
•  •  •  •  •  •
•  •  •  •  •  •  •  •
•  •  •  •  •  •  •
•  •  •  •  •

A GU I D E  TO

CL A I M S -BA S E D 
I D E N T I T Y A N D

AC C E S S CO NTR O L

Authentication and Authorization for 
Services and the Web

Dominick Baier

Vittorio Bertocci

Keith Brown

Scott Densmore

Eugenio Pace

Matias Woloski

Second Edit ion



a guide to claims-based identity and access control





a guide to 
Claims-Based Identity  
and Access Control
second edition
Authentication and Authorization 
for Services and the Web

patterns & practices
Microsoft Corporation



This document is provided “as-is.” Information and views expressed 
in this document, including URLs and other Internet website 
references, may change without notice. You bear the risk of using it. 
Some examples depicted herein are provided for illustration only 
and are fictitious. No real association or connection is intended or 
should be inferred.

©2011 Microsoft. All rights reserved. 

Microsoft, Active Directory, MSDN, SharePoint, SQL Server, Visual 
Studio, Windows, Windows Azure, Windows Live, Windows 
PowerShell, and Windows Server are trademarks of the Microsoft 
group of companies. All other trademarks are the property of their 
respective owners.



Contents

foreword
Kim Cameron	 xvii

foreword
Stuart Kwan	 xix

foreword
Steve Peschka	 xxi

preface
Who This Book Is For	 xxiii
Why This Book Is Pertinent Now	 xxiv
A Note about Terminology	 xxiv
How This Book Is Structured	 xxv
About the Technologies	 xxviii
What You Need to Use the Code	 xxix
Application Server	 xxx
ADFS	 xxx
Active Directory	 xxx
Client Computer	 xxx
Who’s Who	 xxxi

acknowledgements	 xxxiii



1	 An Introduction to Claims	 1
	 What Do Claims Provide?	 1

Not Every System Needs Claims	 2
Claims Simplify Authentication Logic	 3
A Familiar Example	 3
What Makes a Good Claim?	 5
Understanding Issuers	 5

ADFS as an Issuer	 5
External Issuers	 7

User Anonymity	 9
Implementing Claims-Based Identity	 9

Step 1: Add Logic to Your Applications to Support Claims	 9
Step 2: Acquire or Build an Issuer	 10
Step 3: Configure Your Application to Trust the Issuer	 10
Step 4: Configure the Issuer to Know about the 	 11 

Application
A Summary of Benefits	 12
Moving On	 12
Questions	 13

2		 Claims-Based Architectures	 15
A Closer Look at Claims-Based Architectures	 16

Browser-Based Applications	 17
Understanding the Sequence of Steps	 19
Optimizing Performance	 23

Smart Clients	 23
SharePoint Applications and SharePoint BCS	 25

Federating Identity across Realms	 26
The Benefits of Cross-Realm Identity	 26
How Federated Identity Works	 28
Federated Identity with ACS	 29

Understanding the Sequence of Steps	 31
Combining ACS and ADFS	 32

Identity Transformation	 32
Home Realm Discovery	 32

Design Considerations for Claims-Based Applications	 35
What Makes a Good Claim?	 35
How Can You Uniquely Distinguish One User from Another?	 36



How Can You Get a List of All Possible Users  
and All Possible Claims?	 36

Where Should Claims Be Issued?	 37
What Technologies Do Claims and Tokens Use?	 38

Questions	 41

3		 Claims-based Single Sign-on for the  
		 Web and Windows Azure	 43

The Premise	 43
Goals and Requirements	 45
Overview of the Solution	 46
Inside the Implementation	 49

a-Expense before Claims	 49
a-Expense with Claims	 52
a-Order before Claims	 59
a-Order with Claims	 59

Signing out of an Application	 60
Setup and Physical Deployment	 61

Using a Mock Issuer	 61
Isolating Active Directory	 62
Handling Single Sign-out in the Mock Issuer	 63
Converting to a Production Issuer	 63
Enabling Internet Access	 64

Variation—Moving to Windows Azure	 64
Questions	 68
More Information	 69

4		 Federated Identity for Web 	  
		 Applications	 71

The Premise	 71
Goals and Requirements	 72
Overview of the Solution	 72
Benefits and Limitations	 77
Inside the Implementation	 77
Setup and Physical Deployment	 77

Using Mock Issuers for Development and Testing	 78
Establishing Trust Relationships	 78
Questions	 79
More Information	 80



5	 Federated Identity with Windows 
	 Azure Access Control Service	 81

The Premise	 82
Goals and Requirements	 82
Overview of the Solution	 83

Example of a Customer with its Own Identity Provider	 84
Example of a Customer Using a Social Identity	 86
Trust Relationships with Social Identity Providers	 88
Description of Mapping Rules in a Federation Provider	 89

Alternative Solutions	 91
Inside the Implementation	 93
Setup and Physical Deployment	 94

Establishing a Trust Relationship with ACS	 94
Reporting Errors from ACS	 95
Initializing ACS	 95

Working with Social Identity Providers	 96
Managing Users with Social Identities	 96
Working with Windows Live IDs	 97
Working with Facebook	 98

Questions	 99
More Information	 100

6	 Federated Identity with  
	 Multiple Partners	 101

The Premise	 101
Goals and Requirements	 102
Overview of the Solution	 103

Step 1: Present Credentials to the Identity Provider	 104
Step 2: Transmit the Identity Provider’s Security Token  

to the Federation Provider	 104
Step 3: Map the Claims	 105
Step 4: Transmit the Mapped Claims  

and Perform the Requested Action	 105
Using Claims in Fabrikam Shipping	 107
Inside the Implementation	 109



Setup and Physical Deployment	 117
Establishing the Trust Relationship	 117

Organization Section	 118
Issuer Section	 118
Certificate Section	 118

User-Configurable Claims Transformation Rules	 119
Questions	 119

7	 Federated Identity with Multiple  
	 Partners and Windows Azure Access  
	 Control Service	 123

The Premise	 124
Goals and Requirements	 125
Overview of the Solution	 127

Step 1: Present Credentials to the Identity Provider	 128
Step 2: Transmit the Identity Provider’s Security Token  

to the Federation Provider	 129
Step 3: Map the Claims	 129
Step 4: Transmit the Mapped Claims  

and Perform the Requested Action	 130
Step 1: Present Credentials to the Identity Provider	 131
Step 2: Transmit the Social Identity Provider’s  

Security Token to ACS	 131
Step 3: Map the Claims	 132
Step 4: Transmit the Mapped Claims 	 132 

and Perform the Requested Action
Enrolling a New Partner Organization	 132
Managing Multiple Partners with a Single Identity	 133
Managing Users at a Partner Organization	 134

Inside the Implementation	 135
Getting a List of Identity Providers from ACS	 135
Adding a New Identity Provider to ACS	 137
Managing Claims-Mapping Rules in ACS	 137
Displaying a List of Partner Organizations	 138
Authenticating a User of Fabrikam Shipping	 139
Authorizing Access to Fabrikam Shipping Data	 140



Setup and Physical Deployment	 141
Fabrikam Shipping Websites	 141
Sample Claims Issuers	 142
Initializing ACS	 142

Questions	 143
More Information	 144

8		 Claims Enabling Web Services	 145
The Premise	 145
Goals and Requirements	 146
Overview of the Solution	 146

Inside the Implementation	 148
Implementing the Web Service	 148
Implementing the Active Client	 150
Implementing the Authorization Strategy	 153
Debugging the Application	 154

Setup and Physical Deployment	 155
Configuring ADFS 2.0 for Web Services	 155

Questions	 156

9		 Securing REST Services	 159
The Premise	 159
Goals and Requirements	 160
Overview of the Solution	 160
Inside the Implementation	 162

The ACS Configuration	 162
Implementing the Web Service	 163
Implementing the Active Client	 167

Setup and Physical Deployment	 172
Configuring ADFS 2.0 for Web Services	 172
Configuring ACS	 172

Questions	 173
More Information	 174



10		 Accessing Rest Services from  
		 a Windows Phone Device	 175

The Premise	 176
Goals and Requirements	 176
Overview of the Solution	 177

Passive Federation	 177
Active Federation	 179
Comparing the Solutions	 181

Inside the Implementation	 183
Active SAML token handling	 183
Web browser control	 185
Asynchronous Behavior	 187

Setup and Physical Deployment	 191
Questions	 191
More Information	 193

11		 Claims-Based Single Sign-On for  
		 Microsoft SharePoint 2010	 195

The Premise	 196
Goals and Requirements	 196
Overview of the Solution	 197

Authentication Mechanism	 197
End-to-End Walkthroughs	 199

Visiting Two Site Collections  
in a SharePoint Web Application	 199

Visiting Two SharePoint Web Applications	 200
Authorization in SharePoint	 201
The People Picker	 202
Single Sign-Out	 204

Inside the Implementation	 205
Relying Party Configuration in ADFS	 205
SharePoint STS Configuration	 206

Create a New SharePoint Trusted Root Authority	 206
Create the Claims Mappings in SharePoint	 207
Create a New SharePoint Trusted Identity Token Issuer	 207

SharePoint Web Application Configuration	 209
People Picker Customizations	 210



Single Sign-Out Control	 212
Displaying Claims in a Web Part	 214
User Profile Synchronization	 214

Setup and Physical Deployment	 215
FedAuth Tokens	 215
ADFS Default Authentication Method	 216
Server Deployment	 216

Questions	 217
More Information	 218

12		 federated identity for sharepoint  
		 applications	 219

The Premise	 219
Goals and Requirements	 220
Overview of the Solution	 220
Inside the Implementation	 224

Token Expiration and Sliding Sessions	 224
SAML Token Expiration in SharePoint	 225
Sliding Sessions in SharePoint	 228
Closing the Browser	 232

Authorization Rules	 232
Home Realm Discovery	 232

Questions	 234
More Information	 236

appendices 	
a		 using fedutil	 237

Using FedUtil to Make an Application Claims-Aware	 237

b		 message sequences	 239
The Browser-Based Scenario	 240
The Active Client Scenario	 252
The Browser-Based Scenario with Access Control Service (ACS)	 258
Single Sign-Out	 273



c		 industry standards	 285
Security Assertion Markup Language (SAML)	 285
Security Association Management Protocol (SAMP)  

and Internet Security Association  
and Key Management Protocol (ISAKMP)	 285

WS-Federation	 285
WS-Federation: Passive Requestor Profile	 286
WS-Security	 286
WS-SecureConversation	 286
WS-Trust	 286
XML Encryption	 286

d		 certificates	 287
Certificates for Browser-Based Applications	 287

On the Issuer (Browser Scenario)	 287
Certificate for TLS/SSL (Issuer, Browser Scenario)	 287
Certificate for Token Signing (Issuer, Browser Scenario)	 287
Optional Certificate for Token Encryption  

(Issuer, Browser Scenario)	 288
On the Web Application Server	 288

Certificate for TLS/SSL (Web Server, Browser Scenario)	 288
Token Signature Verification (Web Server, Browser  

Scenario)	 289
Token Signature Chain of Trust Verification (Web Server,  

Browser Scenario)	 289
Optional Token Decryption (Web Server, Browser Scenario)	 289
Cookie Encryption/Decryption (Web Server, Browser Scenario)	 290

Certificates for Active Clients	 290
On the Issuer (Active Scenario)	 290

Certificate for Transport Security (TLS/SSL)  
(Issuer, Active Scenario)	 290

Certificate for Message Security (Issuer, Active Scenario)	 291
Certificate for Token Signing (Issuer, Active Scenario)	 291
Certificate for Token Encryption (Issuer, Active Scenario)	 291

On the Web Service Host	 292
Certificate for Transport Security (TLS/SSL) (Web Service Host,  

Active Scenario)	 292
Certificate for Message Security  

(Web Service Host, Active Scenario)	 292



Token Signature Verification (Web Service Host, Active Scenario)	 292
Token Decryption (Web Service Host, Active Scenario)	 293
Token Signature Chain Trust Verification (Web Service Host,  

Active Scenario)	 293
On the Active Client Host	 293

Certificate for Message Security (Active Client Host)	 293

e		 windows azure appfabric access  
		 control service (acs)	 295

What Does ACS DO?	 296
Message Sequences for ACS	 297

ACS Authenticating Users of a Website	 298
ACS Authenticating Services, Smart Clients, and Mobile Devices	 299
Combining ACS and ADFS for Users of a Website	 300
Combining ACS and ADFS for Services, Smart Clients,  

and SharePoint BCS	 301
Creating, Configuring, and Using an ACS Issuer	 302

Step 1: Access the ACS Web Portal	 302
Step 2: Create a Namespace for the Issuer Service Instance	 302
Step 3: Add the Required Identity Providers to the Namespace	 303
Step 4: Configure One or More Relying Party Applications	 303
Step 5: Create Claims Transformations and Pass-through Rules	 305
Step 6: Obtain the URIs for the Service Namespace	 306
Step 7: Configure Relying Party Applications to Use ACS	 306

Custom Home Realm Discovery Pages	 306
Configuration with the Management Service API	 307
Managing Errors	 308
Integration of ACS and a Local ADFS Issuer	 308
Security Considerations with ACS	 310
Tips for Using ACS	 311

ACS and STSs Generated in Visual Studio 2010	 311
Error When Uploading a Federation Metadata Document	 311
Avoiding Use of the Default ACS Home Realm Discovery Page	 312

More Information	 312



f		 sharepoint 2010 authentication  
		 architecture and considerations	 313

Benefits of a Claims-Based Architecture	 313
Windows Identity Foundation

Implementation of the Claims-Based Architecture	 315
SharePoint 2010 User Identity	 316
The SharePoint 2010 Security Token Service	 317
The SharePoint 2010 Services Application Framework	 318

Considerations When Using Claims with SharePoint	 319
Choosing an Authentication Mode	 319
Supported Standards	 319
Using Multiple Authentication Mechanisms	 320
SharePoint Groups with Claims Authentication	 320
SharePoint Profiles and Audiences with Claims Authentication	 321
Rich Client, Office, and Reporting Applications  

with Claims Authentication	 321
Other Trade-offs and Limitations for Claims Authentication	 322

Configuring SharePoint to Use Claims	 324
Tips for Configuring Claims in SharePoint	 325
More Information	 326

glossary	 327

answers to questions	 337

index	 365





xvii

Foreword

Claims-based identity seeks to control the digital experience and al-
locate digital resources based on claims made by one party about an-
other. A party can be a person, organization, government, website, 
web service, or even a device. The very simplest example of a claim is 
something that a party says about itself.

As the authors of this book point out, there is nothing new about 
the use of claims. As far back as the early days of mainframe comput-
ing, the operating system asked users for passwords and then passed 
each new application a “claim” about who was using it. But this world 
was based to some extent on wishful thinking because applications 
didn’t question what they were told.

As systems became interconnected and more complicated, we 
needed ways to identify parties across multiple computers. One way 
to do this was for the parties that used applications on one computer 
to authenticate to the applications (and/or operating systems) that 
ran on the other computers. This mechanism is still widely used—for 
example, when logging on to a great number of Web sites.

However, this approach becomes unmanageable when you have 
many co-operating systems (as is the case, for example, in the enter-
prise). Therefore, specialized services were invented that would regis-
ter and authenticate users, and subsequently provide claims about 
them to interested applications. Some well-known examples are 
NTLM, Kerberos, Public Key Infrastructure (PKI), and the Security 
Assertion Markup Language (SAML).

If systems that use claims have been around for so long, how can 
claims-based computing be new or important? The answer is a variant 
of the old adage, “All tables have legs, but not all legs have tables.” The 
claims-based model embraces and subsumes the capabilities of all the 
systems that have existed to date, but it also allows many new things 
to be accomplished. This book gives a great sense of the resultant 
opportunities.



xviiixviii

For one thing, identity no longer depends on the use of unique 
identifiers. NTLM, Kerberos, and public key certificates conveyed, 
above all else, an identification number or name. This unique number 
could be used as a directory key to look up other attributes and to 
track activities. But once we start thinking in terms of claims-based 
computing, identifiers were not mandatory. We don’t need to say that 
a person is associated with the number X, and then look in a database 
to see if number X is married. We just say the person is married. An 
identifier is reduced to one potential claim (a thing said by some party) 
among many.

This opens up the possibility of many more directly usable and 
substantive claims, such as a family name, a person’s citizenship, the 
right to do something, or the fact that someone is in a certain age 
group or is a great customer. One can make this kind of claim without 
revealing a party’s unique identity. This has immense implications for 
privacy, which becomes an increasingly important concern as digital 
identity is applied to our personal lives.

Further, while the earlier systems were all hermetic worlds, we 
can now look at them as examples of the same thing and transform a 
claim made in one world to a claim made in another. We can use 
“claims transformers” to convert claims from one system to another, 
to interpret meanings, apply policies, and to provide elasticity. This is 
what makes claims essential for connecting our organizations and 
enterprises into a cloud. Because they are standardized, we can use 
them across platforms and look at the distributed fabric as a real cir-
cuit board on which we can assemble our services and components.

Claims offer a single conceptual model, programming interface, 
and end-user paradigm, whereas before claims we had a cacophony of 
disjoint approaches. In my experience, the people who use these new 
approaches to build products universally agree that they solve many 
pressing problems that were impossibly difficult before. Yet these 
people also offer a word of advice. Though embracing what has ex-
isted, the claims-based paradigm is fundamentally a new one; the 
biggest challenge is to understand this and take advantage of it.

That’s why this book is so useful. It deals with the fundamental 
issues, but it is practical and concise. The time spent reading it will be 
repaid many times over as you become an expert in one of the trans-
formative technologies of our time.

Kim Cameron
Distinguished Engineer—Microsoft Identity Division  



xix

Foreword

In the spring of 2008, months before the Windows® Identity Founda-
tion made its first public appearance, I was on the phone with the 
chief software architect of a Fortune 500 company when I experi-
enced one of those vivid, clarifying moments that come during the 
course of a software project. We were chatting about how difficult it 
was to manage an environment with hundreds, or even thousands of 
developers, all building different kinds of applications for different 
audiences. In such an environment, the burden of consistent applica-
tion security usually falls on the shoulders of one designated security 
architect. 

A big part of that architect’s job is to guide developers on how to 
handle authentication. Developers have many technologies to choose 
from. Microsoft® Windows Integrated Authentication, SAML, LDAP, 
and X.509 are just a few. The security architect is responsible for writ-
ing detailed implementation guidance on when and how to use all of 
them. I imagined a document with hundreds of pages of technology 
overviews, decision flowcharts, and code appendices that demon-
strate the correct use of technology X for scenario Y. “If you are build-
ing a web application, for employees, on the intranet, on Windows, 
use Windows Integrated Authentication and LDAP, send your queries 
to the enterprise directory....”

I could already tell that this document, despite the architect’s best 
efforts, was destined to sit unread on the corner of every developer’s 
desk. It was all just too hard; although every developer knows security 
is important, no one has the time to read all that. Nevertheless, every 
organization needed an architect to write these guidelines. It was the 
only meaningful thing they could do to manage this complexity.

It was at that moment that I realized the true purpose of the 
forthcoming Windows Identity Foundation. It was to render the tech-
nology decision trivial. Architects would no longer need to create com-
plex guidelines for authentication. This was an epiphany of sorts. 



xxxx

Windows Identity Foundation would allow authentication logic 
to be factored out of the application logic, and as a result most devel-
opers would never have to deal with the underlying complexity. Fac-
toring out authentication logic would insulate applications from 
changing requirements. Making an application available to users at 
multiple organizations or even moving it to the cloud would just mean 
reconfiguring the identity infrastructure, not rewriting the application 
code. This refactoring of identity logic is the basis of the claims-based 
identity model.

Eugenio Pace from the Microsoft patterns & practices group has 
brought together some of the foremost minds on this topic so that 
their collective experience can be yours. He has focused on practical 
scenarios that will help you get started writing your own claims-aware 
applications. The guide works progressively, with the simplest and 
most common scenarios explained first. It also contains a clear over-
view of the main concepts. Working source code for all of the exam-
ples can be found online (http://claimsid.codeplex.com).

I have truly enjoyed having Eugenio be part of our extended engi-
neering team during this project. His enthusiasm, creativity, and per-
severance have made this book possible. Eugenio is one of the handful 
of people I have met who revel in the challenge of identity and secu-
rity and who care deeply that it be done right.  

Our goal is for this book to earn its way to the corner of your desk 
and lie there dog-eared and much referenced, so that we can be your 
identity experts and you can get on with the job that is most impor-
tant to you: building applications that matter. We wish you much 
success.

Stuart Kwan
Group Program Manager, Identity and Access Platform



xxi

Foreword

As you prepare to dive into this guide and gain a deeper understanding 
of the integration between claims authentication and Microsoft® 
SharePoint® 2010, you may find the following admission both  
exhilarating and frightening at the same time: two years ago I knew 
virtually nothing about claims authentication. Today, I sit here writing 
a foreword to an extensive guide on the topic. Whether that’s  
because a few people think I know a thing or two about claims, or just 
that no one else could spare the time to do it, well, I’ll leave that for 
you to decide.

Fortunately, this guide will give you a big advantage over what I 
had to work with, and by the time you’re finished reading it you’ll 
understand the symbiotic relationship between claims and SharePoint 
2010; the good news is that it won’t take you two years to do so. 

I’ll be the first to admit that claims authentication, in different 
flavors, has been around for a number of years.  Like many technolo-
gies that turn into core platform components though, it often takes a 
big bet by a popular product or company to get a technology onto the 
map. I think SharePoint 2010 has helped create acceptance for claims 
authentication. Changes of this magnitude are often hard to appreci-
ate at the time, but I think we’ll look back at this release some day and 
recognize that, for many of us, this was the time when we really began 
to appreciate what claims authentication offers.

From Windows claims, or authentication as we’ve always known 
it, to the distributed authentication model of SAML claims, there are 
more choices than ever before. Now we can use federated authentica-
tion much more easily with products such as Active Directory®  
Federation Services (ADFS) 2.0, or even connect our SharePoint farms 
to authentication providers in the cloud, such as the Windows 
Azure™ AppFabric Access Control Service. We aren’t authenticating 
only Windows users anymore; we can have users authenticate against 
our Active Directory from virtually any application—SiteMinder,  
Yahoo, Google, Windows Live, Novell eDirectory. Now we can even 



xxiixxii

write our own identity provider using Microsoft Visual Studio®  
and the Windows Identity Foundation framework. We can use those 
claims in SharePoint; we can add our own custom claims to them, we 
can inject our own code into the out-of-the-box people picker, and 
much more.

I believe this guide provides you with the foundation to help you 
take advantage of all of these opportunities and more. Many people 
from around the company either directly or indirectly helped to  
contribute to its success. Here’s hoping you can build on it and turn it 
into your own success.

Steve Peschka
Principal Architect
Microsoft SharePoint Online—Dedicated



xxiii

Preface

As an application designer or developer, imagine a world in which you 
don’t have to worry about authentication. Imagine instead that all 
requests to your application already include the information you need 
to make access control decisions and to personalize the application 
for the user. 

In this world, your applications can trust another system compo-
nent to securely provide user information, such as the user’s name  
or email address, a manager’s email address, or even a purchasing  
authorization limit. The user’s information always arrives in the same 
simple format, regardless of the authentication mechanism, whether 
it’s Microsoft® Windows® integrated authentication, forms-based 
authentication in a web browser, an X.509 client certificate, or some-
thing more exotic. Even if someone in charge of your company’s  
security policy changes how users authenticate, you still get the infor-
mation, and it’s always in the same format. 

This is the utopia of claims-based identity that A Guide to Claims-
Based Identity and Access Control describes. As you’ll see, claims provide 
an innovative approach for building applications that authenticate and 
authorize users. 

Who This Book Is For
This book gives you enough information to evaluate claims-based 
identity as a possible option when you’re planning a new application 
or making changes to an existing one. It is intended for any architect, 
developer, or information technology (IT) professional who designs, 
builds, or operates web applications and services that require identity 
information about their users. Although applications that use claims-
based identity exist on many platforms, this book is written for people 
who work with Windows-based systems. You should be familiar with 



xxiv

the Microsoft .NET Framework, ASP.NET, Windows Communication 
Foundation (WCF), Microsoft Active Directory® directory service, 
and Microsoft Visual C#® development system.

Why This Book Is Pertinent Now
Although claims-based identity has been possible for quite a while, 
there are now tools available that make it much easier for developers 
of Windows-based applications to implement it. These tools include 
the Windows Identity Foundation (WIF) and Microsoft Active Direc-
tory Federation Services (ADFS) 2.0. This book shows you when and 
how to use these tools in the context of some commonly occurring 
scenarios.

A Note about Terminology
This book explains claims-based identity without using a lot of new 
terminology. However, if you read the various standards and much of 
the existing literature, you’ll see terms such as relying party, STS, sub-
ject, identity provider, and so on. Here is a short list that equates some 
of the most common expressions used in the literature with the more 
familiar terms used in this book. For additional clarification about 
terminology, see the glossary at the end of the book.

relying party (rp) = application
service provider (sp) = application

A relying party or a service provider is an application that uses claims. 
The term relying party arose because the application relies on an is-
suer to provide information about identity. The term service provider 
is commonly used with the Security Assertion Markup Language 
(SAML). Because this book is intended for people who design and 
build applications, it uses application, or claims-aware application, when 
it is discussing the functionality of the application, and relying party or 
RP, when it is talking about the role of the application in relation to 
identity providers and federation providers. It does not use service 
provider or SP.

subject = user 
principal = user

A subject or a principal is a user. The term subject has been around for 
years in security literature, and it does make sense when you think 
about it—the user is the subject of access control, personalization, 
and so on. A subject can be a non-human entity, such as printer or 



 xxv

another device, but this book doesn’t discuss such scenarios. In addi-
tion, the .NET Framework uses the term principal rather than subject. 
This book talks about users rather than subjects or principals.

security token service (sts) = issuer
Technically, a security token service is the interface within an issuer 
that accepts requests and creates and issues security tokens contain-
ing claims.

identity provider (IdP) = issuer
An identity provider is an issuer, or a token issuer if you prefer. Identity 
providers validate various user credentials, such as user names, pass-
words, and certificates; and they issue tokens. 

resource security token service (R-STS)  
= issuer

A resource security token service accepts one token and issues an-
other. Rather than having information about identity, it has informa-
tion about the resource. For example, an R-STS can translate tokens 
issued by an identity provider into application-specific claims. 

active client = smart or rich client
passive client = browser

Much of the literature refers to active versus passive clients. An active 
client can use a sophisticated library such as Windows Communica-
tion Foundation (WCF) to implement the protocols that request and 
pass around security tokens (WS-Trust is the protocol used in active 
scenarios). In order to support many different browsers, the passive 
scenarios use a much simpler protocol to request and pass around 
tokens that rely on simple HTTP primitives such as HTTP GET (with 
redirects) and POST. (This simpler protocol is defined in the WS-
Federation specification, section 13.)

In this book, an active client is a rich client or a smart client.  
A passive client is a web browser.

How This Book Is Structured
You can think of the structure of this book as a subway that has main 
lines and branches. Following the Preface, there are two chapters that 
contain general information. These are followed by scenarios that 
show how to apply this knowledge with increasingly more sophisti-
cated requirements. 

preface



xxvi

figure 1
Map of the book

Preface

An Introduction 
to Claims

Claims-Based 
Architectures

Single Sign-On in
Windows Azure

Federated Identity with Windows
Azure Access Control Service

Claims-Based
Single Sign-On 
for SharePoint

Claims-Based Single 
Sign-On for the Web

Federated Identity
with Multiple Partners

Federated 
Identity for
SharePoint 
Applications

Federated Identity for
Web Applications

Accessing REST Services
from Windows Phone

Federated Identity
with Multiple Partners
and ACS

Claims Enabling
Web Services

Securing REST
Services

Here is the map of our subway.



 xxvii

An Introduction to Claims explains what a claim is and provides 
general rules on what makes good claims and how to incorporate 
them into your application. It’s probably a good idea that you read this 
chapter before you move on to the scenarios.

Claims-Based Architectures shows you how to use claims with 
browser-based applications and smart client applications. In particular, 
the chapter focuses on how to implement single sign-on for your us-
ers, whether they are on an intranet or an extranet. This chapter is 
optional. You don’t need to read it before you proceed to the sce-
narios.

Claims-Based Single Sign-On for the Web and Windows Azure is 
the starting point of the path that explores the implementation of 
single sign-on and federated identity. This chapter shows you how to 
implement single sign-on and single sign-out within a corporate in-
tranet. Although this may be something that you can also implement 
with Integrated Windows Authentication, it is the first stop on the 
way to implementing more complex scenarios. It includes a section for 
Windows Azure® technology platform that shows you how to move 
the claims-based application to the cloud.

Federated Identity for Web Applications shows how you can give 
your business partners access to your applications while maintaining 
the integrity of your corporate directory and theirs. In other words, 
your partners’ employees can use their own corporate credentials to 
gain access to your applications.

Federated Identity with Windows Azure Access Control Service is 
the start of a parallel path that explores Windows Azure AppFabric 
Access Control Service (ACS) in the context of single sign-on and 
federated identity. This chapter extends the scenarios described in the 
previous chapter to enable users to authenticate using social identity 
providers such as Google and Windows Live® network of Internet 
services.

Federated Identity with Multiple Partners is a variation of the fed-
erated identity scenario that shows you how to federate with partners 
who have no issuer of their own as well as those who do. It demon-
strates how to use the ASP.NET MVC framework to create a claims-
aware application.

Federated Identity with Multiple Partners and Windows Azure 
Access Control Service extends the scenarios described in the previ-
ous chapter to include ACS to give users additional choices for au-
thentication that include social identity providers such as Google and 
Windows Live.

preface



xxviii

Claims Enabling Web Services is the first of a set of chapters that 
explore authentication for active clients rather than web browsers. 
This chapter shows you how to use the claims-based approach with 
web services, whereby a partner uses a smart client that communi-
cates with identity providers and token issuers using SOAP-based 
services.

Securing REST Services shows how to use the claims-based approach 
with web services, whereby a partner uses a smart client that com-
municates with identity providers and token issuers using REST-based 
services.

Accessing REST Services from a Windows Phone Device shows 
how you can use claims-based techniques with Windows Phone™ 
wireless devices. It discusses the additional considerations that you 
must take into account when using claims-based authentication with 
mobile devices.

Claims-Based Single Sign-On for Microsoft SharePoint 2010 be-
gins a path that explores how you can use claims-based identity tech-
niques with Microsoft SharePoint 2010. This chapter shows how 
SharePoint web applications can use claims-based authentication with 
an external token issuer such as ADFS to enable access from both 
internal locations and externally over the web.

Federated Identity for SharePoint Applications extends the previ-
ous chapter to show how you can use federated identity techniques 
to enable users to authenticate using more than one identity provider 
and token issuer.

About the Technologies
In this guide, you will find discussion on several technologies with 
which you may not be immediately familiar. The following is a brief 
description of each one, together with links to where you can find 
more information.

Windows Identity Foundation (WIF). WIF contains a set of 
components that enable developers using the Microsoft .NET Frame-
work to externalize identity logic from their application, improving 
developer productivity, enhancing application security, and enabling 
interoperability. Developers can apply the same tools and program-
ming model to build on-premises software as well as cloud services 
without requiring custom implementations. WIF uses a single simpli-
fied identity model based on claims, together with interoperability 
based on industry-standard protocols. For more information see 
“Windows Identity Foundation Simplifies User Access for Develop-
ers,” at http://msdn.microsoft.com/en-us/security/aa570351.aspx.

http://msdn.microsoft.com/en-us/security/aa570351.aspx


 xxix

Active Directory Federation Service (ADFS). ADFS is a server 
role in Windows Server® that provides simplified access and single 
sign-on for on-premises and cloud-based applications in the enter-
prise, across organizations, and on the web. It acts as an identity pro-
vider and token issuer to enable user access with native single sign-on 
across organizational boundaries and in the cloud, and to easily con-
nect applications by utilizing industry-standard protocols. For more 
information, see “Active Directory Federation Services 2.0,” at http://
www.microsoft.com/windowsserver2008/en/us/ad-fs-2-overview.
aspx.

Windows Azure. Windows Azure is a cloud services platform 
that serves as the development, service hosting and service manage-
ment environment. It is a flexible platform that supports multiple 
languages and provides developers with on-demand compute and 
storage services to host, scale, and manage web applications over the 
Internet through Microsoft datacenters. For more information, see 
“Windows Azure,” at http://www.microsoft.com/windowsazure/
windowsazure/default.aspx.

Windows Azure AppFabric Access Control Service (ACS). ACS 
is an easy way to provide identity and access control to web applica-
tions and services while integrating with standards-based identity 
providers. These identity providers can include enterprise directories 
such as Active Directory, and web identities such as Windows Live ID, 
Google, Yahoo! and Facebook. ACS enables authorization decisions to 
be moved out of the application and into a set of declarative rules that 
can transform incoming security claims into claims that applications 
understand, and can also be used to manage users’ permissions. For 
more information, see “Windows Azure Access Control,” at http://
www.microsoft.com/windowsazure/appfabric/overview/default.aspx.

What You Need to Use the Code
You can either run the scenarios on your own system or you can cre-
ate a realistic lab environment. Running the scenarios on your own 
system is very simple and has only a few requirements, which are 
listed below.
•	 Microsoft Windows Vista® SP1, Windows 7, Windows Server 

2008 (32-bit or 64-bit), or Windows Server 2008 R2 (32-bit or 
64-bit) 

•	 Microsoft Internet Information Services (IIS) 7.0 or 7.5 
•	 Microsoft .NET Framework 4.0
•	 Microsoft Visual Studio® 2010 (excluding Express editions)
•	 Windows Azure Tools for Microsoft Visual Studio
•	 Windows Identity Foundation

preface

http://www.microsoft.com/windowsserver2008/en/us/ad-fs-2-overview.aspx
http://www.microsoft.com/windowsserver2008/en/us/ad-fs-2-overview.aspx
http://www.microsoft.com/windowsserver2008/en/us/ad-fs-2-overview.aspx
http://www.microsoft.com/windowsazure/windowsazure/default.aspx
http://www.microsoft.com/windowsazure/windowsazure/default.aspx
http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx
http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx


xxx

NOTE: If you want to install the Windows Azure Tools on Windows 
Server 2008 R2 you must first install the .NET Framework version 
3.5.1. This is also required for the HTTP Activation features. The 
.NET Framework version 3.5.1 can be installed from Windows 
Update.

Running the scenarios in a realistic lab environment, with an in-
stance of Active Directory Federation Services (ADFS) and Active 
Directory, requires an application server, ADFS, Active Directory, and 
a client system. Here are their system requirements.

Application Server 
The application server requires the following:
•	 Windows Server 2008 or Windows Server 2008 R2
•	 Microsoft Internet Information Services (IIS) 7.0 or 7.5
•	 Microsoft Visual Studio 2010 (excluding Express editions)
•	 .NET Framework 4.0
•	 Windows Identity Foundation 

ADFS
The ADFS server requires the following:
•	 Windows Server 2008 or Windows Server 2008 R2
•	 Microsoft Internet Information Services (IIS) 7.0 or 7.5
•	 .NET Framework 4.0
•	 Microsoft SQL Server® 2005 or 2008 Express Edition

Active Directory
The Active Directory system requires Windows Server 2008 or Win-
dows Server 2008 R2 with Active Directory installed.

Client Computer
The client computer requires Windows Vista or Windows 7 for active 
scenarios. Passive scenarios may use any web browser that supports 
HTTP redirection as the client.



 xxxi

Who’s Who
As we’ve said, this book uses a number of scenarios that trace the 
evolution of several corporate applications. A panel of experts com-
ments on the development efforts. The panel includes a security 
specialist, a software architect, a software developer, and an IT profes-
sional. The scenarios can be considered from each of these points of 
view. Here are our experts.

If you have a particular area of interest, look for notes provided by the 
specialists whose interests align with yours.

Bharath is a security specialist. He checks that solutions for  
authentication and authorization reliably safeguard a company’s 
data. He is a cautious person, with good reason.

Providing authentication for a single application  
is easy. Securing all applications across our  
organization is a different thing.

Jana is a software architect. She plans the overall structure of an  
application. Her perspective is both practical and strategic. In other  
words, she considers not only what technical approaches are needed  
today, but also what direction a company needs to consider for the  
future.

It’s not easy, balancing the needs of users, the IT  
organization, the developers, and the technical  
platforms we rely on.

Markus is a senior software developer. He is analytical, detail-
oriented, and methodical. He’s focused on the task at hand, 
which is building a great claims-based application. He knows  
that he’s the person who’s ultimately responsible for the code.

I don’t care what you use for authentication,  
I’ll make it work.

Poe is an IT professional who’s an expert in deploying and running in  
a corporate data center. He’s also an Active Directory guru. Poe has  
a keen interest in practical solutions; after all, he’s the one who gets  
paged at 3:00 AM when there’s a problem.

Each application handles authentication differ- 
ently. Can I get a bit of consistency please?!?

preface





xxxiii

This book marks a milestone in a journey I started in the winter of 
2007. At that time, I was offered the opportunity to enter a com-
pletely new domain: the world of software delivered as a service. 
Offerings such as Windows Azure™ technology platform were far 
from being realized, and “the cloud” was still to be defined and fully 
understood. My work focused mainly on uncovering the specific chal-
lenges that companies would face with this new way of delivering 
software.

It was immediately obvious that managing identity and access 
control was a major obstacle for developers. Identity and access con-
trol were fundamental. They were prerequisites for everything else. If 
you didn’t get authentication and authorization right, you would be 
building your application on a foundation of sand. 

Thus began my journey into the world of claims-based identity. I 
was very lucky to initiate this journey with none other than a claims 
Jedi, Vittorio Bertocci. He turned me into a convert. 

Initially, I was puzzled that so few people were deploying what 
seemed, at first glance, to be simple principles. Then I understood 
why. In my discussions with colleagues and customers, I frequently 
found myself having to think twice about many of the concepts and 
about the mechanics needed to put them into practice. In fact, even 
after longer exposure to the subject, I found myself having to care-
fully retrace the interactions among implementation components. 
The principles may have been simple, but translating them into run-
ning code was a different matter. Translating them into the right run-
ning code was even harder.

Around this time, Microsoft announced Windows Identity Foun-
dation (WIF), Active Directory® Federation Services (ADFS) 2.0, and 
Windows Azure AppFabric Access Control Service (ACS). Once I 
understood how to apply those technologies, and how they dramati-
cally simplified claims-based development, I realized that the moment 
had come to create a guide like the one you are now reading.

Acknowledgments



xxxiv

Even after I had spent a significant amount of time on the subject, 
I realized that providing prescriptive guidance required greater profi-
ciency than my own, and I was lucky to be able to recruit for my quest 
some very bright and experienced experts. I have thoroughly enjoyed 
working with them on this project and would be honored to work 
with this fine team again. I was also fortunate to have skilled software 
developers, software testers, technical writers, and others as project 
contributors.

I want to start by thanking the following subject matter experts 
and key contributors to this guide: Dominick Baier, Vittorio Bertocci, 
Keith Brown, and Matias Woloski. These guys were outstanding. I 
admire their rigor, their drive for excellence, and their commitment to 
practical solutions.

Running code is a very powerful device for explaining how tech-
nology works. Designing sample applications that are both techni-
cally and pedagogically sound is no simple task. I want to thank the 
project’s development and test teams for providing that balance: 
Federico Boerr, Carlos Farre, Diego Marcet, Anant Manuj Mittal, Er-
win van der Valk, and Matias Woloski.      

This guide is meant to be authoritative and prescriptive in the 
topics it covers. However, we also wanted it to be simple to under-
stand, approachable, and entertaining—a guide you would find inter-
esting and you would enjoy reading. We invested in two areas to 
achieve these goals: an approachable writing style and an appealing 
visual design. 

A team of technical writers and editors were responsible for the 
text. They performed the miracle of translating and organizing our 
jargon- and acronym-plagued drafts, notes, and conversations into 
clear, readable text. I want to direct many thanks to RoAnn Corbisier, 
Colin Campbell, Roberta Leibovitz, and Tina Burden for doing such a 
fine job on that.

The innovative visual design concept used for this guide was  
developed by Roberta Leibovitz and Colin Campbell (Modeled  
Computation LLC) who worked with a team of talented designers 
and illustrators. The book design was created by John Hubbard (Eson). 
The cartoon faces and chapter divisions were drawn by the award-
winning Seattle-based cartoonist Ellen Forney. The technical illustra-
tions were adapted from my Tablet PC mock-ups by Veronica Ruiz.  
I want to thank the creative team for giving this guide such a great 
look. 

I also want to thank all the customers, partners, and community 
members who have patiently reviewed our early content and drafts. 
You have truly helped us shape this guide. Among those, I want to 
highlight the exceptional contributions of Zulfiqar Ahmed, Michele 
Leroux Bustamante (IDesign), Pablo Mariano Cibraro (Tellago Inc), 



 xxxv

Hernan DeLahitte (DigitFactory), Pedro Felix, Tim Fischer (Microsoft 
Germany), Mario Fontana, David Hill, Doug Hiller, Jason Hogg,  
Ezequiel Jadib, Brad Jonas, Seshadri Mani, Marcelo Mas, Vijayavani 
Nori, Krish Shenoy, Travis Spencer (www.travisspencer.com), Mario 
Szpuszta (Sr. Architect Advisor, Microsoft Austria), Chris Tavares, 
Peter M. Thompson, and Todd West.

Finally, I want to thank Stuart Kwan and Conrad Bayer from the 
Identity Division at Microsoft for their support throughout. Even 
though their teams were extremely busy shipping WIF and ADFS, 
they always found time to help us.

Eugenio Pace
Senior Program Manager – patterns & practices
Microsoft Corporation

Acknowledgements to Contributors to this 
Second Edition
All our guides are the result of great work from many people. I’m 
happy to see that so many of the original contributors and advisors of 
our first guide also worked on this one. The interest in this particular 
area has increased notably since the first edition was published. Proof 
of that is the continued investment by Microsoft in tools, services, 
and products.  

As our scope increased to cover SharePoint and Windows Azure 
Access Control Service, we also added new community members  
and industry experts who have significantly helped throughout the 
development of this new edition. 

We’d like to acknowledge the following individuals who have 
exceptionally contributed to it: Zulfiquar Ahmed, Dominic Betts, 
Federico Boerr, Robert Bogue, Jonathan Cisneros, Shy Cohen, David 
Crawford, Pedro Felix, David Hill, Alex Homer, Laura Hunter, Chris 
Keyser, Jason Lee, Alik Levin, Masashi Narumoto, Nicolas Paez, Brian 
Puhl, Paul Schaeflein, Ken St. Cyr, Venky Veeraraghavan, Rathi  
Velusamy, Bill Wilder, Daz Wilkin, Jim Zimmerman, Scott Densmore, 
Steve Peschka, and Christian Nielsen

We also want to thank everyone who participated in our Code-
Plex community site.

Eugenio Pace
Sr. Program Manager Lead – patterns & practices
Microsoft Corporation, May 2011

acknowledgments





1

An Introduction to Claims1

This chapter discusses some concepts, such as claims and federated 
identity, that may sound new to you. However, many of these ideas 
have been around for a long time. The mechanics involved in a claims-
based approach have a flavor similar to Kerberos, which is one of the 
most broadly accepted authentication protocols in use today and is 
also the protocol used by Microsoft® Active Directory® directory 
service. Federation protocols such as WS-Federation and the Security 
Assertion Markup Language (SAML) have been with us for many years 
as interoperable protocols that are implemented on all major technol-
ogy platforms.  

What Do Claims Provide?
To see the power of claims, you might need to change your view of 
authentication. It’s easy to let a particular authentication mechanism 
constrain your thinking. If you use Integrated Windows Authentica-
tion (Kerberos or NTLM), you probably think of identity in terms of 
Microsoft Windows® user accounts and groups. If you use the ASP.
NET membership and roles provider, you probably think in terms of 
user names, passwords, and roles. If you try to determine what the 
different authentication mechanisms have in common, you can ab-
stract the individual elements of identity and access control into two 
parts: a single, general notion of claims, and the concept of an issuer 
or an authority. 

A claim is a statement that one subject makes about itself or another 
subject. The statement can be about a name, identity, key, group, 
privilege, or capability, for example. Claims are issued by a provider, 
and they are given one or more values and then packaged in security 
tokens that are issued by an issuer, commonly known as a security 
token service (STS). For a full list of definitions of terms associated 
with claims-based identity, see “Claims-Based Identity Term  

Claims-based identity isn’t 
new. It’s been in use for 
almost a decade.



22 chapter one

Definitions” at http://msdn.microsoft.com/en-us/library/
ee534975.aspx.

Thinking in terms of claims and issuers is a powerful abstraction 
that supports new ways of securing your applications. Because claims 
involve an explicit trust relationship with an issuer, your application 
believes a claim about the current user only if it trusts the entity that 
issued the claim. Trust is explicit in the claims-based approach, not 
implicit as in other authentication and authorization approaches with 
which you may be familiar.

The following table shows the relationships between security 
tokens, claims, and issuers.

Security token Claims Issuer

Windows token. This 
token is represented 
as a security identifier 
(SID). This is a unique 
value of variable 
length that is used to 
identify a security 
principal or security 
group in Windows 
operating systems.

User name and groups. Windows Active Directory 
domain.

User name token. User name. Application.

Certificate. Examples can include a 
certificate thumbprint, a 
subject, or a distinguished 
name.

Certification authorities, 
including the root authority 
and all authorities in the  
chain to the root.

The claims-based approach to identity makes it easy for users to 
sign in using Kerberos where it makes sense, but at the same time, it’s 
just as easy for them to use one or more (perhaps more Internet-
friendly) authentication techniques, without you having to recode, 
recompile, or even reconfigure your applications. You can support any 
authentication technique, some of the most popular being Kerberos, 
forms authentication, X.509 certificates, and smart cards, as well as 
information cards and others.

Not Every System Needs Claims
Sometimes claims aren’t needed. This is an important disclaimer. Com-
panies with a host of internal applications can use Integrated Win-
dows Authentication to achieve many of the benefits provided by 
claims. Active Directory does a great job of storing user identities, and 
because Kerberos is a part of Windows, your applications don’t have 
to include much authentication logic. As long as every application you 
build can use Integrated Windows Authentication, you may have al-
ready reached your identity utopia.

You can use claims to 
implement role-based 
access control 
(RBAC). Roles are 
claims, but claims can 
contain more 
information than just 
role membership. 
Also, you can send 
claims inside a signed 
(and possibly 
encrypted) security 
token to assure the 
receiver that they 
come from a trusted 
issuer. 

Claims provide a powerful 
abstraction for identity.

http://msdn.microsoft.com/en-us/library/ee534975.aspx
http://msdn.microsoft.com/en-us/library/ee534975.aspx


 3 3an introduction to claims

However, there are many reasons why you might need something 
other than Windows authentication. You might have web-facing ap-
plications that are used by people who don’t have accounts in your 
Windows domain. Another reason might be that your company has 
merged with another company and you’re having trouble authenticat-
ing across two Windows forests that don’t (and may never) have a 
trust relationship. Perhaps you want to share identities with another 
company that has non-.NET Framework applications or you need to 
share identities between applications running on different platforms 
(for example, the Macintosh). These are just a few situations in which 
claims-based identity can be the right choice for you.

Claims Simplify Authentication Logic
Most applications include a certain amount of logic that supports 
identity-related features. Applications that can’t rely on Integrated 
Windows Authentication tend to have more of this than applications 
that do. For example, web-facing applications that store user names 
and passwords must handle password reset, lockout, and other issues. 
Enterprise-facing applications that use Integrated Windows Authen-
tication can rely on the domain controller.

But even with Integrated Windows Authentication, there are still 
challenges. Kerberos tickets only give you a user’s account and a list 
of groups. What if your application needs to send email to the user? 
What if you need the email address of the user’s manager? This starts 
to get complicated quickly, even within a single domain. To go beyond 
the limitations of Kerberos, you need to program Active Directory. 
This is not a simple task, especially if you want to build efficient Light-
weight Directory Access Protocol (LDAP) queries that don’t slow 
down your directory server.

Claims-based identity allows you to factor out the authentication 
logic from individual applications. Instead of the application determin-
ing who the user is, it receives claims that identify the user.

A Familiar Example
Claims-based identity is all around us. A very familiar analogy is the 
authentication protocol you follow each time you visit an airport. You 
can’t simply walk up to the gate and present your passport or driver’s 
license. Instead, you must first check in at the ticket counter. Here, 
you present whatever credential makes sense. If you’re going overseas, 
you show your passport. For domestic flights, you present your driver’s 
license. After verifying that your picture ID matches your face (au-
thentication), the agent looks up your flight and verifies that you’ve 
paid for a ticket (authorization). Assuming all is in order, you receive a 
boarding pass that you take to the gate.

Claims help you to factor 
authentication logic out of 
your applications.



44 chapter one

A boarding pass is very informative. Gate agents know your name 
and frequent flyer number (authentication and personalization), your 
flight number and seating priority (authorization), and perhaps even 
more. The gate agents have everything that they need to do their jobs 
efficiently.  

There is also special information on the boarding pass. It is en-
coded in the bar code and/or the magnetic strip on the back. This in-
formation (such as a boarding serial number) proves that the pass was 
issued by the airline and is not a forgery. 

In essence, a boarding pass is a signed set of claims made by the 
airline about you. It states that you are allowed to board a particular 
flight at a particular time and sit in a particular seat. Of course, agents 
don’t need to think very deeply about this. They simply validate your 
boarding pass, read the claims on it, and let you board the plane.

It’s also important to note that there may be more than one way 
of obtaining the signed set of claims that is your boarding pass. You 
might go to the ticket counter at the airport, or you might use the 
airline’s web site and print your boarding pass at home. The gate 
agents boarding the flight don’t care how the boarding pass was cre-
ated; they don’t care which issuer you used, as long as it is trusted by 
the airline. They only care that it is an authentic set of claims that give 
you permission to get on the plane.

In software, this bundle of claims is called a security token. Each 
security token is signed by the issuer who created it. A claims-based 
application considers users to be authenticated if they present a valid, 
signed security token from a trusted issuer. Figure 1 shows the basic 
pattern for using claims.

figure 1
Issuers, security tokens, and applications

Issuer

1.
 A

ut
he

nt
ic

at
e.

2.
 Is

su
e 

to
ke

n.

3. Send token.
Application



 5 5an introduction to claims

For an application developer, the advantage of this system is clear: 
your application doesn’t need to worry about what sort of credentials 
the user presents. Someone who determines your company’s security 
policy can make those rules, and buy or build the issuer. Your applica-
tion simply receives the equivalent of a boarding pass. No matter what 
authentication protocol was used, Kerberos, SSL, forms authentica-
tion, or something more exotic, the application gets a signed set of 
claims that has the information it needs about the user. This informa-
tion is in a simple format that the application can use immediately.

What Makes a Good Claim?
Think about claims the same way you think about attributes in a cen-
tral repository such as Active Directory, over which you have little 
control. Security tokens can contain claims such as the user’s name, 
email address, manager’s email address, groups, roles, and so on. De-
pending on your organization, it may be easy or difficult to centralize 
lots of information about users and issue claims to share that informa-
tion with applications. 

It rarely makes sense to centralize data that is specific to only one 
application. In fact, applications that use claims can benefit from stor-
ing a separate table that contains user information. This table is where 
you can keep application-specific user data that no other application 
cares about. This is data for which your application is authoritative. In 
other words, it is the single source for that data, and someone must 
be responsible for keeping it up to date. 

Another use for a table like this is to cache non-authoritative data 
that you get from claims. For example, you might cache an email claim 
for each user so that you can send out notification email without the 
user having to be logged in. You should treat any cached claims as 
read-only and refresh them the next time the user visits your applica-
tion and presents fresh claims. Include a date column that you update 
each time you refresh the record. That way, you know how stale the 
cached claims have become when it comes time to use them.

Understanding Issuers
Today, it’s possible to acquire an issuer that provides user information, 
packaged as claims. 

ADFS as an Issuer
If you have Windows Server® 2008 R2 Enterprise Edition, you are 
automatically licensed to run the Microsoft issuer, Active Directory 
Federation Services (ADFS) 2.0. ADFS provides the logic to authenti-
cate users in several ways, and you can customize each instance of 
your ADFS issuer to authenticate users with Kerberos, forms authen-
tication, or certificates. Alternatively, you can ask your ADFS issuer to 

Claims are like salt. 
Just a little bit flavors 
the broth. The next 
chapter has more 
information on what 
makes a good claim.

When you decide what 
kinds of claims to issue, ask 
yourself how hard is it to 
convince the IT department 
to extend the Active 
Directory schema. They 
have good reasons for 
staying with what they 
already have. If they’re 
reluctant now, claims aren’t 
going to change that. Keep 
this in mind when you 
choose which attributes to 
use as claims. 

A good issuer can make it 
easier to implement authori-
zation and personalization  
in your applications.



66 chapter one

accept a security token from an issuer in another realm as proof of 
authentication. This is known as identity federation and it’s how you 
achieve single sign-on across realms. 

In identity terms, a realm is the set of applications, URLs, domains, 
or sites for which a token is valid. Typically a realm is defined using 
an Internet domain such as microsoft.com, or a path within that 
domain, such as microsoft.com/practices/guides. A realm is some-
times described as a security domain because it encompasses all 
applications within a specified security boundary.

Figure 2 shows all the tasks that the issuer performs.

figure 2
ADFS functions

After the user is authenticated, the issuer creates claims about 
that user and issues a security token. ADFS has a rules engine that 
makes it easy to extract LDAP attributes from the user’s record in 
Active Directory and its cousin, Active Directory Lightweight Direc-
tory Services (AD LDS). ADFS also allows you to add rules that include 
arbitrary SQL statements so that you can extract user data from your 
own custom database. 

You can extend ADFS to add other stores. This is useful because, 
in many companies, a user’s identity is often fragmented. ADFS hides 
this fragmentation. Your claims-based applications won’t break if you 
decide to move data around between stores. 

Issuer (ADFS)

1.
 A

ut
he

nt
ic

at
e.

3.
 Is

su
e 

to
ke

n.

4. Send token. Claims-based
application

XMLXMLXML

2. Gather information.

Active Directory

Active Directory
Lightweight Directory
Services

Relational database

Custom stores

You can also receive tokens 
that were generated outside 
of your own realm, and 
accept them if you trust the 
issuer. This is known as 
federated identity. Feder-
ated identity enables 
single-sign on, allowing users 
to sign on to applications in 
different realms without 
needing to enter realm-
specific credentials. Users 
sign on once to access 
multiple applications in 
different realms. 



 7 7an introduction to claims

External Issuers
ADFS requires users to have an account in Active Directory or in one 
of the stores that ADFS trusts. However, users may have no access to 
an Active Directory-based issuer, but have accounts with other well-
known issuers. These issuers typically include social networks and 
email providers. It may be appropriate for your application to accept 
security tokens created by one of these issuers. This token can also be 
accepted by an internal issuer such as ADFS so that the external is-
suer acts as another ADFS store. 

To simplify this approach, you can use a service such as Windows 
Azure™ Access Control Service (ACS). ACS accepts tokens issued by 
many of the well-known issuers such as Windows Live® network of 
Internet services, Google, Facebook, and more. It is the responsibility 
of the issuer to authenticate the user and issue claims. ACS can then 
perform translation and transformation on the claims using configu-
rable rules, and issue a security token that your application can accept. 

Figure 3 shows an overview of the tasks that ACS performs, with 
options to authenticate users in conjunction with a local issuer such 
as ADFS, and directly without requiring a local issuer.

ACS can be config-
ured to trust a range 
of social networking 
identity providers 
that are capable of 
authenticating users 
and issuing claims, as 
well as trusting 
enterprise and 
custom identity 
providers.



88 chapter one

figure 3
ACS functions

For more information about obtaining and configuring an ACS 
account, see Appendix E, “Windows Azure Access Control Service.” 

Claims-based applications expect to receive claims about the user, 
but they don’t care about which identity store those claims come 
from. These applications are loosely coupled to identity. This is one of 
the biggest benefits of claims-based identity.

Issuer (ADFS)

 A
ut

he
nt

ic
at

e

Is
su

e 
to

ke
n

 A
ut

he
nt

ic
at

e

Is
su

e 
to

ke
n

Issuer (ACS)

Claims-based
Application

Send token Se
nd

 to
ke

n

Gather Information

Trust

Redirect
user to a

trusted
user

Send
claims

Windows Live Facebook

Google [ others ]

Claims-based applications are 
loosely coupled to identity.



 9 9an introduction to claims

User Anonymity
One option that claims-based applications give you is user anonymity. 
Remember that your application no longer directly authenticates the 
users; instead, it relies on an issuer to do that and to make claims 
about them. If user anonymity is a feature you want, simply don’t ask 
for any claim that personally identifies the user. For example, maybe 
all you really need is a set of roles to authorize the user’s actions, but 
you don’t need to know the user’s name. You can do that with claims-
based identity by only asking for role claims. Some issuers (such as 
ADFS and Windows Live ID) support the idea of private user identi-
fiers, which allow you to get a unique, anonymous identifier for a user 
without any personal information (such as a name or email address). 
Keep user anonymity in mind when you consider the power of claims-
based identity.

Implementing Claims-Based Identity
There are some general set-up steps that every claims-based system 
requires. Understanding these steps will help you when you read 
about the claims-based architectures. 

Step 1: Add Logic to Your Applications  
	 to Support Claims

When you build a claims-based application, it needs to know how to 
validate the incoming security token and how to parse the claims that 
are inside. Many types of applications can make use of claims for tasks 
such as authorizing users and managing access to resources or func-
tionality. For example, Microsoft SharePoint® applications can sup-
port the use of claims to implement authorization rules. Later chapters 
of this guide discuss the use of claims with SharePoint applications.

The Windows Identity Foundation (WIF) provides a common 
programming model for claims that can be used by both Windows 
Communication Foundation (WCF) and ASP.NET applications. If you 
already know how to use methods such as IsInRole and properties 
such as Identity.Name, you’ll be happy to know that WIF simply adds 
one more property: Identity.Claims. It identifies the claims that were 
issued, who issued them, and what they contain.

There’s certainly more to learn about the WIF programming 
model, but for now just remember to reference the WIF assembly 
(Microsoft.IdentityModel.dll) from your ASP.NET applications and 
WCF services in order to use the WIF programming paradigm.

To maintain user 
anonymity, it is 
important that the 
issuer does not 
collude with the 
application by 
providing additional 
information.



1010 chapter one

Step 2: Acquire or Build an Issuer
For most teams, the easiest and most secure option will be to use 
ADFS 2.0 or ACS as the issuer of tokens. Unless you have a great deal 
of security experience on your team, you should look to the experts 
to supply an issuer. If all users can be authenticated in ADFS 2.0 
through the stores it trusts, this is a good option for most situations. 
For solutions that require authentication using external stores or so-
cial network identity providers, ACS or a combination of ADFS and 
ACS, is a good choice. If you need to customize the issuer and the 
extensibility points in ADFS 2.0 or ACS aren’t sufficient, you can li-
cense third-party software or use WIF to build your own issuer. Note, 
however, that implementing a production-grade issuer requires spe-
cialized skills that are beyond the scope of this book.

While you’re developing applications, you can use a stub issuer that 
just returns the claims you need. The Windows Identity Foundation 
SDK includes a local issuer that can be used for prototyping and 
development. You can obtain the SDK from http://www.microsoft.
com/downloads/en/details.aspx?FamilyID=c148b2df-c7af-46bb-
9162-2c9422208504. Alternatively, you can create a custom STS in 
Microsoft Visual Studio® and connect that to your application. For 
more information, see “Establishing Trust from an ASP.NET Relying 
Party Application to an STS using FedUtil” at http://msdn.micro-
soft.com/en-us/library/ee517285.aspx.

Step 3: Configure Your Application to Trust  
	 the Issuer

After you build a claims-based application and have an issuer to sup-
port it, the next step is to set up a trust relationship. An application 
trusts its issuer to identify and authenticate users and make claims 
about their identities. When you configure an application to rely on a 
specific issuer, you are establishing a trust (or trust relationship) with 
that issuer.

There are several important things to know about an issuer when 
you establish trust with it:
•	 What claims does the issuer offer?
•	 What key should the application use to validate signatures on 

the issued tokens?
•	 What URL must users access in order to request a token from 

the issuer?

Trust is unidirectional. 
The application trusts 
the issuer, and not the 
other way around.



 11 11an introduction to claims

Claims can be anything you can imagine, but practically speaking, 
there are some very common claims offered by most issuers. They 
tend to be simple, commonly available pieces of information, such as 
first name, last name, email name, groups and/or roles, and so on. Each 
issuer can be configured to offer different claims, so the application 
(technically, this means the architects and developers who design and 
build the application) needs to know what claims are being offered so 
it can either select from that list or ask whoever manages the issuer to 
expand its offering.

All of the questions in the previous list can easily be answered by 
asking the issuer for federation metadata. This is an XML document in 
a format defined by the WS-Federation standard that the issuer pro-
vides to the application. It includes a serialized copy of the issuer’s 
certificate that provides your application with the correct public key 
to verify incoming tokens. It also includes a list of claims the issuer 
offers, the URL where users can go to get a token, and other more 
technical details, such as the token formats that it knows about (al-
though in most cases you’ll be using the default SAML format under-
stood by the vast majority of issuers and claims-based applications). 
WIF includes a wizard that automatically configures your application’s 
identity settings based on this metadata. You just need to give the 
wizard the URL for the issuer you’ve selected, and it downloads the 
metadata and properly configures your application.

SharePoint applications are a typical example of the type of ap-
plication that can be configured to trust claims issued by an enterprise 
or a federated claims issuer, including issuers such as ADFS and ACS. 
In particular, SharePoint applications that use BCS to access remote 
services can benefit from using federated claims issuers. 

Step 4: Configure the Issuer to Know about  
	 the Application

The issuer needs to know a few things about an application before it 
can issue it any tokens:
•	 What Uniform Resource Identifier (URI) identifies this applica-

tion?
•	 Of the claims that the issuer offers, which ones does this 

application require and which are optional?
•	 Should the issuer encrypt the tokens? If so, what key should it 

use?
•	 What URL does the application expose in order to receive 

tokens?

Issuers only provide claims  
to authorized applications.



1212 chapter one

Each application is different, and not all applications need the 
same claims. One application might need to know the user’s groups or 
roles, while another application might only need a first and last name. 
So when a client requests a token, part of that request includes an 
identifier for the application the user is trying to access. This identi-
fier is a URI and, in general, it’s simplest to just use the URL of the 
application, for example, http://www.fabrikam.com/purchasing/.

If you’re building a claims-based web application that has a rea-
sonable degree of security, you’ll require the use of secure sockets 
layer (SSL) (HTTPS) for both the issuer and the application. This will 
protect the information in the token from eavesdroppers. Applica-
tions with stronger security requirements can also request encrypted 
tokens, in which case the application typically has its own certificate 
(and private key). The issuer needs a copy of that certificate (without 
the private key) in order to encrypt the token issued for that applica-
tion.

Once again, federation metadata makes this exchange of informa-
tion easy. WIF includes a tool named FedUtil.exe that generates a 
federation metadata document for your application so that you don’t 
have to manually configure the issuer with all of these settings.

A Summary of Benefits
To remind you of what you’ve learned, here’s a summary of the ben-
efits that claims can provide to you. Claims decouple authentication 
from authorization so that the application doesn’t need to include the 
logic for a specific mode of authentication. They also decouple roles 
from authorization logic and allow you to use more granular permis-
sions than roles might provide. You can securely grant access to users 
who might have previously been inaccessible because they were in 
different domains, not part of any corporate domain, or using differ-
ent platforms or technologies.  

Finally, you can improve the efficiency of your IT tasks by elimi-
nating duplicate accounts that might span applications or domains 
and by preventing critical information from becoming stale. 

Moving On
Now that you have a general idea of what claims are and how to build 
a claims-based system, you can move on to the particulars. If you are 
interested in more details about claims-based architectures for 
browser-based and smart client-based applications, see the Chapter 2, 
“Claims-Based Architectures.” If you want to start digging into the 

There are, of course, 
many reasons why an 
application shouldn’t 
get any more 
information about a 
user than it needs. 
Just two of them are 
compliance with 
privacy laws and the 
design practice of 
loose coupling.



 13 13an introduction to claims

specifics of how to use claims, start reading the scenarios. Each of the 
scenarios shows a different situation and demonstrates how to use 
claims to solve the problem. New concepts are explained within the 
framework of the scenario to give you a practical understanding of 
what they mean. You don’t need to read the scenarios sequentially, 
but each chapter presumes that you understand all the material that 
was explained in earlier chapters. 

Questions

1.	 Under what circumstances should your application or 
service accept a token that contains claims about the user 
or requesting service?

a.	 The claims include an email address.

b.	 The token was sent over an HTTPS channel.

c.	 Your application or service trusts the token issuer.

d.	 The token is encrypted.

2.	 What can an application or service do with a valid token 
from a trusted issuer?

a.	 Find out the user’s password.

b.	 Log in to the website of the user’s identity provider.

c.	 Send emails to the user.

d.	 Use the claims it contains to authorize the user for 
access to appropriate resources.

3.	 What is the meaning of the term identity federation?

a.	 It is the name of a company that issues claims about 
Internet users.

b.	 It is a mechanism for authenticating users so that they 
can access different applications without signing on 
every time.

c.	 It is a mechanism for passing users’ credentials to 
another application.

d.	 It is a mechanism for finding out which sites a user  
has visited.



1414 chapter one

4.	 When would you choose to use Windows Azure AppFabric 
Access Control Service (ACS) as an issuer for an application 
or service?

a.	 When the application must allow users to sign on 
using a range of well-known social identity credentials.

b.	 When the application is hosted on the Windows 
Azure platform.

c.	 When the application must support single sign-on 
(SSO).

d.	 When the application does not have access to an alter-
native identity provider or token issuer.

5.	 What are the benefits of using claims to manage authoriza-
tion in applications and services?

a.	 It avoids the need to write code specific to any one 
type of authentication mechanism.

b.	 It decouples authentication logic from authorization 
logic, making changes to authentication mechanisms 
much easier.

c.	 It allows the use of more fine-grained permissions 
based on specific claims compared to the granularity 
achieved just using roles.

d.	 It allows secure access for users that are in a different 
domain or realm from the application or service.



15

The web is full of interactive applications that users can visit by simply 
clicking a hyperlink. Once they do, they expect to see the page they 
want, possibly with a brief stop along the way to log on. Users also 
expect websites to manage their logon sessions, although most of 
them wouldn’t phrase it that way. They would just say that they don’t 
want to retype their password over and over again as they use any of 
their company’s web applications. For claims to flourish on the web, 
it’s critical that they support this simple user experience, which is 
known as single sign-on.

If you’ve been a part of a Microsoft® Windows® domain, you’re 
already familiar with the benefits of single sign-on. You type your 
password once at the beginning of the day, and that grants you access 
to a host of resources on the network. Indeed, if you’re ever asked to 
type your password again, you’re going to be surprised and annoyed. 
You’ve come to expect the transparency provided by Integrated Win-
dows Authentication.

Ironically, the popularity of Kerberos has led to its downfall as a 
flexible, cross-realm solution. Because the domain controller holds the 
keys to all of the resources in an organization, it’s closely guarded by 
firewalls. If you’re away from work, you’re expected to use a VPN to 
access the corporate network. Also, Kerberos is inflexible in terms of 
the information it provides. It would be nice to extend the Kerberos 
ticket to include arbitrary claims such as the user’s email address, but 
this isn’t a capability that exists right now.

Claims were designed to provide the flexibility that other proto-
cols may not. The possibilities are limited only by your imagination and 
the policies of your IT department. The standard protocols that ex-
change claims are specifically designed to cross boundaries such as 
security realms, firewalls, and different platforms. These protocols 
were designed by many who wanted to make it easier to securely 
communicate with each other.

Claims-Based Architectures2

For claims-based 
applications, single 
sign-on for the web  
is sometimes called 
passive federation.



1616 chapter two

Claims decouple your applications from the details of identity. 
With claims, it’s no longer the application’s responsibility to authenti-
cate users. All your application needs is a security token from the is-
suer that it trusts. Your application won’t break if the IT department 
decides to upgrade security and require users to submit a smart card 
instead of submitting a user name and password. In addition, it won’t 
need to be recoded, recompiled, or reconfigured.

There’s no doubt that domain controllers will continue to guard 
organizational resources. Also, the business challenges, such as how to 
resolve issues of trust and how to negotiate legal contracts between 
companies who want to use federated identity techniques, remain. 
Claims-based identity isn’t going to change any of that. However, by 
layering claims on top of your existing systems, you can remove some 
of the technical hurdles that may have been impeding your access to 
a broad, flexible single sign-on solution.

A Closer Look at Claims-Based Architectures
There are several architectural approaches you can use to create 
claims-based applications. For example, web applications and SOAP 
web services each use slightly different techniques, but you’ll quickly 
recognize that the overall shapes of the handshakes are very similar 
because the goal is always the same: to communicate claims from the 
issuer to the application in a secure fashion. This chapter shows you 
how to evaluate the architectures from a variety of perspectives, such 
as the user experience, the performance implications and optimiza-
tion opportunities, and how the claims are passed from the issuer to 
the application. The chapter also offers some advice on how to design 
your claims and how to know your users.

The goal of many of these architectures is to enable federation 
with either a browser or a smart client. Federation with a smart client 
is based on WS-Trust and WS-Federation Active Requestor Profile. 
These protocols describe the flow of communication between smart 
clients (such as Windows-based applications) and services (such as 
WCF services) to request a token from an issuer and then pass that 
token to the service for authorization.

Federation with a browser is based on WS-Federation Passive 
Requestor Profile, which describes the same communication flow 
between the browser and web applications. It relies on browser redi-
rects, HTTP GET, and POST to request and pass around tokens.

Claims work in conjunction with 
your existing security systems to 
broaden their reach and reduce 
technical obstacles.



 17 17claims-based architectures

Browser-Based Applications
The Windows Identity Foundation (WIF) is a set of .NET Framework 
classes that allow you to build claims-aware applications. Among 
other things, it provides the logic you need to process WS-Federation 
requests. The WS-Federation protocol builds on other standard pro-
tocols such as WS-Trust and WS-Security. One of its features is to 
allow you to request a security token in browser-based applications.  

WIF makes claims seem much like forms authentication. If users 
need to sign in, WIF redirects them to the issuer’s logon page. Here, 
the user is authenticated and is then redirected back to the applica-
tion. Figure 1 shows the first set of steps that allow someone to use 
single sign-on with a browser application.

figure 1
Single sign-on with a browser, part 1

If you’re familiar with ASP.NET forms authentication, you might 
assume that the issuer in the preceding figure is using forms authenti-
cation if it exposes a page named Login.aspx. But this page may simply 
be an empty page that is configured in Internet Information Services 
(IIS) to require Integrated Windows Authentication or a client cer-
tificate or smart card. An issuer should be configured to use the most 
natural and secure method of authentication for the users that sign in 
there. Sometimes a simple user name and password form is enough, 
but obviously this requires some interaction and slows down the user. 
Integrated Windows Authentication is easier and more secure for 
employees in the same domain as the issuer. 

Issuer

1. Send initial request. Application

Login Page

2. Redirect request.

3.
 S

ig
n 

in
.



1818 chapter two

When the user is redirected to the issuer’s log-on page, several 
query string arguments defined in the WS-Federation standard are 
passed that act as instructions to the issuer. Here are two of the key 
arguments with example values:

wa=wsignin1.0
The wa argument stands for “action,” and indicates one of 
two things—whether you’re logging on (wsignin1.0) or 
logging off (wsignout1.0).

wtrealm=http://www.fabrikam.com/purchasing/
The wtrealm argument stands for “target realm” and 
contains a Uniform Resource Indicator (URI) that identifies 
the application. The issuer uses the URI to identify the 
application the user is logging on to. The URI also allows the 
issuer to perform other tasks, such as associating the claims 
for the application and replying to addresses.

After the issuer authenticates the user, it gathers whatever claims 
the application needs (using the wtrealm parameter to identify the 
target application), packages them into a security token, and signs  
the token with its private key. If the application wants its tokens  
encrypted, the issuer encrypts the token with the public key in the 
application’s certificate.

Now the issuer asks the browser to go back to the application. 
The browser sends the token to the application so it can process the 
claims. Once this is done, the user can begin using the application. 

To accomplish this, the issuer returns an HTML page to the 
browser, including a <form> element with the form-encoded token 
inside. The form’s action attribute is set to submit the token to what-
ever URL was configured for the application. The user doesn’t nor-
mally see this form because the issuer also emits a bit of JavaScript 
that auto-posts it. If scripts are disabled, the user will need to click a 
button to post the response to the server. Figure 2 shows this process.

The issuer is told which 
application is in use so that  
it issues only the claims that  
the application needs.

If this sounds familiar, 
it’s because forms 
authentication uses  
a similar redirection 
technique with  
the ReturnURL 
parameter.



 19 19claims-based architectures

figure 2
Single sign-on with a browser, part 2

Now consider this process from the user’s experience. If the is-
suer uses Integrated Windows Authentication, the user clicks the link 
to the application, waits for a moment while the browser is first redi-
rected to the issuer and then back to the application, and then the 
user is logged on without any additional input. If the issuer requires 
input from the user, such as a user name and password or a smart card, 
users must pause briefly to log on, and then they can use the applica-
tion. From the user’s point of view, the logon process with claims is 
the same as what he or she is used to, which is critical.

Understanding the Sequence of Steps
The steps illustrated in the preceding illustrations can also be depicted 
as a sequence of steps that occur over time. Figure 3 shows this se-
quence when authenticating against Active Directory Federation 
Services (ADFS) and Active Directory.

Issuer

6. Post <form>, 
application

recieves token. Application

Login Page

5. Subm
it.

4.
 R

et
ur

n
<f

or
m

>
w

ith
 to

ke
n.

7. WIF validates token and issues a cookie.
8. WIF presents the claims to the application.
9. Application processes claims and continues.



2020 chapter two

2

1

3

4 5

6

7

a-Expense : 
Application

Active Directory :
Directory

ADFS : IssuerJohn : Browser

Browse application

User is not authenticated.

Browse to issuer (with Kerberos ticket).

SAML token signed.

POST signed 
SAML token.

Receive the home
page and a cookie

WIF validates
token.

Send another page and a cookie.

Receive another page.
WIF populates
ClaimsPrincipal.

This is coordinated by the 
WSFederationAuthenticationModule
(FAM).

This is coordinated by the 
SessionAuthenticationModule
(SAM).

Query for user
attributes such
as email, name, 
and cost center.

figure 3
Browser-based message sequence

If a user is not authenticated, the browser requests a token from 
the issuer, which in this case is Active Directory Federation Services 
(ADFS). ADFS queries Active Directory for the necessary attributes 
and returns a signed token to the browser.

After the POST arrives at the application, WIF takes over.  
The application has configured a WIF HTTP module, named WS 
FederationAuthenticationModule (FAM), to intercept this POST to 
the application and handle the processing of the token. The FAM  
listens for the AuthenticateRequest event. The event handler  

An audience restriction deter-
mines the URIs the application 
will accept. When applying for 
a token, the user or application 
will usually specify the URIs for 
which the token should be valid 
(the AppliesTo value, typically 
the URL of the application).  
The issuer includes this as the 
audience restriction in the token 
it issues.  



 21 21claims-based architectures

Event :
SessionSecurityTokenReceived

Arguments :
raw security token

Event :
SessionSecurityTokenValidated

Arguments :
ClaimsPrincipal

Validate the token
with the

corresponding
security token

handler, such as
SAML 1.1, SAML 2.0, 
encrypted or custom. 

Create the
ClaimsPrincipal object
with the claims inside.

Use the
ClaimsAuthenticationMananger

class to enrich the 
ClaimsPrincipal

object.

Create the
SessionsSecurityToken:
Encode(Chunk(Encrypt

(ClaimsPrincipal+lifetime+
[original token]))).

Set the HTTPContext.User
property to the

ClaimsPrincipal object.
Convert the session

token into a set
of chunked cookies.

Redirect to the 
original return URL,

if it exists.

performs several validation steps, including  
checking the token’s audience restriction and the 
expiration date. Audience restriction is defined by 
the AudienceURI element. 

The FAM also uses the issuer’s public key to 
make sure that the token was signed by the 
trusted issuer and was not modified in transit. 
Then it parses the claims in the token and uses the 
HttpContext.User.Identity property (or equiva-
lently the Page.User property) to present an 
IClaimsPrincipal object to the application. It also 
issues a cookie to begin a logon session, just like 
what would happen if you were using forms  
authentication instead of claims. This means that 
the authentication process isn’t repeated until the 
user signs off or otherwise destroys the cookie, or 
until the session expires (sessions are typically 
designed to last for a single workday). 

Figure 4 shows the steps that WIF takes for 
the initial request, when the application receives a 
token from the issuer.

One of the steps that the FAM performs is  
to create the session token. On the wire, this 
translates into a sequence of cookies named 
FedAuth[n]. These cookies are the result of  
compressing, encrypting, and encoding the Claims 
Principal object, along with any other attributes. 
The cookies are chunked to avoid overstepping 
any size limitations.

Figure 5 shows what the network traffic 
looks like for the initial request.

figure 5
Sequence of cookies

figure 4
Sequence of steps for initial request



2222 chapter two

On subsequent requests to the application, the 
SessionAuthenticationModule intercepts the cookies 
and uses them to reconstruct the ClaimsPrincipal 
object. Figure 6 shows the steps that WIF takes for any 
subsequent requests.

Figure 7 shows what the network traffic looks like 
for subsequent requests.

figure 7
Network traffic for subsequent responses

All of the steps, both for the initial and subsequent 
requests, should run over the Secure Sockets Layer 
(SSL) to ensure that an eavesdropper can’t steal either 
the token or the logon session cookie and replay them 
to the application in order to impersonate a legitimate 
user.

Event :
SessionSecurityTokenReceived

Arguments :
session token

Check that the
cookie is present.

If it is, 
recreate the

SessionSecurityToken
by decoding,

decrypting, and
decompressing 

the cookie.

Check the
SessionSecurityToken

expiration date.

Create the
ClaimsPrincipal object
with the claims inside.

Set the
HTTPContext.User 

property to the
ClaimsPrincipal object.

figure 6
Steps for subsequent 
requests



 23 23claims-based architectures

Optimizing Performance
Are there opportunities for performance optimizations here? The 
answer is a definite “Yes.” You can use the logon session cookie to 
cache some state on the client to reduce round-trips to the issuer. The 
issuer also issues its own cookie so that users remain logged on at the 
issuer and can access many applications. Think about how this 
works—when a user visits a second application and that application 
redirects back to the same issuer, the issuer sees its cookie and knows 
the user has recently been authenticated, so it can immediately issue 
a token without having to authenticate again. This is how to use 
claims to achieve Internet-friendly single sign-on with a browser-
based application.

Smart Clients
When you use a web service, you don’t use a browser. Instead, you use 
an arbitrary client application that includes logic for handling claims-
based identity protocols. There are two protocols that are important 
in this situation: WS-Trust, which describes how to get a security to-
ken from an issuer, and WS-Security, which describes how to pass that 
security token to a claims-based web service.

Recall the procedure for using a SOAP-based web service. You use 
the Microsoft Visual Studio® development system or a command-line 
tool to download a Web Service Definition Language (WSDL) docu-
ment that supplies the details of the service’s address, binding, and 
contract. The tool then generates a proxy and updates your applica-
tion’s configuration file with the information discovered in the WSDL 
document. When you do this with a claims-based service, its WSDL 
document and its associated WS-Policy document supply all the nec-
essary details about the issuer that the service trusts. This means that 
the proxy knows that it needs to obtain a security token from that 
issuer before making requests to the service. Because this information 
is stored in the configuration file of the client application, at run time 
the proxy can get that token before talking to the service. This opti-
mizes the handshake a bit compared to the browser scenario, because 
the browser had to visit the application first before being redirected 
to the issuer. Figure 8 shows the sequence of steps for smart clients 
when the issuer is ADFS authenticating users against Active Directory.

Applications and issuers use 
cookies to achieve Internet-
friendly single-sign on.

Single sign-on is also 
possible using ACS when a 
local issuer such as ADFS  
is not available. However, 
ACS is primarily aimed at 
federated identity scenarios 
where the user is authenti-
cated in a different realm 
from the application. ACS  
is discussed in more detail  
in the section “Federated 
Identity with ACS” later  
in this chapter.



2424 chapter two

2

1

Orders :
Web Service

Active Directory:
Directory

ADFS : Issuer
Rick :

Application

Use the username to
request a security
token.

Return the signed
SAML token.

Call operation 1 on
the web service
with the SAML
token.

Send the SOAP
response. WIF

validates
token.

Validate credentials
and query for user
attributes such as 
email, name, and 

cost center.

If the client makes a second
call to the web service, it
obtains a new token from
the issuer, unless it cached
the token obtained at the
first call.

These interactions can be
orchestrated by the WCF
WSFederation binding. 
When the client proxy
wants to call the service, it
first tries to obtain a token.

figure 8
Smart client-based message sequence

The steps for a smart client are similar to those for browser-based 
applications. The smart client makes a round-trip to the issuer, using 
WS-Trust to request a security token. In step 1, The Orders web ser-
vice is configured with the WSFederationHttpBinding. This binding 
specifies a web service policy that obligates the client to attach a 
SAML token to the security header to successfully invoke the web 
service. This means that the client will first have to call the issuer with 
a set of credentials such as a user name and password to get a SAML 
token back. In step 2, the client can call the web service with the to-
ken attached to the security header. 



