Micresoft
Second Edition

A GUIDE TO

CLaIMS-BAsED
IDENTITY AND
AN e 1 T e N R

Authentication and Authorization for
Services and the Web

Dominick Baier
Vittorio Bertocci
Keith Brown

Scott Densmore
Eugenio Pace
Matias Woloski

patterns & practices

A GUIDE TO CLAIMS-BASED IDENTITY AND ACCESS CONTROL

A GUIDE TO

Claims-Based Identity

and Access Control
SECOND EDITION

Authentication and Authorization
for Services and the Web

patterns & practices
Microsoft Corporation

This document is provided “as-is.” Information and views expressed
in this document, including URLs and other Internet website
references, may change without notice. You bear the risk of using it.
Some examples depicted herein are provided for illustration only
and are fictitious. No real association or connection is intended or
should be inferred.

©2011 Microsoft. All rights reserved.

Microsoft, Active Directory, MSDN, SharePoint, SQL Server, Visual
Studio, Windows, Windows Azure, Windows Live, Windows
PowerShell, and Windows Server are trademarks of the Microsoft
group of companies. All other trademarks are the property of their
respective owners.

FOREWORD
Kim Cameron

FOREWORD
Stuart Kwan

FOREWORD
Steve Peschka

PREFACE
Who This Book Is For
Why This Book Is Pertinent Now
A Note about Terminology
How This Book Is Structured
About the Technologies
What You Need to Use the Code
Application Server
ADFS
Active Directory
Client Computer
Who's Who

ACKNOWLEDGEMENTS

Contents

XVII

XIX

XXI

XXM
XXIV
XXIV
XXV
XXVII
XXIX
XXX
XXX
XXX
XXX
XXXI

XXX

1 AN INTRODUCTION TO CLAIMS

What Do Claims Provide?
Not Every System Needs Claims
Claims Simplify Authentication Logic
A Familiar Example
What Makes a Good Claim?
Understanding Issuers
ADFS as an Issuer
External Issuers
User Anonymity
Implementing Claims-Based Identity

Step 1: Add Logic to Your Applications to Support Claims

Step 2: Acquire or Build an Issuer

Step 3: Configure Your Application to Trust the Issuer
Step 4: Configure the Issuer to Know about the

Application
A Summary of Benefits
Moving On
Questions

CLAIMS-BASED ARCHITECTURES
A Closer Look at Claims-Based Architectures
Browser-Based Applications
Understanding the Sequence of Steps
Optimizing Performance
Smart Clients
SharePoint Applications and SharePoint BCS
Federating Identity across Realms
The Benefits of Cross-Realm Identity
How Federated Identity Works
Federated Identity with ACS
Understanding the Sequence of Steps
Combining ACS and ADFS
Identity Transformation
Home Realm Discovery

Design Considerations for Claims-Based Applications

What Makes a Good Claim?

How Can You Uniquely Distinguish One User from Another?

O VW OV N U1 L1 L1 W WNRE B

[
B O O

12
12
13

15
16
17
19
23
23
25
26
26
28
29
31
32
32
32
35
35
36

How Can You Get a List of All Possible Users
and All Possible Claims?
Where Should Claims Be Issued?
What Technologies Do Claims and Tokens Use?
Questions

3 CLAIMS-BASED SINGLE SIGN-ON FOR THE
WEB AND WINDOWS AZURE

The Premise
Goals and Requirements
Overview of the Solution
Inside the Implementation
a-Expense before Claims
a-Expense with Claims
a-Order before Claims
a-Order with Claims
Signing out of an Application
Setup and Physical Deployment
Using a Mock Issuer
Isolating Active Directory
Handling Single Sign-out in the Mock Issuer
Converting to a Production Issuer
Enabling Internet Access
Variation—Moving to Windows Azure
Questions
More Information

4 FEDERATED IDENTITY FOR WEB
APPLICATIONS

The Premise
Goals and Requirements
Overview of the Solution
Benefits and Limitations
Inside the Implementation
Setup and Physical Deployment
Using Mock Issuers for Development and Testing
Establishing Trust Relationships
Questions
More Information

36
37
38
41

43
43
45
46
49
49
52
59
59
60
61
61
62
63
63
64
64
68
69

71
71
72
72
77
77
77
78
78
79
80

5 FEDERATED IDENTITY WITH WINDOWS

AZURE ACCESS CONTROL SERVICE 81
The Premise 82
Goals and Requirements 82
Overview of the Solution 83

Example of a Customer with its Own Identity Provider 84
Example of a Customer Using a Social Identity 86
Trust Relationships with Social Identity Providers 88
Description of Mapping Rules in a Federation Provider 89
Alternative Solutions 91
Inside the Implementation 93
Setup and Physical Deployment 94
Establishing a Trust Relationship with ACS 94
Reporting Errors from ACS 95
Initializing ACS 95
Working with Social Identity Providers 96
Managing Users with Social Identities 96
Working with Windows Live IDs 97
Working with Facebook 98
Questions 99
More Information 100

6 FEDERATED IDENTITY WITH

MULTIPLE PARTNERS 101
The Premise 101
Goals and Requirements 102
Overview of the Solution 103

Step 1: Present Credentials to the Identity Provider 104
Step 2: Transmit the Identity Provider’s Security Token
to the Federation Provider 104
Step 3: Map the Claims 105
Step 4: Transmit the Mapped Claims
and Perform the Requested Action 105
Using Claims in Fabrikam Shipping 107

Inside the Implementation 109

Setup and Physical Deployment
Establishing the Trust Relationship
Organization Section
Issuer Section
Certificate Section
User-Configurable Claims Transformation Rules
Questions

FEDERATED IDENTITY WITH MULTIPLE
PARTNERS AND WINDOWS AZURE ACCESS
CONTROL SERVICE
The Premise
Goals and Requirements
Overview of the Solution
Step 1: Present Credentials to the Identity Provider
Step 2: Transmit the Identity Provider’s Security Token
to the Federation Provider
Step 3: Map the Claims
Step 4: Transmit the Mapped Claims
and Perform the Requested Action
Step 1: Present Credentials to the Identity Provider
Step 2: Transmit the Social Identity Provider’s
Security Token to ACS
Step 3: Map the Claims
Step 4: Transmit the Mapped Claims
and Perform the Requested Action
Enrolling a New Partner Organization
Managing Multiple Partners with a Single Identity
Managing Users at a Partner Organization
Inside the Implementation
Getting a List of Identity Providers from ACS
Adding a New ldentity Provider to ACS
Managing Claims-Mapping Rules in ACS
Displaying a List of Partner Organizations
Authenticating a User of Fabrikam Shipping
Authorizing Access to Fabrikam Shipping Data

117
117
118
118
118
119
119

123
124
125
127
128

129
129

130
131

131
132
132

132
133
134
135
135
137
137
138
139
140

Setup and Physical Deployment 141

Fabrikam Shipping Websites 141
Sample Claims Issuers 142
Initializing ACS 142
Questions 143
More Information 144
8 CrLAiMSs ENABLING WEB SERVICES 145
The Premise 145
Goals and Requirements 146
Overview of the Solution 146
Inside the Implementation 148
Implementing the Web Service 148
Implementing the Active Client 150
Implementing the Authorization Strategy 153
Debugging the Application 154
Setup and Physical Deployment 155
Configuring ADFS 2.0 for Web Services 155
Questions 156
9 SECURING REST SERVICES 159
The Premise 159
Goals and Requirements 160
Overview of the Solution 160
Inside the Implementation 162
The ACS Configuration 162
Implementing the Web Service 163
Implementing the Active Client 167
Setup and Physical Deployment 172
Configuring ADFS 2.0 for Web Services 172
Configuring ACS 172
Questions 173

More Information 174

10 ACCESSING REST SERVICES FROM
A WINDOWS PHONE DEVICE
The Premise
Goals and Requirements
Overview of the Solution
Passive Federation
Active Federation
Comparing the Solutions
Inside the Implementation
Active SAML token handling
Web browser control
Asynchronous Behavior
Setup and Physical Deployment
Questions
More Information

11 CLAIMS-BASED SINGLE Si1GN-ON FOR
MICROSOFT SHAREPOINT 2010
The Premise
Goals and Requirements
Overview of the Solution
Authentication Mechanism
End-to-End Walkthroughs
Visiting Two Site Collections
in a SharePoint Web Application
Visiting Two SharePoint Web Applications
Authorization in SharePoint
The People Picker
Single Sign-Out
Inside the Implementation
Relying Party Configuration in ADFS
SharePoint STS Configuration
Create a New SharePoint Trusted Root Authority
Create the Claims Mappings in SharePoint
Create a New SharePoint Trusted Identity Token Issuer
SharePoint Web Application Configuration
People Picker Customizations

175
176
176
177
177
179
181
183
183
185
187
191
191
193

195
196
196
197
197
199

199
200
201
202
204
205
205
206
206
207
207
209
210

Single Sign-Out Control
Displaying Claims in a Web Part
User Profile Synchronization

Setup and Physical Deployment
FedAuth Tokens
ADFS Default Authentication Method
Server Deployment

Questions

More Information

12 FEDERATED IDENTITY FOR SHAREPOINT
APPLICATIONS

The Premise
Goals and Requirements
Overview of the Solution
Inside the Implementation
Token Expiration and Sliding Sessions
SAML Token Expiration in SharePoint
Sliding Sessions in SharePoint
Closing the Browser
Authorization Rules
Home Realm Discovery
Questions
More Information

APPENDICES

A USING FEDUTIL
Using FedUtil to Make an Application Claims-Aware

B MESSAGE SEQUENCES
The Browser-Based Scenario
The Active Client Scenario

The Browser-Based Scenario with Access Control Service (ACS)

Single Sign-Out

212
214
214
215
215
216
216
217
218

219
219
220
220
224
224
225
228
232
232
232
234
236

237
237

239
240
252
258
273

C

INDUSTRY STANDARDS
Security Assertion Markup Language (SAML)
Security Association Management Protocol (SAMP)
and Internet Security Association
and Key Management Protocol (ISAKMP)
WS-Federation
WS-Federation: Passive Requestor Profile
WS-Security
WS-SecureConversation
WS-Trust
XML Encryption

CERTIFICATES
Certificates for Browser-Based Applications
On the Issuer (Browser Scenario)
Certificate for TLS/SSL (Issuer, Browser Scenario)
Certificate for Token Signing (Issuer, Browser Scenario)
Optional Certificate for Token Encryption
(Issuer, Browser Scenario)
On the Web Application Server
Certificate for TLS/SSL (Web Server, Browser Scenario)
Token Signature Verification (Web Server, Browser
Scenario)
Token Signature Chain of Trust Verification (Web Server,
Browser Scenario)
Optional Token Decryption (Web Server, Browser Scenario)
Cookie Encryption/Decryption (Web Server, Browser Scenario)
Certificates for Active Clients
On the Issuer (Active Scenario)
Certificate for Transport Security (TLS/SSL)
(Issuer, Active Scenario)
Certificate for Message Security (Issuer, Active Scenario)
Certificate for Token Signing (Issuer, Active Scenario)
Certificate for Token Encryption (Issuer, Active Scenario)
On the Web Service Host
Certificate for Transport Security (TLS/SSL) (Web Service Host,
Active Scenario)
Certificate for Message Security
(Web Service Host, Active Scenario)

285
285

285
285
286
286
286
286
286

287
287
287
287
287

288
288
288

289

289
289
290
290
290

290
291
291
2901
292

292

292

Token Signature Verification (Web Service Host, Active Scenario) 292

Token Decryption (Web Service Host, Active Scenario) 293
Token Signature Chain Trust Verification (Web Service Host,

Active Scenario) 293

On the Active Client Host 293

Certificate for Message Security (Active Client Host) 293

E WINDOWS AZURE APPFABRIC ACCESS

CONTROL SERVICE (ACS) 295
What Does ACS DO? 296
Message Sequences for ACS 297
ACS Authenticating Users of a Website 298
ACS Authenticating Services, Smart Clients, and Mobile Devices 299
Combining ACS and ADFS for Users of a Website 300
Combining ACS and ADFS for Services, Smart Clients,
and SharePoint BCS 301
Creating, Configuring, and Using an ACS Issuer 302
Step 1: Access the ACS Web Portal 302
Step 2: Create a Namespace for the Issuer Service Instance 302
Step 3: Add the Required Identity Providers to the Namespace 303
Step 4: Configure One or More Relying Party Applications 303
Step 5: Create Claims Transformations and Pass-through Rules 305
Step 6: Obtain the URIs for the Service Namespace 306
Step 7: Configure Relying Party Applications to Use ACS 306
Custom Home Realm Discovery Pages 306
Configuration with the Management Service API 307
Managing Errors 308
Integration of ACS and a Local ADFS Issuer 308
Security Considerations with ACS 310
Tips for Using ACS 311
ACS and STSs Generated in Visual Studio 2010 311
Error When Uploading a Federation Metadata Document 311
Avoiding Use of the Default ACS Home Realm Discovery Page 312

More Information 312

F SHAREPOINT 2010 AUTHENTICATION
ARCHITECTURE AND CONSIDERATIONS
Benefits of a Claims-Based Architecture
Windows Identity Foundation
Implementation of the Claims-Based Architecture
SharePoint 2010 User Identity
The SharePoint 2010 Security Token Service
The SharePoint 2010 Services Application Framework
Considerations When Using Claims with SharePoint
Choosing an Authentication Mode
Supported Standards
Using Multiple Authentication Mechanisms
SharePoint Groups with Claims Authentication
SharePoint Profiles and Audiences with Claims Authentication
Rich Client, Office, and Reporting Applications
with Claims Authentication
Other Trade-offs and Limitations for Claims Authentication
Configuring SharePoint to Use Claims
Tips for Configuring Claims in SharePoint
More Information

GLOSSARY
ANSWERS TO QUESTIONS

INDEX

313
313

315
316
317
318
319
319
319
320
320
321

321
322
324
325
326
327

337

365

Claims-based identity seeks to control the digital experience and al-
locate digital resources based on claims made by one party about an-
other. A party can be a person, organization, government, website,
web service, or even a device. The very simplest example of a claim is
something that a party says about itself.

As the authors of this book point out, there is nothing new about
the use of claims. As far back as the early days of mainframe comput-
ing, the operating system asked users for passwords and then passed
each new application a “claim” about who was using it. But this world
was based to some extent on wishful thinking because applications
didn’t question what they were told.

As systems became interconnected and more complicated, we
needed ways to identify parties across multiple computers. One way
to do this was for the parties that used applications on one computer
to authenticate to the applications (and/or operating systems) that
ran on the other computers. This mechanism is still widely used—for
example, when logging on to a great number of Web sites.

However, this approach becomes unmanageable when you have
many co-operating systems (as is the case, for example, in the enter-
prise). Therefore, specialized services were invented that would regis-
ter and authenticate users, and subsequently provide claims about
them to interested applications. Some well-known examples are
NTLM, Kerberos, Public Key Infrastructure (PKI), and the Security
Assertion Markup Language (SAML).

If systems that use claims have been around for so long, how can
claims-based computing be new or important? The answer is a variant
of the old adage, “All tables have legs, but not all legs have tables.” The
claims-based model embraces and subsumes the capabilities of all the
systems that have existed to date, but it also allows many new things
to be accomplished. This book gives a great sense of the resultant
opportunities.

xvii

Foreword

XVIII

For one thing, identity no longer depends on the use of unique
identifiers. NTLM, Kerberos, and public key certificates conveyed,
above all else, an identification number or name. This unique number
could be used as a directory key to look up other attributes and to
track activities. But once we start thinking in terms of claims-based
computing, identifiers were not mandatory. We don’t need to say that
a person is associated with the number X, and then look in a database
to see if number X is married. We just say the person is married. An
identifier is reduced to one potential claim (a thing said by some party)
among many.

This opens up the possibility of many more directly usable and
substantive claims, such as a family name, a person’s citizenship, the
right to do something, or the fact that someone is in a certain age
group or is a great customer. One can make this kind of claim without
revealing a party’s unique identity. This has immense implications for
privacy, which becomes an increasingly important concern as digital
identity is applied to our personal lives.

Further, while the earlier systems were all hermetic worlds, we
can now look at them as examples of the same thing and transform a
claim made in one world to a claim made in another. We can use
“claims transformers” to convert claims from one system to another,
to interpret meanings, apply policies, and to provide elasticity. This is
what makes claims essential for connecting our organizations and
enterprises into a cloud. Because they are standardized, we can use
them across platforms and look at the distributed fabric as a real cir-
cuit board on which we can assemble our services and components.

Claims offer a single conceptual model, programming interface,
and end-user paradigm, whereas before claims we had a cacophony of
disjoint approaches. In my experience, the people who use these new
approaches to build products universally agree that they solve many
pressing problems that were impossibly difficult before. Yet these
people also offer a word of advice. Though embracing what has ex-
isted, the claims-based paradigm is fundamentally a new one; the
biggest challenge is to understand this and take advantage of it.

That’s why this book is so useful. It deals with the fundamental
issues, but it is practical and concise. The time spent reading it will be
repaid many times over as you become an expert in one of the trans-
formative technologies of our time.

Kim Cameron
Distinguished Engineer—M icrosoft Identity Division

In the spring of 2008, months before the Windows® Identity Founda-
tion made its first public appearance, | was on the phone with the
chief software architect of a Fortune 500 company when | experi-
enced one of those vivid, clarifying moments that come during the
course of a software project. We were chatting about how difficult it
was to manage an environment with hundreds, or even thousands of
developers, all building different kinds of applications for different
audiences. In such an environment, the burden of consistent applica-
tion security usually falls on the shoulders of one designated security
architect.

A big part of that architect’s job is to guide developers on how to
handle authentication. Developers have many technologies to choose
from. Microsoft® Windows Integrated Authentication, SAML, LDAP,
and X.509 are just a few. The security architect is responsible for writ-
ing detailed implementation guidance on when and how to use all of
them. | imagined a document with hundreds of pages of technology
overviews, decision flowcharts, and code appendices that demon-
strate the correct use of technology X for scenario Y. “If you are build-
ing a web application, for employees, on the intranet, on Windows,
use Windows Integrated Authentication and LDAP, send your queries
to the enterprise directory...”

| could already tell that this document, despite the architect’s best
efforts, was destined to sit unread on the corner of every developer’s
desk. It was all just too hard; although every developer knows security
is important, no one has the time to read all that. Nevertheless, every
organization needed an architect to write these guidelines. It was the
only meaningful thing they could do to manage this complexity.

It was at that moment that | realized the true purpose of the
forthcoming Windows Identity Foundation. It was to render the tech-
nology decision trivial. Architects would no longer need to create com-
plex guidelines for authentication. This was an epiphany of sorts.

xix

Foreword

XX

Windows Identity Foundation would allow authentication logic
to be factored out of the application logic, and as a result most devel-
opers would never have to deal with the underlying complexity. Fac-
toring out authentication logic would insulate applications from
changing requirements. Making an application available to users at
multiple organizations or even moving it to the cloud would just mean
reconfiguring the identity infrastructure, not rewriting the application
code. This refactoring of identity logic is the basis of the claims-based
identity model.

Eugenio Pace from the Microsoft patterns & practices group has
brought together some of the foremost minds on this topic so that
their collective experience can be yours. He has focused on practical
scenarios that will help you get started writing your own claims-aware
applications. The guide works progressively, with the simplest and
most common scenarios explained first. It also contains a clear over-
view of the main concepts. Working source code for all of the exam-
ples can be found online (http://claimsid.codeplex.com).

[have truly enjoyed having Eugenio be part of our extended engi-
neering team during this project. His enthusiasm, creativity, and per-
severance have made this book possible. Eugenio is one of the handful
of people | have met who revel in the challenge of identity and secu-
rity and who care deeply that it be done right.

Our goal is for this book to earn its way to the corner of your desk
and lie there dog-eared and much referenced, so that we can be your
identity experts and you can get on with the job that is most impor-
tant to you: building applications that matter. We wish you much
success.

Stuart Kwan
Group Program Manager, Identity and Access Platform

As you prepare to dive into this guide and gain a deeper understanding
of the integration between claims authentication and Microsoft®
SharePoint® 2010, you may find the following admission both
exhilarating and frightening at the same time: two years ago | knew
virtually nothing about claims authentication. Today, | sit here writing
a foreword to an extensive guide on the topic. Whether that’s
because a few people think | know a thing or two about claims, or just
that no one else could spare the time to do it, well, I'll leave that for
you to decide.

Fortunately, this guide will give you a big advantage over what |
had to work with, and by the time you're finished reading it you'll
understand the symbiotic relationship between claims and SharePoint
2010; the good news is that it won't take you two years to do so.

I'll be the first to admit that claims authentication, in different
flavors, has been around for a number of years. Like many technolo-
gies that turn into core platform components though, it often takes a
big bet by a popular product or company to get a technology onto the
map. | think SharePoint 2010 has helped create acceptance for claims
authentication. Changes of this magnitude are often hard to appreci-
ate at the time, but | think we'll look back at this release some day and
recognize that, for many of us, this was the time when we really began
to appreciate what claims authentication offers.

From Windows claims, or authentication as we've always known
it, to the distributed authentication model of SAML claims, there are
more choices than ever before. Now we can use federated authentica-
tion much more easily with products such as Active Directory®
Federation Services (ADFS) 2.0, or even connect our SharePoint farms
to authentication providers in the cloud, such as the Windows
AzureT™ AppFabric Access Control Service. We aren’t authenticating
only Windows users anymore; we can have users authenticate against
our Active Directory from virtually any application—SiteMinder,
Yahoo, Google, Windows Live, Novell eDirectory. Now we can even

XXI

Foreword

XXII

write our own identity provider using Microsoft Visual Studio®
and the Windows Identity Foundation framework. We can use those
claims in SharePoint; we can add our own custom claims to them, we
can inject our own code into the out-of-the-box people picker, and
much more.

| believe this guide provides you with the foundation to help you
take advantage of all of these opportunities and more. Many people
from around the company either directly or indirectly helped to
contribute to its success. Here’s hoping you can build on it and turn it
into your own success.

Steve Peschka

Principal Architect
Microsoft SharePoint Online— Dedicated

As an application designer or developer, imagine a world in which you
don’t have to worry about authentication. Imagine instead that all
requests to your application already include the information you need
to make access control decisions and to personalize the application
for the user.

In this world, your applications can trust another system compo-
nent to securely provide user information, such as the user’s name
or email address, a manager’s email address, or even a purchasing
authorization limit. The user’s information always arrives in the same
simple format, regardless of the authentication mechanism, whether
it's Microsoft® Windows® integrated authentication, forms-based
authentication in a web browser, an X.509 client certificate, or some-
thing more exotic. Even if someone in charge of your company’s
security policy changes how users authenticate, you still get the infor-
mation, and it’s always in the same format.

This is the utopia of claims-based identity that A Guide to Claims-
Based Identity and Access Control describes. As you'll see, claims provide
an innovative approach for building applications that authenticate and
authorize users.

Who This Book Is For

This book gives you enough information to evaluate claims-based
identity as a possible option when you’re planning a new application
or making changes to an existing one. It is intended for any architect,
developer, or information technology (IT) professional who designs,
builds, or operates web applications and services that require identity
information about their users. Although applications that use claims-
based identity exist on many platforms, this book is written for people
who work with Windows-based systems. You should be familiar with

xXxiii

Preface

XXI1V

the Microsoft NET Framework, ASP.NET, Windows Communication
Foundation (WCF), Microsoft Active Directory® directory service,
and Microsoft Visual C#® development system.

Why This Book Is Pertinent Now

Although claims-based identity has been possible for quite a while,
there are now tools available that make it much easier for developers
of Windows-based applications to implement it. These tools include
the Windows Identity Foundation (WIF) and Microsoft Active Direc-
tory Federation Services (ADFS) 2.0. This book shows you when and
how to use these tools in the context of some commonly occurring
scenarios.

A Note about Terminology

This book explains claims-based identity without using a lot of new
terminology. However, if you read the various standards and much of
the existing literature, you'll see terms such as relying party, STS, sub-
Jject, identity provider, and so on. Here is a short list that equates some
of the most common expressions used in the literature with the more
familiar terms used in this book. For additional clarification about
terminology, see the glossary at the end of the book.

RELYING PARTY (RP) = APPLICATION

SERVICE PROVIDER (SP) = APPLICATION
A relying party or a service provider is an application that uses claims.
The term relying party arose because the application relies on an is-
suer to provide information about identity. The term service provider
is commonly used with the Security Assertion Markup Language
(SAML). Because this book is intended for people who design and
build applications, it uses application, or claims-aware application, when
it is discussing the functionality of the application, and relying party or
RP, when it is talking about the role of the application in relation to
identity providers and federation providers. It does not use service
provider or SP.

SUBJECT = USER

PRINCIPAL = USER
A subject or a principal is a user. The term subject has been around for
years in security literature, and it does make sense when you think
about it—the user is the subject of access control, personalization,
and so on. A subject can be a non-human entity, such as printer or

another device, but this book doesn’t discuss such scenarios. In addi-
tion, the .NET Framework uses the term principal rather than subject.
This book talks about users rather than subjects or principals.

SECURITY TOKEN SERVICE (STS) = ISSUER
Technically, a security token service is the interface within an issuer
that accepts requests and creates and issues security tokens contain-
ing claims.

IDENTITY PROVIDER (IdP) = ISSUER
An identity provider is an issuer, or a token issuer if you prefer. Identity
providers validate various user credentials, such as user names, pass-
words, and certificates; and they issue tokens.

RESOURCE SECURITY TOKEN SERVICE (R-STS)

= ISSUER
A resource security token service accepts one token and issues an-
other. Rather than having information about identity, it has informa-
tion about the resource. For example, an R-STS can translate tokens
issued by an identity provider into application-specific claims.

ACTIVE CLIENT = SMART OR RICH CLIENT

PASSIVE CLIENT = BROWSER
Much of the literature refers to active versus passive clients. An active
client can use a sophisticated library such as Windows Communica-
tion Foundation (WCF) to implement the protocols that request and
pass around security tokens (WS-Trust is the protocol used in active
scenarios). In order to support many different browsers, the passive
scenarios use a much simpler protocol to request and pass around
tokens that rely on simple HTTP primitives such as HTTP GET (with
redirects) and POST. (This simpler protocol is defined in the WS-
Federation specification, section 13)

In this book, an active client is a rich client or a smart client.
A passive client is a web browser.

How This Book Is Structured

You can think of the structure of this book as a subway that has main
lines and branches. Following the Preface, there are two chapters that
contain general information. These are followed by scenarios that
show how to apply this knowledge with increasingly more sophisti-
cated requirements.

PREFACE

XXV

XXVI

Here is the map of our subway.

Preface

An Introduction
to Claims

Claims-Based
Architectures
Claims-Based Single
Sign-On for the Web

Claims-Based
Single Sign-On

Single Sign-On in for SharePoint

Windows Azure

Federated Identity with Windows

Azure Access Control Service Federated

Federated Identity for Identity for
Web Applications SharePoint
Applications

Federated Identity
with Multiple Partners

Federated Identity
O with Multiple Partners
and ACS

Claims Enabling
Web Services

Securing REST

Services

Accessing REST Services
from Windows Phone

FIGURE 1
Map of the book

An Introduction to Claims explains what a claim is and provides
general rules on what makes good claims and how to incorporate
them into your application. It’s probably a good idea that you read this
chapter before you move on to the scenarios.

Claims-Based Architectures shows you how to use claims with
browser-based applications and smart client applications. In particular,
the chapter focuses on how to implement single sign-on for your us-
ers, whether they are on an intranet or an extranet. This chapter is
optional. You don’t need to read it before you proceed to the sce-
narios.

Claims-Based Single Sign-On for the Web and Windows Azure is
the starting point of the path that explores the implementation of
single sign-on and federated identity. This chapter shows you how to
implement single sign-on and single sign-out within a corporate in-
tranet. Although this may be something that you can also implement
with Integrated Windows Authentication, it is the first stop on the
way to implementing more complex scenarios. It includes a section for
Windows Azure® technology platform that shows you how to move
the claims-based application to the cloud.

Federated Identity for Web Applications shows how you can give
your business partners access to your applications while maintaining
the integrity of your corporate directory and theirs. In other words,
your partners’ employees can use their own corporate credentials to
gain access to your applications.

Federated Identity with Windows Azure Access Control Service is
the start of a parallel path that explores Windows Azure AppFabric
Access Control Service (ACS) in the context of single sign-on and
federated identity. This chapter extends the scenarios described in the
previous chapter to enable users to authenticate using social identity
providers such as Google and Windows Live® network of Internet
services.

Federated Identity with Multiple Partners is a variation of the fed-
erated identity scenario that shows you how to federate with partners
who have no issuer of their own as well as those who do. It demon-
strates how to use the ASPNET MVC framework to create a claims-
aware application.

Federated Identity with Multiple Partners and Windows Azure
Access Control Service extends the scenarios described in the previ-
ous chapter to include ACS to give users additional choices for au-
thentication that include social identity providers such as Google and
Windows Live.

PREFACE

XXVII

XXVIII

Claims Enabling Web Services is the first of a set of chapters that
explore authentication for active clients rather than web browsers.
This chapter shows you how to use the claims-based approach with
web services, whereby a partner uses a smart client that communi-
cates with identity providers and token issuers using SOAP-based
services.

Securing REST Services shows how to use the claims-based approach
with web services, whereby a partner uses a smart client that com-
municates with identity providers and token issuers using REST-based
services.

Accessing REST Services from a Windows Phone Device shows
how you can use claims-based techniques with Windows PhoneT™
wireless devices. It discusses the additional considerations that you
must take into account when using claims-based authentication with
mobile devices.

Claims-Based Single Sign-On for Microsoft SharePoint 2010 be-
gins a path that explores how you can use claims-based identity tech-
niques with Microsoft SharePoint 2010. This chapter shows how
SharePoint web applications can use claims-based authentication with
an external token issuer such as ADFS to enable access from both
internal locations and externally over the web.

Federated Identity for SharePoint Applications extends the previ-
ous chapter to show how you can use federated identity techniques
to enable users to authenticate using more than one identity provider
and token issuer.

About the Technologies

In this guide, you will find discussion on several technologies with
which you may not be immediately familiar. The following is a brief
description of each one, together with links to where you can find
more information.

Windows Identity Foundation (WIF). WIF contains a set of
components that enable developers using the Microsoft .NET Frame-
work to externalize identity logic from their application, improving
developer productivity, enhancing application security, and enabling
interoperability. Developers can apply the same tools and program-
ming model to build on-premises software as well as cloud services
without requiring custom implementations. WIF uses a single simpli-
fied identity model based on claims, together with interoperability
based on industry-standard protocols. For more information see
“Windows |dentity Foundation Simplifies User Access for Develop-
ers,” at http://msdn.microsoft.com/en-us/security/aa570351.aspx.

http://msdn.microsoft.com/en-us/security/aa570351.aspx

Active Directory Federation Service (ADFS). ADFS is a server
role in Windows Server® that provides simplified access and single
sign-on for on-premises and cloud-based applications in the enter-
prise, across organizations, and on the web. It acts as an identity pro-
vider and token issuer to enable user access with native single sign-on
across organizational boundaries and in the cloud, and to easily con-
nect applications by utilizing industry-standard protocols. For more
information, see “Active Directory Federation Services 2.0,” at http://
www.microsoft.com/windowsserver2008/en/us/ad-fs-2-overview.
aspx.

Windows Azure. Windows Azure is a cloud services platform
that serves as the development, service hosting and service manage-
ment environment. It is a flexible platform that supports multiple
languages and provides developers with on-demand compute and
storage services to host, scale, and manage web applications over the
Internet through Microsoft datacenters. For more information, see
“Windows Azure,” at http://www.microsoft.com/windowsazure/
windowsazure/default.aspx.

Windows Azure AppFabric Access Control Service (ACS). ACS
is an easy way to provide identity and access control to web applica-
tions and services while integrating with standards-based identity
providers. These identity providers can include enterprise directories
such as Active Directory, and web identities such as Windows Live ID,
Google, Yahoo! and Facebook. ACS enables authorization decisions to
be moved out of the application and into a set of declarative rules that
can transform incoming security claims into claims that applications
understand, and can also be used to manage users’ permissions. For
more information, see “Windows Azure Access Control,” at http://
www.microsoft.com/windowsazure/appfabric/overview/default.aspx.

What You Need to Use the Code

You can either run the scenarios on your own system or you can cre-
ate a realistic lab environment. Running the scenarios on your own
system is very simple and has only a few requirements, which are
listed below.

* Microsoft Windows Vista® SP1, Windows 7, Windows Server
2008 (32-bit or 64-bit), or Windows Server 2008 R2 (32-bit or
64-bit)

* Microsoft Internet Information Services (IIS) 7.0 or 7.5

* Microsoft .NET Framework 4.0

* Microsoft Visual Studio® 2010 (excluding Express editions)

* Windows Azure Tools for Microsoft Visual Studio

* Windows |dentity Foundation

PREFACE

XXIX

http://www.microsoft.com/windowsserver2008/en/us/ad-fs-2-overview.aspx
http://www.microsoft.com/windowsserver2008/en/us/ad-fs-2-overview.aspx
http://www.microsoft.com/windowsserver2008/en/us/ad-fs-2-overview.aspx
http://www.microsoft.com/windowsazure/windowsazure/default.aspx
http://www.microsoft.com/windowsazure/windowsazure/default.aspx
http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx
http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx

XXX

NOTE.: /f you want to install the Windows Azure Tools on Windows
Server 2008 R2 you must first install the .NET Framework version
3.5.1. This is also required for the HTTP Activation features. The
.NET Framework version 3.5.1 can be installed from Windows
Update.

Running the scenarios in a realistic lab environment, with an in-
stance of Active Directory Federation Services (ADFS) and Active
Directory, requires an application server, ADFS, Active Directory, and
a client system. Here are their system requirements.

Application Server
The application server requires the following:
* Windows Server 2008 or Windows Server 2008 R2

* Microsoft Internet Information Services (IIS) 7.0 or 7.5

* Microsoft Visual Studio 2010 (excluding Express editions)
* .NET Framework 4.0

* Windows Identity Foundation

ADEFS
The ADFS server requires the following:
* Windows Server 2008 or Windows Server 2008 R2
* Microsoft Internet Information Services (IIS) 7.0 or 7.5
* .NET Framework 4.0
* Microsoft SQL Server® 2005 or 2008 Express Edition

Active Directory
The Active Directory system requires Windows Server 2008 or Win-
dows Server 2008 R2 with Active Directory installed.

Client Computer
The client computer requires Windows Vista or Windows 7 for active
scenarios. Passive scenarios may use any web browser that supports
HTTP redirection as the client.

PREFACE XXXI

Who’s Who

As we've said, this book uses a number of scenarios that trace the
evolution of several corporate applications. A panel of experts com-
ments on the development efforts. The panel includes a security
specialist, a software architect, a software developer, and an IT profes-
sional. The scenarios can be considered from each of these points of
view. Here are our experts.

Bharath is a security specialist. He checks that solutions for
authentication and authorization reliably safeguard a company’s
data. He is a cautious person, with good reason.

Providing authentication for a single application
is easy. Securing all applications across our
organization is a different thing.

Jana is a software architect. She plans the overall structure of an
application. Her perspective is both practical and strategic. In other
words, she considers not only what technical approaches are needed
today, but also what direction a company needs to consider for the
future.

It’s not easy, balancing the needs of users, the IT
organization, the developers, and the technical
platforms we rely on.

Markus is a senior software developer. He is analytical, detail-
oriented, and methodical. He’s focused on the task at hand,
which is building a great claims-based application. He knows
that he’s the person who's ultimately responsible for the code.

| don’t care what you use for authentication,
I’ll make it work.

Poe is an IT professional who's an expert in deploying and running in
a corporate data center. He's also an Active Directory guru. Poe has
a keen interest in practical solutions; after all, he’s the one who gets
paged at 3:00 AM when there’s a problem.

Each application handles authentication differ-
ently. Can | get a bit of consistency please?!?

If you have a particular area of interest, look for notes provided by the
specialists whose interests align with yours.

Acknowledgments

This book marks a milestone in a journey | started in the winter of
2007. At that time, | was offered the opportunity to enter a com-
pletely new domain: the world of software delivered as a service.
Offerings such as Windows AzureTM technology platform were far
from being realized, and “the cloud” was still to be defined and fully
understood. My work focused mainly on uncovering the specific chal-
lenges that companies would face with this new way of delivering
software.

It was immediately obvious that managing identity and access
control was a major obstacle for developers. Identity and access con-
trol were fundamental. They were prerequisites for everything else. If
you didn’t get authentication and authorization right, you would be
building your application on a foundation of sand.

Thus began my journey into the world of claims-based identity. |
was very lucky to initiate this journey with none other than a c/aims
Jedi, Vittorio Bertocci. He turned me into a convert.

Initially, | was puzzled that so few people were deploying what
seemed, at first glance, to be simple principles. Then | understood
why. In my discussions with colleagues and customers, | frequently
found myself having to think twice about many of the concepts and
about the mechanics needed to put them into practice. In fact, even
after longer exposure to the subject, | found myself having to care-
fully retrace the interactions among implementation components.
The principles may have been simple, but translating them into run-
ning code was a different matter. Translating them into the right run-
ning code was even harder.

Around this time, Microsoft announced Windows Identity Foun-
dation (WIF), Active Directory® Federation Services (ADFS) 2.0, and
Windows Azure AppFabric Access Control Service (ACS). Once |
understood how to apply those technologies, and how they dramati-
cally simplified claims-based development, | realized that the moment
had come to create a guide like the one you are now reading.

XXXIii

XXXIV

Even after | had spent a significant amount of time on the subject,
| realized that providing prescriptive guidance required greater profi-
ciency than my own, and | was lucky to be able to recruit for my quest
some very bright and experienced experts. | have thoroughly enjoyed
working with them on this project and would be honored to work
with this fine team again. | was also fortunate to have skilled software
developers, software testers, technical writers, and others as project
contributors.

| want to start by thanking the following subject matter experts
and key contributors to this guide: Dominick Baier, Vittorio Bertocci,
Keith Brown, and Matias Woloski. These guys were outstanding. |
admire their rigor, their drive for excellence, and their commitment to
practical solutions.

Running code is a very powerful device for explaining how tech-
nology works. Designing sample applications that are both techni-
cally and pedagogically sound is no simple task. | want to thank the
project’s development and test teams for providing that balance:
Federico Boerr, Carlos Farre, Diego Marcet, Anant Manuj Mittal, Er-
win van der Valk, and Matias Woloski.

This guide is meant to be authoritative and prescriptive in the
topics it covers. However, we also wanted it to be simple to under-
stand, approachable, and entertaining—a guide you would find inter-
esting and you would enjoy reading. We invested in two areas to
achieve these goals: an approachable writing style and an appealing
visual design.

A team of technical writers and editors were responsible for the
text. They performed the miracle of translating and organizing our
jargon- and acronym-plagued drafts, notes, and conversations into
clear, readable text. | want to direct many thanks to RoAnn Corbisier,
Colin Campbell, Roberta Leibovitz, and Tina Burden for doing such a
fine job on that.

The innovative visual design concept used for this guide was
developed by Roberta Leibovitz and Colin Campbell (Modeled
Computation LLC) who worked with a team of talented designers
and illustrators. The book design was created by John Hubbard (Eson).
The cartoon faces and chapter divisions were drawn by the award-
winning Seattle-based cartoonist Ellen Forney. The technical illustra-
tions were adapted from my Tablet PC mock-ups by Veronica Ruiz.
| want to thank the creative team for giving this guide such a great
look.

[also want to thank all the customers, partners, and community
members who have patiently reviewed our early content and drafts.
You have truly helped us shape this guide. Among those, | want to
highlight the exceptional contributions of Zulfigar Ahmed, Michele
Leroux Bustamante (IDesign), Pablo Mariano Cibraro (Tellago Inc),

ACKNOWLEDGMENTS

Hernan DeLahitte (DigitFactory), Pedro Felix, Tim Fischer (Microsoft
Germany), Mario Fontana, David Hill, Doug Hiller, Jason Hogg,
Ezequiel Jadib, Brad Jonas, Seshadri Mani, Marcelo Mas, Vijayavani
Nori, Krish Shenoy, Travis Spencer (www.travisspencer.com), Mario
Szpuszta (Sr. Architect Advisor, Microsoft Austria), Chris Tavares,
Peter M. Thompson, and Todd West.

Finally, | want to thank Stuart Kwan and Conrad Bayer from the
Identity Division at Microsoft for their support throughout. Even
though their teams were extremely busy shipping WIF and ADFS,
they always found time to help us.

Eugenio Pace
Senior Program Manager - patterns & practices
Microsoft Corporation

ACKNOWLEDGEMENTS TO CONTRIBUTORS TO THIS
SECcOND EDITION

All our guides are the result of great work from many people. I'm
happy to see that so many of the original contributors and advisors of
our first guide also worked on this one. The interest in this particular
area has increased notably since the first edition was published. Proof
of that is the continued investment by Microsoft in tools, services,
and products.

As our scope increased to cover SharePoint and Windows Azure
Access Control Service, we also added new community members
and industry experts who have significantly helped throughout the
development of this new edition.

We'd like to acknowledge the following individuals who have
exceptionally contributed to it: Zulfiquar Ahmed, Dominic Betts,
Federico Boerr, Robert Bogue, Jonathan Cisneros, Shy Cohen, David
Crawford, Pedro Felix, David Hill, Alex Homer, Laura Hunter, Chris
Keyser, Jason Lee, Alik Levin, Masashi Narumoto, Nicolas Paez, Brian
Puhl, Paul Schaeflein, Ken St. Cyr, Venky Veeraraghavan, Rathi
Velusamy, Bill Wilder, Daz Wilkin, Jim Zimmerman, Scott Densmore,
Steve Peschka, and Christian Nielsen

We also want to thank everyone who participated in our Code-
Plex community site.

Eugenio Pace
Sr. Program Manager Lead — patterns e practices
Microsoft Corporation, May 2011

XXXV

1 An Introduction to Claims

This chapter discusses some concepts, such as claims and federated Claims-based identity isn’t
identity, that may sound new to you. However, many of these ideas new. It’s been in use for
have been around for a long time. The mechanics involved in a claims- almost a decade.

based approach have a flavor similar to Kerberos, which is one of the
most broadly accepted authentication protocols in use today and is
also the protocol used by Microsoft® Active Directory® directory
service. Federation protocols such as WS-Federation and the Security
Assertion Markup Language (SAML) have been with us for many years
as interoperable protocols that are implemented on all major technol-
ogy platforms.

What Do Claims Provide?

To see the power of claims, you might need to change your view of
authentication. It’s easy to let a particular authentication mechanism
constrain your thinking. If you use Integrated Windows Authentica-
tion (Kerberos or NTLM), you probably think of identity in terms of
Microsoft Windows® user accounts and groups. If you use the ASP.
NET membership and roles provider, you probably think in terms of
user names, passwords, and roles. If you try to determine what the
different authentication mechanisms have in common, you can ab-
stract the individual elements of identity and access control into two
parts: a single, general notion of claims, and the concept of an issuer
or an authority.

A claim is a statement that one subject makes about itself or another
subject. The statement can be about a name, identity, key, group,
privilege, or capability, for example. Claims are issued by a provider,
and they are given one or more values and then packaged in security
tokens that are issued by an issuer, commonly known as a security
token service (STS). For a full list of definitions of terms associated
with claims-based identity, see “Claims-Based Identity Term

2 CHAPTER ONE

Claims provide a powerful
abstraction for identity.

Definitions” at http://msdn.microsoft.com/en-us/library/
ee534975.aspx.

Thinking in terms of claims and issuers is a powerful abstraction
that supports new ways of securing your applications. Because claims
involve an explicit trust relationship with an issuer, your application
believes a claim about the current user only if it trusts the entity that
issued the claim. Trust is explicit in the claims-based approach, not
implicit as in other authentication and authorization approaches with
which you may be familiar.

The following table shows the relationships between security
tokens, claims, and issuers.

Security token Claims Issuer

Windows token. This | User name and groups. Windows Active Directory
token is represented domain.

as a security identifier
(SID). This is a unique
value of variable
length that is used to
identify a security
principal or security
group in Windows
operating systems.

User name token. User name. Application.

Certificate. Examples can include a Certification authorities,
certificate thumbprint,a | including the root authority
subject, or a distinguished | and all authorities in the

name. chain to the root.

The claims-based approach to identity makes it easy for users to
sign in using Kerberos where it makes sense, but at the same time, it’s
just as easy for them to use one or more (perhaps more Internet-
friendly) authentication techniques, without you having to recode,
recompile, or even reconfigure your applications. You can support any
authentication technique, some of the most popular being Kerberos,
forms authentication, X.509 certificates, and smart cards, as well as
information cards and others.

NoT EVERY SYSTEM NEEDS CLAIMS

Sometimes claims aren’t needed. This is an important disclaimer. Com-
panies with a host of internal applications can use Integrated Win-
dows Authentication to achieve many of the benefits provided by
claims. Active Directory does a great job of storing user identities, and
because Kerberos is a part of Windows, your applications don’t have
to include much authentication logic. As long as every application you
build can use Integrated Windows Authentication, you may have al-
ready reached your identity utopia.

http://msdn.microsoft.com/en-us/library/ee534975.aspx
http://msdn.microsoft.com/en-us/library/ee534975.aspx

AN INTRODUCTION TO CLAIMS

However, there are many reasons why you might need something
other than Windows authentication. You might have web-facing ap-
plications that are used by people who don’t have accounts in your
Windows domain. Another reason might be that your company has
merged with another company and you're having trouble authenticat-
ing across two Windows forests that don’t (and may never) have a
trust relationship. Perhaps you want to share identities with another
company that has non-.NET Framework applications or you need to
share identities between applications running on different platforms
(for example, the Macintosh). These are just a few situations in which
claims-based identity can be the right choice for you.

CLAIMS SIMPLIFY AUTHENTICATION LoOGIC
Most applications include a certain amount of logic that supports
identity-related features. Applications that can’t rely on Integrated
Windows Authentication tend to have more of this than applications
that do. For example, web-facing applications that store user names
and passwords must handle password reset, lockout, and other issues.
Enterprise-facing applications that use Integrated Windows Authen-
tication can rely on the domain controller.

But even with Integrated Windows Authentication, there are still
challenges. Kerberos tickets only give you a user’s account and a list
of groups. What if your application needs to send email to the user?
What if you need the email address of the user’s manager? This starts
to get complicated quickly, even within a single domain. To go beyond
the limitations of Kerberos, you need to program Active Directory.
This is not a simple task, especially if you want to build efficient Light-
weight Directory Access Protocol (LDAP) queries that don’t slow
down your directory server.

Claims-based identity allows you to factor out the authentication
logic from individual applications. Instead of the application determin-
ing who the user is, it receives claims that identify the user.

A FAMILIAR EXAMPLE

Claims-based identity is all around us. A very familiar analogy is the
authentication protocol you follow each time you visit an airport. You
can’t simply walk up to the gate and present your passport or driver’s
license. Instead, you must first check in at the ticket counter. Here,
you present whatever credential makes sense. If you're going overseas,
you show your passport. For domestic flights, you present your driver’s
license. After verifying that your picture ID matches your face (au-
thentication), the agent looks up your flight and verifies that you've
paid for a ticket (authorization). Assuming all is in order, you receive a
boarding pass that you take to the gate.

Claims help you to factor
authentication logic out of
your applications.

CHAPTER ONE

A boarding pass is very informative. Gate agents know your name
and frequent flyer number (authentication and personalization), your
flight number and seating priority (authorization), and perhaps even
more. The gate agents have everything that they need to do their jobs
efficiently.

There is also special information on the boarding pass. It is en-
coded in the bar code and/or the magnetic strip on the back. This in-
formation (such as a boarding serial number) proves that the pass was
issued by the airline and is not a forgery.

In essence, a boarding pass is a signed set of claims made by the
airline about you. It states that you are allowed to board a particular
flight at a particular time and sit in a particular seat. Of course, agents
don’t need to think very deeply about this. They simply validate your
boarding pass, read the claims on it, and let you board the plane.

It’s also important to note that there may be more than one way
of obtaining the signed set of claims that is your boarding pass. You
might go to the ticket counter at the airport, or you might use the
airline’s web site and print your boarding pass at home. The gate
agents boarding the flight don’t care how the boarding pass was cre-
ated; they don’t care which issuer you used, as long as it is trusted by
the airline. They only care that it is an authentic set of claims that give
you permission to get on the plane.

In software, this bundle of claims is called a security token. Each
security token is signed by the issuer who created it. A claims-based
application considers users to be authenticated if they present a valid,
signed security token from a trusted issuer. Figure 1 shows the basic
pattern for using claims.

e

A

|

1. Authenticate.
2. Issue token

<

3. Send token. ..
P[Application]
FIGURE 1

Issuers, security tokens, and applications

AN INTRODUCTION TO CLAIMS

For an application developer, the advantage of this system is clear:
your application doesn’t need to worry about what sort of credentials
the user presents. Someone who determines your company’s security
policy can make those rules, and buy or build the issuer. Your applica-
tion simply receives the equivalent of a boarding pass. No matter what
authentication protocol was used, Kerberos, SSL, forms authentica-
tion, or something more exotic, the application gets a signed set of
claims that has the information it needs about the user. This informa-
tion is in a simple format that the application can use immediately.

WHAT MAKES A GooDp CLAIM?

Think about claims the same way you think about attributes in a cen-
tral repository such as Active Directory, over which you have little
control. Security tokens can contain claims such as the user’s name,
email address, manager’s email address, groups, roles, and so on. De-
pending on your organization, it may be easy or difficult to centralize
lots of information about users and issue claims to share that informa-
tion with applications.

It rarely makes sense to centralize data that is specific to only one
application. In fact, applications that use claims can benefit from stor-
ing a separate table that contains user information. This table is where
you can keep application-specific user data that no other application
cares about. This is data for which your application is authoritative. In
other words, it is the single source for that data, and someone must
be responsible for keeping it up to date.

Another use for a table like this is to cache non-authoritative data
that you get from claims. For example, you might cache an email claim
for each user so that you can send out notification email without the
user having to be logged in. You should treat any cached claims as
read-only and refresh them the next time the user visits your applica-
tion and presents fresh claims. Include a date column that you update
each time you refresh the record. That way, you know how stale the
cached claims have become when it comes time to use them.

UNDERSTANDING ISSUERS
Today, it’s possible to acquire an issuer that provides user information,
packaged as claims.

ADES as an Issuer
If you have Windows Server® 2008 R2 Enterprise Edition, you are
automatically licensed to run the Microsoft issuer, Active Directory
Federation Services (ADFS) 2.0. ADFS provides the logic to authenti-
cate users in several ways, and you can customize each instance of
your ADFS issuer to authenticate users with Kerberos, forms authen-
tication, or certificates. Alternatively, you can ask your ADFS issuer to

A good issuer can make it
easier to implement authori-
zation and personalization
in your applications.

6 CHAPTER ONE

accept a security token from an issuer in another realm as proof of
authentication. This is known as identity federation and it’s how you
achieve single sign-on across realms.

In identity terms, a realm is the set of applications, URLs, domains,
or sites for which a token is valid. Typically a realm is defined using
an Internet domain such as microsoft.com, or a path within that
domain, such as microsoft.com/practices/quides. A realm is some-
times described as a security domain because it encompasses all
applications within a specified security boundary.

You can also receive tokens

that were generated outside Figure 2 shows all the tasks that the issuer performs.
of your own realm, and

accept them if you trust the
issuer. This is known as FIGURE 2 Active Directory

federated identity. Feder- ADEFS functions
ated identity enables
single-sign on, allowing users Active Directory
to sign on to applications in 2. Gather information. ;'gthe'ght Directory
. . ervices
different realms without Issuer (ADFS) | ¢—> v
needing to enter realm-
specific credentials. Users 4)
sign on once to access Relational database
multiple applications in g - N
. K] 9]
different realms. g 5 Custom stores
£ g
3 v
< &
—)
v

4. Send token. o~ Claims-based
" application

After the user is authenticated, the issuer creates claims about
that user and issues a security token. ADFS has a rules engine that
makes it easy to extract LDAP attributes from the user’s record in
Active Directory and its cousin, Active Directory Lightweight Direc-
tory Services (AD LDS). ADFS also allows you to add rules that include
arbitrary SQL statements so that you can extract user data from your
own custom database.

You can extend ADFS to add other stores. This is useful because,
in many companies, a user’s identity is often fragmented. ADFS hides
this fragmentation. Your claims-based applications won't break if you
decide to move data around between stores.

AN INTRODUCTION TO CLAIMS

External Issuers
ADFS requires users to have an account in Active Directory or in one
of the stores that ADFS trusts. However, users may have no access to
an Active Directory-based issuer, but have accounts with other well-
known issuers. These issuers typically include social networks and
email providers. It may be appropriate for your application to accept
security tokens created by one of these issuers. This token can also be
accepted by an internal issuer such as ADFS so that the external is-
suer acts as another ADFS store.

To simplify this approach, you can use a service such as Windows
AzureTM Access Control Service (ACS). ACS accepts tokens issued by
many of the well-known issuers such as Windows Live® network of
Internet services, Google, Facebook, and more. It is the responsibility
of the issuer to authenticate the user and issue claims. ACS can then
perform translation and transformation on the claims using configu-
rable rules, and issue a security token that your application can accept.

Figure 3 shows an overview of the tasks that ACS performs, with
options to authenticate users in conjunction with a local issuer such
as ADFS, and directly without requiring a local issuer.

ACS can be config-
ured to trust a range
of social networking
identity providers
that are capable of
authenticating users
and issuing claims, as
well as trusting
enterprise and
custom identity
providers.

8 CHAPTER ONE

FIGURE 3
ACS functions [Windows Live] [Facebook]
[Google] [[others] J
A
Redirect
userto a Send
trusted claims
user
Trust
\ 4

Issuer (ADFS) 4—) Issuer (ACS)

Gather Information
A A

Authenticate
Issue token
Authenticate
Issue token

<

Claims-based
Application

For more information about obtaining and configuring an ACS
account, see Appendix E, “Windows Azure Access Control Service.”

Claims-based applications expect to receive claims about the user,

but they don’t care about which identity store those claims come

Claims-based applications are from. These applications are loosely coupled to identity. This is one of
loosely coupled to identity. the biggest benefits of claims-based identity.

AN INTRODUCTION TO CLAIMS 9

USER ANONYMITY

One option that claims-based applications give you is user anonymity.
Remember that your application no longer directly authenticates the
users; instead, it relies on an issuer to do that and to make claims
about them. If user anonymity is a feature you want, simply don’t ask
for any claim that personally identifies the user. For example, maybe
all you really need is a set of roles to authorize the user’s actions, but
you don’t need to know the user’s name. You can do that with claims-
based identity by only asking for role claims. Some issuers (such as
ADFS and Windows Live ID) support the idea of private user identi-
fiers, which allow you to get a unique, anonymous identifier for a user
without any personal information (such as a name or email address).
Keep user anonymity in mind when you consider the power of claims-
based identity.

Implementing Claims-Based Identity

There are some general set-up steps that every claims-based system
requires. Understanding these steps will help you when you read
about the claims-based architectures.

STEP 1: ADD LOGIC TO YOUR APPLICATIONS
TO SUPPORT CLAIMS
When you build a claims-based application, it needs to know how to
validate the incoming security token and how to parse the claims that
are inside. Many types of applications can make use of claims for tasks
such as authorizing users and managing access to resources or func-
tionality. For example, Microsoft SharePoint® applications can sup-
port the use of claims to implement authorization rules. Later chapters
of this guide discuss the use of claims with SharePoint applications.

The Windows Identity Foundation (WIF) provides a common
programming model for claims that can be used by both Windows
Communication Foundation (WCF) and ASP.NET applications. If you
already know how to use methods such as IsInRole and properties
such as Identity.Name, you’ll be happy to know that WIF simply adds
one more property: Identity.Claims. It identifies the claims that were
issued, who issued them, and what they contain.

There’s certainly more to learn about the WIF programming
model, but for now just remember to reference the WIF assembly
(Microsoft.ldentityModel.dll) from your ASP.NET applications and
WCEF services in order to use the WIF programming paradigm.

10

CHAPTER ONE

STEP 2: ACQUIRE OR BUILD AN ISSUER

For most teams, the easiest and most secure option will be to use
ADFS 2.0 or ACS as the issuer of tokens. Unless you have a great deal
of security experience on your team, you should look to the experts
to supply an issuer. If all users can be authenticated in ADFS 2.0
through the stores it trusts, this is a good option for most situations.
For solutions that require authentication using external stores or so-
cial network identity providers, ACS or a combination of ADFS and
ACS, is a good choice. If you need to customize the issuer and the
extensibility points in ADFS 2.0 or ACS aren’t sufficient, you can li-
cense third-party software or use WIF to build your own issuer. Note,
however, that implementing a production-grade issuer requires spe-
cialized skills that are beyond the scope of this book.

While you're developing applications, you can use a stub issuer that
Just returns the claims you need. The Windows Identity Foundation
SDK includes a local issuer that can be used for prototyping and
development. You can obtain the SDK from http://www.microsoft.
com/downloads/en/details.aspx?FamilylD=c148b2df-c7af-46bb-
9162-2¢9422208504. Alternatively, you can create a custom STS in
Microsoft Visual Studio® and connect that to your application. For
more information, see “Establishing Trust from an ASP.NET Relying
Party Application to an STS using FedUtil” at http://msdn.micro-
soft.com/en-us/library/ee517285.aspx.

STEP 3: CONFIGURE YOUR APPLICATION TO TRUST
THE ISSUER

After you build a claims-based application and have an issuer to sup-
port it, the next step is to set up a trust relationship. An application
trusts its issuer to identify and authenticate users and make claims
about their identities. When you configure an application to rely on a
specific issuer, you are establishing a trust (or trust relationship) with
that issuer.

There are several important things to know about an issuer when
you establish trust with it:

* What claims does the issuer offer?

* What key should the application use to validate signatures on
the issued tokens?

* What URL must users access in order to request a token from
the issuer?

AN INTRODUCTION TO CLAIMS

Claims can be anything you can imagine, but practically speaking,
there are some very common claims offered by most issuers. They
tend to be simple, commonly available pieces of information, such as
first name, last name, email name, groups and/or roles, and so on. Each
issuer can be configured to offer different claims, so the application
(technically, this means the architects and developers who design and
build the application) needs to know what claims are being offered so
it can either select from that list or ask whoever manages the issuer to
expand its offering.

All of the questions in the previous list can easily be answered by
asking the issuer for federation metadata. This is an XML document in
a format defined by the WS-Federation standard that the issuer pro-
vides to the application. It includes a serialized copy of the issuer’s
certificate that provides your application with the correct public key
to verify incoming tokens. It also includes a list of claims the issuer
offers, the URL where users can go to get a token, and other more
technical details, such as the token formats that it knows about (al-
though in most cases you'll be using the default SAML format under-
stood by the vast majority of issuers and claims-based applications).
WIF includes a wizard that automatically configures your application’s
identity settings based on this metadata. You just need to give the
wizard the URL for the issuer you've selected, and it downloads the
metadata and properly configures your application.

SharePoint applications are a typical example of the type of ap-
plication that can be configured to trust claims issued by an enterprise
or a federated claims issuer, including issuers such as ADFS and ACS.
In particular, SharePoint applications that use BCS to access remote
services can benefit from using federated claims issuers.

STEP 4: CONFIGURE THE ISSUER TO KNOW ABOUT
THE APPLICATION
The issuer needs to know a few things about an application before it
can issue it any tokens:
* What Uniform Resource Identifier (URI) identifies this applica-
tion?
* Of the claims that the issuer offers, which ones does this
application require and which are optional?

* Should the issuer encrypt the tokens? If so, what key should it
use?

* What URL does the application expose in order to receive
tokens?

Issuers only provide claims
to authorized applications.

11

12

CHAPTER ONE

Each application is different, and not all applications need the
same claims. One application might need to know the user’s groups or
roles, while another application might only need a first and last name.
So when a client requests a token, part of that request includes an
identifier for the application the user is trying to access. This identi-
fier is a URI and, in general, it’s simplest to just use the URL of the
application, for example, http://www.fabrikam.com/purchasing/.

If you're building a claims-based web application that has a rea-
sonable degree of security, you’ll require the use of secure sockets
layer (SSL) (HTTPS) for both the issuer and the application. This will
protect the information in the token from eavesdroppers. Applica-
tions with stronger security requirements can also request encrypted
tokens, in which case the application typically has its own certificate
(and private key). The issuer needs a copy of that certificate (without
the private key) in order to encrypt the token issued for that applica-
tion.

Once again, federation metadata makes this exchange of informa-
tion easy. WIF includes a tool named FedUtil.exe that generates a
federation metadata document for your application so that you don't
have to manually configure the issuer with all of these settings.

A Summary of Benefits

To remind you of what you've learned, here’s a summary of the ben-
efits that claims can provide to you. Claims decouple authentication
from authorization so that the application doesn’t need to include the
logic for a specific mode of authentication. They also decouple roles
from authorization logic and allow you to use more granular permis-
sions than roles might provide. You can securely grant access to users
who might have previously been inaccessible because they were in
different domains, not part of any corporate domain, or using differ-
ent platforms or technologies.

Finally, you can improve the efficiency of your IT tasks by elimi-
nating duplicate accounts that might span applications or domains
and by preventing critical information from becoming stale.

Moving On

Now that you have a general idea of what claims are and how to build
a claims-based system, you can move on to the particulars. If you are
interested in more details about claims-based architectures for
browser-based and smart client-based applications, see the Chapter 2,
“Claims-Based Architectures.” If you want to start digging into the

AN INTRODUCTION TO CLAIMS

specifics of how to use claims, start reading the scenarios. Each of the
scenarios shows a different situation and demonstrates how to use
claims to solve the problem. New concepts are explained within the
framework of the scenario to give you a practical understanding of
what they mean. You don’t need to read the scenarios sequentially,
but each chapter presumes that you understand all the material that
was explained in earlier chapters.

