRIGGER [schema.]trigger ON <table>

 AFTER <UPDATE |INSERT | DELETE>

 AS

 /* beginning of trigger implementation */

 SET NOCOUNT ON

 /* Oracle - trigger implementation: begin */

 BEGIN

 -- UPDATE OF CLAUSE FOR TRIGGER FOR UPDATE EVENT

 -- (UPDATE OF COLUMN[, COLUMN] ...])

 IF (UPDATE(<COLUMN>) OR UP DATE((<COLUMN>) ...)

 BEGIN

 <TRIGGER_BODY>

 END

 END

 /* Oracle - trigger implementation: end */

 /* end of trigger implementation */

Row-level triggers

Because Oracle Database fires a row-level trigger once for each row, emulate row-level

triggers with cursor processing.

For row-level triggers, a restriction can be specified in the WHEN clause. The restriction

is an SQL condition that must be satisfied for the database to fire the trigger. Also, the

special variables :NEW and :OLD are available in row-level triggers to refer to new and

old records respectively.

In SQL Server, the new and old records are stored in the inserted and deleted tables.

So, row-level triggers are emulated in the same way as table-level ones, except for the

trigger implementation wrapped into the cursor processing block.

Replace references to :OLD and :NEW values with values fetched into variables from

deleted or updated tables, respectively.

Pattern for row-level AFTER INSERT triggers

 CREATE TRIGGER [schema.]trigger ON <table>

 AFTER INSERT

 AS

 /* beginning of trigger implementation */

 SET NOCOUNT ON

 /* column variables declaration */

 DECLARE

 /* declare variables to store column values.

 if trigger has no references to :OLD or :NEW

 records then define the only uniqueidentifier type variable

 to store ROWID column value */

 @column_new_value$0 uniqueidentifier /* trigger has NO

references to :OLD or :NEW or has explicit reference to ROWID*/

 /* trigger has references to :OLD or :NEW*/

 @column_new_value$X <COLUMN_X_TYPE>,

 @column_new_value$Y <COLUMN_Y_TYPE>,

...

 @column_old_value$A <COLUMN_A_TYPE>,

 @column_old_value$B <COLUMN_B_TYPE>

...

 /* iterate for each for from inserted/updated table(s) */

 DECLARE ForEachInsertedRowTriggerCursor CURSOR LOCAL FORWARD_ONLY

READ_ONLY FOR

 /* tr igger has NO references to :OLD or :NEW*/

 SELECT ROWID FROM inserted

 /* trigger has references to :OLD or :NEW* or has explicit

reference to ROWID/

 SELECT [ROWID], <COLUMN_X_NAME>,<COLUMN_Y_NAME> .. FROM

inserted

 OPEN ForEachInsertedRowTriggerCursor

 FETCH NEXT FROM ForEachInsertedRowTriggerCursor INTO

 /* trigger has NO references to :OLD or :NEW or has an explicit

reference to ROWID */

@column_new_value$0

 /* trigger has references to :NEW*/

@column_new_value$X

@column_new_value$Y

...

 WHILE @@fetch_status = 0

 BEGIN

 /* Oracle - trigger implementation: begin */

 BEGIN

 IF <WHILE_CLAUSE>

 BEGIN

 <TRIGGER_BODY>

 END

 END

 /* Oracle - trigger implementation: end */

 FETCH NEXT FROM ForEachInsertedRowTriggerCursor INTO

 /* trigger has NO references to :NEW or has an explicit reference

to ROWID */

@column_new_value$0

 /* trigger has references to :NEW*/

@column_new_value$X, @column_new_value$Y ...

 END

 CLOSE ForEachInsertedRowTriggerCursor

 DEALLOCATE ForEachInsertedRowTriggerCursor

 /* end of trigger implementation */

Pattern for row-level AFTER DELETE triggers

CREATE TRIGGER [schema.]trigger ON <table>

 AFTER DELETE

 AS

 /* beginning of trigger implementation */

 SET NOCOUNT ON

 /* column variables declaration */

 DECLARE

 /*

 Declare variables to store column values.

 If the trigger has no references to :OLD or :NEW records then

define the onl y uniqueidentifier type variable to store ROWID column

value. Else define variables to store old or new records. */

 @column_ old_value$0 uniqueidentifier /* trigger has NO

references to :OLD or :NEW or the trigger has explicit reference to

ROWID */

 /* trigger has references to :OLD or :NEW*/

 @column_new_value$X <COLUMN_X_TYPE>,

 @column_new_value$Y <COLUMN_Y_TYPE>,

...

 @column_old_value$A <COLUMN_A_TYPE>,

 @column_old_value$B <COLUMN_B_TYPE>,

...

 /* iterate for each for from inserted/updated table(s) */

 DECLARE ForEachDeletedRowTriggerCursor CURSOR LOCAL FORWARD_ONLY

READ_ONLY FOR

SELECT [ROWID,] [<COLUMN_A_NAME>, <COLUMN_B_NAME>..] FROM deleted

 OPEN ForEachDeletedRowTriggerCurso r

 FETCH NEXT FROM ForEachDeletedRowTriggerCursor INTO

[@column_old_value$0,] [@column_old_value$A, @column_old_value$B ...]

 WHILE @@fetch_status = 0

 BEGIN

 /* Oracle - trigger implementation: begin */

 BEGIN

 IF <WHERE_CLAUSE>

 BEGIN

 <TRIGGER_BODY>

 END

 END

 /* Oracle - trigger implementation: end */

--- ----

/*this is a trigger for delete event or a trigger for update event that

has no references both to :OLD and :NEW */

 FETCH NEXT FROM ForEachDeletedRowTriggerCursor INTO

[@column_old_value$0,] [@column_old_value$A, @column_old_value$B ...]

 END

 CLOSE ForEachDeletedRowTriggerCursor

 DEALLOCATE ForEachDeletedRowTriggerCursor

 /* end of trigger implementation */

Pattern for row-level AFTER UPDATE triggers

CREATE TRIGGER [schema.]trigger ON <table>

 AFTER UPDATE

 AS

 /* beginning of trigger implementation */

 SET NOCOUNT ON

 /* column variables declaration */

 DECLARE

 /*

 Declare variables to store column values.

 If the trigger has no references to :OLD or :NEW re cords then

define the only uniqueidentifier type variable to store ROWID column

value. Else define variables to store old or new records. If the

trigger has reference s both to :OLD and :NEW then ALWAYS define

uniqueidentifier type variable to synchronize i nserted row with deleted

row.

 */

 @column_new_value$0 uniqueidentifier /* trigger has NO

references to :OLD or :NEW or the trigger has references BOTH to :OLD

and :NEW or the trigger has explicit reference to ROWID */

 /* trigger has references to :OLD or :NEW*/

 @column_new_value$X <COLUMN_X_TYPE>,

 @column_new_value$Y <COLUMN_Y_TYPE>,

...

 @column_old_value$A <COLUMN_A_TYPE>,

 @column_old_value$B <COLUMN_B_TYPE>,

...

/*the trigger has NO references both to :OLD and :NEW or has reference s

only to :OLD*/

 DECLARE ForEachDeletedRowTriggerCursor CURSOR LOCAL FORWARD_ONLY

READ_ONLY FOR

/*the trigger has NO references to :OLD and :NEW*/

SELECT ROWID FROM deleted

/*the trigger has references to :OLD*/

 SELECT <COLUMN_A_NAME>, <COLUMN_B_NAME>.. FROM deleted

/*the trigger has references to :OLD and explicit reference to ROWID */

SELECT ROWID, <COLUMN_A_NAME>, <COLUMN_B_NAME>.. FROM deleted

 OPEN ForEachDeletedRowTriggerCursor

 FETCH NEXT FROM ForEachDe letedRowTriggerCursor INTO

@column_old_value$0

/*the trigger has references to :NEW. If the trigger has references

both to :OLD and :NEW then we have to declare cursor for select ROWID

from inserted to synchronize inserted row with deleted row.

*/

 DECLARE ForEachInsertedRowTriggerCursor CURSOR LOCAL FORWARD_ONLY

READ_ONLY FOR

 SELECT [ROWID,] <COLUMN_X_NAME>, <COLUMN_Y_NAME> ... FROM

inserted

OPEN ForEachInsertedRowTriggerCursor

 FETCH NEXT FROM ForEachInsertedRowTriggerCursor INTO

[@column_new_value$0,] @column_new_value$X, @column_new_value$Y

 WHILE @@fetch_status = 0

 BEGIN

/*The trigger has reference s both to :OLD and :NEW. We have to

synchronize inserted row with deleted row */

 SELECT @column_old_value$A = <COLUMN_A_NAME>, @column_old_value$B

= <COLUMN_B_NAME>

 FROM deleted

 WHERE ROWID = @column_new_value$0

 /* Oracle - trigger impl ementation: begin */

 BEGIN

 -- UPDATE OF CLAUSE

 -- (UPDATE OF COLUMN[, COLUMN] ...])

 IF (UPDATE(<COLUMN>) OR UPDATE((<COLUMN>) ...)

 BEGIN

 IF <WHERE_CLAUSE>

 BEGIN

 <TRIGGER_BODY>

 END

 END

 END

 /* Oracle - trigger implementation: end */

/*the trigger has NO references both to :OLD and :NEW or has reference s

only to :OLD*/

 FETCH NEXT FROM ForEachDeletedRowTri ggerCursor INTO

[@column_old_value$0,] [@column_old_value$A, @column_old_value$B ...]

 END

 CLOSE ForEachDeletedRowTriggerCursor

 DEALLOCATE ForEachDeletedRowTriggerCursor

/* the trigger has references to :NEW */

FETCH NEXT FROM ForEachInsertedRowTriggerCursor INTO

[@column_new_value$0,] @column_new_value$X, @column_new_value$Y

 END

 CLOSE ForEachInsertedRowTriggerCursor

 DEALLOCATE ForEachInsertedRowTriggerCursor

/* end of trigger implementation */

BEFORE Triggers

Because BEFORE triggers do not exist in SQL Server, SSMA emulates them by means

of INSTEAD OF triggers. That change requires that the triggering statement be moved

into the body of the trigger. Also, all triggers for a specific event should go into one

target INSTEAD OF trigger.

Pattern for BEFORE DELETE triggers

CREATE

 TRIGGER [schema.] INSTEAD_OF_DELETE_ON_<table> ON <table>

 INSTEAD OF DELETE

 AS

 /* beginning of trigger implementation */

 SET NOCOUNT ON

 /* column variables declaration */

 DECLARE

 @column_old_value$0 uniqueidentifier

 /* trigger has references to :OLD or :NEW*/

 @column_new_value$X <COLUMN_X_TYPE>,

 @column_new_value$Y <COLUMN_Y_TYPE>,

...

 @column_old_value$A <COLUMN_A_TYPE>,

 @column_old_value$B <COLUMN_B_TYPE>

...

/* insert all table - level trigger implementations here */

<BEFORE_DELETE table - level trigger_1 body>

<BEFORE_DELETE table - level trigger_2 body>

...

 /* iterate for each for from inserted/updated table(s) */

 DECLARE ForEachDeletedRowTriggerCursor CURSOR LOCAL FORWARD_ONLY

READ_ONLY FOR

 SELECT ROWID

/*if the trigger has ref erences to :OLD*/

<COLUMN_A_NAME>,<COLUMN_B_NAME>, ...

 FROM deleted

 OPEN ForEachDeletedRowTriggerCursor

 FETCH NEXT FROM ForEachDeletedRowTriggerCursor INTO

@column_old_value$0

/*if the trigger has references to :OLD*/

, @column_old_value$A

,@column_old_value$B ...

 WHILE @@fetch_status = 0

 BEGIN

/* insert all row - level trigger implementations here*/

/* Oracle - trigger BEFORE_DELETE row - level trigger_1 implementati on:

begin */

 BEGIN

 IF (<BEFORE_DELETE row - level trigger_1 WHERE_CLAUSE>)

 BEGIN

 <BEFORE_DELETE row- level trigger_1 body>

 END

 END

/* Oracle - trigger dbo BEFORE_DELETE row - level trigger_1 implementation:

end */

/* Oracle - trigger BEFORE_DELETE row - level trigger_2 implementation:

begin */

 BEGIN

 IF (<BEFORE_DELETE row - level trigger_2 WHERE_CLAUSE>)

 BEGIN

 <BEFORE_DELETE row- level trigger_2 body>

 END

 END

/* Oracle - trigger dbo BEFORE_DELETE row - level trigger_2 implementation:

end */

...

 /* DML - operation emulation */

 DELETE FROM <table>

 WHERE

 ROWID = @column_old_value$0

 FETCH NEXT FROM ForEachDeletedRowTriggerCursor INTO

@column_old_value$0

/*if the trigger has references to :OLD*/

, @column_old_value$A

,@column_old_value$B ...

 END

 CLOSE ForEachDeletedRowTriggerCursor

 DEALLOCATE ForEachDeletedRowTriggerCursor

 /* end of trigger implementation */

Pattern for BEFORE UPDATE triggers

CREATE

 TRIGGER dbo.INSTEAD_OF_UPDATE_ON_<table> ON <table>

 INSTEAD OF UPDATE

 AS

 /* begin ning of trigger implementation */

 SET NOCOUNT ON

 /* column variables declaration */

 /* declare variables to store all table columns */

 DECLARE

 @column_new_value$0 uniqueidentifier,

 @column_new_value$1 <COLUMN_1_TYPE>,

 @column_new_value$2 <COLUMN_1_TYPE>,

...

/*declare variables to store values of :OLD*/

 @column_old_value$A <COLUMN_A_TYPE>,

 @column_old_value$B <COLUMN_B_TYPE>,

--

/* insert all table - level trigger implementations here */

<BEFORE_UPDATE table - level trigger_1 body>

<BEFORE_UPDATE table - level trigger_2 body>

...

--

 /* iterate for each for from inserted/updated table(s) */

 DECLARE ForEachInsertedRowTriggerCursor CURSOR LOCAL FORWARD_ONLY

READ_ONLY FOR

 SELECT ROWID, <COLUMN_NAME_1>, <COLUMN_NAME_2> ... FROM

inserted

 OPEN ForEachInsertedRowTriggerCursor

 FETCH NEXT FROM ForEachInsertedRowTrigg erCursor INTO

@column_new_value$0, @column_new_value$1, @column_new_value$2, ...

 WHILE @@fetch_status = 0

 BEGIN

 /*if the trigger has references to :OLD*/

 /* synchronize inserted row with deleted row */

 SELECT @column_old_value$A = <COLUMN_A_NAME>,

@column_old_value$B = <COLUMN_B_NAME>, ...

 FROM deleted

 WHERE ROWID = @column_new_value$0

/* insert all row - level trigger implementations here */

/* Oracle - trigger BEFORE_UPDATE row - level trigger_1 implementation:

begin */

 BEGIN

 -- (UPDATE OF COLUMN[, COLUMN] ...])

 IF (UPDATE(<COLUMN>) OR UPDATE((<COLUMN>) ...)

 BEGIN

 IF <<BEFORE_UPDATE row - level trigger_1 WHERE_CLAUSE>>

 BEGIN

 <BEFORE_UPDATE row- level trigger_1 body>

 END

 END

 END

/* Oracle - trigger dbo BEFORE_UPDATE row - level trigger_1 implementation:

end */

/* Oracle - trigger BEFORE_UPDATE row - level trigger_2 implementation:

begin */

 BEGIN

 -- (UPDATE OF COLUMN[, COLUMN] ...])

 IF (UPDATE(<COLUMN>) OR UPDATE((<COLUMN>) ...)

 BEGIN

 IF <<BEFORE_UPDATE row - level trigger_2 WHERE_CLAUSE>>

 BEGIN

 <BEFORE_UPDATE row- level trigger_2 body>

 END

 END

 END

/* Ora cle - trigger dbo BEFORE_UPDATE row - level trigger_2 implementation:

end */

...

 /* DML - operation emulation */

 UPDATE <table>

 SET

 <COLUMN_NAME_1> = @column_new_value$1,

 <COLUMN_NAME_1> = @column_new_val ue$1,

 ...

 WHERE

 ROWID = @column_new_value$0

 FETCH NEXT FROM ForEachInsertedRowTriggerCursor INTO

@column_new_value$0, @column_new_value$1, @column_new_value$2, ...

 END

 CLOSE ForEachInsertedRowTriggerCursor

 DEALLOCATE ForEachInsertedRowTriggerCursor

 /* end of trigger implementation */

Pattern for BEFORE INSERT triggers

CREATE TRIGGER dbo.INSTEAD_OF_INSERT_ON_<table> ON <table>

 INSTEAD OF INSERT

 AS

 /* beginning of trigger implementation */

 SET NOCOUNT ON

 /* column variables declaration */

 /* declare variables to store all table columns */

 DECLARE

 @column_new_value$1 <COLUMN_1_TYPE>,

 @column_new_value$2 <COLUMN_1_TYPE>,

 ...

/*declare variables to store values of :OLD*/

 @column_old_value$A <COLUMN_A_TYPE>,

 @column_old_value$B <COLUMN_B_TYPE>,

 ...

/* insert all table - level trigger implementations here */

<BEFORE_INSERT table - level trigger_1 body>

<BEFORE_INSERT table - level trigger_2 body>

...

 /* iterate for each for from inserted/upda ted table(s) */

 DECLARE ForEachInsertedRowTriggerCursor CURSOR LOCAL FORWARD_ONLY

READ_ONLY FOR

 SELECT <COLUMN_1_NAME>,<COLUMN_2_NAME> ... FROM inserted

 OPEN ForEachInsertedRowTriggerCursor

 FETCH NEXT FROM ForEachInserted RowTriggerCursor INTO

@column_new_value$1, @column_new_value$2, ...

 WHILE @@fetch_status = 0

 BEGIN

/* insert all row - level trigger implementations here */

/* Oracle - trigger BEFORE_INSERT row - level trigger_1 implementation:

begin * /

 BEGIN

 IF (<BEFORE_UPDATE row - level trigger_1 WHERE_CLAUSE>)

 BEGIN

 <BEFORE_UPDATE row- level trigger_1 body>

 END

 END

/* Oracle - trigger dbo BEFORE_UPDATE row - level trigger_1 implementation:

end */

/* Oracle - trigger BEFORE_INSERT row - level trigger_2 implementation:

begin */

 BEGIN

 IF (<BEFORE_UPDATE row - level trigger_2 WHERE_CLAUSE>)

 BEGIN

 <BEFORE_UPDATE row- level trigger_2 body>

 END

 END

/* Oracle - trigger dbo BEFORE_UPDATE row - level trigger_2 implementation:

end */

...

 /* DML - operation emulation */

 INSERT INTO <table> (<COLUMN_1_NAME>,<COLUMN_2_NAME> ...)

 VALUES (@column_new_value$1, @column_ne w_value$2, ...)

 FETCH NEXT FROM ForEachInsertedRowTriggerCursor INTO

@column_new_value$1, @column_new_value$2, ...

