

89 Fifth Avenue, 7th Floor
New York, NY 10003
www.TheEdison.com

212.367.7400

White Paper

Microsoft Security Development
Lifecycle Adoption: Why and How

September 2013

Printed in the United States of America
Copyright  2013 Edison Group, Inc. New York. Edison Group offers no warranty either expressed or
implied on the information contained herein and shall be held harmless for errors resulting from its use.

All products are trademarks of their respective owners.
First Publication: September 2013
Produced by: Glenn Graham, Senior Analyst; Barry Cohen, Editor-in-Chief; Manny Frishberg, Editor

Table of Contents

Executive Summary ... 1

Introduction .. 3

Objective ... 3

Audience .. 4

Why use SDL in Financial Services Software Development? ... 5

Application Security ... 5

Standards Compliance ... 6

How to Implement SDL .. 7

Education ... 7

Customization ... 7

Tools and Infrastructure... 7

Training .. 8

Do It! ... 8

Measurements ... 8

Review .. 8

Enhancing a Successful SDL Integration .. 9

Case Study #1: SDL in a Microsoft Development Environment 10

Case Study #2: SDL in an Open Source Development Environment 11

Adopters Best Practices ... 12

Lessons Learned ... 13

How to Get Started with SDL Integration .. 14

Conclusion ... 15

Appendix A – Security Development Lifecycle Overview ... 16

Security Development Lifecycle Overview ... 16

Appendix B – ISO/IEC 27034-1 .. 27

ISO/IEC 27034-1 Information technology — Security techniques — Application
security (part 1 published, parts 2, 5 and 6 in DRAFT, parts 3 & 4 no text available) .. 27

ISO/IEC 27034-1:2011 — Information technology — Security techniques —
Application security — Overview and concepts .. 27

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 1

Executive Summary

This white paper reviews how members of the financial services industry are using the
Microsoft SDL (Security Development Lifecycle). Specifically it shows how members of
BITS, the Technology Policy Division of the Financial Services Roundtable, have learned
and benefited from the Microsoft SDL and are using the BITS Software Assurance
Framework, both of which help to meet or exceed the guidance in ISO/IEC 27034-1
Standard.

This paper was developed following in-depth interviews with participants representing
some of the leading banks and financial services companies in the United States. Their
chosen architectures included both Microsoft-centric and open source. The adoption
maturity ranged from highly refined through years of implementation, to a brand new
adopter about to begin integrating the SDL into their organization. While we don’t show
explicit quotations, all the information in the case studies is directly from the interview
content.

The quantitative and qualitative benefits of using the Microsoft SDL range from reduced
development costs and time, to more secure applications that leverage the critical
training and knowledge across the entire development organization. No longer is it
necessary to teach each developer the entire realm of knowledge to be able to manually
develop secure applications. Also, it reduces the need to depend on each programmer to
purposely program using secure coding practices. Instead, the infrastructure and the
overall development system enforces secure coding through the development
methodology and confirms it through both manual and automated testing. This assures
corporate management and customers that the applications are secure, and also that new
threats are dealt with and resolved quickly.

Not only is the SDL integrated into a company’s internal development lifecycle, but it
should also be applied to all software applications that are used by the company, no
matter the development source. The SDL is a framework for the entire development
process. Companies should require the use of an SDL which meets or exceeds the
guidance in ISO/IEC 27034-1. This will help to ensure that all software used by the
organization is developed securely, and provides a common language for discussing
secure development practices.

By using the SDL’s processes, having a team approach to developers’ skill and
knowledge integration, and an ongoing training plan, an organization can achieve a
level of application security that would not otherwise be possible with the same
resources. The SDL is all about process and framework that must be incorporated into

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 2

your overall Software Development Life Cycle (SDLC). The SDL is a “force multiplier”
in that it increases the benefits of adopting best practices. However, the SDL is not an
objective in itself, but an ongoing process of continuous achievement.

The BITS organization addresses issues at the intersection of financial services,
technology and public policy, where industry cooperation serves the public good, such
as critical infrastructure protection, fraud prevention, and the safety of financial services.
BITS is the technology policy division of The Financial Services Roundtable, which
represents 100 of the largest integrated financial services companies providing banking,
insurance, and investment products and services to the American consumer.

If you are interested in joining the BITS organization of the Financial Services
Roundtable to facilitate with many companies who have also implemented the Microsoft
SDL and the Software Assurance Framework, please find more information at
http://www.bits.org/about/membership.php.

http://www.bits.org/about/membership.php�

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 3

Introduction

Objective
The goal of this white paper is to show the usage of Microsoft Security Development
Lifecycle (SDL) and how it has been integrated into the Software Design Life Cycle
(SDLC) of financial services companies. It describes the business benefits of using the
Microsoft SDL, along with adoption approaches and integration methods. Without
divulging competitive methods and sensitive information, we describe observations,
objectives and approaches used to implement SDL. We have provided two case studies–
one incorporating the Microsoft SDL into a Microsoft development environment, the
other applying the SDL into an open source development environment.

Since the SDL is a process for the entire development organization, this paper would be
an excellent introduction for all functions, from the executive sponsors to the entire
development organization. Many of the supporting documents mentioned in this paper
are dozens of pages long and highly technical. We have tried to make this paper as
understandable to the non-technical businessperson as to the developer.

Due to the need to keep interviewees confidential, a general description of the generic
types of financial institutions who participated in this survey is provided below. But this
description should allow adoption candidates to see that organizations similar to their
own in the financial services sector have found value from implementing Microsoft’s
Security Development Lifecycle.