Questions

1. Under what circumstances should your application or
service accept a token that contains claims about the user
or requesting service?

a.
b.
C.

d.

The claims include an email address.
The token was sent over an HTTPS channel.
Your application or service trusts the token issuer.

The token is encrypted.

2. What can an application or service do with a valid token
from a trusted issuer?

a.
b.
C.

d.

Find out the user’s password.
Log in to the website of the user’s identity provider.
Send emails to the user.

Use the claims it contains to authorize the user for
access to appropriate resources.

3. What is the meaning of the term identity federation?

a.

It is the name of a company that issues claims about
Internet users.

It is a mechanism for authenticating users so that they
can access different applications without signing on
every time.

It is a mechanism for passing users’ credentials to
another application.

It is a mechanism for finding out which sites a user
has visited.

13

14 CHAPTER ONE

4. When would you choose to use Windows Azure AppFabric
Access Control Service (ACS) as an issuer for an application
or service?

a.

When the application must allow users to sign on
using a range of well-known social identity credentials.

. When the application is hosted on the Windows

Azure platform.

. When the application must support single sign-on

(SSO).

. When the application does not have access to an alter-

native identity provider or token issuer.

5. What are the benefits of using claims to manage authoriza-
tion in applications and services?

a.

It avoids the need to write code specific to any one
type of authentication mechanism.

. It decouples authentication logic from authorization

logic, making changes to authentication mechanisms
much easier.

. It allows the use of more fine-grained permissions

based on specific claims compared to the granularity
achieved just using roles.

It allows secure access for users that are in a different
domain or realm from the application or service.

2 Claims-Based Architectures

The web is full of interactive applications that users can visit by simply
clicking a hyperlink. Once they do, they expect to see the page they
want, possibly with a brief stop along the way to log on. Users also
expect websites to manage their logon sessions, although most of
them wouldn’t phrase it that way. They would just say that they dont
want to retype their password over and over again as they use any of
their company’s web applications. For claims to flourish on the web,
it’s critical that they support this simple user experience, which is
known as single sign-on.

If you've been a part of a Microsoft® Windows® domain, you're
already familiar with the benefits of single sign-on. You type your
password once at the beginning of the day, and that grants you access
to a host of resources on the network. Indeed, if you're ever asked to
type your password again, you're going to be surprised and annoyed.
You've come to expect the transparency provided by Integrated Win-
dows Authentication.

Ironically, the popularity of Kerberos has led to its downfall as a
flexible, cross-realm solution. Because the domain controller holds the
keys to all of the resources in an organization, it’s closely guarded by
firewalls. If you're away from work, you’re expected to use a VPN to
access the corporate network. Also, Kerberos is inflexible in terms of
the information it provides. It would be nice to extend the Kerberos
ticket to include arbitrary claims such as the user’s email address, but
this isn’t a capability that exists right now.

Claims were designed to provide the flexibility that other proto-
cols may not. The possibilities are limited only by your imagination and
the policies of your IT department. The standard protocols that ex-
change claims are specifically designed to cross boundaries such as
security realms, firewalls, and different platforms. These protocols
were designed by many who wanted to make it easier to securely
communicate with each other.

15

16 CHAPTER TWO

Claims work in conjunction with
your existing security systems to
broaden their reach and reduce
technical obstacles.

Claims decouple your applications from the details of identity.
With claims, it’s no longer the application’s responsibility to authenti-
cate users. All your application needs is a security token from the is-
suer that it trusts. Your application won't break if the IT department
decides to upgrade security and require users to submit a smart card
instead of submitting a user name and password. In addition, it won't
need to be recoded, recompiled, or reconfigured.

There’s no doubt that domain controllers will continue to guard
organizational resources. Also, the business challenges, such as how to
resolve issues of trust and how to negotiate legal contracts between
companies who want to use federated identity techniques, remain.
Claims-based identity isn’t going to change any of that. However, by
layering claims on top of your existing systems, you can remove some
of the technical hurdles that may have been impeding your access to
a broad, flexible single sign-on solution.

A Closer Look at Claims-Based Architectures

There are several architectural approaches you can use to create
claims-based applications. For example, web applications and SOAP
web services each use slightly different techniques, but you’ll quickly
recognize that the overall shapes of the handshakes are very similar
because the goal is always the same: to communicate claims from the
issuer to the application in a secure fashion. This chapter shows you
how to evaluate the architectures from a variety of perspectives, such
as the user experience, the performance implications and optimiza-
tion opportunities, and how the claims are passed from the issuer to
the application. The chapter also offers some advice on how to design
your claims and how to know your users.

The goal of many of these architectures is to enable federation
with either a browser or a smart client. Federation with a smart client
is based on WS-Trust and WS-Federation Active Requestor Profile.
These protocols describe the flow of communication between smart
clients (such as Windows-based applications) and services (such as
WCEF services) to request a token from an issuer and then pass that
token to the service for authorization.

Federation with a browser is based on WS-Federation Passive
Requestor Profile, which describes the same communication flow
between the browser and web applications. It relies on browser redi-
rects, HTTP GET, and POST to request and pass around tokens.

CLAIMS-BASED ARCHITECTURES

BROWSER-BASED APPLICATIONS
The Windows Identity Foundation (WIF) is a set of .NET Framework
classes that allow you to build claims-aware applications. Among
other things, it provides the logic you need to process WS-Federation
requests. The WS-Federation protocol builds on other standard pro-
tocols such as WS-Trust and WS-Security. One of its features is to
allow you to request a security token in browser-based applications.

WIF makes claims seem much like forms authentication. If users
need to sign in, WIF redirects them to the issuer’s logon page. Here,
the user is authenticated and is then redirected back to the applica-
tion. Figure 1 shows the first set of steps that allow someone to use
single sign-on with a browser application.

(=)

Login Page
£
& R
i e,
& &,
[
2
G
>
1. Send initial request. ..
s > [Application]
FIGURE 1

Single sign-on with a browser, part 1

If you're familiar with ASP.NET forms authentication, you might
assume that the issuer in the preceding figure is using forms authenti-
cation if it exposes a page named Login.aspx. But this page may simply
be an empty page that is configured in Internet Information Services
(I1S) to require Integrated Windows Authentication or a client cer-
tificate or smart card. An issuer should be configured to use the most
natural and secure method of authentication for the users that sign in
there. Sometimes a simple user name and password form is enough,
but obviously this requires some interaction and slows down the user.
Integrated Windows Authentication is easier and more secure for
employees in the same domain as the issuer.

17

18 CHAPTER TWO

The issuer is told which
application is in use so that
it issues only the claims that
the application needs.

When the user is redirected to the issuer’s log-on page, several
query string arguments defined in the WS-Federation standard are
passed that act as instructions to the issuer. Here are two of the key
arguments with example values:

wa=wsignini.0

The wa argument stands for “action,” and indicates one of
two things—whether you're logging on (wsignin1.0) or
logging off (wsignout1.0).
wtrealm=http://www.fabrikam.com/purchasing/
The wtrealm argument stands for “target realm” and
contains a Uniform Resource Indicator (URI) that identifies
the application. The issuer uses the URI to identify the
application the user is logging on to. The URI also allows the
issuer to perform other tasks, such as associating the claims
for the application and replying to addresses.

After the issuer authenticates the user, it gathers whatever claims
the application needs (using the wtrealm parameter to identify the
target application), packages them into a security token, and signs
the token with its private key. If the application wants its tokens
encrypted, the issuer encrypts the token with the public key in the
application’s certificate.

Now the issuer asks the browser to go back to the application.
The browser sends the token to the application so it can process the
claims. Once this is done, the user can begin using the application.

To accomplish this, the issuer returns an HTML page to the
browser, including a <form> element with the form-encoded token
inside. The form’s action attribute is set to submit the token to what-
ever URL was configured for the application. The user doesn’t nor-
mally see this form because the issuer also emits a bit of JavaScript
that auto-posts it. If scripts are disabled, the user will need to click a
button to post the response to the server. Figure 2 shows this process.

CLAIMS-BASED ARCHITECTURES

Issuer
N

Login Page

4. Return
<form>
with token

6. Post <form>,
application
recieves token.

> Application

7. WIF validates token and issues a cookie.
8. WIF presents the claims to the application.
9. Application processes claims and continues.

FIGURE 2
Single sign-on with a browser, part 2

Now consider this process from the user’s experience. If the is-
suer uses Integrated Windows Authentication, the user clicks the link
to the application, waits for a moment while the browser is first redi-
rected to the issuer and then back to the application, and then the
user is logged on without any additional input. If the issuer requires
input from the user, such as a user name and password or a smart card,
users must pause briefly to log on, and then they can use the applica-
tion. From the user’s point of view, the logon process with claims is
the same as what he or she is used to, which is critical.

Understanding the Sequence of Steps
The steps illustrated in the preceding illustrations can also be depicted
as a sequence of steps that occur over time. Figure 3 shows this se-
quence when authenticating against Active Directory Federation
Services (ADFS) and Active Directory.

19

20 CHAPTER TWO

- erf

W
John : Browser a-ExPens.e: ADFS : Issuer Act|ve: Directory :
Application Directory
Browse application
@ User is not authenticated.
<
Query for user
Browse to issuer (with Kerberos ticket). attributes such
> as email, name,
@ @ and cost center.
SAML token signed. >
@O
POST signed
SAML token.
>

An audience restriction deter-
mines the URIs the application
will accept. When applying for
a token, the user or application
will usually specify the URIs for
which the token should be valid
(the AppliesTo value, typically
the URL of the application).
The issuer includes this as the
audience restriction in the token
it issues.

@

<

Receive the home

page and a cookie token. |Q
<
Send another page and a cookie.

Receive another page.

<

FIGURE 3
Browser-based message sequence

1
WIF validates

N\
~
~

WIF populates
ClaimsPrincipal.

Ig ____

This is coordinated by the
WSFederationAuthenticationModule
(FAM).

This is coordinated by the
SessionAuthenticationModule
(SAM).

If a user is not authenticated, the browser requests a token from

the issuer, which in this case is Active Directory Federation Services
(ADFS). ADFS queries Active Directory for the necessary attributes
and returns a signed token to the browser.

After the POST arrives at the application, WIF takes over.
The application has configured a WIF HTTP module, named WS
FederationAuthenticationModule (FAM), to intercept this POST to
the application and handle the processing of the token. The FAM
listens for the AuthenticateRequest event. The event handler

performs several validation steps, including
checking the token’s audience restriction and the
expiration date. Audience restriction is defined by
the AudienceURI element.

The FAM also uses the issuer’s public key to
make sure that the token was signed by the
trusted issuer and was not modified in transit.
Then it parses the claims in the token and uses the
HttpContext.User.ldentity property (or equiva-
lently the Page.User property) to present an
IClaimsPrincipal object to the application. It also
issues a cookie to begin a logon session, just like
what would happen if you were using forms
authentication instead of claims. This means that
the authentication process isn’t repeated until the
user signs off or otherwise destroys the cookie, or
until the session expires (sessions are typically
designed to last for a single workday).

Figure 4 shows the steps that WIF takes for
the initial request, when the application receives a
token from the issuer.

One of the steps that the FAM performs is
to create the session token. On the wire, this
translates into a sequence of cookies named
FedAuth[n]. These cookies are the result of
compressing, encrypting, and encoding the Claims
Principal object, along with any other attributes.
The cookies are chunked to avoid overstepping
any size limitations.

Figure 5 shows what the network traffic
looks like for the initial request.

Response Headers
HTTP/1.1 302 Found

- Cache
-Date: Wed, 07 Oct 2009 14:49:14 GMT
Cookies / Login
{... Set-Cookie: FedAuth=77u/PD34bWwgdmVyc2vbjOiMS4wIiBIbmNyZGluZz0idXRmLTgiPz¢
-Set-Cookie: FedAuth 1=aWhmcmphaktOTDRXY3FKRkpxbzIKR 2pramSUNTVOb29QaDFniv
-Set-Cookie: FedAuth2=b3hkOWhkM INHRXVydEIxbHFIOXNCbGYZNTM2bHF 1VTNGbES 1
Entity
-Content-Length: 156
-Content-Type: text/html; charset=utf-8
Miscellaneous
-Server: Microsoft-11S/7.5
i X-Powered-By: ASP.NET
E- Transport

i.. Location: /a-Expense.ClaimsAware/default.aspx

[Raw] [Header Definitions]

FIGURE 5
Sequence of cookies

< onS

CLAIMS-BASED ARCHITECTURES

FIGURE 4
Sequence of steps for initial request

Event:
ityTokenReceived _
Arguments : (_

S ionS

raw security token .
Validate the token

with the
corresponding
security token
handler, such as
SAML 1.1, SAML 2.0,
encrypted or custom.

Create the
ClaimsPrincipal object
with the claims inside.

21

Use the

class to enrich the
ClaimsPrincipal
object.

ClaimsAuthenticationMananger

Event:
ityTokenValidated

Arguments :
ClaimsPrincipal

Create the
SessionsSecurityToken:
Encode(Chunk(Encrypt
(ClaimsPrincipal+lifetime+
[original token]))).

property to the
ClaimsPrincipal object.
Convert the session
token into a set
of chunked cookies.

Set the HTTPContext.User

Redirect to the
original return URL,
if it exists.

22 CHAPTER TWO

FIGURE 6
Steps for subsequent
requests

Event:
SessionSecurityTokenReceived
Arguments :

session token

Check that the
cookie is present.
Ifitis,
recreate the
SessionSecurityToken
by decoding,
decrypting, and
decompressing
the cookie.

(____

Check the
SessionSecurityToken
expiration date.

Create the
ClaimsPrincipal object
with the claims inside.

Set the
HTTPContext.User
property to the
ClaimsPrincipal object.

On subsequent requests to the application, the
SessionAuthenticationModule intercepts the cookies
and uses them to reconstruct the ClaimsPrincipal
object. Figure 6 shows the steps that WIF takes for any
subsequent requests.

Figure 7 shows what the network traffic looks like
for subsequent requests.

Request Headers [Raw} [Header Definitions]
GET /FederationPassive/auth/integrated/IntegratedSignin.aspx?wa=wsignin 1.0

- Client A
i i-Accept: imagefjpeg, application/x-ms-application, image/qif, applica
- Accept-Encoding: gzip, deflate
i Accept-Language: en-US
i... User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Tr
(- Cookies / Login
i L. Authorization: Negotiate TIRMTVNTUAABAAAAI4IT4gAAAAAAAAAA,
B- Transport

= »

Transformer IIHeaders | Textview | ImageView | HexView |
WebView | Auth | Caching | Privacy | Raw | x|
Response Headers [Raw] [Header Definitions]
HTTP/1.1 401 Unauthorized

- Cache -
‘.. Date: Wed, 07 Oct 2009 14:40:07 GMT

(- Cookies / Login

& Entity

i i-Content-length: 341

FIGURE 7
Network traffic for subsequent responses

All of the steps, both for the initial and subsequent
requests, should run over the Secure Sockets Layer
(SSL) to ensure that an eavesdropper can't steal either
the token or the logon session cookie and replay them
to the application in order to impersonate a legitimate
user.

CLAIMS-BASED ARCHITECTURES 23

Optimizing Performance

Are there opportunities for performance optimizations here? The
answer is a definite “Yes.” You can use the logon session cookie to
cache some state on the client to reduce round-trips to the issuer. The
issuer also issues its own cookie so that users remain logged on at the
issuer and can access many applications. Think about how this
works—when a user visits a second application and that application
redirects back to the same issuer, the issuer sees its cookie and knows
the user has recently been authenticated, so it can immediately issue
a token without having to authenticate again. This is how to use
claims to achieve Internet-friendly single sign-on with a browser-
based application.

SMART CLIENTS
When you use a web service, you don’t use a browser. Instead, you use
an arbitrary client application that includes logic for handling claims-
based identity protocols. There are two protocols that are important
in this situation: WS-Trust, which describes how to get a security to-
ken from an issuer, and WS-Security, which describes how to pass that
security token to a claims-based web service.

Recall the procedure for using a SOAP-based web service. You use
the Microsoft Visual Studio® development system or a command-line
tool to download a Web Service Definition Language (WSDL) docu-
ment that supplies the details of the service’s address, binding, and
contract. The tool then generates a proxy and updates your applica-
tion’s configuration file with the information discovered in the WSDL
document. When you do this with a claims-based service, its WSDL
document and its associated WS-Policy document supply all the nec-
essary details about the issuer that the service trusts. This means that
the proxy knows that it needs to obtain a security token from that
issuer before making requests to the service. Because this information
is stored in the configuration file of the client application, at run time
the proxy can get that token before talking to the service. This opti-
mizes the handshake a bit compared to the browser scenario, because
the browser had to visit the application first before being redirected
to the issuer. Figure 8 shows the sequence of steps for smart clients
when the issuer is ADFS authenticating users against Active Directory.

Applications and issuers use
cookies to achieve Internet-
friendly single-sign on.
Single sign-on is also
possible using ACS when a
local issuer such as ADFS
is not available. However,
ACS is primarily aimed at
federated identity scenarios
where the user is authenti-
cated in a different realm
from the application. ACS
is discussed in more detail
in the section “Federated
Identity with ACS” later
in this chapter.

24

CHAPTER TWO

Rick :
Application

Orders :
Web Service

©

ADFS : Issuer

Active Directory:
Directory

token.

Use the username to
request a security

&

<

Return the signed
SAML token.

Validate credentials
and query for user
> attributes such as
email, name, and
cost center.

Call operation 1 on
the web service
with the SAML

These interactions can be
orchestrated by the WCF

WSFederation binding.
When the client proxy

wants to call the service, it
first tries to obtain a token.

>

WIF
validates

token.

token.

Send the SOAP

response.
If the client makes a second

9 ----- call to the web service, it
obtains a new token from
the issuer, unless it cached
the token obtained at the
first call.
FIGURE 8

Smart client-based message sequence

The steps for a smart client are similar to those for browser-based
applications. The smart client makes a round-trip to the issuer, using
WS-Trust to request a security token. In step 1, The Orders web ser-
vice is configured with the WSFederationHttpBinding. This binding
specifies a web service policy that obligates the client to attach a
SAML token to the security header to successfully invoke the web
service. This means that the client will first have to call the issuer with
a set of credentials such as a user name and password to get a SAML
token back. In step 2, the client can call the web service with the to-
ken attached to the security header.

CLAIMS-BASED ARCHITECTURES

Figure 9 shows a trace of the messages that occur in the smart
client scenario.

Action From/To
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue hitps:/login.adatumpharma.com/adfs/servicesftrust/1 3/usemamemixed
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal
http:/ftempuri.org/GetOrders http://orders.adatumphamma.com/Orders.svc

http:/tempuri.org/GetOrdersResponse

FIGURE 9
Smart client network traffic

The WS-Trust request (technically named a Request for Security
Token, or RST for short) includes a field named AppliesTo, which
allows the smart client to indicate a URI for the web service it’s
ultimately trying to access. This is similar to the wtrealm query string
argument used in the case of a web browser. Once the issuer authen-
ticates the user, it knows which application wants access and it can
decide which claims to issue. Then the issuer sends back the response
(RSTR), which includes a signed security token that is encrypted with
the public key of the web service. The token includes a proof key. This
is a symmetric key randomly generated by the issuer and included as
part of the RSTR so that the client also gets a copy.

Now it’s up to the client to send the token to the web service in
the <Security> header of the SOAP envelope. The client must sign the
SOAP headers (one of which is a time stamp) with the proof key to
show that it knows the key. This extra cryptographic evidence further
assures the web service that the caller was, indeed, the one who was
issued the token in the first place.

At this point, it’s typical to start a session using the WS-Secure
Conversation protocol. The client will probably cache the RSTR for
up to a day in case it needs to reconnect to the same service later on.

SHAREPOINT APPLICATIONS

AND SHAREPoOINT BCS
A common requirement for single sign-on and federated identity is in
Microsoft SharePoint® applications, including those that use the Busi-
ness Connectivity Services (BCS) to work with data exposed by re-
mote services. Microsoft SharePoint Server 2010 implements a claims-
based identity model that supports authentication across users of
Windows-based and non-Windows -based systems, multiple authen-
tication types, a wide set of principal types, and delegation of user
identity between applications.

SharePoint 2010 can accept claims provided as SAML tokens,
and can use them to make identity-related decisions. These decisions
may consist of simple actions such as personalization based on the

26

CHAPTER TWO

user name, or more complex actions such as authorizing access to
features and functions within the application.

SharePoint also includes a claims provider that can issue claims
and package these claims into security tokens. It can augment tokens
by adding additional claims, and expose the claims in the SharePoint
people picker tool. The ability to augment existing tokens makes it
easier to build SharePoint applications that use BCS to access remote
services for which authentication is required.

Chapter 10, “Accessing REST Services from a Windows Phone
Device” and Chapter 11, “Claims-Based Single Sign-On for Microsoft
SharePoint 2010” provide more information about using claims and
issuers in SharePoint 2010. A guide to using claims in SharePoint is
available at “Getting Started with Security and Claims-Based Identity
Model” on the MSDN® website (http://msdn.microsoft.com/en-us/
library/ee536164.aspx).

Federating Identity across Realms

So far you've learned enough about claims-based identity to under-
stand how to design and build a claims-based application where the
issuer directly authenticates the users.

But you can take this one step further. You can expand your is-
suer’s capabilities to accept a security token from another issuer, in-
stead of requiring the user to authenticate directly. Your issuer now
not only issues security tokens, but also accepts tokens from other
issuers that it trusts. This enables you to federate identity with other
realms (these are separate security domains), which is truly a powerful
feature. Much of the federation process is actually accomplished by
your IT staff, because it depends on how issuers are configured. But
it’s important to be aware of these possibilities because, ultimately,
they lead to more features for your application, even though you
might not have to change your application in any way. Also, some of
these possibilities may have implications for your application’s design.

THE BENEFITS OF CROSS-REALM IDENTITY
Maintaining an identity database for users can be a daunting task.
Even something as simple as a database that holds user names and
passwords can be painful to manage. Users forget their passwords on
a regular basis, and the security stance taken by your company may
not allow you to simply email forgotten passwords to them the way
many low-security websites do. If maintaining a database for users
inside your enterprise is difficult, imagine doing this for hundreds or
thousands of remote users.

http://msdn.microsoft.com/en-us/library/ee536164.aspx
http://msdn.microsoft.com/en-us/library/ee536164.aspx

CLAIMS-BASED ARCHITECTURES

Managing a role database for remote users is just as difficult.
Imagine Alice, who works for a partner company and uses your pur-
chasing application. On the day that your IT staff provisioned her
account, she worked in the purchasing department, so the IT staff
assigned her the role of Purchaser, which granted her permission to
use the application. But because she works for a different company,
how is your company going to find out when she transfers to the Sales
department? What if she quits? In both cases, you'd want to know
about her change of status, but it’s unlikely that anyone in the HR
department at her company is going to notify you.

It’s unavoidable that any data you store about a remote user even-
tually becomes stale. How can you safely expose an application for a
partner business to use?

One of the most powerful features of claims-based identity is
that you can decentralize it. Instead of having your issuer authenticate
remote users directly, you can set up a trust relationship with an is-
suer that belongs to the other company. This means that your issuer
trusts their issuer to authenticate users in their realm. Their employees
are happy because they don’t need special credentials to use your
application. They use the same single sign-on mechanism they've al-
ways used in their company. Your application still works because it
continues to get the same boarding pass it needs. The claims you get
in your boarding pass for these remote users might include less power-
ful roles because they aren’t employees of your company, but your
issuer will be responsible for determining the proper assignments. Fi-
nally, your application doesn’t need to change when a new organiza-
tion becomes a partner. The fan-out of issuers to applications is a real
benefit of using claims—you reconfigure one issuer and many down-
stream applications become accessible to many new users.

Another benefit is that claims allow you to logically store data
about users. Data can be kept in the store that is authoritative rather
than in a store that is simply convenient to use or easily accessible.

Identity federation removes hurdles that may have stopped you
from opening the doors to new users. Once your company decides
which realms should be allowed access to your claims-based applica-
tion, your IT staff can set up the proper trust relationships. Then you
can, for example, invite employees from a company that uses Java, to
access your application without having to issue passwords for each of
them. They only need a Java-based issuer, and those have been avail-
able for years. Another possibility is to federate identity with Win-
dows Live® network of Internet services, which supports claims-based
identity. This means that anyone with a Windows Live ID can use your
application.

Claims can be used to
decentralize identity,

eliminating stale data
about remote users.

27

28

CHAPTER TWO

How FEDERATED IDENTITY WORKS
You've already seen how federated identity works within a single
realm. Indeed, Figure 2 is a small example of identity federation be-
tween your application and a local issuer in your realm. That relation-
ship doesn’t change when your issuer interacts with an issuer it trusts
in a different realm. The only change is that your issuer is now config-
ured to accept a security token issued by a partner company instead
of directly authenticating users from that company. Your issuer trusts
another issuer to authenticate users so it doesn’t have to. This is simi-
lar to how your application trusts its issuer.

Figure 10 shows the steps for federating identity across realms.

’ N i Y
’ \ 14 \
[}] 1]
1] 1 1
1 1 1 1
1 . 1
i Their < 1 Trust i My 1
! — . 1
: Issuer] i Issuer 1
1 : 1 :
1 1 1 1
1 1
. A : A :
1] 1]
1] 1 1
i ; i Application | |

I I
\ \
S 4 R B ‘L—————’I
ws]
d .
g g
oo a
(=g (=g
: 1 K g
g 3 H &
] 212 3
2 E
o
2
o K4
w ~N
S —l
=
c
Q
-
S
S 4—
<<
-
FIGURE 10

Federating identity across realms

Federating identity across realms is exactly the same as you've
seen in the earlier authentication techniques discussed in this chapter,
with the addition of an initial handshake in the partner’s realm. Users
first authenticate with an issuer in their own realm. They present the
tokens they receive from their exchanges to your issuer, which accepts
itin lieu of authenticating them directly. Your issuer can now issue a
token for your application to use. This token is what the user sends to
your application. (Of course, users know nothing about this proto-
col—it’s actually the browser or smart client that does this on their
behalf). Remember, your application will only accept tokens signed by
the one issuer that it trusts. Remote users won't get access if they try
to send a token from their local issuer to your application.

CLAIMS-BASED ARCHITECTURES

At this point, you may be thinking, “Why should my company
trust some other company to authenticate people that use my appli-
cation? That doesn’t seem safe!” Think about how this works without
claims-based identity. Executives from both companies meet and sign
legal contracts. Then the IT staff from the partner company contacts
your IT staff and specifies which of their users need accounts provi-
sioned and which roles they will need. The legal contracts help ensure
that nobody abuses the trust that’s been established. This process has
been working for years and is an accepted practice.

Another question is why should you bother provisioning accounts
for those remote users when you know that data will get stale over
time? All that claims-based identity does is help you automate the
trust, so that you get fresh information each time a user visits your
application. If Alice quits, the IT staff at her company has great per-
sonal incentive to disable her account quickly. They don’t want a po-
tentially disgruntled employee to have access to company resources.
That means that Alice won't be able to authenticate with their issuer
anymore, which means she won't be able to use your application, ei-
ther. Notice that nobody needed to call you up to tell you about Alice.
By decentralizing identity management, you get better information
(authoritative information, you could say) about remote users in a
timely fashion.

Claims can be used to automate existing trusts between businesses.

One possible drawback of federating identity with many other
companies is that your issuer becomes a single point of failure for all
of your federation relationships. Issuers should be as tightly guarded
as domain controllers. Adding features is never without risk, but the
rewards can lead to lower costs, better security, simpler applications,
and happier users.

FEDERATED IDENTITY WITH ACS
Many users already have accounts with identity providers that authen-
ticate users for one or more applications and websites. Social net-
works such as Facebook, and email and service providers such as
Windows Live ID and Google, often use a single sign-on model that
supports authentication for several applications. Users increasingly
expect to be able to use the credentials for these identity providers
when accessing other applications.

ACS is an issuer that can make use of many of these identity pro-
viders by redirecting the user to the appropriate location to enter
credentials, and then using the claims returned from that identity
provider to issue a token to the applications. ACS can also be used to
supplement a local issuer by retrieving claims from a social networking
or email provider and passing these to the local issuer for it to issue

29

CHAPTER TWO

It is important for users to

understand that, when they
use their social identity
provider credentials to log in
through ACS, they are
consenting to some informa-
tion (such as their name and
email address) being sent to
the application. However,
giving this consent does not
provide the application with
access to their social network
account—it just confirms
their identity to the
application.

the required token. ACS effectively allows a broad range of identity
providers to be used for user authentication, both in conjunction with
a local issuer and when no local issuer is available.

Figure 11 shows the overall sequence of steps for a user authen-
ticating with an identity provider through ACS after a request for
authentication has been received by ACS. ACS redirects the user to
the appropriate identity provider. After successful authentication,
ACS and ADFS map claims for the user and then return a token to the
relying party (the claims-based application). Steps 5 and 6, where the
intervention of a local issuer takes place, will only occur if the applica-
tion is configured to use a local issuer such as ADFS that redirects the
user to ACS.

Socidl idendiy Providers :

ADFS
- Map Claims

ACS

— Google
- Windows LivelD - Tuansion profocols
— Facebook = Map claims
- ele.

9]
t 3 i /3
= = N
I L
2 x YA

Clams Based Application
en
1 L,d\”\ Ao
FIGURE 11

Federated identity with ACS as the issuer,
optionally including an ADES local issuer

For more details about ACS and the message sequences with
and without a local issuer, see Appendix B, “Message Sequences,”
and Appendix E, “Windows Azure Access Control Service.”

A major consideration when using ACS is whether you should
trust the identity providers that it supports. You configure ACS to use
only the identity providers you specifically want to trust, and only
these will be available to users when they log into your application.
For example, depending on your requirements, you may decide to ac-
cept authentication only through Windows Live ID and Google, and
not allow users to log in with a Facebook account. Each identity
provider is an authority for users that successfully authenticate, and

CLAIMS-BASED ARCHITECTURES

each provides proof of this by returning claims such as the user name,
user identifier, and email address.

ACS generates a list of the configured identity providers from
which users can select the one they want to use. You can create cus-
tom pages that show the available identity providers within your own
application if required, and configure rules within ACS that transform
and map the claims returned from the identity provider. After the user
logs in at their chosen identity provider, ACS returns a token that the
application or a local issuer such as ADFS can use to provide authori-
zation information to the application as required.

Understanding the Sequence of Steps
Figure 12 shows the sequence of steps for ACS in more detail
when there is no local issuer.

& ¥ = &=

_
Not Arh
N
Ged Token
7
& — — - o = =
HRD page
Select | «
e - = — = — = = = =
Redwect M
7
é ——————————————
Redwect + Token)
Tvansform
N 1 7
L]
L]
FIGURE 12

ACS federated identity message sequence

The user accesses the application and fails authentication. The
browser is redirected to ACS, which generates and returns the list of
accepted identity providers (which may include custom issuers or
another ADFS instance as well as social identity providers and email
services). The user selects the required identity provider, and ACS
redirects the user to that identity provider’s login page. After the
identity provider authenticates the user, it returns a token to ACS that
declares the user to be valid. ACS then maps the claims and generates
a token that declares this user to be valid, and redirects the user to the

Each identity
provider will return
a different set of
claims. For example,
Windows Live ID

returns a user

identifier, whereas
Google returns
the user name and
email address.

31

32

CHAPTER TWO

application. The application uses the token to authorize the user for
the appropriate tasks.

This means that the authority for the user’s identity differs at
each stage of the process. For example, if the user chooses to authen-
ticate with Google, then the Google token issuer is the authority in
declaring the user to be valid with them, and it returns proof in the
form of a name and email address. When redirected to ACS, the
browser presents the Google token and ACS becomes the authority
on issuing claims about the user based on the valid token from Google
(called a copy claim). ACS can perform transformation and mapping,
such as to include the claim that this user works in a specific company
and has a specific role in the application.

Combining ACS and ADES

If, instead of authenticating with ACS, the user was originally redi-
rected by the application to a local issuer such as ADFS, which in-
cludes ACS amongst its trusted issuers, the local issuer receives the
token from ACS and becomes the authority in declaring the user valid
based on the claims returned from ACS. The local issuer can also per-
form transformation and mapping, such as to include the claim that
this user works in a specific company and has a specific role in the
application. A scenario that illustrates when this is useful is described
in detail in Chapter 5, “Federated Identity with Windows Azure Ac-
cess Control Service.”

IDENTITY TRANSEORMATION
The issuer’s job is to take some generic incoming identity (perhaps
from a Kerberos ticket, an X.509 certificate, or a set of user creden-
tials) and transform it into a security token that your application can
use. That security token is like the boarding pass, in that it contains all
of the user’s identity details that your application needs to do its job,
and nothing more. Perhaps instead of the user’s Windows groups,
your boarding pass contains roles that you can use right away.

On the other end of the protocol are users who can use their
single sign-on credentials to access many applications because the is-
suer in their realm knows how to authenticate them. Their local issuer
provides claims to applications in their local realm as well as to issuers
in other realms so that they can use many applications, both local and
remote, without having to remember special credentials for each one.

Consider the application’s local issuer in the last illustration, “Fed-
erating identity across realms.” It receives a security token from a user
in some other realm. Its first job is to reject the request if the incom-
ing token wasn't issued by one of the select issuers that it trusts. But
once that check is out of the way, its job now becomes one of claims

CLAIMS-BASED ARCHITECTURES

transformation. It must transform the claims made by the remote is-
suer into claims that make sense for your application. For a practical
example, see Chapter 4, “Federated Identity for Web Applications.”

Transformation is carried out with rules such as, “If you see a
claim of this type, with this value, issue this claim instead.” For exam-
ple, your application may have a role called Managers that grants
special access to manager-specific features. That claim may map di-
rectly to a Managers group in your realm, so that local users who are
in the Managers group always get the Managers role in your applica-
tion. In the partner’s realm, they may have a group called Supervisors
that needs to access the manager-specific features in your application.
The transformation from Supervisors to Managers can happen in their
issuer; if it does not, it must happen in yours. This transformation
simply requires another rule in the issuer. The point is that issuers such
as ADFS and ACS are specifically designed to support this type of
transformation because it’s rare that two companies will use exactly
the same vocabulary.

HoME REALM DISCOVERY
Now that you've seen the possibility of cross-realm federation, think
about how it works with browser-based applications. Here are the
steps:

1. Alice (in a remote realm) clicks a link to your application.
2. You redirect Alice to your local issuer, just like before.

3. Your issuer redirects Alice’s browser to the issuer in her
realm.

4. Alice’s local issuer authenticates and issues a token, sending
Alice’s browser back to your issuer with that token.

5. Your issuer validates the token, transforms the claims, and
issues a token for your application to use.

6. Your issuer sends Alice’s browser back to your application,
with the token that contains the claims your application
needs.

The mystery here is in step 3. How does the issuer know that
Alice is from a remote realm? What prevents the issuer from thinking
she’s a local user and trying to authenticate her directly, which will
only fail and frustrate the user? Even if the issuer knew that Alice was
from a remote realm, how would it know which realm it was? After
all, it’s likely that you’ll have more than one partner.

This problem is known as home realm discovery. Your issuer has
to determine if Alice is from the local realm or if she’s from some
partner organization. If she’s local, the issuer can authenticate her

ADES uses a rules
engine to support
claims transformation.

33

34 CHAPTER TWO

Take a look at
Chapter 3, “Claims-
Based Single Sign-On
for the Web,” to see
an example of this
technique.

My IT people make sure that
the links to remote
applications always include
this information. It makes
the application much
friendlier for the user and
protects the privacy of my
company by not revealing

all of its partners.

directly. If she’s remote, the issuer needs to know a URL to redirect
her to so that she can be authenticated by her home realm’s issuer.

There are two ways to solve this problem. The simplest one is to
have the user help out. In step 2, when Alice’s browser is redirected to
your local issuer, the authentication sequence pauses and the browser
displays a web page asking her what company she works for. (Note
that it doesn’t help Alice to lie about this, because her credentials are
only good for one of the companies on the list—her company.) Alice
clicks the link for her company and the process continues, since the
issuer now knows what to do. To avoid asking Alice this question in
the future, your issuer sets a cookie in her browser so that next time
it will know who her issuer is without having to ask.

If the issuer is ACS, it will automatically generate and display a
page containing the list of accepted identity providers. Alice must
select one of these, and her choice indicates her home realm. If ACS
is using a trusted instance of an ADFS security token service (STS) as
an identity provider, the home realm discovery page can contain a
textbox as well as (or instead of) the list of configured identity provid-
ers where a user can enter a corresponding email address. The user is
then authenticated by the ADFS STS.

The second way to solve this problem is to add a hint to the
query string that’s in the link that Alice clicks in step 1. That query
string will contain a parameter named whr (hr stands for home realm).

The issuer looks for this hint and automatically maps it to the
URL of the user’s home realm. This means that the issuer doesn’t have
to ask Alice who her issuer is because the application relays that infor-
mation to the issuer. The issuer uses a cookie, just as before, to ensure
that Alice is never bothered with this question.

Take a look at Chapter 4,
“Federated Identity for
Web Applications,” to
see an example of this
technique.

CLAIMS-BASED ARCHITECTURES

Design Considerations for Claims-Based
Applications

Admittedly, it’s difficult to offer general prescriptive guidance for
designing claims because they are so dependent on the particular ap-
plication. This section poses a series of questions and offers some
approaches to consider as you look at your options.

WHAT MAKES A GooDp CLAIM?

Like many of the most important design decisions, this question
doesn’t always have a clear answer. What'’s important is that you un-
derstand the tensions at play and the tradeoffs you're facing. Here are
some concrete examples that might help you start thinking about
some general criteria for what makes a good claim.

First, consider a user’s email address. That’s a prime candidate for
a claim in almost any system, because it’s generally very tightly coupled
to the user’s identity, and it’s something that everyone needs if you
decide to federate identity across realms. An email name can help you
personalize your system for the user in a very meaningful way.

What about a user’s choice of a skin or theme for your website?
Certainly, this is “personalization” data, but it’s also data that’s par-
ticular to a single application, and it’s hard to argue that this is part of
a user’s identity. Your application should manage this locally.

What about a user’s permission to access data in your application?
While it may make sense in some systems to model permissions as
claims, it’s easy to end up with an overwhelming number of these
claims as you model finer and finer levels of authorization. A better
approach is to define a boundary that separates the authorization
data you’ll get from claims from the data you’ll handle through other
means. For example, in cross-realm federation scenarios, it can be
beneficial to allow other realms to be authoritative for some high-
level roles. Your application can then map those roles onto fine-
grained permissions with tools such as Windows Authorization
Manager (AzMan). But unless you’ve got an issuer that’s specifically
designed for managing fine-grained permissions, it’s probably best to
keep your claims at a much higher level.

Before making any attribute into a claim, ask yourself the follow-
ing questions:

* Is this data a core part of how | model user identity?

* Is the issuer an authority on this information?
* Will this data be used by more than one application?

* Do | want an issuer to manage this data or should my
application manage it directly?

35

36

CHAPTER TWO

How CAN You UNIQUELY DISTINGUISH ONE

USER FROM ANOTHER?

Because people aren’t born with unique identifiers (indeed, most
people treasure their privacy), differentiating one person from an-
other has always been, and will likely always be a tricky problem.
Claims don’t make this any easier. Fortunately, not all applications
need to know exactly who the user is. Simply being able to identify
one returning user from another is enough to implement a shopping
cart, for example. Many applications don’t even need to go this far.
But other applications have per-user state that they need to track, so
they require a unique identifier for each user.

Traditional applications typically rely on a user’s sign-in name to
distinguish one user from the next. So what happens when you start
building claims-based applications and you give up control over au-
thentication? You’ll need to pick one (or a combination of multiple)
claims to uniquely identify your user, and you’ll need to rely on your
issuer to give you the same values for each of those claims every time
that user visits your application. It might make sense to ask the issuer
to give you a claim that represents a unique identifier for the user. This
can be tricky in a cross-realm federation scenario, where more than
one issuer is involved. In these more complicated scenarios, it helps to
remember that each issuer has a URI that identifies it and that can be
used to scope any identifier that it issues for a user. An example of
such a URI is http://issuer.fabrikam.com/unique-user-id-assigned-
from-fabrikams-realm.

Email addresses have convenient properties of uniqueness and
scope already built in, so you might choose to use an email claim as a
unique identifier for the user. If you do, you’ll need to plan ahead if
you want users to be able to change the email address associated with
their data. You'll also need a way to associate a new email address with
that data.

How CAN You GET A LiST OF ALL POSSIBLE

UseERS AND ALL PossIBLE CLAIMS?
One thing that’s important to keep in mind when you build a claims-
based application is that you're never going to know about all the
users that could use your application. You've given up that control in
exchange for less responsibility, worry, and hassle over programming
against any one particular user store. Users just appear at your door-
step, presenting the token they got from the issuer that you trust.
That token gives you information about who the user is and what he
or she can do. In addition, if you've designed your authorization code
properly, you don’t need to change your code to support new users;
even if those users come from other realms, as they do in federation
scenarios.

CLAIMS-BASED ARCHITECTURES

So how can you build a list of users that allows administrators to
choose which users have permission to access your application and
which don’t? The simple answer is to find another way. This is a per-
fect example of where an issuer should be involved with authorization
decisions. The issuer shouldn’t issue tokens to users who aren’t privi-
leged enough to use your application. It should be configured to do
this without you having to do anything at all in your application.

When designing a claims-based application, always keep in mind
that a certain amount of responsibility for identity has been lifted
from your shoulders as an application developer. If an identity-related
task seems difficult or impossible to build into your application logic,
consider whether it’s possible for your issuer to handle that task for
you.

WHERE SHOULD CLAIMS BE ISSUED?

The question of where claims should be issued is moot when you have
a simple system with only one issuer. But when you have more com-
plex systems where multiple issuers are chained into a path of trust
that leads from the application back to the issuer in the user’s home
realm, this question becomes very relevant.

The short answer to the question of where claims should be is-
sued is “by the issuer that knows best.”

Take, for example, a claim such as a person’s email name. The
email name of a user isnt going to change based on which application
he or she uses. It makes sense for this type of claim to be issued close
to the user’s home realm. Indeed, it’s most likely that the first issuer in
the chain, which is the identity provider, would be authoritative for
the user’s email name. This means that downstream issuers and ap-
plications can benefit from that central claim. If the email name is ever
updated, it only needs to be updated at that central location.

Now think about an “action” claim, which is specific to an applica-
tion. An application for expense reporting might want to allow or
disallow actions such as submitExpenseReport and approve
ExpenseReport. Another type of application, such as one that tracks
bugs, would have very different actions, such as reportBug and
assignBug. In some systems, you might find that it works best to have
the individual applications handle these actions internally, based on
higher-level claims such as roles or groups. But if you do decide to
factor these actions out into claims, it would be best to have an issuer
close to the application be authoritative for them. Having local au-
thority over these sorts of claims means you can more quickly imple-
ment policy changes without having to contact a central authority.

What about a group claim or a role claim? In traditional RBAC
(Role-Based Access Control) systems, a user is assigned to one or
more groups, the groups are mapped to roles, and roles are mapped to

Always get claims from
authoritative sources.

37

38 CHAPTER TWO

Issuers are typically found at
organizational boundaries.

actions. There are many reasons why this is a good design: the map-
ping from roles to actions for an application can be done by someone
who is familiar with it and who understands the actions defined for
that application. For example, the mapping from user to groups can
be done by a central administrator who knows the semantics of each
group. Also, while groups can be managed in a central store, roles and
actions can be more decentralized and handled by the various depart-
ments and product groups that define them. This allows for a much
more agile system where identity and authorization data can be cen-
tralized or decentralized as needed.

Issuers are typically placed at boundaries in organizations. Take,
for example, a company with several departments. Each department
might have its own issuer, while the company has a central issuer that
acts as a gateway for claims that enter or leave it. If a user at this
company accesses an application in another, similarly structured com-
pany, the request will end up being processed by four issuers:

* The departmental issuer, which authenticates the user and
supplies an email name and some initial group claims

* The company’s central issuer, which adds more groups and some
roles based on those groups

* The application’s central issuer, which maps roles from the user’s
company to roles that the application’s company understands
(this issuer may also add additional role-claims based on the
ones already present)

* The application’s departmental issuer, which maps roles onto
actions

You can see that as the request crosses each of these boundaries,
the issuers there enrich and filter the user’s security context by issuing
claims that make sense for the target context, based on its require-
ments and the privacy policies. Is the email name passed all the way
through to the application? That depends on whether the user’s com-
pany trusts the application’s company with that information, and
whether the application’s company thinks the application needs to
know that information.

WHAT TECHNOLOGIES Do CLAIMS
AND TOKENS USE?
Security tokens that are passed over the Internet typically take one of
two forms:
* Security Assertion Markup Language (SAML) tokens are XML-
encoded structures that are embedded inside other structures
such as HTTP form posts and SOAP messages.

CLAIMS-BASED ARCHITECTURES

* Simple Web Token (SWT) tokens that are stored in the HTTP
headers of a request or response.

The tokens are encrypted and can be stored on the client as cookies.

Security Assertion Markup Language (SAML) defines a language
for exchanging security information expressed in the form of asser-
tions about subjects. A subject may be a person or a resource (such as
a computer) that has an identity in a security domain. A typical ex-
ample of a subject is a person identified by an email address within a
specific DNS domain. The assertions in the token can include informa-
tion about authentication status, specific details of the subject (such
as a name), and the roles valid for the subject that allow authorization
decisions to be made by the relying party.

The protocol used to transmit SAML tokens is often referred to
as SAML-P. It is an open standard that is ratified by Oasis, and it is
supported by ADFS 2.0. However, at the time of this writing it
was not natively supported by Windows Identity Foundation (WIF).
To use SAMP-P with WIF requires you to create or obtain a custom
authentication module that uses the WIF extensibility mechanism.

Simple Web Token (SWT) is a compact name-value pair security
token designed to be easily included in an HTTP header.

The transfer of tokens between identity provider, issuer, client,
and the relying party (the application) may happen through HTTP
web requests and responses, or through web service requests and
responses, depending on the nature of the client. Web browsers rely
mainly on HTTP web requests and responses. Smart clients and other
services (such as SharePoint BCS) use web service requests and re-
sponses.

Web service requests make use of a suite of security standards
that fall under the heading of the WS* Extensions. The WS* stan-
dards include the following extensions:

* WS-Security. This specification defines a protocol for end-to-
end message content security that supports a wide range of
security token formats, trust domains, signature formats, and
encryption technologies. It provides a framework that, in
conjunction with other extensions, provides the ability to send
security tokens as part of a message, to verify message integrity,
and to maintain message confidentiality. The WS-Security
mechanisms can be used for single tasks such as passing a
security token, or in combination to enable signing and encrypt-
ing a message and providing a security token.

* WS-Trust. This specification builds on the WS-Security proto-
col to define additional extensions that allow the exchange of
security tokens for credentials in different trust domains. It
includes definitions of mechanisms for issuing, renewing, and

39

40 CHAPTER TWO

WS* is a suite of standards
where each builds on other
standards to provide additional
capabilities or to meet specific
scenario requirements.

validating security tokens; for establishing the presence of trust
relationships between domains, and for brokering these trust
relationships.

WS-SecureConversation. This specification builds on WS-
Security to define extensions that support the creation and
sharing of a security context for exchanging multiple messages,
and for deriving and managing more efficient session keys for
use within the conversation. This can increase considerably the
overall performance and security of the message exchanges.

WS-Federation. This specification builds on the WS-Security
and WS-Trust protocols to provide a way for a relying party to
make the appropriate access control decisions based on the
credibility of identity and attribute data that is vouched for by
another realm. The standard defines mechanisms to allow
different security realms to federate so that authorized access
to resources managed in one realm can be provided to subjects
whose identities are managed in other realms.

WS-Federation: Passive Requestor Profile. This specification
describes how the cross trust realm identity, authentication, and
authorization federation mechanisms defined in WS-Federation
can be utilized used by passive requesters such as web browsers
to provide identity services. Passive requesters of this profile are
limited to the HTTP protocol.

Security Association Management Protocol (SAMP) and Internet

Security Association and Key Management Protocol (ISAKMP) define
standards for establishing security associations that define the header,
authentication, payload encapsulation, and application layer services
for exchanging key generation and authentication data that is inde-
pendent of the key generation technique, encryption algorithm, and
authentication mechanism in use. All of these are necessary to estab-
lish and maintain secure communications when using IP Security
Service or any other security protocol in an Internet environment.

For more information about these standards and protocols,
see Appendix C of this guide.

CLAIMS-BASED ARCHITECTURES

Questions

1. Which of the following protocols or types of claims token
are typically used for single sign-on across applications in
different domains and geographical locations?

a.
b.
C.

d.

Simple web Token (SWT)

Kerberos ticket

Security Assertion Markup Language (SAML) token
Windows Identity

2. In a browser-based application, which of the following
is the typical order for browser requests during
authentication?

a.

b.

Identity provider, token issuer, relying party

Token issuer, identity provider, token issuer, relying
party

. Relying party, token issuer, identity provider, token

issuer, relying party

. Relying party, identity provider, token issuer, relying

party

3. In a service request from a non-browser-based application,
which of the following is the typical order of requests
during authentication?

a.

b.

Identity provider, token issuer, relying party

Token issuer, identity provider, token issuer, relying
party

. Relying party, token issuer, identity provider, token

issuer, relying party

. Relying party, identity provider, token issuer, relying

party

4. What are the main benefits of federated identity?

a.

It avoids the requirement to maintain a list of valid
users, manage passwords and security, and store and
maintain lists of roles for users in the application.

b. It delegates user and role management to the trusted

organization responsible for the user, instead of it
being the responsibility of your application.

41

42

CHAPTER TWO

c. It allows users to log onto applications using the same
credentials, and choose an identity provider that is
appropriate for the user and the application to validate
these credentials.

d. It means that your applications do not need to include
authorization code.

5. How can home realm discovery be achieved?

a. The token issuer can display a list of realms based on
the configured identity providers and allow the user
to select his home realm.

b. The token issuer can ask for the user’s email address
and use the domain to establish the home realm.

c. The application can use the IP address to establish the
home realm based on the user’s country/region of
residence.

d. The application can send a hint to the token issuer in
the form of a special request parameter that indicates
the user’s home realm.

3 Claims-Based Single Sign-On for
the Web and Windows Azure

This chapter walks you through an example of single sign-on for in-
tranet and extranet web users who all belong to a single security
realm. You'll see examples of two existing applications that become
claims-aware. One of the applications uses forms authentication, and
one uses Windows authentication. Once the applications use claims-
based authentication, you’ll see how it’s possible to interact with the
applications either from the company’s internal network or from the
public Internet.

This basic scenario doesn’t show how to establish trust relation-
ships across enterprises. (That is discussed in Chapter 4, “Federated
Identity for Web Applications.”) It focuses on how to implement
single sign-on and single sign-off within a security domain as a prepa-
ration for sharing resources with other security domains, and how to
migrate applications to Windows AzureTM. In short, this scenario
contains the commonly used elements that will appear in all claims-
aware applications.

The Premise

Adatum is a medium-sized company that uses Microsoft Active Direc-
tory® directory service to authenticate the employees in its corporate
network. Adatum’s sales force uses a-Order, Adatum’s order process-
ing system, to enter, process, and manage customer orders. Adatum
employees also use aExpense, an expense tracking and reimbursement
system for business-related expenses.

Both applications are built with ASP.NET 4.0 and are deployed in
Adatum’s data center. Figure 1 shows a whiteboard diagram of the
structure of a-Order and a-Expense.

43

For single sign-on, the issuer
also creates a session with the
user that works with different
applications.

44 CHAPTER THREE

Active Divectory
_ — . N E - - ~N
e < /E \
N
7 Wevs N \
/
\
/ \
/ \
\
b le—| ab \ Kevbe
oles a-Expense evbevos
\ ‘ a-Ovdey
\ ASPNET
\ ASPNET
\ ’ Usev Name & Pmm/o»’d
N Profiles
N
=~ —
Browsey
P \
\ ASPNET Jo
a-Vacations / Adadam Corpoiation
~ — - 7 —
/ - S
\
| afaelbes] Ly,
~ 7/
~ - -
FIGURE 1

Adatum infrastructure before claims

The two applications handle authentication differently. The a-

Order application uses Windows authentication. It recognizes the
credentials used when employees logged on to the corporate net-
work. The application doesn’t need to prompt them for user names
and passwords. For authorization, a-Order uses roles that are derived
from groups stored in Active Directory. In this way, a-Order is inte-
grated into the Adatum infrastructure.
Keeping the user The user experience for a-Expense is a bit more complicated. The
database for forms- a-Expense application uses its own authentication, authorization, and
based authentication user profile information. This data is stored in custom tables in an
up to date is painful application database. Users enter a user name and password in a web
since this mainte- S e
nance isn't integrated form whenever they start the application. The a-Expense application’s
into Adatum’s process authentication approach reflects its history. The application began as
for managing a Human Resources project that was developed outside of Adatum’s
employee accounts. IT department. Over time, other departments adopted it. Now it’s a
part of Adatum’s corporate IT solution.

The a-Expense access control rules use application-specific roles.
Access control is intermixed with the application’s business logic.

Some of the user profile information that a-Expense uses also
exists in Active Directory, but because a-Expense isnt integrated with
the corporate enterprise directory, it cant access it. For example,

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE 45

Active Directory contains each employee’s cost center, which is also
one of the pieces of information maintained in the a-Expense user
profile database. Changing a user’s cost center in a-Expense is messy
and error prone. All employees have to manually update their profiles
when their cost centers change.

Goals and Requirements

Adatum has a number of goals in moving to a claims-based identity Your choice of an identity
solution. One goal is to add the single sign-on capability to its net- solution should be based on
work. This allows employees to log on once and then be able to access clear goals and requirements.

all authorized systems, including a-Expense. With single sign-on, users
will not have to enter a user name and password when they use a-
Expense.

A second goal is to enable Adatum employees to access corporate
applications from the Internet. Members of the sales force often
travel to customer sites and need to be able to use a-Expense and
aOrder without the overhead of establishing a virtual private network
(VPN) session.

A third goal is to plan for the future. Adatum wants a flexible
solution that it can adapt as the company grows and changes. Right
now, a priority is to implement an architecture that allows them to
host some applications in a cloud environment such as Windows
Azure. Moving operations out of their data center will reduce their
capital expenditures and make it simpler to manage the applications.
Adatum is also considering giving their customers access to some ap-
plications, such as a-Order. Adatum knows that claims-based identity
and access control are the foundations needed to enable these plans.

While meeting these goals, Adatum wants to make sure its solu-
tion reuses its existing investment in its enterprise directory. The
company wants to make sure user identities remain under central ad-
ministrative control and don’t span multiple stores. Nonetheless,
Adatum wants its business units to have the flexibility to control ac-
cess to the data they manage. For example, not everyone at Adatum
is authorized to use the a-Expense application. Currently, access to
the program is controlled by application-specific roles stored in a
departmentally administered database. Adatum’s identity solution
must preserve this flexibility.

Finally, Adatum also wants its identity solution to work with
multiple platforms and vendors. And, like all companies, Adatum
wants to ensure that any Internet access to corporate applications is
secure.

With these considerations in mind, Adatum’s technical staff has
made the decision to modify both the aExpense and the a-Order
applications to support claims-based single sign-on.

46 CHAPTER THREE

Claims can take advantage of
existing directory information.

=\
'-\"3”3
\/E

Overview of the Solution

The first step was to analyze which pieces of identity information
were common throughout the company and which were specific to
particular applications. The idea was to make maximum use of the
existing investment in directory information. Upon review, Adatum
discovered that their Active Directory store already contained the
necessary information. In particular, the enterprise directory main-
tained user names and passwords, given names and surnames, e-mail
addresses, employee cost centers, office locations, and telephone
numbers.

Since this information was already in Active Directory, the claims-
based identity solution would not require changing the Active Direc-
tory schema to suit any specific application.

They determined that the main change would be to introduce an
issuer of claims for the organization. Adatum’s applications will trust
this issuer to authenticate users.

Adatum envisions that, over time, all of its applications will even-
tually trust the issuer. Since information about employees is a corpo-
rate asset, the eventual goal is for no application to maintain a custom
employee database. Adatum recognizes that some applications have
specialized user profile information that will not (and should not) be
moved to the enterprise directory. Adatum wants to avoid adding
application-specific attributes to its Active Directory store, and it
wants to keep management as decentralized as possible.

For the initial rollout, the company decided to focus on a-Expense
and a-Order. The a-Order application only needs configuration
changes that allow it to use Active Directory groups and users as
claims. Although there is no immediate difference in the application’s
structure or functionality, this change will set the stage for eventually
allowing external partners to access a-Order.

The a-Expense application will continue to use its own applica-
tion-specific roles database, but the rest of the user attributes will
come from claims that the issuer provides. This solution will provide
single sign-on for aExpense users, streamline the management of user
identities, and allow the application to be accessible remotely from
the Internet.

You might ask why Adatum chose claims-based identity rather than
Windows authentication for a-Expense. Like claims, Windows
authentication provides single sign-on, and it is a simpler solution
than issuing claims and configuring the application to process claims.

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE

There’s no disagreement here: Windows authentication is
extremely well suited for intranet single sign-on and should be used
when that is the only requirement.

Adatum’s goals are broader than just single sign-on, however.
Adatum wants its employees to have remote access to a-Expense and
a-Order without requiring a VPN connection. Also, Adatum wants to
move aExpense to Windows Azure and eventually allow customers to
view their pending orders in the aOrder application over the Inter-
net. The claims-based approach is best suited to these scenarios.

Figure 2 shows the proposal, as it was presented on Adatum’s
whiteboards by the technical staff. The diagram shows how internal
users will be authenticated.

[- - -

Y

| I Actve
Issulev | Dveclony

- — -~ |
-~ N |
4 ~
7 Vs |

\
/
I \
Roles <« | aExpense \
\ | a-Ovdev
\ / ASPNET |
Usev e L
\ . / m ASPNET
N Profiles _ /
N -
~ —— Browser
- Q
VAN
0
John
Adatam Corpoiation
FIGURE 2

Moving to claims-based identity

This claims-based architecture allows Adatum employees to work
from home just by publishing the application and the issuer through
the firewall and proxies. Figure 3 shows the way Adatum employees
can use the corporate intranet from home.

47

48

CHAPTER THREE

The Active Directory
Federation Services
(ADFS) proxy role
provides intermediary

services between an
Internet client and an
ADFS server that is
behind a firewall.

/7

I/ A \ o lo

\ ASPNET 8\/
ot

Fivewall and Proxy

Intevnet

ACTVE

F= = _I DRECTORY
AVAY

|
|

Issuler’
|

wsev Name L
Fassword

- - -

-

|
- > -~ ?Aé I
4 /@M \\/ N _@_)_l \) Kevbevos
(\ /\ [

ASPNET |
J ker e L
\ / Zrsword
\ Profiles 7/ \/
~ g

|
|
|
|
|
/ ~
\ ASPNET John |
|
|
|
|
|

= = = T Name o Biowser
- Cost Cender 4
- — \
a-Vacations / Adatam Corporation
\ -
—— — —
7 ~N

a-Facildies) I
e

N - -

FIGURE 3
Claims-based identity over the Internet

Once the issuer establishes the remote user’s identity by prompt-
ing for a user name and password, the same claims are sent to the
application, just as if the employee is inside the corporate firewall.

This solution makes Adatum’s authentication strategy much more
flexible. For example, Adatum could ask for additional authentication
requirements, such as smart cards, PINs, or even biometric data, when
someone connects from the Internet. Because authentication is now
the responsibility of the issuer, and the applications always receive the
same set of claims, the applications don’t need to be rewritten. The
ability to change the way you authenticate users without having to
change your applications is a real benefit of using claims.

You can also look at this proposed architecture from the point of
view of the HTTP message stream. For more information, see the mes-
sage sequence diagrams in Chapter 2, “Claims-Based Architectures.”

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE 49

Inside the Implementation

Now is a good time to walk through the process of converting a-
Expense into a claims-aware application in more detail. As you go
through this section, you may want to download the Microsoft Visual
Studio® solution 1SingleSignOn from http://claimsid.codeplex.com.
This solution contains implementations of a-Expense and a-Order,
with and without claims. If you are not interested in the mechanics,
you should skip to the next section.

A-EXPENSE BEFORE CLAIMS By default, the

Before claims, the a-Expense application used forms authentication downloadable
implementations run

standalone on your

to establish user identity. It’s worth taking a moment to review the

process of forms authentication so that the differences with the e N

claims-aware version are easier to see. In simple terms, forms authen- can also configure
tication consists of a credentials database and an HTTP redirect to a them for a multi-
|ogon page. tiered deployment.
Figure 4 shows the a-Expense application with forms authentica-
tion. Many web applica-
tions store user
profile information in
Receive page | , Redirect to original page. cookies rather than
request. - in the session state
because cookies scale
better on the server

side. Scale wasn’t a
concern here because
a-Expense is a

departmental
Validate ‘ﬂ@ Users and application.

passwords

Already
authenticated?

No | credentials and
store user profile

>
Redirect to logon page. Writ

i i rite .

in session state. ! Srasslien SiEE

Retrieve user

profile data from Read .
. Session state
session state and

show page.

FIGURE 4
a-Expense with forms authentication

50

CHAPTER THREE

The logon page serves two purposes in a-Expense. It authenti-
cates the user by asking for credentials that are then checked against
the password database, and it also copies application-specific user
profile information into the ASP.NET's session state object for later
use. Examples of profile information are the user’s full name, cost
center, and assigned roles. The a-Expense application keeps its user
profile information in the same database as user passwords, which is
typical for applications that use forms authentication.

a-Expense intentionally uses custom code for authentication,
authorization, and profiles instead of using Membership, Roles,
and Profile providers. This is typical of legacy applications that
might have been written before ASP.NET 2.0.

In ASP.NET, adding forms authentication to a web application
requires three steps: an annotation in the application’s Web.config file
to enable forms authentication, a logon page that asks for credentials,
and a handler method that validates those credentials against applica-
tion data. Here is how those pieces work.