 END

 CLOSE ForEachInsertedRowTriggerCursor

 DEALLOCATE ForEachInsertedRowTriggerCursor

 / * end of trigger implementation */

INSTEAD OF Triggers

Oracle INSTEAD OF triggers remain INSTEAD OF triggers in SQL Server. Combine

multiple INSTEAD OF triggers that are defined on the same event into one trigger.

INSTEAD OF trigger statements are implicitly activated for each row.

Pattern for INSTEAD OF UPDATE triggers and INSTEAD OF DELETE triggers

CREATE

 TRIGGER [schema.]INSTEAD_OF_UPDATE_ON_VIEW_<table> ON <table>

 INSTEAD OF {UPDATE | DELETE}

 AS

 /* beginning of trigger implementation */

 SET NOCOUNT ON

 /* column variables declaration */

 DECLARE

/*if the trigger has no references to :OLD that define one variable to

store first column. Else define only columns that ha ve references to

:OLD*/

 @column_old_value$1 <COLUMN_1_TYPE>

 @column_old_value$X <COLUMN_X_TYPE>,

 @column_old_value$Y <COLUMN_Y_TYPE>,

...

 /*define columns to store references to :NEW*/

 @column_new_value$A <COLUMN_A_TYPE>,

 @column_new_value$B <COLUMN_B_TYPE>,

...

 /* iterate for each for from inserted/updated table(s) */

 /* For trigger for UPDATE event that has references to :NEW

define and open cursor from inserted as well*/

 DECLARE ForEachInsertedRo wTriggerCursor CURSOR LOCAL FORWARD_ONLY

READ_ONLY FOR

 SELECT <COLUMN_A_NAME>, <COLUMN_B_NAME> ... FROM inserted

 OPEN ForEachInsertedRowTriggerCursor

 FETCH NEXT FROM ForEachInsertedRowTriggerCursor INTO

@column_new_value$A, @co lumn_new_value$B ...

 DECLARE ForEachDeletedRowTriggerCursor CURSOR LOCAL FORWARD_ONLY

READ_ONLY FOR

 SELECT <COLUMN_X_NAME>, <COLUMN_Y_NAME> ... FROM deleted

 OPEN ForEachDeletedRowTriggerCursor

 FETCH NEXT FROM ForEachDeletedRowTriggerCursor INTO

 /* trigger has no references to :OLD*/

 @column_old_value$1

 /* trigger has references to :OLD*/

 @column_old_value$X, @column_old_value$Y ...

 WHILE @@fetch_status = 0

 BEGIN

/* Oracle - trigger INSTEAD OF UPDATE/DELETE trigger_1 implementation:

begin */

 BEGIN

 < INSTEAD OF UPDATE/DELETE trigger_1 BODY>

 END

/* Oracle - trigger INS TEAD OF UPDATE/DELETE trigger_1 implementation:

end */

/* Oracle - trigger INSTEAD OF UPDATE/DELETE trigger_2 implementation:

begin */

 BEGIN

 < INSTEAD OF UPDATE/DELETE trigger_1 BODY>

 END

/* Oracle - trigger INSTEAD OF UPDATE/DELETE trigger_2 implementation:

end */

...

/*Only for trigger for UPDATE event that has references to :NEW*/

 FETCH NEXT FROM ForEachInsertedRowTriggerCursor INTO

@column_new_value$A, @column_new_value$B ...

 OPEN ForEachDeletedRowTriggerCursor

 FETCH NEXT FROM ForEachDeletedRowTriggerCursor INTO

 /* trigger has no references to :OLD*/

 @column_old_value$1

 /* trigger has references to :OLD*/

 @column_old_value$X, @column_old_value$Y ...

 END

/*Only for trigger for UPDATE event that has references to :NEW*/

 CLOSE ForEachInsertedRowTriggerCursor

 DEALLOCATE ForEachInsertedRowTrig gerCursor

 CLOSE ForEachDeletedRowTriggerCursor

 DEALLOCATE ForEachDeletedRowTriggerCursor

 /* end of trigger implementation */

Pattern for INSTEAD OF INSERT triggers

INSTEAD OF triggers are converted in the same way as DELETE and UPDATE

triggers, except the iteration for each row is made with the inserted table.

CREATE TRIGGER [schema.]INSTEAD_OF_INSERT_ON_VIEW_<table> ON <table>

 INSTEAD OF INSERT

 AS

 /* beginning of trigger implementation */

 SET NOCOUNT ON

 /* column variables declaration */

 DECLARE

 /*if the trigger has no ref erences to :NEW that define one

variable to store first column. Else define only columns that ha ve

references to :NEW*/

 @column_new_value$1 <COLUMN_1_TYPE>

 @column_new_value$X <COLUMN_X_TYPE>,

 @column_new_value$Y <COLUMN_Y_TYPE>,

...

 /*define columns to store references to :OLD */

 @column_old_value$A <COLUMN_A_TYPE>,

 @column_old_value$B <COLUMN_B_TYPE>,

...

 /* iterate f or each for from inserted/updated table(s) */

 DECLARE ForEachInsertedRowTriggerCursor CURSOR LOCAL FORWARD_ONLY

READ_ONLY FOR

 SELECT <COLUMN_X_NAME>, <COLUMN_Y_NAME> ... FROM inserted

 OPEN ForEachInsertedRowTriggerCursor

 FETCH NEXT FROM ForEachDeletedRowTriggerCursor INTO

 /* trigger has no references to :NEW*/

 @column_new_value$1

 /* trigger has references to :NEW*/

 @column_new_value$X, @column_new_value$Y ...

 WHILE @@fetch_status = 0

 BEGIN

 /* Oracle - trigger INSTEAD OF INSERT trigger_1 implementation:

begin */

 BEGIN

 < INSTEAD OF INSERT trigger_1 BODY>

 END

 /* Oracle - trigger INSTEAD OF INSERT trigger_1 implementation:

end */

 /* Oracle - trigger INSTEAD OF INSERT trigger_2 implementation:

begin */

 BEGIN

 < INSTEAD OF INSERT trigger_1 BODY>

 END

 /* Oracle - trigger INSTEAD OF INSERT trigger_ 2 implementation:

end */

 OPEN ForEachInsertedRowTriggerCursor

 FETCH NEXT FROM ForEachDeletedRowTriggerCursor INTO

 /* trigger has no references to :NEW*/

 @column_new_val ue$1

 /* trigger has references to :NEW*/

 @column_new_value$X, @column_new_value$Y ...

 END

 CLOSE ForEachInsertedRowTriggerCursor

 DEALLOCATE ForEachInsertedRowTriggerCursor

 /* end of trigger implementation */

Autonomous Transactions in Triggers

Convert triggers with PRAGMA AUTONOMOUS_TRANSACTION as described earlier,

except execute the trigger body in a separate connection. SSMA uses the

xp_ora2ms_exec2_ex extended procedure, which launches the trigger body's

procedure implementation. That procedure is created when you install the SSMA

Extension Pack.

Note that extended stored procedures functionality is not supported in Azure SQL DB

and xp_ora2ms_exec2_ex cannot be used to emulate autonomous transactions in

triggers in this version of SQL Server.

Pattern for the trigger body

declare @spid int, @login_time datetime

select @spid = ssma_ora cle .get_active_spid(),

@login_time = ssma_ora cle .get_active_login_time()

EXEC master.dbo.xp_ora2ms_exec2_ex @spid, @ login_time,

<database_name>, <schema_name>,

<trigger_implementation_as_procedure_name>,

0, [parameter1, parameter2, ... ,]

The trigger body's procedure implementation follows a pattern that depends on the

trigger type. For all types of table-level triggers, this procedure has no parameters.

Because the first PL/SQL statement in an autonomous routine begins a new

transaction, the procedure body should begin with the set implicit_transactions on

statement.

Pattern for implementation of table-level triggers

create procedure <trigger_name>$imlp

as begin

set implicit_transactions on

<TRIGGER_BODY>

end

For row-level triggers, SSMA passes NEW and OLD rows to the procedure. In BEFORE

UPDATE and BEFORE INSERT row-level triggers, you can write to the :NEW value. So

in autonomous transactions you must pass a :NEW value back to a trigger.

In that way, the pattern for row-level trigger-body procedure implementation looks like

the following.

Pattern for implementing AFTER, INSTEAD OF, and BEFORE DELETE row-level

triggers

create procedure <trigger_name>$impl

@rowid,@column_new_value$1,@column_new_value$2, ... ,

@column_old_value$1,@column_old_value$2..

as begin

set implicit_transactions on

<TRIGGER_BODY>

end

Pattern for implementing BEFORE UPDATE and BEFORE INSERT row-level

triggers

create procedure < before_ trigger_name>$imlp

@rowid,@column_new_value$1 output ,@column_new_value$2 output, ... ,

@column_old_value$1,@column_old_value$2..

as begin

set implicit_transactions on

<TRIGGER_BODY>

end

The logic of these patterns for all types of row-level triggers remains the same, except

SSMA creates references to all columns of :NEW and :OLD values.

¶ In row-level triggers for the INSERT event, you pass references to the :NEW

value and null values instead of the :OLD value.

¶ In row-level triggers for the DELETE event, you pass references to the :OLD

value and null values instead of the :NEW value.

¶ In row-level triggers for the UPDATE event, you pass references to both the

:OLD value and the :NEW value.

Notes on Autonomous Transaction Conversion in Triggers

In Oracle, none of the changes made in the main transaction are visible to an

autonomous transaction. To protect the autonomous transaction from reading

uncommitted data, we recommend using a row-versioning isolation level. To provide the

complete emulation of autonomous transactions in SQL Server and to enable a row-

versioning isolation level, set the ALLOW_SNAPSHOT_ISOLATION option to ON for

each database referenced in the autonomous block. In addition, start the autonomous

block with a SNAPSHOT isolation level. Alternatively, you can start an autonomous

block with the READ COMMITTED isolation level when the

READ_COMMITTED_SNAPSHOT database option is set to ON.

The Execution Order of Triggers

The Oracle trigger syntax now includes the FOLLOWS clause to guarantee execution

order for triggers defined with the same timing point.

create or replace trigger Trg_2

before insert on My_Table

for each row

FOLLOWS Trg_1

begin

. ..

end;

In SQL Server trigger it is necessary to join all triggers in the only from Oracle's triggers

with the same timing point in the order of its execution.

Compound Triggers

A compound trigger allows code for one or more timing points for a specific object to be

combined into a single trigger.

CREATE OR REPLACE TRIGGER <trigger - name>

 FOR <trigger - action> /*INSERT, UPDATE, DELETE*/

 ON <table - name>

 COMPOUND TRIGGER

 -- Global declaration.

 g_global_variable VARCHAR2(10);

 BEFORE STATEMENT IS

 BEGIN

 NULL; -- Do something here.

 END BEFORE STATEMENT;

 BEFORE EACH ROW IS

 BEGIN

 NULL; -- Do something here.

 END BEFORE EACH ROW;

 AFTER EACH ROW IS

 BEGIN

 NULL; -- Do something here.

 END AFTER EACH ROW;

 AFTER STATEMENT IS

 BEGIN

 NULL; -- Do something here.

 END AFTER STATEMENT;

END <trigger - name>;

The individual timing points can share a single global declaration section, whose state is

maintained for the lifetime of the statement.

In this case it is necessary split this trigger to the several ones with the same timing

point by rules as described above.

As for work with global section it is necessary to work with it as described in section

Emulating Oracle Packages.

Emulating Oracle Packages
Oracle supports encapsulating variables, types, stored procedures, and functions into a

package. This section describes SSMA for Oracle V6.0 conversion algorithms, which

allow packages to be emulated in Microsoft SQL Server 2014.

When you convert Oracle packages, you need to convert:

¶ Packaged procedures and functions (both public and private).

¶ Packaged variables.

¶ Packaged cursors.

¶ Package initialization routines.

Let's examine each of these in turn.

Converting Procedures and Functions

As one of its functions, an Oracle package allows you to group procedures and

functions. In SQL Server 2014, you can group procedures and functions by their names.

Suppose that you have the following Oracle package:

CREATE OR REPLACE PACKAGE MY_PACKAGE

IS

 space varchar(1) := ' ';

 unitname varchar(128) := 'My Simple Package';

 curd date := sysdate;

 procedure MySimpleProcedure;

 procedure MySimpleProcedure(s in varchar);

 function MyFunction return varchar2;

END;

CREATE OR REPLACE PACKAGE BODY MY_PACKAGE

IS

procedure MySimpleProcedure

is begin

 dbms_output.put_line(MyFunction);

end;

procedure MySimpleProcedure(s in varchar)

is begin

 dbms_output.put_line(s);

end;

function MyFunction return varchar2

is begin

 retu rn 'Hello, World!';

end;

END;

In SQL Server 2014, you can group procedures and functions by giving them names

such as Scott.MY_PACKAGE$MySimpleProcedure and

Scott.MY_PACKAGE$MyFunction. The naming pattern is <schema name>.<package

name>$<procedure or function name>. For more information about converting

functions, see Migrating Oracle User-Defined Functions.

Convert the invoker rights clause AUTHID to an EXECUTE AS clause, and apply it to all

packaged procedures and functions. Also convert the CURRENT_USER argument to

the CALLER argument, and convert the DEFINER argument to the OWNER argument.

Converting Overloaded Procedures

You can create overloaded procedures in Oracle (procedures with same name but with

different parameters and bodies). SQL Server 2014, in contrast, does not support

procedure overloading. Therefore, you should distinguish each procedure’s instance.

The naming pattern could resemble <schema name>.<package name>$<procedure

name>$ovl<# of procedure instance>. For example,

Scott$MY_PACKAGE$MySimpleProcedure$OVL1 and

Scott$MY_PACKAGE$MySimpleProcedure$OVL2.

Here's some sample converted Transact-SQL code:

create function Scott.MY_PACKAGE$MyFunction()

returns varchar(max)

as begin

 return ' Hello, world!'

end

go

create procedure Scott.MY_PACKAGE$MySimpleProcedure$OVL1

as begin

 print dbo.MY_PACKAGE$MyFunction()

end

go

create procedure Scott.MY_PACKAGE$MySimpleProcedure$OVL2(@s

varchar(max))

as begin

 print @s

end

go

Converting Packaged Variables

To store packaged variables, establish session-depended storage. SSMA for

Oracle V6.0 provides an excellent solution. For the task, SSMA uses special tables that

reside in an ssma_oracle schema. For access to these variables SSMA uses a set of

transaction-independent GET and SET procedures and functions. Also, these

procedures ensure session independence — you should distinguish between variables

from different sessions. SSMA distinguishes package variables by SPID (session

identifier) and the session’s login time.

Note: If a packaged variable is declared with an initial value, you must move the

initialization to the package's initialization section.

Converting Simple Variables

Simple variables (numeric, varchar, datetime) are stored separately in the appropriate

column in table ssma_oracle.db_storage in the converted database.

In some cases you can replace constant packaged variables with user-defined functions

that return the appropriate value. For example, you could convert the packaged variable

unitname (from the earlier example) as:

create function scott$my_package$unitname()

returns varchar(128)

as begin

 return 'My Simple Package'

end

And, you should convert all references to this variable:

dbms_output.put_line(my_p ackage.unitname);

To:

print scott.my_package$unitname()

Converting Packaged Cursors

SSMA for Oracle V6.0 converts packaged cursors as GLOBAL cursors with names such

as <schema>$<package name>$<cursor name>.

The declaration of cursor is invoked in the package initialization section. Each database

method that uses packaged cursors contains the call of the package initialization

procedure. The call is invoked before the first usage of the packaged cursor.

(For basic information about cursor conversion, see Migrating Oracle Cursors. You will

also find a description of converting FOUND, ISOPEN, and NOTFOUND cursor

attributes.)

The ROWCOUNT attribute is converted as a package variable. The variable is initialized

to null in the init section; after OPEN, its value is set to zero and is incremented after

each FETCH.

Converting Initialization Section

The initialization section itself is converted as the usual packaged procedure. Within

each converted procedure or function, a call to the initialization procedure is included.

Note Initialization should be performed only one time per session, so the initialization

procedure must check each package’s initialization status.

Calling Initialization from the Within Procedure

Calling the initialization procedure from within a GET procedure has one main problem:

the initialization of packaged variables requires that a number of rows to be inserted into

a storage table and that insertion should be transaction-independent. This is why SSMA

uses an extended stored procedure to perform this task.

Calling Initialization from the Within Function

Before the value is obtained from a package variable, it should be initialized. The

initialization routine should be called to do this. You cannot call stored procedures

directly from within a function, so SSMA calls the initialization procedure by executing

an extended stored procedure.

SSMA’s Package Variables Implementation Details

SSMA stores package variables in the converted database in an

ssma_oracle.db_storage table. The table is filtered by SPID and login time. This

filtering enables you to distinguish between variables of different sessions.

SSMA creates the initialization procedure with a name such as

Scott.MY_PACKAGE$SSMA_Initialize_Package. The name pattern is

<schema>.<packagename>$SSMA_Initialize_Package.

At the beginning of each procedure SSMA places a call to the

ssma_oracle.db_check_init_package procedure. That procedure checks if the

package is not initialized yet, and, if not, it initializes the package.

As a mark of package initialization, SSMA uses package variable with a name such as

$<dbname>.<schema>.<package>$init$. If that variable is present in the db_storage

table, the package is already initialized, and therefore no initialization call is required.

Because it is not possible to call a procedure from a user-defined function, the check for

initialization is performed by the function db_fn_check_init_package. In its turn

db_fn_check_init_package makes a call to xp_ora2ms_exec2 to execute the

package initialization routine.

Each initialization procedure cleans the storage table and sets default values for each

packaged variable:

CREATE PROCEDURE dbo.MY_PACKAGE$SSMA_Initialize_Package

AS

 EXECUTE ssma_oracle.db_clean_storage

 EXECUTE ssma_oracle.set_pv_varchar

 'SYS',

 'DBO',

 'MY_PACKAGE',

 'SPACE',

 ' '

 EXECUTE ssma_oracle.set_pv_varchar

 'SYS',

 'DBO',

 'MY_PACKAGE',

 'UNITNAME',

 'My Simple Package'

Package Conversion Code Example

For further reference, consider the following package conversion example:

CREATE FUNCTION dbo.MY_PACKAGE$MyFunction () RETURNS varchar(max)

AS

 BEGIN

 EXECUTE ssma_oracle.db_fn_check_init_package 'SCOTT', 'DBO',

'MY_PACKAGE'

 RETURN 'Hello, World!'

