
COLUMNS
Cutting Edge
ASP.NET Ajax Library
and WCF Data Services
Dino Esposito page 6

CLR Inside Out
Migrating an APTCA Assembly
to the .NET Framework 4
Mark Rousos page 18

Data Points
Precompiling LINQ Queries
Julie Lerman page 29

UI Frontiers
MIDI Music in WPF Applications
Charles Petzold page 64

Basic Instincts
Generic Co- and Contravariance
in Visual Basic 2010
Binyam Kelile page 68

Extreme ASP.NET
Model Validation & Metadata
in ASP.NET MVC 2
K. Scott Allen page 76

Security Briefs
Add a Security Bug Bar to Microsoft
Team Foundation Server 2010
Bryan Sullivan page 80

Test Run
Testing Silverlight Apps Using Messages
James McCaffrey page 86

Don’t Get Me Started
Edge Cases
David S. Platt page 96

M
A

RC
H

 2
01

0
VO

L
25

 N
O

 3

Enhancing Silverlight Video Experiences
with Contextual Data
Jit Ghosh page 32

Exploring Multi-Touch Support in Silverlight
Charles Petzold page 46ChChararleless PPePPetztzololdd papageggge 4 466

Performance Tuning with
the Concurrency Visualizer
in Visual Studio 2010
Hazim Shafi page 56

Untitled-2 2 1/11/10 11:14 AM

www.infragistics.com/killerapps

Infuse your team with the power to create user interfaces
with extreme functionality, complete usability and the

“wow-factor!” with NetAdvantage® in your .NET development
toolbox. Featuring the most powerful and fastest data grids on
the market for Windows Forms, ASP.NET, Silverlight and WPF,

it’ll be like having the strength of 10 developers on every desktop.
Go to infragistics.com/killerapps to find out how you and your

team can start creating your own Killer Apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055

Infragistics India +91-80-6785-1111

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

Untitled-2 3 1/11/10 11:14 AM

www.infragistics.com/killerapps

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director
KERI GRASSL Site Manager

KEITH WARD Editor in Chief
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President
Christopher M. Coates Vice President, Finance & Administration
Abraham M. Langer Vice President, Digital Media, Audience Marketing
Erik A. Lindgren Vice President, Information Technology & Web Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in U.S. funds: U.S. $35; Canada $45;
International $60. Single copies/back issues: U.S. $10, all others $12. Send orders with payment
to: MSDN Magazine, P.O. Box 3167, Carol Stream, IL 60132, e-mail MSDNmag@1105service.com or
call 847-763-9560. POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie,
IL 60076. Canada Publications Mail Agreement No: 40612608. Return Undeliverable Canadian
Addresses to Circulation Dept. or IMS/NJ. Attn: Returns, 310 Paterson Plank Road, Carlstadt, NJ 07072.

© Copyright 2010 by 1105 Media, Inc. All rights reserved. Printed in the U.S.A. Reproductions in whole
or part prohibited except by written permission. Mail requests to “Permissions Editor,” c/o MSDN
Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

MARCH 2010 VOLUME 25 NUMBER 3

Printed in the USA
The Smart Choice for Text Retrieval® since 1991

1-800-IT-FINDS • www.dtSearch.com

“Bottom line: dtSearch manages a terabyte
of text in a single index and returns
results in less than a second” — InfoWorld

dtSearch “covers all data sources …
powerful Web-based engines” — eWEEK

“Lightning fast ... performance was
unmatched by any other product”

 — Redmond Magazine

For hundreds more reviews, and
hundreds of developer case studies,
see www.dtSearch.com

Content extraction only licenses
also available

Network with Spider

Web with Spider

Desktop with Spider

Network with Spider

Web with Spider
Publish (for portable media)
Publish (for portable media)

Desktop with Spider

Engine for Linux
Engine for Linux

Engine for Win & .NET
Engine for Win & .NET

� Fully-functional evaluations available

� 25+ full-text
and fielded data
search options

� Built-in file
parsers and
converters
highlight hits
in popular
file types

� Spider
supports static
and dynamic
web data;
highlights hits
with links,
formatting and
images intact

� API supports
C++, .NET, Java,
SQL, etc. .NET
Spider API.
Includes 64-bit
(Win/Linux)

Instantly Search Terabytes of Text

®

Masthead.0310.lay4_2.indd 2 2/10/10 4:02 PM

mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
http://www.dtSearch.com

programmersparadise.com866-719-1528

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

NEW
RELEASE!

Professional Edition
Paradise #

T79 02101A02
$848.99

programmers.com/ca

CA ERwin® Data Modeler
r7.3 – Product Plus 1 Year
Enterprise Maintenance
by CA
CA ERwin Data Modeler is a data modeling
solution that enables you to create and
maintain databases, data warehouses
and enterprise data resource models.
These models help you visualize data
structures so that you can effectively
organize, manage and moderate data
complexities, database technologies
and the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/pragma

Pragma Fortress SSH—SSH
Server & Client for Windows
by Pragma Systems
Contains SSH, SFTP, SCP servers and clients
for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Offers FIPS mode
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/7/

Vista/XP/2000

Paradise #
P35 04201A01
$550.99

Paradise #
P26 04201E01
$3,951.99

programmers.com/vSphere

programmers.com/sparxsystems

Enterprise Architect 7.5
Visualize, Document and
Control Your Software Project
by Sparx Systems
Enterprise Architect is a comprehensive,
integrated UML 2.1 modeling suite
providing key benefits at each stage of
system development. Enterprise Architect
7.5 supports UML, SysML, BPMN and
other open standards to analyze, design,
test and construct reliable, well under-
stood systems. Additional plug-ins are
also available for Zachman Framework,
MODAF, DoDAF and TOGAF, and to
integrate with Eclipse and Visual Studio
2005/2008.

Corporate Edition
1-4 Users

Paradise #
SP6 03101A02

$182.99

programmers.com/LEAD

LEADTOOLS Recognition
SDK v16.5
by LEAD Technologies
Develop robust 32/64 bit document
imaging and recognition functionality into
your applications with accurate and
high-speed multi-threaded Forms, OCR,
OMR, and 1D/2D barcode engines.
• Supports text, OMR, image, and

barcode fields
• Auto-registration and clean-up to

improve recognition results
• Provided as both high and low

level interface
• Includes comprehensive confidence

reports to assess performance

Paradise #
L05 26301A01
$3,214.99

Certified
for Windows
7/2008R2

VMware vSphere
Put time back into your day.
Your business depends on how you spend
your time. You need to manage IT costs
without losing time or performance. With
proven cost-effective virtualization solutions
from VMware, you can:

• Increase the productivity of your existing
staff three times over

• Control downtime—whether planned
or not

• Save more than 50% on the cost of
managing, powering and cooling servers

Make your time (and money) count for
more with virtualization from VMware.

VMware
Advanced

Acceleration Kit
for 6 processors

Paradise #
V55 78101A01

$9,234.99

programmers.com/flexera

AdminStudio & Application
Virtualization Pack
by Flexera Software
One Application Software Deployment Tool
for Reliable MSI Packaging, Application
Virtualization, and Windows 7 Migration.
Top choice of Microsoft®, Novell®, LANDesk®

and other software management solutions.
Cut MSI packaging time by up to 70%,
Deploy software to desktops with 99%
success or better. AdminStudio is the only
MSI packaging solution to support multiple
virtualization formats, including Microsoft®

App-V™, VMware® ThinApp™ and
Citrix® XenApp™.

Professional
Upgrade from
any Active AS
Pro + Silver Mtn
Paradise #
I21 09401S05

$4,228.99

programmers.com/multiedit

Multi-Edit 2008
by Multi Edit Software
Multi-Edit 2008 delivers, a powerful IDE,
with its speed, depth, and support for
over 50 languages. Enhanced search
functions include Perl 5 Regular
Expressions and definable filters.
Supports large DOS/Windows, UNIX,
binary and Mac files. File Sync
Integration for: Delphi 6, 7, 2005, C++
Builder 6, BDS 2006 and Rad Studio
2007, VB 6, VC 6, VS 2003, 2005
and 2008. Includes file compare, code
beautifying, command maps, and
much more.

1-49 Users
Paradise #

A30 01201A01
$179.99

programmers.com/grapecity

FarPoint Spread
for Windows Forms
Now with Charting! The Best Grid is a
Spreadsheet. Give your users the look, feel,
and power of Microsoft® Excel®, without
needing Excel installed on their machines. Join
the professional developers around the world
who consistently turn to FarPoint Spread to
add powerful, extendable spreadsheet solutions
to their COM, ASP.NET, .NET, BizTalk Server
and SharePoint Server applications.
• World’s #1 selling development spreadsheet
• Read/Write native Microsoft Excel Files
• Charts with 85 new chart types
• Fully extensible models
• Royalty-free, run-time free

Paradise #
F02 01101A01
$936.99

NEW
VERSION

5!

programmers.com/solarwinds

Orion Network
Performance Monitor
by Solarwinds
Orion Network Performance Monitor is a
comprehensive fault and network performance
management platform that scales with the
rapid growth of your network and expands
with your network management needs.
It offers out-of-the-box network-centric views
that are designed to deliver the critical
information network engineers need.
Orion NPM is the easiest product of its
kind to use and maintain, meaning you
will spend more time actually managing
networks, not supporting Orion NPM.

Paradise #
S4A 08201E02

$4,606.99

BUILD ON
VMWARE ESXi
AND VSPHERE
for Centralized Management,
Continuous Application
Availability, and Maximum
Operational Efficiency in Your
Virtualized Datacenter.
Programmer’s Paradise invites you to take advantage
of this webinar series sponsored by our TechXtend
solutions division.

FREE VIRTUALIZATION WEBINAR SERIES:
REGISTER TODAY! TechXtend.com/Webinars

programmers.com/globalgraphics

gDoc Fusion
by Global Graphics
gDoc Fusion is the easiest way to
assemble information from a range of
sources and formats and quickly create
enterprise-quality PDF, XPS or Microsoft
Word documents for sharing, printing
or collaboration.

• One-click PDF/XPS creation
• Merge and combine documents quickly
• Flick through large documents like

a book
• Context sensitive text editing

* Price per user.

1-4 Users Includes
Maint & Support

Paradise #
F39 ZSP0008

$181.99

*

Untitled-3 1 2/2/10 3:24 PM

www.programmersparadise.com

msdn magazine4

chops; sharpen your communication and people skills, the so-
called soft skills.
“Soft skills are important, but don’t replace the appropriate

experience and skill-set,” Silver says. “However, most companies
want excellent communication and interpersonal skills. Soft ware
developers have to have the ability to present ideas in a business-
friendly and user-friendly language. Th ey have to be highly self-
motivated and -directed with excellent analytical and problem-
solving capabilities. If you can combine excellent technical know-how
with soft skills, it’s a killer combination.”

In general, Silver continues, it’s better to have a big toolbox
with a lot of gadgets than a small one with many specialized tools.
“Broadening your skill-set is the most important. Also, our research
shows that having more skills typically begets a higher income.”

So, what does the immediate future hold for developers? Does
Silver expect 2010 to surpass last year? “Hands down, better,” he
gushes. He sounds a little Pollyanna-ish, but does have numbers
to back up his statements. “We think 2010 is going to be about
retention,” Silver says. “With confi dence returning and the number
of available jobs improving, soft ware developers should be willing
to go fi ght for what they want, whether their preference is more
compensation, training or career growth.”

And although it may be small comfort to the developers still
knocking on doors, Silver continues to believe that this industry is
the right one to be in. “Companies forget that the unemployment
rate for technology professionals is 4.5 percent, as compared to 10
percent overall—and well improved from the peak [6.2 percent] in
this cycle. Technology professionals told us very clearly that they
don’t think their companies did any of the ‘soft ’ items to keep them
motivated during the downturn. It’s simply a matter of time before
technology professionals start looking around.”

Does this outlook cheer you? Or are you out of work and as
discouraged as ever? Tell me your story at mmeditor@microsoft .com.

Coming out the Other Side

Typing in “ASP.NET” at the popular employ-
ment site Monster.com brings up 1,848 hits.
Typing in “C#” brings up 3,247 matches; “SQL
programmer” returns 874 openings.

Do fi gures like that mean anything in this
job market, with many companies still hand-
ing out pink slips left and right, and continuing
to outsource development jobs? In short—is

the recession really over, as the experts claim, or are the hard times
going to loiter awhile, like a 19-year-old on a Baltimore street corner?

Th e soft ware development community, thought to be mostly
immune to the unemployment line, has felt the stinging lash of the
bleak economic picture as well. If you haven’t lost your job, chances
are good you have a colleague or friend who has.

Because anecdotal evidence is of little value on matters
like these, I went to an expert to get his take. Tom Silver is the
senior vice president, North America, at tech job search Web site
Dice.com. On the whole, he’s optimistic about the outlook for
soft ware developers going forward.

Silver gave me a “state of the state” rundown of the current situation.
“Th e market is defi nitely improving for soft ware developers,” he
says. “Th ere are currently nearly 8,500 open jobs being advertised on
Dice.com. Th at’s up 7 percent year-over-year and has increased more
than 20 percent in the last six months. We see opportunities in a wide
variety of industries, and 45 states and the District of Columbia
currently have openings.”

Th at optimism applies to salaries as well, Silver says, which are
trending up—only a bit, but in this environment, that’s good to
hear. “Soft ware Engineers enjoyed a slight increase (1.5 percent) in
average salaries to $91,342. Th at compares to a 1 percent increase
for tech in general between 2009 and 2010. Soft ware Engineers
continue to be paid well—16 percent above the overall tech aver-
age salary of approximately $78,000,’’ according to Silver.

But what if you’re on the outside of those rosy statistics, look-
ing in? What do you do to make yourself more employable? For
one thing, Silver says, don’t focus only on your programming

EDITOR’S NOTE

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

Ward.EdNote.0310.Lay6_4.indd 4 2/10/10 4:27 PM

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx
mailto:mmeditor@microsoft.com
http://Dice.com
http://Dice.com

Untitled-15 1 1/15/10 1:52 PM

www.axosoft.com

source and expose it through a special fl avor of a WCF service: a
WCF Data Service. (You’ll fi nd an excellent introduction to
WCF Data Services in the August 2008 edition of MSDN
Magazine, available at msdn.microsoft.com/magazine/cc748663.)

You typically start by creating the business domain model
using Entity Framework, then create a WCF service around it. I’ll be
using the familiar Northwind database and working on a small
subset of its tables: Customers and Orders.

First, you create a new class library project and add a new item of
type ADO.NET Entity Data Model. Next, you compile the project
and reference the assembly from within a new ASP.NET applica-
tion. In the sample code, I use an ASP.NET MVC project. You merge
any connection string settings with the web.config of the host Web
application and add a new “ADO.NET Data Service” item to the
Web project. (The old name is still being used in Visual Studio
2008 and in the beta 2 of Visual Studio 2010.) You now have a class
library with the data source and a WCF Data Service that, hosted
in the ASP.NET application, exposes the content to the clients.

In the simplest case, this is all the code you need to have in the
WCF Data Service:

public class NorthwindService : DataService<NorthwindEntities>
{
 public static void InitializeService(IDataServiceConfiguration
config)
 {
 config.SetEntitySetAccessRule("Customers", EntitySetRights.All);
 }
}

As you progress on your project, you’ll probably need to add
more access rules on entity sets and also (why not?) support for
additional service operations. A WCF Data Service is a plain WCF
service that is consumed in a REST way. Nothing, therefore,
prevents you from adding one or more new service operations,
each representing a coarse-grained operation on the data, such
as a complex query or a sophisticated update. Aside from that,
as shown in the previous code, the service will provide client
access to the Customers entity set, with no restrictions on opera-
tions. This means that you won’t be able to query for customers
and orders, even though the Orders entity set does exist in the
embedded entity model. A new access rule is required to enable
client access to orders.

ASP.NET Ajax Library and WCF Data Services

It’s been a few years since the Web industry praised the advent of
AJAX as the beginning of a new era of programming prosperity,
and now a powerful set of programming tools is fi nally available to
Web developers: the ASP.NET Ajax Library and WCF Data Services.
Developers can stop relying on the browser as a distinct runtime
environment and perform from the Web a number of tricks that
were previously only possible through smart clients.

Th e ability to place calls to a remote HTTP endpoint is a com-
mon feature that many applications take advantage of today. Such
applications use Windows Communication Foundation (WCF)
services to download JavaScript Object Notation (JSON) data
streams, and parse that content into JavaScript objects that are
then rendered into the current HTML Document Object Model
(DOM). However, the WCF service on the server side—and the
JavaScript code on the client side—work on diff erent data types,
forcing you to create two distinct object models.

You typically need a domain model on the server side, which
is how your middle tier handles and represents entities. Entity
Framework and LINQ to SQL are two excellent tools for designing
your server-side object model, either from scratch or by inferring
it from an existing database. At some point, though, you need to
transfer this data to the client as the response of a WCF service call.

One of the most popular mantras of service-oriented architec-
ture (SOA) maintains that you should always transfer data contracts,
not classes, as part of decoupling the presentation and business
tiers. So you need another completely distinct object model: the
view model for the presentation.

A common problem is detecting and communicating to the
server any changes to the data that have occurred on the client.
Communicating only changes ensures that the least amount of data
possible is transferred across the wire, and optimized data access
operations can be performed against the database.

An end-to-end solution for data access and manipulation is
therefore required. WCF Data Services (formerly ADO.NET
Data Services) and the ASP.NET Ajax Library combine to deliver
a comprehensive framework that allows you to download data,
work on it and return updates to the server. In this article, I’ll look
at the ASP.NET Ajax JavaScript components for eff ective client-
side data access.

WCF Data Services in a Nutshell
Th e key idea behind the cutting-edge, end-to-end data access
solution in WCF Data Services is that you build a server-side data

CUTTING EDGE DINO ESPOSITO

This column is based on a prerelease version of ASP.NET Ajax Library.
All information herein is subject to change.

Code download available at code.msdn.microsoft.com/mag201003CuttingEdge.

msdn magazine6

Esposito.CuttingEdge.0310.Lay6_6-14.indd 6 2/10/10 4:34 PM

http://msdn.microsoft.com/magazine/cc748663
http://code.msdn.microsoft.com/mag201003CuttingEdge

Untitled-1 1 2/8/10 11:31 AM

www.devexpress.com/wpfgrid

msdn magazine8 Cutting Edge

Until you add new REST methods to the WCF data service, the
only operations allowed are generic create, read, update and delete
(CRUD) operations expressed using an ad-hoc URI format. (See
msdn.microsoft.com/data/cc668792 for more details on the syntax.) Th e URI
format allows applications to query for entities, traverse the relation-
ships between entities, and apply any changes. Each CRUD operation
is mapped to a diff erent HTTP verb: GET for queries, POST for
insertions, PUT for updates and DELETE for deletions.

A client that gets a reference to a WCF Data Service receives a
proxy class created by the datasvcutil.exe utility or transparently
created by the Add Service Reference wizard in Visual Studio.