The Web.config file for a-Expense enables forms authentication
with the following XML declarations:

<authentication mode="Forms">
<forms loginUrl="~/login.aspx"
requireSSL="true" ... />
</authentication>

<authorization>
<deny users="?" />
</authorization>

The authentication element tells the ASP.NET runtime (or Micro-
soft Internet Information Services (IIS) 7.0 when running both in ASP.
NET integrated mode and classic mode) to automatically redirect
any unauthenticated page request to the specified login URL. An
authorization element that denies access to unauthenticated users
(denoted by the special symbol “?”) is also required to make this
redirection work.

Next, you'll find that a-Expense has a Login.aspx page that uses
the built-in ASP.NET Login control, as shown here.

<asp:Login ID="Loginl" runat="server"
OnAuthenticate="LoginlOnAuthenticate" ... >
</asp:Login>

Finally, if you look at the application, you'll notice that the han-
dler of the Login.aspx page’s OnAuthenticate event looks like the
following.

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE

public partial class Login : Page

{

protected void LoginlOnAuthenticate(object sender,
AuthenticateEventArgs e)

{
var repository = new UserRepository();
if (!repository.ValidateUser(this.Loginl.UserName,
this.Loginl.Password))
{
e.Authenticated = false;
return;
}
var user = repository.GetUser(this.Loginl.UserName);
if (user != null)
{
this.Session["LoggedUser"] = user;
e.Authenticated = true;
¥
}

This logic is typical for logon pages. You can see in the code that
the user name and password are checked first. Once credentials are
validated, the user profile information is retrieved and stored in the
session state under the LoggedUser key. Notice that the details of
interacting with the database have been put inside of the application’s
UserRepository class.

Setting the Authenticated property of the AuthenticateEvent
Args object to true signals successful authentication. ASP.NET then
redirects the request back to the original page.

At this point, normal page processing resumes with the execution
of the page’s OnLoad method. In the a-Expense application, this
method retrieves the user’s profile information that was saved in the
session state object and initializes the page’s controls. For example,
the logic might look like the following.

protected void OnLoad(EventArgs e)
{

var user = (User)Session["LoggedUser"];

var repository = new ExpenseRepository();

var expenses = repository.GetExpenses(user.Id);
this.MyExpensesGridView.DataSource = expenses;
this.DataBind();

base.OnLoad(e);

51

52 CHAPTER THREE

You only need a few changes
to make the application
claims-aware.

The session object contains the information needed to make ac-
cess control decisions. You can look in the code and see how a-Ex-
pense uses an application-defined property called AuthorizedRoles
to make these decisions.

A-EXPENSE WITH CLAIMS

The developers only had to make a few changes to a-Expense to
replace forms authentication with claims. The process of validating
credentials was delegated to a claims issuer simply by removing the
logon page and configuring the ASP.NET pipeline to include the Win-
dows Identity Foundation (WIF) WSFederationAuthentication
Module. This module detects unauthenticated users and redirects
them to the issuer to get tokens with claims. Without a logon page,
the application still needs to write profile and authorization data into
the session state object, and it does this in the Session_Start method.
Those two changes did the job.

Figure 5 shows how authentication works now that a-Expense is
claims-aware.

Receive page Redirect to original page, with claims.

request.
Redirect to
Alread claims issuer Redirect to claims issuer.
ready (WS Federation
authenticated? Authentication
Module).

Read h A
Profiles
Run Session_Start
in Global.asax. Read]
Claims

Initialize the
Write X
|———»(Session state

Does
session
exist?

session state with
data from claims.

Yes

Read .
Session state

&
<

v

Retrieve user
profile data from
session state and

show page.

FIGURE 5
a-Expense with claims processing

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE 53

The Web.config file of the claims-aware version of a-Expense
contains a reference to WIF-provided modules. This Web.config file
is automatically modified when you run the FedUtil wizard either
through the command line (FedUtil.exe) or through the Add STS
Reference command by right-clicking the web project in Visual Stu-
dio.

If you look at the modified Web.config file, you’ll see that there
are changes to the authorization and authentication sections as well
as new configuration sections. The configuration sections include the
information needed to connect to the issuer. They include, for ex-
ample, the Uniform Resource Indicator (URI) of the issuer and infor-
mation about signing certificates.

The first thing you'll notice in the Web.config file is that the au-
thentication mode is set to None, while the requirement for authen-
ticated users has been left in place.

<authentication mode="None" />

<authorization>
<deny users="?" />
</authorization>

The forms authentication module that a-Expense previously used has
been deactivated by setting the authentication mode attribute to
None. /nstead, the WSFederationAuthenticationModule
(FAM) and SessionAuthenticationModule (SAM) are now in
charge of the authentication process.

The application’s Login.aspx page is no longer needed and can be
removed from the application.

Next, you will notice that the Web.config file contains two new
modules, as shown here.

<httpModules>
<add name="WSFederationAuthenticationModule"
type="Microsoft.IdentityModel.Web.
WSFederationAuthenticationModule, ..." />

<add name="SessionAuthenticationModule"
type="Microsoft.IdentityModel.Web.
SessionAuthenticationModule, ..." />
</httpModules>

When the modules are loaded, they’re inserted into the ASP.NET
processing pipeline in order to redirect the unauthenticated requests
to the issuer, handle the reply posted by the issuer, and transform the

54

CHAPTER THREE

user token sent by the issuer into a ClaimsPrincipal object. The mod-
ules also set the value of the HttpContext.User property to the
ClaimsPrincipal object so that the application has access to it.

The WSFederationAuthenticationModule redirects the user to
the issuer’s logon page. It also parses and validates the security token
that is posted back. This module writes an encrypted cookie to avoid
repeating the logon process. The SessionAuthenticationModule
detects the logon cookie, decrypts it, and repopulates the Claims
Principal object.

The Web.config file contains a new section for the Microsoft.
IdentityModel that initializes the WIF environment.

<configSections>
<section name="microsoft.identityModel"
type="Microsoft.IdentityModel.Configuration.
MicrosoftIdentityModelSection,
Microsoft.IdentityModel, ..." />
</configSections>

The identity model section contains several kinds of information
needed by WIF, including the address of the issuer and the certificates
(the serviceCertificate and trustedlssuers elements) that are needed
to communicate with the issuer.

<microsoft.identityModel>
<service>
<audienceUris>
<add value=
"https://{adatum hostname}/a-Expense.ClaimsAware/"
/>

</audienceUris>

The value of “adatum hostname” changes depending on where
you deploy the sample code. In the development environment,
it is “localhost.”

Security tokens contain an audience URI. This indicates that the
issuer has issued a token for a specific “audience” (application). Ap-
plications, in turn, will check that the incoming token was actually
issued for them. The audienceUris element lists the possible URIs.
Restricting the audience URIs prevents malicious clients from reusing
a token from a different application with an application that they are
not authorized to access.

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE 55

<federatedAuthentication>
<wsFederation passiveRedirectEnabled="true"
issuer="https://{adatum hostname}/{issuer endpoint} "
realm="https://{adatum hostname}/a-Expense.ClaimsAware/"
requireHttps="true" />
<cookieHandler requireSsl="true"
path="/a-Expense.ClaimsAware/" />
</federatedAuthentication>

The federatedAuthentication section identifies the issuer and
the protocol required for communicating with it.

<serviceCertificate>
<certificateReference x509FindType="FindByThumbprint"
findValue="5a074d678466159dbd063d1a98b1791474723365" />
</serviceCertificate>

The service certificate section gives the location of the certificate
used to decrypt the token, in case it was encrypted. Encrypting the
token is optional, and it’s a decision of the issuer to do it or not. You
don’t need to encrypt the token if you're using HTTPS, but encryp-
tion is generally recommended as a security best practice.

<issuerNameRegistry
type="Microsoft.IdentityModel.Tokens.ConfigurationBasedIssuer
NameRegistry,
Microsoft.IdentityModel, ... >
<trustedIssuers>

<add thumbprint=" f260042d59e14817984c6183fbc6bfc71lbaf5462"
name="adatum" />
</trustedIssuers>
</issuerNameRegistry>

A thumbprint is the result of hashing an X.509 certificate signa-
ture. SHA-1 is a common algorithm for doing that. Thumbprints
uniquely identify a certificate and the issuer. The issuerNameRegistry
element contains the list of thumbprints of the issuers it trusts. Issuers
are identified by the thumbprint of their signing X.509 certificate. If
the thumbprint does not match the certificate embedded in the in-
coming token signature, WIF will throw an exception. If the thumb-
print matches, the name attribute will be mapped to the Claim.Issuer
property.

In the code example, the name attribute adatum is required for
the scenario because the a-Expense application stores the federated
user name in the roles database. A federated user name has the for-
mat: adatum\username.

56 CHAPTER THREE

The following procedure shows you how to find the thumbprint
of a specific certificate.

TO FIND A THUMBPRINT

1.

On the taskbar, click Start, and then type mmc in the search
box.

. Click mme. A window appears that contains the Microsoft

Management Console (MMC) application.

. On the File menu, click Add/Remove Snap-in.

. In the Add or Remove Snap-ins dialog box, click Certifi-

cates, and then click Add.

. In the Certificates snap-in dialog box, select Computer

account, and then click Next.

. In the Select Computer dialog box, select Local computer,

click Finish, and then click OK.

In the left pane, a tree view of all the certificates on your
computer appears. If necessary, expand the tree. Expand
the Personal folder. Expand the Certificates folder.

. Click the certificate whose thumbprint you want.

. In the Certificate Information dialog box, click the Details

tab, and then scroll down until you see the thumbprint.

In Windows 7, you’ll need to double-click to open the dialog, which
has the title Certificate, not Certificate Information.

The changes in the Web.config file are enough to delegate
authentication to the issuer.

There’s still one detail to take care of. Remember from the previ-
ous section that the logon handler (which has now been removed
from the application) was also responsible for storing the user profile
data in the session state object. This bit of logic is relocated to the
Session_Start method found in the Global.asax file. The Session_
Start method is automatically invoked by ASP.NET at the beginning
of a new session, after authentication occurs. The user’s identity is
now stored as claims that are accessed from the thread’s Current
Principal property. Here is what the Session_Start method looks

like.

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE 57

protected void Session_Start(object sender, EventArgs e)
{
if (this.Context.User.Identity.IsAuthenticated)
{
string issuer =
ClaimHelper.GetCurrentUserClaim(
System.IdentityModel.Claims.ClaimTypes.Name).
OriginalIssuer;
string givenName =
ClaimHelper.GetCurrentUserClaim(
WSIdentityConstants.ClaimTypes.GivenName).Value;

string surname =
ClaimHelper.GetCurrentUserClaim(
WSIdentityConstants.ClaimTypes.Surname).Value;

string costCenter =
ClaimHelper.GetCurrentUserClaim(
Adatum.ClaimTypes.CostCenter).Value;

var repository = new UserRepository();
string federatedUsername =

GetFederatedUserName(issuer, this.User.Identity.Name);
var user = repository.GetUser(federatedUsername);
user.CostCenter = costCenter;

user.FullName = givenName + + surname;

this.Context.Session["LoggedUser"] = user;

Note that the application does not go to the application data
store to authenticate the user because authentication has already
been performed by the issuer. The WIF modules automatically read
the security token sent by the issuer and set the user information in
the thread’s current principal object. The user’s name and some other
attributes are now claims that are available in the current security
context.

The user profile database is still used by a-Expense to store the
application-specific roles that apply to the current user. In fact, a-
Expense’s access control is unchanged whether or not claims are used.

The preceding code example invokes methods of a helper class
named ClaimHelper. One of its methods, the GetCurrentUserClaim
method, queries for claims that apply in the current context. You need
to perform several steps to execute this query:

58

CHAPTER THREE

. Retrieve context information about the current user by

getting the static CurrentPrincipal property of the System.
Threading.Thread class. This object has the run-time type
IPrincipal.

. Use a run-time type conversion to convert the current

principal object from IPrincipal to the type IClaims
Principal. Because a-Expense is now a claims-aware applica-
tion, the run-time conversion is guaranteed to succeed.

. Use the Identities property of the IClaimsPrinci-

pal interface to retrieve a collection of identities that apply
to the claims principal object from the previous step. The
object that is returned is an instance of the Claimsldentity
Collection class. Note that a claims principal may have more
than one identity, although this feature is not used in the
a-Expense application.

. Retrieve the first identity in the collection. To do

this, use the collection’s indexer property with o as the
index. The object that is returned from this lookup is the
current user’s claims-based identity. The object has type
IClaimsldentity.

. Retrieve a claims collection object from the claims

identity object with the Claims property of the IClaims
Identity interface. The object that is returned is an instance
of the ClaimsCollection class. It represents the set of
claims that apply to the claims identity object from the
previous step.

. At this point, if you iterate through the claims collection,

you can select a claim whose claim type matches the one
you are looking for. The following expression is an example
of how to do this.

claims.Single(c => c.ClaimType == claimType)

Note that the Single method assumes that there is one
claim that matches the requested claim type. It will throw
an exception if there is more than one claim that matches
the desired claim type or if no match is found. The Single
method returns an instance of the Claim class.

. Finally, you extract the claim’s value with the Claim class’s

Value property. Claims values are strings.

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE

A-ORDER BEFORE CLAIMS
Unlike a-Expense, the a-Order application uses Windows authentica-
tion. This has a number of benefits, including simplicity.

Enabling Windows authentication is as easy as setting an attri-
bute value in XML, as shown here.

<authentication mode="Windows" />

The a-Order application’s approach to access control is consider-
ably simpler than what you saw in aExpense. Instead of combining
authentication logic and business rules, a-Order simply annotates
pages with roles in the Web.config file.

<authorization>
<allow roles="Employee, Order Approver" />
<deny users="*" />

</authorization>

The user interface of the a-Order application varies, depending
on the user’s current role.

base.OnInit(e);

this.OrdersGrid.Visible =
Ithis.User.IsInRole(Adatum.Roles.OrderApprover);

this.OrdersGridForApprovers.Visible =
this.User.IsInRole(Adatum.Roles.OrderApprover);

A-ORDER WITH CLAIMS
Adding claims to a-Order is really just a configuration step. The
application code needs no change.

If you download the project from http://claimsid.codeplex.com,
you can compare the Web.config files before and after conversion
to claims. It was just a matter of right-clicking the project in Visual
Studio and then clicking Add STS Reference. The process is very
similar to what you saw in the previous sections for the a-Expense
application.

The claims types required are still the users and roles that were
previously provided by Windows authentication.

Converting Windows
authentication to

claims only requires a
configuration change.

59

60

CHAPTER THREE

Signing out of an Application

The FederatedPassiveSignInStatus control is provided by WIF. The
following snippet from the Site.Master file shows how the single sign-
on scenario uses it to sign out of an application.

<idfx:FederatedPassiveSignInStatus
ID="FederatedPassiveSignInStatus"
runat="server"
OnSignedOut="0OnFederatedPassiveSignInStatusSignedOut"
SignOutText="Logout"
FederatedPassiveSignOut="true"
SignOutAction="FederatedPassiveSignOut" />

The idfx prefix identifies the control as belonging to the Micro
soft.ldentityModel.Web.Controls namespace. The control causes a
browser redirect to the ADFS issuer, which logs out the user and de-
stroys any cookies related to the session.

In this single sign-on scenario, signing out from one application
signs the user out from all the applications they are currently signed
into in the single sign-on domain.

For details about how the simulated issuer in this sample supports
single sign-out, see the section “Handling Single Sign-out in the
Mock Issuer” later in this chapter.

The a-Expense application uses an ASP.NET session object to
maintain some user state, and it’s important that this session data is
cleared when a user signs out from the single sign-out domain. The
a-Expense application manages this by redirecting to a special Clean-
Up.aspx page when the application handles the WSFederation
AuthenticationModule_SignedOut event in the global.asax.cs file.
The CleanUp.aspx page checks that the user has signed out and then
abandons the session. The following code example shows the Page_
Load event handler for this page.

protected void Page_Load(object sender, EventArgs e)

{
if (this.User.Identity.IsAuthenticated)

{

this.Response.Redirect("~/Default.aspx"”, false);

}

else

{

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE 61

this.Session.Abandon();
var signOutImage = new byte[]

{
71, 73, ..

¥
this.Response.Cache.SetCacheability

(HttpCacheability.NoCache);
this.Response.ClearContent();

this.Response.ContentType = "image/gif";
this.Response.BinaryWrite(signOutImage);

The byte array represents a GIF image of the green check mark
that the SignedOut.aspx page in the simulated issuer displays after the
single sign-out is complete.

An alternative approach would be to modify the claims issuer to
send the URL of the clean-up page in the wreply parameter when it
sends a wsignoutcleanup1.0 message to the relying party. However
this would mean that the issuer, not the relying party, is responsible
for initiating the session clean-up process in the relying party.

Setup and Physical Deployment

The process for deploying a claims-aware web application follows
many of the same steps you already know for non-claims-aware ap-
plications. The differences have to do with the special considerations
of the issuer. Some of these considerations include providing a suit-
able test environment during development, migrating to a production
issuer, and making sure the issuer and the web application are prop-
erly configured for Internet access.

UsING A MOCK ISSUER
The downloadable versions of a-Expense and a-Order are set up by Mock issuers simplify the
default to run on a standalone development workstation. This is development process.
similar to the way you might develop your own applications. It’s gen-
erally easier to start with a single development machine.
To make this work, the developers of a-Expense and a-Order
wrote a small stub implementation of an issuer. You can find this code
in the downloadable Visual Studio solution. Look for the project with
the URL https://localhost/Adatum.Simulatedlssuer.1.

62

CHAPTER THREE

Using a simple,
developer-created
claims issuer is a good
practice during
development and unit
testing. Your network
administrator can
help you change

the application
configuration to

use production
infrastructure
components when
it’s time for accep-
tance testing and
deployment.

When you first run the a-Expense and a-Order applications, you'll
find that they communicate with the stand-in issuer. The issuer issues
predetermined claims.

It’s not very difficult to write such a component, and you can re-
use the sample that we can provide.

ISOLATING ACTIVE DIRECTORY
The a-Order application uses Windows authentication. Since devel-
opers do not control the identities in their company’s enterprise direc-
tory, it is sometimes useful to swap out Active Directory with a stub
during the development of your application.

The a-Order application (before claims) shows an example of this.
To use this technique, you need to make a small change to the Web.
config file to disable Windows authentication and then add a hook in
the session authentication pipeline to insert the user identities of your
choosing. Disable Windows authentication with the following change
to the Web.config file.

<authentication mode="None" />

The Global.asax file should include code that sets the identity
with a programmer-supplied identity. The following is an example.

<script runat="server">

void Application_AuthenticateRequest(object sender, EventArgs e)

{
this.Context.User = MaryMay;

}
private static IPrincipal MaryMay
{
get
{
IIdentity identity = new GenericIdentity("mary");
string[] roles = { "Employee", "Order Approver" };
return new GenericPrincipal(identity, roles);
}
}
</script>

Remove this code before you deploy your application.

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE 63

HANDLING SINGLE SIGN-OUT

IN THE MOCK ISSUER
The relying party applications (a-Order and a-Expense) use the
FederatedPassiveSignInStatus control to allow the user to log in and
log out. When the user clicks the log out link in one of the applica-
tions, the following sequence of events takes place:

1. The user is logged out from the current application. The
WSFederationAuthenticationModule (FAM) deletes any
claims that the user has that relate to the current applica-
tion.

2. The FAM sends a wsignout1.0 WS-Federation command
to the issuer.

3. The mock issuer performs any necessary sign-out
operations from other identity providers, for example, by
signing the user out from Active Directory.

4. The mock issuer sends a wsignoutcleanup1.0
message to all the relying party applications that the user
has signed into. The mock issuer maintains this list for each
user in a cookie.

Note: The mock issuer sends the wsignoutcleanupi.0
message to the relying party applications by embedding
a specially constructed image tag in the sign out page
that includes the wsignoutcleanupi.0 message in the
querystring.

5. When the FAM in a relying party application intercepts the
wsignoutcleanup1.0 message, it deletes any claims that the

user has that relate to that application.

CONVERTING TO A PRODUCTION ISSUER

When you are ready to deploy to a production environment, you’ll Remove the mock issuers
need to migrate from your simulated issuer that runs on your develop- when you deploy the
ment workstation to a component such as ADFS 2.0. application.

Making this change requires two steps. First, you need to modify
the web application’s Web.config file using FedUtil so that it points
to the production issuer. Next, you need to configure the issuer so
that it recognizes requests from your web application and provides
the appropriate claims.

Appendix A of this guide walks you through the process of using
FedUtil and shows you how to change the Web.config files.

You can refer to documentation provided by your production
issuer for instructions on how to add a relying party and how to add

64 CHAPTER THREE

It’s easy to move a claims-aware
application to Windows Azure.

claims rules. Instructions for the samples included in this guide can be
found at http://claimsid.codeplex.com.

ENABLING INTERNET ACCESS
One of the benefits of outsourcing authentication to an issuer is that
existing applications can be accessed from the external Internet very
easily. The protocols for claims-based identity are Internet-friendly.
All you need to do is make the application and the issuer externally
addressable. You don’t need a VPN.

If you decide to deploy outside of the corporate firewall, be aware
that you will need certificates from a certificate authority for the
hosts that run your web application and issuer. You also need to make
sure that you configure your URLs with fully qualified host names or
static IP addresses. The ADFS 2.0 proxy role provides specific support
for publishing endpoints on the Internet.

Variation—Moving to Windows Azure

The last stage of Adatum’s plan is to move a-Expense to Windows
Azure. Windows Azure uses Microsoft data centers to provide devel-
opers with an on-demand compute service and storage to host, scale,
and manage web applications on the Internet. This variation shows
the power and flexibility of a claims-based approach. The a-Expense
code doesn’t change at all. You only need to edit its Web.config file.

As you go through this section, you may want to download the
Visual Studio® solution from http://claimsid.codeplex.com.

Figure 6 shows what Adatum’s solution looks like.

Toust

Send Joken
and access
a-Expense

a-Expense

Windows Azuve
John H Adaiim

FIGURE 6
a-Expense on Windows Azure

Adatim

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE

From the perspective of Adatum’s users, the location of the a-
Expense application is irrelevant except that the application’s URL
might change once it is on Windows Azure, but even that can be
handled by mapping CNAMEs to a Windows Azure URL. Otherwise,
its behavior is the same as if it were located on one of Adatum’s serv-
ers. This means that the sequence of events is exactly the same as
before, when a-Expense became claims-aware. The first time a user
accesses the application, he will not be authenticated, so the WIF
module redirects him to the configured issuer that, in this case, is the
Adatum issuer.

The issuer authenticates the user and then issues a token that
includes the claims that a-Expense requires, such as the user’s name
and cost center. The issuer then redirects the user back to the applica-
tion, where a session is established. Note that, even though it is lo-
cated on the Internet, aExpense requires the same claims as when it
was located on the Adatum intranet.

Obviously, for any user to use an application on Windows Azure,
it must be reachable from his computer. This scenario assumes that
Adatum’s network, including its DNS server, firewalls, and proxies, are
configured to allow its employees to have access to the Internet.

Notice however, that the issuer doesn’t need to be available to
external resources. The a-Expense application never communicates
with it directly. Instead, it uses browser redirections and follows the
protocol for passive clients. For more information about this protocol,
see chapter 2, “Claims-Based Architectures” and Appendix B.

Hosting a-Expense on Windows Azure
The following procedures describe how to configure the certificates
that you will upload to Windows Azure and the changes you must
make to the Web.config file. These procedures assume that you al-
ready have a Windows Azure token. If you don't, see http://www.
microsoft.com/windowsazure/getstarted/ to learn how to do this.

TO CONFIGURE THE CERTIFICATES

1. In Visual Studio, open the Windows Azure project, such as
a-expense.cloud. Right-click the a-Expense.ClaimsAware
role, and then click Properties.

2. If you need a certificate’s thumbprint, click Certificates.
Along with other information, you will see the thumbprint.

3. Click Endpoints, and then select HTTPS:. Set the Name
field to Httpsln. Set the Port field to the port number that
you want to use. The default is 443. Select the certificate
name from the SSL certificate name drop-down box. The

65

http://www.microsoft.com/windowsazure/getstarted/
http://www.microsoft.com/windowsazure/getstarted/

66

CHAPTER THREE

default is localhost. The name should be the same as the
name that is listed on the Certificates tab.

Note that the certificate that is uploaded is only used for SSL and
not for token encryption. A certificate from Adatum is only necessary
if you need to encrypt tokens.

Both Windows Azure and WIF can decrypt tokens. You must upload
the certificate in the Windows Azure portal and configure the web
role to deploy to the certificate store each time there is a new
instance. The WIF <serviceCertificate> section should point to
that deployed certificate.

The following procedure shows you how to publish the a-Expense
application to Windows Azure.

TO PUBLISH A-EXPENSE TO WINDOWS AZURE

1. In Microsoft Visual Studio 2010, open the a-expense.cloud
solution.

2. Upload the localhost.pfx certificate to the Windows Azure
project. The certificate is located at [samples-installation-
directory]\Setup\DependencyChecker\certs\localhost.pfx.
The password is “xyz.”

3. Modify the a-Expense.ClaimsAware application’s Web.
config file by replacing the <microsoft.identityModel>
section with the following XML code. You must replace the
§service-url} element with the service URL that you
selected when you created the Windows Azure project.

<microsoft.identityModel>
<service>
<audienceUris>
<add value="https://{service-url}.cloudapp.net/" />
</audienceUris>
<federatedAuthentication>
<wsFederation passiveRedirectEnabled="true"
issuer=
"https://{adatum hostname}/{issuer endpoint}
realm="https://{service-url}.cloudapp.net/"
requireHttps="true" />

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE

<cookieHandler requireSsl="true" />

</federatedAuthentication>
<issuerNameRegistry

type=

"Microsoft.IdentityModel.Tokens.
ConfigurationBasedIssuerNameRegistry,
Microsoft.IdentityModel, Version=3.5.0.0,
Culture=neutral,
PublicKeyToken=31bf3856ad364e35">
<trustedIssuers>
<!--Adatum’s identity provider -->
<add thumbprint=
"£260042d59e€14817984c6183fbc6bfc71baf5462"
name="adatum" />

</trustedIssuers>
</issuerNameRegistry>
<certificateValidation

certificateValidationMode="None" />
</service>
</microsoft.identityModel>

4. Right-click the a-expense.cloud project, and then click
Publish. This generates a ServiceConfiguration file and the
actual package for Windows Azure.

5. Deploy the ServiceConfiguration file and package to the
Windows Azure project.

Once the a-Expense application is deployed to Windows Azure,
you can log on to http://windows.azure.com to test it.

If you were to run this application on more than one role instance in
Windows Azure (or in an on-premise web farm), the default cookie
encryption mechanism (which uses DPAPI) is not appropriate, since
each machine has a distinct key.

In this case, you would need to replace the default Session
SecurityHandler object and configure it with a different cookie
transformation such as RsaEncryptionCookieTransform or a
custom one. The “web farm” sample included in the WIF SDK
illustrates this in detail.

67

68 CHAPTER THREE

Questions

1. Before Adatum updated the a-Expense and a-Order applica-
tions, why was it not possible to use single sign-on?

a. The applications used different sets of roles to
manage authorization.

b. a-Order used Windows authentication and a-Expense
used ASP.NET forms authentication.

c. In the a-Expense application, the access rules were
intermixed with the application’s business logic.

d. You cannot implement single sign-on when user
profile data is stored in multiple locations.

2. How does the use of claims facilitate remote web-based
access to the Adatum applications?

a. Using Active Directory for authentication makes it
difficult to avoid having to use VPN to access the
applications.

b. Using claims means that you no longer need to use
Active Directory.

c. Protocols such as WS-Federation transport claims in
tokens as part of standard HTTP messages.

d. Using claims means that you can use ASP.NET forms-
based authentication for all your applications.

3. In a claims enabled ASP.NET web application, you typically
find that the authentication mode is set to None in the
Web.config file. Why is this?

a. The WSFederationAuthenticationModule is now
responsible for authenticating the user.

b. The user must have already been authenticated by an
external system before they visit the application.

c. Authentication is handled in the On_Authenticate
event in the global.asax file.

d. The WSFederationAuthenticationModule is now
responsible for managing the authentication process.

CLAIMS-BASED SINGLE SIGN-ON FOR THE WEB AND WINDOWS AZURE

4. Claims issuers always sign the tokens they send to a relying
party. However, although it is considered best practice, they
might not always encrypt the tokens. Why is this?

a. Relying parties must be sure that the claims come
from a trusted issuer.

b. Tokens may be transferred using SSL.

c. The claims issuer may not be able to encrypt the token
because it does not have access to the encryption key.

d. It’s up to the relying party to state whether or not it
accepts encrypted tokens.

5. The FederatedPassiveSigninStatus control automatically
signs a user out of all the applications she signed into in the
single sign-on domain.

a. True.

b. False. You must add code to the application to per-
form the sign-out process.

c. It depends on the capabilities of the claims issuer. The
issuer is responsible for sending sign-out messages to
all relying parties.

d. If your relying party uses HTTP sessions, you must add
code to explicitly abandon the session.

More Information

Appendix A of this guide walks through the use of FedUtil and also
shows you how to edit the Web.config files and where to locate your
certificates.

MSDN® contains a number of helpful articles, including MSDN
Magazine's “A Better Approach For Building Claims-Based WCF Ser-
vices” (http://msdn.microsoft.com/en-us/magazine/dd278426.aspx).

To learn more about Windows Azure, see the Windows Azure

Platform at http://www.microsoft.com/windowsazure/.

69

4 Federated Identity for
Web Applications

Many companies want to share resources with their partners, but how
can they do this when each business is a separate security realm with
independent directory services, security, and authentication? One
answer is federated identity. Federated identity helps overcome
some of the problems that arise when two or more separate security
realms use a single application. It allows employees to use their local
corporate credentials to log on to external networks that have trust
relationships with their company. For an overview, see the section Federated identity links
“Federating Identity across Realms” in Chapter 2, “Claims-Based independent security realms.
Architectures.”

In this chapter, you’ll learn how Adatum lets one of its customers,
Litware, use the a-Order application that was introduced in Chapter
3, “Claims-Based Single Sign-On for the Web.”

The Premise

Now that Adatum has instituted single sign-on (SSO) for its employ-
ees, it’s ready to take the next step. Customers also want to use the
a-Order program to track an order’s progress from beginning to end.
They expect the program to behave as if it were an application within
their own corporate domain. For example, Litware is a longstanding
client of Adatum’s. Their sales manager, Rick, wants to be able to log
on with his Litware credentials and use the a-Order program to deter-
mine the status of all his orders with Adatum. In other words, he
wants the same single sign-on capability that Adatum’s employees
have. However, he doesn’t want separate credentials from Adatum
just to use a-Order.

71

72 CHAPTER FOUR

The application can be modified
to accept claims from a partner
organization.

Goals and Requirements

The goal of this scenario is to show how federated identity can make
the partnership between Adatum and Litware more efficient. With
federated identity, one security domain accepts an identity that
comes from another domain. This lets people in one domain access
resources located in the other domain without presenting additional
credentials. The Adatum issuer will trust Litware to authoritatively
issue claims about its employees.

In addition to the goals, this scenario has a few other require-
ments. One is that Adatum must control access to the order status
pages and the information that is displayed, based on the partner that
is requesting access to the program. In other words, Litware should
only be able to browse through its own orders and not another com-
pany’s. Furthermore, Litware allows employees like Rick, who are in
the Sales department, to track orders.

Another requirement is that, because Litware is only one of Ada-
tum’s many partners that will access the program, Adatum must be
able to find out which issuer has the user’s credentials. This is called
home realm discovery. For more information, see Chapter 2, “Claims-
Based Architectures.”

One assumption for this chapter is that Litware has already de-
ployed an issuer that uses WS-Federation, just as the Adatum issuer
does.

WS-Federation is a specification that defines how companies can
share identities across security boundaries that have their own au-
thentication and authorization systems. (For more information about
WS-Federation, see chapter 2, “Claims-Based Architectures.”) This
can only happen when legal agreements between Litware and Adatum
that protect both sides are already in place. A second assumption is
that Litware should be able to decide which of its employees can ac-
cess the a-Order application.

Overview of the Solution

Once the solution is in place, when Rick logs on to the Litware net-
work, he will access a-Order just as he would a Litware application.
From his perspective, that’s all there is to it. He doesn’t need a special
password or user names. It’s business as usual. Figure 1 shows the
architecture that makes Rick’s experience so painless.

FEDERATED IDENTITY FOR WEB APPLICATIONS

Ts4

0 ke |
. _

- — |

Get dhe Adatum I

@ Hoken

\ Active Dvectory N

—_

A (\ Ged dhe o
Map e 1 Lrwave S
Claims ‘\ Toust 7@ Hoken §
- | | Browser ‘
® o
a-Ovdey | o
Ged dhe ovdevs <o
| | Rick at Lidwave
: |
Adtim | | Lware
FIGURE 1 ’

Federated identity between Adatum and Litware

As you can see, there have been two changes to the infrastructure
since Adatum instituted single sign-on. A trust relationship now exists
between the Adatum and Litware security domains, and the Adatum
issuer has been configured with an additional capability: it can now
act as a federation provider (FP). A federation provider grants access
to a resource, such as the a-Order application, rather than verifying an
identity. When processing a client request, the a-Order application
relies on the Adatum issuer. The Adatum issuer, in turn, relies on the
Litware issuer that, in this scenario, acts as an identity provider (IdP).
Of course, the diagram represents just one implementation choice;
separating Adatum’s identity provider and federation provider would
also be possible. Keep in mind that each step also uses HTTP redirec-
tion through the client browser but, for simplicity, this is not shown
in the diagram.

In the sample solution, there are two Adatum issuers: one is the
Adatum identity provider and one is the Adatum federation provider.
This makes it easier to understand how the sample works. In the real
world, a single issuer would perform both of these roles.

The following steps grant access to a user in another security
domain:

1. Rick is using a computer on Litware’s network. He is already
authenticated with Active Directory® directory service. He
opens a browser and navigates to the a-Order application.
The application is configured to trust Adatum’s issuer (the

74

CHAPTER FOUR

In the sample code,
home realm discovery

is explicit, but this
approach has caveats.
For one, it discloses all
of Adatum’s partners,
and some companies
may not want to

do this.

Notice that Adatum’s
federation provider
is a “relying party”

to Litware’s identity
provider.

You can see these
steps in more detail in
Appendix B. It shows

a detailed message
sequence diagram for
using a browser as the
client.

federation provider). The application has no knowledge of
where the request comes from. It redirects Rick’s request to
the federation provider.

. The federation provider presents the user with a page listing

different identity providers that it trusts. At this point, the
federation provider doesn’t know where Rick comes from.

. Rick selects Litware from the list and then Adatum’s

federation provider redirects him to the Litware issuer to
verify that Rick is who he says he is.

. Litware’s identity provider verifies Rick’s credentials and

returns a security token to Rick’s browser. The browser
sends the token back to the federation provider. The claims
in this token are configured for the Adatum federation
provider and contain information about Rick that is relevant
to Adatum. For example, the claims establish his name and
that he belongs to the sales organization. The process of
verifying the user’s credentials may include additional steps
such as presenting a logon page and querying Active
Directory or, potentially, other attribute repositories.

. The Adatum federation provider validates and reads the

security token issued by Litware and creates a new token
that can be used by the a-Order application. Claims issued
by Litware are transformed into claims that are understood
by Adatum’s a-Order application. (The mapping rules that
translate Litware claims into Adatum claims were created
when Adatum configured its issuer to accept Litware’s
issuer as an identity provider)

. As a consequence of the claim mappings, Adatum’s issuer

removes some claims and adds others that are needed for
the a-Order application to accept Rick as a user. The
Adatum issuer uses browser redirection to send the new
token to the application. Windows® Identity Foundation
(WIF) validates the security token and extracts the claims.
It creates a ClaimsPrincipal and assigns it to HttpContext.
User. The a-Order application can then access the claims for
authorization decisions. For example, in this scenario, orders
are filtered by organization— the organization name is
provided as a claim.

FEDERATED IDENTITY FOR WEB APPLICATIONS 75

The Adatum federation provider issuer mediates between the
application and the external issuer. You can think of this as a logical
role that the Adatum issuer takes on. The federation provider has two
responsibilities. First, it maintains a trust relationship with Litware’s
issuer, which means that the federation provider accepts and under-
stands Litware tokens and their claims.

Second, the federation provider needs to translate Litware claims
into claims that a-Order can understand. The a-Order application only
accepts claims from Adatum’s federation provider (this is its trusted
issuer). In this scenario, a-Order expects claims of type Role in order
to authorize operations on its website. The problem is that Litware
claims don’t come from Adatum and they don’t have roles. In the
scenario, Litware claims establish the employee’s name and organiza-
tional group. Rick’s organization, for example, is Sales. To solve this
problem, the federation provider uses mapping rules that turn a Lit-
ware claim into an Adatum claim.

The following table summarizes what happens to input claims
from Litware after the Adatum federation provider transforms them
into Adatum output claims.

Input Conditions Output claims
Claim issuer: Litware Claim issuer: Adatum
Claim type: Group, Claim type: Role; Claim value: Order Tracker

Claim value: Sales

Claim issuer: Litware Claims issuer: Adatum
Claim type: Company; Claim value: Litware

Claim issuer: Litware Claims issuer: Adatum
Claim type: name Claim type: name; Claim Value: Copied from input

Active Directory Federation Services (ADFS) 2.0 includes a claims
rule language that lets you define the behavior of the issuer when it
creates new tokens. What all of these rules generally mean is that if a
set of conditions is true, you can issue some claims.

These are the three rules that the Adatum FP uses:

* => issue(Type = “http://schemas.adatum.com/claims/2009/08/
organization”, Value = “Litware”);

* c:[Type == “http://schemas.xmlsoap.org/claims/Group”, Value ==
“Sales”] => issue(Type = “http://schemas.microsoft.com/
ws/2008/06/identity/claims/role”, Issuer = c.Issuer, Originallssuer
= c.Originallssuer, Value = “Order Tracker”, ValueType = c.
ValueType);

* c[Type == “http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/name”]=> issue(claim = ¢);

76 CHAPTER FOUR

In all the rules, the part before the “=>" is the condition that must

N be true before the rule applies. The part after the “=>" indicates the
action to take. This is usually the creation of an additional claim.

A~ The first rule says that the federation provider will create a claim

- (- of type Organization with the value Litware. That is, for this issuer

(Litware) it will create that claim. The second rule specifies that if

< there’s a claim of type Group with value Sales, the federation pro-

~/ vider will create a claim of type Role with the value Order Tracker.

The third rule copies a claim of type name.

An important part of the solution is home realm discovery. The
a-Order application needs to know which issuer to direct users to for
authentication. If Rick opens his browser and types http://www.
adatum.com/ordertracking, how does a-Order know that Rick can
be authenticated by Litware’s issuer? The fact is that it doesn’t. The
a-Order application relies on the federation provider to make that
decision. The a-Order application always redirects users to the fed-
eration provider.

This approach has two potential issues: it discloses information
publicly about Litware’s relationship with Adatum, and it imposes an
extra step on users who might be confused as to which selection is
appropriate.

You can resolve these issues by giving the application a hint about
the user’s home realm. For example, Litware could send a parameter
in a query string that specifies the sender’s security domain. The ap-
plication can use this hint to determine the federation provider’s be-
havior. For more information, see “Home Realm Discovery” in Chapter
2, “Claims-Based Architectures.”

FEDERATED IDENTITY FOR WEB APPLICATIONS

Benefits and Limitations

Federated identity is an example of how claims support a flexible in-
frastructure. Adatum can easily add customers by setting up the trust
relationship in the federation provider and creating the correct claims
mappings. Thanks to WIF, dealing with claims in a-Order is straight-
forward and, because Adatum is using ADFS 2.0, creating the claim
mapping rules is also fairly simple. Notice that the a-Order application
itself didn’t change. Also, creating a federation required incremental
additions to an infrastructure that was first put in place to implement
single sign-on.

Another benefit is that the claims that Litware issues are about
things that make sense within the context of the organization: Lit-
ware’s employees and their groups. All the identity differences be-
tween Litware and Adatum are corrected on the receiving end by
Adatum’s federation provider. Litware doesn’t need to issue Adatum-
specific claims. Although this is technically possible, it can rapidly
become difficult and costly to manage as a company adds new rela-
tionships and applications.

Inside the Implementation

The Microsoft® Visual Studio® development system solution named
2-Federation found at http://claimsid.codeplex.com is an example of
how to use federation. The structure of the application is very similar
to what you saw in Chapter 3, “Claims-Based Single Sign-On for the
Web.” Adding federated identity did not require recompilation or
changes to the Web.config file. Instead, the issuer was configured to
act as a federation provider and a trust relationship was established
with an issuer that acts as an identity provider. This process is de-
scribed in the next section. Also, the mock issuers were extended to
handle the federation provider role.

Setup and Physical Deployment

The Visual Studio solution named 2-Federation on CodePlex is ini-
tially configured to run on a stand-alone development machine. The
solution includes projects that implement mock issuers for both
Litware and Adatum.

Adding federated identity
to an existing claims-aware
application requires only

a configuration change.

77

CHAPTER FOUR

Procedures for
establishing trust can
be automated by
using metadata. For
example, in ADFS 2.0,
you can use the
FederationMetadata.
xml file if you prefer
a more automated
approach. The mock
issuers provided in
the sample code do
not provide this
metadata.

USING MOCK ISSUERS FOR DEVELOPMENT

AND TESTING
Mock issuers are helpful for development, demonstration, and testing
because they allow the end-to-end application to run on a single host.
The WIF SDK includes a Visual Studio template that makes it easy
to create a simple issuer class that derives from the SecurityToken
Service base class. You then provide definitions for the GetScope and
GetOutputClaims methods, as shown in the downloadable code
sample that accompanies this scenario.

When the developers at Adatum want to deploy their application,
they will modify the configuration so that it uses servers provided by
Adatum and Litware. To do this, you need to establish a trust relation-
ship between the Litware and Adatum issuers and modify the a-Order.
OrderTracking application’s Web.config file for the Adatum issuer.

Establishing Trust Relationships

In the production environment, Adatum and Litware use production-
grade security token issuers such as ADFS 2.0. For the scenario to
work, you must establish a trust relationship between Adatum’s and
Litware’s issuers. Generally, there are seven steps in this process:

1. Export a public key certificate for token signing from the
Litware issuer and copy Litware’s token signing certificate
to the file system of the Adatum’s issuer host.

2. Configure Adatum’s issuer to recognize Litware as a trusted
identity provider.

3. Configure Litware’s issuer to accept requests from
the Adatum issuer.

4. Configure the a-Order Tracking application as a
relying party within the Adatum issuer.

5. Edit claims rules in Litware that are specific to the
Adatum issuer.

6. Edit claims transformation rules in the Adatum
issuer that are specific to the Litware issuer.

7. Edit claims rules in the Adatum issuer that are
specific to the a-Order Tracking application.

You can refer to documentation provided by your production
issuer for instructions on how to perform these steps. Instructions for
the samples included in this guide can be found at http://claimsid.
codeplex.com.

FEDERATED IDENTITY FOR WEB APPLICATIONS

Questions

1. Federated identity is best described as:

a. Two or more applications that share the same set of
users.

b. Two or more organizations that share the same set of
users.

c. Two or more organizations that share an identity
provider.

d. One organization trusting users from one or more
other organizations to access its applications.

2. In a federated security environment, claims mapping is
necessary because:

a. Claims issued by one organization are not necessarily
the claims recognized by another organization.

b. Claims issued by one organization can never be trusted
by another organization.

c. Claims must always be mapped to the roles used in
authorization.

d. Claims must be transferred to a new ClaimsPrincipal
object.

3. The roles of a federation provider can include:

a. Mapping claims from an identity provider to claims
that the relying party understands.

b. Authenticating users.
c. Redirecting users to their identity provider.

d. Verifying that the claims were issued by the expected
identity provider.

4. Must an identity provider issue claims that are specific to a
relying party?
a. Yes

b. No

c. It depends.

79

80

CHAPTER FOUR

5. Which of the following best summarizes the trust relation-
ships between the various parties described in the federated
identity scenario in this chapter?

a. The relying party trusts the identity provider, which in
turn trusts the federation provider.

b. The identity provider trusts the federation provider,
which in turn trusts the relying party.

c. The relying party trusts the federation provider, which
in turn trusts the identity provider.

d. The federation provider trusts both the identity
provider and the relying party.

More Information

For more information about federation and home realm discovery, see
“Developer’s Introduction to Active Directory Federation Services” at
http://msdn.microsoft.com/en-us/magazine/cc163520.aspx. Also see
“One does not simply walk into Mordor, or Home Realm Discovery for
the Internet” at http://blogs.msdn.com/vbertocci/archive/2009/04
/08/one-does-not-simply-walk-into-mordor-or-home-realm-discov-
ery-for-the-internet.aspx.

For a tool that will help you generate WS-Federation metadata
documents, see Christian Weyer’s blog at http://blogs.thinktecture.
com/cweyer/archive/2009/05/22/415362.aspx.

For more information about the ADFS 2.0 claim rule language, see
“Claim Rule Language” at http://technet.microsoft.com/en-us/library/
dd807118%28WS.10%29.aspx.

For a simple tool that you can use as a test security token service
(STS) that can issue tokens via WS-Federation, see the SelfSTS tool
at http://archive.msdn.microsoft.com/SelfSTS.

5 Federated Identity with
Windows Azure Access
Control Service

In Chapter 4, “Federated Identity for Web Applications,” you saw how
Adatum used claims to enable users at Litware to access the a-Order
application. The scenario described how Adatum could federate with
partner organizations that have their own claims-based identity infra-
structures. Adatum supported the partner organizations by establish-
ing trust relationships between the Adatum federation provider (FP)
and the partner’s identity provider (IdP).

Adatum would now like to allow individual users who are not part
of a partner’s security domain to access the a-Order application. Ada-
tum does not want to manage the user accounts for these individuals:
instead, these individuals should be able to use an existing identity
from social identity providers such as Microsoft® Windows® Live®,
Google, Yahoo!, or Facebook. How can Adatum enable users to reuse
an existing social identity, such as Facebook ID, when they access the
a-Order application? In addition to establishing trust relationships
with the social identity providers, Adatum must find solutions to
these problems:

* Different identity providers may use different protocols and
token formats to exchange identity data.

* Different identity providers may use different claim types.
* The Adatum federation provider must be able to redirect users
to the correct identity provider.

* The a-Order application must be able to implement authoriza-
tion rules based on the claims that the social identity providers
issue.

* Adatum must be able to enroll new users with social identities
who want to use the a-Order application.

The Windows AzureTM AppFabric Access Control Service (ACS)
is a cloud-based federation provider that provides services to facili-
tate this scenario. ACS can transition between the protocols used by

81

In this chapter, the term
“social identity” refers to
an identity managed by
a well-known, established
online identity provider.

82

CHAPTER FIVE

Consumer users will
benefit from using their

existing social identities
because they won't need
to remember a new set of
credentials just for
accessing the a-Order
application. Adatum will
benefit because they won’t
have the overhead of
managing these identi-
ties—securely storing
credentials, managing
lost passwords, enforcing
password policies, and

so on.

different identity providers to transfer claims, perform mappings be-
tween different claim types based on configurable rules, and help lo-
cate the correct identity provider for a user when they want to access
an application. For more information, see Chapter 2, “Claims-Based
Architectures.”

ACS currently supports the following identity providers: Windows
Live, Google, Yahoo!, and Facebook. In addition, it can work with
ADFS 2.0 identity providers or a custom security token service (STS)
compatible with WS-Federation or WS-Trust. ACS also supports
OpenlD, but you must configure this programmatically rather than
through the portal.

In this chapter, you'll learn how Adatum enables individual cus-
tomers with a range of different social identity types to access the
a-Order application alongside Adatum employees and employees of
an existing enterprise partner. This chapter extends the scenario de-
scribed in Chapter 4, “Federated Identity for Web Applications,” and
shows Adatum building on its previous investments in a claims-based
identity infrastructure.

The Premise

Now that Adatum has enabled federated access to the a-Order ap-
plication for users at some of Adatum’s partners such as Litware,
Adatum would like to extend access to the a-Order application to
users at smaller businesses with no identity infrastructure of their
own and to individual consumer users. Fortunately, it is likely that
these users will already have some kind of social identity such as a
Google ID or a Windows Live ID. Smaller businesses want their users
to be able to track their orders, just as Rick at Litware is already able
to do. Consumer users want to be able to log on with their social
identity credentials and use the a-Order program to determine
the status of all their orders with Adatum. They don’t want to be
issued additional credentials from Adatum just to use the a-Order
application.

Goals and Requirements

The goal of this scenario is to show how federated identity can make
the partnership between Adatum and consumer users and users at
smaller businesses with no security infrastructure of their own work
more efficiently. With federated identity, one security realm can ac-
cept identities that come from another security realm. This lets people
in one domain access resources located in the other domain without

FEDERATED IDENTITY WITH WINDOWS AZURE ACCESS CONTROL SERVICE 83

presenting additional credentials. The Adatum issuer will trust the
common social identity providers (Windows Live ID, Facebook,
Google, Yahoo!) to authenticate users on behalf of the a-Order
application.

Adatum trusts the social identity providers indirectly. The federation
provider at Adatum trusts the Adatum ACS instance and that in turn
trusts the social identity providers. If the federation provider at
Adatum trusted all the social identity providers directly, then it
would have to deal with the specifics of each one: the different
protocols and token formats. ACS handles all of this complexity for
Adatum and that makes it really easy for Adatum to support a
variety of social identity providers.

In addition to the goals, this scenario has a number of other re-
quirements. One requirement is that Adatum must control access to
the order status pages and the information that the application dis-
plays based on the identity of the partner or consumer user who is
requesting access to the a-Order application. In other words, users at
Litware should only be able to browse through Litware’s orders and
not another company’s orders. In this chapter, we introduce Mary, the
owner of a small company named “Mary Inc.” She, of course, should
only be able to browse through her orders and no one else’s.

Another requirement is that, because Adatum has several partner
organizations and many consumer users, Adatum must be able to find
out which identity provider it should use to authenticate a user’s
credentials. As mentioned in previous chapters, this process is called
home realm discovery. For more information, see Chapter 2, “Claims-
Based Architectures.”

One assumption for this chapter is that Adatum has its own iden-
tity infrastructure in place.

Overview of the Solution

With the goals and requirements in place, it’s time to look at the solu-
tion. As you saw in Chapter 4, “Federated Identity for Web Applica-
tions,” the solution includes the establishment of a claim-based archi-
tecture with an issuer that acts as an identity provider on the
customer’s side and an issuer that acts as the federation provider on
Adatum’s side. Recall that a federation provider acts as a gateway
between a resource and all of the issuers that provide claims about the
resource’s users.

In addition, this solution now includes an ACS instance, which
handles the protocol transition and token transformation for issuers
that might not be WS-Federation based. This includes many of the
social identity providers mentioned earlier in this chapter.

CHAPTER FIVE

Figure 1 shows the Adatum solution for both Litware that has its
own identity provider, and Mary who is using a social identity—

Google, in this example.
Tvust
e > Windows Live ID
_ — > Facebook Social idendily
- >Google issviess (APs

Clams
Tvansformation

oM -
@ -

m:r(FP) w qu

o ”
/ ﬁ wsvter (14P)

0
— Rick
Adatiim [é

FIGURE 1
Accessing the a-Order application from Liuiave
Litware and by using a social identity

The following two sections provide a high-level walkthrough of
the interactions between the relying party (RP), the federation pro-
vider, and the identity provider for customers with and without their
own identity provider. For a detailed description of the sequence of
messages that the parties exchange, see Appendix B.

EXAMPLE OF A CUSTOMER

WITH ITS OWN IDENTITY PROVIDER
To recap from Chapter 4, “Federated Identity for Web Applications,”
here’s an example of how the system works for a user, Rick, at the
partner Litware, which has its own identity provider. The steps cor-
respond to the shaded numbers in the preceding illustration.

STEP 1: AUTHENTICATE RICK

1. Rick is using a computer on Litware’s network. Litware’s
Active Directory® service has already authenticated him. He
opens a browser and navigates to the a-Order application.
Rick is not an authenticated user in a-Order at this time.
Adatum has configured a-Order to trust Adatum’s issuer
(the federation provider). The application has no knowledge

FEDERATED IDENTITY WITH WINDOWS AZURE ACCESS CONTROL SERVICE

of where the request comes from. It redirects Rick’s request
to the Adatum federation provider.

2. The Adatum federation provider presents the user with a
page listing different identity providers that it trusts (the
“Home realm Discovery” page). At this point, the federation
provider doesn’t know where Rick comes from.

3. Rick selects Litware from the list and then Adatum’s
federation provider redirects him to the Litware issuer that
can verify that Rick is who he says he is.

4. Litware’s identity provider verifies Rick’s credentials and
returns a security token to Rick’s browser. Litware’s identity
provider has configured the claims in this token for the
Adatum federation provider and they contain information
about Rick that is relevant to Adatum. For example, the
claims establish his name and that he belongs to the sales
organization in Litware.

STEP 2: TRANSMIT LITWARE’S SECURITY TOKEN
TO THE ADATUM FEDERATION PROVIDER

1. Ricks’ browser now posts the issued token back to the
Adatum federation provider. The Adatum federation
provider validates the token issued by Litware and creates a
new token that the a-Order application can use.

STEP 3: TRANSFORMING THE TOKEN

1. The federation provider transforms the claims issued by
Litware into claims that Adatum’s a-Order application
understands. (The mapping rules that translate Litware
claims into Adatum claims were determined when Adatum
configured its issuer to accept Litware’s issuer as an identity
provider.)

2. The claim mappings in Adatum’s issuer remove some claims
and add others that the a-Order application needs in order
to accept Rick as a user, and possibly control access to
certain resources.

STEP 4: TRANSMIT THE TRANSFORMED TOKEN
AND PERFORM THE REQUESTED ACTION

1. The Adatum issuer uses browser redirection to send the
new token to the application. In the a-Order application,

86 CHAPTER FIVE

Windows Identity Foundation (WIF) validates the security
token and extracts the claims. It creates a ClaimsPrincipal
object and assigns it to HttpContext.User property. The
a-Order application can then access the claims for authori-
zation decisions. For example, in this scenario, the applica-
tion filters orders by organization, which is one of the pieces
of information provided as a claim.

ExXAMPLE OF A CUSTOMER

USING A SOCIAL IDENTITY
Here’s an example of how the system works for a consumer user such
as Mary who is using a social identity. The steps correspond to the
un-shaded numbers in the preceding illustration.

STEP 1: PRESENT CREDENTIALS TO THE IDENTITY PROVIDER

1. Mary is using a computer at home. She opens a browser and
navigates to the a-Order application at Adatum. Adatum has
configured the a-Order application to trust Adatum’s issuer
(the federation provider). Mary is currently un-authenticat-
ed, so the application redirects Mary’s request to the
Adatum federation provider.

2. The Adatum federation provider presents Mary with a page
listing different identity providers that it trusts. At this
point, the federation provider doesn’t know which security
realm Mary belongs to, so it must ask Mary which identity
provider she wants to authenticate with.

3. Mary selects the option to authenticate using her social
identity and then Adatum’s federation provider redirects her
to the ACS issuer to verify that Mary is who she says she is.
Adatum’s federation provider uses the whr parameter in the
request to indicate to ACS which social identity provider to
use—in this example it is Google.

In this sample, the Adatum simulated issuer allows users to enter the
email address associated with their social identity provider. The
simulated issuer parses this email address to determine the value of
the whr parameter. Another option would be to let the user choose
from a list of social identity providers. You should check what
options are available with the issuer that you use; you may be able to
query your issuer for the list of identity providers that it currently
supports.

4. ACS automatically redirects Mary to the Google issuer.

FEDERATED IDENTITY WITH WINDOWS AZURE ACCESS CONTROL SERVICE

Mary never sees an ACS page; when ACS receives the request from
the Adatum issuer, ACS uses the value of the whr parameter to
redirect Mary directly to her social identity provider. However, if the
whr parameter is missing, or does not have a valid value, then ACS
will display a page that allows the user to select the social identity
provider that she wants to use.

5. Google verifies Mary’s credentials and returns a security
token to Mary’s browser. The Google identity provider has
added claims to this token for ACS: the claims include basic
information about Mary. For example, the claims establish
her name and her email address.

STEP 2: TRANSMIT THE IDENTITY PROVIDER’S
SECURITY TOKEN TO ACS

1. The Google identity provider uses HTTP redirection to
redirect the browser to ACS with the security token it has
issued.

2. ACS receives this token and verifies that it was issued by
the identity provider.
STEP 3: TRANSFORM THE CLAIMS

1. If necessary, ACS converts the token issued by the identity
provider to the security assertion markup language (SAML)
2.0 format and copies the claims issued by Google into the
new token.

2. ACS returns the new token to Mary’s browser.
STEP 4: TRANSMIT THE IDENTITY PROVIDER’S SECURITY
TOKEN TO THE FEDERATION PROVIDER

1. Mary’s browser posts the issued token back to the Adatum
federation provider.

2. The Adatum federation provider receives this token and
validates it by checking that ACS issued the token.
STEP 5: MAP THE CLAIMS

1. Adatum’s federation provider applies token mapping rules
to the ACS security token. These rules transform the claims
into claims that the a-Order application can understand.

2. The Adatum federation provider returns the new claims to
Mary’s browser.

87

88

CHAPTER FIVE

STEP 6: TRANSMIT THE MAPPED CLAIMS AND PERFORM
THE REQUESTED ACTION

1. Mary’s browser posts the token issued by the Adatum
federation provider to the a-Order application. This token
contains the claims created by the mapping process.

2. The application validates the security token by checking
that the Adatum federation provider issued it.

3. The application reads the claims and creates a session for
Mary. It can use Mary’s identity information from the token
to determine which orders Mary can see in the application.

Because this is a web application, all interactions happen through
the browser. (See the section “Browser-Based Scenario with ACS” in
Appendix B for a detailed description of the protocol for a browser-
based client)

The principles behind these interactions are exactly the same as
those described in Chapter 4, “Federated Identity for Web Applica-
tions.”

Adatum’s issuer, acting as a federation provider, mediates between
the application and the external issuers. The federation provider has
two responsibilities. First, it maintains a trust relationship with partner
issuers, which means that the federation provider accepts and under-
stands Litware tokens and their claims, ACS tokens and their claims,
and tokens and their claims from any other configured partner. Sec-
ond, the federation provider needs to translate claims from partners
and ACS into claims that a-Order can understand. The a-Order ap-
plication only accepts claims from Adatum’s federation provider (this
is its trusted issuer). In this scenario, a-Order expects claims of type
Role and Organization in order to authorize operations on its web
site. The problem is that ACS claims don’t come from Adatum and
they don't have these claim types. In the scenario, the claims from
ACS only establish that a social identity provider has authenticated
the user. To solve this problem, the Adatum federation provider uses
mapping rules that add a Role claim to the claims from ACS.

TRUST RELATIONSHIPS WITH

SOCIAL IDENTITY PROVIDERS
The nature of a trust relationship between Adatum and a business
partner such as Litware, is subtly different from a trust relationship
between Adatum and a social identity provider such as Google or

FEDERATED IDENTITY WITH WINDOWS AZURE ACCESS CONTROL SERVICE

Windows Live. In the case of a trust relationship between Adatum and
a business partner such as Litware, the trust operates at two levels;
there is a business trust relationship characterized by business con-
tracts and agreements, and a technical trust relationship characterized
by the configuration of the Adatum federation provider to trust to-
kens issued by the Litware identity provider. In the case of a trust re-
lationship between Adatum and a social identity provider such as
Windows Live, the trust is only a technical trust; there is no business
relationship between Adatum and Windows Live. In this scenario,
Adatum establishes a business trust relationship with the owner of
the social identity when the owner enrolls to use the a-Order applica-
tion and registers his or her social identity with Adatum. A further
difference between the two scenarios is in the claims issued by the
identity providers. Adatum can trust the business partner to issue rich,
accurate claims data about its employees such as cost centers, roles,
and telephone numbers, in addition to identity claims such as name
and email. The claims issued by a social identity provider are minimal,
and may sometimes be just an identifier. Because there is no business
trust relationship with the social identity provider, the only thing that
Adatum knows for sure is that each individual with a social identity
has a unique, unchanging identifier that Adatum can use to recognize
that it’s the same person returning to the a-Order application.

An individual’s unique identifier is unique to that instance of ACS: if
Adatum creates a new ACS instance, each individual will have a new
unique identifier. This is important to be aware of if you're using the
unique identifier to map to other user data stored elsewhere.

DESCRIPTION OF MAPPING RULES

IN A FEDERATION PROVIDER
The claims that ACS returns from the social identity provider to the
Adatum federation provider do not include the role or organization
claims that the a-Order application uses to authorize access to order
data. In some cases, the only claim from the social identity provider is
the nameidentifier that is a guid-like string. The mapping in rules in
the Adatum federation provider must add the role and organization
claims to the token. In the sample, the mapping rules simply add the
OrderTracker role, and “Mary Inc.” as an organization.

The following table summarizes the mapping rules that the Ada-
tum federation provider applies when it receives a token from ACS
when the user has authenticated with Google.

89

CHAPTER FIVE

Input claim Output claim Notes
nameidentifier A unique id allocated by Google.
emailaddress The users registered email address

with Google. The user has agreed
to share this address.

name name The users name. This is the only
claim passed through to the
application. The issuer property
of the claim is set to adatum, and
the originalissuer is set to acs\
Google.

identityprovider Google

Role The simulated issuer adds this
claim with a value of “Order
Tracker.”

Organization The simulated issuer adds this
claim with a value of “Marylnc.”

The following table summarizes the mapping rules that the simu-
lated issuer applies when it receives a token from ACS when the user
has authenticated with Windows Live ID.