 END

GO

CREATE PROCEDURE dbo.MY_PACKAGE$MySimpleProcedure$1

AS

 BEGIN

 EXECUTE ssma_oracle.db_check_init_package 'SCOTT', 'DBO',

'MY_PACKAGE'

 PRINT dbo.MY_PACKAGE$MyFunction()

 END

GO

CREATE PROCEDURE dbo.MY_PACKAGE$MySimpleProcedure$2

 @s varchar(max)

AS

 BEGIN

 EXECUTE ssma_oracle.db_check_init_package 'SCOTT', 'DBO',

'MY_PACKAGE'

 PRINT @s

 END

GO

CREATE PROCEDURE dbo.MY_PACKAGE$SSMA_Initialize_Package

AS

 EXECUTE ssma_oracle.db_clean_storage

 EXECUTE ssma_oracle.set_pv_varchar

 'SCOTT',

 'DBO',

 'MY_PACKAGE',

 'SPACE',

 ' '

 EXECUTE ssma_oracle.set_pv_varchar

 'SCOTT',

 'DBO',

 'MY_PACKAGE',

 'UNITNAME',

 'My Simple Package'

 DECLARE

 @temp datetime

 SET @temp = getdate()

 EXECUTE ssma_oracle.set_pv_datetime

 'SCOTT',

 'DBO',

 'MY_PACKAGE',

 'CURD',

 @temp

GO

Converting Packages to Azure SQL DB

Emulation of Oracle packages in SQL Server is based on autonomous transaction and

ability to call procedure from function. Both functionalities are gained from extended

stored procedure xp_ora2ms_exec. Azure SQL DB doesn’t support extended stored

procedures functionality.

That’s why for package emulation on Azure SQL DB the following issues are appeared:

1. Package initialization block;

2. Package state can’t be changed inside functions;

3. Transactional behavior of package variables.

Package Initialization Block

In Oracle we can create a special block that will initialize the package before the first

usage by user session. To emulate such behavior on SQL Server, we convert that block

as a procedure and place a special code in each package routine that checks

initialization and executes this procedure if the initialization hasn’t been done yet.

But on Azure SQL DB, the initialization procedure can’t be run from the context of a

function. Thus, the package can’t be initialized when we call package function or

package variables getters (ssma_oracle.get_pv_* functions).

As a workaround, the call to ssma_oracle.db_check_init_package procedure is placed

before the calling package function or package variables getters inside the code that

use them but not inside functions of course.

SSMA replaces the initialization function call to ssma_oracle.db_check_init_package

procedure call where possible, but in other cases this should be done manually

depending on the code that uses the converted package and its routines.

Oracle

CREATE OR REPLACE package local_ 1

as

 function f1 return int;

end;

CREATE OR REPLACE package bod y local_ 1

as

 val int;

 function f2 return int as

 begin

 val:=val+1;

 return val;

 end;

 function f1 return int as

 begin

 return f2();

 end;

begin

 val := 4;

end;

-- Oracle Call to package

declare

 x int;

begin

 x := local_ 1.f1() ;

end;

SSMA conversion to Azure SQL DB

CREATE PROCEDURE dbo.LOCAL_1$SSMA_Initialize_Package

AS

 EXECUTE

 ssma_oracle.db_clean_storage

 EXECUTE ssma_oracle.set_pv_int 'DBO', 'LOCAL_1', 'VAL', 4

GO

CREATE FUNCTION dbo.LOCAL_1$f1

(

)

RETURNS int

AS

 BEGIN

 /*

 * SSMA error messages:

 * O2SS0516: Init block canôt be used inside function.

EXECUTE ssma_oracle.db_fn_check_init_package 'DBO', 'LOCAL_1'

*/

 RETURN dbo.LOCAL_1$f2()

 END

GO

/*

* SSMA error messages:

* O2SS0518: Wrapper functions are not supported by Azure SQL DB

platform. Use $impl procedures instead.

CREATE FUNCTION dbo.LOCAL_1$f2

(

)

RETURNS int

AS

 BEGIN

 DECLARE

 @active_spid INT,

 @login_time DATETIME

 SET @active_spid = ssma_oracle.GET_ACTIVE_SPID()

 SET @login_time = ssma_oracle.GET_ACTIVE_LOGIN_TIME()

 DECLARE @return_value_argument int

 /*

 * SSMA warning messag es:

 * O2SS0452: "xp_ora2ms_exec2_ex" when called from within UDF

cannot bind to outer transaction. It can lead to dead locks and losing

transaction atomicity. Consider calling $impl procedure directly.

 */

 EXECUTE master.dbo.xp_ora2ms_exec2_ex

 @active_spid,

 @login_time,

 N'ATEST',

 N'ATEST',

 N'LOCAL_1$F2$IMPL',

 N'true',

 @return_value_argument OUTPUT

 RETURN @return_value_argumen t

 END

*/

CREATE PROCEDURE dbo .LOCAL_1$f2$IMPL

 @return_value_argument int OUTPUT

AS

 BEGIN

 DECLARE

 @temp int

 SET @temp = ssma_oracle.get_pv_int(' DBO', 'LOCAL_1 ', 'VAL') + 1

 EXECUTE ssma_oracle.set_pv_int ' DBO', 'LO CAL_1', 'VAL', @temp

 SET @return_value_argument = ssma_oracle.get_pv_int(' DBO',

'LOCAL_ 1', 'VAL')

 RETURN

 END

GO

-- Azure SQL DB call to the package

BEGIN

 DECLARE

 @x int

 SET @x = dbo.LOCAL_1$f1()

END

GO

The following is the workaround that can be applied manually for Azure SQL DB as the

package initialization block:

CREATE PROCEDURE dbo.LOCAL_1$SSMA_Initialize_Package

AS

 EXECUTE

 ssma_oracle.db_clean_storage

 EXECUTE ssma_oracle.set_pv_int 'DB O', 'LOCAL_1', 'VAL', 4

GO

-- Azure SQL DB call to the package

BEGIN

 DECLARE

 @x int

 EXECUTE ssma_oracle.db_check_init_package 'DBO', 'LOCAL_ 1'

 SET @x = dbo.LOCAL_1$f1()

END

GO

Package State Cannot Be Changed Inside Functions

In Oracle, package variables values can be changed inside user defined functions.

For SQL Server, such functions are emulated using xp_ora2ms_exec2_ex extended

stored procedure and implementation procedures. Azure SQL DB does not support

extended stored procedures. That is why the above emulation is not applicable for this

database.

SSMA marks the converted function that contains variables changed inside it with the
following error message: “Wrapper functions are not supported by Azure SQL DB
platform. Use $impl procedures instead.”

Regarding to the previous Oracle example and its conversion to Azure SQL DB, the

packaged function f2 that changes packaged variable (and function f1 that calls f2) can

be rewritten manually into its implementation procedure and the calling code can be

changed in the following way:

Azure SQL DB:

CREATE PROCEDURE dbo.LOCAL_1$SSMA_Initialize_Package

AS

BEGIN

 EXECUTE

 ssma_oracle.db_clean_storage

 EXECUTE ssma_oracle.set_pv_int 'DBO', 'LOCAL_1', 'VAL', 4

END

GO

CREATE PROCEDURE dbo.LOCAL_1$f1

 @return_value int OUTPUT

AS

BEGIN

 EXECUTE dbo.LOCAL_1$f2 @return_value OUTPUT

 RETURN

END

GO

CREATE PROCEDURE dbo.LOCAL_1$f2

 @return_value int OUTPUT

AS

BEGIN

 EXECUTE ssma_oracle.db_check_init_package 'DBO', 'LOCAL_1'

 DECLARE @temp int

 SET @temp = ssma_oracle.get_pv_int('DBO', 'LOCAL_1', 'VAL') + 1

 EXECUTE ssma_oracle.set_pv_int 'DBO', 'LOCAL_1', 'VAL', @temp

 SET @return_value = ssma_oracle.get_pv_int('DBO', 'LOCAL_1', 'VAL')

 RETURN

END

-- Azure SQL DB call to the package

BEGIN

 DECLARE

 @x int

 EXECUTE ssma_oracle.db_check_init_package 'DBO', 'LOCAL_ 1'

 EXECUTE dbo.LOCAL_1$f1 @x OUTPUT

END

GO

Transactional behavior of package variables

In Oracle, package variables are not transactional and are stored independently for

each user session. But in Azure SQL DB, any data can’t be stored in transactionally

independent way.

The best workaround is to store package variable value in some table marking it with

session identifier. But this value will be lost after rollback or even switched to some

previous value if we use rollback to save point.

SSMA adds a warning about that inside initialization block for packages that has

variables:

Oracle

CREATE OR REPLACE package local_2

as

 v_1 int;

 v_2 int;

end;

Azure SQL DB

/*

* SSMA warning messages:

* O2SS0519: Package variables value will be changed if rollback

occurred.

*/

CREATE PROCEDURE dbo.LOCAL_2$SSMA_Initialize_Package

AS

 EXECUTE

 ssma_oracle.db_clean_storage

GO

Conversion of Oracle Materialized Views
Previous versions of SSMA converted Oracle materialized views to tables but since this

version, materialized views are converted to indexed views.

SSMA now displays materialized views in Oracle Metadata Explorer and shows their

quantity.

While converting a materialized view, SSMA creates necessary unique clustered index

on the view in SQL Server and adds WITH SCHEMABINDING option to the CREATE

VIEW statement. The Ixdexes and Triggers nodes are added as subnodes to Views in

SQL Server Metadata Explorer.

Indexed view are created using the following statements:

CREATE VIEW <materialized_view_name>

WITH SCHEMABINDING

AS

 SELECT ... ;

GO

CREATE UNIQUE CLUSTERED <index_name>

 ON <materialized_view_name> (<field1>, <field2> ...);

GO

The view has to have unique clustered index. Index fields are set of primary keys (or

other unique fields/field sets) of participating tables at least. The view must reference

only base tables that are in the same database as the view. The view cannot reference

other views.

SSMA parses SELECT statement of the materialized view DDL definition and

determines a degree of compatibility with SQL Server requirements for indexed views.

The following table shows SQL elements that are not supported in the indexed view

definition, but SSMA can handle their conversion:

SELECT statement

contains

SSMA conversion Example

COUNT(*) Replaces to SUM(1) select COUNT(*) from

customers

SSMA: select SUM(1) from

customers

DISTINCT Replaces to GROUP BY select DISTINCT name from

people

SSMA: select name from

people GROUP BY name

AVG Replases to SUM() / SUM(1) select AVG(age) from

people

SSMA: select

SUM(age)/SUM(1) from

people

SUM(<nullable field>) Makes <field> definition as

NOT NULL (e.g. with

DEFAULT 0)

create table people (id

int not null, name

nvarchar(100))

SSMA: create table people

(id int not null, name

nvarchar(100) NOT NULL)

GROUP BY Add column COUNT_BIG(*)

to SELECT list

select a, sum(b) sb from

abc group by a

SSMA: select a, sum(b)

sb, count_big(*)

[cnt$big] from abc group

by a

ORDER BY Removes ORDER BY clause select name from people

ORDER BY name

SSMA: select name from

people

The following SQL elements are not supported in the indexed view definition and SSMA

marks their conversion with error messages:

¶ User-defined functions;

¶ Non-deterministic fields, functions (such as SYSDATE), expressions in SELECT,

WHERE or GROUP BY clauses;

¶ Usage of FLOAT column in SELECT, WHERE or GROUP BY clauses. Indexed

view can contain FLOAT column in SELECT list only if this column is not

included in the clustered index key;

¶ Custom data types (including nested tables);

¶ COUNT(DISTINCT <field>);

¶ FETCH statement;

¶ OUTER joins (LEFT, RIGHT, or FULL);

¶ Subquery or other view;

¶ OVER clause and ranking functions RANK, LEAD, LAG;

¶ MIN, MAX functions;

¶ UNION, MINUS, INTERSECT operators;

¶ HAVING clause.

Below is the example of SSMA conversion of materialized views to SQL Server:

Oracle

CREATE MATERIALIZED VIE W PRODUCTS_MV (PROD_ID, PRODUCT_NAME)

 AS SELECT p.prod_id, p.prod_name

 FROM products p;

SQL Server

CREATE VIEW dbo.PRODUCTS_MV

WITH SCHEMABINDING

AS

 SELECT p.PROD_ID, p.PROD_NAME

 FROM dbo.PRODUCTS AS p

GO

IF EXISTS (

 SELECT * FROM sys.objects so JOIN sys.indexes si

 ON so.object_id = si.object_id

 JOIN sys.schemas sc

 ON so.schema_id = sc.schema_id

 WHERE so.name = N'PRODUCTS_MV' AND sc.name = N'dbo' AND

si.name = N'UIX_ PROD_dbo_PRODUCTS_MV_p_PROD_ID' AND so.type in (N'U'))

 DROP INDEX [dbo].[PRODUCTS_MV].[UIX_ PROD_dbo_PRODUCTS_MV_p_PROD_ID]

GO

CREATE UNIQUE CLUSTERED INDEX [UIX_ATEST_dbo_PRODUCTS_MV_p_PROD_ID] ON

[dbo].[PRODUCTS_MV]

(

 [P ROD_ID] ASC

)

WITH (SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF,

ONLINE = OFF) ON [PRIMARY]

GO

Sequences Conversion
An ORACLE sequence is a user-defined object that generates a series of numeric

values based on the specification with which the sequence was created. The most

common purpose of a sequence is to provide unique values for the primary key column

of a table. ORACLE sequences are not associated with any tables. Applications refer to

a sequence object to get the current or next value of that sequence. ORACLE keeps the

set of generated values of a sequence in a cache, and a unique set of cached values is

created for each session.

In ORACLE, the NEXTVAL expression generates and returns the next value for the

specified sequence. The ORACLE CURRVAL expression returns the most recently

generated value of the previous NEXTVAL expression for the same sequence within the

current application process. In ORACLE, the value of the CURRVAL expression persists

until the next value is generated for the sequence, the sequence is dropped, or the

application session ends.

Solution

SQL Server 2014 supports objects with functionality similar to that of a ORACLE

sequence. In many cases if you use sequence only for getting NEXTVAL you can

convert it to SQL Server sequence.

Oracle

CREATE SEQUENCE customer_no ;

INSERT INTO customers VALUES

 (customer_no . NEXTVAL, 'comment', ...) ;

SQL Server

CREATE SEQUENCE dbo.customer_no

INSERT INTO dbo.customers VALUES

 (NEXT VALUE FOR dbo.customer_no, 'comment', ...)

However, some features of ORACLE sequences (e.g. CURRVAL) are not supported in

SQL Server. Two distinct scenarios of ORACLE sequence CURRVAL usage exist: a

variable that saves sequence value, and an auxiliary table that represents an ORACLE

sequence.

Azure SQL DB doesn’t support sequence objects and the way to convert them to this

version of SQL Server is described in the section Conversion of Sequences to Azure

SQL DB.

SQL Server Scenario 1: Converting an ORACLE Table with Automatically

Generated Primary Key

In the first scenario, a sequence is used to generate single unique value which is used

for a few tables. This is fully compatible with SQL Server usage, and in this case you

should modify code like as in the example:

ORACLE

CREATE SEQUENCE seq1;

...

INSERT INTO t1 (id, name)

 VALUES (seq1 . NEXTVAL, ónameô);

INSERT INTO t2 (id, name)

 VALUES (seq1 .CURRVAL, ónameô);

...

SQL Server

CREATE SEQUENCE seq1

...

declare @newid int;

select @newid = NEXT VALUE FOR seq1;

INSERT INTO t1 (id, name)

 VALUES (@newid, ónameô);

INSERT INTO t2 (id, name)

 VALUES (@newid, ónameô);

...

In this case, we don’t need any emulation for CURRVAL.

SQL Server Scenario 2: Converting an Auxiliary Table Representing an ORACLE

Sequence

In the second scenario, an ORACLE sequence is used in a way that is incompatible with

SQL Server sequence. For example, NEXTVAL and CURRVAL of sequence can be

used in different procedures or application modules.

In this case, you can create an auxiliary table to represent the ORACLE sequence

object. This table contains a single column declared as IDENTITY. When you need to

get a new sequence value, you insert a row in this auxiliary table and then retrieve the

automatically assigned value from the new row.

create table MY_SEQUENCE (

 id int IDENTITY(1 /* seed */, 1 /* increment*/)

)

go

To maintain such emulation of NEXTVAL, you must clean up the added rows to avoid

unrestricted growth of the auxiliary table. The fastest way to do this in SQL Server is to

use a transactional approach:

declare @tran bit,

 @nextval int

set @tran = 0

if @@trancount > 0

 begin

 save transact ion seq

 set @tran = 1

 end

else begin transaction

insert into MY_SEQUENCE default values

set @nextval = SCOPE_IDENTITY()

if @tran=1

 rollback transaction seq

else rollback

In SQL Server, IDENTITY is generated in a transaction-independent way and, as in

ORACLE, rolling back the transaction does not affect the current IDENTITY value. In

this scenario, we can emulate CURRVAL by using SQL Server @@IDENTITY or

SCOPE_IDENTITY() functions. @@IDENTITY returns the value for the last INSERT

statement in the session, and SCOPE_IDENTITY() gets the last IDENTITY value

assigned within the scope of current Transact-SQL module. Note that the values

returned by these two functions can be overwritten by next INSERT statement in the

current session, so we highly recommend that you save the value in an intermediate

variable, if CURRVAL is used afterwards in the source code. Both @@IDENTITY and

SCOPE_IDENTITY() are limited to the current session scope, which means that as in

ORACLE, the identities generated by concurrent processes are not visible.

Conversion of Sequences to Azure SQL DB

To generate next sequence value SSMA inserts a row in emulation table, this will trigger

the identity field to create new value and then it can be referenced using

SCOPE_IDENTITY function. The procedure db_sp_get_next_sequence_value is used

to do all this and it returns new value using output parameter.

But in Oracle, .NEXTVAL is a function and can be used wherever function usage is

allowed while procedure call isn’t possible. It is emulated using xp_ora2ms_exec

extended stored procedure to call the implementation procedure from function, but for

Azure SQL DB another way is needed to handle it.

In some places such usage can be easily done by executing procedure, storing the

result in a temporary variable and then using the variable instead of the function call.

Depending of the usage of .NEXTVAL function, SSMA can either convert the function

call to the procedure ssma_oracle.db_sp_get_next_sequence_value call or mark it with

error proposing to rewrite the code with this procedure manually.

Oracle

declare

 val int;

begin

 if (Work.customers_seq.nextval != val) then

 val := 0;

 end if;

 insert into Work.Customers

 values (Work.customers_seq.nextval, ' Customer1 ');

end;

Azure SQL DB

BEGIN

 DECLARE

 @val int

 DECLARE

 @nextval numeric(38, 0)

 EXECUTE ssma_oracle.db_sp_get_next_sequence_value N 'WORK',

N'CUSTOMERS_SEQ', @nextval OUTPUT

 IF (@nextval != @val)

 SET @val = 0

 DECLARE

 @nextval$2 numeric(38, 0)

 EXECUTE ssma_oracle.db_sp_get_next_sequence_value N' WORK',

N'CUSTOMERS_SEQ', @nextval$2 OUTPUT

 INSERT WORK. CUSTOMERS(COL1, COL2)

 VALUES (@nextval$2, ' Customer1 ')

END

GO

Migrating Hierarchical Queries
This section describes problems and solutions when migrating Oracle hierarchical

queries. Oracle provides the following syntax elements to build hierarchical queries:

1. The START WITH condition. Specifies the hierarchy's root rows.

2. The CONNECT BY condition. Specifies the relationship between the hierarchy's

parent rows and child rows.