 25 25claims-based architectures

Figure 9 shows a trace of the messages that occur in the smart 
client scenario.

figure 9
Smart client network traffic

The WS-Trust request (technically named a Request for Security 
Token, or RST for short) includes a field named AppliesTo, which  
allows the smart client to indicate a URI for the web service it’s  
ultimately trying to access. This is similar to the wtrealm query string 
argument used in the case of a web browser. Once the issuer authen-
ticates the user, it knows which application wants access and it can 
decide which claims to issue. Then the issuer sends back the response 
(RSTR), which includes a signed security token that is encrypted with 
the public key of the web service. The token includes a proof key. This 
is a symmetric key randomly generated by the issuer and included as 
part of the RSTR so that the client also gets a copy.

Now it’s up to the client to send the token to the web service in 
the <Security> header of the SOAP envelope. The client must sign the 
SOAP headers (one of which is a time stamp) with the proof key to 
show that it knows the key. This extra cryptographic evidence further 
assures the web service that the caller was, indeed, the one who was 
issued the token in the first place.

At this point, it’s typical to start a session using the WS-Secure 
Conversation protocol. The client will probably cache the RSTR for 
up to a day in case it needs to reconnect to the same service later on.

SharePoint Applications  
and SharePoint BCS

A common requirement for single sign-on and federated identity is in 
Microsoft SharePoint® applications, including those that use the Busi-
ness Connectivity Services (BCS) to work with data exposed by re-
mote services. Microsoft SharePoint Server 2010 implements a claims-
based identity model that supports authentication across users of 
Windows-based and non-Windows -based systems, multiple authen-
tication types, a wide set of principal types, and delegation of user 
identity between applications.

SharePoint 2010 can accept claims provided as SAML tokens,  
and can use them to make identity-related decisions. These decisions 
may consist of simple actions such as personalization based on the 



2626 chapter two

user name, or more complex actions such as authorizing access to 
features and functions within the application. 

SharePoint also includes a claims provider that can issue claims 
and package these claims into security tokens. It can augment tokens 
by adding additional claims, and expose the claims in the SharePoint 
people picker tool. The ability to augment existing tokens makes it 
easier to build SharePoint applications that use BCS to access remote 
services for which authentication is required.

Chapter 10, “Accessing REST Services from a Windows Phone 
Device” and Chapter 11, “Claims-Based Single Sign-On for Microsoft 
SharePoint 2010” provide more information about using claims and 
issuers in SharePoint 2010. A guide to using claims in SharePoint is 
available at “Getting Started with Security and Claims-Based Identity 
Model” on the MSDN® website (http://msdn.microsoft.com/en-us/
library/ee536164.aspx). 

Federating Identity across Realms
So far you’ve learned enough about claims-based identity to under-
stand how to design and build a claims-based application where the 
issuer directly authenticates the users. 

But you can take this one step further. You can expand your is-
suer’s capabilities to accept a security token from another issuer, in-
stead of requiring the user to authenticate directly. Your issuer now 
not only issues security tokens, but also accepts tokens from other 
issuers that it trusts. This enables you to federate identity with other 
realms (these are separate security domains), which is truly a powerful 
feature. Much of the federation process is actually accomplished by 
your IT staff, because it depends on how issuers are configured. But 
it’s important to be aware of these possibilities because, ultimately, 
they lead to more features for your application, even though you 
might not have to change your application in any way. Also, some of 
these possibilities may have implications for your application’s design.

The Benefits of Cross-Realm Identity
Maintaining an identity database for users can be a daunting task. 
Even something as simple as a database that holds user names and 
passwords can be painful to manage. Users forget their passwords on 
a regular basis, and the security stance taken by your company may 
not allow you to simply email forgotten passwords to them the way 
many low-security websites do. If maintaining a database for users 
inside your enterprise is difficult, imagine doing this for hundreds or 
thousands of remote users.

http://msdn.microsoft.com/en-us/library/ee536164.aspx
http://msdn.microsoft.com/en-us/library/ee536164.aspx


 27 27claims-based architectures

Managing a role database for remote users is just as difficult. 
Imagine Alice, who works for a partner company and uses your pur-
chasing application. On the day that your IT staff provisioned her 
account, she worked in the purchasing department, so the IT staff 
assigned her the role of Purchaser, which granted her permission to 
use the application. But because she works for a different company, 
how is your company going to find out when she transfers to the Sales 
department? What if she quits? In both cases, you’d want to know 
about her change of status, but it’s unlikely that anyone in the HR 
department at her company is going to notify you.

It’s unavoidable that any data you store about a remote user even-
tually becomes stale. How can you safely expose an application for a 
partner business to use?

One of the most powerful features of claims-based identity is 
that you can decentralize it. Instead of having your issuer authenticate 
remote users directly, you can set up a trust relationship with an is-
suer that belongs to the other company. This means that your issuer 
trusts their issuer to authenticate users in their realm. Their employees 
are happy because they don’t need special credentials to use your 
application. They use the same single sign-on mechanism they’ve al-
ways used in their company. Your application still works because it 
continues to get the same boarding pass it needs. The claims you get 
in your boarding pass for these remote users might include less power-
ful roles because they aren’t employees of your company, but your 
issuer will be responsible for determining the proper assignments. Fi-
nally, your application doesn’t need to change when a new organiza-
tion becomes a partner. The fan-out of issuers to applications is a real 
benefit of using claims—you reconfigure one issuer and many down-
stream applications become accessible to many new users. 

Another benefit is that claims allow you to logically store data 
about users. Data can be kept in the store that is authoritative rather 
than in a store that is simply convenient to use or easily accessible.

Identity federation removes hurdles that may have stopped you 
from opening the doors to new users. Once your company decides 
which realms should be allowed access to your claims-based applica-
tion, your IT staff can set up the proper trust relationships. Then you 
can, for example, invite employees from a company that uses Java, to 
access your application without having to issue passwords for each of 
them. They only need a Java-based issuer, and those have been avail-
able for years. Another possibility is to federate identity with Win-
dows Live® network of Internet services, which supports claims-based 
identity. This means that anyone with a Windows Live ID can use your 
application.

Alice’s identity is  
an asset of Alice’s 
organization, so her 
company should 
manage it. Also, 
storing information 
about remote users 
can be considered  
a liability for your 
company.

Claims can be used to 
decentralize identity, 
eliminating stale data  
about remote users.



2828 chapter two

How Federated Identity Works
You’ve already seen how federated identity works within a single 
realm. Indeed, Figure 2 is a small example of identity federation be-
tween your application and a local issuer in your realm. That relation-
ship doesn’t change when your issuer interacts with an issuer it trusts 
in a different realm. The only change is that your issuer is now config-
ured to accept a security token issued by a partner company instead 
of directly authenticating users from that company. Your issuer trusts 
another issuer to authenticate users so it doesn’t have to. This is simi-
lar to how your application trusts its issuer.

Figure 10 shows the steps for federating identity across realms.

figure 10
Federating identity across realms

Federating identity across realms is exactly the same as you’ve 
seen in the earlier authentication techniques discussed in this chapter, 
with the addition of an initial handshake in the partner’s realm. Users 
first authenticate with an issuer in their own realm. They present the 
tokens they receive from their exchanges to your issuer, which accepts 
it in lieu of authenticating them directly. Your issuer can now issue a 
token for your application to use. This token is what the user sends to 
your application. (Of course, users know nothing about this proto-
col—it’s actually the browser or smart client that does this on their 
behalf). Remember, your application will only accept tokens signed by 
the one issuer that it trusts. Remote users won’t get access if they try 
to send a token from their local issuer to your application.

1.
 A

ut
he

nt
ic

at
e.

2.
 Is

su
e 

to
ke

n.

3. Send token.

4. Issue token.

5. Send token.

Their
Issuer

My
Issuer

Application

Trust



 29 29claims-based architectures

At this point, you may be thinking, “Why should my company 
trust some other company to authenticate people that use my appli-
cation? That doesn’t seem safe!” Think about how this works without 
claims-based identity. Executives from both companies meet and sign 
legal contracts. Then the IT staff from the partner company contacts 
your IT staff and specifies which of their users need accounts provi-
sioned and which roles they will need. The legal contracts help ensure 
that nobody abuses the trust that’s been established. This process has 
been working for years and is an accepted practice.

Another question is why should you bother provisioning accounts 
for those remote users when you know that data will get stale over 
time? All that claims-based identity does is help you automate the 
trust, so that you get fresh information each time a user visits your 
application. If Alice quits, the IT staff at her company has great per-
sonal incentive to disable her account quickly. They don’t want a po-
tentially disgruntled employee to have access to company resources. 
That means that Alice won’t be able to authenticate with their issuer 
anymore, which means she won’t be able to use your application, ei-
ther. Notice that nobody needed to call you up to tell you about Alice. 
By decentralizing identity management, you get better information 
(authoritative information, you could say) about remote users in a 
timely fashion.

Claims can be used to automate existing trusts between businesses.

One possible drawback of federating identity with many other 
companies is that your issuer becomes a single point of failure for all 
of your federation relationships. Issuers should be as tightly guarded 
as domain controllers. Adding features is never without risk, but the 
rewards can lead to lower costs, better security, simpler applications, 
and happier users.

Federated Identity with ACS
Many users already have accounts with identity providers that authen-
ticate users for one or more applications and websites. Social net-
works such as Facebook, and email and service providers such as 
Windows Live ID and Google, often use a single sign-on model that 
supports authentication for several applications. Users increasingly 
expect to be able to use the credentials for these identity providers 
when accessing other applications.

ACS is an issuer that can make use of many of these identity pro-
viders by redirecting the user to the appropriate location to enter 
credentials, and then using the claims returned from that identity 
provider to issue a token to the applications. ACS can also be used to 
supplement a local issuer by retrieving claims from a social networking 
or email provider and passing these to the local issuer for it to issue 



3030 chapter two

the required token. ACS effectively allows a broad range of identity 
providers to be used for user authentication, both in conjunction with 
a local issuer and when no local issuer is available. 

Figure 11 shows the overall sequence of steps for a user authen-
ticating with an identity provider through ACS after a request for 
authentication has been received by ACS. ACS redirects the user to 
the appropriate identity provider. After successful authentication, 
ACS and ADFS map claims for the user and then return a token to the 
relying party (the claims-based application). Steps 5 and 6, where the 
intervention of a local issuer takes place, will only occur if the applica-
tion is configured to use a local issuer such as ADFS that redirects the 
user to ACS.

figure 11
Federated identity with ACS as the issuer,  
optionally including an ADFS local issuer

For more details about ACS and the message sequences with  
and without a local issuer, see Appendix B, “Message Sequences,” 
and Appendix E, “Windows Azure Access Control Service.”

A major consideration when using ACS is whether you should 
trust the identity providers that it supports. You configure ACS to use 
only the identity providers you specifically want to trust, and only 
these will be available to users when they log into your application. 
For example, depending on your requirements, you may decide to ac-
cept authentication only through Windows Live ID and Google, and 
not allow users to log in with a Facebook account. Each identity 
provider is an authority for users that successfully authenticate, and 

It is important for users to 
understand that, when they 
use their social identity 
provider credentials to log in 
through ACS, they are 
consenting to some informa-
tion (such as their name and 
email address) being sent to 
the application. However, 
giving this consent does not 
provide the application with 
access to their social network 
account—it just confirms 
their identity to the 
application.

Claims Based Application

7. Send
 token

6. 
Re
tu
rn 

to
ke
n

5. 
Sen

d t
oke

n

ADFS :

− Map Claims

ACS :

− Transition protocols
− Map claims

Social Identity Providers :

− Google
− Windows LiveID
− Facebook
− etc.

4.
 R
et

ur
n 

to
ke

n

3. 
Se

nd
 t
ok

en

2.
 Is

su
e 

to
ke

n

1. 
Au

th
en

tic
at

e



 31 31claims-based architectures

each provides proof of this by returning claims such as the user name, 
user identifier, and email address.

ACS generates a list of the configured identity providers from 
which users can select the one they want to use. You can create cus-
tom pages that show the available identity providers within your own 
application if required, and configure rules within ACS that transform 
and map the claims returned from the identity provider. After the user 
logs in at their chosen identity provider, ACS returns a token that the 
application or a local issuer such as ADFS can use to provide authori-
zation information to the application as required. 

Understanding the Sequence of Steps
Figure 12 shows the sequence of steps for ACS in more detail 

when there is no local issuer. 

figure 12
ACS federated identity message sequence

The user accesses the application and fails authentication. The 
browser is redirected to ACS, which generates and returns the list of 
accepted identity providers (which may include custom issuers or 
another ADFS instance as well as social identity providers and email 
services). The user selects the required identity provider, and ACS 
redirects the user to that identity provider’s login page. After the 
identity provider authenticates the user, it returns a token to ACS that 
declares the user to be valid. ACS then maps the claims and generates 
a token that declares this user to be valid, and redirects the user to the 

Br App ACS Google Live ID

Not Auth

Get Token

HRD page
Select IP

Redirect AuthN

Redirect + Token
Transform

Each identity 
provider will return  
a different set of 
claims. For example, 
Windows Live ID 
returns a user 
identifier, whereas 
Google returns  
the user name and 
email address.



3232 chapter two

application. The application uses the token to authorize the user for 
the appropriate tasks.

This means that the authority for the user’s identity differs at 
each stage of the process. For example, if the user chooses to authen-
ticate with Google, then the Google token issuer is the authority in 
declaring the user to be valid with them, and it returns proof in the 
form of a name and email address. When redirected to ACS, the 
browser presents the Google token and ACS becomes the authority 
on issuing claims about the user based on the valid token from Google 
(called a copy claim). ACS can perform transformation and mapping, 
such as to include the claim that this user works in a specific company 
and has a specific role in the application.

Combining ACS and ADFS
If, instead of authenticating with ACS, the user was originally redi-
rected by the application to a local issuer such as ADFS, which in-
cludes ACS amongst its trusted issuers, the local issuer receives the 
token from ACS and becomes the authority in declaring the user valid 
based on the claims returned from ACS. The local issuer can also per-
form transformation and mapping, such as to include the claim that 
this user works in a specific company and has a specific role in the 
application. A scenario that illustrates when this is useful is described 
in detail in Chapter 5, “Federated Identity with Windows Azure Ac-
cess Control Service.”

Identity Transformation
The issuer’s job is to take some generic incoming identity (perhaps 
from a Kerberos ticket, an X.509 certificate, or a set of user creden-
tials) and transform it into a security token that your application can 
use. That security token is like the boarding pass, in that it contains all 
of the user’s identity details that your application needs to do its job, 
and nothing more. Perhaps instead of the user’s Windows groups, 
your boarding pass contains roles that you can use right away.

On the other end of the protocol are users who can use their 
single sign-on credentials to access many applications because the is-
suer in their realm knows how to authenticate them. Their local issuer 
provides claims to applications in their local realm as well as to issuers 
in other realms so that they can use many applications, both local and 
remote, without having to remember special credentials for each one.

Consider the application’s local issuer in the last illustration, “Fed-
erating identity across realms.” It receives a security token from a user 
in some other realm. Its first job is to reject the request if the incom-
ing token wasn’t issued by one of the select issuers that it trusts. But 
once that check is out of the way, its job now becomes one of claims 

I think of an issuer  
as an “identity 
transformer.” It 
converts incoming 
identities into 
something that’s  
intelligible to the 
application. 



 33 33claims-based architectures

transformation. It must transform the claims made by the remote is-
suer into claims that make sense for your application. For a practical 
example, see Chapter 4, “Federated Identity for Web Applications.”

Transformation is carried out with rules such as, “If you see a 
claim of this type, with this value, issue this claim instead.” For exam-
ple, your application may have a role called Managers that grants 
special access to manager-specific features. That claim may map di-
rectly to a Managers group in your realm, so that local users who are 
in the Managers group always get the Managers role in your applica-
tion. In the partner’s realm, they may have a group called Supervisors 
that needs to access the manager-specific features in your application. 
The transformation from Supervisors to Managers can happen in their 
issuer; if it does not, it must happen in yours. This transformation 
simply requires another rule in the issuer. The point is that issuers such 
as ADFS and ACS are specifically designed to support this type of 
transformation because it’s rare that two companies will use exactly 
the same vocabulary. 

Home Realm Discovery
Now that you’ve seen the possibility of cross-realm federation, think 
about how it works with browser-based applications. Here are the 
steps:

1.	 Alice (in a remote realm) clicks a link to your application.

2.	 You redirect Alice to your local issuer, just like before.

3.	 Your issuer redirects Alice’s browser to the issuer in her 
realm.

4.	 Alice’s local issuer authenticates and issues a token, sending 
Alice’s browser back to your issuer with that token.

5.	 Your issuer validates the token, transforms the claims, and 
issues a token for your application to use.

6.	 Your issuer sends Alice’s browser back to your application, 
with the token that contains the claims your application 
needs.

The mystery here is in step 3. How does the issuer know that 
Alice is from a remote realm? What prevents the issuer from thinking 
she’s a local user and trying to authenticate her directly, which will 
only fail and frustrate the user? Even if the issuer knew that Alice was 
from a remote realm, how would it know which realm it was? After 
all, it’s likely that you’ll have more than one partner.

This problem is known as home realm discovery. Your issuer has 
to determine if Alice is from the local realm or if she’s from some 
partner organization. If she’s local, the issuer can authenticate her  

In ACS, the transfor-
mation and mapping 
rules are configured 
using the web-based 
administration portal 
or by making OData- 
formatted calls to  
the management API.

ADFS uses a rules 
engine to support 
claims transformation.



3434 chapter two

directly. If she’s remote, the issuer needs to know a URL to redirect 
her to so that she can be authenticated by her home realm’s issuer.

There are two ways to solve this problem. The simplest one is to 
have the user help out. In step 2, when Alice’s browser is redirected to 
your local issuer, the authentication sequence pauses and the browser 
displays a web page asking her what company she works for. (Note 
that it doesn’t help Alice to lie about this, because her credentials are 
only good for one of the companies on the list—her company.) Alice 
clicks the link for her company and the process continues, since the 
issuer now knows what to do. To avoid asking Alice this question in 
the future, your issuer sets a cookie in her browser so that next time 
it will know who her issuer is without having to ask.

If the issuer is ACS, it will automatically generate and display a 
page containing the list of accepted identity providers. Alice must 
select one of these, and her choice indicates her home realm. If ACS 
is using a trusted instance of an ADFS security token service (STS) as 
an identity provider, the home realm discovery page can contain a 
textbox as well as (or instead of) the list of configured identity provid-
ers where a user can enter a corresponding email address. The user is 
then authenticated by the ADFS STS.  

The second way to solve this problem is to add a hint to the 
query string that’s in the link that Alice clicks in step 1. That query 
string will contain a parameter named whr (hr stands for home realm). 

The issuer looks for this hint and automatically maps it to the 
URL of the user’s home realm. This means that the issuer doesn’t have 
to ask Alice who her issuer is because the application relays that infor-
mation to the issuer. The issuer uses a cookie, just as before, to ensure 
that Alice is never bothered with this question.

Take a look at 
Chapter 3, “Claims-
Based Single Sign-On 
for the Web,” to see 
an example of this 
technique.

Take a look at Chapter 4,  
“Federated Identity for 
Web Applications,” to  
see an example of this 
technique.

My IT people make sure that 
the links to remote 
applications always include 
this information. It makes 
the application much 
friendlier for the user and 
protects the privacy of my 
company by not revealing  
all of its partners.



 35 35claims-based architectures

Design Considerations for Claims-Based  
Applications

Admittedly, it’s difficult to offer general prescriptive guidance for 
designing claims because they are so dependent on the particular ap-
plication. This section poses a series of questions and offers some 
approaches to consider as you look at your options.

What Makes a Good Claim?
Like many of the most important design decisions, this question 
doesn’t always have a clear answer. What’s important is that you un-
derstand the tensions at play and the tradeoffs you’re facing. Here are 
some concrete examples that might help you start thinking about 
some general criteria for what makes a good claim.

First, consider a user’s email address. That’s a prime candidate for 
a claim in almost any system, because it’s generally very tightly coupled 
to the user’s identity, and it’s something that everyone needs if you 
decide to federate identity across realms. An email name can help you 
personalize your system for the user in a very meaningful way.

What about a user’s choice of a skin or theme for your website? 
Certainly, this is “personalization” data, but it’s also data that’s par-
ticular to a single application, and it’s hard to argue that this is part of 
a user’s identity. Your application should manage this locally.

What about a user’s permission to access data in your application? 
While it may make sense in some systems to model permissions as 
claims, it’s easy to end up with an overwhelming number of these 
claims as you model finer and finer levels of authorization. A better 
approach is to define a boundary that separates the authorization 
data you’ll get from claims from the data you’ll handle through other 
means. For example, in cross-realm federation scenarios, it can be 
beneficial to allow other realms to be authoritative for some high-
level roles. Your application can then map those roles onto fine-
grained permissions with tools such as Windows Authorization 
Manager (AzMan). But unless you’ve got an issuer that’s specifically 
designed for managing fine-grained permissions, it’s probably best to 
keep your claims at a much higher level.

Before making any attribute into a claim, ask yourself the follow-
ing questions:
•	 Is this data a core part of how I model user identity?
•	 Is the issuer an authority on this information? 
•	 Will this data be used by more than one application?
•	 Do I want an issuer to manage this data or should my  

application manage it directly?



3636 chapter two

How Can You Uniquely Distinguish One 
User from Another?

Because people aren’t born with unique identifiers (indeed, most 
people treasure their privacy), differentiating one person from an-
other has always been, and will likely always be a tricky problem. 
Claims don’t make this any easier. Fortunately, not all applications 
need to know exactly who the user is. Simply being able to identify 
one returning user from another is enough to implement a shopping 
cart, for example. Many applications don’t even need to go this far. 
But other applications have per-user state that they need to track, so 
they require a unique identifier for each user. 

Traditional applications typically rely on a user’s sign-in name to 
distinguish one user from the next. So what happens when you start 
building claims-based applications and you give up control over au-
thentication? You’ll need to pick one (or a combination of multiple) 
claims to uniquely identify your user, and you’ll need to rely on your 
issuer to give you the same values for each of those claims every time 
that user visits your application. It might make sense to ask the issuer 
to give you a claim that represents a unique identifier for the user. This 
can be tricky in a cross-realm federation scenario, where more than 
one issuer is involved. In these more complicated scenarios, it helps to 
remember that each issuer has a URI that identifies it and that can be 
used to scope any identifier that it issues for a user. An example of 
such a URI is http://issuer.fabrikam.com/unique-user-id-assigned-
from-fabrikams-realm.

Email addresses have convenient properties of uniqueness and 
scope already built in, so you might choose to use an email claim as a 
unique identifier for the user. If you do, you’ll need to plan ahead if 
you want users to be able to change the email address associated with 
their data. You’ll also need a way to associate a new email address with 
that data.

How Can You Get a List of All Possible 
Users and All Possible Claims?

One thing that’s important to keep in mind when you build a claims-
based application is that you’re never going to know about all the 
users that could use your application. You’ve given up that control in 
exchange for less responsibility, worry, and hassle over programming 
against any one particular user store. Users just appear at your door-
step, presenting the token they got from the issuer that you trust. 
That token gives you information about who the user is and what he 
or she can do. In addition, if you’ve designed your authorization code 
properly, you don’t need to change your code to support new users; 
even if those users come from other realms, as they do in federation 
scenarios.



 37 37claims-based architectures

So how can you build a list of users that allows administrators to 
choose which users have permission to access your application and 
which don’t? The simple answer is to find another way. This is a per-
fect example of where an issuer should be involved with authorization 
decisions. The issuer shouldn’t issue tokens to users who aren’t privi-
leged enough to use your application. It should be configured to do 
this without you having to do anything at all in your application.

When designing a claims-based application, always keep in mind 
that a certain amount of responsibility for identity has been lifted 
from your shoulders as an application developer. If an identity-related 
task seems difficult or impossible to build into your application logic, 
consider whether it’s possible for your issuer to handle that task for 
you.

Where Should Claims Be Issued?
The question of where claims should be issued is moot when you have 
a simple system with only one issuer. But when you have more com-
plex systems where multiple issuers are chained into a path of trust 
that leads from the application back to the issuer in the user’s home 
realm, this question becomes very relevant.

The short answer to the question of where claims should be is-
sued is “by the issuer that knows best.”

Take, for example, a claim such as a person’s email name. The 
email name of a user isn’t going to change based on which application 
he or she uses. It makes sense for this type of claim to be issued close 
to the user’s home realm. Indeed, it’s most likely that the first issuer in 
the chain, which is the identity provider, would be authoritative for 
the user’s email name. This means that downstream issuers and ap-
plications can benefit from that central claim. If the email name is ever 
updated, it only needs to be updated at that central location.

Now think about an “action” claim, which is specific to an applica-
tion. An application for expense reporting might want to allow or 
disallow actions such as submitExpenseReport and approve 
ExpenseReport. Another type of application, such as one that tracks 
bugs, would have very different actions, such as reportBug and  
assignBug. In some systems, you might find that it works best to have 
the individual applications handle these actions internally, based on 
higher-level claims such as roles or groups. But if you do decide to 
factor these actions out into claims, it would be best to have an issuer 
close to the application be authoritative for them. Having local au-
thority over these sorts of claims means you can more quickly imple-
ment policy changes without having to contact a central authority.

What about a group claim or a role claim? In traditional RBAC 
(Role-Based Access Control) systems, a user is assigned to one or 
more groups, the groups are mapped to roles, and roles are mapped to 

Always get claims from 
authoritative sources.



3838 chapter two

actions. There are many reasons why this is a good design: the map-
ping from roles to actions for an application can be done by someone 
who is familiar with it and who understands the actions defined for 
that application. For example, the mapping from user to groups can 
be done by a central administrator who knows the semantics of each 
group. Also, while groups can be managed in a central store, roles and 
actions can be more decentralized and handled by the various depart-
ments and product groups that define them. This allows for a much 
more agile system where identity and authorization data can be cen-
tralized or decentralized as needed.

Issuers are typically placed at boundaries in organizations. Take, 
for example, a company with several departments. Each department 
might have its own issuer, while the company has a central issuer that 
acts as a gateway for claims that enter or leave it. If a user at this 
company accesses an application in another, similarly structured com-
pany, the request will end up being processed by four issuers:
•	 The departmental issuer, which authenticates the user and 

supplies an email name and some initial group claims
•	 The company’s central issuer, which adds more groups and some 

roles based on those groups
•	 The application’s central issuer, which maps roles from the user’s 

company to roles that the application’s company understands 
(this issuer may also add additional role-claims based on the 
ones already present)

•	 The application’s departmental issuer, which maps roles onto 
actions
You can see that as the request crosses each of these boundaries, 

the issuers there enrich and filter the user’s security context by issuing 
claims that make sense for the target context, based on its require-
ments and the privacy policies. Is the email name passed all the way 
through to the application? That depends on whether the user’s com-
pany trusts the application’s company with that information, and 
whether the application’s company thinks the application needs to 
know that information.

What Technologies Do Claims  
and Tokens Use?

Security tokens that are passed over the Internet typically take one of 
two forms:
•	 Security Assertion Markup Language (SAML) tokens are XML-

encoded structures that are embedded inside other structures 
such as HTTP form posts and SOAP messages. 

Issuers are typically found at 
organizational boundaries.



 39 39claims-based architectures

•	 Simple Web Token (SWT) tokens that are stored in the HTTP 
headers of a request or response.
The tokens are encrypted and can be stored on the client as cookies. 
Security Assertion Markup Language (SAML) defines a language 

for exchanging security information expressed in the form of asser-
tions about subjects. A subject may be a person or a resource (such as 
a computer) that has an identity in a security domain. A typical ex-
ample of a subject is a person identified by an email address within a 
specific DNS domain. The assertions in the token can include informa-
tion about authentication status, specific details of the subject (such 
as a name), and the roles valid for the subject that allow authorization 
decisions to be made by the relying party. 

The protocol used to transmit SAML tokens is often referred to 
as SAML-P. It is an open standard that is ratified by Oasis, and it is 
supported by ADFS 2.0. However, at the time of this writing it  
was not natively supported by Windows Identity Foundation (WIF). 
To use SAMP-P with WIF requires you to create or obtain a custom 
authentication module that uses the WIF extensibility mechanism.

Simple Web Token (SWT) is a compact name-value pair security 
token designed to be easily included in an HTTP header. 

The transfer of tokens between identity provider, issuer, client, 
and the relying party (the application) may happen through HTTP 
web requests and responses, or through web service requests and 
responses, depending on the nature of the client. Web browsers rely 
mainly on HTTP web requests and responses. Smart clients and other 
services (such as SharePoint BCS) use web service requests and re-
sponses. 

Web service requests make use of a suite of security standards 
that fall under the heading of the WS* Extensions. The WS* stan-
dards include the following extensions:
•	 WS-Security. This specification defines a protocol for end-to-

end message content security that supports a wide range of 
security token formats, trust domains, signature formats, and 
encryption technologies. It provides a framework that, in 
conjunction with other extensions, provides the ability to send 
security tokens as part of a message, to verify message integrity, 
and to maintain message confidentiality. The WS-Security 
mechanisms can be used for single tasks such as passing a 
security token, or in combination to enable signing and encrypt-
ing a message and providing a security token.

•	 WS-Trust. This specification builds on the WS-Security proto-
col to define additional extensions that allow the exchange of 
security tokens for credentials in different trust domains. It 
includes definitions of mechanisms for issuing, renewing, and 



4040 chapter two

validating security tokens; for establishing the presence of trust 
relationships between domains, and for brokering these trust 
relationships.

•	 WS-SecureConversation. This specification builds on WS-
Security to define extensions that support the creation and 
sharing of a security context for exchanging multiple messages, 
and for deriving and managing more efficient session keys for 
use within the conversation. This can increase considerably the 
overall performance and security of the message exchanges.

•	 WS-Federation. This specification builds on the WS-Security 
and WS-Trust protocols to provide a way for a relying party to 
make the appropriate access control decisions based on the 
credibility of identity and attribute data that is vouched for by 
another realm. The standard defines mechanisms to allow 
different security realms to federate so that authorized access 
to resources managed in one realm can be provided to subjects 
whose identities are managed in other realms.

•	 WS-Federation: Passive Requestor Profile. This specification 
describes how the cross trust realm identity, authentication, and 
authorization federation mechanisms defined in WS-Federation 
can be utilized used by passive requesters such as web browsers 
to provide identity services. Passive requesters of this profile are 
limited to the HTTP protocol.

Security Association Management Protocol (SAMP) and Internet 
Security Association and Key Management Protocol (ISAKMP) define 
standards for establishing security associations that define the header, 
authentication, payload encapsulation, and application layer services 
for exchanging key generation and authentication data that is inde-
pendent of the key generation technique, encryption algorithm, and 
authentication mechanism in use. All of these are necessary to estab-
lish and maintain secure communications when using IP Security 
Service or any other security protocol in an Internet environment.

For more information about these standards and protocols,  
see Appendix C of this guide.

WS* is a suite of standards 
where each builds on other 
standards to provide additional 
capabilities or to meet specific 
scenario requirements.



 41 41claims-based architectures

Questions

1.	 Which of the following protocols or types of claims token 
are typically used for single sign-on across applications in 
different domains and geographical locations?

a.	 Simple web Token (SWT)

b.	 Kerberos ticket

c.	 Security Assertion Markup Language (SAML) token

d.	 Windows Identity

2.	 In a browser-based application, which of the following  
is the typical order for browser requests during 
authentication?

a.	 Identity provider, token issuer, relying party

b.	 Token issuer, identity provider, token issuer, relying 
party

c.	 Relying party, token issuer, identity provider, token 
issuer, relying party

d.	 Relying party, identity provider, token issuer, relying 
party 

3.	 In a service request from a non-browser-based application, 
which of the following is the typical order of requests 
during authentication?

a.	 Identity provider, token issuer, relying party

b.	 Token issuer, identity provider, token issuer, relying 
party

c.	 Relying party, token issuer, identity provider, token 
issuer, relying party

d.	 Relying party, identity provider, token issuer, relying 
party

4.	 What are the main benefits of federated identity?

a.	 It avoids the requirement to maintain a list of valid 
users, manage passwords and security, and store and 
maintain lists of roles for users in the application.

b.	 It delegates user and role management to the trusted 
organization responsible for the user, instead of it 
being the responsibility of your application.



4242 chapter two

c.	 It allows users to log onto applications using the same 
credentials, and choose an identity provider that is 
appropriate for the user and the application to validate 
these credentials.

d.	 It means that your applications do not need to include 
authorization code. 

5.	 How can home realm discovery be achieved?

a.	 The token issuer can display a list of realms based on 
the configured identity providers and allow the user  
to select his home realm.

b.	 The token issuer can ask for the user’s email address 
and use the domain to establish the home realm.

c.	 The application can use the IP address to establish the 
home realm based on the user’s country/region of 
residence.

d.	 The application can send a hint to the token issuer in 
the form of a special request parameter that indicates 
the user’s home realm.



43

This chapter walks you through an example of single sign-on for in-
tranet and extranet web users who all belong to a single security 
realm. You’ll see examples of two existing applications that become 
claims-aware. One of the applications uses forms authentication, and 
one uses Windows authentication. Once the applications use claims-
based authentication, you’ll see how it’s possible to interact with the 
applications either from the company’s internal network or from the 
public Internet. 

This basic scenario doesn’t show how to establish trust relation-
ships across enterprises. (That is discussed in Chapter 4, “Federated 
Identity for Web Applications.”) It focuses on how to implement 
single sign-on and single sign-off within a security domain as a prepa-
ration for sharing resources with other security domains, and how to 
migrate applications to Windows Azure™. In short, this scenario 
contains the commonly used elements that will appear in all claims-
aware applications.

The Premise 
Adatum is a medium-sized company that uses Microsoft Active Direc-
tory® directory service to authenticate the employees in its corporate 
network. Adatum’s sales force uses a-Order, Adatum’s order process-
ing system, to enter, process, and manage customer orders. Adatum 
employees also use aExpense, an expense tracking and reimbursement 
system for business-related expenses.

Both applications are built with ASP.NET 4.0 and are deployed in 
Adatum’s data center. Figure 1 shows a whiteboard diagram of the 
structure of a-Order and a-Expense.

Claims-Based Single Sign-On for 
the Web and Windows Azure

3

For single sign-on, the issuer 
also creates a session with the 
user that works with different 
applications. 



4444 chapter three

figure 1
Adatum infrastructure before claims

The two applications handle authentication differently. The a-
Order application uses Windows authentication. It recognizes the 
credentials used when employees logged on to the corporate net-
work. The application doesn’t need to prompt them for user names 
and passwords. For authorization, a-Order uses roles that are derived 
from groups stored in Active Directory. In this way, a-Order is inte-
grated into the Adatum infrastructure. 

The user experience for a-Expense is a bit more complicated. The 
a-Expense application uses its own authentication, authorization, and 
user profile information. This data is stored in custom tables in an 
application database. Users enter a user name and password in a web 
form whenever they start the application. The a-Expense application’s 
authentication approach reflects its history. The application began as 
a Human Resources project that was developed outside of Adatum’s 
IT department. Over time, other departments adopted it. Now it’s a 
part of Adatum’s corporate IT solution.

The a-Expense access control rules use application-specific roles. 
Access control is intermixed with the application’s business logic. 

Some of the user profile information that a-Expense uses also 
exists in Active Directory, but because a-Expense isn’t integrated with 
the corporate enterprise directory, it can’t access it. For example,  

Users

Roles

Profiles

a−Expense

ASP.NET

ASP.NET

ASP.NET

Kerberos

a−Vacations

a−Facilities Java

John at 
Adatam Corporation

Browser

User Name & Password

Active Directory

a−Order

Keeping the user 
database for forms-
based authentication 
up to date is painful 
since this mainte-
nance isn’t integrated 
into Adatum’s process 
for managing 
employee accounts.



 45 45claims-based single sign-on for the web and windows azure

Active Directory contains each employee’s cost center, which is also 
one of the pieces of information maintained in the a-Expense user 
profile database. Changing a user’s cost center in a-Expense is messy 
and error prone. All employees have to manually update their profiles 
when their cost centers change.

Goals and Requirements
Adatum has a number of goals in moving to a claims-based identity 
solution. One goal is to add the single sign-on capability to its net-
work. This allows employees to log on once and then be able to access 
all authorized systems, including a-Expense. With single sign-on, users 
will not have to enter a user name and password when they use a-
Expense.

A second goal is to enable Adatum employees to access corporate 
applications from the Internet. Members of the sales force often 
travel to customer sites and need to be able to use a-Expense and 
aOrder without the overhead of establishing a virtual private network 
(VPN) session. 

A third goal is to plan for the future. Adatum wants a flexible 
solution that it can adapt as the company grows and changes. Right 
now, a priority is to implement an architecture that allows them to 
host some applications in a cloud environment such as Windows 
Azure. Moving operations out of their data center will reduce their 
capital expenditures and make it simpler to manage the applications. 
Adatum is also considering giving their customers access to some ap-
plications, such as a-Order. Adatum knows that claims-based identity 
and access control are the foundations needed to enable these plans.

While meeting these goals, Adatum wants to make sure its solu-
tion reuses its existing investment in its enterprise directory. The 
company wants to make sure user identities remain under central ad-
ministrative control and don’t span multiple stores. Nonetheless, 
Adatum wants its business units to have the flexibility to control ac-
cess to the data they manage. For example, not everyone at Adatum 
is authorized to use the a-Expense application. Currently, access to 
the program is controlled by application-specific roles stored in a 
departmentally administered database. Adatum’s identity solution 
must preserve this flexibility.

Finally, Adatum also wants its identity solution to work with 
multiple platforms and vendors. And, like all companies, Adatum 
wants to ensure that any Internet access to corporate applications is 
secure.

With these considerations in mind, Adatum’s technical staff has 
made the decision to modify both the aExpense and the a-Order  
applications to support claims-based single sign-on.

Dealing with change 
is one of the 
challenges of IT 
operations.

Your choice of an identity 
solution should be based on 
clear goals and requirements.



4646 chapter three

Overview of the Solution
The first step was to analyze which pieces of identity information 
were common throughout the company and which were specific to 
particular applications. The idea was to make maximum use of the 
existing investment in directory information. Upon review, Adatum 
discovered that their Active Directory store already contained the 
necessary information. In particular, the enterprise directory main-
tained user names and passwords, given names and surnames, e-mail 
addresses, employee cost centers, office locations, and telephone 
numbers. 

Since this information was already in Active Directory, the claims-
based identity solution would not require changing the Active Direc-
tory schema to suit any specific application. 

They determined that the main change would be to introduce an 
issuer of claims for the organization. Adatum’s applications will trust 
this issuer to authenticate users. 

Adatum envisions that, over time, all of its applications will even-
tually trust the issuer. Since information about employees is a corpo-
rate asset, the eventual goal is for no application to maintain a custom 
employee database. Adatum recognizes that some applications have 
specialized user profile information that will not (and should not) be 
moved to the enterprise directory. Adatum wants to avoid adding 
application-specific attributes to its Active Directory store, and it 
wants to keep management as decentralized as possible. 

For the initial rollout, the company decided to focus on a-Expense 
and a-Order. The a-Order application only needs configuration 
changes that allow it to use Active Directory groups and users as 
claims. Although there is no immediate difference in the application’s 
structure or functionality, this change will set the stage for eventually 
allowing external partners to access a-Order. 

The a-Expense application will continue to use its own applica-
tion-specific roles database, but the rest of the user attributes will 
come from claims that the issuer provides. This solution will provide 
single sign-on for aExpense users, streamline the management of user 
identities, and allow the application to be accessible remotely from 
the Internet.

You might ask why Adatum chose claims-based identity rather than 
Windows authentication for a-Expense. Like claims, Windows 
authentication provides single sign-on, and it is a simpler solution 
than issuing claims and configuring the application to process claims. 

Nobody likes changing 
their Active Directory 
schema. Adding 
app-specific rules or 
claims from a non– 
Active Directory  
data store to a claims 
issuer is easier.

Claims can take advantage of 
existing directory information.

Staging is helpful.  
You can change 
authentication first 
without affecting 
authorization. 



 47 47claims-based single sign-on for the web and windows azure

There’s no disagreement here: Windows authentication is 
extremely well suited for intranet single sign-on and should be used 
when that is the only requirement.

Adatum’s goals are broader than just single sign-on, however. 
Adatum wants its employees to have remote access to a-Expense and 
a-Order without requiring a VPN connection. Also, Adatum wants to 
move aExpense to Windows Azure and eventually allow customers to 
view their pending orders in the aOrder application over the Inter-
net. The claims-based approach is best suited to these scenarios.

Figure 2 shows the proposal, as it was presented on Adatum’s 
whiteboards by the technical staff. The diagram shows how internal 
users will be authenticated.

figure 2
Moving to claims-based identity

This claims-based architecture allows Adatum employees to work 
from home just by publishing the application and the issuer through 
the firewall and proxies. Figure 3 shows the way Adatum employees 
can use the corporate intranet from home. 

Users

Roles

Profiles

a−Expense

ASP.NET

ASP.NET

Kerberos

John at 
Adatam Corporation

Browser

User Name &
Password

Active
Directory

a−Order

Issuer
1

0



4848 chapter three

figure 3
Claims-based identity over the Internet

Once the issuer establishes the remote user’s identity by prompt-
ing for a user name and password, the same claims are sent to the 
application, just as if the employee is inside the corporate firewall.

This solution makes Adatum’s authentication strategy much more 
flexible. For example, Adatum could ask for additional authentication 
requirements, such as smart cards, PINs, or even biometric data, when 
someone connects from the Internet. Because authentication is now 
the responsibility of the issuer, and the applications always receive the 
same set of claims, the applications don’t need to be rewritten. The 
ability to change the way you authenticate users without having to 
change your applications is a real benefit of using claims.

You can also look at this proposed architecture from the point of 
view of the HTTP message stream. For more information, see the mes-
sage sequence diagrams in Chapter 2, “Claims-Based Architectures.” 

Users

Roles

Profiles

a−Expense

ASP.NET

ASP.NET

Kerberos

John at 
Adatam Corporation

Browser

Browser

User Name &
Password

ACTIVE
DIRECTORY

a−Order

John at 
Home

Issuer

1

3

2

ASP.NET
a−Vacations

a−Facilities Java

Firewall and Proxy

Internet

user Name &
Password

− Name
− Cost Center

0

The Active Directory 
Federation Services 
(ADFS) proxy role 
provides intermediary 
services between an 
Internet client and an 
ADFS server that is 
behind a firewall. 



 49 49claims-based single sign-on for the web and windows azure

Inside the Implementation 
Now is a good time to walk through the process of converting a- 
Expense into a claims-aware application in more detail. As you go 
through this section, you may want to download the Microsoft Visual 
Studio® solution 1SingleSignOn from http://claimsid.codeplex.com. 
This solution contains implementations of a-Expense and a-Order, 
with and without claims. If you are not interested in the mechanics, 
you should skip to the next section.

a-Expense before Claims
Before claims, the a-Expense application used forms authentication 
to establish user identity. It’s worth taking a moment to review the 
process of forms authentication so that the differences with the 
claims-aware version are easier to see. In simple terms, forms authen-
tication consists of a credentials database and an HTTP redirect to a 
logon page.

Figure 4 shows the a-Expense application with forms authentica-
tion.

figure 4
a-Expense with forms authentication

By default, the 
downloadable 
implementations run 
standalone on your 
workstation, but you 
can also configure 
them for a multi-
tiered deployment.

Many web applica-
tions store user 
profile information in 
cookies rather than 
in the session state 
because cookies scale 
better on the server 
side. Scale wasn’t a 
concern here because 
a-Expense is a 
departmental 
application.

Retrieve user
profile data from
session state and

show page.

Validate 
credentials and 

store user profile
in session state.

Already
authenticated?

Receive page
request.

Session state

Session state

Read

Read

Write

Users and
passwords

Redirect to original page.

No
Redirect to logon page.

Yes



5050 chapter three

The logon page serves two purposes in a-Expense. It authenti-
cates the user by asking for credentials that are then checked against 
the password database, and it also copies application-specific user 
profile information into the ASP.NET’s session state object for later 
use. Examples of profile information are the user’s full name, cost 
center, and assigned roles. The a-Expense application keeps its user 
profile information in the same database as user passwords, which is 
typical for applications that use forms authentication.

a-Expense intentionally uses custom code for authentication, 
authorization, and profiles instead of using Membership, Roles,  
and Profile providers. This is typical of legacy applications that 
might have been written before ASP.NET 2.0.

In ASP.NET, adding forms authentication to a web application 
requires three steps: an annotation in the application’s Web.config file 
to enable forms authentication, a logon page that asks for credentials, 
and a handler method that validates those credentials against applica-
tion data. Here is how those pieces work.

The Web.config file for a-Expense enables forms authentication 
with the following XML declarations:

<authentication mode="Forms">
     <forms loginUrl="~/login.aspx" 
            requireSSL="true" ... />
</authentication>

<authorization>
    <deny users="?" />
</authorization>

The authentication element tells the ASP.NET runtime (or Micro-
soft Internet Information Services (IIS)  7.0 when running both in ASP.
NET integrated mode and classic mode) to automatically redirect  
any unauthenticated page request to the specified login URL. An  
authorization element that denies access to unauthenticated users 
(denoted by the special symbol “?”) is also required to make this  
redirection work.

Next, you’ll find that a-Expense has a Login.aspx page that uses 
the built-in ASP.NET Login control, as shown here.

<asp:Login ID="Login1" runat="server" 
           OnAuthenticate="Login1OnAuthenticate" ... >
</asp:Login>

Finally, if you look at the application, you’ll notice that the han-
dler of the Login.aspx page’s OnAuthenticate event looks like the 
following.



 51 51claims-based single sign-on for the web and windows azure

public partial class Login : Page
{
  protected void Login1OnAuthenticate(object sender,
                                      AuthenticateEventArgs e)
  {
     var repository = new UserRepository();
     if (!repository.ValidateUser(this.Login1.UserName, 
                                           this.Login1.Password))
     {
         e.Authenticated = false;
         return;
     }
     var user = repository.GetUser(this.Login1.UserName);
     if (user != null)
     {
         this.Session["LoggedUser"] = user;
         e.Authenticated = true;
     }
  }
}

This logic is typical for logon pages. You can see in the code that 
the user name and password are checked first. Once credentials are 
validated, the user profile information is retrieved and stored in the 
session state under the LoggedUser key. Notice that the details of 
interacting with the database have been put inside of the application’s 
UserRepository class.

Setting the Authenticated property of the AuthenticateEvent 
Args object to true signals successful authentication. ASP.NET then 
redirects the request back to the original page. 

At this point, normal page processing resumes with the execution 
of the page’s OnLoad method. In the a-Expense application, this 
method retrieves the user’s profile information that was saved in the 
session state object and initializes the page’s controls. For example, 
the logic might look like the following.

protected void OnLoad(EventArgs e)
{
    var user = (User)Session["LoggedUser"];

    var repository = new ExpenseRepository();
    var expenses = repository.GetExpenses(user.Id);
    this.MyExpensesGridView.DataSource = expenses;
    this.DataBind();
    
    base.OnLoad(e);
}



5252 chapter three

The session object contains the information needed to make ac-
cess control decisions. You can look in the code and see how a-Ex-
pense uses an application-defined property called AuthorizedRoles 
to make these decisions.

a-Expense with Claims
The developers only had to make a few changes to a-Expense to 

replace forms authentication with claims. The process of validating 
credentials was delegated to a claims issuer simply by removing the 
logon page and configuring the ASP.NET pipeline to include the Win-
dows Identity Foundation (WIF) WSFederationAuthentication 
Module. This module detects unauthenticated users and redirects 
them to the issuer to get tokens with claims. Without a logon page, 
the application still needs to write profile and authorization data into 
the session state object, and it does this in the Session_Start method. 
Those two changes did the job.

Figure 5 shows how authentication works now that a-Expense is 
claims-aware.

figure 5
a-Expense with claims processing

You only need a few changes  
to make the application 
claims-aware.

Retrieve user
profile data from
session state and

show page.

Run Session_Start
in Global.asax.
Initialize the 

session state with
data from claims.

Redirect to 
claims issuer 

(WS Federation
Authentication

Module).

Does
session
exist?

Already
authenticated?

Receive page
request.

Session state

Session state

Read

Read

Read

Write

Profiles

Redirect to original page, with claims.

Redirect to claims issuer.

No

No

Yes

Claims

Issuer

Making a-Expense 
use claims was easy 
with WIF’s FedUtil.
exe utility. See 
Appendix A.



 53 53claims-based single sign-on for the web and windows azure

The Web.config file of the claims-aware version of a-Expense 
contains a reference to WIF-provided modules. This Web.config file 
is automatically modified when you run the FedUtil wizard either 
through the command line (FedUtil.exe) or through the Add STS 
Reference command by right-clicking the web project in Visual Stu-
dio.

If you look at the modified Web.config file, you’ll see that there 
are changes to the authorization and authentication sections as well 
as new configuration sections. The configuration sections include the 
information needed to connect to the issuer. They include, for ex-
ample, the Uniform Resource Indicator (URI) of the issuer and infor-
mation about signing certificates.

The first thing you’ll notice in the Web.config file is that the au-
thentication mode is set to None, while the requirement for authen-
ticated users has been left in place.

<authentication mode="None" />

<authorization>
    <deny users="?" />
</authorization>

The forms authentication module that a-Expense previously used has 
been deactivated by setting the authentication mode attribute to 
None. Instead, the WSFederationAuthenticationModule 
(FAM) and SessionAuthenticationModule (SAM) are now in 
charge of the authentication process.

The application’s Login.aspx page is no longer needed and can be 
removed from the application.

Next, you will notice that the Web.config file contains two new 
modules, as shown here.

<httpModules>
    <add name="WSFederationAuthenticationModule" 
         type="Microsoft.IdentityModel.Web.
                        WSFederationAuthenticationModule, ..." />

    <add name="SessionAuthenticationModule" 
         type="Microsoft.IdentityModel.Web.
                             SessionAuthenticationModule, ..." />
</httpModules>

When the modules are loaded, they’re inserted into the ASP.NET 
processing pipeline in order to redirect the unauthenticated requests 
to the issuer, handle the reply posted by the issuer, and transform the 

We’re just giving the 
highlights here. You’ll  
also want to check 
out the WIF and 
ADFS product 
documentation.

This may seem a little 
weird. What’s going 
on is that authentica-
tion has been moved 
to a different part of 
the HTTP pipeline.



5454 chapter three

user token sent by the issuer into a ClaimsPrincipal object. The mod-
ules also set the value of the HttpContext.User property to the 
ClaimsPrincipal object so that the application has access to it. 

The WSFederationAuthenticationModule redirects the user to 
the issuer’s logon page. It also parses and validates the security token 
that is posted back. This module writes an encrypted cookie to avoid 
repeating the logon process. The SessionAuthenticationModule 
detects the logon cookie, decrypts it, and repopulates the Claims 
Principal object.

The Web.config file contains a new section for the Microsoft.
IdentityModel that initializes the WIF environment. 

<configSections>
<section name="microsoft.identityModel" 
         type="Microsoft.IdentityModel.Configuration.
                                MicrosoftIdentityModelSection, 
                                Microsoft.IdentityModel, ..." />
</configSections>

The identity model section contains several kinds of information 
needed by WIF, including the address of the issuer and the certificates 
(the serviceCertificate and trustedIssuers elements) that are needed 
to communicate with the issuer.

<microsoft.identityModel>
  <service>
    <audienceUris>
      <add value=
              "https://{adatum hostname}/a-Expense.ClaimsAware/" 
      />
    </audienceUris>
...

The value of “adatum hostname” changes depending on where  
you deploy the sample code. In the development environment,  
it is “ localhost.”

Security tokens contain an audience URI. This indicates that the 
issuer has issued a token for a specific “audience” (application). Ap-
plications, in turn, will check that the incoming token was actually 
issued for them. The audienceUris element lists the possible URIs. 
Restricting the audience URIs prevents malicious clients from reusing 
a token from a different application with an application that they are 
not authorized to access.

The ClaimsPrincipal 
object implements 
the IPrincipal 
interface that you 
already know. This 
makes it easy to 
convert existing 
applications.



 55 55claims-based single sign-on for the web and windows azure

<federatedAuthentication>
   <wsFederation passiveRedirectEnabled="true" 
       issuer="https://{adatum hostname}/{issuer endpoint} "    
       realm="https://{adatum hostname}/a-Expense.ClaimsAware/" 
       requireHttps="true" />
   <cookieHandler requireSsl="true" 
                  path="/a-Expense.ClaimsAware/" />
</federatedAuthentication>

The federatedAuthentication section identifies the issuer and 
the protocol required for communicating with it. 

<serviceCertificate>
  <certificateReference x509FindType="FindByThumbprint" 
    findValue="5a074d678466f59dbd063d1a98b1791474723365" />
</serviceCertificate>

The service certificate section gives the location of the certificate 
used to decrypt the token, in case it was encrypted. Encrypting the 
token is optional, and it’s a decision of the issuer to do it or not. You 
don’t need to encrypt the token if you’re using HTTPS, but encryp-
tion is generally recommended as a security best practice.    

<issuerNameRegistry   
   type="Microsoft.IdentityModel.Tokens.ConfigurationBasedIssuer
NameRegistry,  
         Microsoft.IdentityModel, ... >
   <trustedIssuers>
      <add thumbprint=" f260042d59e14817984c6183fbc6bfc71baf5462" 
           name="adatum" />
   </trustedIssuers>
 </issuerNameRegistry>

A thumbprint is the result of hashing an X.509 certificate signa-
ture. SHA-1 is a common algorithm for doing that. Thumbprints 
uniquely identify a certificate and the issuer. The issuerNameRegistry 
element contains the list of thumbprints of the issuers it trusts. Issuers 
are identified by the thumbprint of their signing X.509 certificate. If 
the thumbprint does not match the certificate embedded in the in-
coming token signature, WIF will throw an exception. If the thumb-
print matches, the name attribute will be mapped to the Claim.Issuer 
property.  

In the code example, the name attribute adatum is required for 
the scenario because the a-Expense application stores the federated 
user name in the roles database. A federated user name has the for-
mat: adatum\username.

Using HTTPS 
mitigates man-in-the-
middle and replay 
attacks. This is 
optional during  
development, but  
be sure to use HTTPS 
in production 
environments.



5656 chapter three

The following procedure shows you how to find the thumbprint 
of a specific certificate.

To find a thumbprint

1.	 On the taskbar, click Start, and then type mmc in the search 
box.

2.	 Click mmc. A window appears that contains the Microsoft 
Management Console (MMC)  application. 

3.	 On the File menu, click Add/Remove Snap-in.

4.	 In the Add or Remove Snap-ins dialog box, click Certifi-
cates, and then click Add.

5.	 In the Certificates snap-in dialog box, select Computer 
account, and then click Next.

6.	 In the Select Computer dialog box, select Local computer, 
click Finish, and then click OK.

7.	 In the left pane, a tree view of all the certificates on your 
computer appears. If necessary, expand the tree. Expand  
the Personal folder. Expand the Certificates folder.

8.	 Click the certificate whose thumbprint you want. 

9.	 In the Certificate Information dialog box, click the Details 
tab, and then scroll down until you see the thumbprint.

In Windows 7, you’ ll need to double-click to open the dialog, which 
has the title Certificate, not Certificate Information.

The changes in the Web.config file are enough to delegate  
authentication to the issuer. 

There’s still one detail to take care of. Remember from the previ-
ous section that the logon handler (which has now been removed 
from the application) was also responsible for storing the user profile 
data in the session state object. This bit of logic is relocated to the 
Session_Start method found in the Global.asax file. The Session_
Start method is automatically invoked by ASP.NET at the beginning 
of a new session, after authentication occurs. The user’s identity is 
now stored as claims that are accessed from the thread’s Current 
Principal property. Here is what the Session_Start method looks 
like.

This may seem like a 
lot of configuration, 
but the FedUtil 
wizard handles it  
for you. 



 57 57claims-based single sign-on for the web and windows azure

protected void Session_Start(object sender, EventArgs e)
{
  if (this.Context.User.Identity.IsAuthenticated)
  {     
    string issuer = 
         ClaimHelper.GetCurrentUserClaim(
            System.IdentityModel.Claims.ClaimTypes.Name).
                                                  OriginalIssuer;
    string givenName = 
         ClaimHelper.GetCurrentUserClaim(                             
               WSIdentityConstants.ClaimTypes.GivenName).Value;

    string surname = 
         ClaimHelper.GetCurrentUserClaim(
                 WSIdentityConstants.ClaimTypes.Surname).Value;

    string costCenter = 
         ClaimHelper.GetCurrentUserClaim(
                           Adatum.ClaimTypes.CostCenter).Value;

    var repository = new UserRepository();
    string federatedUsername = 
        GetFederatedUserName(issuer, this.User.Identity.Name);
    var user = repository.GetUser(federatedUsername);
    user.CostCenter = costCenter;
    user.FullName = givenName + " " + surname;                

    this.Context.Session["LoggedUser"] = user;
  }
}

Note that the application does not go to the application data 
store to authenticate the user because authentication has already 
been performed by the issuer. The WIF modules automatically read 
the security token sent by the issuer and set the user information in 
the thread’s current principal object. The user’s name and some other 
attributes are now claims that are available in the current security 
context.

The user profile database is still used by a-Expense to store the 
application-specific roles that apply to the current user. In fact, a-
Expense’s access control is unchanged whether or not claims are used.

The preceding code example invokes methods of a helper class 
named ClaimHelper. One of its methods, the GetCurrentUserClaim 
method, queries for claims that apply in the current context. You need 
to perform several steps to execute this query:

Putting globally 
significant data such 
as names and cost 
centers into claims 
while keeping 
app-specific 
attributes in a local 
store is a typical 
practice.



5858 chapter three

1.	 Retrieve context information about the current user by 
getting the static CurrentPrincipal property of the System.
Threading.Thread class. This object has the run-time type 
IPrincipal.

2.	 Use a run-time type conversion to convert the current 
principal object from IPrincipal to the type IClaims 
Principal. Because a-Expense is now a claims-aware applica-
tion, the run-time conversion is guaranteed to succeed.  

3.	 Use the Identities property of the IClaimsPrinci-
pal interface to retrieve a collection of identities that apply 
to the claims principal object from the previous step. The 
object that is returned is an instance of the ClaimsIdentity 
Collection class. Note that a claims principal may have more 
than one identity, although this feature is not used in the 
a-Expense application.

4.	 Retrieve the first identity in the collection. To do 
this, use the collection’s indexer property with 0 as the 
index. The object that is returned from this lookup is the 
current user’s claims-based identity. The object has type 
IClaimsIdentity.

5.	 Retrieve a claims collection object from the claims  
identity object with the Claims property of the IClaims 
Identity interface. The object that is returned is an instance 
of the ClaimsCollection class. It represents the set of 
claims that apply to the claims identity object from the 
previous step. 

6.	 At this point, if you iterate through the claims collection, 
you can select a claim whose claim type matches the one 
you are looking for. The following expression is an example 
of how to do this.

claims.Single(c => c.ClaimType == claimType)

Note that the Single method assumes that there is one 
claim that matches the requested claim type. It will throw 
an exception if there is more than one claim that matches 
the desired claim type or if no match is found. The Single 
method returns an instance of the Claim class.

7.	 Finally, you extract the claim’s value with the Claim class’s 
Value property. Claims values are strings. 

Look at the imple-
mentation of the 
ClaimHelper class in 
the sample code for 
an example of how to 
retrieve claims about 
the current user.



 59 59claims-based single sign-on for the web and windows azure

a-Order before Claims
Unlike a-Expense, the a-Order application uses Windows authentica-
tion. This has a number of benefits, including simplicity.

Enabling Windows authentication is as easy as setting an attri-
bute value in XML, as shown here.

<authentication mode="Windows" />

The a-Order application’s approach to access control is consider-
ably simpler than what you saw in aExpense. Instead of combining 
authentication logic and business rules, a-Order simply annotates 
pages with roles in the Web.config file.

<authorization>
   <allow roles="Employee, Order Approver" />
   <deny users="*" />
</authorization>

The user interface of the a-Order application varies, depending 
on the user’s current role. 

base.OnInit(e);

this.OrdersGrid.Visible = 
    !this.User.IsInRole(Adatum.Roles.OrderApprover);
this.OrdersGridForApprovers.Visible = 
    this.User.IsInRole(Adatum.Roles.OrderApprover);

a-Order with Claims
Adding claims to a-Order is really just a configuration step. The  
application code needs no change.

If you download the project from http://claimsid.codeplex.com, 
you can compare the Web.config files before and after conversion  
to claims. It was just a matter of right-clicking the project in Visual 
Studio and then clicking Add STS Reference. The process is very 
similar to what you saw in the previous sections for the a-Expense 
application.

The claims types required are still the users and roles that were 
previously provided by Windows authentication.

Converting Windows 
authentication to  
claims only requires a  
configuration change.

Don’t forget that more than 
one value of a given claim 
type may be present. For 
example, a single identity 
can have several role claims.



6060 chapter three

Signing out of an Application
The FederatedPassiveSignInStatus control is provided by WIF. The 
following snippet from the Site.Master file shows how the single sign-
on scenario uses it to sign out of an application.

<idfx:FederatedPassiveSignInStatus 
    ID="FederatedPassiveSignInStatus" 
    runat="server" 
    OnSignedOut="OnFederatedPassiveSignInStatusSignedOut" 
    SignOutText="Logout" 
    FederatedPassiveSignOut="true"   
    SignOutAction="FederatedPassiveSignOut" />

The idfx prefix identifies the control as belonging to the Micro 
soft.IdentityModel.Web.Controls namespace. The control causes a 
browser redirect to the ADFS issuer, which logs out the user and de-
stroys any cookies related to the session.

In this single sign-on scenario, signing out from one application 
signs the user out from all the applications they are currently signed 
into in the single sign-on domain.

For details about how the simulated issuer in this sample supports 
single sign-out, see the section “Handling Single Sign-out in the 
Mock Issuer” later in this chapter.

The a-Expense application uses an ASP.NET session object to 
maintain some user state, and it’s important that this session data is 
cleared when a user signs out from the single sign-out domain. The 
a-Expense application manages this by redirecting to a special Clean-
Up.aspx page when the application handles the WSFederation 
AuthenticationModule_SignedOut event in the global.asax.cs file. 
The CleanUp.aspx page checks that the user has signed out and then 
abandons the session. The following code example shows the Page_
Load event handler for this page.

protected void Page_Load(object sender, EventArgs e)
{
    if (this.User.Identity.IsAuthenticated)
    {
        this.Response.Redirect("~/Default.aspx", false);
    }
    else
    {



 61 61claims-based single sign-on for the web and windows azure

        this.Session.Abandon();
        var signOutImage = new byte[]
                            {
                                71, 73, … 
                                …
                            };

        this.Response.Cache.SetCacheability
                      (HttpCacheability.NoCache);
        this.Response.ClearContent();
        this.Response.ContentType = "image/gif";
        this.Response.BinaryWrite(signOutImage);    
    }
}

The byte array represents a GIF image of the green check mark 
that the SignedOut.aspx page in the simulated issuer displays after the 
single sign-out is complete.

An alternative approach would be to modify the claims issuer to 
send the URL of the clean-up page in the wreply parameter when it 
sends a wsignoutcleanup1.0 message to the relying party. However 
this would mean that the issuer, not the relying party, is responsible 
for initiating the session clean-up process in the relying party.

Setup and Physical Deployment
The process for deploying a claims-aware web application follows 
many of the same steps you already know for non-claims-aware ap-
plications. The differences have to do with the special considerations 
of the issuer. Some of these considerations include providing a suit-
able test environment during development, migrating to a production 
issuer, and making sure the issuer and the web application are prop-
erly configured for Internet access.

Using a Mock Issuer
The downloadable versions of a-Expense and a-Order are set up by 
default to run on a standalone development workstation. This is 
similar to the way you might develop your own applications. It’s gen-
erally easier to start with a single development machine.

To make this work, the developers of a-Expense and a-Order 
wrote a small stub implementation of an issuer. You can find this code 
in the downloadable Visual Studio solution. Look for the project with 
the URL https://localhost/Adatum.SimulatedIssuer.1.

The Cleanup.aspx 
page must be listed as 
unauthenticated in 
the Web.config file.

Mock issuers simplify the 
development process.



6262 chapter three

When you first run the a-Expense and a-Order applications, you’ll 
find that they communicate with the stand-in issuer. The issuer issues 
predetermined claims.

It’s not very difficult to write such a component, and you can re-
use the sample that we can provide.

Isolating Active Directory
The a-Order application uses Windows authentication. Since devel-
opers do not control the identities in their company’s enterprise direc-
tory, it is sometimes useful to swap out Active Directory with a stub 
during the development of your application.

The a-Order application (before claims) shows an example of this. 
To use this technique, you need to make a small change to the Web.
config file to disable Windows authentication and then add a hook in 
the session authentication pipeline to insert the user identities of your 
choosing. Disable Windows authentication with the following change 
to the Web.config file.

<authentication mode="None" />

The Global.asax file should include code that sets the identity 
with a programmer-supplied identity. The following is an example. 

<script runat="server">

void Application_AuthenticateRequest(object sender, EventArgs e)
{
  this.Context.User = MaryMay;
}
    
private static IPrincipal MaryMay
{
  get
  {
    IIdentity identity = new GenericIdentity("mary");
    string[] roles = { "Employee", "Order Approver" };
    return new GenericPrincipal(identity, roles);
  }
}
       
</script>

Remove this code before you deploy your application.

Using a simple, 
developer-created 
claims issuer is a good 
practice during 
development and unit 
testing. Your network 
administrator can  
help you change  
the application 
configuration to  
use production 
infrastructure 
components when  
it’s time for accep-
tance testing and 
deployment.



 63 63claims-based single sign-on for the web and windows azure

Handling Single Sign-out  
in the Mock Issuer

The relying party applications (a-Order and a-Expense) use the  
FederatedPassiveSignInStatus control to allow the user to log in and 
log out. When the user clicks the log out link in one of the applica-
tions, the following sequence of events takes place:

1.	 The user is logged out from the current application. The 
WSFederationAuthenticationModule (FAM) deletes any 
claims that the user has that relate to the current applica-
tion.

2.	 The FAM sends a wsignout1.0 WS-Federation command  
to the issuer.

3.	 The mock issuer performs any necessary sign-out 
operations from other identity providers, for example, by 
signing the user out from Active Directory.

4.	 The mock issuer sends a wsignoutcleanup1.0 
message to all the relying party applications that the user 
has signed into. The mock issuer maintains this list for each 
user in a cookie.

Note: The mock issuer sends the wsignoutcleanup1.0 
message to the relying party applications by embedding  
a specially constructed image tag in the sign out page  
that includes the wsignoutcleanup1.0 message in the  
querystring.

5.	 When the FAM in a relying party application intercepts the 
wsignoutcleanup1.0 message, it deletes any claims that the 
user has that relate to that application.

Converting to a Production Issuer
When you are ready to deploy to a production environment, you’ll 
need to migrate from your simulated issuer that runs on your develop-
ment workstation to a component such as ADFS 2.0.

Making this change requires two steps. First, you need to modify 
the web application’s Web.config file using FedUtil so that it points 
to the production issuer. Next, you need to configure the issuer so 
that it recognizes requests from your web application and provides 
the appropriate claims.

Appendix A of this guide walks you through the process of using 
FedUtil and shows you how to change the Web.config files. 

You can refer to documentation provided by your production  
issuer for instructions on how to add a relying party and how to add 

To find out more 
about the message 
flow when a user 
initiates the single 
sign-out process, take 
a look at Appendix B.

Remove the mock issuers 
when you deploy the 
application.



6464 chapter three

claims rules. Instructions for the samples included in this guide can be 
found at http://claimsid.codeplex.com.

Enabling Internet Access
One of the benefits of outsourcing authentication to an issuer is that 
existing applications can be accessed from the external Internet very 
easily. The protocols for claims-based identity are Internet-friendly. 
All you need to do is make the application and the issuer externally 
addressable. You don’t need a VPN. 

If you decide to deploy outside of the corporate firewall, be aware 
that you will need certificates from a certificate authority for the 
hosts that run your web application and issuer. You also need to make 
sure that you configure your URLs with fully qualified host names or 
static IP addresses. The ADFS 2.0 proxy role provides specific support 
for publishing endpoints on the Internet.

Variation—Moving to Windows Azure
The last stage of Adatum’s plan is to move a-Expense to Windows 
Azure. Windows Azure uses Microsoft data centers to provide devel-
opers with an on-demand compute service and storage to host, scale, 
and manage web applications on the Internet. This variation shows 
the power and flexibility of a claims-based approach. The a-Expense 
code doesn’t change at all. You only need to edit its Web.config file.

As you go through this section, you may want to download the 
Visual Studio® solution from http://claimsid.codeplex.com.  

Figure 6 shows what Adatum’s solution looks like.
It’s easy to move a claims-aware 
application to Windows Azure.

Issuer
a−Expense

Browser
1

2

Active
Directory

John at Adatum

Kerberos

Get token

Adatum

Windows Azure

Send token 
and access 
a−Expense

Trust

figure 6
a-Expense on Windows Azure



 65 65claims-based single sign-on for the web and windows azure

From the perspective of Adatum’s users, the location of the a-
Expense application is irrelevant except that the application’s URL 
might change once it is on Windows Azure, but even that can be 
handled by mapping CNAMEs to a Windows Azure URL. Otherwise, 
its behavior is the same as if it were located on one of Adatum’s serv-
ers. This means that the sequence of events is exactly the same as 
before, when a-Expense became claims-aware. The first time a user 
accesses the application, he will not be authenticated, so the WIF 
module redirects him to the configured issuer that, in this case, is the 
Adatum issuer.

The issuer authenticates the user and then issues a token that 
includes the claims that a-Expense requires, such as the user’s name 
and cost center. The issuer then redirects the user back to the applica-
tion, where a session is established. Note that, even though it is lo-
cated on the Internet, aExpense requires the same claims as when it 
was located on the Adatum intranet.

Obviously, for any user to use an application on Windows Azure, 
it must be reachable from his computer. This scenario assumes that 
Adatum’s network, including its DNS server, firewalls, and proxies, are 
configured to allow its employees to have access to the Internet.

Notice however, that the issuer doesn’t need to be available to 
external resources. The a-Expense application never communicates 
with it directly. Instead, it uses browser redirections and follows the 
protocol for passive clients. For more information about this protocol, 
see chapter 2, “Claims-Based Architectures” and Appendix B.

Hosting a-Expense on Windows Azure
The following procedures describe how to configure the certificates 
that you will upload to Windows Azure and the changes you must 
make to the Web.config file. These procedures assume that you al-
ready have a Windows Azure token. If you don’t, see http://www.
microsoft.com/windowsazure/getstarted/ to learn how to do this.

To configure the certificates 

1.	 In Visual Studio, open the Windows Azure project, such as 
a-expense.cloud. Right-click the a-Expense.ClaimsAware 
role, and then click Properties. 

2.	 If you need a certificate’s thumbprint, click Certificates. 
Along with other information, you will see the thumbprint.

3.	 Click Endpoints, and then select HTTPS:. Set the Name 
field to HttpsIn. Set the Port field to the port number that 
you want to use. The default is 443. Select the certificate 
name from the SSL certificate name drop-down box. The 

http://www.microsoft.com/windowsazure/getstarted/
http://www.microsoft.com/windowsazure/getstarted/


6666 chapter three

default is localhost. The name should be the same as the 
name that is listed on the Certificates tab.

Note that the certificate that is uploaded is only used for SSL and 
not for token encryption. A certificate from Adatum is only necessary 
if you need to encrypt tokens.

Both Windows Azure and WIF can decrypt tokens. You must upload 
the certificate in the Windows Azure portal and configure the web 
role to deploy to the certificate store each time there is a new 
instance. The WIF <serviceCertificate> section should point to 
that deployed certificate.

The following procedure shows you how to publish the a-Expense 
application to Windows Azure.

To publish a-Expense to Windows Azure

1.	 In Microsoft Visual Studio 2010, open the a-expense.cloud 
solution. 

2.	 Upload the localhost.pfx certificate to the Windows Azure 
project. The certificate is located at [samples-installation-
directory]\Setup\DependencyChecker\certs\localhost.pfx. 
The password is “xyz.”

3.	 Modify the a-Expense.ClaimsAware application’s Web.
config file by replacing the <microsoft.identityModel> 
section with the following XML code. You must replace the 
{service-url} element with the service URL that you 
selected when you created the Windows Azure project.

<microsoft.identityModel>
  <service>     
    <audienceUris>       
      <add value="https://{service-url}.cloudapp.net/" />     
    </audienceUris>     
    <federatedAuthentication>       
      <wsFederation passiveRedirectEnabled="true"
        issuer=
         "https://{adatum hostname}/{issuer endpoint}"  
        realm="https://{service-url}.cloudapp.net/" 
         requireHttps="true" />       



 67 67claims-based single sign-on for the web and windows azure

         <cookieHandler requireSsl="true" />     
    </federatedAuthentication>          
    <issuerNameRegistry
      type=
       "Microsoft.IdentityModel.Tokens.
                ConfigurationBasedIssuerNameRegistry,
                Microsoft.IdentityModel, Version=3.5.0.0,  
            Culture=neutral,
            PublicKeyToken=31bf3856ad364e35">       
      <trustedIssuers>         
      <!--Adatum's identity provider -->         
        <add thumbprint=
              "f260042d59e14817984c6183fbc6bfc71baf5462"  
             name="adatum" />       
      </trustedIssuers>     
    </issuerNameRegistry>
   <certificateValidation 
             certificateValidationMode="None" />   
  </service> 
</microsoft.identityModel>

4.	 Right-click the a-expense.cloud project, and then click 
Publish. This generates a ServiceConfiguration file and the 
actual package for Windows Azure.

5.	 Deploy the ServiceConfiguration file and package to the 
Windows Azure project.

Once the a-Expense application is deployed to Windows Azure, 
you can log on to http://windows.azure.com to test it. 

If you were to run this application on more than one role instance in 
Windows Azure (or in an on-premise web farm), the default cookie 
encryption mechanism (which uses DPAPI) is not appropriate, since 
each machine has a distinct key. 

In this case, you would need to replace the default Session 
SecurityHandler object and configure it with a different cookie 
transformation such as RsaEncryptionCookieTransform or a 
custom one. The “web farm” sample included in the WIF SDK 
illustrates this in detail.



6868 chapter three

Questions

1.	 Before Adatum updated the a-Expense and a-Order applica-
tions, why was it not possible to use single sign-on?

a.	 The applications used different sets of roles to 
manage authorization.

b.	 a-Order used Windows authentication and a-Expense 
used ASP.NET forms authentication.

c.	 In the a-Expense application, the access rules were 
intermixed with the application’s business logic.

d.	 You cannot implement single sign-on when user 
profile data is stored in multiple locations.

2.	 How does the use of claims facilitate remote web-based 
access to the Adatum applications?

a.	 Using Active Directory for authentication makes it 
difficult to avoid having to use VPN to access the 
applications.

b.	 Using claims means that you no longer need to use 
Active Directory.

c.	 Protocols such as WS-Federation transport claims in 
tokens as part of standard HTTP messages.

d.	 Using claims means that you can use ASP.NET forms-
based authentication for all your applications.

3.	 In a claims enabled ASP.NET web application, you typically 
find that the authentication mode is set to None in the 
Web.config file. Why is this?

a.	 The WSFederationAuthenticationModule is now 
responsible for authenticating the user.

b.	 The user must have already been authenticated by an 
external system before they visit the application.

c.	 Authentication is handled in the On_Authenticate 
event in the global.asax file.

d.	 The WSFederationAuthenticationModule is now 
responsible for managing the authentication process.



 69 69claims-based single sign-on for the web and windows azure

4.	 Claims issuers always sign the tokens they send to a relying 
party. However, although it is considered best practice, they 
might not always encrypt the tokens. Why is this?

a.	 Relying parties must be sure that the claims come 
from a trusted issuer.

b.	 Tokens may be transferred using SSL.

c.	 The claims issuer may not be able to encrypt the token 
because it does not have access to the encryption key.

d.	 It’s up to the relying party to state whether or not it 
accepts encrypted tokens.

5.	 The FederatedPassiveSignInStatus control automatically 
signs a user out of all the applications she signed into in the 
single sign-on domain.

a.	 True.

b.	 False. You must add code to the application to per-
form the sign-out process.

c.	 It depends on the capabilities of the claims issuer. The 
issuer is responsible for sending sign-out messages to 
all relying parties.

d.	 If your relying party uses HTTP sessions, you must add 
code to explicitly abandon the session.

More Information
Appendix A of this guide walks through the use of FedUtil and also 
shows you how to edit the Web.config files and where to locate your 
certificates. 

MSDN® contains a number of helpful articles, including MSDN 
Magazine’s “A Better Approach For Building Claims-Based WCF Ser-
vices” (http://msdn.microsoft.com/en-us/magazine/dd278426.aspx). 

To learn more about Windows Azure, see the Windows Azure 
Platform at http://www.microsoft.com/windowsazure/.





71

Many companies want to share resources with their partners, but how 
can they do this when each business is a separate security realm with 
independent directory services, security, and authentication? One 
answer is federated identity. Federated identity helps overcome  
some of the problems that arise when two or more separate security 
realms use a single application. It allows employees to use their local 
corporate credentials to log on to external networks that have trust 
relationships with their company. For an overview, see the section 
“Federating Identity across Realms” in Chapter 2, “Claims-Based  
Architectures.”

In this chapter, you’ll learn how Adatum lets one of its customers, 
Litware, use the a-Order application that was introduced in Chapter 
3, “Claims-Based Single Sign-On for the Web.”

The Premise
Now that Adatum has instituted single sign-on (SSO) for its employ-
ees, it’s ready to take the next step. Customers also want to use the 
a-Order program to track an order’s progress from beginning to end. 
They expect the program to behave as if it were an application within 
their own corporate domain. For example, Litware is a longstanding 
client of Adatum’s. Their sales manager, Rick, wants to be able to log 
on with his Litware credentials and use the a-Order program to deter-
mine the status of all his orders with Adatum. In other words, he 
wants the same single sign-on capability that Adatum’s employees 
have. However, he doesn’t want separate credentials from Adatum 
just to use a-Order. 

Federated Identity for  
Web Applications

4

Federated identity links 
independent security realms.

Adatum does not 
want to maintain 
accounts for another 
company’s users of its 
web application, since 
maintaining accounts 
for third-party users 
can be expensive. 
Federated identity 
reduces the cost of 
account maintenance. 



7272 chapter four

Goals and Requirements
The goal of this scenario is to show how federated identity can make 
the partnership between Adatum and Litware more efficient. With 
federated identity, one security domain accepts an identity that 
comes from another domain. This lets people in one domain access 
resources located in the other domain without presenting additional 
credentials. The Adatum issuer will trust Litware to authoritatively 
issue claims about its employees.

In addition to the goals, this scenario has a few other require-
ments. One is that Adatum must control access to the order status 
pages and the information that is displayed, based on the partner that 
is requesting access to the program. In other words, Litware should 
only be able to browse through its own orders and not another com-
pany’s. Furthermore, Litware allows employees like Rick, who are in 
the Sales department, to track orders.

Another requirement is that, because Litware is only one of Ada-
tum’s many partners that will access the program, Adatum must be 
able to find out which issuer has the user’s credentials. This is called 
home realm discovery. For more information, see Chapter 2, “Claims-
Based Architectures.”

One assumption for this chapter is that Litware has already de-
ployed an issuer that uses WS-Federation, just as the Adatum issuer 
does. 

WS-Federation is a specification that defines how companies can 
share identities across security boundaries that have their own au-
thentication and authorization systems. (For more information about 
WS-Federation, see chapter 2, “Claims-Based Architectures.”) This 
can only happen when legal agreements between Litware and Adatum 
that protect both sides are already in place. A second assumption is 
that Litware should be able to decide which of its employees can ac-
cess the a-Order application.  

Overview of the Solution
Once the solution is in place, when Rick logs on to the Litware net-
work, he will access a-Order just as he would a Litware application. 
From his perspective, that’s all there is to it. He doesn’t need a special 
password or user names. It’s business as usual. Figure 1 shows the  
architecture that makes Rick’s experience so painless.

Security Assertion 
Markup Language 
(SAML) is another 
protocol you might 
consider for a scenario 
like this. ADFS 2.0 
supports SAMLP. 

The application can be modified 
to accept claims from a partner 
organization.



 73 73feder ated identity for web applications

figure 1
Federated identity between Adatum and Litware

As you can see, there have been two changes to the infrastructure 
since Adatum instituted single sign-on. A trust relationship now exists 
between the Adatum and Litware security domains, and the Adatum 
issuer has been configured with an additional capability: it can now 
act as a federation provider (FP). A federation provider grants access 
to a resource, such as the a-Order application, rather than verifying an 
identity. When processing a client request, the a-Order application 
relies on the Adatum issuer. The Adatum issuer, in turn, relies on the 
Litware issuer that, in this scenario, acts as an identity provider (IdP). 
Of course, the diagram represents just one implementation choice; 
separating Adatum’s identity provider and federation provider would 
also be possible. Keep in mind that each step also uses HTTP redirec-
tion through the client browser but, for simplicity, this is not shown 
in the diagram.

In the sample solution, there are two Adatum issuers: one is the 
Adatum identity provider and one is the Adatum federation provider. 
This makes it easier to understand how the sample works. In the real 
world, a single issuer would perform both of these roles.

