
Designing for Modern UI
Module 10: Designing for Multiple Screens and Resolutions

Designing for
Modern UI	Module 10: Designing for Multiple Screens and Resolutions

	

Windows, Bing, PowerPoint, Internet Explorer, Visual Studio, WebMatrix, DreamSpark, and Silverlight are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.
The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.
The information contained in this tutorial is provided without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by this tutorial.
Created for Microsoft by Avlade: www.Avlade.com
Copyright 2012 by Microsoft Corporation.

Table of Contents
Overview	4
Learning objective	4
The challenge of designing for multiple screens	4
Use adaptive layout for different screen sizes	5
Adaptive layouts force you to think in proportions	7
Show more content	9
Make content bigger	11
Manage whitespace	12
Fixed layout versus adaptive layout	13
Pixel density	13
To do:	15
Designing for snap view	16
Tailoring your layout for snap	17
Preserve context and state	17
Strive for feature parity	17
Keep user in control	17
The app bar in the snap view	17
Don’t forget to think about your app in filled view!	18
To do:	18
Designing for portrait view	19
Summary	19
Self-study	19
Questions	19
Additional resources	20
Answers	21

[bookmark: _Toc329089962]Overview
In this module you will find out how to design an app that looks great and works great on all screens. You will also discover how to take advantage of snap and portrait, new views that are unique to Windows 8 and the tablet form factor. Also, discover how to scale to future pixel densities. Windows 8 supports pixel densities than any other release of Windows and your app can take advantage of that.
[bookmark: _Toc329089963]Learning objective
In this module, you will learn how to build applications for various screen sizes and resolutions. Specifically, you will learn about the difference between fixed and adaptive layouts, what the snap view is in new Windows UI style apps and how to design for it. Additionally, you will learn how to create different view states and form factors.
[bookmark: _Toc329089964]The challenge of designing for multiple screens
In this section, you will learn the importance of building an application that works well on all screen sizes. The ecosystem of PCs has grown dramatically in recent years and, in addition to the many desktop systems in use, there is now the emerging class of mobile devices. The end result is there are more screen scenarios than ever before and your app needs to look good across the range.
[image:]
The range of screen sizes and device is larger than ever.
It is not just the physical dimension of the screen that is the challenge. New Windows UI style apps must also be optimized for landscape and portrait view and you need to consider how to give your users the best experience possible in these views. There are also design and development challenges related to the fact that higher resolution screens need high resolution graphics and images. You will be learning how to solve all these challenges in the upcoming sections, but you need to start with the first challenge: how to adjust layout for different screen sizes.
[bookmark: _Toc329089965]Use adaptive layout for different screen sizes
The designers of the new Windows UI style had a few challenges relating to layout as they were developing the system. The fundamental challenge was how to address the dilemma that a layout that is optimized for a tablet is unlikely to scale well on a larger monitor. In the following illustration, you can see the dilemma. In the first image you have a layout optimized for an 11.6” tablet (1366 x 768) and in the second image this same layout is seen on a 20” desktop monitor (1920 x1080).
[image:]
A new Windows UI grid layout optimized for a 1366 x 768 tablet screen.
[image:]
A new Windows UI grid layout that has not been optimized for a 1920 x1080 desktop screen.
You can see that if nothing has been done in terms of optimizing, the desktop scenario is not ideal. The content occupies a portion of the screen and this layout does not add anything to the user’s experience of the app, in fact it detracts. If you have been involved in web design to any degree you may be familiar with these challenges. It has not been until recently that web design has had useful tools allowing designers to create layouts for different size screens. The term for this is called adaptive design (sometimes referred to as responsive design).
The comparison to web design is notable here because new Windows UI style applications built in HTML, CSS, and JavaScript actually borrow a page from Adaptive design on the Web. Both achieve adaptive layouts with a technique called CSS3 media queries.
The basic idea behind media queries is that the type of layout being displayed to the user is based on the capabilities of their device. If a user is using a screen with a resolution of 1366 x 768, the layout is defined by a particular style sheet. If the user is using a screen with a resolution of 1920 x 1080, the layout uses a separate style sheet that is optimized for that screen.
[image:]
A new Windows UI grid layout optimized for a 1366 x 768 tablet screen.
[image:]
A new Windows UI grid layout that is using adaptive layout in order to be optimized for a 1920 x 1080 screen.
You can see in this last example that the layout on the larger screen is better suited for the environment, there are three rows of content instead of two and there are multiple columns that stretch across the screen. When using this technique, the app remains immersive and consistent for the user and the extra screen space is being used well.
[bookmark: _Toc329089966]Adaptive layouts force you to think in proportions
The good news from a design perspective is that the technical details for adaptive layouts in new Windows UI style apps are largely handled behind the scenes. However there are a few technical fundamentals you need to keep in mind:
· The minimum app resolution in new Windows UI style apps is 1024 x 768
· The recommended size to begin designing for is 1366 x 768
On the one hand, you do not have to do much to take advantage of adaptive layouts in new Windows UI style apps; much of the technical work is handled behind the scenes in the project. On the other hand, taking the time to plan out your layout proportionally will result in a better end-product for your users. To understand what designing proportionally means, consider the following layout, which is based on the grid template in Visual Studio.
[image:]
The grid template from a standard new Windows UI project in Visual Studio.
Now imagine that you have to scale this layout upwards for a larger screen. What are your options? What sections of content could expand and which need to stay fixed? To better understand the questions, it helps to divide this layout into invisible “zones” of Header, Description, and Content.
[image:]
Dividing a layout into a Header, Description and Content helps you visualize how your layout can adapt to changes in size.
With these zones defined, we can imagine a number of scenarios if the layout were to be scaled: the Header could expand and the Description & Content stay fixed. The Header could stay fixed and Description & Content expand, and so on. You have already seen in earlier modules how best practices dictate that the Header is always located in the top-left corner with a fixed top and left margin. So this rules out expansion of the Header. In new Windows UI style apps it is generally the Content that is most important and in fact this is a good place to begin.