3. The PRIOR operator. Refers to the parent row.

4. The CONNECT_BY_ROOT operator. Retrieves the column value from the root

row.

5. The NO_CYCLE parameter. Instructs the Oracle Database to return rows from a

query, even if a cycle exists in the data.

6. The LEVEL, CONNECT_BY_ISCYCLE, and CONNECT_BY_ISLEAF

pseudocolumns.

7. The SYS_CONNECT_BY_PATH function. Retrieves the path from the root to

node.

8. The ORDER SIBLINGS BY clause. Applies ordering to the siblings of the

hierarchy.

Oracle processes hierarchical queries in this order:

1. Evaluates a join first, if one is present, whether the join is specified in the FROM

clause or with WHERE clause predicates.

2. Evaluates the CONNECT BY condition.

3. Evaluates any remaining WHERE clause predicates.

Oracle then uses the information from these evaluations to form the hierarchy as

follows:

4. Oracle selects the hierarchy’s root row(s) (those rows that satisfy the START

WITH condition).

5. Oracle selects each root row's child rows. Each child row must satisfy the

CONNECT BY condition with respect to one of the root rows.

6. Oracle selects successive generations of child rows. Oracle first selects the

children of the rows returned in Step 2, and then the children of those children,

and so on. Oracle always selects children by evaluating the CONNECT BY

condition with respect to a current parent row.

7. If the query contains a WHERE clause without a join, Oracle eliminates all rows

from the hierarchy that do not satisfy the WHERE clause's conditions. Oracle

evaluates that condition for each row individually, rather than removing all the

children of a row that does not satisfy the condition.

8. Oracle returns the rows in the order shown in Figure 3. In the figure, children

appear below their parents.

Figure 3: An example of the Oracle tree traversal order

In SQL Server 2014, you can use a recursive common table expression (CTE) to

retrieve hierarchical data. For more information about the recursive CTE, see Recursive

Queries Using Common Table Expression (http://msdn.microsoft.com/en-

us/library/ms186243.aspx) in SQL Server Books Online.

To migrate an Oracle hierarchical query, follow these common rules:

¶ Use the START WITH condition in the anchor member subquery of the CTE. If

there is no START WITH condition, the result of the anchor member subquery

should consist of all root rows. Because the START WITH condition is

processed before the WHERE condition, ensure that the anchor member

subquery returns all necessary rows. This is sometimes needed to move some

WHERE conditions from the CTE to the base query.

¶ Use the CONNECT BY condition in the recursive member subquery. The result

of the recursive member subquery should consist of all child rows joined with the

CTE itself on the CONNECT BY condition. Use the CTE itself as the inner join

member in the recursive subquery. Replace the PRIOR operator with the CTE

recursive reference.

¶ The base query consists of the selection from the CTE, and the WHERE clause

to provide all necessary restrictions.

¶ Emulate the LEVEL pseudocolumn with a simple expression as described in

SQL Server Books Online for SQL Server 2014.

¶ Emulate the sys_connect_by_path function with an expression that

concatenates column values from recursive CTE references.

 1

 2 7

 8 3 4

 9

 5 6

 10

 11

 12

http://msdn2.microsoft.com/en-us/library/ms186243.aspx
http://msdn2.microsoft.com/en-us/library/ms186243.aspx
http://msdn.microsoft.com/en-us/library/ms186243.aspx
http://msdn.microsoft.com/en-us/library/ms186243.aspx

This approach makes hierarchical data retrieval possible. But the way to traverse trees

is different in Oracle. To emulate the way Oracle orders return data, you can create

additional expressions to use in the ORDER BY clause. The expression should evaluate

some path from the root to the specific row by using a unique row number at each tree

level. You can use the ROW_NUMBER function for this purpose. You can also add

expressions based on the column’s values to provide ORDER SIBLINGS BY

functionality.

You can use GROUP BY and HAVING clauses only in the base query.

SQL Server 2014 cannot detect the cycles in a hierarchical query. You can control the

recursion level with the MAXRECURSION query hint.

Note that SSMA does not support the following features:

¶ The CONNECT_BY_ROOT operator

¶ The NOCYCLE parameter

¶ The CONNECT_BY_ISCYCLE and CONNECT_BY_ISLEAF pseudocolumns

¶ The SYS_CONNECT_BY_PATH function

¶ The ORDER SIBLINGS BY clause

Example:

The following example code demonstrates how to migrate a simple hierarchical query:

Oracle

SELECT "NAME", "PARENT", LEVEL

 FROM COMPANY

 START WITH ("NAME" = 'Company Ltd')

 CONNECT BY ("PARENT" = PRIOR "NAME");

SQL Server

WITH

 h$cte AS

 (

 SELECT COMPANY.NAME, COMPANY.PARENT, 1 AS LEVEL,

CAST(row_number() OVER(

 ORDER BY @@spid) AS varchar(max)) AS path

 FROM dbo.COMPANY

 WHERE ((COMPANY.NAME = 'Company Ltd'))

 UNION ALL

 SELECT COMPANY.NAME, COMPANY.PARENT, h$cte.LEVEL + 1 AS LEVEL,

path + ',' + CAST(row_number() OVER(

 ORDER BY @@spid) AS varchar(max)) AS path

 FROM dbo.COMPANY, h$cte

 WHERE ((COMPANY.PARENT = h$cte.NAME))

)

 SELECT h$cte.NAME, h$cte.PARENT, h$cte.LEVEL

 FROM h$cte

 ORDER BY h$cte.path

Note The ROW_NUMBER() function evaluates the path column to provide Oracle

nodes ordering.

Emulating Oracle Exceptions
This section describes problems and solutions for migrating Oracle exception

mechanisms. The Oracle exception model differs from Microsoft SQL Server 2014 both

in exception raising and exception handling. It is preferable to use the SQL Server

exceptions model during Oracle PL/SQL code migration. At the same time, SSMA

provides common emulation methods to cover almost all Oracle exception-model

features.

Exception Raising

The Oracle exception raising model comprises the following features:

¶ The SELECT INTO statement causes an exception if not exactly one row is

returned.

¶ The RAISE statement can raise any exception, including system errors.

¶ User-defined exceptions can be named and raised by name.

¶ The RAISE_APPLICATION_ERROR procedure can generate exceptions with a

custom number and message.

If the SELECT statement can return zero, one, or many rows, it makes sense to check

the number of rows by using the @@ROWCOUNT function. Its value can be used to

emulate any logic that was implemented in Oracle by using the TOO_MANY_ROWS or

NO_DATA_FOUND exceptions. Normally, the SELECT INTO statement should return

only one row, so in most cases you don’t need to emulate this type of exception raising.

For example:

Oracle

 BEGIN

 SELECT <expression> INTO <variable> FROM <table>;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 <Statements>

 END

SQL Server 2014

 SELECT <variable> = <expression> FROM <table>

 IF @@ROWCOUNT = 0

 BEGIN

 <Statements>

 RETURN

 END

Also, PL/SQL programs can sometimes use user-defined exceptions to provide

business logic. These exceptions are declared in the PL/SQL block's declaration

section. In Transact-SQL, you can replace that behavior by using flags or custom error

numbers.

For example:

Oracle

 declare

 myexception exception;

 BEGIN

 é

 IF <condition> THEN

 RAISE myexception;

 END IF;

 é

 EXCEPTION

 WHEN myexception THEN

 <Statements>

 END

SQL Server 2014

 BEGIN TRY

 é

 IF < condition>

 RAISERROR (ómyexceptionô, 16, 1)

 é

 END TRY

 BEGIN CATCH

 IF ERROR_MESSAGE() = ómyexceptionô

 BEGIN

 <Statements>

 END

 ELSE THROW

 END CATCH

If the user-defined exception is associated with some error number by using pragma

EXCEPTION_INIT, you can handle the system error in the CATCH block as described

later.

To emulate the raise_application_error procedure and the system predefined

exception raising, you can use the RAISERROR statement with a custom error number

and message. Also, change the application logic in that case to support SQL

Server 2014 error numbers.

Note that SQL Server 2014 treats exceptions with a severity of less than 11 as

information messages. To interrupt execution and pass control to a CATCH block, the

exception severity must be at least 11. (In most cases you should use a severity level

of 16.)

Exception Handling

Oracle provides the following exception-handling features:

¶ The EXCEPTION block

¶ The WHEN … THEN block

¶ The SQLCODE and SQLERRM system functions

¶ Exception reraising

Transact-SQL implements error handling with a TRY...CATCH construct. To provide

exception handling, place all “trying” statements into a BEGIN TRY … END TRY block,

while placing the exception handler itself into a BEGIN CATCH … END CATCH block.

TRY … CATCH blocks also can be nested.

To recognize the exception (WHEN … THEN functionality), you can use the following

system functions:

¶ ERROR_NUMBER

¶ ERROR_LINE

¶ ERROR_PROCEDURE

¶ ERROR_SEVERITY

¶ ERROR_STATE

¶ ERROR_MESSAGE

You can use the ERROR_NUMBER and ERROR_MESSAGE functions instead of the

SQLCODE and SQLERRM Oracle functions. Note that error messages and numbers

are different in Oracle and SQL Server, so they should be translated during migration.

For example:

Oracle

 BEGIN

 é

 INSERT INTO <table> VALUES é

 é

 EXCEPTION

 é

 WHEN DUP_VAL_ON_INDEX THEN

 <Statements>

 é

 END

SQL Server 2014

 BEGIN TRY

 é

 INSERT INTO <table> VALUES é

 é

 END TRY

 BEGIN CATCH

 é

 IF ERROR_NUMBER() = 2627

 <Statements>

 ELSE THROW

 é

 END CATCH

SSMA Exceptions Migration to SQL Server 2014

Next, let's examine how SSMA provides a common approach to full emulation of Oracle

exception functionality.

Oracle exceptions are encoded into a character string according to the following rules:

¶ Predefined exceptions (exceptions declared in some system package and not

assigned to any error number) are encoded this way:

oracle:{<OWNER_NAME>|<PACKAGE_NAME>|<EXCEPTION_NAME>}

Where:

¶ PACKAGE_NAME is the package name where the exception is

declared in upper case.

¶ OWNER_NAME is the owner name of the package, in uppercase.

¶ EXCEPTION_NAME is the exception name itself, in uppercase.

¶ User-defined exceptions names declared in modules such as stored procedures

acquire the “local:” prefix:

local:oracle:{<OWNER_NAME>|<MODULE_NAME>}:<EXCEPTION_NAME>:N

Where:

¶ OWNER_NAME is the owner name of the module where the

exception is declared.

¶ MODULE_NAME is the name of the stored procedure where the

exception is declared.

¶ N is an integer value that provides scope name uniqueness.

¶ User-defined exception names declared in anonymous PL/SQL blocks (test

statements) have an additional PL\SQL keyword:

 local:PL \ SQL:<EXCEPTION_NAME>:N

Where N is the integer value that provides scope name uniqueness.

¶ To support Oracle error numbers, system errors are stored in the following

format:

 óORAXXXXXXô

During migration SSMA performs the following steps:

1. All statements between BEGIN and EXCEPTION are enclosed with BEGIN TRY

… END TRY.

2. An exception handler is placed into BEGIN CATCH … END CATCH.

3. Error numbers are translated to Oracle format by using the

ssma_oracle.db_error_get_oracle_exception_id() function. That function

returns an exception identifier as a character string, as described earlier. Each

WHEN…THEN statement is migrated to an IF statement that compares the

exception identifier to constant exception names that are translated according to

the same rules.

4. The exception handler for OTHERS, if any, is migrated to an ELSE statement.

5. If there is no OTHERS exception handler, the exception is reraised in an ELSE

statement by means of ssma_oracle.ssma_rethrowerror procedure.

6. To emulate predefined Oracle exceptions NO_DATA_FOUND and

TOO_MANY_ROWS there is then only case to be taken into account:

¶ Exceptions can be raised as a part of the program execution after all

SELECT statements, except statements which contain an aggregate

function without grouping (because such query always returns at least

one row)

 DECLARE @rc int = @@ROWCOUNT

IF @rc = 0 RAISERROR (59999, 16, 1, N'ORA+00100')

ELSE IF @rc > 1 RAISERROR (59999, 16, 1, N'ORA - 01422')

7. The number 59999 is used for all Oracle system, user-defined, or predefined

exceptions.

8. The RAISE statement is migrated to the RAISERROR statement with a 59999

error number and the exception identifier as a message. The exception identified

is formed as described earlier.

9. To emulate the raise_application_error procedure, there is the additional error

number 59998. The procedure call is replaced by a RAISERROR call with error

number 59998 and the following string as a message:

 óORA<error_number>:<message>ô

For example:

RAISERROR (59998, 16, 1,ôORA-20000:testô)

10. All exceptions are raised with severity level 16 to provide handling by a CATCH

block.

11. ssma_oracle.db_error_sqlcode user-defined function emulates the SQLCODE

function. It returns an Oracle error number.

12. Either ssma_oracle.db_error_sqlerrm_0 or

ssma_oracle.db_error_sqlerrm_1 emulates the SQLERRM function,

depending on the parameters.

13. SSMA does not support using the SQLCODE and SQLERRM functions outside

of an EXCEPTION block (by the way in ORACLE in this case SQLCODE=0 and

SQLERRM=’ORA-0000: normal, successful completion’ respectively).

SSMA Exceptions Migration to Azure SQL DB

Now, let's examine how SSMA provides migration of Oracle exceptions to Azure SQL

DB.

Emulation of Oracle exceptions in SQL Server is based on user-defined error messages

stored by using sp_addmessage system stored procedure. Azure SQL DB doesn't

support such behavior. That’s why RAISERROR statement can’t be used to generate

exception with specified both error code and error message. But instead Azure SQL DB

supports THROW statement which first appeared in SQL Server 2012.

Thus, in SQL Server 2014 and Azure SQL DB, a new mechanism exists to generate

exceptions – THROW statement.

THROW [{ error_number | @local_variable },

 { message | @local_variable },

 { state | @local_variable }]

[;]

In SQL Server exception emulation, two user defined error messages with placeholder

are used when SSMA generates exceptions using RAISERROR statement.

Code Message

59998 '%s'

59999 'SSMA Oracle exception emulation for [%s]'

For THROW, the same error messages are generated inline.

SQL Server 2014

RAISERROR(59998, 16, 1, @db_raise_application_error_message)

RAISERROR(59999, 16, 1, @ex_some$exception)

Azure SQL DB

; THROW 59998, @db_raise_application_error_message, 1;

DECLARE @tmp nvarchar(4000) = N'SSMA Oracle exception emulation for ['

+

 @ex_some$exception + ']';

; THROW 59999, @tmp, 1;

For SQL Server, user defined exceptions are emulated using varchar variable that store

ORA-***** code. The same variable is used in CATCH block to differentiate specific

exceptions. For SQL Server RAISERROR statement it isn’t a problem that this variable

contains ‘%’ sign, but it is a problem for THROW. For THROW statement, this sign is

removed from exception message and its contents is concatenated to the exception

message only inside a CATCH block.

Also RAISERROR doesn’t provide a way to recreate exception that was already caught.

SSMA converts it to SQL Server 2014 with special block of statements and

ssma_oracle.ssma_rethrowerror procedure. But in Azure SQL DB, THROW statement

ability is used to rethrow exception.

The exception should be rethrowed if there is an exception handling block without

WHEN OTHERS clause or when exception is regenerated explicitly by RAISE

statement in Oracle source code.

Oracle

DECLARE

 x INT;

 ex_low_salary EXCEPTION;

 PRAGMA EXCEPTION_INIT(ex_low_salary, - 20005);

BEGIN

 RAISE ex_low_salary;

EXCEPTION

 WHEN ex_low_salary THEN

 SELECT 2 into x FROM dual;

END;

Azure SQL DB

DECLARE @x int, @ex_low_salary$exception nvarchar(1000)

BEGIN TRY

 SET @ex_low_salary$exception = N'ORA - 20005'

 declare @tmp nvarchar(4000) = N'SSMA Oracle exception emulation for

[' +

 @ex_low_s alary$exception + ']';

 ;THROW 59999, @tmp, 1

END TRY

BEGIN CATCH

 DECLARE @errornumber int

 SET @errornumber = ERROR_NUMBER()

 DECLARE @errormessage nvarchar(4000)

 SET @errormessage = ERROR_MESSAGE()

 DECLARE @exceptionidentifier nvarchar (4000)

 SELECT @exceptionidentifier =

ssma_oracle.db_error_get_oracle_exception_id(@errormessage,

@errornumber)

 IF (@exceptionidentifier LIKE @ex_low_salary$exception + '%')

 SELECT @x = 2

 ELSE

 THROW; -- regenerate exception block

END CATCH

Migrating Oracle Cursors
This section describes problems and solutions for Oracle cursor migration. Keep in mind

that a packaged cursor needs special handling during conversion. For more information,

see Emulating Oracle Packages.

Oracle always requires that cursors be used with SELECT statements, regardless of the

number of rows requested from the database. In Microsoft SQL Server 2014, a SELECT

statement that is not enclosed within a cursor returns rows to the client as a default

result set. This is an efficient way to return data to a client application.

SQL Server 2014 provides two interfaces for cursor functions:

¶ When cursors are used in Transact-SQL batches or stored procedures, SQL

statements can declare, open, and fetch from cursors—as well as positioned

updates and deletes.

¶ When cursors from a DB-Library, ODBC, or OLE DB program are used, the

SQL Server client libraries transparently call built-in server functions to handle

cursors more efficiently.

Syntax

The following table shows cursor statement syntax in both platforms.

Operation Oracle Microsoft

SQL Server

Declaring a

cursor
CURSOR cursor_name

[(cursor_parameter(s))]

IS select_statement;

ISO Syntax

DECLARE

cursor_name [

INSENSITIVE] [

SCROLL] CURSOR

 FOR

select_statement

 [FOR { READ

ONLY | UPDATE [OF

column_name [

,...n]] }]

Transact - SQL

Extended Syntax

DECLARE

cursor_name CURSOR

[LOCAL | GLOBAL]

[FORWARD_ONLY |

SCROLL]

[STATIC | KEYSET |

DYNAMIC |

FAST_FORWARD]

Operation Oracle Microsoft

SQL Server

[READ_ONLY |

SCROLL_LOCKS |

OPTIMISTIC]

[TYPE_WARNING]

FOR

select_statement

[FOR UPDATE [OF

column_name

[,én]]]

Ref cursor type

definition
TYPE type_name IS REF CURSOR

 [RETURN

 { {db_table_name | cursor_name

| curso r_variable_name} % ROWTYPE

 | record_name % TYPE

 | record_type_name

 | ref_cursor_type_name}];

See below.