The following steps grant access to a user in another security 
domain:

1.	 Rick is using a computer on Litware’s network. He is already 
authenticated with Active Directory® directory service. He 
opens a browser and navigates to the a-Order application. 
The application is configured to trust Adatum’s issuer (the 

a−Order

Browser

Issuer

4

2

1

3

Active Directory

( )IP
Issuer ( )FP

Trust

Trust

Get the orders

Get the Adatum
token

Get the 
Litware
token

LitwareAdatum

Map the
Claims

Ke
rb
er
os

Rick at Litware



7474 chapter four

federation provider). The application has no knowledge of 
where the request comes from. It redirects Rick’s request to 
the federation provider.

2.	 The federation provider presents the user with a page listing 
different identity providers that it trusts. At this point, the 
federation provider doesn’t know where Rick comes from.

3.	 Rick selects Litware from the list and then Adatum’s 
federation provider redirects him to the Litware issuer to 
verify that Rick is who he says he is.

4.	 Litware’s identity provider verifies Rick’s credentials and 
returns a security token to Rick’s browser. The browser 
sends the token back to the federation provider. The claims 
in this token are configured for the Adatum federation 
provider and contain information about Rick that is relevant 
to Adatum. For example, the claims establish his name and 
that he belongs to the sales organization. The process of 
verifying the user’s credentials may include additional steps 
such as presenting a logon page and querying Active 
Directory or, potentially, other attribute repositories.

5.	 The Adatum federation provider validates and reads the 
security token issued by Litware and creates a new token 
that can be used by the a-Order application. Claims issued 
by Litware are transformed into claims that are understood 
by Adatum’s a-Order application. (The mapping rules that 
translate Litware claims into Adatum claims were created 
when Adatum configured its issuer to accept Litware’s 
issuer as an identity provider.)

6.	 As a consequence of the claim mappings, Adatum’s issuer 
removes some claims and adds others that are needed for 
the a-Order application to accept Rick as a user. The 
Adatum issuer uses browser redirection to send the new 
token to the application. Windows® Identity Foundation 
(WIF) validates the security token and extracts the claims. 
It creates a ClaimsPrincipal and assigns it to HttpContext.
User. The a-Order application can then access the claims for 
authorization decisions. For example, in this scenario, orders 
are filtered by organization— the organization name is 
provided as a claim.

In the sample code, 
home realm discovery 
is explicit, but this 
approach has caveats. 
For one, it discloses all 
of Adatum’s partners, 
and some companies 
may not want to  
do this.

Notice that Adatum’s 
federation provider  
is a “relying party”  
to Litware’s identity 
provider.

You can see these 
steps in more detail in 
Appendix B. It shows 
a detailed message 
sequence diagram for 
using a browser as the 
client.



 75 75feder ated identity for web applications

The Adatum federation provider issuer mediates between the 
application and the external issuer. You can think of this as a logical 
role that the Adatum issuer takes on. The federation provider has two 
responsibilities. First, it maintains a trust relationship with Litware’s 
issuer, which means that the federation provider accepts and under-
stands Litware tokens and their claims. 

Second, the federation provider needs to translate Litware claims 
into claims that a-Order can understand. The a-Order application only 
accepts claims from Adatum’s federation provider (this is its trusted 
issuer). In this scenario, a-Order expects claims of type Role in order 
to authorize operations on its website. The problem is that Litware 
claims don’t come from Adatum and they don’t have roles. In the 
scenario, Litware claims establish the employee’s name and organiza-
tional group. Rick’s organization, for example, is Sales. To solve this 
problem, the federation provider uses mapping rules that turn a Lit-
ware claim into an Adatum claim. 

The following table summarizes what happens to input claims 
from Litware after the Adatum federation provider transforms them 
into Adatum output claims.

Input Conditions Output claims

Claim issuer: Litware
Claim type: Group, 
Claim value: Sales

Claim issuer: Adatum
Claim type: Role; Claim value: Order Tracker

Claim issuer: Litware Claims issuer: Adatum
Claim type: Company; Claim value: Litware

Claim issuer: Litware
Claim type: name 

Claims issuer: Adatum
Claim type: name; Claim Value: Copied from input

Active Directory Federation Services (ADFS) 2.0 includes a claims 
rule language that lets you define the behavior of the issuer when it 
creates new tokens. What all of these rules generally mean is that if a 
set of conditions is true, you can issue some claims. 

These are the three rules that the Adatum FP uses:
•	 => issue(Type = “http://schemas.adatum.com/claims/2009/08/

organization”, Value = “Litware”);
•	 c:[Type == “http://schemas.xmlsoap.org/claims/Group”, Value == 

“Sales”] => issue(Type = “http://schemas.microsoft.com/
ws/2008/06/identity/claims/role”, Issuer = c.Issuer, OriginalIssuer 
= c.OriginalIssuer, Value = “Order Tracker”, ValueType = c.
ValueType);

•	 c:[Type == “http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/name”]=> issue(claim = c);

Check out the setup 
and deployment 
section of the chapter 
to see how to 
establish a trust 
relationship between 
issuers in separate 
trust domains.



7676 chapter four

In all the rules, the part before the “=>” is the condition that must 
be true before the rule applies. The part after the “=>” indicates the 
action to take. This is usually the creation of an additional claim. 

The first rule says that the federation provider will create a claim 
of type Organization with the value Litware. That is, for this issuer 
(Litware) it will create that claim. The second rule specifies that if 
there’s a claim of type Group with value Sales, the federation pro-
vider  will create a claim of type Role with the value Order Tracker. 
The third rule copies a claim of type name.

An important part of the solution is home realm discovery. The 
a-Order application needs to know which issuer to direct users to for 
authentication. If Rick opens his browser and types http://www.
adatum.com/ordertracking, how does a-Order know that Rick can 
be authenticated by Litware’s issuer? The fact is that it doesn’t. The 
a-Order application relies on the federation provider to make that 
decision. The a-Order application always redirects users to the fed-
eration provider. 

This approach has two potential issues: it discloses information 
publicly about Litware’s relationship with Adatum, and it imposes an 
extra step on users who might be confused as to which selection is 
appropriate. 

You can resolve these issues by giving the application a hint about 
the user’s home realm. For example, Litware could send a parameter 
in a query string that specifies the sender’s security domain. The ap-
plication can use this hint to determine the federation provider’s be-
havior. For more information, see “Home Realm Discovery” in Chapter 
2, “Claims-Based Architectures.”

There are no 
partner-specific 
details in the a-Order 
application. Partner 
details are kept in  
the FP.

It also increases the 
risk of a phishing 
attack.

An issuer can accept the 
whr parameter  
as a way to specify 
someone’s home realm.



 77 77feder ated identity for web applications

Benefits and Limitations
Federated identity is an example of how claims support a flexible in-
frastructure. Adatum can easily add customers by setting up the trust 
relationship in the federation provider and creating the correct claims 
mappings. Thanks to WIF, dealing with claims in a-Order is straight-
forward and, because Adatum is using ADFS 2.0, creating the claim 
mapping rules is also fairly simple. Notice that the a-Order application 
itself didn’t change. Also, creating a federation required incremental 
additions to an infrastructure that was first put in place to implement 
single sign-on.

Another benefit is that the claims that Litware issues are about 
things that make sense within the context of the organization: Lit-
ware’s employees and their groups. All the identity differences be-
tween Litware and Adatum are corrected on the receiving end by 
Adatum’s federation provider. Litware doesn’t need to issue Adatum-
specific claims. Although this is technically possible, it can rapidly 
become difficult and costly to manage as a company adds new rela-
tionships and applications. 

Inside the Implementation
The Microsoft® Visual Studio® development system solution named 
2-Federation found at http://claimsid.codeplex.com is an example of 
how to use federation. The structure of the application is very similar 
to what you saw in Chapter 3, “Claims-Based Single Sign-On for the 
Web.” Adding federated identity did not require recompilation or 
changes to the Web.config file. Instead, the issuer was configured to 
act as a federation provider and a trust relationship was established 
with an issuer that acts as an identity provider. This process is de-
scribed in the next section. Also, the mock issuers were extended to 
handle the federation provider role. 

Setup and Physical Deployment
The Visual Studio solution named 2-Federation on CodePlex is ini-
tially configured to run on a stand-alone development machine. The 
solution includes projects that implement mock issuers for both  
Litware and Adatum. 

Federated identity 
requires a lot less 
maintenance and 
troubleshooting. User 
accounts don’t have 
to be copied and 
maintained across 
security realms.

Adding federated identity  
to an existing claims-aware 
application requires only  
a configuration change.



7878 chapter four

Using Mock Issuers for Development  
and Testing

Mock issuers are helpful for development, demonstration, and testing 
because they allow the end-to-end application to run on a single host. 
The WIF SDK includes a Visual Studio template that makes it easy  
to create a simple issuer class that derives from the SecurityToken 
Service base class. You then provide definitions for the GetScope and 
GetOutputClaims methods, as shown in the downloadable code 
sample that accompanies this scenario.

When the developers at Adatum want to deploy their application, 
they will modify the configuration so that it uses servers provided by 
Adatum and Litware. To do this, you need to establish a trust relation-
ship between the Litware and Adatum issuers and modify the a-Order.
OrderTracking application’s Web.config file for the Adatum issuer. 

Establishing Trust Relationships
In the production environment, Adatum and Litware use production-
grade security token issuers such as ADFS 2.0. For the scenario to 
work, you must establish a trust relationship between Adatum’s and 
Litware’s issuers. Generally, there are seven steps in this process: 

1.	 Export a public key certificate for token signing from the 
Litware issuer and copy Litware’s token signing certificate 
to the file system of the Adatum’s issuer host.

2.	 Configure Adatum’s issuer to recognize Litware as a trusted 
identity provider.

3.	 Configure Litware’s issuer to accept requests from 
the Adatum issuer.

4.	 Configure the a-Order Tracking application as a 
relying party within the Adatum issuer.  

5.	 Edit claims rules in Litware that are specific to the 
Adatum issuer.

6.	 Edit claims transformation rules in the Adatum 
issuer that are specific to the Litware issuer.

7.	  Edit claims rules in the Adatum issuer that are 
specific to the a-Order Tracking application.

You can refer to documentation provided by your production  
issuer for instructions on how to perform these steps. Instructions for 
the samples included in this guide can be found at http://claimsid.
codeplex.com.

Procedures for 
establishing trust can 
be automated by 
using metadata. For 
example, in ADFS 2.0, 
you can use the 
FederationMetadata.
xml file if you prefer 
a more automated 
approach. The mock 
issuers provided in 
the sample code do 
not provide this 
metadata. 



 79 79feder ated identity for web applications

Questions

1.	 Federated identity is best described as:

a.	 Two or more applications that share the same set of 
users.

b.	 Two or more organizations that share the same set of 
users.

c.	 Two or more organizations that share an identity 
provider.

d.	 One organization trusting users from one or more 
other organizations to access its applications.

2.	 In a federated security environment, claims mapping is 
necessary because:

a.	 Claims issued by one organization are not necessarily 
the claims recognized by another organization.

b.	 Claims issued by one organization can never be trusted 
by another organization.

c.	 Claims must always be mapped to the roles used in 
authorization.

d.	 Claims must be transferred to a new ClaimsPrincipal 
object.

3.	 The roles of a federation provider can include:

a.	 Mapping claims from an identity provider to claims 
that the relying party understands.

b.	 Authenticating users.

c.	 Redirecting users to their identity provider.

d.	 Verifying that the claims were issued by the expected 
identity provider.

4.	 Must an identity provider issue claims that are specific to a 
relying party? 

a.	 Yes 

b.	 No

c.	 It depends. 



8080 chapter four

5.	 Which of the following best summarizes the trust relation-
ships between the various parties described in the federated 
identity scenario in this chapter?

a.	 The relying party trusts the identity provider, which in 
turn trusts the federation provider.

b.	 The identity provider trusts the federation provider, 
which in turn trusts the relying party.

c.	 The relying party trusts the federation provider, which 
in turn trusts the identity provider.

d.	 The federation provider trusts both the identity 
provider and the relying party.

More Information
For more information about federation and home realm discovery, see 
“Developer’s Introduction to Active Directory Federation Services” at 
http://msdn.microsoft.com/en-us/magazine/cc163520.aspx. Also see 
“One does not simply walk into Mordor, or Home Realm Discovery for 
the Internet” at http://blogs.msdn.com/vbertocci/archive/2009/04 
/08/one-does-not-simply-walk-into-mordor-or-home-realm-discov-
ery-for-the-internet.aspx.

For a tool that will help you generate WS-Federation metadata 
documents, see Christian Weyer’s blog at http://blogs.thinktecture.
com/cweyer/archive/2009/05/22/415362.aspx.

For more information about the ADFS 2.0 claim rule language, see 
“Claim Rule Language” at http://technet.microsoft.com/en-us/library/
dd807118%28WS.10%29.aspx.

For a simple tool that you can use as a test security token service 
(STS) that can issue tokens via WS-Federation, see the SelfSTS tool 
at http://archive.msdn.microsoft.com/SelfSTS.



81

Federated Identity with  
Windows Azure Access  

Control Service

5

In Chapter 4, “Federated Identity for Web Applications,” you saw how 
Adatum used claims to enable users at Litware to access the a-Order 
application. The scenario described how Adatum could federate with 
partner organizations that have their own claims-based identity infra-
structures. Adatum supported the partner organizations by establish-
ing trust relationships between the Adatum federation provider (FP) 
and the partner’s identity provider (IdP). 

Adatum would now like to allow individual users who are not part 
of a partner’s security domain to access the a-Order application. Ada-
tum does not want to manage the user accounts for these individuals: 
instead, these individuals should be able to use an existing identity 
from social identity providers such as Microsoft® Windows® Live®, 
Google, Yahoo!, or Facebook. How can Adatum enable users to reuse 
an existing social identity, such as Facebook ID, when they access the 
a-Order application? In addition to establishing trust relationships 
with the social identity providers, Adatum must find solutions to 
these problems: 
•	 Different identity providers may use different protocols and 

token formats to exchange identity data.
•	 Different identity providers may use different claim types.
•	 The Adatum federation provider must be able to redirect users 

to the correct identity provider.
•	 The a-Order application must be able to implement authoriza-

tion rules based on the claims that the social identity providers 
issue.

•	 Adatum must be able to enroll new users with social identities 
who want to use the a-Order application.
The Windows Azure™ AppFabric Access Control Service (ACS) 

is a cloud-based federation provider that provides services to facili-
tate this scenario. ACS can transition between the protocols used by 

In this chapter, the term 
“social identity” refers to  
an identity managed by  
a well-known, established 
online identity provider.



82 chapter five

different identity providers to transfer claims, perform mappings be-
tween different claim types based on configurable rules, and help lo-
cate the correct identity provider for a user when they want to access 
an application. For more information, see Chapter 2, “Claims-Based 
Architectures.”

ACS currently supports the following identity providers: Windows 
Live, Google, Yahoo!, and Facebook. In addition, it can work with 
ADFS 2.0 identity providers or a custom security token service (STS) 
compatible with WS-Federation or WS-Trust. ACS also supports 
OpenID, but you must configure this programmatically rather than 
through the portal.

In this chapter, you’ll learn how Adatum enables individual cus-
tomers with a range of different social identity types to access the 
a-Order application alongside Adatum employees and employees of 
an existing enterprise partner. This chapter extends the scenario de-
scribed in Chapter 4, “Federated Identity for Web Applications,” and 
shows Adatum building on its previous investments in a claims-based 
identity infrastructure.

The Premise
Now that Adatum has enabled federated access to the a-Order ap-
plication for users at some of Adatum’s partners such as Litware, 
Adatum would like to extend access to the a-Order application to 
users at smaller businesses with no identity infrastructure of their 
own and to individual consumer users. Fortunately, it is likely that 
these users will already have some kind of social identity such as a 
Google ID or a Windows Live ID. Smaller businesses want their users 
to be able to track their orders, just as Rick at Litware is already able 
to do. Consumer users want to be able to log on with their social 
identity credentials and use the a-Order program to determine  
the status of all their orders with Adatum. They don’t want to be  
issued additional credentials from Adatum just to use the a-Order  
application.

Goals and Requirements
The goal of this scenario is to show how federated identity can make 
the partnership between Adatum and consumer users and users at 
smaller businesses with no security infrastructure of their own work 
more efficiently. With federated identity, one security realm can ac-
cept identities that come from another security realm. This lets people 
in one domain access resources located in the other domain without 

Consumer users will 
benefit from using their 
existing social identities 
because they won’t need 
to remember a new set of 
credentials just for 
accessing the a-Order 
application. Adatum will 
benefit because they won’t 
have the overhead of 
managing these identi-
ties—securely storing 
credentials, managing  
lost passwords, enforcing 
password policies, and  
so on.



 83feder ated identity with windows azure access control service

presenting additional credentials. The Adatum issuer will trust the 
common social identity providers (Windows Live ID, Facebook, 
Google, Yahoo!) to authenticate users on behalf of the a-Order  
application.

Adatum trusts the social identity providers indirectly. The federation 
provider at Adatum trusts the Adatum ACS instance and that in turn 
trusts the social identity providers. If the federation provider at 
Adatum trusted all the social identity providers directly, then it 
would have to deal with the specifics of each one: the different 
protocols and token formats. ACS handles all of this complexity for 
Adatum and that makes it really easy for Adatum to support a 
variety of social identity providers.

In addition to the goals, this scenario has a number of other re-
quirements. One requirement is that Adatum must control access to 
the order status pages and the information that the application dis-
plays based on the identity of the partner or consumer user who is 
requesting access to the a-Order application. In other words, users at 
Litware should only be able to browse through Litware’s orders and 
not another company’s orders. In this chapter, we introduce Mary, the 
owner of a small company named “Mary Inc.” She, of course, should 
only be able to browse through her orders and no one else’s.

Another requirement is that, because Adatum has several partner 
organizations and many consumer users, Adatum must be able to find 
out which identity provider it should use to authenticate a user’s 
credentials. As mentioned in previous chapters, this process is called 
home realm discovery. For more information, see Chapter 2, “Claims-
Based Architectures.”

One assumption for this chapter is that Adatum has its own iden-
tity infrastructure in place. 

Overview of the Solution
With the goals and requirements in place, it’s time to look at the solu-
tion. As you saw in Chapter 4, “Federated Identity for Web Applica-
tions,” the solution includes the establishment of a claim-based archi-
tecture with an issuer that acts as an identity provider on the 
customer’s side and an issuer that acts as the federation provider on 
Adatum’s side. Recall that a federation provider acts as a gateway 
between a resource and all of the issuers that provide claims about the 
resource’s users. 

In addition, this solution now includes an ACS instance, which 
handles the protocol transition and token transformation for issuers 
that might not be WS-Federation based. This includes many of the 
social identity providers mentioned earlier in this chapter.

Although using ACS 
simplifies the implementa-
tion of the Adatum issuer,  
it does introduce some 
running costs. ACS is a 
subscription service, and 
Adatum will have to pay 
based on its usage of ACS 
(ACS charges are calculated 
based on the number of 
Access Control transactions 
plus the quantity of data 
transferred in and out of 
the Windows Azure 
datacenters).



84 chapter five

Figure 1 shows the Adatum solution for both Litware that has its 
own identity provider, and Mary who is using a social identity—
Google, in this example.

figure 1
Accessing the a-Order application from  
Litware and by using a social identity

The following two sections provide a high-level walkthrough of 
the interactions between the relying party (RP), the federation pro-
vider, and the identity provider for customers with and without their 
own identity provider. For a detailed description of the sequence of 
messages that the parties exchange, see Appendix B.

Example of a Customer  
with its Own Identity Provider

To recap from Chapter 4, “Federated Identity for Web Applications,” 
here’s an example of how the system works for a user, Rick, at the 
partner Litware, which has its own identity provider. The steps cor-
respond to the shaded numbers in the preceding illustration.

Step 1: Authenticate Rick

1.	 Rick is using a computer on Litware’s network. Litware’s 
Active Directory® service has already authenticated him. He 
opens a browser and navigates to the a-Order application. 
Rick is not an authenticated user in a-Order at this time. 
Adatum has configured a-Order to trust Adatum’s issuer 
(the federation provider). The application has no knowledge 

Mary

1

3

5

6

2 1

4

2

4

3

Rick
Adatum

Litware

Issuer ( )ldP

Issuer( )FP

Claims
Transformation

Claims
Transformation

Trust

Trust

John
( )RP

a−Order
web application

ACS

Prot
ocol

 Tra
nsit

ion

Trust

Trust
Windows Live ID
Facebook
Google

Social identity
issuers (IdPs)



 85feder ated identity with windows azure access control service

of where the request comes from. It redirects Rick’s request 
to the Adatum federation provider.

2.	 The Adatum federation provider presents the user with a 
page listing different identity providers that it trusts (the 
“Home realm Discovery” page). At this point, the federation 
provider doesn’t know where Rick comes from.

3.	 Rick selects Litware from the list and then Adatum’s 
federation provider redirects him to the Litware issuer that 
can verify that Rick is who he says he is.

4.	 Litware’s identity provider verifies Rick’s credentials and 
returns a security token to Rick’s browser. Litware’s identity 
provider has configured the claims in this token for the 
Adatum federation provider and they contain information 
about Rick that is relevant to Adatum. For example, the 
claims establish his name and that he belongs to the sales 
organization in Litware.

Step 2: Transmit Litware’s Security Token  
	 to the Adatum Federation Provider

1.	 Ricks’ browser now posts the issued token back to the 
Adatum federation provider. The Adatum federation 
provider validates the token issued by Litware and creates a 
new token that the a-Order application can use. 

Step 3: Transforming the Token

1.	 The federation provider transforms the claims issued by 
Litware into claims that Adatum’s a-Order application 
understands. (The mapping rules that translate Litware 
claims into Adatum claims were determined when Adatum 
configured its issuer to accept Litware’s issuer as an identity 
provider.) 

2.	 The claim mappings in Adatum’s issuer remove some claims 
and add others that the a-Order application needs in order 
to accept Rick as a user, and possibly control access to 
certain resources. 

Step 4: Transmit the Transformed Token  
	a nd Perform the Requested Action

1.	 The Adatum issuer uses browser redirection to send the 
new token to the application. In the a-Order application, 



86 chapter five

Windows Identity Foundation (WIF) validates the security 
token and extracts the claims. It creates a ClaimsPrincipal 
object and assigns it to HttpContext.User property. The 
a-Order application can then access the claims for authori-
zation decisions. For example, in this scenario, the applica-
tion filters orders by organization, which is one of the pieces 
of information provided as a claim.

Example of a Customer  
Using a Social Identity

Here’s an example of how the system works for a consumer user such 
as Mary who is using a social identity. The steps correspond to the 
un-shaded numbers in the preceding illustration.

Step 1: Present Credentials to the Identity Provider

1.	 Mary is using a computer at home. She opens a browser and 
navigates to the a-Order application at Adatum. Adatum has 
configured the a-Order application to trust Adatum’s issuer 
(the federation provider). Mary is currently un-authenticat-
ed, so the application redirects Mary’s request to the 
Adatum federation provider.

2.	 The Adatum federation provider presents Mary with a page 
listing different identity providers that it trusts. At this 
point, the federation provider doesn’t know which security 
realm Mary belongs to, so it must ask Mary which identity 
provider she wants to authenticate with.

3.	 Mary selects the option to authenticate using her social 
identity and then Adatum’s federation provider redirects her 
to the ACS issuer to verify that Mary is who she says she is. 
Adatum’s federation provider uses the whr parameter in the 
request to indicate to ACS which social identity provider to 
use—in this example it is Google.

In this sample, the Adatum simulated issuer allows users to enter the 
email address associated with their social identity provider. The 
simulated issuer parses this email address to determine the value of 
the whr parameter. Another option would be to let the user choose 
from a list of social identity providers. You should check what 
options are available with the issuer that you use; you may be able to 
query your issuer for the list of identity providers that it currently 
supports.

4.	 ACS automatically redirects Mary to the Google issuer.

In the sample, the 
simulated issuer 
allows you to select 
between Adatum, 
partner organizations, 
and social identity 
providers.



 87feder ated identity with windows azure access control service

Mary never sees an ACS page; when ACS receives the request from 
the Adatum issuer, ACS uses the value of the whr parameter to 
redirect Mary directly to her social identity provider. However, if the 
whr parameter is missing, or does not have a valid value, then ACS 
will display a page that allows the user to select the social identity 
provider that she wants to use.

5.	 Google verifies Mary’s credentials and returns a security 
token to Mary’s browser. The Google identity provider has 
added claims to this token for ACS: the claims include basic 
information about Mary. For example, the claims establish 
her name and her email address.

Step 2: Transmit the Identity Provider’s  
	Sec urity Token to ACS

1.	 The Google identity provider uses HTTP redirection to 
redirect the browser to ACS with the security token it has 
issued.

2.	 ACS receives this token and verifies that it was issued by 
the identity provider.

Step 3: Transform the Claims

1.	 If necessary, ACS converts the token issued by the identity 
provider to the security assertion markup language (SAML) 
2.0 format and copies the claims issued by Google into the 
new token.

2.	 ACS returns the new token to Mary’s browser.

Step 4: Transmit the Identity Provider’s Security 		
	T oken to the federation Provider

1.	 Mary’s browser posts the issued token back to the Adatum 
federation provider.

2.	 The Adatum federation provider receives this token and 
validates it by checking that ACS issued the token.

Step 5: Map the Claims

1.	 Adatum’s federation provider applies token mapping rules 
to the ACS security token. These rules transform the claims 
into claims that the a-Order application can understand. 

2.	 The Adatum federation provider returns the new claims to 
Mary’s browser.

Mary must give her 
consent before 
Google will pass the 
claims on to ACS.



88 chapter five

Step 6: Transmit the Mapped Claims and Perform  
	 the Requested Action

1.	 Mary’s browser posts the token issued by the Adatum 
federation provider to the a-Order application. This token 
contains the claims created by the mapping process.

2.	 The application validates the security token by checking 
that the Adatum federation provider issued it.

3.	 The application reads the claims and creates a session for 
Mary. It can use Mary’s identity information from the token 
to determine which orders Mary can see in the application.

Because this is a web application, all interactions happen through 
the browser. (See the section “Browser-Based Scenario with ACS” in 
Appendix B for a detailed description of the protocol for a browser-
based client.)

The principles behind these interactions are exactly the same as 
those described in Chapter 4, “Federated Identity for Web Applica-
tions.”

Adatum’s issuer, acting as a federation provider, mediates between 
the application and the external issuers. The federation provider has 
two responsibilities. First, it maintains a trust relationship with partner 
issuers, which means that the federation provider accepts and under-
stands Litware tokens and their claims, ACS tokens and their claims, 
and tokens and their claims from any other configured partner. Sec-
ond, the federation provider needs to translate claims from partners 
and ACS into claims that a-Order can understand. The a-Order ap-
plication only accepts claims from Adatum’s federation provider (this 
is its trusted issuer). In this scenario, a-Order expects claims of type 
Role and Organization in order to authorize operations on its web 
site. The problem is that ACS claims don’t come from Adatum and 
they don’t have these claim types. In the scenario, the claims from 
ACS only establish that a social identity provider has authenticated 
the user. To solve this problem, the Adatum federation provider uses 
mapping rules that add a Role claim to the claims from ACS.

Trust Relationships with  
Social Identity Providers

The nature of a trust relationship between Adatum and a business 
partner such as Litware, is subtly different from a trust relationship 
between Adatum and a social identity provider such as Google or 

Different social 
identity providers 
return different claims 
to ACS: for example, 
the Windows Live ID 
identity provider only 
returns a guid-like 
nameidentifier claim, 
the Google identity 
provider returns name 
and email claims in 
addition to the 
nameidentifier claim.



 89feder ated identity with windows azure access control service

Windows Live. In the case of a trust relationship between Adatum and 
a business partner such as Litware, the trust operates at two levels; 
there is a business trust relationship characterized by business con-
tracts and agreements, and a technical trust relationship characterized 
by the configuration of the Adatum federation provider to trust to-
kens issued by the Litware identity provider. In the case of a trust re-
lationship between Adatum and a social identity provider such as 
Windows Live, the trust is only a technical trust; there is no business 
relationship between Adatum and Windows Live. In this scenario, 
Adatum establishes a business trust relationship with the owner of 
the social identity when the owner enrolls to use the a-Order applica-
tion and registers his or her social identity with Adatum. A further 
difference between the two scenarios is in the claims issued by the 
identity providers. Adatum can trust the business partner to issue rich, 
accurate claims data about its employees such as cost centers, roles, 
and telephone numbers, in addition to identity claims such as name 
and email. The claims issued by a social identity provider are minimal, 
and may sometimes be just an identifier. Because there is no business 
trust relationship with the social identity provider, the only thing that 
Adatum knows for sure is that each individual with a social identity 
has a unique, unchanging identifier that Adatum can use to recognize 
that it’s the same person returning to the a-Order application. 

An individual’s unique identifier is unique to that instance of ACS: if 
Adatum creates a new ACS instance, each individual will have a new 
unique identifier. This is important to be aware of if you’re using the 
unique identifier to map to other user data stored elsewhere.

Description of Mapping Rules  
in a Federation Provider

The claims that ACS returns from the social identity provider to the 
Adatum federation provider do not include the role or organization 
claims that the a-Order application uses to authorize access to order 
data. In some cases, the only claim from the social identity provider is 
the nameidentifier that is a guid-like string. The mapping in rules in 
the Adatum federation provider must add the role and organization 
claims to the token. In the sample, the mapping rules simply add the 
OrderTracker role, and “Mary Inc.” as an organization.

The following table summarizes the mapping rules that the Ada-
tum federation provider applies when it receives a token from ACS 
when the user has authenticated with Google.



90 chapter five

Input claim Output claim Notes

nameidentifier A unique id allocated by Google.

emailaddress The users registered email address 
with Google. The user has agreed 
to share this address.

name name The users name. This is the only 
claim passed through to the 
application. The issuer property 
of the claim is set to adatum, and 
the originalissuer is set to acs\
Google.

identityprovider Google

Role The simulated issuer adds this 
claim with a value of “Order 
Tracker.”

Organization The simulated issuer adds this 
claim with a value of “MaryInc.”

The following table summarizes the mapping rules that the simu-
lated issuer applies when it receives a token from ACS when the user 
has authenticated with Windows Live ID.

Input claim Output claim Notes

nameidentifier A unique id allocated by 
Windows Live ID.

identityprovider uri:WindowsLiveID

name The simulated issuer copies the 
value of the nameidentifier claim 
to the name claim. The issuer 
property of the claim is set to 
adatum, and the originalissuer is 
set to acs\LiveID.

Role The simulated issuer adds this 
claim with a value of “Order 
Tracker.”

Organization The simulated issuer adds this 
claim with a value of “MaryInc.”



 91feder ated identity with windows azure access control service

The following table summarizes the mapping rules that the simu-
lated issuer applies when it receives a token from ACS when the user 
has been authenticated by a Facebook application.

Input claim Output claim Notes

nameidentifier A unique id allocated by the 
Facebook application.

identityprovider Facebook-194130697287302. The 
number here uniquely identifies 
your Facebook application.

name name The users name. This is the only 
claim passed through to the 
application. The issuer property 
of the claim is set to adatum, and 
the originalissuer is set to acs\
Facebook.

Role The simulated issuer adds this 
claim with a value of “Order 
Tracker.”

Organization The simulated issuer adds this 
claim with a value of “MaryInc.”

In the scenario described in this chapter, because of the small 
numbers of users involved, Adatum expects to manage the enrolment 
as a manual process. For a description of how this might be automated, 
see Chapter 7, “Federated Identity with Multiple Partners and Win-
dows Azure Access Control Service.”

Alternative Solutions
Of course, the solution we’ve just described illustrates just one imple-
mentation choice; another possibility would be to separate Adatum’s 
identity provider and federation provider and let ACS manage the 
federation and the claims transformation. Figure 2 shows the trust 
relationships that Adatum would need to configure for this solution.

These mappings are, of 
course, an example and for 
demonstration purposes 
only. Notice that as they 
stand, anyone authenti-
cated by Google or 
Windows Live ID has 
access to the “Mary Inc.” 
orders in the a-Order 
application. A real 
federation provider  
would probably check  
that the combination of 
identityprovider and 
nameidentifier claims is 
from a registered, valid 
user and look up in a local 
database their name, role, 
and organization. 



92 chapter five

figure 2
Using ACS to manage the federation  
with Adatum’s partners

In this alternative solution, ACS would trust the Adatum and 
Litware identity providers and there is no longer a trust relationship 
between the Litware and Adatum issuers. Adatum should also evalu-
ate the costs of this solution because there will be additional ACS 
transactions as it handles sign-ins from users at partners with their 
own identity providers. These costs need to be compared with the 
cost of running and managing this service on-premises.

A second alternative solution does away with ACS leaving all the 
responsibilities for protocol transition and claims transformation to 
the issuer at Adatum. Figure 3 shows the trust relationships that  
Adatum would need to configure for this solution.

Mary

Rick
Adatum

Litware

Issuer ( )ldP

Issuer( )IdP

Claims
Transformation

Trust

John
( )RP

a−Order
web application

ACS

Prot
ocol

 Tra
nsit

ion

Trust

Trust

Trust

Windows Live ID
Facebook
Google

Social identity
issuers (IdPs)

Adatum has already 
invested in its own 
identity infrastructure 
and has an existing 
federation provider 
running in their own 
datacenter. As a rather 
risk-averse organiza-
tion, Adatum prefers  
to continue to use 
 their tried and tested 
solution rather  
than migrate the 
functionality to ACS.



 93feder ated identity with windows azure access control service

figure 3
Using the Adatum issuer  
for all federation tasks

Although this alternative solution means that Adatum does not 
need to pay any of the subscription charges associated with using 
ACS, Adatum is concerned about the additional complexity of its is-
suer, which would now need to handle all of the protocol transition 
and claims transformation tasks. Furthermore, implementing this 
scenario would probably take some time (weeks or months), while 
Adatum could probably configure the solution with ACS in a matter 
of hours. The question becomes one of business efficiency: would 
Adatum get a better return by investing in creating and maintaining 
infrastructure services, or by focusing on their core business services?

Inside the Implementation
The Visual Studio solution named 6-FederationWithAcs found at 

http://claimsid.codeplex.com is an example of how to use federation 
with ACS. The structure of the application is very similar to what you 
saw in chapter 4, “Federated Identity for Web Applications.” There 
are no changes to the a-Order application: it continues to trust the 
Adatum simulated issuer that provides it with the claims required to 
authorize access to the application’s data.

This alternative removes  
a dependency on ACS:  
an external, third-party 
service. It still relies on  
the social identity providers 
for their authentication 
services.

Mary

Rick
Adatum

Litware

Issuer ( )ldP

Issuer( )FP

Claims
Transformation

Trust

John
( )RP

a−Order
web application

Trust

Trust

Windows Live ID
Facebook
Google

Social identity
issuers (IdPs)

Prot
ocol

 Tra
nsit

ion



94 chapter five

The example solution extends the Adatum simulated issuer to 
handle federation with ACS, and uses an ACS instance that is config-
ured to trust the social identity providers. The next section describes 
these changes.

Setup and Physical Deployment
You can run the Visual Studio solution named 6-FederationWithAcs 
found at http://claimsid.codeplex.com on a stand-alone development 
machine. As with the solutions described in the previous chapters, this 
solution uses mock issuers for both Adatum and Litware. There are no 
changes to the Litware mock issuer, but the Adatum mock issuer now 
has a trust relationship with ACS in addition to the existing trust re-
lationship with Litware, and offers the user a choice of authenticating 
with the Adatum identity provider, the Litware identity provider, or 
ACS.

You can see the entry for ACS (https://federationwithacs-dev.
accesscontrol.windows.net/) in the issuerNameRegistry section of 
the Web.config file in the Adatum.SimulatedIssuer.6 project. This 
entry includes the thumbprint used to verify the token that the Ada-
tum federation provider receives from ACS. This is the address of the 
ACS instance created for the sample.

When the developers at Adatum want to deploy their application, 
they will modify the configuration so that it uses the Adatum federa-
tion provider. They will also modify the configuration of the Adatum 
federation provider by adding a trust relationship with the production 
ACS instance. 

Establishing a Trust Relationship  
with ACS

Establishing a trust relationship with ACS is very similar to establish-
ing a trust relationship with any other issuer. Generally, there are six 
steps in this process:

1.	 Configure Adatum’s issuer to recognize your ACS instance 
as a trusted identity provider.

You may be able to configure the Adatum issuer automatically 
by providing a link to the FederationMetadata.xml file for the 
ACS namespace. However, this FederationMetadata.xml will not 
include details of all the claims that your ACS namespace offers, 
it only includes the nameidentifier and identityprovider 
claims. You will need to configure details of other claim types 
offered by ACS manually in the Adatum issuer.

You can select the 
certificate that ACS 
uses to sign the token 
it issues to the 
Adatum federation 
provider in the 
Windows Azure 
AppFabric portal.



 95feder ated identity with windows azure access control service

2.	 Configure the social identity providers that you want to 
support in ACS.

3.	 Configure your ACS instance to accept requests from the 
Adatum issuer (the Adatum issuer is a relying party as far as 
ACS is concerned.)

4.	 Edit the claims rules in ACS to pass the claims from the 
social identity provider through to the Adatum issuer.

5.	 If necessary, edit the claims transformation rules in the 
Adatum issuer that are specific to the social identity provid-
ers.

6.	 If necessary, edit the claims rules in the Adatum issuer that 
are specific to the a-Order application.

You can refer to documentation provided by your production is-
suer for instructions on how to perform these steps. You can find 
detailed instructions for the ACS configuration in Appendix E of this 
guide.

Reporting Errors from ACS
You can specify a URL that points to an error page for each relying 
party that you define in ACS. In the sample, this page is called  
ErrorPage.aspx and you can find it in the Adatum.FederationProvider.6 
project. If ACS detects an error during processing, it can post  
JavaScript Object Notation (JSON) encoded error information to this 
page. The code-behind for this page illustrates a simple approach for 
displaying this error information; in practice, you may want to log 
these errors and take different actions depending on the specific error 
that occurs.

An easy way to generate an error in the sample so that you can see 
how the error processing works is to try to authenticate using a 
Google ID, but to decline to give consent for ACS to access your 
data by clicking on No thanks after you have logged into Google.

Initializing ACS
The sample application includes a set of pre-configured partners for 
Fabrikam Shipping, both with and without their own identity provid-
ers. These partners require identity providers, relying parties, and 
claims-mapping rules in ACS in order to function. The ACS.Setup.6 
project in the solution is a basic console application that you can run 
to add the necessary configuration data for the pre-configured part-
ners to your ACS instance. It uses the ACS Management API and the 
wrapper classes in the ACS.ServiceManagementWrapper project.

It’s important to mark 
ErrorPage.aspx as 
un-authenticated in 
the web.config file  
to avoid the risk of 
recursive redirects.



96 chapter five

You will still need to perform some manual configuration steps; the 
ACS Management API does not enable you to create a new service 
namespace. You must perform this operation in the ACS manage-
ment portal.

For more information on working with ACS, see Appendix E.

Working with Social Identity Providers
The solution described in this chapter enables Adatum to support 
users with identities from trusted partners such as Litware, and with 
identities from social identity providers such as Google or Windows 
Live ID. Implementing this scenario in the real world would require 
solutions to two additional problems.

First, there is the question of managing how we define the set of 
identities (authenticated by one of the social identity providers) that 
are members of the same organization. For example, which set of us-
ers with Windows Live IDs and Google IDs are associated with the 
organization Mary Inc? With a partner such as Litware with its own 
identity provider, Adatum trusts Litware to decide which users at 
Litware should be able to view the order data that belongs to Litware.

Second, there are differences between the claims returned from 
the social identity providers. In particular, Windows Live ID only re-
turns the nameidentifier claim. This is a guid-like string that Windows 
Live guarantees to remain unchanged for any particular Windows Live 
ID within the current ACS namespace. All we can tell from this claim 
is that this instance of ACS and Windows Live have authenticated the 
same person, provided we get the same nameidentifier value returned. 
There are no claims that give us the user’s email address or name.

The following potential solutions make these assumptions about 
Adatum. 
•	 Adatum does not want to make any changes to the a-Order 

application to accommodate the requirements of a particular 
partner.

•	 Adatum wants to do all of its claims processing in the Adatum 
federation provider. Adatum is using ACS just for protocol 
transition, passing through any claims from the social identity 
providers directly to the Adatum federation provider.

Managing Users with Social Identities
Taking Litware as an example, let’s recap how the relationship with a 
partner organization works.
•	 Adatum configures the Adatum federation provider to trust the 

Litware identity provider. This is a one-time, manual configura-
tion step in this scenario.



 97feder ated identity with windows azure access control service

•	 Adatum adds a set of claims-mapping rules to the Adatum 
federation provider, to convert claims from Litware into claims 
that the Adatum a-Order application understands. In this 
scenario, the relevant claims that the a-Order application 
expects to see are name, Role and Organization.

•	 Litware can authorize any of its employees to access the 
Adatum a-Order application by ensuring that Litware’s identity 
provider gives the user the correct claim. In other words, Litware 
controls who has access to Litware’s data in the Adatum a-
Order application.
The situation for a smaller partner organization without its own 

identity provider is a little different. Let’s take MaryInc, which wants 
to use Windows Live IDs and Google IDs as an example.
•	 Unlike a partner with its own identity provider, there is no need 

to set up a new trust relationship because Adatum already trusts 
ACS. From the perspective of the Adatum federation provider, 
ACS is where the MaryInc employee claims will originate.

•	 The Adatum federation provider cannot identify the partner 
organization of the authenticated user from the claims it 
receives from ACS. Therefore, Adatum must configure a set of 
mapping rules in the federation provider that map a user’s 
unique claim from ACS (such as the nameidentifier claim) to 
appropriate values for the name, Role and Organization claims 
that the a-Order application expects to see.

•	 If MaryInc wants to allow multiple employees to access MaryInc 
data in the a-Order application, then Adatum must manually 
configure additional mapping rules in its federation provider.
This last point highlights the significant difference between the 

partner with its own identity provider and the partner without. The 
partner with its own identity provider can manage who has access to 
its data in the a-Order application; the partner without its own iden-
tity provider must rely on Adatum to make changes in the Adatum 
federation provider if it wants to change who has access to its data.

Working with Windows Live IDs
Unlike the other social identity providers supported by ACS that all 
return name and emailaddress claims, Windows Live ID only returns 
a nameidentifier claim. This means that the Adatum federation pro-
vider must use some additional logic to determine appropriate values 
for the name, Role and Organization claims that the a-Order applica-
tion expects to see. 

This means that when someone with a Windows Live ID enrolls 
to use the Adatum a-Order application, Adatum must capture values 

The Adatum federation 
provider should generate 
the Organization claim 
rather than pass in through 
from Litware. This 
mitigates the risk that a 
malicious administrator  
at Litware could configure 
the Litware identity 
provider to issue a  
claim using another 
organization’s identity.



98 chapter five

for the nameidentifier, name, Role and Organization claims to use in 
the mapping rules in the federation provider (as well as any other data 
that Adatum requires). The only way to discover the nameidentifier 
value is to capture the claim that Windows Live returns after the user 
signs in, so part of the enrollment process at Adatum must include the 
user authenticating with Windows Live.

It is possible to access data in the user’s Windows Live ID profile, 
such as the user’s name and email address, programmatically by 
using Windows Live Messenger Connect. This would eliminate 
the requirement that the user manually enter information such as his 
name and email address when he enrolled to use the a-Order 
application. However, the benefits to the users may not outweigh the 
costs of implementing this solution. Furthermore, not all users will 
understand the implications of temporarily giving consent to Adatum 
to access to their Windows Live ID profile data.

With ADFS you can create custom claims transformation mod-
ules that, for example, allow you to implement a mapping rule based 
on data retrieved from a relational database. With this in mind, the 
enrollment process for new users of the Adatum a-Order application 
could populate a database table with the values required for a user’s 
set of claims.

Working with Facebook
The sample application enables you to use Facebook as one of the 
supported social identity providers. Adding support for Facebook did 
not require any changes to the a-Order web application. However, 
there are differences in the way the Adatum federation provider sup-
ports Facebook as compared to the other social identity providers, 
and differences in the ACS configuration.

Configuring Facebook as an identity provider in ACS requires 
some additional data; an Application ID that identifies your Facebook 
application, an Application secret to authenticate with your Facebook 
application, and a list of claims that ACS will request from Facebook. 
The additional configuration values enable you to configure multiple 
Facebook applications as identity providers for your relying party.

The implication for the Adatum federation provider is that it must 
be able to identify the Facebook application to use for authentication 
in the whr parameter that it passes to ACS. The following code sample 
from the FederationIssuers class in the Adatum federation provider 
shows how the Facebook application ID is included in the whr value.

Each set of Facebook application 
credentials is treated as a 
separate identity provider  
in ACS.

http://msdn.microsoft.com/en-us/library/ff749458.aspx


 99feder ated identity with windows azure access control service

// Facebook
homeRealmIdentifier = "facebook.com";
issuerLocation = Federation. AcsIssuerEndpoint;
whr = "Facebook-194130697287302";
this.issuers.Add(homeRealmIdentifier,
  new IssuerInfo(homeRealmIdentifier, issuerLocation, whr));

Questions

1.	 Which of the following issues must you address if you want 
to allow users of your application to authenticate with a 
social identity provider such as Google or Windows Live® 
network of Internet services?

a.	 Social identity providers may use protocols other than 
WS-Federation to exchange claims tokens.

b.	 You must register your application with the social 
identity provider.

c.	 Different social identity providers issue different claim 
types.

d.	 You must provide a mechanism to enroll users using 
social identities with your application.

2.	 What are the advantages of allowing users to authenticate 
to use your application with a social identity?

a.	 The user doesn’t need to remember yet another 
username and password.

b.	 It reduces the features that you must implement in 
your application.

c.	 Social identity providers all use the same protocol to 
transfer tokens and claims.

d.	 It puts the user in control of their password manage-
ment. For example, a user can recover a forgotten 
password without calling your helpdesk.

3.	 What are the potential disadvantages of using ACS as your 
federation provider?

a.	 It adds to the complexity of your relying party  
application.



100 chapter five

b.	 It adds an extra step to the authentication process, 
which negatively impacts the user experience.

c.	 It is a metered service, so you must pay for each token 
that it issues.

d.	 Your application now relies on an external service that 
is outside of its control.

4.	 How can your federation provider determine which identity 
provider to use (perform home realm discovery) when an 
unauthenticated user accesses the application?

a.	 Present the user with a list of identity providers to 
choose from.

b.	 Analyze the IP address of the originating request.

c.	 Prompt the user for an email address, and then parse it 
to determine the user’s security domain.

d.	 Examine the ClaimsPrincipal object for the user’s 
current session.

5.	 In the scenario described in this chapter, the Adatum 
federation provider trusts ACS, which in turn trusts the 
social identity providers such as Windows Live and Google. 
Why does the Adatum federation provider not trust the 
social identity providers directly?

a.	 It’s not possible to configure the Adatum federation 
provider to trust the social identity providers because 
the social identity providers do not make the certifi-
cates required for a trust relationship available.

b.	 ACS automatically performs the protocol transition.

c.	 ACS is necessary to perform the claims mapping.

d.	 Without ACS, it’s not possible to allow Adatum 
employees to access the application over the web.

More Information
Appendix E of this guide provides a detailed description of ACS and 
its features.

You can find the MSDN® documentation for ACS 2.0 at http://
msdn.microsoft.com/en-us/library/gg429786.aspx.

http://msdn.microsoft.com/en-us/library/gg429786.aspx
http://msdn.microsoft.com/en-us/library/gg429786.aspx


101

In this chapter, you’ll learn about the special considerations that apply 
to applications that establish many trust relationships. Here you will 
also see how use the ASP.NET Model View Controller (MVC) frame-
work to build a claims-aware application. 

Although the basic building blocks of federated identity—issuers, 
trust, security tokens and claims—are the same as what you saw in the 
previous chapter, there are some identity and authorization require-
ments that are particular to the case of multiple trust relationships. 

In some web applications, such as the one shown in this chapter, 
users and customers represent distinct concepts. A customer of an 
application can be an organization, and each customer can have many 
individual users, such as employees. If the application is meant to scale 
to large numbers of customers, the enrollment process for new cus-
tomers must be as streamlined as possible. It may even be automated. 
As with the other chapters, it is easiest to explain these concepts in 
the context of a scenario.

The Premise
Fabrikam is a company that provides shipping services. As part of its 
offering, it has a web application named Fabrikam Shipping that al-
lows its customers to perform such tasks as creating shipping orders 
and tracking them. Fabrikam Shipping is an ASP.NET MVC application 
that runs in Fabrikam’s data center. Fabrikam’s customers want their 
employees to use a browser to access the shipping application. 

Fabrikam has made its new shipping application claims-based. 
Like many design choices, this one was customer-driven. In this case, 
Fabrikam signed a deal with a major customer, Adatum. Adatum’s 
corporate IT strategy (as discussed in chapter 3, “Claims-Based Single 
Sign-On for the Web”) calls for the eventual elimination of identity 
silos. Adatum wants its users to access Fabrikam Shipping without 

Federated Identity with  
Multiple Partners

6

Special considerations apply 
when there are many trust 
relationships.



102102 chapter six

presenting separate user names and passwords. Fabrikam also signed 
agreements with Litware that had similar requirements. However, 
Fabrikam also wants to support smaller customers, such as Contoso, 
that do not have the infrastructure in place to support federated 
identity.

Goals and Requirements
Larger customers such as Adatum and Litware have some particular 
concerns. These include the following:
•	 Usability. They would prefer if their employees didn’t need to 

learn new passwords and user names for Fabrikam Shipping. 
These employees shouldn’t need any credentials other than the 
ones they already have, and they shouldn’t have to enter creden-
tials a second time when they access Fabrikam Shipping from 
within their security domain.

•	 Support. It is easier for Adatum and Litware to manage issues 
such as forgotten passwords than to have employees interact 
with Fabrikam. 

•	 Liability. There are reasons why Adatum and Litware have the 
authentication and authorization policies that they do. They 
want to control who has access to resources, no matter where 
those resources are deployed, and Fabrikam Shipping is no 
exception. If an employee leaves the company, he or she should 
no longer have access to the application.

Fabrikam has its own goals, which are the following:
•	 To delegate the responsibility for maintaining user identities 

to its customers, when possible. This avoids a number of 
problems, such as having to synchronize data between Fabrikam 
and its customers. The contact information for a package’s 
sender is an example of this kind of information. Its accuracy 
should be the customer’s responsibility because it could quickly 
become costly for Fabrikam to keep this information up to date.

•	 To bill customers by cost center if one is supplied. Cost 
centers should be provided by the customers. This is also 
another example of information that is the customer’s responsi-
bility.

•	 To sell its services to a large number of customers. This means 
that the process of enrolling a new company must be stream-
lined. Fabrikam would also prefer that its customers self-manage 
the application whenever possible.



 103 103feder ated identity with multiple partners

•	 To provide the infrastructure for federation if a customer 
cannot. Fabrikam wants to minimize the impact on the applica-
tion code that might arise from having more than one authenti-
cation mechanism for customers.  

Overview of the Solution
With the goals and requirements in place, it’s time to look at the solu-
tion. As you saw in Chapter 4, “Federated Identity for Web Applica-
tions,” the solution includes the establishment of a claims-based archi-
tecture with an issuer that acts as an identity provider (IdP) on the 
customers’ side. In addition, the solution includes an issuer that acts 
as the federation provider (FP) on Fabrikam’s side. Recall that a fed-
eration provider acts as a gateway between a resource and all of the 
issuers that provide claims about the resource’s users. 

Figure 1 shows Fabrikam’s solution for customers that have their 
own identity provider.

figure 1
Fabrikam Shipping for customers with an identity provider

Browser

Fabrikam
Shipping

Issuer FP(  )

Browser

1

1

2

2

4

3
Kerberos

Kerberos

John

Get Token

Get
Token

Active
Directory

Issuer IP( )

/Shipments/Adatum

/Sh
ipm

en
ts/

Lit
wa

re

Get a Fabrikam
Shipping token

Trust

Trust

Trust

Map the
Claims

4
Fabrikam

Adatum

Litware

Get a Fabrikam
Shipping token

Rick

Active
Directory

Issuer



104104 chapter six

Here’s an example of how the system works. The steps corre-
spond to the numbers in the preceding illustration.

Step 1: Present Credentials to the Identity Provider

1.	 When John from Adatum attempts to use Fabrikam Ship-
ping for the first time (that is, when he first navigates to 
https://{fabrikam host}/f-shipping/adatum), there’s no 
session established yet. In other words, from Fabrikam’s 
point of view, John is unauthenticated. The URL provides 
the Fabrikam Shipping application with a hint about the 
customer that is requesting access (the hint is “adatum” at 
the end of the URL).

2.	 The application redirects John’s browser to Fabrikam’s issuer 
(the federation provider). That is because Fabrikam’s 
federation provider is the application’s trusted issuer. As 
part of the redirection URL, the application includes the 
whr parameter that provides a hint to the federation 
provider about the customer’s home realm. The value of the 
whr parameter is http://adatum/trust.

3.	 Fabrikam’s federation provider uses the whr parameter to 
look up the customer’s identity provider and redirect John’s 
browser back to the Adatum issuer.

4.	 Assuming that John uses a computer that is already a part of 
the domain and in the corporate network, he will already 
have valid network credentials that can be presented to 
Adatum’s identity provider. 

5.	 Adatum’s identity provider uses John’s credentials to authen-
ticate him and then issue a security token with a set of 
Adatum’s claims. These claims are the employee name, the 
employee address, the cost center, and the department.   

Step 2: Transmit the Identity Provider’s Security  
	T oken to the Federation Provider

1.	 The identity provider uses HTTP redirection to redirect  
the security token it has issued to Fabrikam’s federation 
provider.

2.	 Fabrikam’s federation provider receives this token and 
validates it.

In this scenario, 
discovering the home 
realm is automated. 
There’s no need for 
the user to provide it, 
as was shown in 
Chapter 4, “Feder-
ated Identity for Web 
Applications.”



 105 105feder ated identity with multiple partners

Step 3: Map the Claims

1.	  Fabrikam’s federation provider applies token mapping rules 
to the identity provider’s security token. The claims are 
transformed into something that Fabrikam Shipping under-
stands. 

2.	 The federation provider uses HTTP redirection to submit 
the claims to John’s browser.

Step 4: Transmit the Mapped Claims and Perform  
	 the Requested Action

1.	 The browser sends the federation provider’s security token, 
which contains the transformed claims, to the Fabrikam 
Shipping application.

2.	 The application validates the security token.

3.	 The application reads the claims and creates a session for 
John.

Because this is a web application, all interactions happen through 
the browser. (See Appendix B for a detailed description of the proto-
col for a browser-based client.)

The principles behind these interactions are exactly the same as 
those described in Chapter 4, “Federated Identity for Web Applica-
tions.” One notable exception is Fabrikam’s automation of the home 
realm discovery process. In this case, there’s no user intervention 
necessary. The home realm is entirely derived from information passed 
first in the URL and then in the whr parameter.

Litware follows the same steps as Adatum. The only differences 
are the URLs used (http://{fabrikam host}/f-shipping/litware and the 
Litware identity provider’s address) and the claims mapping rules, 
because the claims issued by Litware are different from those issued 
by Adatum. Notice that Fabrikam Shipping trusts the Fabrikam fed-
eration provider, not the individual issuers of Litware or Adatum. This 
level of indirection isolates Fabrikam Shipping from individual differ-
ences between Litware and Adatum.

Fabrikam also provides identity services on behalf of customers 
such as Contoso that do not have issuers of their own. Figure 2 shows 
how Fabrikam implemented this.

Automated home realm 
discovery is important  
when there are many  
trust relationships. 



106106 chapter six

figure 2
Fabrikam Shipping for customers  
without an identity provider

Contoso is a small business with no identity infrastructure of its 
own. It doesn’t have an issuer that Fabrikam can trust to authenticate 
Contoso’s users. It also doesn’t care if its employees need a separate 
set of credentials to access the application. 

Fabrikam has deployed its own identity provider to support 
smaller customers such as Contoso. Notice, however, that even 
though Fabrikam owns this issuer, it’s treated as if it were an external 
identity provider, just as those that belong to Adatum and Litware. In 
a sense, Fabrikam “federates with itself.”

Because the identity provider is treated as an external issuer, the 
process is the same as that used by Adatum and Litware. The only 
differences are the URLs and the claim mappings.

By deploying an identity provider for customers such as Contoso, 
Fabrikam accepts the costs associated with maintaining accounts for 
remote users (for example, handling password resets). The benefit is 
that Fabrikam only has to do this for customers that don’t have their 
own federation infrastructure. Over time, Fabrikam expects to have 
fewer customers that need this support. 

Fabrikam
Shipping

Browser

1

2

4

3
Issuer IP( )

Trust

Tr
us

t

Issuer FP(  )

Map the
Claims

Bill at
Contoso

/Ship
ments

/Con
toso

Get a F
abrikam

Shipping
 token

Send a user name
and password to 

get a token

Fabrikam

Smaller organizations may  
not have their own issuers.



 107 107feder ated identity with multiple partners

It would also be possible for Fabrikam to support third-party 
identity providers such as LiveID or OpenID as a way to reduce the 
cost of maintaining passwords for external users. 

Using Claims in Fabrikam Shipping
Fabrikam Shipping uses claims for two purposes. It uses role claims to 
control access and it also uses claims to retrieve user profile informa-
tion.

Access control to Fabrikam Shipping is based on one of three 
roles:
•	 Shipment Creator. Anyone in this role can create new orders. 
•	 Shipment Manager. Anyone in this role can create and modify 

existing shipment orders. 
•	 Administrator. Anyone in this role can configure the system. 

For example, they can set shipping preferences or change the 
application’s appearance and behavior (“look and feel”). 

The sender’s address and the sender’s cost center for billing are 
the pieces of profile information that Fabrikam Shipping expects as 
claims. The cost center allows Fabrikam to provide more detailed in-
voices. For example, two employees from Adatum who belong to two 
different departments would get two different bills.

Fabrikam configures claims mappings for every new customer 
that uses Fabrikam Shipping. This is necessary because the application 
logic within Fabrikam Shipping only understands one set of role 
claims, which includes Shipment Creator, Shipment Manager, and 
Administrator. By providing these mappings, Fabrikam decouples the 
application from the many different claim types that customers pro-
vide.

The following table shows the claims mappings for each customer. 
Claims that represent cost centers, user names, and sender addresses 
are simply copied. They are omitted from the table for brevity.

Fabrikam uses claims for 
access control and for user 
profiles.



108108 chapter six

Partner Input conditions Output claims

Adatum Claim issuer: Adatum
Claim type: Group,  
Claim value: Customer Service

Claim issuer: Fabrikam
Claim type: Role, 
Claim value: Shipment Creator

Claim issuer: Adatum
Claim type: Group,  
Claim value: Order Fulfillments

Claim issuer: Fabrikam
Claim type: Role, 
Claim value: Shipment Creator

Claim issuer: Fabrikam
Claim type: Role,  
Claim value: Shipment Manager

Claim issuer: Adatum
Claim type: Group,  
Claim value: Admins

Claim issuer: Fabrikam
Claim type: Role,  
Claim value: Administrator

Claim issuer: Adatum Claim issuer: Fabrikam
Claim type: Organization,  
Claim value: Adatum

Litware Claim issuer: Litware
Claim type: Group,  
Claim value: Sales

Claim issuer: Fabrikam
Claim type: Role,  
Claim value: Shipment Creator

Claim issuer: Litware Claim issuer: Fabrikam
Claim type: Organization, Claim value: 
Litware

Contoso Claim issuer: Fabrikam identity provider
Claim type: e-mail,  
Claim value: bill@contoso.com

Claim issuer: Fabrikam
Claim type: Role,  
Claim value: Shipment Creator

Claim issuer: Fabrikam
Claim type: Role,  
Claim value: Shipment Manager

Claim issuer: Fabrikam
Claim type: Role,  
Claim value: Administrator

Claim issuer: Fabrikam
Claim type: Organization,  
Claim value: Contoso

As in Chapter 4, “Federated Identity for Web Applications,” Adatum 
could issue Fabrikam-specific claims, but it would not be a best practice 
to clutter Adatum’s issuer with Fabrikam-specific concepts such as 
Fabrikam roles. Fabrikam allows Adatum to issue any claims it wants, 
and then it configures its federation provider to map these Adatum 
claims to Fabrikam claims.   



 109 109feder ated identity with multiple partners

Inside the Implementation
Now is a good time to walk through some of the details of the solu-
tion. As you go through this section, you may want to download the 
Microsoft® Visual Studio® development system solution 3Federa-
tionWithMultiplePartners from http://claimsid.codeplex.com.  If you 
are not interested in the mechanics, you should skip to the next sec-
tion.

The Fabrikam Shipping application uses the ASP.NET MVC frame-
work in conjunction with the Windows® Identify Foundation (WIF). 
The application’s Web.config file contains the configuration informa-
tion, as shown in the following XML code. The <system.webServer> 
section of the Web.config file references WIF-provided modules and 
the ASP.NET MVC HTTP handler class. The WIF information is the 
same as it was in the previous scenarios. The MVC HTTP handler is in 
the <handlers> section.

<system.webServer>
  ...
  <modules runAllManagedModulesForAllRequests="true">
    ...
    <add name="WSFederationAuthenticationModule" 
         preCondition=" integratedMode"   
         type="Microsoft.IdentityModel.Web.
                      WSFederationAuthenticationModule, ..." />
 
   <add name="SessionAuthenticationModule" 
         preCondition=" integratedMode"    
         type="Microsoft.IdentityModel.Web.
                           SessionAuthenticationModule, ..." />
  </modules>
  <handlers>
    ...
    <add name="MvcHttpHandler" 
         preCondition="integratedMode" 
         verb="*" 
         path="*.mvc" 
         type="System.Web.Mvc.MvcHttpHandler, ..."/>
    ...
  </handlers>
</system.webServer>

Fabrikam Shipping is an 
ASP.NET MVC application 
that uses claims.

Fabrikam chose ASP.NET 
MVC because it wanted 
improved testability and a 
modular architecture. They 
considered these qualities 
important for an applica-
tion with many customers 
and complex federation 
relationships.



110110 chapter six

Fabrikam Shipping is an example of the finer-grained control that’s 
available with the WIF API. Although Fabrikam Shipping demon-
strates how to use MVC with WIF, it’s not the only possible ap-
proach. Also, WIF-supplied tools, such as FedUtil.exe, are not 
currently fully integrated with MVC applications. For now, you can 
edit sections of the configuration files after applying the FedUtil 
program to an MVC application. This is what the developers at 
Fabrikam did with Fabrikam Shipping.

Fabrikam Shipping needs to customize the redirection of HTTP 
requests to issuers in order to take advantage of the ASP.NET MVC 
architecture. It does this by turning off automatic redirection from 
within WIF’s federated authentication module. This is shown in the 
following XML code:

<federatedAuthentication>
   <wsFederation passiveRedirectEnabled="false" 
     issuer="https://{fabrikam host}/{issuer endpoint}/" 
     realm="https://{fabrikam host}/f-Shipping/FederationResult" 
     requireHttps="true" 
   />
   <cookieHandler requireSsl="true" path="/f-Shipping/" />
</federatedAuthentication>

By setting the passiveRedirectEnabled attribute to false, you 
instruct WIF’s federated authentication module not to perform its 
built-in redirection of unauthenticated sessions to the issuer. For ex-
ample, Fabrikam Shipping uses the WIF API to perform this redirec-
tion under programmatic control.

ASP.NET MVC applications include the concept of route mappings 
and controllers that implement handlers. A route mapping enables you 
to define URL mapping rules that automatically dispatch incoming 
URLs to application-provided action methods that process them. 
(Outgoing URLs are also processed.)

The following code shows how Fabrikam Shipping establishes a 
routing table for incoming requests such as “http://{fabrikam host}/f-
shipping/adatum”. The last part of the URL is the name of the organi-
zation (that is, the customer). This code is located in Fabrikam Ship-
ping’s Global.asax file.

public class MvcApplication : System.Web.HttpApplication
{
  // ...
  public static void RegisterRoutes(RouteCollection routes)
  {     
    // ...       
    routes.MapRoute(

If you set passive 
RedirectEnabled to 
false, WIF will no 
longer be responsible 
for the redirections to 
your issuers. You will 
have complete control 
of these interactions.



 111 111feder ated identity with multiple partners

         "OrganizationDefault",
         "{organization}/",
         new { controller = "Shipment", action = "Index" });
  }
    // ...
}

The RegisterRoutes method allows the application to tell the 
ASP.NET MVC framework how URIs should be mapped and handled 
in code. This is known as a routing rule.

When an incoming request such as “http://{fabrikam host}/ 
f-Shipping/adatum” is received, the MVC framework evaluates the 
routing rules to determine the appropriate controller object that 
should handle the request. The incoming URL is tested against each 
route rule. The first matching rule is then used to process the request. 
In the case of the “f-Shipping/adatum” URL, an instance of the ap-
plication’s ShipmentController class will be used as the controller, 
and its Index method will be the action method.

[AuthenticateAndAuthorize(Roles = "Shipment Creator")]
public class ShipmentController : BaseController
{
   public ActionResult Index()
   {
      // ...
   }
}

The ShipmentController class has been decorated with a custom 
attribute named AuthenticateAndAuthorize. This attribute is imple-
mented by the Fabrikam Shipping application. Here is the declaration 
of the attribute class.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public sealed class AuthenticateAndAuthorizeAttribute : 
                       FilterAttribute, IAuthorizationFilter
{
  // ...

  public void OnAuthorization(AuthorizationContext filterContext)
  {
    if (!filterContext.HttpContext.Request.IsSecureConnection) 
    { 
       throw /* ... */ 
    }

    if (!filterContext.HttpContext.User.Identity.IsAuthenticated)

There’s a lot of good 
information about 
APS.NET.MVC 
concepts at http://
www.asp.net.



112112 chapter six

    {
      AuthenticateUser(filterContext);
    }
    else
    {
      this.AuthorizeUser(filterContext);
    }

  // ...
} 

The AuthenticateAndAuthorizeAttribute class derives from the 
FilterAttribute class and implements the IAuthorizationFilter inter-
face. Both these types are provided by ASP.NET MVC. The MVC 
framework recognizes these attribute types when they are applied to 
controller classes and it calls the OnAuthorization method before 
each controller method is invoked. The OnAuthorization method 
detects whether or not authentication has been performed already, 
and if it hasn’t, it invokes the AuthenticateUser helper method to 
contact the application’s federation provider by HTTP redirection. 
The following code shows how this happens.

private static void AuthenticateUser(AuthorizationContext context)
{
  var organizationName = 
                (string)context.RouteData.Values["organization"];

  if (!string.IsNullOrEmpty(organizationName))
  {
    if (!IsValidTenant(organizationName)) { throw /* ... */ }
              
    var returnUrl = GetReturnUrl(context.RequestContext);

    var fam = 
        FederatedAuthentication.WSFederationAuthenticationModule;

    var signIn = 
        new SignInRequestMessage(new Uri(fam.Issuer), fam.Realm)
        {
          Context = returnUrl.ToString(),
          HomeRealm =RetrieveHomeRealmForTenant(organizationName)
        };

    context.Result = 
                  new RedirectResult(signIn.WriteQueryString());
  }
}



 113 113feder ated identity with multiple partners

The AuthenticateUser method takes the customer’s name from 
the route table. (The code refers to a customer as an organization.) In 
this example, “adatum” is the customer. Next, the method checks to 
see if the customer has been enrolled in the Fabrikam Shipping ap-
plication. If not, it raises an exception.

Then, the AuthenticateUser method looks up the information it 
needs to create a federated sign-in request. This includes the URI of 
the issuer (that is, Fabrikam’s federation provider), the application’s 
realm (the address where the issuer will eventually return the security 
token), the URL that the user is trying to access, and the home realm 
designation of the customer. The method uses this information to 
create an instance of WIF’s SignInRequestMessage class. An instance 
of this class represents a new request to an issuer to authenticate the 
current user.

In the underlying WS-Federation protocol, these pieces of infor-
mation correspond to the parameters of the request message that will 
be directed to Fabrikam’s federation provider. The following table 
shows this correspondence.

Parameter Name Contents

wrealm Realm This identifies the Fabrikam Shipping application to 
the federation provider. This parameter comes from 
the Web.config file and is the address to which a 
token should be sent.

wctx Context This parameter is set to the address of the original 
URL requested by the user. This parameter is not 
used by the issuer, but all issuers in the chain 
preserve it for the Fabrikam Shipping application, 
allowing it to send the user to his or her original 
destination.

whr Home realm This parameter tells Fabrikam’s federation provider 
that it should use Adatum’s issuer as the identity 
provider for this request.

The GetReturnUrl method is a locally defined helper method 
that gives the URL that the user is trying to access. An example is 
http://{fabrikam host}/f-shipping/adatum/shipment/new.

After using the WIF API to construct the sign-on request mes-
sage, the method configures the result for redirection.

At this point, ASP.NET will redirect the user’s browser to the 
federation provider. In response, the federation provider will use the 
steps described in the Chapter 3, “Claims-Based Single Sign-On for 
the Web,” and Chapter 4, “Federated Identity for Web Applications,” 
to authenticate the user. This will include additional HTTP redirection 
to the identity provider specified as the home realm. Unlike the previ-
ous examples in this guide, the federation provider in this example 

To keep your app 
secure and avoid 
attacks such as SQL 
injection, you should 
verify all values from 
an incoming URL.



114114 chapter six

uses the whr parameter sent by the application to infer the address of 
the customer’s identity provider. After the federation provider re-
ceives a security token from the identity provider and transforms it 
into a token with the claim types expected by Fabrikam Shipping, it 
will POST it to the wrealm address that was originally specified. This 
is a special URL configured with the SignInRequestMessage class in 
the AuthenticateAndAuthorizeAttribute filter. In the example, the 
URL will be f-shipping/FederationResult.

The MVC routing table is configured to dispatch the POST mes-
sage to the FederationResult action handler defined in the Home 
Controller class of the Fabrikam Shipping application. This method is 
shown in the following code.

[ValidateInput(false)]
[AcceptVerbs(HttpVerbs.Post)]

public ActionResult FederationResult(string wresult)
{
  var fam = 
        FederatedAuthentication.WSFederationAuthenticationModule;
  if (fam.CanReadSignInResponse(
                   System.Web.HttpContext.Current.Request, true))
  {
    string returnUrl = this.GetReturnUrlFromCtx();

    return new RedirectResult(returnUrl);
  }

  // ...
}

Notice that this controller does not have the AuthenticateAnd 
Authorize attribute applied. However, the token POSTed to this ad-
dress is still processed by the WIF Federation Authentication Module 
because of the explicit redirection of the return URL. 

The FederationResult action handler uses the helper method 
GetReturnUrlFromCtx to read the wctx parameter that contains the 
original URL requested by the user. This is simply a property lookup 
operation: this.HttpContext.Request.Form[“wctx”]. Finally, it issues 
a redirect request to this URL.

The ValidateInput custom attribute is required for this scenario 
because the body of the POST contains a security token serialized  
as XML. If this custom attribute were not present, ASP.NET MVC 
would consider the content of the body unsafe and therefore raise an 
exception. 



 115 115feder ated identity with multiple partners

The application then processes the request a second time, but in 
this pass, there is an authenticated user. The OnAuthorization 
method described earlier will again be invoked, except this time it will 
pass control to the AuthorizeUser helper method instead of the 
AuthenticateUser method as it did in the first pass. The definition of 
the AuthorizeUser method is shown in the following code.

private void AuthorizeUser(AuthorizationContext context)
{
  var organizationRequested = 
     (string)context.RouteData.Values["organization"];
  var userOrganiation = 
     ClaimHelper.GetCurrentUserClaim(
          Fabrikam.ClaimTypes.Organization).Value;
            
  if (!organizationRequested.Equals(userOrganiation,  
                     StringComparison.OrdinalIgnoreCase))
  {
    context.Result = new HttpUnauthorizedResult();
    return;
  }

  var authorizedRoles = this.Roles.Split(new[] { "," }, 
                          StringSplitOptions.RemoveEmptyEntries);
  bool hasValidRole = false;
  foreach (var role in authorizedRoles)
  {
    if (context.HttpContext.User.IsInRole(role.Trim()))
    {
      hasValidRole = true;
      break;
    }
  }

  if (!hasValidRole)
  {
    context.Result = new HttpUnauthorizedResult();
    return;
  }
}

The AuthorizeUser method checks the claims that are present 
for the current user. It makes sure that the customer identification in 
the security token matches the requested customer as given by the 
URL. It then checks that the current user has one of the roles required 
to run this application.



116116 chapter six

Because this is a claims-aware application, you know that the user 
object will be of type IClaimsPrincipal even though its static type 
is IPrincipal. However, no run-time type conversion is needed in this 
case. The reason is that the code only checks for role claims, and 
these operations are available to instances that implement the 
IPrincipal interface.  

If you want to extract any other claims from the principal, you 
will need to cast the User property to IClaimsPrincipal first. This 
is shown in the following code.

var claimsprincipal = 
         context.HttpContext.User as IClaimsPrincipal;

If the user has a claim that corresponds to one of the permitted 
roles (defined in the AuthenticateAndAuthorizeAttribute class), the 
AuthorizeUser method will return without setting a result in the 
context. This allows the original action request method to run. 

In the scenario, the original action method is the Index method 
of the ShipmentController class. The method’s definition is given by 
the following code example.

[AuthenticateAndAuthorize(Roles = "Shipment Creator")]
public class ShipmentController : BaseController
{
   public ActionResult Index()
   {
     var repository = new ShipmentRepository();

     IEnumerable<Shipment> shipments;
     var organization = 
         ClaimHelper.GetCurrentUserClaim(                              
                         Fabrikam.ClaimTypes.Organization).Value;

     if (this.User.IsInRole(Fabrikam.Roles.ShipmentManager))
     {
       shipments = 
             repository.GetShipmentsByOrganization(organization);
     }
     else
     {
       var userName = this.User.Identity.Name;
       shipments = 
          repository.GetShipmentsByOrganizationAndUserName(
                                         organization, userName);    



 117 117feder ated identity with multiple partners

     }

     var model = 
          new ShipmentListViewModel { Shipments = shipments };

     return View(model);
   }
 // ...
}

The Index action handler retrieves the data that is needed to 
satisfy the request from the application’s data store. Its behavior de-
pends on the user’s role, which it extracts from the current claims 
context. It passes control to the controller’s View method for render-
ing the information from the repository into HTML.

Setup and Physical Deployment
Applications such as Fabrikam Shipping that use federated identity 
with multiple partners sometimes rely on automated provisioning and 
may allow for customer-configurable claims mapping. The Fabrikam 
Shipping example does not implement automated provisioning, but it 
includes a prototype of a web interface as a demonstration of the 
concepts.  

Establishing the Trust Relationship
If you were to implement automated provisioning, you could provide 
a web form that allows an administrator from a customer’s site to 
specify a URI of an XML document that contains federation meta-
data for ADFS 2.0. Alternatively, the administrator could provide the 
necessary data elements individually.

If your application’s federation provider is an ADFS 2.0 server, you 
can use Windows PowerShell® scripts to automate the configuration 
steps. For example, the ADFSRelyingParty command allows you to 
programmatically configure ADFS to issue security tokens to particu-
lar applications and federation providers. Look on MSDN® for the 
ADFS 2.0 commands that you can use in your PowerShell scripts.

Processing a federation request might initiate a workflow process 
that includes manual steps such as verifying that a contract has  
been signed. Both manual and automated steps are possible, and  
of course, you would first need to authenticate the request for 
provisioning.

Automated provisioning  
may be needed when there 
are many partners.



118118 chapter six

If you automate provisioning with a federation metadata XML 
file, this file would be provided by a customer’s issuer. In the following 
example, you’ll see the federation metadata file that is provided by 
Adatum. The file contains all the information that Fabrikam Shipping 
would need to configure and deploy its federation provider to com-
municate with Adatum’s issuer. Here are the important sections of the 
file.

Organization Section 
The organization section contains the organization name. 

<Organization>
  <OrganizationDisplayName xml:lang="">
     Adatum
  </OrganizationDisplayName>
  <OrganizationName xml:lang="">Adatum</OrganizationName>
  <OrganizationURL xml:lang="">
     http://{adatum host}/Adatum.Portal/
  </OrganizationURL>
</Organization> 

Issuer Section 
The issuer section contains the issuer’s URI. 

<fed:SecurityTokenServiceEndpoint>
    <EndpointReference 
        xmlns="http://www.w3.org/2005/08/addressing">
        <Address>
            https://{adatum host}/{issuer endpoint}/
        </Address>
…
    </EndpointReference>
</fed:SecurityTokenServiceEndpoint> 

Certificate Section 
The certificate section contains the certificate (encoded in base64) 
that is used by the issuer to sign the tokens. 

<RoleDescriptor ...>
    <KeyDescriptor use="signing">
        <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
            <X509Data>
               <X509Certificate>



 119 119feder ated identity with multiple partners

                    MIIB5TCCAV ... Ukyey2pjD/R4LO2B3AO
                </X509Certificate>
            </X509Data>
        </KeyInfo>
    </KeyDescriptor>
</RoleDescriptor> 

After Adatum registers as a customer of Fabrikam Shipping, the 
customer’s systems administrators must also configure their issuer to 
respond to requests from Fabrikam’s federation provider. For ADFS 
2.0, this process is identical to what you saw in Chapter 4, “Federated 
Identity for Web Applications,” when the Litware issuer began to 
provide claims for the a-Order application.

User-Configurable Claims  
Transformation Rules

It’s possible for applications to let customers configure the claims 
mapping rules that will be used by the application’s federation pro-
vider. You would do this to make it as easy as possible for an applica-
tion’s customers to use their existing issuers without asking them to 
produce new claim types. If a customer already has roles or groups, 
perhaps from Microsoft Active Directory, that are ready to use, it is 
convenient to reuse them. However, these roles would need to be 
mapped to roles that are understood by the application. 

If the federation provider is an ADFS 2.0 server, you can use  
Windows PowerShell scripts to set up the role mapping rules. The 
claims mapping rules would be different for each customer.

Questions

1.	 In the scenario described in this chapter, who should take 
what action when an employee leaves one of the partner 
organizations such as Litware?

a.	 Fabrikam Shipping must remove the user from its user 
database.

b.	 Litware must remove the user from its user database.

c.	 Fabrikam must amend the claims-mapping rules in its 
federation provider.

d.	 Litware must ensure that its identity provider no 
longer issues any of the claims that get mapped to 
Fabrikam Shipping claims.

An application with many 
partners may require 
user-configurable claims 
transformation rules.



120120 chapter six

2.	 In the scenario described in this chapter, how does Fabrikam 
Shipping perform home realm discovery?

a.	 Fabrikam Shipping presents unauthenticated users 
with a list of federation partners to choose from.

b.	 Fabrikam Shipping prompts unauthenticated users for 
their email addresses. It parses this address to deter-
mine which organization the user belongs to.

c.	 Fabrikam Shipping does not need to perform home 
realm discovery because users will have already 
authenticated with their organizations’ identity 
providers.

d.	 Each partner organization has its own landing page in 
Fabrikam Shipping. Visiting that page will automati-
cally redirect unauthenticated users to that organiza-
tion’s identity provider. 

3.	 Fabrikam Shipping provides an identity provider for its 
smaller customers who do not have their own identity 
provider. What are the disadvantages of this?

a.	 Fabrikam must bear the costs of providing this service.

b.	 Users at smaller customers will need to remember 
another username and password.

c.	 Smaller customers must rely on Fabrikam to manage 
their user’s access to Fabrikam Shipping.

d.	 Fabrikam Shipping must set up a trust relationship 
with all of its smaller customers.

4.	 How does Fabrikam Shipping ensure that only users at a 
particular partner can view that partner’s shipping data?

a.	 The Fabrikam Shipping application examines the email 
address of the user to determine the organization they 
belong to.

b.	 Fabrikam Shipping uses separate databases for each 
partner. Each database uses different credentials to 
control access.



 121 121feder ated identity with multiple partners

c.	 Fabrikam shipping uses the role claim from the 
partner’s identity provider to determine whether the 
user should be able to access the data.

d.	 Fabrikam shipping uses the organization claim from 
its federation provider to determine whether the user 
should be able to access the data.

5.	 The developers at Fabrikam set the wsFederation passive 
RedirectEnabled attribute to false. Why?

a.	 This scenario uses active redirection, not passive 
redirection.

b.	 They wanted more control over the redirection 
process.

c.	 Fabrikam Shipping is an MVC application.

d.	 They needed to be able to redirect to external identity 
providers.





123

In Chapter 6, “Federated Identity with Multiple Partners,” you saw 
how Fabrikam used claims to enable access to the Fabrikam shipping 
application for multiple partners. The scenario described how Fabri-
kam supported users at large partner organizations with their own 
claims-based identity infrastructure, and users from smaller organiza-
tions with no claims-based infrastructure of their own. Fabrikam 
provided support for the larger partner organizations by establishing 
trust relationships between the Fabrikam federation provider (FP) and 
the partner’s identity provider (IdP). To support the smaller organiza-
tions, it was necessary for Fabrikam to implement its own identity 
provider and manage the collection of enrolled employees from 
smaller partners. This scenario also demonstrated how Fabrikam had 
taken steps to automate the enrollment process for new partners.