Invoking a WCF Data Service from a smart client platform couldn’t
be easier, whether Silverlight, Windows or Windows Presentation
Foundation (WPF). Th e same can be said for server-side binding to
ASP.NET. What about Web clients based on JavaScript and AJAX?

Consuming Data Services via ASP.NET Ajax Library
In the ASP.NET Ajax Library, there are two JavaScript compo-
nents related to WCF Data Services: OpenDataServiceProxy and
OpenDataContext.

OpenDataContext is essentially designed for managing CRUD
operations from within the Web client. It can be thought of as the
JavaScript counterpart of the DataServiceContext class. Defi ned in
the System.Data.Services.Client namespace, DataServiceContext
represents the runtime context of the specifi ed WCF Data Service.

OpenDataContext tracks changes to the entities being used and
can intelligently generate commands against the back-end service.

Th e OpenDataServiceProxy class is intended as a lightweight
additional proxy for a WCF Data Service. It essentially manages
read-only scenarios but can be used to invoke additional service
operations exposed in the service. You initialize the OpenData-
ServiceProxy class as follows:

var proxy = new Sys.Data.OpenDataServiceProxy(url);

At this point, the class is up and running. You typically need to spend
more time confi guring an OpenDataContext object. As far as the con-
nection to the service is concerned, though, it happens in a similar way:

var dataContext = new Sys.Data.OpenDataContext();
dataContext.set_serviceUri(url);

Both classes can be used as data providers for a DataView.
Which one you use depends on what you want to do. If any CRUD
activity has to happen via the service, you’re probably better off
going with a proxy. If you have logic on the client and intend to
perform a bunch of CRUD operations before you apply changes,
then data context is preferable. Let’s focus on OpenDataContext.

Using the OpenDataContext Class
Here’s how to create and initialize an instance of the OpenData-
Context class:

<script type="text/javascript">
 var dataContext;

 Sys.require([Sys.components.dataView, Sys.components.
openDataContext]);

 Sys.onReady(function() {
 dataContext = Sys.create.openDataContext(
 {
 serviceUri: "/NorthwindService.svc",
 mergeOption: Sys.Data.MergeOption.appendOnly
 });

 });
</script>

Note the use of the Sys.require function to dynamically link only
script fi les that serve the purpose of components being used. If you
opt for the Sys.require approach, the only script fi le you need to
link in the traditional way is start.js:

 (see code <script src="../../Scripts/MicrosoftAjax/Start.js"
 type="text/javascript">
</script>

All fi les you use, though, must be available on the server or
referenced through the Microsoft Content Delivery Network (CDN).

Looking ahead to Figure 2, you can see that in the document’s
ready event, you create a new instance of the OpenDataContext
class. Note again the use of the newest abbreviated syntax to defi ne
code for common events and instantiate common objects. Th e
factory of the OpenDataContext class receives the URL of the
service and some additional settings. At this point, you’re ready to
use the data context as the data provider to some DataView UI
components in the page, as shown in Figure 1.

An instance of the DataView component is created and used to
populate the template it’s attached to. Th e DataView provides the
glue code necessary to download data via the WCF Data Service
and bind it to the HTML template. Where is the decision made
about the data to be downloaded? In other words, how do you
specify the query string for the data you want back?

<table>
 <tr class="tableHeader">
 <td>ID</td>
 <td>Name</td>
 <td>Contact</td>
 </tr>
 <tbody sys:attach="dataview"
 class="sys-template"
 dataview:dataprovider="{{ dataContext }}"
 dataview:fetchoperation="Customers"
 dataview:autofetch="true">
 <tr>
 <td>{{ CustomerID }}</td>
 <td>{{ CompanyName }}</td>
 <td>{{ ContactName }}</td>
 </tr>
 </tbody>
</table>

Figure 1 Using Data Context as a Data Provider

<script type="text/javascript">
 var dataContext;
 var queryObject;

 Sys.require([Sys.components.dataView,
 Sys.components.openDataContext]);

 Sys.onReady(function() {
 dataContext = Sys.create.openDataContext(
 {
 serviceUri: "/NorthwindService.svc",
 mergeOption: Sys.Data.MergeOption.appendOnly
 });
 queryObject = new Sys.Data.OpenDataQueryBuilder("Customers");
 queryObject.set_orderby("ContactName");
 queryObject.set_filter("City eq " + "'London'");
 queryObject.set_expand("Orders");
 });
</script>

Figure 2 Using the AdoNetQueryBuilder Object

Esposito.CuttingEdge.0310.Lay6_6-14.indd 8 2/10/10 4:42 PM

http://msdn.microsoft.com/data/cc668792

Untitled-1 1 2/8/10 11:31 AM

www.devexpress.com/aspxgridview

msdn magazine10 Cutting Edge

Th e fetchoperation property of the DataView component
indicates the name of the service operation to be invoked. If the data
provider is a plain proxy for the service, then the fetch operation
property takes the name of a public method on the service. If you
instead go through the OpenDataContext class, the value for fetch-
operation is expected to be a string that the runtime of the WCF Data
Service can understand. It can be an expression like any of these:

Customers
Customers('ALFKI')
Customers('ALFKI')?$expand=Orders
Customers('ALFKI')?$expand=Orders&$orderBy=City

If you simply specify the name of a valid entity set, you’ll get the en-
tire list of entities. Other keywords, such as $expand, $orderBy and
$fi lter, allow you to include related entity sets (sort of an inner join),
order on a property and fi lter returned entities based on a Boolean
condition.

You can compose the query manually as a string, being respectful
of the underlying URI format. Or you can use the built-in Open-
DataQueryBuilder JavaScript object, as shown in Figure 2.

Th e query builder can be used to build complete URLs, or just the
query part of the URL. In this case, the query builder gets the name
of the entity set to query. It also off ers a bunch of properties for setting
any required expansion, fi lters and orders. Th e criteria set via the
query builder object must then be serialized to an eff ective query string
when that fetchoperation is set, as shown here:

<tbody sys:attach="dataview"
 class="sys-template"
 dataview:dataprovider="{{ dataContext }}"
 dataview:fetchoperation="{{ queryObject.toString() }}"
 dataview:autofetch="true">

You use the toString method to extract the query string from
the query builder. In the sample code, the resulting query string is

Customers?$expand=Orders&$filter="City eq 'London'"&$orderby=ContactName

Th e service returns a collection of composite objects that embed
customer demographics plus some order information. Figure 3
shows the output.

Th e numbers in the last column indicate the number of orders
that have been placed by the customer. Because of the $expand
attribute in the query, the JSON data stream contains an array of
orders. Th e HTML template refers to the length of the array and
populates the column like this:

 <td>{{ Orders.length }}</td>

Note that in order to successfully retrieve order information,
you should fi rst go back to the source code of the WCF Data
Service and enable access to the Orders entity set:

public static void InitializeService(
 IDataServiceConfiguration config)
{
 config.SetEntitySetAccessRule(
 "Customers", EntitySetRights.All);
 config.SetEntitySetAccessRule(
 "Orders", EntitySetRights.All);
}

Let’s see how it works if you have more ambitious plans and
want to update data on the client before returning it to the service.

Dealing with Updates
Figure 4 shows the HTML template for a page fragment used to
query for a customer. Th e user enters the ID, clicks the button and
gets fresh, editable data.

Data loading occurs on demand. Here’s the code that takes care

of invoking the data service:
function doLoad() {
 var id = Sys.get("#CustomerID").value;

 // Prepare the query
 var queryObject = new Sys.Data.OpenDataQueryBuilder("Customers");
 queryObject.set_filter("CustomerID eq '" + id + "'");
 var command = queryObject.toString();

 // Set up the DataView
 var dataView = Sys.get("$Editor").component();
 dataView.set_fetchOperation(command);
 dataView.fetchData();
}

You fi rst get the input data you need—specifi cally, the text the
user typed in the input fi eld. Next, you prepare the query using
a new OpenDataQueryBuilder object. Finally, you instruct the
Data View (in turn confi gured to use the WCF Data Service) to
download data for the query.

Any data retrieved is displayed using ASP.NET Ajax Library live
binding, which guarantees live updates to any involved JavaScript
objects (see Figure 5). Th e text box in which you edit the address
of the customer is defi ned as:

<td class="caption">Address</td>
<td><%= Html.SysTextBox("Address", "{binding Address}") %></td>

In addition to the use of the {binding} expression, note the custom
HTML helper being used in ASP.NET MVC. You might have a simi-
lar situation if you attempt to use live binding and AJAX templates
in the context of a Web Forms application. So what’s the problem?

For data binding to work, involved attributes must be prefi xed
with the sys: namespace. Th erefore, to bind some text to a text box,
you need to ensure that the following HTML markup is emitted:

<input type="text" ... sys:value="{binding Address}" />

In both ASP.NET MVC and Web Forms, you can brilliantly solve
the problem by entering HTML literals. Otherwise, you need an
adapted version of the tools that the ASP.NET framework of choice

Figure 3 Querying Data Using a WCF Data Service

Esposito.CuttingEdge.0310.Lay6_6-14.indd 10 2/10/10 4:34 PM

Untitled-1 1 2/8/10 11:32 AM

www.devexpress.com/xtragrid

msdn magazine12 Cutting Edge

off ers for abstracting pieces of markup: HTML helpers or server
controls. In particular, in ASP.NET MVC, you may resort to a custom
HTML helper that emits the sys:value attribute, as shown in Figure 6.

Changes to the address of the displayed customer are recorded
as they happen and are tracked by the data context object. Note
that this is possible only if you use the data context object as the
data provider of the DataView used for rendering. Th is is the
additional work that the OpenDataContext object can do for you
with respect to the aforementioned OpenDataServiceProxy object.

How can you save changes? To ensure that the modifi ed delta
of the downloaded data is served back to the data service, all you
need to do is invoke the saveChanges method on the data context
instance. Depending on the type of application you are building,
though, you might want to add some extra layers of control. For
example, you might want to add a “commit” button that fi rst sum-
marizes what’s going on and asks users to confi rm that they want
to save pending changes. Figure 7 shows the JavaScript code for
such a commit button.

Th e function checks with the current data context to see if there
are any pending changes. If so, it builds a summary of detected
changes. Th e get_changes method on the data context returns an
array of objects with information about the type of action (insert,
remove or update) and the local object that was involved in the
change. Figure 8 shows the dialog box that results from the
preceding code when you attempt to commit pending changes.

It should be noted that every time you select a new customer,
you lose the changes of the previous one. Th is is because the data
context is emptied and refi lled with other data. Persisting changes
in some other object just doesn’t make sense—you’ll be rewriting
a clone of the data context yourself.

Th e power of the client-side proxy of a WCF Data Service doesn’t
show up really well through a single-object user interface. In the
ASP.NET Ajax Library Beta kit, you’ll fi nd an excellent way to test this
feature: the ImageOrganizer example. However, I can give you the gist
of what I mean by simply extending the present example a bit. Let’s
suppose you have a master-detail view and can switch from one
customer’s view to the next without leaving the page and without
necessarily having to save changes. Th e download occurs only once (or
periodically), and for the time it remains in memory, all changes your
user interface allows are correctly tracked (see Figure 9).

Insertions and Deletions
So far, I’ve only focused on updates. But what about insertions and
deletions? Th ese have some slight diff erences, and require a bit
more work. First and foremost, you can’t rely on data binding to make
changes to the underlying object being displayed. Your responsibility
is to update the in-memory collection (or object) you received from
the data context being used within the user interface. For inserts, you

<div id="Demo2">
<table>
 <tr class="tableHeader"><td>Customer ID</td></tr>
 <tr><td>
 <%= Html.TextBox("CustomerID", "ALFKI") %>
 <input type="button" value="Load" onclick="doLoad()" />
 </td></tr>
 </table>

 <table sys:attach="dataview" id="Editor"
 class="sys-template"
 dataview:dataprovider="{{ dataContext }}"
 dataview:autofetch="false">
 <tr>
 <td class="caption">ID</td>
 <td>{{ CustomerID }}</td>
 </tr>
 <tr>
 <td class="caption">Company</td>
 <td>{{ CompanyName }}</td>
 </tr>
 <tr>
 <td class="caption">Address</td>
 <td>
 <%=Html.SysTextBox("Address", "{binding Address}")%></td>
 </tr>
 <tr>
 <td class="caption">City</td>
 <td>{{ City }}</td>
 </tr>
</table>
</div>

Figure 4 Querying a Data Service

public static string SysTextBox(this HtmlHelper htmlHelper,
 string name,
 string value,
 IDictionary<string, object> htmlAttributes)
{
 var builder = new TagBuilder("input");
 builder.MergeAttributes(htmlAttributes);
 builder.MergeAttribute("type", "text");
 builder.MergeAttribute("name", name, true);
 builder.MergeAttribute("id", name, true);
 builder.MergeAttribute("sys:value", value, true);
 return builder.ToString(TagRenderMode.SelfClosing);
}

Figure 6 A Custom HTML Helper

Figure 5 Editing an Object Locally

Esposito.CuttingEdge.0310.Lay6_6-14.indd 12 2/10/10 4:34 PM

Image Formats & Compression: Supports 150+ image formats and
compressions including TIFF, EXIF, PDF, JPEG2000, JBIG and CCITT.
Display Controls: ActiveX, COM, Win Forms, Web Forms, WPF and Silverlight.
Image Processing:

functions supporting region of interest and extended grayscale data.
OCR/ICR/OMR: Full page or zonal recognition for multithreaded 32 and 64

bit development.
Forms Recognition and Processing: Automatically identify forms and

Barcode:
64 bit development.
Document Cleanup/Preprocessing:

and border removal, inverted text correction and more.
PDF and PDF/A:

annotations.
Annotations: Interactive UI for document mark-up, redaction and image

measurement (including support for DICOM annotations).
Medical Web Viewer Framework:

Medical Image Viewer:

DICOM:

PACS Communications: Full support for DICOM messaging and secure
communication enabling quick implementation of any DICOM SCU and SCP
services.
JPIP: Client and Server components for interactive streaming of large images

Scanning: TWAIN 2.0 and WIA (32 and 64-bit), autodetect optimum driver
settings for high speed scanning.
DVD: Play, create, convert and burn DVD images.
DVR:
Multimedia: Capture, play, stream and convert MPEG, AVI, WMV, MP4, MP3,

OGG, ISO, DVD and more.
Enterprise Development: Includes WCF services and WF activities to

create scalable, robust enterprise applications.

Mark-up

DICOM Medical

Form Recognition
& Processing

Multimedia

Barcode

Document

Microsoft, HP, Sony, Canon, Kodak, GE, Siemens, the US Air Force and
Veterans Affairs Hospitals.

expertise in color, grayscale, document, medical, vector and multmedia

and functionality.

.NET, WPF, WCF, WF, C API, C++ Class Lib, COM & more!

Free 60 Day Evaluation! www.leadtools.com/msdn 800 637-1840

Untitled-3 1 2/2/10 3:26 PM

http://www.leadtools.com/msdn

msdn magazine14 Cutting Edge

simply need to create a new local instance of the object that is good
for display and add it to the bound collection. At this point, if your
user interface is fully data-bound, it should be able to refl ect the
change. Next, you need to inform the data context that a new
object has been added to an entity set and needs to be tracked for
persistence. Here’s the typical code you need to attach to the Java-
Script button that inserts an object:

// Create a new local object
var newCustomer = { ID: "DINOE", CompanyName: "...", ... };

// Add it to the collection used for data binding
dataView.get_data().add(newCustomer);

// Inform the data context object
dataContext.insertEntity(newCustomer, "Customers");

Removing an object is even simpler. You remove the object from

the in-memory collection and call the removeEntity method on
the data context.

var index = customerList.get_selectedIndex();
var customer = dataView.get_data()[index];
dataContext.removeEntity(customer);
imageData.remove(customer);

Avoid Confusion
Th e OpenDataContext and DataView objects work well together but
should not be confused with each other. Th e OpenDataContext object
represents the client-side proxy of a remote WCF Data Service. It’s a
very special type of proxy, however. It implements the “Unit of work”
pattern on the client side as it tracks changes being made to any entities
it helped retrieve. Th e data context is an excellent data provider for the
DataView component. Th e DataView component is exclusively
concerned with rendering. It off ers plug-ins for templates to invoke
remote operations easily, but that’s just a facility for developers. No such
CRUD and data management logic belong to the DataView.

Th is article didn’t delve into the intricacies of WCF Data Services
and didn’t touch on aspects such as concurrency, lazy loading and
security. It didn’t discuss data transfers, either. Hopefully, this ar-
ticle serves as an up-to-date summary of how to do some impor-
tant things with the ASP.NET Ajax Library and WCF Data Services.
Th e remainder is good fodder for future articles. Stay tuned!

DINO ESPOSITO is the author of the upcoming “Programming ASP.NET MVC” from
Microsoft Press and is the co-author of “Microsoft .NET: Architecting Applications for
the Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent speaker
at industry events worldwide. Join his blog at weblogs.asp.net/despos.

THANKS to the following technical experts for reviewing this article:
Boris Rivers-Moore and Stephen Walther

function doCommit() {
 var pendingChanges = dataContext.get_hasChanges();
 if (pendingChanges !== true) {
 alert("No pending changes to save.");
 return;
 }

 var changes = dataContext.get_changes();
 var buffer = "";
 for (var i = 0; i < changes.length; i++) {
 ch = changes[i];

 // Function makeReadable just converts the action to readable text
 buffer += makeReadable(ch.action) +
 " --> " +
 ch.item["Address"];
 buffer += "\n";
 }
 if (confirm(buffer))
 dataContext.saveChanges();
}

Figure 7 A Commit Button to Confi rm Changes

Figure 8 Pending Changes Detected

Figure 9 Tracking Client-Side Changes

Esposito.CuttingEdge.0310.Lay6_6-14.indd 14 2/10/10 4:34 PM

http://weblogs.asp.net/despos

Project3 12/16/09 11:55 AM Page 1

www.nsoftware.com

Grids • Charts • Reports • Schedules • Menus • Toolbars • Ribbon • Data Input • Editors • PDF

WinForms • WPF • ASP.NET • Silverlight • iPhone • Mobile • ActiveX

Untitled-4 2 2/2/10 3:34 PM

www.componentone.com/prepare

ComponentOne Sales: 1.800.858.2739 or 1.412.681.4343

DOWNLOAD YOUR FREE TRIAL AT

© 1987-2010 ComponentOne LCC. All rights reserved. iPhone and iPod are trademarks of Apple Inc. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Untitled-4 3 2/2/10 3:34 PM

www.componentone.com/prepare

msdn magazine18

fully trusted assemblies in v4 are, by default, SecurityCritical. On the
other hand, all partially trusted assemblies are automatically Security-
Transparent in v4. As explained in the transparency overview in the
next section, SecurityCritical code can’t be called from Security-
Transparent code.

Th us, the new v4 transparency system provides the same protection
of full trust code as the old link demands; because of the automatic
SecurityCritical and SecurityTransparent transparency levels,
partially trusted code can’t call into fully trusted libraries by default.