Opening a cursor OPEN cursor_name

[(cursor_parameter(s))];

OPEN cursor_name

Cursor attributes { cursor_name

 | cursor_variable_name

 | :host_cursor_variable_name}

 % {FOUND | ISOPEN | NOTFOUND |

ROWCOUNT}

See below.

SQL cursors SQL %

 {FOUND | ISOPEN | NOTFOUND |

ROWCOUNT | BULK_ROWCOUNT(index) |

BULK_EXCEPTIONS(index).{ERROR_INDEX

| ERROR_CODE}}

See below.

Fetching from

cursor
FETCH cursor_name INTO variable(s) FETCH [[NEXT |

PRIOR | FIRST |

LAST | ABSOLUTE {n

| @nvar} |

RELATIVE {n |

@nvar}]

FROM] cursor_name

[INTO

@variable(s)]

Update fetched

row
UPDATE table_name

SET statement(s)é

WHERE CURRENT OF cursor_name;

UPDATE table_name

SET statement(s)é

WHERE CURRENT OF

cursor_name

Delete fetched

row
DELETE FROM table_name

WHERE CURRENT OF cursor_name;

DELETE FROM

table_name

WHERE CURRENT OF

Operation Oracle Microsoft

SQL Server

cursor_name

Closing cursor CLOSE cursor_name; CLOSE cursor_name

Remove cursor

data structures

N/A DEALLOCATE

cursor_name

OPEN … FOR

cursors
OPEN {cursor_variable_name |

:host_cursor_variable_name}

FOR dynamic_string [using_clause]

See below.

Declaring a Cursor

Although the Transact-SQL DECLARE CURSOR statement does not support cursor

arguments, it does support local variables. The values of these local variables are used

in the cursor when it is opened. Microsoft SQL Server 2014 offers numerous additional

capabilities in its DECLARE CURSOR statement.

The INSENSITIVE option defines a cursor that makes a temporary copy of the data to

be used by that cursor. The temporary table answers all of the requests to the cursor.

Consequently, modifications made to base tables are not reflected in the data returned

by fetches made to that cursor. Data accessed by this cursor type cannot be modified.

Applications can request a cursor type, and then execute a Transact-SQL statement

that is not supported by server cursors of the type requested. SQL Server returns an

error that indicates that the cursor type has changed, or, given a set of factors, implicitly

converts a cursor.

The following table shows the factors that trigger SQL Server to implicitly convert a

cursor from one type to another.

Step Conversion triggered by Forward-
only

Keyset-
driven

Dynamic Go
to
step

1 Query FROM clause references
no tables

Becomes
static

Becomes
static

Becomes
static

Done

2 Query contains: select list
aggregates GROUP BY UNION
DISTINCT HAVING

Becomes
static

Becomes
static

Becomes
static

Done

3 Query generates an internal work
table, for example the columns of
an ORDER BY are not covered
by an index

Becomes
keyset

 Becomes
keyset

5

4 Query references remote tables
in linked servers

Becomes
keyset

 Becomes
keyset

5

5 Query references at least one
table without a unique index.
Transact-SQL cursors only.

 Becomes
static

 Done

The SCROLL option allows backward, absolute, and relative fetches, and also forward

fetches. A scroll cursor uses a keyset cursor model in which committed deletes and

updates made to the underlying tables by any user are reflected in subsequent fetches.

This is true only if the cursor is not declared with the INSENSITIVE option.

If the READ ONLY option is chosen, updates are prevented from occurring against any

row within the cursor. That option overrides the default capability of a cursor to be

updated.

The UPDATE [OF column_list] statement defines updatable columns within the cursor.

If [OF column_list] is supplied, only the columns listed allow modifications. If a list is not

supplied, all columns can be updated, unless the cursor is defined as READ ONLY.

Note that the name scope for a SQL Server cursor is the connection itself. That differs

from the name scope of a local variable. A second cursor with the same name as an

existing cursor on the same user connection cannot be declared until the first cursor is

deallocated.

Following are descriptions of the SSMA algorithm of cursor conversion for several

specific cases.

¶ If the cursor is declared in the local subprogram, SSMA converts it to:

 DECLARE cursor_name CURSOR LOCAL FOR select_statement

SSMA puts this cursor declaration directly before the OPEN statement that

opens the cursor and removes the RETURN clause.

Instead of the cursor declaration, SSMA generates a variable declaration.

¶ If the cursor is declared as a public packaged cursor, SSMA converts it into a

global cursor:

DECLARE cursor_name CURSOR FOR select_statement

For more information, see Emulating Oracle Packages.

¶ SSMA declares a local variable for each parameter with the following naming

pattern:

@CURSOR_PARAM_<cursor_name>_<parameter_name>

The data type is converted according to the effective SSMA type mapping for

local variables.

¶ SSMA removes a REF cursor definition and converts it to a variable declaration

as follows:

cursor_variable_declaration ::=

 cursor_variable_name type_name;

Convert to:

@cursor_variable_name CURSOR;

Opening a Cursor

Unlike PL/SQL, Transact-SQL does not support passing arguments to a cursor when it

is opened. When a Transact-SQL cursor is opened, the result set membership and

ordering are fixed. Updates and deletes that have been committed against the cursor's

base tables by other users are reflected in fetches made against all cursors defined

without the INSENSITIVE option. In the case of an INSENSITIVE cursor, a temporary

table is generated.

SSMA tests to see whether the cursor was declared with formal cursor parameters. For

each formal cursor parameter, generate a SET statement before the cursor declaration

to assign the actual cursor parameter to the appropriate local variable:

SET @CURSOR_PARAM_<cursor_name>_<parameter_name> =

actual_cursor_parameter

If there is no actual parameter for the formal parameter, use a DEFAULT expression as

declared in the cursor parameter declaration:

SET @CURSOR_PARAM_<cursor_name>_<parameter_name> = expression

Fetching Data

Oracle cursors can move in a forward direction only—there is no backward or relative

scrolling capability. SQL Server 2014 cursors can scroll forward and backward with the

fetch options shown in the following table. You can use these fetch options only if the

cursor is declared with the SCROLL option.

Scroll option Description

NEXT Returns the result set's first row if this is the first fetch against

the cursor; otherwise, moves the cursor one row in the result

set. NEXT is the primary method for moving through a result

set. NEXT is the default cursor fetch.

PRIOR Returns the previous row in the result set.

FIRST Moves the cursor to the first row in the result set and returns

the first row.

LAST Moves the cursor to the last row in the result set and returns

the last row.

Scroll option Description

ABSOLUTE n Returns the nth row in the result set. If n is a negative value,

the returned row is the nth row counting backward from the

last row of the result set.

RELATIVE n Returns the nth row after the currently fetched row. If n is a

negative value, the returned row is the nth row counting

backward from the cursor's relative position.

The Transact-SQL FETCH statement does not require the INTO clause. If return

variables are not specified, the row is automatically returned to the client as a single-row

result set. However, if your procedure must get the rows to the client, a noncursor

SELECT statement is much more efficient.

Issues

SSMA recognizes the following FETCH formats:

¶ FETCH INTO <record>: SSMA splits the record into its components and fetches

each variable separately.

¶ FETCH … BULK COLLECT INTO

The @@FETCH_STATUS function is updated following each FETCH. This function

resembles the PL/SQL CURSOR_NAME%FOUND and

CURSOR_NAME%NOTFOUND variables. The @@FETCH_STATUS function is set to

the value of 0 following a successful fetch. If the fetch tries to read beyond the end of

the cursor, a value of -1 is returned. If the requested row was deleted from the table

after the cursor was opened, the @@FETCH_STATUS function returns -2. The value of

-2 usually occurs only in a cursor that was declared with the SCROLL option. That

variable must be checked following each fetch to ensure the validity of the data.

How SSMA converts cursor attributes

SSMA converts cursor attributes as follows:

¶ FOUND attribute: Converts to @@FETCH_STATUS = 0

¶ NOTFOUND attribute: Converts to @@FETCH_STATUS <> 0

¶ ISOPEN attribute: Converts as follows:

¶ For global cursors:

(CURSOR_STATUS(óglobalô, Nô<cursor_name>ô) > - 1)

¶ For local cursors:

(CURSOR_STATUS(ólocalô, Nô<cursor_name>ô) > - 1)

¶ For a cursor variable:

(CURSOR_STATUS(óvariableô, Nô@<cursor_variable_name>ô) > - 1)

¶ ROWCOUNT attribute: To convert ROWCOUNT, SSMA does the following:

1. It generates a declaration of an INT variable with the name

@v_<cursor_name | cursor_variable_name >_rowcount at the beginning of

the block where cursor was declared (see Declaring a Cursor).

2. Before the OPEN statement for the cursor or cursor variable, it puts a

variable initialization code:

SET @v_<cursor_name | cursor_variable_name >_rowcount = 0

3. Immediately after the cursor FETCH statement, it puts:

IF @@FETCH_STATUS = 0

SET @v_<cursor_name | cursor_variable_name >_rowcount =

@v_<cursor_name | cursor_variable_name >_rowcount + 1

4. SSMA converts cursor_name%ROWCOUNT to:
@v_<cursor_name | cursor_variable_name >_rowcount

How SSMA converts SQL cursor attributes

¶ FOUND: Converts to (@@ROWCOUNT > 0)

¶ NOTFOUND: Converts to (@@ROWCOUNT = 0)

¶ ISOPEN: Converts to any condition that is always false, for example (1=2)

¶ ROWCOUNT: Converts to @@ROWCOUNT. For example:

Oracle

IF SQL%FOUND THEN é;

SQL Server 2014

IF @@ROWCOUNT > 0 é

SQL Server does not support Oracle’s cursor FOR loop syntax, but SSMA can convert

these loops. See the examples in the previous section.

How SSMA converts OPEN … FOR cursors

The SSMA conversion option Convert OPEN-FOR statement for REF CURSOR OUT

parameters (see Figure 4) is used because there is an ambiguity when a REF CURSOR

output parameter is opened in the procedure. The REF CURSOR might be fetched in

the caller procedure (SSMA does not support this usage) or used directly by the

application (SSMA can handle this if the option is set to Yes).

Figure 4: Setting the Convert OPEN-FOR statement for REF CURSOR OUT

parameters SSMA conversion option

Generally, an OPEN-FOR statement is converted in the following way:

¶ If the OPEN-FOR statement is used for a local cursor variable, SSMA converts it

to:

SET @cursor_variable_name = CURSOR FOR select_statement

¶ If the OPEN-FOR statement is used for an output procedure parameter and the

option is set to ON, it’s converted to:

select_statement

This returns a result set to the client application.

¶ If the OPEN-FOR statement is used for an output procedure parameter and the

option is set to OFF, SSMA generates the following error:

“Conversion of OPEN-FOR statement is disabled.”

The OPEN-FOR-USING statement, when it is used for a local cursor variable, is

converted somewhat differently, as in the following steps:

1. SSMA generates the following code:

DECLARE

 @auxiliary_cursor_definition_sql$N NVARCHAR(max),

 @auxiliary_exec_param$N NVARCHAR(max)

IF (cursor_status('va riable', N'<cursor_variable_name>') > - 2)

 DEALLOCATE <cursor_variable_name>

SET @auxiliary_exec_param$N = '[@auxiliary_paramN <datatype>

[OUTPUT],] é @auxiliary_tmp_cursor$N cursor OUTPUT'

2. Then SSMA generates the following error message: ‘OPEN ... FOR statement

will be converted, but the dynamic string must be converted manually.’

3. It adds the following line into the Attempted target code section:

SET @auxiliary_cursor_definition_sql$N = ('SET

@auxiliary_tmp_cursor = CURSOR LOCAL FOR ' +

<dynamic_string>+ '; OPEN @auxiliary_tmp_cursor')

SSMA uses integer value N as part of declared variable names to provide scope

name uniqueness.

The parameter @auxiliary_paramN is declared in @auxiliary_exec_param$N for

every bind_argument of the using_clause. SSMA determines the data type of the

argument to declare the parameters. It also specifies OUTPUT in case of a

bind_argument specified with an OUT or an IN_OUT option.

4. SSMA generates the following code:

EXEC sp_executesql @auxiliary_cursor_de finition_sql$N,

@auxiliary_exec_param$N, [bind_argument [OUTPUT],]é

cursor_variable_name OUTPUT

Where bind_argument is the bind_argument from the using_clause. Specify

OUTPUT for the bind arguments that were declared with OUTPUT specified in

@auxiliary_exec_param$N.

When used for an ouput procedure parameter, the OPEN-FOR-USING statement and

the Convert OPEN-FOR statement for REF CURSOR OUT parameters option is set

to ON.

1. SSMA generates the following code:

DECLARE

 @auxiliary_cursor_definition_sql$N NVARCHAR(max),

 @auxiliary_exec_param$N NVARCHAR(max)

SET @auxiliary_exec_param$N = '[@auxiliary_paramN <datatype> [OUTPUT]]'

2. Then it generates the following error message: “OPEN ... FOR statement will be

converted, but the dynamic string must be converted manually.”

3. SSMA puts the following line into the Attempted target code section:

SET @auxiliary_cursor_definition_sql$N = (<dynamic_string>)

SSMA uses the integer value N as part of the declared variable names to

provide scope name uniqueness.

4. The @auxiliary_paramN parameter is declared in @auxiliary_exec_param$N for

every bind_argument of the using_clause. SSMA determines the data type of the

argument to declare the parameters. It specifies OUTPUT if a bind_argument is

specified with an OUT or an IN_OUT option.

5. SSMA generates the following code:

EXEC sp_executesql @auxiliary_cursor_definition_sql$N,

@auxiliary_exec_param$N [, bind_argument]é

bind_argument is the bind_argument from the using_clause.

CURRENT OF Clause

The CURRENT OF clause syntax and function for updates and deletes is the same in

both PL/SQL and Transact-SQL. A positioned UPDATE or DELETE operation is

performed against the current row within the specified cursor.

Closing a Cursor

The Transact-SQL CLOSE CURSOR statement closes the cursor but leaves the data

structures accessible for reopening. The PL/SQL CLOSE CURSOR statement closes

and releases all data structures.

Transact-SQL requires the DEALLOCATE CURSOR statement to remove the cursor

data structures. The DEALLOCATE CURSOR statement differs from CLOSE CURSOR

in that a closed cursor can be reopened. The DEALLOCATE CURSOR statement

releases all data structures associated with the cursor and removes the definition of the

cursor.

During conversion, SSMA adds a DEALLOCATE CURSOR statement. The source

statement:

CLOSE { cursor_name | cursor_variable_name |

:host_cursor_variable_name}

becomes two statements in SQL Server:

CLOSE { cursor_name | @cursor_variable_name }

DEALLOCATE { cursor_name | @cursor_variable_name }

Examples of SSMA for Oracle V6.0 Conversion

FOR Loop Cursor Conversion

Oracle

CREATE OR REPLACE PROCEDURE db_proc_for_loop (mgr_param NUMBER)

AS

BEGIN

 DECLARE

 CURSOR emp_cursor IS

 SELECT empno, ename

 FROM emp WHERE mgr = mgr_param;

 BEGIN

 FOR emp_rec IN emp_cursor

 LOOP

 UPDATE emp SET sal = sal * 1.1;

 END LOOP;

 END;

END db_proc_for_loop;

SQL Server

CREATE PROCEDURE dbo.DB_PROC_FOR_LOOP

 @mgr_param float(53)

AS

 BEGIN

 BEGIN

 DECLARE

 @v_emp_cursor_rowcount int

 DECLARE

 @emp_rec$empno float(53),

 @emp_rec$ename varchar(max)

 DECLARE

 emp_curs or CURSOR LOCAL FORWARD_ONLY FOR

 SELECT EMP.EMPNO, EMP.ENAME

 FROM dbo.EMP

 WHERE EMP.MGR = @mgr_param

 OPEN emp_cursor

 WHILE 1 = 1

 BEGIN

 FETCH emp_cursor

 INTO @emp_rec$empno, @emp_rec$ename

 IF @@FETCH_STATUS = - 1

 BREAK

 UPDATE dbo.EMP

 SET

 SAL = EMP.SAL * 1.1

 END

 CLOSE emp_cursor

 DEALLOCATE emp_cursor

 END

 END

Cursor with Parameters

Oracle

CREATE OR REPLACE PROCEDURE db_proc_cursor_parameters

AS

 CURSOR rank_cur (id_ NUMBER, sn CHAR)

 IS SELECT rank, rank_name

 FROM rank_table

 WHERE r_id = id_ AND r_sn = sn;

BEGIN

 OPEN rank_cur (1, 'c');

 OPEN rank_cur (2, 'd');

END;

SQL Server

CREATE PROCEDURE dbo.DB_PROC_CURSOR_PARAMETERS

AS

 BEGIN

 DECLARE

 @CURSOR_PARAM_rank_cur_id_$2 float(53)

 SET @CURSOR_PARAM_rank_cur_id_$2 = 1

 DECLARE

 @CURSOR_PARAM_rank_cur_sn$2 varchar(max)

 SET @CURSOR_PARAM_rank_cur_sn$2 = 'c'

 DECLARE

 rank_cur CURSOR LOCAL FOR

 SELECT RANK_TABLE.RANK, RANK_TABLE.RANK_NAME

 FROM dbo.RANK_TABLE

 WHERE RANK_TABLE.R_ID = @CURSOR_PARAM_rank_cur_id_$2 AND

RANK_TABLE.R_SN = @CURSOR_PARAM_rank_cur_sn$2

 OPEN rank_cur

 DECLARE

 @CURSOR_PARAM_rank_cur_id_ float(53)

 SET @CURSOR_PARAM_rank_cur_id_ = 2

 DECLARE

 @CURSOR_PARAM_rank_cur_sn varchar(max)

 SET @CURSOR_PARAM_rank_cur_sn = 'd'

 DECLARE

 rank_cur CURSOR LOCAL FOR

 SELECT RANK_TABLE.RANK, RANK_TABLE.RANK_NAME

 FROM dbo.RANK_TABLE

 WHERE RANK_TABLE.R_ID = @CURSOR_PARAM_rank_cur_id_ AND

RANK_TABLE.R_SN = @CURSOR_PARAM_rank_cur_sn

 OPEN rank_cur

 END

Cursor Attributes Conversion

Oracle

CREATE OR REPLACE PROCEDURE db_proc_cursor_attributes

AS

 ID number;

 CURSOR Cur IS SELECT ID FROM rank_table;

BEGIN

 IF NOT Cur%ISOPEN THEN

 OPEN Cur;

 END IF;

 LOOP

 FETCH Cur INTO ID;

 EXIT WHEN Cur%NOTFOUND;

 dbms_output.put_line(to_char(ID + Cur%ROWCOUNT));

 END LOOP;

 CLOSE Cur;

END;

SQL Server

CREATE PROCEDURE dbo.DB_PROC_CURSOR_ATTRIBUTES

AS

 BEGIN

 DECLARE

 @ID float(53),

 @v_Cur_rowcount int

 IF NOT CURSOR_STATUS('local', N'Cur') > - 1

 BEGIN

 DECLARE

 Cur CURSOR LOCAL FOR

 SELECT RANK_TABLE.ID

 FROM dbo.RANK_TABLE

 SET @v_Cur_rowcount = 0

 OPEN Cur

 END

 WHILE 1 = 1

 BEGIN

 FETCH Cur

 INTO @ID

 IF @@FETCH_STATUS = 0

 SET @v_Cur_rowcount = @v_Cur_rowcount + 1

 IF @@FETCH_STATUS <> 0

 BREAK

 PRINT CAST(@ID + CAST(@v_Cur_rowcount AS float(53)) AS

varchar(max))

 END

 CLOSE Cur

 DEALLOCATE Cur

 END

CONTINUE Statement of a LOOP
The CONTINUE statement exits the current iteration of a loop, either conditionally or

unconditionally, and transfers control to the next iteration of either the current loop or an

enclosing labeled loop.