[image:]
Expanding the zone of Content is one way to adapt to increased screen space.
Ultimately, you need to decide what to do with the extra space available when larger screens are displaying the app. To help you decide, here are three options:
· Show more content
· Make content bigger
· Manage whitespace
You could use any one of these exclusively or some combination of the three. There are some specific techniques associated with each option that you need to consider.
[bookmark: _Toc329089967]Show more content
When you have more layout space to work with for your app, you can show more content in a few ways. Because new Windows UI style apps will heavily rely on lists, you will need to become familiar with the capabilities of the ListView control. In the following diagram you can see the small screen has a grid consisting of four rows and a number of columns and the large screen has six rows and a number of columns.
[image:]
[image:]
Layout can adapt to larger screens by increasing from 4 rows of content to 6 rows as well as displaying more horizontal content.
You may be wondering why this ListView looks like a grid. Behind the scenes in the code, each one of the thumbnails above is indeed just an item in a list, however the style of the display is using a Grid Layout. These settings are configured from the developers’ side in the code for the ListView control and the details are not relevant at this stage; however it is important for you to be aware of the behavior.
Another technique available to use for showing more content is the multi-column text control. In the following diagrams the small screen is using two columns of text and the larger screen uses three. Again, keep in mind that each screen represents a different style sheet behind the scenes, but setting the number of columns with the multi-column text control is extremely easy to do:
 [image:]
The small screen uses two columns with the multi-column text control.
[image:]
The larger screen uses three columns based on the settings of the multi-column text control.
[bookmark: _Toc329089968]Make content bigger
In many cases displaying more content is not your best option, perhaps there is simply not any content to display or it simply doesn’t work aesthetically. So another option when you are faced with more screen space is to simply scale the content. In the following example, both the small and large layouts have a similar row and column structure; the large layout has essentially been scaled proportionally.
[image:]
[image:]
Larger screens can emulate the appearance of smaller screens by scaling the content blocks.
[bookmark: _Toc329089969]Manage whitespace
Depending on the dictates of your content or the appearance of your layout, simply scaling the content may not be the best option. So another technique is to adjust the whitespace of the larger layout. With skillful management of margins and padding you can create a similar experience on your larger screen as you have on the smaller screen.

[image:]
[image:]
You can add additional whitespace to your larger screen’s layout in order to make it resemble the smaller screen’s layout.
[bookmark: _Toc329089970]Fixed layout versus adaptive layout
Using the adaptive layout techniques outlined above is the recommended way to optimize your layout for all screens. However there are times when due to time constraints or other factors that you will want a more global solution to creating layouts that are acceptable across many size screens. In this scenario you can use the “Scale to Fit” option. With this option, the Viewbox control is enabled by a developer and your app can have a fixed width and height. The end result is that your layout is scaled to fit the available space and the content is centered. Again, this is not ideal for all situations, but in some scenarios it can save time spent customizing the layout.
[bookmark: _Toc329089971]Pixel density
Just to refresh your memory, you have a choice in layout when it comes to designing the width and height of your apps. The minimum size is 1024 x 768 and the recommended size is 1366 x768. Whatever size you choose, there will always be a dilemma related to pixel density. Pixel density can be best explained by the following scenario: Let’s say you design your app layout at 1366 x 768. Many tablet devices will have the same physical dimensions (11.6 inches is a standard size) but depending on the manufacturer or other factors some of those 11.6 inch devices will have a higher resolution than others. Higher resolution screens will generally have sharper text and crisper graphics than lower resolution screens, but a layout that scales based on the resolution alone will end up looking different on two devices that are the exact same size, and that would lead to user experience problems. A high resolution screen might look great but the user interface would have been scaled down and become too small to touch. Alternatively, if you decide to scale a layout designed for lower resolution, you theoretically could get fuzzy text and images.
In some ways this is largely a theoretical issue because in new Windows UI style apps this will not be a problem as long as you follow a few simple guidelines. The scaling percentage within Windows 8 and new Windows UI is as follows:
 [image:]
The standard scaling percentage is 100%, 140% and 180%.
The formula above represents the three resolutions that Windows 8 uses based on the device. This means for native text, you never have to worry, Windows 8 automatically renders text crisply and sharply even when layouts are scaled. However, this does assume that you have followed the guidelines for setting your font-sizes in new Windows UI.
[bookmark: _GoBack]NOTE: For a further discussion on font-sizing, please refer to Module 6 in this series “Module 6: Introduction to new Windows UI Design Principle: Pride in Craftsmanship”