As you may have guessed, the v4 change to AllowPartiallyTrusted-
Callers is related to this. In v4, the eff ect of APTCA is to remove the
automatic SecurityCritical behavior from the assembly to which
it’s applied. Th e assembly then defaults to SecurityTransparent,
but allows the APTCA assembly author to apply more granular
SecurityCritical and SecuritySafeCritical attributes to specifi c types
and methods as necessary.

Crash Course in Transparency
Th e eff ect of transparency attributes like SecurityTransparent
and SecurityCritical will be known to readers familiar with the

CLR INSIDE OUT

Migrating an APTCA Assembly
to the .NET Framework 4

In the Microsoft .NET Framework 4, the common language runtime
(CLR) security model has undergone some substantial changes.
One of these changes, the adoption of Level2 transparency (much
like Silverlight’s security model), is likely to impact authors of
AllowPartiallyTrustedCallers (APTCA) libraries.

Th e reason for the impact is that the underlying workings of
APTCA have changed in CLR v4. Th e APTCA attribute retains the
ability to make a fully trusted library available to partially trusted
callers, but the details of how that happens are diff erent, and some
modifi cations to APTCA library code are likely necessary as a result.

Note: references to v2 in this article refer to CLR v2, which includes
everything from the .NET Framework versions 2.0 through 3.5 SP1.

APTCA Before V4
Prior to v4, all signed assemblies were protected from partially
trusted callers by implicit link demands for full trust on all entry
points. Th is meant any partially trusted code attempting to access
a strong-named assembly would fail with a security exception. Th is
prevented (potentially dangerous) fully trusted code from being
called maliciously from partial trust.

Adding the AllowPartiallyTrustedCallers attribute to a signed
full-trust library made it available to partial trust by removing these
implicit link demands. Consequently, APTCA libraries allowed
partially trusted code controlled access to privileged operations
through APTCA-exposed methods. It was the responsibility of
APTCA authors to ensure that only safe operations were exposed to
partial trust in this way, and that any potentially dangerous operations
were protected with explicit link demands or full demands.

APTCA in V4
Th e AllowPartiallyTrustedCallers attribute has changed. In v4, it no
longer has anything to do with link demands. In fact, the implicit link
demand that was present on signed libraries in v2 is gone. Instead, all

MIKE ROUSOS

This article discusses a prerelease version of the Microsoft .NET Framework 4.
All information is subject to change.

Post your questions and comments on the CLR Team blog at
blogs.msdn.com/clrteam.

Figure 1 Interactions of SecurityTransparent,
SecuritySafeCritical and SecurityCritical Code

SECURITY TRANSITIONS

SecurityCritical

SecurityTransparent

SecuritySafeCritical

The new CLR v4 transparency
system provides the same

protection of full trust code as
the old link demands.

http://blogs.msdn.com/clrteam

DynamicPDF Viewer
O u r n e w, c u s t o m i z a b l e

DynamicPDF Viewer allows you
to display PDF documents within

any WinForm application. No longer
rely on an external viewer for displaying

your PDF documents. DynamicPDF Viewer
utilizes the proven reliable and efficient

Foxit PDF viewing engine and maximizes
performance and compatibility with our other

DynamicPDF products.

DynamicPDF Converter
Our DynamicPDF Converter library can efficiently

convert over 30 document types (including HTML and
all common Office file formats) to PDF. Events can be

used to manage the action taken on a successful or failed
conversion. It is highly intuitive and flexible and

integrates well with our other DynamicPDF products.

DynamicPDF Rasterizer
Our DynamicPDF Rasterizer library can quickly convert PDF
documents to over 10 common image formats including
multi-page TIFF. Rasterizing form field values as well as
annotations is fully supported. PDFs can also be rasterized
to a System.Drawing.Bitmap class for further manipulation.

To learn more about these or any of our other popular tools:
DynamicPDF Generator, DynamicPDF Merger, DynamicPDF ReportWriter,
DynamicPDF Suite, DynamicPDF WebCache or Firemail, visit us online.

ceTe Software has been delivering quality software applications and components to our customers for over 10 years. Our
DynamicPDF product line has proven our commitment to delivering innovative software components and our ability to
respond to the changing needs of software developers. We back our products with a first class support team trained to
provide timely, accurate and thorough responses to any support needs.

Try our three
new products
FREE today!

Fully functional and never
expiring evaluation

editions available at
www.cete.com/download

Project1 10/30/09 1:28 PM Page 1

http://www.cete.com

msdn magazine20 CLR Inside Out

Silverlight security model, because the new v4 transparency model
is quite similar.

Let’s take a look at the three primary transparency attributes:
SecurityTransparent, SecuritySafeCritical and SecurityCritical.
SecurityTransparent Code marked as SecurityTransparent
is safe from a security perspective. It’s unable to complete any
dangerous operations, such as asserting a permission, executing
unverifi able code or calling native code. It’s also unable to call
SecurityCritical code directly.

• As noted, all partial trust code is forced to be Security-
Transparent for security reasons. It’s also the default transpar-
ency of APTCA libraries.

SecurityCritical SecurityCritical code, by contrast, is able to
perform any operations it wishes. It can assert, call native code and
more. It can call other methods regardless of transparency markings.

• Only fully trusted code can be SecurityCritical. And, in fact,
(non-APTCA) fully trusted code is assumed to be Security-
Critical, by default, to protect it from transparent, partially
trusted callers.

SecuritySafeCritical SecuritySafeCritical code acts as a bridge,
allowing transparent code to call into critical methods. Security-
SafeCritical code has all the same rights as SecurityCritical code,
but it’s callable from SecurityTransparent code. It is, therefore,
extremely important that SecuritySafeCritical code expose
underlying Security Critical methods only in a safe manner (lest some
malicious, partially trusted code attempts to exploit the methods
through the SecuritySafeCritical layer).

• Like SecurityCritical code, SecuritySafeCritical code must be
fully trusted.
Figure 1 illustrates the interactions of SecurityTransparent,

Security SafeCritical and SecurityCritical code.
Note that in addition to the transitions shown in the diagram, all

transparency levels can access themselves and any less critical code
(for example, SecuritySafeCritical code can access Security-
Transparent code). Because the Allow PartiallyTrustedCallers
attribute causes the entire assembly to be SecurityTransparent
by default, the assembly’s author must specifi cally mark methods
needing to perform privileged operations as SecurityCritical or
SecuritySafeCritical. Without such marking, the APTCA author
will fi nd that his code fails with MethodAccessExceptions,
Type AccessExceptions and other errors indicating that the
APTCA library is attempting to call dangerous APIs from
SecurityTransparent code.

Th is is just a brief introduction to the model; you’ll fi nd a
more thorough examination in MSDN documentation and in a
previous CLR Inside Out article by Andrew Dai, available at
msdn.microsoft.com/magazine/8e75546c-416a-44e1-8462-e39205fb942a.

Migrating from V2 to V4: Which Attributes to Apply
Most of the work necessary to migrate a v2 APTCA assembly to
v4 involves identifying and applying the correct transparency
attributes to methods that need them. Following are guidelines
indicating when each of the attributes is appropriate.
SecurityTransparent Code that does not perform any security-
sensitive operations should be SecurityTransparent.

Unlike the other transparency settings, SecurityTransparent
behavior is the default in an APTCA assembly and, therefore, does
not need to be marked explicitly. Code is considered transparent
in the absence of other attributes.

One advantage of transparent code is that it’s safe (because
dangerous operations are disallowed) and, as a result, it does not
need as thorough a security review as SecurityCritical or, especially,
SecuritySafeCritical code. It’s recommended that as much code as
possible be SecurityTransparent.

Th e following are disallowed in SecurityTransparent code:
• Calling SecurityCritical methods
• Asserting a permission or permission set
• Unverifi able code
• Calling unmanaged code
• Overriding SecurityCritical virtual methods
• Implementing SecurityCritical interfaces
• Deriving from any type that is not SecurityTransparent

SecuritySafeCritical Code that is callable from partial trust
but needs to be able to call potentially dangerous APIs should

 <requiredAnnotations>
 <assembly name="Logging">
 <type name="Logging">
 <method name="MethodA()">
 <annotations>
 <safeCritical>
 <rule name="MethodsMustOverrideWithConsistentTransparency">
 <reason pass="2" sourceFile="d:\repro\aptca\logging.
cs" sourceLine="67">Critical method Logging.MethodA()' is overriding
transparent or safe critical method 'Logging.MethodA()' in violation of
method override rules. Logging.MethodA()' must become transparent or
safe-critical in order to override a transparent or safe-critical virtual
method or implement a transparent or safe-critical interface method.</
reason>
 </rule>
 </safeCritical>
 <critical>
 <rule name="TransparentMethodsMustNotSatisfyLinkDemands">
 <reason pass="1" sourceFile="d:\repro\aptca\logging.cs"
sourceLine="68">Security transparent method Logging.MethodA()' satisfies
a LinkDemand for 'FileIOPermissionAttribute' on method 'Logging.set_
LogLocation(System.String)'. Logging.MethodA()' should become critical
or safe-critical in order to call 'Logging.set_LogLocation(System.
String)'.</reason>
 </rule>
 </critical>
 </annotations>
 </method>
 </type>
 </assembly>
 </requiredAnnotations>

Figure 2 Output from Security Annotator

Prior to CLR v4, all signed
assemblies were protected from
partially trusted callers by implicit

link demands for full trust on
all entry points.

http://msdn.microsoft.com/magazine/8e75546c-416a-44e1-8462-e39205fb942a

21March 2010msdnmagazine.com

be marked as SecuritySafeCritical. Often, methods that
demand permissions will fall into this category because they
represent a protected boundary between partially trusted code
and privileged operations.

Because SecuritySafeCritical code allows partially trusted callers
to indirectly access dangerous APIs, it’s a very powerful attribute
and should be applied carefully and sparingly. It’s important that
Security SafeCritical code expose SecurityCritical functionality
to its callers only in specifi c, safe ways. It’s usually a good idea for
SecuritySafeCritical code to contain demands to ensure that
callers can access particular resources that the SecuritySafeCritical
code will be using. It’s also important for SecuritySafeCritical code
to validate both inputs and outputs (to be sure that invalid values
are not passed through, and that any returned information is safe
to give to partial trust).

Because of the potential security risks, it’s recommended that
SecuritySafeCritical code be kept to a minimum.
SecurityCritical Code that is not safe to expose to partially
trusted callers should be marked as SecurityCritical. Methods
that previously were protected by a link demand are likely to
require this attribute.

SecurityCritical code is less dangerous than SecuritySafe -
Critical because it’s not directly callable from transparent (partially
trusted) callers. However, the code can perform many high-
security operations so, in order to keep the need for security
reviews to a minimum, it’s a good idea to keep SecurityCritical
code to a minimum, as well.

Good general guidance is that any code that can be Security-
Transparent should be. Other code should be SecurityCritical
unless it’s specifically expected that transparent code will
access SecurityCritical code through it, in which case SecuritySafe-
Critical is appropriate.

Using SecAnnotate.exe
To help with the correct application of transparency attributes,
there is a new .NET Framework SDK tool, the Security Annotator
(SecAnnotate.exe). Th is tool consumes a user’s binary (or collec-
tion of binaries) and provides guidance on where transparency
attributes should be applied. It can be very helpful when migrating
an APTCA library to v4.

SecAnnotate works by making several passes through the
target binary, looking for methods that, according to the CLR’s

using System;
using System.IO;
using System.Security;
using System.Security.Permissions;

// This assembly is meant to be representative of a simple v2 APTCA
assembly
// It has some dangerous code protected with demands/link demands
// It exposes some dangerous code in a controlled way with an assert

[assembly: AllowPartiallyTrustedCallers]
public class Logging
{
 private string logLocation = @"C:\temp\firstfoo.txt";

 public virtual string Usage()
 {
 return "This is a helpful string";
 }

 public virtual string LogLocation
 {
 get
 {
 return logLocation;
 }

 [FileIOPermissionAttribute(SecurityAction.LinkDemand,
Unrestricted=true)]
 set
 {
 logLocation = value;
 }
 }

 public virtual void SetLogLocation(int index)
 {
 switch (index)

 {
 case 1:
 LogLocation = @"C:\temp\foo.txt";
 break;
 case 2:
 LogLocation = @"D:\temp\foo.txt";
 break;
 case 3:
 LogLocation = @"D:\repro\temp\foo.txt";
 break;
 default:
 break;
 }
 }

 public virtual void DeleteLog()
 {
 FileIOPermission fp = new FileIOPermission(FileIOPermissionAcce
ss.AllAccess, LogLocation);
 fp.Assert();
 if (File.Exists(LogLocation)) { File.Delete(LogLocation); }
 SecurityPermission.RevertAll();
 }

 // TODO : Put other APIs (creating log, writing to log, etc) here
}

public class OtherLogging : Logging
{
 public override string Usage()
 {
 LogLocation = null;
 return "This is a different useful string";
 }

 // TODO : Put other APIs (creating log, writing to log, etc) here
}

Figure 3 V2 APTCA Library

There are three primary
transparency attributes:

SecurityTransparent,
SecuritySafeCritical and

SecurityCritical.

www.msdnmagazine.com

msdn magazine22 CLR Inside Out

rules, need to be marked with a transparency attribute. On
subsequent passes, the tool looks for attributes that are necessary be-
cause of modifi cations suggested in previous passes. For example,
consider this short code snippet (which is assumed to come from an
APTCA assembly):

static void Method1()
{
 Console.WriteLine(“In method 1!”);
 Method2();
}

static void Method2()
{
 PermissionSet ft = new PermissionSet(PermissionState.
Unrestricted);
 ft.Assert();
 DangerousAPI();
 PermissionSet.RevertAssert();
}

SecAnnotate.exe would immediately notice that Method2 can’t be
transparent because it asserts for some permissions. Aft er the fi rst
pass, the tool would know that Method2 must be either Security-
Critical or SecuritySafeCritical (with SecurityCritical being preferred
unless transparent code needs to specifi cally access this method).

On the fi rst pass through the binary, Method1 would not seem
interesting to the tool. On the second pass, however, it would be
noted that Method1 is calling Method2, which, during the fi rst pass,
SecAnnotate suggested become SecurityCritical. Because of this,
Method1 would also need to be SecurityCritical (or, at the author’s
discretion, SecuritySafeCritical). Aft er two passes, the guidance to
mark as SecurityCritical would be given for both methods.

Understanding SecAnnotate.exe Output
Security Annotator’s output is an XML fi le that contains the problems
it has identifi ed and the recommended fi xes. Sometimes, Security
Annotator reverses an earlier recommendation aft er subsequent
passes. In such cases, both recommendations appear in the XML.
You’ll need to look at the pass number in these cases to understand
which recommendation is more recent and, therefore, correct.

For example, consider the output from Security Annotator
in Figure 2. Notice that there are two elements under the annota-
tions tag for method Logging.MethodA—a SecuritySafeCritical tag
and a SecurityCritical tag. Th is means that SecAnnotate recom-
mended both SecurityCritical and SecuritySafeCritical attributes
for this method during its analysis.

The SecurityCritical element’s explanation says that because this
method is calling something protected with a link demand, it must
be either SecurityCritical or SecuritySafeCritical. SecAnnotate.exe
defaults to recommending SecurityCritical because it’s
more secure. Note that the pass attribute has a value of 1 here,

meaning this suggestion resulted from SecAnnotate.exe’s fi rst pass
through the code.

Th e next recommendation—for SecuritySafeCritical—notes that
MethodA is overriding a transparent base method and so must be
SecurityTransparent or SecuritySafeCritical (it must have the same
accessibility as the base method). Putting this information together
with the previous recommendation, SecAnnotate.exe suggests that
MethodA should be SecuritySafeCritical.

Note that pass=“2” means this recommendation came during Sec-
Annotate.exe’s second pass through the code. Th is is because during the
fi rst pass, the tool didn’t know that MethodA could not be transparent,
so it wasn’t aware of this SecuritySafeCritical requirement.

Because the SecuritySafeCritical recommendation was made during
the second (more recent) pass, it is the correct annotation in this case.

SecAnnotate.exe Best Practices
In cases where SecurityCritical and SecuritySafeCritical would
both be correct markings, Security Annotator fi rst prefers any
attribute already on the code, and then SecurityCritical because
it’s less risky. Unfortunately, this oft en results in code that is secure
but unusable in a sandbox because all entry points are blocked to
partially trusted callers.

Remember that SecuritySafeCritical is appropriate on APIs that
are meant to be called directly from transparent/partial-trust code
and have been reviewed for security with that in mind. Because
Security Annotator can’t know which APIs are meant to be called
from partial trust or are safe to be called in that way, it will mark
very little as SecuritySafeCritical. Th e library’s author must manually
apply the SecuritySafeCritical attribute to some methods, even
when using Security Annotator.

Because a single action prohibited in transparent code can “spider
web” out into many SecurityCritical markings in Security Annotator’s
successive passes without strategic placement of the Security-
SafeCritical attribute, it’s good practice to use SecAnnotate.exe
with the /p command-line switch. Th e switch /p:x (where x is a
number) instructs Security Annotator to run only x passes, instead
of running until no more changes are necessary. Here is good way
to use Security Annotator:
1. Run SecAnnotate.exe /p:1 /d:<Path to referenced assemblies>

<FileName.dll>
 a. Th is adds transparency attributes where needed, but only

with a single pass. Stopping at this point allows the author
to manually check the attributes.

 b. By default, SecAnnotate.exe looks only in the GAC for
dependencies of the assembly it’s annotating. Other assemblies
must have their paths specifi ed with the /d switch.

2. Update the library’s source fi les with the suggested attributes.
Consider cases with multiple possible attributes, though, and
decide which is correct. In some cases, SecuritySafeCritical
will be the correct attribute, despite SecAnnotate favoring Se-
curityCritical.

3. Rebuild the assemblies and repeat at step 1 without /p:1. You
could rerun the program using /p:1 repeatedly, but you shouldn’t
need to—the necessary SecuritySafeCritical attributes are
already present aft er the fi rst iteration of step 2.

It’s recommended that as
much code as possible be

SecurityTransparent.

23March 2010msdnmagazine.com

Th is iterative process with manual developer interaction will result
in a correctly annotated assembly that maximizes transparent code.

Identifying and Reviewing SecuritySafeCritical APIs
As noted earlier, it’s common for SecAnnotate.exe to recommend
that an API should be either SecurityCritical or SecuritySafe-
Critical. The key differentiator is whether the API can safely be
called from partial trust. If the API does all validation necessary
to be sure that underlying critical or native APIs will be called
safely (through demands or input and output validation, for
example), then it can be SecuritySafeCritical, which is sometimes
desirable because it allows callers of the API to be transparent.
If, on the other hand, there is any way that malicious code

could access protected resources through the API, the API must
remain SecurityCritical.

It’s important that all SecuritySafeCritical code be carefully
reviewed for security impact of exposure to partial trust. Although
both Security SafeCritical and SecurityCritical code should be
minimized, if there is doubt as to which attribute is correct, Security-
Critical is the safer option.