Input claim Output claim Notes
nameidentifier A unique id allocated by
Windows Live ID.
identityprovider uri:WindowsLivelD
name The simulated issuer copies the

value of the nameidentifier claim
to the name claim. The issuer
property of the claim is set to
adatum, and the originalissuer is
set to acs\LivelD.

Role The simulated issuer adds this
claim with a value of “Order
Tracker.”

Organization The simulated issuer adds this

claim with a value of “Marylnc.”

FEDERATED IDENTITY WITH WINDOWS AZURE ACCESS CONTROL SERVICE 91

The following table summarizes the mapping rules that the simu-
lated issuer applies when it receives a token from ACS when the user
has been authenticated by a Facebook application.

Input claim Output claim Notes

nameidentifier A unique id allocated by the
Facebook application.

identityprovider Facebook-194130697287302. The
number here uniquely identifies
your Facebook application.

name name The users name. This is the only
claim passed through to the
application. The issuer property
of the claim is set to adatum, and
the originalissuer is set to acs\

Facebook.

Role The simulated issuer adds this
claim with a value of “Order
Tracker.”

Organization The simulated issuer adds this

claim with a value of “Marylnc.”

In the scenario described in this chapter, because of the small
numbers of users involved, Adatum expects to manage the enrolment
as a manual process. For a description of how this might be automated,
see Chapter 7, “Federated Identity with Multiple Partners and Win-
dows Azure Access Control Service.”

Alternative Solutions

Of course, the solution we've just described illustrates just one imple-
mentation choice; another possibility would be to separate Adatum’s
identity provider and federation provider and let ACS manage the
federation and the claims transformation. Figure 2 shows the trust
relationships that Adatum would need to configure for this solution.

These mappings are, of
course, an example and for
demonstration purposes
only. Notice that as they
stand, anyone authenti-
cated by Google or
Windows Live ID has
access to the “Mary Inc.”
orders in the a-Order
application. A real
federation provider
would probably check
that the combination of
identityprovider and
nameidentifier claims is
from a registered, valid
user and look up in a local
database their name, role,
and organization.

92 CHAPTER FIVE

Tvvet
P > Windows Live ID
_ — — > Facebook Social idendiiy
- = T >éooqe issvess (dPs)
_

Z

Ksutey’ MP)

a-Ovder
Web application

Tﬁ lmAcn/GdP)

G ‘chk

FIGURE 2

Ldwave
Using ACS to manage the federation
Adatum has already with Adatum’s partners
invested in its own
identity infrastructure In this alternative solution, ACS would trust the Adatum and
and has an existing Litware identity providers and there is no longer a trust relationship

fede.rati?n Pro.v'der between the Litware and Adatum issuers. Adatum should also evalu-
runnlng n theH’ own

e e ate the costs of this solution because there will be additional ACS
risk-averse organiza- transactions as it handles sign-ins from users at partners with their
tion, Adatum prefers own identity providers. These costs need to be compared with the
[OCONEIESEONSE cost of running and managing this service on-premises.

their tried and tested

colution rather A second alternative solution does away with ACS leaving all the
than migrate the responsibilities for protocol transition and claims transformation to
functionality to ACS. the issuer at Adatum. Figure 3 shows the trust relationships that

Adatum would need to configure for this solution.

FEDERATED IDENTITY WITH WINDOWS AZURE ACCESS CONTROL SERVICE 93

Windows Live ID
T =7 Facebook Social identriy
- - 1 Goorle issuiers (dPs)
PRSP R

This alternative removes

(\ a-Ovder

8 Web application

a dependency on ACS:
®

an external, third-party
service. It still relies on

the social identity providers
for their authentication
services.

John

Tﬁi wsuter(14P)

— Rick
pdatum |8

Lwave

FIGURE 3
Using the Adatum issuer
for all federation tasks

Although this alternative solution means that Adatum does not
need to pay any of the subscription charges associated with using
ACS, Adatum is concerned about the additional complexity of its is-
suer, which would now need to handle all of the protocol transition
and claims transformation tasks. Furthermore, implementing this
scenario would probably take some time (weeks or months), while
Adatum could probably configure the solution with ACS in a matter
of hours. The question becomes one of business efficiency: would
Adatum get a better return by investing in creating and maintaining
infrastructure services, or by focusing on their core business services?

Inside the Implementation

The Visual Studio solution named 6-FederationWithAcs found at
http://claimsid.codeplex.com is an example of how to use federation
with ACS. The structure of the application is very similar to what you
saw in chapter 4, “Federated Identity for Web Applications.” There
are no changes to the a-Order application: it continues to trust the
Adatum simulated issuer that provides it with the claims required to
authorize access to the application’s data.

94

CHAPTER FIVE

The example solution extends the Adatum simulated issuer to
handle federation with ACS, and uses an ACS instance that is config-
ured to trust the social identity providers. The next section describes
these changes.

Setup and Physical Deployment

You can run the Visual Studio solution named 6-FederationWithAcs
found at http://claimsid.codeplex.com on a stand-alone development
machine. As with the solutions described in the previous chapters, this
solution uses mock issuers for both Adatum and Litware. There are no
changes to the Litware mock issuer, but the Adatum mock issuer now
has a trust relationship with ACS in addition to the existing trust re-
lationship with Litware, and offers the user a choice of authenticating
with the Adatum identity provider, the Litware identity provider, or
ACS.

You can see the entry for ACS (https://federationwithacs-dev.
accesscontrol.windows.net/) in the issuerNameRegistry section of
the Web.config file in the Adatum.Simulatedlssuer.6 project. This
entry includes the thumbprint used to verify the token that the Ada-
tum federation provider receives from ACS. This is the address of the
ACS instance created for the sample.

When the developers at Adatum want to deploy their application,
they will modify the configuration so that it uses the Adatum federa-
tion provider. They will also modify the configuration of the Adatum
federation provider by adding a trust relationship with the production
ACS instance.

ESTABLISHING A TRUST RELATIONSHIP

wiIiTH ACS
Establishing a trust relationship with ACS is very similar to establish-
ing a trust relationship with any other issuer. Generally, there are six
steps in this process:

1. Configure Adatum’s issuer to recognize your ACS instance
as a trusted identity provider.

You may be able to configure the Adatum issuer automatically
by providing a link to the FederationMetadata.xml file for the
ACS namespace. However, this FederationMetadata.xm/ will not
include details of all the claims that your ACS namespace offers,
it only includes the nameidentifier and identityprovider
claims. You will need to configure details of other claim types
offered by ACS manually in the Adatum issuer.

FEDERATED IDENTITY WITH WINDOWS AZURE ACCESS CONTROL SERVICE 95

2. Configure the social identity providers that you want to
support in ACS.

3. Configure your ACS instance to accept requests from the
Adatum issuer (the Adatum issuer is a relying party as far as
ACS is concerned)

4. Edit the claims rules in ACS to pass the claims from the
social identity provider through to the Adatum issuer.

5. If necessary, edit the claims transformation rules in the
Adatum issuer that are specific to the social identity provid-
ers.

6. If necessary, edit the claims rules in the Adatum issuer that
are specific to the a-Order application.

You can refer to documentation provided by your production is-
suer for instructions on how to perform these steps. You can find
detailed instructions for the ACS configuration in Appendix E of this
guide.

REPORTING ERRORS FROM ACS

You can specify a URL that points to an error page for each relying
party that you define in ACS. In the sample, this page is called
ErrorPage.aspx and you can find it in the Adatum.FederationProvider.6
project. If ACS detects an error during processing, it can post
JavaScript Object Notation (JSON) encoded error information to this
page. The code-behind for this page illustrates a simple approach for
displaying this error information; in practice, you may want to log
these errors and take different actions depending on the specific error
that occurs.

An easy way to generate an error in the sample so that you can see
how the error processing works is to try to authenticate using a
Google ID, but to decline to give consent for ACS to access your
data by clicking on No thanks after you have logged into Google.

INITIALIZING ACS

The sample application includes a set of pre-configured partners for
Fabrikam Shipping, both with and without their own identity provid-
ers. These partners require identity providers, relying parties, and
claims-mapping rules in ACS in order to function. The ACS.Setup.6
project in the solution is a basic console application that you can run
to add the necessary configuration data for the pre-configured part-
ners to your ACS instance. It uses the ACS Management APl and the
wrapper classes in the ACS.ServiceManagementWrapper project.

96

CHAPTER FIVE

You will still need to perform some manual configuration steps; the
ACS Management APl does not enable you to create a new service
namespace. You must perform this operation in the ACS manage-
ment portal.

For more information on working with ACS, see Appendix E.

Working with Social Identity Providers

The solution described in this chapter enables Adatum to support
users with identities from trusted partners such as Litware, and with
identities from social identity providers such as Google or Windows
Live ID. Implementing this scenario in the real world would require
solutions to two additional problems.

First, there is the question of managing how we define the set of
identities (authenticated by one of the social identity providers) that
are members of the same organization. For example, which set of us-
ers with Windows Live IDs and Google IDs are associated with the
organization Mary Inc? With a partner such as Litware with its own
identity provider, Adatum trusts Litware to decide which users at
Litware should be able to view the order data that belongs to Litware.

Second, there are differences between the claims returned from
the social identity providers. In particular, Windows Live ID only re-
turns the nameidentifier claim. This is a guid-like string that Windows
Live guarantees to remain unchanged for any particular Windows Live
ID within the current ACS namespace. All we can tell from this claim
is that this instance of ACS and Windows Live have authenticated the
same person, provided we get the same nameidentifier value returned.
There are no claims that give us the user’s email address or name.

The following potential solutions make these assumptions about
Adatum.

* Adatum does not want to make any changes to the a-Order
application to accommodate the requirements of a particular
partner.

* Adatum wants to do all of its claims processing in the Adatum
federation provider. Adatum is using ACS just for protocol
transition, passing through any claims from the social identity
providers directly to the Adatum federation provider.

MANAGING USERS WITH SOCIAL IDENTITIES
Taking Litware as an example, let’s recap how the relationship with a
partner organization works.

* Adatum configures the Adatum federation provider to trust the

Litware identity provider. This is a one-time, manual configura-

tion step in this scenario.

FEDERATED IDENTITY WITH WINDOWS AZURE ACCESS CONTROL SERVICE 97

* Adatum adds a set of claims-mapping rules to the Adatum
federation provider, to convert claims from Litware into claims
that the Adatum a-Order application understands. In this
scenario, the relevant claims that the a-Order application
expects to see are name, Role and Organization.

* Litware can authorize any of its employees to access the
Adatum a-Order application by ensuring that Litware’s identity
provider gives the user the correct claim. In other words, Litware
controls who has access to Litware’s data in the Adatum a-
Order application.

The situation for a smaller partner organization without its own
identity provider is a little different. Let’s take Marylnc, which wants
to use Windows Live IDs and Google IDs as an example.

* Unlike a partner with its own identity provider, there is no need
to set up a new trust relationship because Adatum already trusts
ACS. From the perspective of the Adatum federation provider,
ACS is where the Marylnc employee claims will originate.

* The Adatum federation provider cannot identify the partner
organization of the authenticated user from the claims it
receives from ACS. Therefore, Adatum must configure a set of
mapping rules in the federation provider that map a user’s
unique claim from ACS (such as the nameidentifier claim) to
appropriate values for the name, Role and Organization claims
that the a-Order application expects to see.

¢ If Marylnc wants to allow multiple employees to access Marylnc
data in the a-Order application, then Adatum must manually
configure additional mapping rules in its federation provider.

This last point highlights the significant difference between the
partner with its own identity provider and the partner without. The
partner with its own identity provider can manage who has access to
its data in the a-Order application; the partner without its own iden-
tity provider must rely on Adatum to make changes in the Adatum
federation provider if it wants to change who has access to its data.

WORKING WITH WINDOWS LIVE IDs
Unlike the other social identity providers supported by ACS that all
return name and emailaddress claims, Windows Live ID only returns
a nameidentifier claim. This means that the Adatum federation pro-
vider must use some additional logic to determine appropriate values
for the name, Role and Organization claims that the a-Order applica-
tion expects to see.

This means that when someone with a Windows Live ID enrolls
to use the Adatum a-Order application, Adatum must capture values

98 CHAPTER FIVE

Each set of Facebook application
credentials is treated as a
separate identity provider

in ACS.

for the nameidentifier, name, Role and Organization claims to use in
the mapping rules in the federation provider (as well as any other data
that Adatum requires). The only way to discover the nameidentifier
value is to capture the claim that Windows Live returns after the user
signs in, so part of the enrollment process at Adatum must include the
user authenticating with Windows Live.

It is possible to access data in the user’s Windows Live ID profile,
such as the user’s name and email address, programmatically by
using Windows Live Messenger Connect. This would eliminate
the requirement that the user manually enter information such as his
name and email address when he enrolled to use the a-Order
application. However, the benefits to the users may not outweigh the
costs of implementing this solution. Furthermore, not all users will
understand the implications of temporarily giving consent to Adatum
to access to their Windows Live ID profile data.

With ADFS you can create custom claims transformation mod-
ules that, for example, allow you to implement a mapping rule based
on data retrieved from a relational database. With this in mind, the
enrollment process for new users of the Adatum a-Order application
could populate a database table with the values required for a user’s
set of claims.

WORKING WITH FACEBOOK
The sample application enables you to use Facebook as one of the
supported social identity providers. Adding support for Facebook did
not require any changes to the a-Order web application. However,
there are differences in the way the Adatum federation provider sup-
ports Facebook as compared to the other social identity providers,
and differences in the ACS configuration.

Configuring Facebook as an identity provider in ACS requires
some additional data; an Application ID that identifies your Facebook
application, an Application secret to authenticate with your Facebook
application, and a list of claims that ACS will request from Facebook.
The additional configuration values enable you to configure multiple
Facebook applications as identity providers for your relying party.

The implication for the Adatum federation provider is that it must
be able to identify the Facebook application to use for authentication
in the whr parameter that it passes to ACS. The following code sample
from the Federationlssuers class in the Adatum federation provider
shows how the Facebook application ID is included in the whr value.

http://msdn.microsoft.com/en-us/library/ff749458.aspx

FEDERATED IDENTITY WITH WINDOWS AZURE ACCESS CONTROL SERVICE

// Facebook
homeRealmIdentifier = "facebook.com";
issuerLocation = Federation. AcsIssuerEndpoint;
whr = "Facebook-194130697287302";
this.issuers.Add(homeRealmIdentifier,
new IssuerInfo(homeRealmIdentifier, issuerlLocation, whr));

Questions

1. Which of the following issues must you address if you want
to allow users of your application to authenticate with a
social identity provider such as Google or Windows Live®
network of Internet services?

a. Social identity providers may use protocols other than
WS-Federation to exchange claims tokens.

b. You must register your application with the social
identity provider.

c. Different social identity providers issue different claim
types.

d. You must provide a mechanism to enroll users using
social identities with your application.

2. What are the advantages of allowing users to authenticate
to use your application with a social identity?

a. The user doesn’t need to remember yet another
username and password.

b. It reduces the features that you must implement in
your application.

c. Social identity providers all use the same protocol to
transfer tokens and claims.

d. It puts the user in control of their password manage-
ment. For example, a user can recover a forgotten
password without calling your helpdesk.

3. What are the potential disadvantages of using ACS as your
federation provider?

a. It adds to the complexity of your relying party
application.

99

100 CHAPTER FIVE

b. It adds an extra step to the authentication process,
which negatively impacts the user experience.

c. Itis a metered service, so you must pay for each token
that it issues.

d. Your application now relies on an external service that
is outside of its control.

4. How can your federation provider determine which identity
provider to use (perform home realm discovery) when an
unauthenticated user accesses the application?

a. Present the user with a list of identity providers to
choose from.

b. Analyze the IP address of the originating request.

c. Prompt the user for an email address, and then parse it
to determine the user’s security domain.

d. Examine the ClaimsPrincipal object for the user’s
current session.

5. In the scenario described in this chapter, the Adatum
federation provider trusts ACS, which in turn trusts the
social identity providers such as Windows Live and Google.
Why does the Adatum federation provider not trust the
social identity providers directly?

a. It’s not possible to configure the Adatum federation
provider to trust the social identity providers because
the social identity providers do not make the certifi-
cates required for a trust relationship available.

b. ACS automatically performs the protocol transition.
c. ACS is necessary to perform the claims mapping.

d. Without ACS, it’s not possible to allow Adatum
employees to access the application over the web.

More Information

Appendix E of this guide provides a detailed description of ACS and

its features.
You can find the MSDN® documentation for ACS 2.0 at http:/
msdn.microsoft.com/en-us/library/gg429786.aspx.

http://msdn.microsoft.com/en-us/library/gg429786.aspx
http://msdn.microsoft.com/en-us/library/gg429786.aspx

6 Federated Identity with
Multiple Partners

In this chapter, you'll learn about the special considerations that apply
to applications that establish many trust relationships. Here you will
also see how use the ASP.NET Model View Controller (MVC) frame-
work to build a claims-aware application.

Although the basic building blocks of federated identity—issuers,
trust, security tokens and claims—are the same as what you saw in the
previous chapter, there are some identity and authorization require-
ments that are particular to the case of multiple trust relationships.

In some web applications, such as the one shown in this chapter,
users and customers represent distinct concepts. A customer of an
application can be an organization, and each customer can have many
individual users, such as employees. If the application is meant to scale
to large numbers of customers, the enrollment process for new cus-
tomers must be as streamlined as possible. It may even be automated.
As with the other chapters, it is easiest to explain these concepts in
the context of a scenario.

The Premise

Fabrikam is a company that provides shipping services. As part of its
offering, it has a web application named Fabrikam Shipping that al-
lows its customers to perform such tasks as creating shipping orders
and tracking them. Fabrikam Shipping is an ASP.NET MVC application
that runs in Fabrikam’s data center. Fabrikam’s customers want their
employees to use a browser to access the shipping application.
Fabrikam has made its new shipping application claims-based.
Like many design choices, this one was customer-driven. In this case,
Fabrikam signed a deal with a major customer, Adatum. Adatum’s
corporate IT strategy (as discussed in chapter 3, “Claims-Based Single
Sign-On for the Web”) calls for the eventual elimination of identity
silos. Adatum wants its users to access Fabrikam Shipping without

101

Special considerations apply
when there are many trust
relationships.

102

CHAPTER SIX

presenting separate user names and passwords. Fabrikam also signed
agreements with Litware that had similar requirements. However,
Fabrikam also wants to support smaller customers, such as Contoso,
that do not have the infrastructure in place to support federated
identity.

Goals and Requirements

Larger customers such as Adatum and Litware have some particular
concerns. These include the following:

* Usability. They would prefer if their employees didn’t need to
learn new passwords and user names for Fabrikam Shipping.
These employees shouldn’t need any credentials other than the
ones they already have, and they shouldn’t have to enter creden-
tials a second time when they access Fabrikam Shipping from
within their security domain.

* Support. It is easier for Adatum and Litware to manage issues
such as forgotten passwords than to have employees interact
with Fabrikam.

* Liability. There are reasons why Adatum and Litware have the
authentication and authorization policies that they do. They
want to control who has access to resources, no matter where
those resources are deployed, and Fabrikam Shipping is no
exception. If an employee leaves the company, he or she should
no longer have access to the application.

Fabrikam has its own goals, which are the following:

* To delegate the responsibility for maintaining user identities
to its customers, when possible. This avoids a number of
problems, such as having to synchronize data between Fabrikam
and its customers. The contact information for a package’s
sender is an example of this kind of information. Its accuracy
should be the customer’s responsibility because it could quickly
become costly for Fabrikam to keep this information up to date.

* To bill customers by cost center if one is supplied. Cost
centers should be provided by the customers. This is also
another example of information that is the customer’s responsi-
bility.

* To sell its services to a large number of customers. This means
that the process of enrolling a new company must be stream-
lined. Fabrikam would also prefer that its customers self-manage
the application whenever possible.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS

* To provide the infrastructure for federation if a customer
cannot. Fabrikam wants to minimize the impact on the applica-
tion code that might arise from having more than one authenti-
cation mechanism for customers.

Overview of the Solution

With the goals and requirements in place, it’s time to look at the solu-
tion. As you saw in Chapter 4, “Federated Identity for Web Applica-
tions,” the solution includes the establishment of a claims-based archi-
tecture with an issuer that acts as an identity provider (IdP) on the
customers’ side. In addition, the solution includes an issuer that acts
as the federation provider (FP) on Fabrikam’s side. Recall that a fed-
eration provider acts as a gateway between a resource and all of the
issuers that provide claims about the resource’s users.

Figure 1 shows Fabrikam’s solution for customers that have their
own identity provider.

—

r Ksuler (!P)\k -~

N Tt
RO S >
I Actve . I N
Divecory \
_____ -—
) &e4 Token /%‘NM/AMW“ \
g Fﬂb/.kam
2 S s
ENN ppi '\”! S
o B/quer 5 Tt
John i
ee4 a Fabvkam
%‘ppm Hoken é\
Adchim L ~ wsuer (FP)

@ Map dhe
Clams

N

— Fabvikam
| Issuter’
|

Active
| Divectory
L — —
5 0,
ES et a Fablkam
ES 8 Biow Shipping Hoken
) owsev
Rick
Ldwave

FIGURE 1
Fabrikam Shipping for customers with an identity provider

103

104 CHAPTER SIX

Here’s an example of how the system works. The steps corre-
spond to the numbers in the preceding illustration.

STEP 1: PRESENT CREDENTIALS TO THE IDENTITY PROVIDER

1. When John from Adatum attempts to use Fabrikam Ship-
ping for the first time (that is, when he first navigates to
https://§fabrikam host}/f-shipping/adatum), there’s no
session established yet. In other words, from Fabrikam’s
point of view, John is unauthenticated. The URL provides
the Fabrikam Shipping application with a hint about the
customer that is requesting access (the hint is “adatum” at
the end of the URL).

2. The application redirects John’s browser to Fabrikam’s issuer
(the federation provider). That is because Fabrikam’s
federation provider is the application’s trusted issuer. As
part of the redirection URL, the application includes the
whr parameter that provides a hint to the federation
provider about the customer’s home realm. The value of the
whr parameter is http://adatum/trust.

3. Fabrikam’s federation provider uses the whr parameter to
look up the customer’s identity provider and redirect John’s
browser back to the Adatum issuer.

4. Assuming that John uses a computer that is already a part of
the domain and in the corporate network, he will already
have valid network credentials that can be presented to
Adatum’s identity provider.

5. Adatum’s identity provider uses John’s credentials to authen-
ticate him and then issue a security token with a set of
Adatum’s claims. These claims are the employee name, the
employee address, the cost center, and the department.

STEP 2: TRANSMIT THE IDENTITY PROVIDER’S SECURITY
TOKEN TO THE FEDERATION PROVIDER

1. The identity provider uses HT TP redirection to redirect
the security token it has issued to Fabrikam’s federation
provider.

2. Fabrikam’s federation provider receives this token and
validates it.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS 105

STEP 3: MAP THE CLAIMS

1. Fabrikam’s federation provider applies token mapping rules
to the identity provider’s security token. The claims are
transformed into something that Fabrikam Shipping under-
stands.

2. The federation provider uses HTTP redirection to submit
the claims to John's browser.

STEP 4: TRANSMIT THE MAPPED CLAIMS AND PERFORM
THE REQUESTED ACTION

1. The browser sends the federation provider’s security token,
which contains the transformed claims, to the Fabrikam
Shipping application.

2. The application validates the security token.

3. The application reads the claims and creates a session for
John.

Because this is a web application, all interactions happen through
the browser. (See Appendix B for a detailed description of the proto-
col for a browser-based client.)

The principles behind these interactions are exactly the same as Automated home realm
those described in Chapter 4, “Federated Identity for Web Applica- discovery is important
tions.” One notable exception is Fabrikam’s automation of the home when there are many
realm discovery process. In this case, there’s no user intervention trust relationships.

necessary. The home realm is entirely derived from information passed
first in the URL and then in the whr parameter.

Litware follows the same steps as Adatum. The only differences
are the URLs used (http:/§fabrikam host}/f-shipping/litware and the
Litware identity provider’s address) and the claims mapping rules,
because the claims issued by Litware are different from those issued
by Adatum. Notice that Fabrikam Shipping trusts the Fabrikam fed-
eration provider, not the individual issuers of Litware or Adatum. This
level of indirection isolates Fabrikam Shipping from individual differ-
ences between Litware and Adatum.

Fabrikam also provides identity services on behalf of customers
such as Contoso that do not have issuers of their own. Figure 2 shows
how Fabrikam implemented this.

106

CHAPTER SIX

Fabvikam

@ Map dhe
\' Cldims

e @ Send 4 user name (
o d passwovd 4o
gl 4t and p A lksuter’ IP)
Lordoso qe4 a doken .
FIGURE 2 Fabvikam

Fabrikam Shipping for customers
without an identity provider

Contoso is a small business with no identity infrastructure of its
own. It doesn’t have an issuer that Fabrikam can trust to authenticate

Smaller organizations may Contoso’s users. It also doesn’t care if its employees need a separate
not have their own issuers. set of credentials to access the application.

Fabrikam has deployed its own identity provider to support
smaller customers such as Contoso. Notice, however, that even
though Fabrikam owns this issuer, it’s treated as if it were an external
identity provider, just as those that belong to Adatum and Litware. In
a sense, Fabrikam “federates with itself.”

Because the identity provider is treated as an external issuer, the
process is the same as that used by Adatum and Litware. The only
differences are the URLs and the claim mappings.

By deploying an identity provider for customers such as Contoso,
Fabrikam accepts the costs associated with maintaining accounts for
remote users (for example, handling password resets). The benefit is
that Fabrikam only has to do this for customers that don’t have their
own federation infrastructure. Over time, Fabrikam expects to have
fewer customers that need this support.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS

It would also be possible for Fabrikam to support third-party
identity providers such as LivelD or OpenlD as a way to reduce the
cost of maintaining passwords for external users.

UsiNG CLAIMS IN FABRIKAM SHIPPING
Fabrikam Shipping uses claims for two purposes. It uses role claims to
control access and it also uses claims to retrieve user profile informa-
tion.
Access control to Fabrikam Shipping is based on one of three
roles:
* Shipment Creator. Anyone in this role can create new orders.

* Shipment Manager. Anyone in this role can create and modify
existing shipment orders.

* Administrator. Anyone in this role can configure the system.
For example, they can set shipping preferences or change the
application’s appearance and behavior (“look and feel”).

The sender’s address and the sender’s cost center for billing are
the pieces of profile information that Fabrikam Shipping expects as
claims. The cost center allows Fabrikam to provide more detailed in-
voices. For example, two employees from Adatum who belong to two
different departments would get two different bills.

Fabrikam configures claims mappings for every new customer
that uses Fabrikam Shipping. This is necessary because the application
logic within Fabrikam Shipping only understands one set of role
claims, which includes Shipment Creator, Shipment Manager, and
Administrator. By providing these mappings, Fabrikam decouples the
application from the many different claim types that customers pro-
vide.

The following table shows the claims mappings for each customer.
Claims that represent cost centers, user names, and sender addresses
are simply copied. They are omitted from the table for brevity.

Fabrikam uses claims for
access control and for user

107

108

CHAPTER SIX

Claim type: e-mail,
Claim value: bill@contoso.com

Partner Input conditions Output claims
Adatum Claim issuer: Adatum Claim issuer: Fabrikam
Claim type: Group, Claim type: Role,
Claim value: Customer Service Claim value: Shipment Creator
Claim issuer: Adatum Claim issuer: Fabrikam
Claim type: Group, Claim type: Role,
Claim value: Order Fulfillments Claim value: Shipment Creator
Claim issuer: Fabrikam
Claim type: Role,
Claim value: Shipment Manager
Claim issuer: Adatum Claim issuer: Fabrikam
Claim type: Group, Claim type: Role,
Claim value: Admins Claim value: Administrator
Claim issuer: Adatum Claim issuer: Fabrikam
Claim type: Organization,
Claim value: Adatum
Litware Claim issuer: Litware Claim issuer: Fabrikam
Claim type: Group, Claim type: Role,
Claim value: Sales Claim value: Shipment Creator
Claim issuer: Litware Claim issuer: Fabrikam
Claim type: Organization, Claim value:
Litware
Contoso Claim issuer: Fabrikam identity provider Claim issuer: Fabrikam

Claim type: Role,
Claim value: Shipment Creator

Claim issuer: Fabrikam
Claim type: Role,
Claim value: Shipment Manager

Claim issuer: Fabrikam
Claim type: Role,
Claim value: Administrator

Claim issuer: Fabrikam
Claim type: Organization,
Claim value: Contoso

As in Chapter 4, “Federated Identity for Web Applications,” Adatum
could issue Fabrikam-specific claims, but it would not be a best practice
to clutter Adatum’s issuer with Fabrikam-specific concepts such as
Fabrikam roles. Fabrikam allows Adatum to issue any claims it wants,
and then it configures its federation provider to map these Adatum

claims to Fabrikam claims.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS 109

Inside the Implementation

Now is a good time to walk through some of the details of the solu-
tion. As you go through this section, you may want to download the
Microsoft® Visual Studio® development system solution 3Federa-
tionWithMultiplePartners from http://claimsid.codeplex.com. If you
are not interested in the mechanics, you should skip to the next sec-
tion.

The Fabrikam Shipping application uses the ASP.NET MVC frame-
work in conjunction with the Windows® Identify Foundation (WIF).
The application’s Web.config file contains the configuration informa-
tion, as shown in the following XML code. The <system.webServer>
section of the Web.config file references WIF-provided modules and
the ASPNET MVC HTTP handler class. The WIF information is the
same as it was in the previous scenarios. The MVC HTTP handler is in
the <handlers> section.

<system.webServer>
<modules runAllManagedModulesForAllRequests="true">

<add name="WSFederationAuthenticationModule”
preCondition=" integratedMode"
type="Microsoft.IdentityModel.Web.
WSFederationAuthenticationModule, ..." />

<add name="SessionAuthenticationModule"

preCondition=" integratedMode"
type="Microsoft.IdentityModel.Web.
SessionAuthenticationModule, ..." />
</modules>
<handlers>

<add name="MvcHttpHandler"
preCondition="integratedMode"
verb="*"
path="*.mvc"
type="System.Web.Mvc.MvcHttpHandler, ..."/>

</handlers>
</system.webServer>

Fabrikam Shipping is an
ASP.NET MVC application
that uses claims.

110

CHAPTER SIX

Fabrikam Shipping is an example of the finer-grained control that’s
available with the WIF API. Although Fabrikam Shipping demon-
strates how to use MVC with WIF, it’s not the only possible ap-
proach. Also, WIF-supplied tools, such as FedUtil.exe, are not
currently fully integrated with MVC applications. For now, you can
edit sections of the configuration files after applying the FedUtil
program to an MVC application. This is what the developers at
Fabrikam did with Fabrikam Shipping.

Fabrikam Shipping needs to customize the redirection of HTTP
requests to issuers in order to take advantage of the ASPNET MVC
architecture. It does this by turning off automatic redirection from
within WIF’s federated authentication module. This is shown in the
following XML code:

<federatedAuthentication>
<wsFederation passiveRedirectEnabled="false"
issuer="https://{fabrikam host}/{issuer endpoint}/"
realm="https://{fabrikam host}/f-Shipping/FederationResult"
requireHttps="true"
/>
<cookieHandler requireSsl="true" path="/f-Shipping/" />
</federatedAuthentication>

By setting the passiveRedirectEnabled attribute to false, you
instruct WIF’s federated authentication module not to perform its
built-in redirection of unauthenticated sessions to the issuer. For ex-
ample, Fabrikam Shipping uses the WIF API to perform this redirec-
tion under programmatic control.

ASP.NET MVC applications include the concept of route mappings
and controllers that implement handlers. A route mapping enables you
to define URL mapping rules that automatically dispatch incoming
URLs to application-provided action methods that process them.
(Outgoing URLs are also processed.)

The following code shows how Fabrikam Shipping establishes a
routing table for incoming requests such as “http://§fabrikam host3/f-
shipping/adatum”. The last part of the URL is the name of the organi-
zation (that is, the customer). This code is located in Fabrikam Ship-
ping’s Global.asax file.

public class MvcApplication : System.Web.HttpApplication
{
/] ...
public static void RegisterRoutes(RouteCollection routes)
{
7l oo

routes.MapRoute(

FEDERATED IDENTITY WITH MULTIPLE PARTNERS 111

"OrganizationDefault”,
"{organization}/",
new { controller = "Shipment", action = "Index" });

Il ooc

The RegisterRoutes method allows the application to tell the
ASP.NET MVC framework how URIs should be mapped and handled
in code. This is known as a routing rule.

When an incoming request such as “http://§{fabrikam host}/
f-Shipping/adatum” is received, the MVC framework evaluates the
routing rules to determine the appropriate controller object that
should handle the request. The incoming URL is tested against each
route rule. The first matching rule is then used to process the request.
In the case of the “f-Shipping/adatum” URL, an instance of the ap-
plication’s ShipmentController class will be used as the controller,
and its Index method will be the action method.

[AuthenticateAndAuthorize(Roles = "Shipment Creator")]
public class ShipmentController : BaseController

{
public ActionResult Index()
{
I ooo
}
}

The ShipmentController class has been decorated with a custom
attribute named AuthenticateAndAuthorize. This attribute is imple-
mented by the Fabrikam Shipping application. Here is the declaration
of the attribute class.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public sealed class AuthenticateAndAuthorizeAttribute :
FilterAttribute, IAuthorizationFilter

Il ooc

public void OnAuthorization(AuthorizationContext filterContext)

{
if (!filterContext.HttpContext.Request.IsSecureConnection)
{
throw /* ... */
}

if (!filterContext.HttpContext.User.Identity.IsAuthenticated)

112

CHAPTER SIX

{
AuthenticateUser(filterContext);

}

else

{
this.AuthorizeUser(filterContext);

}

Il ooc

The AuthenticateAndAuthorizeAttribute class derives from the

FilterAttribute class and implements the lAuthorizationFilter inter-
face. Both these types are provided by ASPNET MVC. The MVC
framework recognizes these attribute types when they are applied to
controller classes and it calls the OnAuthorization method before
each controller method is invoked. The OnAuthorization method
detects whether or not authentication has been performed already,
and if it hasnt, it invokes the AuthenticateUser helper method to
contact the application’s federation provider by HTTP redirection.
The following code shows how this happens.

private static void AuthenticateUser(AuthorizationContext context)

{

var organizationName =

(string)context.RouteData.Values["organization"];

if (!string.IsNullOrEmpty(organizationName))

{

if (!IsValidTenant(organizationName)) { throw /* ... */ }
var returnUrl = GetReturnUrl(context.RequestContext);

var fam =
FederatedAuthentication.WSFederationAuthenticationModule;

var signlIn =
new SignInRequestMessage(new Uri(fam.Issuer), fam.Realm)
{
Context = returnUrl.ToString(),
HomeRealm =RetrieveHomeRealmForTenant(organizationName)

b

context.Result =
new RedirectResult(signIn.WriteQueryString());

FEDERATED IDENTITY WITH MULTIPLE PARTNERS 113

The AuthenticateUser method takes the customer’s name from
the route table. (The code refers to a customer as an organization.) In
this example, “adatum” is the customer. Next, the method checks to
see if the customer has been enrolled in the Fabrikam Shipping ap-
plication. If not, it raises an exception.

Then, the AuthenticateUser method looks up the information it
needs to create a federated sign-in request. This includes the URI of
the issuer (that is, Fabrikam’s federation provider), the application’s
realm (the address where the issuer will eventually return the security
token), the URL that the user is trying to access, and the home realm
designation of the customer. The method uses this information to
create an instance of WIF’s SignlnRequestMessage class. An instance
of this class represents a new request to an issuer to authenticate the
current user.

In the underlying WS-Federation protocol, these pieces of infor-
mation correspond to the parameters of the request message that will
be directed to Fabrikam’s federation provider. The following table
shows this correspondence.

Parameter | Name Contents

wrealm Realm This identifies the Fabrikam Shipping application to
the federation provider. This parameter comes from
the Web.config file and is the address to which a
token should be sent.

wctx Context This parameter is set to the address of the original
URL requested by the user. This parameter is not
used by the issuer, but all issuers in the chain
preserve it for the Fabrikam Shipping application,
allowing it to send the user to his or her original
destination.

whr Home realm | This parameter tells Fabrikam’s federation provider
that it should use Adatum’s issuer as the identity
provider for this request.

The GetReturnUrl method is a locally defined helper method
that gives the URL that the user is trying to access. An example is
http://§fabrikam host}/f-shipping/adatum/shipment/new.

After using the WIF API to construct the sign-on request mes-
sage, the method configures the result for redirection.

At this point, ASP.NET will redirect the user’s browser to the
federation provider. In response, the federation provider will use the
steps described in the Chapter 3, “Claims-Based Single Sign-On for
the Web,” and Chapter 4, “Federated Identity for Web Applications,”
to authenticate the user. This will include additional HT TP redirection
to the identity provider specified as the home realm. Unlike the previ-
ous examples in this guide, the federation provider in this example

114

CHAPTER SIX

uses the whr parameter sent by the application to infer the address of
the customer’s identity provider. After the federation provider re-
ceives a security token from the identity provider and transforms it
into a token with the claim types expected by Fabrikam Shipping, it
will POST it to the wrealm address that was originally specified. This
is a special URL configured with the SignlnRequestMessage class in
the AuthenticateAndAuthorizeAttribute filter. In the example, the
URL will be f-shipping/FederationResult.

The MVC routing table is configured to dispatch the POST mes-
sage to the FederationResult action handler defined in the Home
Controller class of the Fabrikam Shipping application. This method is
shown in the following code.

[ValidateInput(false)]
[AcceptVerbs (HttpVerbs.Post)]

public ActionResult FederationResult(string wresult)
{
var fam =
FederatedAuthentication.WSFederationAuthenticationModule;
if (fam.CanReadSignInResponse(
System.Web.HttpContext.Current.Request, true))

{
string returnUrl = this.GetReturnUrlFromCtx();

return new RedirectResult(returnurl);

}

Il oo

Notice that this controller does not have the AuthenticateAnd
Authorize attribute applied. However, the token POSTed to this ad-
dress is still processed by the WIF Federation Authentication Module
because of the explicit redirection of the return URL.

The FederationResult action handler uses the helper method
GetReturnUrlFromCtx to read the wetx parameter that contains the
original URL requested by the user. This is simply a property lookup
operation: this.HttpContext.Request.Form[“wctx”]. Finally, it issues
a redirect request to this URL.

The Validatelnput custom attribute is required for this scenario
because the body of the POST contains a security token serialized
as XML. If this custom attribute were not present, ASPNET MVC
would consider the content of the body unsafe and therefore raise an
exception.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS 115

The application then processes the request a second time, but in
this pass, there is an authenticated user. The OnAuthorization
method described earlier will again be invoked, except this time it will
pass control to the AuthorizeUser helper method instead of the
AuthenticateUser method as it did in the first pass. The definition of
the AuthorizeUser method is shown in the following code.

private void AuthorizeUser(AuthorizationContext context)
{
var organizationRequested =
(string)context.RouteData.Values["organization"];
var userOrganiation =
ClaimHelper.GetCurrentUserClaim(
Fabrikam.ClaimTypes.Organization).Value;

if (l!organizationRequested.Equals(userOrganiation,
StringComparison.OrdinalIgnoreCase))

context.Result = new HttpUnauthorizedResult();
return;

var authorizedRoles = this.Roles.Split(new[] { "," },
StringSplitOptions.RemoveEmptyEntries);

bool hasValidRole = false;

foreach (var role in authorizedRoles)

{
if (context.HttpContext.User.IsInRole(role.Trim()))
{
hasValidRole = true;
break;
}
}
if (!hasValidRole)
{
context.Result = new HttpUnauthorizedResult();
return;
}

The AuthorizeUser method checks the claims that are present
for the current user. It makes sure that the customer identification in
the security token matches the requested customer as given by the
URL. It then checks that the current user has one of the roles required
to run this application.

116

CHAPTER SIX

Because this is a claims-aware application, you know that the user
object will be of type IClaimsPrincipal even though its static type
is IPrincipal. However, no run-time type conversion is needed in this
case. The reason is that the code only checks for role claims, and
these operations are available to instances that implement the
IPrincipal interface.

If you want to extract any other claims from the principal, you
will need to cast the User property to IClaimsPrincipal first. This
is shown in the following code.

var claimsprincipal =
context.HttpContext.User as IClaimsPrincipal;

If the user has a claim that corresponds to one of the permitted
roles (defined in the AuthenticateAndAuthorizeAttribute class), the
AuthorizeUser method will return without setting a result in the
context. This allows the original action request method to run.

In the scenario, the original action method is the Index method
of the ShipmentController class. The method’s definition is given by
the following code example.

[AuthenticateAndAuthorize(Roles = "Shipment Creator")]
public class ShipmentController : BaseController
{

public ActionResult Index()

{

var repository = new ShipmentRepository();

IEnumerable<Shipment> shipments;
var organization =
ClaimHelper.GetCurrentUserClaim(
Fabrikam.ClaimTypes.Organization).Value;

if (this.User.IsInRole(Fabrikam.Roles.ShipmentManager))
{

shipments =
repository.GetShipmentsByOrganization(organization);
}
else
{

var userName = this.User.Identity.Name;
shipments =
repository.GetShipmentsByOrganizationAndUserName (
organization, userName);

FEDERATED IDENTITY WITH MULTIPLE PARTNERS

var model =
new ShipmentListViewModel { Shipments = shipments };

return View(model);

7l ooo

The Index action handler retrieves the data that is needed to
satisfy the request from the application’s data store. Its behavior de-
pends on the user’s role, which it extracts from the current claims
context. |t passes control to the controller’s View method for render-
ing the information from the repository into HTML.

Setup and Physical Deployment

Applications such as Fabrikam Shipping that use federated identity
with multiple partners sometimes rely on automated provisioning and
may allow for customer-configurable claims mapping. The Fabrikam
Shipping example does not implement automated provisioning, but it
includes a prototype of a web interface as a demonstration of the
concepts.

ESTABLISHING THE TRUST RELATIONSHIP
If you were to implement automated provisioning, you could provide
a web form that allows an administrator from a customer’s site to
specify a URI of an XML document that contains federation meta-
data for ADFS 2.0. Alternatively, the administrator could provide the
necessary data elements individually.

If your application’s federation provider is an ADFS 2.0 server, you
can use Windows PowerShell® scripts to automate the configuration
steps. For example, the ADFSRelyingParty command allows you to
programmatically configure ADFS to issue security tokens to particu-
lar applications and federation providers. Look on MSDN® for the
ADFS 2.0 commands that you can use in your PowerShell scripts.

Processing a federation request might initiate a workflow process
that includes manual steps such as verifying that a contract has
been signed. Both manual and automated steps are possible, and
of course, you would first need to authenticate the request for
provisioning.

Automated provisioning
may be needed when there
are many partners.

117

118 CHAPTER SIX

If you automate provisioning with a federation metadata XML
file, this file would be provided by a customer’s issuer. In the following
example, you'll see the federation metadata file that is provided by
Adatum. The file contains all the information that Fabrikam Shipping
would need to configure and deploy its federation provider to com-
municate with Adatum’s issuer. Here are the important sections of the

file.

Organization Section
The organization section contains the organization name.

<Organization>
<OrganizationDisplayName xml:lang="">
Adatum
</OrganizationDisplayName>

<OrganizationName xml:lang="">Adatum</OrganizationName>

<OrganizationURL xml:lang="">
http://{adatum host}/Adatum.Portal/
</OrganizationURL>

</Organization>

Issuer Section
The issuer section contains the issuer’s URI.

<fed:SecurityTokenServiceEndpoint>
<EndpointReference
xmlns="http://www.w3.0rg/2005/08/addressing">
<Address>
https://{adatum host}/{issuer endpoint}/
</Address>

</EndpointReference>
</fed:SecurityTokenServiceEndpoint>

Certificate Section
The certificate section contains the certificate (encoded in base64)
that is used by the issuer to sign the tokens.

<RoleDescriptor ...>
<KeyDescriptor use="signing">
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<X509Data>
<X509Certificate>

FEDERATED IDENTITY WITH MULTIPLE PARTNERS 119

MIIB5TCCAV ... Ukyey2pjD/R4LO2B3A0
</X509Certificate>
</X509Data>
</KeyInfo>
</KeyDescriptor>
</RoleDescriptor>

After Adatum registers as a customer of Fabrikam Shipping, the
customer’s systems administrators must also configure their issuer to
respond to requests from Fabrikam’s federation provider. For ADFS
2.0, this process is identical to what you saw in Chapter 4, “Federated
Identity for Web Applications,” when the Litware issuer began to
provide claims for the a-Order application.

USER-CONFIGURABLE CLAIMS

TRANSFORMATION RULES
It’s possible for applications to let customers configure the claims
mapping rules that will be used by the application’s federation pro-
vider. You would do this to make it as easy as possible for an applica-
tion’s customers to use their existing issuers without asking them to
produce new claim types. If a customer already has roles or groups,
perhaps from Microsoft Active Directory, that are ready to use, it is
convenient to reuse them. However, these roles would need to be
mapped to roles that are understood by the application.

If the federation provider is an ADFS 2.0 server, you can use
Windows PowerShell scripts to set up the role mapping rules. The
claims mapping rules would be different for each customer.

Questions

1. In the scenario described in this chapter, who should take
what action when an employee leaves one of the partner
organizations such as Litware?

a. Fabrikam Shipping must remove the user from its user
database.

b. Litware must remove the user from its user database.

c. Fabrikam must amend the claims-mapping rules in its
federation provider.

d. Litware must ensure that its identity provider no
longer issues any of the claims that get mapped to
Fabrikam Shipping claims.

An application with many
partners may require
user-configurable claims
transformation rules.

120

CHAPTER SIX

2. In the scenario described in this chapter, how does Fabrikam
Shipping perform home realm discovery?

a. Fabrikam Shipping presents unauthenticated users
with a list of federation partners to choose from.

b. Fabrikam Shipping prompts unauthenticated users for
their email addresses. It parses this address to deter-
mine which organization the user belongs to.

c. Fabrikam Shipping does not need to perform home
realm discovery because users will have already
authenticated with their organizations’ identity
providers.

d. Each partner organization has its own landing page in
Fabrikam Shipping. Visiting that page will automati-
cally redirect unauthenticated users to that organiza-
tion’s identity provider.

3. Fabrikam Shipping provides an identity provider for its
smaller customers who do not have their own identity
provider. What are the disadvantages of this?

a. Fabrikam must bear the costs of providing this service.

b. Users at smaller customers will need to remember
another username and password.

c. Smaller customers must rely on Fabrikam to manage
their user’s access to Fabrikam Shipping.

d. Fabrikam Shipping must set up a trust relationship
with all of its smaller customers.

4. How does Fabrikam Shipping ensure that only users at a
particular partner can view that partner’s shipping data?

a. The Fabrikam Shipping application examines the email
address of the user to determine the organization they
belong to.

b. Fabrikam Shipping uses separate databases for each
partner. Each database uses different credentials to
control access.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS

c. Fabrikam shipping uses the role claim from the

partner’s identity provider to determine whether the
user should be able to access the data.

Fabrikam shipping uses the organization claim from
its federation provider to determine whether the user
should be able to access the data.

5. The developers at Fabrikam set the wsFederation passive
RedirectEnabled attribute to false. Why?

a.

This scenario uses active redirection, not passive
redirection.

. They wanted more control over the redirection

process.

. Fabrikam Shipping is an MVC application.

. They needed to be able to redirect to external identity

providers.

121

7 Federated Identity

with

Multiple Partners and
Windows Azure Access
Control Service

In Chapter 6, “Federated Identity with Multiple Partners,” you saw
how Fabrikam used claims to enable access to the Fabrikam shipping
application for multiple partners. The scenario described how Fabri-
kam supported users at large partner organizations with their own
claims-based identity infrastructure, and users from smaller organiza-
tions with no claims-based infrastructure of their own. Fabrikam
provided support for the larger partner organizations by establishing
trust relationships between the Fabrikam federation provider (FP) and
the partner’s identity provider (IdP). To support the smaller organiza-
tions, it was necessary for Fabrikam to implement its own identity
provider and manage the collection of enrolled employees from
smaller partners. This scenario also demonstrated how Fabrikam had
taken steps to automate the enrollment process for new partners.
Users at smaller partners had to create new accounts at Fabrikam,
adding to the list of credentials they have to remember. Many indi-
viduals would prefer to reuse an existing identity rather than create a
new one just to use the Fabrikam Shipping application. How can
Fabrikam enable users to reuse existing identities such as Facebook
IDs, Google IDs, or Windows Live® IDs? In addition to establishing
trust relationships with the social identity providers, Fabrikam must
find solutions to these problems:
* Other identity providers may use different protocols to
exchange claims data.

* Other identity providers may use different claim types.

* Fabrikam Shipping must be able to use the claims data it
receives to implement authorization rules.

* The federation provider must be able to redirect users to
the correct identity provider.

* Fabrikam must be able to enroll new users who want to use
the Fabrikam Shipping application.

123

124 CHAPTER SEVEN

You can use ACS to manage
multiple trust relationships.

In Chapter 5, “Federated Identity with Windows Azure Access
Control Services,” you saw how Adatum extended access to the a-
Order application to include users who wanted to use their social
identity to authenticate with the a-Order application. In this chapter,
you'll see how Fabrikam replaced its on-premises federation provider
with Windows AzureTM AppFabric Access Control services (ACS), to
enable users at smaller organizations without their own identity infra-
structure to access Fabrikam Shipping.

Unlike the scenario described in Chapter 5, “Federated Identity
with Windows Azure Access Control Services,” users from smaller
partners who use social identity providers will be able to enroll them-
selves with the Fabrikam Shipping application. They will access the
Fabrikam Shipping application alongside employees of existing enter-
prise partners. This chapter extends the scenario described in Chapter
6, “Federated Identity with Multiple Partners.”

The Premise

Fabrikam is a company that provides shipping services. As part of its
offering, it has a web application named Fabrikam Shipping that al-
lows its customers to perform such tasks as creating shipping orders
and tracking them. Fabrikam Shipping is an ASP.NET MVC application
that runs in the Fabrikam data center.

Fabrikam has already claims-enabled the Fabrikam Shipping web
application, allowing employees from Adatum and Litware to access
the application without having to present separate usernames and
passwords. Users at Contoso, a smaller partner, can also access Fabri-
kam Shipping, but they must log in using credentials that the Fabrikam
identity provider, Active Directory® Federation Services (ADFS) 2.0,
authenticates. Users at Contoso have complained about the fact that
they must remember a set of credentials specifically for accessing the
Fabrikam Shipping application. All of Contoso’s employees have either
Windows® Live IDs or Google accounts, and they would prefer to use
these credentials to gain access to the application. Users at other
Fabrikam customers have echoed this request, mentioning Facebook
IDs and Yahoo! IDs as additional credential types they would like to
be able to use.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS AND WINDOWS AZURE ACS

Goals and Requirements

The primary goal of this scenario is to show how Fabrikam can use
ACS as a federation provider to enable both employees of large part-
ners such as Adatum and Litware, and smaller partners whose employ-
ees use identities from with social identity providers, to access the
Fabrikam Shipping application.

To recap from Chapter 6, “Federated Identity with Multiple Part-
ners,” larger customers such as Adatum and Litware have some par-
ticular concerns. These include the following:

* Usability. They would prefer if their employees didn’t need to
learn new passwords and user names for Fabrikam Shipping.
These employees shouldn’t need any credentials other than the
ones they already have, and they shouldn’t have to enter creden-
tials a second time when they access Fabrikam Shipping from
within their security domain. The solution described in Chapter
6, “Federated Identity with Multiple Partners,” addresses this
concern and introducing ACS as a federation provider must not
change the user experience for the employees of these custom-
ers.

* Support. It is easier for Adatum and Litware to manage issues
such as forgotten passwords than to have their employees
interact with Fabrikam. The solution described in Chapter 6,
“Federated Identity with Multiple Partners,” addresses this
concern and introducing ACS as a federation provider must not
change the user experience for the security administrators of
these customers.

* Liability. There are reasons why Adatum and Litware have the
authentication and authorization policies that they have. They
want to control who has access to their resources, no matter
where those resources are deployed, and Fabrikam Shipping is
no exception. If an employee leaves the company, he or she
should no longer have access to the application. Again, the
solution described in Chapter 6, “Federated Identity with
Multiple Partners,” addresses this concern.

* Confidentiality. Partners of Fabrikam, such as Adatum, do not
want other partners, such as Litware, to know that they are
using the Fabrikam Shipping service. When a user accesses the
Fabrikam Shipping site, they should not have to choose from a
list of available authentication partners; rather, the site should
automatically redirect them to the correct identity provider
without revealing a list of partners.

125

126

CHAPTER SEVEN

Fabrikam has its own goals, which are the following:

To delegate the responsibility for maintaining user identities
to its customers, when possible. This avoids a number of
problems, such as having to synchronize data between Fabrikam
and its customers. The contact information for a package’s
sender is an example of this kind of data. Its accuracy should be
the customer’s responsibility because it could quickly become
costly for Fabrikam to keep this information up to date. The
solution described in Chapter 6, “Federated Identity with
Multiple Partners,” addresses this concern.

To bill customers by cost center if one is supplied. Customers
should provide the cost center information. This is another
example of information that is the customer’s responsibility. The
solution described in Chapter 6, “Federated Identity with
Multiple Partners,” addresses this concern.

To sell its services to a large number of customers. This means
that the process of enrolling a new company must be stream-
lined. Fabrikam would also prefer that its customers self-manage
the application whenever possible. The automated enrollment
process must be able to support both large organizations with
their own identity infrastructure, and smaller organizations
whose employees use a social identity provider. Furthermore,
Fabrikam would like to support the widest possible range of
social identity providers.

To provide the infrastructure for federation if a customer
cannot. Fabrikam wants to minimize the impact on the applica-
tion code that might arise from having more than one authenti-
cation mechanism for customers. However, Fabrikam would
prefer not to have to maintain an on-premises identity provider
for smaller customers. Instead, it would like users at smaller
customers to use existing social identities.

Smaller customers and individual users have some particular concerns.
These include the following:
* Usability. Individual users would prefer to use existing identities

such as Windows Live IDs or Google account credentials to
access the Fabrikam Shipping website instead of having to
create a new user ID and password just to access this site.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS AND WINDOWS AZURE ACS 127

* Support. If individual users forget their passwords, they would
like to be able to use the password recovery tools provided by

their social identity provider rather than interacting with
Fabrikam.

* Privacy. Individual users do not want their social identity
provider to reveal to Fabrikam private information maintained
by the social identity provider that is not relevant to the Fabri-
kam shipping application.

Overview of the Solution

With the goals and requirements in place, it’s time to look at the solu-
tion. As you saw in Chapter 6, “Federated Identity with Multiple
Partners,” the solution includes the establishment of a claims-based
architecture with issuers that act as an identity providers on the cus-
tomers’ side. In addition, the solution includes an issuer that acts as
the federation provider on the Fabrikam side. Recall that a federation
provider acts as a gateway between a resource and all of the issuers
that provide claims about the resource’s users. In this chapter, Fabri-
kam replaces the on-premises federation provider with ACS in order
to support authenticating users with social identities. This change also
means that Fabrikam no longer has to host and manage a federation
provider in its own datacenter.

Although this solution brings the benefits of easy support for users
who want to use their social identities, and a simplification of the
implementation of the on-premises Fabrikam issuer, there are some
trade-offs that Fabrikam evaluated.

This solution relies on access to ACS for all access to Fabrikam
Shipping. Fabrikam is satisfied by the SLAs in place with the ACS
subscription.

Using ADFS on-premises meant that Fabrikam could support
federation with organizations using the SAMLP protocol. ACS does
not currently support this protocol, but Fabrikam anticipates that all
of its federation partners will support the WS-Federation protocol.

Figure 1 shows the Fabrikam Shipping solution using ACS.

128 CHAPTER SEVEN

In the solution
described in Chapter
6, “Federated Identity
with Multiple
Partners,” Fabrikam

used an on-premises
federation provider
(FP). Now Fabrikam is
using ACS in the
cloud instead.

FIGURE 1
Fabrikam Shipping using ACS

s+

_ — — >0pen 0
T _ - >Facebook Issuers (APs)
~ = = >Windows LivelD
_

Tvansform

L Map Clams
o)

® acs(FP

Fabvkam

Here’s an example of how the system works for a user at an orga-

nization such as Adatum with its own identity provider. This process
is similar, but not identical to the process described in Chapter 6,
“Federated Identity with Multiple Partners.” The steps correspond to
the shaded numbers in the preceding illustration.

STEP 1: PRESENT CREDENTIALS TO THE IDENTITY PROVIDER

1. When John from Adatum attempts to use Fabrikam Ship-
ping for the first time (that is, when he first navigates to
https://§fabrikam host}/f-shipping/adatum), there’s no
session established yet. In other words, from Fabrikam’s
point of view, John is unauthenticated. The URL provides
the Fabrikam Shipping application with a hint about the
customer that is requesting access (the hint is “adatum”
at the end of the URL).

2. The application redirects John’s browser to the Fabrikam
ACS instance in the cloud (the federation provider). That’s
because the Fabrikam ACS instance is the application’s
trusted issuer. As part of the redirection URL, the applica-
tion includes the whr parameter that provides a hint to ACS
about the customer’s home realm. The value of the whr
parameter is https://localhost/Adatum.Simulatedlssuer.7/.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS AND WINDOWS AZURE ACS 129

It’s important to use the entitylD value from the identity
provider’s FederationMetadata.xml file as the whr value if you
want ACS to automatically redirect the user to the partner’s
identity provider. entitylD is an attribute in the issuer’s
federation metadata: ACS uses this attribute value to uniquely
identify identity providers that it trusts.

3. ACS uses the whr parameter to look up the customer’s
identity provider and redirect John’s browser to the Adatum
issuer.

4. Assuming that John uses a computer that is already part of
the domain and on the corporate network, he will already
have valid network credentials that his browser can present
to the Adatum identity provider.

5. The Adatum identity provider uses John's credentials to
authenticate him and then issue a security token with a set
of Adatum claims. These claims are the employee name, the
employee address, the cost center, the role, and the group.

Although the identity provider may also issue an organization
claim, Fabrikam will always generate the organization claim
value in ACS. This prevents a malicious administrator at a
partner organization from impersonating a user from another
partner.

STEP 2: TRANSMIT THE IDENTITY PROVIDER’S SECURITY
TOKEN TO THE FEDERATION PROVIDER

1. The Adatum identity provider uses HT TP redirection
to redirect the browser to the Fabrikam ACS instance,
delivering the security token issued by the Adatum
identity provider to the Fabrikam ACS instance.

2. The Fabrikam ACS instance receives this token and
validates it.

STEP 3: MAP THE CLAIMS

1. The Fabrikam ACS instance applies claim-mapping rules to
the claims in the identity provider’s security token. ACS
transforms the claims into claims that Fabrikam Shipping
expects and understands.

2. ACS returns a new token with the claims to John's browser
and uses HTTP redirection to return John’s browser the
Fabrikam Shipping application.

130

CHAPTER SEVEN

The redirection should be to a secure HTTP address (HTTPS) to
prevent the possibility of session hijacking.

STEP 4: TRANSMIT THE MAPPED CLAIMS AND PERFORM THE
REQUESTED ACTION

1. The browser sends the security token from ACS, which
contains the transformed claims, to the Fabrikam Shipping
application.

2. The application validates the security token.

3. The application reads the claims and creates a session for
John.

Because this is a web application, all interactions happen through
the browser. (See Appendix B for a detailed description of the proto-
col for a browser-based client.)

Litware follows the same steps as Adatum. The only differences
are the URLs used (https://§fabrikam host}/f-shipping/litware and the
Litware identity provider’s address) and the claims-mapping rules,
because the claims issued by the Litware identity provider are differ-
ent from those issued by the Adatum identity provider. Notice that
the Fabrikam Shipping web application trusts the Fabrikam ACS in-
stance, not the individual issuers at Litware or Adatum; this level of
indirection isolates Fabrikam Shipping from individual differences
between Litware and Adatum.

In the scenario described in Chapter 6, “Federated Identity with
Multiple Partners,” Fabrikam managed and hosted an identity pro-
vider for smaller customers such as Contoso to enable users from
these customers to authenticate before accessing the Fabrikam Ship-
ping application. Users at organizations such as Contoso would now
prefer to reuse an existing social identity rather than maintaining a
separate set of credentials just for use with Fabrikam Shipping.

Here’s an example of how the system works for a user at an orga-
nization such as Contoso where the users authenticate with an online
social identity provider. The steps correspond to the un-shaded num-
bers in the preceding illustration. ACS treats the online social identity
providers in almost the same way it treats the Adatum and Litware
identity providers. However, it will use a different set of claims-map-
ping rules for the social identity providers and, if necessary, perform
protocol transition as well. Fabrikam didn’t need to change the Fabri-
kam Shipping application in order to support users with social identi-
ties; the application continues to trust ACS and ACS continues to
deliver the same types of claims to Fabrikam Shipping.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS AND WINDOWS AZURE ACS 131

STEP 1: PRESENT CREDENTIALS TO THE IDENTITY PROVIDER

1. When Mary from Contoso attempts to use Fabrikam
Shipping for the first time (that is, when she first navigates
to https://§fabrikam host}/f-shipping/Contoso), there’s no
session established yet. In other words, from Fabrikam’s
point of view, Mary is unauthenticated. The URL provides
the Fabrikam Shipping application with a hint about the
customer that is requesting access (the hint is “Contoso” at
the end of the URL).

2. The application redirects Mary’s browser to the Fabrikam
ACS instance in the cloud (the federation provider). That’s
because the Fabrikam ACS instance is the application’s
trusted issuer. As part of the redirection URL, the applica-
tion includes the whr parameter that provides a hint to the
federation provider about the customer’s home realm. The
value of the whr parameter is uri:WindowsLivelD.

In the current implementation, this means that all the employees
at a small partner must use the same social identity provider. In
this example, all Contoso employees must have a Windows Live
ID to be able to access Fabrikam Shipping. You could extend the
sample to enable users at partners such as Contoso to each use
different social identity providers.