If a CONTINUE statement exits a cursor FOR loop prematurely (for example, to exit an

inner loop and transfer control to the next iteration of an outer loop), the cursor closes

(in this context, CONTINUE works like GOTO).

Example

Oracle

begin

 <<OuterLoop>>

 for outer in 1..10 loop

 dbms_output.put_line(' - > outer='||outer);

 for inner in 1..10 loop

 continue OuterLoop when inner > 5;

 dbms_output.put_line('.. - > inner='||inner);

 end loop;

 end loop;

end;

SQL Server

declare @outer int = 1

while @outer <= 10

begin

 print(' - > outer=' + cast(@outer as varchar(100)))

 InnerLoop:

 declare @inner int = 1

 while @inner <= 10

 begin

 if @inner > 5 GOTO OuterLoop

 print('.. - > inner=' + cast(@inner as varchar(100)))

 set @inner = @inner + 1

 end

OuterLoop:

 set @outer = @outer + 1

end

Simulating Oracle Transactions in SQL Server 2014
During migration from Oracle to Microsoft SQL Server 2014, you must account for the

differences in their default transaction management behavior. SSMA for Oracle V6.0

can convert Oracle’s transaction-related statements, but you will find additional issues to

consider, as described in this section.

If the SSMA Convert transaction processing statements option is turned on, SSMA

tries to convert the Oracle statements for transaction management (COMMIT,

ROLLBACK, and SAVEPOINT), but it does not add any statement for opening a

transaction. So, you must decide which transaction management model to use in your

application. Because SQL Server 2014 now allows optimistic escalation mode, choose

between a pessimistic and an optimistic concurrency model.

Choosing a Transaction Management Model

In Oracle, a transaction automatically starts when an insert, update, or delete operation

is performed. An application must issue a COMMIT command to save changes to the

database. If a COMMIT is not performed, all changes are rolled back or undone

automatically.

By default, SQL Server 2014 automatically performs a COMMIT statement after every

insert, update, or delete operation. Because the data is automatically saved, you cannot

roll back any changes.

You can start transactions in SQL Server 2014 as autocommit, implicit, or explicit

transactions. Autocommit is the default behavior; you can use implicit or explicit

transaction modes to change the default behavior.

Autocommit Transactions

Autocommit transactions are the default mode for SQL Server 2014. Each individual

Transact-SQL statement is committed when it completes. You do not have to specify

any statements to control transactions.

Implicit Transactions

As in Oracle, an implicit transaction starts whenever an INSERT, UPDATE, DELETE, or

other data manipulating function is performed. To allow implicit transactions, use the

SET IMPLICIT_TRANSACTIONS ON statement.

If this option is ON and there are no outstanding transactions, every SQL statement

automatically starts a transaction. If there is an open transaction, no new transaction will

start. The user must explicitly commit the open transaction with the COMMIT

TRANSACTION statement for the changes to take effect and for all locks to be

released.

Explicit Transactions

An explicit transaction is a grouping of SQL statements surrounded by BEGIN TRAN

and COMMIT or ROLLBACK commands.

Therefore, for the complete emulation of the Oracle transaction behavior, use a SET

IMPLICIT_TRANSACTIONS ON statement.

Choosing a Concurrency Model

Consider changing your application's isolation level. In a multiple-user environment,

there are two models for updating data in a database:

¶ Pessimistic concurrency involves locking the data at the database when you

read it. You exclusively lock the database record and don't allow anyone to touch

it until you are done modifying and saving it back to the database. You have

100 percent assurance that nobody will modify the record while you have it

checked out. Another person must wait until you have made your changes.

Pessimistic concurrency complies with ANSI-standard isolation levels as defined

in the SQL-99 standard. Microsoft SQL Server 2014 has four pessimistic

isolation levels:

¶ READ COMMITTED

¶ READ UNCOMMITTED

¶ REPEATABLE READ

¶ SERIALIZABLE

¶ Optimistic concurrency means that you read the database record but don't lock

it. Anyone can read and modify the record at any time, so the record might be

modified by someone else before you modify and save it. If data is modified

before you save it, a collision occurs. Optimistic concurrency is based on

retaining a view of the data as it is at the start of a transaction. This model is

embodied in Oracle. The transaction isolation level that implements an optimistic

form of database concurrency is called a row versioning-based isolation level.

Because SQL Server 2014 has completely controllable isolation-level models, you can

choose the most appropriate isolation level. To control a row-versioning isolation level,

use the SET TRANSACTION ISOLATION LEVEL command. SNAPSHOT is the

isolation level that is similar to Oracle and does optimistic escalations.

Make Transaction Behavior Look Like Oracle

For complete transaction management emulation in SQL Server 2014, and using a row-

versioning isolation level, set the ALLOW_SNAPSHOT_ISOLATION option to ON for

each database that is referenced in the Transact-SQL object (view, procedure, function,

or trigger). In addition, either each Transact-SQL object must be started with a

SNAPSHOT isolation level; otherwise, this level must be set on each client connection.

Alternatively, the autonomous block must be started with the READ COMMITTED

isolation level with the READ_COMMITTED_SNAPSHOT database option set to ON.

Both the READ_COMMITTED_SNAPSHOT and ALLOW_SNAPSHOT_ISOLATION

database options are set to ON in Azure SQL DB by default and cannot be changed.

Simulating Oracle Autonomous Transactions
This section describes how SSMA for Oracle V6.0 handles autonomous transactions

(PRAGMA AUTONOMOUS_TRANSACTION). These autonomous transactions do not

have direct equivalents in Microsoft SQL Server 2014.

When you define a PL/SQL block (anonymous block, procedure, function, packaged

procedure, packaged function, database trigger) as an autonomous transaction, you

isolate the DML in that block from the caller's transaction context. The block becomes

an independent transaction started by another transaction, referred to as the main

transaction.

To mark a PL/SQL block as an autonomous transaction, you simply include the

following statement in your declaration section:

PRAGMA AUTONOMOUS_TRANSACTION;

SQL Server 2014 does not support autonomous transactions. The only way to isolate a

Transact-SQL block from a transaction context is to open a new connection.

To convert a procedure, function, or trigger with an AUTONOMOUS_TRANSACTION

flag, you split it into two objects. The first object is a stored procedure containing the

body of the converted object. It looks like it was converted without a PRAGMA

AUTONOMOUS_TRANSACTION flag and is implemented as a stored procedure. The

second object is a wrapper that opens a new connection where it invokes the first

object. It is implemented via an original object type (procedure, function, or trigger).

Use the xp_ora2ms_exec2 extended procedure and its extended version

xp_ora2ms_exec2_ex, bundled with the SSMA 6.0 Extension Pack, to open new

transactions. The procedure's purpose is to invoke any stored procedure in a new

connection and help invoke a stored procedure within a function body. The

xp_ora2ms_exec2 procedure has the following syntax:

xp_ora2ms_exec2

 <active_spid> int,

 <login_time> datetime,

 <ms_db_name> varchar,

 <ms_schema_name> varchar,

 <ms_procedure_name> varchar,

 <bind_to_transaction_flag> varchar,

 [optional_parameters_for_procedure]

Where:

¶ <active_spid> [input parameter] is the session ID of the current user process.

¶ <login_time> [input parameter] is the login time of the current user process.

¶ <ms_db_name> [input parameter] is the database name owner of the stored

procedure.

¶ <ms_schema_name> [input parameter] is the schema name owner of the stored

procedure.

¶ <ms_procedure_name> [input parameter] is the name of the stored procedure.

¶ optional_parameters_for_procedure [input/output parameter] are the procedure

parameters.

In general, you can retrive the active_spid parameter from the @@spid system function.

You can query the login_time parameter with the statement:

¶ declare @login_time as datetime

¶ select @login_time=start_time from sys.dm_exec_requests where

session_id=@@spid

We recommend that you use SSMA methods to retrieve the active_spid and login_time

values before passing them to the xp_ora2ms_exec2 procedure. Use the following

recommended general template to invoke xp_ora2ms_exec2:

DECLARE @spid int, @login_time datetime

SELECT @spid = ssma_oracle.get_active_spid(),

@login_time = ssma_oracle.get_active_login_time()

EXEC master.dbo.xp_ora2ms_exec2_ex @spid, @login_time, < database_name>,

<schema_name>, <procedure_name>, [parameter1, parameter2, ...]

Note that Azure SQL DB doen’t support extended stored procedures functionality and

the solution proposed in this section is not applicable to this version of SQL Server.

Simulating Autonomous Procedures and Packaged Procedures

As mentioned earlier, SSMA ignores the PRAGMA AUTONOMOUS_TRANSACTION

flag when it converts procedures. We recommend naming that procedure differently

from the original, because it will not be invoked directly. You can implement the

procedure wrapper body according to the following pattern:

CREATE PROCEDURE [schema.] <procedure_name>

<parameters list>

AS BEGIN

DECLARE @spid int, @login_time datetime

SELECT @spid = ssma_oracle.get_active_spid(),

@login_time = ssma_oracle.get_active_login_time()

EXEC master.dbo.xp_ora2ms_exec2 @ spid, @ login _spid, <database_name>,

<schema_name>, <procedure_name>$IMPL, [parameter1, parameter2, ...]

END

¶ The <procedure_name>$IMPL parameter is the name of the procedure

containing the converted source code.

¶ Note that the parameters list that is passed to the xp_ora2ms_exec2 procedure

should keep the IN/OUT options in the parameters for

<procedure_name>$IMPL.

¶ Because the first PL-SQL statement in an autonomous routine begins a

transaction, the procedure body should be begun with the set

implicit_transactions on statement. The procedure body should be converted as

the following pattern:

CREATE PROCEDURE [schema.] <procedure_name>$IMPL

<parameters list>

AS BEGIN

 se t implicit_transactions on

<procedure_body>

END

Simulating Autonomous Functions and Packaged Functions

The method to simulate autonomous functions resembles that for procedures. Make the

wrapper method for a function, and then implement the function body via a stored

procedure. Add the additional parameter to the procedure's parameter list. Give the

parameter a type corresponding to a function return value and an output direction.

Implement the function wrapper body according to the following pattern:

CREATE FUNCTION [schema.] <function_name>

(<parameters list>)

RETURNS <return_type>

AS BEGIN

DECLARE @spid int, @login_time datetime

SELECT @spid = ssma_oracle.get_active_spid(),

@login_time = ssma_oracle.get_active_login_time()

DECLARE @return_value_variable <function_return_type>

EXEC master.dbo.xp_ora2ms_exec2 @@spid,@login_time, <database_name>,

<schema_ name>, <function_name>$IMLP,

[parameter1, parameter2, ... ,] @return_value_variable OUTPUT

RETURN @return_value_variable

END

The function body will be transformed into the following procedure:

CREATE PROCEDURE [schema.] <function_name>$IMPL

 <parameters list> ,

 @return_value_argument <function_return_type> OUTPUT

 AS BEGIN

 set implicit_transactions on

<function implementation>

SET @return_value_argument = <return_expression>

 END

The <return_expression> is an expression that a function uses in the RETURN

operator.

Simulation of Autonomous Triggers

For conversion of autonomous triggers, see Autonomous Transactions in Triggers.

Code Example

The following code provides CREATE PROCEDURE examples that can be leveraged

for Oracle and SQL Server 2014 respectively.

Oracle

CREATE OR REPLACE PROCEDURE update_salary (emp_id IN NUMBER)

IS

PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

UPDATE employees SET sit e_id = site_id * 2 where employee_id=emp_id;

COMMIT;

EXCEPTION WHEN OTHERS THEN ROLLBACK;

END;

SQL Server 2014

CREATE PROCEDURE dbo.UPDATE_SALARY @emp_id float(53)

AS BEGIN

DECLARE @active_spid INT, @login_time DATETIME

SET @active_spid = ssma_oracle.GET_ ACTIVE_SPID()

SET @login_time = ssma_oracle.GET_ACTIVE_LOGIN_TIME()

EXECUTE master.dbo.xp_ora2ms_exec2

@active_spid, @login_time,

'SYSTEM', 'DBO', 'UPDATE_SALARY$IMPL', @emp_id

END

CREATE PROCEDURE dbo.UPDATE_SALARY$IMPL @emp_id float(53)

AS BEGIN

SET IMPLICIT_TRANSACTIONS ON

BEGIN TRY

UPDATE dbo.EMPLOYEES SET SITE_ID = EMPLOYEES.SITE_ID * 2

WHERE EMPLOYEES.EMPLOYEE_ID = @emp_id

WHILE @@TRANCOUNT > 0 COMMIT WORK

END TRY

BEGIN CATCH

IF @@TRANCOUNT > 0

ROLLBACK WORK

END CATCH

END

Note that Azure SQL DB doen’t support extended stored procedures functionality and

thus the above example is not applicable to this version of SQL Server.

Migrating Oracle Records and Collections
Unlike Oracle, Microsoft SQL Server 2014 supports neither records nor collections.

When you migrate from Oracle to SQL Server 2014, therefore, you must apply

substantial transformations to the PL/SQL code.

The approach used by SSMA for Oracle V6.0 is to convert both records and collections

as a user-defined type implemented as SQL CLR type.

Note: SSMA for Oracle V6.0 does not convert collections. Therefore, this section

describes manual migration activity.

Implementing Collections

To emulate collections, you have four options:

¶ Option 1. Rewrite your PL/SQL code to avoid collections.

¶ Option 2. When collections are used within the scope of a subroutine, you can

use SQL Server table variables.

¶ Option 3. When you pass a collection as a parameter into a procedure or a

function, a local temporary table can be the solution.

¶ Option 4. This option is a modification of Option 3. Instead of using temporary

tables (which cannot be accessed from within function), you use permanent

tables.

¶ Option 5. You can use the xml data type to represent the internal structure of a

collection. For more information, see Implementing Records and Collections via

XML.

¶ Option 6. Use SQL Server CLR user-defined type to create an analog of PL/SQL

collection. As said before, this approach was chosen for implementation in

SSMA for Oracle V6.0. For more information, see Emulating Records and

Collections via CLR UDT.

Option 1. Rewrite your code to avoid records and collections. In many cases,

collections or records are not justified. Generally, you can perform the same tasks by

using set-oriented operators, meanwhile gaining performance benefits and code

clearness.

In the PL/SQL code (from here and following we use the SCOTT demo scheme):

declare

 type emptable is table of integer;

 emps emptable;

 i integer;

begin

 select empno bulk collect into emps

 from Emp where deptno = 20;

 for i in emps.first..emps.last loop

 update scott.emp set sal=sal*1.2 where EmpNo=emps(i);

 end loop;

end;

The corresponding Transact-SQL code looks like:

update emp set sal=sal*1.2 where deptno = 20

Usually, nobody would write such awkward code in Oracle, but you may find something

similar in, for example, proprietary systems. It might be a good opportunity to refactor

the source code to use SQL where possible.

Option 2. In some situations you have no choice but to use collections (or something

similar such as arrays).

Suppose you want to retrieve a list of employer IDs, and for each ID from the list

execute a stored procedure to raise each salary.

If the PL/SQL source code looks like:

declare

 type emptable is table of integer;

 emps emptable;

 i integer;

begin

 select empno bu lk collect into emps

 from Emp

 where deptno = 20;

 for i in emps.first..emps.last loop

 scott.raisesalary(Emp => emps(i),Amount => 10);

 end loop;

end;

The corresponding Transact-SQL code may look like:

declare @empno int

declare cur cursor local s tatic forward_only for

select empno from emp where deptno = 20

open cur

fetch next from cur into @empno

while @@fetch_status = 0 begin

 exec raisesalary @emp=@empno,@amount=10

fetch next from cur into @empno

end

deallocate cur

Sometimes you need not only to run through a list and make an action for each record

(as seen earlier), but you also want to randomly access elements in the list.

In this situation it is useful to use table variables. The general idea is to replace a

collection (integer-indexed array) with a table (indexed by its primary key).

For the following PL/SQL code:

declare

 type emptable is table of integer;

 emps emptable;

 i integer;

 s1 numeric;

 s2 numeric;

begin

 select empno bulk collect into emps

 from Emp;

 for i in emps.fir st+1..emps.last - 1 loop

 select sal into s1 from scott.emp where empno = emps(i - 1);

 select sal into s2 from scott.emp where empno = emps(i+1);

 update emp set sal=(s1+s2)/2 where EmpNo=emps(i);

 end loop;

end;

The corresponding Transact-SQL code may look like:

declare @tab table(_idx_ int not null primary key, empno int)

insert into @tab(_idx_,empno) select row_number() over(order by

empno),empno from emp

declare @first int,@last int,@i int,@s1 money,@s2 money

select top 1 @first=_idx_ from @tab order by _idx_ asc

select top 1 @last =_idx_ from @tab order by _idx_ desc

set @i = @first+1

while @i < @last - 1 begin

 select @s1 = sal from emp where empno = (select empno from @tab where

idx=@i - 1)

 select @s2 = sal from emp where empno = (select empno from @tab where

idx=@i+1)

 update emp set sal = (@s1+@s2)/2 where empno = (select empno from @tab

where _idx_=@i)

 set @i = @i +1

end

In this example, the table variable @tab, indexed with an _idx_ field, represents our

collection.

Pay attention to the row_number() function in the select statement. If you do not plan to

insert explicit values in the collection, you can avoid using row_number:

declare @tab table(_idx_ int identity(1,1) not null primary key, empno

int)

insert into @tab(empno) select empno from emp

Now the @tab variable is sequentially indexed starting from 1.

If you are using a collection of %ROWTYPE, you can declare a table variable with an

appropriate list of fields and use it as shown earlier.

By using table variables, you can emulate the functionality of almost any local collection,

as shown in the following table.