The survey participants in the interviews for this paper represent some of the leading
banks and financial services companies in the country. Their chosen architectures
included both Microsoft-centric and open source. And the adoption maturity ranged
from highly refined through years of implementation, to a brand new adopter about to
begin integrating the SDL into their organization. While we don’t show explicit
quotations, all the information in the case studies is directly from the interview content.

In several cases, the leaders of the SDL implementation had multiple successes with
more than one company. And while they were repeat implementers, they still began
each company’s implementation process with an educational refresher for themselves.

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 4

Audience
This report is for IT and development executives, and IT security officers at financial
services organizations, who make acquisition and development decisions, whether
development is in-house or outsourced, or applications, are purchased and customized.

This paper is intended to be of value whether you are a veteran adopter of the SDL or a
first time implementer. Using the SDL can confirm your accomplishments and help you
to move toward greater benefits. For someone just beginning the process, this paper
provides a road map to getting started, drawing on the experiences of those who have
already traveled the same path.

As an additional valuable reference, the BITS Software Assurance paper may be
obtained at the following URL:
http://www.bits.org/publications/security/BITSSoftwareAssurance0112.pdf.

http://www.bits.org/publications/security/BITSSoftwareAssurance0112.pdf�

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 5

Why use SDL in Financial Services Software
Development?

The Security Development Lifecycle (SDL) is a security assurance process that is focused
on software development. Combining a holistic and practical approach, the SDL
introduces security and privacy throughout all phases of the development process to
reduce the number and severity of software vulnerabilities.

In the past, application development, and more specifically the coding associated with
software development, was a somewhat separate function; functional requirements were
presented to developers and a finished application was then turned out that satisfied
those business requirements. Today, it is much more complex and sophisticated for a
myriad of reasons. This increased complexity makes the need for a practical approach to
developing software in a secure manner even more necessary.

Application Security
Security in the financial services industry has obviously always been a great concern.
The industry deals with money and people’s personal and financial information. But, as
has become evident by the constantly changing ways of hackers, security risks are
pervasive throughout all software applications. In the beginning, malicious and
mischievous hackers would attack the primary financial institutions directly through
their core applications. Now, more and more hackers are getting in through the
individual user, often entering via non-related applications on an individual’s PC, smart
phone, PDA, Web-enabled TV, or other device. Once inside, they can masquerade as
that individual to enter the secure application through that user’s secure connection.
This creates many new challenges for developers of financial services applications, who
now have to continuously detect illicit activity, not just have a robust initial entry
authentication. Now, every module and every major function needs continuous
authentication and authorization.

Training costs, development efforts, testing, and support to get all developers to
manually inject this type of secure programming element into every bit of code they
write are prohibitive. A more effective approach has to be utilized. Over the last few
years, industry leaders in the financial services sector implementing security in their
applications have interwoven secure programming and development practices and
solutions throughout their Software Development Life Cycle (SDLC). A major element
of that is incorporating Microsoft’s SDL into their SDLC.

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 6

First, let’s examine some of the challenges that had to be solved to reasonably
incorporate a secure development methodology into the overall SDLC. Increasingly,
more sophisticated threats and the longtime standby threats are becoming more robust
as the Internet and computing horsepower increase. DDoS (Distributed Denial of
Service) attacks are still the most prevalent type, and although they can be mitigated to
help prevent permanent harm to data or any loss of confidential information, they still
block access to critical business systems and prevent customer interactions.

Standards Compliance
The SDL helps to support an organization’s conformance with standards such as
ISO/IEC 27034-1, which defines application security not as the state of security of an
application system but as “a process an organization can perform for applying controls
and measurements to its applications in order the manage the risk of using them.”
Appendix B contains an explanation of ISO/IEC 27034-1, including the section ISO/IEC
27034-1:2011, and information on where it can be obtained.

There are many different standards that an organization has to be in compliance with,
depending on their industry, and products or services. The Microsoft SDL contains
processes and steps which could help an organization achieve many of these standards.

Although many organizations sometimes like to try and do things internally, with no
outside help, there is no reason to approach SDL in that way. Many organizations have
already struggled through everything that you will face when implementing SDL for the
first time. In some cases, they have completely revamped their SDLC and can share all
their lessons learned with others. So, take advantage of what Microsoft, the BITS
organization, and individual adopters can provide as you move forward with a
successful implementation of SDL.

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 7

How to Implement SDL

Education
The first step in implementing SDL is education. That means learning what SDL is, how
it is utilized, and how it can be integrated into an organization’s SDLC. Those who are
now using SDL say that education was initially the key to doing anything constructive
with SDL. Whilst the SDL can frequently be overlaid on an organization’s existing SDLC
without any re-engineering required, in some cases, significant “clean-up” to the
organization’s overall SDLC had to occur because, while they may have had a defined
SDLC, it might have been outdated or not followed to the extent that enhancements to it
were directly reflected in the daily activities of the developers.

The “best of breed” implementers of the SDL first went to Microsoft directly (either by
utilizing the resource on the SDL website, or by engaging Microsoft Consulting Services)
and immersed the leader of their endeavor in the latest information about the SDL—for
the most accurate information, go to the source. Being a very large and experienced
software development organization, Microsoft is uniquely qualified to share this type of
knowledge. In most cases, improving some aspects of the internal SDLC was also
necessary to fully embrace the SDL. That means that the rigors of implementing the SDL
resulted in an overall improvement in the SDLC.