3. ACS uses the whr parameter to look up the customer’s
preferred social identity provider and redirect Mary’s
browser to the social identity issuer; in this example,
Windows Live.

4. The social identity provider, Windows Live in this example,
uses Mary’s credentials to authenticate her and then returns
a security token with a basic set of claims to Mary’s brows-
er. In the case of Windows Live ID, the only claim returned
is nameidentifier.

STEP 2: TRANSMIT THE SOCIAL IDENTITY PROVIDER’S
SECURITY TOKEN TO ACS

1. The social identity provider uses HTTP redirection to
redirect Mary’s browser with the security token it has issued
to the Fabrikam ACS instance.

2. The Fabrikam ACS instance receives this token and
validates it.

132 CHAPTER SEVEN

Partners, both with and without
their own identity providers, can
enroll themselves with Fabrikam

Shipping.

STEP 3: MAP THE CLAIMS

1. The Fabrikam ACS instance applies token mapping rules to
the social identity provider’s security token. It transforms
the claims into claims that Fabrikam Shipping understands.
In this example, it adds new claims: name, organization,
role, and costcenter.

2. If necessary, ACS transitions the protocol that the social
identity provider uses to the WS-Federation protocol.

3. ACS returns a new token with the claims to Mary’s browser.

STEP 4: TRANSMIT THE MAPPED CLAIMS AND PERFORM
THE REQUESTED ACTION

1. ACS uses HTTP redirection to redirect Mary’s browser with
the security token from ACS, which contains the claims, to
the Fabrikam Shipping application.

2. The application validates the security token.

3. The application reads the claims and creates a session for
Mary.

ENROLLING A NEW PARTNER ORGANIZATION
One of Fabrikam’s goals was to enable partner organizations to enroll
themselves with the Fabrikam Shipping application, and enable
them to manage their own users. Both larger partners with their
own identity providers and smaller partners whose employees use
identities from social identity providers should be able to perform
these operations.

The enrollment process must perform three key configuration steps:

* Update the Fabrikam Shipping list of registered partners. The
registration data for each partner should include its name, the

URL of a logo image, and an identifier for the partner’s home

realm.

* For partners using their own identity provider, create a trust
relationship so that the Fabrikam ACS instance trusts the
partner’s identity provider.

* Create suitable claims-mapping rules in the Fabrikam ACS
instance that transform the claims from the partner’s identity
provider to the claims that Fabrikam Shipping expects to see.

Fabrikam uses the partner name and logo that it stores in its list
of registered partners to customize the Ul of Fabrikam Shipping when
an employee from the partner visits the site. The partner’s home realm

FEDERATED IDENTITY WITH MULTIPLE PARTNERS AND WINDOWS AZURE ACS 133

is important because when Fabrikam Shipping redirects a user to ACS
for authentication, it includes the home realm as a value for the whr
parameter in the request’s querystring. To enable ACS to automati-
cally redirect the user to the correct identity provider, the partner’s
home realm value should be the value of the entitylD in the partner
identity provider’s FederationMetadata.xml.

Partners without their own identity provider use one of the pre-
configured social identity providers in ACS; enrolling a new partner in
this scenario does not require Fabrikam to configure a new identity
provider in ACS. For partners with their own identity provider, the
enrollment process must configure a new identity provider in ACS.

Partners with their own identity provider must configure their
identity provider; a configuration example might be defining a
relying party realm. The details of this will be specific to the type
of identity provider that the partner uses.

Different identity providers return different claims. For example,
Windows Live only returns a nameidentifier claim, while a custom
provider might include name, organization, costcenter, and role
claims. Regardless of the claims that the identity provider issues, the
rules that the enrollment process creates in ACS must be sufficient to
return costcenter, name, organization, and role claims, all of which
the Fabrikam Shipping application requires. ACS can issue these claims
to Fabrikam Shipping either by transforming a claim from the identity
provider, by passing a claim from the identity provider through un-
changed, or by creating a new claim.

MANAGING MULTIPLE PARTNERS

WITH A SINGLE IDENTITY
A user, such as Paul, may work for two or more partners of Fabrikam
Shipping. If those partners have their own identity providers, then
Paul will have two separate identities, such as paul@contoso.com and
paul@adventureworks.com, for example. However, if the partner or-
ganizations do not have their own identity providers, then it’s likely
that Paul will want to use the same social identity (paul@gmail.com)
with both partners. This raises a problem if Paul has different roles
in the two partner organizations; in Contoso, he may be in the
Shipment Manager role, and in AdventureWorks he may be in the
Administrator role. If ACS assigns roles based on Paul’s identity,
he will end up with both roles assigned to him, which means he will
be in the Administrator role in Contoso.

To handle this scenario, Fabrikam first considered using a differ-
ent service namespace for each partner in ACS. To access Contoso
data at Fabrikam Shipping, Paul would need a token from the
Contoso namespace, to access AdventureWorks data he would need

134

CHAPTER SEVEN

a token from the AdventureWorks namespace. To automate the en-
rollment process for new partners, Fabrikam would need to be able to
create new service namespaces in ACS programmatically. Unfortu-
nately, the ACS Management API does not currently support this
operation.

The solution adopted by Fabrikam was to create a different rely-
ing party (RP) in ACS for each partner. In ACS, each relying party can
have its own set of claims-mapping rules, so the rule group in the
Contoso relying party in ACS can assign the Shipment Manager role
to Paul, while the rule group in the AdventureWorks relying party in
ACS can assign him the Administrator role. If Paul signs in to Fabri-
kam Shipping using a token from the Contoso relying party and he
then tries to access AdventureWorks data he will need to re-authen-
ticate in order to obtain a token from the AdventureWorks relying
party in ACS.

A single service namespace in ACS can have multiple relying parties.
The wtrealm parameter passed to ACS identifies the relying party
to use, and each relying party has its own set of claims-mapping
rules that include a rule to add an organization claim. Fabrikam
Shipping uses the organization c/aim to authorize access to data.

MANAGING USERS AT A PARTNER

ORGANIZATION
For a partner organization with its own identity provider, the partner
can manage which employees have access to its data at Fabrikam Ship-
ping using the partner’s identity provider. By controlling which claims
its identity provider issues for individual employees, the partner can
determine what level of access the employee has in the Fabrikam
Shipping application. This approach depends on the claims-mapping
rules that the enrollment process created in ACS. For example, map-
ping the Order Tracker role in Adatum to the ShipmentManager role
in Fabrikam Shipping would give anyone at Adatum with the Order
Tracker role the ability to manage Adatum shipments at Fabrikam.

In the case of a partner without its own identity provider, such as
Contoso where employees authenticate with a social identity pro-
vider, the claims-mapping rules in ACS must include the mapping of
individuals to roles within Fabrikam. To manage these mappings for
these organizations, one user should be a designated administrator
who can edit their organization’s claims-mapping rules. The adminis-
trator would use an administration page hosted on the Fabrikam Ship-
ping enrollment web site to manage the list of users with access to
Contoso data in Fabrikam Shipping and edit the rules that control

FEDERATED IDENTITY WITH MULTIPLE PARTNERS AND WINDOWS AZURE ACS 135

access levels. This page will use the ACS Management API to make the
necessary configuration changes in ACS.

The sample does not implement this feature: each partner without its
own identity provider has only a single user. The enrollment process
configures this user. The sample implementation also assumes that if
a partner did have more than one user, then all the users must use
the same social identity provider.

Inside the Implementation

Now is a good time to walk through some of the details of the solu-
tion. As you go through this section, you may want to download the
Microsoft Visual Studio® solution, 7FederationWithMultiplePartner-
sAndAcs from http://claimsid.codeplex.com. If you are not interested
in the mechanics, you should skip to the next section.

The scenario described in this chapter is very similar to the sce-
nario described in Chapter 6, “Federated Identity with Multiple Part-
ners.” The key difference is that ACS, rather than an issuer at Fabrikam,
now provides the federation services. The changes to the Fabrikam
Shipping application all relate to the way Fabrikam Shipping interacts
with ACS; in particular, how the application enrolls new partners and
handles the log on process. The logic of the application and the au-
thorization rules it applies using the claims from the identity providers
is unchanged.

GETTING A L1ST OF IDENTITY PROVIDERS

FROM ACS
When a partner wants to enroll with the Fabrikam Shipping applica-
tion, part of the sign-up process requires the partner to select the
identity provider they want to use. The choice they have is either to
use their own identity provider (at this stage in the enrollment process
Fabrikam Shipping and ACS know nothing about the partner or its
identity provider), or to use one of the pre-configured social identity
providers: Google, Yahoo!, or Windows Live. It’s possible that the list
of available social identity providers might change, so it makes sense
for Fabrikam to build the list programmatically by querying the Fabri-
kam ACS instance. However, there’s no way to ask ACS for only the
list of social identity providers and exclude any custom identity pro-
viders from other partners. The following code sample shows how
Fabrikam implemented an extension method, IsSocial, to check
whether an identity provider is a social identity provider.

Modifying Fabrikam
Shipping to use ACS instead
of the Fabrikam federation
provider was mostly a
configuration task.

136 CHAPTER SEVEN

public static class SocialldentityProviders
{
public static readonly SocialldentityProvider
Google = new SocialIdentityProvider {
DisplayName = "Google",
HomeRealm = "Google",
Id = "10008641" };
public static readonly SocialldentityProvider
WindowsLiveId = new SocialIdentityProvider {
DisplayName = "Windows Live ID",
HomeRealm = "uri:WindowsLiveID",
Id = "10007989" };
public static readonly SocialIdentityProvider
Yahoo = new SocialIldentityProvider {
DisplayName = "Yahoo!",
HomeRealm = "Yahoo!",
Id = "10008653" };
public static Ienumerable<SocialIdentityProvider> GetAll()

{
return new SocialIdentityProvider[3] {
Google, Yahoo, WindowsLiveId };
}
)
public static string GetHomeRealm(string socialIpId)
{
".N\\ /;: var providers = new[] { Google, Yahoo, WindowsLiveId };
‘j> return providers.Single(p => p.Id == sociallIpId).HomeRealm;
}
=

public static bool IsSocial(this IdentityProvider ip)
{
if (ip.Issuer.Name.Contains(Google.HomeRealm) ||
ip.Issuer.Name.Contains(Yahoo.HomeRealm) ||
ip.Issuer.Name.Contains(WindowsLiveId.HomeRealm))

return true;

}

return false;

The solution includes an ACS.ServiceManagementWrapper proj-
ect that wraps the REST calls that perform management operations
in ACS. The enrollment process builds a list of available social identity
providers by calling the RetrieveldentityProviders method in this
wrapper class.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS AND WINDOWS AZURE ACS

The ACS.ServiceManagementWrapper project uses password
authentication over HTTPS with the calls that it makes to the
ACS management API. As an alternative, you could sign the
request with a symmetric key or an X.509 certificate.

ADDING A NEW IDENTITY PROVIDER TO ACS
When a partner with its own identity provider enrolls with Fabrikam
Shipping, part of the enrollment process requires Fabrikam to add
details of the partner’s issuer to the list of identity providers in ACS.
The enrollment process automates this by using the ACS Management
API. The wrapper class in the ACS.ServiceManagementWrapper proj-
ect includes two methods, AddldentityProvider and Addldentity
ProviderManually for configuring a new identity provider in ACS.
During the enrollment process, if the user provides a FederationMeta-
data.xml file that contains all of the necessary information to config-
ure the trust, the EnrollmentController class uses the Addldentity
Provider method. If the user provides details of the identity provider
manually, it uses the AddldentityProviderManually method. The
enrollment process then adds a relying party and mapping rules to the
identity provider, again using methods in the ServiceManagement
Wrapper wrapper class.

MANAGING CLAIMS-MAPPING RULES IN ACS

The automated enrollment process for both larger organizations that
have their own identity provider, and smaller partners who rely on a
social identity provider requires Fabrikam to add claims-mapping rules
to ACS programmatically. The wrapper class in the ACS.ServiceMan-
agementWrapper project includes an AddSimpleRuleToRuleGroup
method that the enrollment process uses when it adds a new claims-
mapping rule. The application also uses the AddPassthroughRule
ToRuleGroup when it needs to add a rule that passes a claim through
from the identity provider to the relying party without changing it,
and the AddSimpleRuleToRuleGroupWithoutSpecifylnputClaim
method when it needs to create a new claim that’s not derived from
any of the claims issued by the identity provider.

It’s important that the mapping rules don’t simply pass through the
organization c/aim, but instead create a new organization c/aim
derived from the identity of the identity provider. This is to prevent
the risk of a malicious administrator at the partner spoofing the
identity of another organization. When registering a new organiza-
tion, the code should verify that the organization name is not already
is use, so that a new registration cannot override an existing organi-
zation name or add itself to an existing organization. The Fabrikam

137

138 CHAPTER SEVEN

Shipping application uses the organization claim in its authoriza-

N tion and data access management logic (for example, when creating
and listing shipments).
- = For partners without their own identity provider, the enrollment

process must also create a new relying party in ACS. The wrapper
class in the ACS.ServiceManagementWrapper project includes an
1 AddRelyingParty method to perform this operation.

The EnrollmentController class in the f-Shipping.Enrollment.7
project demonstrates how the Fabrikam Shipping application handles
the automated enrollment process.

Because Fabrikam uses multiple relying parties in ACS to handle
the case where a user with a social identity is associated with multiple
partners, the sample solution disables checking audience URIs in the
Web.config file:

XML
<microsoft.identityModel>
<service>
<audienceUris mode="Never">
</audienceUris>

</service>
</microsoft.identityModel>

Normally, you should not set the audienceUris mode to “Never”
because this introduces a security vulnerability: the correct approach
is to add the audience URIs at run time as Fabrikam Shipping enrolls
new partners. You would also need to share the list of Uris between
the f-Shipping.Enrollment.7 web application and the f-Shipping.7 web
application. Furthermore, to avoid the possibility of one tenant imper-
sonating another, you would use a separate symmetric key for each
tenant. However, as described previously, in this solution ACS adds an
organization claim to the token that it issues that the REST service
can check.

DISPLAYING A LIST OF PARTNER

ORGANIZATIONS
For the purposes of this sample, the home page at Fabrikam Shipping
displays a list of registered partner organizations. In a real application,
you may not want to make this information public because some
partners may not want other partners to know about their business
relationship with Fabrikam Shipping, so each partner would have their
own landing page.

FEDERATED IDENTITY WITH MULTIPLE PARTNERS AND WINDOWS AZURE ACS 139

In ACS 2.0 (the current version at the time of this writing), it’s not
possible to keep this information private because ACS publishes a
public feed of all the identity providers associated with each relying

party.

For this example, the Fabrikam Shipping application generates the
list of partners from a local store instead of querying ACS. Because
Fabrikam Shipping maintains this data locally, there is no need to
query ACS or use the login page that ACS can generate for you.

AUTHENTICATING A USER OF FABRIKAM

SHIPPING
The Fabrikam Shipping application uses the AuthenticateAnd
AuthorizeAttribute attribute class to intercept requests and then ask
the WSFederationAndAuthenticationModule class to handle the
authentication and to retrieve the user’s claims from ACS. The
AuthenticateUser method builds the redirect URL that passes the
WS-Federation parameters to the ACS instance that Fabrikam Ship-
ping uses. The following table describes the parameters that the
application passes to ACS.

Parameter Example value Notes
wa wsignin1.0 The WS-Federation command.
wtrealm https:// The realm value that ACS uses to

localhost/f-Shipping.7/ identify the relying party.
FederationResult

wctx https:/ The return URL to which ACS should
localhost/f-Shipping.7/ post the token with claims.
Contoso

The Fabrikam Shipping application does not send a whr parameter
identifying the home realm because Fabrikam configures each tenant
in ACS as a relying party with only a single identity provider enabled.

The following code example shows the AuthenticateUser
method in the AuthenticateAndAuthorizeAttribute class.

private static void AuthenticateUser(AuthorizationContext context)

{

var organizationName =
(string)context.RouteData.Values["organization"];

if (!string.IsNullOrEmpty(organizationName))
{

140

CHAPTER SEVEN

var returnUrl = GetReturnUrl(context.RequestContext);

// User is not authenticated and is entering for the first time.
Var fam =
FederatedAuthentication.WSFederationAuthenticationModule;
var signIn = new SignInRequestMessage
(new Uri(fam.Issuer), fam.Realm)
{
Context = returnUrl.ToString(),
Realm = string.Format
("https://localhost/f-shipping.7/{0}",organizationName)
¥
context.Result =
new RedirectResult(signIn.WriteQueryString());
¥

else

{

throw new ArgumentException(“Tenant name missing.");

AUTHORIZING ACCESS TO FABRIKAM
SHIPPING DATA

The Fabrikam Shipping application uses the same AuthenticateAnd
Authorize attribute to handle authorization. For example, Fabrikam
Shipping only allows members of the Shipment Manager role to
cancel orders. The following code example from the Shipment
Controller class shows how this is declared:

[AuthenticateAndAuthorize(Roles = "Shipment Manager")]
[AcceptVerbs (HttpVerbs.Post)]

public ActionResult Cancel(string id)
{

The AuthorizeUser method in the AuthenticateAndAuthorize
Attribute class determines whether a user has the appropriate
Organization and Role claims:

private void AuthorizeUser(AuthorizationContext context)

{

var organizationRequested =
(string)context.RouteData.Values["organization"];

FEDERATED IDENTITY WITH MULTIPLE PARTNERS AND WINDOWS AZURE ACS 141

var userOrganization = ClaimHelper
.GetCurrentUserClaim(Fabrikam.ClaimTypes.Organization).Value;
if (!organizationRequested.Equals(
userOrganization, StringComparison.OrdinalIgnoreCase))

context.Result = new HttpUnauthorizedResult();
return;

var authorizedRoles =
this.Roles.Split(new[] { "," },
StringSplitOptions.RemoveEmptyEntries);
bool hasValidRole = false;
foreach (var role in authorizedRoles)

{
if (context.HttpContext.User.IsInRole(role.Trim()))
{
hasValidRole = true;
break;
b
}
if (!hasValidRole)
{
context.Result = new HttpUnauthorizedResult();
return;
}

For a discussion of some alternative approaches to authorization
that Fabrikam Shipping could have taken, see Appendix G, “Authoriza-
tion Strategies.”

Setup and Physical Deployment

The following sections describe the setup and physical deployment
for the Fabrikam Shipping websites, the simulated claims issuers, and
the initialization of the ACS instance.

FABRIKAM SHIPPING WEBSITES
Fabrikam has two separate websites: one for Fabrikam Shipping and
one to manage the enrollment process for new partners. This enables
Fabrikam to configure the two sites for the different expected usage

In a multi-tenant application
such as Fabrikam Shipping,
the authorization rule that
checks the Organization
claim ensures that a tenant
only has access to its own
data.

142 CHAPTER SEVEN

Using two separate sites
also circumvents a problem
that can occur during the
enrollment process for a
partner that uses a social
identity provider. During
the enrollment process, a
user must sign into their
social identity provider so
that Fabrikam can capture
the claim values that prove
that user’s identity. The
enrollment process then
creates the new claims-
mapping rules in ACS for
the partner. Unless the user
running the enrollment
process signs out and then
signs in again (not a great
user experience), they will
not get the full set of claims
that they require to access
the Fabrikam Shipping
application.

patterns: Fabrikam expects the usage of the shipping site to be sig-
nificantly higher than the usage of the enrollment site.

In the sample application, Fabrikam Shipping maintains a list
of registered partner organizations using the Organization and
OrganizationRepository classes. The following code sample shows
the Organization class:

C#

public class Organization

{
public string LogoPath { get; set; }
public string Name { get; set; }
public string DisplayName { get; set; }
public string HomeRealm { get; set; }

}

Both the f-Shipping.Enrollment.7 and the f-Shipping.7 web ap-
plications need access to this repository, which the sample imple-
ments by using a simple file called organizations.txt stored in a folder
called SharedData.

The implementation of the enrollment functionality in this sample
shows only a basic outline of how you would implement this func-
tionality in a real application.

SAMPLE CLAIMS ISSUERS
The sample comes with two, pre-configured, claims issuers that act as
identity providers for Adatum and Litware. These simulated issuers
illustrate the role that a real issuer, such as ADFS 2.0, would play in
this scenario. If you want to experiment and extend the sample by
enrolling additional partners with their own identity providers, you
will need additional issuers. You can either create your own new STS
using the WIF “WCF Security Token Service” template in Visual Stu-
dio and using either the Adatum.Simulatedlssuer.7 or Litware.Simu-
latedlssuer.7 projects as a model to work from, or you could use one
of the simple issuers for Northwind or AdventureWorks in the Assets
folder for this sample.

These simple issuers use the SelfSTS sample application that you
can read about here: http://archive.msdn.microsoft.com/SelfSTS.

INITIALIZING ACS
The sample application includes a set of pre-configured partners for
Fabrikam Shipping, both with and without their own identity provid-
ers. These partners require identity providers, relying parties, and

http://archive.msdn.microsoft.com/SelfSTS

FEDERATED IDENTITY WITH MULTIPLE PARTNERS AND WINDOWS AZURE ACS

claims-mapping rules in ACS in order to function. The ACS.Setup
project in the solution is a simple console application that you can run
to add the necessary configuration data for the pre-configured part-
ners to your ACS instance. It uses the ACS Management APl and the
wrapper classes in the ACS.ServiceManagementWrapper project.

You will still need to perform some manual configuration steps; the
ACS Management AP/ does not enable you to create a new service
namespace. You must perform this operation in the ACS manage-
ment portal.

Questions

1. Why does Fabrikam want to use ACS in the scenario
described in this chapter?

a. Because it will simplify Fabrikam’s own internal
infrastructure requirements.

b. Because it’s the only way Fabrikam can support users
who want to use a social identity provider for authen-
tication.

c. Because it enables users with social identities to
access the Fabrikam Shipping application more easily.

d. Because ACS can authenticate users with social
identities.

2. In the scenario described in this chapter, why is it necessary
for Fabrikam to configure ACS to trust issuers at partners
such Adatum and Litware?

a. Because Fabrikam does not have its own on-premises
federation provider.

b. Because Fabrikam uses ACS for all the claims-mapping
rules that convert claims to a format that Fabrikam
Shipping understands.

c. Because partners such as Adatum have some users
who use social identities as their primary method of
authentication.

d. Because a relying party such as Fabrikam Shipping can
only use a single federation provider.

143

144 CHAPTER SEVEN

3. How does Fabrikam Shipping manage home realm discovery
in the scenario described in this chapter?

a.

Fabrikam Shipping presents unauthenticated users
with a list of federation partners to choose from.

. Fabrikam Shipping prompts unauthenticated users

for their email addresses. It parses each address to
determine which organization the user belongs to.

. ACS manages home realm discovery; Fabrikam

Shipping does not.

. Each partner organization has its own landing

page in Fabrikam Shipping. Visiting that page will
automatically redirect unauthenticated users to
that organization’s identity provider.

4. Enrolling a new partner without its own identity provider
requires which of the following steps?

a.

b.
c.

d.

Updating the list of registered partners stored by
Fabrikam Shipping. This list includes the home realm
of the partner.

Adding a new identity provider to ACS.
Adding a new relying party to ACS.

Adding a new set of claims-mapping rules to ACS.

5. Why does Fabrikam use a separate web application to
handle the enroliment process?

a.

Because the expected usage patterns of the enroll-
ment functionality are very different from the
expected usage patterns of the main Fabrikam
Shipping web site.

. Because using the enrollment functionality does not

require a user to authenticate.

. Because the site that handles enrolling new partners

must also act as a federation provider.

. Because the site that updates ACS with new relying

parties and claims-mapping rules must have a different
identity from sites that only read data from ACS.

More Information

Appendix E of this guide provides a detailed description of ACS
and its features.

8 Claims Enabling Web Services

In Chapter 4, “Federated Identity for Web Applications,” you saw
Adatum make the a-Order application available to its partner Litware.
Rick, a salesman from Litware, used his local credentials to log onto
the a-Order website, which was hosted on Adatum’s domain.

To do this, Rick needed only a browser to access the a-Order
website. But what would happen if the request came from an applica-
tion other than a web browser? What if the information supplied by
aOrder was going to be integrated into one of Litware’s in-house ap-
plications?

Federated identity with an active (or “smart”) client application
works differently than federated identity with a web browser. In a
browser-based scenario, the web application requests security tokens
by redirecting the user’s browser to an issuer that produces them.
(This process is shown in the earlier scenarios)) With redirection, the
browser can handle most of the authentication for you. In the active
scenario, the client application actively contacts all issuers in a trust
chain (these issuers are typically an identity provider (IdP) and a fed- Active clients do not need
eration provider (FP)) to get and transform the required tokens. HTTP redirection.

In this chapter, you'll see an example of a smart client that uses
federated identity. Fortunately, support for Microsoft® Windows®
Communication Foundation (WCF) is a standard feature of the Win-
dows Identity Foundation (WIF). Using WCF and WIF reduces the
amount of code needed to implement both claims-aware web ser-
vices and claims-aware smart clients.

The Premise

Litware wants to write an application that can read the status of its
orders directly from Adatum. To satisfy this request, Adatum agrees
to provide a web service called a-Order.OrderTracking.Services that
can be called by Litware over the Internet.

145

146 CHAPTER EIGHT

Active clients use claims to get
access to remote services.

Adatum and Litware have already done the work necessary to
establish federated identity, and they both have issuers capable of
interacting with active clients. The necessary communications infra-
structure, including firewalls and proxies, is in place. To review these
elements, see Chapter 4, “Federated Identity for Web Applications.”

Now, Adatum only needs to expose a claims-aware web service
on the Internet. Litware will invoke Adatum’s web service from
within its client application. Because the client application runs in
Litware’s security realm, it can use Windows authentication to estab-
lish the identity of the user and then use this identity to obtain a to-
ken it can pass along to Adatum’s federation provider.

Goals and Requirements

Both Litware and Adatum see benefits to a collaboration based on
claims-aware web services. Litware wants programmatic access to
Adatum’s a-Order application. Adatum does not want to be respon-
sible for authenticating any people or resources that belong to an-
other security realm. For example, Adatum doesn’t want to keep and
maintain a database of Litware users.

Both Adatum and Litware want to reuse the existing infrastruc-
ture as much as possible. For example, Adatum wants to enforce
permissions for its web service with the same rules it has for the
browser-based web application. In other words, the browser-based
application and the web service will both use roles for access control.

Overview of the Solution

Figure 1 gives an overview of the proposed system.

~
4 Issuev
25 ()

Map i
ﬁ;imf wsvier (FP)"

Request a Ldwave

Hoken
(npF é
Smavd Rick

chend

Adatiim
FIGURE 1
Federated identity with a smart client

LHwave

CLAIMS ENABLING WEB SERVICES

The diagram shows an overview of the interactions and relation-
ships among the different components. It is similar to the diagrams
you saw in the previous chapters, except that no HTTP redirection is
involved.

Litware’s client application is based on Windows Presentation
Foundation (WPF) and is deployed on Litware employees’ desktops.
Rick, the salesman at Litware, uses this application to track orders
with Litware.

Adatum exposes a SOAP web service on the Internet. This web
service is implemented with WCF and uses standard WCF bindings
that allow it to receive Security Assertion Markup Language (SAML)
tokens for authentication and authorization. In order to access this
service, the client must present a security token from Adatum.

The sequence shown in the diagram proceeds as follows:

1. Litware’s WPF application uses Rick’s credentials to request
a security token from Litware’s issuer. Litware’s issuer
authenticates Rick and, if the authentication is a success,
returns a Group claim with the value Sales because Rick
is in the sales organization.

2. The WPF application then forwards the security token
to Adatum’s issuer, which has been configured to trust
Litware’s issuer.

3. Adatum’s issuer, acting as a federation provider, transforms
the claim Group:Sales into Role:Order Tracker and adds a
new claim, Organization:Litware. The transformed claims
are the ones required by Adatum’s web service, a-Order.
OrderTracking.Services. These are the same rules that were
defined in the browser-based scenario.

4. Finally, the WPF application sends the web service the
request to return orders. This request includes the security
token obtained in the previous step.

This sequence is a bit different from a browser-based web appli-
cation because the smart client application knows the requirements
of the web service in advance and also knows how to acquire the
claims that satisfy the web service’s requirements. The client applica-
tion goes to the identity provider first, the federation provider second,
and then to the web service. The smart client application actively
drives the authentication process.

147

148 CHAPTER EIGHT

Inside the Implementation

Now is a good time to walk through some of the details of the solu-
tion. As you go through this section, you may want to download the
Microsoft Visual Studio® solution, 4ActiveClientFederation, from
http://claimsid.codeplex.com. If you are not interested in the mechan-
ics, you should skip to the next section.
You can implement a claims-based smart client application
The a-Order.OrderTracking using the built-in facilities of WCF, or you can code at a lower level
web service uses WCE standard ~ using the WIF API. The a-Order.OrderTracking web service uses WCF
bindings. standard bindings.

IMPLEMENTING THE WEB SERVICE
The web service’s Web.config file contains the following WCF service
configuration.

<services>
<service
name="AOrder.OrderTracking.Services.OrderTrackingService"
behaviorConfiguration="serviceBehavior">
<endpoint
address=

binding="ws2007FederationHttpBinding"

bindingConfiguration=
"WS2007FederationHttpBinding_IOrderTrackingService"
contract=
"AOrder.OrderTracking.Contracts.IOrderTrackingService"
/>
<endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
</service>
</services>

If your service endpoints support metadata exchange, as a-Order
tracking does, it’s easy for clients to locate services and bind to them
using tools such as Svcutil.exe. However, some manual editing of the
configuration that is auto-generated by the tools will be necessary in
the current example because it involves two issuers: the identity
provider and the federation provider. With only one issuer, the tool
will generate a configuration file that does not need editing.

The Web.config file contains binding information that matches
the binding information for the client. If they don’t match, an excep-
tion will be thrown.

http://claimsid.codeplex.com

CLAIMS ENABLING WEB SERVICES

The Web.config file also contains some customizations. The fol-
lowing XML code shows the first customization.

<extensions>
<behaviorExtensions>
<add name="federatedServiceHostConfiguration"
type="Microsoft.IdentityModel
.Configuration.ConfigureServiceHostBehaviorExtensionElement,
Microsoft.IdentityModel, ..." />
</behaviorExtensions>
</extensions>

Adding this behavior extension attaches WIF to the WCF pipe-
line. This allows WIF to verify the security token’s integrity against
the public key. (If you forget to attach WIF, you will see a run-time
exception with a message that says that a service certificate is miss-
ing)

The service’s Web.config file uses the <Microsoft.identity
Model> element to specify the configuration required for the WIF
component. This is shown in the following code example.

<microsoft.identityModel>
<service>
<issuerNameRegistry
type=
"Microsoft.IdentityModel.Tokens.
ConfigurationBasedIssuerNameRegistry,
Microsoft.IdentityModel, Version=3.5.0.0,
Culture=neutral,
PublicKeyToken=31bf3856ad364e35">
<trustedIssuers>
<add
thumbprint="260042d59e14817984c6183fbc6bfc71baf5462"
name="adatum" />
</trustedIssuers>
</issuerNameRegistry>
<audienceUris>
<add value=
"http://{adatum host}/a-Order.OrderTracking.Services/
OrderTrackingService.svc"
/>
</audienceUris>

149

150

CHAPTER EIGHT

Because the Adatum issuer will encrypt its security tokens with
the web service’s X.509 certificate, the <service> element of the ser-
vice’s Web.config file also contains information about the web ser-
vice’s private key. This is shown in the following XML code.

<serviceCertificate>
<certificateReference
findValue="CN=adatum"
storeLocation="LocalMachine"
storeName="My"
Xx509FindType="FindBySubjectDistinguishedName" />
</serviceCertificate>

IMPLEMENTING THE ACTIVE CLIENT
The client application, which acts as the WCF proxy, is responsible for
orchestrating the interactions. You can see this by examining the
client’s App.config file. The following XML code is in the <system.
serviceModel> section.

<client>
<endpoint
address=
"http://{adatum host}/a-Order.OrderTracking.Services/
OrderTrackingService.svc"
binding="ws2007FederationHttpBinding"
bindingConfiguration=
"WS2007FederationHttpBinding IOrderTrackingService"
contract="0OrderTrackingService.IOrderTrackingService"
name="WS2007FederationHttpBinding_ IOrderTrackingService">
<identity>
<dns value="adatum" />
</identity>
</endpoint>
</client>

The address attribute gives the Uniform Resource Identifier (URI)
of the order tracking service.

The binding attribute, ws2007FederationHttpBinding, indicates
that WCF should use the WS-Trust protocol when it creates the se-
curity context of invocations of the a-Order order tracking service.

The Domain Name System (DNS) value given in the <identity>
section is verified at run time against the service certificate’s subject
name.

The App.config file specifies three nested bindings in the
<bindings> subsection. The following XML code shows the first of
these bindings.

CLAIMS ENABLING WEB SERVICES 151
<ws2007FederationHttpBinding>
<binding
name="WS2007FederationHttpBinding_IOrderTrackingService">
<security mode="Message">
<message>
<issuer
address="https://{adatum host}/{issuer endpoint}"
binding="customBinding"
bindingConfiguration="AdatumIssuerIssuedToken">
</issuer>
</message>
</security>
</binding>
</ws2007FederationHttpBinding>
The issuer address changes depending on how you deploy the sample.
For an issuer running on the local machine, the address attribute of
the <issuer> element will be:
https://localhost/Adatum. FederationProvider.4/Issuer.svc
For ADFS 2.0, the address will be:
https://$adatum hosty/Trust/13/Issued TokenMixed
SymmetricBasic256
This binding connects the smart client application to the a-Order.
OrderTracking service. Unlike WCF bindings that do not involve
claims, this special claims-aware binding includes a message security
element that specifies the address and binding configuration of the The message security element

Adatum issuer. The address attribute represents the active endpoint identifies the issuer.

of the Adatum issuer.

The nested binding configuration is labeled Adatumlssuerlssued
Token. It is the second binding, as shown here.

<customBinding>
<binding name="AdatumIssuerIssuedToken">
<security
authenticationMode="IssuedTokenOverTransport"
messageSecurityVersion=
"WSSecurityl1WSTrustl3WSSecureConversationl3
WSSecurityPolicyl2BasicSecurityProfilel@"

<issuedTokenParameters>
<issuer
address=
"https://{litware host}/{issuer endpoint}"

152

CHAPTER EIGHT

binding="ws2007HttpBinding"
bindingConfiguration="LitwareIssuerUsernameMixed">
</issuer>
</issuedTokenParameters>
</security>
<httpsTransport />
</binding>
</customBinding>

The issuer address changes depending on how you deploy the sample.
For an issuer running on the local machine, the address attribute of
the <issuer> element will be:

https://localhost/Litware.Simulated|ssuer.4/Issuer.svc
For ADFS 2.0 the address will be:
https://flitware host{/Trust/13/UsernameMixed

The AdatumlssuerlssuedToken binding configures the connec-
tion to the Adatum issuer that will act as the federation provider in
this scenario.

The <security> element specifies that the binding uses WS-Trust.
This binding also nests the URI of the Litware issuer, and for this rea-
son, it is sometimes known as a federation binding. The binding speci-
fies that the binding configuration labeled LitwarelssuerUsername
Mixed is used for the Litware issuer that acts as the identity provider.
The following XML code shows this.

<WS2007HttpBinding>
<binding name="LitwareIssuerUsernameMixed">
<security mode="TransportWithMessageCredential">
<message
clientCredentialType="UserName"
establishSecurityContext="false"
/>
</security>
</binding>
</wWs2007HttpBinding>

This binding connects the Litware issuer that acts as an identity
provider. This is a standard WCF HTTP binding because it transmits
user credentials to the Litware issuer.

In a production scenario, the configuration should be changed
to clientCredentialType="Windows" to use Windows
authentication. For simplicity, this sample uses UserName
credentials. You may want to consider using other options in

a production environment.

CLAIMS ENABLING WEB SERVICES 153

When the active client starts, it must provide credentials. If the
configured credential type is UserName, a UserName property must
be set. This is shown in the following code.

private void ShowOrders()

{

var client =
new OrderTrackingService.OrderTrackingServiceClient();

client.ClientCredentials.UserName.UserName

"LITWARE\\rick";
client.ClientCredentials.UserName.Password =
"thisPasswordIsNotChecked";

var orders = client.GetOrdersFromMyOrganization();

this.DisplayView(new OrderTrackingView()
{
DataContext =
new OrderTrackingViewModel(orders)

1)

This step would not be necessary if the application were deployed
in a production environment because it would probably use Windows
authentication.

WCEF federation bindings can handle the negotiations between the
active client and the issuers without additional code. You can achieve
the same results with calls to the WIF WSTrustChannel c/ass.

IMPLEMENTING THE AUTHORIZATION
STRATEGY
The Adatum web service implements its authorization strategy in the
SimpleClaimsAuthorizationManager class. The service’s Web.config
file contains a reference to this class in the <claimsAuthorization
Manager> element.

<claimsAuthorizationManager
type="AOrder.OrderTracking.Services.
SimpleClaimsAuthorizationManager,
AOrder.OrderTracking.Services" />

Adding this service extension causes WCF to invoke the Check
Access method of the specified class for authorization. This occurs
before the service operation is called.

The implementation of the SimpleClaimsAuthorization
Manager class is shown in the following code.

A claims authorization
manager determines which
methods can be called by
the current user.

154

CHAPTER EIGHT

public class SimpleClaimsAuthorizationManager :
ClaimsAuthorizationManager

public override bool CheckAccess(AuthorizationContext context)

{

return context.Principal.IsInRole(Adatum.Roles.OrderTracker);

WIF provides the base class, ClaimsAuthorizationManager.
Applications derive from this class in order to specify their own ways
of checking whether an authenticated user should be allowed to call
the web service methods.

The CheckAccess method in the a-Order order tracking service
ensures that the caller of any of the service’s methods must have a
role claim with the value Adatum.Roles.OrderTracker, which is de-
fined in the Samples.Web.ClaimsUstilities project elsewhere as the
string, “Order Tracker.”

In this scenario, the Litware issuer, acting as an identity provider,
issues a Group claim that identifies the salesman Rick as being in the
Litware sales organization (value=Sales). The Adatum issuer, acting as
a federation provider, transforms the security token it receives from
Litware. One of its transformation rules adds the role, Order Tracker,
to any Litware employee with a group claim value of Sales. The order
tracking service receives the transformed token and grants access to
the service.

DEBUGGING THE APPLICATION
The configuration files for the client and the web service in this
sample include settings to enable tracing and debugging messages. By
default, they are commented out so that they are not active.

If you uncomment them, make sure you update the <sharedLis-
teners> section so that log files are generated where you can find

them and in a location where the application has write permissions.
Here is the XML code.

<sharedListeners>

<add
initializeData="c:\temp\WCF-service.svclog"
type="System.Diagnostics.XmlWriterTraceListener"
name="xml">
<filter type="" />

</add>

<add
initializeData="c:\temp\wcf-service-msvg.svclog"

CLAIMS ENABLING WEB SERVICES

type="System.Diagnostics.XmlWriterTraceListener, System,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"

name="ServiceModelMessagelLogginglListener"

traceOutputOptions="Timestamp">

<filter type="" />

</add>
</sharedListeners>

Setup and Physical Deployment

By default, the web service uses the local host for all components. In
a production environment, you would want to use separate comput-
ers for the client, the web service, the federation provider, and the
identity provider.

To deploy this application, you must substitute the mock issuer
with a production-grade component such as ADFS 2.0 that supports
active clients. You must also adjust the Web.config and App.config
settings to account for the new server names by changing the issuer
addresses.

Note that neither the client nor the web service needs to be re-
compiled to be deployed to a production environment. All of the
necessary changes are in the respective .config files.

CoNFIGURING ADES 2.0 FOR WEB SERVICES
In the case of ADFS 2.0, you enable the endpoints using the Microsoft
Management Console (MMCQ).

To obtain a token from Litware, the UsernameMixed or Windows
Mixed endpoint could be used. UsernameMixed requires a user name
and password to be sent across the wire, while WindowsMixed
works with the Windows credentials. Both endpoints will return a
SAML token.

The “Mixed” suffix indicates that the endpoint uses transport
security (based on HTTPS) for integrity and confidentiality; client
credentials are included in the header of the SOAP message.

To obtain a token from Adatum, the endpoint used is Issued
TokenMixedSymmetricBasic256. This endpoint accepts a SAML token
as an input and returns a SAML token as an output. It also uses trans-
port and message security.

In addition, Litware and Adatum must establish a trust relation-
ship. Litware must configure Adatum ADFS as a relying party (RP)
and create rules to generate a token based on Lightweight Directory

Remove the mock issuer
during deployment.

155

156 CHAPTER EIGHT

Access Protocol (LDAP) Active Directory attributes. Adatum must
configure Litware ADFS as an identity provider and create rules to
transform the group claims into role claims.

Finally, Adatum must configure the a-Order web service as a rely-
ing party. Adatum must enable token encryption and create rules that
pass role and name claims through.

Questions

1. Which statements describe the difference between the way
federated identity works for an active client as compared to
a passive client:

a. An active client uses HTTP redirects to ask each token
issuer in turn to process a set of claims.

b. A passive client receives HT TP redirects from a web
application that redirect it to each issuer in turn to
obtain a set of claims.

c. An active client generates tokens to send to claims
issuers.

d. A passive client generates tokens to send to claims
issuers.

2. A difference in behavior between an active client and a
passive client is:

a. An active client visits the relying party first; a passive
client visits the identity provider first.

b. An active client does not need to visit a federation
provider because it can perform any necessary claims
transformations by itself.

c. A passive client visits the relying party first; an active
client visits the identity provider first.

d. An active client must visit a federation provider first
to determine the identity provider it should use.
Passive clients rely on home realm discovery to
determine the identity provider to use.

CLAIMS ENABLING WEB SERVICES

3. The active scenario described in this chapter uses which
protocol to handle the exchange of tokens between the
various parties?

a. WS-Trust

b. WS-Transactions
c. WS-Federation
d. ADFS

4. In the scenario described in this chapter, it’s necessary to
edit the client application’s configuration file manually,
because the Svcutil.exe tool only adds a binding for a single
issuer. Why do you need to configure multiple issuers?

a. The metadata from the relying party only includes
details of the Adatum identity provider.

b. The metadata from the relying party only includes
details of the client application’s identity provider.

c. The metadata from the relying party only includes
details of the client application’s federation provider.

d. The metadata from the relying party only includes
details of the Adatum federation provider.

5. The WCF service at Adatum performs authorization checks
on the requests that it receives from client applications.
How does it implement the checks?

a. The WCEF service uses the IsInRole method to verify
that the caller is a member of the OrderTracker role.

b. The Adatum federation provider transforms claims
from other identity providers into Role type claims
with a value of OrderTracker.

c. The WCF service queries the Adatum federation
provider to determine whether a user is in the Order
Tracker role.

d. It does not need to implement any authorization
checks. The application automatically grants access
to anyone who has successfully authenticated.

157

9 Securing REST Services

In Chapter 8, “Claims Enabling Web Services,” you saw how Adatum
exposed a SOAP-based web service to a client application. The client
used the WS-Trust active federation protocol to obtain a token con-
taining the claims that it needed to access the web service. The sce-
nario that this chapter describes is similar, but differs in that the web
service is REST-based rather than SOAP-based. The client must now
send a Simple Web Token (SWT) containing the claims to the web
service using the OAuth protocol instead of a SAML token using the
WS-Trust protocol. The client will obtain an SWT token from Win-
dows AzureTM AppFabric Access Control services (ACS) v2.

Like Chapter 8, “Claims Enabling Web Services,” this chapter de-
scribes an active scenario. In an active scenario, the client application
actively contacts all issuers in a trust chain; these issuers are typically

an identity provider (IdP) and a federation provider (FP). The client The client application must
application communicates with the identity provider and federation actively call all the issuers
provider to get and transform the tokens that it requires to access the in the trust chain.

relying party (RP) application.

In this chapter, you'll see an example of a Windows® Presentation
Foundation (WPF) smart client application that uses federated iden-
tity. In Chapter 8, “Claims Enabling Web Services,” the Windows
Communication Foundation (WCF) bindings determined how the
client application called the issuers in the trust chain; in this chapter,
you'll see how the client must call the identity provider and federation
provider programmatically because WCF does not support the calling
of RESTful web services.

The Premise

Litware wants to write an application that can read the status of its
orders directly from Adatum. To satisfy this request, Adatum agrees
to provide a web service called a-Order.OrderTracking.Services that

159

160 CHAPTER NINE

Active clients use claims to get
access to remote services.

N
N 3@
\JE

users at Litware can access by using a variety of client applications
over the Internet.

Adatum and Litware have already done the work necessary to
establish federated identity, and they both have issuers capable of
interacting with active clients. The necessary communications infra-
structure, which includes firewalls and proxies, is in place. To review
these elements, see Chapter 4, “Federated Identity for Web Applica-
tions.”

Now, Adatum only needs to expose a claims-aware web service
on the Internet. Litware will invoke Adatum’s web service from
within its client application. Because the client application runs in
Litware’s security realm, it can use Microsoft® Windows® authentica-
tion to establish the identity of the user and then use this identity to
obtain a token it can pass along to Adatum’s federation provider. In
this scenario Adatum uses ACS as its federation provider.

Goals and Requirements

Both Litware and Adatum see benefits in a collaboration based on
claims-aware web services. Litware wants programmatic access to
Adatum’s a-Order application. Adatum does not want to be respon-
sible for authenticating any people or resources that belong to an-
other security realm. For example, Adatum doesn’t want to keep and
maintain a database of Litware users.

Both Adatum and Litware want to reuse the existing infrastruc-
ture as much as possible. For example, Adatum wants to enforce
permissions for its web service with the same rules it has for the
browser-based web application. In other words, the browser-based
application and the web service will both use roles for access control.

Adatum has decided to expose the a-Order order tracking data as
a RESTful web service to expand the range of clients that can access
the application. Adatum anticipates that partners will implement cli-
ent applications on mobile platforms; in these environments partners
will prefer a lightweight REST API to a SOAP-based API.

SECURING REST SERVICES 161

Overview of the Solution

Figure 1 gives an overview of the proposed solution.

N
1P
/ Z : S (ADF 2.00
@ GedToken
6AML
WPF - $mavd Clend
&

call Senice + SNT

Adatim

Ldwave

FIGURE 1
Federated identity with a smart client

The diagram presents an overview of the interactions and rela-
tionships among the different components. It is similar to the diagrams
you saw in the previous chapters.

Litware has a single client application based on Windows Presen-
tation Foundation (WPF) deployed on Litware employees’ desktops.
Rick, a Litware employee, uses this application to track orders with
Adatum.

Adatum exposes a RESTful web service on the Internet. This web
service expects to receive Simple Web Token (SWT) tokens that it
will use to implement authorization rules in the a-Order application.
In order to access this service, the client must present an SWT token
from the Adatum ACS instance.

The sequence shown in the diagram proceeds as follows:

1. The Litware WPF application uses Rick’s credentials to
request a security token from the Litware issuer. The
Litware issuer authenticates Rick and, if the authentication
succeeds, it returns a Group claim with the value Sales
because Rick is in the sales organization. The Litware issuer
returns a SAML token to the client application.

162

CHAPTER NINE

2. The WPF application then forwards the SAML token to
ACS (the Adatum federation provider), which trusts the
Litware issuer.

3. ACS, acting as a federation provider, transforms the claim
Group:Sales into Role:Sales and adds a new claim,
Organization:Litware. The transformed claims are the ones
required by the Adatum a-Order RESTful web service.
These are the same rules that were defined in the browser-
based scenario. ACS also transitions the incoming SAML
token to an SWT token that it returns to the client WPF
application. The interaction between the client application
and ACS uses the OAuth protocol.

4. Finally, the WPF application sends the web service the
request for the order tracking data. This request includes
the SWT token obtained in the previous step. The web
service uses the claims in the token to implement its
authorization rules.

This sequence is a bit different from the scenario described in
Chapter 8, “Claims Enabling Web Services.” In this scenario, the fed-
eration provider is an ACS instance that performs token format tran-
sition from SAML to SWT in addition to mapping the claims from the
identity provider into claims that the relying party expects to see.

Inside the Implementation

Now is a good time to walk through some of the details of the solu-
tion. As you go through this section, you may want to download the
Visual Studio® development system solution called 8ActiveRestCli-
entFederation from http://claimsid.codeplex.com. If you are not in-
terested in the mechanics, you should skip to the next section.

W(CF does not provide built-in support for REST on the client or
for SWT on the server so this sample requires more code than you
saw in Chapter 8, “Claims Enabling Web Services.”

The following sections describe some of the key parts of the im-
plementation of the active client, the RESTful web service, and ACS.

THE ACS CONFIGURATION
In this scenario, in addition to handling the claims mapping rules, ACS
is also responsible for transitioning the incoming token from the Lit-
ware identity provider from the SAML format to the SWT format.
This is partially a configuration task, but the active client application
must be able to receive an SWT token from ACS. For more details, see
the section, “Implementing the Active Client,” later in this chapter.

SECURING REST SERVICES 163

The configuration step in ACS is to ensure that the token format
for the aOrderService relying party is set to SWT. This makes sure
that ACS issues an SWT token when it receives a token from any of
the identity providers configured for the aOrderService relying party.

IMPLEMENTING THE WEB SERVICE
In this scenario, Adatum exposes the order-tracking feature of the a-
Order application as a RESTful web service. The following snippet
from the Web.config file shows how the application defines the HTTP
endpoint for the service.

<services>
<service name=
"AOrder.OrderTracking.Services.OrderTrackingService"
behaviorConfiguration="serviceBehavior">
<endpoint
address=""
binding="webHttpBinding"
contract=
"AOrder.OrderTracking.Contracts.IOrderTrackingService"
behaviorConfiguration="orders" />
</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="serviceBehavior">
<serviceDebug includeExceptionDetailInFaults="true" />
<serviceMetadata httpGetEnabled="true" />
</behavior>
</serviceBehaviors>
<endpointBehaviors>
<behavior name="orders">
<webHttp />
</behavior>
</endpointBehaviors>
</behaviors>

The Global.asax file contains code to route requests to the ser-
vice definition. The following code sample from the Global.asax.cs file
shows the routing definition in the service.

protected void Application_Start(object sender, EventArgs e)
{
RouteTable.Routes.Add(new ServiceRoute("orders",
new WebServiceHostFactory(), typeof(OrderTrackingService)));

In this scenario, the web
service does not use
Windows ldentity
Foundation (WIF) to
handle the incoming
tokens. However, the
service does use WIF for
some claims processing;
for example, it uses it

in the CustomClaims
AuthorizationManager
class. You will see the
details in the microsoft.
identityModel section
in the Web.config file.

164

CHAPTER NINE

The Adatum a-Order application must also extract the claims in-
formation from the incoming SWT token. The application uses the
claims to determine the identity of the caller and the roles that the
caller is a member of in order to apply the authorization rules in the
application. The following code sample from the OrderTracking
Service class shows how the GetOrdersFromMyOrganization
method retrieves the current user’s organization claim to use when it
fetches a list of orders from the order repository.

public Order[] GetOrdersFromMyOrganization()
{
string organization = ClaimHelper.GetClaimsFromPrincipal(
HttpContext.Current.User,
Adatum.ClaimTypes.Organization).Value;
var repository = new OrderRepository();
return repository.GetOrdersByCompanyName(organization).
ToArray();

This method retrieves a claim value from the IClaimsPrincipal
object. In the scenarios described in previous chapters, WIF has been
responsible for populating the IClaimsPrincipal object with claims
from a SAML token: in the current scenario, we are using SWT tokens
and the OAuth protocol, which are not directly supported by WIF.
The Visual Studio solution, 8ActiveRestClientFederation, includes a
project called DPE.OAuth that implements an extension to WIF to
provide support for SWT tokens and the OAuth protocol.

The following snippet from the Web.config file in the a-Order.
OrderTracking.Services.8 project shows how Adatum installed the
modules for the extension to WIF.

In addition to the extension module, Microsoft.Samples.DPE.
OAuth.ProtectedResource.ProtectedResourceModule, it’s
necessary to install the standard W SFederationAuthentication
Module and SessionAuthenticationModule modules.

<configSections>
<section name="microsoft.identityModel”
type="Microsoft.IdentityModel.Configuration.MicrosoftIdentity
ModelSection,
Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35” />
</configSections>

SECURING REST SERVICES

<system.webServer>
<validation validateIntegratedModeConfiguration="false” />
<modules runAllManagedModulesForAllRequests="true”>
<add name="UrlRoutingModule” type="System.Web.Routing.
UrlRoutingModule,
System.Web, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b@3f5f7f11d50a3a” />
<add name="ProtectedResourceModule”
type="Microsoft.Samples.DPE.OAuth.ProtectedResource.
ProtectedResourceModule,
Microsoft.Samples.DPE.OAuth, Version=1.0.0.0,
Culture=neutral” />
<add name="WSFederationAuthenticationModule”
type="Microsoft.IdentityModel.Web.
WSFederationAuthenticationModule,
Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35”
preCondition="managedHandler” />
<add name="SessionAuthenticationModule”
type="Microsoft.IdentityModel.Web.
SessionAuthenticationModule,
Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35”
preCondition="managedHandler” />
</modules>
</system.webServer>

You use the microsoft.identityModel section to configure the
extension module to handle SWT tokens and the OAuth protocol.

<microsoft.identityModel>
<service name="OAuth">
<audienceUris>
<add value="https://localhost/a-Order.OrderTracking.
Services.8" />
</audienceUris>
<claimsAuthorizationManager
type="AOrder.OrderTracking.Services.
CustomClaimsAuthorizationManager,
AOrder.OrderTracking.Services.8, Culture=neutral" />
<securityTokenHandlers>
<add type="Microsoft.Samples.DPE.OAuth.Tokens.
SimpleWebTokenHandler,
Microsoft.Samples.DPE.OAuth" />
</securityTokenHandlers>

165

CHAPTER NINE

<issuerTokenResolver
type="Microsoft.Samples.DPE.OAuth.ProtectedResource
.ConfigurationBasedIssuerTokenResolver, Microsoft.Samples.
DPE.OAuth">
<serviceKeys>
<add serviceName="https://localhost/a-Order.
OrderTracking.Services.8"
serviceKey=
"1JFLO2dwy9n3rCe2YEToblDFHdZmbecmFK1QB88ax7U=" />
</serviceKeys>
</issuerTokenResolver>
<issuerNameRegistry type="Microsoft.Samples.DPE.OAuth.
ProtectedResource
.SimpleWebTokenTrustedIssuersRegistry, Microsoft.Samples.
DPE.OAuth">
<trustedIssuers>
<add issuerIdentifier="https://aorderrest-dev.
accesscontrol.windows.net/"
name="aOrder" />
</trustedIssuers>
</issuerNameRegistry>
</service>
</microsoft.identityModel>

This section also configures a custom claims authorization man-
ager that Adatum uses to apply custom authorization rules in the
service. The following code example shows how the service imple-
ments the custom claims authorization manager class that checks the
caller’s role membership and the resource the caller is requesting. The
IOrderTrackingService interface defines the mapping from the paths
“/all” and “/frommyorganization” to the service methods Get
AllOrders and GetOrdersFromMyOrganization.

public class CustomClaimsAuthorizationManager :
ClaimsAuthorizationManager

{
public override bool CheckAccess(AuthorizationContext context)
{
Claim actionClaim =
context.Action.Where(x => x.ClaimType == ClaimTypes.Name).
FirstOrDefault();

Claim resourceClaim =
context.Resource.Where(x => x.ClaimType == ClaimTypes.
Name) .FirstOrDefault();

SECURING REST SERVICES 167

IClaimsPrincipal principal = context.Principal;

var resource = new Uri(resourceClaim.Value);
string action = actionClaim.Value;

if (action == "GET" && resource.PathAndQuery.Contains
("/frommyorganization"))
{
if (!principal.IsInRole(Adatum.Roles.OrderTracker))
{
return false;
}
}
if (action == "GET" && resource.PathAndQuery.Contains
("/all"))
{
if (!principal.IsInRole(Adatum.Roles.OrderApprover))
{
return false;
) ¥ To find out more about

authorization strategies,
take a look at Appendix G,

return true; “Authorization Strategies.”

IMPLEMENTING THE ACTIVE CLIENT
The ACS configuration ensures that the token format for the Adatum
a-Order relying party application is set to SWT. ACS issues an SWT
token when it receives a token from any of the identity providers
configured for the Adatum a-Order relying party (the client obtains
the token from the identity provider and sends it ACS). The client
application uses a custom endpoint behavior to intercept all outgoing
requests; the behavior obtains the token that the relying party re-
quires and attaches it to the request. Figure 2 shows an overview of

168

CHAPTER NINE

Adatum ACS

Litware IP

Instance

(FP)

®

OrderTrackingServiceClient

@

OrderTrackingViewModel

J

Litware WPF Client

/

CustomHeaderMessagelnspector Adatum
@ @ a-Order Tracking Services
ﬁ (RESTful Web Service)

The inspector caches the
SWT token to avoid having
to revisit the identity
provider and ACS for every
request to the a-Order
application. The sample
caches the token for 30
seconds, but you should
adjust this to a suitable
value for your application.

this process.

FIGURE 2
Attaching an SWT token to the outgoing request

The sequence shown in Figure 2 proceeds as follows.

1.

The service client, the OrderTrackingServiceClient class,
attaches a new behavior to the channel endpoint. This
CustomHeaderBehavior behavior class instantiates a
custom message inspector that has access to every outgoing
request on the channel.

. The client application invokes the GetOrdersForMy

Organization method that sends a request to the
a-Order order tracking Service.

. The CustomHeaderMessagelnspector class intercepts

the message before it is sent.

. The CustomHeaderMessagelnspector class requests

a SAML token from the Litware identity provider.

. The CustomHeaderMessagelnspector class sends the

SAML token to ACS and receives an SWT token.

. The CustomHeaderMessagelnspector class attaches

the SWT token to the outgoing message header.

SECURING REST SERVICES

Adatum chose to use WCF in the client to manage the call to the
REST-based service rather than the WebClient or HttpWeb
Request c/asses because it was a convenient way to attach the
SWT token. For an example that uses the HttpWebRequest
class (because WCF is not available on the Windows® Phone 7
platform), see Chapter 10, “Accessing REST Services from a
Windows Phone Device.”

Although WIF does not provide full support for REST-based web
services, the sample client application uses WIF to handle some of the
token processing. This reduces the amount of code required to imple-
ment this sample client application. One of the reasons for using a
RESTful web service is to support other client environments, and
Chapter 10, “Accessing REST Services from a Windows Phone 7 De-
vice,” shows you how to implement a client application without using
WIF.

The inspector must first obtain a SAML token from the identity
provider. The following code example from the CustomHeader
Messagelnspector class shows how the a-Order.OrderTracking.Client
application uses WIF to perform this task. This method takes three
arguments; the service endpoint, the STS endpoint, and the user’s
credentials.

private static SecurityToken GetSamlToken(
string realm, string stsEndpoint, ClientCredentials
clientCredentials)

using (var factory = new WSTrustChannelFactory(
new UserNameWSTrustBinding(SecurityMode.
TransportWithMessageCredential),
new EndpointAddress(new Uri(stsEndpoint))))

factory.Credentials.UserName.UserName =
clientCredentials.UserName.UserName;
factory.Credentials.UserName.Password =
clientCredentials.UserName.Password;

factory.TrustVersion = TrustVersion.WSTrusti13;
WSTrustChannel channel = null;

try
{

var rst = new RequestSecurityToken

{
RequestType = WSTrustl3Constants.Request

169

170

CHAPTER NINE

Types.Issue,
AppliesTo = new EndpointAddress(realm),
KeyType = KeyTypes.Bearer,
3

channel = (WSTrustChannel)factory.CreateChannel();

return channel.Issue(rst);

¥
finally
{
if (channel != null)
{
channel.Abort();
b

factory.Abort();

The token request specifies a bearer token; ACS expects to receive
a bearer token and not a holder-of-key token. For this reason it’s
important to use Secure Sockets Layer (SSL) to secure the connec-
tions between the client application and the identity provider, and
between the client application and ACS in order to mitigate the
threat of a man-in-the-middle attack.

The inspector can then send the SAML token to ACS. The follow-
ing code example from the CustomHeaderMessagelnspector class
shows how the client application sends the SAML token to ACS and
receives the SWT token in return. The application uses the OAuth
protocol to communicate with ACS.

private static NameValueCollection GetOAuthToken(string
xmlSamlToken, string serviceEndpoint, string acsRelyingParty)

var values = new NameValueCollection
{
{ “grant_type”, “urn:oasis:names:tc:SAML:2.@:assertion” },
{ “assertion”, xmlSamlToken },
{ “scope”, acsRelyingParty }
¥

var client = new WebClient { BaseAddress = serviceEndpoint };

byte[] acsTokenResponse = client.UploadValues(“v2/0auth2-13",

SECURING REST SERVICES

“POST”, values);
string acsToken = Encoding.UTF8.GetString(acsTokenResponse);
var tokens = new NameValueCollection();
var json = new JavaScriptSerializer();
var parsed = json.DeserializeObject(acsToken) as
Dictionary<string, object>;

foreach (var item in parsed)

{
tokens.Add(item.Key, item.Value.ToString());

return tokens;

The inspector attaches the SWT token in the Authorization
header in the HTTP request message that the client application is
sending to the a-Order order tracking service. The following code
example shows how the client application performs this task in the
BeforeSendRequest method.

var oauthAuthorizationHeader =
string.Format("OAuth {@}", oauthToken["access_token"]);
httpRequestMessageProperty.Headers.Add(
HttpRequestHeader.Authorization, oauthAuthorizationHeader);

The SWT token expiry time is accessible in the response from
ACS and the code in the sample checks the expiry time on the SWT
token before attaching it to the outgoing request. With a SAML to-
ken, the expiry time is in the token (not part of the response); if the
issuer encrypts the SAML token, the client application may not have
access to the contents of this token. In this solution, the client appli-
cation simply forwards the SAML token on to ACS.