Users at smaller partners had to create new accounts at Fabrikam, 
adding to the list of credentials they have to remember. Many indi-
viduals would prefer to reuse an existing identity rather than create a 
new one just to use the Fabrikam Shipping application. How can 
Fabrikam enable users to reuse existing identities such as Facebook 
IDs, Google IDs, or Windows Live® IDs? In addition to establishing 
trust relationships with the social identity providers, Fabrikam must 
find solutions to these problems: 
•	 Other identity providers may use different protocols to 

exchange claims data.
•	 Other identity providers may use different claim types.
•	 Fabrikam Shipping must be able to use the claims data it 

receives to implement authorization rules.
•	 The federation provider must be able to redirect users to  

the correct identity provider.
•	 Fabrikam must be able to enroll new users who want to use  

the Fabrikam Shipping application.

Federated Identity with  
Multiple Partners and  

Windows Azure Access  
Control Service

7



124124 chapter seven

In Chapter 5, “Federated Identity with Windows Azure Access 
Control Services,” you saw how Adatum extended access to the a-
Order application to include users who wanted to use their social 
identity to authenticate with the a-Order application. In this chapter, 
you’ll see how Fabrikam replaced its on-premises federation provider 
with Windows Azure™ AppFabric Access Control services (ACS), to 
enable users at smaller organizations without their own identity infra-
structure to access Fabrikam Shipping.

Unlike the scenario described in Chapter 5, “Federated Identity 
with Windows Azure Access Control Services,” users from smaller 
partners who use social identity providers will be able to enroll them-
selves with the Fabrikam Shipping application. They will access the 
Fabrikam Shipping application alongside employees of existing enter-
prise partners. This chapter extends the scenario described in Chapter 
6, “Federated Identity with Multiple Partners.”

The Premise
Fabrikam is a company that provides shipping services. As part of its 
offering, it has a web application named Fabrikam Shipping that al-
lows its customers to perform such tasks as creating shipping orders 
and tracking them. Fabrikam Shipping is an ASP.NET MVC application 
that runs in the Fabrikam data center.

Fabrikam has already claims-enabled the Fabrikam Shipping web 
application, allowing employees from Adatum and Litware to access 
the application without having to present separate usernames and 
passwords. Users at Contoso, a smaller partner, can also access Fabri-
kam Shipping, but they must log in using credentials that the Fabrikam 
identity provider, Active Directory® Federation Services (ADFS) 2.0, 
authenticates. Users at Contoso have complained about the fact that 
they must remember a set of credentials specifically for accessing the 
Fabrikam Shipping application. All of Contoso’s employees have either 
Windows® Live IDs or Google accounts, and they would prefer to use 
these credentials to gain access to the application. Users at other 
Fabrikam customers have echoed this request, mentioning Facebook 
IDs and Yahoo! IDs as additional credential types they would like to 
be able to use.

You can use ACS to manage 
multiple trust relationships.

Managing the 
accounts for users at 
organizations such as 
Contoso adds to the 
complexity of the 
Fabrikam ADFS 
implementation.



 125 125feder ated identity with multiple partners  and windows azure acs

Goals and Requirements
The primary goal of this scenario is to show how Fabrikam can use 
ACS as a federation provider to enable both employees of large part-
ners such as Adatum and Litware, and smaller partners whose employ-
ees use identities from with social identity providers, to access the 
Fabrikam Shipping application.

To recap from Chapter 6, “Federated Identity with Multiple Part-
ners,” larger customers such as Adatum and Litware have some par-
ticular concerns. These include the following:
•	 Usability. They would prefer if their employees didn’t need to 

learn new passwords and user names for Fabrikam Shipping. 
These employees shouldn’t need any credentials other than the 
ones they already have, and they shouldn’t have to enter creden-
tials a second time when they access Fabrikam Shipping from 
within their security domain. The solution described in Chapter 
6, “Federated Identity with Multiple Partners,” addresses this 
concern and introducing ACS as a federation provider must not 
change the user experience for the employees of these custom-
ers.

•	 Support. It is easier for Adatum and Litware to manage issues 
such as forgotten passwords than to have their employees 
interact with Fabrikam. The solution described in Chapter 6, 
“Federated Identity with Multiple Partners,” addresses this 
concern and introducing ACS as a federation provider must not 
change the user experience for the security administrators of 
these customers.

•	 Liability. There are reasons why Adatum and Litware have the 
authentication and authorization policies that they have. They 
want to control who has access to their resources, no matter 
where those resources are deployed, and Fabrikam Shipping is 
no exception. If an employee leaves the company, he or she 
should no longer have access to the application. Again, the 
solution described in Chapter 6, “Federated Identity with 
Multiple Partners,” addresses this concern. 

•	 Confidentiality. Partners of Fabrikam, such as Adatum, do not 
want other partners, such as Litware, to know that they are 
using the Fabrikam Shipping service. When a user accesses the 
Fabrikam Shipping site, they should not have to choose from a 
list of available authentication partners; rather, the site should 
automatically redirect them to the correct identity provider 
without revealing a list of partners.



126126 chapter seven

Fabrikam has its own goals, which are the following:
•	 To delegate the responsibility for maintaining user identities 

to its customers, when possible. This avoids a number of 
problems, such as having to synchronize data between Fabrikam 
and its customers. The contact information for a package’s 
sender is an example of this kind of data. Its accuracy should be 
the customer’s responsibility because it could quickly become 
costly for Fabrikam to keep this information up to date. The 
solution described in Chapter 6, “Federated Identity with 
Multiple Partners,” addresses this concern.

•	 To bill customers by cost center if one is supplied. Customers 
should provide the cost center information. This is another 
example of information that is the customer’s responsibility. The 
solution described in Chapter 6, “Federated Identity with 
Multiple Partners,” addresses this concern.

•	 To sell its services to a large number of customers. This means 
that the process of enrolling a new company must be stream-
lined. Fabrikam would also prefer that its customers self-manage 
the application whenever possible. The automated enrollment 
process must be able to support both large organizations with 
their own identity infrastructure, and smaller organizations 
whose employees use a social identity provider. Furthermore, 
Fabrikam would like to support the widest possible range of 
social identity providers. 

•	 To provide the infrastructure for federation if a customer 
cannot. Fabrikam wants to minimize the impact on the applica-
tion code that might arise from having more than one authenti-
cation mechanism for customers. However, Fabrikam would 
prefer not to have to maintain an on-premises identity provider 
for smaller customers. Instead, it would like users at smaller 
customers to use existing social identities.  

Smaller customers and individual users have some particular concerns. 
These include the following:
•	 Usability. Individual users would prefer to use existing identities 

such as Windows Live IDs or Google account credentials to 
access the Fabrikam Shipping website instead of having to 
create a new user ID and password just to access this site. 



 127 127feder ated identity with multiple partners  and windows azure acs

•	 Support. If individual users forget their passwords, they would 
like to be able to use the password recovery tools provided by 
their social identity provider rather than interacting with 
Fabrikam.

•	 Privacy. Individual users do not want their social identity 
provider to reveal to Fabrikam private information maintained 
by the social identity provider that is not relevant to the Fabri-
kam shipping application.

Overview of the Solution
With the goals and requirements in place, it’s time to look at the solu-
tion. As you saw in Chapter 6, “Federated Identity with Multiple 
Partners,” the solution includes the establishment of a claims-based 
architecture with issuers that act as an identity providers on the cus-
tomers’ side. In addition, the solution includes an issuer that acts as 
the federation provider on the Fabrikam side. Recall that a federation 
provider acts as a gateway between a resource and all of the issuers 
that provide claims about the resource’s users. In this chapter, Fabri-
kam replaces the on-premises federation provider with ACS in order 
to support authenticating users with social identities. This change also 
means that Fabrikam no longer has to host and manage a federation 
provider in its own datacenter. 

Although this solution brings the benefits of easy support for users 
who want to use their social identities, and a simplification of the 
implementation of the on-premises Fabrikam issuer, there are some 
trade-offs that Fabrikam evaluated.

This solution relies on access to ACS for all access to Fabrikam 
Shipping. Fabrikam is satisfied by the SLAs in place with the ACS 
subscription.

Using ADFS on-premises meant that Fabrikam could support 
federation with organizations using the SAMLP protocol. ACS does 
not currently support this protocol, but Fabrikam anticipates that all 
of its federation partners will support the WS-Federation protocol.

Figure 1 shows the Fabrikam Shipping solution using ACS.

Fabrikam must be 
careful to explain to 
individual users the 
implications of 
allowing their social 
identity provider to 
release details to ACS 
and be clear about 
exactly what 
information Fabrikam 
Shipping and ACS 
will be able to access.



128128 chapter seven

figure 1
Fabrikam Shipping using ACS

Here’s an example of how the system works for a user at an orga-
nization such as Adatum with its own identity provider. This process 
is similar, but not identical to the process described in Chapter 6, 
“Federated Identity with Multiple Partners.” The steps correspond to 
the shaded numbers in the preceding illustration.

Step 1: Present Credentials to the Identity Provider

1.	 When John from Adatum attempts to use Fabrikam Ship-
ping for the first time (that is, when he first navigates to 
https://{fabrikam host}/f-shipping/adatum), there’s no 
session established yet. In other words, from Fabrikam’s 
point of view, John is unauthenticated. The URL provides 
the Fabrikam Shipping application with a hint about the 
customer that is requesting access (the hint is “adatum”  
at the end of the URL).

2.	 The application redirects John’s browser to the Fabrikam 
ACS instance in the cloud (the federation provider). That’s 
because the Fabrikam ACS instance is the application’s 
trusted issuer. As part of the redirection URL, the applica-
tion includes the whr parameter that provides a hint to ACS 
about the customer’s home realm. The value of the whr 
parameter is https://localhost/Adatum.SimulatedIssuer.7/.

In the solution 
described in Chapter 
6, “Federated Identity 
with Multiple 
Partners,” Fabrikam 
used an on-premises 
federation provider 
(FP). Now Fabrikam is 
using ACS in the 
cloud instead.

Mary

1

1
2

4

2

4

3

John
Fabrikam

Adatum

Issuer (  )idPs

Transform
& Map Claims

( )RP
Fabrikam
Shipping

ACS (FP)
Trust

Trust

Trust
Open ID
Facebook
Windows LiveID

Issuers (IdPs)

3



 129 129feder ated identity with multiple partners  and windows azure acs

It’s important to use the entityID value from the identity 
provider’s  FederationMetadata.xml file as the whr value if you 
want ACS to automatically redirect the user to the partner’s 
identity provider. entityID is an attribute in the issuer’s 
federation metadata: ACS uses this attribute value to uniquely 
identify identity providers that it trusts.

3.	 ACS uses the whr parameter to look up the customer’s 
identity provider and redirect John’s browser to the Adatum 
issuer.

4.	 Assuming that John uses a computer that is already part of 
the domain and on the corporate network, he will already 
have valid network credentials that his browser can present 
to the Adatum identity provider. 

5.	 The Adatum identity provider uses John’s credentials to 
authenticate him and then issue a security token with a set 
of Adatum claims. These claims are the employee name, the 
employee address, the cost center, the role, and the group.

Although the identity provider may also issue an organization 
claim, Fabrikam will always generate the organization claim 
value in ACS. This prevents a malicious administrator at a 
partner organization from impersonating a user from another 
partner.   

Step 2: Transmit the Identity Provider’s Security  
	T oken to the Federation Provider

1.	 The Adatum identity provider uses HTTP redirection  
to redirect the browser to the Fabrikam ACS instance,  
delivering the security token issued by the Adatum  
identity provider to the Fabrikam ACS instance.

2.	 The Fabrikam ACS instance receives this token and  
validates it.

Step 3: Map the Claims

1.	 The Fabrikam ACS instance applies claim-mapping rules to 
the claims in the identity provider’s security token. ACS 
transforms the claims into claims that Fabrikam Shipping 
expects and understands. 

2.	 ACS returns a new token with the claims to John’s browser 
and uses HTTP redirection to return John’s browser the 
Fabrikam Shipping application.

This scenario 
automates home 
realm discovery. 
There’s no need for 
the user to provide 
his home realm 
details, as was the 
case in Chapter  
4, “Federated  
Identity for Web  
Applications.”



130130 chapter seven

The redirection should be to a secure HTTP address (HTTPS) to 
prevent the possibility of session hijacking.

Step 4: Transmit the Mapped Claims and Perform the 
Requested Action

1.	 The browser sends the security token from ACS, which 
contains the transformed claims, to the Fabrikam Shipping 
application.

2.	 The application validates the security token.

3.	 The application reads the claims and creates a session for 
John.

Because this is a web application, all interactions happen through 
the browser. (See Appendix B for a detailed description of the proto-
col for a browser-based client.)

Litware follows the same steps as Adatum. The only differences 
are the URLs used (https://{fabrikam host}/f-shipping/litware and the 
Litware identity provider’s address) and the claims-mapping rules, 
because the claims issued by the Litware identity provider are differ-
ent from those issued by the Adatum identity provider. Notice that 
the Fabrikam Shipping web application trusts the Fabrikam ACS in-
stance, not the individual issuers at Litware or Adatum; this level of 
indirection isolates Fabrikam Shipping from individual differences 
between Litware and Adatum.

In the scenario described in Chapter 6, “Federated Identity with 
Multiple Partners,” Fabrikam managed and hosted an identity pro-
vider for smaller customers such as Contoso to enable users from 
these customers to authenticate before accessing the Fabrikam Ship-
ping application. Users at organizations such as Contoso would now 
prefer to reuse an existing social identity rather than maintaining a 
separate set of credentials just for use with Fabrikam Shipping.

Here’s an example of how the system works for a user at an orga-
nization such as Contoso where the users authenticate with an online 
social identity provider. The steps correspond to the un-shaded num-
bers in the preceding illustration. ACS treats the online social identity 
providers in almost the same way it treats the Adatum and Litware 
identity providers. However, it will use a different set of claims-map-
ping rules for the social identity providers and, if necessary, perform 
protocol transition as well. Fabrikam didn’t need to change the Fabri-
kam Shipping application in order to support users with social identi-
ties; the application continues to trust ACS and ACS continues to 
deliver the same types of claims to Fabrikam Shipping.



 131 131feder ated identity with multiple partners  and windows azure acs

Step 1: Present Credentials to the Identity Provider

1.	 When Mary from Contoso attempts to use Fabrikam 
Shipping for the first time (that is, when she first navigates 
to https://{fabrikam host}/f-shipping/Contoso), there’s no 
session established yet. In other words, from Fabrikam’s 
point of view, Mary is unauthenticated. The URL provides 
the Fabrikam Shipping application with a hint about the 
customer that is requesting access (the hint is “Contoso” at 
the end of the URL).

2.	 The application redirects Mary’s browser to the Fabrikam 
ACS instance in the cloud (the federation provider). That’s 
because the Fabrikam ACS instance is the application’s 
trusted issuer. As part of the redirection URL, the applica-
tion includes the whr parameter that provides a hint to the 
federation provider about the customer’s home realm. The 
value of the whr parameter is uri:WindowsLiveID.

In the current implementation, this means that all the employees 
at a small partner must use the same social identity provider. In 
this example, all Contoso employees must have a Windows Live 
ID to be able to access Fabrikam Shipping. You could extend the 
sample to enable users at partners such as Contoso to each use 
different social identity providers.

3.	 ACS uses the whr parameter to look up the customer’s 
preferred social identity provider and redirect Mary’s 
browser to the social identity issuer; in this example, 
Windows Live.

4.	 The social identity provider, Windows Live in this example, 
uses Mary’s credentials to authenticate her and then returns 
a security token with a basic set of claims to Mary’s brows-
er. In the case of Windows Live ID, the only claim returned 
is nameidentifier.   

Step 2: Transmit the Social Identity Provider’s  
	Sec urity Token to ACS

1.	 The social identity provider uses HTTP redirection to 
redirect Mary’s browser with the security token it has issued 
to the Fabrikam ACS instance.

2.	 The Fabrikam ACS instance receives this token and  
validates it.



132132 chapter seven

Step 3: Map the Claims

1.	 The Fabrikam ACS instance applies token mapping rules to 
the social identity provider’s security token. It transforms 
the claims into claims that Fabrikam Shipping understands. 
In this example, it adds new claims: name, organization, 
role, and costcenter.

2.	 If necessary, ACS transitions the protocol that the social 
identity provider uses to the WS-Federation protocol.

3.	 ACS returns a new token with the claims to Mary’s browser.

Step 4: Transmit the Mapped Claims and Perform  
	 the Requested Action

1.	 ACS uses HTTP redirection to redirect Mary’s browser with 
the security token from ACS, which contains the claims, to 
the Fabrikam Shipping application.

2.	 The application validates the security token.

3.	 The application reads the claims and creates a session for 
Mary.

Enrolling a New Partner Organization
One of Fabrikam’s goals was to enable partner organizations to enroll 
themselves with the Fabrikam Shipping application, and enable  
them to manage their own users. Both larger partners with their  
own identity providers and smaller partners whose employees use 
identities from social identity providers should be able to perform 
these operations.

The enrollment process must perform three key configuration steps:
•	 Update the Fabrikam Shipping list of registered partners. The 

registration data for each partner should include its name, the 
URL of a logo image, and an identifier for the partner’s home 
realm.

•	 For partners using their own identity provider, create a trust 
relationship so that the Fabrikam ACS instance trusts the 
partner’s identity provider.

•	 Create suitable claims-mapping rules in the Fabrikam ACS 
instance that transform the claims from the partner’s identity 
provider to the claims that Fabrikam Shipping expects to see.

Fabrikam uses the partner name and logo that it stores in its list 
of registered partners to customize the UI of Fabrikam Shipping when 
an employee from the partner visits the site. The partner’s home realm 

The types of claims 
that ACS sends to 
Fabrikam Shipping 
from a user with a 
social identity are the 
same claims types as 
it sends for users at 
Adatum and Litware.

Partners, both with and without 
their own identity providers, can 
enroll themselves with Fabrikam 
Shipping.



 133 133feder ated identity with multiple partners  and windows azure acs

is important because when Fabrikam Shipping redirects a user to ACS 
for authentication, it includes the home realm as a value for the whr 
parameter in the request’s querystring. To enable ACS to automati-
cally redirect the user to the correct identity provider, the partner’s 
home realm value should be the value of the entityID in the partner 
identity provider’s FederationMetadata.xml.

Partners without their own identity provider use one of the pre-
configured social identity providers in ACS; enrolling a new partner in 
this scenario does not require Fabrikam to configure a new identity 
provider in ACS. For partners with their own identity provider, the 
enrollment process must configure a new identity provider in ACS.

Partners with their own identity provider must configure their 
identity provider; a configuration  example might be defining a 
relying party realm. The details of this will be specific to the type  
of identity provider that the partner uses.

Different identity providers return different claims. For example, 
Windows Live only returns a nameidentifier claim, while a custom 
provider might include name, organization, costcenter, and role 
claims. Regardless of the claims that the identity provider issues, the  
rules that the enrollment process creates in ACS must be sufficient to 
return costcenter, name, organization, and role claims, all of which 
the Fabrikam Shipping application requires. ACS can issue these claims 
to Fabrikam Shipping either by transforming a claim from the identity 
provider, by passing a claim from the identity provider through un-
changed, or by creating a new claim.

Managing Multiple Partners  
with a Single Identity

A user, such as Paul, may work for two or more partners of Fabrikam 
Shipping. If those partners have their own identity providers, then 
Paul will have two separate identities, such as paul@contoso.com and 
paul@adventureworks.com, for example. However, if the partner or-
ganizations do not have their own identity providers, then it’s likely 
that Paul will want to use the same social identity (paul@gmail.com) 
with both partners. This raises a problem if Paul has different roles  
in the two partner organizations; in Contoso, he may be in the  
Shipment Manager role, and in AdventureWorks he may be in the 
Administrator role. If ACS assigns roles based on Paul’s identity,  
he will end up with both roles assigned to him, which means he will 
be in the Administrator role in Contoso.

To handle this scenario, Fabrikam first considered using a differ-
ent service namespace for each partner in ACS. To access Contoso 
data at Fabrikam Shipping, Paul would need a token from the  
Contoso namespace, to access AdventureWorks data he would need 

We can use ACS to 
handle the differ-
ences in the tokens 
and protocols that 
the various social 
identity providers 
use.



134134 chapter seven

a token from the AdventureWorks namespace. To automate the en-
rollment process for new partners, Fabrikam would need to be able to 
create new service namespaces in ACS programmatically. Unfortu-
nately, the ACS Management API does not currently support this 
operation.

The solution adopted by Fabrikam was to create a different rely-
ing party (RP) in ACS for each partner. In ACS, each relying party can 
have its own set of claims-mapping rules, so the rule group in the 
Contoso relying party in ACS can assign the Shipment Manager role 
to Paul, while the rule group in the AdventureWorks relying party in 
ACS can assign him the Administrator role. If Paul signs in to Fabri-
kam Shipping using a token from the Contoso relying party and he 
then tries to access AdventureWorks data he will need to re-authen-
ticate in order to obtain a token from the AdventureWorks relying 
party in ACS.

A single service namespace in ACS can have multiple relying parties. 
The wtrealm parameter passed to ACS identifies the relying party 
to use, and each relying party has its own set of claims-mapping 
rules that include a rule to add an organization claim. Fabrikam 
Shipping uses the organization claim to authorize access to data.

Managing Users at a Partner  
Organization

For a partner organization with its own identity provider, the partner 
can manage which employees have access to its data at Fabrikam Ship-
ping using the partner’s identity provider. By controlling which claims 
its identity provider issues for individual employees, the partner can 
determine what level of access the employee has in the Fabrikam 
Shipping application. This approach depends on the claims-mapping 
rules that the enrollment process created in ACS. For example, map-
ping the Order Tracker role in Adatum to the ShipmentManager role 
in Fabrikam Shipping would give anyone at Adatum with the Order 
Tracker role the ability to manage Adatum shipments at Fabrikam.

In the case of a partner without its own identity provider, such as 
Contoso where employees authenticate with a social identity pro-
vider, the claims-mapping rules in ACS must include the mapping of 
individuals to roles within Fabrikam. To manage these mappings for 
these organizations, one user should be a designated administrator 
who can edit their organization’s claims-mapping rules. The adminis-
trator would use an administration page hosted on the Fabrikam Ship-
ping enrollment web site to manage the list of users with access to 
Contoso data in Fabrikam Shipping and edit the rules that control 

Enabling partners to 
manage their own 
users reduces the 
amount of work 
Fabrikam has to do to 
manage the Fabrikam 
Shipping application. 



 135 135feder ated identity with multiple partners  and windows azure acs

access levels. This page will use the ACS Management API to make the 
necessary configuration changes in ACS.

The sample does not implement this feature: each partner without its 
own identity provider has only a single user. The enrollment process 
configures this user. The sample implementation also assumes that if 
a partner did have more than one user, then all the users must use 
the same social identity provider.

Inside the Implementation
Now is a good time to walk through some of the details of the solu-
tion. As you go through this section, you may want to download the 
Microsoft Visual Studio® solution, 7FederationWithMultiplePartner-
sAndAcs from http://claimsid.codeplex.com.  If you are not interested 
in the mechanics, you should skip to the next section.

The scenario described in this chapter is very similar to the sce-
nario described in Chapter 6, “Federated Identity with Multiple Part-
ners.” The key difference is that ACS, rather than an issuer at Fabrikam, 
now provides the federation services. The changes to the Fabrikam 
Shipping application all relate to the way Fabrikam Shipping interacts 
with ACS; in particular, how the application enrolls new partners and 
handles the log on process. The logic of the application and the au-
thorization rules it applies using the claims from the identity providers 
is unchanged.

Getting a List of Identity Providers  
from ACS

When a partner wants to enroll with the Fabrikam Shipping applica-
tion, part of the sign-up process requires the partner to select the 
identity provider they want to use. The choice they have is either to 
use their own identity provider (at this stage in the enrollment process 
Fabrikam Shipping and ACS know nothing about the partner or its 
identity provider), or to use one of the pre-configured social identity 
providers: Google, Yahoo!, or Windows Live. It’s possible that the list 
of available social identity providers might change, so it makes sense 
for Fabrikam to build the list programmatically by querying the Fabri-
kam ACS instance. However, there’s no way to ask ACS for only the 
list of social identity providers and exclude any custom identity pro-
viders from other partners. The following code sample shows how 
Fabrikam implemented an extension method, IsSocial, to check 
whether an identity provider is a social identity provider.

Modifying Fabrikam 
Shipping to use ACS instead 
of the Fabrikam federation 
provider was mostly a 
configuration task.



136136 chapter seven

public static class SocialIdentityProviders
{
  public static readonly SocialIdentityProvider
    Google = new SocialIdentityProvider {
                   DisplayName = "Google", 
                   HomeRealm = "Google",
                   Id = "10008641" };
  public static readonly SocialIdentityProvider
    WindowsLiveId = new SocialIdentityProvider {
                   DisplayName = "Windows Live ID",
                   HomeRealm = "uri:WindowsLiveID", 
                   Id = "10007989" };
  public static readonly SocialIdentityProvider
    Yahoo = new SocialIdentityProvider {
                   DisplayName = "Yahoo!", 
                   HomeRealm = "Yahoo!",
                   Id = "10008653" };
  public static Ienumerable<SocialIdentityProvider> GetAll()
  {
    return new SocialIdentityProvider[3] { 
                   Google, Yahoo, WindowsLiveId };
  }

  public static string GetHomeRealm(string socialIpId)
  {
    var providers = new[] { Google, Yahoo, WindowsLiveId };
    return providers.Single(p => p.Id == socialIpId).HomeRealm;
  }

  public static bool IsSocial(this IdentityProvider ip)
  {
    if (ip.Issuer.Name.Contains(Google.HomeRealm) ||
        ip.Issuer.Name.Contains(Yahoo.HomeRealm) ||
        ip.Issuer.Name.Contains(WindowsLiveId.HomeRealm))
    {
       return true;
    }
    return false;
  }
}

The solution includes an ACS.ServiceManagementWrapper proj-
ect that wraps the REST calls that perform management operations 
in ACS. The enrollment process builds a list of available social identity 
providers by calling the RetrieveIdentityProviders method in this 
wrapper class.

A separate web 
application  
called f-Shipping.
Enrollment.7  
handles the  
enrollment tasks.



 137 137feder ated identity with multiple partners  and windows azure acs

The ACS.ServiceManagementWrapper project uses password 
authentication over HTTPS with the calls that it makes to the  
ACS management API. As an alternative, you could sign the  
request with a symmetric key or an X.509 certificate.

Adding a New Identity Provider to ACS
When a partner with its own identity provider enrolls with Fabrikam 
Shipping, part of the enrollment process requires Fabrikam to add 
details of the partner’s issuer to the list of identity providers in ACS. 
The enrollment process automates this by using the ACS Management 
API. The wrapper class in the ACS.ServiceManagementWrapper proj-
ect includes two methods, AddIdentityProvider and AddIdentity 
ProviderManually for configuring a new identity provider in ACS. 
During the enrollment process, if the user provides a FederationMeta-
data.xml file that contains all of the necessary information to config-
ure the trust, the EnrollmentController class uses the AddIdentity 
Provider method. If the user provides details of the identity provider 
manually, it uses the AddIdentityProviderManually method. The 
enrollment process then adds a relying party and mapping rules to the 
identity provider, again using methods in the ServiceManagement 
Wrapper wrapper class.

Managing Claims-Mapping Rules in ACS 
The automated enrollment process for both larger organizations that 
have their own identity provider, and smaller partners who rely on a 
social identity provider requires Fabrikam to add claims-mapping rules 
to ACS programmatically. The wrapper class in the ACS.ServiceMan-
agementWrapper project includes an AddSimpleRuleToRuleGroup 
method that the enrollment process uses when it adds a new claims-
mapping rule. The application also uses the AddPassthroughRule 
ToRuleGroup when it needs to add a rule that passes a claim through 
from the identity provider to the relying party without changing it, 
and the AddSimpleRuleToRuleGroupWithoutSpecifyInputClaim 
method when it needs to create a new claim that’s not derived from 
any of the claims issued by the identity provider.

It’s important that the mapping rules don’t simply pass through the 
organization claim, but instead create a new organization claim 
derived from the identity of the identity provider. This is to prevent 
the risk of a malicious administrator at the partner spoofing the 
identity of another organization. When registering a new organiza-
tion, the code should verify that the organization name is not already 
is use, so that a new registration cannot override an existing organi-
zation name or add itself to an existing organization. The Fabrikam 



138138 chapter seven

Shipping application uses the organization claim in its authoriza-
tion and data access management logic (for example, when creating 
and listing shipments).

For partners without their own identity provider, the enrollment 
process must also create a new relying party in ACS. The wrapper 
class in the ACS.ServiceManagementWrapper project includes an  
AddRelyingParty method to perform this operation.

The EnrollmentController class in the f-Shipping.Enrollment.7 
project demonstrates how the Fabrikam Shipping application handles 
the automated enrollment process.

Because Fabrikam uses multiple relying parties in ACS to handle 
the case where a user with a social identity is associated with multiple 
partners, the sample solution disables checking audience URIs in the 
Web.config file:

XML
<microsoft.identityModel>
  <service>
    <audienceUris mode="Never">
    </audienceUris>
    …
  </service>
</microsoft.identityModel>

Normally, you should not set the audienceUris mode to “Never” 
because this introduces a security vulnerability: the correct approach 
is to add the audience URIs at run time as Fabrikam Shipping enrolls 
new partners. You would also need to share the list of Uris between 
the f-Shipping.Enrollment.7 web application and the f-Shipping.7 web 
application. Furthermore, to avoid the possibility of one tenant imper-
sonating another, you would use a separate symmetric key for each 
tenant. However, as described previously, in this solution ACS adds an 
organization claim to the token that it issues that the REST service 
can check.

Displaying a List of Partner  
Organizations

For the purposes of this sample, the home page at Fabrikam Shipping 
displays a list of registered partner organizations. In a real application, 
you may not want to make this information public because some 
partners may not want other partners to know about their business 
relationship with Fabrikam Shipping, so each partner would have their 
own landing page. 

Each partner without 
an identity provider 
still needs a relying 
party so that 
Fabrikam Shipping 
can recognize when 
the same user is 
associated with two 
or more different 
partner organizations.



 139 139feder ated identity with multiple partners  and windows azure acs

In ACS 2.0 (the current version at the time of this writing), it’s not 
possible to keep this information private because ACS publishes a 
public feed of all the identity providers associated with each relying 
party.

For this example, the Fabrikam Shipping application generates the 
list of partners from a local store instead of querying ACS. Because 
Fabrikam Shipping maintains this data locally, there is no need to 
query ACS or use the login page that ACS can generate for you.

Authenticating a User of Fabrikam  
Shipping

The Fabrikam Shipping application uses the AuthenticateAnd 
AuthorizeAttribute attribute class to intercept requests and then ask 
the WSFederationAndAuthenticationModule class to handle the 
authentication and to retrieve the user’s claims from ACS. The  
AuthenticateUser method builds the redirect URL that passes the 
WS-Federation parameters to the ACS instance that Fabrikam Ship-
ping uses. The following table describes the parameters that the  
application passes to ACS.

Parameter Example value Notes

wa wsignin1.0 The WS-Federation command.

wtrealm https://
localhost/f-Shipping.7/
FederationResult

The realm value that ACS uses to 
identify the relying party.

wctx https://
localhost/f-Shipping.7/
Contoso

The return URL to which ACS should 
post the token with claims.

The Fabrikam Shipping application does not send a whr parameter 
identifying the home realm because Fabrikam configures each tenant 
in ACS as a relying party with only a single identity provider enabled.

The following code example shows the AuthenticateUser 
method in the AuthenticateAndAuthorizeAttribute class.

private static void AuthenticateUser(AuthorizationContext context)
{
  var organizationName = 
      (string)context.RouteData.Values["organization"];

  if (!string.IsNullOrEmpty(organizationName))
  {
    …

You can find the 
address of the feed 
that contains a list of 
all the identity provid-
ers in the ACS portal 
in the “Application 
integration” section 
under “Login Page 
Integration.”



140140 chapter seven

    var returnUrl = GetReturnUrl(context.RequestContext);

  // User is not authenticated and is entering for the first time.
  Var fam =
    FederatedAuthentication.WSFederationAuthenticationModule;
  var signIn = new SignInRequestMessage
      (new Uri(fam.Issuer), fam.Realm)
      {
        Context = returnUrl.ToString(),
        Realm = string.Format
          ("https://localhost/f-shipping.7/{0}",organizationName)
      };
  context.Result = 
    new RedirectResult(signIn.WriteQueryString());
  }
  else
  {
    throw new ArgumentException("Tenant name missing.");
  }
}

Authorizing Access to Fabrikam  
Shipping Data

The Fabrikam Shipping application uses the same AuthenticateAnd 
Authorize attribute to handle authorization. For example, Fabrikam 
Shipping only allows members of the Shipment Manager role to 
cancel orders. The following code example from the Shipment 
Controller class shows how this is declared:

[AuthenticateAndAuthorize(Roles = "Shipment Manager")]
[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Cancel(string id)
{
  …
}

The AuthorizeUser method in the AuthenticateAndAuthorize 
Attribute class determines whether a user has the appropriate  
Organization and Role claims:

private void AuthorizeUser(AuthorizationContext context)
{
    var organizationRequested = 
      (string)context.RouteData.Values["organization"];
            



 141 141feder ated identity with multiple partners  and windows azure acs

    …

    var userOrganization = ClaimHelper
      .GetCurrentUserClaim(Fabrikam.ClaimTypes.Organization).Value;
    if (!organizationRequested.Equals(
        userOrganization, StringComparison.OrdinalIgnoreCase))
    {
        context.Result = new HttpUnauthorizedResult();
        return;
    }

    var authorizedRoles = 
        this.Roles.Split(new[] { "," }, 
             StringSplitOptions.RemoveEmptyEntries);
    bool hasValidRole = false;
    foreach (var role in authorizedRoles)
    {
        if (context.HttpContext.User.IsInRole(role.Trim()))
        {
            hasValidRole = true;
            break;
        }
    }

    if (!hasValidRole)
    {
        context.Result = new HttpUnauthorizedResult();
        return;
    }
}

For a discussion of some alternative approaches to authorization 
that Fabrikam Shipping could have taken, see Appendix G, “Authoriza-
tion Strategies.” 

Setup and Physical Deployment
The following sections describe the setup and physical deployment 
for the Fabrikam Shipping websites, the simulated claims issuers, and 
the initialization of the ACS instance.

Fabrikam Shipping Websites
Fabrikam has two separate websites: one for Fabrikam Shipping and 
one to manage the enrollment process for new partners. This enables 
Fabrikam to configure the two sites for the different expected usage 

In a multi-tenant application 
such as Fabrikam Shipping, 
the authorization rule that 
checks the Organization 
claim ensures that a tenant 
only has access to its own 
data.



142142 chapter seven

patterns: Fabrikam expects the usage of the shipping site to be sig-
nificantly higher than the usage of the enrollment site. 

In the sample application, Fabrikam Shipping maintains a list  
of registered partner organizations using the Organization and  
OrganizationRepository classes. The following code sample shows 
the Organization class:

C#
public class Organization
{
    public string LogoPath { get; set; }
    public string Name { get; set; }
    public string DisplayName { get; set; }
    public string HomeRealm { get; set; }
}

Both the f-Shipping.Enrollment.7 and the f-Shipping.7 web ap-
plications need access to this repository, which the sample imple-
ments by using a simple file called organizations.txt stored in a folder 
called SharedData.

The implementation of the enrollment functionality in this sample 
shows only a basic outline of how you would implement this func-
tionality in a real application.

Sample Claims Issuers
The sample comes with two, pre-configured, claims issuers that act as 
identity providers for Adatum and Litware. These simulated issuers 
illustrate the role that a real issuer, such as ADFS 2.0, would play in 
this scenario. If you want to experiment and extend the sample by 
enrolling additional partners with their own identity providers, you 
will need additional issuers. You can either create your own new STS 
using the WIF “WCF Security Token Service” template in Visual Stu-
dio and using either the Adatum.SimulatedIssuer.7 or Litware.Simu-
latedIssuer.7 projects as a model to work from, or you could use one 
of the simple issuers for Northwind or AdventureWorks in the Assets 
folder for this sample.

These simple issuers use the SelfSTS sample application that you 
can read about here: http://archive.msdn.microsoft.com/SelfSTS.

Initializing ACS
The sample application includes a set of pre-configured partners for 
Fabrikam Shipping, both with and without their own identity provid-
ers. These partners require identity providers, relying parties, and 

Using two separate sites 
also circumvents a problem 
that can occur during the 
enrollment process for a 
partner that uses a social 
identity provider. During 
the enrollment process, a 
user must sign into their 
social identity provider so 
that Fabrikam can capture 
the claim values that prove 
that user’s identity. The 
enrollment process then 
creates the new claims-
mapping rules in ACS for 
the partner. Unless the user 
running the enrollment 
process signs out and then 
signs in again (not a great 
user experience), they will 
not get the full set of claims 
that they require to access 
the Fabrikam Shipping 
application.

http://archive.msdn.microsoft.com/SelfSTS


 143 143feder ated identity with multiple partners  and windows azure acs

claims-mapping rules in ACS in order to function. The ACS.Setup 
project in the solution is a simple console application that you can run 
to add the necessary configuration data for the pre-configured part-
ners to your ACS instance. It uses the ACS Management API and the 
wrapper classes in the ACS.ServiceManagementWrapper project.

You will still need to perform some manual configuration steps; the 
ACS Management API does not enable you to create a new service 
namespace. You must perform this operation in the ACS manage-
ment portal.

Questions

1.	 Why does Fabrikam want to use ACS in the scenario 
described in this chapter?

a.	 Because it will simplify Fabrikam’s own internal 
infrastructure requirements.

b.	 Because it’s the only way Fabrikam can support users 
who want to use a social identity provider for authen-
tication.

c.	 Because it enables users with social identities to 
access the Fabrikam Shipping application more easily.

d.	 Because ACS can authenticate users with social 
identities.

2.	 In the scenario described in this chapter, why is it necessary 
for Fabrikam to configure ACS to trust issuers at partners 
such Adatum and Litware?

a.	 Because Fabrikam does not have its own on-premises 
federation provider.

b.	 Because Fabrikam uses ACS for all the claims-mapping 
rules that convert claims to a format that Fabrikam 
Shipping understands.

c.	 Because partners such as Adatum have some users 
who use social identities as their primary method of 
authentication.

d.	 Because a relying party such as Fabrikam Shipping can 
only use a single federation provider.



144144 chapter seven

3.	 How does Fabrikam Shipping manage home realm discovery 
in the scenario described in this chapter?

a.	 Fabrikam Shipping presents unauthenticated users 
with a list of federation partners to choose from.

b.	 Fabrikam Shipping prompts unauthenticated users  
for their email addresses. It parses each address to 
determine which organization the user belongs to.

c.	 ACS manages home realm discovery; Fabrikam  
Shipping does not.

d.	 Each partner organization has its own landing  
page in Fabrikam Shipping. Visiting that page will 
automatically redirect unauthenticated users to  
that organization’s identity provider.

4.	 Enrolling a new partner without its own identity provider 
requires which of the following steps?

a.	 Updating the list of registered partners stored by 
Fabrikam Shipping. This list includes the home realm 
of the partner.

b.	 Adding a new identity provider to ACS.

c.	 Adding a new relying party to ACS.

d.	 Adding a new set of claims-mapping rules to ACS.

5.	 Why does Fabrikam use a separate web application to 
handle the enrollment process?

a.	 Because the expected usage patterns of the enroll-
ment functionality are very different from the  
expected usage patterns of the main Fabrikam  
Shipping web site.

b.	 Because using the enrollment functionality does not 
require a user to authenticate.

c.	 Because the site that handles enrolling new partners 
must also act as a federation provider.

d.	 Because the site that updates ACS with new relying 
parties and claims-mapping rules must have a different 
identity from sites that only read data from ACS.

More Information
Appendix E of this guide provides a detailed description of ACS 
and its features.



145

In Chapter 4, “Federated Identity for Web Applications,” you saw 
Adatum make the a-Order application available to its partner Litware. 
Rick, a salesman from Litware, used his local credentials to log onto 
the a-Order website, which was hosted on Adatum’s domain.

To do this, Rick needed only a browser to access the a-Order 
website. But what would happen if the request came from an applica-
tion other than a web browser? What if the information supplied by 
aOrder was going to be integrated into one of Litware’s in-house ap-
plications? 

Federated identity with an active (or “smart”) client application 
works differently than federated identity with a web browser. In a 
browser-based scenario, the web application requests security tokens 
by redirecting the user’s browser to an issuer that produces them. 
(This process is shown in the earlier scenarios.) With redirection, the 
browser can handle most of the authentication for you. In the active 
scenario, the client application actively contacts all issuers in a trust 
chain (these issuers are typically an identity provider (IdP) and a fed-
eration provider (FP)) to get and transform the required tokens. 

In this chapter, you’ll see an example of a smart client that uses 
federated identity. Fortunately, support for Microsoft® Windows® 
Communication Foundation (WCF) is a standard feature of the Win-
dows Identity Foundation (WIF). Using WCF and WIF reduces the 
amount of code needed to implement both  claims-aware web ser-
vices and claims-aware smart clients.

The Premise
Litware wants to write an application that can read the status of its 
orders directly from Adatum. To satisfy this request, Adatum agrees 
to provide a web service called a-Order.OrderTracking.Services that 
can be called by Litware over the Internet.

Claims Enabling Web Services8

Active clients do not need 
HTTP redirection.



146146 chapter eight

Adatum and Litware have already done the work necessary to 
establish federated identity, and they both have issuers capable of 
interacting with active clients. The necessary communications infra-
structure, including firewalls and proxies, is in place. To review these 
elements, see Chapter 4, “Federated Identity for Web Applications.”

Now, Adatum only needs to expose a claims-aware web service 
on the Internet. Litware will invoke Adatum’s web service from 
within its client application. Because the client application runs in 
Litware’s security realm, it can use Windows authentication to estab-
lish the identity of the user and then use this identity to obtain a to-
ken it can pass along to Adatum’s federation provider.

Goals and Requirements
Both Litware and Adatum see benefits to a collaboration based on 
claims-aware web services. Litware wants programmatic access to 
Adatum’s a-Order application. Adatum does not want to be respon-
sible for authenticating any people or resources that belong to an-
other security realm. For example, Adatum doesn’t want to keep and 
maintain a database of Litware users.

Both Adatum and Litware want to reuse the existing infrastruc-
ture as much as possible. For example, Adatum wants to enforce 
permissions for its web service with the same rules it has for the 
browser-based web application. In other words, the browser-based 
application and the web service will both use roles for access control.

Overview of the Solution
Figure 1 gives an overview of the proposed system. 

figure 1
Federated identity with a smart client

If Active Directory® 
Federation Services 
(ADFS) 2.0 is used, 
support for federated 
identity with active 
clients is a standard 
feature. 

WPF

Issuer
IdP(  )

1

2

4

3
Issuer FP(  )

Request a Litware
token

Smart
Client

Rick

Map the
Claims

Trust

Trust

WCF

Adatum

Request an Adatumtoken

Order tracking
web service

Get Orders

Litware

a−Order

Active clients use claims to get 
access to remote services.



 147 147claims enabling web services

The diagram shows an overview of the interactions and relation-
ships among the different components. It is similar to the diagrams 
you saw in the previous chapters, except that no HTTP redirection is 
involved. 

Litware’s client application is based on Windows Presentation 
Foundation (WPF) and is deployed on Litware employees’ desktops. 
Rick, the salesman at Litware, uses this application to track orders 
with Litware. 

Adatum exposes a SOAP web service on the Internet. This web 
service is implemented with WCF and uses standard WCF bindings 
that allow it to receive Security Assertion Markup Language (SAML) 
tokens for authentication and authorization. In order to access this 
service, the client must present a security token from Adatum.

The sequence shown in the diagram proceeds as follows:

1.	 Litware’s WPF application uses Rick’s credentials to request 
a security token from Litware’s issuer. Litware’s issuer 
authenticates Rick and, if the authentication is a success, 
returns a Group claim with the value Sales because Rick  
is in the sales organization.

2.	 The WPF application then forwards the security token  
to Adatum’s issuer, which has been configured to trust 
Litware’s issuer.

3.	 Adatum’s issuer, acting as a federation provider, transforms 
the claim Group:Sales into Role:Order Tracker and adds a 
new claim, Organization:Litware. The transformed claims 
are the ones required by Adatum’s web service, a-Order.
OrderTracking.Services. These are the same rules that were 
defined in the browser-based scenario.

4.	 Finally, the WPF application sends the web service the 
request to return orders. This request includes the security 
token obtained in the previous step.

This sequence is a bit different from a browser-based web appli-
cation because the smart client application knows the requirements 
of the web service in advance and also knows how to acquire the 
claims that satisfy the web service’s requirements. The client applica-
tion goes to the identity provider first, the federation provider second, 
and then to the web service. The smart client application actively 
drives the authentication process.



148148 chapter eight

Inside the Implementation
Now is a good time to walk through some of the details of the solu-
tion. As you go through this section, you may want to download the 
Microsoft Visual Studio® solution, 4ActiveClientFederation, from 
http://claimsid.codeplex.com. If you are not interested in the mechan-
ics, you should skip to the next section.

You can implement a claims-based smart client application  
using the built-in facilities of WCF, or you can code at a lower level  
using the WIF API. The a-Order.OrderTracking web service uses WCF 
standard bindings.

Implementing the Web Service
The web service’s Web.config file contains the following WCF service 
configuration.

<services>
   <service 
      name="AOrder.OrderTracking.Services.OrderTrackingService" 
      behaviorConfiguration="serviceBehavior">
     <endpoint 
        address="" 
        binding="ws2007FederationHttpBinding" 
             
        bindingConfiguration=
              "WS2007FederationHttpBinding_IOrderTrackingService"  
        contract=
           "AOrder.OrderTracking.Contracts.IOrderTrackingService"
        />
     <endpoint address="mex" binding="mexHttpBinding" 
               contract="IMetadataExchange" />
   </service>
</services> 

If your service endpoints support metadata exchange, as a-Order 
tracking does, it’s easy for clients to locate services and bind to them 
using tools such as Svcutil.exe. However, some manual editing of the 
configuration that is auto-generated by the tools will be necessary in 
the current example because it involves two issuers: the identity 
provider and the federation provider. With only one issuer, the tool 
will generate a configuration file that does not need editing.

The Web.config file contains binding information that matches 
the binding information for the client. If they don’t match, an excep-
tion will be thrown.

The a-Order.OrderTracking  
web service uses WCF standard 
bindings.

http://claimsid.codeplex.com


 149 149claims enabling web services

The Web.config file also contains some customizations. The fol-
lowing XML code shows the first customization.

<extensions>
   <behaviorExtensions>
      <add name="federatedServiceHostConfiguration" 
           type="Microsoft.IdentityModel
           .Configuration.ConfigureServiceHostBehaviorExtensionElement, 
          Microsoft.IdentityModel, ..." />
   </behaviorExtensions>
</extensions>

Adding this behavior extension attaches WIF to the WCF pipe-
line. This allows WIF to verify the security token’s integrity against 
the public key. (If you forget to attach WIF, you will see a run-time 
exception with a message that says that a service certificate is miss-
ing.)

The service’s Web.config file uses the <Microsoft.identity 
Model> element to specify the configuration required for the WIF 
component. This is shown in the following code example.

<microsoft.identityModel>
  <service>
     <issuerNameRegistry 
        type=
          "Microsoft.IdentityModel.Tokens.
                ConfigurationBasedIssuerNameRegistry, 
                Microsoft.IdentityModel, Version=3.5.0.0,
             Culture=neutral,   
             PublicKeyToken=31bf3856ad364e35">
       <trustedIssuers>
         <add 
           thumbprint="f260042d59e14817984c6183fbc6bfc71baf5462"  
           name="adatum" />
       </trustedIssuers>
     </issuerNameRegistry>
     <audienceUris>
        <add value=
          "http://{adatum host}/a-Order.OrderTracking.Services/
                                        OrderTrackingService.svc"
        />
     </audienceUris>
...



150150 chapter eight

Because the Adatum issuer will encrypt its security tokens with 
the web service’s X.509 certificate, the <service> element of the ser-
vice’s Web.config file also contains information about the web ser-
vice’s private key. This is shown in the following XML code.

<serviceCertificate>
   <certificateReference 
      findValue="CN=adatum" 
      storeLocation="LocalMachine" 
      storeName="My" 
      x509FindType="FindBySubjectDistinguishedName"/>
</serviceCertificate>

Implementing the Active Client
The client application, which acts as the WCF proxy, is responsible for 
orchestrating the interactions. You can see this by examining the  
client’s App.config file. The following XML code is in the <system.
serviceModel> section.

<client>
  <endpoint 
     address=
       "http://{adatum host}/a-Order.OrderTracking.Services/
                                        OrderTrackingService.svc"
     binding="ws2007FederationHttpBinding" 
     bindingConfiguration=
              "WS2007FederationHttpBinding_IOrderTrackingService"
     contract="OrderTrackingService.IOrderTrackingService" 
     name="WS2007FederationHttpBinding_IOrderTrackingService">
     <identity>
        <dns value="adatum" />
     </identity>
   </endpoint>
</client>    

The address attribute gives the Uniform Resource Identifier (URI) 
of the order tracking service. 

The binding attribute, ws2007FederationHttpBinding, indicates 
that WCF should use the WS-Trust protocol when it creates the se-
curity context of invocations of the a-Order order tracking service.

The Domain Name System (DNS) value given in the <identity> 
section is verified at run time against the service certificate’s subject 
name.

The App.config file specifies three nested bindings in the  
<bindings> subsection. The following XML code shows the first of 
these bindings.



 151 151claims enabling web services

<ws2007FederationHttpBinding>
  <binding  
     name="WS2007FederationHttpBinding_IOrderTrackingService">
    <security mode="Message">
      <message>
        <issuer 
          address="https://{adatum host}/{issuer endpoint}"
          binding="customBinding"   
          bindingConfiguration="AdatumIssuerIssuedToken">
        </issuer>
      </message>
    </security>
  </binding>
</ws2007FederationHttpBinding>

The issuer address changes depending on how you deploy the sample. 
For an issuer running on the local machine, the address attribute of 
the <issuer> element will be: 

https://localhost/Adatum.FederationProvider.4/Issuer.svc

For ADFS 2.0, the address will be: 

https://{adatum host}/Trust/13/IssuedTokenMixed 
SymmetricBasic256

This binding connects the smart client application to the a-Order.
OrderTracking service. Unlike WCF bindings that do not involve 
claims, this special claims-aware binding includes a message security 
element that specifies the address and binding configuration of the 
Adatum issuer. The address attribute represents the active endpoint 
of the Adatum issuer. 

The nested binding configuration is labeled AdatumIssuerIssued 
Token. It is the second binding, as shown here.

<customBinding>
  <binding name="AdatumIssuerIssuedToken">
    <security 
       authenticationMode="IssuedTokenOverTransport"
       messageSecurityVersion=
          "WSSecurity11WSTrust13WSSecureConversation13
                        WSSecurityPolicy12BasicSecurityProfile10"
    >
      <issuedTokenParameters>
        <issuer 
           address=
               "https://{litware host}/{issuer endpoint}"

The message security element 
identifies the issuer.



152152 chapter eight

           binding="ws2007HttpBinding" 
           bindingConfiguration="LitwareIssuerUsernameMixed">
        </issuer>
      </issuedTokenParameters>
    </security>
    <httpsTransport />
  </binding>
</customBinding>

The issuer address changes depending on how you deploy the sample. 
For an issuer running on the local machine, the address attribute of 
the <issuer> element will be: 

https://localhost/Litware.SimulatedIssuer.4/Issuer.svc

For ADFS 2.0 the address will be: 

https://{litware host}/Trust/13/UsernameMixed

The AdatumIssuerIssuedToken binding configures the connec-
tion to the Adatum issuer that will act as the federation provider in 
this scenario. 

The <security> element specifies that the binding uses WS-Trust. 
This binding also nests the URI of the Litware issuer, and for this rea-
son, it is sometimes known as a federation binding. The binding speci-
fies that the binding configuration labeled LitwareIssuerUsername 
Mixed is used for the Litware issuer that acts as the identity provider. 
The following XML code shows this.

<ws2007HttpBinding>
  <binding name="LitwareIssuerUsernameMixed">
     <security mode="TransportWithMessageCredential">
       <message 
         clientCredentialType="UserName" 
         establishSecurityContext="false" 
       />
     </security>
  </binding>
</ws2007HttpBinding>    

This binding connects the Litware issuer that acts as an identity 
provider. This is a standard WCF HTTP binding because it transmits 
user credentials to the Litware issuer.

In a production scenario, the configuration should be changed  
to clientCredentialType=”Windows” to use Windows  
authentication. For simplicity, this sample uses UserName  
credentials. You may want to consider using other options in  
a production environment.

The federation binding  
in the Microsoft .NET 
Framework 3.5 provides  
no way to turn off a  
secure conversation.  
(This feature is available  
in version 4.0.) Because 
ADFS 2.0 endpoints  
have secure conversation 
disabled, this example 
needs a custom binding.



 153 153claims enabling web services

When the active client starts, it must provide credentials. If the 
configured credential type is UserName, a UserName property must 
be set. This is shown in the following code.

private void ShowOrders()
{
  var client = 
          new OrderTrackingService.OrderTrackingServiceClient();
  
  client.ClientCredentials.UserName.UserName = "LITWARE\\rick";
  client.ClientCredentials.UserName.Password =  
                                      "thisPasswordIsNotChecked";

  var orders = client.GetOrdersFromMyOrganization();

  this.DisplayView(new OrderTrackingView()
                   {
                     DataContext = 
                         new OrderTrackingViewModel(orders)
                   });
}

This step would not be necessary if the application were deployed 
in a production environment because it would probably use Windows 
authentication.

WCF federation bindings can handle the negotiations between the 
active client and the issuers without additional code. You can achieve 
the same results with calls to the WIF WSTrustChannel class. 

Implementing the Authorization  
Strategy

The Adatum web service implements its authorization strategy in the 
SimpleClaimsAuthorizationManager class. The service’s Web.config 
file contains a reference to this class in the <claimsAuthorization 
Manager> element. 

<claimsAuthorizationManager 
   type="AOrder.OrderTracking.Services.
                               SimpleClaimsAuthorizationManager,  
             AOrder.OrderTracking.Services" />

Adding this service extension causes WCF to invoke the Check 
Access method of the specified class for authorization. This occurs 
before the service operation is called.

The implementation of the SimpleClaimsAuthorization 
Manager class is shown in the following code.

Using the WIF 
WSTrustChannel 
gives you more 
control, but it 
requires a deeper 
understanding of 
WS-Trust.

A claims authorization 
manager determines which 
methods can be called by  
the current user.



154154 chapter eight

public class SimpleClaimsAuthorizationManager : 
                                       ClaimsAuthorizationManager
{
  public override bool CheckAccess(AuthorizationContext context)
  {
    return context.Principal.IsInRole(Adatum.Roles.OrderTracker);
  }
}

WIF provides the base class, ClaimsAuthorizationManager.  
Applications derive from this class in order to specify their own ways 
of checking whether an authenticated user should be allowed to call 
the web service methods.

The CheckAccess method in the a-Order order tracking service 
ensures that the caller of any of the service’s methods must have a 
role claim with the value Adatum.Roles.OrderTracker, which is de-
fined in the Samples.Web.ClaimsUtilities project elsewhere as the 
string, “Order Tracker.”

In this scenario, the Litware issuer, acting as an identity provider, 
issues a Group claim that identifies the salesman Rick as being in the 
Litware sales organization (value=Sales). The Adatum issuer, acting as 
a federation provider, transforms the security token it receives from 
Litware. One of its transformation rules adds the role, Order Tracker, 
to any Litware employee with a group claim value of Sales. The order 
tracking service receives the transformed token and grants access to 
the service. 

Debugging the Application
The configuration files for the client and the web service in this 
sample include settings to enable tracing and debugging messages. By 
default, they are commented out so that they are not active.

If you uncomment them, make sure you update the <sharedLis-
teners> section so that log files are generated where you can find 
them and in a location where the application has write permissions. 
Here is the XML code.

<sharedListeners>
  <add 
    initializeData="c:\temp\WCF-service.svclog"     
    type="System.Diagnostics.XmlWriterTraceListener"
    name="xml">
    <filter type="" />
  </add>
  <add 
    initializeData="c:\temp\wcf-service-msvg.svclog"      



 155 155claims enabling web services

    type="System.Diagnostics.XmlWriterTraceListener, System,
               Version=2.0.0.0, Culture=neutral, 
               PublicKeyToken=b77a5c561934e089"
    name="ServiceModelMessageLoggingListener" 
    traceOutputOptions="Timestamp">
    <filter type="" />
  </add>
</sharedListeners>

Setup and Physical Deployment
By default, the web service uses the local host for all components. In 
a production environment, you would want to use separate comput-
ers for the client, the web service, the federation provider, and the 
identity provider.

To deploy this application, you must substitute the mock issuer 
with a production-grade component such as ADFS 2.0 that supports 
active clients. You must also adjust the Web.config and App.config 
settings to account for the new server names by changing the issuer 
addresses.

Note that neither the client nor the web service needs to be re-
compiled to be deployed to a production environment. All of the 
necessary changes are in the respective .config files.

Configuring ADFS 2.0 for Web Services
In the case of ADFS 2.0, you enable the endpoints using the Microsoft 
Management Console (MMC). 

To obtain a token from Litware, the UsernameMixed or Windows 
Mixed endpoint could be used. UsernameMixed requires a user name 
and password to be sent across the wire, while WindowsMixed 
works with the Windows credentials. Both endpoints will return a 
SAML token. 

The “Mixed” suffix indicates that the endpoint uses transport 
security (based on HTTPS) for integrity and confidentiality; client 
credentials are included in the header of the SOAP message.

To obtain a token from Adatum, the endpoint used is Issued 
TokenMixedSymmetricBasic256. This endpoint accepts a SAML token 
as an input and returns a SAML token as an output. It also uses trans-
port and message security.

In addition, Litware and Adatum must establish a trust relation-
ship. Litware must configure Adatum ADFS as a relying party (RP)  
and create rules to generate a token based on Lightweight Directory 

Remove the mock issuer 
during deployment.



156156 chapter eight

Access Protocol (LDAP) Active Directory attributes. Adatum must 
configure Litware ADFS as an identity provider and create rules to 
transform the group claims into role claims.

Finally, Adatum must configure the a-Order web service as a rely-
ing party. Adatum must enable token encryption and create rules that 
pass role and name claims through.

Questions

1.	 Which statements describe the difference between the way 
federated identity works for an active client as compared to 
a passive client:

a.	 An active client uses HTTP redirects to ask each token 
issuer in turn to process a set of claims.

b.	 A passive client receives HTTP redirects from a web 
application that redirect it to each issuer in turn to 
obtain a set of claims.

c.	 An active client generates tokens to send to claims 
issuers.

d.	 A passive client generates tokens to send to claims 
issuers.

2.	 A difference in behavior between an active client and a 
passive client is:

a.	 An active client visits the relying party first; a passive 
client visits the identity provider first.

b.	 An active client does not need to visit a federation 
provider because it can perform any necessary claims 
transformations by itself.

c.	 A passive client visits the relying party first; an active 
client visits the identity provider first.

d.	 An active client must visit a federation provider first 
to determine the identity provider it should use. 
Passive clients rely on home realm discovery to 
determine the identity provider to use.



 157 157claims enabling web services

3.	 The active scenario described in this chapter uses which 
protocol to handle the exchange of tokens between the 
various parties?

a.	 WS-Trust

b.	 WS-Transactions

c.	 WS-Federation

d.	 ADFS

4.	 In the scenario described in this chapter, it’s necessary to 
edit the client application’s configuration file manually, 
because the Svcutil.exe tool only adds a binding for a single 
issuer. Why do you need to configure multiple issuers?

a.	 The metadata from the relying party only includes 
details of the Adatum identity provider.

b.	 The metadata from the relying party only includes 
details of the client application’s identity provider.

c.	 The metadata from the relying party only includes 
details of the client application’s federation provider.

d.	 The metadata from the relying party only includes 
details of the Adatum federation provider.

5.	 The WCF service at Adatum performs authorization checks 
on the requests that it receives from client applications. 
How does it implement the checks?

a.	 The WCF service uses the IsInRole method to verify 
that the caller is a member of the OrderTracker role.

b.	 The Adatum federation provider transforms claims 
from other identity providers into Role type claims 
with a value of OrderTracker.

c.	 The WCF service queries the Adatum federation 
provider to determine whether a user is in the Order 
Tracker role.

d.	 It does not need to implement any authorization 
checks. The application automatically grants access  
to anyone who has successfully authenticated.





159

In Chapter 8, “Claims Enabling Web Services,” you saw how Adatum 
exposed a SOAP-based web service to a client application. The client 
used the WS-Trust active federation protocol to obtain a token con-
taining the claims that it needed to access the web service. The sce-
nario that this chapter describes is similar, but differs in that the web 
service is REST-based rather than SOAP-based. The client must now 
send a Simple Web Token (SWT) containing the claims to the web 
service using the OAuth protocol instead of a SAML token using the 
WS-Trust protocol. The client will obtain an SWT token from Win-
dows Azure™ AppFabric Access Control services (ACS) v2.

Like Chapter 8, “Claims Enabling Web Services,” this chapter de-
scribes an active scenario. In an active scenario, the client application 
actively contacts all issuers in a trust chain; these issuers are typically 
an identity provider (IdP) and a federation provider (FP). The client 
application communicates with the identity provider and federation 
provider to get and transform the tokens that it requires to access the 
relying party (RP) application. 

In this chapter, you’ll see an example of a Windows® Presentation 
Foundation (WPF) smart client application that uses federated iden-
tity. In Chapter 8, “Claims Enabling Web Services,” the Windows 
Communication Foundation (WCF) bindings determined how the 
client application called the issuers in the trust chain; in this chapter, 
you’ll see how the client must call the identity provider and federation 
provider programmatically because WCF does not support the calling 
of RESTful web services.

The Premise
Litware wants to write an application that can read the status of its 
orders directly from Adatum. To satisfy this request, Adatum agrees 
to provide a web service called a-Order.OrderTracking.Services that 

Securing REST Services9

The client application must 
actively call all the issuers  
in the trust chain.



160160 chapter nine

users at Litware can access by using a variety of client applications 
over the Internet.

Adatum and Litware have already done the work necessary to 
establish federated identity, and they both have issuers capable of 
interacting with active clients. The necessary communications infra-
structure, which includes firewalls and proxies, is in place. To review 
these elements, see Chapter 4, “Federated Identity for Web Applica-
tions.”

Now, Adatum only needs to expose a claims-aware web service 
on the Internet. Litware will invoke Adatum’s web service from 
within its client application. Because the client application runs in 
Litware’s security realm, it can use Microsoft® Windows® authentica-
tion to establish the identity of the user and then use this identity to 
obtain a token it can pass along to Adatum’s federation provider. In 
this scenario Adatum uses ACS as its federation provider.

Goals and Requirements
Both Litware and Adatum see benefits in a collaboration based on 
claims-aware web services. Litware wants programmatic access to 
Adatum’s a-Order application. Adatum does not want to be respon-
sible for authenticating any people or resources that belong to an-
other security realm. For example, Adatum doesn’t want to keep and 
maintain a database of Litware users.

Both Adatum and Litware want to reuse the existing infrastruc-
ture as much as possible. For example, Adatum wants to enforce 
permissions for its web service with the same rules it has for the 
browser-based web application. In other words, the browser-based 
application and the web service will both use roles for access control.

Adatum has decided to expose the a-Order order tracking data as 
a RESTful web service to expand the range of clients that can access 
the application. Adatum anticipates that partners will implement cli-
ent applications on mobile platforms; in these environments partners 
will prefer a lightweight REST API to a SOAP-based API.

If Active Directory® 
Federation Services 
(ADFS) 2.0 is used, 
you’ll get support for 
federated identity  
with active clients as  
a standard feature. 

Active clients use claims to get 
access to remote services.

SWT tokens are smaller than SAML 
tokens because they do not include any 
XML markup. It is also much easier to 
manipulate SWT tokens in JavaScript, 
making SWT the preferred token 
format for rich JavaScript clients.



 161 161securing rest services

Overview of the Solution
Figure 1 gives an overview of the proposed solution. 

figure 1
Federated identity with a smart client

The diagram presents an overview of the interactions and rela-
tionships among the different components. It is similar to the diagrams 
you saw in the previous chapters. 

Litware has a single client application based on Windows Presen-
tation Foundation (WPF) deployed on Litware employees’ desktops. 
Rick, a Litware employee, uses this application to track orders with 
Adatum. 

Adatum exposes a RESTful web service on the Internet. This web 
service expects to receive Simple Web Token (SWT) tokens that it 
will use to implement authorization rules in the a-Order application. 
In order to access this service, the client must present an SWT token 
from the Adatum ACS instance.

The sequence shown in the diagram proceeds as follows:

1.	 The Litware WPF application uses Rick’s credentials to 
request a security token from the Litware issuer. The 
Litware issuer authenticates Rick and, if the authentication 
succeeds, it returns a Group claim with the value Sales 
because Rick is in the sales organization. The Litware issuer 
returns a SAML token to the client application.

a−Order
WPF − Smart Client

WCF

Adatum
Litware

ACS

1

2

4

Rick

IdP
(ADFS 2.0)

GetToken
(SAML)

FP

3

GetToken
(SWT)

Call Service + SWT

Trust
Trust



162162 chapter nine

2.	 The WPF application then forwards the SAML token to 
ACS (the Adatum federation provider), which trusts the 
Litware issuer.

3.	 ACS, acting as a federation provider, transforms the claim 
Group:Sales into Role:Sales and adds a new claim, 
Organization:Litware. The transformed claims are the ones 
required by the Adatum a-Order RESTful web service. 
These are the same rules that were defined in the browser-
based scenario. ACS also transitions the incoming SAML 
token to an SWT token that it returns to the client WPF 
application. The interaction between the client application 
and ACS uses the OAuth protocol.

4.	 Finally, the WPF application sends the web service the 
request for the order tracking data. This request includes 
the SWT token obtained in the previous step. The web 
service uses the claims in the token to implement its 
authorization rules. 

This sequence is a bit different from the scenario described in 
Chapter 8, “Claims Enabling Web Services.” In this scenario, the fed-
eration provider is an ACS instance that performs token format tran-
sition from SAML to SWT in addition to mapping the claims from the 
identity provider into claims that the relying party expects to see.

Inside the Implementation
Now is a good time to walk through some of the details of the solu-
tion. As you go through this section, you may want to download the 
Visual Studio® development system solution called 8ActiveRestCli-
entFederation from http://claimsid.codeplex.com.  If you are not in-
terested in the mechanics, you should skip to the next section.

WCF does not provide built-in support for REST on the client or 
for SWT on the server so this sample requires more code than you 
saw in Chapter 8, “Claims Enabling Web Services.”

The following sections describe some of the key parts of the im-
plementation of the active client, the RESTful web service, and ACS.

The ACS Configuration
In this scenario, in addition to handling the claims mapping rules, ACS 
is also responsible for transitioning the incoming token from the Lit-
ware identity provider from the SAML format to the SWT format. 
This is partially a configuration task, but the active client application 
must be able to receive an SWT token from ACS. For more details, see 
the section, “Implementing the Active Client,” later in this chapter.

It’s also possible to 
wrap SWT tokens  
in the WS-Trust and 
WS-Federation 
protocols by using  
a BinarySecurity 
TokenElement.



 163 163securing rest services

The configuration step in ACS is to ensure that the token format 
for the aOrderService relying party is set to SWT. This makes sure 
that ACS issues an SWT token when it receives a token from any of 
the identity providers configured for the aOrderService relying party.

Implementing the Web Service
In this scenario, Adatum exposes the order-tracking feature of the a-
Order application as a RESTful web service. The following snippet 
from the Web.config file shows how the application defines the HTTP 
endpoint for the service.

<services>
  <service name=
           "AOrder.OrderTracking.Services.OrderTrackingService" 
           behaviorConfiguration="serviceBehavior">
    <endpoint
        address=""
        binding="webHttpBinding"
        contract=
        "AOrder.OrderTracking.Contracts.IOrderTrackingService"
        behaviorConfiguration="orders" />
  </service>
</services>
<behaviors>
  <serviceBehaviors>
    <behavior name="serviceBehavior">
      <serviceDebug includeExceptionDetailInFaults="true" />
      <serviceMetadata httpGetEnabled="true" />
    </behavior>
  </serviceBehaviors>
  <endpointBehaviors>
    <behavior name="orders">
      <webHttp />
    </behavior>
  </endpointBehaviors>
</behaviors>

The Global.asax file contains code to route requests to the ser-
vice definition. The following code sample from the Global.asax.cs file 
shows the routing definition in the service. 

protected void Application_Start(object sender, EventArgs e)
{
  RouteTable.Routes.Add(new ServiceRoute("orders", 
    new WebServiceHostFactory(), typeof(OrderTrackingService)));
}

In this scenario, the web 
service does not use 
Windows Identity  
Foundation (WIF) to  
handle the incoming  
tokens. However, the 
service does use WIF for 
some claims processing;  
for example, it uses it  
in the CustomClaims 
AuthorizationManager 
class. You will see the 
details in the microsoft.
identityModel section  
in the Web.config file.



164164 chapter nine

The Adatum a-Order application must also extract the claims in-
formation from the incoming SWT token. The application uses the 
claims to determine the identity of the caller and the roles that the 
caller is a member of in order to apply the authorization rules in the 
application. The following code sample from the OrderTracking 
Service class shows how the GetOrdersFromMyOrganization 
method retrieves the current user’s organization claim to use when it 
fetches a list of orders from the order repository.

public Order[] GetOrdersFromMyOrganization()
{
  string organization = ClaimHelper.GetClaimsFromPrincipal(
         HttpContext.Current.User,
         Adatum.ClaimTypes.Organization).Value;
  var repository = new OrderRepository();
  return repository.GetOrdersByCompanyName(organization).
                                               ToArray();
}

This method retrieves a claim value from the IClaimsPrincipal 
object. In the scenarios described in previous chapters, WIF has been 
responsible for populating the IClaimsPrincipal object with claims 
from a SAML token: in the current scenario, we are using SWT tokens 
and the OAuth protocol, which are not directly supported by WIF. 
The Visual Studio solution, 8ActiveRestClientFederation, includes a 
project called DPE.OAuth that implements an extension to WIF to 
provide support for SWT tokens and the OAuth protocol.

The following snippet from the Web.config file in the a-Order.
OrderTracking.Services.8 project shows how Adatum installed the 
modules for the extension to WIF.

In addition to the extension module, Microsoft.Samples.DPE.
OAuth.ProtectedResource.ProtectedResourceModule, it’s 
necessary to install the standard WSFederationAuthentication 
Module and SessionAuthenticationModule modules. 

…
<configSections>
  <section name=”microsoft.identityModel” 
    type=”Microsoft.IdentityModel.Configuration.MicrosoftIdentity
    ModelSection, 
    Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral, 
    PublicKeyToken=31bf3856ad364e35” />
</configSections>
…



 165 165securing rest services

<system.webServer>
  <validation validateIntegratedModeConfiguration=”false” />
  <modules runAllManagedModulesForAllRequests=”true”>
    <add name=”UrlRoutingModule” type=”System.Web.Routing.
      UrlRoutingModule, 
      System.Web, Version=4.0.0.0, Culture=neutral, 
      PublicKeyToken=b03f5f7f11d50a3a” />
    <add name=”ProtectedResourceModule” 
      type=”Microsoft.Samples.DPE.OAuth.ProtectedResource.
      ProtectedResourceModule, 
      Microsoft.Samples.DPE.OAuth, Version=1.0.0.0, 
      Culture=neutral” />
    <add name=”WSFederationAuthenticationModule” 
      type=”Microsoft.IdentityModel.Web.
      WSFederationAuthenticationModule, 
      Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral, 
      PublicKeyToken=31bf3856ad364e35” 
      preCondition=”managedHandler” />
    <add name=”SessionAuthenticationModule” 
      type=”Microsoft.IdentityModel.Web.
      SessionAuthenticationModule, 
      Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral, 
      PublicKeyToken=31bf3856ad364e35” 
      preCondition=”managedHandler” />
  </modules>
</system.webServer>

You use the microsoft.identityModel section to configure the 
extension module to handle SWT tokens and the OAuth protocol.

<microsoft.identityModel>
  <service name="OAuth">
    <audienceUris>
      <add value="https://localhost/a-Order.OrderTracking.
           Services.8" />
    </audienceUris>
    <claimsAuthorizationManager 
      type="AOrder.OrderTracking.Services.
      CustomClaimsAuthorizationManager, 
      AOrder.OrderTracking.Services.8, Culture=neutral" />
    <securityTokenHandlers>
      <add type="Microsoft.Samples.DPE.OAuth.Tokens.
        SimpleWebTokenHandler, 
        Microsoft.Samples.DPE.OAuth" />
    </securityTokenHandlers>



166166 chapter nine

    <issuerTokenResolver 
      type="Microsoft.Samples.DPE.OAuth.ProtectedResource
     .ConfigurationBasedIssuerTokenResolver, Microsoft.Samples.
     DPE.OAuth">
      <serviceKeys>
        <add serviceName="https://localhost/a-Order.
          OrderTracking.Services.8" 
          serviceKey=
          "lJFL02dwy9n3rCe2YEToblDFHdZmbecmFK1QB88ax7U=" />
      </serviceKeys>
    </issuerTokenResolver>
    <issuerNameRegistry type="Microsoft.Samples.DPE.OAuth.
      ProtectedResource
      .SimpleWebTokenTrustedIssuersRegistry, Microsoft.Samples.
      DPE.OAuth">
      <trustedIssuers>
        <add issuerIdentifier="https://aorderrest-dev.
          accesscontrol.windows.net/" 
          name="aOrder" />
      </trustedIssuers>
    </issuerNameRegistry>
  </service>
</microsoft.identityModel>

This section also configures a custom claims authorization man-
ager that Adatum uses to apply custom authorization rules in the 
service. The following code example shows how the service imple-
ments the custom claims authorization manager class that checks the 
caller’s role membership and the resource the caller is requesting. The 
IOrderTrackingService interface defines the mapping from the paths 
“/all” and “/frommyorganization” to the service methods Get 
AllOrders and GetOrdersFromMyOrganization.

public class CustomClaimsAuthorizationManager : 
ClaimsAuthorizationManager
{
  public override bool CheckAccess(AuthorizationContext context)
  {
    Claim actionClaim =
      context.Action.Where(x => x.ClaimType == ClaimTypes.Name).
                                               FirstOrDefault();
    Claim resourceClaim =
      context.Resource.Where(x => x.ClaimType == ClaimTypes.
                                         Name).FirstOrDefault();



 167 167securing rest services

    IClaimsPrincipal principal = context.Principal;

    var resource = new Uri(resourceClaim.Value);
    string action = actionClaim.Value;

    if (action == "GET" && resource.PathAndQuery.Contains
                                        ("/frommyorganization"))
    {
      if (!principal.IsInRole(Adatum.Roles.OrderTracker))
      {
        return false;
      }
    }

    if (action == "GET" && resource.PathAndQuery.Contains
                                                       ("/all"))
    {
      if (!principal.IsInRole(Adatum.Roles.OrderApprover))
      {
        return false;
      }
    }

    return true;
  }
}

Implementing the Active Client
The ACS configuration ensures that the token format for the Adatum 
a-Order relying party application is set to SWT. ACS issues an SWT 
token when it receives a token from any of the identity providers 
configured for the Adatum a-Order relying party (the client obtains 
the token from the identity provider and sends it ACS). The client 
application uses a custom endpoint behavior to intercept all outgoing 
requests; the behavior obtains the token that the relying party re-
quires and attaches it to the request. Figure 2 shows an overview of 

You can also use a custom 
ClaimsAuthentication 
Manager class to modify 
the set of claims attached 
to the IClaimsPrincipal 
object in the context. 

To find out more about 
authorization strategies,  
take a look at Appendix G, 
“Authorization Strategies.”



168168 chapter nine

this process.

figure 2
Attaching an SWT token to the outgoing request

The sequence shown in Figure 2 proceeds as follows.

1.	 The service client, the OrderTrackingServiceClient class, 
attaches a new behavior to the channel endpoint. This 
CustomHeaderBehavior behavior class instantiates a 
custom message inspector that has access to every outgoing 
request on the channel.

2.	 The client application invokes the GetOrdersForMy 
Organization method that sends a request to the  
a-Order order tracking Service.

3.	 The CustomHeaderMessageInspector class intercepts  
the message before it is sent.

4.	 The CustomHeaderMessageInspector class requests  
a SAML token from the Litware identity provider.

5.	 The CustomHeaderMessageInspector class sends the 
SAML token to ACS and receives an SWT token.

6.	 The CustomHeaderMessageInspector class attaches  
the SWT token to the outgoing message header.

Litware IP

OrderTrackingServiceClient

OrderTrackingViewModel

Litware WPF Client

1

2

4
5

6

Adatum ACS
Instance
(FP)

Adatum 
a-Order Tracking Services
(RESTful Web Service)

CustomHeaderMessageInspector

3

The inspector caches the 
SWT token to avoid having 
to revisit the identity 
provider and ACS for every 
request to the a-Order 
application. The sample 
caches the token for 30 
seconds, but you should 
adjust this to a suitable 
value for your application.



 169 169securing rest services

Adatum chose to use WCF in the client to manage the call to the 
REST-based service rather than the WebClient or HttpWeb 
Request classes because it was a convenient way to attach the  
SWT token. For an example that uses the HttpWebRequest  
class (because WCF is not available on the Windows® Phone 7 
platform), see Chapter 10, “Accessing REST Services from a  
Windows Phone Device.” 

Although WIF does not provide full support for REST-based web 
services, the sample client application uses WIF to handle some of the 
token processing. This reduces the amount of code required to imple-
ment this sample client application. One of the reasons for using a 
RESTful web service is to support other client environments, and 
Chapter 10, “Accessing REST Services from a Windows Phone 7 De-
vice,” shows you how to implement a client application without using 
WIF.

The inspector must first obtain a SAML token from the identity 
provider. The following code example from the CustomHeader 
MessageInspector class shows how the a-Order.OrderTracking.Client 
application uses WIF to perform this task. This method takes three 
arguments; the service endpoint, the STS endpoint, and the user’s 
credentials.

private static SecurityToken GetSamlToken(
  string realm, string stsEndpoint, ClientCredentials
  clientCredentials)
{
  using (var factory = new WSTrustChannelFactory(
    new UserNameWSTrustBinding(SecurityMode.
        TransportWithMessageCredential),
    new EndpointAddress(new Uri(stsEndpoint))))
  {
    factory.Credentials.UserName.UserName =
        clientCredentials.UserName.UserName;
    factory.Credentials.UserName.Password =
        clientCredentials.UserName.Password;

    factory.TrustVersion = TrustVersion.WSTrust13;

    WSTrustChannel channel = null;

    try
    {
      var rst = new RequestSecurityToken
        {  
          RequestType = WSTrust13Constants.Request



170170 chapter nine

                        Types.Issue,
          AppliesTo = new EndpointAddress(realm),
          KeyType = KeyTypes.Bearer,
        };

      channel = (WSTrustChannel)factory.CreateChannel();

      return channel.Issue(rst);
    }
    finally
    {
      if (channel != null)
      {
        channel.Abort();
      }

      factory.Abort();
    }
  }
}

The token request specifies a bearer token; ACS expects to receive  
a bearer token and not a holder-of-key token. For this reason it’s 
important to use Secure Sockets Layer (SSL) to secure the connec-
tions between the client application and the identity provider, and 
between the client application and ACS in order to mitigate the 
threat of a man-in-the-middle attack.

The inspector can then send the SAML token to ACS. The follow-
ing code example from the CustomHeaderMessageInspector class 
shows how the client application sends the SAML token to ACS and 
receives the SWT token in return. The application uses the OAuth 
protocol to communicate with ACS.

private static NameValueCollection GetOAuthToken(string
  xmlSamlToken, string serviceEndpoint, string acsRelyingParty)
{
  var values = new NameValueCollection
    {
      { “grant_type”, “urn:oasis:names:tc:SAML:2.0:assertion” },
      { “assertion”, xmlSamlToken },
      { “scope”, acsRelyingParty }
    };
  var client = new WebClient { BaseAddress = serviceEndpoint };

  byte[] acsTokenResponse = client.UploadValues(“v2/Oauth2-13”,



 171 171securing rest services

                                   “POST”, values);
  string acsToken = Encoding.UTF8.GetString(acsTokenResponse);
  var tokens = new NameValueCollection();
  var json = new JavaScriptSerializer();
  var parsed = json.DeserializeObject(acsToken) as
                              Dictionary<string, object>;

    foreach (var item in parsed)
    {
        tokens.Add(item.Key, item.Value.ToString());
    }

    return tokens;
}

The inspector attaches the SWT token in the Authorization 
header in the HTTP request message that the client application is 
sending to the a-Order order tracking service. The following code 
example shows how the client application performs this task in the 
BeforeSendRequest method.

var oauthAuthorizationHeader =
  string.Format("OAuth {0}", oauthToken["access_token"]);
httpRequestMessageProperty.Headers.Add(
  HttpRequestHeader.Authorization, oauthAuthorizationHeader);

The SWT token expiry time is accessible in the response from 
ACS and the code in the sample checks the expiry time on the SWT 
token before attaching it to the outgoing request. With a SAML to-
ken, the expiry time is in the token (not part of the response); if the 
issuer encrypts the SAML token, the client application may not have 
access to the contents of this token. In this solution, the client appli-
cation simply forwards the SAML token on to ACS.