Customization
OK, let’s say it again. The Microsoft SDL is a process to apply to the Software
Development Life Cycle (SDLC). And this means taking the parts of the SDL that apply
to your particular development environment and products.

If you are not experienced at modifying your SDLC, or maybe do not really have one,
then you should seek out qualified professionals to assist you. Not having an
appropriate SDLC can be a recipe for disaster when trying to utilize the SDL. In fact an
insufficient SDLC causes problems in general, with or without incorporating the SDL
into your environment.

Tools and Infrastructure
As well as a suitable development environment, the project team can take advantage of
tools and guidance available on the Internet. Microsoft offers a variety of free-of-charge
tools and guidance to complement the various phases of the development lifecycle on
the SDL website at www.microsoft.com/security/sdl/adopt/tools.aspx.

http://www.microsoft.com/security/sdl/adopt/tools.aspx�

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 8

Training
Once you have decided how to integrate the SDL throughout your SDLC, you should
provide some training for the various roles and responsibilities in your organization.
While a general introduction session may be fine to familiarize everyone, specialized
classes for different functions should highlight the elements that apply to their particular
job functions or programming responsibilities.

Do not try to train your staff on every aspect of the SDL before having them begin to use
it. Whether by examples or real-life projects, people have to actually use it as the first
step toward it becoming a way of life.

Do It!
There is simply no substitute for doing it. All the training in the world never resulted in
a single line of code. Real development must occur using the newly defined SDLC
incorporating the SDL.

This also will show which aspects may have to be refined better for the needs of your
organization. If the developers are struggling to embrace the tenants of the SDL, then
you may have made it too complex, or improvements to the SDLC may be needed.

Measurements
How do you know if a process is working? Results must be measured. The SDLC needs
measurement procedures that can detect security issues in a given application, and
correlate between security issues in your application and the developers who wrote the
code that caused the problem. The SDL includes two activities which help to measure
the effectiveness of the process. The Final Security Review is performed just before the
software is released, and usually includes examining threat models, tools outputs, and
performance against the quality gates and bug bars defined during the project. After
release, a project post mortem is conducted to gather any insights or learning that were
uncovered during the project and this analysis is used to improve the process for the
next project.

Each company may have to come up with its own customized approach to determine
the developers’ productivity and quality, as there are different ways to look at these
metrics.

Review
Finally, once you have done all this and have measurement data compiled, you should
conduct formalized review sessions. By formalizing these sessions and using the results
to encourage self-improvement you are bringing the involved parties into a constructive
feedback loop.

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 9

Enhancing a Successful SDL Integration

Even after an organization has embraced SDL and integrated it into their SDLC, there
are still many things to do on an ongoing basis for additional benefit.

Microsoft has an SDL Optimization Model. In one dimension, it has the sequential step
flow of the SDL; in the opposite dimension, going across the flow, is a maturity model of
Basic, Standardized, Advanced and Dynamic levels. This illustrates that even after full
implementation of the SDL, there is room for significant improvement of how it is being
used. Some of that improvement requires feedback from existing projects. So, fully
implementing the SDL on the initial flow is impossible. Reviewing the results and
feedback of your SDL implementation obviously comes after you have completed at
least one project.

Basic

Standardized

Advanced

Dynamic

Figure 1: SDL Optimization Model with capability and maturity levels

In contrast to other software maturity models, the Microsoft SDL Optimization Model
focuses strictly on development process security improvements. It provides prescriptive,
actionable guidance on how to move from lower levels of process maturity to higher
levels, and avoids the “list of lists” approach of other optimization models.

Training, Policy, and Organizational Capabilities

Release and Response

Requirements and Design

Implementation

Verification

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 10

Case Study #1:
SDL in a Microsoft Development Environment

This first case study of implementing the SDL is in a Microsoft development
environment, where the primary Integrated Development Environment (IDE) is Visual
Studio and the target architectures are ASP.net, Java and C++ applications, primarily
using a SQL Server database. The application portfolio is comprised of a mix of custom
developed and modified packaged software. The experiences and scenario presented are
a compilation from multiple interviewees, but focuses on the most experienced
implementers.

Having done multiple SDL adoptions, and with years of software development
experience, they have achieved a more refined and successful result in their most recent
implementation. Each line of business has its own SDLC, with SDL integrated into it.
The objective is not to force all lines of business to have an identical SDLC, but rather to
fully integrate SDL into their SDLC.

Not all developers are programming with the latest languages and environments;
COBOL, FORTRAN and other legacy applications are still being maintained. Also, new
developers are constantly joining the organization, and usually have not been trained in
an SDL-integrated SDLC. Therefore, there is a vigorous ongoing training program.

The results of testing are mapped to each individual developer. This enables training
each developer so they understand how their coding was deficient and caused security
flaws. If the developer continues to make the same errors time and again, after being
informed of their defects, and how to fix the problem, then that developer may not be
sufficiently capable to remain a productive developer.

Multiple training curriculums were developed, with both common lessons for everyone
and specialized lessons that are focused on a particular discipline’s needs. Compliance
with training requirements is strictly enforced and monitored to ensure that each
developer has the knowledge and skills they need to do their job. Cross training
provides redundant knowledge and enhances developer skill. Some, who have a special
aptitude for security, are designated as Security Champions and provide expert support
to others within their team.

Once the implementation was completed, multiple software sector experts, including
some from Microsoft, were called in to critically evaluate their result and provide
feedback. This self-review helped the continuous improvement process.

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 11

Case Study #2:
SDL in an Open Source Development Environment

The Microsoft SDL is as completely applicable to an open source development
environment as it is to a Microsoft architecture environment, because it is a framework
that guides the development process.