You can read the expiry time of a SAML token using the following
code:

var rst = new RequestSecurityToken
{
RequestType = WSTrustl3Constants.RequestTypes.Issue,
AppliesTo = new EndpointAddress(realm),
KeyType = KeyTypes.Bearer,
}s

channel = (WSTrustChannel)factory.CreateChannel();
RequestSecurityTokenResponse response;

var token = channel.Issue(rst, out response);

var expires = response.Lifetime.Expires.Value;

171

172 CHAPTER NINE

Remove the mock issuer during
deployment.

Setup and Physical Deployment

By default, the web service uses the local host for all components. In
a production environment, you would want to use separate comput-
ers for the client, the web service, the federation provider, and the
identity provider.

To deploy this application, you must substitute the mock issuer
with a production-grade component such as ADFS 2.0 that supports
active clients. You must also adjust the settings in the client applica-
tion’s App.config file to account for the new server names: the
addresses for the identity provider and ACS are located in the app
Settings section.

Note that neither the client nor the web service needs to be re-
compiled to be deployed to a production environment unless you are
changing the ACS service namespace that your solution uses; in this
case, you must update the service namespace name and key in the
CustomServiceHostFactory class in the a-Order order tracking web
service.

CoNFIGURING ADES 2.0 FOR WEB SERVICES
In the case of ADFS 2.0, you enable the endpoints using the Microsoft
Management Console (MMCQ).

To obtain a token from the Litware issuer, you could use the
UsernameMixed or WindowsMixed endpoint. UsernameMixed
requires a user name and password to be sent across the wire,
while WindowsMixed works with the Windows credentials. Both
endpoints will return a SAML token.

The “Mixed” suffix indicates that the endpoint uses transport
security (based on HTTPS). For integrity and confidentiality, client
credentials are included in the header of the SOAP message.

CoNFIGURING ACS
As a minimum, you should configure the aOrderService relying party
in ACS to issue name and organization claims. If you implement any
additional authorization rules, you should ensure that ACS issues
any additional claims that your rules require.

To avoid the risk of a partner spoofing an organization name in
a token, you should configure ACS to generate the organization
claim and not simply pass it through from the identity provider.

SECURING REST SERVICES

Questions

1. In the scenario described in this chapter, which of the
following statements best describes what happens the first
time that the smart client application tries to use the
RESTful a-Order web service?

a.

b.

C.

d.

It connects first to the ACS instance, then to the
Litware IP, and then to the a-Order web service.

It connects first to the Litware IP, then to the ACS
instance, and then to the a-Order web service.

It connects first to the a-Order web service, then
to the ACS instance, and then to the Litware IP.

It connects first to the a-Order web service, then
to the Litware IP, and then to the ACS instance.

2. In the scenario described in this chapter, which of the
following tasks does ACS perform?

3.

a.

b.

ACS authenticates the user.

ACS redirects the client application to the relying
party.

. ACS transforms incoming claims to claims that the

relying party will understand.

. ACS transitions the incoming token format from

SAML to SWT.

In the scenario described in this chapter, the Web.config
file in the a-Order web service does not contain a
<microsoft.identity> section. Why?

a.

Because it configures a custom ServiceAuthorization
Manager class to handle the incoming SWT token in
code.

. Because it is not authenticating requests.
. Because it is not authorizing requests.

. Because it is using a routing table.

173

174 CHAPTER NINE

4. ACS expects to receive bearer tokens. What does this
suggest about the security of a solution that uses ACS?

a. You do not need to use SSL to secure the connection
between the client and the identity provider.

b. You should use SSL to secure the connection between
the client and the identity provider.

c. The client application must use a password to
authenticate with ACS.

d. The use of bearer tokens has no security implications
for your solution.

5. You should use a custom ClaimsAuthorizationManager
class for which of the following tasks.

a. To attach incoming claims to the IClaimsPrincipal
object.

b. To verify that the claims were issued by a trusted
issuer.

c. To query ACS and check that the current request is
authorized.

d. To implement custom rules that can authorize access
to web service methods.

More Information

To learn more about proof tokens and bearer tokens, see the blog
posts at: http://blogs.msdn.com/b/vbertocci/archive/2008/01/02/
on-prooftokens.aspx and http://travisspencer.com/blog/2009/02/
what-is-a-proof-key.html.

For more information about the DPE.OAuth project used in this
solution, see: http://www.fabrikamshipping.com/.

http://blogs.msdn.com/b/vbertocci/archive/2008/01/02/on-prooftokens.aspx
http://blogs.msdn.com/b/vbertocci/archive/2008/01/02/on-prooftokens.aspx
http://travisspencer.com/blog/2009/02/what-is-a-proof-key.html
http://travisspencer.com/blog/2009/02/what-is-a-proof-key.html
http://www.fabrikamshipping.com/

10 Accessing REST Services from a
Windows Phone Device

In Chapter 9, “Securing REST Services,” you saw how Adatum exposed
a REST-based web service that used federated authentication and
SWT tokens. The scenario described there also included a rich desk-
top client application that obtained a Simple Web Token (SWT) to-
ken from Windows AzureT™M AppFabric Access Control services (ACS)
to present to the web service. The scenario that this chapter describes
uses the same web service, but describes how to implement a client
application on the Windows® Phone platform.

Creating a Windows Phone client raises some additional security
concerns. You can’t assume that the Windows Phone device is pro-
tected with a password; if the device is stolen or used without the
owner’s consent, a malicious user could access all of the applications
and data on the device unless you introduce some additional security
measures. Such security measures could include requiring the user to
enter a password or PIN to access either your application, or a feature
within your application. The problem here is that any of these secu-
rity measures are likely to reduce the usability of the application and
degrade the overall user experience.

This chapter describes two alternative implementations of the
Windows Phone client: a passive federation approach and an active
federation approach. The active federation implementation shows
how the client application uses the OAuth protocol and contacts all
of the issuers in the trust chain in turn to acquire a valid SWT token
to access the a-Order Tracking application. The passive implementa-
tion shows how to use an embedded web browser control to handle
the redirect messages that are used by the WS-Federation protocol
to coordinate the exchange of messages with the issuers.

The active federation implementation described in this chapter
differs from the implementation shown in Chapter 9, “Securing REST
Services.” Because there is no version of WIF available for Windows

175

176 CHAPTER TEN

The sample client application
demonstrates both active and

passive federation approaches.

Phone to help with the token processing, the client code in the
Windows Phone application is slightly more complex than you’'d
typically find in a Microsoft® Windows® operating system desktop
application.

The Premise

Litware wants a mobile application that can read the status of its or-
ders directly from Adatum. To satisfy this request, Adatum agrees to
provide a web service called a-Order.OrderTracking.Services that us-
ers at Litware can use from a variety of client applications over the
Internet.

Adatum and Litware have already done the work necessary to
establish federated identity; Litware has an issuer that is capable of
interacting with both active and passive clients, and Adatum has con-
figured an ACS service namespace with the necessary relying parties
(RPs) and identity providers (IdPs). The necessary communications
infrastructure, including firewalls and proxies, is in place. To review
these elements, see Chapter 5, “Federated Identity with Windows
Azure Access Control Service.”

Adatum also has a RESTful web service in place that exposes or-
der-tracking data. This web service is claims-aware and expects to
receive claims in an SWT token. For a description of how the web
service handles SWT tokens, see Chapter 9, “Securing REST Services.”

Goals and Requirements

Both Litware and Adatum see benefits in enabling mobile access to
the a-Order tracking data, and Litware already has plans to adopt
Windows Phone as its preferred mobile platform. Adatum originally
decided to expose the a-Order tracking data using a RESTful web
service in anticipation of developing client applications on mobile
platforms.

Adatum wants to ensure that the Windows Phone client applica-
tion follows best practices in terms of integration with the platform
and design for optimal battery use. Adatum and Litware are concerned
about addressing the possible security issues that arise from using a
mobile platform—in particular, the risks associated with someone
gaining unauthorized access to a device.

Adatum wants to simplify the process of configuring new identity
providers for the Windows Phone application.

ACCESSING REST SERVICES FROM A WINDOWS PHONE DEVICE

Overview of the Solution

The following sections describe two solutions: one that uses an active
federated authentication approach, and one that uses a passive
federated authentication approach. There is also a discussion of the
advantages and disadvantages of each.

PAssSiIVE FEDERATION

Figure 1 gives an overview of the proposed solution that uses a passive
federation model to obtain an SWT token from ACS.

Ldwave suer (1dP)

ACS (FP Ts4
- =~ =A

GedToken
A (swn

Ge4Token
/ 6AML
Tt Ged idendih
! providev [is

a-Ovdev Tvacki
RESTFul Web Senvice (RP)

cal Sewice + SWT

@
Adiim @

Application
FIGURE 1 Windows Phone Device

Windows Phone using passive federation

177

178 CHAPTER TEN

The diagram presents an overview of the interactions and rela-
tionships among the different components. It is similar to the diagrams
~\ you saw in previous chapters.

- Litware has a Windows Phone client application deployed on
Litware employees’ phones. Rick, a Litware employee, uses this ap-
> plication to track orders with Adatum.

~/ Adatum exposes a RESTful web service on the Internet. The a-
Order tracking web service expects to receive SWT tokens that
contain the claims it will use for authorization. In order to access this
service, the client must present an SWT token from the Adatum ACS
instance.

The sequence shown in the diagram proceeds as follows:

1. The Windows Phone application connects to a service
namespace in ACS. It obtains a list of configured identity
providers for the relying party (RP) application (Adatum
a-Order tracking) as a JavaScript Object Notation (JSON)
formatted list. Each entry in this list includes the identity
provider’s name and the address of the sign-in page at the
identity provider. You can find the URL for this list on the
ACS Application Management page.

2. The Windows Phone application displays this list for Rick to
select the identity provider he wants to use to authenticate.

In the sample, there is only one identity provider (Litware),
so Rick has only one choice.

3. When Rick selects an identity provider, the Windows Phone
application uses an embedded web browser control to
navigate to the identity provider’s sign-in page (based on
the information retrieved in step 1).

4. Because the client application initiates the sign-in passively,
after the Litware identity provider authenticates Rick it
automatically redirects the embedded web browser control
back to ACS, passing it the Security Assertion Markup
Language (SAML) token from the Litware identity provider.

5. ACS transforms the tokens based on the rules in the service
namespace, and transitions the incoming SAML token to an
SWT token. ACS returns the SWT token to the embedded
browser.

6. The Windows Phone application retrieves the SWT token
from the embedded web browser control and then caches it
on the Windows Phone device.

ACCESSING REST SERVICES FROM A WINDOWS PHONE DEVICE

7. The Windows Phone application then makes a REST call to
the a-Order tracking web service, including the SWT token
in the request header.

8. The a-Order tracking web service extracts the SWT token
from the request. It uses the claims in the token to imple-
ment authorization rules in the a-Order tracking web
service.

9. The service returns the order tracking data to the Windows
Phone application.

This scenario uses the passive WS-Federation protocol; the inter-
action between the identity provider and ACS (the federation pro-
vider) is passive and uses an embedded web browser control on the
phone to handle the redirects. The Windows Phone application in-
vokes the RESTful web service directly, sending the SWT token to the
web service (the relying party) along with the request for tracking
data.

The only configuration data that the Windows Phone application
needs is:

* The URL the phone uses to access the list of identity providers
in JSON format from ACS. The Windows Phone application

uses this URL in step 1 in the sequence shown in Figure 1.

* The URL the phone uses to access the a-Order tracking RESTful
web service. This happens in step 7 in the sequence shown in
Figure 1.

This scenario uses Secure Sockets Layer (SSL) to protect all the
interactions from the Windows Phone device including accessing the
Litware identity provider, the ACS instance, and calling the Adatum
web service.

To improve its usability, the Windows Phone application caches
the SWT token so that for subsequent requests it can simply forward
the cached SWT token instead of re-authenticating with the identity
provider, and obtaining a new SWT token from ACS.

AcTIVE FEDERATION
Figure 2 shows an alternative solution for the Windows Phone client
application that uses a pure active federation approach.

The sample application

installs a self-issued
certificate on the Windows
Phone device so that it
can use SSL when it
communicates with the
Litware identity provider
and the a-Order tracking
application. In a real-world
scenario, the Litware
identity provider and the
a-Order tracking applica-
tions will be protected by
certificates from a trusted
third-party issuer.

179

180

CHAPTER TEN

ACS (FP) Tvvst

st

a-Ovdey Tvacki
RESTUl Web Senice RP)

@)

call Sewice + NT

&

Adatiim

FIGURE 2
Windows Phone using active federation

Lwave Issuev (AP)

N

N
[Applcation
< B Q

Windows Phone Device

The diagram presents an overview of the interactions and rela-
tionships among the different components in the active federation

solution.

Litware has a Windows Phone client application deployed on

Litware employees’ phones. Rick, a Litware
plication to track orders with Adatum.

employee, uses this ap-

Adatum exposes a RESTful web service on the Internet. This web
service expects to receive Simple Web Token (SWT) tokens that it
will use to implement authorization rules in the a-Order application.
In order to access this service, the client application must present an

SWT token from the Adatum ACS instance.

ACCESSING REST SERVICES FROM A WINDOWS PHONE DEVICE

The sequence shown in the diagram proceeds as follows:

1. The Windows Phone application connects the Litware
identity provider. It sends Rick’s credentials and receives a
SAML token in response. This SAML token includes the
claims that the Litware identity provider issues for Rick.

2. The Windows Phone application sends the SAML token
from the Litware issuer to ACS.

3. The ACS service instance applies the mapping rules for the
Litware identity provider to the incoming claims and
transitions the incoming SAML token to an SWT token.
ACS returns the new SWT token to the Windows Phone
client application.

4. The Windows Phone application caches the SWT token so
it can use it for future requests. The Windows Phone
application then makes a REST call to the a-Order tracking
web service, including the SWT token in the request header.

5. The a-Order tracking web service extracts the SWT token
from the request. It uses the claims in the token to imple-
ment authorization rules in the a-Order tracking web
service.

6. The service returns the order tracking data to the Windows
Phone application.

In this solution, the Windows Phone application controls the
process of obtaining the SWT token and invoking the web service
directly. The application code includes logic to visit all of the issuers
in the trust chain in the correct order. It uses the WS-Trust protocol
when it communicates with the Litware identity provider to obtain a
SAML token, and the OAuth protocol to communicate with ACS and
the a-Order tracking service.

As in the passive solution, all the interactions from the Windows
Phone device are secured using SSL.

COMPARING THE SOLUTIONS
The passive federation solution that leverages an embedded browser
control offers a simpler approach to obtaining an SWT token because
the embedded web browser control in combination with the WS-
Federation protocol handles most of the logic to visit the issuers and
obtain the SWT token that the application needs to access the a-
Order tracking service. In the active federation solution, the Windows
Phone application must include code to control the interactions with
the issuers explicitly. Furthermore, the active solution must include

181

182 CHAPTER TEN

code to handle the request for a SAML token from the Litware issuer;

N\ this is more complex on the Windows Phone platform than on the

desktop because there is not currently a version of WIF for Windows

~ Phone. The sample described in Chapter 9, “Securing REST Services,”

- (- shows you how to do this in a Windows Presentation Foundation
(WPF) application.

< However, there is some complexity in the passive solution in the

~/ way that the application must interact with an embedded web

browser control to initiate the sign-in with the Litware identity pro-
vider and retrieve the SWT token issued by ACS from the browser
control.

For some scenarios, an advantage of the passive federation ap-
proach is that it enables the Windows Phone application to dynami-
cally build the list of identity providers for the user to choose from. If
you add an additional identity provider to your ACS configuration, the
Windows Phone client application will detect this the next time it
requests the list of identity providers from ACS. You could use this to
quickly and easily add support for additional social identity providers
to an already deployed Windows Phone application. In the active
federation solution, the application is responsible for choosing the
identity provider to use, and although you could design the applica-
tion to dynamically build a list of identity providers, this would add
considerably to the complexity of the solution. The active federation
solution is much better suited to scenarios where you have a fixed,
known identity provider for the Windows Phone application to use.

If you compare Figures 1 and 2, you can see that the passive solu-
tion requires more round trips to obtain an SWT token, which will
make this approach slower than the active approach. You should bear
in mind that this applies only to the initial federated authentication.
If the application caches the SWT token, it can reuse it for subse-
quent requests to the a-Order tracking web service.

Another potential disadvantage of the active solution is that it
only works with a WS-Trust compliant Security Token Service (STS).
If the Windows Phone device needs to authenticate with a different
protocol, then you'll have to implement that protocol on the phone.

You must explicitly add any SWT token caching behavior to the
Windows Phone application for both the active or passive federation
solutions; there is no automatic caching provided in either solution.
However, in the passive federation solution, the embedded web
browser control will automatically cache the SAML token it receives
from the Litware identity provider; after the initial authentication
with the Litware identity provider, the application will not prompt the
user will to re-enter their credentials for as long as the cached SAML
token remains valid.

ACCESSING REST SERVICES FROM A WINDOWS PHONE DEVICE 183

Inside the Implementation

Now is a good time to walk through some of the details of the solu-
tion. As you go through this section, you may want to download the
Microsoft Visual Studio® development system solution called 9Win-
dowsPhoneClientFederation from http://claimsid.codeplex.com. The
following sections describe some of the key parts of the implementa-
tion; some of these are specific to either the active or passive federa-
tion solution.

For details about the implementation of the a-Order tracking web
service, see Chapter 9, “Securing REST Services.”

AcTivE SAML TokeEN HANDLING

The active federation solution must handle the request for a SAML
token that the Windows Phone application sends to the Litware
identity provider. There is no version of WIF available for the Win-
dows Phone platform, so the application must create the SAML sign-
in request programmatically. In the sample application, the GetSaml-
TokenRequest method in the HttpWebRequestExtensions class,
illustrates a technique for requesting a SAML token when WIF is not
available to perform this task for you.

See chapter 9, “Securing REST Services,” for an example of an active
client that can use WIF to request a SAML token.

The following code sample from the HttpWebRequestExtensions
class shows how the Windows Phone application creates the SAML
token request to send to the identity provider.

private static string GetSamlTokenRequest
(string samlEndpoint, string realm)
{
var tokenRequest =
string.Format(
CultureInfo.InvariantCulture,
samlSignInRequestFormat,
Guid.NewGuid().ToString(),
samlEndpoint,
DateTime.UtcNow.ToString(
"yyyy'-"MM'-"ddTHH':'mm':'ss'.'fff'Z2'"),
DateTime.UtcNow.AddMinutes(15).ToString(
"yyyy'-"MM'-"ddTHH':'mm':'ss'. 'fff'Z2'"),
"LITWARE\\rick",
"PasswordIsNotChecked",
"https://aorderphone-dev.accesscontrol.windows.net/");

184 CHAPTER TEN

return tokenRequest;

/// Format:

/// {@}: Message Id - Guid

/// {1}: To - https://localhost/Litware.SimulatedIssuer.9/

Issuer.svc

/// {2}: Created - 2011-03-11T01:49:29.395Z

/// {3}: Expires - 2011-03-11T01:54:29.395Z

/// {4}: Username - LITWARE\rick

/// {5}: Password - password

/// {6}: Applies To - https://{project}.accesscontrol.

windows.net/

private const string samlSignInRequestFormat =
@"<s:Envelope xmlns:s=""http://www.w3.0rg/2003/05/

soap-envelope""
xmlns:a=""http://www.w3.0rg/2005/08/addressing""

xmlns:u=""http://docs.oasis-
open.org/wss/2004/01/o0asis-200401-wss-wssecurity-utility-
1.0.xsd""> .. </s:Envelope>";

The following code example shows how the client posts the
SAML token request to the identity provider and retrieves the SAML
token from the response.

public static IObservable<string> PostSamlTokenRequest
(this HttpWebRequest request, string tokenRequest)

{
request.Method = "POST";
request.ContentType = "application/soap+xml; charset=utf-8";
return

Observable
.FromAsyncPattern<Stream>(request.BeginGetRequestStream,
request.EndGetRequestStream) ()

.SelectMany(
requestStream =>
{
using (requestStream)
{

var buffer = System.Text.Encoding.UTF8.

GetBytes(tokenRequest);
requestStream.Write(buffer, 0, buffer.Length);
requestStream.Close();

ACCESSING REST SERVICES FROM A WINDOWS PHONE DEVICE 185

return
Observable.FromAsyncPattern<WebResponse>(
request.BeginGetResponse,
request.EndGetResponse)();
¥

(requestStream, webResponse) =>
{
string res = new StreamReader
(webResponse.GetResponseStream(),
Encoding.UTF8).ReadToEnd();
var startIndex = res.IndexOf("<Assertion ");
var endIndex = res.IndexOf("</Assertion>");
var token = res.Substring(
startIndex, endIndex + "</Assertion>".
Length - startIndex);
return token;

1)

WEB BROWSER CONTROL

The passive federation solution uses an embedded web browser con-
trol to handle the passive WS-Federation interactions between the
client application and the issuers. The application wraps the web
browser control in a custom control that you can find in the SL.Phone.
Federation project. The Windows Phone application passes the ad-
dress of the JSON-encoded list of identity providers into this control,
and then retrieves the SAML token from the control when the feder-
ated authentication process is complete. The following code sample
from the MainPage.xaml.cs file shows how the application interacts
with the custom sign-in control.

private void OnGetMyOrdersPassiveButtonClicked
(object sender, RoutedEventArgs e)

var acsJsonEndpoint = "https://aorderphone-dev.
accesscontrol.windows.net/v2/metadata/IdentityProviders.
js?protocol=wsfederation&
realm=https%3A%2F%2Flocalhost%2Fa-
Order.OrderTracking.Services.9&context=&version=1.0";
SignInControl.RequestSecurityTokenResponseCompleted +=
new EventHandler<SL.Phone.Federation.Controls

186 CHAPTER TEN

.RequestSecurityTokenResponseCompletedEventArgs>(
SignInControl_RequestSecurityTokenResponseCompleted);
SignInControl.GetSecurityToken(new Uri(acsJsonEndpoint));

void SignInControl_RequestSecurityTokenResponseCompleted

(object sender,
SL.Phone.Federation.Controls.RequestSecurityTokenResponse
CompletedEventArgs e)

{
this.GetOrdersWithToken(e.RequestSecurityTokenResponse.
TokenString)
.ObserveOnDispatcher()
.Catch((WebException ex) =>
{
}
.Subscribe(orders =>
{
3
}

The catch block in the SignlnControl_RequestSecurityToken
ResponseCompleted method enables the client to trap errors such as
“401 Unauthorized” errors from the REST service.

The custom control that contains the embedded web browser
control must raise the RequestSecurityTokenResponseCompleted
event after the control receives the SWT token from ACS. The con-
trol recognizes when it has received the SWT token because ACS
sends a redirect message to a special URL: https://break_here. The
ACS configuration for the aOrderService RP includes this value for
the “Return URL” setting. The following code sample shows how the
Navigating event in the custom control traps this navigation request,
extracts the SWT token, and raises the RequestSecurityToken
ResponseCompleted event to notify the Windows Phone application
that the SWT token is now available.

private void SignInWebBrowserControl_ Navigating(object sender,
NavigatingEventArgs e)
{

if (e.Uri == new Uri("https://break_here"))

{

e.Cancel = true;

ACCESSING REST SERVICES FROM A WINDOWS PHONE DEVICE 187

var acsReply = this.BrowserSigninControl.SaveToString();

Regex tagRegex = CreateRegexForHtmlTag
("BinarySecurityToken");
var acsBinaryToken = tagRegex.Match(acsReply).Groups[1].
Value;
var acsTokenBytes = Convert.FromBase64String(acsBinaryToken);
var acsToken = System.Text.Encoding.UTF8.GetString(
acsTokenBytes, @, acsTokenBytes.Length);

tagRegex = CreateRegexForHtmlTag("Expires");
var expires = DateTime.Parse(tagRegex.Match(acsReply).
Groups[1].Value);

tagRegex = CreateRegexForHtmlTag("TokenType");
var tokenType = tagRegex.Match(acsReply).Groups[1].Value;

if (null != RequestSecurityTokenResponseCompleted)
{
var rstr = new RequestSecurityTokenResponse();
rstr.TokenString = acsToken;
rstr.Expiration = expires;
rstr.TokenType = tokenType;
RequestSecurityTokenResponseCompleted(this,
new RequestSecurityTokenResponseCompletedEventArgs
(rstr, null));

You must also explicitly enable JavaScript in the embedded web
browser control on the phone; otherwise the automatic redirections
will fail. The following snippet from the AccessControlServiceSignin.
xaml file shows how to do this.

<phone:WebBrowser x:Name="BrowserSigninControl"
IsScriptEnabled="True" Visibility="Collapsed" />

ASYNCHRONOUS BEHAVIOR
Both the active and passive scenarios make extensive use of the
Reactive Extensions (Rx) for the Windows Phone platform to interact
with issuers and the a-Order tracking web service asynchronously. For
example, the active federation solution uses Rx to orchestrate the
interactions with the issuers and ensure that they are visited in the

188

CHAPTER TEN

correct sequence. The GetOrders method in the MainPage.xaml.cs
file shows how the client application adds the SWT token to the
request header that it sends to the a-Order tracking web service,
sends the request, and traps any errors such as “401 Unauthorized”
messages, all asynchronously.

public IObservable<Order[]> GetOrders()

{

var stsEndpoint =
"https://localhost/Litware.SimulatedIssuer.9/Issue.svc";
var acsEndpoint =
"https://aorderphone-dev.accesscontrol.windows.net/
v2/0Auth2-13";

var serviceEnpoint =
"https://localhost/a-Order.OrderTracking.Services.9";
var ordersServiceUri = new Uri
(serviceEnpoint + "/orders/frommyorganization");

return
HttpClient.RequestTo(ordersServiceUri)
.AddAuthorizationHeader
(stsEndpoint, acsEndpoint, serviceEnpoint)
.SelectMany(request =>

{
return request.Get<Order[]>();
3s
(request, orders) =>
{
return orders;
D)

.ObserveOnDispatcher()
.Catch((WebException ex) =>
{
var message = GetMessageForException(ex);
MessageBox.Show(message);
return Observable.Return(default(Order[]));
s

This example uses the SelectMany method instead of the simple

Select method because the call to the Get method itself returns an
I0bservable<Orders[]> instance; using Select would then return
an |Observable<lObservable<Orders[]>> instance. The Select

ACCESSING REST SERVICES FROM A WINDOWS PHONE DEVICE

Many method flattens the |Observable<lObservable
<Orders[]>> instance to an 10bservable<Orders[]>
instance.

The following list outlines the nested sequence of calls in the
active federated authentication scenario. The process starts when the
application calls the MainPage.GetMyOrdersButton_Click method,
and uses Rx to manage the nested sequence of asynchronous calls.

1. Call the MainPage.GetOrders method asynchronously on
a background thread.

a. Create an HttpWebRequest object to send to the
a-Orders tracking web service.

b. Call the HttpWebRequestExtensions.Add
AuthorizationHeader method to add the SWT token
to the HttpWebRequest object asynchronously.

i. Create a SAML token request.

ii. Call the HttpWebExtensions.PostSamIToken
Request to send the SAML request asynchro-
nously to the Litware identity provider.

a. Send the SAML request to the Litware
identity provider.

b. Extract the SAML token in the response
from the Litware identity provider.

c. Return the SAML token.

iii. Call the HttpWebExtensions.PostSwtToken
Request method to send the SAML token to
ACS asynchronously.

a. Create an SWT token request that contains
the SAML token.

b. Send the SWT token request to ACS.

c. Extract the SWT token in the response
from ACS.

d. Return the SWT token.

iv. Add the SWT token to the HttpWebRequest
object.

v. Return the HttpWebRequest object.

189

190 CHAPTER TEN

c. Invoke the a-Orders tracking web service by calling
the HttpWebRequest.Get method asynchronously.

i. Send the web request to the a-Orders tracking
web service.

ii. Use the BeginGetResponse and EndGet
Response methods to capture the response data.

iii. Deserialize the response data to an Order[]
instance.

iv. Return the Order[] instance.
d Return the results as an Order[] instance.

2. Update the Ul with the result of the call to MainPage.
GetOrders.

The following list outlines the nested sequence of calls in the
passive federated authentication scenario. The process starts when
the application calls the MainPage.OnGetMyOrdersPassive
Button_Click method, and uses Rx to manage the nested sequence
of asynchronous calls.

1. Call the AccessControlServiceSignin.GetSecurityToken
method to obtain an SWT token.

2. Handle the AccessControlServiceSignin.RequestSecurity
TokenResponseCompleted event.

a. Call the MainPage.GetOrdersWithToken method
asynchronously. The SWT token is available in the
EventArgs parameter.

i. Create an HTTP request to send to the a-Order
tracking web service.

ii. Call the HttpWebRequestExtensions.Add
AuthorizationHeader method asynchronously
to add the SWT token to the request.

iii. Invoke the a-Orders tracking web service by
calling the HttpWebRequest.Get method
asynchronously.

a. Send the web request to the a-Orders
tracking web service.

b. Use the BeginGetResponse and EndGet
Response methods to capture the response
data.

ACCESSING REST SERVICES FROM A WINDOWS PHONE DEVICE

c. Deserialize the response data to an Order([]
instance.

d. Return the Order[] instance.
iv. Return the Order[] instance.

b. From the background thread, update the Ul with the
Order[] instance data by calling the UpdateOrders
method.

Setup and Physical Deployment

For the sample Windows Phone application to be able to use SSL
when it communicates with the sample Litware issuer and Adatum
a-Order tracking applications on localhost, it’s necessary to install the
localhost root certificate on the Windows Phone device. To do this,
the Litware sample issuer includes a page that has a link to the re-
quired certificate: http://localhost/Litware.SimulatedIssuer.9/Root-
Cert/Default.aspx. If you navigate to this address on the Windows
Phone device, you can install the root certificate that enables SSL. In
a production environment, you should secure your web service and
issuer with a certificate from a trusted third-party certificate provider
rather than a self-issued certificate; if you do this, it won’t be neces-
sary to install a certificate on the Windows Phone device in order to
access your issuer and web service using SSL.

In the passive federation scenario, the Windows Phone applica-
tion uses an embedded web browser control to navigate to the Lit-
ware identity provider so that the user can enter her credentials. It’s
important that the sign-in page at the issuer is “mobile friendly” and
displays clearly on the Windows Phone device. You should verify that
your issuer renders a suitable sign-in page if you are planning to use a
Windows Phone client in a passive federated authentication scenario.

Questions

1. Which of the following are issues in developing a claims-
aware application that access a web service for the Win-
dows Phone 7TM platform?

a. It’s not possible to implement a solution that uses
SAML tokens on the phone.

b. You cannot install custom SSL certificates on the
phone.

191

http://localhost/Litware.SimulatedIssuer.9/RootCert/Default.aspx
http://localhost/Litware.SimulatedIssuer.9/RootCert/Default.aspx

192

CHAPTER TEN

c. There is no secure storage on the phone.

d. There is no implementation of WIF available for the
phone.

2. Why does the sample application use an embedded web
browser control?

a. To handle the passive federated authentication
process.

b. To handle the active federated authentication process.
c. To access the RESTful web service.
d. To enable the client application to use SSL.

3. Of the two solutions (active and passive) described in the
chapter, which requires the most round trips for the initial
request to the web service?

a. They both require the same number.

b. The passive solution requires fewer than the active
solution.

c. The active solution requires fewer than the passive
solution.

d. It depends on the number of claims configured for the
relying party in ACS.

4. Which of the following are advantages of the passive
solution over the active solution?

a. The passive solution can easily build a dynamic list of
identity providers.

b. It’s simpler to create code to handle SWT tokens in
the passive solution.

c. It’s simpler to create code to handle SAML tokens in
the passive solution.

d. Better performance.

ACCESSING REST SERVICES FROM A WINDOWS PHONE DEVICE

5. In the sample solution for this chapter, how does the
Windows Phone 7 client application add the SWT token to
the outgoing request?

a. It uses a Windows Communication Foundation (WCF)
behavior.

b. It uses Rx to orchestrate the acquisition of the SWT
token and add it to the header.

c. It uses the embedded web browser control to add the
header.

d. It uses WIF.

More Information

To learn more about developing for Windows Phone 7, see the
“Windows Phone 7 Developer Guide” at: http://msdn.microsoft.com/
en-us/library/gg490765.aspx.

193

http://msdn.microsoft.com/en-us/library/gg490765.aspx
http://msdn.microsoft.com/en-us/library/gg490765.aspx

11 Claims-Based Single Sign-On
for Microsoft SharePoint

2010

This chapter walks you through an example of integrating two Micro-
soft® SharePoint® services web applications into a single-sign on
(SSO) environment for intranet and extranet web users who all belong
to a single security realm. These users can already access other ASP.
NET web applications in the SSO environment. You'll see examples of
SharePoint applications that Adatum has made claims-aware so that
Adatum employees can access the SharePoint applications from the
company intranet or from the web.

This basic scenario doesn’t show how to establish a trust relation-
ship between enterprises that would allow users from another com-
pany to access the SharePoint site; that is discussed in Chapter 12,
“Federated Identity for SharePoint Applications.” Instead, this chapter
focuses on how to implement single sign-on and single sign-off
within a security domain as a preparation for sharing resources with
other security domains, and how to configure SharePoint to use
claims-based authentication and authorization. In short, this scenario
contains the commonly used elements that will appear in all claims-
aware SharePoint applications. For further information about inte-
grating ASP.NET web applications into an SSO environment and
making them claims-aware, you should read Chapter 3, “Claims-Based
Single Sign-On for the Web.”

For additional information about SharePoint and claims-based
identity, see Appendix F, “SharePoint 2010 Authentication Architec-
ture and Considerations.”

195

196

CHAPTER ELEVEN

The Premise

Adatum is a medium sized company that uses Microsoft Active Direc-
tory® to authenticate the employees in its corporate network. Ada-
tum is planning to implement two applications as SharePoint 2010
web applications that employees will access from both the intranet
and the Internet:

1. One application is a portal, named a-Portal, where Adatum
stores the product documentation that’s used by its sales
force when they engage with customers. This SharePoint
web application consists of a single site collection based on
the “Team Site” template.

2. The other is a web application, named a-Techs, where field
staff access scheduling information, tasks, and technical
data. It also includes a blog where field technicians can
capture tips and techniques to share with other team
members (and possibly partners in the future). This Share-
Point web application consists of two site collections; one
based on the “Team Site” template, and one based on the
“Blog” template. This web application also uses SharePoint
user profile data.

Adatum has already established an SSO environment that includes
existing ASP.NET web applications such as the a-Order and a-Expense
applications. As part of this environment, Adatum has configured Ac-
tive Directory Federation Services (ADFS) to act as an identity pro-
vider (IdP).

Goals and Requirements

The goals of this scenario are to show how to configure a SharePoint
environment to use a claims-based identity model to control access,
and how to customize SharePoint to provide a way for a SharePoint
farm administrator to effectively manage access to the claims-enabled
SharePoint applications.

Configuring a SharePoint environment to use claims includes
configuring the trust relationship between SharePoint and ADFS and
configuring which claims ADFS passes to SharePoint.

Users must be able to access the SharePoint web applications
from both the intranet and Internet as part of an SSO realm that in-
cludes other ASP.NET web applications. The environment should also
support single sign-out, so that logging out from any ASP.NET or
SharePoint web application logs the user out from all applications that
are part of the SSO domain.

CLAIMS-BASED SINGLE SIGN-ON FOR MICROSOFEFT SHAREPOINT 2010 197

SharePoint site collection administrators should be able to con-
trol access to site collections and sites based on role memberships
defined in AD. For example, only users in the Sales role should have
access to the a-Portal web application and only users in the Team
Leader role should be able to post to the blog in the a-Techs applica-
tion.

Overview of the Solution

Adatum has created two claims-enabled SharePoint web applications: In SharePoint, you
one for salespersons and one for field technical employees. These ap- configure an STS by creating
plications are available on the intranet and Internet. The following a SharePoint trusted identity
diagram shows the main components of the solution suggested by token issuer.
Adatum.
T4
P - T T T~ ~

-,
574
FedAbh Fedhithh

Cookie Gookie
(Team
e |

“

a-Techs

Indevnet

Team \

SHe

a-Pordd \

ShavePoind
| /
/
/
-t
_
- |
el John a1 home ©3
’ O
|
|
FIGURE 1

Claims-enabled SharePoint applications at Adatum

AUTHENTICATION MECHANISM
Adatum has configured both SharePoint web applications to use
ADFS as a Trusted Identity Provider. Adatum has also configured
ADFS to use different authentication types depending on where the
user is accessing the applications from: intranet users will sign-in au-
tomatically using Integrated Windows Authentication, and Internet
users will enter their Adatum Windows credentials into a web form.

In this way, all users authenticate with Active Directory through
ADFS.

198

CHAPTER ELEVEN

An alternative approach that Adatum considered was to configure
two authentication types in each web application in SharePoint.
SharePoint 2010 allows you to configure multiple authentication
mechanisms for a single web application; for example, you could con-
figure a SharePoint web application to use both Windows Authentica-
tion and a trusted identity provider. Figure 2 shows the two alterna-
tive routes by which user attributes from Active Directory become
claims belonging to a SharePoint user in this alternative scenario. The
SharePoint security token service (STS) is an instance of a SharePoint
trusted identity token issuer; the custom claims providers are op-
tional components.

ADFS
+ Claims Mapping
Rules

—Pp | +Claims Mapping | = Ei:lla;inr:sProv.der

IClaimsPrincipal Instance
SharePoint STS S P

Rules :
Augmentation)

Active Directory

\ Custom
SharePoint STS Claims Provider '
> (Claims

N
m"j’?
\/E

\ Claims Collection

Augmentation)

FIGURE 2
Building a user’s claims collection

The difficulty with this approach is that although both authenti-
cation mechanisms result in a set of claims for the IClaimsPrincipal
Instance associated with the user, without additional code they are
unlikely to generate the same types of claims. For example, the claims
from Windows authentication will include groupsid claims, while the
claims from the trusted identity provider will include role claims. An
additional complexity of this approach is that you’ll probably want to
customize the page that SharePoint displays, offering users a choice
of authentication provider.

For an example of how a custom claims provider converts SIDs

to group names, see this blog post: http://blogs.technet.com/b/
speschka/archive/2010/09/12/a-sharepoint-2010-claims-provider-
to-convert-role-sids-to-group-names.aspx.

CLAIMS-BASED SINGLE SIGN-ON FOR MICROSOFEFT SHAREPOINT 2010

For an example of how to customize the default SharePoint
page that presents a choice of authentication providers to the user,
see this blog post: http://blogs.msdn.com/b/brporter/ar-
chive/2010/05/10/temp.aspx.

For these reasons, Adatum selected the first approach that uses a
single trusted identity provider in SharePoint so that they can use the
claims-mapping rules in ADFS and ensure that a consistent set of
claims reach SharePoint.

END-TO-END WALKTHROUGHS
The following sections outline two scenarios for a user who accesses
a claims-enabled SharePoint environment: the first scenario describes
what happens when a user accesses two different site collections in
the same SharePoint web application, the second scenario describes
what happens when a user accesses two SharePoint web applications
hosted in the same domain.

The walkthroughs below describe the experience of Internet us-
ers who must provide their username and password to ADFS in order
to authenticate. ADFS will not prompt intranet users (inside the cor-
porate firewall) for their credentials, but will authenticate them using
Integrated Windows Authentication: intranet users will not see the
sign-in page for ADFS.

Visiting Two Site Collections in a SharePoint

Web Application
In this walkthrough, John visits the Document Library and then the
Team Site in the a-Techs SharePoint web application.

1. John browses to the Team site in the a-Techs SharePoint
web application.

2. John has not yet been authenticated so SharePoint redi-
rects his browser to ADFS. There are several intermediate
steps—the SharePoint authentication endpoint and the
SharePoint sign-in endpoint—before it arrives at ADFS.

3. John enters his Adatum domain credentials; ADFS validates
the credentials, creates a token that contains John's claims,
and redirects the browser to the SharePoint STS (the “/_

trust/” endpoint in the SharePoint web application refer-
ences the trusted identity token issuer).

4. The SharePoint STS validates the token from ADFS and
issues a FedAuth cookie for the a-Techs SharePoint web
application. This cookie contains a reference to the token
that contains John’s claims; the token itself is stored in the
SharePoint token cache.

200

CHAPTER ELEVEN

5. SharePoint checks that John has adequate permissions to
access to the Team site collection, and redirects his browser
to the site (the “/_layouts/Authenticate.aspx” endpoint in
the SharePoint web application performs the permissions
check).

6. John browses to the Blog site in the a-Techs SharePoint web
Application. He does not require a new token for this site
collection because it is part of the same SharePoint web
application.

In Chapter 12, “Federated Identity for SharePoint Applications,”
you can see a sequence diagram that illustrates this process in
relation to sliding sessions.

Visiting Two SharePoint Web Applications
In this walkthrough, John visits the a-Portal SharePoint web applica-
tion and then visits the a-Techs SharePoint web application.

1. John visits the a-Portal SharePoint web application.

a. John browses to the Team site in the a-Portal Share-
Point web application.

b. John has not yet been authenticated, so SharePoint
redirects his browser to ADFS.

c. John enters his Adatum domain credentials; ADFS
validates the credentials, issues a SAML token that
contains his claims, and redirects the browser to the
SharePoint STS (the “/_trust/” endpoint in the Share-
Point web application). ADFS also creates an SSO
cookie so that it can recognize if it has already
authenticated John.

d. The SharePoint STS validates the token from ADFS
and issues a FedAuth cookie for the a-Portal Share-
Point web application that contains a reference to
John’s claims in the SharePoint token cache.

e. SharePoint checks that John has access to the Team
site collection, and redirects his browser to the site.

2. John visits the a-Techs SharePoint web application.

a. John browses to the Team site in the a-Techs Share-
Point web application.

b. John has not yet been authenticated for this Share-
Point web application so SharePoint redirects his
browser to ADFS.

CLAIMS-BASED SINGLE SIGN-ON FOR MICROSOFEFT SHAREPOINT 2010

c. ADFS detects the SSO cookie that it issued in step
1-c, and redirects the browser with a new SAML token
to the SharePoint STS.

d. The SharePoint STS validates the token from ADFS
and issues a FedAuth cookie for the a-Techs Share-
Point web application that contains a reference to
John’s claims in the SharePoint token cache.

e. SharePoint checks that John has sufficient permissions
to access to the Team site collection, and redirects his
browser to the site.

In this example, it’s important to ensure that each SharePoint web
application uses its own FedAuth token. If the web applications have
different host names, this will happen automatically. However, if in a
test environment the web applications share the same host name, the
second web application will try to use the existing FedAuth token,
which will not be valid for that web application. Each web applica-
tion must have its own FedAuth token. See the section, “Setup and
Physical Deployment,” in this chapter for more details.

AUTHORIZATION IN SHAREPOINT
This scenario uses standard SharePoint groups to control access to the
sites in the two SharePoint web applications. The following table
summarizes the permissions.

Site SharePoint Group | Permission level | Role Claim
a-Portal Team SalesSite Members | Contribute sales

site

a-Techs Team site | TechSite Members | Contribute techleaders
a-Techs Team site | TechSite Members | Contribute techs
a-Techs Blog site | TechBlog Members | Contribute techleaders
a-Techs Blog site | TechBlog Visitors Read techs

In SharePoint, a site administrator can add users to a SharePoint
group to grant those users the permissions associated with the group.
In a claims-based environment, a site administrator can add users to a
SharePoint group based on the users’ claims; for example, a site admin-
istrator could add all authenticated users in the sales role to the
SharePoint Site Members group by using the Site Permissions Tools.

Mapping claims to SharePoint groups simplifies the administration
tasks in SharePoint. There is no need to add individual users to
SharePoint groups.

201

202

In a claims-enabled
application, the application
receives a set of claims

from a trusted issuer about
the person accessing the
application. This contrasts
with the approach whereby
the application queries a
directory service to discover
information about the user.
The claims-based approach
is much more flexible: the
claims can come from many
different issuers and be
used in a federated identity
environment. However, in

a claims-based scenario the
application may not have
direct access to lists of users
in a directory.

CHAPTER ELEVEN

Adatum has modified the SharePoint People Picker to make it
easier for site administrators to map role and organization claims to
SharePoint groups.

If your identity provider does not provide the claims that you
need to implement your authorization rules, you can use claims aug-
mentation in the SharePoint STS to modify existing claim values or to
add additional claims to an authenticated user.

THE PEOPLE PICKER
It is difficult for site administrators at Adatum to use the default
people picker to reliably assign permissions in the a-Portal and a-Techs
web applications. The default behavior of the people picker is to allow
the user to enter part of a user name or group name and then use the
search function to locate the user or group. In a claims-enabled Share-
Point web application this does not work as expected because there
is no repository of users and groups for the people picker to search;
the only information SharePoint has is the claims data associated with
the current user. The default people picker implementation works
around this by always finding a match and resolving the name even if
the name is incorrect, which makes it easy for an administrator to
make a mistake. For example, let’s say the site administrator would like
to assign a permission to anyone in the techs role. If he makes a typing
mistake and searches for techz in the people picker he will get a
match and be able to assign a permission to a non-existent role.

To prevent this type of error, Adatum implemented a custom
SPClaimsManager component that can search for role and organiza-
tion values in a pre-defined list of valid values. Figure 3 shows the
overall architecture of the solution that Adatum adopted. There is a
central store of valid role and organization names that both ADFS and
the SharePoint people picker use: this way Adatum can configure
ADFS to issue role and organization claims that the SharePoint
people picker will recognize.

CLAIMS-BASED SINGLE SIGN-ON FOR MICROSOFEFT SHAREPOINT 2010 203

Look up voles and
~J._oganizions.

People Picker
Wse predefined voles
and organizaions.

ShavePoind

SHove

ShavePoind Sde Adminishiator

seavches for Vahd voles

and oianizadions.
FIGURE 3

Architecture of the Adatum people picker solution

SharePoint and ADFS both run inside the Adatum corporate net-
work. If SharePoint is running in a separate network from ADFS and
the store, then a slightly more complex solution is needed. This might
arise if SharePoint is running in the cloud, or if SharePoint needs to
resolve values used by a partner’s directory services. In this case, the
architecture might include a lookup service as shown in Figure 4; in
SharePoint you can use Business Connectivity Services to make the
call to the lookup service, which introduces a useful layer of indirec-
tion into the architecture.

204 CHAPTER ELEVEN

Look ulp voles and
ovgANZAONS.

People Pickev

ShavePoind

n Hhe Clovd

ShavePond SHe Administiator
seanches for Vahd voles
and oganizations.

In the long run, it’s more
maintainable to manage
permissions based on roles
(and organizations) rather
than on individuals in
SharePoint. You can use
Active Directory and ADFS
to manage an individual’s
role and organization
membership, while in
SharePoint you can

focus on mapping roles
and organizations to
SharePoint groups.

Use predefined voles
and onganizaions.

Sove

Adatiim

FIGURE 4
People picker solution architecture
including a query claims lookup service

Adatum plans to use role and organization claims to assign per-
missions in SharePoint, and wants to avoid assigning permissions to
individual users. However, some organizations may prefer to use
names or email addresses to assign permissions in some circumstances.
It is still possible to do this in a claims-enabled SharePoint site, but
with the standard people picker component, site administrators will
face the same problem whereby the people picker resolves both valid
and invalid names. To work around this problem you can again create
a custom people picker component that resolves name and email
address claim values against your directory service.

SINGLE S1GN-OUuT
For a SharePoint web application to participate in the single sign-out
process, it must be able to handle the following scenarios. For more
information about single sign-out and the WS-Federation protocol
see Chapter 3, “Claims-Based Single Sign-On for the Web and Win-
dows Azure.”

1. The user should be able to initiate the single sign-out from
within the SharePoint web application. Adatum modified
the behavior of the standard sign-out process to send the
WS-Federation wsignout message to the token issuer. In
the Adatum scenario, this token issuer is ADFS.

CLAIMS-BASED SINGLE SIGN-ON FOR MICROSOFEFT SHAREPOINT 2010 205

2. SharePoint web applications should handle WS-Federation
wsignoutcleanup messages from the issuer and invalidate
any security tokens for the application. For this to work in
SharePoint you must configure the SharePoint security
token service to use session cookies rather than persistent
cookies.

If the user is signing in using Windows authentication in ADFS, then
revisits the web application after having signed out, he or she will be
signed in automatically and silently. Although the single sign-out has
happened, the user won’t be aware of it.

By default, SharePoint uses persistent cookies to store the session
token, and this means that a user can close the browser and re-open
it and get back to the SharePoint web application as long as the
cookie has not expired. The consequence of changing to session cook-
ies is that if a user closes the browser, she will always be required to
authenticate again when she next visits the SharePoint web applica-
tion. Adatum prefers this behavior because it provides better security.

Inside the Implementation

The following sections describe the key configuration steps that Ada-
tum performed in order to implement the scenario that this chapter
describes.

RELYING PARTY CONFIGURATION IN ADES

Each SharePoint web application is a separate relying party (RP) from
the perspective of ADFS. Adatum has configured each of the relying
parties to use the WS-Federation protocol and to issue the emailad-
dress and role claims for users that it authenticates, passing the values
of these claims through from Active Directory. The following table
shows the mapping rules that Adatum configured for each relying
party in ADFS.

LDAP Attribute Outgoing claim type
E-Mail-Addresses E-Mail Address
Token-Groups - Unqualified Names Role

It’s important that the claims issued to SharePoint by ADFS (or
any other claims issuer) are SAML 1.x compliant. For a description of
the correct name format for claims that will be consumed by Share-
Point, see this blog post: http://social.technet.microsoft.com/wiki/
contents/articles/ad-fs-2-0-the-admin-event-log-shows-error-
111-with-system-argumentexception-id4216.aspx.

206

CHAPTER ELEVEN

SharePoint will send

these identifier values
in the wtrealm

parameter. It’s
important to make
sure that these
identifiers match the
configuration in
SharePoint. These
examples show the
recommended format
for these identifiers;
however, there is no
specific required
format.

ADFS must be able to identify which relying party a request
comes from so that it can issue the correct set of rules. The sample
scenario uses the identifiers shown in the following table:

Relying Party Identifiers

a-Portal SharePoint web application urn:adatum-portal:sharepoint

a-Techs SharePoint web application urn:adatum-techs:sharepoint

As part of the configuration in ADFS, you must specify the URL
of the relying party WS-Federation protocol endpoint: this URL will
be the “/_trust/” path in your SharePoint web application.

You must enter the required information in ADFS manually (or
create Windows® PowerShell® command-line interface scripts);
SharePoint does not expose a FederationMetadata.xml document
that you can use to automate the configuration.

SHAREPOINT STS CONFIGURATION
You must configure the SharePoint STS to trust the ADFS issuer, and
map the incoming claims from ADFS to claims that your SharePoint
applications will use. The following sections describe the steps you
must perform to complete this configuration.

Remember to install the SharePoint PowerShell snap-in before
attempting to run any SharePoint PowerShell scripts. You can
do this with the following PowerShell command:

Add-PSSnapin Microsoft.Sharepoint.Powershell

Create a New SharePoint Trusted Root Authority
ADFS signs the tokens that it issues with a token signing certificate.
You must import into SharePoint a certificate that it can use to vali-
date the token from ADFS. You can use the following PowerShell
commands to import a certificate from the adfs.cer file:

$cert = New-Object System.Security.Cryptography.X509Certificates.
X509Certificate2("C:\adfs.cer ")

New-SPTrustedRootAuthority

-Name "Token Signing Cert"

-Certificate $cert

You can export this certificate from ADFS using the certificates
node in the ADFS 2.0 Management console.

CLAIMS-BASED SINGLE SIGN-ON FOR MICROSOFEFT SHAREPOINT 2010

If the signing certificate from ADFS has one or more parent certifi-
cates in its certificate chain, you must add these to SharePoint as
well. You can use the same SharePoint command to do this.

Notice that you must import any certificates that SharePoint
uses into SharePoint; SharePoint does not use the trusted root
authorities in the certificate store on the local machine.

Create the Claims Mappings in SharePoint
To map the incoming claims from ADFS to claims that SharePoint
uses, you must create some mapping rules. The following PowerShell
commands show how to create rules to pass through the incoming
emailaddress and role claims.

$map = New-SPClaimTypeMapping

-IncomingClaimType "http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/emailaddress"
-IncomingClaimTypeDisplayName "EmailAddress"
-SameAsIncoming

$map2 = New-SPClaimTypeMapping

-IncomingClaimType "http://schemas.microsoft.com/ws/2008/06/
identity/claims/role" -IncomingClaimTypeDisplayName "Role"
-SameAsIncoming

You can choose to perform your claims mapping either as a part
of the relying party definition in ADFS, or in the SharePoint STS.
However, the rules-mapping language in ADFS is the more flexible of
the two.

For an example of how to add additional claim types, see the
“People Picker Customizations” section later in this chapter.

Create a New SharePoint Trusted Identity Token Issuer
A SharePoint trusted identity token issuer binds together the details
of the identity provider and the mapping rules to associate them with
a specific SharePoint web application. The following PowerShell com-
mands show how to add the configuration settings for the scenario
that this chapter describes. This script uses the $cert, $map, and
$map2 variables from the previous script snippets.

$ap = New-SPTrustedIdentityTokenIssuer

-Name "SAML Provider"

-Description "Uses Adatum ADFS as an identity provider"
-Realm "urn:adatum-portal:sharepoint”
-ImportTrustCertificate $cert

207

208

CHAPTER ELEVEN

-ClaimsMappings $map, $map2

-SignInUrl "https://DC-adatum/adfs/1ls/"

-IdentifierClaim http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/emailaddress

$uri = New-Object System.Uri("https://adatum-sp:31242/")

$ap.ProviderRealms.Add($uri, "urn:adatum-techs:sharepoint")
$ap.Update()

The following table describes the key parameters in the Power-
Shell commands.

Parameter/command Notes

-Realm The realm is the value of the relying party identifier in
ADFS. In this example, the realm parameter identifies
the a-Portal SharePoint web application. The Add
method of the ProviderRealms object adds the
identifier for the a-Techs SharePoint web application.
The URI is the address of the SharePoint web
application.

-ImportTrustCertificate | This associates the token-signing certificate from
ADFS with the token issuer.

-ClaimsMappings This associates the claims-mapping rules with the
token issuer.

-SignlnUrl This identifies the URL where the user can authenti-
cate with ADFS.

-IdentifierClaim This identifies which claim from the identity provider

uniquely identifies the user.

This example uses the email address as the identifier. You may
want to consider alternative unique identifiers because of the possibil-
ity that email addresses can change.

Figure 5 summarizes how the SharePoint trusted identity token
issuer uses the configuration data to issue a SAML token to the Share-
Point web application.

CLAIMS-BASED SINGLE SIGN-ON FOR MICROSOFEFT SHAREPOINT 2010

SharePoint Trusted Identity Token Issuer

Token request

v

Provider Realms

-Look up the relying party
identifier for the web application
requesting a token.

SAML Mapping Rules Token Signing Certificate /
Token P - Apply the mapping rules. | === - Verify the signature lssue
- Issue on the token. SAML
SAML Token
Token
FIGURE 5

The SharePoint trusted identity token issuer

When a SharePoint web application requests a token from a
trusted identity provider, the SharePoint trusted token issuer first
looks up the unique identifier of the web application. It passes this
identifier to the external token issuer in the wtrealm parameter of the
request. When the external token issuer returns a SAML token, the
SharePoint trusted identity token issuer verifies the signature, applies
any mapping rules, and places the new SAML token in the SharePoint
token cache. It also creates a FedAuth cookie that contains a refer-
ence to the SAML token in the cache. Whenever the user access a
page in the SharePoint web application, SharePoint first checks if
a valid SAML token exists for the user, and then uses the claims in the
token to perform any authorization checks.

There is a one-to-one mapping between SharePoint trusted iden-
tity token issuers and trust certificates from the external token issuer.
You cannot configure a new SharePoint trusted identity token issuer
using a token-signing certificate that an existing SharePoint trusted
identity token issuer uses.

SHAREPOINT WEB APPLICATION
CONFIGURATION
Each web application in SharePoint defines which authentication
mechanisms it can use. In the scenario described in this chapter, Ada-
tum has configured both SharePoint web applications to use a SAML-
based trusted identity provider. Both intranet and internet users use
the SAML-based trusted identity provider.

Token Request \

\

Token Issuer
-Authenticate the
user and issue a
SAML token. ADFS
uses the identifier
to determine which
rules to run.

209

210

CHAPTER ELEVEN

PEOPLE PICKER CUSTOMIZATIONS

To customize the behavior of the standard people picker to enable
site administrators to reliably select role and organization claims,
Adatum created a custom claim provider to deploy to SharePoint. The
Microsoft Visual Studio® development system solution, SampleClaim-
sProvider, in the 10SharePoint folder from http://claimsid.codeplex.
com includes a custom claim provider that demonstrates how Adatum
extended the behavior of the people picker. For reasons of simplicity,
this sample does not use a store to maintain the list of role and
organization claims that Adatum uses, the lists of valid claims are
maintained in memory. In a production-quality claims provider you
should read the permissible claims values from a store shared with the
identity provider. For more information, see the section “The People
Picker” earlier in this chapter.

Use a custom SPClaimProvider c/ass to override the default people
picker behavior.

The SampleClaimsProvider class extends the abstract SPClaim
Provider class and overrides the methods FillHierarchy, FillResolve,
and FillSearch. The SPTrustedClaimslssuer class, which derives from
the SPClaimProvider class, implements the default Ul behavior in the
people picker.

The GetPickerEntry method is responsible for building an entry
that will display in the people picker. The following code sample
shows this method.

private PickerEntity GetPickerEntity(string ClaimValue, string
claimType, string GroupName)

PickerEntity pe = CreatePickerEntity();

var issuer = SPOriginalIssuers.Format(
SPOriginalIssuerType.TrustedProvider, TrustedProviderName);

pe.Claim = new SPClaim(claimType, ClaimValue,
Microsoft.IdentityModel.Claims.ClaimValueTypes.String,

issuer);
pe.Description = claimType + "/" + ClaimValue;
pe.DisplayText = ClaimValue;
pe.EntityData[PeopleEditorEntityDataKeys.DisplayName] =
ClaimValue;

pe.EntityType = SPClaimEntityTypes.Trusted;
pe.IsResolved = true;
pe.EntityGroupName = GroupName;

return pe;

http://claimsid.codeplex.com
http://claimsid.codeplex.com

CLAIMS-BASED SINGLE SIGN-ON FOR MICROSOFEFT SHAREPOINT 2010 211

This method uses the ClaimValue, claimType, and GroupName
strings to create a claim that the people picker can display. The Trusted
ProviderName variable refers to the name of the SharePoint trusted
identity token issuer that you are using: the SPOriginal
Issuers.Format method returns a string with the full name of the
original valid issuer that you must use when you create a new claim.

Notice that a claim definition includes the claim issuer as well as the
claim type and value. SharePoint will check the source of a claim as
a part of any authorization rules.

If you are creating an identity claim, you must ensure that the
claimType that you pass to the SPClaim constructor matches the
identity claim type of your trusted identity token issuer, and that you
set the EntityType property to SPClaimEntityTypes.User.

The people picker uses the value of the Description property to
display a tooltip in the Ul when a user hovers the mouse over a
resolved claim.

If you deploy this solution to SharePoint, then the people picker
will display search results from this custom claim provider in addition
to results from the default, built-in claim provider. This means that if
a site administrator searches for a non-existent role or organization
claim, then the default claim provider will continue to resolve this
non-existent claim value. To prevent this behavior, you can make your
custom claim provider the default claim provider. If the name of the
trusted identity token issuer is “SAML Provider” and the name of the
custom claim provider is “ADFSClaimProvider,” then the following
PowerShell script will make the custom claim provider the default.

$ti = Get-SPTrustedIdentityTokenIssuer "SAML Provider"
$ti.ClaimProviderName = "ADFSClaimsProvider"
$ti.Update()

It’s also important to ensure that the claim types that the site
administrator will use in the custom people picker exist in the trusted
identity token issuer. You can use the following PowerShell script to
list the claims that are present in the configuration.

$i = Get-SPTrustedIdentityTokenIssuer "SAML Provider"
$i.ClaimTypes

You can add claim types to an existing trusted identity token is-
suer using the technique shown in the following PowerShell script.

$map = New-SPClaimTypeMapping -IncomingClaimType
"http://schemas.microsoft.com/ws/2008/06/identity/claims/
organization”
-IncomingClaimTypeDisplayName "Organization" -LocalClaimType

Adatum made the custom
claim provider the default
claim provider in the
SharePoint web applications.

212

CHAPTER ELEVEN

"http://schemas.microsoft.com/ws/2008/06/identity/claims/
organization”
$ti = Get-SPTrustedIdentityTokenIssuer "SAML Provider"
$ti.ClaimTypes.Add(
"http://schemas.microsoft.com/ws/2008/06/identity/claims/
organization")
Add-SPClaimTypeMapping -Identity $map
-TrustedIdentityTokenIssuer $ti

This script maps an incoming claim and defines the new claim
type in the trusted identity token issuer.

SINGLE SIGN-OuT CONTROL
To implement single sign-out behavior, you must be able to send the
WS-Federation wsignout message to the token issuer when the user
clicks either the “Sign out” or “Sign in with a different user” link on any
page in the a-Portal or a-Techs SharePoint web applications. Adatum
implemented the single sign-out logic in the SessionAuthentication
Module’s Signedln and SigningOut events. The Visual Studio solu-
tion, SingleSignOutModule in the 10SharePoint folder from http://
claimsid.codeplex.com, includes a custom HTTP module to deploy to
your SharePoint web application that includes this functionality.