You can read the expiry time of a SAML token using the following 
code:

var rst = new RequestSecurityToken
  {
    RequestType = WSTrust13Constants.RequestTypes.Issue,
    AppliesTo = new EndpointAddress(realm),
    KeyType = KeyTypes.Bearer,
  };

channel = (WSTrustChannel)factory.CreateChannel();
RequestSecurityTokenResponse response;
var token = channel.Issue(rst, out response);
var expires = response.Lifetime.Expires.Value; 



172172 chapter nine

Setup and Physical Deployment
By default, the web service uses the local host for all components. In 
a production environment, you would want to use separate comput-
ers for the client, the web service, the federation provider, and the 
identity provider.

To deploy this application, you must substitute the mock issuer 
with a production-grade component such as ADFS 2.0 that supports 
active clients. You must also adjust the settings in the client applica-
tion’s  App.config file to account for the new server names: the  
addresses for the identity provider and ACS are located in the app 
Settings section.

Note that neither the client nor the web service needs to be re-
compiled to be deployed to a production environment unless you are 
changing the ACS service namespace that your solution uses; in this 
case, you must update the service namespace name and key in the 
CustomServiceHostFactory class in the a-Order order tracking web 
service.

Configuring ADFS 2.0 for Web Services
In the case of ADFS 2.0, you enable the endpoints using the Microsoft 
Management Console (MMC). 

To obtain a token from the Litware issuer, you could use the 
UsernameMixed or WindowsMixed endpoint. UsernameMixed  
requires a user name and password to be sent across the wire,  
while WindowsMixed works with the Windows credentials. Both 
endpoints will return a SAML token. 

The “Mixed” suffix indicates that the endpoint uses transport 
security (based on HTTPS). For integrity and confidentiality, client 
credentials are included in the header of the SOAP message. 

Configuring ACS
As a minimum, you should configure the aOrderService relying party 
in ACS to issue name and organization claims. If you implement any 
additional authorization rules, you should ensure that ACS issues  
any additional claims that your rules require.

To avoid the risk of a partner spoofing an organization name in  
a token, you should configure ACS to generate the organization 
claim and not simply pass it through from the identity provider.

Remove the mock issuer during 
deployment.



 173 173securing rest services

Questions

1.	 In the scenario described in this chapter, which of the 
following statements best describes what happens the first 
time that the smart client application tries to use the 
RESTful a-Order web service?

a.	 It connects first to the ACS instance, then to the 
Litware IP, and then to the a-Order web service.

b.	 It connects first to the Litware IP, then to the ACS 
instance, and then to the a-Order web service.

c.	 It connects first to the a-Order web service, then  
to the ACS instance, and then to the Litware IP.

d.	 It connects first to the a-Order web service, then  
to the Litware IP, and then to the ACS instance.

2.	 In the scenario described in this chapter, which of the 
following tasks does ACS perform?

a.	 ACS authenticates the user.

b.	 ACS redirects the client application to the relying 
party.

c.	 ACS transforms incoming claims to claims that the 
relying party will understand.

d.	 ACS transitions the incoming token format from 
SAML to SWT.

3.	 In the scenario described in this chapter, the Web.config 
file in the a-Order web service does not contain a 
<microsoft.identity> section. Why? 

a.	 Because it configures a custom ServiceAuthorization 
Manager class to handle the incoming SWT token in 
code.

b.	 Because it is not authenticating requests.

c.	 Because it is not authorizing requests.

d.	 Because it is using a routing table.



174174 chapter nine

4.	 ACS expects to receive bearer tokens. What does this 
suggest about the security of a solution that uses ACS?

a.	 You do not need to use SSL to secure the connection 
between the client and the identity provider.

b.	 You should use SSL to secure the connection between 
the client and the identity provider.

c.	 The client application must use a password to  
authenticate with ACS.

d.	 The use of bearer tokens has no security implications 
for your solution.

5.	 You should use a custom ClaimsAuthorizationManager 
class for which of the following tasks.

a.	 To attach incoming claims to the IClaimsPrincipal 
object.

b.	 To verify that the claims were issued by a trusted 
issuer.

c.	 To query ACS and check that the current request is 
authorized. 

d.	 To implement custom rules that can authorize access 
to web service methods. 

More Information
To learn more about proof tokens and bearer tokens, see the blog 
posts at: http://blogs.msdn.com/b/vbertocci/archive/2008/01/02/
on-prooftokens.aspx and http://travisspencer.com/blog/2009/02/
what-is-a-proof-key.html.

For more information about the DPE.OAuth project used in this 
solution, see: http://www.fabrikamshipping.com/.

http://blogs.msdn.com/b/vbertocci/archive/2008/01/02/on-prooftokens.aspx
http://blogs.msdn.com/b/vbertocci/archive/2008/01/02/on-prooftokens.aspx
http://travisspencer.com/blog/2009/02/what-is-a-proof-key.html
http://travisspencer.com/blog/2009/02/what-is-a-proof-key.html
http://www.fabrikamshipping.com/


175

Accessing REST Services from a 
Windows Phone Device

10

In Chapter 9, “Securing REST Services,” you saw how Adatum exposed 
a REST-based web service that used federated authentication and 
SWT tokens. The scenario described there also included a rich desk-
top client application that obtained a Simple Web Token (SWT) to-
ken from Windows Azure™ AppFabric Access Control services (ACS) 
to present to the web service. The scenario that this chapter describes 
uses the same web service, but describes how to implement a client 
application on the Windows® Phone platform.

Creating a Windows Phone client raises some additional security 
concerns. You can’t assume that the Windows Phone device is pro-
tected with a password; if the device is stolen or used without the 
owner’s consent, a malicious user could access all of the applications 
and data on the device unless you introduce some additional security 
measures. Such security measures could include requiring the user to 
enter a password or PIN to access either your application, or a feature 
within your application. The problem here is that any of these secu-
rity measures are likely to reduce the usability of the application and 
degrade the overall user experience.

This chapter describes two alternative implementations of the 
Windows Phone client: a passive federation approach and an active 
federation approach. The active federation implementation shows 
how the client application uses the OAuth protocol and contacts all 
of the issuers in the trust chain in turn to acquire a valid SWT token 
to access the a-Order Tracking application. The passive implementa-
tion shows how to use an embedded web browser control to handle 
the redirect messages that are used by the WS-Federation protocol 
to coordinate the exchange of messages with the issuers.

The active federation implementation described in this chapter 
differs from the implementation shown in Chapter 9, “Securing REST 
Services.” Because there is no version of WIF available for Windows 



176176 chapter ten

Phone to help with the token processing, the client code in the  
Windows Phone application is slightly more complex than you’d 
typically find in a Microsoft® Windows® operating system desktop 
application. 

The Premise
Litware wants a mobile application that can read the status of its or-
ders directly from Adatum. To satisfy this request, Adatum agrees to 
provide a web service called a-Order.OrderTracking.Services that us-
ers at Litware can use from a variety of client applications over the 
Internet.

Adatum and Litware have already done the work necessary to 
establish federated identity; Litware has an issuer that is capable of 
interacting with both active and passive clients, and Adatum has con-
figured an ACS service namespace with the necessary relying parties 
(RPs) and identity providers (IdPs). The necessary communications 
infrastructure, including firewalls and proxies, is in place. To review 
these elements, see Chapter 5, “Federated Identity with Windows 
Azure Access Control Service.”

Adatum also has a RESTful web service in place that exposes or-
der-tracking data. This web service is claims-aware and expects to 
receive claims in an SWT token. For a description of how the web 
service handles SWT tokens, see Chapter 9, “Securing REST Services.”

Goals and Requirements
Both Litware and Adatum see benefits in enabling mobile access to 
the a-Order tracking data, and Litware already has plans to adopt 
Windows Phone as its preferred mobile platform. Adatum originally 
decided to expose the a-Order tracking data using a RESTful web 
service in anticipation of developing client applications on mobile 
platforms.

Adatum wants to ensure that the Windows Phone client applica-
tion follows best practices in terms of integration with the platform 
and design for optimal battery use. Adatum and Litware are concerned 
about addressing the possible security issues that arise from using a 
mobile platform—in particular, the risks associated with someone 
gaining unauthorized access to a device.

Adatum wants to simplify the process of configuring new identity 
providers for the Windows Phone application.

The sample client application 
demonstrates both active and 
passive federation approaches.

If ADFS 2.0 is used, 
support for federated 
identity with both 
active and passive 
clients is a standard 
feature. 



 177 177accessing rest services from a windows phone device

Overview of the Solution
The following sections describe two solutions: one that uses an active 
federated authentication approach, and one that uses a passive  
federated authentication approach. There is also a discussion of the 
advantages and disadvantages of each.

Passive Federation
Figure 1 gives an overview of the proposed solution that uses a passive 
federation model to obtain an SWT token from ACS. 

figure 1
Windows Phone using passive federation

a−Order Tracking
RESTful Web Service (RP)

Adatum

1

2

4

5

7

8

9 6

3

Embedded 
Browser

SWT

Application

Windows Phone Device

ACS (FP)

Litware Issuer (IdP)

Trust

Trust

Get identity
provider list

Call Service + SWT

GetToken
(SWT)

GetToken
(SAML)



178178 chapter ten

The diagram presents an overview of the interactions and rela-
tionships among the different components. It is similar to the diagrams 
you saw in previous chapters. 

Litware has a Windows Phone client application deployed on 
Litware employees’ phones. Rick, a Litware employee, uses this ap-
plication to track orders with Adatum. 

Adatum exposes a RESTful web service on the Internet. The a-
Order tracking web service expects to receive SWT tokens that 
contain the claims it will use for authorization. In order to access this 
service, the client must present an SWT token from the Adatum ACS 
instance.

The sequence shown in the diagram proceeds as follows:

1.	 The Windows Phone application connects to a service 
namespace in ACS. It obtains a list of configured identity 
providers for the relying party (RP) application (Adatum 
a-Order tracking) as a JavaScript Object Notation (JSON) 
formatted list. Each entry in this list includes the identity 
provider’s name and the address of the sign-in page at the 
identity provider. You can find the URL for this list on the 
ACS Application Management page.

2.	 The Windows Phone application displays this list for Rick to 
select the identity provider he wants to use to authenticate.

In the sample, there is only one identity provider (Litware),  
so Rick has only one choice.

3.	 When Rick selects an identity provider, the Windows Phone 
application uses an embedded web browser control to 
navigate to the identity provider’s sign-in page (based on 
the information retrieved in step 1). 

4.	 Because the client application initiates the sign-in passively, 
after the Litware identity provider authenticates Rick it 
automatically redirects the embedded web browser control 
back to ACS, passing it the Security Assertion Markup 
Language (SAML) token from the Litware identity provider.

5.	 ACS transforms the tokens based on the rules in the service 
namespace, and transitions the incoming SAML token to an 
SWT token. ACS returns the SWT token to the embedded 
browser.

6.	 The Windows Phone application retrieves the SWT token 
from the embedded web browser control and then caches it 
on the Windows Phone device.

Adatum has  
configured the 
a-Order tracking  
web service to trust 
the Adatum ACS 
instance.



 179 179accessing rest services from a windows phone device

The sample application 
installs a self-issued 
certificate on the Windows 
Phone device so that it  
can use SSL when it 
communicates with the 
Litware identity provider 
and the a-Order tracking 
application. In a real-world 
scenario, the Litware 
identity provider and the 
a-Order tracking applica-
tions will be protected by 
certificates from a trusted 
third-party issuer.

7.	 The Windows Phone application then makes a REST call to 
the a-Order tracking web service, including the SWT token 
in the request header.

8.	 The a-Order tracking web service extracts the SWT token 
from the request. It uses the claims in the token to imple-
ment authorization rules in the a-Order tracking web 
service.

9.	 The service returns the order tracking data to the Windows 
Phone application. 

This scenario uses the passive WS-Federation protocol; the inter-
action between the identity provider and ACS (the federation pro-
vider) is passive and uses an embedded web browser control on the 
phone to handle the redirects. The Windows Phone application in-
vokes the RESTful web service directly, sending the SWT token to the 
web service (the relying party) along with the request for tracking 
data.

The only configuration data that the Windows Phone application 
needs  is:
•	 The URL the phone uses to access the list of identity providers 

in JSON format from ACS. The Windows Phone application 
uses this URL in step 1 in the sequence shown in Figure 1.

•	 The URL the phone uses to access the a-Order tracking RESTful 
web service. This happens in step 7 in the sequence shown in 
Figure 1.

This scenario uses Secure Sockets Layer (SSL) to protect all the 
interactions from the Windows Phone device including accessing the 
Litware identity provider, the ACS instance, and calling the Adatum 
web service.

To improve its usability, the Windows Phone application caches 
the SWT token so that for subsequent requests it can simply forward 
the cached SWT token instead of re-authenticating with the identity 
provider, and obtaining a new SWT token from ACS.

Active Federation
Figure 2 shows an alternative solution for the Windows Phone client 
application that uses a pure active federation approach.



180180 chapter ten

figure 2
Windows Phone using active federation

The diagram presents an overview of the interactions and rela-
tionships among the different components in the active federation 
solution. 

Litware has a Windows Phone client application deployed on 
Litware employees’ phones. Rick, a Litware employee, uses this ap-
plication to track orders with Adatum. 

Adatum exposes a RESTful web service on the Internet. This web 
service expects to receive Simple Web Token (SWT) tokens that it 
will use to implement authorization rules in the a-Order application. 
In order to access this service, the client application must present an 
SWT token from the Adatum ACS instance.

a−Order Tracking
RESTful Web Service (RP)

Adatum

1

4

5

6

2

3

Application

Windows Phone Device

ACS (FP)

Litware Issuer (IdP)

Trust

Trust

Call Service + SWT

GetToken
(SWT)

GetToken
(SAML)



 181 181accessing rest services from a windows phone device

The sequence shown in the diagram proceeds as follows:

1.	 The Windows Phone application connects the Litware 
identity provider. It sends Rick’s credentials and receives a 
SAML token in response. This SAML token includes the 
claims that the Litware identity provider issues for Rick. 

2.	 The Windows Phone application sends the SAML token 
from the Litware issuer to ACS.

3.	 The ACS service instance applies the mapping rules for the 
Litware identity provider to the incoming claims and 
transitions the incoming SAML token to an SWT token. 
ACS returns the new SWT token to the Windows Phone 
client application.

4.	 The Windows Phone application caches the SWT token so 
it can use it for future requests. The Windows Phone 
application then makes a REST call to the a-Order tracking 
web service, including the SWT token in the request header.

5.	 The a-Order tracking web service extracts the SWT token 
from the request. It uses the claims in the token to imple-
ment authorization rules in the a-Order tracking web 
service.

6.	 The service returns the order tracking data to the Windows 
Phone application.

In this solution, the Windows Phone application controls the 
process of obtaining the SWT token and invoking the web service 
directly. The application code includes logic to visit all of the issuers 
in the trust chain in the correct order. It uses the WS-Trust protocol 
when it communicates with the Litware identity provider to obtain a 
SAML token, and the OAuth protocol to communicate with ACS and 
the a-Order tracking service.

As in the passive solution, all the interactions from the Windows 
Phone device are secured using SSL.

Comparing the Solutions
The passive federation solution that leverages an embedded browser 
control offers a simpler approach to obtaining an SWT token because 
the embedded web browser control in combination with the WS-
Federation protocol handles most of the logic to visit the issuers and 
obtain the SWT token that the application needs to access the a-
Order tracking service. In the active federation solution, the Windows 
Phone application must include code to control the interactions with 
the issuers explicitly. Furthermore, the active solution must include 



182182 chapter ten

code to handle the request for a SAML token from the Litware issuer; 
this is more complex on the Windows Phone platform than on the 
desktop because there is not currently a version of WIF for Windows 
Phone. The sample described in Chapter 9, “Securing REST Services,” 
shows you how to do this in a Windows Presentation Foundation 
(WPF) application. 

However, there is some complexity in the passive solution in the 
way that the application must interact with an embedded web 
browser control to initiate the sign-in with the Litware identity pro-
vider and retrieve the SWT token issued by ACS from the browser 
control.

For some scenarios, an advantage of the passive federation ap-
proach is that it enables the Windows Phone application to dynami-
cally build the list of identity providers for the user to choose from. If 
you add an additional identity provider to your ACS configuration, the 
Windows Phone client application will detect this the next time it 
requests the list of identity providers from ACS. You could use this to 
quickly and easily add support for additional social identity providers 
to an already deployed Windows Phone application. In the active 
federation solution, the application is responsible for choosing the 
identity provider to use, and although you could design the applica-
tion to dynamically build a list of identity providers, this would add 
considerably to the complexity of the solution. The active federation 
solution is much better suited to scenarios where you have a fixed, 
known identity provider for the Windows Phone application to use.

If you compare Figures 1 and 2, you can see that the passive solu-
tion requires more round trips to obtain an SWT token, which will 
make this approach slower than the active approach. You should bear 
in mind that this applies only to the initial federated authentication. 
If the application caches the SWT token, it can reuse it for subse-
quent requests to the a-Order tracking web service. 

Another potential disadvantage of the active solution is that it 
only works with a WS-Trust compliant Security Token Service (STS). 
If the Windows Phone device needs to authenticate with a different 
protocol, then you’ll have to implement that protocol on the phone.

You must explicitly add any SWT token caching behavior to the 
Windows Phone application for both the active or passive federation 
solutions; there is no automatic caching provided in either solution. 
However, in the passive federation solution, the embedded web 
browser control will automatically cache the SAML token it receives 
from the Litware identity provider; after the initial authentication 
with the Litware identity provider, the application will not prompt the 
user will to re-enter their credentials for as long as the cached SAML 
token remains valid.

The lifetime of the 
SAML token is 
determined by  
the token issuer.

In a WPF application, 
you can use Windows 
Identity Foundation 
(WIF) to perform 
some of the token 
handling, even though 
WIF does not provide 
full support for 
RESTful web services.



 183 183accessing rest services from a windows phone device

Inside the Implementation
Now is a good time to walk through some of the details of the solu-
tion. As you go through this section, you may want to download the 
Microsoft Visual Studio® development system solution called 9Win-
dowsPhoneClientFederation from http://claimsid.codeplex.com. The 
following sections describe some of the key parts of the implementa-
tion; some of these are specific to either the active or passive federa-
tion solution.

For details about the implementation of the a-Order tracking web 
service, see Chapter 9, “Securing REST Services.”

Active SAML Token Handling
The active federation solution must handle the request for a SAML 
token that the Windows Phone application sends to the Litware 
identity provider. There is no version of WIF available for the Win-
dows Phone platform, so the application must create the SAML sign-
in request programmatically. In the sample application, the GetSaml-
TokenRequest method in the HttpWebRequestExtensions class, 
illustrates a technique for requesting a SAML token when WIF is not 
available to perform this task for you.

See chapter 9, “Securing REST Services,” for an example of an active 
client that can use WIF to request a SAML token.

The following code sample from the HttpWebRequestExtensions 
class shows how the Windows Phone application creates the SAML 
token request to send to the identity provider.

private static string GetSamlTokenRequest
(string samlEndpoint, string realm)
{
  var tokenRequest =
    string.Format(
    CultureInfo.InvariantCulture,
    samlSignInRequestFormat,
    Guid.NewGuid().ToString(),
    samlEndpoint,
    DateTime.UtcNow.ToString(
      "yyyy'-'MM'-'ddTHH':'mm':'ss'.'fff'Z'"),
    DateTime.UtcNow.AddMinutes(15).ToString(
      "yyyy'-'MM'-'ddTHH':'mm':'ss'.'fff'Z'"),
    "LITWARE\\rick",
    "PasswordIsNotChecked",
    "https://aorderphone-dev.accesscontrol.windows.net/");

ADFS 2 does not 
support the OAuth 
protocol, so the 
Windows Phone 
application must  
use the WS-Trust 
protocol to obtain  
a SAML token.



184184 chapter ten

    return tokenRequest;
}

/// Format:
/// {0}: Message Id - Guid
/// {1}: To - https://localhost/Litware.SimulatedIssuer.9/
Issuer.svc
/// {2}: Created - 2011-03-11T01:49:29.395Z
/// {3}: Expires - 2011-03-11T01:54:29.395Z
/// {4}: Username - LITWARE\rick
/// {5}: Password - password
/// {6}: Applies To - https://{project}.accesscontrol.
windows.net/
private const string samlSignInRequestFormat =
  @"<s:Envelope xmlns:s=""http://www.w3.org/2003/05/
soap-envelope""  
  xmlns:a=""http://www.w3.org/2005/08/addressing"" 
xmlns:u=""http://docs.oasis-
  open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility- 
  1.0.xsd""> … </s:Envelope>";

The following code example shows how the client posts the 
SAML token request to the identity provider and retrieves the SAML 
token from the response.

public static IObservable<string> PostSamlTokenRequest
(this HttpWebRequest request, string tokenRequest)
{
  request.Method = "POST";
  request.ContentType = "application/soap+xml; charset=utf-8";

  return
    Observable
      .FromAsyncPattern<Stream>(request.BeginGetRequestStream, 
      request.EndGetRequestStream)()
      .SelectMany(
        requestStream =>
        {
          using (requestStream)
          {
            var buffer = System.Text.Encoding.UTF8.
                                         GetBytes(tokenRequest);
            requestStream.Write(buffer, 0, buffer.Length);
            requestStream.Close();
          }



 185 185accessing rest services from a windows phone device

          return
            Observable.FromAsyncPattern<WebResponse>(
              request.BeginGetResponse,
              request.EndGetResponse)();
        },
        (requestStream, webResponse) =>
        {
          string res = new StreamReader
                               (webResponse.GetResponseStream(), 
            Encoding.UTF8).ReadToEnd();
          var startIndex = res.IndexOf("<Assertion ");
          var endIndex = res.IndexOf("</Assertion>");
          var token = res.Substring(
            startIndex, endIndex + "</Assertion>".
                                           Length - startIndex);
          return token;
        });
}

Web Browser Control
The passive federation solution uses an embedded web browser con-
trol to handle the passive WS-Federation interactions between the 
client application and the issuers. The application wraps the web 
browser control in a custom control that you can find in the SL.Phone.
Federation project. The Windows Phone application passes the ad-
dress of the JSON-encoded list of identity providers into this control, 
and then retrieves the SAML token from the control when the feder-
ated authentication process is complete. The following code sample 
from the MainPage.xaml.cs file shows how the application interacts 
with the custom sign-in control.

private void OnGetMyOrdersPassiveButtonClicked
  (object sender, RoutedEventArgs e)
{
  …

  var acsJsonEndpoint = "https://aorderphone-dev.
         accesscontrol.windows.net/v2/metadata/IdentityProviders.
         js?protocol=wsfederation&
         realm=https%3A%2F%2Flocalhost%2Fa-
         Order.OrderTracking.Services.9&context=&version=1.0";
  SignInControl.RequestSecurityTokenResponseCompleted += 
    new EventHandler<SL.Phone.Federation.Controls



186186 chapter ten

    .RequestSecurityTokenResponseCompletedEventArgs>(
    SignInControl_RequestSecurityTokenResponseCompleted);
  SignInControl.GetSecurityToken(new Uri(acsJsonEndpoint));
}

void SignInControl_RequestSecurityTokenResponseCompleted
(object sender, 
  SL.Phone.Federation.Controls.RequestSecurityTokenResponse
  CompletedEventArgs e)
{
  this.GetOrdersWithToken(e.RequestSecurityTokenResponse.
                                                     TokenString)
    .ObserveOnDispatcher()
    .Catch((WebException ex) =>
      {
        …
      }
    .Subscribe(orders =>
      {
        …
      });
}

The catch block in the SignInControl_RequestSecurityToken 
ResponseCompleted method enables the client to trap errors such as 
“401 Unauthorized” errors from the REST service.

The custom control that contains the embedded web browser 
control must raise the RequestSecurityTokenResponseCompleted 
event after the control receives the SWT token from ACS. The con-
trol recognizes when it has received the SWT token because ACS 
sends a redirect message to a special URL: https://break_here. The 
ACS configuration for the aOrderService RP includes this value for 
the “Return URL” setting. The following code sample shows how the 
Navigating event in the custom control traps this navigation request, 
extracts the SWT token, and raises the RequestSecurityToken 
ResponseCompleted event to notify the Windows Phone application 
that the SWT token is now available.

private void SignInWebBrowserControl_Navigating(object sender, 
NavigatingEventArgs e)
{
  if (e.Uri == new Uri("https://break_here"))
  {
    e.Cancel = true;



 187 187accessing rest services from a windows phone device

    var acsReply = this.BrowserSigninControl.SaveToString();

    Regex tagRegex = CreateRegexForHtmlTag
                                         ("BinarySecurityToken");
    var acsBinaryToken = tagRegex.Match(acsReply).Groups[1].
                                                           Value;
    var acsTokenBytes = Convert.FromBase64String(acsBinaryToken);
    var acsToken = System.Text.Encoding.UTF8.GetString(
      acsTokenBytes, 0, acsTokenBytes.Length);

    tagRegex = CreateRegexForHtmlTag("Expires");
    var expires = DateTime.Parse(tagRegex.Match(acsReply).
                                                Groups[1].Value);
                
    tagRegex = CreateRegexForHtmlTag("TokenType");
    var tokenType = tagRegex.Match(acsReply).Groups[1].Value;

    if (null != RequestSecurityTokenResponseCompleted)
    {
      var rstr = new RequestSecurityTokenResponse();
      rstr.TokenString = acsToken;
      rstr.Expiration = expires;
      rstr.TokenType = tokenType;
      RequestSecurityTokenResponseCompleted(this,
        new RequestSecurityTokenResponseCompletedEventArgs
                                                   (rstr, null));
    }
  }
  …
}

You must also explicitly enable JavaScript in the embedded web 
browser control on the phone; otherwise the automatic redirections 
will fail. The following snippet from the AccessControlServiceSignIn.
xaml file shows how to do this.

<phone:WebBrowser x:Name="BrowserSigninControl" 
IsScriptEnabled="True" Visibility="Collapsed"  />

Asynchronous Behavior
Both the active and passive scenarios make extensive use of the  
Reactive Extensions (Rx) for the Windows Phone platform to interact 
with issuers and the a-Order tracking web service asynchronously. For 
example, the active federation solution uses Rx to orchestrate the 
interactions with the issuers and ensure that they are visited in the 



188188 chapter ten

correct sequence. The GetOrders method in the MainPage.xaml.cs 
file shows how the client application adds the SWT token to the  
request header that it sends to the a-Order tracking web service, 
sends the request, and traps any errors such as “401 Unauthorized” 
messages, all asynchronously.

public IObservable<Order[]> GetOrders()
{
  var stsEndpoint = 
         "https://localhost/Litware.SimulatedIssuer.9/Issue.svc";
  var acsEndpoint =
    "https://aorderphone-dev.accesscontrol.windows.net/
                                                   v2/OAuth2-13";

  var serviceEnpoint = 
            "https://localhost/a-Order.OrderTracking.Services.9";
  var ordersServiceUri = new Uri
                 (serviceEnpoint + "/orders/frommyorganization");

  return
    HttpClient.RequestTo(ordersServiceUri)
      .AddAuthorizationHeader
                       (stsEndpoint, acsEndpoint, serviceEnpoint)
      .SelectMany(request =>
        {
          return request.Get<Order[]>();
        },
        (request, orders) =>
        {
          return orders;
        })
        .ObserveOnDispatcher()
        .Catch((WebException ex) =>
        {
          var message = GetMessageForException(ex);
          MessageBox.Show(message);
          return Observable.Return(default(Order[]));
        });
}

This example uses the SelectMany method instead of the simple 
Select method because the call to the Get method itself returns an 
IObservable<Orders[]> instance; using Select would then return 
an IObservable<IObservable<Orders[]>> instance. The Select 



 189 189accessing rest services from a windows phone device

Many method flattens the IObservable<IObservable 
<Orders[]>> instance to an IObservable<Orders[]>  
instance.

The following list outlines the nested sequence of calls in the 
active federated authentication scenario. The process starts when the 
application calls the MainPage.GetMyOrdersButton_Click method, 
and uses Rx to manage the nested sequence of asynchronous calls.

1.	 Call the MainPage.GetOrders method asynchronously on  
a background thread.

a.	 Create an HttpWebRequest object to send to the 
a-Orders tracking web service.

b.	 Call the HttpWebRequestExtensions.Add 
AuthorizationHeader method to add the SWT token 
to the HttpWebRequest object asynchronously.

i.	 Create a SAML token request.

ii.	 Call the HttpWebExtensions.PostSamlToken 
Request to send the SAML request asynchro-
nously to the Litware identity provider.

a.	 Send the SAML request to the Litware 
identity provider.

b.	 Extract the SAML token in the response 
from the Litware identity provider.

c.	 Return the SAML token.

iii.	Call the HttpWebExtensions.PostSwtToken 
Request method to send the SAML token to 
ACS asynchronously.

a.	 Create an SWT token request that contains 
the SAML token.

b.	 Send the SWT token request to ACS.

c.	 Extract the SWT token in the response 
from ACS.

d.	 Return the SWT token.

iv.	Add the SWT token to the HttpWebRequest 
object.

v.	 Return the HttpWebRequest object.



190190 chapter ten

c.	 Invoke the a-Orders tracking web service by calling 
the HttpWebRequest.Get method asynchronously.

i.	 Send the web request to the a-Orders tracking 
web service.

ii.	 Use the BeginGetResponse and EndGet 
Response methods to capture the response data.

iii.	Deserialize the response data to an Order[] 
instance.

iv.	Return the Order[] instance.

d	 Return the results as an Order[] instance.

2.	 Update the UI with the result of the call to MainPage.
GetOrders.

The following list outlines the nested sequence of calls in the 
passive federated authentication scenario. The process starts when 
the application calls the MainPage.OnGetMyOrdersPassive 
Button_Click method, and uses Rx to manage the nested sequence 
of asynchronous calls.

1.	 Call the AccessControlServiceSignIn.GetSecurityToken 
method to obtain an SWT token.

2.	 Handle the AccessControlServiceSignIn.RequestSecurity 
TokenResponseCompleted event.

a.	 Call the MainPage.GetOrdersWithToken method 
asynchronously. The SWT token is available in the 
EventArgs parameter.

i.	 Create an HTTP request to send to the a-Order 
tracking web service.

ii.	 Call the HttpWebRequestExtensions.Add 
AuthorizationHeader method asynchronously 
to add the SWT token to the request.

iii.	Invoke the a-Orders tracking web service by 
calling the HttpWebRequest.Get method 
asynchronously.

a.	 Send the web request to the a-Orders 
tracking web service.

b.	 Use the BeginGetResponse and EndGet 
Response methods to capture the response 
data.



 191 191accessing rest services from a windows phone device

c.	 Deserialize the response data to an Order[] 
instance.

d.	 Return the Order[] instance.

iv.	Return the Order[] instance.

b.	 From the background thread, update the UI with the 
Order[] instance data by calling the UpdateOrders 
method.

Setup and Physical Deployment
For the sample Windows Phone application to be able to use SSL 
when it communicates with the sample Litware issuer and Adatum 
a-Order tracking applications on localhost, it’s necessary to install the 
localhost root certificate on the Windows Phone device. To do this, 
the Litware sample issuer includes a page that has a link to the re-
quired certificate: http://localhost/Litware.SimulatedIssuer.9/Root-
Cert/Default.aspx. If you navigate to this address on the Windows 
Phone device, you can install the root certificate that enables SSL. In 
a production environment, you should secure your web service and 
issuer with a certificate from a trusted third-party certificate provider 
rather than a self-issued certificate; if you do this, it won’t be neces-
sary to install a certificate on the Windows Phone device in order to 
access your issuer and web service using SSL.

In the passive federation scenario, the Windows Phone applica-
tion uses an embedded web browser control to navigate to the Lit-
ware identity provider so that the user can enter her credentials. It’s 
important that the sign-in page at the issuer is “mobile friendly” and 
displays clearly on the Windows Phone device. You should verify that 
your issuer renders a suitable sign-in page if you are planning to use a 
Windows Phone client in a passive federated authentication scenario.

Questions

1.	 Which of the following are issues in developing a claims-
aware application that access a web service for the Win-
dows Phone 7™ platform?

a.	 It’s not possible to implement a solution that uses 
SAML tokens on the phone.

b.	 You cannot install custom SSL certificates on the 
phone.

http://localhost/Litware.SimulatedIssuer.9/RootCert/Default.aspx
http://localhost/Litware.SimulatedIssuer.9/RootCert/Default.aspx


192192 chapter ten

c.	 There is no secure storage on the phone.

d.	 There is no implementation of WIF available for the 
phone.

2.	 Why does the sample application use an embedded web 
browser control?

a.	 To handle the passive federated authentication 
process.

b.	 To handle the active federated authentication process.

c.	 To access the RESTful web service.

d.	 To enable the client application to use SSL.

3.	 Of the two solutions (active and passive) described in the 
chapter, which requires the most round trips for the initial 
request to the web service? 

a.	 They both require the same number.

b.	 The passive solution requires fewer than the active 
solution.

c.	 The active solution requires fewer than the passive 
solution.

d.	 It depends on the number of claims configured for the 
relying party in ACS.

4.	 Which of the following are advantages of the passive 
solution over the active solution?

a.	 The passive solution can easily build a dynamic list of 
identity providers.

b.	 It’s simpler to create code to handle SWT tokens in 
the passive solution.

c.	 It’s simpler to create code to handle SAML tokens in 
the passive solution.

d.	 Better performance.



 193 193accessing rest services from a windows phone device

5.	 In the sample solution for this chapter, how does the 
Windows Phone 7 client application add the SWT token to 
the outgoing request?

a.	 It uses a Windows Communication Foundation (WCF) 
behavior.

b.	 It uses Rx to orchestrate the acquisition of the SWT 
token and add it to the header. 

c.	 It uses the embedded web browser control to add the 
header.

d.	 It uses WIF.

More Information
To learn more about developing for Windows Phone 7, see the 
“Windows Phone 7 Developer Guide” at: http://msdn.microsoft.com/
en-us/library/gg490765.aspx.

http://msdn.microsoft.com/en-us/library/gg490765.aspx
http://msdn.microsoft.com/en-us/library/gg490765.aspx




195

Claims-Based Single Sign-On 
for Microsoft SharePoint  

2010

11

This chapter walks you through an example of integrating two Micro-
soft® SharePoint® services web applications into a single-sign on 
(SSO) environment for intranet and extranet web users who all belong 
to a single security realm. These users can already access other ASP.
NET web applications in the SSO environment. You’ll see examples of 
SharePoint applications that Adatum has made claims-aware so that 
Adatum employees can access the SharePoint applications from the 
company intranet or from the web.

This basic scenario doesn’t show how to establish a trust relation-
ship between enterprises that would allow users from another com-
pany to access the SharePoint site; that is discussed in Chapter 12, 
“Federated Identity for SharePoint Applications.” Instead, this chapter 
focuses on how to implement single sign-on and single sign-off 
within a security domain as a preparation for sharing resources with 
other security domains, and how to configure SharePoint to use 
claims-based authentication and authorization. In short, this scenario 
contains the commonly used elements that will appear in all claims-
aware SharePoint applications. For further information about inte-
grating ASP.NET web applications into an SSO environment and 
making them claims-aware, you should read Chapter 3, “Claims-Based 
Single Sign-On for the Web.”

For additional information about SharePoint and claims-based 
identity, see Appendix F, “SharePoint 2010 Authentication Architec-
ture and Considerations.”

Most of what you’ll see 
described in this chapter 
about SharePoint and claims 
could be achieved without 
needing to claims-enable 
SharePoint. However, the 
claims-based infrastructure 
that this chapter introduces 
forms the basis of more 
advanced scenarios, such as 
the federated scenario 
described in the next 
chapter, which can only be 
implemented using claims.



196196 chapter eleven

The Premise
Adatum is a medium sized company that uses Microsoft Active Direc-
tory® to authenticate the employees in its corporate network. Ada-
tum is planning to implement two applications as SharePoint 2010 
web applications that employees will access from both the intranet 
and the Internet:

1.	 One application is a portal, named a-Portal, where Adatum 
stores the product documentation that’s used by its sales 
force when they engage with customers. This SharePoint 
web application consists of a single site collection based on 
the “Team Site” template.

2.	 The other is a web application, named a-Techs, where field 
staff access scheduling information, tasks, and technical 
data. It also includes a blog where field technicians can 
capture tips and techniques to share with other team 
members (and possibly partners in the future). This Share-
Point web application consists of two site collections; one 
based on the “Team Site” template, and one based on the 
“Blog” template. This web application also uses SharePoint 
user profile data.

Adatum has already established an SSO environment that includes 
existing ASP.NET web applications such as the a-Order and a-Expense 
applications. As part of this environment, Adatum has configured Ac-
tive Directory Federation Services (ADFS) to act as an identity pro-
vider (IdP).

Goals and Requirements
The goals of this scenario are to show how to configure a SharePoint 
environment to use a claims-based identity model to control access, 
and how to customize SharePoint to provide a way for a SharePoint 
farm administrator to effectively manage access to the claims-enabled 
SharePoint applications.

Configuring a SharePoint environment to use claims includes 
configuring the trust relationship between SharePoint and ADFS and 
configuring which claims ADFS passes to SharePoint.

Users must be able to access the SharePoint web applications 
from both the intranet and Internet as part of an SSO realm that in-
cludes other ASP.NET web applications. The environment should also 
support single sign-out, so that logging out from any ASP.NET or 
SharePoint web application logs the user out from all applications that 
are part of the SSO domain.



 197 197claims-based single sign-on for microsoft sharepoint 2010

SharePoint site collection administrators should be able to con-
trol access to site collections and sites based on role memberships 
defined in AD. For example, only users in the Sales role should have 
access to the a-Portal web application and only users in the Team 
Leader role should be able to post to the blog in the a-Techs applica-
tion.

Overview of the Solution
Adatum has created two claims-enabled SharePoint web applications: 
one for salespersons and one for field technical employees. These ap-
plications are available on the intranet and Internet. The following 
diagram shows the main components of the solution suggested by 
Adatum.

figure 1
Claims-enabled SharePoint applications at Adatum

Authentication Mechanism
Adatum has configured both SharePoint web applications to use 
ADFS as a Trusted Identity Provider. Adatum has also configured 
ADFS to use different authentication types depending on where the 
user is accessing the applications from: intranet users will sign-in au-
tomatically using Integrated Windows Authentication, and Internet 
users will enter their Adatum Windows credentials into a web form. 
In this way, all users authenticate with Active Directory through 
ADFS.

Trust

ADFS

Browser

Browser

John at home

John at Adatum

a−Order

SharePoint

STS
FedAuth 
CookieFedAuth 

Cookie

Team
SiteTeam

Site

a−Portal
a−Techs

Blog

Internet

In SharePoint, you  
configure an STS by creating 
a SharePoint trusted identity 
token issuer.

During development, 
it’s useful to be able 
to see the set of 
claims that a user  
has. See the section 
“Displaying Claims  
in a Web Part” for 
one way to do this.



198198 chapter eleven

An alternative approach that Adatum considered was to configure 
two authentication types in each web application in SharePoint. 
SharePoint 2010 allows you to configure multiple authentication 
mechanisms for a single web application; for example, you could con-
figure a SharePoint web application to use both Windows Authentica-
tion and a trusted identity provider. Figure 2 shows the two alterna-
tive routes by which user attributes from Active Directory become 
claims belonging to a SharePoint user in this alternative scenario. The 
SharePoint security token service (STS) is an instance of a SharePoint 
trusted identity token issuer; the custom claims providers are op-
tional components.

figure 2
Building a user’s claims collection

The difficulty with this approach is that although both authenti-
cation mechanisms result in a set of claims for the IClaimsPrincipal 
Instance associated with the user, without additional code they are 
unlikely to generate the same types of claims. For example, the claims 
from Windows authentication will include groupsid claims, while the 
claims from the trusted identity provider will include role claims. An 
additional complexity of this approach is that you’ll probably want to 
customize the page that SharePoint displays, offering users a choice 
of authentication provider. 

For an example of how a custom claims provider converts SIDs  
to group names, see this blog post: http://blogs.technet.com/b/
speschka/archive/2010/09/12/a-sharepoint-2010-claims-provider- 
to-convert-role-sids-to-group-names.aspx. 

Active Directory

ADFS
+ Claims Mapping
Rules

Custom
Claims Provider
(Claims
Augmentation)

Custom
Claims Provider
(Claims
Augmentation)

SharePoint STS
+ Claims Mapping
Rules

SharePoint STS

IClaimsPrincipal Instance

Claims Collection

You can use the 
claims augmentation 
offered by the custom 
claims providers to 
programmatically add 
additional claims to a 
user’s claims set.



 199 199claims-based single sign-on for microsoft sharepoint 2010

For an example of how to customize the default SharePoint 
page that presents a choice of authentication providers to the user, 
see this blog post: http://blogs.msdn.com/b/brporter/ar-
chive/2010/05/10/temp.aspx.

For these reasons, Adatum selected the first approach that uses a 
single trusted identity provider in SharePoint so that they can use the 
claims-mapping rules in ADFS and ensure that a consistent set of 
claims reach SharePoint.

End-to-End Walkthroughs
The following sections outline two scenarios for a user who accesses 
a claims-enabled SharePoint environment: the first scenario describes 
what happens when a user accesses two different site collections in 
the same SharePoint web application, the second scenario describes 
what happens when a user accesses two SharePoint web applications 
hosted in the same domain.

The walkthroughs below describe the experience of Internet us-
ers who must provide their username and password to ADFS in order 
to authenticate. ADFS will not prompt intranet users (inside the cor-
porate firewall) for their credentials, but will authenticate them using 
Integrated Windows Authentication: intranet users will not see the 
sign-in page for ADFS.

Visiting Two Site Collections in a SharePoint  
Web Application

In this walkthrough, John visits the Document Library and then the 
Team Site in the a-Techs SharePoint web application.

1.	 John browses to the Team site in the a-Techs SharePoint 
web application.

2.	  John has not yet been authenticated so SharePoint redi-
rects his browser to ADFS. There are several intermediate 
steps—the SharePoint authentication endpoint and the 
SharePoint sign-in endpoint—before it arrives at ADFS.

3.	 John enters his Adatum domain credentials; ADFS validates 
the credentials, creates a token that contains John’s claims, 
and redirects the browser to the SharePoint STS (the “/_
trust/” endpoint in the SharePoint web application refer-
ences the trusted identity token issuer). 

4.	 The SharePoint STS validates the token from ADFS and 
issues a FedAuth cookie for the a-Techs SharePoint web 
application. This cookie contains a reference to the token 
that contains John’s claims; the token itself is stored in the 
SharePoint token cache.



200200 chapter eleven

5.	 SharePoint checks that John has adequate permissions to 
access to the Team site collection, and redirects his browser 
to the site (the “/_layouts/Authenticate.aspx” endpoint in 
the SharePoint web application performs the permissions 
check).

6.	 John browses to the Blog site in the a-Techs SharePoint web 
Application. He does not require a new token for this site 
collection because it is part of the same SharePoint web 
application.

In Chapter 12, “Federated Identity for SharePoint Applications,”  
you can see a sequence diagram that illustrates this process in 
relation to sliding sessions.

Visiting Two SharePoint Web Applications
In this walkthrough, John visits the a-Portal SharePoint web applica-
tion and then visits the a-Techs SharePoint web application.

1.	 John visits the a-Portal SharePoint web application.

a.	 John browses to the Team site in the a-Portal Share-
Point web application.

b.	  John has not yet been authenticated, so SharePoint 
redirects his browser to ADFS.

c.	 John enters his Adatum domain credentials; ADFS 
validates the credentials, issues a SAML token that 
contains his claims, and redirects the browser to the 
SharePoint STS (the “/_trust/” endpoint in the Share-
Point web application). ADFS also creates an SSO 
cookie so that it can recognize if it has already  
authenticated John.

d.	 The SharePoint STS validates the token from ADFS 
and issues a FedAuth cookie for the a-Portal Share-
Point web application that contains a reference to 
John’s claims in the SharePoint token cache.

e.	 SharePoint checks that John has access to the Team 
site collection, and redirects his browser to the site.

2.	 John visits the a-Techs SharePoint web application.

a.	 John browses to the Team site in the a-Techs Share-
Point web application. 

b.	 John has not yet been authenticated for this Share-
Point web application so SharePoint redirects his 
browser to ADFS.



 201 201claims-based single sign-on for microsoft sharepoint 2010

c.	 ADFS detects the SSO cookie that it issued in step 
1-c, and redirects the browser with a new SAML token 
to the SharePoint STS.

d.	 The SharePoint STS validates the token from ADFS 
and issues a FedAuth cookie for the a-Techs Share-
Point web application that contains a reference to 
John’s claims in the SharePoint token cache.

e.	 SharePoint checks that John has sufficient permissions 
to access to the Team site collection, and redirects his 
browser to the site.

In this example, it’s important to ensure that each SharePoint web 
application uses its own FedAuth token. If the web applications have 
different host names, this will happen automatically. However, if in a 
test environment the web applications share the same host name, the 
second web application will try to use the existing FedAuth token, 
which will not be valid for that web application. Each web applica-
tion must have its own FedAuth token. See the section, “Setup and 
Physical Deployment,” in this chapter for more details.

Authorization in SharePoint
This scenario uses standard SharePoint groups to control access to the 
sites in the two SharePoint web applications. The following table 
summarizes the permissions.

Site SharePoint Group Permission level Role Claim

a-Portal Team 
site

SalesSite Members Contribute sales

a-Techs Team site TechSite Members Contribute techleaders

a-Techs Team site TechSite Members Contribute techs

a-Techs Blog site TechBlog Members Contribute techleaders

a-Techs Blog site TechBlog Visitors Read techs

In SharePoint, a site administrator can add users to a SharePoint 
group to grant those users the permissions associated with the group. 
In a claims-based environment, a site administrator can add users to a 
SharePoint group based on the users’ claims; for example, a site admin-
istrator could add all authenticated users in the sales role to the 
SharePoint Site Members group by using the Site Permissions Tools.

Mapping claims to SharePoint groups simplifies the administration 
tasks in SharePoint. There is no need to add individual users to 
SharePoint groups.



202202 chapter eleven

Adatum has modified the SharePoint People Picker to make it 
easier for site administrators to map role and organization claims to 
SharePoint groups.

If your identity provider does not provide the claims that you 
need to implement your authorization rules, you can use claims aug-
mentation in the SharePoint STS to modify existing claim values or to 
add additional claims to an authenticated user.

The People Picker
It is difficult for site administrators at Adatum to use the default 
people picker to reliably assign permissions in the a-Portal and a-Techs 
web applications. The default behavior of the people picker is to allow 
the user to enter part of a user name or group name and then use the 
search function to locate the user or group. In a claims-enabled Share-
Point web application this does not work as expected because there 
is no repository of users and groups for the people picker to search; 
the only information SharePoint has is the claims data associated with 
the current user. The default people picker implementation works 
around this by always finding a match and resolving the name even if 
the name is incorrect, which makes it easy for an administrator to 
make a mistake. For example, let’s say the site administrator would like 
to assign a permission to anyone in the techs role. If he makes a typing 
mistake and searches for techz in the people picker he will get a 
match and be able to assign a permission to a non-existent role.

To prevent this type of error, Adatum implemented a custom 
SPClaimsManager component that can search for role and organiza-
tion values in a pre-defined list of valid values. Figure 3 shows the 
overall architecture of the solution that Adatum adopted. There is a 
central store of valid role and organization names that both ADFS and 
the SharePoint people picker use: this way Adatum can configure 
ADFS to issue role and organization claims that the SharePoint  
people picker will recognize.

In a claims-enabled 
application, the application 
receives a set of claims  
from a trusted issuer about 
the person accessing the 
application. This contrasts 
with the approach whereby 
the application queries a 
directory service to discover 
information about the user. 
The claims-based approach 
is much more flexible: the 
claims can come from many 
different issuers and be  
used in a federated identity 
environment. However, in  
a claims-based scenario the 
application may not have 
direct access to lists of users 
in a directory.



 203 203claims-based single sign-on for microsoft sharepoint 2010

People Picker

SharePoint

SharePoint Site Administrator
searches for valid roles
and organizations.

Store

ADFS

Use predefined roles
and organizations.

Look up roles and
organizations.

Adatum

figure 3
Architecture of the Adatum people picker solution

SharePoint and ADFS both run inside the Adatum corporate net-
work. If SharePoint is running in a separate network from ADFS and 
the store, then a slightly more complex solution is needed. This might 
arise if SharePoint is running in the cloud, or if SharePoint needs to 
resolve values used by a partner’s directory services. In this case, the 
architecture might include a lookup service as shown in Figure 4; in 
SharePoint you can use Business Connectivity Services to make the 
call to the lookup service, which introduces a useful layer of indirec-
tion into the architecture.



204204 chapter eleven

SharePoint Site Administrator
searches for valid roles
and organizations.

Store

ADFS

Use predefined roles
and organizations.

Query
Claims
Service

Adatum

People Picker

SharePoint
in the Cloud

Look up roles and
organizations.

figure 4
People picker solution architecture  
including a query claims lookup service

Adatum plans to use role and organization claims to assign per-
missions in SharePoint, and wants to avoid assigning permissions to 
individual users. However, some organizations may prefer to use 
names or email addresses to assign permissions in some circumstances. 
It is still possible to do this in a claims-enabled SharePoint site, but 
with the standard people picker component, site administrators will 
face the same problem whereby the people picker resolves both valid 
and invalid names. To work around this problem you can again create 
a custom people picker component that resolves name and email 
address claim values against your directory service.

Single Sign-Out
For a SharePoint web application to participate in the single sign-out 
process, it must be able to handle the following scenarios. For more 
information about single sign-out and the WS-Federation protocol 
see Chapter 3, “Claims-Based Single Sign-On for the Web and Win-
dows Azure.”

1.	 The user should be able to initiate the single sign-out from 
within the SharePoint web application. Adatum modified 
the behavior of the standard sign-out process to send the 
WS-Federation wsignout message to the token issuer. In 
the Adatum scenario, this token issuer is ADFS.

In the long run, it’s more 
maintainable to manage 
permissions based on roles 
(and organizations) rather 
than on individuals in 
SharePoint. You can use 
Active Directory and ADFS 
to manage an individual’s 
role and organization 
membership, while in 
SharePoint you can  
focus on mapping roles  
and organizations to 
SharePoint groups.



 205 205claims-based single sign-on for microsoft sharepoint 2010

2.	 SharePoint web applications should handle WS-Federation 
wsignoutcleanup messages from the issuer and invalidate 
any security tokens for the application. For this to work in 
SharePoint you must configure the SharePoint security 
token service to use session cookies rather than persistent 
cookies.

If the user is signing in using Windows authentication in ADFS, then 
revisits the web application after having signed out, he or she will be 
signed in automatically and silently. Although the single sign-out has 
happened, the user won’t be aware of it.

By default, SharePoint uses persistent cookies to store the session 
token, and this means that a user can close the browser and re-open 
it and get back to the SharePoint web application as long as the 
cookie has not expired. The consequence of changing to session cook-
ies is that if a user closes the browser, she will always be required to 
authenticate again when she next visits the SharePoint web applica-
tion. Adatum prefers this behavior because it provides better security.

Inside the Implementation
The following sections describe the key configuration steps that Ada-
tum performed in order to implement the scenario that this chapter 
describes.

Relying Party Configuration in ADFS

Each SharePoint web application is a separate relying party (RP) from 
the perspective of ADFS. Adatum has configured each of the relying 
parties to use the WS-Federation protocol and to issue the emailad-
dress and role claims for users that it authenticates, passing the values 
of these claims through from Active Directory. The following table 
shows the mapping rules that Adatum configured for each relying 
party in ADFS.

LDAP Attribute Outgoing claim type

E-Mail-Addresses E-Mail Address

Token-Groups – Unqualified Names Role

It’s important that the claims issued to SharePoint by ADFS (or 
any other claims issuer) are SAML 1.x compliant. For a description of 
the correct name format for claims that will be consumed by Share-
Point, see this blog post: http://social.technet.microsoft.com/wiki/
contents/articles/ad-fs-2-0-the-admin-event-log-shows-error-
111-with-system-argumentexception-id4216.aspx.

The default name for 
the session cookie is 
FedAuth.



206206 chapter eleven

SharePoint will send 
these identifier values 
in the wtrealm 
parameter. It’s 
important to make 
sure that these 
identifiers match the 
configuration in 
SharePoint. These 
examples show the 
recommended format 
for these identifiers; 
however, there is no 
specific required 
format.

ADFS must be able to identify which relying party a request 
comes from so that it can issue the correct set of rules. The sample 
scenario uses the identifiers shown in the following table:

Relying Party Identifiers

a-Portal SharePoint web application urn:adatum-portal:sharepoint

a-Techs SharePoint web application urn:adatum-techs:sharepoint

As part of the configuration in ADFS, you must specify the URL 
of the relying party WS-Federation protocol endpoint: this URL will 
be the “/_trust/” path in your SharePoint web application.

You must enter the required information in ADFS manually (or 
create Windows® PowerShell® command-line interface scripts); 
SharePoint does not expose a FederationMetadata.xml document 
that you can use to automate the configuration.

SharePoint STS Configuration
You must configure the SharePoint STS to trust the ADFS issuer, and 
map the incoming claims from ADFS to claims that your SharePoint 
applications will use. The following sections describe the steps you 
must perform to complete this configuration.

Remember to install the SharePoint PowerShell snap-in before 
attempting to run any SharePoint PowerShell scripts. You can  
do this with the following PowerShell command:

Add-PSSnapin Microsoft.Sharepoint.Powershell

Create a New SharePoint Trusted Root Authority
ADFS signs the tokens that it issues with a token signing certificate. 
You must import into SharePoint a certificate that it can use to vali-
date the token from ADFS. You can use the following PowerShell 
commands to import a certificate from the adfs.cer file:

$cert = New-Object System.Security.Cryptography.X509Certificates.
X509Certificate2("C:\adfs.cer ")
New-SPTrustedRootAuthority 
-Name "Token Signing Cert" 
-Certificate $cert

You can export this certificate from ADFS using the certificates 
node in the ADFS 2.0 Management console.



 207 207claims-based single sign-on for microsoft sharepoint 2010

If the signing certificate from ADFS has one or more parent certifi-
cates in its certificate chain, you must add these to SharePoint as 
well. You can use the same SharePoint command to do this.

Notice that you must import any certificates that SharePoint 
uses into SharePoint; SharePoint does not use the trusted root 
authorities in the certificate store on the local machine.

Create the Claims Mappings in SharePoint
To map the incoming claims from ADFS to claims that SharePoint 
uses, you must create some mapping rules. The following PowerShell 
commands show how to create rules to pass through the incoming 
emailaddress and role claims.

$map = New-SPClaimTypeMapping 
-IncomingClaimType "http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/emailaddress" 
-IncomingClaimTypeDisplayName "EmailAddress" 
-SameAsIncoming

$map2 = New-SPClaimTypeMapping 
-IncomingClaimType "http://schemas.microsoft.com/ws/2008/06/
identity/claims/role" -IncomingClaimTypeDisplayName "Role" 
–SameAsIncoming

You can choose to perform your claims mapping either as a part 
of the relying party definition in ADFS, or in the SharePoint STS. 
However, the rules-mapping language in ADFS is the more flexible of 
the two.

For an example of how to add additional claim types, see the 
“People Picker Customizations” section later in this chapter.

Create a New SharePoint Trusted Identity Token Issuer
A SharePoint trusted identity token issuer binds together the details 
of the identity provider and the mapping rules to associate them with 
a specific SharePoint web application. The following PowerShell com-
mands show how to add the configuration settings for the scenario 
that this chapter describes. This script uses the $cert, $map, and 
$map2 variables from the previous script snippets.

$ap = New-SPTrustedIdentityTokenIssuer 
-Name "SAML Provider" 
-Description "Uses Adatum ADFS as an identity provider" 
-Realm "urn:adatum-portal:sharepoint" 
-ImportTrustCertificate $cert 



208208 chapter eleven

-ClaimsMappings $map,$map2 
-SignInUrl "https://DC-adatum/adfs/ls/" 
-IdentifierClaim http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/emailaddress

$uri = New-Object System.Uri("https://adatum-sp:31242/")

$ap.ProviderRealms.Add($uri, "urn:adatum-techs:sharepoint")
$ap.Update()

The following table describes the key parameters in the Power-
Shell commands.

Parameter/command Notes

-Realm The realm is the value of the relying party identifier in 
ADFS. In this example, the realm parameter identifies 
the a-Portal SharePoint web application. The Add 
method of the ProviderRealms object adds the 
identifier for the a-Techs SharePoint web application. 
The URI is the address of the SharePoint web 
application.

-ImportTrustCertificate This associates the token-signing certificate from 
ADFS with the token issuer.

-ClaimsMappings This associates the claims-mapping rules with the 
token issuer.

-SignInUrl This identifies the URL where the user can authenti-
cate with ADFS.

-IdentifierClaim This identifies which claim from the identity provider 
uniquely identifies the user.

This example uses the email address as the identifier. You may 
want to consider alternative unique identifiers because of the possibil-
ity that email addresses can change.

Figure 5 summarizes how the SharePoint trusted identity token 
issuer uses the configuration data to issue a SAML token to the Share-
Point web application.

Don’t forget to call 
the Update method 
to save the changes 
that the Provider 
Realms.Add method 
makes.



 209 209claims-based single sign-on for microsoft sharepoint 2010

SAML
Token

SharePoint Trusted Identity Token Issuer

Token Request

Issue
SAML
Token

Issue
SAML
Token

Token request

Mapping Rules
- Apply the mapping rules.

Token Signing Certificate
- Verify the signature
on the token.

Provider Realms

-Look up the relying party
identifier for the web application
requesting a token.

Token Issuer
-Authenticate the
user and issue a
SAML token. ADFS
uses the identifier
to determine which
rules to run.

figure 5
The SharePoint trusted identity token issuer

When a SharePoint web application requests a token from a 
trusted identity provider, the SharePoint trusted token issuer first 
looks up the unique identifier of the web application. It passes this 
identifier to the external token issuer in the wtrealm parameter of the 
request. When the external token issuer returns a SAML token, the 
SharePoint trusted identity token issuer verifies the signature, applies 
any mapping rules, and places the new SAML token in the SharePoint 
token cache. It also creates a FedAuth cookie that contains a refer-
ence to the SAML token in the cache. Whenever the user access a 
page in the SharePoint web application, SharePoint first checks if  
a valid SAML token exists for the user, and then uses the claims in the 
token to perform any authorization checks.

There is a one-to-one mapping between SharePoint trusted iden-
tity token issuers and trust certificates from the external token issuer. 
You cannot configure a new SharePoint trusted identity token issuer 
using a token-signing certificate that an existing SharePoint trusted 
identity token issuer uses.

SharePoint Web Application  
Configuration

Each web application in SharePoint defines which authentication 
mechanisms it can use. In the scenario described in this chapter, Ada-
tum has configured both SharePoint web applications to use a SAML-
based trusted identity provider. Both intranet and internet users use 
the SAML-based trusted identity provider.



210210 chapter eleven

People Picker Customizations
To customize the behavior of the standard people picker to enable 
site administrators to reliably select role and organization claims, 
Adatum created a custom claim provider to deploy to SharePoint. The 
Microsoft Visual Studio® development system solution, SampleClaim-
sProvider, in the 10SharePoint folder from http://claimsid.codeplex.
com includes a custom claim provider that demonstrates how Adatum 
extended the behavior of the people picker. For reasons of simplicity, 
this sample does not use a store to maintain the list of role and  
organization claims that Adatum uses, the lists of valid claims are 
maintained in memory. In a production-quality claims provider you 
should read the permissible claims values from a store shared with the 
identity provider. For more information, see the section “The People 
Picker” earlier in this chapter.

Use a custom SPClaimProvider class to override the default people 
picker behavior.

The SampleClaimsProvider class extends the abstract SPClaim 
Provider class and overrides the methods FillHierarchy, FillResolve, 
and FillSearch. The SPTrustedClaimsIssuer class, which derives from 
the SPClaimProvider class, implements the default UI behavior in the 
people picker.

The GetPickerEntry method is responsible for building an entry 
that will display in the people picker. The following code sample 
shows this method.

private PickerEntity GetPickerEntity(string ClaimValue, string 
                                     claimType, string GroupName)
{
  PickerEntity pe = CreatePickerEntity();

  var issuer = SPOriginalIssuers.Format(
    SPOriginalIssuerType.TrustedProvider, TrustedProviderName);
  pe.Claim = new SPClaim(claimType, ClaimValue, 
    Microsoft.IdentityModel.Claims.ClaimValueTypes.String, 
                                                         issuer);
  pe.Description = claimType + "/" + ClaimValue;
  pe.DisplayText = ClaimValue;
  pe.EntityData[PeopleEditorEntityDataKeys.DisplayName] = 
                                                      ClaimValue;
  pe.EntityType = SPClaimEntityTypes.Trusted;
  pe.IsResolved = true;
  pe.EntityGroupName = GroupName;

  return pe;
}

You can configure the 
authentication methods 
that SharePoint will use for 
a web application in the 
“SharePoint 2010 Central 
Administration” site. Just 
navigate to Manage Web 
Applications, select the 
application you want to 
change, and click on 
Authentication Providers.

http://claimsid.codeplex.com
http://claimsid.codeplex.com


 211 211claims-based single sign-on for microsoft sharepoint 2010

This method uses the ClaimValue, claimType, and GroupName 
strings to create a claim that the people picker can display. The Trusted 
ProviderName variable refers to the name of the SharePoint trusted 
identity token issuer that you are using: the SPOriginal 
Issuers.Format method returns a string with the full name of the 
original valid issuer that you must use when you create a new claim.

Notice that a claim definition includes the claim issuer as well as the 
claim type and value. SharePoint will check the source of a claim as  
a part of any authorization rules.

If you are creating an identity claim, you must ensure that the 
claimType that you pass to the SPClaim constructor matches the 
identity claim type of your trusted identity token issuer, and that you 
set the EntityType property to SPClaimEntityTypes.User.

The people picker uses the value of the Description property to 
display a tooltip in the UI when a user hovers the mouse over a  
resolved claim.

If you deploy this solution to SharePoint, then the people picker 
will display search results from this custom claim provider in addition 
to results from the default, built-in claim provider. This means that if 
a site administrator searches for a non-existent role or organization 
claim, then the default claim provider will continue to resolve this 
non-existent claim value. To prevent this behavior, you can make your 
custom claim provider the default claim provider. If the name of the 
trusted identity token issuer is “SAML Provider” and the name of the 
custom claim provider is “ADFSClaimProvider,” then the following 
PowerShell script will make the custom claim provider the default.

$ti = Get-SPTrustedIdentityTokenIssuer "SAML Provider"
$ti.ClaimProviderName = "ADFSClaimsProvider"
$ti.Update()

It’s also important to ensure that the claim types that the site 
administrator will use in the custom people picker exist in the trusted 
identity token issuer. You can use the following PowerShell script to 
list the claims that are present in the configuration.

$i = Get-SPTrustedIdentityTokenIssuer "SAML Provider"
$i.ClaimTypes

You can add claim types to an existing trusted identity token is-
suer using the technique shown in the following PowerShell script.

$map = New-SPClaimTypeMapping -IncomingClaimType  
  "http://schemas.microsoft.com/ws/2008/06/identity/claims/
                                                    organization" 
  -IncomingClaimTypeDisplayName "Organization" -LocalClaimType 

Adatum made the custom 
claim provider the default 
claim provider in the 
SharePoint web applications.



212212 chapter eleven

  "http://schemas.microsoft.com/ws/2008/06/identity/claims/
                                                    organization"
$ti = Get-SPTrustedIdentityTokenIssuer "SAML Provider"
$ti.ClaimTypes.Add(
  "http://schemas.microsoft.com/ws/2008/06/identity/claims/
                                                   organization")
Add-SPClaimTypeMapping –Identity $map 
   -TrustedIdentityTokenIssuer $ti

This script maps an incoming claim and defines the new claim 
type in the trusted identity token issuer.

Single Sign-Out Control
To implement single sign-out behavior, you must be able to send the 
WS-Federation wsignout message to the token issuer when the user 
clicks either the “Sign out” or “Sign in with a different user” link on any 
page in the a-Portal or a-Techs SharePoint web applications. Adatum 
implemented the single sign-out logic in the SessionAuthentication 
Module’s SignedIn and SigningOut events. The Visual Studio solu-
tion, SingleSignOutModule in the 10SharePoint folder from http://
claimsid.codeplex.com, includes a custom HTTP module to deploy to 
your SharePoint web application that includes this functionality.

The following code sample shows the DoFederatedSignOut 
method that the SigningOut event handler invokes to perform the 
sign-out.

private void DoFederatedSignOut()
{
  string providerName = GetProviderNameFromCookie();
  SPTrustedLoginProvider loginProvider = null;
  SPSecurity.RunWithElevatedPrivileges(delegate()
  {
    loginProvider = GetLoginProvider(providerName);
  });

  if (loginProvider != null)
  {
    string returnUrl = string.Format(
      System.Globalization.CultureInfo.InvariantCulture,
      "{0}://{1}/_layouts/SignOut.aspx",
      HttpContext.Current.Request.Url.Scheme,
      HttpContext.Current.Request.Url.Host);
      HttpCookie signOutExpiredCookie =
        new HttpCookie(SignOutCookieName, string.Empty);
      signOutExpiredCookie.Expires = new DateTime(1970, 1, 1);
      HttpContext.Current.Response.Cookies.

http://claimsid.codeplex.com
http://claimsid.codeplex.com


 213 213claims-based single sign-on for microsoft sharepoint 2010

                                       Remove(SignOutCookieName);
      HttpContext.Current.Response.Cookies.
                                       Add(signOutExpiredCookie);
      WSFederationAuthenticationModule.FederatedSignOut(
        loginProvider.ProviderUri, new Uri(returnUrl));
  }
}

This method performs the sign-out by calling the SharePoint 
SPFederationAuthenticationModule.FederatedSignOut method, 
passing the address of the claims provider and the address of the 
SharePoint web application’s sign-out page as parameters. To discover 
the address of the claims provider, it uses an SPTrustedLogin 
Provider object: however, to get a reference to the SPTrustedLogin 
Provider object it needs its name, and it discovers the name by read-
ing the custom sign-out cookie.

This method uses the SPSecurity.RunWithElevatedPrivileges 
method to invoke the GetLoginProvider method with “Full Control” 
permissions.

The following code sample shows how Adatum creates the custom 
sign-out cookie in the Session_SignedIn event.

private const string SignOutCookieName = "SPSignOut";
void WSFederationAuthenticationModule_SignedIn(object sender, 
EventArgs e)
{
 IClaimsIdentity identity = 
    HttpContext.Current.User.Identity as IClaimsIdentity;
        
  if (identity != null)
  {
    foreach (Claim claim in identity.Claims)
    {
      if (claim.ClaimType == SPClaimTypes.IdentityProvider)
      {
        int index = claim.Value.IndexOf(‘:');
        string loginProviderName = claim.Value.Substring(
          index + 1, claim.Value.Length – index – 1);
        HttpCookie signOutCookie = new HttpCookie(
            SignOutCookieName,
            Convert.ToBase64String(
              System.Text.Encoding.UTF8.
                GetBytes(loginProviderName)));
        signOutCookie.Secure = FederatedAuthentication
            .SessionAuthenticationModule
              .CookieHandler.RequireSsl;

This method reads the 
provider name from a 
custom sign-out cookie 
rather than from the 
IClaimsIdentity object 
associated with the current 
user: this is because if the 
user’s session has expired, 
there will be no IClaims 
Identity object. Also,  
it’s not safe to read the 
provider name from  
the FedAuth cookie.



214214 chapter eleven

        signOutCookie.HttpOnly = FederatedAuthentication
            .SessionAuthenticationModule.CookieHandler
            .HideFromClientScript;
        signOutCookie.Domain = FederatedAuthentication
            .SessionAuthenticationModule.CookieHandler
            .Domain;
        HttpContext.Current.Response.Cookies.Add(signOutCookie);
        break;
      }
    }
  }
}

The custom sign-out cookie is not encrypted or signed. It is  
transported using SSL, and only contains the name of the  
user’s login provider.

You can find a complete listing of the global.asax file that Adatum 
use in the a-Portal web application at the end of this chapter.

Displaying Claims in a Web Part
When you’re developing a claims-enabled SharePoint solution, it’s 
useful to be able to view the set of claims that a user has when he 
visits a SharePoint web application. The Visual Studio solution called 
DisplayClaimsWebPart in the 10SharePoint folder from http://claim-
sid.codeplex.com includes a SharePoint Web Part that displays claims 
data for the current user. The Web Part displays the following claims 
data:
•	 The claim type.
•	 The claim issuer (this is typically SharePoint).
•	 The original claim issuer (this might be a trusted provider  

or the SharePoint STS).
•	 The claim value.

This is a standard Web Part that you can deploy to a SharePoint 
web application directly from Visual Studio or through the SharePoint 
UI. After the Web Part is deployed to SharePoint you can add it to any 
SharePoint web page. It does not require any further configuration.

User Profile Synchronization
A claims-enabled SharePoint environment can synchronize user pro-
file data stored in the SharePoint profile store with profile data that 
is stored in directory services and other business systems in the enter-
prise. The important difference in the way that user profiles work in 
a claims-enabled web application such as the Adatum a-Techs Share-

One of the key reasons 
that Adatum selected this 
approach for handling 
single sign-out was its 
compatibility with the 
sliding-sessions implemen-
tation that Adatum chose 
to use. The sign-out 
process must be initiated 
when the user is inactive 
for more than the defined 
period of inactivity and 
when the user’s SAML 
token ValidTo time is 
reached. For details about 
how Adatum implemented 
sliding sessions in the 
a-Portal web application 
see Chapter 12, “Federated 
Identity for SharePoint 
Applications.”

http://claimsid.codeplex.com
http://claimsid.codeplex.com


 215 215claims-based single sign-on for microsoft sharepoint 2010

Point application is how SharePoint identifies the correct user profile 
from the claims data associated with an SPUser instance.

To make sure that SharePoint can match up a user profile from the 
current SPUser instance, you must ensure that three user properties 
are correctly configured.

Property name Property value

Claim User Identifier This is the unique identifier for a user. For Adatum, 
this is the value it used for the IdentifierClaim 
parameter when it configured the SharePoint trusted 
identity token issuer: http://schemas.xmlsoap.org/
ws/2005/05/identity/claims/emailaddress.

Claim Provider Identifier This identifies the trusted identity token issuer. For 
Adatum this value is “SAML Provider.” This value is 
set automatically when you configure the user profile 
synchronization service.

Claim Provider Type This specifies the token provider type. For Adatum 
this value is “Trusted Claims Provider Authentica-
tion.” This value is set automatically when you 
configure the user profile synchronization service.

Setup and Physical Deployment
To run this scenario in a lab environment you may want to change 
some of the default configuration options in SharePoint and ADFS.

FedAuth Tokens
Each SharePoint web application must have its own FedAuth cookie 
if it is to function correctly in an single sign-on environment. In a 
production environment, this is not normally an issue because each 
SharePoint web application has a separate host name: for example, 
a-portal.adatum.com, and a-techs.adatum.com. However, in a lab en-
vironment you may not want to configure the necessary DNS infra-
structure to support this; if your SharePoint web applications share 
the same host name, for example lab-sp.adatum.com:31242 and lab-
sp.adatum.com:40197, then you must make a configuration change to 
make sure that each application uses a different name for the FedAuth 
cookie. You can change the name of the FedAuth cookie in the micro-
soft.IdentityModel section of the Web.config file. The following 
snippet shows how to change the token name to “techsFedAuth” 
from its default name of “FedAuth.”

<federatedAuthentication>
  …
  <cookieHandler mode="Custom" path="/" name="techsFedAuth">
  …
</federatedAuthentication>

To test this, you  
must have SharePoint  
2010 Server  
(not Foundation)  
installed in Farm  
(not Standalone) 
mode.



216216 chapter eleven

ADFS Default Authentication Method
By default, an Active Directory Federation Services (ADFS) server 
installation uses Integrated Windows Authentication, and an ADFS 
proxy installation uses an ASP.NET form to collect credentials. In a lab 
environment, if you do not have an ADFS proxy installation, you may 
want to change the default behavior of the ADFS server to use an 
ASP.NET form. To change this, edit the Web.config file in the /adfs/ls 
folder. The following snippet shows “Forms” at the top of the list, 
making it the default. This means that in a simple lab environment you 
will always need to sign in explicitly.

<microsoft.identityServer.web>
<localAuthenticationTypes>
  <add name="Forms" page="FormsSignIn.aspx" />
  <add name="Integrated" page="auth/integrated/" />
  <add name="TlsClient" page="auth/sslclient/" />
  <add name="Basic" page="auth/basic/" />
</localAuthenticationTypes>
…
</microsoft.identityServer.web>

Server Deployment
ADFS enables you to deploy proxy instances that are intended to 
handle authentication requests from the web rather than the internal 
corporate network which are handled by the main ADFS server in-
stances. This provides an addition layer of security because the main 
ADFS server instances can be kept inside the corporate firewall. For 
more information about deploying ADFS servers and ADFS server 
proxies, see this section on the TechNet website: http://technet.mi-
crosoft.com/en-us/library/gg982491(WS.10).aspx. You will also need 
to ensure that your SharePoint web application is exposed to the in-
ternet to allow Adatum employees to access it remotely.

Questions

1.	 Which of the following roles can the embedded STS  
in SharePoint perform?

a.	 Authenticating users.

b.	 Issuing FedAuth tokens that contain the claims 
associated with a user.

c.	 Requesting claims from an external STS such as ADFS.

http://technet.microsoft.com/en-us/library/gg982491(WS.10).aspx
http://technet.microsoft.com/en-us/library/gg982491(WS.10).aspx


 217 217claims-based single sign-on for microsoft sharepoint 2010

d.	 Requesting claims from Active Directory through  
Windows Authentication.

2.	 Custom claim providers use claims augmentation to perform 
which function?

a.	 Enhancing claims by verifying them against an external 
provider.

b.	 Enhancing claims by adding additional metadata to 
them.

c.	 Adding claims data to the identity information in the 
SPUser object if the SharePoint web application is in 
“legacy” authentication mode.

d.	 Adding additional claims to the set of claims from the 
identity provider.

3.	 Which of the following statements about the FedAuth 
cookie in SharePoint are correct?

a.	 The FedAuth cookie contains the user’s claim data.

b.	 Each SharePoint web application has its own FedAuth 
cookie.

c.	 Each site collection has its own FedAuth cookie.

d.	 The FedAuth cookie is always a persistent cookie.

4.	 In the scenario described in this chapter, why did Adatum 
choose to customize the people picker?

a.	 Adatum wanted the people picker to resolve role  
and organization claims.

b.	 Adatum wanted the people picker to resolve name 
and emailaddress claims from ADFS.

c.	 Adatum wanted to use claims augmentation.

d.	 Adatum wanted to make it easier for site  
administrators to set permissions reliably.

5.	 In order to implement single sign-out behavior in Share-
Point, which of the following changes did Adatum make?

a.	 Adatum modified the standard signout.aspx page to 
send a wsignoutcleanup message to ADFS.

b.	 Adatum uses the SessionAuthenticationModule 
SigningOut event to customize the standard sign-out 
process.



218218 chapter eleven

c.	 Adatum added custom code to invalidate the FedAuth 
cookie.

d.	 Adatum configured SharePoint to use a session-based 
FedAuth cookie.

More Information
For more information about SharePoint and claims-based identity,  
see Appendix F, “SharePoint 2010 Authentication Architecture and 
Considerations.”

For a detailed, end-to-end walkthrough that describes how to 
configure SharePoint and ADFS, see this blog post: http://blogs.tech-
net.com/b/speschka/archive/2010/07/30/configuring-sharepoint-
2010-and-adfs-v2-end-to-end.aspx.

The following resources are useful if you are planning to create a 
custom people picker component for your SharePoint environment:
•	 People Picker overview (SharePoint Server 2010): http://

technet.microsoft.com/en-us/library/gg602068.aspx
•	 Custom claims providers for People Picker (SharePoint Server 

2010): http://technet.microsoft.com/en-us/library/gg602072.
aspx

•	 Creating Custom Claims Providers in SharePoint 2010: http://
msdn.microsoft.com/library/gg615945.aspx

•	 Claims Walkthrough: Writing Claims Providers for SharePoint 
2010: http://msdn.microsoft.com/en-us/library/ff699494.aspx

•	 How to Override the Default Name Resolution and Claims 
Provider in SharePoint 2010: http://blogs.technet.com/b/
speschka/archive/2010/04/28/how-to-override-the-default-
name-resolution-and-claims-provider-in-sharepoint-2010.aspx
For further information about using profiles in a claims-enabled 

SharePoint environment, see this blog post: http://blogs.msdn.com/b/
brporter/archive/2010/07/19/trusted-identity-providers-amp-user-
profile-synchronization.aspx. 

http://blogs.technet.com/b/speschka/archive/2010/07/30/configuring-sharepoint-2010-and-adfs-v2-end-to-end.aspx
http://blogs.technet.com/b/speschka/archive/2010/07/30/configuring-sharepoint-2010-and-adfs-v2-end-to-end.aspx
http://blogs.technet.com/b/speschka/archive/2010/07/30/configuring-sharepoint-2010-and-adfs-v2-end-to-end.aspx
http://technet.microsoft.com/en-us/library/gg602068.aspx
http://technet.microsoft.com/en-us/library/gg602068.aspx
http://technet.microsoft.com/en-us/library/gg602072.aspx
http://technet.microsoft.com/en-us/library/gg602072.aspx
http://msdn.microsoft.com/library/gg615945.aspx
http://msdn.microsoft.com/library/gg615945.aspx
http://msdn.microsoft.com/en-us/library/ff699494.aspx
http://blogs.technet.com/b/speschka/archive/2010/04/28/how-to-override-the-default-name-resolution-and-claims-provider-in-sharepoint-2010.aspx
http://blogs.technet.com/b/speschka/archive/2010/04/28/how-to-override-the-default-name-resolution-and-claims-provider-in-sharepoint-2010.aspx
http://blogs.technet.com/b/speschka/archive/2010/04/28/how-to-override-the-default-name-resolution-and-claims-provider-in-sharepoint-2010.aspx
http://blogs.msdn.com/b/brporter/archive/2010/07/19/trusted-identity-providers-amp-user-profile-synchronization.aspx%20
http://blogs.msdn.com/b/brporter/archive/2010/07/19/trusted-identity-providers-amp-user-profile-synchronization.aspx%20
http://blogs.msdn.com/b/brporter/archive/2010/07/19/trusted-identity-providers-amp-user-profile-synchronization.aspx%20


219

In previous chapters, you saw ways that federated identity can help 
companies share resources with their partners. The scenarios have 
included small numbers of partners as well as large numbers of con-
stantly changing partners, sharing web applications and web services, 
and supporting multiple client platforms. These scenarios share an 
important feature: they all use claims.

In Chapter 11, “Claims-Based Single Sign-On for Microsoft Share-
Point 2010,” you saw how Adatum could expand its single sign-on 
domain to include Microsoft® SharePoint® services web applications. 
The SharePoint web applications at Adatum used claims-based  
authentication, using claims from an external token issuer Microsoft 
Active Directory® Federation Services (ADFS).

In this chapter, you’ll learn how Adatum lets employees at one  
of its customers, Litware, use the a-Portal SharePoint application  
that was introduced in Chapter 11, “Claims-Based Single Sign-On for 
Microsoft SharePoint 2010.”

The Premise
The a-Portal SharePoint application has given Adatum sales personnel 
access to up-to-date and accurate product information during the 
sales process, which has resulted in improved customer satisfaction. 
However, there have been complaints from customers who make 
purchases through of Adatum’s partners that some of the product 
information has been out of date. This is because Adatum’s partners 
are responsible for keeping the product information that they use up 
to date. One of these sales partners is Litware. Rick, the CIO of Lit-
ware, has seen the a-Portal SharePoint application and he is keen for 
his sales staff to use a-Portal instead of their own copy of the product 
information. Adatum has already claims-enabled the a-Portal Share-
Point application (for further information see Chapter 11, “Claims-

Federated Identity  
for SharePoint  

Applications

12

Adatum wants to allow 
selected partners access to  
its SharePoint a-Portal  
web application.



220220 chapter twelve

Based Single Sign-On for Microsoft SharePoint 2010”) and made it 
available to Adatum employees who work remotely on the Internet. 
Litware has already deployed ADFS, so most of the required federa-
tion infrastructure is already available.

Goals and Requirements
The primary goal of this scenario is to show how to create a Share-
Point site that uses federated identities, so that users from Litware 
can access the Adatum a-Portal SharePoint application without hav-
ing to sign in again to the Adatum security realm. The types of claims 
issued by Litware are not the same types as the claims used by a-
Portal at Adatum, so it’s necessary to include some claims transforma-
tion logic to convert the claims issued by Litware. Adatum anticipates 
that other sales partners will also want to use the a-Portal application, 
so the solution must be able to accommodate multiple identity pro-
viders. 

The solution should also ensure that partners are kept isolated. 
For example, there may be some product information that only Ada-
tum and not Litware sales personnel should see. 

For security, Adatum wants to have SharePoint automatically sign 
users out of the a-Portal application after a period of inactivity. In 
addition, because users will be accessing the a-Portal application on 
computers outside the Adatum corporate network, when a user 
closes the browser and then re-opens it, the user must re-authenticate 
to gain access to the a-Portal web application. 

Overview of the Solution
Figure 1 shows an overview of the solution adopted by Adatum and 
Litware. It shows a new trust relationship between Adatum’s issuer, 
and Litware’s issuer. In addition to acting as an identity provider (IdP) 
for Adatum employees, the Adatum ADFS instance now functions as 
a federation provider (FP) for partners such as Litware.