While most of the organizations who were interviewed have some open source
applications, many are Microsoft shops and only use open source, including the LAMP
stack, for non-critical applications and static web sites. But even for those, any
application that is part of their overall world is a potential entry point for hackers. So,
while not as critical and a lower priority threat, they still must be considered as
applications that should have the SDL applied to them.

The development environment in an open source organization is usually Eclipse, instead
of Visual Studio. Static analysis is part of the IDE and automated testing tools are used.
The open source world has a number of choices for testing tools, but similar to the
Microsoft environment, it can take three to four days to get the results back from a test
instance. So, daily builds are not able to be tested and have the results back to the
developer before the next build occurs.

The goal of this SDL implementation is to have minimum overhead of the security-
related testing tools, so that the developers can focus on writing code. The desire is to
train the developers on how to use the tools, rather than having to become security
experts. They can let the integrated tools find the flaws in the code and highlight them in
real time, as the developer is writing code.

As in the first example, education and training is the biggest area of resource
expenditures. But, in the open source world, there is often a greater choice of tools for
testing and similar tasks. Therefore, a smorgasbord of tools and techniques was
compiled that are used based on risk prioritization.

Whether open source or proprietary software such as a Microsoft architecture, the SDL
can be applied the same way and with equal benefit. Testing tools are different to
integrate into different development IDEs. But there is no difference in terms of the
threats that are being thwarted and the coding weaknesses.

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 12

Adopters Best Practices

Here are some of the best practices of those who have adopted the Microsoft SDL:

• Empower all your people! First, sell the philosophy to everyone involved.

• Educate all functions that have any interaction with the development process, from
analysts to DBAs, with customized curriculums that focus on their functional needs.

• Train and educate all developers, both internal and external. Developers learn by
doing: the more they do, the better and faster they learn.

• Apply SDL to the early stages, so that SDL is applied to the design, development and
testing processes.

• Use automated testing tools as much as possible, in conjunction with manual testing.

• Streamline test points to enable completion of testing between builds.

• Track faults to each developer, so remedial training can be provided and eliminate
recurrence. Create a system to manage and track the correlation between developers
and coding faults that the testing tools discover.

• You must do full coverage testing. Otherwise, there may be weak areas of code
through which threats can enter your entire world of applications. If you need to
prioritize testing, focus on the threat model and attack surface.

• Establish development teams, with a pyramid of highly trained and experienced
developers at the top, who can help others by being the expert reference.

• Trust that the SDL does work. Be proactive and implement it fully.

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 13

Lessons Learned

Here are some of the key lessons learned by adopters of the Microsoft SDL:

• Principles and paradigms are universal. It’s the implementation that is different.

• The only way developers really learn, and that you can ensure that the developers
are using all aspects of the SDL framework, is to have them work with it hands-on,
as soon as possible. That includes lots of hands-on work during training.

• If an Agile process with daily builds is used, static scanning across all the
developers’ work may not keep up, as it can take more than a day to scan a build
and report. So, integrated scan tools that are a part of the developer’s IDE are needed
to keep up with the pace of development and daily builds. Sprint cycles of one week
or greater can be handled by today’s tools.

• Using SDL has enabled a development organization to educate and train their
developers to become proactive instead of reactive, when it comes to defensive
programming against security threats.

• The benefits of incorporating SDL into the SDLC are immediate because developers
begin to code with fewer security vulnerabilities, which reduces rework required
after code review and testing.

• Designating SDL champions within development groups causes the SDL be more
readily implemented and the developers to become internally motivated, which
ensures the active adoption of the SDL into the ongoing development activities.

• The SDL is a framework that must be integrated into your SDLC. So the cost to
implement the SDL is primarily for training, and implementation support for the
methodology and testing tools.

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 14

How to Get Started with SDL Integration

OK, now you have an idea of what Microsoft’s SDL is, how to implement it in general,
and many other things. But there are still some things that are confusing, and even the
basic first step may still be unclear.

First, go to Microsoft’s web site and the home page of their SDL portal at
http://www.microsoft.com/security/sdl/default.aspx to read about it.

The Microsoft portal has all the information available on their SDL. You could start by
reading about the simplified implementation of the Microsoft SDL. You can download
free tools and templates to jumpstart your SDL implementation, leveraging the training,
consulting, and tools expertise of Microsoft Services and the SDL Pro Network, if
needed.

Probably the most useful web page is: “Simplified Implementation of the SDL:”
(http://www.microsoft.com/en-us/download/details.aspx?id=12379) with downloadable
versions, as both Word and Excel files.

This document illustrates the core concepts of the Microsoft Security Development
Lifecycle (SDL) and discusses the individual security activities that should be performed
in following the SDL process. The Simplified SDL guidance is also available under an
Excel spreadsheet format, and lists the 16 mandatory SDL security practices, along with
implementation details and resources for each practice.

This “Simplified Implementation of the SDL” paper presents:

• A brief overview of the Microsoft SDL.

• An overview of the Microsoft SDL Optimization Model with particular attention to
where the Microsoft SDL fits within the Optimization Model.

• A discussion of individual Microsoft security development practices, including: roles
and responsibilities for individuals involved in the application development process,
mandatory security activities, optional security activities, the application security
verification process.

http://www.microsoft.com/security/sdl/default.aspx�
http://www.microsoft.com/en-us/download/details.aspx?id=12379�

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 15

Conclusion

After conducting detailed interviews with SDL adopters, ranging from veterans of
multiple implementations to a first-time user just beginning the planning stage, Edison
Group has arrived at several conclusions.