Images present a more difficult challenge, in order to make sure your images look good in all-sized layouts, you will need to create three versions of your graphical assets and follow a specific naming convention to ensure they are used. The formula for sizing your images and naming is as follows:
· Use the resource loader and specify width and height:

· Images are loaded automatically from the following naming convention:
\projector.scale-100.jpg
 \projector.scale-140.jpg
 \projector.scale-180.jpg
What this technique does behind the scenes is automatically swap the image resources based on pixel density. So the “default” screen of 1366 x 768 (135 dpi) will use the asset “projector.scale-100.jpg.” The 140% scaled screen of 1920 x 1080 (190 dpi) will use the asset projector.scale-140.jpg. The 180% scaled screen of 2560 x 1440 (253 dpi) will use the asset projector.scale-180.jpg.
[bookmark: _Toc329089972]To do:
If you have been following along with the previous modules, you have sketches for your basic layout and architecture. Look at your pages and make the following decisions:
1. Will you have a fixed or adaptive layout?
2. If you selected adaptive, which technique will you use; show more content, make content bigger, or manage whitespace?
3. Sketch how your screen might look based upon your selection of techniques. In our food truck example, we choose adaptive, and selected to show more content. The content in the first two sections, My Truck and Hungry now stay fixed, but the content in Featured Trucks and Felling Adventurous expand to add additional columns as space is increased.
[image:]
Make decisions on what your app will look like at different screen sizes.
[bookmark: _Toc329089973]Designing for snap view
The framework of Windows 8 provides a way for users to run two apps side-by-side through a feature called snapping or the snap view. When there are two apps on screen, the snap view is always the smaller column and has a fixed width of 320 pixels. The snap view is always 320 pixels; it cannot be configured by the user or the designer! The larger view is referred to as the filled view and its width is based on the size of the screen being used.
One of the primary benefits of the snap view is that it allows users to multitask: having an optimized snapped state encourages users to keep your app on screen longer. In the following illustration you can see the snap view in action in two scenarios. In figure a the Weather app is snapped on the left and the primary app (Contoso Food Trucks) is being viewed. In figure b the user snaps the Contoso Food Trucks app to the left and Microsoft Word is being viewed in the primary screen.
[image:]
a.) The snap view is a weather app. b.) The user drags the existing filled view to the left and it is converted to the snap view.
Examine the above illustration carefully, especially figure b. In the second figure the Contoso Food Trucks app has become snapped and you can see how the layout has dramatically changed. The multicolumn layout seen in figure a) has changed to a single column in figure b). The reason for this is unavoidable: your app must function in the snap view of 320 pixels and this is a much smaller screen width than the filled view. The multicolumn layout of the filled view cannot just be scaled within the snap view; that would make your app virtually unusable, and is something to be avoided at all costs. Here are a few guidelines to help you think about the requirements necessary for optimizing your apps for snap view:
· Tailor your layout for snap (single column, 320 pixels wide)
· Preserve context and state
· Strive for feature parity
· Keep user in control
Given these guidelines, how does this affect the practical decisions you need to make for your layout? Let’s consider each point in turn:
[bookmark: _Toc329089974]Tailoring your layout for snap
When snapped, the width of the app is fixed at 320 pixels but the height is variable. Pan vertically to avoid conflict with the edge and snap gutter.
[bookmark: _Toc329089975]Preserve context and state
The Snap view needs to maintain and provide a functional view of the app. To achieve this, think of how to maintain the users' context when your app switches from filled to snap. The user should feel like they are in the same app and content should not be removed or dramatically repositioned.
[bookmark: _Toc329089976]Strive for feature parity
On a similar note, try to think of the snap view as more than just a change in layout. All the features and functionality of your app need to be available in the snap view. You may have to make some tough decisions about how to display the available features, but the user should be able to easily find all features in both views.
[bookmark: _Toc329089977]Keep user in control
Despite your best intentions, there may be certain cases when you have to make a feature unavailable in the snap view. (For example, perhaps you have a mapping component in your app that is not readable in the snap view.) Although it is programmatically possible to force an app to switch from snap view to filled view, it is highly recommended you never do this. Allow the user to stay in control by providing a prompt or another option that allows them to make the decision.
[bookmark: _Toc329089978]The app bar in the snap view
The app bar is still a component of your app when in snap view, but by the very nature of the limited space available, it must be modified:
· Within the snap view, buttons in the app bar are not allowed to have labels, just icons. The maximum number of buttons you can fit per row is five.
· If more than five buttons are present, the app bar will grow to multiple rows
· Carefully think through the buttons that make sense in snap. Buttons that are not relevant can be removed programmatically
· Group commands in a way that makes sense in snap
[bookmark: _Toc329089979]Don’t forget to think about your app in filled view!
Although thinking about how your app appears and functions in the snap view is the priority, devote some time and effort to thinking about what happens when a user snaps another app and your application is in the filled view. Whenever there are two apps side by side, they are both affected. From a layout perspective the rule of thumb is to make sure that your app layout is working well at a resolution of 1024 pixels width which is the typical resolution of a filled view. (This presumes you are using the 1366 x 768 baseline for your app layout.)
[bookmark: _Toc329089980]To do:
Based upon your sketches for your app, sketch a layout that might work for your snap view. Remember that you want your snap view to look and function as much like your app does in Main view as possible. In the Food Truck example, the snap view might look like this for the hub, and for the Hungry Now section example:
[image:]
Sketch some ideas of how your app might look in snap view.