Adatum has deployed 
an ADFS proxy to 
support authenticating 
users outside of the 
Adatum corporate 
network.



 221 221feder ated identity for sharepoint applications

figure 1
Federating identity with Litware

When Rick, a user from Litware, browses to the a-Portal Share-
Point web application, SharePoint detects that Rick is not authenti-
cated, and redirects his browser to the Adatum federation provider. 
The Adatum federation provider then redirects Rick’s browser to the 
Litware issuer.

For details about how to customize the way that SharePoint redi-
rects a user to a token issuer, see the section “The Sign-In Page” in 
Chapter 11, “Claims-Based Single Sign-On for Microsoft SharePoint 
2010.”

The numbers in the following list correspond to the numbers in 
Figure 1.

1.	 Rick authenticates with the Litware identity provider and 
obtains a SAML token with claims issued by Litware.

2.	 Rick’s browser redirects back to the Adatum issuer. This 
federation provider can apply some custom claims mapping 
rules to the set of claims from Litware to create a set of 
claims suitable for the a-Portal web application. The 
federation provider issues this new set of claims as a SAML 
token.

Adatum Litware

STS

FedAuth
Cookie

Team
Site

a−Portal

Adatum FP Litware IP

SharePoint

ADFS ADFS

Trust

Trust

Rick at Litware

Browser

12

3



222222 chapter twelve

3.	 Rick’s browser redirects back to SharePoint. SharePoint 
validates the token, checks any authorization rules that 
apply to the page that Rick requested, and if Rick has 
permission, displays the page.

Adatum considered two alternative models for federating with 
partners. The first, which is the one that Adatum selected, is shown in 
Figure 2.

figure 2
The hub model

In the hub model, SharePoint has a single trust relationship with 
the Adatum federation provider. The Adatum federation provider 
then trusts the partners’ issuers. The Adatum federation provider can 
apply rules to the claims from the different identity providers to cre-
ate claims that the SharePoint web application understands. 

Figure 3 shows the alternative model.

Adatum Partners

STS

FedAuth
Cookie

Team
Site

a−Portal

Adatum FP Litware IP

SharePoint

ADFS

Trust

Trust

Trust

Trust

Constoso IP

Fabrikam IP



 223 223feder ated identity for sharepoint applications

figure 3
The direct trust model

In the direct trust model, SharePoint manages a trust relationship 
with each issuer directly, and uses custom claims providers to manipu-
late the incoming claims to a common set of claims that the a-Portal 
web application understands.

The advantages of the hub model adopted by Adatum are that:
1.	 It’s easier to manage multiple trust relationships in ADFS 

rather than SharePoint.
2.	 It’s simpler to manage a single trust relationship in Share-

Point and it avoids the requirement for multiple custom 
claims providers.

3.	 You can reuse the trust relationships in the federation 
provider with other relying parties.

4.	 You can leverage ADFS features such as integration with 
auditing tools to track token issuing.

5.	 ADFS supports the Security Assertion Markup Language 
protocol (SAMLP) in addition to WS-Federation.

Adatum Partners

STS

FedAuth
Cookie

Team
Site

a−Portal

Adatum FP Litware IP

SharePoint

ADFS

Trust

Trust

Trust

Trust

Constoso IP

Fabrikam IP

An advantage of the  
SAMLP protocol over 
WS-Federation is that it 
supports initializing the 
authentication process  
from the identity provider 
instead of the relying party, 
which avoids the require-
ment for either the relying 
party (RP) or the federation 
provider to perform 
home-realm discovery.



224224 chapter twelve

The disadvantage of the hub approach is its performance: it re-
quires more hops to acquire a valid SAML token. With this in mind, 
Adatum made some changes to the token caching policy in the a-
Portal web application to reduce the frequency at which it’s necessary 
to refresh the SAML token. However, Adatum is using session cookies 
rather than persistent cookies to store the SAML token references so 
that if the user closes his browser, then he will be forced to re-authen-
ticate when he next visits the a-Portal web application.

Adatum implemented sliding sessions for users of the a-Portal 
web application: after a token issuer authenticates a user, the user can 
continue using the a-Portal web application without having to re-au-
thenticate if he remains active. If a user becomes inactive in the web 
application for more than a defined period, then he must re-authenti-
cate with the claims issuer and obtain a new SAML token. With the 
sliding-sessions solution in place:
•	 Provided a user remains active in the a-Portal web application, 

SharePoint will not interrupt the user and require him to 
re-authenticate with the SAML token issuer.

•	 The a-Portal web application remains secure because users who 
become inactive must re-authenticate when they start using the 
application again.

Inside the Implementation
The following sections describe the key configuration steps that Ada-
tum performed in order to implement the scenario that this chapter 
describes. The hub model that Adatum selected meant that the 
changes in SharePoint were minimal: there is still a single trust rela-
tionship with the Adatum issuer.

The following sections describe the changes Adatum made to the 
a-Portal web application in SharePoint to support access from partner 
organizations.

Token Expiration and Sliding Sessions
One of the Adatum requirements was that the a-Portal application 
automatically sign users out after a defined period of inactivity, but 
allow them to continue working with the application without re-au-
thenticating so long as they remain active. To achieve this, Adatum 
implemented a sliding-session mechanism in SharePoint that can re-
new the SharePoint session token. For performance reasons, Adatum 
wanted to be able to extend the lifetime of the session token without 
having to revisit ADFS (the federation provider) or the partner’s token 
issuer. 

Strictly speaking,  
the session cookie 
doesn’t contain  
the SAML token, it 
contains a reference 
to the SAML token 
in the SharePoint 
token cache.

It’s important that the sliding-
session implementation is 
compatible with the single 
sign-out solution that Chapter  
11, “Claims-Based Single  
Sign-On for Microsoft  
SharePoint 2010,” describes.

The main configura-
tion changes were  
in ADFS: adding the 
trust relationship with 
Litware and adding 
the rules to convert 
Litware claims to 
Adatum claims.



 225 225feder ated identity for sharepoint applications

A cookie (usually named FedAuth) that can exist either as a persis-
tent or in-memory cookie represents the SharePoint session token. 
This cookie contains a reference to the SAML token that SharePoint 
stores in its token cache. The SAML token contains the claims issued 
to the user by any external identity and federation providers, and by 
the internal SharePoint security token service (STS).

Before showing the details of how Adatum implemented sliding 
sessions, it will be useful to understand how token expiration works 
by default in SharePoint.

SAML Token Expiration in SharePoint
This section describes the standard behavior in SharePoint as it relates 
to token expiration.

When Rick from Litware first tries to access the a-Portal web 
application, his browser performs all of the following steps in order to 
obtain a valid SAML token:

1.	 Rick requests a page in the a-Portal web application.

2.	 Rick’s browser redirects to the SharePoint STS.

3.	 Because Rick is not yet authenticated, the SharePoint STS 
redirects Rick’s browser to the Adatum issuer to request a 
token.

4.	 The Adatum issuer redirects Rick’s browser to the Litware 
issuer to authenticate and obtain a Litware token.

5.	 Rick’s browser returns to the Adatum issuer to transform 
the Litware token into an Adatum token.

6.	 Rick’s browser returns to the a-Portal web application to 
sign in to SharePoint.

7.	 Rick’s browser returns to the page that Rick originally 
requested in the a-Portal web application to view.

All SAML tokens have a fixed lifetime that the token issuer 
specifies when it issues the token; in the Adatum scenario, it is the 
Adatum ADFS that sets this value. Once a token has expired, the user 
must request a new SAML token from the token issuer. For Rick at 
Litware, this means repeating the steps listed above. Because this 
takes time, Adatum does not want users such as Rick to have to reau-
thenticate too frequently. However, using a token with a long lifetime 
can be a security risk because someone else could use Rick’s com-
puter while he wasn’t there and access the a-Portal web application 
with Rick’s cached token.

When Rick’s SAML token 
expires he may, or may  
not, need to re-enter his 
credentials at the token 
issuer (ADFS): this depends 
on the configuration of  
the issuer. In ADFS, you  
can specify the web single 
sign-on (SSO) lifetime that 
determines the lifetime of 
the ADFS SSO cookie. 



226226 chapter twelve

The following table describes the two configuration options that 
directly affect when SharePoint requires a user to get a new SAML 
token from the issuer.

Configuration value Notes

SAML token lifetime The token issuer sets this value. In ADFS, you can 
configure this separately for each relying party by using 
the Set-ADFSRelyingPartyTrust PowerShell command.
Once the SAML token expires, the SharePoint session 
expires, and the user must re-authenticate with the 
token issuer to obtain a new SAML token.
By default, SharePoint sets the session lifetime to be the 
same as the SAML token lifetime.

LogonTokenCache-
ExpirationWindow

This SharePoint configuration value controls when 
SharePoint will consider that the SAML token has 
expired and ask the user to re-authenticate with the 
issuer and obtain a new token. SharePoint checks 
whether the SAML token has expired at the start of 
every request. 
For example, if ADFS sets the SAML token lifetime to 
ten minutes, and the LogonTokenCacheExpirationWin-
dow property in SharePoint is set to two minutes, then 
the session in SharePoint will be valid for eight minutes.
If the user requests a page from SharePoint seven 
minutes after signing in, then SharePoint checks whether 
the session is set to expire during the time in minutes 
represented by LogonTokenCacheExpirationWindow: 
in this case the answer is no because seven plus two is 
less than ten. 
If the user requests a page from SharePoint nine minutes 
after signing in, then SharePoint checks whether the 
session is set to expire during the time in minutes 
represented by LogonTokenCacheExpirationWindow: 
in this case the answer is yes because nine plus two is 
greater than ten.

The following script example shows you how to change the life-
time of the SAML token issued by the “SharePoint Adatum Portal” 
relying party in ADFS to 10 minutes.

Add-PSSnapin Microsoft.ADFS.PowerShell
Set-AdfsRelyingPartyTrust –TargetName "SharePoint Adatum Portal" 
–TokenLifeTime 10

The following script example shows you how to change the  
LogonTokenCacheExpirationWindow in SharePoint to two minutes.

$ap = Get-SPSecurityTokenServiceConfig
$ap.LogonTokenCacheExpirationWindow = (New-TimeSpan -minutes 2)
$ap.Update();
IIsreset

Make sure that the 
value of the Logon 
TokenCache 
ExpirationWindow 
property is always  
less than the SAML 
token lifetime; 
otherwise, you’ll see  
a loop whenever a 
user tries to access 
your SharePoint web 
application and keeps 
being redirected back 
to the token issuer.



 227 227feder ated identity for sharepoint applications

These two configuration settings will cause SharePoint to redi-
rect the user to the issuer to sign in again eight minutes after the user 
last authenticated with ADFS.

The sequence diagram in Figure 4 shows how SharePoint manages 
its session lifetime and the SAML token that it receives from the to-
ken issuer.

figure 4
Standard token expiration in SharePoint

Figure 4 shows a simplified view of the sequence of interactions. In 
reality, SharePoint and the WS-Federation protocol use browser 
redirects and automatic posts to manage the interactions between 
the various components so that all of the requests go through the 
browser.

In the sequence diagram, TR represents the time from when ADFS 
issues the SAML token to when SharePoint will try to renew the to-
ken. Based on the configuration settings described above, TR is set to 
eight minutes.

Browser

Get /SitePages/Home.aspx

Get
/Lists/Tasks/AllItems.aspx

Get
/Lists/Tasks/AllItems.aspx

Get /SitePages/Home.aspx

a−Portal Web
Application

SharePoint
Authenticate.aspx

SharePoint
Home Realm
Discovery

SharePoint
WS−Federation

Endpoint

SAML Token
Issuer
(ADFS)

−No session exists
−Redirect to:
/_layouts/Authenticate.aspx

−Redirect to the originally
requested page
−The user now has a
valid session

−Redirect to the originally
requested page
−The user now has a
valid session

−The session has expired
−Redirect to:
/_layouts/Authenticate.aspx

−No session exists
−Redirect to:
/_login/default.aspx

−Save the SAML token in
the SharePoint token cache
−Create a Session
−Redirect to:
/_layouts/Authenticate.aspx

−The session has expired
Redirect to:
/_login/default.aspx

−Save the SAML token in
the SharePoint token cache
−Create a session
−Redirect to:
/_layouts/Authenticate.aspx

−Request a SAML token
from the identity provider
−Redirect to ADFS

−Request a SAML token
from the identity provider
−Redirect to ADFS

−Request a SAML token
from the SharePoint STS
−Redirect to:
/_trust/default.aspx

−Request a SAML token
from the SharePoint STS
−Redirecr to:
/_trust/default.aspx

−Post SAML token to the
SharePoint STS at:
/_trust/

−Post SAML token to the
SharePoint STS at:
/_trust/

1

2

4

3

TR

TR



228228 chapter twelve

The following notes refer to the numbers on the sequence diagram:

1.	 This is the first time that the user visits the a-Portal web 
application; there is no valid session so SharePoint redirects 
the user to begin the sign-in process.

2.	 SharePoint creates a session for the user. The lifetime of the 
session is the same as the lifetime of the SAML token issued 
by ADFS.

3.	 SharePoint uses the session lifetime and the LogonToken 
CacheExpirationWindow property to determine when the 
user must sign in again. At this point, the session is still valid. 
While the session is valid, the user can continue to visit 
pages in the SharePoint web application.

4.	 SharePoint uses the session lifetime and the LogonToken 
CacheExpirationWindow property to determine when the 
user must sign in again. At this point, SharePoint determines 
that the session has expired, so it begins the sign-in process 
again. If the ADFS SSO cookie has expired, Rick will have  
to enter his credentials to obtain a new SAML token.

To force users to re-enter their credentials whenever they are 
redirected back to ADFS, you should set the web SSO lifetime in 
ADFS to be less than or equal to SAMLtokenlifetime minus the 
value of LogonTokenCacheExpirationWindow. In the Adatum 
scenario, the web SSO lifetime in ADFS should be set to eight 
minutes to force users to re-authenticate when SharePoint redirects 
them to ADFS.

Sliding Sessions in SharePoint
Adatum wanted to implement sliding sessions so that SharePoint can 
extend the lifetime of the session if the user remains active. Adatum 
wanted to be able to define an inactivity period, after which Share-
Point forces the user to re-authenticate with ADFS. In other words, a 
user will only need to sign in again if the session is allowed to expire 
or if the SAML token expires. In this scenario, the session lifetime will 
be less than the SAML token lifetime. 

To implement this behavior, Adatum first configured ADFS to is-
sue SAML tokens with a lifetime of eight  hours. The following Micro-
soft Windows® PowerShell® command-line interface script shows 
how you can configure this setting in ADFS for the SharePoint  
Adatum Portal relying party.



 229 229feder ated identity for sharepoint applications

Add-PSSnapin Microsoft.ADFS.PowerShell
Set-AdfsRelyingPartyTrust –TargetName "SharePoint Adatum Portal" 
–TokenLifeTime 480

By setting the LogonTokenCacheExpirationWindow value to 
470 minutes, Adatum can effectively set the session duration to 10 
minutes.

$ap = Get-SPSecurityTokenServiceConfig
$ap.LogonTokenCacheExpirationWindow = (New-TimeSpan -minutes 470)
$ap.Update();
IIsreset

Adatum then modified the way that SharePoint manages its ses-
sions. SharePoint now recreates a new session before the existing 
session expires (as long as the user visits the SharePoint web applica-
tion before the existing session expires). A user can continue to recre-
ate sessions up to the time that the SAML token finally expires; in this 
scenario, the user could continue using the a-Portal web application 
for eight hours without having to re-authenticate. If the user doesn’t 
visit the web application before the session expires, then on the next 
visit he must sign in again. The Microsoft Visual Studio® development 
system solution, SlidingSessionModule, found in the 10SharePoint 
folder from http://claimsid.codeplex.com includes a custom HTTP 
module to deploy to your SharePoint web application that includes 
this functionality. The following code sample from the Adatum cus-
tom HTTP module shows the implementation.

public void Init(HttpApplication context)
{
  // Sliding session
  FederatedAuthentication.SessionAuthenticationModule
    .SessionSecurityTokenReceived +=
    SessionAuthenticationModule_SessionSecurityTokenReceived;
  ...
}

private void SessionAuthenticationModule_
               SessionSecurityTokenReceived(
                 object sender, 
                 SessionSecurityTokenReceivedEventArgs e)
{
  double sessionLifetimeInMinutes 
    = (e.SessionToken.ValidTo –
         e.SessionToken.ValidFrom).TotalMinutes;

Remember:  
A reference to the 
SAML token in the 
SharePoint token 
cache is stored in the 
session. The session  
is represented by the 
FedAuth cookie.

http://claimsid.codeplex.com


230230 chapter twelve

  var logonTokenCacheExpirationWindow = TimeSpan.FromSeconds(1);
  SPSecurity.RunWithElevatedPrivileges(delegate()
  {
    logonTokenCacheExpirationWindow =
      Microsoft.SharePoint.Administration.Claims
      .SPSecurityTokenServiceManager
      .Local.LogonTokenCacheExpirationWindow;
  });
  DateTime now = DateTime.UtcNow;
  DateTime validTo = e.SessionToken.ValidTo 
                     - logonTokenCacheExpirationWindow;
  DateTime validFrom = e.SessionToken.ValidFrom;
  if ((now < validTo) &&
      (now > validFrom.AddMinutes(
        (validTo – validFrom).TotalMinutes / 2)))
  {
    SessionAuthenticationModule sam 
      = FederatedAuthentication.SessionAuthenticationModule;
    e.SessionToken = sam.CreateSessionSecurityToken(
      e.SessionToken.ClaimsPrincipal,
      e.SessionToken.Context, now, 
      now.AddMinutes(sessionLifetimeInMinutes),
      e.SessionToken.IsPersistent);
    e.ReissueCookie = true;
  }
}

This method first determines the valid from time and valid to time 
of the existing session, taking into account the value of the Logon 
TokenCacheExpirationWindow property. Then, if the existing ses-
sion is more than halfway through its lifetime, the method uses the 
SPSessionAuthenticationModule instance to extend the session. It 
does this by creating a new session that has the same lifetime as the 
original, but which has a ValidFrom property set to the current time.

The sequence diagram in Figure 5 shows how SharePoint handles 
Adatum’s sliding-sessions implementation.



 231 231feder ated identity for sharepoint applications

figure 5
Sliding sessions in the a-Portal web application

The sequence diagram shows a simplified view of the sequence of 
interactions. In reality, SharePoint and the WS-Federation protocol 
use browser redirects and automatic posts to manage the interac-
tions between the various components so all of the requests go 
through the browser.

In the sequence diagram, TF represents the session lifetime. The 
session lifetime also defines the inactivity period, after which a user 
must re-authenticate with ADFS.

The following notes refer to the numbers on the sequence diagram:

1.	 This is the first time that the user visits the a-Portal web 
application; there is no valid session so SharePoint redirects 
the user to begin the sign-in process.

2.	 SharePoint creates a session for the user. The effective 
lifetime of the session is the difference between the 
lifetime of the SAML token issued by ADFS and the value  
of the LogonTokenCacheExpirationWindow property.  
For Adatum, the lifetime of the session is 10 minutes:  

Browser

Get /SitePages/Home.aspx

Get
/Lists/Tasks/AllItems.aspx

Get /SitePages/Home.aspx

Get /SitePages/Page1.aspx

a−Portal Web
Application

SharePoint
Authenticate.aspx

SharePoint
Home Realm
Discovery

SharePoint
WS−Federation

Endpoint

SAML Token
Issuer
(ADFS)

−No session exists
−Redirect to:
/_layouts/Authenticate.aspx

−Redirect to the originally
requested page
−The user now has a
valid session

−The session has expired
−Redirect to:
/_layouts/Authenticate.aspx

−No session exists
−Redirect to:
/_login/default.aspx

−Save the SAML token in
the SharePoint token cache
−Create a session FedAuth
cookie.
−Redirect to:
/_layouts/Authenticate.aspx

−The session has expired
Redirect to:
/_login/default.aspx

−Request a SAML token
from the identity provider
−Redirect to ADFS

−Request a SAML token
from the SharePoint STS
−Redirect to:
/_trust/default.aspx

−Post SAML token to the
SharePoint STS at:
/_trust/

1

2
4

5

3

T

T

....

F

F



232232 chapter twelve

the lifetime of the SAML token is 480 minutes, and the 
value of the LogonTokenCacheExpirationWindow  
property is 470 minutes.

3.	 SharePoint checks the age of the session. At this point, 
although the session is still valid, it is nearing the end of  
its lifetime so SharePoint creates a new session, copying  
data from the existing session. 

4.	 SharePoint checks the age of the session. At this point,  
it is still near the beginning of its lifetime so SharePoint 
continues to use this session.

5.	 SharePoint checks the age of the session. At this point,  
the session has expired so SharePoint initiates the process 
of re-authenticating with the identity provider.

Closing the Browser
The default behavior for SharePoint is to use persistent session cook-
ies. This enables a user to close the browser, re-open the browser, and 
re-visit a SharePoint web application without signing in again. Adatum 
wants users to always re-authenticate if they close the browser and 
then re-open it and revisit the a-Portal web application. To enforce 
this behavior, Adatum configured SharePoint to use an in-memory 
instead of a persistent session cookie. You can use the following Pow-
erShell script to do this.

$sts = Get-SPSecurityTokenServiceConfig 
$sts.UseSessionCookies = $true 
$sts.Update() 
iisreset

Authorization Rules
With multiple partners having access to the a-Portal SharePoint web 
application, Adatum wants to have the ability to restrict access to 
documents in the SharePoint document library based on the organiza-
tion that the user belongs to. Adatum wants to be able to use the 
standard SharePoint groups mechanism for assigning and managing 
permissions, so it needs some way to identify the organization a user 
belongs to. 

Adatum achieves this objective by using claims. Adatum has con-
figured ADFS to add an organization claim to the SAML token it is-
sues based on the federated identity provider that originally authen-
ticated the user. You should not rely on the identity provider to issue 
the organization claim because a malicious administrator at a partner 



 233 233feder ated identity for sharepoint applications

organization could add an organization claim with another partner’s 
value and gain access to confidential data.

Chapter 11, “Claims-Based Single Sign-On for Microsoft Share-
Point 2010,” describes how to add the organization claim to the Share-
Point people picker to make it easy for site administrators to set 
permissions based on the value of the organization claim.

Home Realm Discovery
If Adatum shares the a-Portal web application with multiple partners, 
each of those partners will have its own identity provider, as shown in 
Figure 2 earlier in this chapter. With multiple identity providers in 
place, there must be some mechanism for selecting the correct iden-
tity provider for a user to use for authentication, and that’s the home-
realm discovery process.

Adatum decided to customize the home-realm discovery page 
that ADFS provides. The default page in ADFS (/adfs/ls/HomeRealm-
Discovery.aspx) displays a drop-down list of the claims provider trusts 
configured in ADFS (claims provider trusts represent identity provid-
ers in ADFS) for the user to select an identity provider. ADFS then 
redirects the user to the sign-in page at the identity provider. It’s easy 
to customize this page with partner logos to make it easier for users 
to select the correct identity provider. In addition, this page in ADFS 
has access to the relying party identifier in the wtrealm parameter so 
it can customize the list of identity providers based on the identity of 
the SharePoint relying party web application. After a user has selected 
an identity provider for the first time, ADFS can remember the choice 
so that in the future, the user bypasses the home-realm discovery page 
and redirects the browser directly to the identity provider’s sign-in 
page.

For details about how to customize the ADFS home-realm discovery 
page and configure how long ADFS will remember a user’s selection, 
see this page on the MSDN® web site: http://msdn.microsoft.
com/en-us/library/bb625464(VS.85).aspx.

Adatum also considered the following options related to the 
home-realm discovery page.
•	 Automatically determine a user’s home realm based on the user’s 

IP address. This would remove the requirement for the user to 
specify her home realm when she first visits ADFS; however, this 
approach is not very reliable, especially with mobile and home 
workers and does not provide any additional security because IP 
addresses can be spoofed.

Claims provider trusts 
represent identity providers 
in ADFS.

http://msdn.microsoft.com/en-us/library/bb625464(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb625464(VS.85).aspx


234234 chapter twelve

•	 Perform the home-realm discovery in SharePoint instead of 
ADFS. Adatum could customize the standard SharePoint login 
page (usually located at C:\Program Files\Common Files\
Microsoft Shared\Web Server Extensions\14\template\identity-
model\login\default.aspx) to display the list of identity provid-
ers, and then append a whr parameter identifying the user’s 
home realm to the address of the ADFS sign-in page. However, 
the SharePoint login page only displays to the user if multiple 
authentication types are configured in SharePoint; Adatum only 
has a single authentication type configured for the a-Portal web 
application so Adatum would need to override the behavior of 
the standard login page so that it always displays. By default, all 
SharePoint web applications share this login page, so SharePoint 
would display the same list of identity providers regardless of 
the SharePoint web application the user is accessing. You can 
override this behavior and display a separate login page for each 
SharePoint web application.

Questions

1.	 In the scenario described in this chapter, Adatum prefers to 
maintain a single trust relationship between SharePoint and 
ADFS, and to maintain the trust relationships with the 
multiple partners in ADFS. Which of the following are valid 
reasons for adopting this model?

a.	 It enables Adatum to collect audit data relating to 
external sign-ins from ADFS.

b.	 It allows for the potential reuse of the trust relation-
ships with partners in other Adatum applications.

c.	 It allows Adatum to implement automatic home realm 
discovery. 

d.	 It makes it easier for Adatum to ensure that Share-
Point receives a consistent set of claim types.

2.	 When must a SharePoint user reauthenticate with the 
claims issuer (ADFS in the Adatum scenario)?

a.	 Whenever the user closes and then reopens the 
browser.

You should be sure to 
keep your SharePoint 
environment up to 
date with the latest 
patches from 
Microsoft.



 235 235feder ated identity for sharepoint applications

b.	 Whenever the ADFS web SSO cookie expires.

c.	 Whenever the SharePoint FedAuth cookie that 
contains the SAML token expires.

d.	 Every ten minutes.

3.	 Which of the following statements are true with regard to 
the Adatum sliding session implementation?

a.	 SharePoint tries to renew the session cookie before it 
expires.

b.	 SharePoint waits for the session cookie to expire and 
then creates a new one.

c.	 When SharePoint renews the session cookie, it always 
requests a new SAML token from ADFS.

d.	 SharePoint relies on sliding sessions in ADFS.

4.	 Where is the organization claim that SharePoint uses to 
authorize access to certain documents in the a-Portal web 
application generated?

a.	 In the SharePoint STS.

b.	 In the identity provider’s STS; for example in the 
Litware issuer.

c.	 In ADFS.

d.	 Any of the above.

5.	 Why does Adatum rely on ADFS to perform home realm 
discovery?

a.	 It’s easier to implement in ADFS than in SharePoint.

b.	 You can customize the list of identity providers for 
each SharePoint web application in ADFS.

c.	 You cannot perform home realm discovery in Share-
Point.

d.	 You can configure ADFS to remember a user’s choice 
of identity provider. 



236236 chapter twelve

More Information
For information about Windows Identity Foundation (WIF) and  
sliding sessions see this post: http://blogs.msdn.com/b/vbertocci/ 
archive/2010/06/16/warning-sliding-sessions-are-closer-than-they-
appear.aspx.

For more information about automated home-realm discovery, 
see Chapter 6, “Federated Identity with Multiple Partners,” and  
Chapter 7, “Federated Identity with Multiple Partners and Windows 
Azure Access Control Service.” 

http://blogs.msdn.com/b/vbertocci/archive/2010/06/16/warning-sliding-sessions-are-closer-than-they-appear.aspx
http://blogs.msdn.com/b/vbertocci/archive/2010/06/16/warning-sliding-sessions-are-closer-than-they-appear.aspx
http://blogs.msdn.com/b/vbertocci/archive/2010/06/16/warning-sliding-sessions-are-closer-than-they-appear.aspx


237

This appendix shows you how to use the FedUtil wizard for the sce-
narios in this book. Note that a Security Token Service (STS) is 
equivalent to an issuer.

Using FedUtil to Make an Application  
Claims-Aware

This procedure shows how to use FedUtil to make an application 
claims-aware. In this example, the application is a-Order. 

First you’ll need to open the FedUtil tool. There are two ways to 
do so. One way is to go to the Windows Identity Foundation (WIF) 
SDK directory and run FedUtil.exe. The other is to open the single 
sign-on (SSO) solution in Microsoft® Visual Studio® development 
system, right-click the a-Order.ClaimsAware project, and then click 
Add STS Reference. In either case, the FedUtil wizard opens.

To make an application claims-aware

1.	 In the Application configuration location box, enter the 
location of the a-Order Web.config file or browse to it. In 
the Application URI box, enter the Uniform Resource 
Indicator (URI) for aOrder, and then click Next.

2.	 In the Security Token Service dialog box, select Use an 
Existing STS. Alternatively, you can select Create a new 
STS project in the current solution to create a custom  
STS that you can modify.

3.	 In the STS federation metadata location box, enter the 
URI of the federation metadata or browse to it, and then 
click Next.

Appendix A Using Fedutil



238238 appendix a

4.	 In the Security token encryption dialog box, select No 
encryption, and then click Next.

5.	 In the Offered claims dialog box, click Next.

6.	 On the Summary page, click Finish.

Along with using FedUtil, you must also make the following 
changes: 
•	 In the a-Expense Web.config file, change the name of Trusted 

Issuer to Adatum. This is necessary because a-Expense uses a 
custom data store for users and roles mapping. Names should  
be formatted as Adatum\name. For example, Adatum\mary is 
correctly formatted.

•	 Place the ADFS token signing certificate into the Trusted People 
store of the local machine.



239

Appendix B shows in detail the message sequences for the passive 
(browser-based) and active (smart) client scenarios. It also includes 
information about what the HTTP and, where applicable, Kerberos, 
traffic looks like as the browser or client, the application, the issuer, 
and Microsoft® Active Directory® directory service communicate 
with each other.

Appendix B Message Sequences



240240 appendix b

The Browser-Based Scenario
Figure 1 shows the message sequence for the browser-based scenario.

2

1

3

4

5

6

7

App1: Relying
Party

Active Directory :
Directory

ADFS : IssuerRick : Browser

GET /App1

Annonymous user?
HTTP 302
(redirect to issuer)

GET /FederationPassive?wtrealm=App1

Redirect to Windows Integrated
sign-on page

GET /FederationPassive/
Integrated?wrealm=App1

HTTP 401 WWW-Authenticate:
Negotitiate

Kerberos ticket
request

Kerberos ticket
response

GET /FederationPassive/Integrated?wrealm=App1 and
Kerberos ticket (Authorization header)

Look up rules
for App1

Is Windows
Authentication
enabled?

ADFS allows 
you to configure
transformation 
rules for each 
application.

Query for user
attributes, such as
the email name 
and cost center.

HTTP 200 <form action-”https://../App1”>
Create SAML
token with Active
Directory
attributes as
claims.

POST /App1
wresult-<RequestSecurityTokenResponse...

HTTP 302 
/Default.aspx and
FAM cookie
encrypted, chunked,
and encoded in 
base64

GET /SomePage.aspx
and FedAuth cookie
chunks

HTTP 200
/SomePage.aspx

WIF validates the token (the signature,
experation date, target audience, 
and trusted issuer).

WIF decrypts the cookie
and populates the
 ClaimsPrincipal object.

This is coordinated by the 
WSFederation Authentication
Module (FAM).

This is coordinated by the 
SessionAuthentication
Module (SAM).

figure 1
Message sequence for the 
browser-based scenario



 241 241message sequences

Figure 2 shows the traffic generated by the browser.

figure 2
HTTP traffic

The numbers in the screenshot correspond to the steps in the 
message diagram. In this example, the name of the application is a-
Expense.ClaimsAware. For example, step 1 in the screen shot shows 
the initial HTTP redirect to the issuer that is shown in the message 
diagram. The following table explains the symbols in the “#” column.

Symbol Meaning

Arrow An arrow indicates an HTTP 302 redirect.

Key A key indicates a Kerberos ticket transaction (the 401 code indicates 
that authentication is required). 

Globe A globe indicates a response to a successful request, which means 
that the user can access a website.

Step 1
The anonymous user browses to a-Expense and the Federation Au-
thentication Module (FAM), WSFederatedAuthenticationModule, 
redirects the user to the issuer which, in this example, is located at 
https://login.adatumpharma.com/FederationPassive. As part of the 
request URL, there are four query string parameters: wa (the action to 
execute, which is wsignin1.0), wtrealm (the relying party that this 
token applies to, which is a-Expense), wctx (context data such as a 
return URL that will be propagated among the different parties), and 
wct (a time stamp).

Figure 3 shows the response headers for step 1.



242242 appendix b

figure 3
Response headers for step 1
The FAM on a-Expense redirects the anonymous user to the issuer.

Figure 4 shows the parameters that are sent to the issuer with the 
query string.

figure 4
Query string parameters

Step 2
The issuer is Active Directory Federation Services (ADFS) 2.0 config-
ured with Integrated Windows® Authentication only. Figure 5 shows 
that ADFS redirects the user to the integrated sign-on page.

ADFS can be configured to allow Integrated Windows Authentica-
tion and/or client certificate authentication and/or forms-based 
authentication. In either case, credentials are mapped to an Active 
Directory account.



 243 243message sequences

figure 5
ADFS redirecting the user to the Integrated Windows Authentication page

Step 3
The IntegratedSignIn.aspx page is configured to use Integrated Win-
dows Authentication on Microsoft Internet Information Services (IIS). 
This means that the page will reply with an HTTP 401 status code and 
the “WWW-Authenticate: Negotiate” HTTP header. This is shown in 
Figure 6.

figure 6
ADFS returning WWW-Authenticate: Negotiate header

IIS returns the WWW-Authenticate:Negotiate header to let the 
browser know that it supports Kerberos or NTLM.



244244 appendix b

Step 4
At this point, the user authenticates with Microsoft Windows creden-
tials, using either Kerberos or NTLM. Figure 7 shows the HTTP traffic 
for NTLM, not Kerberos.

If the infrastructure, such as the browser and the service principal 
names, are correctly configured, the client can avoid step 4 by 
requesting a service ticket from the key distribution center that is 
hosted on the domain controller. It can then use this ticket together 
with the authenticator in the next HTTP request.

figure 7
NTLM handshake on the ADFS website 

The Cookies/Login node for the request headers shows the 
NTLM handshake process. This process has nothing to do with claims, 
WS-Federation, Security Assertion Markup Language (SAML), or WS-
Trust. The same thing would happen for any site that is configured 



 245 245message sequences

with Integrated Windows Authentication. Note that this step does 
not occur for Kerberos.

Step 5
Now that the user has been successfully authenticated with Micro-
soft Windows credentials, ADFS can generate a SAML token based 
on the Windows identity. ADFS looks up the claims mapping rules 
associated with the application using the wtrealm parameter men-
tioned in step 1 and executes them. The result of those rules is a set 
of claims that will be included in a SAML assertion and sent to the 
user’s browser.  

The following XML code shows the token that was generated 
(some attributes and namespaces were deleted for clarity). 

<t:RequestSecurityTokenResponse 
  xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust">
  <t:Lifetime>
    <wsu:Created>2009-10-22T14:40:07.978Z</wsu:Created>
    <wsu:Expires>2009-10-22T00:40:07.978Z</wsu:Expires>
  </t:Lifetime>
  <wsp:AppliesTo>
    <EndpointReference>
      <Address>
        https://www.adatumpharma.com/a-Expense.ClaimsAware/
      </Address>
    </EndpointReference>
  </wsp:AppliesTo>
  <t:RequestedSecurityToken>
    <saml:Assertion 
        MinorVersion="1" 
        AssertionID="_9f68..." Issuer="http://.../Trust">
      <saml:Conditions 
        NotBefore="2009-10-22T14:40:07.978Z" 
        NotOnOrAfter="2009-10-22T00:40:07.978Z">
        <saml:AudienceRestrictionCondition>
          <saml:Audience>
            https://www.adatumpharma.com/a-Expense.ClaimsAware/
          </saml:Audience>
        </saml:AudienceRestrictionCondition>
      </saml:Conditions>
      <saml:AttributeStatement>
        <saml:Subject>
          <saml:SubjectConfirmation>
            <saml:ConfirmationMethod>
               urn:oasis:names:tc:SAML:1.0:cm:bearer

The token expiration 
date (for WS-Fed).

The token audience 
(for WS-Fed).

The SAML token is repre-
sented by an assertion that contains 

certain conditions, such as the 
expiration time and audience 

restrictions.

The token audience   
(for SAML).

Because the browser does not 
hold a key that can prove its 

identity, the token generated is  
of type bearer. In this scenario, 
enabling HTTPS is critical to  

avoid potential attacks.

The RequestSecurityToken 
Response is defined in the  

WS-Trust specification. It’s the  
shell that will enclose a token of  

any kind. The most common 
implementation of the token is  

SAML (version 1.1 or 2.0).  
The shell contains the lifetime  
and the endpoint address for  

this token.

The RequestSecurityToken 
Response is defined in the  

WS-Trust specification. It’s the  
shell that will enclose a token of  

any kind. The most common 
implementation of the token is  

SAML (version 1.1 or 2.0).  
The shell contains the lifetime  
and the endpoint address for  

this token.

The token expiration 
date (for WS-Fed).

The token audience 
(for WS-Fed).

The SAML token is  
represented by an assertion  

that contains certain conditions,  
such as the expiration time  
and audience restrictions.

The token audience   
(for SAML).

Because the browser does not 
hold a key that can prove its 

identity, the token generated is  
of type bearer. In this scenario, 
enabling HTTPS is critical to  

avoid potential attacks.



246246 appendix b

            </saml:ConfirmationMethod>
          </saml:SubjectConfirmation>
        </saml:Subject>
        <saml:Attribute 
           AttributeName="name"  
           AttributeNamespace=
               "http://.../ws/2005/05/identity/claims">
          <saml:AttributeValue>mary</saml:AttributeValue>
        </saml:Attribute>
        <saml:Attribute 
           AttributeName="CostCenter" 
           AttributeNamespace=
                "http://schemas.adatumpharma.com/2009/08/claims">
          <saml:AttributeValue>394002</saml:AttributeValue>
        </saml:Attribute>
      </saml:AttributeStatement>
      <ds:Signature>
       <ds:SignedInfo>
       ...
       </ds:SignedInfo>
       <ds:SignatureValue>
          dCHtoNUbvVyz8...n0XEA6BI=
       </ds:SignatureValue>
       <KeyInfo>
         <X509Data>
          <X509Certificate>
             MIIB6DCC...gUitvS6JhHdg
         </X509Certificate>
         </X509Data>
       </KeyInfo>
     </ds:Signature>
    </saml:Assertion>
  </t:RequestedSecurityToken>
  <t:TokenType>
     http://docs.oasis-open.org/wss/
         oasis-wss-saml-token-profile-1.1#SAMLV1.1
  </t:TokenType>
  <t:RequestType>
     http://schemas.xmlsoap.org/ws/2005/02/trust/Issue
  </t:RequestType>
  <t:KeyType>
     http://schemas.xmlsoap.org/ws/2005/05/identity/NoProofKey
  </t:KeyType>
</t:RequestSecurityTokenResponse>

The claims are represented  
by the SAML attributes,  

where ClaimType equals the 
AttributeNamespace and  

the AttributeName.  
The ClaimValue equals the 

AttributeValue.

The token generated is 
SAM 1.1.

The signature and the public 
key (an X.509 certificate that is 
encoded in base64) that will be  

used to verify the signature on the 
website. If the verification was 

successful, you have to ensure that 
the certificate is the one you trust 
(either by checking its thumbprint 

or its serial number).

The claims are represented  
by the SAML attributes,  

where ClaimType equals the 
AttributeNamespace and  

the AttributeName.  
The ClaimValue equals the 

AttributeValue.

The signature and the public 
key (an X.509 certificate that is 
encoded in base64) that will be  

used to verify the signature on the 
website. If the verification was 

successful, you have to ensure that 
the certificate is the one you trust 
(either by checking its thumbprint 

or its serial number).

The token generated is 
SAML 1.1.



 247 247message sequences

Step 6
Once ADFS generates a token, it needs to send it back to the applica-
tion. A standard HTTP redirect can’t be used because the token may 
be 4 KB long, which is larger than most browsers’ size limit for a URL. 
Instead, issuers generate a <form> that includes a POST method. The 
token is in a hidden field. A script auto-submits the form once the 
page loads. The following HTML code shows the issuer’s response.

<html>
  <head>
    <title>Working...</title>
  </head>
  <body>
    <form 
      method="POST" 
      name="hiddenform" 
      action=
        "https://www.adatumpharma.com/a-Expense.ClaimsAware/">
      <input type="hidden" name="wa" value="wsignin1.0" />
      <input 
         type="hidden" 
         name="wresult" 
         value="&lt;t:RequestSecurityTokenResponse   
                  xmlns...&lt;/t:RequestSecurityTokenResponse>" 
      />
      <input 
         type="hidden" 
         name="wctx" 
         value="rm=0&amp;id=passive&amp;
                   ru=%2fa-Expense.ClaimsAware%2fdefault.aspx" 
      />
      <noscript>
        <p>Script is disabled. Click Submit to continue.</p>
        <input type="submit" value="Submit" />
      </noscript>
    </form>
    <script language="javascript">
      window.setTimeout(‘document.forms[0].submit()'’’’’, 0);
    </script>
  </body>
</html>



248248 appendix b

Event :
SessionSecurityTokenReceived

Arguments :
raw security token

Event :
SessionSecurityTokenValidated

Arguments :
ClaimsPrincipal

Validate the token
with the

corresponding
security token

handler, such as
SAML 1.1, SAML 2.0, 
encrypted or custom 

Create the
ClaimsPrincipal object
with the claims inside.

Use the
ClaimsAuthenticationMananger

class to enrich the 
ClaimsPrincipal

object.

Create the
SessionsSecurityToken:
Encode(Chunk(Encrypt

(ClaimsPrincipal+lifetime+
[Original token])))

Set the HTTPContext.User
property to the

ClaimsPrincipal object.
Convert the session

token into a set
of chunked cookies.

Redirect to the 
original return URL,

if it exists.

When the application receives the POST, the FAM takes control 
of the process. It listens for the AuthenticateRequest event. Figure  
8 shows the sequence of steps that occur in the handler of the  
AuthenticateRequest event.

figure 8
Logic for an initial request to an application



 249 249message sequences

Notice that one of the steps that the FAM performs is to create 
the session security token. In terms of network traffic, this token is a 
set of cookies named FedAuth[n] that is the result of compressing, 
encrypting, and encoding the ClaimsPrincipal object. The cookies are 
chunked to avoid exceeding any cookie size limitations. Figure 9 
shows the HTTP response, where a session token is chunked into 
three cookies.

figure 9
HTTP response from the website with a session token chunked into three 
cookies



250250 appendix b

Event :
SessionSecurityTokenReceived

Arguments :
session token

Check that the
cookie is present.

If it is, 
recreate the

SessionSecurityToken
by decoding,

decrypting, and
decompressing 

the cookie.

Check the
SessionSecurityToken

expiration date.

Create the
ClaimsPrincipal object
with the claims inside.

Set the
HTTPContext.User 

property to the
ClaimsPrincipal object.

Step 7
The session security token (the FedAuth cookies) is sent on subse-
quent requests to the application. In the same way that the FAM 
handles the AuthenticationRequest event, the SAM executes the 
logic shown in Figure 10.

figure 10
Logic for subsequent requests to the application



 251 251message sequences

The FedAuth cookies are sent on each request. Figure 11 shows 
the network traffic.

figure 11
Traffic for a second HTTP request



252252 appendix b

The Active Client Scenario
The following section shows the interactions between an active client 
and a web service that is configured to trust tokens generated by an 
ADFS issuer. Figure 12 shows a detailed message sequence diagram.

figure 12
Active client scenario  
message-diagram

2

1

Orders :
Web Service

Active Directory :
Directory

ADFS : Issuer
Rick : Desktop

Application

Send the RequestSecurityToken message and the 
UserNamePasswordToken in the security header.

Send the RequestSecurityTokenResponse 
message and the signed SAML token.

Send the Orders.GetOrders message
and the signed SAML token in the

security header

Look up the claim
mapping rules for
the Order
web service.

ADFS allows you to 
extract attributes from
stores other than Active
Directory. For example, you
can use a database, a web
service, or a file.

Send the 
Orders.GetOrders
response. Excecute the operation.

These interactions are orchestrated
by the WCF federation bindings. The
client proxy obtains a token the first
time it contacts the web service. 

If the user makes another call
to the web service, the token is
reused unless you create a new
proxy.

Use the LDAP to
validate the user 
name and password
credentials.

WIF validates
the token (the
signature, expiration
date, target audience,
and trusted issuer). 

WIF allows or denies
access depending on 
the result from the
ClaimsAuthorizationManager object. 

Query for user attributes
such as the email name
and cost center.

Create the
SAML token
and include 
the user
attributes as
claims. Sign
the token
and encrypt 
it.



 253 253message sequences

Figure 13 shows the corresponding HTTP traffic for the active 
client message sequence.

figure 13
HTTP traffic

Following are the two steps, explained in detail.

Step 1
The Orders web service is configured with the wsFederationHttp-
Binding. This binding specifies a web service policy that requires the 
client to add a SAML token to the SOAP security header in order to 
successfully invoke the web service. This means that the client must 
first contact the issuer with a set of credentials (the user name and 
password) to get the SAML token. The following message represents 
a RequestSecurityToken (RST) sent to the ADFS issuer (ADFS) 
hosted at https://login.adatumpharma.com/adfs/services/trust/13/
usernamemixed. (Note that the XML code is abridged for clarity. 
Some of the namespaces and elements have been omitted.)

<s:Envelope>
  <s:Header>
    <a:Action>
      http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue
    </a:Action>  
    <a:To>
      https://login.adatumpharma.com/adfs/
                                 services/trust/13/usernamemixed
    </a:To>
    <o:Security>
      <o:UsernameToken 
        u:Id="uuid-bffe89aa-e6fa-404d-9365-d078d73beca5-1">
        <o:Username>
          <!-- Removed-->
        </o:Username>
        <o:Password>
          <!-- Removed-->
        </o:Password>
      </o:UsernameToken>
    </o:Security>

This is the endpoint of the 
issuer that accepts a  
UsernameToken.

These are the credentials 
that are sent to the issuer.

This is the endpoint of 
the issuer that accepts a  

UsernameToken.

These are the credentials 
that are sent to the issuer.

https://login.adatumpharma.com/adfs/services/trust/13/usernamemixed
https://login.adatumpharma.com/adfs/services/trust/13/usernamemixed


254254 appendix b

  </s:Header>
  <s:Body>
    <trust:RequestSecurityToken 
      xmlns:trust=
              "http://docs.oasis-open.org/ws-sx/ws-trust/200512">
      <wsp:AppliesTo>
        <EndpointReference>
          <Address>
             https://orders.adatumpharma.com/Orders.svc
          </Address>
        </EndpointReference>
      </wsp:AppliesTo>
      <trust:TokenType>
         http://docs.oasis-open.org/wss/
            oasis-wss-saml-token-profile-1.1#SAMLV1.1
      </trust:TokenType>
      <trust:KeyType>
         http://docs.oasis-open.org/ws-sx/
                                     ws-trust/200512/SymmetricKey
    </trust:KeyType>
    </trust:RequestSecurityToken>
  </s:Body>
</s:Envelope>

The client specifies the 
intended recipient of the token. 
In this case, it is the Orders web 

service.

The issuer expects a 
SAML 1.1 token.

The issuer uses the credentials to authenticate the user and exe-
cutes the corresponding rules to obtain user attributes from Active 
Directory (or any other attributes store it is configured to contact).

<s:Envelope>
  <s:Header>
<a:Action>http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/
IssueFinal</a:Action>
  </s:Header>
  <s:Body>
    <trust:RequestSecurityTokenResponseCollection 
xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
      <trust:RequestSecurityTokenResponse>
        <trust:Lifetime>
          <wsu:Created>2009-10-22T21:15:19.010Z</wsu:Created>
          <wsu:Expires>2009-10-22T22:15:19.010Z</wsu:Expires>
        </trust:Lifetime>
        <wsp:AppliesTo>
          <a:EndpointReference>
            <a:Address>
               https://orders.adatumpharma.com/Orders.svc

The issuer specifies the 
lifetime of the token.

The issuer specifies the 
intended recipient of the  

token. In this case, it is the  
Orders web service.

The client specifies the 
intended recipient of the  

token. In this case, it is the  
Orders web service.

The issuer expects a 
SAML 1.1 token.

The issuer specifies the 
lifetime of the token.

The issuer specifies the 
intended recipient of the  

token. In this case, it is the  
Orders web service.



 255 255message sequences

            </a:Address>
          </a:EndpointReference>
        </wsp:AppliesTo>
        <trust:RequestedSecurityToken>
          <xenc:EncryptedData>
            <xenc:EncryptionMethod 
              Algorithm=
                 "http://www.w3.org/2001/04/xmlenc#aes256-cbc" />
            <KeyInfo>
              <e:EncryptedKey>
                <KeyInfo>
                  <o:SecurityTokenReference>
                    <X509Data>
                      <X509IssuerSerial>
                        <X509IssuerName>
                           CN=localhost
                        </X509IssuerName>
                        <X509SerialNumber>
                         -124594669148411034902102654305925584353
                        </X509SerialNumber>
                      </X509IssuerSerial>
                    </X509Data>
                  </o:SecurityTokenReference>
                </KeyInfo>
                <e:CipherData> 
                   <e:CipherValue>
                        WayfmLM9DA5....u17QC+MWdZVCA2ikXwBc=
                   </e:CipherValue>
                </e:CipherData>
              </e:EncryptedKey>
            </KeyInfo>
            <xenc:CipherData>
              <xenc:CipherValue>
                  U6TLBMVR/M4Ia2Su....../oV+qg/VU=
              </xenc:CipherValue>
            </xenc:CipherData>
          </xenc:EncryptedData>
        </trust:RequestedSecurityToken>
        <trust:RequestedProofToken>
          <trust:ComputedKey>
             http://docs.oasis-open.org/ws-sx/
                                         ws-trust/200512/CK/PSHA1
          </trust:ComputedKey>
        </trust:RequestedProofToken>
        <trust:TokenType>

The token was encrypted using an 
X.509 certificate (public key).  
The web service must have the 
corresponding private key to  

decrypt it. This section acts as 
a hint to help the web service  

select the correct key.  

This is the encrypted token. The 
token is a SAML assertion that 
represents claims about the user.  

It’s signed with the issuer’s private 
signing key (see below for the  
decrypted SAML assertion).

This is the encrypted token. The 
token is a SAML assertion that 
represents claims about the user.  

It’s signed with the issuer’s private 
signing key (see below for the  
decrypted SAML assertion).

The token was encrypted using an 
X.509 certificate (public key).  
The web service must have the 
corresponding private key to  

decrypt it. This section acts as 
a hint to help the web service  

select the correct key.  



256256 appendix b

           http://docs.oasis-open.org/wss/
                 oasis-wss-saml-token-profile-1.1#SAMLV1.1
        </trust:TokenType>
        <trust:KeyType>
           http://docs.oasis-open.org/ws-sx/
                                     ws-trust/200512/SymmetricKey
        </trust:KeyType>
      </trust:RequestSecurityTokenResponse>
    </trust:RequestSecurityTokenResponseCollection>
  </s:Body>
</s:Envelope>

If you had the private key to decrypt the token (highlighted above 
as “<e:CipherValue>U6TLBMVR/M4Ia2Su...”), the following is what 
you would see.

<saml:Assertion 
  MajorVersion="1" 
  MinorVersion="1" 
  AssertionID="_a5c22af0-b7b2-4dbf-ac10-326845a1c6df"  
  Issuer="http://login.adatumpharma.com/Trust" 
  IssueInstant="2009-10-22T21:15:19.010Z ">
  <saml:Conditions 
     NotBefore="2009-10-22T21:15:19.010Z " 
     NotOnOrAfter="2009-10-22T22:15:19.010Z ">
     <saml:AudienceRestrictionCondition>
       <saml:Audience>
          https://orders.adatumpharma.com/Orders.svc
       </saml:Audience>
     </saml:AudienceRestrictionCondition>
  </saml:Conditions>
  <saml:AttributeStatement>
    <saml:Subject>
      <saml:SubjectConfirmation>
        <saml:ConfirmationMethod>
          urn:..:SAML:1.0:cm:holder-of-key
        </saml:ConfirmationMethod>
        <KeyInfo>
           <trust:BinarySecret>
              ztGzs3I...VW+6Th38o=
           </trust:BinarySecret>
        </KeyInfo>
      </saml:SubjectConfirmation>
    </saml:Subject>
    <saml:Attribute 

This is the issuer identifier 
(it’s a URI). It is different  

than the actual issuer  
sign-on URL.

The holder-of-key provides 
proof of ownership of  
a signed SAML token.  

SOAP clients often use this 
approach to prove that an 
incoming request is valid.  
Note that a browser can’t  
access a key store the way  

a smart client can.

The claims are represented  
by the SAML attributes.  
The ClaimType equals  

the AttributeNamespace  
and the AttributeName.  
The ClaimValue equals  

the AttributeValue.

The token that is 
generated is a  

SAML 1.1 token.

The token that is 
generated is a  

SAML 1.1 token.

This is the issuer identifier 
(it’s a URI). It is different  

than the actual issuer  
sign-on URL.

The holder-of-key provides 
proof of ownership of  
a signed SAML token.  

SOAP clients often use this 
approach to prove that an 
incoming request is valid.  
Note that a browser can’t  
access a key store the way  

a smart client can.



 257 257message sequences

      AttributeName="name" 
      AttributeNamespace=           
         "http://schemas.xmlsoap.org/ws/2005/05/identity/claims">
      <saml:AttributeValue>rick</saml:AttributeValue>
    </saml:Attribute>
    <saml:Attribute 
      AttributeName="role" 
      AttributeNamespace=
       "http://schemas.xmlsoap.org/ws/2005/05/identity/claims">

      <saml:AttributeValueOrderTracker</saml:AttributeValue>
    </saml:Attribute>
  </saml:AttributeStatement>
  <ds:Signature>
    <ds:SignedInfo> ... </ds:SignedInfo>
      <ds:SignatureValue>
          dCHtoNUbvVyz8...n0XEA6BI=
      </ds:SignatureValue>
      <KeyInfo>
        <X509Data>
          <X509Certificate>
            MIIB6DCC...gUitvS6JhHdg
          </X509Certificate>
        </X509Data>
      </KeyInfo>
   </ds:Signature>
</saml:Assertion>

Step 2
Once the client obtains a token from the issuer, it can attach the to-
ken to the SOAP security header and call the web service. This is the 
SOAP message that is sent to the Orders web service.

<s:Envelope>
  <s:Header>

    <a:Action>http://tempuri.org/GetOrders</a:Action>
    <a:To>https://orders.adatumpharma.com/Orders.svc</a:To>
    <o:Security>
      <u:Timestamp u:Id="_0">
        <u:Created>2009-10-22T21:15:19.123Z</u:Created>
        <u:Expires>2009-10-22T21:20:19.123Z</u:Expires>
      </u:Timestamp>
      <xenc:EncryptedData >
        ... the token we've got in step 1 ...

This is the signature and 
public key (an X.509 certificate 
encoded in base64) that will be  
used to verify the signature on  

the web service. If the verification  
is successful, you must ensure that  
the certificate is the one you trust,  
by checking either its thumbprint  

or its serial number.

Here are the SOAP  
action and the URL  
of the web service.

This is the token from 
step 1, but encrypted.

<saml:Assertion 
  MajorVersion="1" 
  MinorVersion="1" 
  AssertionID="_a5c22af0-b7b2-4dbf-ac10-326845a1c6df"  
  Issuer="http://login.adatumpharma.com/Trust" 
  IssueInstant="2009-10-22T21:15:19.010Z ">
  <saml:Conditions 
     NotBefore="2009-10-22T21:15:19.010Z " 
     NotOnOrAfter="2009-10-22T22:15:19.010Z ">
     <saml:AudienceRestrictionCondition>
       <saml:Audience>
          https://orders.adatumpharma.com/Orders.svc
       </saml:Audience>
     </saml:AudienceRestrictionCondition>
  </saml:Conditions>
  <saml:AttributeStatement>
    <saml:Subject>
      <saml:SubjectConfirmation>
        <saml:ConfirmationMethod>
          urn:..:SAML:1.0:cm:holder-of-key
        </saml:ConfirmationMethod>
        <KeyInfo>
           <trust:BinarySecret>
              ztGzs3I...VW+6Th38o=
           </trust:BinarySecret>
        </KeyInfo>
      </saml:SubjectConfirmation>
    </saml:Subject>
    <saml:Attribute 

This is the issuer identifier 
(it’s a URI). It is different  

than the actual issuer  
sign-on URL.

The holder-of-key provides 
proof of ownership of  
a signed SAML token.  

SOAP clients often use this 
approach to prove that an 
incoming request is valid.  
Note that a browser can’t  
access a key store the way  

a smart client can.

The claims are represented  
by the SAML attributes.  
The ClaimType equals  

the AttributeNamespace  
and the AttributeName.  
The ClaimValue equals  

the AttributeValue.

The claims are represented  
by the SAML attributes.  
The ClaimType equals  

the AttributeNamespace  
and the AttributeName.  
The ClaimValue equals  

the AttributeValue.

This is the signature and 
public key (an X.509 certificate 
encoded in base64) that will be  
used to verify the signature on  

the web service. If the verification  
is successful, you must ensure that  
the certificate is the one you trust,  
by checking either its thumbprint  

or its serial number.

Here are the SOAP  
action and the URL  
of the web service.

This is the token from 
step 1, but encrypted.



258258 appendix b

      </xenc:EncryptedData>
      <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
        ...
        <SignatureValue>
          oaZFLr+1y/I2kYcAvyQv6WSkPYk=
        </SignatureValue>
        <KeyInfo>
          <o:SecurityTokenReference>
            <o:KeyIdentifier 
               ValueType=
                 "http://docs.oasis-open.org/wss/
                    oasis-wss-saml-token-profile-1.0#
                    SAMLAssertionID">
              _a5c22af0-b7b2-4dbf-ac10-326845a1c6df
            </o:KeyIdentifier>
          </o:SecurityTokenReference>
        </KeyInfo>
      </Signature>
    </o:Security>
  </s:Header>
  <s:Body>
    <GetOrders xmlns="http://tempuri.org/">
      <customerId>1231</customerId>
    </GetOrders>
  </s:Body>
</s:Envelope>

This is the signature of the 
message generated using the  
SAML assertion. This is a  

different signature from the  
token signature. This signature  

is generated for any security  
token (not just a SAML token)  
to protect the message content  

and source verification.

Windows Identity Foundation (WIF) and Windows Communica-
tion Foundation (WCF) will take care of decrypting and validating the 
SAML token. The claims will be added to the ClaimsPrincipal object 
and the principal will be added to the WCF security context. The 
WCF security context will be used in the authorization manager by 
checking the incoming claims against the operation call the client 
wants to make.

The Browser-Based Scenario with  
Access Control Service (ACS)

Figure 14 shows the message sequence for the browser-based sce-
nario that authenticates with a social identity provider and uses ACS 
for protocol transition.

This is the signature of the 
message generated using the  
SAML assertion. This is a  

different signature from the  
token signature. This signature  

is generated for any security  
token (not just a SAML token)  
to protect the message content  

and source verification.



 259 259message sequences

figure 14
Message sequence for the 
browser-based scenario with 
ACS and authentication with  
a social identity provider

2

1

3

4

5

6

7

ACS
(FP)

Google
(IdP)Mary : Browser

GET /a-Order.OrderTracking.6/
Anonymous user

HTTP 302
(redirect to issuer)

GET /Adatum.FederationProvider.6

HTTP 302 (redirect to HomeRealmDiscover.aspx)

GET /Adatum.FederationProvider.6/HomeRealmDiscovery.aspx

POST /Adatum.FederationProvider.6/HomeRealmDiscovery.aspx

HTTP 200

HTTP 302 (redirect to
Adatum.FederationProvider.6/Federation.aspx)

HTTP 302 (redirect to
federationwithacs-dev.accesscontrol.windows.net)

POST Adatum.FederationProvider.6/Federation.aspx

GET federationwithacs-devaccesscontrol.windows.net

HTTP 302 (redirect www.google.com/accounts)

GET www.google.com/accounts/ServiceLogin

HTTP 200 

POST /Adatum.FederationProvider.6/Federation.aspx

POST www.google.com/accounts/ServiceLogin (passing Google ID and password)

HTTP 200  (Uses JavaScript to trigger POST to Adatum.FederationProvider.6 issuer)

HTTP 200  (Uses JavaScript to trigger POST to
a-Order.OrderTracking.6)

HTTP 302

HTTP 200

POST a-Order.OrderTracking.6

HTTP 302 (redirect to federationwithacs-dev.accesscontrol.windows.net - including token from Google)

GET federationwithacs-dev.accesscontrol.windows.net

POST a-Order.OrderTracking.6

9

8

10

11

12

a-Order
(RP)

Adatum Simulated
Issuer
(FP)

Is the
user already
authenticated?

Determine
Identity Provider

Verify RP

Protocol
Transition

Claims 
Mapping

WIF veri�es
the token.

WIF decrypts the cookie
and populates the claims
principal object.

The diagram skips a
number of steps here
where the user gives
consent for Google to
release his email
address.



260260 appendix b

Figure 15 shows the key traffic generated by the browser. For 
reasons of clarity, we have removed some messages from the list.

figure 15
HTTP traffic

The numbers in the screenshot correspond to the steps in the 
message diagram. In this sample, the name of the application is a-Or-
der.Tracking.6 and it is running on the local machine. The name of the 
mock issuer that takes the place of ADFS is Adatum.FederationPro-
vider.6 and it is also running locally, and the name of the ACS instance 
is federationwithacs-dev.accesscontrol.windows.net. The sample il-
lustrates a user authenticating with a Google identity.

Step 1
The anonymous user browses to a-Order.OrderTracking.6, and be-
cause there is no established security session, the WSFederatedAu-
thenticationModule (FAM) redirects the browser to the issuer which, 
in this example is located at https://localhost/Adatum.FederationPro-
vider.6/. As part of the request URL, there are four query string param-
eters: wa (the action to execute, which is wsignin1.0), wtrealm (the 
relying party that this token applies to, which is a-Order.OrderTrack-
ing), wctx (context data, such as a return URL that will be propagated 
among the different parties), and wct (a time stamp).

Figure 16 shows the response headers for step 1.



 261 261message sequences

figure 16
Response headers for step 1

Figure 17 shows the parameters that are sent to the issuer with 
the query string.

figure 17
Query string parameters



262262 appendix b

Step 2
The issuer is a simulated issuer that takes the place of ADFS for this 
sample. Figure 18 shows that the simulated issuer redirects the user to 
the home realm discovery page where the user can select the identity 
provider she wants to use.

The simulated issuer is built using the WIF SDK.

figure 18
Simulated issuer redirecting the user to the HomeRealmDiscovery page

Step 3
On the home-realm discovery page, the user can elect to sign in using 
the Adatum provider, the Litware provider, or a social identity pro-
vider. In this walkthrough, the user opts to use a social identity pro-
vider and provides an email address. When the user submits the form, 
the simulated issuer parses the email address to determine which so-
cial identity provider to use.

Step 4
The home-realm discovery page redirects the browser to the Federa-
tion.aspx page.

Step 5
The Federation.aspx page at the simulated issuer returns a cookie to 
the browser that stores the original wa, wtrealm, wctx, and wct que-
rystring parameters, as was shown in Figure 17. The simulated issuer 
redirects the user to the ACS instance, passing new values for these 
parameters. The simulated issuer also sends a whr querystring param-
eter; this is a hint to ACS about which social identity provider it should 
use to authenticate the user. Figure 19 shows that the simulated is-
suer redirects the user to ACS.



 263 263message sequences

figure 19
The simulated issuer redirects the user to ACS

Figure 20 shows the new values of the querystring parameters 
that the simulated issuer sends to ACS. This includes the value 
“Google” for the whr parameter. The value of the wctx parameter 
refers to the cookie that contains the original values of the wa, wt-
realm, wctx, and wct querystring parameters that came from the rely-
ing party—a-Order.OrderTracking.

figure 20
Querystring parameters sent to ACS from the simulated issuer

Step 6
ACS verifies that the wtrealm parameter value, https://localhost/
Adatum.FederationProvider.6, is a configured relying party applica-
tion. ACS then examines the whr parameter value to determine which 
identity provider to redirect the user to. If there is no valid whr value, 
then ACS will display a page listing the available identity providers. 
ACS forwards the wtrealm parameter value to Google in the opened.
return_to parameter, so that when Google returns a token to ACS, it 
can tell ACS the address of the relying party (for ACS, the relying 
party is https://localhost/Adatum.FederationProvider.6.)



264264 appendix b

Step 7
Google displays a login form that prompts the user to provide creden-
tials. This form also indicates to the user that the request came from 
ACS.

Step 8
After Google has authenticated the user and obtained consent to re-
turn the users email address to the relying party (ACS), Google redi-
rects the browser back to ACS.

Figure 21 shows the querystring parameters that Google uses to 
pass the claims back to ACS.

figure 21
Querystring parameters sent from Google to ACS

In addition to the claims data, there is also a context parameter 
that enables ACS to associate this claim data with the original request 
from a-Order.OrderTracking.6. This context parameter includes the 
address of the Adatum simulated issuer, which sent the original re-
quest to ACS.

Step 9
ACS transitions the token from Google to create a new SAML 1.1 
token, which contains a copy of the claims that Google issued. ACS 
uses the information in the context parameter to identify the relying 
party application (Adatum.FederationProvider.6) and the rule group 
to apply. In this sample, the rule group copies all of the claims from 
Google through to the new SAML token.

The following XML code shows the token that ACS generates 
(some attributes and namespaces were deleted for clarity).



 265 265message sequences

<t:RequestSecurityTokenResponse 
  Context="6d67cfce-9797-4958-ae3c-1eb489b04801"
  xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust">
  <t:Lifetime>
    <wsu:Created>2011-02-09T15:05:17.355Z</wsu:Created>
    <wsu:Expires>2011-02-09T15:15:17.355Z</wsu:Expires>
  </t:Lifetime>

  <wsp:AppliesTo>
    <EndpointReference>
      <Address>
       https://localhost/Adatum.FederationProvider.6/
      </Address>
    </EndpointReference>
  </wsp:AppliesTo>

  <t:RequestedSecurityToken>
    <saml:Assertion 
      AssertionID="_592d..." 
      Issuer="https://federationwithacs-dev.accesscontrol.
                                                  windows.net/">
      <saml:Conditions 
        NotBefore="2011-02-09T15:05:17.355Z" 
        NotOnOrAfter="2011-02-09T15:15:17.355Z">
        <saml:AudienceRestrictionCondition>
          <saml:Audience>
            https://localhost/Adatum.FederationProvider.6/
          </saml:Audience>

        </saml:AudienceRestrictionCondition>
      </saml:Conditions>

      <saml:AttributeStatement>
        <saml:Subject>
          <saml:NameIdentifier>
                              https://www.google.com/accounts/o8/
                    id?id=AItOawnvknktThEaScLj34MPreTLfOKqrQazL20
          </saml:NameIdentifier>
          <saml:SubjectConfirmation>
            <saml:ConfirmationMethod>
              urn:oasis:names:tc:SAML:1.0:cm:bearer
            </saml:ConfirmationMethod>
          </saml:SubjectConfirmation>
        </saml:Subject>

The token expiration date  
and time (for WS-Fed).

The token audience  
(for WS-Fed).

The token audience   
(for SAML).

Because the browser does not 
hold a key that can prove its  

identity, the token generated is  
of type bearer. In this scenario, 
enabling HTTPS is critical to  

avoid potential attacks.

The RequestSecurityToken 
Response is defined in the  

WS-Trust specification. It’s  
the envelope that encloses a  
token of any kind. The most 
common implementation of  

the token is SAML (version 1.1  
or 2.0). The envelope contains  
the lifetime and the endpoint 

address for this token.

The RequestSecurityToken 
Response is defined in the  

WS-Trust specification. It’s  
the envelope that encloses a  
token of any kind. The most 
common implementation of  

the token is SAML (version 1.1  
or 2.0). The envelope contains  
the lifetime and the endpoint 

address for this token.

The token expiration date  
and time (for WS-Fed).

The token audience   
(for SAML).

The token audience  
(for WS-Fed).

Because the browser does not 
hold a key that can prove its  

identity, the token generated is  
of type bearer. In this scenario, 
enabling HTTPS is critical to  

avoid potential attacks.



266266 appendix b

        <saml:Attribute 
          AttributeName="emailaddress" 
          AttributeNamespace=
          "http://schemas.xmlsoap.org/ws/2005/05/identity/claims">
          <saml:AttributeValue>mary@gmail.com
          </saml:AttributeValue>
        </saml:Attribute>

        <saml:Attribute
          AttributeName="name"          
          AttributeNamespace="http://schemas.xmlsoap.org/
                                    ws/2005/05/identity/claims">
          <saml:AttributeValue>Mary</saml:AttributeValue>
        </saml:Attribute>

        <saml:Attribute
          AttributeName=”identityprovider”
          AttributeNamespace=”...”>
        <saml:AttributeValue>Google</saml:AttributeValue>
      </saml:Attribute>

      </saml:AttributeStatement>

      <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
        <ds:SignedInfo>
          ...
        </ds:SignedInfo>
        <ds:SignatureValue>
          euicdW...UGM7rA==
        </ds:SignatureValue>
        <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
          <X509Data>
            <X509Certificate>
              MIIDO...jVSbv/3
            </X509Certificate>
          </X509Data>
        </KeyInfo>
      </ds:Signature>
    </saml:Assertion>
  </t:RequestedSecurityToken>
  <t:RequestedAttachedReference>
    <o:SecurityTokenReference>
      <o:KeyIdentifier 
        ValueType=
        "http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-

The claims are represented  
by the SAML attributes,  

where ClaimType equals the  
AttributeNamespace and  

the AttributeName.  
The ClaimValue equals  

the AttributeValue.

The signature and the public 
key (an X.509 certificate that  
is encoded in base64) that will  
be used to verify the signature  

on the website. If the verification  
was successful, you have to ensure 
that the certificate is the one you 

trust (by checking  either its 
thumbprint or its serial number).

The claims are represented  
by the SAML attributes,  

where ClaimType equals the  
AttributeNamespace and  

the AttributeName.  
The ClaimValue equals  

the AttributeValue.

The signature and the public 
key (an X.509 certificate that  
is encoded in base64) that will  
be used to verify the signature  

on the website. If the verification  
was successful, you have to ensure 
that the certificate is the one you 

trust (by checking  either its 
thumbprint or its serial number).



 267 267message sequences

                                            1.0#SAMLAssertionID">
        _592d8e3a-8f42-4f14-9552-4617959dbd77
      </o:KeyIdentifier>
    </o:SecurityTokenReference>
  </t:RequestedAttachedReference>
  <t:RequestedUnattachedReference>
    <o:SecurityTokenReference>
      <o:KeyIdentifier 
        ValueType=
        "http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
                                           1.0#SAMLAssertionID">
        _592d8e3a-8f42-4f14-9552-4617959dbd77
      </o:KeyIdentifier>
    </o:SecurityTokenReference>
  </t:RequestedUnattachedReference>
  <t:TokenType>
    urn:oasis:names:tc:SAML:1.0:assertion
  </t:TokenType>
  <t:RequestType>
    http://schemas.xmlsoap.org/ws/2005/02/trust/Issue
  </t:RequestType>
  <t:KeyType>
    http://schemas.xmlsoap.org/ws/2005/05/identity/NoProofKey
  </t:KeyType>
</t:RequestSecurityTokenResponse>

This step returns a form to the browser with an HTTP 200 status 
message. The user does not see this form because a JavaScript timer 
automatically submits the form, posting the new token to the Adatum 
simulated issuer. It obtains the address of the simulated issuer from 
the Return URL setting in the Adatum.SimulatedIssuer relying party 
definition in ACS. The token data is contained in the hidden wresult 
field. The following HTML code shows the form that ACS returns to 
the browser. Some elements have been abbreviated for clarity.

<html>
<head>
    <title>Working...</title>
</head>
<body>
  <form method="POST" 
    name="hiddenform" 
    action="https://localhost/Adatum.FederationProvider.6/
                                               Federation.aspx">
    <input type="hidden" name="wa" value="wsignin1.0" />
    <input type="hidden" name="wresult"



268268 appendix b

        value="&lt;t:RequestSecurityTokenResponse 
                                           Context=&quot;..." />
    <input type="hidden" name=
          "wctx" value="6d67cfce-9797-4958-ae3c-1eb489b04801" />
    <noscript>
      <p>
        Script is disabled. Click Submit to continue.
      </p>
      <input type="submit" value="Submit" />
    </noscript>
  </form>
  <script language="javascript">
      window.setTimeout('document.forms[0].submit()', 0);
  </script>
</body>
</html>

Step 10
The Adatum simulated issuer applies the claims mapping rules to the 
claims that it received from ACS.  The following XML code shows the 
token that ACS generates (some attributes and namespaces were 
deleted for clarity).

<trust:RequestSecurityTokenResponseCollection 
  xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
  <trust:RequestSecurityTokenResponse 
    Context="rm=0&amp;id=passive&amp;ru=%2fa-Order.
                                              OrderTracking%2f">
    <trust:Lifetime>
      <wsu:Created>2011-02-09T15:05:17.776Z</wsu:Created>
      <wsu:Expires>2011-02-09T16:05:17.776Z</wsu:Expires>
    </trust:Lifetime>
    <wsp:AppliesTo>
      <EndpointReference>
        <Address>
          https://localhost/a-Order.OrderTracking.6/
        </Address>
      </EndpointReference>
    </wsp:AppliesTo>
    <trust:RequestedSecurityToken>
      <saml:Assertion
        AssertionID="_3770..." 
        Issuer="adatum" 
        IssueInstant="2011-02-09T15:05:17.776Z" 
        xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
        <saml:Conditions 

The token expiration date and 
time (for WS-Fed).

The token expiration date  
and time (for WS-Fed).



 269 269message sequences

          NotBefore="2011-02-09T15:05:17.776Z" 
          NotOnOrAfter="2011-02-09T16:05:17.776Z">
          <saml:AudienceRestrictionCondition>
            <saml:Audience>
              https://localhost/a-Order.OrderTracking.6/
            </saml:Audience>
          </saml:AudienceRestrictionCondition>
        </saml:Conditions>
        <saml:AttributeStatement>
          <saml:Subject>
            <saml:SubjectConfirmation>
              <saml:ConfirmationMethod>
                urn:oasis:names:tc:SAML:1.0:cm:bearer
              </saml:ConfirmationMethod>
            </saml:SubjectConfirmation>
          </saml:Subject>
          <saml:Attribute
            AttributeName=”name”
            AttributeNamespace=”...”
            a:OriginalIssuer=”acs\Google”>
            <saml:AttributeValue>
              Mary
            </saml:AttributeValue>
          </saml:Attribute>
          <saml:Attribute 
            AttributeName="role" 
            AttributeNamespace="http://schemas.microsoft.com/
                                    ws/2008/06/identity/claims">
            <saml:AttributeValue>
              Order Tracker
            </saml:AttributeValue>
          </saml:Attribute>
          <saml:Attribute 
            AttributeName="organization" 
            AttributeNamespace="http://schemas.adatum.com/
                                                claims/2009/08">
            <saml:AttributeValue>
              Contoso
            </saml:AttributeValue>
          </saml:Attribute>
        </saml:AttributeStatement>
        <ds:Signature xmlns:ds="http://www.w3.org/2000/09/
                                                      xmldsig#">
          <ds:SignedInfo>
            ...

The token audience  
(for SAML).

The token audience  
(for SAML).

The claims are represented  
by the SAML attributes,  

where ClaimType equals the  
AttributeNamespace and  

the AttributeName.  
The ClaimValue equals the  

AttributeValue. These claims  
also have an OriginalIssuer  

attribute showing where  
the claim came from.



270270 appendix b

          </ds:SignedInfo>
          <ds:SignatureValue>ZxLyG...2uU=</ds:SignatureValue>
          <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
            <X509Data>
              <X509Certificate>MIIB5...2B3AO</X509Certificate>
            </X509Data>
          </KeyInfo>
        </ds:Signature>
      </saml:Assertion>
    </trust:RequestedSecurityToken>
    <trust:RequestedAttachedReference>
      <o:SecurityTokenReference 
        k:TokenType="http://docs.oasis-open.org/wss/oasis-wss-
                               saml-token-profile-1.1#SAMLV1.1" >
        <o:KeyIdentifier
          ValueType="http://docs.oasis-open.org/wss/oasis-wss-
                         saml-token-profile-1.0#SAMLAssertionID">
          _377035cf-c44a-4495-a69c-c4b4951af18b
        </o:KeyIdentifier>
      </o:SecurityTokenReference>
    </trust:RequestedAttachedReference>
    <trust:RequestedUnattachedReference>
      <o:SecurityTokenReference 
        k:TokenType="http://docs.oasis-open.org/wss/oasis-wss-
                                saml-token-profile-1.1#SAMLV1.1">
        <o:KeyIdentifier 
          ValueType="http://docs.oasis-open.org/wss/oasis-wss-
                         saml-token-profile-1.0#SAMLAssertionID">
          _377035cf-c44a-4495-a69c-c4b4951af18b
        </o:KeyIdentifier>
      </o:SecurityTokenReference>
    </trust:RequestedUnattachedReference>
    <trust:TokenType>
      urn:oasis:names:tc:SAML:1.0:assertion
    </trust:TokenType>
    <trust:RequestType>
      http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
    </trust:RequestType>
    <trust:KeyType>
      http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer
    </trust:KeyType>
  </trust:RequestSecurityTokenResponse>
</trust:RequestSecurityTokenResponseCollection>



 271 271message sequences

This step returns a form to the browser with an HTTP 200 status 
message. The user does not see this form because a JavaScript timer 
automatically submits the form, posting the new token to the a-Order.
OrderTracking.6 application. The token with the new claims is con-
tained in the wresult field. The following HTML code shows the form 
that ACS returns to the browser. Some elements have been abbrevi-
ated for clarity.

<html>
<head>
    <title>Working...</title>
</head>
<body>
  <form method="POST" name="hiddenform" 
        action="https://localhost/a-Order.OrderTracking.6/">
    <input type="hidden" name="wa" value="wsignin1.0" />
    <input type="hidden" name="wresult"
        value="&lt;trust:RequestSecurityTokenResponse
                                               Collection..." />
    <input type="hidden" name="wctx" 
           value="rm=0&amp;id=passive&amp;ru=%2fa-Order.
                                            OrderTracking%2f" />
    <noscript>
      <p>
        Script is disabled. Click Submit to continue.
      </p>
      <input type="submit" value="Submit" />
    </noscript>
  </form>
  <script language="javascript">
      window.setTimeout('document.forms[0].submit()', 0);
  </script>
</body>
</html>

The simulated issuer determines the address to post the token to 
(https://localhost/a-Order.OrderTracking.6/) by reading the original 
value of the wtrealm parameter that the simulated issuer saved in a 
cookie in step 4.

Step 11
The Federation Authentication Module (FAM) validates the security 
token from the simulated issuer, and creates a ClaimsPrincipal object 
using the claim values from the token. This is compressed, encrypted, 
and encoded to create a session security token which the application 
returns to the browser as a set of FedAuth[n] cookies. The cookies 
are chunked to avoid exceeding any cookie size limitations.



272272 appendix b

Figure 22 shows the response headers, which include the Fed-
Auth cookies.

figure 22
Response headers, including the FedAuth cookies

Step 12
On subsequent requests to the a-Order.OrderTracking.6 application, 
the browser returns the security session data to the application. Fig-
ure 23 shows the FedAuth cookie in the request headers.

figure 23
FedAuth cookies in the request header

The WSFederatedAuthenticationModule (FAM) decodes, de-
crypts, and decompresses the cookie and verifies the security session 
data before recreating the ClaimsPrincipal object.



 273 273message sequences

Single Sign-Out
Figure 24 shows the single sign-out message sequence for the browser- 
based scenario.

2

1

3

4

5

6

7

Adatum Simulated
Issuer
(IdP)

John : Browser

GET /a-Expense as an
Anonymous user

HTTP 302
(redirect to issuer)

GET /Adatum.SimulatedIssuer - wsignin1.0

HTTP 200 - display log in page

POST Adatum.SimulatedIssuer

POST WS-Federation token to a-Expense

Add a-Expense to AdatumClaimsRPStsSiteCookie - HTTP 200

Return FedAuth cookie

HTTP 200 - display data

GET /a-Expense

HTTP 302 (redirect to issuer)

Click link to visit a-Order - GET /a-Order as an Anonymous user

GET Adatum.SimulatedIssuer - wsignin1.0

Add a-Order to AdatumClaimsRPStsSiteCookie - HTTP 200

POST WS - Federation Token to a-Order

Delete FedAuth cookie - HTTP 302

Return FedAuth cookie

Click Logout link -POST /a-Order

GET Adatum.SimulatedIssuer - wsignout1.0

GET /Adatum.SimulatedIssuer/SignOut.aspx - wsignout1.0

GET /a-Expense - wsignoutcleanup1.0

GET /a-Order - wsignoutcleanup1.0

HTTP 200 - the FEDAUTH cookie was deleted in step 10

HTTP 302 - redirect the signout page

GET a-Order

HTTP 200 - display data

Delete AdatumClaimsRPStsSiteCookie - HTTP 200

Delete FedAuth cookie -HTTP 200

9

8

10

11

12

a-Expense
(RP)

a-Order
(RP)

Create WS -
Federation token.