Task Collection Emulation with table

variable

Remarks

Declaration type

emptable is

table of

integer;

emps

emptable;

declare @emp table(_idx_ int

not null primary key, empno

int)

or

declare @emps table(_idx_

int identity(1,1) not null

primary key, empno int)

First declaration

for “manual”

indexing and

second for

“automatic” (by

identity) indexing.

Set value

into

collection

emp(i) :=

12;

update @emp set empno = 12

where _idx_=@i

if @@rowcount = 0

insert into

@emps(_idx_,empno)

values(@i,12)

You are trying to

update the record

with _idx_=@i. If

it doesn’t exist

(@@rowcount=0)

, simply insert the

needed data.

Note: If you use

an identity field as

idx, you cannot

insert an explicit

value into the

idx field.

Get value

from

collection

Empno =

emp(i);

select @empno = empno from

@emps where _idx_ = @i

FIRST

method
I_first :=

emp.FIRST;

select @i_first = min(_idx_)

from @emps

Comment on set

@i_last=null

Task Collection Emulation with table

variable

Remarks

or

set @i_last=null

select top 1 @i_first =

idx from @emps order by

idx asc

If the select

statement does

not return any

row, @i_first will

not change its

value, keeping

the previously

stored value. So,

first initialize this

variable as null.

LAST

method
I_last :=

emp.LAST;

select @i_last = max(_idx_)

from @emps

or

set @i_last=null

select top 1 @i_last = _idx_

from @emps order by _idx_

desc

NEXT

method
I_next :=

emp.NEXT(j);

select @i_last = min(_idx_)

from @emps where _idx_ > @i

PRIOR

method
I_prior :=

emp.PRIOR(j)

;

select @i_last = max(_idx_)

from @emps where _idx_ < @i

DELETE

method
emps.delete(

i);

emps.delete;

DELETE FROM @emps WHERE

idx = @i

DELETE FROM @emps

TRIM

method
emps.trim;

emps.trim(n)

;

declare @_idx_ int

select top(@n) @_idx_= _idx_

from @emps order by _idx_

desc

delete @emps where _idx_ >=

@_idx_

emps.trim is

equivalent to

emps.trim(1).

EXISTS

method
t.exists(i) exists(select * from @emps

where _idx_ = @i)

COUNT

method
i = t.COUNT; select @t_count = COUNT(*)

FROM @emps

Bulk collect

into
select empno

bulk collect

into emps

INSERT INTO @emps (_idx_,

empno)

 SELECT row_number()

The

row_number()

function depends

Task Collection Emulation with table

variable

Remarks

from emp over(order by empno) as

idx, empno

from emp

or

INSERT INTO @emps (empno)

SELECT empno from emp

on @emps table

declaration. For

declaration with

identity _idx_

column do not

use

row_number().

EXTEND

method
t.extend;

t.extend(n);

t.extend(n,

i);

SELECT @t_next_value =

ISNULL(MAX(_idx_),0)+1 FROM

@emps

 INSERT INTO @emps (_idx_,

empno)

 VALUE(@t_next_value,

NULL)

 SELECT @t_cur_value =

ISNULL(MAX(_idx_),0) FROM

@emps

 WHILE @n <> 0

 BEGIN

 @t_cur_value =

@t_cur_value + 1

 INSERT INTO @emps

(_idx_, empno)

 VALUE(@t_cur_value,

NULL)

 SET @n = @n- 1

 END

 SELECT @t_cur_value =

ISNULL(MAX(_idx_),0) FROM

@emps

 SELECT @v = empno FROM

@emps where _idx_ = @i

 WHILE @n <> 0

 BEGIN

 @t_cur_value =

Task Collection Emulation with table

variable

Remarks

@t_cur_value + 1

 INSERT INTO @emps

(_idx_, empno)

 VALUE(@t_cur_value, @v)

 SET @n = @n- 1

 END

FORALL …

INSERT

INTO

FORALL i IN

1..20

INSERT INTO

emp(empno)

VALUES

(t(i))

INSERT INTO emp (empno)

 SELECT empno FROM @emps

WHERE _idx_ between 1 and 20

FORALL …

UPDATE
FORALL i IN

6..10

UPDATE emp

SET sal =

sal * 1.10

WHERE empno

= t(i);

UPDATE emp SET sal = sal *

1.10

FROM (SELECT * FROM @emps

WHERE _idx_ between 6 and

10) as t_a

 INNER JOIN emp

 ON (emp.empno =

t_a.empno)

FORALL …

DELETE
FORALL i IN

6..10

DELETE FROM

emp

WHERE empno

= t(i);

DELETE FROM emp WHERE empno

IN (SELECT empno FROM @t

WHERE _idx_ between 6 and

10)

Option 3. Another collection scenario is when you pass a collection as a parameter into a

procedure or a function.

The solution is similar to the solution that uses table variables. The main difference is that

instead of a table variable you use a local temporary table (#tab, for example). The table will be

visible in the procedure that created this table and in all subsequent procedures.

PL/SQL code

Stored procedure:

create procedure emp_raise(emps in emptable)

i int;

is begin

 for i in emps.first..emps.last loop

 raisesalary(Emp => emps(i),Amount => 10);

 end loop;

end;

Procedure call:

declare

type emptable is table of integer;

emps emptable;

begin

 select empno

 bulk collect into emps

 from scott.emp;

 emp_raise(emps);

end;

Transact-SQL code

Stored procedure:

create procedure emp_raise

as begin

 declare @empno int

 declare cur cursor local static forward_only for

 select empno from #emp

 open cur

 fetch next from cur into @empno

 while @@fetch_status = 0 begin

 exec raisesalary @emp=@empno,@amount=10

 fetch next from cur into @empno

 end

 deallocate cur

end

Procedure call:

create table #emp(_idx_ int not null id entity,empno int)

insert into #emp(empno) select empno from emp

exec emp_raise

drop table #emp

Instead of using a collection, you pass needed data to a stored procedure via a temporary table.

Of course you miss useful things such as parameter substitution. (The name of the temporary

table you create outside of the stored procedure must be the same name as the temporary table

in the stored procedure.) That is, you do not cover situations in which different actual collections

are passed to the procedure. But, unfortunately, you cannot access a temporary table from

within SQL Server functions.

Option 4. This option is a slight modification of Option 3. Instead of using temporary tables

(which cannot be accessed from within function), you use permanent tables.

Unlike temporary tables, you can access permanent tables and views from within functions. But

be aware that you cannot use DML statements in functions, so this collection emulation is read-

only. If you want to modify a collection from within a user-defined function, you must use

another kind of emulation; you cannot modify permanent tables from within user-defined

functions. (For more information, see Sample Functions for XML Record Emulation.)

The only difference between Option 4 and Option 3 is that the table should be cleaned before

use.

PL/SQL code

declare

 type emptable is table of integer;

 emps emptable;

 i integer;

 s1 numeric;

 s2 numeric;

begin

 select empno bulk collect into emps

 from Emp;

 for i in emps.first+1..emps.last - 1 loop

 select sal into s1 from scott.emp where empno = emps(i - 1);

 select sal into s2 from scott.emp where empno = emps(i+1);

 update emp set sal=(s1+s2)/2 where EmpNo=emps(i);

 end loop;

end;

Transact-SQL code

Create a table for collection emulation:

create table emps_t(SPID smallint not null default @@SPID,_idx_ int not

null,empno int null)

go

create clustered index cl on emps_t(SPID,_idx_)

go

create view emps

as select _idx_,empno from emps_t where spid = @@sp id

go

The converted code:

delete emps

insert into emps(_idx_,empno) select row_number() over(order by empno),empno

from emp

declare @first int,@last int,@i int,@s1 money,@s2 money

select top 1 @first=_idx_ from emps order by _idx_ asc

select top 1 @last =_idx_ from emps order by _idx_ desc

set @i = @first+1

while @i < @last - 1 begin

 select @s1 = sal from emp where empno = (select empno from emps where

idx=@i - 1)

 select @s2 = sal from emp where empno = (select empno from emps where

idx=@i+1)

 update em p set sal = (@s1+@s2)/2 where empno = (select empno from emps where

idx=@i)

 set @i = @i +1

end

Be aware that, unlike table variables, permanent tables are transaction-dependent, which may

lead to unwanted lock contention. Pay attention when using this option; you cannot avoid using

a row_number() function.

Implementing Records

Usually you use records to simplify your PL/SQL code.

For example, instead of writing:

declare

 empno number(4);

 ename varchar(10);

 job varchar(9);

 mgr number(4);

 hiredate date;

 sal number(7,2);

 comm number(7,2);

 deptno number(2);

begin

 select * into empno,e name,job,mgr,hiredate,sal,comm,deptno from scott.emp

where empno = 7369;

 dbms_output.put_line(ename);

end;

You could write simple and clear code:

declare

 emps scott.emp%rowtype;

begin

 select * into emps from scott.emp where empno = 7369;

 dbms_outpu t.put_line(emps.ename);

end;

Unfortunately, SQL Server doesn’t support records. The default SSMA for Oracle V6.0

approach is to split the record into a group of the constituting variables.

To do that, declare a separate variable for each column as in the following code:

declare @empno int,@ename varchar(10),@job varchar(9),@mgr int,@hiredate

datetime,@sal numeric(7,2),@comm numeric(7,2),@deptno int

select @empno=empno, @ename=ename, @job=job, @mgr=mgr, @hiredate=hiredate,

@sal=sal, @comm=comm, @deptno=de ptno

from emp where empno = 7369

print @ename

The situation is the same situation passing records into procedures or functions; you should

pass variables one by one into a procedure.

PL/SQL code

declare

 emps scott.emp%rowtype;

begin

 select * into e mps from scott.emp where empno = 7369;

 raise_emp_salary(emps);

end;

Transact-SQL code

declare @empno int,@ename varchar(10),@job varchar(9),@mgr int,@hiredate

datetime,@sal numeric(7,2),@comm numeric(7,2),@deptno int

select @empno=empno, @ename=ename, @job=job, @mgr=mgr, @hiredate=hiredate,

@sal=sal, @comm=comm, @deptno=deptno

from emp where empno = 7369

exec raise_emp_salary @empno,@ename,@job,@mgr,@hiredate,@sal,@comm,@deptno

Implementing Records and Collections via XML

The most universal but most complex way to emulate collections or records is emulation via

XML. With XML implementation, you can store records and collections in a database (for

example, in an XML field in a table), and pass records and collections into stored procedures

and user-defined functions. However, take into account that manipulation with XML (especially

modifying) is relatively slow.

Implementing Records

For complex cases you can emulate records via XML. For example, you could emulate

scott.emp%rowtype with the following XML structure:

<row>

 <f_name>DEPTNO</f_name>

 <_val>20</_val>

</row>

<row>

 <f_name>SAL</f_name>

 <_val>800</_val>

</row>

<row>

 <f_name>HIREDATE</f_name>

 <_val>Dec 17 1980 12:00:00:000AM</_val>

</row>

<row>

 <f_name>MGR</f_name>

 <_val>7902</_val>

</row>

<row>

 <f_name>JOB</f_name>

 <_val>CLERK</_val>

</row>

<row>

 <f_name>ENAME</f_name>

 <_val>SMITH</_val>

</row>

<row>

 <f_name>EMPNO</f_name>

 <_val>7369</_val>

</row>

To work with such a structure you need additional supplemental procedures and functions to

simplify access to the data. (Examples of the modules provided by SSMA are at the end of this

section.)

Now you can rewrite your sample:

DECLARE

 CURSOR emp_cursor IS

 SELECT empno, ename FROM scott.emp;

 emps emp_curso r%rowtype;

BEGIN

 open emp_cursor;

 loop

 fetch emp_cursor into emps;

 exit when emp_cursor%notfound;

 raise_emp_salary(emp_rec);

 end loop;

 close emp_cursor;

END;

As the following Transact-SQL code:

DECLARE @emps xml,@emps$empno int,@emps$e name varchar(max)

DECLARE emp_cursor CURSOR LOCAL FOR

SELECT EMP.EMPNO, EMP.ENAME

FROM dbo.EMP

OPEN emp_cursor

FETCH next from emp_cursor INTO @emps$empno, @emps$ename

WHILE @@fetch_status = 0 begin

 SET @emps = ssma_oracle.SetRecord_varchar(@emps, N'ENAME',

@emps$ename)

 SET @emps = ssma_oracle.SetRecord_float(@emps, N'EMPNO',

@emps$empno)

 EXECUTE raise_emp_salary @emps

FETCH next from emp_cursor INTO @emps$empno, @emps$ename

END

CLOSE emp_cursor

DEALLOCATE emp_cursor

The code here is slightly different from SSMA-generated code. It shows only basic techniques

for working with XML records. (You fetch data from a cursor into separate variables, and then

you construct from it and an XML record.)

To extract data back from XML you could use an appropriate function such as:

set @ename = ssma_oracle.GetRecord_varchar(@emps, N'ENAME')

Implementing Collections

PL/SQL code

DECLARE

 TYPE Colors IS TABLE OF VARCHAR2(16);

 rainbow Colo rs;

BEGIN

 rainbow := Colors('Red', 'Yellow');

END;

Transact-SQL code, collection

DECLARE @rainbow XML

SET @rainbow = '<coll_row _idx_="1">

 <row> <_val>Red</_val> </row>

 </coll_row>

 <coll_row _idx_="2">

 <row> <_val>Yellow</_val> </row>

 </coll_row>'

Transact-SQL code, collection of records

DECLARE @x XML

SET @x =

'<coll_row _idx_="1">

<row>

 <f_name>record_field_1</f_name>

 <_val>value_1</_val>

 </row>

</coll_row>

<coll_row _idx_="2">

 <row>

 <f_name>record_field_2</f_name>

 <_val>value_2</_val>

 </row>

</coll_row>

'

After these declarations you can modify a collection, record, or collection of records by using

XQuery. You may find it useful to write wrapper functions to work with XML, such as GET and

SET functions.

Sample Functions for XML Record Emulation

Transact-SQL GET wrapper function for the varchar data type

CREATE FUNCTION GetRecord_Varchar

 (@x XML, @column_name varchar(128)) RETURNS varchar(MAX)

BEGIN

 DECLARE @v_x_value varchar(MAX)

 SELECT TOP 1 @v_x_value = T.c.value('(_val)[1]', 'varchar(MAX)')

 FROM @x.nodes('/row') T(c) WHERE T.c.value('(f_name)[1]', 'varchar(128)')

= @column_name

 return(@v_x_value)

END

Transact-SQL SET wrapper function for the varchar data type

CREATE FUNCTION SetRecord_Varchar (

 @x XML, @column_name varchar(128), @v varchar(max))

 RETURNS XML

 AS

 BEGIN

 IF @x IS NULL SET @x = ''

 IF @x.exist('(/row/f_name[.=sql:variable("@column_name")])[1]') = 1

 BEGIN

 if @v is not null

 BEGIN

 SET @x.modify('delete

 (/row[f_name=sql:variable("@column_name")])[1]

 ')

 SET @x.modify('insert (<row>

<f_name>{sql:variable("@column_name")} </f_name>

 <_val>{sql:variable("@v")}</_val>

</row>)

 into (/)[1] ')

 END

 else

 SET @x.modify('delete

 (/row[f_name=sql:variable("@column_nam e")]

 /_val[1])[1]

 ')

 END

 ELSE

 if @v is not null

 SET @x.modify('insert (<row>

<f_name>{sql:variable("@column_name")}</f_name>

 <_val> {sql:variable("@v")}</_val>

</row>)

 into (/)[1] ')

 RETURN(@x)

 END;

A sample call

DECLARE

 @x xml

SET @x = dbo.SetRecord_varchar(@x, N'RECORD_FIELD_1', 'value_1')

SET @x = dbo.SetRecord_varchar(@x, N'RECORD_FIELD_2', 'value_2')

PRINT dbo.GetRecord_varchar(@x, N'RECORD_FIELD_2')

For more information, see XQuery Functions against the xml Data Type

(http://msdn.microsoft.com/en-us/library/ms189254.aspx) in SQL Server Books Online.

Emulating Records and Collections via CLR UDT

The emulation method chosen in SSMA for Oracle V6.0 uses SQL CLR user-defined types

(UDT). This method is more efficient than the emulation by XML, and generally it does not lead

to code bloat, which can happen with solutions based on table variables or on temporary tables.

Nevertheless, this solution is not based on SQL Server native mechanisms, and in some cases,

you can find the emulation by tables quicker and more convenient. Note also that this solution

includes creation of assemblies in the target database, which could create problems during

deployment and during maintenance of the system after the migration.

Declaring Record or Collection Types

SSMA creates three CLR-based UDTs:

¶ CollectionIndexInt

¶ CollectionIndexString

¶ Record

The CollectionIndexInt type is intended for simulating collections indexed by integer, such as

VARRAYs, nested tables and integer key based associative arrays. The CollectionIndexString

type is used for associative arrays based indexed by character keys. Oracle record functionality

is emulated by the Record type.

All declarations of record or collection types are converted to this Transact-SQL declaration:

declare @Collection$TYPE varchar(max) = ô<type definition>ô

Here <type definition> is a descriptive text uniquely identifying the source PL/SQL type. For

example:

http://msdn.microsoft.com/en-us/library/ms189254.aspx
http://msdn.microsoft.com/en-us/library/ms189254.aspx

Oracle

TYPE animal IS RECORD (id integer, name varchar2(40), canFly integer);

TYPE animals is TABLE OF animal INDEX BY PLS_INTEGER;

SQL Server

DECLARE

@Record$TYPE varchar(max) = 'RECORD (ID INT , NAME STRING , CANFLY INT)',

@CollectionIndexInt$TYPE varchar(max) = 'TABLE INDEX BY INT OF (' +

@Record$TYPE + ')'

Declaring Record or Collection Variables

Each of the types CollectionIndexInt, CollectionIndexString, and Record has a static property

[Null] returning an empty instance. Method SetType is called to receive an empty object of a

specific type. For example, the conversion of a TABLE OF declaration will look like this.

Oracle

declare

TYPE <type_name> TABLE OF <element_type> INDEX BY [PLS_INTEGER |

BINARY_INTEGER];

<var_name> <type_name>;

SQL Server

DECLARE

@CollectionIndexInt$TYPE varchar(max) = 'TABLE INDEX BY INT OF

<element_type>'

DECLARE

@<var_name> dbo.CollectionIndexInt = = dbo.CollectionIndexInt

::[Null].SetType(@CollectionIndexInt$TYPE)

Converting Constructor Calls

Constructor notation can be used only for nested tables and VARRAYs, so all the explicit

constructor calls are converted using the CollectionIndexInt type. Empty constructor calls are

converted via SetType call invoked on null instance of CollectionIndexInt. The [Null] property

returns the null instance. If the constructor contains a list of elements, special method calls are

applied sequentially to add the value to the collection.