The following code sample shows the DoFederatedSignOut
method that the SigningOut event handler invokes to perform the
sign-out.

private void DoFederatedSignOut()

{
string providerName = GetProviderNameFromCookie();
SPTrustedLoginProvider loginProvider = null;
SPSecurity.RunWithElevatedPrivileges(delegate()
{

loginProvider = GetLoginProvider(providerName);

3

if (loginProvider != null)
{
string returnUrl = string.Format(
System.Globalization.CultureInfo.InvariantCulture,
"{0}://{1}/_layouts/SignOut.aspx",
HttpContext.Current.Request.Url.Scheme,
HttpContext.Current.Request.Url.Host);
HttpCookie signOutExpiredCookie =
new HttpCookie(SignOutCookieName, string.Empty);

signOutExpiredCookie.Expires = new DateTime(1970, 1, 1);
HttpContext.Current.Response.Cookies.

http://claimsid.codeplex.com
http://claimsid.codeplex.com

CLAIMS-BASED SINGLE SIGN-ON FOR MICROSOFEFT SHAREPOINT 2010 213

Remove (SignOutCookieName) ;
HttpContext.Current.Response.Cookies.
Add(signOutExpiredCookie);
WSFederationAuthenticationModule.FederatedSignOut(
loginProvider.ProviderUri, new Uri(returnuUrl));

This method performs the sign-out by calling the SharePoint
SPFederationAuthenticationModule.FederatedSignOut method,
passing the address of the claims provider and the address of the
SharePoint web application’s sign-out page as parameters. To discover
the address of the claims provider, it uses an SPTrustedLogin
Provider object: however, to get a reference to the SPTrustedLogin
Provider object it needs its name, and it discovers the name by read-
ing the custom sign-out cookie.

This method uses the SPSecurity.RunWithElevatedPrivileges
method to invoke the GetLoginProvider method with “Full Control”
permissions.

The following code sample shows how Adatum creates the custom
sign-out cookie in the Session_SignedIn event.

private const string SignOutCookieName = "SPSignOut";
void WSFederationAuthenticationModule_SignedIn(object sender,
EventArgs e)
{
IClaimsIdentity identity =
HttpContext.Current.User.Identity as IClaimsIdentity;

if (identity != null)

{
foreach (Claim claim in identity.Claims)
{
if (claim.ClaimType == SPClaimTypes.IdentityProvider)
{

int index = claim.Value.IndexOf(‘:"');
string loginProviderName = claim.Value.Substring(
index + 1, claim.Value.Length - index - 1);
HttpCookie signOutCookie = new HttpCookie(
SignOutCookieName,
Convert.ToBase64String(
System.Text.Encoding.UTF8.
GetBytes(loginProviderName)));
signOutCookie.Secure = FederatedAuthentication
.SessionAuthenticationModule
.CookieHandler.RequireSsl;

CHAPTER ELEVEN

One of the key reasons
that Adatum selected this
approach for handling
single sign-out was its
compatibility with the
sliding-sessions implemen-
tation that Adatum chose
to use. The sign-out
process must be initiated
when the user is inactive

for more than the defined

period of inactivity and
when the user’s SAML
token ValidTo time is
reached. For details about
how Adatum implemented
sliding sessions in the
a-Portal web application
see Chapter 12, “Federated
Identity for SharePoint
Applications.”

signOutCookie.HttpOnly = FederatedAuthentication
.SessionAuthenticationModule.CookieHandler
.HideFromClientScript;

FederatedAuthentication

.SessionAuthenticationModule.CookieHandler

signOutCookie.Domain =

.Domain;
HttpContext.Current.Response.Cookies.Add(signOutCookie);
break;

The custom sign-out cookie is not encrypted or signed. It is
transported using SSL, and only contains the name of the
user’s login provider.

You can find a complete listing of the global.asax file that Adatum
use in the a-Portal web application at the end of this chapter.

D1isPLAYING CLAIMS IN A WEB PART
When you're developing a claims-enabled SharePoint solution, it’s
useful to be able to view the set of claims that a user has when he
visits a SharePoint web application. The Visual Studio solution called
DisplayClaimsWebPart in the 10SharePoint folder from http://claim-
sid.codeplex.com includes a SharePoint Web Part that displays claims
data for the current user. The Web Part displays the following claims
data:
* The claim type.

¢ The claim issuer (this is typically SharePoint).

* The original claim issuer (this might be a trusted provider
or the SharePoint STS).

* The claim value.

This is a standard Web Part that you can deploy to a SharePoint
web application directly from Visual Studio or through the SharePoint
Ul. After the Web Part is deployed to SharePoint you can add it to any
SharePoint web page. It does not require any further configuration.

USER PROFILE SYNCHRONIZATION
A claims-enabled SharePoint environment can synchronize user pro-
file data stored in the SharePoint profile store with profile data that
is stored in directory services and other business systems in the enter-
prise. The important difference in the way that user profiles work in
a claims-enabled web application such as the Adatum a-Techs Share-

http://claimsid.codeplex.com
http://claimsid.codeplex.com

CLAIMS-BASED SINGLE SIGN-ON FOR MICROSOFEFT SHAREPOINT 2010 215

Point application is how SharePoint identifies the correct user profile
from the claims data associated with an SPUser instance.

To make sure that SharePoint can match up a user profile from the
current SPUser instance, you must ensure that three user properties
are correctly configured.

Property name Property value

Claim User Identifier This is the unique identifier for a user. For Adatum,
this is the value it used for the /dentifierClaim
parameter when it configured the SharePoint trusted
identity token issuer: http://schemas.xmlsoap.org/
ws/2005/05/identity/claims/emailaddress.

Claim Provider Identifier | This identifies the trusted identity token issuer. For
Adatum this value is “SAML Provider.” This value is
set automatically when you configure the user profile
synchronization service.

Claim Provider Type This specifies the token provider type. For Adatum
this value is “Trusted Claims Provider Authentica-
tion.” This value is set automatically when you
configure the user profile synchronization service.

Setup and Physical Deployment

To run this scenario in a lab environment you may want to change
some of the default configuration options in SharePoint and ADFS.

FEDAUTH TOKENS

Each SharePoint web application must have its own FedAuth cookie
if it is to function correctly in an single sign-on environment. In a
production environment, this is not normally an issue because each
SharePoint web application has a separate host name: for example,
a-portal.adatum.com, and a-techs.adatum.com. However, in a lab en-
vironment you may not want to configure the necessary DNS infra-
structure to support this; if your SharePoint web applications share
the same host name, for example lab-sp.adatum.com:31242 and lab-
sp.adatum.com:40197, then you must make a configuration change to
make sure that each application uses a different name for the FedAuth
cookie. You can change the name of the FedAuth cookie in the micro-
soft.IdentityModel section of the Web.config file. The following
snippet shows how to change the token name to “techsFedAuth”
from its default name of “FedAuth.”

<federatedAuthentication>
<cookieHandler mode="Custom" path="/" name="techsFedAuth">

</federatedAuthentication>

216

CHAPTER ELEVEN

ADES DEFAULT AUTHENTICATION METHOD

By default, an Active Directory Federation Services (ADFS) server
installation uses Integrated Windows Authentication, and an ADFS
proxy installation uses an ASP.NET form to collect credentials. In a lab
environment, if you do not have an ADFS proxy installation, you may
want to change the default behavior of the ADFS server to use an
ASP.NET form. To change this, edit the Web.config file in the /adfs/Is
folder. The following snippet shows “Forms” at the top of the list,
making it the default. This means that in a simple lab environment you
will always need to sign in explicitly.

<microsoft.identityServer.web>
<localAuthenticationTypes>
<add name="Forms" page="FormsSignIn.aspx" />
<add name="Integrated" page="auth/integrated/" />
<add name="TlsClient" page="auth/sslclient/" />
<add name="Basic" page="auth/basic/" />
</localAuthenticationTypes>

</microsoft.identityServer.web>

SERVER DEPLOYMENT

ADFS enables you to deploy proxy instances that are intended to
handle authentication requests from the web rather than the internal
corporate network which are handled by the main ADFS server in-
stances. This provides an addition layer of security because the main
ADFS server instances can be kept inside the corporate firewall. For
more information about deploying ADFS servers and ADFS server
proxies, see this section on the TechNet website: http://technet.mi-
crosoft.com/en-us/library/gg982491(WS.10).aspx. You will also need
to ensure that your SharePoint web application is exposed to the in-
ternet to allow Adatum employees to access it remotely.

Questions
1. Which of the following roles can the embedded STS
in SharePoint perform?
a. Authenticating users.

b. Issuing FedAuth tokens that contain the claims
associated with a user.

c. Requesting claims from an external STS such as ADFS.

http://technet.microsoft.com/en-us/library/gg982491(WS.10).aspx
http://technet.microsoft.com/en-us/library/gg982491(WS.10).aspx

CLAIMS-BASED SINGLE SIGN-ON FOR MICROSOFEFT SHAREPOINT 2010 217

d. Requesting claims from Active Directory through
Windows Authentication.

2. Custom claim providers use claims augmentation to perform
which function?

a. Enhancing claims by verifying them against an external
provider.

b. Enhancing claims by adding additional metadata to
them.

c. Adding claims data to the identity information in the
SPUser object if the SharePoint web application is in
“legacy” authentication mode.

d. Adding additional claims to the set of claims from the
identity provider.

3. Which of the following statements about the FedAuth
cookie in SharePoint are correct?

a. The FedAuth cookie contains the user’s claim data.

b. Each SharePoint web application has its own FedAuth
cookie.

c. Each site collection has its own FedAuth cookie.
d. The FedAuth cookie is always a persistent cookie.

4. In the scenario described in this chapter, why did Adatum
choose to customize the people picker?

a. Adatum wanted the people picker to resolve role
and organization claims.

b. Adatum wanted the people picker to resolve name
and emailaddress claims from ADFS.

c. Adatum wanted to use claims augmentation.

d. Adatum wanted to make it easier for site
administrators to set permissions reliably.

5. In order to implement single sign-out behavior in Share-
Point, which of the following changes did Adatum make?

a. Adatum modified the standard signout.aspx page to
send a wsignoutcleanup message to ADFS.

b. Adatum uses the SessionAuthenticationModule
SigningOut event to customize the standard sign-out
process.

218

CHAPTER ELEVEN

c. Adatum added custom code to invalidate the FedAuth
cookie.

d. Adatum configured SharePoint to use a session-based
FedAuth cookie.

More Information

For more information about SharePoint and claims-based identity,
see Appendix F, “SharePoint 2010 Authentication Architecture and
Considerations.”

For a detailed, end-to-end walkthrough that describes how to
configure SharePoint and ADFS, see this blog post: http://blogs.tech-
net.com/b/speschka/archive/2010/07/30/configuring-sharepoint-
2010-and-adfs-v2-end-to-end.aspx.

The following resources are useful if you are planning to create a
custom people picker component for your SharePoint environment:

¢ People Picker overview (SharePoint Server 2010): http://
technet.microsoft.com/en-us/library/gg602068.aspx

* Custom claims providers for People Picker (SharePoint Server
2010): http://technet.microsoft.com/en-us/library/gg602072.
aspx

* Creating Custom Claims Providers in SharePoint 2010: http://
msdn.microsoft.com/library/gg615945.aspx

¢ Claims Walkthrough: Writing Claims Providers for SharePoint
2010: http://msdn.microsoft.com/en-us/library/ff699494.aspx

* How to Override the Default Name Resolution and Claims
Provider in SharePoint 2010: http://blogs.technet.com/b/
speschka/archive/2010/04/28/how-to-override-the-default-
name-resolution-and-claims-provider-in-sharepoint-2010.aspx

For further information about using profiles in a claims-enabled
SharePoint environment, see this blog post: http:/blogs.msdn.com/b/
brporter/archive/2010/07/19/trusted-identity-providers-amp-user-
profile-synchronization.aspx.

http://blogs.technet.com/b/speschka/archive/2010/07/30/configuring-sharepoint-2010-and-adfs-v2-end-to-end.aspx
http://blogs.technet.com/b/speschka/archive/2010/07/30/configuring-sharepoint-2010-and-adfs-v2-end-to-end.aspx
http://blogs.technet.com/b/speschka/archive/2010/07/30/configuring-sharepoint-2010-and-adfs-v2-end-to-end.aspx
http://technet.microsoft.com/en-us/library/gg602068.aspx
http://technet.microsoft.com/en-us/library/gg602068.aspx
http://technet.microsoft.com/en-us/library/gg602072.aspx
http://technet.microsoft.com/en-us/library/gg602072.aspx
http://msdn.microsoft.com/library/gg615945.aspx
http://msdn.microsoft.com/library/gg615945.aspx
http://msdn.microsoft.com/en-us/library/ff699494.aspx
http://blogs.technet.com/b/speschka/archive/2010/04/28/how-to-override-the-default-name-resolution-and-claims-provider-in-sharepoint-2010.aspx
http://blogs.technet.com/b/speschka/archive/2010/04/28/how-to-override-the-default-name-resolution-and-claims-provider-in-sharepoint-2010.aspx
http://blogs.technet.com/b/speschka/archive/2010/04/28/how-to-override-the-default-name-resolution-and-claims-provider-in-sharepoint-2010.aspx
http://blogs.msdn.com/b/brporter/archive/2010/07/19/trusted-identity-providers-amp-user-profile-synchronization.aspx%20
http://blogs.msdn.com/b/brporter/archive/2010/07/19/trusted-identity-providers-amp-user-profile-synchronization.aspx%20
http://blogs.msdn.com/b/brporter/archive/2010/07/19/trusted-identity-providers-amp-user-profile-synchronization.aspx%20

12 Federated Identity
for SharePoint
Applications

In previous chapters, you saw ways that federated identity can help
companies share resources with their partners. The scenarios have
included small numbers of partners as well as large numbers of con-
stantly changing partners, sharing web applications and web services,
and supporting multiple client platforms. These scenarios share an
important feature: they all use claims.

In Chapter 11, “Claims-Based Single Sign-On for Microsoft Share-
Point 2010,” you saw how Adatum could expand its single sign-on
domain to include Microsoft® SharePoint® services web applications.
The SharePoint web applications at Adatum used claims-based
authentication, using claims from an external token issuer Microsoft

Active Directory® Federation Services (ADFS). Adatum wants to allow

In this chapter, you'll learn how Adatum lets employees at one selected partners access to
of its customers, Litware, use the a-Portal SharePoint application its SharePoint a-Portal
that was introduced in Chapter 11, “Claims-Based Single Sign-On for web application.

Microsoft SharePoint 2010.”

The Premise

The a-Portal SharePoint application has given Adatum sales personnel
access to up-to-date and accurate product information during the
sales process, which has resulted in improved customer satisfaction.
However, there have been complaints from customers who make
purchases through of Adatum’s partners that some of the product
information has been out of date. This is because Adatum’s partners
are responsible for keeping the product information that they use up
to date. One of these sales partners is Litware. Rick, the CIO of Lit-
ware, has seen the a-Portal SharePoint application and he is keen for
his sales staff to use a-Portal instead of their own copy of the product
information. Adatum has already claims-enabled the a-Portal Share-
Point application (for further information see Chapter 11, “Claims-

219

220

CHAPTER TWELVE

Based Single Sign-On for Microsoft SharePoint 2010”) and made it
available to Adatum employees who work remotely on the Internet.
Litware has already deployed ADFS, so most of the required federa-
tion infrastructure is already available.

Goals and Requirements

The primary goal of this scenario is to show how to create a Share-
Point site that uses federated identities, so that users from Litware
can access the Adatum a-Portal SharePoint application without hav-
ing to sign in again to the Adatum security realm. The types of claims
issued by Litware are not the same types as the claims used by a-
Portal at Adatum, so it’s necessary to include some claims transforma-
tion logic to convert the claims issued by Litware. Adatum anticipates
that other sales partners will also want to use the a-Portal application,
so the solution must be able to accommodate multiple identity pro-
viders.

The solution should also ensure that partners are kept isolated.
For example, there may be some product information that only Ada-
tum and not Litware sales personnel should see.

For security, Adatum wants to have SharePoint automatically sign
users out of the a-Portal application after a period of inactivity. In
addition, because users will be accessing the a-Portal application on
computers outside the Adatum corporate network, when a user
closes the browser and then re-opens it, the user must re-authenticate
to gain access to the a-Portal web application.

Overview of the Solution

Figure 1 shows an overview of the solution adopted by Adatum and
Litware. It shows a new trust relationship between Adatum’s issuer,
and Litware’s issuer. In addition to acting as an identity provider (IdP)
for Adatum employees, the Adatum ADFS instance now functions as
a federation provider (FP) for partners such as Litware.

FEDERATED IDENTITY FOR SHAREPOINT APPLICATIONS

Adatim FP Ldwave IP

ADF4

ADFS

FedAirh
Cookie

ShavePond |

| Rick o Liwiave &

FIGURE 1 Adatm | Lidwave
Federating identity with Litware

When Rick, a user from Litware, browses to the a-Portal Share-
Point web application, SharePoint detects that Rick is not authenti-
cated, and redirects his browser to the Adatum federation provider.
The Adatum federation provider then redirects Rick’s browser to the
Litware issuer.

For details about how to customize the way that SharePoint redi-
rects a user to a token issuer, see the section “The Sign-In Page” in
Chapter 11, “Claims-Based Single Sign-On for Microsoft SharePoint
2010.”

The numbers in the following list correspond to the numbers in
Figure 1.

1. Rick authenticates with the Litware identity provider and
obtains a SAML token with claims issued by Litware.

2. Rick’s browser redirects back to the Adatum issuer. This
federation provider can apply some custom claims mapping
rules to the set of claims from Litware to create a set of
claims suitable for the a-Portal web application. The
federation provider issues this new set of claims as a SAML
token.

221

222 CHAPTER TWELVE

3. Rick’s browser redirects back to SharePoint. SharePoint
validates the token, checks any authorization rules that
apply to the page that Rick requested, and if Rick has
permission, displays the page.

Adatum considered two alternative models for federating with

partners. The first, which is the one that Adatum selected, is shown in
Figure 2.

qu
Tvst
—

|
|
I
=2 1"
<) (B
_LT/MH
[
|
|

7
£ E\ 4T¢ Adahm FP ~ \ Liwae P
L(ADFS \
Fedmt \
n -Z i
Cookie \
\ Fabvikam P
|\ Tvust
| \
|
|
| ;
Constoso IP
ShaveFPoind |
|
|
FIGURE 2 Adatim | Fadnevs
The hub model

In the hub model, SharePoint has a single trust relationship with
the Adatum federation provider. The Adatum federation provider
then trusts the partners’ issuers. The Adatum federation provider can
apply rules to the claims from the different identity providers to cre-
ate claims that the SharePoint web application understands.

Figure 3 shows the alternative model.

FEDERATED IDENTITY FOR SHAREPOINT APPLICATIONS 223

|
|
Tt
=3 '
| 4
| 7
Al FP 7 Ldwave IP
Toust ,/
- -
ADF4 P |
— -—
- = |
S~ - - - - = e -7
Fabvikam IP
N |
~
~ |
~
~ |
~
a-Podal =~ ~ T | ﬁ
—~—
-~ —
1>
" Constoso IP
ShavePoind l :
|
|
FIGURE 3 Adatiim I Fainevs

The direct trust model

In the direct trust model, SharePoint manages a trust relationship
with each issuer directly, and uses custom claims providers to manipu-
late the incoming claims to a common set of claims that the a-Portal
web application understands.

The advantages of the hub model adopted by Adatum are that:

1. It’s easier to manage multiple trust relationships in ADFS
rather than SharePoint.

2. It’s simpler to manage a single trust relationship in Share-
Point and it avoids the requirement for multiple custom
claims providers.

3. You can reuse the trust relationships in the federation
provider with other relying parties.

4. You can leverage ADFS features such as integration with
auditing tools to track token issuing.

5. ADFS supports the Security Assertion Markup Language
protocol (SAMLP) in addition to WS-Federation.

An advantage of the
SAMLP protocol over
WS-Federation is that it
supports initializing the
authentication process
from the identity provider

instead of the relying party,
which avoids the require-
ment for either the relying
party (RP) or the federation
provider to perform
home-realm discovery.

224 CHAPTER TWELVE

It’s important that the sliding-
session implementation is
compatible with the single
sign-out solution that Chapter
11, “Claims-Based Single
Sign-On for Microsoft
SharePoint 2010,” describes.

The disadvantage of the hub approach is its performance: it re-
quires more hops to acquire a valid SAML token. With this in mind,
Adatum made some changes to the token caching policy in the a-
Portal web application to reduce the frequency at which it’s necessary
to refresh the SAML token. However, Adatum is using session cookies
rather than persistent cookies to store the SAML token references so
that if the user closes his browser, then he will be forced to re-authen-
ticate when he next visits the a-Portal web application.

Adatum implemented sliding sessions for users of the a-Portal
web application: after a token issuer authenticates a user, the user can
continue using the a-Portal web application without having to re-au-
thenticate if he remains active. If a user becomes inactive in the web
application for more than a defined period, then he must re-authenti-
cate with the claims issuer and obtain a new SAML token. With the
sliding-sessions solution in place:

* Provided a user remains active in the a-Portal web application,

SharePoint will not interrupt the user and require him to

re-authenticate with the SAML token issuer.

* The a-Portal web application remains secure because users who
become inactive must re-authenticate when they start using the
application again.

Inside the Implementation

The following sections describe the key configuration steps that Ada-
tum performed in order to implement the scenario that this chapter
describes. The hub model that Adatum selected meant that the
changes in SharePoint were minimal: there is still a single trust rela-
tionship with the Adatum issuer.

The following sections describe the changes Adatum made to the
a-Portal web application in SharePoint to support access from partner
organizations.

TOKEN EXPIRATION AND SLIDING SESSIONS

One of the Adatum requirements was that the a-Portal application
automatically sign users out after a defined period of inactivity, but
allow them to continue working with the application without re-au-
thenticating so long as they remain active. To achieve this, Adatum
implemented a sliding-session mechanism in SharePoint that can re-
new the SharePoint session token. For performance reasons, Adatum
wanted to be able to extend the lifetime of the session token without
having to revisit ADFS (the federation provider) or the partner’s token
issuer.

FEDERATED IDENTITY FOR SHAREPOINT APPLICATIONS 225

A cookie (usually named FedAuth) that can exist either as a persis-
tent or in-memory cookie represents the SharePoint session token.
This cookie contains a reference to the SAML token that SharePoint
stores in its token cache. The SAML token contains the claims issued
to the user by any external identity and federation providers, and by
the internal SharePoint security token service (STS).

Before showing the details of how Adatum implemented sliding
sessions, it will be useful to understand how token expiration works
by default in SharePoint.

SAML Token Expiration in SharePoint
This section describes the standard behavior in SharePoint as it relates
to token expiration.

When Rick from Litware first tries to access the a-Portal web
application, his browser performs all of the following steps in order to
obtain a valid SAML token:

1. Rick requests a page in the a-Portal web application.
2. Rick’s browser redirects to the SharePoint STS.

3. Because Rick is not yet authenticated, the SharePoint STS
redirects Rick’s browser to the Adatum issuer to request a
token.

4. The Adatum issuer redirects Rick’s browser to the Litware
issuer to authenticate and obtain a Litware token.

5. Rick’s browser returns to the Adatum issuer to transform
the Litware token into an Adatum token.

6. Rick’s browser returns to the a-Portal web application to
sign in to SharePoint.

7. Rick’s browser returns to the page that Rick originally
requested in the a-Portal web application to view.

All SAML tokens have a fixed lifetime that the token issuer
specifies when it issues the token; in the Adatum scenario, it is the
Adatum ADFS that sets this value. Once a token has expired, the user
must request a new SAML token from the token issuer. For Rick at
Litware, this means repeating the steps listed above. Because this
takes time, Adatum does not want users such as Rick to have to reau-
thenticate too frequently. However, using a token with a long lifetime
can be a security risk because someone else could use Rick’s com-
puter while he wasn't there and access the a-Portal web application
with Rick’s cached token.

226

CHAPTER TWELVE

The following table describes the two configuration options that
directly affect when SharePoint requires a user to get a new SAML
token from the issuer.

Configuration value | Notes

SAML token lifetime | The token issuer sets this value. In ADFS, you can
configure this separately for each relying party by using
the Set-ADFSRelyingPartyTrust PowerShell command.
Once the SAML token expires, the SharePoint session
expires, and the user must re-authenticate with the
token issuer to obtain a new SAML token.

By default, SharePoint sets the session lifetime to be the
same as the SAML token lifetime.

LogonTokenCache- | This SharePoint configuration value controls when
ExpirationWindow | SharePoint will consider that the SAML token has
expired and ask the user to re-authenticate with the
issuer and obtain a new token. SharePoint checks
whether the SAML token has expired at the start of
every request.

For example, if ADFS sets the SAML token lifetime to
ten minutes, and the LogonTokenCacheExpirationWin-
dow property in SharePoint is set to two minutes, then
the session in SharePoint will be valid for eight minutes.
If the user requests a page from SharePoint seven
minutes after signing in, then SharePoint checks whether
the session is set to expire during the time in minutes
represented by LogonTokenCacheExpirationWindow:
in this case the answer is no because seven plus two is
less than ten.

If the user requests a page from SharePoint nine minutes
after signing in, then SharePoint checks whether the
session is set to expire during the time in minutes
represented by LogonTokenCacheExpirationWindow:
in this case the answer is yes because nine plus two is
greater than ten.

The following script example shows you how to change the life-
time of the SAML token issued by the “SharePoint Adatum Portal”
relying party in ADFS to 10 minutes.

Add-PSSnapin Microsoft.ADFS.PowerShell
Set-AdfsRelyingPartyTrust -TargetName "SharePoint Adatum Portal"
-TokenLifeTime 10

The following script example shows you how to change the
LogonTokenCacheExpirationWindow in SharePoint to two minutes.

$ap = Get-SPSecurityTokenServiceConfig
$ap.LogonTokenCacheExpirationWindow = (New-TimeSpan -minutes 2)
$ap.Update();

IIsreset

FEDERATED IDENTITY FOR SHAREPOINT APPLICATIONS 227
These two configuration settings will cause SharePoint to redi-
rect the user to the issuer to sign in again eight minutes after the user
last authenticated with ADFS.
The sequence diagram in Figure 4 shows how SharePoint manages
its session lifetime and the SAML token that it receives from the to-
ken issuer. :
_ ShavePoint ShavePoind SAML Token
Browsey a-F oval Web ShavePoind Home Reﬂ’m Ws’FedeVM 10N Issuiev
Appheation Athendicate. a5px Discovery Endpoind (ADFS
Ged /9Hefages/Home aspx —No session eXists
~Redect doi -No session eXishs
[: - L ok
@ /_oqoms/Ptinendicae. Aspx ~Redvect 4o Fieya"‘j\‘; ijzgmf :‘Fe
/JOqWAeFaM“‘%PX ~Rediecd 4o —Reaquest 2 SAML Hoken
— D\ /_us/defait. aspx Fiom ne. dentily provder
—Redect 4o ADFS
N
< <~
—4ave 4he SAML Hoken in —Pos4 $AML Hoken 4o Hhe
T Hhe ShavePoind doken cache ShaePoind $TS ki
R —Redect 4o he o/.p,‘.mﬂv, —Crete a Session /_usdy
N/ vequerted page —Rediect Ho!
et ~The user now has a /_loqoms/Pmnendic e aspx
Misds/Tasks/MlHems APs vahd session
7
\., P @ ~The session has expwed
—Redwect 4o . :
N . ~The session has expwed |
Get /sHeFagesome.aspx [aqols/thendicoe aspx Redwect Ho: H,E;zmﬁ\{: zhzzl;ﬁ?%
S et ipx “Redvecs do —Reaquiest 2 SAML Hoken
@ E——— R fom Hhe iderdiy provider
| Redwvect 4o ADFS
— >
7
S
<~ IN —Posd SAMIL doken o Hhe
T N - —Sa/e Hhe SAML Hoken n ShavePoind 4TS a:
R —Redect 4o dhe ofiginaly | Jne ShwePoind Hoken cache /sl
Ged Veﬂi‘/leﬂed Pﬂ?‘/eh —Crele 4 session
Li IHems asp» ~The user now has 4 —Redect Ho:
/Lisds/Tasks/MlHems.aspx Vahd session , _l/nqo s Athendicale aspx
FIGURE 4

Standard token expiration in SharePoint

Figure 4 shows a simplified view of the sequence of interactions. In
reality, SharePoint and the WS-Federation protocol use browser
redirects and automatic posts to manage the interactions between
the various components so that all of the requests go through the

browser.

In the sequence diagram, T, represents the time from when ADFS
issues the SAML token to when SharePoint will try to renew the to-
ken. Based on the configuration settings described above, Ty is set to

eight minutes.

228 CHAPTER TWELVE

The following notes refer to the numbers on the sequence diagram:

1. This is the first time that the user visits the a-Portal web
application; there is no valid session so SharePoint redirects
the user to begin the sign-in process.

2. SharePoint creates a session for the user. The lifetime of the
session is the same as the lifetime of the SAML token issued
by ADFS.

3. SharePoint uses the session lifetime and the LogonToken
CacheExpirationWindow property to determine when the
user must sign in again. At this point, the session is still valid.
While the session is valid, the user can continue to visit
pages in the SharePoint web application.

4. SharePoint uses the session lifetime and the LogonToken
CacheExpirationWindow property to determine when the
user must sign in again. At this point, SharePoint determines
that the session has expired, so it begins the sign-in process
again. If the ADFS SSO cookie has expired, Rick will have
to enter his credentials to obtain a new SAML token.

To force users to re-enter their credentials whenever they are
redirected back to ADFS, you should set the web SSO lifetime in
ADFS to be less than or equal to SAMLtokenlifetime minus the
value of LogonTokenCacheExpirationWindow. /n the Adatum
scenario, the web SSO lifetime in ADFS should be set to eight
minutes to force users to re-authenticate when SharePoint redirects
them to ADFS.

Sliding Sessions in SharePoint
Adatum wanted to implement sliding sessions so that SharePoint can
extend the lifetime of the session if the user remains active. Adatum
wanted to be able to define an inactivity period, after which Share-
Point forces the user to re-authenticate with ADFS. In other words, a
user will only need to sign in again if the session is allowed to expire
or if the SAML token expires. In this scenario, the session lifetime will
be less than the SAML token lifetime.

To implement this behavior, Adatum first configured ADFS to is-
sue SAML tokens with a lifetime of eight hours. The following Micro-
soft Windows® PowerShell® command-line interface script shows
how you can configure this setting in ADFS for the SharePoint
Adatum Portal relying party.

FEDERATED IDENTITY FOR SHAREPOINT APPLICATIONS 229

Add-PSSnapin Microsoft.ADFS.PowerShell
Set-AdfsRelyingPartyTrust -TargetName "SharePoint Adatum Portal"
-TokenLifeTime 480

By setting the LogonTokenCacheExpirationWindow value to
470 minutes, Adatum can effectively set the session duration to 10
minutes.

$ap = Get-SPSecurityTokenServiceConfig
$ap.LogonTokenCacheExpirationWindow = (New-TimeSpan -minutes 470)
$ap.Update();

IIsreset

Adatum then modified the way that SharePoint manages its ses-
sions. SharePoint now recreates a new session before the existing
session expires (as long as the user visits the SharePoint web applica-
tion before the existing session expires). A user can continue to recre-
ate sessions up to the time that the SAML token finally expires; in this
scenario, the user could continue using the a-Portal web application
for eight hours without having to re-authenticate. If the user doesn’t
visit the web application before the session expires, then on the next
visit he must sign in again. The Microsoft Visual Studio® development
system solution, SlidingSessionModule, found in the 10SharePoint
folder from http://claimsid.codeplex.com includes a custom HTTP
module to deploy to your SharePoint web application that includes
this functionality. The following code sample from the Adatum cus-
tom HTTP module shows the implementation.

public void Init(HttpApplication context)
{
// Sliding session
FederatedAuthentication.SessionAuthenticationModule
.SessionSecurityTokenReceived +=
SessionAuthenticationModule_SessionSecurityTokenReceived;

private void SessionAuthenticationModule_
SessionSecurityTokenReceived(
object sender,
SessionSecurityTokenReceivedEventArgs e)

double sessionLifetimeInMinutes
= (e.SessionToken.ValidTo -
e.SessionToken.ValidFrom).TotalMinutes;

http://claimsid.codeplex.com

230

CHAPTER TWELVE

var logonTokenCacheExpirationWindow = TimeSpan.FromSeconds(1);
SPSecurity.RunWithElevatedPrivileges(delegate()
{
logonTokenCacheExpirationWindow =
Microsoft.SharePoint.Administration.Claims
.SPSecurityTokenServiceManager
.Local.LogonTokenCacheExpirationWindow;
3
DateTime now = DateTime.UtcNow;
DateTime validTo = e.SessionToken.ValidTo
- logonTokenCacheExpirationWindow;
DateTime validFrom = e.SessionToken.ValidFrom;
if ((now < validTo) &&
(now > validFrom.AddMinutes(
(validTo - validFrom).TotalMinutes / 2)))

SessionAuthenticationModule sam
= FederatedAuthentication.SessionAuthenticationModule;

e.SessionToken = sam.CreateSessionSecurityToken(
e.SessionToken.ClaimsPrincipal,
e.SessionToken.Context, now,
now.AddMinutes(sessionLifetimeInMinutes),
e.SessionToken.IsPersistent);

e.ReissueCookie = true;

This method first determines the valid from time and valid to time
of the existing session, taking into account the value of the Logon
TokenCacheExpirationWindow property. Then, if the existing ses-
sion is more than halfway through its lifetime, the method uses the
SPSessionAuthenticationModule instance to extend the session. It
does this by creating a new session that has the same lifetime as the
original, but which has a ValidFrom property set to the current time.

The sequence diagram in Figure 5 shows how SharePoint handles
Adatum’s sliding-sessions implementation.

FEDERATED IDENTITY FOR SHAREPOINT APPLICATIONS 231

ShavePoind ShovePoind SAML Token
Blowser a-Pordal Web ShawvePoind Home Redlm Wé—Fedevation evler
Apphcation Atthendicate.Aspx Discovery Endpoind (ADF%
Get /5Hefages/Home aspx -No session eXisds
@ /EIZIV;Z%/X)MW;MMW TR0 fession exiss Feates! a sz;g Joken,
/_‘opl]!\/alefﬂvluﬂwx —Redwect Ho:

\ defanH.
£l spx —Request 2 SAMLL Hoken

from dhe identy provider
—Redwect 4o ADFS

N
< <~
< N
T;; ?:,4 ~Redivect 4o Hhe ofiginaly ;:“‘/:h;:‘e':{ﬁms ‘L‘;‘f’;ﬁ"’;) —Post $AMLL doken 4o 4he
vequiest € aerion fo N howvePoind STS
o msins o | ected g " | e ek o s o
hd] cookie
@ vahd session R ot o
\V — /_aos/Ptinerdicate aspx
- Get feFages/Pagel. aspx @
Ged /sePagesHome mspx; :g:;:;"jg: hais expived The session as expved
/_lovomls/Ainendicate aspx | Redwect doi
@ il e /_loginsdefath.aspx saas
FIGURE 5

Sliding sessions in the a-Portal web application

The sequence diagram shows a simplified view of the sequence of
interactions. In reality, SharePoint and the WS-Federation protocol
use browser redirects and automatic posts to manage the interac-
tions between the various components so all of the requests go
through the browser.

In the sequence diagram, T, represents the session lifetime. The
session lifetime also defines the inactivity period, after which a user
must re-authenticate with ADFS.

The following notes refer to the numbers on the sequence diagram:

1. This is the first time that the user visits the a-Portal web
application; there is no valid session so SharePoint redirects
the user to begin the sign-in process.

2. SharePoint creates a session for the user. The effective
lifetime of the session is the difference between the
lifetime of the SAML token issued by ADFS and the value
of the LogonTokenCacheExpirationWindow property.
For Adatum, the lifetime of the session is 10 minutes:

232

CHAPTER TWELVE

the lifetime of the SAML token is 480 minutes, and the
value of the LogonTokenCacheExpirationWindow
property is 470 minutes.

3. SharePoint checks the age of the session. At this point,
although the session is still valid, it is nearing the end of
its lifetime so SharePoint creates a new session, copying
data from the existing session.

4. SharePoint checks the age of the session. At this point,
it is still near the beginning of its lifetime so SharePoint
continues to use this session.

5. SharePoint checks the age of the session. At this point,
the session has expired so SharePoint initiates the process
of re-authenticating with the identity provider.

Closing the Browser

The default behavior for SharePoint is to use persistent session cook-
ies. This enables a user to close the browser, re-open the browser, and
re-visit a SharePoint web application without signing in again. Adatum
wants users to always re-authenticate if they close the browser and
then re-open it and revisit the a-Portal web application. To enforce
this behavior, Adatum configured SharePoint to use an in-memory
instead of a persistent session cookie. You can use the following Pow-
erShell script to do this.

$sts = Get-SPSecurityTokenServiceConfig
$sts.UseSessionCookies = $true
$sts.Update()

iisreset

AUTHORIZATION RULES
With multiple partners having access to the a-Portal SharePoint web
application, Adatum wants to have the ability to restrict access to
documents in the SharePoint document library based on the organiza-
tion that the user belongs to. Adatum wants to be able to use the
standard SharePoint groups mechanism for assigning and managing
permissions, so it needs some way to identify the organization a user
belongs to.

Adatum achieves this objective by using claims. Adatum has con-
figured ADFS to add an organization claim to the SAML token it is-
sues based on the federated identity provider that originally authen-
ticated the user. You should not rely on the identity provider to issue
the organization claim because a malicious administrator at a partner

FEDERATED IDENTITY FOR SHAREPOINT APPLICATIONS 233

organization could add an organization claim with another partner’s
value and gain access to confidential data.

Chapter 11, “Claims-Based Single Sign-On for Microsoft Share-
Point 2010,” describes how to add the organization claim to the Share-
Point people picker to make it easy for site administrators to set
permissions based on the value of the organization claim.

HoME REALM DISCOVERY
If Adatum shares the a-Portal web application with multiple partners,
each of those partners will have its own identity provider, as shown in
Figure 2 earlier in this chapter. With multiple identity providers in
place, there must be some mechanism for selecting the correct iden-
tity provider for a user to use for authentication, and that’s the home-
realm discovery process.

Adatum decided to customize the home-realm discovery page
that ADFS provides. The default page in ADFS (/adfs/Is/HomeRealm-
Discovery.aspx) displays a drop-down list of the claims provider trusts
configured in ADFS (claims provider trusts represent identity provid-
ers in ADFS) for the user to select an identity provider. ADFS then
redirects the user to the sign-in page at the identity provider. It's easy
to customize this page with partner logos to make it easier for users
to select the correct identity provider. In addition, this page in ADFS
has access to the relying party identifier in the wtrealm parameter so
it can customize the list of identity providers based on the identity of
the SharePoint relying party web application. After a user has selected
an identity provider for the first time, ADFS can remember the choice
so that in the future, the user bypasses the home-realm discovery page
and redirects the browser directly to the identity provider’s sign-in
page.

For details about how to customize the ADFS home-realm discovery

page and configure how long ADFS will remember a user’s selection,

see this page on the MSDN® web site: http://msdn.microsoft.
com/en-us/library/bb625464(VS.85).aspx.

Adatum also considered the following options related to the
home-realm discovery page.

* Automatically determine a user’s home realm based on the user’s
IP address. This would remove the requirement for the user to
specify her home realm when she first visits ADFS; however, this
approach is not very reliable, especially with mobile and home
workers and does not provide any additional security because IP
addresses can be spoofed.

Claims provider trusts
represent identity providers
in ADFS.

http://msdn.microsoft.com/en-us/library/bb625464(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb625464(VS.85).aspx

234 CHAPTER TWELVE

* Perform the home-realm discovery in SharePoint instead of
ADFS. Adatum could customize the standard SharePoint login
page (usually located at C:\Program Files\Common Files\
Microsoft Shared\Web Server Extensions\14\template\identity-
model\login\default.aspx) to display the list of identity provid-
ers, and then append a whr parameter identifying the user’s
home realm to the address of the ADFS sign-in page. However,
the SharePoint login page only displays to the user if multiple
authentication types are configured in SharePoint; Adatum only
has a single authentication type configured for the a-Portal web
application so Adatum would need to override the behavior of
the standard login page so that it always displays. By default, all
SharePoint web applications share this login page, so SharePoint
would display the same list of identity providers regardless of
the SharePoint web application the user is accessing. You can
override this behavior and display a separate login page for each
SharePoint web application.

Questions

1. In the scenario described in this chapter, Adatum prefers to
maintain a single trust relationship between SharePoint and
ADFS, and to maintain the trust relationships with the
multiple partners in ADFS. Which of the following are valid
reasons for adopting this model?

a. It enables Adatum to collect audit data relating to
external sign-ins from ADFS.

b. It allows for the potential reuse of the trust relation-
ships with partners in other Adatum applications.

c. It allows Adatum to implement automatic home realm
discovery.

d. It makes it easier for Adatum to ensure that Share-
Point receives a consistent set of claim types.

2. When must a SharePoint user reauthenticate with the
claims issuer (ADFS in the Adatum scenario)?

a. Whenever the user closes and then reopens the
browser.

b.

C.

d.

FEDERATED IDENTITY FOR SHAREPOINT APPLICATIONS

Whenever the ADFS web SSO cookie expires.

Whenever the SharePoint FedAuth cookie that
contains the SAML token expires.

Every ten minutes.

3. Which of the following statements are true with regard to
the Adatum sliding session implementation?

a.

d.

SharePoint tries to renew the session cookie before it
expires.

. SharePoint waits for the session cookie to expire and

then creates a new one.

. When SharePoint renews the session cookie, it always

requests a new SAML token from ADFS.

SharePoint relies on sliding sessions in ADFS.

4. Where is the organization claim that SharePoint uses to
authorize access to certain documents in the a-Portal web
application generated?

a.

b.

C.

d.

In the SharePoint STS.

In the identity provider’s STS; for example in the
Litware issuer.

In ADFS.
Any of the above.

5. Why does Adatum rely on ADFS to perform home realm
discovery?

a.

b.

It’s easier to implement in ADFS than in SharePoint.

You can customize the list of identity providers for
each SharePoint web application in ADFS.

. You cannot perform home realm discovery in Share-

Point.

. You can configure ADFS to remember a user’s choice

of identity provider.

235

236

CHAPTER TWELVE

More Information

For information about Windows Identity Foundation (WIF) and
sliding sessions see this post: http://blogs.msdn.com/b/vbertocci/
archive/2010/06/16/warning-sliding-sessions-are-closer-than-they-
appear.aspx.

For more information about automated home-realm discovery,
see Chapter 6, “Federated Identity with Multiple Partners,” and
Chapter 7, “Federated ldentity with Multiple Partners and Windows
Azure Access Control Service.”

http://blogs.msdn.com/b/vbertocci/archive/2010/06/16/warning-sliding-sessions-are-closer-than-they-appear.aspx
http://blogs.msdn.com/b/vbertocci/archive/2010/06/16/warning-sliding-sessions-are-closer-than-they-appear.aspx
http://blogs.msdn.com/b/vbertocci/archive/2010/06/16/warning-sliding-sessions-are-closer-than-they-appear.aspx

Appendix A Using Fedutil

This appendix shows you how to use the FedUtil wizard for the sce-
narios in this book. Note that a Security Token Service (STS) is
equivalent to an issuer.

Using FedUtil to Make an Application
Claims-Aware

This procedure shows how to use FedUtil to make an application
claims-aware. In this example, the application is a-Order.

First you’ll need to open the FedUtil tool. There are two ways to
do so. One way is to go to the Windows Identity Foundation (WIF)
SDK directory and run FedUtil.exe. The other is to open the single
sign-on (SSO) solution in Microsoft® Visual Studio® development
system, right-click the a-Order.ClaimsAware project, and then click
Add STS Reference. In either case, the FedUtil wizard opens.

TO MAKE AN APPLICATION CLAIMS-AWARE

1. In the Application configuration location box, enter the
location of the a-Order Web.config file or browse to it. In
the Application URI box, enter the Uniform Resource
Indicator (URI) for aOrder, and then click Next.

2. In the Security Token Service dialog box, select Use an
Existing STS. Alternatively, you can select Create a new
STS project in the current solution to create a custom
STS that you can modify.

3. In the STS federation metadata location box, enter the
URI of the federation metadata or browse to it, and then
click Next.

237

238 APPENDIX A

4. In the Security token encryption dialog box, select No
encryption, and then click Next.

5. In the Offered claims dialog box, click Next.
6. On the Summary page, click Finish.

Along with using FedUtil, you must also make the following
changes:

* In the a-Expense Web.config file, change the name of Trusted
Issuer to Adatum. This is necessary because a-Expense uses a
custom data store for users and roles mapping. Names should
be formatted as Adatum\name. For example, Adatum\mary is
correctly formatted.

* Place the ADFS token signing certificate into the Trusted People
store of the local machine.

Appendix B Message Sequences

Appendix B shows in detail the message sequences for the passive
(browser-based) and active (smart) client scenarios. It also includes
information about what the HTTP and, where applicable, Kerberos,
traffic looks like as the browser or client, the application, the issuer,
and Microsoft® Active Directory® directory service communicate
with each other.

239

240 APPENDIX B

The Browser-Based Scenario

Figure 1 shows the message sequence for the browser-based scenario.

Rick : Browser App; Relying ADFS : Issuer ACtIVP: Directory :
arty Directory
GET /App1
Yo Annonymous user?
(L)| Hrre 302
(redirect to issuer)
d
u
GET /FederationPassive?wtrealm=App1
4 > Is Windows
Redirect to Windows Integrated Authentication
(
\\2 sign-on page enabled?
a I
W 1
GET /FederationPassive/
Integrated?wrealm=App1
L n
I Ll
@ HTTP 401 WWW-Authenticate:
Negotitiate
d
u
Kerberos ticket
request
_________________________ >
Kerberos ticket
@ response
4 ________________________
GET /FederationPassive/Integrated?wrealm=App1 and
Kerberos ticket (Authorization header) I_
> Look up rules
g{-for App1
,
,
ADFS allows Query for user
youto conﬁ.gure attributes, such as
(= transformation the email nam
@ rules for each © email name
- and cost center.
application. -
L
= Create SAML
HTTP 200 <form action-"https://./App1”> token with Active
< 1 Directory
POST /App1 I & attributes as
wresult-<RequestSecurity TokenResponse... claims.
>
HTTP 302 . .
/Default.aspx and [— WIF validates the token (the signature,
FAM cookie experation date, target audience,
@ encrypted, chunked, & and trusted issuer).
and encoded in o AN
base64 Sso This is coordinated by the
P ~{ WSFederation Authentication
< Module (FAM).
GET /SomePage.
omerage-aspx This is coordinated by the B
and FedAuth cookie : S
hunks - SessionAuthentication
¢ .2”"| Module (sAM).
.~ .
@ g -
(
FIGURE 1 HTTP 200 [— WIF decrypts the cookie
Message sequence for the /SomePage.aspx and populates the
browser-based scenario < < ClaimsPrincipal object.

MESSAGE SEQUENCES

Figure 2 shows the traffic generated by the browser.

Web Sessions <<
Result Prot... Host URL

81 302 HTTPS www.adatumpharma.com /a-Expense.ClaimsAware/

(82 302 HTTPS login.adatumpharma.com /FederationPassive/?wa=wsignin1.08wtrealm
ﬁ 3 401 HTTPS login.adatumpharma.com /FederationPassive/auth/fintegrated/Integrats
ﬁE 4 401 HTTPS login.adatumpharma.com /FederationPassive/auth/integrated/Integrat
@ 5 200 HTTPS login.adatumpharma.com /FederationPassive/auth/fintegrated/Integrats
[8l6 302 HTTPS www.adatumpharma.com /a-Expense.ClaimsAware/

7 200 HTTPS www.adatumpharma.com /a-Expense.ClaimsAware/AddExpense.aspx

FIGURE 2
HTTP traffic

The numbers in the screenshot correspond to the steps in the
message diagram. In this example, the name of the application is a-
Expense.ClaimsAware. For example, step 1 in the screen shot shows
the initial HTTP redirect to the issuer that is shown in the message
diagram. The following table explains the symbols in the “#” column.

Symbol | Meaning

Arrow An arrow indicates an HTTP 302 redirect.

Key A key indicates a Kerberos ticket transaction (the 401 code indicates
that authentication is required).

Globe A globe indicates a response to a successful request, which means
that the user can access a website.

STEP 1
The anonymous user browses to a-Expense and the Federation Au-
thentication Module (FAM), WSFederatedAuthenticationModule,
redirects the user to the issuer which, in this example, is located at
https://login.adatumpharma.com/FederationPassive. As part of the
request URL, there are four query string parameters: wa (the action to
execute, which is wsignin1.0), wtrealm (the relying party that this
token applies to, which is a-Expense), wetx (context data such as a
return URL that will be propagated among the different parties), and
wct (a time stamp).

Figure 3 shows the response headers for step 1.

241

242

APPENDIX B

Response Headers [Raw] [Header Definitions]
HTTP/1.1 302 Found

£ Cache
i Cache-Control: private
i Date: Wed, 07 Oct 2009 14:48:54 GMT
&~ Entity
i~ Content-Length: 369
.. Content-Type: text/html; charset=utf-8
=) Miscellaneous
i Server: Microsoft-IIS/7.5
i X-AspNet-Version: 2.0.50727
L. X-Powered-By: ASP.NET
E£- Transport

i Location: https: /flogin.adatumpharma.com/FederationPassive/?

FIGURE 3
Response headers for step 1

The FAM on a-Expense redirects the anonymous user to the issuer.
Figure 4 shows the parameters that are sent to the issuer with the
query string.

Name Value
> wa wsignin1.0
wirealm hitps://www.adatumpharma.com/a-Expense.ClaimsAware/
wetx rm=0&id=passive&ru=%2fa-Expense.ClaimsAware % 2fdefault.aspx
wct 2009-10-07T14:48:552

FIGURE 4
Query string parameters

STEP 2
The issuer is Active Directory Federation Services (ADFS) 2.0 config-
ured with Integrated Windows® Authentication only. Figure 5 shows
that ADFS redirects the user to the integrated sign-on page.

ADFS can be configured to allow Integrated Windows Authentica-
tion and/or client certificate authentication and/or forms-based
authentication. In either case, credentials are mapped to an Active
Directory account.

MESSAGE SEQUENCES

Response Headers [Raw] [Header Definitions]
HTTP/1.1 302 Found

- Date: Wed, 07 Oct 2009 14:39:56 GMT
- Expires: -1

i.. Content-Length: 416

- Content-Type: text/html; charset=utf-8

- Miscellaneous

- Server: Microsoft-115/7.0

- X-AspNet-Version: 2.0.50727

i X-Powered-By: ASP.NET

- Transport

i... Location: J[FederationPassive/auth/integrated/IntegratedSignIn.aspx?v

FIGURE 5
ADFS redirecting the user to the Integrated Windows Authentication page

STEP 3
The IntegratedSignin.aspx page is configured to use Integrated Win-
dows Authentication on Microsoft Internet Information Services (lIS).
This means that the page will reply with an HTTP 401 status code and

the “WWW-Authenticate: Negotiate” HTTP header. This is shown in
Figure 6.

Response Headers [Raw] [Header Definitions]
HTTP/1.1 401 Unauthorized

| L-Date: Wed, 07 Oct 2009 14:39:56 GMT
& Cookies / Login

- Content-Length: 1293
HE Content-Type: text/html
£ Miscellaneous
i... Proxy-Support: Session-Based-Authentication
‘.. Server: Microsoft-11S/7.0
X-Powered-By: ASP.NET

FIGURE 6
ADES returning WW W-Authenticate: Negotiate header

[IS returns the WWW-Authenticate:Negotiate header to let the
browser know that it supports Kerberos or NTLM.

243

244

APPENDIX B

STEP 4
At this point, the user authenticates with Microsoft Windows creden-
tials, using either Kerberos or NTLM. Figure 7 shows the HTTP traffic
for NTLM, not Kerberos.

If the infrastructure, such as the browser and the service principal
names, are correctly configured, the client can avoid step 4 by
requesting a service ticket from the key distribution center that is
hosted on the domain controller. It can then use this ticket together
with the authenticator in the next HTTP request.

Request Headers [Raw! [Header Definitions]

GET /FederationPassive/auth/integrated/IntegratedSignin.aspx?wa=wsignin 1.0
B- C_ient -

- Accept: image /jpeg, application/x-ms-application, image/if, applica

i~ Accept-Encoding: gzip, deflate

Accept-Language: en-US

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Tr

(- Cookies / Login

i... Authorization: Negotiate TRMTVNTUAABAAAAI4II4gAAAAAAAAAA

* (ol — >
Transformer IHeaders | TextView I ImageView | HexView |

WebView | Auth | Caching | Privacy | Raw | xm. |

Response Headers [Raw] [Header Definitions]
HTTP/1.1 401 Unauthorized
o Cache ~

i... Date: Wed, 07 Oct 2009 14:40:07 GMT
(- Cookies / Login
i... WWW-Authenticate: Negotiate TRMTVNTUAACAAAADAAMADGAA/
&2 Entity
i.. Content-Length: 341
‘.- Content-Type: text/html; charset=us-asdi
= Miscellaneous
i~ Proxy-Support: Session-Based-Authentication =

FIGURE 7
NTLM handshake on the ADES website

The Cookies/Login node for the request headers shows the
NTLM handshake process. This process has nothing to do with claims,
WS-Federation, Security Assertion Markup Language (SAML), or WS-
Trust. The same thing would happen for any site that is configured

MESSAGE SEQUENCES 245

with Integrated Windows Authentication. Note that this step does
not occur for Kerberos.

STEP 5
Now that the user has been successfully authenticated with Micro-
soft Windows credentials, ADFS can generate a SAML token based
on the Windows identity. ADFS looks up the claims mapping rules
associated with the application using the wtrealm parameter men-
tioned in step 1 and executes them. The result of those rules is a set
of claims that will be included in a SAML assertion and sent to the
user’s browser.

The following XML code shows the token that was generated
(some attributes and namespaces were deleted for clarity).

<t:RequestSecurityTokenResponse
xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust">
<t:Lifetime>
<wsu:Created>2009-10-22T14:40:07.978Z</wsu:Created>
<wsu:Expires>2009-10-22T00:40:07.978Z</wsu:Expires>
</t:Lifetime> '
<wsp:AppliesTo>

The token expiration

<EndpointReference> date (for WS-Fed).
<Address>
https://www.adatumpharma.com/a-Expense.ClaimsAware/
</Address>
</EndpointReference> The token audience

</wsp:AppliesTo> (for WS-Fed).

<t:RequestedSecurityToken>
<saml:Assertion
MinorVersion="1"
AssertionID="_9f68..." Issuer="http://.../Trust">
<saml:Conditions
NotBefore="2009-10-22T714:40:07.978Z"
NotOnOrAfter="2009-10-22T00:40:07.978Z2">
<saml:AudienceRestrictionCondition>
<saml:Audience> .
https://www.adatumpharma.com/a-Expense.ClaimsAware/
</saml:Audience>
</saml:AudienceRestrictionCondition>
</saml:Conditions>
<saml:AttributeStatement>
<saml:Subject>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:bearer

The RequestSecurityToken
Response is defined in the
WS-Trust specification. It’s the
shell that will enclose a token of
any kind. The most common

implementation of the token is
SAML (version 1.1 or 2.0).
The shell contains the lifetime
and the endpoint address for
this token.

The SAML token is

represented by an assertion
that contains certain conditions,

such as the expiration time

and audience restrictions.

The token audience
(for SAML).

Because the browser does not
hold a key that can prove its
identity, the token generated is

of type bearer. In this scenario,
enabling HTTPS is critical to
avoid potential attacks.

246 APPENDIX B

</saml:ConfirmationMethod>
</saml:SubjectConfirmation>
</saml:Subject>
<saml:Attribute
AttributeName="name"
AttributeNamespace=
"http://.../ws/2005/05/identity/claims">
<saml:AttributeValue>mary</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute
AttributeName="CostCenter"
AttributeNamespace=
"http://schemas.adatumpharma.com/2009/08/claims">
<saml:AttributeValue>394002</saml:AttributeValue>
</saml:Attribute>) The claims are represented

</saml:AttributeStatement> by the SAML attributes,
<ds:Signature> where ClaimType equals the
. AttributeNamespace and
etz the AttributeName.
o0 The ClaimValue equals the
</ds:SignedInfo> AttributeValue.

<ds:SignatureValue>
dCHtoNUbvVyz8. . .nOXEA6BI=
</ds:SignatureValue>

<KeyInfo> The signature and the public

<X509Data> key (an X.509 certificate that is

<X509Certificate> encoded in base64) that will be
MIIB6DCC. ..gUitvs6IhHdg used to verify the sigr'zatu.re on the

= website. If the verification was
SRR successful, you have to ensure that
</X5@9Data> the certificate is the one you trust
</KeyInfo> (either by checking its thumbprint

</ds:Signature> or its serial number).

</saml:Assertion>
</t:RequestedSecurityToken>
<t:TokenType>

http://docs.oasis-open.org/wss/
oasis-wss-saml-token-profile-1.1#SAMLV1.1 SAML 1.1.
</t:TokenType>
<t:RequestType>
http://schemas.xmlsoap.org/ws/2005/02/trust/Issue
</t:RequestType>
<t:KeyType>
http://schemas.xmlsoap.org/ws/2005/05/identity/NoProofKey
</t:KeyType>
</t:RequestSecurityTokenResponse>

MESSAGE SEQUENCES

STEP 6
Once ADFS generates a token, it needs to send it back to the applica-
tion. A standard HTTP redirect can’t be used because the token may
be 4 KB long, which is larger than most browsers’ size limit for a URL.
Instead, issuers generate a <form> that includes a POST method. The
token is in a hidden field. A script auto-submits the form once the
page loads. The following HTML code shows the issuer’s response.

<html>
<head>
<title>Working...</title>
</head>
<body>
<form
method="POST"
name="hiddenform"
action=
"https://www.adatumpharma.com/a-Expense.ClaimsAware/">
<input type="hidden" name="wa" value="wsigninl.e" />
<input
type="hidden"
name="wresult"
value="&1t;t:RequestSecurityTokenResponse
xmlns...&1lt;/t:RequestSecurityTokenResponse>"
/>
<input
type="hidden"
name="wctx"
value="rm=08&id=passive&
ru=%2fa-Expense.ClaimsAware%2fdefault.aspx"
/>
<noscript>
<p>Script is disabled. Click Submit to continue.</p>
<input type="submit" value="Submit" />
</noscript>
</form>
<script language="javascript">
window.setTimeout(‘document.forms[@].submit()'’’’’, 0);
</script>
</body>
</html>

247

248 APPENDIX B

When the application receives the POST, the FAM takes control
of the process. It listens for the AuthenticateRequest event. Figure
8 shows the sequence of steps that occur in the handler of the
AuthenticateRequest event.

Event:

SessionS ityTokenReceived
Arguments : (_ -
raw security token

Validate the token
with the
corresponding
security token
handler, such as
SAML 1.1, SAML 2.0,
encrypted or custom

Create the
ClaimsPrincipal object
with the claims inside.

Use the
ClaimsAuthenticationM
class to enrich the
ClaimsPrincipal

object.
Event:
3 ionS ityToken" Lid d o
Arguments :
ClaimsPrincipal
Create the
SessionsSecurityToken:
Encode(Chunk(Encrypt

(ClaimsPrincipal+lifetime+
[Original token)))

Set the HTTPContext.User
property to the
ClaimsPrincipal object.
Convert the session
token into a set
of chunked cookies.

Redirect to the
original return URL,
if it exists.

FIGURE 8
Logic for an initial request to an application

MESSAGE SEQUENCES

Notice that one of the steps that the FAM performs is to create
the session security token. In terms of network traffic, this token is a
set of cookies named FedAuth[n] that is the result of compressing,
encrypting, and encoding the ClaimsPrincipal object. The cookies are
chunked to avoid exceeding any cookie size limitations. Figure 9
shows the HTTP response, where a session token is chunked into
three cookies.

Response Headers [Raw] [Header Definitions]
HTTP/1.1 302 Found

&~ Cache

i l.Date: Wed, 07 Oct 2009 14:49:14 GMT

E- Cookies / Login
Set-Cookie: FedAuth=77u/PD94bWwgdmVyc2lvbjoiMS4wIiBlbmNvZGluZz0idXRmLTgiPz:
Set-Cookie: FedAuth 1=aWhmanphaktOTDRXY 3FKRkpxbzIKR 2pramSUNTV0b29QaDFniv
i... Set-Cookie: FedAuth2=b3hkOWhkM INHRXVydEIxbHFIOXNCbGYZNTM2bHF 1VTNGbES 1
- Entity
i Content-Length: 156
‘.. Content-Type: text/html; charset=utf-8
- Miscellaneous
i...Server: Microsoft-1IS/7.5
‘.. X-Powered-By: ASP.NET
= Transport

‘.. Location: fa-Expense.ClaimsAware/default.aspx

FIGURE 9
HTTP response from the website with a session token chunked into three
cookies

249

250 APPENDIX B

STEP 7

The session security token (the FedAuth cookies) is sent on subse-
quent requests to the application. In the same way that the FAM

handles the AuthenticationRequest event, the SAM executes the
logic shown in Figure 10.

Check that the
cookie is present.

If it is,
recreate the
SessionSecurityToken
by decoding,
decrypting, and
decompressing
the cookie.

Event:
SessionSecurityTokenReceived (_ I

Arguments :

session token

Check the
SessionSecurityToken
expiration date.

Create the
ClaimsPrincipal object
with the claims inside.

Set the
HTTPContext.User
property to the
ClaimsPrincipal object.

FIGURE 10
Logic for subsequent requests to the application

MESSAGE SEQUENCES

The FedAuth cookies are sent on each request. Figure 11 shows
the network traffic.