Applying Transparency Attributes
Applying transparency attributes is as simple as applying any other
.NET attributes in code. Documentation regarding usage for the
attributes can be found in MSDN documentation for these types:

• SecurityTransparentAttribute

using System;
using System.IO;
using System.Security;
using System.Security.Permissions;

// This assembly is meant to be representative of a simple v2 APTCA
assembly
// It has some dangerous code protected with demands/link demands
// It exposes some dangerous code in a controlled way with an assert

[assembly: AllowPartiallyTrustedCallers]
public class Logging
{
 private string logLocation = @"C:\temp\firstfoo.txt";

 // This API can be transparent because it does nothing dangerous.
 // Transparent APIs need no attributes because it is the default
behavior of a v4
 // APTCA assembly
 public virtual string Usage()
 {
 return "This is a helpful string";
 }

 // Note that transparency attributes do not go directly on
properties.
 // Instead, they go on the getters and setters (even if the getter
and setter
 // get the same attributes)
 public virtual string LogLocation
 {
 get
 {
 return logLocation;
 }

 // This API is made critical because it sets sensitive data (the
path to write to)
 // which partial trust code should not be able to do.
 [SecurityCritical]
 // The previous LinkDemand is removed as the SecurityCritical
attribute replaces it
 //[FileIOPermissionAttribute(SecurityAction.LinkDemand,
Unrestricted=true)]
 set
 {
 logLocation = value;
 }
 }

 // This API accesses a critical member (LogLocation) and, therefore,
cannot be transparent
 // However, the access is done in a limited, safe way and we expect
transparent code
 // should be able to call this API. Therefore, it is
SecuritySafeCritical
 [SecuritySafeCritical]
 public virtual void SetLogLocation(int index)
 {

 switch (index)
 {
 case 1:
 LogLocation = @"C:\temp\foo.txt";
 break;
 case 2:
 LogLocation = @"D:\temp\foo.txt";
 break;
 case 3:
 LogLocation = @"D:\repro\temp\foo.txt";
 break;
 default:
 break;
 }
 }

 // This API is potentially dangerous; it asserts which means it can't
be transparent
 // Because setting LogLocation is protected, however, partial trust
code can safely
 // call this API. In fact, it is intended that it is safe for partial
trust code
 // to call this method. Therefore, it is SecuritySafeCritical
 [SecuritySafeCritical]
 public virtual void DeleteLog()
 {
 FileIOPermission fp = new FileIOPermission(FileIOPermissionAcce
ss.AllAccess, LogLocation);
 fp.Assert();
 if (File.Exists(LogLocation)) { File.Delete(LogLocation); }
 SecurityPermission.RevertAll();
 }

 // TODO : Put other APIs (creating log, writing to log, etc) here
}

public class OtherLogging : Logging
{
 // The logic for attributing this method is complicated and it is an
example of when
 // SecAnnotate.exe can be very helpful. This API cannot be
transparent because it
 // calls a critical member (LogLocation). However, because it
overrides a transparent
 // method (Usage) it cannot be critical. Therefore, the only possible
annotation here
 // is SecuritySafeCritical and it is the author's responsibility to
make sure that
 // a malicious caller cannot abuse that access.
 [SecuritySafeCritical]
 public override string Usage()
 {
 LogLocation = null;
 return "This is a different useful string";
 }

 // TODO : Put other APIs (creating log, writing to log, etc) here
}

Figure 4 V4 APTCA Library

www.msdnmagazine.com

msdn magazine24 CLR Inside Out

 Note that this attribute may be applied only at the assembly
level. Its meaning, in that case, is that all types and methods
in the assembly are transparent. It’s unnecessary at the type
or method level because it’s the default transparency setting
in APTCA assemblies.

• SecuritySafeCriticalAttribute
• SecurityCriticalAttribute

In C#, applying the attributes looks like this:
[SecurityCritical]
public static void Method1()
{ /* Do something potentially dangerous*/ }

[SecuritySafeCritical]
public static void Method2()
{ /* Do something potentially dangerous in a safe way that can be called
from partial trust */ }

Level1 and Level2
One fi nal note regarding transparency and APTCA is that it’s
possible, through the use of an assembly-level attribute, to use the
old v2 APTCA behavior instead of the new v4 behavior. Th is is
not recommended because the new model is more secure, easier
to audit and common between Silverlight and desktop CLRs. Still,
sometimes compatibility is needed in the short term until you can
migrate. In these cases, the SecurityRules attribute can be used to
force an assembly to use old v2 rules.

Th e SecurityRules attribute takes a parameter of the Security-
RuleSet enum type. SecurityRuleSet.Level1 specifi es compatibility.
SecurityRuleSet.Level2 specifi es the new model, but a Level2
attribute is not necessary because it’s the default. It can be useful,
however, to explicitly indicate which transparency rule set is in use
and to protect against any future changes regarding which rule set
is the .NET Framework’s default.

In C#, application of this attribute appears like this:
[assembly:SecurityRules(SecurityRuleSet.Level1)]

Common Pitfalls
Following are a few common “gotchas” that APTCA library authors
should be wary of as they migrate from v2 to v4:

• SecAnnotate.exe will recommend that LinkDemands become
SecurityCritical attributes (which are very similar to a Link-
Demands for FullTrust). If, however, a type (rather than a
method) was protected with a LinkDemand, this is not the

same as applying SecurityCritical to a type in v4. It’s better to
apply SecurityCritical to all members of the type, as this will
act more like a v2 type-level LinkDemand.

• Note that some low-permissions LinkDemands that some
partial trust code is expected to be able to satisfy may not be
best translated into SecurityCritical. If a LinkDemand is for a
low permission (for example, read permission to a particular
safe path), it’s better to remove the LinkDemand and replace
it with a full demand for the same permission. Th is allows
partial trust code to still call the API (but the demand will make
sure that only partial trust code with high enough permissions
succeeds in making the call).

• In general, type-level transparency attributes apply to members
of the type they modify, as well. And the outermost attribute
trumps others. So, applying [SecurityCritical] to a method is
ineffectual if the type it’s in has [SecuritySafeCritical] applied to
it, for example. Typically, [SecuritySafeCritical] is not a useful
attribute on the type level. It’s too likely that someone will later
introduce a new member to the type and not realize that
it’s SecuritySafeCritical (thanks to the type-level attribute),
potentially resulting in a security hole.

Although type-level attributes apply to new slot members
of the types they modify, they do not apply to overridden
members. Be sure that if you use type-level transparency
attributes, you also add attributes to overridden members
specifically, as necessary.

Migration Example
Figure 3 is a simple (and incomplete) logging library written in v2.
Th e same library is also shown in Figure 4, migrated to v4 with
comments (in italics) explaining the changes.

Syncing CLR and the
Silverlight CoreCLR Security Systems
Although the merging of APTCA and transparency in v4 may
seem complex, it ultimately supplies straightforward and eff ective
protection to sensitive system resources from partially trusted callers.
What’s more, the change aligns the desktop CLR and Silverlight
CoreCLR security systems.

SDK tools such as SecAnnotate.exe and FxCop rules (which can
validate transparency) help to make migration easier. V4 APTCA
assemblies are much easier to audit—looking closely at Security-
SafeCritical APIs (and the SecurityCritical calls they make) is all
that is needed to have confi dence that the assembly is secure.

Because transparent code oft en makes up 80 percent to 90 percent
or more of an assembly, this is a great relief of audit burden. Readers
interested in delving further into transparency can fi nd more
complete explanations in MSDN documentation.

MIKE ROUSOS has been a soft ware design engineer in test on Microsoft ’s CLR
team since 2005. His work primarily deals with ensuring quality in the design
and implementation of CLR security systems.

THANKS to the following technical experts for reviewing this article:
Andrew Dai, Cristian Eigel and Shawn Farkas

To help with the correct
application of transparency

attributes, there is a new
.NET Framework SDK tool,

the Security Annotator
(SecAnnotate.exe).

Why is Amyuni PDF
so interesting?

Develop with the fastest PDF
conversion on the market, designed
to perform in multithreaded and
64-bit Windows environments.

License and distribute products
quickly and easily with a PDF
technology that does not rely on
external open-source libraries.

Produce accurate and stable PDF
documents using reliable tools
built by experts with over ten years
of experience.

Let our experienced consultants
help you turn your software
requirements into customized
PDF solutions.

Integrate PDF conversion, creation
and editing into your .NET and
ActiveX applications with just a few
lines of code.

Choose a PDF technology that is
integrated into thousands of
applications behind millions of
desktops worldwide.

High-Performance

OEM LicensesExpertise

Rapid IntegrationProven

Customization

We understand the challenges that come with PDF integration.
From research and development, through design and
implementation, we work with you every step of the way.

Get 30 days of FREE technical support with your trial download!

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2009 AMYUNI Technologies. All rights reserved.

www.amyuni.com

Now v4.0!

Project1 12/2/09 12:51 PM Page 1

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com

Untitled-3 2 2/1/10 1:02 PM

www.xceed.com

Untitled-3 3 2/1/10 1:02 PM

www.xceed.com

(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/03

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Add Outlook style interfaces to your WinForms applications.

BEST SELLER Janus WinForms Controls Suite from $757.44

ContourCube from $900.00
OLAP component for interactive reporting and data analysis.

BEST SELLER

BEST SELLER TX Text Control .NET and .NET Server from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts from $195.02
Interactive and animated charts for ASP and ASP.NET apps.

BEST SELLER

Untitled-1 1 1/29/10 10:21 AM

http://www.componentsource.com

29March 2010

the processes in the two frameworks, they each have their own
CompiledQuery class. LINQ to SQL uses System.Data.LINQ.
Compiled Query while Entity Framework uses System.Data.
Objects.CompiledQuery. Both forms of CompiledQuery allow
you to pass in parameters, and both require that you pass in the
current DataContext or ObjectContext being used. Essentially, from
the coding perspective, they’re equal.

Th e CompiledQuery.Compile method returns a delegate in the
form of a Func that can, in turn, be invoked on demand.

Here is a simple query being compiled by Entity Framework’s
CompiledQuery class, which is static and therefore doesn’t
require instantiation:

C#: var _custByID = CompiledQuery.Compile<SalesEntities, int, Customer>
 ((ctx, id) =>ctx.Customers.Where(c=> c.ContactID == id).Single());
VB: Dim _custByID= CompiledQuery.Compile(Of SalesEntities, Integer,
Customer)
 (Function(ctx As ObjectContext, id As Integer)
 ctx.Customers.Where(Function(c) c.CustomerID = custID).Single)

You can use either LINQ methods or LINQ operators in the query
expression. Th ese queries are built with LINQ methods and lambdas.

Th e syntax is a little more confusing than your typical generic
method, so I’ll break it down. Again, the goal of the Compile
method is to create a Func (delegate) that can be invoked at a later
time, as shown here:

C#: CompiledQuery.Compile<SalesEntities, int, Customer>
VB: CompiledQuery.Compile(Of SalesEntities, Integer, Customer)

Because it’s generic, the method must be told what types are being
passed in as arguments, as well as what type will be returned when
the delegate is invoked. Minimally, you must pass in some type of
ObjectContext, or DataContext for LINQ to SQL. You can specify
a System.Data.Objects.ObjectContext or something that derives
from it. In my case, I’m explicitly using the derived class Sales-
Entities that is associated with my Entity Data Model.

You can also defi ne multiple arguments, which must come
directly aft er the context. In my example, I’m telling Compile that
the resulting precompiled query should also take an int/Integer
parameter. Th e last type describes what the query will be returning,
in my case a Customer object:

C#: ((ctx, id) =>ctx.Customers.Where(c => c.ContactID == id).Single())
VB: Function(ctx As ObjectContext, id As Integer)
 ctx.Customers.Where(Function(c) c.CustomerID = custID).Single

Th e result of the previous compile method is the following delegate:
C#: private System.Func<SalesEntities, int, Customer> _custByID
VB: Private _custByID As System.Func(Of SalesEntities, Integer, Customer)

DATA POINTS

Precompiling LINQ Queries

When using LINQ to SQL or LINQ to Entities in your applications,
it’s important to consider precompiling any query you create and
execute repeatedly. I oft en get caught up in completing a particular
task and neglect to leverage precompiled queries until I’m fairly
far along in the development process. Th is is much like “exception
handling disease,” where devs try to shoehorn exception handling
into an app aft er the fact.

However, even aft er you’ve implemented this important performance-
enhancing technique, there’s a good chance you’re losing its
benefi t. You may notice that the promised performance gain isn’t being
realized, but the reason (and fi x) might escape you.

In this column, I’ll fi rst explain how to precompile queries and
then focus on the problem of losing the precompilation benefi ts
in Web applications, services and other scenarios. You’ll learn
how to ensure that you’re getting the performance benefi t across
postbacks, short-lived service operations and other code where
critical instances are going out of scope.

Precompiling Queries
Th e process of transforming your LINQ query into the relevant
store query (for example, the T-SQL executed by the database) is
relatively expensive within the larger umbrella of query execution.
Figure 1 shows the involved process that transforms a LINQ to
Entities query into a store query.

Th e Entity Framework team’s blog post, “Exploring the Perfor-
mance of the ADO.NET Entity Framework - Part 1” (blogs.msdn.com/
adonet/archive/2008/02/04/exploring-the-performance-of-the-ado-net-entity-
framework-part-1.aspx), breaks down the process and shows the relative
time taken by each step. Note that this post was based on the
Microsoft .NET Framework 3.5 SP1 version of Entity Framework,
and the time-per-step distribution has likely shift ed in the new
version. Nevertheless, precompilation is still an expensive part of
the query execution process.

By precompiling your query, Entity Framework and LINQ to SQL
can reuse the store query and skip the redundant process of fi guring it
out each time. For example, if your app frequently retrieves diff erent
customers from the data store, you might have a query such as this:

Context.Customers.Where(c=>c.CustomerID==_custID)

When nothing but the _custID parameter changes from one
execution to the next, why waste the eff ort of transposing this to a
SQL command over and over again?

LINQ to SQL and Entity Framework both enable query
precompilation; however, because of some diff erences between

JULIE LERMAN

Code download available at code.msdn.microsoft.com/mag201003DataPoints.

http://code.msdn.microsoft.com/mag201003DataPoints
http://blogs.msdn.com/adonet/archive/2008/02/04/exploring-the-performance-of-the-ado-net-entity-framework-part-1.aspx
http://blogs.msdn.com/adonet/archive/2008/02/04/exploring-the-performance-of-the-ado-net-entity-framework-part-1.aspx
http://blogs.msdn.com/adonet/archive/2008/02/04/exploring-the-performance-of-the-ado-net-entity-framework-part-1.aspx

msdn magazine30 Data Points

Once the query has been compiled, you simply invoke it whenever
you want to execute that query, passing in the ObjectContext or Data-
Context instance and any other required parameters. Here I have an
instance named _commonContext and a variable named _custID:

Customer cust = _custByID.Invoke(_commonContext, _custID);

Th e fi rst time the delegate is invoked, the query is translated
to the store query and that translation is cached for reuse on
subsequent calls to Invoke. LINQ can skip the task of compiling
the query and go right to execution.

Ensuring that Your Precompiled
Query Is Truly Being Used
Th ere’s a not-so-obvious, and not widely known, problem with
precompiled queries. Many developers presume that the query
is cached in the application process and will stick around. I
certainly made this assumption, because there was nothing I found
to indicate otherwise—except for some unimpressive performance
numbers. However, when the object where you instantiated the
compiled query goes out of scope, you also lose the precompiled
query. It will need to be precompiled again for each use, so you
completely lose the benefi t of the precompiling. In fact, you’re
paying a higher price than you would if you were simply executing
a LINQ query, due to some of the extra eff ort the CLR must make
with respect to the delegate.

Rico Mariani digs into the cost of using the delegate in his blog
post, “Performance Quiz #13—Linq to SQL compiled query cost—
solution” (blogs.msdn.com/ricom/archive/2008/01/14/performance-quiz-13-linq-
to-sql-compiled-query-cost-solution.aspx). Th e discussion in the comments
is equally enlightening.

I’ve seen blog reports about LINQ to Entities’ “terrible performance”
in Web apps “even with precompiled queries.” Th e reason is that every
time a page posts back, you’re getting a newly instantiated context
and re-precompiling the query. Th e
precompiled query is never getting
reused. You’ll have the same problem
anywhere you have short-lived
contexts. Th is could happen in an
obvious place, such as a Web or
Windows Communication Foun-
dation (WCF) service, or even in
something less obvious, such as a
repository that will instantiate a new
context on the fl y if an instance hasn’t
been provided.

You can avoid the loss of the
delegate by using a static (Shared,
in VB) variable to retain the
query across processes, and then
invoking it using whatever context is
currently available.

Here’s a pattern I’ve successfully
used with Web applications, WCF
services and repositories, where the
ObjectContext goes out of scope
frequently and I want the del-

egate to be available throughout the application process. You
need to declare a static delegate in the constructor of the
class where you’ll be invoking queries. Here I’m declaring a
delegate that matches the compiled query I previously created:

C#: static Func<ObjectContext, int, Customer> _custByID;
VB: Shared _custByID As Func(Of ObjectContext, Integer, Customer)

Th ere are a few possible places to compile the query. You can do
it in a class constructor or just prior to invoking it. Here is a method
that is designed to perform a query and return a Customer object:

 public static Customer GetCustomer(int ID)
 {
 //test for an existing instance of the compiled query
 if (_custByID == null)
 {
 _custByID = CompiledQuery.Compile<SalesEntities, int, Customer>
 ((ctx, id) => ctx.Customers.Where(c => c.CustomerID == id).
Single());
 }
 return _custByID.Invoke(_context, ID);
 }

Th e method will use the compiled query. First it will compile the
query on the fl y, but only if necessary, which I determine by testing
to see if the query has been instantiated yet. If you are compiling
in your class constructor, you’ll need to perform the same test to
be sure you’re only using resources to compile when necessary.

Because the delegate, _custByID, is static, it will remain in memory
even when its containing class goes out of scope. Th erefore, as long
as the application process itself is in scope, the delegate will be
available; it won’t be null, and the compilation step will be skipped.

Precompiled Queries and Projections
Th ere are some other speed bumps to be aware of that are much more
discoverable. Th e fi rst revolves around projections, but isn’t specifi c to the
problem of unwittingly recompiling your precompiled query. When
you project columns in a query, rather than returning specifi c types,
you’ll always get an anonymous type as a result.