• First and foremost, the SDL clearly is beneficial for any software development
organization to adopt, especially for anyone whose business involves applications
with great security risks, such as financial services.

• BITS is the “must join” organization for any entity who develops and uses software
applications in the financial services sector, as its membership is comprised of 100 of
the largest integrated financial services companies.

• Training and education about the SDL process is essential to implementation, as it is
a quite complex process that must be incorporated into existing SDLCs.

• While the SDL shows a traditional, sequential SDLC, it can be applied to any and all
software development methodologies. In fact, it is even more essential for the
various rapid application development methodologies.

• The SDL is agnostic to the chosen software architecture. It can be applied to any
vendor architecture and framework, including open source tools and solutions.

• Users have Agile sprint cycles, ranging from daily builds to a build every two weeks.
If not well managed, daily builds can quickly outrun the testing capabilities,
potentially causing testing to lag considerably behind the build process. Without the
testing, ensuring that quality code is maintained throughout the development cycle
becomes more difficult. The Agile process posted on the Security Development
Lifecycle website specifies that this activity should be “time boxed” rather than
performed every sprint.

• Implementing the SDL will help make utilization and conformance with the process
recommendations of ISO/IEC 27034-1 easier. In our opinion, it may be the best
enabling tool for conforming to ISO/IEC 27034-1.

• Incorporating the Microsoft SDL into your SDLC saves both development time and
cost, while also reducing the security flaws in applications. It is a win-win-win, as it
can be justified based on all three of these measurements.

• Microsoft has a wealth of information available at their SDL web portal, at
http://www.microsoft.com/security/sdl/default.aspx

http://www.microsoft.com/security/sdl/default.aspx�

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 16

Appendix A – Security Development Lifecycle Overview

The contents of this appendix were provided by Microsoft.

Security Development Lifecycle Overview
The Security Development Lifecycle (SDL) is a security assurance process that is focused
on software development. Combining a holistic and practical approach, the SDL
introduces security and privacy throughout all phases of the development process, with
the goal of reducing the number and severity of vulnerabilities in software.

The Microsoft SDL is based on three core concepts—education, continuous process
improvement, and accountability. Ongoing education and training within a software
development group is critical. The appropriate investment in knowledge transfer helps
organizations react appropriately to changes in technology and the threat landscape.
Because security risks are not static, the SDL places heavy emphasis on understanding
the cause and effect of security vulnerabilities and requires regular evaluation of SDL
processes and introduction of changes in response to new technology advancements or
new threats. Data is collected to verify completion of security training, in-process
metrics are used to confirm process compliance, and post-release metrics help guide
future changes. Finally, the SDL requires the archival of all data necessary to service an
application in a crisis. When this archived data is paired with detailed security response
and communication plans, an organization can provide concise and cogent guidance to
all parties affected by a security incident.

The SDL Process

Any software development organization, regardless of development methodology, can
adopt the SDL process to integrate end-to-end security best practices.

Figure 2: The SDL Process

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 17

It is important to notice that the five core phases roughly correspond to the phases
within the traditional software development lifecycle:

• Requirements

• Design

• Implementation

• Verification

• Release and response

The SDL integrates effective security practices into each phase of the software
development lifecycle to improve awareness of security risk and realize time and cost-
saving benefits from discovering and eliminating security issues early in the
development process.

1.0 SDL Security Training

1.1 Complete Core Security Training

All members of a software development team must receive appropriate training to stay
informed about security basics and recent trends in security and privacy. The SDL
applies this requirement to the entire organization to verify that security training is
provided for everyone. Individuals in technical roles (developers, testers, and program
managers) that are directly involved with the development of software programs must
attend at least one unique security training class each year.

Basic software security training should cover foundational concepts such as:

Secure design

 Attack surface reduction

 Defense in depth

 Principle of least privilege

 Secure defaults

Threat modeling

 Overview of threat modeling

 Design implications of a threat model

 Coding constraints based on a threat model

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 18

Secure coding

 Buffer overruns (for applications using C and C++)

 Integer arithmetic errors (for applications using C and C++)

 Cross-site scripting (for managed code and web applications)

 SQL injection (for managed code and web applications)

 Weak cryptography

Security testing

 Differences between security testing and functional testing

 Risk assessment

 Security testing methods

Privacy

 Types of privacy-sensitive data

 Privacy design best practices

 Risk assessment

 Privacy development best practices

 Privacy testing best practices

2.0 Requirements Practices

2.1 Establish Security Requirements

The need to consider security and privacy “up front” is a fundamental aspect of secure
system development. The initial planning stages are the optimal point to define
trustworthiness requirements for a software project. This early definition of
requirements allows development teams to identify key milestones and deliverables,
and permits the integration of security and privacy that minimizes disruption to plans
and schedules.

Create a basic risk questionnaire to verify whether the product should be subject to the
SDL. At a minimum, products that meet the following criteria should follow a SDL
process:

• Any product that is commonly used or deployed within a business (e.g. email or
database servers).

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 19

• Any product that regularly stores, processes, or communicates personally
identifiable information (PII) such as financial, medical, or sensitive customer
information.

• Any online products or services that target or are attractive to children.

• Any product that regularly touches or listens on the Internet.

• Any product that automatically downloads updates.

If the results of this questionnaire show that the product should apply the SDL, begin
building baseline security requirements from the content of the questionnaire.