Create
ClaimsPrincipal

Create
ClaimsPrincipal

Authorize

Authorize

Already
authenticated,
return WS-
Federation token.

Sign out from
any IdPs.

In steps 13 and 14, the URLs
are invoked from IMG tags
in the page returned from
the issuer in step 12.

13

14

figure 24
Message sequence for single 
sign-out in the browser-based 
scenario



274274 appendix b

Figure 25 shows the key traffic generated by the browser. For 
reasons of clarity, we have removed some messages from the list.

figure 25
HTTP traffic

The numbers in the screenshot correspond to the steps in the 
message diagram. In this sample, the names of the two relying party 
applications are a-Expense.ClaimsAware and a-Order.ClaimsAware 
and they are running on the local machine. The name of the mock is-
suer that takes the place of ADFS is Adatum.SimulatedIssuer.1 and it 
is also running locally. The sample illustrates a user signing in first  
to a-Expense.ClaimsAware, then accessing the a-Order.ClaimsAware 
application, and then initiating the single sign-out from a link in the 
a-Order.ClaimsAware application.



 275 275message sequences

Step 1
The anonymous user browses to a-Expense.ClaimsAware, and because 
there is no established security session, the WSFederatedAuthenti-
cationModule (FAM) redirects the browser to the issuer which, in 
this example, is located at https://localhost/Adatum.SimulatedIssuer.1/. 

figure 26
Redirect to the issuer

As part of the request URL, there are four query string parameters: 
wa (the action to execute, which is wsignin1.0), wtrealm (the relying 
party that this token applies to, which is a-Expense.ClaimsAware), 
wctx (this is context data such as a return URL that will be propa-
gated among the different parties), and wct (a time stamp).

figure 27
WS-Federation data sent to the issuer

Step 2
The simulated issuer allows the user to select a User to sign in as for 
the session; in this example the user chooses to sign in as John. 

https://localhost/Adatum.SimulatedIssuer.1/


276276 appendix b

Step 3
The simulated issuer stores the name of the relying party (which it can 
use in the log-out process) in a cookie named AdatumClaimsRPStsSite-
Cookie, and details of the user in the .WINAUTH cookie.

figure 28
Cookies containing the user ID and a list of relying parties

The simulated issuer then posts the token back to the a-Expense.
ClaimsAware application using a JavaScript timer, passing the WS-
Federation token in the wresult field.

figure 29
Sending the WS-Federation token to the relying party



 277 277message sequences

Step 4
The relying party verifies the token, instantiates a ClaimsPrincipal 
object, and saves the claim data in a cookie named FedAuth. The ap-
plication sends an HTTP 302 to redirect the browser to the a-Expense.
ClaimsAware website.

figure 30
Creating the FedAuth cookie in the a-Expense.ClaimsAware application

Step 5
The a-Expense.ClaimsAware application uses the claims data stored in 
the FedAuth cookie to apply the authorization rules that determine 
which records John is permitted to view.



278278 appendix b

Step 6
John clicks on the link to visit the a-Order.ClaimsAware application. 
From the perspective of the application, the request is from an 
anonymous user, so it redirects the browser to the simulated issuer.  

figure 31
Redirecting to the issuer

As part of the request URL, there are four query string parameters: 
wa (the action to execute, which is wsignin1.0), wtrealm (the relying 
party that this token applies to, which is a-Order.ClaimsAware), wctx 
(context data, such as a return URL that will be propagated among the 
different parties), and wct (a time stamp). 

figure 32
WS-Federation data sent to the issuer



 279 279message sequences

Step 7
The simulated issuer recognizes that John is already authenticated 
because the browser sends the .WINAUTH cookie. 

figure 33
The browser sends the .WINAUTH cookie to the issuer

The application updates the AdatumClaimRPStsSiteCookie with 
details of the new relying party application, and posts a WS-Federa-
tion token back to the relying party.

figure 34
The browser updates the cookie with the new relying party



280280 appendix b

figure 35
The issuer posts the WS-Federation token to the relying party

Step 8
The relying party verifies the token, instantiates a ClaimsPrincipal 
object, and saves the claim data in a cookie named FedAuth. The ap-
plication sends an HTTP 302 to redirect the browser to the a-Order.
ClaimsAware website.

figure 36
The a-Order.ClaimsAware site creates a FedAuth cookie

Step 9
The a-Order.ClaimsAware application uses the claims data stored in 
the FedAuth cookie to apply the authorization rules that determine 
which records John is permitted to view. 



 281 281message sequences

Step 10
John clicks on the Logout link in the a-Order.ClaimsAware applica-
tion. The application deletes the FedAuth cookie and redirects the 
browser to the simulated issuer to complete the sign-out process.

figure 37
Deleting the FedAuth cookie and redirecting to the issuer

Step 11
The simulated issuer redirects the browser to itself, sending a WS-
Federation wsignout1.0 command.

figure 38
Sending the wsignout1.0 command



282282 appendix b

Step 12
The simulated issuer signs out from any identity providers and deletes 
the contents of the AdatumClaimsRPStsSiteCookie cookie.

figure 39
Clearing the cookie with the list of relying parties

Steps 13 and 14
The simulated issuer uses the list of relying parties from the Adatum-
ClaimsRPStsSiteCookie cookie to construct a list of image URLs:

<img src='https://localhost/a-expense.ClaimsAware/
                                     ?wa=wsignoutcleanup1.0'  />
<img src='https://localhost/a-Order.ClaimsAware/
                                     ?wa=wsignoutcleanup1.0'  />

These URLs pass the WS-Federation wsignoutcleanup1.0 com-
mand to each of the relying party applications, giving them the op-
portunity to complete the sign-out process in the application and 
perform any other necessary cleanup. 



 283 283message sequences

figure 40
Clearing the FedAuth cookie in the a-Expense.ClaimsAware application

figure 41
The FedAuth cookie was cleared for the a- 
Order.Claims application in step 10





285

This appendix lists the industry standards that are discussed in this 
book. 

Security Assertion Markup Language (SAML)
For more information about SAML, see the following:
•	 The OASIS Standard specification, “Assertions and Protocol for 

the OASIS Security Assertion Markup Language (SAML) V1.1” 
http://www.oasis-open.org/committees/download.php/3406/
oasis-sstc-saml-core-1.1.pdf

(Chapter 1, “An Introduction to Claims,” and Chapter 2, “Claims-
Based Architectures,” cover SAML assertions.)

Security Association Management Protocol 
(SAMP) and Internet Security Association and 
Key Management Protocol (ISAKMP)

For more information about these protocols, see the following:
•	 The IETF draft specification, “Internet Security Association  

and Key Management Protocol (ISAKMP)”   
http://tools.ietf.org/html/rfc2408

WS-Federation
For more information about WS-Federation, see the following:
•	 The OASIS Standard specification,  

http://docs.oasis-open.org/wsfed/federation/v1.2/
•	 “Understanding WS-Federation” on MSDN® 

http://msdn.microsoft.com/en-us/library/bb498017.aspx 

Appendix C Industry Standards

http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/
http://msdn.microsoft.com/en-us/library/bb498017.aspx%20


286286 appendix c

WS-Federation: Passive Requestor Profile
For more information about WS-Federation Passive Requestor  
Profile, see the following:
•	 Section 13 of the OASIS Standard specification, “Web Services 

Federation Language (WS-Federation) Version 1.2” 
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-
federation-1.2-spec-os.html#_Toc223175002

•	 “WS-Federation: Passive Requestor Profile” on MSDN 
http://msdn.microsoft.com/en-us/library/bb608217.aspx 

WS-Security
For more information about WS-Security, see the following:
•	 The OASIS Standard specification, “Web Services Security: 

SOAP Message Security 1.1 (WS-Security 2004)” 
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf 

WS-SecureConversation
For more information about WS-SecureConversation, see the following:
•	 The OASIS Standard specification, “WS-SecureConversation 

1.3” 
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/
ws-secureconversation.pdf

WS-Trust
For more information about WS-Trust, see the following:
•	 The OASIS Standard specification, “WS-Trust 1.3” 

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-
1.3-os.html

XML Encryption
For more information about XML Encryption (used to generate XML 
digital signatures), see the following:
•	 The W3C Recommendation, “XML Encryption Syntax and 

Processing” 
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html%23_Toc223175002
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html%23_Toc223175002
http://msdn.microsoft.com/en-us/library/bb608217.aspx%20
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf%20
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf%20
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/


287

This appendix lists the digital certificates that are used in claims-based 
applications. To see this in table form, see “Claims Based Identity & 
Access Control Guide” on CodePlex (http://claimsid.codeplex.com).

Certificates for Browser-Based Applications
In browser-based scenarios, you will find certificates used on the is-
suer and on the computer that hosts the web application. The client 
computer does not store certificates.

On the Issuer (Browser Scenario)
In browser-based scenarios, you will find the following certificates on 
the issuer. 

Certificate for TLS/SSL (Issuer, Browser Scenario)
The Transport Layer Security protocol/Secure Sockets Layer protocol 
(TLS/SSL) uses a certificate to protect the communication with the 
issuer—for example, for the credentials transmitted to it. The purpose 
is to prevent man-in-the-middle attacks, eavesdropping, and replay 
attacks.

Requirements: The subject name in the certificate must match 
the Domain Name System (DNS) name of the host that provides the 
certificate. Browsers will generally check that the certificate has a 
chain of trust to one of the root authorities trusted by the browser.

Recommended certificate store: LocalMachine\My
Example: CN=login.adatumpharma.com

Certificate for Token Signing (Issuer, Browser Scenario)
The issuer’s certificate for token signing is used to generate an XML 
digital signature to ensure token integrity and source verification.

Appendix D Certificates



288288 appendix d

Requirements: The worker process account that runs the issuer 
needs access to the private key of the certificate.

Recommended certificate store: LocalMachine\My and if Micro-
soft® Active Directory® Federation Services (ADFS) 2.0 is the issuer, 
the ADFS 2.0 database will keep a copy.

Example: CN=adatumpharma-tokensign.com 

The subject name on the certificate does not need to match a DNS 
name. It’s a recommended practice to name the certificate in a way 
that describes its purpose.

Optional Certificate for Token Encryption  
(Issuer, Browser Scenario)

The certificate for token encryption secures the SAML token. Encrypt-
ing tokens is optional, but it is recommended. You may opt to rely on 
TLS/SSL, which will secure the whole channel. 

Requirements: Only the public key is required. The private key is 
owned by the relying party for decrypting.

Recommended certificate store: LocalMachine\TrustedPeople, 
LocalMachine\AddressBook or if ADFS 2.0 is the issuer, the ADFS 2.0 
database will keep it.

Example: CN=a-expense.adatumpharma-tokenencrypt.com

Encrypting the token is optional, but it is generally recommended. 
Using TLS/SSL is already a measure to ensure the confidentiality of 
the token in transit. This is an extra security measure that could be 
used in cases where claim values are confidential. 

On the Web Application Server
In browser-based scenarios, you will find the following certificates on 
the web application server. 

Certificate for TLS/SSL (Web Server, Browser Scenario)
TLS/SSL uses a certificate to protect the communication with the 
web application server—for example, for the SAML token posted to 
it. The purpose is to prevent man-in-the-middle attacks, eavesdrop-
ping, and replay attacks.

Requirements: The subject name in the certificate must match 
the DNS name of the host that provides the certificate. Browsers will 
generally check that the certificate has a chain of trust to one of the 
root authorities trusted by the browser.

Recommended certificate store: LocalMachine\My
Example: CN=a-expense.adatumpharma.com



 289 289certificates

Token Signature Verification  
(Web Server, Browser Scenario)

The web application server has the thumbprint of the certificate that 
is used to verify the SAML token signature. The issuer embeds the 
certificate in each digitally signed security token. The web application 
server checks that the digital signature’s thumbprint (a hash code) 
matches that of the signing certificate. Windows® Identity Founda-
tion (WIF) and ADFS embed the public key in the token by default.

Requirements: The thumbprint of the issuer’s certificate should 
be present in the <issuerNameRegistry> section of the application’s 
Web.config file.

Recommended certificate store: None  
Example: ‎d2316a731b59683e744109278c80e2614503b17e (This 

is the thumbprint of the certificate with CN=adatumpharma-token-
sign.com.)

If the certificate (issuer public key) is embedded in the token, the 
signature verification is done automatically by WIF. If not, an 
IssuerTokenResolver needs to be configured to find the public key. 
This is common in interop scenarios; however, WIF and ADFS will 
always embed the full public key.

Token Signature Chain of Trust Verification  
(Web Server, Browser Scenario)

The web application server has a certificate that is used to verify the 
trusted certificate chain for the issuer’s token signing certificate.

Requirements: The public key of the issuer certificate should be 
installed in LocalMachine\TrustedPeople certificate store unless the 
certificate was issued by a trusted root authority.

Recommended certificate store: LocalMachine\TrustedPeople 
only if the certificate was not issued by a trusted root authority.

The chain-of-trust verification is controlled by an attribute of the 
<certificateValidation> element of the WIF configuration section 
of the application’s Web.config file. WIF has this setting turned on 
by default.

Optional Token Decryption  
(Web Server, Browser Scenario)

The web application has a certificate that it uses to decrypt the SAML 
token that it receives from an issuer (if it was encrypted). The web 
application has both public and private keys. The issuer has only the 
public key.



290290 appendix d

Requirements: The certificate used to decrypt the SAML token 
should be configured in the <serviceCertificate> element of the  
<microsoft.identityModel> section of the application’s Web.config 
file. Also, the App Pool account of the website should have permission 
to read the private key of the certificate.

Recommended certificate store: LocalMachine\My
Example: CN=a-expense.adatumpharma-tokenencrypt.com

Cookie Encryption/Decryption  
(Web Server, Browser Scenario)

The web application server has a certificate that it uses to ensure the 
confidentiality of the session cookie created to cache the token claims 
for the whole user session.

Requirements: The default WIF mechanism uses the Data Pro-
tection API (DPAPI) to encrypt the cookie. This requires access to a 
private key stored in the profile of the App Pool account. You must 
ensure that the account has the profile loaded by setting the Load 
User Profile to true in the App Pool configuration.

Recommended certificate store: None

A more web farm-friendly option is to use a different Cookie 
Transform to encrypt/decrypt the token (such as RsaEncryption 
CookieTransform) that uses X.509 certificates instead of DPAPI.

Certificates for Active Clients
In scenarios with active clients that interact with web services, you 
will find certificates used on the issuer, on the machine that hosts the 
web service, and on the client machine.

On the Issuer (Active Scenario)
In active client scenarios, you will find the following certificates on 
the issuer. 

Certificate for Transport Security (TLS/SSL)  
(Issuer, Active Scenario)

TLS/SSL uses a certificate to protect the communication with the 
issuer—for example, for the credentials transmitted to it. The purpose 
is to avoid man-in-the-middle attacks, eavesdropping, and replay at-
tacks.

Requirements: The subject name in the certificate must match 
the DNS name of the host that provides the certificate. Browsers will 
generally check that the certificate has a chain of trust to one of the 
root authorities trusted by the browser.



 291 291certificates

Recommended certificate store: LocalMachine\My
Example: CN=login.adatumpharma.com

Certificate for Message Security (Issuer, Active Scenario)
A certificate will be used to protect the communication between the 
client and the issuer at the message level.

Requirements: For a custom issuer that you implement, the ser-
vice credentials are configured in the Windows Communication 
Foundation (WCF) issuer—for example, through the <service 
Certificate> section of the issuer’s Web.config file. 

For an ADFS 2.0 issuer, this is configured using the Microsoft 
Management Console (MMC).

Recommended certificate store: LocalMachine\My or ADFS 
database

Example: CN=login.adatumpharma.com

Certificate for Token Signing (Issuer, Active Scenario)
The issuer’s certificate for token signing is used to generate an XML 
digital signature to ensure token integrity and source verification.

Requirements: The worker process account that runs the issuer 
needs access to the private key of the certificate.

Recommended certificate store: LocalMachine\My and the 
ADFS 2.0 database

Example: CN=adatumpharma-tokensign.com 

The subject name on the certificate does not need to match a DNS 
name. It’s a recommended practice to name the certificate in a way 
that describes its purpose.

Certificate for Token Encryption (Issuer, Active Scenario)
The certificate for token encryption secures the SAML token. This 
certificate is required when an active client is used. 

Requirements: Only the public key is required on the client. The 
relying party owns the private key, which it uses to decrypt the SAML 
token.

Recommended certificate store: LocalMachine\TrustedPeople, 
LocalMachine\AddressBook or the ADFS 2.0 database

Example:  CN=a-expense.adatumpharma-tokenencrypt.com

Encrypting the token is optional, but it is generally recommended. 
The use of TLS/SSL is already a measure to ensure the confidentiality 
of the token in transit. This is an extra security measure that could 
be used in cases where claim values must be kept confidential.



292292 appendix d

On the Web Service Host
These are the certificates used on the machine that hosts the web 
service.

Certificate for Transport Security (TLS/SSL)  
(Web Service Host, Active Scenario)

TLS/SSL uses a certificate to protect the communication with the 
web service—for example, for the SAML token sent to it by an issuer. 
The purpose is to mitigate and prevent man-in-the-middle attacks, 
eavesdropping, and replay attacks.

Requirements: The subject name in the certificate must match 
the DNS name of the host that provides the certificate. Active clients 
will generally check that the certificate has a chain of trust to one of 
the root authorities trusted by that client.

Recommended certificate store: LocalMachine\My
Example: CN=a-expense-svc.adatumpharma.com

Certificate for Message Security  
(Web Service Host, Active Scenario)

A certificate will be used to protect the communication between the 
client and the web service at the message level.

Requirements: The service credentials are configured in the WCF 
web service—for example, through the <serviceCertificate> section 
of the web service’s Web.config file. 

Recommended certificate store: LocalMachine\My 
Example: CN=a-expense-svc.adatumpharma.com

Token Signature Verification  
(Web Service Host, Active Scenario)

The web service host has the thumbprint of the certificate that is 
used to verify the SAML token signature. The issuer embeds the cer-
tificate in each digitally signed security token. The web service host 
checks that the digital signature’s thumbprint (a hash code) matches 
that of the signing certificate. WIF and ADFS embed the public key in 
the token by default.

Requirements: The thumbprint of the issuer’s certificate should 
be present in the <issuerNameRegistry> section of the web service’s 
Web.config file.

Recommended certificate store: None  
Example: ‎d2316a731b59683e744109278c80e2614503b17e (This 

is the thumbprint of the certificate with CN=adatumpharma-token-
sign.com.)

If the certificate (issuer public key) is embedded in the token, the 
signature verification is done automatically by WIF. If not, an 



 293 293certificates

IssuerTokenResolver needs to be configured to find the public key. 
This is common in interop scenarios; however, WIF and ADFS will 
always embed the full public key.

Token Decryption (Web Service Host, Active Scenario)
The web service host has a certificate that it uses to decrypt the 
SAML token that it receives from an issuer. The web application has 
both public and private keys. The issuer has only the public key.

Requirements: The certificate used to decrypt the SAML token 
should be configured in the <serviceCertificate> element of the  
<microsoft.identityModel> section of the web service’s Web.config 
file. Also, the App Pool account of the web server should have permis-
sion to read the private key of the certificate.

Recommended certificate store: LocalMachine\My
Example: CN=a-expense-svc.adatumpharma-tokenencrypt.com

Token Signature Chain Trust Verification (Web Service 
Host, Active Scenario)

The web service host has a certificate that is used to verify the 
trusted certificate chain for the issuer’s token signing certificate.

Requirements: The public key of the issuer certificate should be 
installed in LocalMachine\TrustedPeople certificate store unless the 
certificate was issued by a trusted root authority.

Recommended certificate store: LocalMachine\TrustedPeople 
only if the certificate was not issued by a trusted root authority.

The chain-of-trust verification is controlled by an attribute of the 
<certificateValidation> element of the WIF configuration section 
of the web service’s Web.config file. WIF has this setting turned on 
by default.

On the Active Client Host
These are the certificates that are used on the active client computer.

Certificate for Message Security (Active Client Host)
A certificate will be used to protect the communication between the 
client and the web service or issuer at the message level.

Requirements: If negotiateServiceCredentials is enabled, the 
client will obtain the public key of the web service or issuer at run 
time. If not, the certificate for message security is configured in the 
WCF client by setting the ClientCredentials.ServiceCertificate 
property at run time or configuring the <serviceCertificate> element 
of the active client’s App.config file. The service credentials are con-
figured in the WCF web service—for example, through the <service 



294294 appendix d

Certificate> section of the web service’s Web.config file. 
Recommended certificate store: LocalMachine\TrustedPeople or 

LocalMachine\AddressBook
Example: CN=a-expense-svc.adatumpharma.com



295

This appendix provides background information about ACS and 
shows you how to obtain and configure a Windows Azure™ App 
Fabric Access Control Service (ACS) account. ACS makes it easy to 
authenticate and authorize website, application, and service users and 
is compatible with popular programming and runtime environments. 
It allows authentication to take place against many popular web and 
enterprise identity providers. Users are presented with a configurable 
page listing the identity providers that are configured for the applica-
tion, which assists in the home realm discovery (HRD) process by 
permitting the user to select the appropriate identity provider.  

ACS also integrates with Windows Identity Foundation (WIF) 
tools and environments and Microsoft Active Directory® Federation 
Services (ADFS) 2.0. It can accept SAML 1.1, SAML 2.0, and Simple 
Web Token (SWT) formatted tokens, and will issue a SAML 1.1, 
SAML 2.0, or SWT token. ACS supports a range of protocols that 
includes OAuth, OpenID, WS-Federation, and WS-Trust. Rules con-
figured within ACS can perform protocol transition and claims trans-
formation as required by the website, application, or service.

ACS is configured through the service interface using an OData-
based management API, or though the web portal that provides a 
graphical and interactive administration experience.  

This appendix discusses the ways that ACS can be used by show-
ing several scenarios and the corresponding message sequences. It also 
contains information about creating an ACS issuer service instance, 
configuring applications to use this service instance, creating custom 
home realm discovery pages, error handling, integrating with ADFS, 
security considerations, and troubleshooting ACS operations. 

Appendix E Windows Azure  
AppFabric Access  

Control Service



296296 appendix e

What Does ACS DO?
ACS can be used to implement federated authentication and authori-
zation by acting as a token issuer that authenticates users by trusting 
one or more identity providers. The following list contains definitions 
of the important entities and concepts involved in this process:
•	 Realm or Domain: an area or scope for which a specific identity 

provider is authoritative. It is not limited to only an Active 
Directory directory service domain or any similar enterprise 
mechanism. For example, the Google identity provider service is 
authoritative for all users in the Google realm or domain (users 
who have an account with Google); but it is not authoritative 
for users in the Windows Live® realm or domain (users with an 
account on the Windows Live network of Internet services).

•	 Home Realm Discovery: the process whereby the realm or 
domain of a user is identified so that the request for authentica-
tion can be forwarded to the appropriate identity provider. This 
may be accomplished by displaying a list of available identity 
providers and allowing the user to choose the appropriate one 
(one that will be able to authenticate the user). Alternatively, it 
may be achieved by asking the user to provide an email address, 
and then using the domain of that address to identify the home 
realm or domain of that user for authentication purposes.

•	 Identity Provider: a service or site that accepts credentials from 
a user. These credentials prove that the user has a valid account 
or identity. ACS redirects users to the appropriate identity 
provider that can authenticate that user and issue a token 
containing the claims (a specific set of information) about that 
user. The claims may include only a user identifier, or may 
include other details such as the user name, email address, and 
any other information that the user agrees to share. An identity 
provider is authoritative when the authentication takes place 
for a user within the provider’s realm or domain.

•	 Security Token Service (STS) or Token Issuer: a service that 
issues tokens containing claims. ACS is an STS in that it issues 
tokens to relying parties that use ACS to perform authentica-
tion. The STS must trust the identity provider(s) it uses. 

•	 Relying Party: an application, website, or service that uses a 
token issuer or STS to authenticate a user. The relying party 
trusts the STS to issue the token it needs. There might be 
several trust relationships in a chain. For example, an application 
trusts STS A, which in turn trusts another STS B. The applica-
tion is a relying party to STS A, and STS A is a relying party to 
STS B. 



 297 297windows azure appfabric access control service

•	 Trust Relationship: a configuration whereby one party trusts 
another party to the extent that it accepts the claims for users 
that the other party has authenticated. For example, in the 
scope of this appendix, ACS must trust the identity providers it 
uses and the relaying party must trust ACS. 

•	 Transformation Rules: operations that are performed on the 
claims in a token received from an STS when generating the 
token that this entity will issue. ACS includes a rules engine that 
can perform a range of operations on the claims in the source 
token received from an identity provider or another STS. The 
rules can copy, process, filter, or add claims before inserting 
them into a token that is issued to the relying party. 

•	 Protocol Transition: the process in an STS of issuing a token for 
a relying party when the original token came from another STS 
that implements different token negotiation protocols. For 
example, ACS may receive a token from an identity provider 
using OpenID, but issue the token to the relying party using the 
WS_Federation protocol. 

In essence, when the user is requesting authentication in a web 
browser, ACS receives a request for authentication from a relying 
party and presents a home realm discovery page. The user selects an 
identity provider, and ACS redirects the user to that identity provider’s 
login page. The user logs in and is returned to ACS with a token con-
taining the claims this user has agreed to share in that particular iden-
tity provider. 

ACS then applies the appropriate rules to transform the claims, 
and creates a new token containing the transformed claims. It then 
redirects the user back to the relying party with the ACS token. The 
relying party can use the claims in this token to apply authorization 
rules appropriate for this user.

The process for service authentication is different because there 
is no user interaction. Instead, the service must first obtain a suitable 
token from an identity provider, present this token to ACS for trans-
formation, and then present the token that ACS issues to the relying 
party. The following sections of this chapter describe the message 
sequence in more detail, and explain how you can configure ACS to 
perform federated authentication.

Message Sequences for ACS
ACS can be used as a stand-alone claims issuer, but the typical sce-
nario is to combine it with one or more local issuers such as ADFS or 
custom issuers. The sequence of messages and redirections varies 



298298 appendix e

depending on the specific scenario; however, the following are some 
of the more common scenarios for ACS.

ACS Authenticating Users of a Website
ACS can be used to authenticate visitors to a website when these 
visitors wish to use a social identity provider or another type of iden-
tity provider that ACS supports. Figure 1 shows a simplified view of 
the sequence of requests that occur. 

figure 1
ACS authenticating users of a website

On accessing the application (1), the visitor’s web browser is redi-
rected to ACS, the trusted source of security tokens (2 and 3). ACS 
displays the home realm discovery page (4) containing a list of iden-
tity providers configured for the website or web application. The user 
selects an identity provider and ACS redirects the visitor’s web 
browser to that identity provider’s login page (5). 

After entering the required credentials, the visitor’s browser is 
eventually redirected back to ACS (6) with the identity provider’s 
token in the request (7). ACS performs any necessary transformation 
of the claims in the identity provider’s token using rules configured for 
the website or application, and then returns a token containing these 
claims (8). The visitor’s browser is then redirected to the claims-aware 
website that was originally accessed (9). 

This scenario is demonstrated in Chapter 7, “Federated Identity 
with Multiple Partners and Windows Azure Access Control Service.” 

Issuer (ACS)

6

1

2

3 4

5

7 8

9

Access site
Redirect to ACS

Send ACS token 

Authenticate

Issue token 
and redirect to 
ACSWeb

browser

Identity Provider

Windows Live

Google

Facebook

[ others ]

Se
nd

 re
qu

es
t f

or
au

th
en

tic
at

io
n Return H

om
e Realm

D
iscovery page Se

nd
 id

en
tit

y
pr

ov
id

er
 to

ke
n Return token containing

transform
ed claim

s

Trust
Trust

Claims-aware
website



 299 299windows azure appfabric access control service

ACS Authenticating Services, Smart  
Clients, and Mobile Devices

ACS can be used to authenticate service requests for web services, 
smart clients, and mobile devices such as Windows Phone when the 
service uses a social identity provider or another type of identity 
provider that ACS supports. Figure 2 shows a simplified view of the 
sequence of requests that occur. 

figure 2
ACS authenticating services, smart clients, and SharePoint BCS

Because the service cannot use the ACS home realm discovery 
web page, it must be pre-configured to use the required identity pro-
vider or may query ACS to discover the trusted STS to use. The service 
first authenticates with the appropriate identity provider (1), which 
returns a token (2) that the service sends to ACS (3). ACS performs 
any necessary transformation of the claims in the identity provider’s 
token using rules configured for the service, and then returns a token 
containing these claims (4). The service then sends the token received 
from ACS to the relying party service or resource (5). 

This scenario is demonstrated in Chapter 8, “Claims Enabling Web 
Services.”

1

2

3 4

5

Authenticate

Issue token Send ACS token

Trust
Trust

Identity Provider

Windows Live

Google

Facebook

[ others ]

Se
nd

 id
en

tit
y 

pr
ov

id
er

to
ke

n Return token containing
transform

ed  claim
s

Issuer (ACS)

Claims-aware
service

Smart Client
or Service



300300 appendix e

Combining ACS and ADFS for Users  
of a Website
ACS can be used to authenticate visitors to a website when these 

visitors will access an ADFS STS first to establish their identity, but 
the ADFS STS trusts ACS so that visitors who wish to use a social 
identity provider or another type of identity provider can be authen-
ticated. Figure 3 shows a simplified view of the sequence of requests 
that occur. 

figure 3
ACS and ADFS authenticating users of a website

Upon accessing the application (1), the visitor’s web browser is 
redirected to ADFS (2 and 3). ADFS will contain preconfigured rules 
that redirect the visitor to ACS (4 and 5), which displays the home 
realm discovery page (6) containing a list of identity providers config-
ured for the website or web application. The user selects an identity 
provider and ACS redirects the visitor’s web browser to that identity 
provider’s login page (7). 

After entering the required credentials, the visitor’s browser is 
redirected back to ACS with the identity provider’s token in the re-
quest (8 and 9). ACS performs any necessary transformation of the 
claims in the identity provider’s token using rules configured for the 
website or application, and then redirects the browser to ADFS with 
a token containing these claims (10). ADFS receives the token (11), 

Issuer (ADFS)

6

1

2

3 4 5 9

Access site

Redirect to ADFS

Send ADFS token 

Authenticate

Issue token and
redirect to ACS

Web
browser

Identity Provider

Windows Live

Google

Facebook

[ others ]

Send request for

authentication

Redirect to A
C

S if 

specified by rules

Send token received

from
 AC

S issuer

Return token containing

transform
ed claim

s

Se
nd

 id
en

tit
y

pr
ov

id
er

 to
ke

n
Re

tu
rn

 to
ke

n 
co

nt
ai

ni
ng

tr
an

sf
or

m
ed

 c
la

im
s

7

8

Se
nd

 re
qu

es
t f

or
au

th
en

tic
at

io
n

Re
tu

rn
 H

om
e 

Re
al

m
D

isc
ov

er
y 

Pa
ge

Trust

Trust

Trust

Claims-aware
website

1011 12

13

Issuer (ACS)Active
Directory



 301 301windows azure appfabric access control service

performs any additional transformations on the claims, and returns a 
token (12). The visitor’s browser is then redirected to the claims-aware 
website that was originally accessed (13). 

Combining ACS and ADFS for Services, 
Smart Clients, and SharePoint BCS

ACS can be used to authenticate service requests for web services, 
smart clients, and Microsoft SharePoint® Business Connectivity Ser-
vices (BCS) applications when the service uses an ADFS STS as the 
token issuer, but the service requires a token provided by ACS. Figure 
4 shows a simplified view of the sequence of requests that occur.

figure 4
ACS authenticating services, smart  
clients, and SharePoint BCS

The service is preconfigured to use ADFS and Active Directory as 
the identity provider. The service first authenticates through ADFS 
(1), which returns a token (2) that the service sends to ACS (3). ACS 
trusts ADFS, and performs any necessary transformation of the claims 
in the token using rules configured for the service; then it returns a 
token containing these claims (4). The service then sends the token 
received from ACS to the relying party service or resource (5). 

This scenario is demonstrated in Chapter 9, “Securing REST  
Services.”

Active
Directory

1 2

3
4

5

A
uthenticate w

ith

A
ctive D

irectory

Issue token

containing claim
s

Send token

Se
nd

 to
ke

n 

ob
ta

in
ed

 fr
om

 A
DFS

Re
tu

rn
 to

ke
n 

fro
m

 A
CS

Issuer (ADFS) Issuer (ACS)

Claims-aware
service

Smart Client
or Service

Trust

Trust



302302 appendix e

Creating, Configuring, and Using an ACS Issuer
The complete process for creating and configuring an ACS account to 
implement a token issuer requires the following steps:

1.	 Access the ACS web portal.

2.	 Create a namespace for the issuer service instance.

3.	 Add the required identity providers to the namespace.

4.	 Configure one or more relying party applications.

5.	 Create claims transformations and pass-through rules. 

6.	 Obtain the URIs for the service namespace.

7.	 Configure relying party applications to use ACS.

The following sections explain each of these steps in more detail.

Step 1: Access the ACS Web Portal
The initial configuration of ACS must be done using the web portal. 
This is a Microsoft Silverlight® browser plug-in application that pro-
vides access to the access control, service bus, and cache features of 
the Azure AppFabric for your account. You must log into the portal 
using a Windows Live ID associated with your Windows Azure ac-
count. If you do not have a Windows Live ID, you must create and 
register one first at http://www.live.com. If you do not have a Win-
dows Azure account, you must create one at http://www.microsoft.
com/windowsazure/account/ before you can use ACS. 

ACS is a subscription-based service, and you will be charged for 
the use of ACS. The cost depends on the type of subscription you 
take out. At the time of writing, the standard consumption charge was 
$1.99 per 100,000 transactions. 

Step 2: Create a Namespace for the Issuer  
	Se rvice Instance

After you sign into the ACS web portal, you can begin to configure 
your service instance. The first step is to define a namespace for your 
service. This is prepended to the ACS URI to provide a unique base 
URI for your service instance. You must choose a namespace that is 
not already in use anywhere else by ACS (you can check the avail-
ability before you confirm your choice), and choose a country/region 
where the service will be hosted.

For example, if you choose the namespace fabrikam, the base URI 
for your ACS service instance will be https://fabrikam.accesscontrol.
appfabric.com. Endpoints for applications to use for authentication 
will be paths based on this unique URI. 

http://www.live.com
http://www.microsoft.com/windowsazure/account/
http://www.microsoft.com/windowsazure/account/


 303 303windows azure appfabric access control service

After you have created the namespace, you see the main service 
management page for your new service instance. This provides quick 
access to the configuration settings for the trust relationships (the 
relying party applications, identity providers, and rule groups), the 
service settings (certificates, keys, and service identities), administra-
tion, and application integration. 

You must use the Certificates and Keys page either to upload an 
X.509 certificate with a private key for use by ACS when encrypting 
tokens, or specify a 256-bit symmetric key. You can also upload a dif-
ferent certificate for signing the tokens if required. You can use cer-
tificates generated by a local certificate authority such as Active Di-
rectory Certificate Services, a certificate obtained from a commercial 
certification authority, or (for testing and proof of concept purposes) 
self-signed certificates. 

Step 3: Add the Required Identity Providers to the 	
		Na  mespace

Next, you must specify the identity providers that you will trust to 
authenticate requests sent to ACS from applications and users. By 
default, Windows Live ID is preconfigured as an identity provider. You 
can add additional providers such as Google, Yahoo!, Facebook, your 
own or other ADFS issuers, and more. For each one, you can specify 
the URL of the login page and an image to display for the identity 
provider when the user is presented with a list of trusted providers. 

For known identity providers (such as Google, Yahoo!, and Face-
book) these settings are preconfigured and you should consider using 
the default settings. If you want to trust another identity provider, 
such as a Security Token Service (STS) based at an associated site such 
as a partner company, you must enter the login page URL, and option-
ally specify an image to display.

By default, ACS uses Windows Live ID as the identity provider to 
determine the accounts of ACS administrators. You configure a rule 
that identifies administrators through the claims returned by their 
identity provider (claim transformation and filtering rules are 
described in step 5). You can also use any of the other configured 
identity providers to determine which accounts have administrative 
rights for this ACS service instance.

Step 4: Configure One or More Relying Party  
	 Applications

You can now configure the ACS service to recognize and respond to 
relying parties. Typically these are the applications and web services 
that will send authentication requests to this ACS service instance. 
For each relying party you specify:



304304 appendix e

•	 A name for the application or service as it will appear in the 
authentication portal page where users select an identity 
provider.

•	 The URIs applicable to this application or service. These include 
the realm (URI) for which tokens issued by ACS will be valid, 
the URI to redirect the request to after authentication and, 
optionally, a different URI to redirect the request to if an 
authentication error occurs. 

It is good practice to always configure the redirection addresses, 
even though they are mandated by ACS to be in the same realm as 
the token that ACS delivers, in order to mitigate interception attacks 
through rerouting the posted token

•	 The format, encryption policy, and validity lifetime (in seconds) 
for the tokens returned from ACS. By default the format is a 
SAML 2.0 token, but other formats such as SAML 1.1 and SWT 
are available. SAML 1.1 and SAML 2.0 tokens can be encrypted, 
but SWT tokens cannot. If you want to return tokens to a web 
service that implements the WS-Trust protocol you must select 
a policy that encrypts the token.

•	 The binding between this relying party and the identity provid-
ers you previously configured for the service namespace. Each 
relying party can trust a different subset of the identity provid-
ers you have configured for the service namespace.

•	 The token signing options. By default, tokens are signed using 
the certificate for the service namespace, and all relying parties 
will use the same certificate. However, if you wish, you can 
upload more certificates and allocate them to individual relying 
parties. 
Each option in the configuration page has a “Learn more” link that 

provides more information on that setting. You can, as an alternative, 
upload a WS-Federation metadata document that contains the re-
quired settings instead of entering them manually into the portal.

If you only configure a single identity provider for a relying party, 
ACS will not display the Home Realm Discovery page that shows a 
list of configured identity providers. It will just use the identity 
provider you configured.  



 305 305windows azure appfabric access control service

Step 5: Create Claims Transformations  
	a nd Pass-through Rules

By default, ACS does not include any of the claims it receives from an 
identity provider in the token it issues. This ensures that, by default, 
claims that might contain sensitive information are not automatically 
sent in response to authentication requests. You must create rules 
that pass the values in the appropriate claims through to the token 
that will be returned to the relying party. These rules can apply a 
transformation to the claim values, or simply pass the value received 
from the identity provider into the token. 

The rules are stored in rule groups. You create a rule group and 
give it a name, then create individual rules for this group. The portal 
provides a Generate feature that will automatically generate a pass-
through rule for every claim for every configured identity provider. If 
you do not require any transformations to take place, (which is typi-
cally the case if the relying party application or service will access ACS 
through another STS such as a local ADFS instance), this set of gener-
ated rules will probably suffice as all of the claims mapping and trans-
formations will take place on the local STS issuer. 

If you want to perform transformation of claims within ACS, you 
must create custom rules. For a custom rule, you specify:
•	 The rule conditions that match an input claim from an identity 

provider. You can specify that the rule will match on the claim 
type, the claim value, or both. 

•	 For the claim type, you can specify that it will match any claim 
type, one of the standard claim types exposed by this identity 
provider, or a specific claim type you enter (as a full XML 
namespace value for that claim type).

•	 For the claim value, you can specify that it will match any value 
or a specific value you enter. Claim types and values are case-
sensitive.

•	 The rule actions when generating the output claim. You can 
specify the output claim type, the output claim value, or both. 

•	 For the output claim type you can specify a pass-through action 
that generates a claim of the same type as the input claim, select 
one of the standard claim types exposed by this identity pro-
vider, or enter a specific claim type (as a full XML namespace 
value for that claim type). 

•	 For the output claim value you can choose to pass through the 
original value of the claim, or enter a value.  

•	 The rule description (optional) that helps you to identify the 
rule when you come to apply it.



306306 appendix e

Step 6: Obtain the URIs for the Service Namespace
After you configure your ACS service instance, you use the Applica-
tion Integration page of the portal to obtain the endpoints to which 
relying parties will connect to authenticate requests. This page also 
lists the endpoints for the management service (the API for configur-
ing ACS without using the web portal), the OAuth WRAP URI, and 
the URIs of the WS-Federation and WS-Metadata Exchange docu-
ments.

Step 7: Configure Relying Party Applications  
	 to Use ACS

To add an ACS service reference to an application in Microsoft Visual 
Studio® development system, you must download and install the 
Windows Identity Foundation SDK. This adds a new option to the 
Visual Studio menus to allow you to add an STS reference to a project. 
It starts a wizard (the FedUtil utility) that asks for the URI of the 
WS-Federation document for your ACS service instance, with can be 
obtained from the application integration page of the portal in the 
previous step. The wizard adds a reference to the Microsoft.Identity 
Model assembly to the project and updates the application configura-
tion file. 

If the application is a web application, users will be redirected to 
ACS when they access the application, and will see the ACS home 
realm discovery page that lists the configured identity providers for 
the application that are available. After authenticating with their 
chosen identity provider, users will be returned to the application, 
which can use the claims in the token returned by ACS to modify its 
behavior as appropriate for each user. 

For information and links to other resources that describe tech-
niques for using claims and tokens to apply authorization in applica-
tions and services, see “Authorization In Claims Aware Applications 
– Role Based and Claims Based Access Control” at http://blogs.msdn.
com/b/alikl/archive/2011/01/21/authorization-in-claims-aware-ap-
plications-role-based-and-claims-based-access-control.aspx.

Custom Home Realm Discovery Pages
By default, ACS displays a home realm discovery page when a user is 
redirected to ACS for authentication. This page contains links to the 
identity providers configured for the relying party application, and is 
hosted within ACS. If you have configured an ADFS instance as an 
identity provider, you can specify email suffixes that are valid for this 
ADFS instance, and ACS will display a text box where users can enter 
an email address that has one of the valid suffixes. This enables ACS 
to determine the home realm for the authenticated user.

http://blogs.msdn.com/b/alikl/archive/2011/01/21/authorization-in-claims-aware-applications-role-based-and-claims-based-access-control.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/21/authorization-in-claims-aware-applications-role-based-and-claims-based-access-control.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/21/authorization-in-claims-aware-applications-role-based-and-claims-based-access-control.aspx


 307 307windows azure appfabric access control service

As an alternative to using the default ACS-hosted login page, you 
can create a custom page and host it with your application (or else-
where). The custom page uses the Home Realm Discovery Metadata 
Feed exposed by ACS to get the list and details of the supported 
identity providers. To make this easier, you can download the example 
login page (which is the same as the default page) from ACS and 
modify it as required.

If you are integrating ACS with ADFS, the home realm discovery 
page will contain a text box where users can enter an email address 
that is valid within trusted ADFS domains. ACS will use this to deter-
mine the user’s home realm. You can create a custom page that con-
tains only a text box and does not include the list of configured 
identity providers if this is appropriate for your scenario.

Configuration with the Management Service 
API

Windows Azure AppFabric exposes a REST-based service API in At-
omPub format that uses X.509 client certificates for authentication. 
The URI of the management service for your ACS instance is shown 
in the application integration page of the web portal after your con-
figure the instance. You can upload any valid X.509 certificate (in .cer 
format) to the ACS portal and then use it as a client certificate when 
making API requests. 

The Windows Azure management API supports all of the opera-
tions available through the web portal with the exception of creating 
a namespace. You can use the management API to configure identity 
providers, relying parties, rules, and other settings for your namespac-
es. To create new namespaces, you must use the web portal.

Chapter 7, “Federated Identity with Multiple Partners and Win-
dows Azure Access Control Service” and the associated ACS wrapper 
used in this sample to configure ACS demonstrate how you can use 
the management API to configure identity providers, relying partiers, 
and rules.

For more information, see “Access Control Service Samples and 
Documentation” at http://acs.codeplex.com/releases/view/57595. 

For examples of adding identity providers such as ADFS, OpenID, 
and Facebook using the management API, see the following resources:
•	 “Adding Identity Provider Using Management Service” at http://

blogs.msdn.com/b/alikl/archive/2011/01/08/windows-azure-
appfabric-access-control-service-v2-adding-identity-provider-
using-management-service.aspx.

http://acs.codeplex.com/releases/view/57595
http://blogs.msdn.com/b/alikl/archive/2011/01/08/windows-azure-appfabric-access-control-service-v2-adding-identity-provider-using-management-service.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/08/windows-azure-appfabric-access-control-service-v2-adding-identity-provider-using-management-service.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/08/windows-azure-appfabric-access-control-service-v2-adding-identity-provider-using-management-service.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/08/windows-azure-appfabric-access-control-service-v2-adding-identity-provider-using-management-service.aspx


308308 appendix e

•	 “Programmatically Adding OpenID as an Identity Provider Using 
Management Service” at http://blogs.msdn.com/b/alikl/ar-
chive/2011/02/08/windows-azure-appfabric-access-control-
service-acs-v2-programmatically-adding-openid-as-an-identity-
provider-using-management-service.aspx.

•	 “Programmatically Adding Facebook as an Identity Provider 
Using Management Service” at http://blogs.msdn.com/b/alikl/
archive/2011/01/14/windows-azure-appfabric-access-control-
service-acs-v2-programmatically-adding-facebook-as-an-
identity-provider-using-management-service.aspx.

Managing Errors
One of the configuration settings for a relying party that can be pro-
vided is the URI where ACS will send error messages. ACS sends de-
tails of the error as a JavaScript Object Notation (JSON)-encoded 
object in the response body when the original request was an OAuth 
request; or a SOAP fault message if the original request was a WS-
Trust request. The response includes a TraceId value that is useful in 
identifying failed requests if you need to contact the ACS support 
team.

For information about handling JSON-encoded responses, see 
“How To: Use Error URL” at http://acs.codeplex.com/wikipage?title= 
How%20To%3a%20Use%20Error%20URL and “Returning Friendly 
Error Messages Using Error URL Feature” at http://blogs.msdn.com/b/
alikl/archive/2011/01/15/windows-azure-appfabric-access-control-
service-acs-v2-returning-friendly-error-messages-using-error-url-
feature.aspx.

Errors that arise when processing management API requests 
throw an exception of type DataServiceRequestException.

A list of error codes for ACS is available from “ACS Error Codes” 
at http://acs.codeplex.com/wikipage?title=ACS%20Error%20Codes& 
version=8.

Integration of ACS and a Local ADFS Issuer
You can configure ACS to use an ADFS issuer as a trusted identity 
provider. This is useful in scenarios where you want users of a local 
application to be able to authenticate against an Active Directory 
installation (typically within your own organization) when they access 
the local application, and then access other services that require a 
SAML or other type of claims token.  For example, a locally installed 
customer management application may use a partner’s externally 
hosted service to obtain credit rating information for customers. 

http://blogs.msdn.com/b/alikl/archive/2011/02/08/windows-azure-appfabric-access-control-service-acs-v2-programmatically-adding-openid-as-an-identity-provider-using-management-service.aspx
http://blogs.msdn.com/b/alikl/archive/2011/02/08/windows-azure-appfabric-access-control-service-acs-v2-programmatically-adding-openid-as-an-identity-provider-using-management-service.aspx
http://blogs.msdn.com/b/alikl/archive/2011/02/08/windows-azure-appfabric-access-control-service-acs-v2-programmatically-adding-openid-as-an-identity-provider-using-management-service.aspx
http://blogs.msdn.com/b/alikl/archive/2011/02/08/windows-azure-appfabric-access-control-service-acs-v2-programmatically-adding-openid-as-an-identity-provider-using-management-service.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/14/windows-azure-appfabric-access-control-service-acs-v2-programmatically-adding-facebook-as-an-identity-provider-using-management-service.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/14/windows-azure-appfabric-access-control-service-acs-v2-programmatically-adding-facebook-as-an-identity-provider-using-management-service.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/14/windows-azure-appfabric-access-control-service-acs-v2-programmatically-adding-facebook-as-an-identity-provider-using-management-service.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/14/windows-azure-appfabric-access-control-service-acs-v2-programmatically-adding-facebook-as-an-identity-provider-using-management-service.aspx
http://acs.codeplex.com/wikipage?title=How%20To%3a%20Use%20Error%20URL
http://acs.codeplex.com/wikipage?title=How%20To%3a%20Use%20Error%20URL
http://blogs.msdn.com/b/alikl/archive/2011/01/15/windows-azure-appfabric-access-control-service-acs-v2-returning-friendly-error-messages-using-error-url-feature.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/15/windows-azure-appfabric-access-control-service-acs-v2-returning-friendly-error-messages-using-error-url-feature.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/15/windows-azure-appfabric-access-control-service-acs-v2-returning-friendly-error-messages-using-error-url-feature.aspx
http://blogs.msdn.com/b/alikl/archive/2011/01/15/windows-azure-appfabric-access-control-service-acs-v2-returning-friendly-error-messages-using-error-url-feature.aspx
http://acs.codeplex.com/wikipage?title=ACS%20Error%20Codes&version=8
http://acs.codeplex.com/wikipage?title=ACS%20Error%20Codes&version=8


 309 309windows azure appfabric access control service

Active
Directory

1

2

3

4

Configure using
WS-Fed metadata

Get SAML token
Exchange SAML 
token for ACS token

Send ACS token
with payload

ADFS ACS

Local application
Externally hosted

service
(Relying Party)

The procedure for configuring this scenario is to use the WS-
Federation document that can be created by ADFS to configure ACS 
so that it can use the ADFS service as a trusted identity provider. ACS 
can accept encrypted tokens from ADFS identity providers as long as 
the appropriate X.509 certificate with a private key is hosted by ACS. 
The ADFS identity provider receives the public key it will use to en-
crypt tokens when it imports the WS-Federation metadata from ACS.

Afterwards, when users first access the local application they are 
authenticated by the local ADFS STS. When the application must 
access the externally hosted service, it queries ACS. ACS then authen-
ticates the user against their local ADFS STS and issues a token that 
is valid for the remote service. The customer management application 
then passes this token to the remote service when it makes the call to 
retrieve rating information (see Figure 5).

figure 5
ACS using an ADFS issuer as a trusted identity provider

An alternative (reverse) scenario is to configure ADFS to use ACS 
as a trusted issuer. In this scenario, ADFS can authenticate users that 
do not have an account in the local Active Directory used by ADFS. 
When users log into the application and are authenticated by ADFS, 
they can choose an identity provider supported by ACS. ADFS then 
accepts the token generated by ACS, optionally maps the claims it 
contains, and issues a suitable token (such as a Kerberos ticket) to the 
user that is valid in the local domain (see Figure 6).



310310 appendix e

figure 6
ADFS using ACS as a trusted issuer

Security Considerations with ACS
You must ensure that your applications and services that make use of 
ACS for authentication and claims issuance maintain the requisite 
levels of security. Although your applications do not have access to 
users’ login credentials, ACS does expose claims for the user that your 
application must manage securely. 

You must ensure that credentials and certificates used by applica-
tions and services, and for access to ACS, are stored and handled in a 
secure manner. Always consider using SSL when passing credentials 
over networks. Other issues you should consider are those that apply 
to all applications, such as protection from spoofing, tampering, repu-
diation, and information disclosure. 

For more information and links to related resources that describe 
security threats and the relevant techniques available to counter them 
see the following resources:

“Windows Azure AppFabric Access Control Service (ACS) v2 – 
Threats & Countermeasures” at http://blogs.msdn.com/b/alikl/ar-
chive/2011/02/03/windows-azure-appfabric-access-control-service-
acs-v2-threats-amp-countermeasures.aspx

Active
Directory

1

2

3

4

Configure ADFS
to trust ACS

Get SAML token

Issue Kerberos
ticket or other
appropriate token

Send token obtained
from ADFS with 

payload

ADFS ACS

Local application
Internally hosted

service
(Relying Party)

http://blogs.msdn.com/b/alikl/archive/2011/02/03/windows-azure-appfabric-access-control-service-acs-v2-threats-amp-countermeasures.aspx
http://blogs.msdn.com/b/alikl/archive/2011/02/03/windows-azure-appfabric-access-control-service-acs-v2-threats-amp-countermeasures.aspx
http://blogs.msdn.com/b/alikl/archive/2011/02/03/windows-azure-appfabric-access-control-service-acs-v2-threats-amp-countermeasures.aspx


 311 311windows azure appfabric access control service

“Windows Identity Foundation (WIF) Security for ASP.NET Web 
Applications – Threats & Countermeasures” at http://blogs.msdn.
com/b/alikl/archive/2010/12/02/windows-identity-foundation-wif-
security-for-asp-net-web-applications-threats-amp-countermea-
sures.aspx

“Microsoft Application Architecture Guide, 2nd Edition” at 
http://msdn.microsoft.com/en-us/library/ff650706.aspx

Tips for Using ACS
The following advice may be useful in resolving issues encountered 
when using claims authentication with ACS.

ACS and STSs Generated in Visual Studio 
2010 

Custom STSs created from the Visual Studio 2010 template assume 
that the ReplyToAddress is the same as the AppliesToAddress. You 
can see this in in the GetScope method of the CustomSecurity 
TokenService, which sets scope.ReplyToAddress = scope.Applies 
ToAddress. In the case of ACS, the ReplyToAddress and the Applies 
ToAddress are different. The STS generates a redirection to the 
wrong place and an error occurs when an application accesses ACS to 
perform authentication.

To resolve this, replace the line that sets the ReplyToAddress 
with the following code.

C#
if (request.ReplyTo != null)
{
    scope.ReplyToAddress = request.ReplyTo.ToString();
}
else
{
    scope.ReplyToAddress = scope.AppliesToAddress;
}

Error When Uploading a Federation  
Metadata Document

When adding a new ADFS token issuer as a trusted identity provider 
to ACS, you may receive an error such as “ACS20009: An error oc-
curred reading the WS-Federation metadata document” when up-

http://blogs.msdn.com/b/alikl/archive/2010/12/02/windows-identity-foundation-wif-security-for-asp-net-web-applications-threats-amp-countermeasures.aspx
http://blogs.msdn.com/b/alikl/archive/2010/12/02/windows-identity-foundation-wif-security-for-asp-net-web-applications-threats-amp-countermeasures.aspx
http://blogs.msdn.com/b/alikl/archive/2010/12/02/windows-identity-foundation-wif-security-for-asp-net-web-applications-threats-amp-countermeasures.aspx
http://blogs.msdn.com/b/alikl/archive/2010/12/02/windows-identity-foundation-wif-security-for-asp-net-web-applications-threats-amp-countermeasures.aspx
http://msdn.microsoft.com/en-us/library/ff650706.aspx


312312 appendix e

loading the federation metadata file. ACS validates the signature of 
the file, and if you have modified the file that was generated by Vi-
sual Studio this error will occur. If you need to modify the metadata 
file, you must re-sign it. A useful tool for this can be found at “WIF 
Custom STS Metadata File Editor” (http://botsikas.blogspot.
com/2010/06/wif-custom-sts-metadata-file-editor.html).

Avoiding Use of the Default ACS Home 
Realm Discovery Page

When using ACS with multiple identity providers, ACS will display a 
page with the list of identity providers that are configured the first 
time you attempt to sign in. You can avoid this by sending the ap-
propriate whr parameter with the authentication request. The follow-
ing table lists the different values for this parameter for each of the 
identity providers.

Identity provider whr parameter value

Windows Live ID urn:WindowsLiveID

Google Google

Yahoo! Yahoo!

Facebook Facebook-<application-ID>

Custom STS The value should match the entityid declared  
in the FederationMetadata file of the identity 
provider.

More Information
For more information about setting up and using ACS, see the follow-
ing resources:
•	 “Windows Azure AppFabric” at http://www.microsoft.com/

windowsazure/AppFabric/Overview/default.asp
•	 “Access Control Service Samples and Documentation” at  

http://acs.codeplex.com/documentation
•	 “Windows Azure Team Blog” at http://blogs.msdn.com/ 

windowsazure/

http://botsikas.blogspot.com/2010/06/wif-custom-sts-metadata-file-editor.html
http://botsikas.blogspot.com/2010/06/wif-custom-sts-metadata-file-editor.html
http://www.microsoft.com/windowsazure/AppFabric/Overview/default.asp
http://www.microsoft.com/windowsazure/AppFabric/Overview/default.asp
http://acs.codeplex.com/documentation
http://blogs.msdn.com/windowsazure/
http://blogs.msdn.com/windowsazure/


313

This appendix provides background information about the way that 
Microsoft® SharePoint® 2010 implements claims-based authentica-
tion. This is a major change to the authentication architecture com-
pared to previous versions, and makes it easier to take advantage  
of federated authentication approaches for SharePoint websites, ap-
plications, and services. It also contains information on some of the 
important factors you should consider when creating and deploying 
claims-aware SharePoint applications and services.

Versions prior to SharePoint 2010 use the techniques for authen-
tication provided by the Microsoft Windows® operating system and 
ASP.NET. Applications can use Windows authentication (with the 
credentials validated by Microsoft Active Directory® directory  
service), ASP.NET forms authentication (with credentials typically 
validated from a database), or a combination of these techniques.

To make claims-based and federated authentication easier, Share-
Point 2010 can use a claims-based model for authentication. This 
model still fully supports Windows and forms authentication, but 
does so by integrating these approaches with the claims-based  
authentication mechanism. This appendix provides background  
information that will help you to understand how this model is  
implemented within SharePoint 2010.

Benefits of a Claims-Based Architecture
Users often require access to a number of different applications to 
perform daily tasks, and increasingly these applications are remotely 
located so that users access them over the Internet. ASP.NET forms 
authentication typically requires the maintenance of a separate user 
database at each location. Users must have accounts registered with 
all of the Active Directory domains, or in all of the ASP.NET forms 
authentication databases.

Appendix F SharePoint 2010  
Authentication  

Architecture and 
Considerations



314314 appendix f

The use of tokens and claims can simplify authentication by al-
lowing the use of federated identity—users are authenticated by an 
identity provider that the organization and application trusts. This 
may be an identity provider within the organization, such as Active 
Directory Federation Services (ADFS), or a third party (a business 
partner or a social identity provider such as Windows Live® or 
Google). 

As well as simplifying administration tasks, claims-based authen-
tication also assists users because it makes it possible for users to use 
the same account (the same credentials) to access multiple applica-
tions and services in remote locations, hosted by different organiza-
tions. This allows for single sign-on (SSO) in that users can move from 
one application to another, or make use of other services, without 
needing to log on each time.

The integration of claims-based authentication with the existing 
architecture of SharePoint provides the following benefits:
•	 Support for single sign-on over the Internet in addition to the 

existing location-dependent mechanisms such as Active Direc-
tory, LDAP, and databases.

•	 Automatic and secure delegation of identity between applica-
tions and between machines in a server farm. 

•	 Support for multiple different authentication mechanisms in a 
single web application without requiring the use of zones.

•	 Access to external web services without requiring the user to 
provide additional credentials.

•	 Support for standard authentication methods increasingly being 
used on the web.

•	 Support for accessing non-claims-based services that use only 
Windows authentication.

Windows Identity Foundation
SharePoint 2010 uses the Windows Identity Foundation (WIF) for 
authentication irrespective of the authentication approach used by 
the individual applications and services. This is a fundamental change 
in the architecture of SharePoint in comparison to previous versions. 
WIF is a standards-based technology for working with authentication 
tokens and claims, and for interacting with security token services 
(STSs). It provides a unified programming model that supports both 
the Passive and Active authentication sequences.

The Passive authentication sequence uses the WS-Federation 
protocol for authentication in web browser-based scenarios, such  
as ASP.NET applications. It depends on redirection of the browser 
between the relying party, token issuers, and identity providers. 



 315 315sharepoint 2010 authentication architecture and consider ations

The Active authentication sequence uses the WS-Trust protocol 
for authentication in web service scenarios, such as Windows 
Communication Foundation (WCF) services. The service “ knows” 
(typically through configuration) how to obtain the tokens it requires 
to access other services.

Implementation of the Claims-Based  
Architecture

The claims-based architecture in SharePoint 2010 comprises three 
main themes and the associated framework implementations. These 
three themes correspond to the three main factors in the flow of 
identity through SharePoint applications and services.
•	 The first theme is the extension of authentication to enable 

the use of multiple authentication mechanisms. Authentication 
is possible using tokens containing claims, ASP.NET forms 
authentication, and Windows authentication. External authenti-
cation is implemented though an STS within SharePoint 2010.

•	 The second theme is identity normalization, where the identity 
verified by the different authentication mechanisms is con-
verted to an IClaimPrincipal instance that the Windows 
Identity Foundation authorization mechanism can use to 
implement access control.

•	 The third theme is supporting existing identity infrastructure, 
where the identity can be used to access external services and 
applications that may or may not be claims-aware. For non-
claims-aware applications and services, WIF can generate an 
IPrincipal instance to allow other authentication methods (such 
as Windows authentication) to be used even when the original 
identity was validated using claims. This is implemented though 
the Services Application Framework within SharePoint 2010.

Figure 1 shows a conceptual overview of these three themes, and 
the mechanisms that implement them in SharePoint 2010.



316316 appendix f

figure 1
The three authentication themes in SharePoint 2010

SharePoint 2010 User Identity
Internally, SharePoint 2010 uses the SPUser type to manage and flow 
identity through applications and services. The fundamental change 
in this version of SharePoint compared to previous versions is the 
provision of an external authentication mechanism that supports 
identity verification using claims, as well as ASP.NET forms and Win-
dows authentication. The external authentication mechanism con-
verts claims it receives into a SAML token, then maps this token to an 
instance of the SPUser type. 

The claims may be received in the form of a SAML token from 
ADFS, Windows Azure™ AppFabric Access Control Service (ACS), 
or another STS; as a Windows NT token; or from the ASP.NET forms 
authentication mechanism. An application can be configured to use 
more than one authentication mechanism, allowing users to be au-
thenticated by any of the configured mechanisms. 

Previous to version 2010, supporting more than one authentication 
method for a SharePoint application typically required the use of 
zones; each of which is effectively a separate Microsoft Internet 
Information Services (IIS) web site and URL pointing to the applica-
tion. Zones are no longer required in SharePoint 2010 because 
applications can be configured to use a combination of authentica-
tion methods, although they can still be used if required (for 
example, if a different application URL is required for each authen-
tication method).

It is also possible to configure the SharePoint 2010 authentication 
mechanism in “Classic” mode for existing applications or services that 
are not claims-aware, and which present a Windows NT token that 
SharePoint can map to an instance of the SPUser type. If you select 
classic mode, you can use Windows authentication in the same  
way as in previous versions of SharePoint, and the user accounts  
are treated as Active Directory Domain Services (AD DS) accounts. 

Content
Database

Externalized
authentication

Identity
normalization

Support for existing
identity infastructure

Client Application Service

Windows

ASP.NET

SAML / SSO

SharePoint
STS

IClaimsPrincipal IPrincipal

Authentication methods
(WIF and SP-STS)

Access control
(WIF)

Services Application
Framework (WIF)



 317 317sharepoint 2010 authentication architecture and consider ations

However, services and service applications will use claims-based iden-
tities for inter-farm communication regardless of the mode that is 
selected for web applications and users.

Figure 2 shows an overview of the sign-in methods supported by 
the SharePoint 2010 authentication mechanism.

figure 2
Authentication methods in SharePoint 2010

Windows certificate-based authentication is not supported by the 
SharePoint 2010 claims-based authentication mechanism.

The SharePoint 2010 Security Token  
Service

The conversion of claims received in the different formats is carried 
out by an STS within SharePoint 2010. This is a fairly simple STS that 
can map incoming claims to the claims required by the relying party 
(the target application or service). It can also be configured to trust 
external STSs such as ADFS, ACS, and other token issuers.

Applications and services running within SharePoint 2010 access 
the local SharePoint STS to discover the claims for each user or pro-
cess that requires authorization. For example, applications can verify 
that the current user is a member of one of the required Active Direc-
tory groups. This is done using the WIF authorization mechanisms, 
and works in much the same way as (non-SharePoint) applications 
that access ADFS or ACS directly to obtain a token containing the 
claims.

For example, when a user accesses a SharePoint-hosted ASP.NET 
application that requires authentication, the request is redirected to 

SAML 1.1 +
token (web SSO)

ASP.NET Forms
Authentication

Windows 
NT token

SAML
claims-based

identity
token

SharePoint 
SPUser
instance

C
la

ss
ic

C
la

im
s-

ba
se

d

Windows 
NT token



318318 appendix f

an identity provider such as ADFS or ACS. The token received from 
the identity provider is then posted to the SharePoint STS (which the 
application must be configured to trust). The SharePoint STS authen-
ticates the user and augments (transforms) the claims in the token or 
request. It then redirects the request back to the application with the 
augmented claims. Inside the application, the claims can be used to 
authorize the user for specific actions. Figure 3 shows this process. 

figure 3
Claims authentication sequence in SharePoint 2010

The SharePoint 2010 Services Application 
Framework

One of the typical scenarios for a SharePoint application is to access 
both internal (SharePoint hosted) and external services to obtain data 
required by the application. Internal services include the Search Ser-
vice, Secure Store Service, Excel Services, and others. External ser-
vices may be any that expose data, either on a corporate network or 
from a remote location over the Internet. 

Accessing these services will, in most cases, require the applica-
tion to present appropriate credentials to the services. In some cases, 
the services will be claims-aware and the application can present a 
SAML token containing the required claims. As long as the external 
service trusts the SharePoint STS, it can verify the claims.

Some services may not, however, be claims aware. A typical ex-
ample is when accessing a Microsoft SQL Server® database. In these 
cases, the SharePoint Services Application Framework can be used to 
generate a Windows token that the application can present to the 
service. This is done using the Claims to Windows Token Service 
(C2WTS), which can create a suitable Windows NT token.

1

2

9

Access application

Redirect to identity
provider

Access granted

Web
browser

Identity Provider

SharePoint-hosted
web application

3

4

7

8

Se
nd

 id
en

tit
y

pr
ov

id
er

 to
ke

n

Return SP token

6

5

Authenticate user
SharePoint
STS

Authenticate

Augment claims

Return token

ADFS

ACS

[other]



 319 319sharepoint 2010 authentication architecture and consider ations

Microsoft Visual Studio® development system provides support and 
features to make building and deploying SharePoint 2010 applica-
tions easier. This support is included in all editions of Visual Studio 
2010 (Professional, Premium, and Ultimate). It is not available in the 
Express versions of Visual Studio.

Considerations When Using Claims  
with SharePoint

The following sections provide specific guidance on topics related to 
using claims authentication in SharePoint 2010 applications and ser-
vices.

Choosing an Authentication Mode
Claims-based authentication is now the recommended mechanism for 
SharePoint, and all new SharePoint applications should use claims-
based authentication; even if the operating environment will include 
only Windows accounts. SharePoint 2010 implements Windows au-
thentication in the same way regardless of the mode that is selected, 
and there are no additional steps required to implement Windows 
authentication with the claims-based authentication mode.

If you are upgrading an application that uses ASP.NET forms-
based authentication, you must use claims-based authentication. Clas-
sic mode authentication cannot support ASP.NET forms-based au-
thentication.

The only scenario where choosing classic mode authentication is 
valid is when upgrading to SharePoint 2010 and existing accounts use 
only Windows authentication. This allows existing applications to 
continue to operate in the same way as in previous versions of Share-
Point.

The default authentication mode for a new SharePoint application is 
classic mode. You must specifically select claims-based authentication 
mode when creating a new application or website. 

Supported Standards
 SharePoint 2010 supports the following claims-related standards:
•	 WS-Federation version 1.1
•	 WS-Trust version 1.4
•	 SAML Tokens version 1.1

SharePoint 2010 does not support SAML Protocol (SAMLP). 



320320 appendix f

Using Multiple Authentication  
Mechanisms

When multiple authentication methods are configured for an applica-
tion, SharePoint displays a home realm discovery page that lists the 
authentication methods available. The user must select the method to 
use. This adds an extra step into the authentication process for the 
user. It is possible to create a custom home realm discovery (sign-in) 
page if required.

SharePoint 2010 does not discriminate between user accounts 
when different authentication methods are used. Users that success-
fully authenticate with SharePoint 2010 using any of the claims-based 
authentication methods have access to the same resources and ser-
vices as would be available if that user was authenticated using classic 
Windows authentication.

Users who access a SharePoint 2010 application that is configured 
to use claims-based authentication and has multiple authentication 
methods set up will have the same access to resources and services 
when using any of the authentication methods. However, if the user 
has two different accounts configured (in other words, has accounts 
in two different repositories, such as a social identity provider and 
ASP.NET), and the authentication method used validates the user 
against one of these accounts, the user will have access to only re-
sources and services configured for the account that was validated.

You can configure multiple SAML authentication providers for a 
server farm and application. However, you can configure only a single 
instance of an ASP.NET forms-based authentication provider. If you 
configure Windows authentication when using claims-based authen-
tication mode, you can use both a Windows integrated method and a 
Basic method, but you cannot configure any additional Windows au-
thentication methods.

For a discussion on the merits of using multiple identity providers for 
authentication, see Chapter 12 of this guide, “Federated Identity  
for SharePoint Applications.”

SharePoint Groups with Claims  
Authentication

To simplify administration tasks when setting authorization permis-
sions on resources, it is recommended that you use SharePoint Groups. 
Setting permissions for resources based on membership of a specific 
group means that it is not necessary to continually update the permis-
sions as new users are added to groups or existing users are removed 
from groups.

The SharePoint STS automatically augments the claims in the 
tokens it issues to include group membership for users when Win-



 321 321sharepoint 2010 authentication architecture and consider ations

dows authentication is used. It also automatically augments the to-
kens to include the roles specified for users when ASP.NET forms-
based authentication is used; with each role translated into a 
SharePoint group name (the SharePoint groups are not created auto-
matically). 

When using SAML tokens issued by external identity providers 
and STSs, you must create a custom claims provider that augments the 
tokens to include the relevant roles. For example, you could create a 
custom claims provider that augments the SharePoint STS token with 
specific roles based on a test of the claims in the token received from 
the identity provider. This may be done by checking the incoming 
token to see if it was issued by a specific partner’s STS, or that the 
email address is within with a specific domain.      

SharePoint Profiles and Audiences with 
Claims Authentication

SharePoint user profiles are not populated automatically when using 
claims-based authentication methods. You must create and populate 
these profiles yourself, typically in code. Users that map to existing 
accounts when you migrate to claims-based authentication will use 
any existing profile information, but other users and new users will 
not have profile information. For information about how you can 
populate user profiles when using claims-based authentication, see 
“Trusted Identity Providers & User Profile Synchronization” at http://
blogs.msdn.com/b/brporter/archive/2010/07/19/trusted-identity-
providers-amp-user-profile-synchronization.aspx.

The same limitation occurs when using SharePoint Audiences. 
You cannot use user-based audiences directly unless you create cus-
tom code to support this, but you can use property-based audiences 
that make use of claims values. For information, see “Using Audiences 
with Claims Auth Sites in SharePoint 2010” at http://blogs.technet.
com/b/speschka/archive/2010/06/12/using-audiences-with-claims-
auth-sites-in-sharepoint-2010.aspx.

Rich Client, Office, and Reporting  
Applications with Claims Authentication

Claims-based authentication methods in SharePoint support almost 
all of the capabilities for integration with Office client applications 
and services. Office 2007 clients can use forms-based authentication 
to access SharePoint 2010 applications that are configured to use 
forms-based authentication and Office 2010 clients can use claims to 
access SharePoint 2010 applications that are configured to use claims-
based forms-based authentication. However, there are some limita-
tions when using claims-based authentication:

http://blogs.msdn.com/b/brporter/archive/2010/07/19/trusted-identity-providers-amp-user-profile-synchronization.aspx
http://blogs.msdn.com/b/brporter/archive/2010/07/19/trusted-identity-providers-amp-user-profile-synchronization.aspx
http://blogs.msdn.com/b/brporter/archive/2010/07/19/trusted-identity-providers-amp-user-profile-synchronization.aspx
http://blogs.technet.com/b/speschka/archive/2010/06/12/using-audiences-with-claims-auth-sites-in-sharepoint-2010.aspx
http://blogs.technet.com/b/speschka/archive/2010/06/12/using-audiences-with-claims-auth-sites-in-sharepoint-2010.aspx
http://blogs.technet.com/b/speschka/archive/2010/06/12/using-audiences-with-claims-auth-sites-in-sharepoint-2010.aspx


322322 appendix f

•	 Microsoft Office Excel® Services can use only the Classic or the 
Windows claims-based authentication methods. When using 
other claims-based authentication methods you must use the 
Secure Store Service for external data connections and unat-
tended data refresh.

•	 Microsoft Visio® Services can use the Secure Store Service, but 
only for drawings that use an Office Data Connection (ODC) 
file to specify the connection. The Unattended Service Account 
option can also be used with the same limitation.

•	 PowerPivot can be used in workbooks with embedded data, but 
data refresh from a data source is not possible when using any 
of the claims-based authentication methods.

•	 SQL Server 2008 R2 Reporting Services integration is only 
possible when using classic Windows Authentication. It cannot 
use the Claims to Windows Token Service (c2WTS), which is a 
feature of Windows Identity Foundation.

•	 PerformancePoint must use the Unattended Service Account 
option in conjunction with Secure Store Service when using 
claims-based authentication.

•	 Project Server maintains a separate user database containing 
logon information, and so migrating users when using claims-
based authentication is not sufficient.

Other Trade-offs and Limitations for 
Claims Authentication

When upgrading existing applications to SharePoint 2010, be aware 
of the following factors that may affect your choice of authentication 
type:
•	 Claims-based authentication requires communication over 

HTTPS with a token issuer and identity provider. It typically also 
requires multiple redirects for clients that are using a web 
browser. These are likely to be slower than Windows Authenti-
cation or ASP.NET forms-based authentication lookup. Even 
after initial authentication, as users move between applications 
taking advantage of single sign-on, the applications and services 
must make calls over HTTPS to validate the authentication 
tokens. 

•	 Web Parts or custom code that relies on or uses Windows 
identities must be modified if you choose claims-based  
authentication. Consider choosing classic mode authentication 
until all custom code is updated.

•	 When you upgrade a web application from classic mode to 
claims-based authentication, you must use Windows Power-
Shell® command-line interface to convert Windows identities 



 323 323sharepoint 2010 authentication architecture and consider ations

to claims identities. This can take time, and you must factor in 
time for this operation as part of the upgrade process.

•	 Search alerts are currently not supported with claims-based 
authentication.

•	 You cannot use custom ISAPI extensions or HTTP modules with 
the forms-based authentication method because the SharePoint 
STS communicates directly with the forms authentication 
provider by calling its ValidateUser method.

•	 Some client-hosted applications may attempt to authenticate 
with the server when displaying content linked from SharePoint 
application web pages. If you are using claims-based authentica-
tion and the client-hosted application is not claims-aware (as in 
the case of Windows Media Player), this content might not be 
displayed. 

•	 Managing the session lifetime is not a trivial exercise when using 
claims-based authentication. For details of how you can manage 
session lifetime, see Chapter 11, “Claims-Based Single Sign-On 
for Microsoft SharePoint 2010.” 

•	 The External Content Type Designer in SharePoint Designer 
2010 cannot discover claims aware WSDL endpoints. For more 
information, see MSDN® Knowledge Base article 982268 at 
http://support.microsoft.com/default.aspx?scid=kb;EN-
US;982268.

Applications are not changed to claims-based authentication mode 
automatically when you upgrade to SharePoint 2010. If you later 
convert an application from classic authentication mode to claims-
based authentication mode, you cannot convert it back to classic 
authentication mode. 

Claims-based authentication validates users from a variety of realms 
and domains, some of which do not provide the wealth of information 
about users that is available from Windows authentication against 
Active Directory. This has some impact on the usability of SharePoint 
in terms of administration and development. 

Primarily, the People Picker user experience is different when us-
ing claims-based authentication. It does not provide the same level of 
support, such as browsing repositories (lists of accounts are not 
stored or available in the people picker). This means that locating ac-
counts involves using the search feature against known attributes. 
However, the people picker UI does provide some assistance using 
pop-up tool tips. Alternatively, you can create a custom implementa-
tion of the SPClaimProvider class to extend the people picker and 
provide an enhanced user experience. 

http://support.microsoft.com/default.aspx?scid=kb;EN-US;982268
http://support.microsoft.com/default.aspx?scid=kb;EN-US;982268


324324 appendix f

Administrators must also configure and manage the SharePoint 
STS to implement the appropriate trust relationships and the rules for 
augmenting claims. This can only be done using PowerShell. In addi-
tion, the order for configuring items and the provision of the correct 
claim types is critical.  

The SharePoint STS is fairly simple compared to an STS such as 
ADFS or ACS, and basically implements only rules for copying claims. 
It requires the STSs and identity providers it trusts to implement the 
appropriate claims. It also runs in the same domain as SharePoint, and 
the FedAuth cookies it exposes are scoped to that domain. It does 
provide a token cache.

You may need to configure a SharePoint server farm to use affin-
ity for web applications to ensure that users are directed to the 
server on which they were authenticated. If users are authenticated 
on more than one server, the token may be rejected in a subsequent 
request, and the continual re-authentication requests may resemble a 
denial-of-service attack that causes the identity provider or STS to 
block authentication requests.  

Configuring SharePoint to Use Claims
Many configuration tasks in SharePoint, especially when configuring 
a SharePoint server farm, are performed using Windows PowerShell 
commands and scripts. Many of the required scripts are provided with 
SharePoint or are available for download from the SharePoint resource 
sites listed at the end of this appendix.

The main tasks for configuring  SharePoint web applications to 
use claims are the following:
•	 Configure an identity provider STS web application using 

PowerShell 
•	 Configure a relying party STS web application 
•	 Establish a trust relationship with an identity provider STS using 

PowerShell 
•	 Export the trusted identity provider STS certificate using 

PowerShell 
•	 Define a unique identifier for claims mapping using PowerShell 
•	 Create a new SharePoint web application and configure it to use 

SAML sign-in 

The following resources provide step-by-step guides to setting up 
claims authentication for a web application in SharePoint:
•	 “Claims-based authentication Cheat Sheet Part 1” at http://

blogs.msdn.com/b/spidentity/archive/2010/01/04/claims-
based-authentication-cheat-sheet-part-1.aspx.

http://blogs.msdn.com/b/spidentity/archive/2010/01/04/claims-based-authentication-cheat-sheet-part-1.aspx
http://blogs.msdn.com/b/spidentity/archive/2010/01/04/claims-based-authentication-cheat-sheet-part-1.aspx
http://blogs.msdn.com/b/spidentity/archive/2010/01/04/claims-based-authentication-cheat-sheet-part-1.aspx


 325 325sharepoint 2010 authentication architecture and consider ations

•	 “Claims-based authentication Cheat Sheet Part 2” at http://
blogs.msdn.com/b/spidentity/archive/2010/01/23/claims-based-
authentication-cheat-sheet-part-2.aspx.

•	 “Claims-Based Identity in SharePoint 2010” at http://blogs.
technet.com/b/wbaer/archive/2010/04/14/claims-based-
identity-in-sharepoint-2010.aspx.

•	 “Configure authentication using a SAML security token (Share-
Point Server 2010)” at http://technet.microsoft.com/en-us/
library/ff607753.aspx.

•	 “Configure the security token service (SharePoint Server 2010)” 
at http://technet.microsoft.com/en-us/library/ee806864.aspx.

Tips for Configuring Claims in SharePoint
The following advice may be useful in resolving issues encountered 
when configuring a SharePoint application to use claims authentica-
tion:
•	 The SharePoint PowerShell snap-in requires developers and 

administrators to have special permissions in the SharePoint 
database. It is not sufficient just to be an administrator or a 
domain administrator. For information on how to configure the 
SharePoint database for the PowerShell snap-in, see “The local 
farm is not accessible Cmdlets with FeatureDependencyId are 
not registered” at http://www.sharepointassist.
com/2010/01/29/the-local-farm-is-not-accessible-cmdlets-with-
featuredependencyid-are-not-registered/.

•	 When you use ADFS 2.0, the setting for enabling single sign-on 
(SSO) is not available in the ADFS management interface. By 
default SSO is enabled. You can change the setting by editing 
the Web.config file for the ADFS website. The element to 
modify is <singlesignon enabled =”true” />. It is located in the 
microsoft.identityserver.web section. 

•	 When you create a new web application and configure it to 
work over HTTPS, you must edit the website bindings. This 
cannot be done in the SharePoint management tools. Instead, 
you must select the SSL certificate to use for the website in the 
IIS Manager Microsoft Management Console (MMC) snap-in.

•	 It is possible to create more than one SharePoint application 
with the same alias, although this is generally unlikely. However, 
the authentication cookie served by the application uses the 
alias as the cookie name. The result is that single sign-on 
authentication will fail when users access one of the applica-
tions if they have previously accessed another application with 

http://blogs.msdn.com/b/spidentity/archive/2010/01/23/claims-based-authentication-cheat-sheet-part-2.aspx
http://blogs.msdn.com/b/spidentity/archive/2010/01/23/claims-based-authentication-cheat-sheet-part-2.aspx
http://blogs.msdn.com/b/spidentity/archive/2010/01/23/claims-based-authentication-cheat-sheet-part-2.aspx
http://blogs.technet.com/b/wbaer/archive/2010/04/14/claims-based-identity-in-sharepoint-2010.aspx
http://blogs.technet.com/b/wbaer/archive/2010/04/14/claims-based-identity-in-sharepoint-2010.aspx
http://blogs.technet.com/b/wbaer/archive/2010/04/14/claims-based-identity-in-sharepoint-2010.aspx
http://technet.microsoft.com/en-us/library/ff607753.aspx
http://technet.microsoft.com/en-us/library/ff607753.aspx
http://technet.microsoft.com/en-us/library/ee806864.aspx
http://www.sharepointassist.com/2010/01/29/the-local-farm-is-not-accessible-cmdlets-with-featuredependencyid-are-not-registered/
http://www.sharepointassist.com/2010/01/29/the-local-farm-is-not-accessible-cmdlets-with-featuredependencyid-are-not-registered/
http://www.sharepointassist.com/2010/01/29/the-local-farm-is-not-accessible-cmdlets-with-featuredependencyid-are-not-registered/


326326 appendix f

the same alias because the authentication cookie is not valid for 
the second application. To resolve this, create each application 
under a different domain name and use DNS to point to the 
SharePoint application, or modify the cookieHandler element in 
the federatedAuthentication section of Web.config for each 
application to specify a different cookie name.