Figure 1 Transforming a LINQ Query into a Relevant Store Query

LINQ to
Entities

LINQ
Expression Tree

Database Provider

Provider
Specific SQL

Metadata

CSDL

MSL

SSDL

System.Data.Objects.ObjectQuery

Command Tree
(Entities/Properties)

Command Tree
(Tables/Columns)

Convert to
Store

Schema

http://blogs.msdn.com/ricom/archive/2008/01/14/performance-quiz-13-linq-to-sql-compiled-query-cost-solution.aspx
http://blogs.msdn.com/ricom/archive/2008/01/14/performance-quiz-13-linq-to-sql-compiled-query-cost-solution.aspx

31March 2010msdnmagazine.com

When defi ning the query, specifying its return type is impossible
because there’s no way to say “type of anonymous type.” You’ll
have the same problem if you want to have the query inside of a
method that returns the results, because you can’t specify what will
be returned by the method. Developers using LINQ hit this latter
limitation frequently.

If you focus on the fact that an anonymous type is an on-the-
fl y type that isn’t meant to be reused, these limitations, while
frustrating, make sense. Anonymous types aren’t meant to be passed
around from method to method.

What you‘ll need to do for your precompiled query is defi ne a
type that matches the projection. Note that in Entity Framework
you must use a class, not a struct, as LINQ to Entities won’t allow
you to project into a type that doesn’t have a constructor. LINQ
to SQL does allow structs to be the target of a projection. So, for
Entity Framework you can only use a class, but for LINQ to
SQL you can use either a class or a struct to avoid the limitations
surrounding anonymous types.

Precompiled Queries and LINQ to SQL Prefetching
Another potential problem with precompiled queries
involves prefetching, or eager loading, but the problem only
arises with LINQ to SQL. In Entity Framework, you use the Include
method to eager load, which results in a single query being
executed in the database. Because Include can be part of a query,
such as context.Customer.Include(“Orders”), it’s not an issue here.
However, with LINQ to SQL, the eager loading is defi ned within
the DataContext, not the query itself.

DataContext.LoadOptions has a LoadWith method that lets
you specify what related data should get eager loaded along with
a particular entity.

You can defi ne LoadWith to load Orders with any Customer
that is queried:

Context.LoadOptions.LoadWith<Customer>(c => c.Orders)

Th en you can add a rule that says to load details with any orders
that are loaded:

Context.LoadOptions.LoadWith<Customer>(c => c.Orders)
Context.LoadOptions.LoadWith<Order>(o =>o.Details)

You can defi ne the LoadOptions directly against your Data Context

instance or create a DataLoadOptions class, defi ne LoadWith rules
in this object, and then attach it to your context:

DataLoadOptions _myLoadOptions = new DataLoadOptions();
_myLoadOptions.LoadWith<Customer>(c => c.Orders)
Context.LoadOptions= myLoadOptions

Th ere are caveats with the general use of LoadOptions and
the DataLoadOptions class. For example, if you defi ne and then
attach DataLoadOptions, once a query has been executed against
the DataContext, you can’t attach a new set of DataLoadOptions.
Th ere’s a lot more you can learn about the various load options
and their caveats, but let’s take a look at a basic pattern for applying
some LoadOptions to a precompiled query.

Th e key to the pattern is that you can predefi ne the DataLoad-
Options without associating them with a particular context.

In the class declarations where you declare the static Func
variables to contain the precompiled queries, declare a new Data-
LoadOptions variable. It’s critical to make this variable static so it,
too, remains available along with the delegates:

static DataLoadOptions Load_Customer_Orders_Details = new
DataLoadOptions();

Th en in the method that compiles and invokes the query, you can
defi ne the LoadOptions along with the delegate (see Figure 2). Th is
method is valid in the .NET Framework 3.5 and .NET Framework 4.

Because the DataLoadOptions are static, they’re defi ned only when
necessary. Based on the logic of your class, the DataContext may
or may not be new. If it’s a context that’s being reused, then it will
have the previously assigned LoadOptions. Otherwise you’ll need
to assign them. Now you’ll be able to invoke this query repeatedly
and still get the benefi t of LINQ to SQL’s prefetching capabilities.

Keep Precompiling at the Top of Your Checklist
In the scope of LINQ query execution, query compilation is an
expensive part of the process. Any time you’re adding LINQ
query logic to your LINQ to SQL- or Entity Framework-based
applications, you should consider precompiling the queries and
reusing them. But don’t assume you’re fi nished there. As you’ve
seen, there are scenarios where you may not be benefi ting from
the precompiled query. Use some type of profi ler, such as SQL
Profi ler or one of the profi ling tools from Hibernating Rhinos,
which include L2SProf (l2sprof.com/.com) and EFProf (efprof.com).
You may need to leverage some of the patterns shown here to en-
sure that you’re getting the edge that precompiled queries promise.

Danny Simmons, from the Microsoft Entity Framework team,
explains how to control merge options when precompiling
queries—and lists some additional gotchas to watch out for—in his
blog post at blogs.msdn.com/dsimmons/ archive/2010/01/12/ef-merge-options-
and-compiled-queries.aspx.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can fi nd her presenting on data access and other Microsoft
.NET topics at user groups and conferences around the world. Lerman blogs at
thedatafarm.com/blog and is the author of the highly acclaimed book, “Programming
Entity Framework” (O’Reilly Media, 2009). You can follow her on Twitter at
Twitter.com/julielermanvt.

THANKS to the following technical expert for reviewing this article:
Danny Simmons

public Customer GetRandomCustomerWithOrders()
 {
 if (Load_Customer_Orders_Details == null)
 {
 Load_Customer_Orders_Details = new DataLoadOptions();
 Load_Customer_Orders_Details.LoadWith<Customer>(c => c.Orders);
 Load_Customer_Orders_Details.LoadWith<Order>(o => o.Details);
 }
 if (_context.LoadOptions == null)
 {
 _context.LoadOptions = Load_Customer_Orders_Details;
 }
 if (_CustWithOrders == null)
 {
 _CustWithOrders = CompiledQuery.Compile<DataClasses1DataContext,
Customer>
 (ctx => ctx.Customers.Where(c => c.Orders.Any()).
FirstOrDefault());
 }
 return _CustWithOrders.Invoke(_context);
 }

Figure 2 Defi ning LoadOptions Along with a Delegate

www.msdnmagazine.com
http://blogs.msdn.com/dsimmons/archive/2010/01/12/ef-merge-options-and-compiled-queries.aspx
http://blogs.msdn.com/dsimmons/archive/2010/01/12/ef-merge-options-and-compiled-queries.aspx
http://Twitter.com/julielermanvt
http://l2sprof.com/.com
http://efprof.com
http://thedatafarm.com/blog

msdn magazine32

I I S S MOOT H ST R EAMING

Enhancing Silverlight
Video Experiences with
Contextual Data

There are two primary requirements for enabling
a glitch-free viewing experience in Web-based, high-defi nition
digital video delivery. First, the video provider needs to support
high video delivery bit rates over the network. Second, the client
computer needs to support continuous availability of processing
capacity to decode the video at its fullest resolution.

Th e reality, however, is that network bandwidth for connected
home computers can fl uctuate signifi cantly over time, and in
certain parts of the world high bandwidth comes at a very high
premium or is unavailable to many consumers. Along with that,

This article is based on a prerelease version of the IIS Smooth
Streaming Player Development Kit beta 2. All information is
subject to change.

This article discusses:
• How Smooth Streaming works

• Streams, tracks, and manifests

• Clip scheduling

• Editing with composite manifests

Technologies discussed:
IIS Smooth Streaming, Silverlight

Code download available at:
code.msdn.microsoft.com/mag201003Silverlight

Jit Ghosh

the processing capacity of the client computer can vary, depending
on CPU load at any given moment. As a result, consumers are
susceptible to degradation in the quality of their viewing experience
when a video stutters or freezes while the player is waiting to buff er
enough data to show the next set of video frames, or waiting for
the CPU cycles to decode those frames.

Adaptive streaming is a video delivery approach that addresses the
problem of smooth content delivery and decoding. With adaptive
streaming, video content is encoded at a range of bit rates and
made available through a specialized streaming server. An adaptive
streaming player constantly monitors various resource utilization
metrics on the client computer and uses that information to
compute the appropriate bit rate that the client can most effi ciently
decode and display at given the current resource constraints.

Th e player requests chunks of video encoded at that currently
appropriate bit rate, and the streaming server responds with content
from the video sources encoded at that bit rate. As a result, when
resource conditions degrade, the player can continue displaying
the video without any signifi cant disruptions, with only a slight
degradation in overall resolution, until an improvement or further
degradation in conditions causes a diff erent bit rate to be requested.

Th is kind of a continuous collaboration between the player and
the server requires a special implementation of processing logic on
both the streaming server and the client runtime implementing
the player. Internet Information Server (IIS) Smooth Streaming is
the server-side implementation of adaptive streaming over HTTP

http://code.msdn.microsoft.com/mag201003Silverlight

33March 2010msdnmagazine.com

from Microsoft . Th e client-side implementation is provided as an
extension to Microsoft Silverlight.

Th e IIS Smooth Streaming Player Development Kit is a Silverlight
library that lets applications consume content being streamed over IIS
Smooth Streaming. It also provides a rich API that off ers programmatic
access to various aspects of the Smooth Streaming logic.

In this article I will walk you through the basics of Smooth
Streaming, and explain how you can use the IIS Smooth Streaming
Player Development Kit to build rich user experiences around
video. Specifi cally, I will look at using the Player Development Kit
to consume a stream, with a close examination of the client-side
data model for streams and tracks. I will show you how to consume
additional data streams, such as closed captions and animations, and
merge external data streams with an existing presentation. You’ll
see how to schedule external clips such as advertisements within a
presentation, handle variable playback rates and build composite
manifests that lend to robust editing scenarios.

How Smooth Streaming Works
You can encode video for Smooth Streaming by using one of the
supplied profi les in Expression Encoder 3.0. For one source video
fi le, several fi les are created in the destination folder. Figure 1
shows the fi les created for a source video named FighterPilot.wmv.

Each of the fi les with an .ismv extension contains the video
encoded at a specifi c bit rate. For example, the FighterPilot_331.
ismv contains the video encoded at a bit rate of 331 kbps, while
FighterPilot_2056.ismv contains the video encoded at 2 mbps.

For each bit rate, the video content is broken into two-second
fragments, and the .ismv fi les store these fragments in a fi le format
called Protected Interoperable File Format (PIFF). Note that you can
have additional audio tracks (or just audio in case the presentation
is audio only) encoded in similar fi les that have an .isma extension.

Th e FighterPilot.ism fi le is a server manifest, which is structured
in Synchronized Multimedia Integration Language (SMIL) format
and contains a mapping of quality levels and bit rates to the .ismv
and .isma fi les. Th is mapping in the server manifest is used by the
server to access the right disk fi les to create the next fragment of
content encoded at the right bit rate, before responding to a client
side request. Figure 2 shows an excerpt of a server manifest fi le.

Th e server manifest also contains a mapping to a client manifest
fi le (identifi ed by the extension .ismc), which in my example is
Fighter Pilot.ismc. Th e client manifest contains all the information
that the Silverlight client will need to access the various media and
data streams, as well as metadata about those streams, such as quality
levels, available bit rates, timing
information, codec initialization
data and so on. Th e client-side
logic will use this metadata to sample
and decode the fragments and
request bit rate switches based on
prevailing local conditions.

At run time, the presentation
begins with the client requesting
the client manifest from the server.
Once the client receives the manifest,

it checks to see what bit rates are available and requests fragments
of content starting at the lowest available bit rate. In response, the
server prepares and sends the fragments by reading the data from
the disk fi le encoded at that bit rate (using the mapping in the server
manifest). Th e content is then displayed on the client.

Th e client gradually requests higher bit rates as allowed by the
resource-monitoring logic, and eventually reaches the highest
allowable bit rate as determined by the prevailing resource condi-
tions. Th is interchange continues until the client’s monitoring logic
senses a change in resource conditions resulting in a diff erent lower
desired bit rate. Subsequent client requests are for media encoded
at the new bit rate, and the server again responds accordingly. Th is
goes on until the presentation completes or is stopped.

Smooth Streaming with Silverlight
Getting video to play in Silverlight is a fairly uncomplicated
eff ort. At a fundamental level, all you really need to do is add an
instance of the MediaElement type to your XAML file, set the
appropriate properties to control the MediaElement behavior,
and make sure that the MediaElement.Source property points
to a valid media source URI. For example, this XAML will play
the Fighter Pilot.wmv video automatically as soon as the
Silverlight page is launched, in a 640x360 rectangle:

<MediaElement AutoPlay="True"
 Source="http://localhost/Media/FighterPilot.wmv"
 Width="640" Height="360" />

Th e System.Windows.Controls.MediaElement type also exposes
an API that allows you to control the behavior of the play

To try out the examples discussed in this article,
you will need to prepare a Smooth Streaming environment on
your development machines.

The server-side ingredient is straightforward: you’ll need to
download and install IIS Media Services 3.0 for IIS7 from
iis.net/media using the Microsoft Web Platform installer.

You will need a copy of Microsoft Expression Encoder 3.0 to
prepare video for Smooth Streaming. While there is a free evalua-
tion version of Expression Encoder 3.0, that version does not
include support for Smooth Streaming. You will need a licensed
installation of Expression Encoder to create your own video.

For additional details on preparing your environment, please
visit learn.iis.net/page.aspx/558/smooth-streaming-for-iis-70---getting-started.

Getting the Smooth
Streaming Environment

F igure 1 Files Generated for Smooth Streaming by Expression Encoder

www.msdnmagazine.com
http://iis.net/media
http://learn.iis.net/page.aspx/558/smooth-streaming-for-iis-70---getting-started

msdn magazine34 IIS Smooth Streaming

experience in code and to build a player complete with standard
controls like Play, Pause, Seek and so on. Th is approach works great
with either progressively downloaded or HTTP streamed media
as long as the container format and the encoding used is one that
the Silverlight runtime has built-in support for.

What about fi le formats or codecs that are not supported out
of the box by Silverlight? Th e MediaStreamSource (MSS) type
enables an extensibility mechanism that allows you to take control
of the media fi le parsing and decoding process by introducing
your own custom parser and decoder into the Silverlight media
pipeline. To do this, you need to implement a concrete type
extending the abstract System.Windows.Media.MediaStream-
Source, and then pass an instance of it to MediaElement using the
MediaElement.SetSource method.

Th e MSS implementation will need to handle every aspect of the
media consumption process short of the actual rendering—from
receiving the media stream from a remote location, to parsing the
container and associated metadata, to sampling individual audio
and video samples and passing them to MediaElement for rendering.

Because the logic required to decode Smooth Streaming was not
built into Silverlight, the fi rst version of Smooth Streaming (part
of IIS Media Services 2.0) was accompanied by a custom MSS
implementation that handled all of the communication, parsing,
and sampling logic, and also implemented the machine and network
state-monitoring functionality.

For the most part, this approach worked well for Smooth Streaming,
but there were a few shortcomings. Th e MSS is essentially a black
box in that the only API it exposes directly is to facilitate interchange
of raw audio and video samples between itself and a MediaElement.
As a Silverlight developer, you do not have a direct way to interface
with the MSS while in action. If the content being consumed
had additional data like embedded text, animation or secondary
camera angles, or if the streaming solution allowed for fi ner-grained
control over the streams like variable playback rates, there was no

way for you to programmatically access that additional data in a
structured way because you were limited to interfacing with the
fi xed API set that MediaElement always exposes.

For Smooth Streaming, this poses a challenge. As you will see later
in this article, the Smooth Streaming manifests and wire/fi le formats
are pretty rich in terms of the additional content and metadata
that can be carried, and with the MSS approach you could not get
at that information. You need a Silverlight API that off ers more
control over and access to the Smooth Streaming solution.

IIS Smooth Streaming Player Development Kit
And that brings me to the IIS Smooth Streaming Player Development
Kit. Th e Player Development Kit consists of a single assembly named
Microsoft .Web.Media.SmoothStreaming.dll. At its heart is a type
named Microsoft .Web.Media.SmoothStreaming.SmoothStreaming-
MediaElement (SSME). Using SSME in your code is almost identical
to the way you would use a regular MediaElement:

<UserControl x:Class="SSPlayer.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:ss="clr-namespace:Microsoft.Web.Media.SmoothStreaming;assembly=M
icrosoft.Web.Media.SmoothStreaming">
 <Grid x:Name="LayoutRoot" Background="White">
 <ss:SmoothStreamingMediaElement AutoPlay="True"
 Width="640" Height="360"
 SmoothStreamingSource="http://localhost/SmoothStreaming/Media/
FighterPilot/FighterPilot.ism/manifest"/>
 </Grid>
</UserControl>

Th e SmoothStreamingSource property points SSME to a valid
Smooth Streaming presentation. In general, the SSME API is a
superset of the MediaElement API; this property is one of the few
diff erences. SSME exposes the Source property just like Media-
Element does, but SSME also exposes the SmoothStreamingSource
property to attach to smooth streams. If you are authoring players
that need the ability to consume both smooth streams and the other
formats traditionally supported by MediaElement, you can safely
use SSME, but you will likely need to author some code to set the
right property to attach to the media source. Something like this:

private void SetMediaSource(string MediaSourceUri,
 SmoothStreamingMediaElement ssme) {

 if (MediaSourceUri.Contains(".ism"))
 ssme.SmoothStreamingSource = new Uri(MediaSourceUri);
 else
 ssme.Source = new Uri(MediaSourceUri);
}

Th e other major diff erence to keep in mind is that SSME does
not expose a SetSource overload that accepts a MediaStream-
Source type. If you need to use a custom MSS, you should do that
through MediaElement.

Streams and Tracks
Th e Smooth Streaming client manifest contains rich metadata
about the presentation and it can be useful to have programmatic
access to that metadata inside your player application. SSME
exposes parts of this metadata through a well-defi ned API in an
arrangement of streams and tracks within each stream.

A stream represents the overall metadata for tracks of a specifi c
type—video, audio, text, advertisements and so on. Th e stream
also acts as a container for multiple tracks of the same underlying

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">
 <head>
 <meta name="clientManifestRelativePath"
 content="FighterPilot.ismc" />
 </head>
 <body>
 <switch>
 <video src="FighterPilot_2962.ismv"
 systemBitrate="2962000">
 <param name="trackID"
 value="2" valuetype="data" />
 </video>
 <video src="FighterPilot_2056.ismv"
 systemBitrate="2056000">
 <param name="trackID"
 value="2" valuetype="data" />
 </video>
 ...
 <audio src="FighterPilot_2962.ismv"
 systemBitrate="64000">
 <param name="trackID"
 value="1" valuetype="data" />
 </audio>
 </switch>
 </body>
</smil>

Figure 2 Sample Server Manifest

35March 2010msdnmagazine.com

type. In a client manifest (see Figure 3), each StreamIndex
entry represents a stream. Th ere can be multiple streams in the
presentation, as depicted by the multiple StreamIndex entries.
Th ere can also be multiple streams of the same type. In such cases,
the stream name can be used to disambiguate among multiple
occurrences of the same type.

Th e StreamInfo type represents the stream in your Silverlight
code. Once SSME downloads the client manifest, it raises the
SmoothStreamingMediaElement.ManifestReady event. At this
point the SmoothStreamingMediaElement.AvailableStreams
collection property contains a StreamInfo instance for each Stream-
Index entry in the client manifest.