[bookmark: _Toc329089981]Designing for portrait view
Windows 8 supports portrait view for devices that can be rotated, and while this requirement is not as critical from a layout and feature perspective when designing for snap view, it nevertheless requires some thought. Here are some of the principles that can be applied to your app in portrait view:
[image:]	[image:]
a.) The stock app in landscape view.		b.) The stock app in portrait view.
[bookmark: _Toc329089982]Summary
In this module, you learned how to build applications for various screen sizes and resolutions. Specifically, you learned about the difference between fixed and adaptive layouts, what the snap view is in new Windows UI style apps and how to design for it. Additionally, you learned how to create different view states and form factors.
[bookmark: _Toc329089983]Self-study
Using a sketchbook or piece of paper, design your application within the snap view. Focus on creating a single column layout and pay careful attention to the order of elements on the screen as well as any features that need to be removed (although you should avoid this if at all possible). Additionally, be sure to sketch a separate view of your app with the app bar visible and clearly group and label these icons.
[bookmark: _Toc329089984]Questions
1. What is the minimum app resolution for new Windows UI style apps?
2. Explain the difference between an adaptive and fixed layout as it relates to new Windows UI style apps.
3. What is the snap view in a new Windows UI style app? Name two or more benefits of optimizing for this view in your application.
[bookmark: _Toc329089985]Additional resources
The following resources can help you understand the broader principles behind the concepts of adaptive layout and snap view.
· Responsive Web Design
http://www.alistapart.com/articles/responsive-web-design/
This 2010 article by Ethan Marcotte was the first example of a unified theory behind the concept of adaptive design. Although Marcotte labels it responsive design and uses the web as the primary model, the principles here still relate to new Windows UI style apps
· Device Adaption
http://msdn.microsoft.com/en-us/library/windows/apps/hh708740.aspx
Specific information documenting the @-ms-viewport rule which enables developers of new Windows UI style apps using JavaScript to optimize the layout of sites and apps for different devices
· Guidelines for snapped and fill views
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
A deeper look at how to design the User Interface of your new Windows UI style app so that it adapts successfully to any view state.

[bookmark: _Toc329089986]Answers
1. The minimum size for a new Windows UI style app is 1024x768, but it is recommended that you design by 1366 x 768.
2. An adaptive layout is one in which the layout is customized by the designer or developer depending on the size screen being used. Techniques used for adaptive layout include scaling or adding more content, adding or removing columns and increasing/decreasing white space. A fixed layout is one in which the primary content is “fixed” or centered in the middle of the screen and additional space is automatically added or removed based on the available space.
3. The snap view of your app is the appearance of your app at 320 pixels wide and seen as a column to either the right or left of another app. Snap view is triggered by the user by a gesture on a tablet or a keyboard shortcut/mouse command on the desktop. You can preserve the state, context, and interactivity of your app within the snapped view and a well optimized app in this view will be more likely to be kept onscreen and utilized by your users.

[image: S:\Microsoft\HTML5\Microsoft_Logo.png]
2 | Page

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image1.png

image22.png