Identify a security advisor to serve as the organization‘s first point of contact for security
support and additional resources. This advisor should be responsible for defining the
overall security policy and maintaining awareness of new threats or industry
developments that may affect the security of the products or organization. In addition,
identify the team or individual that is responsible for tracking and managing security for
the product. This team or individual is not solely responsibility for addressing security
in a software release, but this team or individual is responsible for coordinating and
communicating the status of any security issues in the product. In smaller product
groups, a single person can fill these roles.

It is important to establish the minimum design security requirements for the
application that reflect how it will run in its planned operational environment. The
security advisor, partnered with the product team security owner, should work with all
disciplines to ensure security requirements are defined and agreed to early across the
development organization. Once these requirements are established, identify and deploy
a centralized security vulnerability work item tracking system that allows assigning,
sorting, filtering, and tracking completion of security related bugs, work items, or tasks.
The ability to track security work items is a critical piece in validating completion and
generating data that demonstrates the effectiveness of establishing an SDL.

2.2 Create Quality Gates and Bug Bars

Quality gates and bug bars establish minimum acceptable levels of security and privacy
quality. Defining these criteria at the start of a project improves the understanding of
risks associated with security issues and enables teams to identify and avoid or fix
security bugs during development. Establishing clear requirements early can improve
engineering efficiencies in creating and executing quality assurance (QA) and test plans.
A project team should define quality gates (for example, all compiler warnings must be
triaged and fixed prior to code check-in) for each development phase, and then have
them approved by the security advisor, who may add project-specific clarifications and

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 20

more stringent security requirements as appropriate. The project team must illustrate
compliance with the negotiated quality gates in order to complete the Final Security
Review (FSR) before release.

A defined process should regulate the approval of exceptions to the quality gates and
bug bars throughout the lifecycle of a project. This exception process should require
approval from both product team management and security experts who understand
any potential risks associated with a security exception and can make plans for
mitigation in both incident response planning and future product cycles.

2.3 Perform Security Risk Assessment

Companies that perform in-house software development must include the threats and
vulnerabilities associated with the software they develop in this risk assessment. These
assessments should include some form of the following information:

• (Security) Which portions of the project require threat models before release?

• (Security) Which portions of the project require security design reviews before
release?

• (Security) Which portions of the project (if any) require penetration testing by an
organization that specializes in application security and is external to the project
team?

• (Security) Are there any additional testing or analysis requirements the security
advisor deems necessary to mitigate security risks?

• (Security) What is the specific scope of the fuzz testing requirements?

• (Compliance) What impact will compliance have on the product? Use your own
framework to measure the impact of compliance. The following guidelines are
provided as a beginning framework for a credit card processing example:

 If the feature, product, or services stores sensitive authentication data (see
definition), it is high risk.

 If the feature, product, or service stores, processes, or transmits payment card
data, (including only the Primary Account Number, cardholder name, expiration
code, or service code), it is medium risk.

 If the feature, product, or services does not store, process, or transmit any
cardholder data or payment card data, it is low risk.

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 21

3.0 Design Practices

3.1 Establish Security Design Requirements

Establishing security design requirements involves a number of specific actions. These
required activities include creating and reviewing security specifications for high-risk
features, as well as defining secure coding techniques for developers. The results from
these activities should be documented as the product’s security design requirements.

All design specifications should describe how to securely implement all functionality
provided by a given feature or function. It is a good practice to validate design
specifications against the application’s functional specification. The functional
specification should:

• Accurately and completely describe the intended use of a feature or function.

• Describe how to deploy the feature or function in a secure fashion.

• Describe whether the feature or function will touch payment card data.

A key to PCI compliance is tying change control (Requirement 6.4) to data classification.
This change control provides an archived record for developers to review application
changes that impact controlled data such as payment card data.

Secure cryptographic design is a critical piece of both Design Phase SDL practices and
PCI DSS compliance. Satisfying the minimal cryptographic design requirements
established when creating product security requirements should be a priority. The SDL
cryptographic requirements at a high level are:

• Use AES for symmetric encryption/decryption.

• Use 128-bit or better symmetric keys.

• Use RSA for asymmetric encryption/decryption and signatures.

• Use 1024-bit or better RSA keys.

• Use SHA-256 or better for hashing and message authentication codes

For additional details on this requirement, review the online SDL Process Guidance
available at http://www.microsoft.com/security/sdl/discover/design.aspx.

3.2 Analyze Attack Surface

Attack surface reduction is a means of reducing risk by giving attackers less opportunity
(surface) to exploit a potential vulnerability. Attack surface reduction may include

http://www.microsoft.com/security/sdl/discover/design.aspx�

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 22

shutting off or restricting access to system services, applying the principle of least
privilege, and employing layered defenses wherever possible. At a minimum, attack
surface reduction should include the following:

• Use Code Access Security (CAS) correctly. When developing with managed code,
use strong-named assemblies and request minimal permission. When using strong-
named assemblies, do not use Allow Partially Trusted Caller Attribute (APTCA)
unless a security review approved use of the assembly.

• Manage firewall exceptions carefully. Be logical and consistent when making
firewall exceptions. Any product or component that requires changes to the host
firewall settings must adhere to the requirements that are outlined in the "Policy for
Managing Firewall Configurations" document, available at
http://msdn.microsoft.com/en-us/library/cc307394.aspx.

• Verify that the application runs correctly for users without administrator privileges.
This restriction reduces the likelihood that a residual vulnerability in an application
can be exploited to assume complete control of the underlying system.