Request Headers [Raw] [Header Definitions]
GET /a-BExpense ClaimsAware/AddExpense.aspx HTTP/1.1

(- Client
i-- Accept: image/jpeg, application/x-ms-application, image/gif, application/xaml-+xml, ima
i-- Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6. 1; Trident/4.0; SLCC2; .
£ Cookies / Login
&) Cookie
i.. ASP,NET_SessionId=wyhviw3esficpzmtabc4ku55
i FedAuth=77u/PD94bWwgdmVyc2lvbj0iMS4wTiBlbmNvZGluZz0idXRmLTgiPz48U2Vzc
i.-- FedAuth1=aWhmcnphaktOTDRXY 3FKRkpxbzJKR 2pram5UNTVOb29QaDFnMKVER 2R
B-FedAuth2

FIGURE 11
Traffic for a second HTTP request

251

252 APPENDIX B

The Active Client Scenario

The following section shows the interactions between an active client
and a web service that is configured to trust tokens generated by an
ADFS issuer. Figure 12 shows a detailed message sequence diagram.

(<
Rick : Desktop Orders : Active Directory :
s ADFS : 1
Application Web Service ssuer Directory
I

Send the RequestSecurityToken message and the | Use the LDAP to

UserNamePasswordToken in the security header. | validate the user
@ name and password
> credentials.

v

~_ | These interactions are orchestrated -

by the WCF federation bindings. The — Look up the claim

client proxy obtains a token the first mapping rules for

time it contacts the web service. the Order

&= web service.
Query for user attributes
such as the email name
and cost center.

Send the RequestSecurityTokenResponse
message and the signed SAML token.

>

®

= Create the
SAML token
and include

A

Send the Orders.GetOrders message
and the signed SAML token in the the user
security header attributes as

P R a o)

claims. Sign
> . <« the token
WIF validates gnd encrypt
the token (the it
signature, expiration ®
date, target audience, 1
and trusted issuer). ADFS allows you to

stores other than Active

@ <] extract attributes from

1 Directory. For example, you
WIF allows or denies can use a database, a web
access depending on service, or a file.

the result from the
ClaimsAuthorizationManager object.

Send the <+—

Orders.GetOrders
response. Excecute the operation.
< 4]
|

If the user makes another call
FIGURE 12 O----] tothe web service, the token is
Active client scenario reused unless you create a new

proxy.

message-diagram

MESSAGE SEQUENCES

Figure 13 shows the corresponding HTTP traffic for the active
client message sequence.

253

Action From/To

http://docs.oasis-open.org/iws-sx/ws-trust/200512/RST/Issue https:/login.adatumpharma.com/adfs/servicesftrust/13/usemamemixed

http://docs.oasis-open.org/ws-sx/ws-trust/’200512/RSTRC/IssueFinal

http:/ftempuri.org/GetOrders http://orders.adatumphamma.com/Orders.svc
http:/tempuri.org/GetOrdersResponse

FIGURE 13
HTTP traffic

Following are the two steps, explained in detail.

STEP 1

The Orders web service is configured with the wsFederationHttp-
Binding. This binding specifies a web service policy that requires the
client to add a SAML token to the SOAP security header in order to
successfully invoke the web service. This means that the client must
first contact the issuer with a set of credentials (the user name and
password) to get the SAML token. The following message represents
a RequestSecurityToken (RST) sent to the ADFS issuer (ADFS)
hosted at https:/login.adatumpharma.com/adfs/services/trust/13/
usernamemixed. (Note that the XML code is abridged for clarity.
Some of the namespaces and elements have been omitted.)

<s:Envelope>
<s:Header>
<a:Action>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue
</a:Action>
<a:To>
https://login.adatumpharma.com/adfs/
services/trust/13/usernamemixed
</a:To>
<o:Security>
<o:UsernameToken
u:Id="uuid-bffe89aa-e6fa-404d-9365-d078d73beca5-1">
<o:Username>
<!-- Removed-->
</o:Username>
<o:Password>
<!-- Removed-->
</o:Password>
</o:UsernameToken>
</o:Security>

https://login.adatumpharma.com/adfs/services/trust/13/usernamemixed
https://login.adatumpharma.com/adfs/services/trust/13/usernamemixed

254 APPENDIX B

</s:Header>
<s:Body>
<trust:RequestSecurityToken
xmlns:trust=
"http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<wsp:AppliesTo>
<EndpointReference>
<Address>
https://orders.adatumpharma.com/Orders.svc
</Address>
</EndpointReference>
</wsp:AppliesTo>
<trust:TokenType>
http://docs.oasis-open.org/wss/
oasis-wss-saml-token-profile-1.1#SAMLV1.1
</trust:TokenType>
<trust:KeyType>
http://docs.oasis-open.org/ws-sx/
ws-trust/200512/SymmetricKey
</trust:KeyType>
</trust:RequestSecurityToken>
</s:Body>
</s:Envelope>

The issuer uses the credentials to authenticate the user and exe-
cutes the corresponding rules to obtain user attributes from Active
Directory (or any other attributes store it is configured to contact).

<s:Envelope>
<s:Header>
<a:Action>http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/
IssueFinal</a:Action>
</s:Header>
<s:Body>
<trust:RequestSecurityTokenResponseCollection
xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<trust:RequestSecurityTokenResponse>
<trust:Lifetime>
<wsu:Created>2009-10-22721:15:19.010Z</wsu:Created>
<wsu:Expires>2009-10-22722:15:19.010Z</wsu:Expires>
</trust:Lifetime>
<wsp:AppliesTo>
<a:EndpointReference>
<a:Address>
https://orders.adatumpharma.com/Orders.svc

MESSAGE SEQUENCES

</a:Address>
</a:EndpointReference>
</wsp:AppliesTo>
<trust:RequestedSecurityToken>
<xenc:EncryptedData>
<xenc:EncryptionMethod
Algorithm=
"http://www.w3.0rg/2001/04/xmlenc#aes256-cbc" />
<KeyInfo>
<e:EncryptedKey>

<KeyInfo> The token was encrypted using an
<o:SecurityTokenReference> X.509 certificate (public key).
<X509Data> The web service must have the
<X509TssuerSerials corresponding private key to
decrypt it. This section acts as
DRSS EIIER a hint to help the web service
CN=localhost select the correct key.
</X509IssuerName>
<X509SerialNumber>
-124594669148411034902102654305925584353
</X509SerialNumber>
</X509IssuerSerial>
</X509Data>
</o:SecurityTokenReference>
</KeyInfo>

<e:CipherData>
<e:CipherValue>
WayfmLM9ODAS. . . .ul7QC+MWdZVCA2ikXwBc=
</e:CipherValue>
</e:CipherData> This is the encrypted token. The

</e:EncryptedKey> token is a SAML assertion that
</KeyInfo> represents claims about the user.

It’s signed with the issuer’s private
signing key (see below for the
decrypted SAML assertion).

<xenc:CipherData>
<xenc:CipherValue>
U6TLBMVR/M4Ia2Su...... /oV+qg/VU=
</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
</trust:RequestedSecurityToken>
<trust:RequestedProofToken>
<trust:ComputedKey>
http://docs.oasis-open.org/ws-sx/
ws-trust/200512/CK/PSHA1
</trust:ComputedKey>
</trust:RequestedProofToken>
<trust:TokenType>

255

256 APPENDIX B

http://docs.oasis-open.org/wss/ The token that is

oasis-wss-saml-token-profile-1.1#SAMLV1.1 generated is a
</trust:TokenType> SAML 1.1 token.
<trust:KeyType>

http://docs.oasis-open.org/ws-sx/
ws-trust/200512/SymmetricKey
</trust:KeyType>
</trust:RequestSecurityTokenResponse>
</trust:RequestSecurityTokenResponseCollection>
</s:Body>
</s:Envelope>

If you had the private key to decrypt the token (highlighted above
as “<e:CipherValue>U6TLBMVR/M4la2Su..”), the following is what
you would see.

<saml:Assertion

MajorVersion="1"

Mlnorv?r‘SIOn:"l" This is the issuer identifier

AssertionID="_a5c22af0-b7b2-4dbf-ac10-326845alc6df" (it’s a URI). It is different

Issuer="http://login.adatumpharma.com/Trust" than the actual issuer

IssueInstant="2009-10-22721:15:19.010Z ">

<saml:Conditions
NotBefore="2009-10-22721:15:19.010Z "
NotOnOrAfter="2009-10-22T722:15:19.010Z ">
<saml:AudienceRestrictionCondition>

<saml:Audience>

sign-on URL.

https://orders.adatumpharma.com/Orders.svc
</saml:Audience>
</saml:AudienceRestrictionCondition> The holder-of-key provides
</saml:Conditions> proof of ownership of
<saml:AttributeStatement> a signed SAML token.
<saml:Subject> SOAP clients often use this
. . approach to prove that an
<saml:SubjectConfirmation> incoming request is valid
<saml:ConfirmationMethod> Note that a browser can’t
urn:..:SAML:1.0:cm:holder-of-key access a key store the way
</saml:ConfirmationMethod> a smart client can.
<KeyInfo>
<trust:BinarySecret>
ztGzs3I...VW+6Th380=
</trust:BinarySecret>
</KeyInfo>
</saml:SubjectConfirmation>
</saml:Subject>
<saml:Attribute

MESSAGE SEQUENCES 257

AttributeName="name"
AttributeNamespace=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims">
<saml:AttributeValue>rick</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute
AttributeName="role"
AttributeNamespace=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims">

<saml:AttributeValueOrderTracker</saml:AttributeValue>
</saml:Attribute>
</saml:AttributeStatement>
<ds:Signature>
<ds:SignedInfo> ... </ds:SignedInfo>
<ds:SignatureValue>
dCHtoNUbvVyz8. . .n0XEA6BI=
</ds:SignatureValue>
<KeyInfo>
<X509Data>
<X509Certificate>
MIIB6DCC. ..gUitvS6JhHdg
</X509Certificate>
</X509Data>
</KeyInfo>
</ds:Signature>
</saml:Assertion>

STEP 2

Once the client obtains a token from the issuer, it can attach the to-
ken to the SOAP security header and call the web service. This is the

SOAP message that is sent to the Orders web service.

<s:Envelope>
<s:Header>

<a:Action>http://tempuri.org/GetOrders</a:Action>
<a:To>https://orders.adatumpharma.com/Orders.svc</a:To>
<o:Security>
<u:Timestamp u:Id="_0">
<u:Created>2009-10-22T721:15:19.123Z</u:Created>
<u:Expires>2009-10-22T721:20:19.123Z</u:Expires>
</u:Timestamp>
<xenc:EncryptedData >
... the token we've got in step 1 ...

This is the token from
step 1, but encrypted.

The claims are represented
by the SAML attributes.
The ClaimType equals
the AttributeNamespace

and the AttributeName.
The ClaimValue equals
the AttributeValue.

This is the signature and
public key (an X.509 certificate
encoded in base64) that will be

used to verify the signature on
the web service. If the verification
is successful, you must ensure that
the certificate is the one you trust,
by checking either its thumbprint
or its serial number.

Here are the SOAP
action and the URL
of the web service.

258 APPENDIX B

</xenc:EncryptedData>
<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">

<SignatureValue>
oaZFLr+1ly/I2kYcAvyQv6WSkPYk=
</SignatureValue>
<KeyInfo>
<o:SecurityTokenReference>
<o:KeyIdentifier
ValueType=
"http://docs.oasis-open.org/wss/
oasis-wss-saml-token-profile-1.0#
SAMLAssertionID">
_a5c22afe-b7b2-4dbf-acl0-326845alcedf
</o:KeyIdentifier>
</o:SecurityTokenReference>
</KeyInfo>
</Signature>
</o:Security>
</s:Header>
<s:Body>
<GetOrders xmlns="http://tempuri.org/">
<customerId>1231</customerId>
</GetOrders>
</s:Body>
</s:Envelope>

Windows ldentity Foundation (WIF) and Windows Communica-
tion Foundation (WCF) will take care of decrypting and validating the
SAML token. The claims will be added to the ClaimsPrincipal object
and the principal will be added to the WCF security context. The
WCEF security context will be used in the authorization manager by
checking the incoming claims against the operation call the client
wants to make.

The Browser-Based Scenario with
Access Control Service (ACS)
Figure 14 shows the message sequence for the browser-based sce-

nario that authenticates with a social identity provider and uses ACS
for protocol transition.

MESSAGE SEQUENCES 259

Marv < B Adaturln Simulated ACS Google
ary : Browser (RP) ssuer (FP) (1dP)
(FP)
GET /a-Order.OrderTracking.6/
Anonymous user
Ll
@ HTTP 302
(redirect to issuer)
d
«
GET /Adatum.FederationProvider.6
: > Is the
@ HTTP 302 (redirect to HomeRealmDiscover.aspx) user already
< i < authenticated?
@ GET/Adatum,FederationProvider.G/HomeReaImIaiscovery.aspx
HTTP 200 "
d
o
POST /Adatum.FederationProvider.6/HomeReaImPiscovery.aspx
»
@ HTTP 302 (redirect to
Adatum.FederationProvider.6/Federation.aspx)
< i The diagram skips a
POST Adatum.FederationProvider.6/Federation.aspx number of steps here
i 'S where the user gives
@ HTTP 302 (redirect to Determine consent for Google to
federationwithacs-dev.accesscontrol.windows.net) Identity Provider release his email
& " <
< T < address.
GET federationwithacs-devaccesscontrol.windows.net
L .
L} »
@ HTTP 302 (redirect www.google.com/accounts) Verify RP
< t <
GET www.google.com/accounts/ServiceLogin
»
L
@ HTTP 200
d
u
POST www.google.com/accounts/ServiceLogin (passing Google ID and password)
1 N 1 '
T T I v
HTTP 302 (redirect to federationwithacs-dev.accesscontrol.windows.net - including token from Google)
< : : <
GET federationwithacs-dev.accesscontrol.windows.net
L i I
! ; ! . o Protocol
HTTP 200 (Uses JavaScript to trigger POST to Adatum.FederationProvider.6 issuer) "
P ' 1 P Transition
« T T)l
POST /Adatum.FederationProvider.6/Federation.aspx
i >
HTTP 200 (Uses JavaScript to trigger POST to Claims
a-Order.OrderTracking.6) Mapping
d [d
< T <
POST a-Order.OrderTracking.6
»
Ll .
@ HTTP 302 WIF verifies
the token.
d d
al «
POST a-Order.OrderTracking.6
> WIF decrypts the cookie
@ HTTP 200 and populates the claims
< < principal object. FIGURE 14
Message sequence for the
browser-based scenario with
ACS and authentication with
a social identity provider

260

APPENDIX B

Figure 15 shows the key traffic generated by the browser. For
reasons of clarity, we have removed some messages from the list.

| Result | Protacal | Host | LIRL |
&1 30z HTTPS localhost fa-Order . OrderTracking. 6/

= 302 HTTPS localhost fadatum,Feder ationProvider 6/ ?wa=wsigninl . 0fwtrealm=https%:3a...
3 Z00 HTTPS localhost fadatum,FederationProvider, 6/HomeR ealmbiscovery, aspxrwa=wsigni. .,
& 4 302 HTTPS lacalhost fadatum. Feder ationProvider, 6/HomeR ealmDiscovery, aspxwa=swsigni. .
5 302 HTTPS localhost fadatum,FederationProvider, 6/Federation, aspxfwa=wsigninl . D8uwtre, .,
e 30z HTTPS federatiorwithacs-dev, accesscont, .. Jve/wsfederation?wa=wsigninl . 02swtrealm=https%3a%2F2flocalho. .
7 00 HTTPS vy google.com faccounts)Servicelogin?service=lsofpassive=12096008&continue=htt. .
s a0z HTTPS accounks.google. com Jojopenid2)approval?xsrfsign=AC9j0bY AAAALT aPwIHOShFr Jwsbn_a,. ..
BB 200 HTTPS federatiomaithacs-dey. accesscont. .. w2l openid?context=pr % 3dwsfeder ation%ez6rmas 3dhtkps3a 253a%2 .
10 2Z00 HTTPS localhost fadatum, Feder ationProvider, 6/Federation, asp:x

11 302 HTTRS localhost fa-COrder . OrderTracking. 6/

12 200 HTTPS localhost fa-Order, OrderTracking. 6/

FIGURE 15
HTTP traffic

The numbers in the screenshot correspond to the steps in the
message diagram. In this sample, the name of the application is a-Or-
der.Tracking.6 and it is running on the local machine. The name of the
mock issuer that takes the place of ADFS is Adatum.FederationPro-
vider.6 and it is also running locally, and the name of the ACS instance
is federationwithacs-dev.accesscontrol.windows.net. The sample il-
lustrates a user authenticating with a Google identity.

STEP 1
The anonymous user browses to a-Order.OrderTracking.6, and be-
cause there is no established security session, the WSFederatedAu-
thenticationModule (FAM) redirects the browser to the issuer which,
in this example is located at https://localhost/Adatum.FederationPro-
vider.6/. As part of the request URL, there are four query string param-
eters: wa (the action to execute, which is wsignini.0), wtrealm (the
relying party that this token applies to, which is a-Order.OrderTrack-
ing), wetx (context data, such as a return URL that will be propagated
among the different parties), and wet (a time stamp).

Figure 16 shows the response headers for step 1.

MESSAGE SEQUENCES

Response Headers [Raw] [Header Definitions]

HTTP/.1 302 Found

= Cache
. Cache-Contral: private

i Daker Tue, 12 Apr 2011 05:53:30 GMT

[=I- Entity

. Conkent-Length: 1710

Content-Tvpe: texk/himl; charset=utf-&

= Miscellaneous

i Sapver: Micrasaft-I15/7.5

“-Bsphet-Yersion: 4.0,30319

o d-Powered-By: ASPMET

[Transpork
L Locatian; Jadatum, FederationProvider, 6/HomeR ealmDiscovery, aspxiwa=wsignind , Ofwwkre:

FIGURE 16
Response headers for step 1
Figure 17 shows the parameters that are sent to the issuer with

the query string.

witrealn https: fflocalhostfa-Order, Order Tracking, 6/
ik rm=0fid=passivefru=%2fa-Order, Order Tracking. 6%2f
wick 2011-04-12705:53: 302

FIGURE 17

Query string parameters

261

262

APPENDIX B

STEP 2
The issuer is a simulated issuer that takes the place of ADFS for this
sample. Figure 18 shows that the simulated issuer redirects the user to
the home realm discovery page where the user can select the identity
provider she wants to use.

The simulated issuer is built using the WIF SDK.

Response Headers [Raw] [Header Definitions]
HTTF/1.1 302 Found

= Cache

i Cache-Cantral: private

Lo Diabes Tue, 12 Apr 2011 055330 GMT
[=]- Entity

Conkent-Length: 347

Content-Type: bexthiml; charset=utf-5
[=-Miscellaneous

Serwver: Microsoft-115/7.5
K-Bsphet-version: 4.0,.30319

L d-Powered-By: ASPLMET

[=- Transport

... Lacation: https: iflocalhost) adatum, FederationProvider, 6/ fwa=wsigninl , 02swkrealn:

FIGURE 18
Simulated issuer redirecting the user to the HomeRealmDiscovery page

STEP 3
On the home-realm discovery page, the user can elect to sign in using
the Adatum provider, the Litware provider, or a social identity pro-
vider. In this walkthrough, the user opts to use a social identity pro-
vider and provides an email address. When the user submits the form,
the simulated issuer parses the email address to determine which so-
cial identity provider to use.

STEP 4
The home-realm discovery page redirects the browser to the Federa-
tion.aspx page.

STEP 5

The Federation.aspx page at the simulated issuer returns a cookie to
the browser that stores the original wa, wtrealm, wetx, and wet que-
rystring parameters, as was shown in Figure 17. The simulated issuer
redirects the user to the ACS instance, passing new values for these
parameters. The simulated issuer also sends a whr querystring param-
eter; this is a hint to ACS about which social identity provider it should
use to authenticate the user. Figure 19 shows that the simulated is-
suer redirects the user to ACS.

MESSAGE SEQUENCES

Response Headers [Raw] [Header Definitions]
HTTP/M.1 202 Found

- Cache
Cache-Contral: private
i Date: Tue, 12 Apr 2011 05:53:38 GMT
- Cookies / Login
: .. Set-Cookie: Sadbdcdd-62e6-450h-Ba2-7360c2Shde 02=https:{/localhost &datum, Feder ati
I Entity
i Content-Length: 1507
e Conbenk-Type: textfhtml; charset=utf-g
- Miscellaneous
. Server: Microsoft-113/7.5
“-fsphet-Yersion: 4.0,30319
i d-Powered-By: A5PLMET
- Transpork
. Location: https:{/federationwithacs-dev. accesscontrol.appf abriclabs . comyv2 wsfederation:

|
L

|

FIGURE 19
The simulated issuer redirects the user to ACS

Figure 20 shows the new values of the querystring parameters
that the simulated issuer sends to ACS. This includes the value
“Google” for the whr parameter. The value of the wetx parameter
refers to the cookie that contains the original values of the wa, wt-
realm, wetx, and wet querystring parameters that came from the rely-
ing party—a-Order.OrderTracking.

Yalue
wsigninl .0
wirealn https: filocalhost/Adatun, FederationProvider, 6/
wick 2011-04-12T05:535:382
ik Sa4bdcd9-62e6-45bb-85a2-7 360025bd602
whir Google
FIGURE 20

Querystring parameters sent to ACS from the simulated issuer

STEP 6

ACS verifies that the wtrealm parameter value, https:/localhost/
Adatum.FederationProvider.6, is a configured relying party applica-
tion. ACS then examines the whr parameter value to determine which
identity provider to redirect the user to. If there is no valid whr value,
then ACS will display a page listing the available identity providers.
ACS forwards the wtrealm parameter value to Google in the opened.
return_to parameter, so that when Google returns a token to ACS, it
can tell ACS the address of the relying party (for ACS, the relying
party is https://localhost/Adatum.FederationProvider.6.)

263

264

APPENDIX B

STEP 7
Google displays a login form that prompts the user to provide creden-

tials. This form also indicates to the user that the request came from
ACS.

STEP 8
After Google has authenticated the user and obtained consent to re-
turn the users email address to the relying party (ACS), Google redi-
rects the browser back to ACS.

Figure 21 shows the querystring parameters that Google uses to
pass the claims back to ACS.

Parne Walue

openid,identity hitkps: s, google, comj accounts/offidvid=altOawnyl
openid. claimed_id hikbps: J e, google, corny accounts o8 fidfid=AIEOawnl
openid.ns.ext1 hitkp: ffopenid.netsryfaxi1.0

openid.extl. mode fetch_response

openid.extl bvpe.firstname | hktp:ffaxschema, org/namePerson)first

openid.ext1,value, Firstname

openid.extl.bype. email http:ffaxschema. orgfcontact femail

openid. extl . value. email - - -

openid.extl. bvpe.lastname | httpiffaxschema, orgfnamePerson/last

openid.extl,value lastname |

FIGURE 21
Querystring parameters sent from Google to ACS

In addition to the claims data, there is also a context parameter
that enables ACS to associate this claim data with the original request
from a-Order.OrderTracking.6. This context parameter includes the
address of the Adatum simulated issuer, which sent the original re-
quest to ACS.

STEP 9
ACS transitions the token from Google to create a new SAML 1.1
token, which contains a copy of the claims that Google issued. ACS
uses the information in the context parameter to identify the relying
party application (Adatum.FederationProvider.6) and the rule group
to apply. In this sample, the rule group copies all of the claims from
Google through to the new SAML token.

The following XML code shows the token that ACS generates
(some attributes and namespaces were deleted for clarity).

MESSAGE SEQUENGES 265

<t: RequestfecurltyTokenResponse - T T e
Context="6d67cfce-9797-4958-ae3c-1eb489b04801 Response is defined in the
xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust"> WS-Trust specification. It’s
<t:Lifetime> the envelope that encloses a
<wsu:Created>2011-02-09T15:05:17.355Z</wsu:Created> Mke”of?”yfi”d'Thme?

. 3 R . . 3 common implementation o,
<ws9.Ex?1res>2011 02-09T15:15:17.355Z</wsu:Expires> i i e SV s
</t:Lifetime> or 2.0). The envelope contains
the lifetime and the endpoint
address for this token.

<wsp:AppliesTo>

<EndpointReference>
<Address> The token expiration date
https://localhost/Adatum.FederationProvider.6/ and time (for WS-Fed)
</Address>
</EndpointReference>

</wsp:AppliesTo>

The token audience

<t:RequestedSecurityToken> (for WS-Fed).

<saml:Assertion
AssertionID="_592d..."
Issuer="https://federationwithacs-dev.accesscontrol.

windows.net/">
<saml:Conditions

NotBefore="2011-02-09T15:05:17.355Z"

NotOnOrAfter="2011-02-09T15:15:17.355Z">

<saml:AudienceRestrictionCondition>
<saml:Audience>

https://localhost/Adatum.FederationProvider.6/
</saml:Audience>

The token audience
(for SAML).

</saml:AudienceRestrictionCondition>
</saml:Conditions>

<saml:AttributeStatement>
<saml:Subject>
<saml:NameIdentifier>

https://www.google.com/accounts/o8/
id?id=ATtOawnvknktThEaScLj34MPreTLfOKqrQazL20
</saml:NameIdentifier>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:bearer hold a key that can prove its
</saml:ConfirmationMethod> identity, the token generated is
</saml:SubjectConfirmation> of type bearer. In this scenario,

</saml:Subject> enabling HTTPS is critical to
’ avoid potential attacks.

Because the browser does not

266 APPENDIX B

<saml:Attribute
AttributeName="emailaddress"
AttributeNamespace=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims">
<saml:AttributeValue>mary@gmail.com

</saml:AttributeValue> The claims are represented
</saml:Attribute> by the SAML attributes,
where ClaimType equals the
. AttributeNamespace and
seanbeACERIbULS the AttributeName.
AttributeName="name" The ClaimValue equals
AttributeNamespace="http://schemas.xmlsoap.org/ the AttributeValue.

ws/2005/05/identity/claims">
<saml:AttributeValue>Mary</saml:AttributeValue>
</saml:Attribute>

<saml:Attribute
AttributeName="identityprovider”
AttributeNamespace="...”>
<saml:AttributeValue>Google</saml:AttributeValue>
</saml:Attribute>

</saml:AttributeStatement>

<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>

</ds:SignedInfo>
<ds:SignatureValue>
euicdW...UGM7rA==
</ds:SignatureValue>
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">

<X50@9Data>
<X509Certificate>
MIIDO...3jVSbv/3 The signature and the public
</X509Certificate> key (an X.509 certificate that
</X509Data> is encoded in base64) that will
</KeyInfo> be used to }/erzfy the signature
: on the website. If the verification
</ds:Signature> was successful, you have to ensure
</saml:Assertion> that the certificate is the one you
</t:RequestedSecurityToken> trust (by checking either its

<t:RequestedAttachedReference> thumbprint or its serial number).
<o:SecurityTokenReference>

<o:KeyIdentifier
ValueType=
"http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-

MESSAGE SEQUENCES

1.0#SAMLAssertionID">
_592d8e3a-8f42-4114-9552-4617959dbd77
</o:KeyIdentifier>
</o:SecurityTokenReference>
</t:RequestedAttachedReference>
<t:RequestedUnattachedReference>
<o:SecurityTokenReference>
<o:KeyIdentifier
ValueType=
"http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.0#SAMLAssertionID">
_592d8e3a-8f42-4114-9552-4617959dbd77
</o:KeyIdentifier>
</o:SecurityTokenReference>
</t:RequestedUnattachedReference>
<t:TokenType>
urn:oasis:names:tc:SAML:1.0:assertion
</t:TokenType>
<t:RequestType>
http://schemas.xmlsoap.org/ws/2005/02/trust/Issue
</t:RequestType>
<t:KeyType>
http://schemas.xmlsoap.org/ws/2005/05/identity/NoProofKey
</t:KeyType>
</t:RequestSecurityTokenResponse>

This step returns a form to the browser with an HTTP 200 status
message. The user does not see this form because a JavaScript timer
automatically submits the form, posting the new token to the Adatum
simulated issuer. It obtains the address of the simulated issuer from
the Return URL setting in the Adatum.SimulatedIssuer relying party
definition in ACS. The token data is contained in the hidden wresult
field. The following HTML code shows the form that ACS returns to
the browser. Some elements have been abbreviated for clarity.

<html>

<head>
<title>Working...</title>

</head>

<body>

<form method="POST"
name="hiddenform"
action="https://localhost/Adatum.FederationProvider.6/
Federation.aspx">

<input type="hidden" name="wa" value="wsigninl.e" />
<input type="hidden" name="wresult"

267

268 APPENDIX B

value="&1t;t:RequestSecurityTokenResponse
Context="..." />
<input type="hidden" name=
"wctx" value="6d67cfce-9797-4958-ae3c-1eb489b04801" />
<noscript>
<p>
Script is disabled. Click Submit to continue.
</p>
<input type="submit" value="Submit" />
</noscript>
</form>
<script language="javascript">
window.setTimeout ('document.forms[@].submit()', 0);
</script>
</body>
</html>

STEP 10
The Adatum simulated issuer applies the claims mapping rules to the
claims that it received from ACS. The following XML code shows the
token that ACS generates (some attributes and namespaces were
deleted for clarity).

<trust:RequestSecurityTokenResponseCollection
xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<trust:RequestSecurityTokenResponse
Context="rm=0&id=passive&ru=%2fa-Order.
OrderTracking%2f">
<trust:Lifetime>
<wsu:Created>»2011-02-09T15:05:17.776Z</wsu:Created>
<wsu:Expires>2011-02-09T16:05:17.776Z</wsu:Expires>
</trust:Lifetime>
<wsp:AppliesTo>
<EndpointReference>
<Address>
https://localhost/a-Order.OrderTracking.6/
</Address>
</EndpointReference>
</wsp:AppliesTo>
<trust:RequestedSecurityToken>
<saml:Assertion
AssertionID="_3770..."
Issuer="adatum"
IssueInstant="2011-02-09T15:05:17.776Z"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
<saml:Conditions

MESSAGE SEQUENCES

NotBefore="2011-02-09715:05:17.776Z"
NotOnOrAfter="2011-02-09T16:05:17.776Z">
<saml:AudienceRestrictionCondition>
<saml:Audience>
https://localhost/a-Order.OrderTracking.6/
</saml:Audience> The token audience
</saml:AudienceRestrictionCondition> (for SAML).
</saml:Conditions>
<saml:AttributeStatement>
<saml:Subject>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:bearer
</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject> The claims are represented

R by the SAML attributes,
LR LI whfre ClaimType equals the
AttributeName="name” AttributeNamespace and
AttributeNamespace="...” the AttributeName.
a:0OriginalIssuer="acs\Google”> The ClaimValue equals the
<saml:AttributeValues AttributeValue. These claims
e also have an Originallssuer

attribute showing where
</saml:AttributeValue> the claim came from.

</saml:Attribute>

<saml:Attribute
AttributeName="role"
AttributeNamespace="http://schemas.microsoft.com/
ws/2008/06/identity/claims">
<saml:AttributeValue>
Order Tracker
</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute
AttributeName="organization"
AttributeNamespace="http://schemas.adatum.com/
claims/2009/08" >
<saml:AttributeValue>
Contoso
</saml:AttributeValue>
</saml:Attribute>
</saml:AttributeStatement>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/
xmldsig#">
<ds:SignedInfo>

269

270 APPENDIX B

</ds:SignedInfo>
<ds:SignatureValue>ZxLyG. ..2uU=</ds:SignatureValue>
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<X509Data>
<X509Certificate>MIIBS5...2B3A0</X509Certificate>
</X509Data>
</KeyInfo>
</ds:Signature>
</saml:Assertion>
</trust:RequestedSecurityToken>
<trust:RequestedAttachedReference>
<o:SecurityTokenReference
k:TokenType="http://docs.oasis-open.org/wss/oasis-wss-
saml-token-profile-1.1#SAMLV1.1" >
<o:KeyIdentifier
ValueType="http://docs.oasis-open.org/wss/oasis-wss-
saml-token-profile-1.0#SAMLAssertionID">
_377035cf-c44a-4495-a69c-c4b4951af18b
</o:KeyIdentifier>
</o:SecurityTokenReference>
</trust:RequestedAttachedReference>
<trust:RequestedUnattachedReference>
<o:SecurityTokenReference
k:TokenType="http://docs.oasis-open.org/wss/oasis-wss-
saml-token-profile-1.1#SAMLV1.1">
<o:KeyIdentifier
ValueType="http://docs.oasis-open.org/wss/oasis-wss-
saml-token-profile-1.0#SAMLAssertionID">
_377035cf-c44a-4495-a69c-c4b4951af18b
</o:KeyIdentifier>
</o:SecurityTokenReference>
</trust:RequestedUnattachedReference>
<trust:TokenType>
urn:oasis:names:tc:SAML:1.0:assertion
</trust:TokenType>
<trust:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</trust:RequestType>
<trust:KeyType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer
</trust:KeyType>
</trust:RequestSecurityTokenResponse>
</trust:RequestSecurityTokenResponseCollection>

MESSAGE SEQUENCES

This step returns a form to the browser with an HTTP 200 status
message. The user does not see this form because a JavaScript timer
automatically submits the form, posting the new token to the a-Order.
OrderTracking.6 application. The token with the new claims is con-
tained in the wresult field. The following HTML code shows the form
that ACS returns to the browser. Some elements have been abbrevi-
ated for clarity.

<html>
<head>
<title>Working...</title>
</head>
<body>
<form method="POST" name="hiddenform"
action="https://localhost/a-Order.OrderTracking.6/">
<input type="hidden" name="wa" value="wsigninl.e" />
<input type="hidden" name="wresult"
value="8&1t;trust:RequestSecurityTokenResponse
Collection..." />
<input type="hidden" name="wctx"
value="rm=08&id=passive&ru=%2fa-Order.
OrderTracking%2f" />
<noscript>
<p>
Script is disabled. Click Submit to continue.
</p>
<input type="submit" value="Submit" />
</noscript>
</form>
<script language="javascript">
window.setTimeout('document.forms[@].submit()', 0);
</script>
</body>
</html>

The simulated issuer determines the address to post the token to
(https://localhost/a-Order.OrderTracking.6/) by reading the original
value of the wtrealm parameter that the simulated issuer saved in a
cookie in step 4.

STEP 11
The Federation Authentication Module (FAM) validates the security
token from the simulated issuer, and creates a ClaimsPrincipal object
using the claim values from the token. This is compressed, encrypted,
and encoded to create a session security token which the application
returns to the browser as a set of FedAuth[n] cookies. The cookies
are chunked to avoid exceeding any cookie size limitations.

271

272

APPENDIX B

Figure 22 shows the response headers, which include the Fed-
Auth cookies.

Response Headers [Raw] [Header Definitions]
HTTF/1 .1 302 Found

= Cache
: L Date: Tue, 12 4pr 2011 05:55:13 GMT
E| Cookies / Login
: Set-Conkie: FedAuth=77ujPDodbiwwgdrmtvezlvbiditMadwTiBlbrmtyFGIuE z0id xRl
i ‘.. Seb-Caookie: Fedauth 1 = W RS bR jbihChElGb L Bk 2Myw Ik kY ubOdye kR Mal
= Entity
: L. Conkent-Length: 142
E| Miscellaneous
: Server: Microsoft-I15/7.5
| o x-Powered-By: ASPLMET
E| Transport
. Location: fa-Crder, OrderTracking 6/

FIGURE 22
Response headers, including the FedAuth cookies

STEP 12
On subsequent requests to the a-Order.OrderTracking.6 application,
the browser returns the security session data to the application. Fig-
ure 23 shows the FedAuth cookie in the request headers.

[Raw] [Header Definition

GET /a-Order.OrderTracking 6/ HTTPA1.1

¢ e User-Agent: Mozillafs. 0 (windows; U; Windows MT 6.1; en-GE; re:1.9.2.13) &
- Cookies / Login
= Cookie
El AdatumClaimsIssuer SksSiteCookie
: i... adatumClaimsIssuer StsSite=https.f {Feder ationwithacs-dev, accesscont
- AdaturnClaimsRPStssiteCookie
. adatumdlaimsRPStsSike=https:{localhost)a-Order, OrderTracking &/
Fedauth=77u/POodbiigdmityc 2l bitiMSdwTiBlbrby 2GI0Z20id =Rl TgiPz:
b Fed@uth 1 =0 IR bR ibihChGlab 1 Blkomy 2Mw Ik ZkiubOdyeRiarks:a:
[F- Miscellaneous
keep-flive: 115
. Referer: https: i flocalhostfAdatum, Feder ationProvider . 6/Federation. aspex

FIGURE 23
FedAuth cookies in the request header

The WSFederatedAuthenticationModule (FAM) decodes, de-
crypts, and decompresses the cookie and verifies the security session
data before recreating the ClaimsPrincipal object.

MESSAGE SEQUENCES 273

Single Sign-Out

Figure 24 shows the single sign-out message sequence for the browser-
based scenario.

(T

Adatum Simulated
i a-Expense a-Order
John : Browser Issuer
(RP) (RP)
(1dP)
GET /a-Expense as an
Anonymous user
>
(1) HTTP 302
| (redirect to issuer)
&
)l
| GET /Adatum.Simulatedlssuer - wsignin1.0
f/ \\ } >
& /| HTTP 200 - display log in page |
=1 9 &
al 1 ‘
POST Adatum.Simulated|
a atum.Simulated|ssuer R
& addae AdatumClaimsRPStsSiteCookie - HTTP " | Create WS -
— | Add a-Expense to AdatumClaimsRPStsSiteCookie - 200 P Federation token.
< } <
POST WS-Federation token to a-Expense
.
‘/ Return FedAuth cookie | Elrelatep incipal
e < aimsPrincipal
GET /a-Expense
_ I
A : > :
(5)] HTTP 200 - display data | Authorize
2l <
Click link to visit a-Order - GET /a-Order as an Anonymous user
1 >
T L
HTTP 302 (redirect to issuer)
& : &
u l
GET Adatum.SimulatedIssuer - wsignin1.0
: > Already
Add a-Order to AdatumClaimsRPStsSiteCookie - HTTP 200 authenticated,
P 1 P return WS-
N 1 - Federation token.
POST WS - Federation Token to a-Order
I
o . v Create
“\,8,,/‘ Eeturn FedAuth cookie p ClaimsPrincipal
< <
GET a-Order
I
@ " ,
(HTTP 200 - display data Authorize
e <
< <
Click Logout link -POST /a-Order
AR ! >
(10)] Delete FedAuth cookie - HTTP 302 |
e t <
GET Adatum.Simulatedlssuer - wsignout1.0
la 2\ : >
‘\171/\ <HTTP 302 - redirect the signo:ut page < |
GET /Adatum.SimulatedlIssuer/SignOut.aspx - wsignout1.0
L »
P ! d Sil t fi
@_/\/\ gelete AdatumClaimsRPStsSiEeCookie -HTTP 200 P | alr?ynlgll:s, rom
<
GET /a-Expense - wsignoutclelalnupl.o In steps 13 and 14, the URLs
1 invoked fi IMG t.
@ Delete FedAuth cookie -HTTP 200 | i the page retamed froe FIGURE 24
&
. X LN the issuer in step 12. i
GET /a-Order - wsignoutcleanup1.0 i Message §equence for SIHgle
P~ } > sign-out in the browser-based
\\]_fl/\ QTTP 200 - the FEDAUTH coiokle was deleted in step 10 p scenario

274 APPENDIX B

Figure 25 shows the key traffic generated by the browser. For
reasons of clarity, we have removed some messages from the list.

| Result | Pratocal | Host | LIRL
&1 30z HTTPS localhost fa-Expense, Claimsaware)
@]z 200 HTTP3 localhost fadatum, Simulabedssuer, 1) 3imulatedWindowsAuthentication, aspxFwa=wsigni. ..
3 200 HTTPS localhost fadakum, Simulabedlssuer, 1) SimulatedWindowsAuthentication, aspxFwa=wsigni.. .
[] 4 30z HTTPS localhost [a-Expense. Claimsfmaref
5 200 HTTPS localhost [a-Expense. Claimsfmaref
[¥ & 30z HTTP3 localhost fa-Crder, Claimsswaref
7 200 HTTPS localhost fAdatum, Simulabedlssuer, 1) SimulatedWindowsAuthentication, aspxFwa=wsigni.. .
[%] & a0z HTTPS localhost fa-Crder. Claimsfwaref
a 200 HTTP3 localhost fa-Order. ClaimsSwaref
[%] 10 30z HTTPS localhost fa-Order, Claimsdware)
[%] 11 30z HTTP3 localhost fadabum. SimulakedIssuer, 1) SimulatedWindowsAuthentication, aspxrwa=wsigno. ..
12 200 HTTPS localhost fadakum. Simulakedlssuer, 1) Signiout, aspePwa=wsignout 1, 02wreply=https3:3a. ..
E‘j 13 200 HTTPS localhost [a-Expense. Claimsfware) fwa=wsignoutcleanupl.d
E‘j 14 200 HTTPS localhost fa-Order, CJlaimsdware fwa=wsignoutcleanopl .0

FIGURE 25

HTTP traffic

The numbers in the screenshot correspond to the steps in the
message diagram. In this sample, the names of the two relying party
applications are a-Expense.ClaimsAware and a-Order.ClaimsAware
and they are running on the local machine. The name of the mock is-
suer that takes the place of ADFS is Adatum.Simulatedlssuer.1 and it
is also running locally. The sample illustrates a user signing in first
to a-Expense.ClaimsAware, then accessing the a-Order.ClaimsAware
application, and then initiating the single sign-out from a link in the
a-Order.ClaimsAware application.

MESSAGE SEQUENCES 275

STEP 1
The anonymous user browses to a-Expense.ClaimsAware, and because
there is no established security session, the WSFederatedAuthenti-
cationModule (FAM) redirects the browser to the issuer which, in
this example, is located at https://localhost/Adatum.SimulatedIssuer.1/.

Response Headers [Raw] [Header Definitions]
HTTF./1.1 302 Found
- Cache
Cache-Control: private
L Date: Tue, 15 Feb 2011 12:05:43 GMT
[=- Entity
- Content-Length: 437
L Cankent-Type: test/html; charseb=utf-G
=~ Miscellaneous
Server: Microsoft-115/7.5
H“-fBspMet-Version: 4.0,30319
b d-Powsered-By: 5P MET
[E- Transport
.. Location: https: /flocalhost) adatum, Simulatedlssuer, 1fSimulatedwindowsAuthentic.

FIGURE 26
Redirect to the issuer

As part of the request URL, there are four query string parameters:
wa (the action to execute, which is wsignin1.0), wtrealm (the relying
party that this token applies to, which is a-Expense.ClaimsAware),
wetx (this is context data such as a return URL that will be propa-
gated among the different parties), and wet (a time stamp).

Walue
wsigninl .0
wikrealm https: /llocalhost) a-Expense, Claimstware)
Wik rm=08id=passivetru="2f a-Expense, Claimsiware%:zf
ik 2011-02-15T12:05:432
wreply https:/flocalhostfa-Expense, Claimsfware,
FIGURE 27

WS-Federation data sent to the issuer

STEP 2
The simulated issuer allows the user to select a User to sign in as for
the session; in this example the user chooses to sign in as John.

https://localhost/Adatum.SimulatedIssuer.1/

276

APPENDIX B

STEP 3
The simulated issuer stores the name of the relying party (which it can
use in the log-out process) in a cookie named AdatumClaimsRPStsSite-
Cookie, and details of the user in the WINAUTH cookie.

Response Headers [Raw] [Header Definitions]
HTTR/1.1 200 0K
- Cache
; Cache-Control: private
Date: Tue, 15 Feb 2011 12:05:46 GMT
: Wary: Accepk-Encoding
EI Cookies / Login
- Seb-Cookie: WINALTH=ADATUMYjohndoe; path=fadatum, SimulatedTssuer, 1
‘. Set-Conkie: adatumClaimsRPSksSike ookie=aAdatumClaimsR P3bsSite=https: fflocalb

FIGURE 28
Cookies containing the user ID and a list of relying parties

The simulated issuer then posts the token back to the a-Expense.
ClaimsAware application using a JavaScript timer, passing the WS-
Federation token in the wresult field.

Wwa wsigninl 0

<trust:RequestSecurity TokenResponseCollection

wmins:trust="htkp:/docs, oasis-open, orgfws-sxfws-trusk 20051 2" = <trust: Requ
Conkext="rm=08&id=passivetamp;ru=%2fa-Expense, Claimsiware¥e2f" = <
smins: wen="http: /fdocs, nasis-open. orgfwss 2004 /01 foasis-20040 1 -wss-wEsecy
wmins:wsu="htkp: [fdocs, nasis-open. orgfwss 2004 /01 foasis-200401 -wss-wssec
wmins;wsp="http: /fschemas. xmlsoap, orgfws 200409/ palicy" = <EndpointR.efere
smlns="http: [fuaaey w3, 0rgf 200508 addressing” = <Address =htkps: [flocalbosk)
Majorversion="1" MinorYersion="1"

wresulk

Wik rm=0&id=passivedru="%%2fa-Expense, Claimsfware%:2f

FIGURE 29
Sending the WS-Federation token to the relying party

MESSAGE SEQUENCES

STEP 4
The relying party verifies the token, instantiates a ClaimsPrincipal
object, and saves the claim data in a cookie named FedAuth. The ap-
plication sends an HT TP 302 to redirect the browser to the a-Expense.
ClaimsAware website.

Response Headers [Raw] [Header Definitions]
HTTP/1.1 302 Found
El-Cache
© L.Date: Tue, 15 Feh 2011 12:05:46 GMT
- Cookies / Login
Set-Cookie: Fedauth=77u/POodb W wiodmbycz2lvbilitdSdwIiBlbrny 2GE0Zz0id=Rml Ty
‘... Set-Cookie: Fedauth 1=cZhUCEH2UUEL 1 BmbnlzdDhCRZINEHY W S0R Y SOFTCitIbHA
=1~ Entity
Conkent-Length: 140
£l Miscellaneous
Server: Micrasaoft-115)7.5
oo X-Powered-By: ASPMET
- Transport
‘... Location: la-Expense, Claimsfware]

[

FIGURE 30
Creating the Fed Auth cookie in the a-Expense.ClaimsAware application

STEP 5
The a-Expense.ClaimsAware application uses the claims data stored in
the FedAuth cookie to apply the authorization rules that determine
which records John is permitted to view.

277

278

APPENDIX B

STEP 6
John clicks on the link to visit the a-Order.ClaimsAware application.
From the perspective of the application, the request is from an
anonymous user, so it redirects the browser to the simulated issuer.

Response Headers [Raw] [Header Definitons]
HTTP/1.1 302 Found
- Cache
Cache-Control: private
L Date: Tue, 15 Feb 2011 12:05:52 GMT
[E- Entity
Conkent-Length: 371
o Cantent-Type: tesxt/html; charset=utf-G
- Miscellaneous
Server: Microsoft-115/7.5
H-Asphet-version: 4.0,30319
b d-Powered-Ey: 5P MET
[E- Transport
o Location: https: [flocalhost) adatum, Simulatedlssuer, 1fSimulatedwindowsAuthentic,

FIGURE 31
Redirecting to the issuer

As part of the request URL, there are four query string parameters:
wa (the action to execute, which is wsignin1.0), wtrealm (the relying
party that this token applies to, which is a-Order.ClaimsAware), wetx
(context data, such as a return URL that will be propagated among the
different parties), and wet (a time stamp).

wkrealm htkps: i flocalhost)a-Order, Claimsfware]
ik rm=0fid=passivefru="%z2f a-Order, Claimsfware 2
wck 2011-02-15T12:05:522

FIGURE 32

‘W S-Federation data sent to the issuer

279

MESSAGE SEQUENCES

STEP 7

The simulated issuer recognizes that John is already authenticated
because the browser sends the WINAUTH cookie.

[Header Definition

[Raw]

GET AAadatum. Simulated zzuer. 1S imulatedw indowsAuthentication. asps Pwa=wsignin 0%

=~ Client

Accept: textihiml, applicationxhtrmi+:ml, application)xml;g=0.9,**;q=0.8
Accepk-Charset: 190-3359-1,ukf-8;0=0.7,%,0=0.7

i Accept-Encoding: geip,deflate
i Accepb-Language: en-gb,en;g=0.5
i User-fgent: Mozilays.0 (Windows; U; Windows NT 6.1; en-GE; rv:1.9.2,13) Ge
= Cookies / Login
= Conkis
SWINAUTH=ADATUM johndoe
- AdatumClaimsRPStsSiteCookis
: :----.'5.datumCIaimsRF‘StsSite=https:,l',l'lucalhu:ust,l'a-Expense.Claims.ﬁ.ware,l'

A85P MET_SessionIld=d0SmpSetel ddkoafus0d4zt

FIGURE 33
The application updates the AdatumClaimRPStsSiteCookie with

The browser sends the WINAUTH cookie to the issuer
details of the new relying party application, and posts a WS-Federa-

tion token back to the relying party.
[Raw] [Header Definiions]

Response Headers
HTTPA.1 200 0F,

B- E_ache
Cache-Conkrol: privake
Dake: Tue, 15 Feb 2011 12:05:52 GMT

: Wary: Accepk-Encoding

EI Cookies / Login

¢ lset-Cogkis: WINAUTH=ADATUM\johndae; path=/Adatum. Simulatedissuer. 1
Set-Cookie; AdatumiClaimsRPStsSiteCookie=adatumClaimsRPatssite=htkps: fflocalh

FIGURE 34
The browser updates the cookie with the new relying party

280

APPENDIX B

Wa wsigninl .0

<hrust;RequestSecurity TokenResponseollection

smins krusk="htkp:/docs, oasis-open.orgfws-sxivws-trost 20051 2" = <trustRequ
Conkexk="rm=0&id=passivetamp;ru="2fa-Order, Claimsfware%:2f" = <kr

wmins wsu="http: /fdocs, nasis-open. orgwss/2004/01 foasis- 200401 -wss-wssecy
wrilns wsu="htkp: [{dacs, nasis-open. argfwss 200401 foasis-200401 -wss-wssecy
wmins iwsp="http: /fachemas. xmlsoap, org/ws 200409 policy” = <EndpointR.efers
wrnins="http: /e w3, orgf2005)08) addressing " = <Address =https: flocalbost)

Majori'ersion="1" MinorYersion="1"

wresulk

ks rm=0&id=passivetru=%z2Fa-Order. Claims&war e 2F

FIGURE 35
The issuer posts the WS-Federation token to the relying party

STEP 8
The relying party verifies the token, instantiates a ClaimsPrincipal
object, and saves the claim data in a cookie named FedAuth. The ap-
plication sends an HTTP 302 to redirect the browser to the a-Order.
ClaimsAware website.

Response Headers [Raw] [Header Definitions]
HTTP/1.1 302 Found
- Cache
¢ i-Date: Tue, 15 Feh 2011 12:05:52 GMT
E| Cookies / Login
: Set-Cookje: Fedauth=77u/PO4bvtgdrityc 2l bi0iMadwliBlbmiyvZEluZ z20idsRmL Te
: - Seb-Cookie: Fedauth 1 =ZmyYUQ0YsRHRTMZdZTTd3cUIZMEDwckbP T2lGonMRZ3FZ T
=l Entity
¢ Lo Content-Length: 133
EI Miscellaneous
i Server: Microsoft-115/7.5
¢ Led-Powered-By: ASPMET
EI Transpork
i Location: la-Order Claimsdware,

FIGURE 36
The a-Order.ClaimsAware site creates a Fed Auth cookie

STEP 9
The a-Order.ClaimsAware application uses the claims data stored in
the FedAuth cookie to apply the authorization rules that determine
which records John is permitted to view.

MESSAGE SEQUENCES

STEP 10

John clicks on the Logout link in the a-Order.ClaimsAware applica-
tion. The application deletes the FedAuth cookie and redirects the
browser to the simulated issuer to complete the sign-out process.

Response Headers [Raw] [Header Definitions]
HTTR/.1 302 Faund
(- Cache

i Cache-Control: private

--Dake: Tue, 15 Feb 2011 12:05:59 GMT
= l:_ookies / Login

i get-Cookie: (ASPRALTH=; expires=Mon, 11-0Oct-1999 23:00:00 GMT; path=/; HtpOnly
eb-Cookie: Fedauth=; expires=Mon, 14-Feb-2011 12:05:59 GMT; path=/a-Crder . Claimsaware

et-Cookie: Fedauthl=; expires=Mon, 14-Feb-2011 12:05:59 GMT; path=/a-Order. ClaimsAware
[=I- Entity

- Content-Length: 280

- Content-Type: text/html; charset=utf-5
scellaneous

erver: Microsoft-115)7.5
-Asphet-Yersion: 4.0.30319

----- ¥-Powered-By: ASP.MET

E- Transport

Location: https:lacalhost)adatunn, SimulatedIssuer . 1 SimulatedwindowsAuthentication, aspx Pwa=wsignout 1, 02
FIGURE 37
Deleting the Fed Auth cookie and redirecting to the issuer

STEP 11

The simulated issuer redirects the browser to itself, sending a WS-
Federation wsignout1.0 command.

Response Headers [Raw] [Header Definitions]
HTTPFA.1 302 Found

E- Cache

- Carhe-Canitral: private

‘. Date: Tue, 15 Feb 2011 12:05:59 GMT
- Entity

- Content-Length: 9682

Content-Type: text/hkml; charset=utf-&
E- Miscellaneous

L Server: Micrasaft-I11517.5

e d-fsphleb-Yersion: 4,0,30319

o w-Powered-By: ASFNET

E- Transport

Location: jadaturm, SimulatedIzsuer, 1Signiout, aspecrwa=weignoutl, 08wreply=htt
FIGURE 38
Sending the wsignout1.0 command

281

282 APPENDIX B

STEP 12

The simulated issuer signs out from any identity providers and deletes
the contents of the AdatumClaimsRPStsSiteCookie cookie.

Response Headers [Raw] [Header Definitions]
HTTR/A.1 200 0K
= Cache
¢ e Cache-Contral; private
- Date: Tue, 15 Feb 2011 12:05:59 GMT
i beMary: Accept-Encoding
EuEDDMESILugm
. set-Cookie: SWINALTH=; expires=Mon, 14-Feb-2011 12:05:59 GMT; path=/Adat
- Sek-Cookie: AdatumiClaimsRPStssiteCookie=; path=/

FIGURE 39
Clearing the cookie with the list of relying parties

STEPS 13 AND 14

The simulated issuer uses the list of relying parties from the Adatum-
ClaimsRPStsSiteCookie cookie to construct a list of image URLs:

<img src="https://localhost/a-expense.ClaimsAware/
Pwa=wsignoutcleanupl.0' />

<img src="https://localhost/a-Order.ClaimsAware/
Pwa=wsignoutcleanupl.e' />

These URLs pass the WS-Federation wsignoutcleanup1.0 com-
mand to each of the relying party applications, giving them the op-
portunity to complete the sign-out process in the application and
perform any other necessary cleanup.

MESSAGE SEQUENCES

Response Headers [Raw] [Header Definitions]
HTTP/1.1 200 0k

= Cache

i Cache-Cantral: no-cache

-~ Dake: Tue, 15 Feb 2011 12:05:59 GMT

i Expires: -1

Pragma: no-cache

[=I- Cookies / Login

Set-Cookie: Fedauth=; expires=Mon, 14-Feb-2011 12:05:59 GMT; path=/a-Expe
i Seb-Cookie: Fediuthl=; expires=Mon, 14-Feb-2011 12:05:53 GMT; path=/a-Exp

FIGURE 40
Clearing the FedAuth cookie in the a-Expense.ClaimsAware application

Response Headers [Raw] [Header Definitions]
HTTPA.7 200 0K,

[=- Cache

i Cache-Control; no-cache
i-Date: Tue, 15 Feb 2011 12:05:59 GMT
Expires: -1

Pragma; no-cache

[=]- Entity

- Content-Length: 143
Conkent-Type: image/gif
=-Miscellaneous

o SErver: Microsoft-115)7.5
- w-Powered-By: AP .MNET

FIGURE 41
The Fed Auth cookie was cleared for the a-
Order.Claims application in step 10

283

Appendix C Industry Standards

This appendix lists the industry standards that are discussed in this
book.

Security Assertion Markup Language (SAML)

For more information about SAML, see the following:

* The OASIS Standard specification, “Assertions and Protocol for
the OASIS Security Assertion Markup Language (SAML) V1.1”
http://www.oasis-open.org/committees/download.php/3406/
oasis-sstc-saml-core-1.1.pdf

(Chapter 1, “An Introduction to Claims,” and Chapter 2, “Claims-
Based Architectures,” cover SAML assertions.)

Security Association Management Protocol
(SAMP) and Internet Security Association and
Key Management Protocol (ISAKMP)

For more information about these protocols, see the following:
* The IETF draft specification, “Internet Security Association
and Key Management Protocol (ISAKMP)”

http://tools.ietf.org/html/rfc2408

W S-Federation

For more information about WS-Federation, see the following:
* The OASIS Standard specification,
http://docs.oasis-open.org/wsfed/federation/v1.2/

* “Understanding WS-Federation” on MSDN®
http://msdn.microsoft.com/en-us/library/bb498017.aspx

285

http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/
http://msdn.microsoft.com/en-us/library/bb498017.aspx%20

286 APPENDIX C

WS-Federation: Passive Requestor Profile

For more information about WS-Federation Passive Requestor
Profile, see the following:

* Section 13 of the OASIS Standard specification, “Web Services
Federation Language (WS-Federation) Version 1.2”
http://docs.oasis-open.org/wsfed/federation/v1.2/0s/ws-
federation-1.2-spec-os.html#_Toc223175002

* “WS-Federation: Passive Requestor Profile” on MSDN
http://msdn.microsoft.com/en-us/library/bb608217.aspx

WS-Security

For more information about WS-Security, see the following:

* The OASIS Standard specification, “Web Services Security:
SOAP Message Security 1.1 (WS-Security 2004)”
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

WS-SecureConversation

For more information about WS-SecureConversation, see the following:
* The OASIS Standard specification, “WS-SecureConversation
13"
http://docs.oasis-open.org/ws-sx/ws-secureconversation/vi1.3/
ws-secureconversation.pdf

WS-Trust

For more information about WS-Trust, see the following:
* The OASIS Standard specification, “WS-Trust 1.3”
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-
1.3-o0s.html

XML Encryption

For more information about XML Encryption (used to generate XML
digital signatures), see the following:
* The W3C Recommendation, “XML Encryption Syntax and
Processing”
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html%23_Toc223175002
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html%23_Toc223175002
http://msdn.microsoft.com/en-us/library/bb608217.aspx%20
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf%20
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf%20
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

Appendix D Certificates

This appendix lists the digital certificates that are used in claims-based
applications. To see this in table form, see “Claims Based Identity &
Access Control Guide” on CodePlex (http://claimsid.codeplex.com).

Certificates for Browser-Based Applications

In browser-based scenarios, you will find certificates used on the is-
suer and on the computer that hosts the web application. The client
computer does not store certificates.

ON THE ISSUER (BROWSER SCENARIO)
In browser-based scenarios, you will find the following certificates on
the issuer.

Certificate for TLS/SSL (Issuer, Browser Scenario)

The Transport Layer Security protocol/Secure Sockets Layer protocol
(TLS/SSL) uses a certificate to protect the communication with the
issuer—for example, for the credentials transmitted to it. The purpose
is to prevent man-in-the-middle attacks, eavesdropping, and replay
attacks.

Requirements: The subject name in the certificate must match
the Domain Name System (DNS) name of the host that provides the
certificate. Browsers will generally check that the certificate has a
chain of trust to one of the root authorities trusted by the browser.

Recommended certificate store: LocalMachine\My

Example: CN=login.adatumpharma.com

Certificate for Token Signing (Issuer, Browser Scenario)

The issuer’s certificate for token signing is used to generate an XML
digital signature to ensure token integrity and source verification.

287

288

APPENDIX D

Requirements: The worker process account that runs the issuer
needs access to the private key of the certificate.

Recommended certificate store: LocalMachine\My and if Micro-
soft® Active Directory® Federation Services (ADFS) 2.0 is the issuer,
the ADFS 2.0 database will keep a copy.

Example: CN=adatumpharma-tokensign.com

The subject name on the certificate does not need to match a DNS
name. It’s a recommended practice to name the certificate in a way
that describes its purpose.

Optional Certificate for Token Encryption

(Issuer, Browser Scenario)

The certificate for token encryption secures the SAML token. Encrypt-
ing tokens is optional, but it is recommended. You may opt to rely on
TLS/SSL, which will secure the whole channel.

Requirements: Only the public key is required. The private key is
owned by the relying party for decrypting.

Recommended certificate store: LocalMachine\TrustedPeople,
LocalMachine\AddressBook or if ADFS 2.0 is the issuer, the ADFS 2.0
database will keep it.

Example: CN=a-expense.adatumpharma-tokenencrypt.com

Encrypting the token is optional, but it is generally recommended.
Using TLS/SSL is already a measure to ensure the confidentiality of
the token in transit. This is an extra security measure that could be
used in cases where claim values are confidential.

ON THE WEB APPLICATION SERVER
In browser-based scenarios, you will find the following certificates on
the web application server.

Certificate for TLS/SSL (Web Server, Browser Scenario)
TLS/SSL uses a certificate to protect the communication with the
web application server—for example, for the SAML token posted to
it. The purpose is to prevent man-in-the-middle attacks, eavesdrop-
ping, and replay attacks.

Requirements: The subject name in the certificate must match
the DNS name of the host that provides the certificate. Browsers will
generally check that the certificate has a chain of trust to one of the
root authorities trusted by the browser.

Recommended certificate store: LocalMachine\My

Example: CN=a-expense.adatumpharma.com

Token Signature Verification

(Web Server, Browser Scenario)
The web application server has the thumbprint of the certificate that
is used to verify the SAML token signature. The issuer embeds the
certificate in each digitally signed security token. The web application
server checks that the digital signature’s thumbprint (a hash code)
matches that of the signing certificate. Windows® Identity Founda-
tion (WIF) and ADFS embed the public key in the token by default.

Requirements: The thumbprint of the issuer’s certificate should
be present in the <issuerNameRegistry> section of the application’s
Web.config file.

Recommended certificate store: None

Example: [d2316a731b59683€744109278c80e2614503b17e (This
is the thumbprint of the certificate with CN=adatumpharma-token-