For a given video stream in the client manifest, the video track
is broken into many fragments of two-second duration, and each
c element in the manifest represents metadata for the fragment. In
this case, the fragments in the track are contiguous and defi ne the
entire duration of the video track without any breaks in between—
in other words, the stream is not sparse.

For a closed caption stream, the track includes only two
fragments, each with individual timing information (the t attribute
on the c element). Further, the ParentStreamIndex attribute is set to
“video,” parenting the closed caption stream with the video stream.
Th is causes the closed caption stream to align with the timing
information from the video stream—the closed caption stream
starts and ends exactly with its parent video stream, and the fi rst
caption is displayed 10 seconds into the video stream while the
second is displayed 15 seconds into the video. A stream in which
the timeline is based on a parent stream and the fragments are
non-contiguous is called a sparse stream.

A track is a timed sequence of fragments of content of a specifi c
type—video, audio or text. Each track is represented using an instance
of a TrackInfo type, and all the tracks in a stream are made available
through the StreamInfo.AvailableTracks collection property.

Each track in a client manifest is uniquely identifi ed via a Quality-
Level. A QualityLevel is identifi ed by the associated bit rate, and is
exposed through the TrackInfo.Bitrate property. For example, a video

stream in a client manifest may have several QualityLevels, each
with a unique bit rate. Each represents a unique track of the same
video content, encoded at the bit rate specifi ed by the QualityLevel.

Custom Attributes and Manifest Output
Custom attributes are a way to add additional stream- or track-
specific information to the manifest. Custom attributes are
specifi ed using a CustomAttribute element, which can contain
multiple data elements expressed as key/value pairs. Each data
element is expressed as an Attribute element, with Key and Value
attributes specifying the data element key and the data element
value. In cases where distinct quality levels do not apply, such as
multiple tracks within a stream with the same track name and bit
rate, a custom attribute can also be used to disambiguate tracks from
each other. Figure 4 shows an example of custom attribute usage.

Custom attributes added to a manifest do not affect any
SSME behavior automatically. Th ey are a way for the production
workfl ow to introduce custom data into the manifest that your player
code can receive and act upon. For example, in Figure 4, you may
want to look for the AccessLevel custom attribute key in the video
stream custom attributes collection, and expose that video stream
only to paying subscribers as instructed in the attribute’s value.

Th e StreamInfo.CustomAttributes collection property exposes a
dictionary of string key/value pairs for all custom attributes applied
at the stream level (as direct CustomAttribute child elements to the
StreamIndex element). Th e TrackInfo.CustomAttributes property
exposes the same for all custom attributes applied at the track level
(as direct children to the QualityLevel element).

<SmoothStreamingMedia MajorVersion="2" MinorVersion="0"
 Duration="1456860000">
 <StreamIndex Type="video" Chunks="73" QualityLevels="8"
 MaxWidth="1280" MaxHeight="720"
 DisplayWidth="1280" DisplayHeight="720"
 Url="QualityLevels({bitrate})/Fragments(video={start time})">
 <QualityLevel Index="0" Bitrate="2962000" FourCC="WVC1"
 MaxWidth="1280" MaxHeight="720"
 CodecPrivateData="250000010FD37E27F1678A27F859E80490825A645A6440000
0010E5A67F840" />
 <QualityLevel Index="1" Bitrate="2056000" FourCC="WVC1"
 MaxWidth="992" MaxHeight="560"
 CodecPrivateData="250000010FD37E1EF1178A1EF845E8049081BEBE7D7CC0000
0010E5A67F840" />
 ...
 <c n="0" d="20020000" />
 <c n="1" d="20020000" />
 ...
 <c n="71" d="20020000" />
 <c n="72" d="15010001" />
 </StreamIndex>
 <StreamIndex Type="audio" Index="0" FourCC="WMAP"
 Chunks="73" QualityLevels="1"
 Url="QualityLevels({bitrate})/Fragments(audio={start time})">
 <QualityLevel Bitrate="64000" SamplingRate="44100" Channels="2"

 BitsPerSample="16" PacketSize="2973" AudioTag="354"
 CodecPrivateData="1000030000000000000000000000E00042C0" />
 <c n="0" d="21246187" />
 <c n="1" d="19620819" />
 ...
 <c n="71" d="19504762" />
 <c n="72" d="14900906" />
 </StreamIndex>
 <StreamIndex Type="text" Name="ClosedCaptions" Subtype="CAPT"
 TimeScale="10000000" ParentStreamIndex="video"
 ManifestOutput="TRUE" QualityLevels="1" Chunks="2"
 Url="QualityLevels({bitrate},{CustomAttributes})/
Fragments(ClosedCaptions={start time})">
 <QualityLevel Index="0" Bitrate="1000"
 CodecPrivateData="" FourCC=""/>
 <c n="0" t="100000000">
 <f>...</f>
 </c>
 <c n="1" t="150000000">
 <f>...</f>
 </c>
 </StreamIndex>
 ...
</SmoothStreamingMedia>

Figure 3 Excerpt from a Client Manifest

For a given video stream in the
client manifest, the video track is

broken into many fragments.

www.msdnmagazine.com

msdn magazine36 IIS Smooth Streaming

When the ManifestOutput attribute on the stream (the Stream-
Index element) is set to TRUE, the client manifest can actually
contain the data representing each fragment for the tracks within
the stream. Figure 5 shows an example.

Note the nested content within the f elements—each represents
caption item data to be displayed at the time specifi ed by the
containing chunk. Th e client manifest specifi cation requires that
the data be represented as a base64-encoded string version of the
original data item.

The TrackInfo.TrackData collection property contains a list of
TimelineEvent instances—one for each f element corresponding
to the track. For each TimelineEvent entry, Timeline Event.Event-
Time represents the time point in the sequence and the Timeline-
Event.EventData provides the base64-encoded text string.
TrackInfo also supports Bitrate, CustomAttributes, Index, Name
and ParentStream properties.

Selecting Streams and Tracks
Th ere are many interesting ways you can use the streams and tracks
metadata and API in your application code.

It may be useful to have the ability to select specifi c tracks within a
stream and fi lter out the rest. A common scenario is a graded viewing
experience based on a subscriber’s level of access, where for a basic or
free level you serve the low-resolution version of the content, and expose
the high-defi nition version only to premium-level subscribers:

if (subscriber.AccessLevel != "Premium") {
 StreamInfo videoStream =
 ssme.GetStreamInfoForStreamType("video");
 List<TrackInfo> allowedTracks =
 videoStream.AvailableTracks.Where((ti) =>
 ti.Bitrate < 1000000).ToList();
 ssme.SelectTracksForStream(
 videoStream, allowedTracks, false);
}

GetStreamInfoForStreamType accepts a stream type literal and
returns the matching StreamInfo instance. A LINQ query on Stream-
Info.AvailableTracks retrieves a list of tracks that off er a bit rate of
less than 1 mbps—in other words, a standard-defi nition video for
non-premium subscribers. Th e SelectTracksForStream method
can then be used to fi lter down the list of tracks in that stream to
only the tracks you want to expose.

Th e last parameter to SelectTracksForStream, when set to true,
indicates to SSME that any data stored in the look-ahead buff ers

should be cleaned out immediately. To get the current selected list
of tracks at any time, you can use the StreamInfo.SelectedTracks
property, while the StreamInfo.AvailableTracks property continues
to expose all the available tracks.

Remember that Smooth Streaming allows multiple streams
of the same type to coexist in the client manifest. In the current
beta of the IIS Smooth Streaming Player Development Kit, the
GetStreamInfoForStreamType method returns the fi rst occurrence
of a stream of the specifi ed type in case there are multiple streams
of that type, which may not be what you desire. However, there
is nothing stopping you from bypassing this method and instead
using a query on the AvailableStreams collection directly to get the
right StreamInfo. Th e following snippet shows a LINQ query that
gets a text stream named “ticker”:

StreamInfo tickerStream =
 ssme.AvailableStreams.Where((stm) =>
 stm.Type == "text" &&
 stm.Name == "ticker").FirstOrDefault();

Using Text Streams
An audio/video presentation may need to display additional
content that is timed along the primary video sequence at
specifi c time points. Examples could be closed captions, advertise-
ments, news alerts, overlay animations and so on. A text stream is a
convenient place to expose such content.

One approach to include a text stream in your presentation
would be to mux in the text tracks alongside the video tracks during
the video encoding, so that the content chunks for the text track
are delivered from the server, appropriately timed with the video.

Another option is to utilize the manifest output feature discussed
earlier to author the text content into the client manifest itself. Let’s
take a closer look at this second approach.

To start, you need to prepare a client manifest with the text
streams. In a production media workflow, there can be many
different ways to inject such content into the manifest during
or after encoding, and the data could be coming from several
different sources, like ad-serving platforms and caption
generators. But, for this example, I am going to use a simple
XML data file as the data source, use some LINQ over XML
queries to manufacture the text streams, and insert them into an
existing client manifest.

<StreamIndex Type="video" Chunks="12" QualityLevels="2"
 MaxWidth="1280" MaxHeight="720"
 DisplayWidth="1280" DisplayHeight="720"
 Url="QualityLevels({bitrate})/Fragments(video={start time})">
 <CustomAttributes>
 <Attribute Key="CameraAngle" Value="RoofCam"/>
 <Attribute Key="AccessLevel" Value="PaidSubscription"/>
 </CustomAttributes>
 <QualityLevel Index="0" Bitrate="2962000" FourCC="WVC1"
 MaxWidth="1280" MaxHeight="720"
 CodecPrivateData="250000010FD37E27F1678A27F859E80490825A645A64400000
010E5A67F840">
 <CustomAttributes>
 <Attribute Name = "hardwareProfile" Value = "10000" />
 </CustomAttributes>
 </QualityLevel>
...
</StreamIndex>

Figure 5 Manifest Output

<StreamIndex Type="video" Chunks="12" QualityLevels="2"
 MaxWidth="1280" MaxHeight="720"
 DisplayWidth="1280" DisplayHeight="720"
 Url="QualityLevels({bitrate})/Fragments(video={start time})">
 <CustomAttributes>
 <Attribute Key="CameraAngle" Value="RoofCam"/>
 <Attribute Key="AccessLevel" Value="PaidSubscription"/>
 </CustomAttributes>
 <QualityLevel Index="0" Bitrate="2962000" FourCC="WVC1"
 MaxWidth="1280" MaxHeight="720"
 CodecPrivateData="250000010FD37E27F1678A27F859E80490825A645A64400000
010E5A67F840">
 <CustomAttributes>
 <Attribute Name = "hardwareProfile" Value = "10000" />
 </CustomAttributes>
 </QualityLevel>
...
</StreamIndex>

Figure 4 Using Custom Attributes in the Client Manifest

37March 2010msdnmagazine.com

Th e structure of the data does not need to be complex. (You can
fi nd the full fi le in the code download for this article. I will show
excerpts here for illustration.) Th e data fi le begins with a Tracks
element, then contains two ContentTrack elements. Each Content-
Track entry will ultimately result in one distinct text stream in the
client manifest. Th e fi rst ContentTrack element is for the captions:

<ContentTrack Name="ClosedCaptions" Subtype="CAPT">

Th e second is for animations:
<ContentTrack Name="Animations" Subtype="DATA">

Each ContentTrack contains multiple Event elements, with the
time attributes specifying the time points on the video’s timeline
when these text events need to occur. Th e Event elements in turn
contain the actual caption events defi ned in XML, or the XAML
for the animation as CDATA sections:

<Event time="00:00:10">
 <![CDATA[<Caption Id="{DE90FACD-BC01-43f2-A4EC-6A01A49BAFBB}"
 Action="ADD">
 Test Caption 1
 </Caption>]]>
</Event>
<Event time="00:00:15">
 <![CDATA[<Caption Id="{DE90FACD-BC01-43f2-A4EC-6A01A49BAFBB}"
 Action="REMOVE"/>]]>
</Event>

Note that for each added closed caption event, there is a correspond-
ing event that indicates the time point when the previously added
caption needs to be removed. Th e Caption element contained with-
in the CDATA section for a closed caption event defi nes an Action
attribute with a value of Add or Remove to indicate appropriate action.

My LINQ over XML code transforms the XML data into
appropriate entries for a client manifest, and inserts them into an
existing client manifest fi le. You can fi nd an example in the code
download for this article, but note that the data format demonstrated
is not a part of the Smooth Streaming Player Development Kit or
the Smooth Streaming specifi cation, and neither is it prescriptive
in any way. You can defi ne whatever data structure suits the
needs of your application, as long as you can transform it into the
appropriate format required by the Smooth Streaming client
manifest specifi cation, which includes encoding the text content
in the CDATA sections to a base64 format.

Once the transformation is executed, the resulting client
manifest fi le will contain the text streams as shown in Figure 6.

Th e video and the audio streams already existed in the client man-
ifest shown in Figure 6, and I added the two text streams, named
ClosedCaptions and Animations, respectively. Note that each stream
uses the video stream as its parent and sets ManifestOutput to true.
Th e former is because the text streams are sparse in nature and
parenting them to the video stream ensures correct timing of each
text content entry (the c elements) along the video stream’s timeline.
Th e latter is to ensure that the SSME reads the actual data (the base64-
encoded strings within the f elements) from the manifest itself.

TimelineEvent and TimelineMarker
Now let’s look at making use of the additional text content in SSME.
SSME exposes the additional text streams as StreamInfo instances
in the AvailableStreams property, with each StreamInfo contain-
ing the track data as a TrackInfo instance. The Track Info.Track-
Data collection property will contain as many instances of the
TimelineEvent type as there are text events in each text track.
The TimelineEvent.EventData property exposes a byte array
representing the string content (decoded from its base64-encoded
format), while the TimelineEvent.EventTime property exposes the
time point where this event needs to occur.

When you start playing the presentation, as these events are
reached, SSME raises the TimelineEventReached event. Figure 7

<SmoothStreamingMedia MajorVersion="2" MinorVersion="0"
 Duration="1456860000">
 <StreamIndex Type="video" Chunks="73" QualityLevels="8"
 MaxWidth="1280" MaxHeight="720"
 DisplayWidth="1280" DisplayHeight="720"
 Url="QualityLevels({bitrate})/Fragments(video={start time})">
 <QualityLevel Index="0" Bitrate="2962000" FourCC="WVC1"
 MaxWidth="1280" MaxHeight="720"
 CodecPrivateData="250000010FD37E27F1678A27F859E80490825A645A6440000
0010E5A67F840" />
 <QualityLevel Index="1" Bitrate="2056000" FourCC="WVC1"
 MaxWidth="992" MaxHeight="560"
 CodecPrivateData="250000010FD37E1EF1178A1EF845E8049081BEBE7D7CC0000
0010E5A67F840" />
 ...
 <c n="0" d="20020000" />
 <c n="1" d="20020000" />
 ...
 <c n="71" d="20020000" />
 <c n="72" d="15010001" />
 </StreamIndex>
 <StreamIndex Type="audio" Index="0" FourCC="WMAP"
 Chunks="73" QualityLevels="1"
 Url="QualityLevels({bitrate})/Fragments(audio={start time})">
 <QualityLevel Bitrate="64000" SamplingRate="44100" Channels="2"

 BitsPerSample="16" PacketSize="2973" AudioTag="354"
 CodecPrivateData="1000030000000000000000000000E00042C0" />
 <c n="0" d="21246187" />
 <c n="1" d="19620819" />
 ...
 <c n="71" d="19504762" />
 <c n="72" d="14900906" />
 </StreamIndex>
 <StreamIndex Type="text" Name="ClosedCaptions" Subtype="CAPT"
 TimeScale="10000000" ParentStreamIndex="video"
 ManifestOutput="TRUE" QualityLevels="1" Chunks="2"
 Url="QualityLevels({bitrate},{CustomAttributes})/
Fragments(ClosedCaptions={start time})">
 <QualityLevel Index="0" Bitrate="1000"
 CodecPrivateData="" FourCC=""/>
 <c n="0" t="100000000">
 <f>...</f>
 </c>
 <c n="1" t="150000000">
 <f>...</f>
 </c>
 </StreamIndex>
 ...
</SmoothStreamingMedia>

Figure 6 Client Manifest Excerpt with Text Content Streams

Smooth Streaming allows
multiple streams of the same

type to coexist in the
client manifest.

www.msdnmagazine.com

msdn magazine38 IIS Smooth Streaming

shows a sample of handling the closed caption and animation tracks
that were added to the client manifest in Figure 6.

As each TimelineEvent is handled, you either insert a TextBlock
into the UI to display a caption or load the animation XAML string
and start the animation (see the downloadable code for details of
the animation-handling logic).

Note that because the text content is base-64 encoded, it is decoded
to its original state. Also note that the code checks the Action attribute
on the Caption element to decide whether it is adding a caption to the
UI or removing an existing caption. For animation events, you can rely
on an animation’s own completion handler to remove it from the UI.

Figure 8 shows a screenshot of a caption being displayed and an
ellipse being animated overlaid on a playing video. While this approach
works well, there is one issue you need to consider before using this
technique. Th e current release of SSME handles TimlineEvents at two-
second boundaries. To understand this better, let’s say you had a closed
caption timed at the 15.5-second time point along the video timeline.
SSME would raise the TimelineEventReached event for this closed

caption at the closest previous time point that is a multiple of 2—in
other words, at approximately 14 seconds.

If your scenario demands greater accuracy and you can’t position
your content chunks close to two-second boundaries, using the Time-
lineEventReached to handle the content tracks may not be the right
way. You can, however, use the TimelineMarker class (as used in the
standard MediaElement type) to add markers to your timeline that
can raise the MarkerReached event at any granularity you may need.
Th e code download for this article includes the outline of an AddAnd-
HandleMarkers method that adds TimelineMarkers for each content
event and responds to them in the MarkerReached event handler.

Merging External Manifests
Earlier you saw an example of adding additional streams of content
to a client manifest. Th at approach works well if you have access to
the client manifest, but you may encounter situations where direct
access to the client manifest to make the necessary additions is not
possible. You may also encounter situations where the additional
content streams are conditionally dependent on other factors (for
example, closed captions in diff erent languages for diff erent locales).
Adding the data for all possible conditions to the client manifest
causes SSME to spend more time parsing and loading the manifest.

SSME solves this problem by allowing you to merge external mani-
fest fi les at run time into the original client manifest, giving you the
ability to bring in additional data streams and act upon the data as
shown before, without having to modify the original client manifest.

Here is an example of manifest merging:
ssme.ManifestMerge += new
 SmoothStreamingMediaElement.ManifestMergeHandler((sender) => {
 object ParsedExternalManifest = null;
 //URI of the right external manifest based on current locale
 //for example expands to
 string UriString =
 string.Format(
 "http://localhost/SmoothStreaming/Media/FighterPilot/{0}/CC.xml",
 CultureInfo.CurrentCulture.Name);
 //parse the external manifest - timeout in 3 secs
 ssme.ParseExternalManifest(new Uri(UriString), 3000,
 out ParsedExternalManifest);
 //merge the external manifest
 ssme.MergeExternalManifest(ParsedExternalManifest);
});

Th is code snippet notes the prevailing locale and uses an
appropriate external manifest fi le (named CC.xml stored in a folder
named for the language identifi er for the locale) that contains
closed captions in the right language for that locale. Th e Parse-
ExternalManifest method accepts a URI pointing to the location
of the external manifest and returns the parsed manifest as an
object through the third out parameter to the method. Th e second
parameter to the method accepts a timeout value, allowing you to
avoid blocking for too long on the network call.