Oracle

DECLARE

 TYPE nested_type IS TABLE OF VARCHAR2(20);

 TYPE varray_type IS VARRAY(5) OF INTEGER;

 v1 nested_type;

 v2 varray_type;

BEGIN

 v1 := nested_type('Arbitrary','number','of','strings');

 v2 := varray_type(10, 20, 40, 80, 160);

END;

SQL Server

DECLARE

 @CollectionIndexInt$TYPE varchar(max) = ' TABLE OF STRING',

 @CollectionIndexInt$TYPE$2 varchar(max) = ' VARRAY OF INT',

 @v1 dbo.CollectionIndexInt,

 @v2 dbo.CollectionIndexInt

 SET @v1 = dbo.CollectionIndexInt

::[Null].SetType(@CollectionIndexInt$TYPE).AddString('Arbitrary').AddString('

number').AddString('of').AddString('strings')

 SET @v2 = dbo.Collection IndexInt

::[Null].SetType(@CollectionIndexInt$TYPE$2).AddInt(10).AddInt(20).AddInt(40)

.AddInt(80).AddInt(160)

Referencing and Assigning Record and Collection Elements

Each of the UDTs has a set of methods working with elements of various data types. For

example, the SetDouble method assigns a float(53) value to record or collection, and

GetDouble can read this value. The complete list of methods is here:

GetCollectionIndexInt(@key <KeyType>) returns CollectionIndexInt;

SetCollectionIndexInt(@key <KeyType>, @value CollectionIndexInt) returns

<UDT_type>;

GetCollectionIndexString(@key <KeyType>) returns CollectionIndexString;

SetCollectionIndexString(@key <KeyType>, @value CollectionIndexString)

returns <UDT_type>;

Record GetRecord(@key <KeyType>) returns Reco rd;

SetRecord(@key <KeyType>, @value Record) returns <UDT_type>;

GetString(@key <KeyType>) returns nvarchar(max);

SetString(@key <KeyType>, @value nvarchar(max)) returns nvarchar(max);

GetDouble(@key <KeyType>) returns float(53);

SetDouble(@key <KeyType>, @value float(53)) returns <UDT_type>;

GetDatetime(@key <KeyType>) returns datetime;

SetDatetime(@key <KeyType>, @value datetime) returns <UDT_type>;

GetVarbinary(@key <KeyType>) returns varbinary(max);

SetVarbinary(@key <KeyType>, @value varbinary(max)) re turns <UDT_type>;

SqlDecimal GetDecimal(@key <KeyType>);

SetDecimal(@key <KeyType>, @value numeric) returns <UDT_type>;

GetXml(@key <KeyType>) returns xml;

SetXml(@key <KeyType>, @value xml) retu r ns <UDT_type>;

GetInt(@key <KeyType>) returns bigint;

SetInt(@key <KeyType>, @value bigint) returns <UDT_type>;

These methods are used when referencing or assigning a value to an element of a

collection/record.

Oracle

a_collection(i) := ôVALUEô;

SQL Server

SET @a_collection = @a_collection.SetString(@i, ôVALUEô);

When converting assignment statements for multidimensional collections or collections with

record elements, SSMA adds the following methods to refer to a parent element inside the set

method:

GetOrCreateCollectionIndexInt(@key <KeyType>) returns CollectionIndexInt;

GetOrCreateCollectionIndexString(@key <KeyType>) returns

CollectionIndexString;

GetOrCreateRecord(@key <KeyType>) returns Record;

For example, a collection of record elements is created this way:

Oracle

declare

TYPE rec_details IS R ECORD (id int,name varchar2(20));

type ntb1 is table of rec_details index by binary_integer;

c ntb1;

begin

c(1).id := 1;

end;

SQL Server

DECLARE

 @CollectionIndexInt$TYPE varchar(max) = ' TABLE INDEX BY INT OF (RECORD (

ID INT , NAME STRING))',

 @c dbo.CollectionIndexInt = dbo.CollectionIndexInt

::[Null].SetType(@CollectionIndexInt$TYPE)

SET @c = @c.SetRecord(1, @c.GetOrCreateRecord(1).SetInt(N'ID', 1))

Collection Built-in Methods

SSMA uses the following UDT methods to emulate built-in methods of PL/SQL collections.

Oracle collection
methods

CollectionIndexInt and CollectionIndexString
equivalent

COUNT Count returns int

DELETE RemoveAll() returns <UDT_type>

DELETE(n) Remove(@index int) returns <UDT_type>

DELETE(m,n) RemoveRange(@indexFrom int, @indexTo int) returns
<UDT_type>

EXISTS ContainsElement(@index int) returns bit

EXTEND Extend() returns <UDT_type>

EXTEND(n) Extend() returns <UDT_type>

EXTEND(n,i) ExtendDefault(@count int, @def int) returns <UDT_type>

FIRST First() returns int

LAST Last() returns int

LIMIT N/A

PRIOR Prior(@current int) returns int

NEXT Next(@current int) returns int

TRIM Trim() returns <UDT_type>

TRIM(n) TrimN(@count int) returns <UDT_type>

BULK COLLECT operation

SSMA converts BULK COLLECT INTO statements into SQL Server SELECT … FOR XML

PATH statement, whose result is wrapped into one of the following functions:

ssma_oracle.fn_bulk_collect2CollectionSimple

ssma_oracle.fn_bulk_collect2CollectionComplex

The choice depends on the type of the target object. These functions return XML values that

can be parsed by CollectionIndexInt, CollectionIndexString and Record types. A special

AssignData function assigns XML-based collection to the UDT.

SSMA recognizes three kinds of BULK COLLECT INTO statements:

1. The collection contains elements with scalar types, and the SELECT list contains one

column:

Oracle

SELECT column_name_1

 BULK COLLECT INTO <co l lection_name_1> FROM <data_source>

SQL Server

SET @<col l ection_name_1> =

@<col lection_name_1>.AssignData (ssma_oracle.fn_bulk_

collect2CollectionSimple((select column_name_1 from <data_source> for

xml path)))

2. The collection contains elements with record types, and the SELECT list contains one

column:

Oracle

SELECT column_name_1[, column_name_2...]

 BULK COLLECT INTO <co l lection_name_1> FROM <data_source>

SQL Server

SET @<col l ection_name_1> =

@<col l ection_name_1>.AssignData(ssma_oracle.fn_bulk_

collect2CollectionComplex((select column_name_1 as

[col l ection_name_1_element_field_name_1], column_name_2 as

[col l ection_name_1_element_field_name_2] from <data_source> for xml

path)))

3. The collection contains elements with scalar type, and the SELECT list contains multiple

columns:

Oracle

SELECT column_name_ 1[, column_name_2 ...]

 BULK COLLECT INTO <col l ection_name_1>[, <col l ection_name_2> ...]

 FROM <data_source>

SQL Server:

;with bulkC as (select column_name_1

[col l ection_name_1_element_field_name_1], column_name_2

[col l ection_name_1_element_field_name_2] from <data_source>)

select @<col l ection_name_1> =

@<col l ection_name_1>.AssignData(ssma_oracle.fn_bulk_

collect2CollectionSimple((select

[col l ection_name_1_element_field_name_1] from bulkC for xml path))),

@<col l ection_na me_2> =

@<col l ection_name_2>.AssignData(ssma_oracle.fn_bulk_

collect2CollectionSimple ((select

[col l ection_name_1_element_field_name_2] from bulkC for xml path)))

SELECT INTO Record

When the result of Oracle query is saved in a PL/SQL record variable, you have two options,

depending on the SSMA setting for Convert record as a list of separated variables. If the

value of this setting is Yes (the default), SSMA does not create an instance of Record type.

Instead, it splits the record into the constituting fields by creating a separate Transact-SQL

variable per each record field. If the setting is No, the record is instantiated and each field is

assigned a value using Set methods.

SSMA Records and Collections Migration to Azure SQL DB

Azure SQL DB doesn’t support CLR. So SSMA doesn’t use CLR emulations for collections and

records in this case. Instead, it uses XML emulation for Azure SQL DB.

There are a set of predefined functions created in ssma_oracle schema of the converted

database by SSMA. Their names look like SetCollection_ <datatype> and

GetCollection_ <datatype > and they emulate working with collections and records using

XML.

Below is an example of SSMA conversion of collections and records to Azure SQL DB:

Oracle

declare

 TYPE intTab IS TABLE OF int index by int;

 v_tab intTab ;

 TYPE intTabStr IS TABLE OF int index by varchar2(100);

 v_tab2 intTabStr ;

 TYPE timeRec IS Record (hh int, mm int, ss int);

 v_rec timeRec ;

 v int;

BEGIN

 v_tab(17) := 1;

 v_tab(25) := 2;

 v := v_tab(17);

 v_tab2('17') := 1;

 v_tab2('25') := 2;

 v := v_tab2('17');

 v_rec.hh := 18;

 v_rec.mm := 10;

 v_rec.ss := 20;

 v := v_rec.mm;

END;

Azure SQL DB

BEGIN

 DECLARE

 @v_tab xml,

 @v_tab2 xml

 DECLARE

 @v_rec$hh int,

 @v_rec$mm int,

 @v_rec$ss int,

 @v int

 SET @v_tab = ssma_oracle.SetCollection_int(@v_tab, 17, 1)

 SET @v_tab = ssma_oracle.SetCollection_int(@v_tab, 25, 2)

 SET @v = ssma_oracle.GetCollection_int (@v_tab, 17)

 SET @v_tab2 = ssma_oracle.SetCollection_int_varchar(@v_tab2, '17', 1)

 SET @v_tab2 = ssma_oracle.SetCollection_int_varchar(@v_tab2, '25', 2)

 SET @v = ssma_oracle.GetCollection_int_varchar(@v_tab2, '17')

 SET @v_rec$hh = 18

 SET @v_rec$mm = 10

 SET @v_rec$ss = 20

 SET @v = @v_rec$mm

END

GO

Migrating Tables to Memory-Optimized Tables
SQL Server 2014 introduced In-Memory OLTP database concept which improves OLTP

database performance. The In-Memory OLTP feature includes memory-optimized tables, table

types and native compilation of stored procedures for efficient access to these tables.

Memory-optimized tables is an advanced technology of table storage that provides high speed

of data access due to holding data in memory. Memory-optimized tables is are based on special

OLTP engine (together with In-Memory Precompiled procedures).

The increased speed of memory-optimized tables processing allows to reproduce processing of

Oracle tables build on hash cluster index.

AS memory-optimized tables reside in memory, rows in the table are read from and written to

memory. A second copy of the table data is maintained on disk, but only for durability purposes.

Each row in the table potentially has multiple versions. This row versioning is used to allow

concurrent reads and writes on the same row.

SSMA allows migrating Oracle tables to memory-optimized tables in SQL Server. For Tables

node in Oracle Metadata Explorer there is In Memory tab on the right pane of SSMA window. It

allows checking the tables you want to migrate to memory-optimized ones (see Figure 5).

Another way to check a table for conversion to memory-optimized tables is clicking on the table

name under Tables node in Oracle Metadata Explorer and check Convert to memory

optimized table check box on In Memory tab on the right pane of SSMA window.

DDL syntax for creating memory-optimized table is as follows:

CREATE TABLE database_name.schema_name.table_name

(

 column_name data_type

 [COLLATE collation_name] [NOT] NULL

 [DEFAULT constant_expression]

 [IDENTITY]

 [PRIMARY KEY NONCLUSTERED [HASH WITH (BUCKET_COUNT = bucket_count)]]

 [INDEX index_name

 [NONCLUSTERED [HASH WITH (BUCKET_COUNT = bucket_count)]]]

 [, é]

 [PRIMARY KEY

 {

 NONCLUSTERED HASH (column [, é]) WITH (BUCKET_COUNT = bucket_count) |

 NONCLUSTERED (column [ASC|DESC] [, é]) }

 }]

 [INDEX index_name

 {

 NONCLUSTERED HASH (column [, é]) WITH (BUCKET_COUNT = bucket_count) |

 NONCLUSTERED (column [ASC|DESC] [, é]) }

 }] [, é]

)

WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);

Figure 5: The In Memory tab for Tables node

Below is an example of Oracle table converted to memory-optimized one by SSMA:

Oracle

CREATE TABLE PROD.PRODUCTS

(

 PROD_ID NUMBER(38, 0) NOT NULL,

 PROD_NAME VARCHAR2(50)

);

ALTER TABLE PROD.PRODUCTS ADD CONSTRAINT PK_PROD

 PRIMARY KEY (PROD_ID);

SQL Server

CREATE TABLE [dbo].[PRODUCTS]

(

 [PROD_ID] numeric(38, 0) NOT NULL,

 /*

 * SSMA warning messages:

 * O2SS0499: Column type VARCHAR(50): [VARCHAR] is changed to

NVARCHAR(50): [NVARCHAR] because of Memory - optimized table columns of types

CHAR or VARCHAR support 1252 codepage only

 */

 [PROD_NAME] nvarchar(50) NULL,

 PRIMARY KEY NONCLUSTERED

 (

 [PROD_ID] ASC

)

) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA)

GO

Restrinctions for conversion to memory-optimized tables

There are some restrictions for creating memory-optimized tables that shouls be taken into

account.

When converting an Oracle table that uses sequence to SQL Server table using IDENTITY

property, it must be created only with SEED equal to 1 and INCREMENT equal to 1. If this

condition is not met, SSMA generates a warning message likr this: “Cannot create identity with

seed 1000 and increment 5 for Memory optimized table. Allowed only Identity(1,1)”. There are

two ways to solve this issue.

First one is to convert the table with IDENTITY (1, 1) and add a corresponding seed to the

identity column value and multiplying this value into the corresponding increment. For example,

if Oracle sequence has seed value equal to 10 and increment value equal to 2:

SQL Server

CREATE TABLE imt(

id INT NOT NULL IDENTITY(1,1) PRIMARY KEY NONCLUSTERED,

name VARCHAR(50) NOT NULL)

WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA)

SELECT 10 + (id ï 1) * 2

FROM imt;

The second way is to use SQL Server SEQUENCE objects instead of IDENTITY property when

inserting new records:

SQL Server

CREATE TABLE imt(

id INT NOT NULL PRIMARY KEY NONCLUSTERED,

name VARCHAR(50) NOT NULL)

WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);

GO

CREATE SEQUENCE imt_seq AS INT START WITH 10 INCREMENT BY 2

GO

INSERT INTO imt(id, name)

SELECT NEXT VALUE FOR imt_seq, 'New Name ';

The next restriction is that uniqueidentifier column default is not supported for memory-

optimized tables. Besides, column defaults support only constant expressions. SSMA issues

warning about that and removes the column default. A workarownd for this can be defining the

column that uses uniqueidentifier default as varchar column that can contain at least 36

characters (this is the length of uniqueidentifier value in SQL Server). Insert the value to this

column explicitly every time when inserts to the table are performed:

Oracle

CREATE TABLE IMT

(

 ID RAW(32) DEFAULT sys_guid(),

 NAME VARCHAR2(50)

);

SQL Server

CREATE TABLE [dbo]. [IMT]

(

 [ID] var char (3 6) NULL,

 [NAME] nvarchar(50) NULL,

 [PKCol] int IDENTITY(1, 1) NOT NULL,

 PRIMARY KEY NONCLUSTERED

 (

 [PKCol] ASC

)

) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA)

GO

Some data types are not supported by memory-optimized tables.

When Oracle table contains a column of TIMESTAMP WITH TIME ZONE data type, SSMA

converts it to DATETIMEOFFSET data type in case of migration to ordinary table. But when

migrating to memory-optimized table, SSMA issues a warning about changing a data type and

changes DATETIMEOFFSET to DATETIME because of Memory-optimized table columns of

types DATETIMEOFFSET are not allowed.

The same is with LOB Oracle datatypes. Memory-optimized table columns do not support long

types. SSMA issues warning about that and changes VARCHAR(max), NVARCHAR(max) and

VARBINARY(max) to VARBINARY(8000).

SSMA also changes CHAR and VARCHAR columns to NCHAR and NVARCHAR

correspondingly as columns in memory-optimized tables with data types CHAR and VARCHAR

must use code page 1252 (Latin*) only.

Calculated column are also not supported by in memory-optimized tables. You can rewrite your

code so that it inserts the calculated values later every time inserts into the table are performed.

Memory-optimized tables also require that a PRIMARY KEY constraint exists on the table. I no

unique columns exist on the table, SSMA creates an extra unique column. PRIMARY KEY is

created as NONCLUSTERED only.

FOREIGN KEY, UNIQUE constraints, UNIQUE indexes and triggers are also not supported by

memory-optimized tables. SSMA removes them from the table definition and generates a

warning about this. Also SSMA removes ASC and DESC modifiers from an index definition in

order to meet memory-optimized tables requirements.

Conversion to memory-optimized tables is not supported on Azure SQL DB.

Conclusion
This migration guide covers the differences between Oracle and SQL Server 2014 database

platforms, and it includes the steps necessary to convert an Oracle database to SQL Server. It

explains the algorithms that SSMA for Oracle uses to perform this conversion so that you can

better understand the processes that are executed when you run the SSMA Convert Schema

and Migrate Data commands. For those cases when SSMA does not handle a particular

migration issue, approaches to manual conversion are included.

About DB Best Technologies

DB Best Technologies is a leading provider of database and application migration services and

custom software development. We have been focused on heterogeneous database

environments (SQL Server, Oracle, Sybase, DB2, MySQL) since starting at 2002 in Silicon

Valley. Today, with over 140 employees in the United States and Europe, we develop database

tools and provide services to customers worldwide.

DB Best developed migration tools to automate conversion between SQL dialects. In 2005

Microsoft acquired this technology, which later became a family of SQL Server Migration

Assistant (SSMA) products. We continue to develop new versions of SSMA, and support

Microsoft customers who are migrating to SQL Server.

We also provide migration services covering all major steps of a typical migration project:

complexity assessment, schema conversion, data migration, application conversion, testing,

integration, deployment, performance tuning, training, and support.

For more details, visit us at http://www.dbbest.com, e-mail us at info@dbbest.com, or call 1-855-

855-3600.

For more information:

http://www.microsoft.com/sqlserver/: SQL Server Web site

http://technet.microsoft.com/en-us/sqlserver/: SQL Server TechCenter

http://msdn.microsoft.com/en-us/sqlserver/: SQL Server DevCenter

Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to 5

(excellent), how would you rate this paper and why have you given it this rating? For example:

¶ Are you rating it high due to having good examples, excellent screenshots, clear writing,

or another reason?

¶ Are you rating it low due to poor examples, fuzzy screenshots, unclear writing?

This feedback will help us improve the quality of the white papers we release.

http://www.dbbest.com/
mailto:info@dbbest.com
http://www.microsoft.com/sqlserver/
http://technet.microsoft.com/en-us/sqlserver/
http://msdn.microsoft.com/en-us/sqlserver/

Send feedback.

mailto:sqlfback@microsoft.com?subject=White%20Paper%20Feedback:%20Guide%20to%20Migrating%20from%20Oracle%20to%20SQL%20Server%202014