3.3 Complete Threat Models

Use threat modeling for features or systems that were identified as having known
security risk or the potential for risk during the Requirements Phase Security Risk
Assessment. Threat modeling is a practice that allows development teams to consider,
document, and discuss the security implications of designs in a planned operational
environment. Threat modeling also allows consideration of security issues at the
component or application level. It is a team exercise, encompassing program/project
managers, developers, and testers, and represents the primary security analysis task
performed during the software design stage. Threat modeling activities include:

• Complete threat models for all functionality identified as having known security risk
or the potential for risk during the Requirements Phase Security Risk Assessment.
Threat models typically must consider the following areas:

 All projects—all code exposed on the attack surface and all code written by or
licensed from a third party.

 New projects—all features and functionality.

 Updated versions of existing projects—new features or functionality added in
the updated version.

• Verify that all threat models meet minimal quality requirements.

• Confirm that all threat models contain data flow diagrams, assets, vulnerabilities,
and mitigations.

http://msdn.microsoft.com/en-us/library/cc307394.aspx�

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 23

• Employ threat modeling using STRIDE1

• Use tools such as the Microsoft SDL Threat Modeling Tool, a whiteboard or hand-
drawn exercise combined with a thorough documentation of the results, or even
using the SDL Elevation of Privilege threat modeling card game to perform threat
modeling.

. To follow STRIDE, decompose the system
into components, analyze each component for threats, and propose mitigations for
each threat.

• Ensure that all threat models and referenced mitigations are approved by at least one
security expert, one developer, one tester, and one program manager. Ask architects,
developers, testers, program managers, and others who understand the software to
contribute to threat models and to review them. Solicit broad input and review to
verify that the threat models are as comprehensive as possible.

Threat model data and all associated documentation (functional and design
specifications) should be stored by the product team to enable review of the threat
models during the Verification Phase.

4.0 Implementation Practices

4.1 Use Approved Tools

All development teams should define and publish a list of approved tools and their
associated security checks, such as compiler/linker options and warnings. The security
advisor for the project team should approve this list. Development teams should use the
latest versions of approved tools to take advantage of new security analysis functionality
and protections.

4.2 Deprecate Unsafe Functions

Project teams should analyze all functions and APIs used in conjunction with a software
development project and prohibit those that are determined to be unsafe. Once the
banned API list is determined, project teams should use header files (such as banned.h
and strsafe.h), newer compilers, or code scanning tools to check code (including legacy
code where appropriate) for the existence of banned functions, and replace those banned
functions with safer alternatives.

1 STRIDE (Spoofing identity, Tampering with data, Repudiation, Information disclosure, Denial of service,
Elevation of privilege.)

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 24

4.3 Perform Static Analysis

Project teams should perform static analysis of source code. Static analysis of source
code provides a tool-based scalable capability for security code review and can help
verify the use of secure coding practices. Static code analysis by itself is generally
insufficient to replace a manual code review for high-risk components. The security
team and security advisors should be aware of the strengths and weaknesses of static
analysis tools and be prepared to augment static analysis tools with other tools or
human review as appropriate.

5.0 Verification Practices

5.1 Perform Dynamic Code Analysis

Run-time verification of software programs is necessary to verify that a program’s
functionality works as designed. This verification task should specify tools that monitor
application behavior for memory corruption, user privilege issues, and other critical
security problems. The SDL process uses run-time tools, along with other techniques
such as fuzz testing, to achieve desired levels of security test coverage.

5.2 Perform Fuzz Testing

Fuzz testing is a specialized form of dynamic analysis used to induce program failure by
deliberately introducing malformed or random data to an application. The strategy for
fuzz testing should be derived from the intended use of the application and the
functional and design specifications for the application. The security advisor may
require additional fuzz tests or increases in the scope and duration of fuzz testing.

5.3 Conduct Attack Surface Review

It is common for an application to deviate significantly from the functional and design
specifications created during the requirements and design phases of a software
development project. Therefore, it is critical to re-review the threat models and attack
surface of an application when it is code complete, to account for any design or
implementation changes to the system and verify that mitigations are in place for any
new attack vectors created.

In addition, review all security bugs identified against the quality gates and bug bars
established in the Requirements Practices of the project to verify that the security
requirements were achieved and the potential attack surface from exceptions is
understood.

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 25

6.0 Release Practices

6.1 Create an Incident Response Plan

Every application, whether host- or web-based, should be supported by an incident
response plan. Even programs with no known vulnerabilities at the time of release can
be subject to new threats that emerge over time. The incident response plan should
include:

• A contact list that identifies a sustained engineering team, or if the development
group is too small to have these resources, a list of the appropriate engineering,
marketing, communications, and management staff to act as points of first contact in
a security emergency.

• On-call contacts with decision-making authority available 24 hours a day, seven
days a week.

• Security servicing plans (escalation procedures) for code inherited from other groups
within the organization.

• Security servicing plans (escalation procedures) for licensed third-party code,
including file names, versions, source code, third-party contact information, and
contractual permission to make changes (if appropriate).

6.2 Perform a Final Security Review

The Final Security Review (FSR) is a deliberate examination of all the security activities
performed on a software application prior to release. The FSR is not a “penetrate-and-
patch” exercise, nor is it a chance to perform security activities that were previously
ignored or forgotten during the project. The FSR usually includes an examination of
threat models, exception requests, tool output, and performance against the previously
determined quality gates or bug bars. The FSR results in one of two different outcomes:

• Passed FSR. All security and privacy issues identified by the FSR process are fixed
or mitigated.