Th e MergeExternalManifest method accepts the parsed manifest
object returned from the previous call and does the actual merging.
Following this, the streams and tracks from any merged external mani-
fest are made available anywhere else in your player code as Stream-
Info and TrackInfo instances, and can be acted upon as shown earlier.

It is important to note that the calls to ParseExternalManifest and
MergeExternalManifest can only be made in the ManifestMerge
event handler. Any calls to these methods outside the scope of this
event handler raise an InvalidOperationException.

ssme.TimelineEventReached +=
 new EventHandler<TimelineEventArgs>((s, e) => {
 //if closed caption event
 if (e.Track.ParentStream.Name == "ClosedCaptions" &&
 e.Track.ParentStream.Subtype == "CAPT") {

 //base64 decode the content and load the XML fragment
 XElement xElem = XElement.Parse(
 Encoding.UTF8.GetString(e.Event.EventData,
 0, e.Event.EventData.Length));

 //if we are adding a caption
 if (xElem.Attribute("Action") != null &&
 xElem.Attribute("Action").Value == "ADD") {

 //remove the text block if it exists
 UIElement captionTextBlock = MediaElementContainer.Children.
 Where((uie) => uie is FrameworkElement &&
 (uie as FrameworkElement).Name == (xElem.Attribute("Id").Value)).
 FirstOrDefault() as UIElement;
 if(captionTextBlock != null)
 MediaElementContainer.Children.Remove(captionTextBlock);

 //add a TextBlock
 MediaElementContainer.Children.Add(new TextBlock() {
 Name = xElem.Attribute("Id").Value,
 Text = xElem.Value,
 HorizontalAlignment = HorizontalAlignment.Center,
 VerticalAlignment = VerticalAlignment.Bottom,
 Margin = new Thickness(0, 0, 0, 20),
 Foreground = new SolidColorBrush(Colors.White),
 FontSize = 22
 });
 }
 //if we are removing a caption
 else if (xElem.Attribute("Action") != null &&
 xElem.Attribute("Action").Value == "REMOVE") {

 //remove the TextBlock
 MediaElementContainer.Children.Remove(
 MediaElementContainer.Children.Where(
 (uie) => uie is FrameworkElement &&
 (uie as FrameworkElement).Name ==
 (xElem.Attribute("Id").Value)).FirstOrDefault()
 as UIElement);
 }
 }

 //Logic for animation event
 ...
});

Figure 7 Handling the TimelineEventReached Event

39March 2010msdnmagazine.com

Keep in mind that external manifests need to have an extension
that has an associated MIME type registered with the Web server
from which they are available. Using a common extension such as
.xml is a good idea because the content is XML is anyway. If the
external manifest fi les are served from the same Web server that is
acting as your Smooth Streaming server, you should refrain from
using the .ismc extension because the IIS Media Services handler
prevents .ismc fi les from being accessed directly, and ParseExternal-
Manifest will fail to download the external manifest.

As far as the structure of an external manifest goes, it needs to be
identical to a regular client manifest: a top-level SmoothStreaming-
Media element, with appropriate StreamIndex child elements to
represent your data.

Clip Scheduling
You may face the need to insert additional video clips into a presen-
tation at specifi c time points. Advertisement videos, breaking news
or fi ller clips in a presentation are just a few examples. Th e problem
can be viewed in two parts. First, acquiring the necessary content data
and determining where in the timeline to insert it. Second, actually
scheduling and playing the clips. SSME incorporates functionality
that makes both of these tasks fairly straightforward to implement.

You can continue to use the approach of a text stream inserted
into the client manifest, as illustrated in the previous sections, to
make the clip data available to your code. Here is a sample data
source used for clip schedule information:

<ContentTrack Name="AdClips" Subtype="DATA">
 <Event time="00:00:04">
 <![CDATA[<Clip Id="{89F92331-8501-41ac-B78A-F83F6DD4CB40}"
 Uri="http://localhost/SmoothStreaming/Media/Robotica/Robotica_1080.
ism/manifest"
 ClickThruUri="http://msdn.microsoft.com/en-us/robotics/default.aspx"
 Duration="00:00:20" />]]>
 </Event>
 <Event time="00:00:10">
 <![CDATA[<Clip Id="{3E5169F0-A08A-4c31-BBAD-5ED51C2BAD21}"
 Uri="http://localhost/ProgDownload/Amazon_1080.wmv"
 ClickThruUri="http://en.wikipedia.org/wiki/Amazon_Rainforest"
 Duration="00:00:25"/>]]>
 </Event>
</ContentTrack>

For each clip to be scheduled there is a URI for the content, a URI
for a Web page the user can navigate to as a click-through on the
clip, and a playback duration for the clip. Th e time attribute on the
Event element specifi es where in the timeline the clip is scheduled.

You can transform this data and add the corresponding text
stream into the client manifest, using the same approach of a LINQ
to XML query as outlined in the previous section. As before, the
text stream is exposed to the code as a StreamInfo instance. You
can then use the clip scheduling API on the SSME to utilize this
information to schedule these clips. Figure 9 shows a method that
schedules the clips based on this information.

Th e ScheduleClip method on SSME does the actual scheduling.
For each clip you want to schedule, a new instance of the Clip-
Information type is inserted into the schedule with the appropriate
properties derived from the clip data.

Note that clips can be either Smooth Streaming sources or other
sources as supported by the Silverlight MediaElement. It is important to
set the ClipInformation.IsSmoothStreamingSource property correctly
to make sure the right player component is used to play the clip.

Th e second parameter to ScheduleClip is the time when you want
the clip to play. Th e third parameter is used to indicate whether you
want the timeline to stop progressing while the clip is playing. Th e
last parameter is used to pass in any user data that will be made
available with the various clip-related event handlers.

Sometimes clips need to be scheduled in a sequence where start-
time information is applied only to the fi rst clip in a sequence, and
subsequent clips are chained so that all the scheduled clips play out
in one continuous sequence. Th e ScheduleClip method facilitates
this feature as well, as shown in Figure 10.

I only use an absolute time to schedule the fi rst clip, when there is no
ClipContext (in other words, the clipCtx variable is null). Each subsequent
call to ScheduleClip returns a ClipContext instance that represents
the scheduled state of the clip. Th e Schedule Clip method has an
overload that accepts a ClipContext instance instead of a scheduled

Figure 8 Content Overlay Using Text Content Streams
and TimelineEvents

private void ScheduleClips() {
 //get the clip data stream
 StreamInfo siAdClips = ssme.AvailableStreams.Where(
 si => si.Name == "AdClips").FirstOrDefault();

 //if we have tracks
 if (siAdClips != null && siAdClips.AvailableTracks.Count > 0) {

 //for each event in that track
 foreach (TimelineEvent te in
 siAdClips.AvailableTracks[0].TrackData) {

 //parse the inner XML fragment
 XElement xeClipData = XElement.Parse(
 Encoding.UTF8.GetString(te.EventData, 0,
 te.EventData.Length));

 //schedule the clip
 ssme.ScheduleClip(new ClipInformation {
 ClickThroughUrl = new Uri(
 xeClipData.Attribute("ClickThruUri").Value),
 ClipUrl = new Uri(xeClipData.Attribute("Uri").Value),
 IsSmoothStreamingSource =
 xeClipData.Attribute("Uri").Value.ToUpper().Contains("ism"),
 Duration = TimeSpan.Parse(xeClipData.Attribute("Duration").Value)
 },
 te.EventTime, true, //pause the timeline
 null);
 }
 //set the Clip MediaElement style
 ssme.ClipMediaElementStyle =
 this.Resources["ClipStyle"] as Style;
 }
}

Figure 9 Schduling Clips

www.msdnmagazine.com

msdn magazine40 IIS Smooth Streaming

start time for a clip, and that schedules the clip to start right aft er the
previously scheduled clip (represented by the passed-in ClipContext).

When the scheduled clips play, SSME hides the main video and
introduces a MediaElement to play the scheduled clip. In the event
that you want to customize this MediaElement, you can set the Clip-
MediaElementStyle property on SSME to a desired XAML style.

Th ere are also several events of interest that are raised by SSME
while a scheduled clip is playing. Th e ClipProgressUpdate event
can be handled to track the progress of the clip. ClipPlayback-
EventArgs.Progress is of the enumeration type ClipProgress, which
represents the clip’s progress in quartiles. Th e ClipProgressUpdate
event is raised only at the start and end of the clip and at time
points denoting 25 percent, 50 percent and 75 percent of the clip’s
duration. Note that the ClipContext.HasQuartileEvents boolean
property indicates whether the quartile events will be raised for a
clip. In certain cases, like when the duration of a clip is not known,
quartile progress events may not be raised.

Th e ClipClickTh rough event is raised when the viewer clicks on
a clip while viewing it. If click-through destination was intended
for this clip, ClipEventArgs.ClipContext.ClipInformation.Click-
Th roughUrl exposes it and you can use a technique of your choice
(like interacting with the browser to open a pop-up window) to
open up the Web resource targeted by the click-through URL.

You can also use the ClipError event and the ClipStateChanged
event to handle any error conditions and state changes for the
clip, respectively.

Playback Speed and Direction
SSME enables playing content at varying speeds and direction. Th e
SmoothStreamingMediaElement.SupportedPlaybackRates property
returns a list of supported playback speeds as double values, where
1.0 denotes the default playback speed. In the current public beta,
this list contains the additional values of 0.5, 4.0, 8.0, -4.0 and -8.0.
Th e positive values enable playback at half, 4x and 8x speeds, and
the negative values enable reverse play (rewind) at 4x and 8x speeds.

Th e SmoothStreamingMediaElement.SetPlaybackRate method can
be called to set the playback speed at any point during playback. Set-
PlaybackRate accepts the desired playback speed as its only parameter.

Note that controlling playback speed only works for Smooth
Streaming content—so if you are using SSME to play content that
is being progressively downloaded or streamed using some other
technique, SetPlaybackRate will raise an exception.

Smooth Stream Edits Using Composite Manifests
Sometimes you may need to combine portions from multiple Smooth
Streaming presentations into a single composite presentation.
Th e most common scenario is using tools like rough-cut editors
that allow users to specify mark-in and mark-out time points into
a master source producing clips, and then having several such clips
from potentially diff erent master sources play in a linear fashion
as a single presentation.

Th e composite manifest feature of SSME allows you to accomplish
this by creating a separate manifest document that contains
clip segments, where each clip segment defi nes a portion of a
complete presentation bounded by the begin and end time points
of the clip. Th e biggest benefi t of using this approach is the ability
to create diff erent edits on existing presentations without the need
to transcode the source material.

A composite manifest always ends with the extension .csm. To
consume such a manifest you simply set the SmoothStreaming-
Source property to a valid URL pointing to a composite manifest fi le:

ssme.SmoothStreamingSource = new Uri("http://localhost/SmoothStreaming/
Media/MyCompositeSample.csm");

Figure 11 shows an excerpt from a composite manifest. (Th e
entire fi le is included in the code download for this article.)

Th is manifest contains two Clip elements, each defi ning a clip
(also called an edit) from an existing Smooth Streaming presen-
tation. Th e URL attribute points to an existing Smooth Streaming
presentation, and the ClipBegin and ClipEnd attributes contain the
beginning and ending time values that provide the bounds to the
clip. Th e Duration attribute on the top-level SmoothStreamingMedia
element needs to be the exact sum of the durations of each clip in
the manifest—you can sum the diff erence of the ClipEnd and Clip-
Begin values of each Clip entry to get the total manifest duration.

Each Clip element contains the video and the audio StreamIndex
and their child QualityLevel entries, mirroring the client manifest
(.ismc) fi les of the source presentations. Th e chunk metadata (c)
entries for each StreamIndex entry, however, can be limited to
only those chunks that are required to satisfy the ClipBegin and

private void ScheduleClips() {
 StreamInfo siAdClips = ssme.AvailableStreams.Where(
 si => si.Name == "AdClips").FirstOrDefault();

 if (siAdClips != null && siAdClips.AvailableTracks.Count > 0) {
 ClipContext clipCtx = null;
 foreach (
 TimelineEvent te in siAdClips.AvailableTracks[0].TrackData) {
 XElement xeClipData =
 XElement.Parse(Encoding.UTF8.GetString(te.EventData, 0,
 te.EventData.Length));

 //if this is the first clip to be scheduled
 if (clipCtx == null) {
 clipCtx = ssme.ScheduleClip(new ClipInformation {
 ClickThroughUrl = new Uri(
 xeClipData.Attribute("ClickThruUri").Value),
 ClipUrl = new Uri(xeClipData.Attribute("Uri").Value),
 IsSmoothStreamingSource =
 xeClipData.Attribute("Uri").Value.ToUpper().Contains("ism"),
 Duration = TimeSpan.Parse(
 xeClipData.Attribute("Duration").Value)
 },
 te.EventTime, //pass in the start time for the clip
 true, null);
 }
 else { //subsequent clips
 clipCtx = ssme.ScheduleClip(new ClipInformation {
 ClickThroughUrl = new Uri(
 xeClipData.Attribute("ClickThruUri").Value),
 ClipUrl = new Uri(xeClipData.Attribute("Uri").Value),
 IsSmoothStreamingSource =
 xeClipData.Attribute("Uri").Value.ToUpper().Contains("ism"),
 Duration = TimeSpan.Parse(
 xeClipData.Attribute("Duration").Value)
 },
 clipCtx, //clip context for the previous clip to chain
 true, null);
 }
 }
 ssme.ClipMediaElementStyle =
 this.Resources["ClipStyle"] as Style;
 }
}

Figure 10 Using the ClipContext to Chain Scheduled Clips

You’ve got the data, but time, budget and staff
constraints can make it hard to present that valuable
information in a way that will impress. With Infragistics’
NetAdvantage for Silverlight Data Visualization, you
can create Web-based data visualizations and
dashboard-driven applications on Microsoft Silverlight
(and coming soon for WPF) that will not only impress
decision makers, it actually empowers them. Go to
infragistics.com/sldv today and get inspired to create
killer apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

GeospatialMaps

Silverlight
Pivot
Grids

Fast
DataCharts

Untitled-1 1 1/11/10 11:15 AM

www.infragistics.com/sldv

msdn magazine42 IIS Smooth Streaming

ClipEnd boundaries. In other words, the ClipBegin value needs
to be greater than or equal to the start time(t attribute) value of
the fi rst c entry for the stream, and the ClipEnd value needs to be
less than or equal to the sum of the start time and the duration(d
attribute) values of the last c entry for that stream.

Note that, in your client manifest, chunks may be defi ned in an
indexed (n attribute) fashion with durations specifi ed. However,
for the composite manifest, the chunks need to be defi ned using
their start times (which can be easily calculated by summing the
durations of the preceding chunks). Also note that the Chunks
attribute on each StreamIndex entry needs to refl ect the number
of chunks in the clip, but all the other attributes mirror the entries
in the source client manifest.

Live Streams
SSME can play both on-demand and live streams. To play a live
Smooth Streaming video stream using SSME, you can set the Smooth-
StreamingSource property on SSME to a live publishing point URL:

ssme.SmoothStreamingSource = "http://localhost/SmoothStreaming/Media/
FighterPilotLive.isml/manifest";

To know if SSME is playing a live stream, you can check the
IsLive property, which is set to True if the content is a live source,
and False otherwise.

Note that the setup and delivery of Smooth Streaming live
video requires specialized infrastructure. A detailed discussion of

setting up a live streaming server environment is beyond the scope
of this article. You can refer to the articles at learn.iis.net/page.aspx/628/
live-smooth-streaming/ for more details on how to set up IIS Media
Services 3.0 for live streaming. Th e article at learn.iis.net/page.aspx/620/
live-smooth-streaming-for-iis-70---getting-started/ will provide you with infor-
mation on setting up a simulation of a live streaming environment
for testing purposes.

Wrapping Up
IIS Smooth Streaming is a state-of-the-art adaptive streaming
platform from Microsoft . As you’ve seen, the Smooth Streaming
PDK (and in particular the SmoothStreamingMediaElement
type) is an essential ingredient to authoring Silverlight clients that
can consume both on-demand and live streams. Th e PDK off ers
extensive control on the client-side behavior of smooth streams,
and allows you to write rich and immersive experiences that go
beyond just audio/video streams, letting you easily combine data
streams with your media in a meaningful way.

A detailed treatment of Smooth Streaming is beyond the
scope of this article. You are encouraged to find more details
at iis.net/media. For more guidance on media programming in
Silverlight and the Silverlight MediaElement type, you can
visit silverlight.net/getstarted.

JIT GHOSH is an architect evangelist in the Developer Evangelism team at
Microsoft , advising customers in the media industry on building cutting-edge
digital media solutions. Ghosh co-authored the book “Silverlight Recipes” (APress,
2009). You can read his blog at blogs.msdn.com/jitghosh.