More Information
For more information about SharePoint 2010, see the following  
resources:
•	 “Getting Started with Security and Claims-Based Identity 

Model” at http://msdn.microsoft.com/en-us/library/ee536164.
aspx.

•	 “Using the New SharePoint 2010 Security Model - Part 2” at 
http://technet.microsoft.com/en-us/sharepoint/ff678022.
aspx#lesson2.

•	 “Plan Authentication Methods (SharePoint Server 2010)” at 
http://technet.microsoft.com/en-us/library/cc262350.aspx.

•	 “Claims Tips 1: Learning About Claims-Based Authentication in 
SharePoint 2010” at http://msdn.microsoft.com/en-us/library/
ff953202.aspx.

•	 “Claims-Based Identity in SharePoint 2010” at http://blogs.
technet.com/b/wbaer/archive/2010/04/14/claims-based-
identity-in-sharepoint-2010.aspx.

•	 “Replace the Default SharePoint People Picker with a Custom 
People Picker” at http://www.sharepointsecurity.com/share-
point/sharepoint-security/replace-the-default-sharepoint-
people-picker-with-a-custom-people-picker/.

•	 “Understanding People Picker and Custom Claims Providers”  
at http://blogs.technet.com/b/tothesharepoint/archive/ 
2011/02/03/new-understanding-people-picker-and-custom-
claims-providers.aspx.

http://msdn.microsoft.com/en-us/library/ee536164.aspx
http://msdn.microsoft.com/en-us/library/ee536164.aspx
http://technet.microsoft.com/en-us/sharepoint/ff678022.aspx%23lesson2
http://technet.microsoft.com/en-us/sharepoint/ff678022.aspx%23lesson2
http://technet.microsoft.com/en-us/library/cc262350.aspx
http://msdn.microsoft.com/en-us/library/ff953202.aspx
http://msdn.microsoft.com/en-us/library/ff953202.aspx
http://blogs.technet.com/b/wbaer/archive/2010/04/14/claims-based-identity-in-sharepoint-2010.aspx
http://blogs.technet.com/b/wbaer/archive/2010/04/14/claims-based-identity-in-sharepoint-2010.aspx
http://blogs.technet.com/b/wbaer/archive/2010/04/14/claims-based-identity-in-sharepoint-2010.aspx
http://www.sharepointsecurity.com/sharepoint/sharepoint-security/replace-the-default-sharepoint-people-picker-with-a-custom-people-picker/
http://www.sharepointsecurity.com/sharepoint/sharepoint-security/replace-the-default-sharepoint-people-picker-with-a-custom-people-picker/
http://www.sharepointsecurity.com/sharepoint/sharepoint-security/replace-the-default-sharepoint-people-picker-with-a-custom-people-picker/
http://blogs.technet.com/b/tothesharepoint/archive/2011/02/03/new-understanding-people-picker-and-custom-claims-providers.aspx
http://blogs.technet.com/b/tothesharepoint/archive/2011/02/03/new-understanding-people-picker-and-custom-claims-providers.aspx
http://blogs.technet.com/b/tothesharepoint/archive/2011/02/03/new-understanding-people-picker-and-custom-claims-providers.aspx


327

access control. The process of making authorization decisions for a 
given resource.

access control rule. A statement that is used to transform one set 
of claims into another set of claims. An example of an access 
control rule might be: any subject that possesses the claim 
“Role=Contributor” should also have the claim 
“CanAddDocuments=True”. Each access control system will have 
its own rule syntax and method for applying rules to input claims.

access control system (ACS). The aspect of a software system 
responsible for authorization decisions.

account management. The process of maintaining user identities.
ActAs. A delegation role that allows a third party to perform 

operations on behalf of a subject via impersonation. 
active client. A claims-based application component that makes 

calls directly to the claims provider. Compare with passive client.
Active Directory Federation Services (ADFS). An issuer that is a 

component of the Microsoft® Windows® operating system. It 
issues and transforms claims, enables federations, and manages 
user access.

active federation. A technique for accessing a claims provider that 
does not involve the redirection feature of the HTTP protocol. 
With active federation, both endpoints of a message exchange 
are claims-aware. Compare with passive federation.

assertion. Within a closed-domain model of security, a statement 
about a user that is inherently trusted. Assertions, with inherent 
trust, may be contrasted with claims, which are only trusted if a 
trust relationship exists with the issuer of the claim.

authentication. The process of verifying an identity.
authority. The trusted possessor of a private key.

Glossary



328328 glossary

authorization. See authorization decision.
authorization decision. The determination of whether a subject 

with a given identity can gain access to a given resource.
back-end server. A computing resource that is not exposed to the 

Internet or that does not interact directly with the user.
blind credential. A trusted fact about a user that does not reveal 

the identity of the user but is relevant for making an 
authorization decision. For example, an assertion that the user is 
over the age of 21 may be used to grant access.

bootstrap token. A security token that is passed to a claims provider 
as part of a request for identity delegation. This is part of the 
ActAs delegation scenario.

certificate. A digitally signed statement of identity.
certificate authority. An entity that issues X.509 certificates.
claim. A statement, such as a name, identity, key, group, permission, 

or capability made by one subject about itself or another subject. 
Claims are given one or more values and then packaged in 
security tokens that are distributed by the issuer.

claims model. The vocabulary of claims chosen for a given 
application. The claims provider and claims-based application 
must agree on this vocabulary of claims. When developing a 
claims-based application, you should code to the claims model 
instead of calling directly into platform-specific security APIs.

claims processing. A software feature that enables a system to act 
as a claims provider, claims requester, or claims-based application. 
For example, a security token service provides claims processing 
as part of its feature set.

claims producer. A claims provider.
claims provider. A software component or service that generates 

security tokens upon request. Also known as the issuer of a claim. 
claims requester. The client of a security token service. An identity 

selector is a kind of claims requester.
claims transformer. A claims provider that accepts security tokens 

as input; for example, as a way to implement federated identity or 
access control.

claims type. A string, typically a URI, that identifies the kind of 
claim. All claims have a claims type and a value. Example claims 
types include FirstName, Role, and the private personal 
identifier (PPID). The claims type provides context for the claim 
value.



 329 329

claims value. The value of the statement in the claim being made. 
For example, if the claims type is FirstName, a value might be 
Matt.

claims-based application. A software application that uses claims as 
the basis of identity and access control. This is in contrast to 
applications that directly invoke platform-specific security APIs.

claims-based identity. A set of claims from a trusted issuer that 
denotes user characteristics such as the user’s legal name or email 
address. In an application that uses the Windows Identity 
Foundation (WIF), claims-based identity is represented by 
run-time objects that implement the IClaimsIdentity interface. 

claims-based identity model. A way to write applications so that 
the establishment of user identity is external to the application 
itself. The environment provides all required user information in  
a secure manner.

client. An application component that invokes web services or 
issues HTTP requests on behalf of a local user.

cloud. A dynamically scalable environment such as Windows 
Azure™ for hosting Internet applications.

cloud application. A software system that is designed to run in the 
cloud.

cloud provider. An application hosting service.
cloud service. A web service that is exposed by a cloud application.
credentials. Data elements used to establish identity or permission, 

often consisting of a user name and password. 
credential provisioning. The process of establishing user identities, 

such as user names and initial passwords, for an application.
cryptography. The practice of obfuscating data, typically via the use 

of mathematical algorithms that make reading data dependent on 
knowledge of a key.

digital signature. The output of a cryptographic algorithm that 
provides evidence that the message’s originator is authentic and 
that the message content has not been modified in transit.

domain. Area of control. Domains are often hierarchically 
structured.

domain controller. A centralized issuer of security tokens for an 
enterprise directory.

DPAPI. The Data Protection API (DPAPI) is a password-based data 
protection service that uses the Triple-DES cryptographic 
algorithm to provide operating system-level data protection 
services to user and system processes via a pair of function calls. 



330330 glossary

enterprise directory. A centralized database of user accounts for a 
domain. For example, the Microsoft Active Directory® Domain 
Service allows organizations to maintain an enterprise directory.

enterprise identity backbone. The chosen mechanism for providing 
identity and access control within an organization; for example, 
by running Active Directory Federation Services (ADFS).

federated identity. A mechanism for authenticating a system’s users 
based on trust relationships that distribute the responsibility for 
authentication to a claims provider that is outside of the current 
security realm.

federatedAuthentication attribute. An XML attribute used in a 
Web.config file to indicate that the application being configured 
is a claims-based application.

federation provider. A type of identity provider that provides single 
sign-on functionality between an organization and other identity 
providers (issuers) and relying parties (applications).

federation provider security token service (FP-STS). A software 
component or service that is used by a federation provider to 
accept tokens from a federation partner and then generate claims 
and security tokens on the contents of the incoming security 
token into a format consumable by the relying party (application). 
A security token service that receives security tokens from a 
trusted federation partner or identity provider (IdP-STS). In turn, 
the relying party (RP-STS) issues new security tokens to be 
consumed by a local relying party application.

FedUtil. The utility provided by Windows Identity Foundation for 
the purpose of establishing federation.

forest. A collection of domains governed by a central authority. 
Active Directory Federation Services (ADFS) can be used to 
combine two Active Directory forests in a single domain of trust.

forward chaining logic. An algorithm used by access control 
systems that determines permissions based on the application of 
transitive rules such as group membership or roles. For example, 
using forward chaining logic, an access control system can deduce 
that user X has permission Z whenever user X has role Y and role 
Y implies permission Z.  

home realm discovery. The process of determining a user’s issuer. 
identity. In this book, this refers to claims-based identity. There are 

other meanings of the word “identity,” so we will further qualify 
the term when we intend to convey an alternate meaning.

identity delegation. Enabling a third party to act on one’s behalf. 



 331 331

identity model. The organizing principles used to establish the 
identity of an application’s user. See claims-based identity model.

identity provider (IdP). An organization issuing claims in security 
tokens. For example, a credit card provider organization might 
issue a claim in a security token that enables payment if the 
application requires that information to complete an authorized 
transaction.

identity security token service (I-STS). An identity provider.
information card. A visual representation of an identity with 

associated metadata that may be selected by a user in response to 
an authentication request.

input claims. The claims given to a claims transformer such as an 
access control system.

issuer. The claims provider for a security token; that is, the entity 
that possesses the private key used to sign a given security token. 
In the IClaimsIdentity interface, the Issuer property returns the 
claims provider of the associated security token. The term may be 
used more generally to mean the issuing authority of a Kerberos 
ticket or X.509 certificate, but this second use is always made 
clear in the text.

issuer name registry. A list of URIs of trusted issuers. You can 
implement a class derived from the abstract class 
IssuerNameRegistry (this is part of the Windows Identity 
Foundation) in order to pick an issuer-naming scheme and also 
implement custom issuer validation logic.

issuing authority. Claims provider; the issuer of a security token. 
(The term has other meanings that will always be made clear with 
further qualification in the text.)

Kerberos. The protocol used by Active Directory domain controllers 
to allow authentication in a networked environment.

Kerberos ticket. An authenticating token used by systems that 
implement the Kerberos protocol, such as domain controllers.

key. A data element, typically a number or a string, that is used by a 
cryptographic algorithm when encrypting plain text or decrypting 
cipher text.

key distribution center (KDC). In the Kerberos protocol, a key 
distribution center is the issuer of security tickets.

Lightweight Directory Access Protocol (LDAP). A TCP/IP protocol 
for querying directory services in order to find other email users 
on the Internet or corporate intranet.



332332 glossary

Local Security Authority (LSA). A component of the Windows 
operating system that applications can use to authenticate and 
log users on to the local system.

Local Security Authority Subsystem Service (LSASS). A 
component of the Windows operating system that enforces 
security policy.

managed information card. An information card provided by an 
external identity provider. By using managed cards, identity 
information is stored with an identity provider, which is not the 
case with self-issued cards.

management APIs. Programmable interface for configuration or 
maintenance of a data set. Compare with portal.

moniker. An alias used consistently by a user in multiple sessions of 
an application. A user with a moniker often remains anonymous.

multiple forests. A domain model that is not hierarchically 
structured.

multi-tenant architecture. A cloud-based application designed for 
running in multiple data centers, usually for the purpose of 
geographical distribution or fault tolerance.

on-premises computing. Software systems that run on hardware 
and network infrastructure owned and managed by the same 
enterprise that owns the system being run.

output claims. The claims produced by a claims transformer such as 
an output control system.

passive client. A web browser that interacts with a claims-based 
application running on an HTTP server.

passive federation. A technique for accessing a claims provider that 
involves the redirection feature of the HTTP protocol. Compare 
with active federation.

perimeter network. A network that acts as a buffer between an 
internal corporate network and the Internet.

permission. The positive outcome of an authorization decision. 
Permissions are sometimes encoded as claims.

personalization. A variant of access control that causes the 
application’s logic to change in the presence of particular claims. 
Security trimming is a kind of personalization.

policy. A statement of addresses, bindings, and contracts structured 
in accordance with the WS-Policy specification. It includes a list 
of claim types that the claims-based application needs in order to 
execute.



 333 333

portal. Web interface that allows viewing and/or modifying data 
stored in a back-end server.

principal. A run-time object that represents a subject. Claims-based 
applications that use the Windows Identity Foundation expose 
principals using the IClaimsPrincipal interface.

private key. In public key cryptography, the key that is not 
published. Possession of the correct private key is considered to 
be sufficient proof of identity.

privilege. A permission to do something such as access an 
application or a resource.

proof key. A cryptographic token that prevents security tokens 
from being used by anyone other than the original subject.

public key. In public key cryptography, the key that is published. 
Possession of a user’s public key allows the recipient of a message 
sent by the user to validate the message’s digital signature against 
the contents of the message. It also allows a sender to encrypt a 
message so that only the possessor of the private key can decrypt 
the message.

public key cryptography. A class of cryptographic algorithms that 
use one key to encrypt data and another key to decrypt this data. 

public key infrastructure (PKI). Conventions for applying public 
key cryptography.

realm. A security realm.
relying party (RP). An application that relies on security tokens and 

claims issued by an identity provider.
relying party security token service (RP-STS). See federation 

provider security token service.
resource. A capability of a software system or an element of data 

contained by that system; an entity such as a file, application, or 
service that is accessed via a computer network.

resource security token service (R-STS). A claims transformer.
REST protocols. Data formats and message patterns for 

representational state transfer (REST), which abstracts a 
distributed architecture into resources named by URIs connected 
by interfaces that do not maintain connection state.

role. An element of identity that may justify the granting of 
permission. For example, a claim that “role is administrator” might 
imply access to all resources. The concept of role is often used by 
access control systems based on the role-based access control 
(RBAC) model as a convenient way of grouping users with similar 
access needs.



334334 glossary

role-based access control (RBAC). An established authorization 
model based on users, roles, and permissions. 

SAML 2.0. A data format used for encoding security tokens that 
contain claims. Also, a protocol that uses claims in SAML format. 
See Security Assertion Markup Language (SAML).

scope. In Microsoft Access Control Services, a container of access 
control rules for a given application.

Security Assertion Markup Language (SAML). A data format used 
for encoding security tokens that contain claims. Also, a particular 
protocol that uses claims in SAML format.

security attribute. A fact that is known about a user because it 
resides in the enterprise directory (thus, it is implicitly trusted). 
Note that with claims-based identity, claims are used instead of 
security attributes.

security context. A Microsoft .NET Framework concept that 
corresponds to the IPrincipal interface. Every .NET Framework 
application runs in a particular security context.

security infrastructure. A general term for the hardware and 
software combination that implements authentication, 
authorization, and privacy.

security policy. Rules that determine whether a claims provider will 
issue security tokens.

security token. An on-the-wire representation of claims that has 
been cryptographically signed by the issuer of the claims, 
providing strong proof to any relying party of the integrity of the 
claims and the identity of the issuer.

security token service (STS). A claims provider implemented as a 
web service that issues security tokens. Active Directory 
Federation Services (ADFS) is an example of a security token 
service. Also known as an issuer. A web service that issues claims 
and packages them in encrypted security tokens (see WS-Security 
and WS-Trust).

security trimming. (informal) The process of altering an 
application’s behavior based on a subject’s available permissions.

service. A web service that adheres to the SOAP standard.
service provider. A service provider is an application. The term is 

commonly used with the Security Assertion Markup Language 
(SAML).

session key. A private cryptographic key shared by both ends of a 
communications channel for the duration of the communications 



 335 335

session. The session key is negotiated at the beginning of the 
communication session.

SOAP. A web standard (protocol) that governs the format of 
messages used by web services.

social identity provider (social IdP). A term used in this book to 
refer to identity services offered by well-known web service 
providers such as Windows Live®, Facebook, Google, and Yahoo!

software as a service (SaaS). A software licensing method in which 
users license software on demand for limited periods of time 
rather than purchasing a license for perpetual use. The software 
vendor often provides the execution environment as, for example, 
a cloud-based application running as a web service.

subject. A person. In some cases, business organizations or software 
components are considered to be subjects. Subjects are 
represented as principals in a software system. All claims 
implicitly speak of a particular subject. The Windows Identity 
Foundation type, IClaimsPrincipal, represents the subject of a 
claim.

System.IdentityModel.dll. A component of the .NET Framework 
3.0 that includes some claims-based features, such as the Claim 
and ClaimSet classes.

token. A data element or message.
trust. The acceptance of another party as being authoritative over 

some domain or realm. 
trust relationship. The condition of having established trust.
trusted issuer. A claims provider for which trust has been 

established via the WS-Trust protocol.
user credentials. A set of identifying information belonging to a 

user. An example is a user name and password.
web identity. Authenticated identifying characteristics of the 

sender of an HTTP request. Often, this is an authenticated email 
address.

web single sign-on (web SSO). A process that enables partnering 
organizations to exchange user authentication and authorization 
data. By using web SSO, users in partner organizations can 
transition between secure web domains without having to 
present credentials at each domain boundary.

Windows Communication Foundation (WCF). A component of 
the Windows operating system that enables web services. 

Windows identity. User information maintained by Active 
Directory.



336336 glossary

Windows Identity Foundation (WIF). A .NET Framework library 
that enables applications to use claims-based identity and access 
control.

WS-Federation. A standard that defines mechanisms that are used 
to enable identity, attribute, authentication, and authorization 
federation across different trust realms. This standard includes an 
interoperable use of HTTP redirection in order to request 
security tokens.

WS-Federation Authentication Module (FAM). A component of 
the Windows Identity Foundation that performs claims 
processing.

WS-Federation Passive Requestor Profile. Describes how the 
cross-trust realm identity, authentication, and authorization 
federation mechanisms defined in WS-Federation can be used by 
passive requesters such as web browsers to provide identity 
services. Passive requesters of this profile are limited to the HTTP 
protocol.

WS-Policy. A web standard that specifies how web services may 
advertise their capabilities and requirements to potential clients.

WS-Security. A standard that consists of a set of protocols 
designed to help secure web service communication using SOAP.

WS-Trust. A standard that takes advantage of WS-Security to 
provide web services with methods to build and verify trust 
relationships.

X.509. A standard format for certificates.
X.509 certificate. A digitally signed statement that includes the 

issuing authority’s public key.



337

Chapter 1, An Introduction to Claims

1.	 Under what circumstances should your application or 
service accept a token that contains claims about the user 
or requesting service?

a.	 The claims include an email address.

b.	 The token was sent over an HTTPS channel.

c.	 Your application or service trusts the token issuer.

d.	 The token is encrypted.

Answer: Only (c) is strictly correct. While it is good practice to 
use encrypted tokens and send them over a secure channel, an 
application should only accept a token if it is configured to trust 
the issuer. The presence of an email address alone does not 
signify that the token is valid. 

2.	 What can an application or service do with a valid token 
from a trusted issuer?

a.	 Find out the user’s password.

b.	 Log in to the website of the user’s identity provider.

c.	 Send emails to the user.

d.	 Use the claims it contains to authorize the user for 
access to appropriate resources.

Answer: Only (d) is true in all cases. The claims do not include 
the user’s password or other credentials. They only include the 
information the user and the identity provider choose to expose. 
This may or may not include an email address, depending on the 
identity provider.

Answers to Questions



338338 asnwers to questions

3.	 What is the meaning of the term identity federation?

a.	 It is the name of a company that issues claims about 
Internet users.

b.	 It is a mechanism for authenticating users so that they 
can access different applications without signing on 
every time.

c.	 It is a mechanism for passing users’ credentials to 
another application.

d.	 It is a mechanism for finding out which sites a user has 
visited.

Answer: Only (b) is correct. Each application must query the 
original issuer to determine if the token a user obtained when 
they originally authenticated is valid. The token does not include 
the users’ credentials or other information about users’ browsing 
history or activity.

4.	 When would you choose to use Windows Azure™ Ap-
pFabric Access Control Service (ACS) as an issuer for an 
application or service?

a.	 When the application must allow users to sign on 
using a range of well-known social identity credentials.

b.	 When the application is hosted on the Windows 
Azure platform.

c.	 When the application must support single sign-on 
(SSO).

d.	 When the application does not have access to an alter-
native identity provider or token issuer.

Answer: Only (a) and (d) are correct. Applications running on 
Windows Azure can use ACS if they must support federated 
identity, but it is not mandatory. SSO can be implemented using 
a range of mechanisms other than ACS, such as a Microsoft 
Active Directory® domain server and Active Directory Federa-
tion Services.

5.	 What are the benefits of using claims to manage authoriza-
tion in applications and services?

a.	 It avoids the need to write code specific to any one 
type of authentication mechanism.



 339 339

b.	 It decouples authentication logic from authorization 
logic, making changes to authentication mechanisms 
much easier.

c.	 It allows the use of more fine-grained permissions 
based on specific claims compared to the granularity 
achieved just using roles.

d.	 It allows secure access for users that are in a different 
domain or realm from the application or service.

Answer: All of the answers are correct, which shows just how 
powerful claims can be!

Chapter 2, Claims Based Architectures

1.	 Which of the following protocols or types of claims token 
are typically used for single sign-on across applications in 
different domains and geographical locations?

a.	 Simple web Token (SWT)

b.	 Kerberos ticket

c.	 Security Assertion Markup Language (SAML) token

d.	 Windows Identity

Answer: Only (a) and (c) are typically used across domains and 
applications outside a corporate network. Kerberos tickets 
cannot contain claims, and they are confined within a domain or 
Active Directory forest. Windows Identities may contain role 
information, but cannot carry claims between applications. 

2.	 In a browser-based application, which of the following is 
the typical order for browser requests during authentica-
tion?

a.	 Identity provider, token issuer, relying party

b.	 Token issuer, identity provider, token issuer, relying 
party

c.	 Relying party, token issuer, identity provider, token 
issuer, relying party

d.	 Relying party, identity provider, token issuer, relying 
party 

Answer: Only (c) is correct. The claims-aware application (the 
relying party) redirects the browser to the token issuer, which 



340340 asnwers to questions

either redirects the browser to the appropriate identity provider 
for the user to enter credentials (ACS) or obtains a token on the 
user’s behalf using their correct credentials (ADFS). It then 
redirects the browser back to the claims-aware application.

3.	 In a service request from a non-browser-based application, 
which of the following is the typical order of requests 
during authentication?

a.	 Identity provider, token issuer, relying party

b.	 Token issuer, identity provider, token issuer, relying 
party

c.	 Relying party, token issuer, identity provider, token 
issuer, relying party

d.	 Relying party, identity provider, token issuer, relying 
party

Answer: When authenticating using ADFS and Active Direc-
tory (or a similar technology), only (b) is correct. ADFS obtains 
a token on the application’s behalf using credentials provided in 
the request. When authenticating using ACS, (a) and (b) are 
correct. 

4.	 What are the main benefits of federated identity?

a.	 It avoids the requirement to maintain a list of valid 
users, manage passwords and security, and store and 
maintain lists of roles for users in the application.

b.	 It delegates user and role management to the trusted 
organization responsible for the user, instead of it 
being the responsibility of your application.

c.	 It allows users to log onto applications using the same 
credentials, and choose an identity provider that is 
appropriate for the user and the application to validate 
these credentials.

d.	 It means that your applications do not need to include 
authorization code. 

Answer: Only (a) , (b) , and (c) are correct. Even if you com-
pletely delegate the validation of users to an external federated 
system, you must still use the claims (such as role membership) 
in your applications to limit access to resources to only the 
appropriate users.



 341 341

5.	 How can home realm discovery be achieved?

a.	 The token issuer can display a list of realms based on 
the configured identity providers and allow the user to 
select his home realm.

b.	 The token issuer can ask for the user’s email address 
and use the domain to establish the home realm.

c.	 The application can use the IP address to establish the 
home realm based on the user’s country/region of 
residence.

d.	 The application can send a hint to the token issuer in 
the form of a special request parameter that indicates 
the user’s home realm.

Answer: Only (a) , (b) , and (d) are correct. Home realms are 
not directly related to geographical location (although this may 
have some influence). The home realm is the domain that is 
authoritative for the user’s identity. It is the identity provider 
that the user must be redirected to when logging in. 

Chapter 3, Claims-Based Single Sign-On 
for the Web and Windows Azure

1.	 Before Adatum updated the a-Expense and a-Order applica-
tions, why was it not possible to use single sign-on?

a.	 The applications used different sets of roles to 
manage authorization.

b.	 a-Order used Windows authentication and a-Expense 
used ASP.NET forms authentication.

c.	 In the a-Expense application, the access rules were 
intermixed with the application’s business logic.

d.	 You cannot implement single sign-on when user 
profile data is stored in multiple locations.

Answer: Only (b) is correct. The key factor blocking the 
implementation of single sign-on is that the applications use 
different authentication mechanisms. Once users authenticate 
with a claims issuer, you can configure the applications to trust 
the issuer. The applications can use the claims from the issuer to 
implement any authorization rules they need.



342342 asnwers to questions

2.	 How does the use of claims facilitate remote web-based 
access to the Adatum applications?

a.	 Using Active Directory for authentication makes it 
difficult to avoid having to use VPN to access the 
applications.

b.	 Using claims means that you no longer need to use 
Active Directory.

c.	 Protocols such as WS-Federation transport claims in 
tokens as part of standard HTTP messages.

d.	 Using claims means that you can use ASP.NET forms-
based authentication for all your applications.

Answer: Only (a) and (c) are correct. Protocols that use claims 
such as WS-Federation make it easy to provide web-based 
access to your applications. ADFS makes it easy to continue to 
use Active Directory in a claims-based environment, while using 
just Active Directory on its own with the Kerberos protocol is 
not well suited to providing web-based access.

3.	 In a claims enabled ASP.NET web application, you typically 
find that the authentication mode is set to None in the 
Web.config file. Why is this?

a.	 The WSFederationAuthenticationModule is now 
responsible for authenticating the user.

b.	 The user must have already been authenticated by an 
external system before they visit the application.

c.	 Authentication is handled in the On_Authenticate 
event in the global.asax file.

d.	 The WSFederationAuthenticationModule is now 
responsible for managing the authentication process.

Answer: Only (d) is correct. The WSFederationAuthentica-
tionModule is responsible for managing the authentication 
process. It intercepts requests in the HTTP pipeline before they 
reach the application and coordinates with an external claims 
issuer to authenticate the user.

4.	 Claims issuers always sign the tokens they send to a relying 
party. However, although it is considered best practice, they 
might not always encrypt the tokens. Why is this?



 343 343

a.	 Relying parties must be sure that the claims come 
from a trusted issuer.

b.	 Tokens may be transferred using SSL.

c.	 The claims issuer may not be able to encrypt the token 
because it does not have access to the encryption key.

d.	 It’s up to the relying party to state whether or not it 
accepts encrypted tokens.

Answer: Only (a) and (b) are correct. A key feature of claims-
based authentication is that relying parties can trust the claims 
that they receive from an issuer. A signature proves that the 
claim came from a particular issuer. Using SSL helps to secure 
the tokens that the issuer transmits to the relying party if the 
issuer does not encrypt them.

5.	 The FederatedPassiveSignInStatus control automatically 
signs a user out of all the applications she signed into in the 
single sign-on domain.

a.	 True.

b.	 False. You must add code to the application to per-
form the sign-out process.

c.	 It depends on the capabilities of the claims issuer. The 
issuer is responsible for sending sign-out messages to 
all relying parties.

d.	 If your relying party uses HTTP sessions, you must add 
code to explicitly abandon the session.

Answer: Only (c) and (d) are correct. It is the responsibility of 
the claims issuer to notify all relying parties that the user is 
signing out. Additionally, you must add any necessary code to 
abandon any HTTP sessions.

Chapter 4, Federated Identity for Web 
Applications

1.	 Federated identity is best described as:

a.	 Two or more applications that share the same set of 
users.

b.	 Two or more organizations that share the same set  
of users.



344344 asnwers to questions

c.	 Two or more organizations that share an identity 
provider.

d.	 One organization trusting users from one or more 
other organizations to access its applications.

Answer: Only (d) is correct. Federation is about trusting the 
users from another organization. Instead of creating special 
accounts for external users, you trust another organization to 
authenticate users on your behalf before you give them access  
to your applications.

2.	 In a federated security environment, claims mapping is 
necessary because:

a.	 Claims issued by one organization are not necessarily 
the claims recognized by another organization.

b.	 Claims issued by one organization can never be trusted 
by another organization.

c.	 Claims must always be mapped to the roles used in 
authorization.

d.	 Claims must be transferred to a new ClaimsPrincipal 
object.

Answer: Only (a) is correct. The claims used by one organiza-
tion may not be the same as the claims used by another. For 
example, one organization may use a claim called role while 
another organization uses a claim called group for a similar 
purpose. Mapping enables you to map the claims used by one 
organization to the claims used in another. Although role claims 
are often used for authorization, the authorization scheme could 
depend on other claims such as organization or cost center.

3.	 The roles of a federation provider can include:

a.	 Mapping claims from an identity provider to claims 
that the relying party understands.

b.	 Authenticating users.

c.	 Redirecting users to their identity provider.

d.	 Verifying that the claims were issued by the expected 
identity provider.

Answer: Only (a), (c) and (d) are correct. A federation provider 
can map claims, redirect users to the correct identity provider, 



 345 345

and verify that the claims were issued by the correct identity 
provider.

4.	 Must an identity provider issue claims that are specific to  
a relying party? 

a.	 Yes 

b.	 No

c.	 It depends. 

Answer: Only (b) is correct. It is the job of the federation 
provider to map the claims issued by the identity provider to 
claims recognized by the relying party. Therefore, the identity 
provider’s issuer should not issue claims specific to the relying 
party. Using a federation provider helps to decouple the identity 
provider from the relying party.

5.	 Which of the following best summarizes the trust relation-
ships between the various parties described in the federated 
identity scenario in this chapter?

a.	 The relying party trusts the identity provider, which in 
turn trusts the federation provider.

b.	 The identity provider trusts the federation provider, 
which in turn trusts the relying party.

c.	 The relying party trusts the federation provider, which 
in turn trusts the identity provider.

d.	 The federation provider trusts both the identity 
provider and the relying party.

Answer: Only (c) is correct. The trust relationships described  
in this chapter have the relying party trusting the federation 
provider that trusts the identity provider.

Chapter 5, Federated Identity with  
Windows Azure Access Control Service

1.	 Which of the following issues must you address if you want 
to allow users of your application to authenticate with a 
social identity provider such as Google or Windows Live® 
network of Internet services?

a.	 Social identity providers may use protocols other than 
WS-Federation to exchange claims tokens.



346346 asnwers to questions

b.	 You must register your application with the social 
identity provider.

c.	 Different social identity providers issue different claim 
types.

d.	 You must provide a mechanism to enroll users using 
social identities with your application.

Answer: Only (a), (c) and (d) are correct. Your solution must 
be able to transition protocols; the solution described in this 
chapter uses ACS to perform this task. The scenario described  
in this chapter also uses ACS to map the different claim types 
issued by the social identity providers to claim types that 
Adatum understands. You must provide a mechanism to enroll 
users with social identities.

2.	 What are the advantages of allowing users to authenticate 
to use your application with a social identity?

a.	 The user doesn’t need to remember yet another 
username and password.

b.	 It reduces the features that you must implement in 
your application.

c.	 Social identity providers all use the same protocol  
to transfer tokens and claims.

d.	 It puts the user in control of their password manage-
ment. For example, a user can recover a forgotten 
password without calling your helpdesk.

Answer: Only (a), (b), and (d) are correct. Reusing a social 
identity does mean that the user doesn’t need to remember a 
new set of credentials. Also, the authentication and user account 
management is now handled by the social identity provider.

3.	 What are the potential disadvantages of using ACS as your 
federation provider?

a.	 It adds to the complexity of your relying party  
application.

b.	 It adds an extra step to the authentication process, 
which negatively impacts the user experience.

c.	 It is a metered service, so you must pay for each token 
that it issues.



 347 347

d.	 Your application now relies on an external service that 
is outside of its control.

Answer: Only (c) and (d) are correct. Although ACS is a 
metered service, you should compare its running costs to the 
costs of implementing and running your own federation provider. 
ACS is a third-party application outside of your control; again, 
you should evaluate the SLA associated with ACS against the 
service-level agreement (SLA) your IT department offers for 
on-premises services.

4.	 How can your federation provider determine which identity 
provider to use (perform home realm discovery) when an 
unauthenticated user accesses the application?

a.	 Present the user with a list of identity providers to 
choose from.

b.	 Analyze the IP address of the originating request.

c.	 Prompt the user for an email address, and then parse  
it to determine the user’s security domain.

d.	 Examine the ClaimsPrincipal object for the user’s 
current session.

Answer: Only (a) and (c) are correct. The scenario described in 
this chapter lets the user select from a list of identity providers. 
It’s also possible to analyze the user’s email address; for example, 
if the email address were paul@gmail.com, the federation 
provider would determine that the user has a Google identity.

5.	 In the scenario described in this chapter, the Adatum 
federation provider trusts ACS, which in turn trusts the 
social identity providers such as Windows Live and Google. 
Why does the Adatum federation provider not trust the 
social identity providers directly?

a.	 It’s not possible to configure the Adatum federation 
provider to trust the social identity providers because 
the social identity providers do not make the certifi-
cates required for a trust relationship available.

b.	 ACS automatically performs the protocol transition.

c.	 ACS is necessary to perform the claims mapping.

d.	 Without ACS, it’s not possible to allow Adatum 
employees to access the application over the web.



348348 asnwers to questions

Answer: Only (b) is correct. Using ACS simplifies the Adatum 
federation provider, especially because ACS performs any 
protocol transitioning automatically. It is possible to configure 
the Adatum federation provider to trust the social identity 
providers directly and perform the claims mapping; however,  
this is likely to be complex to implement.

Chapter 6, Federated Identity  
with Multiple Partners

1.	 In the scenario described in this chapter, who should take 
what action when an employee leaves one of the partner 
organizations such as Litware?

a.	 Fabrikam Shipping must remove the user from its user 
database.

b.	 Litware must remove the user from its user database.

c.	 Fabrikam must amend the claims-mapping rules in its 
federation provider.

d.	 Litware must ensure that its identity provider no 
longer issues any of the claims that get mapped to 
Fabrikam Shipping claims.

Answer: Only (b) is correct. If the employee leaves Litware, the 
simplest and safest action is to remove the employee from its 
user database. This means that the ex-employee can no longer 
authenticate with Litware or be issued any claims.

2.	 In the scenario described in this chapter, how does Fabrikam 
Shipping perform home realm discovery?

a.	 Fabrikam Shipping presents unauthenticated users 
with a list of federation partners to choose from.

b.	 Fabrikam Shipping prompts unauthenticated users  
for their email addresses. It parses this address to 
determine which organization the user belongs to.

c.	 Fabrikam Shipping does not need to perform home 
realm discovery because users will have already 
authenticated with their organizations’ identity 
providers.

d.	 Each partner organization has its own landing page  
in Fabrikam Shipping. Visiting that page will automati-



 349 349

cally redirect unauthenticated users to that organiza-
tion’s identity provider. 

Answer: Only (d) is correct. Each organization has its own 
landing page in Fabrikam Shipping. For example, Adatum 
employees should navigate to https://{fabrikam 
host}/f-shipping/adatum.

3.	 Fabrikam Shipping provides an identity provider for its 
smaller customers who do not have their own identity 
provider. What are the disadvantages of this?

a.	 Fabrikam must bear the costs of providing this service.

b.	 Users at smaller customers will need to remember 
another username and password.

c.	 Smaller customers must rely on Fabrikam to manage 
their user’s access to Fabrikam Shipping.

d.	 Fabrikam Shipping must set up a trust relationship 
with all of its smaller customers.

Answer: Only (a), (b) and (c) are correct. Unless Fabrikam 
Shipping charges for the service, they must bear the costs.  
It does mean that users will have to remember a new set  
of credentials. All of the user management takes place at 
Fabrikam, unless Fabrikam implements a web interface for 
smaller customers to manage their users.

4.	 How does Fabrikam Shipping ensure that only users at a 
particular partner can view that partner’s shipping data?

a.	 The Fabrikam Shipping application examines the email 
address of the user to determine the organization  
they belong to.

b.	 Fabrikam Shipping uses separate databases for each 
partner. Each database uses different credentials to 
control access.

c.	 Fabrikam shipping uses the role claim from the 
partner’s identity provider to determine whether the 
user should be able to access the data.

d.	 Fabrikam shipping uses the organization claim from 
its federation provider to determine whether the user 
should be able to access the data.



350350 asnwers to questions

Answer: Only (d) is correct. It’s the organization claim that 
Fabrikam Shipping uses to control access.

5.	 The developers at Fabrikam set the wsFederation passive 
RedirectEnabled attribute to false. Why?

a.	 This scenario uses active redirection, not passive 
redirection.

b.	 They wanted more control over the redirection 
process.

c.	 Fabrikam Shipping is an MVC application.

d.	 They needed to be able to redirect to external identity 
providers.

Answer: Only (b) is correct. For this scenario, they needed 
more control over the passive redirection process.

Chapter 7, Federated Identity with  
Multiple Partners and Windows Azure 
Access Control Service

1.	 Why does Fabrikam want to use ACS in the scenario 
described in this chapter?

a.	 Because it will simplify Fabrikam’s own internal 
infrastructure requirements.

b.	 Because it’s the only way Fabrikam can support  
users who want to use a social identity provider  
for authentication.

c.	 Because it enables users with social identities to 
access the Fabrikam Shipping application more easily.

d.	 Because ACS can authenticate users with social 
identities.

Answer: Only (a) and (c) are correct. Using ACS means that 
Fabrikam Shipping no longer requires its own federation 
provider. Also, ACS handles all of the necessary protocol 
transition for the tokens that the social identity providers issue. 
ACS does not perform the authentication; this task is handled 
by the social identity provider.



 351 351

2.	 In the scenario described in this chapter, why is it necessary 
for Fabrikam to configure ACS to trust issuers at partners 
such Adatum and Litware?

a.	 Because Fabrikam does not have its own on-premises 
federation provider.

b.	 Because Fabrikam uses ACS for all the claims-mapping 
rules that convert claims to a format that Fabrikam 
Shipping understands.

c.	 Because partners such as Adatum have some users 
who use social identities as their primary method of 
authentication.

d.	 Because a relying party such as Fabrikam Shipping  
can only use a single federation provider.

Answer: Only (a) and (b) are correct. In this scenario,  
Fabrikam decided to use ACS as its federation provider,  
so ACS holds all of its claims-mapping rules.

3.	 How does Fabrikam Shipping manage home realm discovery 
in the scenario described in this chapter?

a.	 Fabrikam Shipping presents unauthenticated users 
with a list of federation partners to choose from.

b.	 Fabrikam Shipping prompts unauthenticated users  
for their email addresses. It parses each address to 
determine which organization the user belongs to.

c.	 ACS manages home realm discovery; Fabrikam  
Shipping does not.

d.	 Each partner organization has its own landing page  
in Fabrikam Shipping. Visiting that page will automati-
cally redirect unauthenticated users to that organiza-
tion’s identity provider.

Answer: Only (d) is correct. Although the sample application 
does have a page that displays a list of partners, this is just to 
simplify the use of the sample. In practice, each partner would 
use its own landing page that would redirect the use to ACS, 
passing the correct value in the whr parameter.

4.	 Enrolling a new partner without its own identity provider 
requires which of the following steps?



352352 asnwers to questions

a.	 Updating the list of registered partners stored by 
Fabrikam Shipping. This list includes the home realm 
of the partner.

b.	 Adding a new identity provider to ACS.

c.	 Adding a new relying party to ACS.

d.	 Adding a new set of claims-mapping rules to ACS.

Answer: Only (a) , (c) and (d) are correct. A partner without  
its own identity provider will use one of the pre-configured  
social identity providers in ACS.

5.	 Why does Fabrikam use a separate web application to 
handle the enrollment process?

a.	 Because the expected usage patterns of the enroll-
ment functionality are very different from the expect-
ed usage patterns of the main Fabrikam Shipping web 
site.

b.	 Because using the enrollment functionality does not 
require a user to authenticate.

c.	 Because the site that handles enrolling new partners 
must also act as a federation provider.

d.	 Because the site that updates ACS with new relying 
parties and claims-mapping rules must have a different 
identity from sites that only read data from ACS.

Answer: Only (a) is correct. The number of new enrolments 
may be only one or two a day, while Fabrikam expects thousands 
of visits to the Shipping application. Using separate web sites 
enables Fabrikam to tune the two sites differently.

Chapter 8, Claims Enabling Web Services

1.	 Which statements describe the difference between the way 
federated identity works for an active client as compared to 
a passive client:

a.	 An active client uses HTTP redirects to ask each token 
issuer in turn to process a set of claims.

b.	 A passive client receives HTTP redirects from a web 
application that redirect it to each issuer in turn to 
obtain a set of claims.



 353 353

c.	 An active client generates tokens to send to claims 
issuers.

d.	 A passive client generates tokens to send to claims 
issuers.

Answer: Only (b) is correct. The relying party, federation 
provider, and identity provider communicate with each other 
through the client browser by using HTTP redirects that send 
the browser with any tokens to the next step in the process.

2.	 A difference in behavior between an active client and a 
passive client is:

a.	 An active client visits the relying party first; a passive 
client visits the identity provider first.

b.	 An active client does not need to visit a federation 
provider because it can perform any necessary claims 
transformations by itself.

c.	 A passive client visits the relying party first; an active 
client visits the identity provider first.

d.	 An active client must visit a federation provider first 
to determine the identity provider it should use. 
Passive clients rely on home realm discovery to 
determine the identity provider to use.

Answer: Only (c) is correct. A passive client visits the relying 
party first; the relying party redirects the client to an issuer. 
Active clients know how to obtain the necessary claims so they 
can visit the identity provider first.

3.	 The active scenario described in this chapter uses which 
protocol to handle the exchange of tokens between the 
various parties?

a.	 WS-Trust

b.	 WS-Transactions

c.	 WS-Federation

d.	 ADFS

Answer: Only (c) is correct. WS-Trust is the protocol that WIF 
and Windows Communication Foundation (WCF) use for active 
clients.



354354 asnwers to questions

4.	 In the scenario described in this chapter, it’s necessary to 
edit the client application’s configuration file manually, 
because the Svcutil.exe tool only adds a binding for a single 
issuer. Why do you need to configure multiple issuers?

a.	 The metadata from the relying party only includes 
details of the Adatum identity provider.

b.	 The metadata from the relying party only includes 
details of the client application’s identity provider.

c.	 The metadata from the relying party only includes 
details of the client application’s federation provider.

d.	 The metadata from the relying party only includes 
details of the Adatum federation provider.

Answer: Only (c) is correct. The metadata from the relying 
party only includes details of the Adatum federation provider 
and the client application also needs the metadata from its 
identity provider.

5.	 The WCF service at Adatum performs authorization checks 
on the requests that it receives from client applications. 
How does it implement the checks?

a.	 The WCF service uses the IsInRole method to verify 
that the caller is a member of the OrderTracker role.

b.	 The Adatum federation provider transforms claims 
from other identity providers into Role type claims 
with a value of OrderTracker.

c.	 The WCF service queries the Adatum federation 
provider to determine whether a user is in the  
OrderTracker role.

d.	 It does not need to implement any authorization 
checks. The application automatically grants access  
to anyone who has successfully authenticated.

Answer: Only (a) and (b) are correct. The WCF service checks 
the role membership of the caller. The role value is created from 
the claims received from the federation provider.



 355 355

Chapter 9, Securing REST Services

1.	 In the scenario described in this chapter, which of the 
following statements best describes what happens the first 
time that the smart client application tries to use the 
RESTful a-Order web service?

a.	 It connects first to the ACS instance, then to the 
Litware IP, and then to the a-Order web service.

b.	 It connects first to the Litware IP, then to the ACS 
instance, and then to the a-Order web service.

c.	 It connects first to the a-Order web service, then  
to the ACS instance, and then to the Litware IP.

d.	 It connects first to the a-Order web service, then  
to the Litware IP, and then to the ACS instance.

Answer: Only (b) is correct. The Active client first obtains  
a SAML token from the Litware IP, it then sends the SAML 
token to ACS where it is transitioned to an SWT token, it  
then attaches the SWT token to the request that it sends to  
the web service.

2.	 In the scenario described in this chapter, which of the 
following tasks does ACS perform?

a.	 ACS authenticates the user.

b.	 ACS redirects the client application to the relying 
party.

c.	 ACS transforms incoming claims to claims that the 
relying party will understand.

d.	 ACS transitions the incoming token format from 
SAML to SWT.

Answer: Only (c) and (d) are correct. The only tasks that ACS 
performs in this scenario are claims transformation and claims 
transitioning.

3.	 In the scenario described in this chapter, the Web.config  
file in the a-Order web service does not contain a  
<microsoft.identity> section. Why? 

a.	 Because it configures a custom ServiceAuthorization 
Manager class to handle the incoming SWT token in 
code.



356356 asnwers to questions

b.	 Because it is not authenticating requests.

c.	 Because it is not authorizing requests.

d.	 Because it is using a routing table.

Answer: Only (a) is correct. The incoming tokens are handled 
by the custom SWTAuthorizationManager class that is 
instantia ted in the CustomServiceHostFactory class.

4.	 ACS expects to receive bearer tokens. What does this 
suggest about the security of a solution that uses ACS?

a.	 You do not need to use SSL to secure the connection 
between the client and the identity provider.

b.	 You should use SSL to secure the connection between 
the client and the identity provider.

c.	 The client application must use a password to authen-
ticate with ACS.

d.	 The use of bearer tokens has no security implications 
for your solution.

Answer: Only (b) is correct. A solution that uses bearer tokens 
is susceptible to man-in-the-middle attacks; using SSL mitigates 
this risk.

5.	 You should use a custom ClaimsAuthorizationManager 
class for which of the following tasks.

a.	 To attach incoming claims to the IClaimsPrincipal 
object.

b.	 To verify that the claims were issued by a trusted 
issuer.

c.	 To query ACS and check that the current request is 
authorized. 

d.	 To implement custom rules that can authorize access 
to web service methods.

Answer: Only (d) is correct. The CheckAccess method in a 
custom ClaimsAuthorizationManager class has access to the 
IClaimsPrincipal object and URL associated with the current 
request. It can use this information to implement authorization 
rules.



 357 357

Chapter 10, Accessing REST Services  
from a Windows Phone 7 Device

1.	 Which of the following are issues in developing a  
claims-aware application that access a web service for  
the Windows Phone® 7 platform?

a.	 It’s not possible to implement a solution that uses 
SAML tokens on the phone.

b.	 You cannot install custom SSL certificates on the 
phone.

c.	 There is no secure storage on the phone.

d.	 There is no implementation of WIF available for the 
phone.

Answer: Only (c) and (d) are correct. Because there is no 
secure storage on the phone, you cannot securely store any 
credentials on the phone; either the user enters his credentials 
whenever he uses the application, or you accept the risk of the 
phone being used by an unauthorized person who will be able to 
use any cached credentials. There is no version of WIF available 
for the phone, so you must manually implement any token 
handling that your application requires.

2.	 Why does the sample application use an embedded web 
browser control?

a.	 To handle the passive federated authentication 
process.

b.	 To handle the active federated authentication process.

c.	 To access the RESTful web service.

d.	 To enable the client application to use SSL.

Answer: Only (a) is correct. The embedded web browser control 
handles the passive federated authentication process, enabling 
redirects between ACS and the Litware IP.

3.	 Of the two solutions (active and passive) described in the 
chapter, which requires the most round trips for the initial 
request to the web service? 

a.	 They both require the same number.

b.	 The passive solution requires fewer than the active 
solution.



358358 asnwers to questions

c.	 The active solution requires fewer than the passive 
solution.

d.	 It depends on the number of claims configured for the 
relying party in ACS.

Answer: Only (c) is correct. For the initial request to the web 
service, the active solution requires fewer round trips: the active 
solution first calls the Litware identity provider, then ACS, and 
finally the web service; the passive solution first calls ACS, the 
Litware identity provider, then goes back to ACS, and finally 
calls the web service.

4.	 Which of the following are advantages of the passive 
solution over the active solution?

a.	 The passive solution can easily build a dynamic list of 
identity providers.

b.	 It’s simpler to create code to handle SWT tokens in 
the passive solution.

c.	 It’s simpler to create code to handle SAML tokens in 
the passive solution.

d.	 Better performance.

Answer: Only (a) and (c) are correct. The passive solution can 
retrieve a list of configured identity providers from ACS to 
display to the user. In the passive solution, the embedded web 
browser manages the SAML token as part of the automatic 
redirects between the identity provider and the federation 
provider.

5.	 In the sample solution for this chapter, how does the 
Windows Phone 7 client application add the SWT token to 
the outgoing request?

a.	 It uses a Windows Communication Foundation (WCF) 
behavior.

b.	 It uses Rx to orchestrate the acquisition of the SWT 
token and add it to the header. 

c.	 It uses the embedded web browser control to add the 
header.

d.	 It uses WIF.



 359 359

 Answer: Only (b) is correct. The sample solution makes 
extensive use of Rx to orchestrate asynchronous operations. 
Both the active and passive solutions use Rx to add the  
authorization header at the right time.

Chapter 11, Claims-Based Single Sign-On 
for Microsoft SharePoint 2010

1.	 Which of the following roles can the embedded STS in 
SharePoint perform?

a.	 Authenticating users.

b.	 Issuing FedAuth tokens that contain the claims 
associated with a user.

c.	 Requesting claims from an external STS such as ADFS.

d.	 Requesting claims from Active Directory through  
Windows Authentication.

Answer: Only (b), (c) and (d) are correct. The embedded  
STS does not perform any authentication itself, but it can 
request that external token issuers such as ADFS or Windows 
Authentication issue tokens. The claims are then added to  
the user’s FedAuth token.

2.	 Custom claim providers use claims augmentation to perform 
which function?

a.	 Enhancing claims by verifying them against an external 
provider.

b.	 Enhancing claims by adding additional metadata to 
them.

c.	 Adding claims data to the identity information in the 
SPUser object if the SharePoint web application is in 
“legacy” authentication mode.

d.	 Adding additional claims to the set of claims from  
the identity provider.

Answer: Only (d) is correct. Claims augmentation is the 
function of a custom claims provider that adds to the set of 
claims from an identity provider.



360360 asnwers to questions

3.	 Which of the following statements about the FedAuth 
cookie in SharePoint are correct?

a.	 The FedAuth cookie contains the user’s claim data.

b.	 Each SharePoint web application has its own FedAuth 
cookie.

c.	 Each site collection has its own FedAuth cookie.

d.	 The FedAuth cookie is always a persistent cookie.

Answer: Only (a) and (b) are correct. Each SharePoint web 
application has its own FedAuth token because you can  
configure each SharePoint web application to have a different 
token provider. By default, the FedAuth cookie is persistent,  
but you can configure it to be a session cookie.

4.	 In the scenario described in this chapter, why did Adatum 
choose to customize the people picker?

a.	 Adatum wanted the people picker to resolve role and 
organization claims.

b.	 Adatum wanted the people picker to resolve name 
and emailaddress claims from ADFS.

c.	 Adatum wanted to use claims augmentation.

d.	 Adatum wanted to make it easier for site administra-
tors to set permissions reliably.

Answer: Only (a) and (d) are correct. Adatum wanted the 
people picker to correctly resolve role and organization claims 
so that site administrators could assign permissions based on 
these values.

5.	 In order to implement single sign-out behavior in Share-
Point, which of the following changes did Adatum make?

a.	 Adatum modified the standard signout.aspx page to 
send a wsignoutcleanup message to ADFS.

b.	 Adatum uses the SessionAuthenticationModule 
SigningOut event to customize the standard sign-out 
process.



 361 361

c.	 Adatum added custom code to invalidate the FedAuth 
cookie.

d.	 Adatum configured SharePoint to use a session-based 
FedAuth cookie.

 Answer: Only (b) and (d) are correct. The relying party must 
send a wsignout message to its identity provider; the identity 
provider sends wsignoutcleanup messages to all of the 
currently logged-in relying parties. If the FedAuth cookie is 
session-based, SharePoint will automatically invalidate it.

Chapter 12, Federated Identity  
for SharePoint Applications

1.	 In the scenario described in this chapter, Adatum prefers to 
maintain a single trust relationship between SharePoint and 
ADFS, and to maintain the trust relationships with the 
multiple partners in ADFS. Which of the following are valid 
reasons for adopting this model?

a.	 It enables Adatum to collect audit data relating to 
external sign-ins from ADFS.

b.	 It allows for the potential reuse of the trust relation-
ships with partners in other Adatum applications.

c.	 It allows Adatum to implement automatic home realm 
discovery. 

d.	 It makes it easier for Adatum to ensure that Share-
Point receives a consistent set of claim types.

Answer: Only (a), (c) and (d) are correct. There is nothing in 
the model chosen by Adatum that specifically enables home 
realm discovery, though it may be easier to implement by 
customizing the pages in ADFS. It is easier for Adatum to 
manage the authentication and claims issuing in ADFS.

2.	 When must a SharePoint user reauthenticate with the 
claims issuer (ADFS in the Adatum scenario)?

a.	 Whenever the user closes and then reopens the 
browser.

b.	 Whenever the ADFS web SSO cookie expires.



362362 asnwers to questions

c.	 Whenever the SharePoint FedAuth cookie that 
contains the SAML token expires.

d.	 Every ten minutes.

Answer: Only (a) and (c) are correct. Whether or not a user 
must re-authenticate after closing and re-opening the browser 
depends on whether the SAML token is stored in a persistent 
cookie; the Adatum single sign-out implementation requires 
session cookies to be enabled. The ADFS web SSO cookie 
determines when a user must reauthenticate with ADFS, not 
with SharePoint. The time period between authentications will 
depend on the lifetime of the SAML token as specified by  
ADFS and whether sliding sessions are in use.

3.	 Which of the following statements are true with regard to 
the Adatum sliding session implementation?

a.	 SharePoint tries to renew the session cookie before it 
expires.

b.	 SharePoint waits for the session cookie to expire and 
then creates a new one.

c.	 When SharePoint renews the session cookie, it always 
requests a new SAML token from ADFS.

d.	 SharePoint relies on sliding sessions in ADFS.

Answer: Only (a) and (c) are correct. SharePoint tries to renew 
the session cookie before it expires. If the cookie expires, then 
SharePoint will request a new SAML token from ADFS.

4.	 Where is the organization claim that SharePoint uses to 
authorize access to certain documents in the a-Portal web 
application generated?

a.	 In the SharePoint STS.

b.	 In the identity provider’s STS; for example in the 
Litware issuer.

c.	 In ADFS.

d.	 Any of the above.

Answer: Only (c) is correct. The solution relies on ADFS to 
generate the organization claim. It’s important not to rely on 
the partner’s identity provider because a malicious administrator 
could spoof another partner’s identity.



 363 363

5.	 Why does Adatum rely on ADFS to perform home realm 
discovery?

a.	 It’s easier to implement in ADFS than in SharePoint.

b.	 You can customize the list of identity providers for 
each SharePoint web application in ADFS.

c.	 You cannot perform home realm discovery in Share-
Point.

d.	 You can configure ADFS to remember a user’s choice 
of identity provider.

 Answer: Only (a) , (b), and (d) are correct. (a), (b), and (d)  
are all reasons for Adatum to implement home realm discovery 
in ADFS. It is possible to implement it SharePoint.





365

Index

A
1SingleSignOn, 49
2-Federation, 77
3FederationWithMultiplePartners, 109
4ActiveClientFederation, 148
6-FederationWithAcs, 93‑94
7FederationWithMultiplePartnersAndAcs, 135
8ActiveRestClientFederation, 162, 164
9WindowsPhoneClientFederation, 183
10SharePoint, 210, 212, 214, 229
<bindings> subsection, 150‑151
<Microsoft.identityModel> element, 149
<service> element, 150
<sharedListeners> section, 154‑155
<system.serviceModel> section, 150
Access Control Service (ACS), 81‑83

and ADFS for Services, Smart Clients, and 
SharePoint BCS, 301

and ADFS for users of a website, 300‑301
ADFS issuer as a trusted identity provider, 

309
ADFS issuer as a trusted issuer, 310
authenticating services, smart clients, and 

mobile devices, 299
authenticating users of a website, 298
claims, 7
diagram of functions, 8
federated identity message sequence, 31
home realm discovery page, 312
REST services, 162‑163
and STSs generated in Visual Studio 2010, 311
what does it do?, 296‑297

see also federated identity for Windows 
Azure ACS; federated identity with 
multiple partners and Windows Azure 
ACS; SharePoint 2010 authentication; 
Windows Azure Appfabric ACS

acknowledgments, xxxiii‑xxxv
active client

certificates, 293‑294
claims enabling web services, 150‑153
defined, xxv
REST services, 167‑171
scenario, 252‑258
scenario message-diagram, 252

Active Directory, xxx, 62, 80
changing schemas, 46
choosing claims, 5

Active Directory Federation Services (ADFS) see 
ADFS 2.0

active federation, 179‑181
active SAML token handling, 183‑185
AdatumIssuerIssuedToken binding, 151‑152
Adatum people picker solution, 203
Adatum scenario, 43‑69

ASP.NET 4.0, 43‑45
claims-enabled SharePoint applications, 197
infrastructure before claims, 44

ADFS 2.0, xxix
as claims issuer, 5‑6
claims rule language, 74‑75
default authentication method, 216
server requirements, xxx
trusted identity provider, 309



366

trusted issuer, 310
for web services, 155‑156, 172

adfs.cer file, 206
a-Expense, 44‑67

application, 44‑46
before claims, 49‑52
with claims, 52‑58
with forms authentication, 49
hosting on Windows Azure, 64‑67

anonymity, 9‑12
answer key, 337‑363
a-Order, 43‑49, 59
a-Order.OrderTracking Web service, 148
appendixes see certificates; FedUtil.exe tool; 

industry standards; message sequences; 
SharePoint 2010 authentication; Windows 
Azure Appfabric ACS

applications
browser-based applications, 17‑23
initial request to, 248
making claims-aware, 237‑238
server requirements, xxx
SharePoint web applications, 200‑201
signing out of, 60‑61
site collections in a SharePoint web 

application, 199‑200
see also claims-based applications

architecture see claims-based architectures
architecture of the Adatum people picker solution, 

203
ASP.NET 4.0, 43‑45
ASP.NET MVC, 101, 109‑112, 114

see also federated identity with multiple 
partners

audience, xxiii‑xxiv
AuthenticateAndAuthorizeAttribute class, 112, 

139‑141
AuthenticateUser method, 112‑113, 115, 139
authentication

extension, 315‑316
logic, 3‑5
mechanism, 197‑199
methods in SharePoint, 316‑317
mode, 319

authoritative data, 5
authorization rules, 232‑233
AuthorizeUser method, 115‑116, 140
automated provisioning, 117‑118
Azure see Windows Azure

B
BCS, 25‑26, 299
Bharath see security specialist role (Bharath)
<bindings> subsection, 150‑151
browser-based applications, 17‑23
browser-based message sequence, 20

WSFederationAuthenticationModule (FAM), 
20‑21

browser-based scenario, 240‑251
browser closing, 232
Business Connectivity Services (BCS) see BCS
business trust relationship, 89

C
Cameron, Kim, xvii‑xviii
Certificate for Message Security (Active Client 

Host), 293‑294
Certificate for Message Security (Web Service 

Host, Active Scenario), 292
Certificate for TLS/SSL (Web Server, Browser 

Scenario), 288
Certificate for Token Encryption (Issuer, Active 

Scenario), 291
Certificate for Token Signing (Issuer, Active 

Scenario), 287‑288, 291
Certificate for Transport Security (TLS/SSL) (Web 

Service Host, Active Scenario), 292
certificates, 287‑294

on the active client host, 293‑294
for browser-based applications, 287
Certificate for Message Security (Active 

Client Host), 293‑294
Certificate for Message Security (Issuer, 

Active Scenario), 291
Certificate for Message Security (Web 

Service Host, Active Scenario), 292
Certificate for TLS/SSL (Web Server, Browser 

Scenario), 288
Certificate for Token Encryption (Issuer, 

Active Scenario), 291
Certificate for Token Signing (Issuer, Active 

Scenario), 291
Certificate for Token Signing (Issuer, Active 

Scenario), 287‑288
Certificate for Transport Security (TLS/SSL) 

(Issuer, Active Scenario), 290‑291
Certificate for Transport Security (TLS/SSL) 

(Web Service Host, Active Scenario), 292



 367

Cookie Encryption/Decryption (Web Server, 
Browser Scenario), 290

importing from adfs.cer file, 206
on the issuer (active scenario), 290‑291
Optional Certificate for Token Encryption 

(Issuer, Browser Scenario), 288
Optional Token Decryption (Web Server, 

Browser Scenario), 289‑290
TLS/SSL (Issuer, Browser Scenario), 287
Token Decryption (Web Service Host, Active 

Scenario), 293
Token Signature Chain of Trust Verification 

(Web Server, Browser Scenario), 289
Token Signature Chain Trust Verification 

(Web Service Host, Active Scenario), 293
Token Signature Verification (Web Server, 

Browser Scenario), 289
Token Signature Verification (Web Service 

Host, Active Scenario), 292‑293
on the web application server, 288‑290
on the web service host, 292‑293

certificate section, 118‑119
ClaimHelper class, 57‑58
Claim Provider Identifier, 215
Claim Provider Type, 215
claims, 1‑14

Access Control Service (ACS), 7
authentication limitations, 322‑324
authentication logic, 3‑5
authentication profiles and audiences, 321
benefits, 12
building a collection, 198
claims rule language, 74
displaying in a web part, 214
external issuers, 7‑8
getting lists of, 36‑37
good, 5
implementing identity, 9‑12
mappings, 107‑108
mappings in SharePoint, 207
relationships to security tokens and issuers, 2
SharePoint, 25‑26
table, 2
technologies used by, 38‑40
transformation, 32‑33
use configuration, 324‑325
use considerations, 319‑324
user anonymity, 9‑12
user distinguishing, 36

uses for, 2‑5
vs. Kerberos, 1‑2
where they should be issued, 37‑38

claims-based applications, 4‑5
design considerations, 35‑40
diagram, 8
good claims, 35
setting up, 61

claims-based architectures, 15‑42
benefits, 313‑314
implementation, 315‑319
performance optimizations, 23
smart clients, 23‑25

claims-based identity
familiar example, 3‑5
over the Internet, 48
powerful feature of, 27
vs. Windows authentication, 46‑47

claims-based single sign-on for Microsoft 
SharePoint 2010, 195‑218

ADFS default authentication method, 216
authentication mechanism, 197‑199
claims mappings in SharePoint, 207
displaying claims in a web part, 214
end-to-end walkthroughs, 199
FedAuth tokens, 215
goals and requirements, 196‑197
overview, 197‑205
people picker, 202‑204
people picker customizations, 210‑212
relying party (RP) configuration in ADFS, 

205‑206
server deployment, 216
SharePoint authorization, 201‑202
SharePoint STS configuration, 206‑209
SharePoint trusted identity token issuer, 

207‑209
SharePoint trusted root authority, 206‑207
SharePoint web application configuration, 

209
single sign-out, 204‑205
single sign-out control, 212‑214
user profile synchronization, 214‑215
visiting two SharePoint web applications, 

200‑201
visiting two site collections in a SharePoint 

web application, 199‑200
claims-based single sign-on for the Web, 43‑69

inside the implementation, 49‑59



368

overview, 46‑48
setup and physical deployment, 61
Windows Azure, 64‑67

claims-enabled SharePoint applications at Adatum, 
197

claims enabling web services, 145‑157
active client, 150‑153
ADFS 2.0 for web services, 155‑156
authorization strategy, 153‑154
debugging the application, 154‑155
goals and requirements, 146
inside the implementation, 148‑155
overview, 146‑147
setup and physical deployment, 155‑156
web service, 148‑150

ClaimsPrincipal object, 21‑22, 54, 248‑250
claims rule language, 74
Claims to Windows Token Service (C2WTS), 

318‑319
Claim User Identifier, 215
CleanUp.aspx page, 60‑61
client computer requirements, xxx
code requirements, xxix‑xxx
configurable claims transformation rules, 119
Contoso, 105‑106, 133‑134
Cookie Encryption/Decryption (Web Server, 

Browser Scenario), 290
cookies, 21‑23, 49, 205, 224, 249‑251

see also FedAuth tokens
credentials, 30
cross-realm identity, 26‑28
custom claims authorization manager class, 

166‑167
CustomHeaderMessageInspector class, 169‑171

D
decentralization, 26‑27
default ACS home realm discovery page, 312
direct trust model, 223
DisplayClaimsWebPart, 214
DoFederatedSignOut method, 212‑213
domains, 72, 296

E
8ActiveRestClientFederation, 162, 164
errors, 308

federation metadata document, 311‑312
experts, xxxi

F
Fabrikam scenario see federated identity with 

multiple partners; federated identity with 
multiple partners and Windows Azure ACS

Fabrikam Shipping
for customers with an identity provider, 

103‑105
using ACS, 128

Facebook
authentication, 91
federated identity for Windows Azure ACS, 

98‑99
FedAuth tokens, 215, 225
federatedAuthentication attribute, 55
federated identity, 1, 5‑6, 28‑32

across realms, 26‑32
with ACS as the issuer, 30
between Adatum and Litware diagram, 73
with a smart client, 146‑147, 161
message sequence, 31

federated identity for SharePoint applications, 
219‑236

authorization rules, 232‑233
closing the browser, 232
goals and requirements, 220
home realm discovery, 233‑234
inside the implementation, 224‑234
overview, 220‑224
SAML token expiration in SharePoint, 

225‑228
sliding sessions, 231
token expiration and sliding sessions, 224

federated identity for Web applications, 71‑80
benefits and limitations, 77
goals and requirements, 72
mapping input to claims, 75
mock issuers, 78
overview, 72
setup and physical deployment, 77
single sign-on (SSO), 71
trust relationships, 78

federated identity for Windows Azure ACS, xxvii, 
81‑100

alternative solutions, 91‑99
customer using a social identity, 86‑88
customer with its own identity provider, 

84‑86
Facebook, 98‑99



 369

goals and requirements, 82‑83
initializing ACS, 95‑96
inside the implementation, 93‑94
mapping rules in a federation provider, 89‑91
overview, 83‑84
reporting errors from ACS, 95
setup and physical deployment, 94
social identity providers, 96‑99
trust relationships with social identity 

providers, 88‑89
trust relationship with ACS, 94‑96
users with social identities, 96‑97
Windows Live IDs, 97‑98

federated identity with multiple partners, 101‑121
certificate section, 118‑119
claims in Fabrikam shipping, 107‑108
goals and requirements, 102‑103
inside the implementation, 109‑117
issuer section, 118
mapping input to claims, 108
organization section, 118
overview, 103‑107
setup and physical deployment, 117‑119
trust relationship, 117‑119
user-configurable claims transformation rules, 

119
federated identity with multiple partners and 

Windows Azure ACS, 123‑144
ACS initialization, 142‑143
adding a new identity provider to, 137
authenticating a user of Fabrikam Shipping, 

139‑140
authorizing access to Fabrikam Shipping data, 

140‑141
claims-mapping rules in ACS, 137‑138
enrolling a new partner organization, 132‑133
Fabrikam Shipping using ACS, 127‑128
Fabrikam Shipping websites, 141‑142
goals and requirements, 125‑127
inside the implementation, 135‑141
listing identity providers from ACS, 135‑137
listing partner organizations, 138‑139
multiple partners with a single identity, 

133‑134
overview, 125‑135
sample claims issuers, 142
setup and physical deployment, 141‑143
users at a partner organization, 134‑135

FederatedPassiveSignInStatus control, 60, 63
federation binding, 152
federation metadata, 11‑12, 118

document uploading, 311‑312
federation provider (FP), 73‑75
FederationResult handler, 114
FedUtil.exe tool, 12, 110, 237‑238
forward, xvii‑xxii
4ActiveClientFederation, 148

G
GetOrders method, 188
GetPickerEntry method, 210‑211
Global.asax file, 56, 62, 110, 163
glossary, 327‑336
Google authentication, 89‑90

H
home realm discovery, 72, 74, 76, 83

Access Control Service (ACS), 296, 312
custom pages, 306‑307
federated identity for SharePoint 

applications, 233‑234
federated identity with multiple partners, 105
senior software developer role (Markus), 129
and Web services, 33‑34

HTTP traffic, 241, 253, 260, 274
HttpWebRequestExtensions class, 183‑184
hub model, 222‑224

I
identity

federating across realms, 28
federating with Litware, 221
federation, 5‑6
infrastructure, 315‑316
normalization, 315‑316
transformation, 32‑33
see also claims-based identity

Identity.Claims property, 9
identity provider (IdP), xxv, 73, 296
Index method, 111, 116‑117
industry standards, 285‑286

Internet Security Association and Key 
Management Protocol (ISAKMP), 285

Security Assertion Markup Language (SAML), 
285



370

Security Association Management 
Protocol(SAMP), 285

WS-Federation, 285
WS-Federation Passive Requestor Profile, 286
WS-SecureConversation, 286
WS-Security, 286
WS-Trust, 286
XML Encryption, 286

Internet
accessing, 64
claims-based identity, 48

Internet Security Association and Key 
Management Protocol (ISAKMP), 285

IsSocial method, 135‑136
issuers, 2, 4, 32

see also mock issuers
issuer section, 118
IT professional role (Poe), xxxi

LogonTokenCacheExpirationWindow 
property, 226

Organization claim, 97

J
Jana see software architect role (Jana)
JavaScript, 187
JSON-encoded responses, 308

K
Kerberos

downfall of, 15
limitations, 3
vs. claims-based approach, 1‑2

Kwan, Stuart, xix‑xx

L
layout of this book, xxv‑xxix
Litware, 221
LitwareIssuerUsernameMixed binding, 152
LogonTokenCacheExpirationWindow property, 

226, 229‑232

M
management service API, 307‑308
mappings

of claims, 107‑108
of this book, xxvi

Markus see senior software developer role 
(Markus)

message sequences, 239‑283
for ACS, 297‑301
active client scenario, 252‑258
browser-based, 20
browser-based scenario, 240‑251
browser-based scenario with ACS, 258‑272
single sign-out, 273‑283
smart-client based, 23‑25

metadata, 11, 78
<Microsoft.identityModel> element, 149
microsoft.identityModel section, 165‑166
Microsoft SharePoint Business Connectivity 

Services (BCS) see BCS
Microsoft Windows Identity Foundation (WIF), 

17‑23
mock issuers, 61‑63

federated identity for Web applications, 78
Model View Controller (MVC) framework, 101, 

109‑112, 114
multiple partners see federated identity with 

multiple partners

N
nameidentifier claim, 88, 96‑97
Navigating event, 186‑187
9WindowsPhoneClientFederation, 183
NTLM handshake, 244

O
OnAuthenticate event, 50‑51
1SingleSignOn, 49
OnLoad method, 51
on the issuer (active scenario), 290‑291
Optional Certificate for Token Encryption (Issuer, 

Browser Scenario), 288
Optional Token Decryption (Web Server, Browser 

Scenario), 289‑290
OrderTrackingService class, 164
Organization claim, 97, 137‑138, 141‑142, 232‑233
organization section, 118

P
Pace, Eugenio, xxxiii‑xxxv
Page_Load event handler, 60‑61
partner organizations, 138‑139
passive client, xxv



 371

passive federation, 15
REST services from a Windows phone device, 

177‑179
passiveRedirectEnabled attribute, 110
people picker, 202‑204

customizations, 210‑212
Peschka, Steve, xxi‑xxii
phone devices see REST services from a Windows 

phone device
Poe see IT professional role (Poe)
PowerShell command parameters, 208
preface, xxiii‑xxxi
principal, xxiv‑xxv
privacy, 30, 34, 36, 127
production issuer, 63‑64
profiles

and audiences with claims authentication, 321
synchronization, 214‑215

proof keys, 25
protocol transitions, 297

R
RBAC, 2, 37‑38
Reactive Extensions (Rx), 187‑188
realms, 6, 26‑32, 296
RegisterRoutes method, 110‑111
relying party (RP), 74, 296

configuration in ADFS, 205‑206
defined, xxiv
Fabrikam scenario, 134
identifiers, 206
mapping table, 205
production issuer, 63‑64

remote users, 26‑27
RequestSecurityTokenResponse, 245
RequestSecurityToken (RST), 253
requirements, xxix‑xxx
resource security token service (R-STS), xxv
REST services, 158‑174

ACS configuration, 162‑163
active client, 167‑171
ADFS  for web services, 172
federated identity with a smart client, 161
goals and requirements, 160
inside the implementation, 162‑171
overview, 161‑162
setup and physical deployment, 172
SWT token, 168
web service, 163‑167

REST services from a Windows phone device, 
175‑193

active federation, 179‑181
active SAML token handling, 183‑185
asynchronous behavior, 187‑191
comparing the solutions, 181‑182
goals and requirements, 176
overview, 177‑182
passive federation, 177‑179
Web browser control, 185‑187

RetrieveIdentityProviders method, 136‑137
ReturnURL parameter, 18
rich client, office, and reporting applications with 

claims authentication, 321‑322
Role-Based Access Control (RBAC) see RBAC
roles, xxxi

see also IT professional role (Poe); security 
specialist role (Bharath); senior software 
developer role (Markus); software 
architect role (Jana)

route mappings, 110

S
SAML see Security Assertion Markup Language 

(SAML)
scenarios see active client; certificates; message 

sequences; roles
security

between domains, 72
Windows Azure Appfabric ACS, 310‑311

Security Assertion Markup Language (SAML), xxiv, 
39, 72

industry standards, 285
token expiration in SharePoint, 225‑228
token request, 184‑185
tokens, 38‑39, 147, 171

Security Association Management 
Protocol(SAMP), 285

security specialist role (Bharath)
cross-realm identity, 27
federated identity, 6
overview, xxxi
RBAC, 2

security tokens, 4
table, 2

security token service (STS), xxv, 296
generated in Visual Studio 2010, 311

SelfSTS tool, 80, 142



372

senior software developer role (Markus)
ASP.NET MVC, 111
home realm discovery, 129
overview, xxxi
ReturnURL parameter, 18

server deployment, 216
<service> element, 150
service providers (SP), xxiv
Session_SignedIn event, 213‑214
Session_Start method, 56‑57
7FederationWithMultiplePartnersAndAcs, 135
<sharedListeners> section, 154‑155
SharePoint

claims, 25‑26
claims-enabled applications at Adatum, 197
configuration values, 226
permissions table, 201
security token service, 317‑318
services application framework, 318‑319
sliding sessions in, 228‑232
standard token expiration, 227
STS configuration, 206‑209
supported standards, 319
token expiration, 225‑228
trusted identity token issuer, 207‑209
trusted root authority, 206‑207
user identity, 316‑317
web application configuration, 209
see also claims-based single sign-on for 

Microsoft SharePoint 2010; federated 
identity for SharePoint applications

SharePoint 2010 authentication, 313‑326
choosing a mode, 319
claims-based architecture benefits, 313‑314
claims-based architecture implementation, 

315‑319
Claims to Windows Token Service (C2WTS), 

318‑319
claim use configuration, 324‑325
claim use considerations, 319‑324
configuration tips, 325‑326
groups with claims authentication, 320‑321
limitations, 321‑324
methods in, 316‑317
multiple authentication mechanisms, 320
profiles and audiences with claims 

authentication, 321
sequence, 318
supported standards, 319

SharePoint Business Connectivity Services (BCS) 
see BCS

ShipmentController class, 111
sign-on, 43‑69
SimpleClaimsAuthorizationManager class, 

153‑154
Simple Web Token (SWT), 39
single sign-on (SSO), 43

with a browser, 17, 19
federated identity for Web applications, 71
see also claims-based single sign-on for 

Microsoft SharePoint 2010; claims-based 
single sign-on for the Web

single sign-out, 204‑205
control, 212‑214

SingleSignOutModule, 212
site collections in SharePoint web applications, 

199‑201
6-FederationWithAcs, 93‑94
SlidingSessionModule, 229
sliding sessions

in the a-Portal web application, 224, 231
in SharePoint, 228‑232

smart client, 146‑147, 161‑162
with federated identity, 146‑147, 161‑162

smart client-based message sequence, 24
social identity, 81, 83‑84

customer using a social identity, 86‑88
social identity providers, 96‑99
trust relationships with social identity 

providers, 88‑89   users with social 
identities, 96‑97

software architect role (Jana)
ASP.NET MVC, 109
identity transformation, 32
overview, xxxi

software requirements, xxix‑xxx
SPClaimsManager component, 202
SPUser instance, 215
SPUser type, 316
SSO see single sign-on (SSO)
standards, 319
standard token expiration in SharePoint, 227
structure of this book, xxv‑xxix
STS see security token service (STS)
stub issuers, 10
subject defined, xxiv‑xxv
SWT tokens, 168, 171
<system.serviceModel> section, 150



 373

T
technical trust relationship, 89
10SharePoint, 210, 212, 214, 229
terminology, xxiv‑xxv
3FederationWithMultiplePartners, 109
thumbprints, 55‑56
TLS/SSL (Issuer, Browser Scenario), 288
Token Decryption (Web Service Host, Active 

Scenario), 293
tokens

expiration in SharePoint, 225‑228
issuers, 296
request, 184‑185
sliding sessions, 224
trusted identity token issuer, 207‑209

Token Signature Chain Trust Verification (Web 
Service Host, Active Scenario), 293

Token Signature Verification (Web Server, Browser 
Scenario), 289

Token Signature Verification (Web Service Host, 
Active Scenario), 292‑293

transformation
claims, 32‑33
configurable claims transformation rules, 119
rules, 297

trusted identity token issuer, 207‑209
trust relationship, 2, 10, 88‑89, 297
2-Federation, 77

U
unique identification, 36
UserName property, 153
users, 36‑37

anonymity, 9‑12
configurable claims transformation rules, 119
profile synchronization, 214‑215
website authentication, 298

W
wa argument, 18
Web see claims-based single sign-on for the Web
Web applications see federated identity for Web 

applications
Web browser control, 185‑187
Web.config file, 163
web services

ADFS 2.0, 155‑156, 172
REST services, 163‑167

see also claims enabling web services
websites

ACS and ADFS, 300‑301
user authentication, 298

who’s who, xxxi
whr parameters, 76, 87, 98‑99, 128‑129, 312
Windows authentication vs. claims-based identity, 

46‑47
Windows Azure, xxix, 64‑67
Windows Azure Appfabric ACS, xxix, 81‑82, 

295‑312
creating, configuring, and using an ACS issuer, 

302‑306
custom home realm discovery pages, 306‑307
error management, 308
integrating ACS and a local ADFS issuer, 

308‑310
management service API, 307‑308
message sequences for ACS, 297‑301
security considerations, 310‑311
tips for using, 311‑312
what does ACS do?, 296‑297

Windows Identity Foundation (WIF), xix‑xx, xxviii, 
9, 17‑23, 314-315

Windows Live IDs
authentication, 90
federated identity for Windows Azure ACS, 

97‑98
Windows Live Messenger Connect, 98
Windows Phone

active federation, 180
passive federation, 177

Windows phone devices see REST services from a 
Windows phone device

WS* Extensions, 39‑40
WSFederatedAuthenticationModule (FAM), 241, 

260, 272, 275
WS-Federation, 11, 40, 72, 113

data sent to the issuer, 275
industry standards, 285
protocol, 113, 223

WSFederationAuthenticationModule (FAM), 
53‑54

browser-based message sequence, 20‑21
WS-Federation Passive Requestor Profile, 16, 40

industry standards, 286
WS-SecureConversation, 40

industry standards, 286



374

WS-Security, 39
industry standards, 286

WS-Trust, 39
industry standards, 286

WSTrustChannel, 153
wtrealm argument, 18, 25

X
XML Encryption, 286


	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	OLE_LINK1
	OLE_LINK2
	OLE_LINK6
	OLE_LINK7
	OLE_LINK8
	OLE_LINK9
	OLE_LINK10
	OLE_LINK11
	OLE_LINK12
	_GoBack
	_GoBack
	_GoBack
	_GoBack