• Passed FSR with exceptions. All security and privacy issues identified by the FSR
process are fixed or mitigated and/or all exceptions are satisfactorily resolved. Those
issues that cannot be addressed (for example, vulnerabilities posed by legacy
“design-level” issues) are logged and corrected in the next release. If there’s an
exception, it must be reviewed by product team and security advisor. If the security
advisor in partnership with the product team cannot reach an acceptable
compromise, the security advisor cannot approve the project for release. Teams must
either address whatever SDL requirements that they can prior to launch or escalate
to executive management for a decision.

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 26

6.3 Archive All Release Data

Software release must be conditional on completion of the SDL process. The security
advisor assigned to the release must certify that the project team has satisfied security
requirements.

Archiving all pertinent information and data for reference during the Response Phase
improves the speed and quality of response during incident response or post-release
servicing of the software. Having all of the following items archived and available for
reference and reuse equips a team with the full set of information they need to address
security incidents, project post-mortems, and planning for next-version training and
requirements:

• Feature specifications

• Source code, binaries, and private symbols

• Threat models

• Test cases

• Other related product documentation

• Emergency response plans

• License and servicing terms for any third-party software

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 27

Appendix B – ISO/IEC 27034-1

ISO/IEC 27034-1 Information technology — Security techniques —
Application security (part 1 published, parts 2, 5 and 6 in DRAFT, parts 3
& 4 no text available)
ISO/IEC 27034-1 offers guidance on information security to those specifying,
designing/programming or procuring, implementing and using application systems. In
other words, addressing business and IT managers, developers and auditors, and
ultimately the end-users of application systems. The aim is to ensure that computer
applications deliver the desired/necessary level of security in support of the
organization’s Information Security Management System.

The multi-part standard provides guidance on specifying, designing/selecting and
implementing information security controls through a set of processes integrated
throughout an organization’s Systems Development Life Cycle/s (SDLC). It is process-
oriented.

It covers software applications developed internally, by external acquisition,
outsourcing/offshoring or through hybrid approaches.

It addresses all aspects from determining information security requirements, to
protecting information accessed by an application as well as preventing unauthorized
use and/or actions of an application.

The standard is SDLC-method-agnostic: it does not mandate one or more specific
development methods, approaches or stages but is written in a general manner to be
applicable to them all. In this way, it complements other systems development
standards and methods without conflicting with them.

ISO/IEC 27034-1:2011 — Information technology — Security techniques
— Application security — Overview and concepts
• As with other multipartite ISO27k standards, the first part sets the scene for the

remainder, providing a general introduction and outlining the remaining parts.

• ~80 pages long, with quite a bit of detail.

• States explicitly that this is not a software application development standard, an
application project management standard, nor a software development cycle

Edison: Microsoft Security Development Lifecycle Adoption: Why and How Page 28

standard. Its purpose is to provide general guidance that will be supported, in turn,
by more detailed methods and standards in those areas.

• Explicitly takes a process approach to specifying, designing, developing, testing,
implementing, and maintaining security functions and controls in application
systems. For instance, it defines application security not as the state of security of an
application system, but as “a process an organization can perform for applying
controls and measurements to its applications in order to manage the risk of using
them.”

• Uses the concept of defining a Targeted Level of Trust (similar to a security plan) for
an application, designing and building the application to meet it, and then validating
the application against it.

• Draws on concepts such as auditing and certification of application systems similar
in style to the Common Criteria and similar schemes primarily used for government
and military systems. The text tends to emphasize deliberate threats arising from
external adversaries implying the importance of confidentiality controls, arguably
downplaying insider and accidental threats and the need for integrity and
availability controls, but the process described ostensibly takes account of the full
spectrum of security risks and controls.

• Status: part 1 was published in 2011 and is available for CHF172 from the ISO/IEC
webstore.

	Table of Contents
	Executive Summary
	Introduction
	Objective
	Audience

	Why use SDL in Financial Services Software Development?
	Application Security
	Standards Compliance

	How to Implement SDL
	Education
	Customization
	Tools and Infrastructure
	Training
	Do It!
	Measurements
	Review

	Enhancing a Successful SDL Integration
	Case Study #1: SDL in a Microsoft Development Environment
	Case Study #2: SDL in an Open Source Development Environment
	Adopters Best Practices
	Lessons Learned
	How to Get Started with SDL Integration
	Conclusion
	Appendix A – Security Development Lifecycle Overview
	Security Development Lifecycle Overview
	The SDL Process
	1.0 SDL Security Training
	1.1 Complete Core Security Training
	Secure design
	Threat modeling
	Secure coding
	Security testing
	Privacy

	2.0 Requirements Practices
	2.1 Establish Security Requirements
	2.2 Create Quality Gates and Bug Bars
	2.3 Perform Security Risk Assessment

	3.0 Design Practices
	3.1 Establish Security Design Requirements
	3.2 Analyze Attack Surface
	3.3 Complete Threat Models

	4.0 Implementation Practices
	4.1 Use Approved Tools
	4.2 Deprecate Unsafe Functions
	4.3 Perform Static Analysis

	5.0 Verification Practices
	5.1 Perform Dynamic Code Analysis
	5.2 Perform Fuzz Testing
	5.3 Conduct Attack Surface Review

	6.0 Release Practices
	6.1 Create an Incident Response Plan
	6.2 Perform a Final Security Review
	6.3 Archive All Release Data

	Appendix B – ISO/IEC 27034-1
	ISO/IEC 27034-1 Information technology — Security techniques — Application security (part 1 published, parts 2, 5 and 6 in DRAFT, parts 3 & 4 no text available)
	ISO/IEC 27034-1:2011 — Information technology — Security techniques — Application security — Overview and concepts