THANKS to the following technical expert for reviewing this article:
Vishal Sood

<?xml version="1.0" encoding="utf-8"?>
<SmoothStreamingMedia MajorVersion="2" MinorVersion="0"
Duration="269000000">
<Clip Url="http://localhost/SmoothStreaming/Media/AmazingCaves/Amazing_
Caves_1080.ism/manifest"
 ClipBegin="81000000" ClipEnd="250000000">
<StreamIndex Type="video" Chunks="9" QualityLevels="3"
 MaxWidth="992" MaxHeight="560"
 DisplayWidth="992" DisplayHeight="560"
 Url="QualityLevels({bitrate})/Fragments(video={start time})">
 <QualityLevel Index="0" Bitrate="2056000" FourCC="WVC1"
 MaxWidth="992" MaxHeight="560"
 CodecPrivateData="250000010FD37E1EF1178A1EF845E8049081BEBE7D7CC00000
010E5A67F840"
 />
 <QualityLevel Index="1" Bitrate="1427000" FourCC="WVC1"
 MaxWidth="768" MaxHeight="432"
 CodecPrivateData="250000010FCB6C17F0D78A17F835E8049081AB8BD718400000
010E5A67F840"
 />
 <QualityLevel Index="2" Bitrate="991000" FourCC="WVC1"
 MaxWidth="592" MaxHeight="332"
 CodecPrivateData="250000010FCB5E1270A58A127829680490811E3DF8F8400000
010E5A67F840"
 />
 <c t="80130000" />
 <c t="100150000" />
 <c t="120170000" />
 <c t="140190000" />
 <c t="160210000" />
 <c t="180230000" />
 <c t="200250000" />

 <c t="220270000" />
 <c t="240290000" d="20020000" />
</StreamIndex>
<StreamIndex Type="audio" Index="0" FourCC="WMAP"
 Chunks="10" QualityLevels="1"
 Url="QualityLevels({bitrate})/Fragments(audio={start time})">
 <QualityLevel Bitrate="64000" SamplingRate="44100"
 Channels="2" BitsPerSample="16" PacketSize="2973"
 AudioTag="354" CodecPrivateData="1000030000000000000000000000E0004
2C0" />
 <c t="63506576" />
 <c t="81734240" />
 <c t="102632199" />
 <c t="121672562" />
 <c t="142106122" />
 <c t="162075283" />
 <c t="181580045" />
 <c t="202478004" />
 <c t="222447165" />
 <c t="241313378" d="20143311" />
</StreamIndex>
</Clip>
<Clip Url="http://localhost/SmoothStreaming/Media/CoralReef/Coral_Reef_
Adventure_1080.ism/manifest"
 ClipBegin="102000000" ClipEnd="202000000">
<StreamIndex Type="video" Chunks="6" QualityLevels="3"
 MaxWidth="992" MaxHeight="560"
 DisplayWidth="992" DisplayHeight="560"
 Url="QualityLevels({bitrate})/Fragments(video={start time})">
...
</Clip>
</SmoothStreamingMedia>

Figure 11 Sample Composite Manifest

SSME enables playing content at
varying speeds and direction.

http://learn.iis.net/page.aspx/628/live-smooth-streaming/
http://learn.iis.net/page.aspx/628/live-smooth-streaming/
http://learn.iis.net/page.aspx/620/live-smooth-streaming-for-iis-70---getting-started/
http://learn.iis.net/page.aspx/620/live-smooth-streaming-for-iis-70---getting-started/
http://silverlight.net/getstarted
http://blogs.msdn.com/jitghosh

Untitled-1 1 2/11/10 8:33 AM

www.syncfusion.com

Untitled-5 2 2/9/10 9:56 AM

www.telerik.com

Untitled-5 3 2/9/10 9:56 AM

www.telerik.com

msdn magazine46

F IN GE R ST YL E

Exploring Multi-Touch
Support in Silverlight

Whenever I visit the American Museum of Natural History in
New York City, I always make a point to drop in on the Hall of Primates.
With a large selection of skeletons and stuff ed specimens, the hall
presents an evolutionary panorama of the Primate order—animals
ranging in size from tiny tree shrews, lemurs and marmosets,
through chimpanzees, great apes and humans.

What leaps out from this exhibit is a striking characteristic common
to all primates: the bone structure of the hand, including an opposable
thumb. Th e same arrangement of joints and digits that allowed our
ancestors and distant cousins to grasp and climb tree branches lets our
species manipulate the world around us, and build things. Our hands may
have their origins in the paws of tiny primates tens of millions of years
ago, yet they are also a major factor in what makes us distinctly human.

This article discusses:
• Multi-touch events and classes

• Two-fi nger manipulation

• A TouchDial control

• Volume controls and music

Technologies discussed:
Silverlight

Code download available at:
code.msdn.microsoft.com/mag201003MultiTouch

Charles Petzold

Is it any wonder we reach out instinctively to point at or even
touch objects on the computer screen?

In response to this human desire to bring our fi ngers into more
intimate connection with the computer, our input devices have been
evolving as well. Th e mouse is terrifi c for selecting and dragging, but
hopeless for freeform sketching or handwriting. Th e tablet stylus
lets us write but oft en feels awkward for stretching or moving. Touch
screens are familiar from ATMs and museum kiosks, but are usually
restricted to simple pointing and pressing.

I think the technology known as “multi-touch” represents a
big leap forward. As the name implies, multi-touch goes beyond
touch screens of the past to detect multiple fi ngers, and this makes
a huge diff erence in the types of movement and gestures that can
be conveyed through the screen. Multi-touch has evolved from
the touch-oriented input devices of the past, but at the same time
suggests an intrinsically diff erent input paradigm.

Multi-touch has probably been most evident on television news
broadcasts, with maps on large screen manipulated by the resident
meteorologist or pundit. Microsoft has been exploring multi-touch
in several ways—from the coff ee-table-size Microsoft Surface
computer to small devices like the Zune HD—and the technology
is becoming fairly standard on smartphones as well.

While Microsoft Surface can respond to many simultaneous
fi ngers (and even contains internal cameras to view objects placed
on the glass), most other multi-touch devices are limited to a
discrete number. Many respond to only two fi ngers—or touch

http://code.msdn.microsoft.com/mag201003MultiTouch

47March 2010msdnmagazine.com

points, as they’re called. (I will be using fi nger and touch point fairly
synonymously.) But synergy is at work here: On the computer
screen, two fi ngers are more than twice as powerful as one.

Th e limitation of two touch points is characteristic of the multi-
touch monitors that have become available recently for desktop
PCs and laptops, as well as the customized Acer Aspire 1420P laptop
distributed to attendees at the Microsoft Professional Developers Con-
ference (PDC) last November—commonly referred to as the PDC laptop.
Th e distribution of the PDC laptop provided a unique opportunity
for thousands of developers to write multi-touch-aware applications.

Th e PDC laptop is the machine I used to explore multi-touch
support under Silverlight 3.

Silverlight Events and Classes
Multi-touch support is becoming standard in the various Windows
APIs and frameworks. Support is built into Windows 7 and the
forthcoming Windows Presentation Foundation (WPF) 4. (Th e
Microsoft Surface computer is based around WPF as well, but
includes custom extensions for its very special capabilities.)

For this article I’d like to focus on the multi-touch support in
Silverlight 3. Th e support is a little on the light side, but it’s certainly
adequate, and very useful for exploring basic multi-touch concepts.

If you publish a multi-touch Silverlight application to your
Web site, who will be able to use it? Th e user will need a multi-
touch monitor, of course, but will also need to be running the
Silverlight application under an OS and browser that support multi-
touch. For now, Internet Explorer 8 running under Windows 7
provides this support, and likely more OSes and browsers will support
multi-touch in the future.

Th e Silverlight 3 support for multi-touch consists of fi ve classes,
one delegate, one enumeration and a single event. Th ere is no way
to determine if your Silverlight program is running on a multi-
touch device or, if it is, how many touch points the device supports.

A Silverlight application that wants to respond to multi-touch
must attach a handler to the static Touch.FrameReported event:

Touch.FrameReported += OnTouchFrameReported;

You can attach this event handler on machines that don’t have
multi-touch monitors and nothing bad will happen. Th e Frame-
Reported event is the only public member of the static Touch class.
Th e handler looks like this:

void OnTouchFrameReported(
 object sender, TouchFrameEventArgs args) {
 ...
}

You can install multiple Touch.FrameReported event handlers
in your application, and all of them will report all touch events
anywhere in the application.

TouchFrameEventArgs has one public property named TimeStamp
that I haven’t had occasion to use, and three essential public methods:

• TouchPoint GetPrimaryTouchPoint(UIElement relativeTo)
• TouchPointCollection GetTouchPoints(UIElement relativeTo)
• void SuspendMousePromotionUntilTouchUp()

Th e argument to GetPrimaryTouchPoint or GetTouchPoints is used
solely for reporting position information in the TouchPoint object.
You can use null for this argument; positioning information will then
be relative to the upper-left corner of the entire Silverlight application.

Multi-touch supports multiple fi ngers touching the screen, and
each fi nger touching the screen (up to the maximum number, which
currently is usually two) is a touch point. Th e primary touch point
refers to the fi nger that touches the screen when no other fi ngers
are touching the screen and the mouse button is not pressed.

Touch a fi nger to the screen. Th at’s the primary touch point. With
the fi rst fi nger still touching the screen, put a second fi nger on the
screen. Obviously that second fi nger is not a primary touch point.
But now, with the second fi nger still on the screen, lift the fi rst
fi nger and put it back on the screen. Is that a primary touch point?
No, it’s not. A primary touch point occurs only when no other
fi ngers are touching the screen.

A primary touch point maps onto the touch point that will be
promoted to the mouse. In real multi-touch applications, you should
be careful not to rely on the primary touch point, because the user
will typically not attach specifi c signifi cance to the fi rst touch.

Events are fi red only for fi ngers actually touching the screen.
Th ere is no hover detection for fi ngers very close to the screen,
but not touching.

By default, activity involving the primary touch point is promoted
to various mouse events. Th is allows your existing applications to
respond to touch without any special coding. Touching the screen
becomes a MouseLeft ButtonDown event, moving the fi nger while
it’s still touching the screen becomes a MouseMove, and lift ing the
fi nger is a MouseLeft ButtonUp.

Th e MouseEventArgs object that accompanies mouse messages
includes a property named StylusDevice that helps diff erentiate
mouse events from stylus and touch events. It is my experience
with the PDC laptop that the DeviceType property equals Tablet-
DeviceType.Mouse when the event comes from the mouse, and
TabletDeviceType.Touch regardless of whether the screen is touched
with the fi nger or the stylus.

Only the primary touch point is promoted to mouse events,
and—as the name of the third method of TouchFrameEventArgs
suggests—you can inhibit that promotion. More on this shortly.

A particular Touch.FrameReported event might be fi red based
on one touch point or multiple touch points. Th e TouchPoint-
Collection returned from the GetTouchPoints method contains all
the touch points associated with a particular event. Th e TouchPoint
returned from GetPrimaryTouchPoint is always a primary touch
point. If there is no primary touch point associated with the
particular event, GetPrimaryTouchPoint will return null.

Even if the TouchPoint returned from GetPrimaryTouchPoint
is non-null, it will not be the same object as one of the TouchPoint
objects returned from GetTouchPoints, although all the properties
will be the same if the argument passed to the methods is the same.

A multi-touch screen combines
the functionality of a touch

screen and a tablet.

www.msdnmagazine.com

msdn magazine48 Finger Style

Th e TouchPoint class defi nes the following four get-only prop-
erties, all backed by dependency properties:

• Action of type TouchAction, an enumeration with members
Down, Move and Up.

• Position of type Point relative to the element passed as an
argument to the GetPrimaryTouchPoint or GetTouchPoints
method (or relative to the upper-left corner of the application
for an argument of null).

• Size of type Size. Size information is not available on the PDC
laptop so I didn’t work with this property at all.

• TouchDevice of type TouchDevice.
You can call the SuspendMousePromotionUntilTouchUp method

from the event handler only when GetPrimaryTouchPoint returns a
non-null object and the Action property equals TouchAction.Down.

Th e TouchDevice object has two get-only properties also backed
by dependency properties:

• DirectlyOver of type UIElement—the topmost element
underneath the fi nger.

• Id of type int.
DirectlyOver need not be a child of the element passed to Get-

PrimaryTouchPoint or GetTouchPoints. Th is property can be null

if the fi nger is within the Silverlight application (as defi ned by the
dimensions of the Silverlight plug-in object), but not within an
area encompassed by a hit-testable control. (Panels with a null
background brush are not hit-testable.)

Th e ID property is crucial for distinguishing among multiple
fi ngers. A particular series of events associated with a particular
fi nger will always begin with an Action of Down when the fi nger
touches the screen, followed by Move events, fi nishing with an Up
event. All these events will be associated with the same ID. (But don’t
assume that a primary touch point will have an ID value of 0 or 1.)

Most non-trivial multi-touch code will make use of a Dic tionary
collection where the ID property of TouchDevice is the dictionary
key. Th is is how you will store information for a particular fi nger
across events.

Examining the Events
When exploring a new input device, it’s always helpful to write a little
application that logs the events on the screen so you can get an idea
of what they’re like. Among the downloadable code accompanying
this article is a project named MultiTouchEvents. This project
consists of two side-by-side TextBox controls showing the multi-
touch events for two fingers. If you have a multi-touch monitor
you can run this program at charlespetzold.com/silverlight/MultiTouchEvents.

Th e XAML fi le consists of just a two-column Grid containing
two TextBox controls named txtbox1 and txtbox2. Th e code fi le is
shown in Figure 1.

Notice the dictionary defi nition at the top of the class. Th e dic-
tionary keeps track of which TextBox is associated with the two
touch point IDs.

Th e OnTouchFrameReported handler begins by inhibiting all
mouse promotion. Th at’s the only reason for the call to GetPrimary-

using System;
using System.Collections.Generic;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;

namespace MultiTouchEvents {
 public partial class MainPage : UserControl {
 Dictionary<int, TextBox> touchDict =
 new Dictionary<int, TextBox>();

 public MainPage() {
 InitializeComponent();
 Touch.FrameReported += OnTouchFrameReported;
 }

 void OnTouchFrameReported(
 object sender, TouchFrameEventArgs args) {

 TouchPoint primaryTouchPoint =
 args.GetPrimaryTouchPoint(null);

 // Inhibit mouse promotion
 if (primaryTouchPoint != null &&
 primaryTouchPoint.Action == TouchAction.Down)
 args.SuspendMousePromotionUntilTouchUp();

 TouchPointCollection touchPoints =
 args.GetTouchPoints(null);

 foreach (TouchPoint touchPoint in touchPoints) {

 TextBox txtbox = null;
 int id = touchPoint.TouchDevice.Id;
 // Limit touch points to 2
 if (touchDict.Count == 2 &&
 !touchDict.ContainsKey(id)) continue;

 switch (touchPoint.Action) {
 case TouchAction.Down:
 txtbox = touchDict.ContainsValue(txtbox1) ?
 txtbox2 : txtbox1;
 touchDict.Add(id, txtbox);
 break;

 case TouchAction.Move:
 txtbox = touchDict[id];
 break;

 case TouchAction.Up:
 txtbox = touchDict[id];
 touchDict.Remove(id);
 break;
 }

 txtbox.Text += String.Format("{0} {1} {2}\r\n",
 touchPoint.TouchDevice.Id, touchPoint.Action,
 touchPoint.Position);
 txtbox.Select(txtbox.Text.Length, 0);
 }
 }
 }
}

Figure 1 Code for MultiTouchEvents

Multi-touch support is
becoming standard in the

various Windows APIs
and frameworks.

http://charlespetzold.com/silverlight/MultiTouchEvents

49March 2010msdnmagazine.com

TouchPoint, and very oft en the only reason you’ll be calling this
method in a real program.

A foreach loop enumerates through the TouchPoint mem-
bers of the TouchPointCollection returned from GetTouchPoints.
Because the program contains only two TextBox controls and is
only equipped to handle two touch points, it ignores any touch
point where the dictionary already has two and the ID is not
in that dictionary. (Just as you want your multi-touch-aware
Silverlight program to handle multiple fi ngers, you don’t want it to crash
if it encounters too many fi ngers!) Th e ID is added to the dictionary
on a Down event, and removed from the dictionary on an Up event.

You’ll notice that at times the TextBox controls get bogged down
with too much text, and you’ll need to select all the text and delete
it (Ctrl-A, Ctrl-X) to get the program running smoothly again.

What you’ll notice from this program is that multi-touch input
is captured on an application level. For example, if you press your
fi nger on the application, and then move it off the application, the

application will continue to receive Move events and eventually an
Up event when you lift your fi nger up. In fact, once an application
is getting some multi-touch input, multi-touch input to other
applications is inhibited, and the mouse cursor disappears.

Th is application-centric capturing of multi-touch input allows
the MultiTouchEvents application to be very sure of itself. For
example, on Move and Down events the program simply assumes
that the ID will be in the dictionary. In a real application, you might
want more bullet-proofi ng just in case something odd happens,
but you’ll always get the Down event.

Two-Finger Manipulation
One of the standard multi-touch scenarios is a photo gallery that
lets you move, resize and rotate photos with your fi ngers. I decided
to try something similar—just to give myself a little familiarity with
the principles involved—but simpler as well. My version of the
program has only a single item to manipulate, a text string of the
word “TOUCH.” You can run the TwoFingerManipulation program
on my Web site at charlespetzold.com/silverlight/TwoFingerManipulation.

When you code an application for multi-touch, you’ll probably
always inhibit mouse promotion for multi-touch-aware controls.
But to make your program usable without a multi-touch monitor,
you’ll also add specifi c mouse processing.

If you have only a mouse or a single fi nger, you can still move
the string within the TwoFingerManipulation program, but you
can change only its position—the graphical operation known as
translation. With two fi ngers on a multi-touch screen, you can also
scale the object and rotate it.

When I sat down with a pad and pen to fi gure out the algorithm
I’d need for this scaling and rotation, it soon became obvious that
there was no unique solution!

Suppose one fi nger remains fi xed at the point ptRef. (All points
here are relative to a display surface underneath the object being
manipulated.) Th e other fi nger moves from the point ptOld to
ptNew. As shown in Figure 2, you can use these three points solely
to calculate horizontal and vertical scaling factors for the object.
For example, horizontal scaling is the increase in the distance of
ptOld.X and ptNew.X from ptRef.X, or:

scaleX = (ptNew.X – ptRef.X) / (ptOld.X – ptRef.X)

Vertical scaling is similar. For the example in Figure 2, the
horizontal scaling factor is 2 and the vertical scaling factor is ½.

Th is is certainly the easier way to code it. Yet, the program seems
to function more naturally if the two fi ngers rotate the object as
well. Th is is shown in Figure 3.

First, the angles of the two vectors—from ptRef to ptOld, and
from ptRef to ptNew—are calculated. (Th e Math.Atan2 method
is ideal for this job.) Th en ptOld is rotated relative to ptRef by the
diff erence in these angles. Th is rotated ptOld is then used with
ptRef and ptNew to calculate scaling factors. Th ese scaling factors
are much less because a rotation component has been removed.

The actual algorithm (implemented in the ComputeMove-
Matrix method in the C# file) turned out to be fairly easy.
However, the program also required a bunch of transform
support code to compensate for the defi ciencies of the Silverlight
transform classes, which have no public Value property or matrix
multiplication as in the WPF.

In the actual program, both fi ngers can be moving at the same
time, and handling the interaction between the two fi ngers is
simpler than it initially seems. Each moving fi nger is handled

Figure 2 Two-Finger Movement Converted to Scaling Factors

Figure 3 Two-Finger Movement
Converted to Rotation and Scaling

Touch a fi nger to the screen.
That’s the primary touch point.

www.msdnmagazine.com
http://charlespetzold.com/silverlight/TwoFingerManipulation

msdn magazine50 Finger Style

independently using the other fi nger as the reference point.
Despite the increased complexity of the calculation, the result
seems more natural and I think there’s a simple explanation: In
real life, it is very common to rotate objects with your fi ngers, but
very unusual to scale them.

Rotation is so common in the real world that it might make sense
to implement it when an object is manipulated by only one fi nger
or the mouse. Th is is demonstrated in the alternative AltFinger-
Manipulation program (runnable at charlespetzold.com/silverlight/
AltFingerManipulation). For two fi ngers, the program works the same as
TwoFingerManipulation. For one fi nger, it calculates a rotation relative
to the center of the object, and then uses any excess movement
away from the center for translation.

Wrapping the Event with More Events
Generally I like to work with classes that Microsoft thoughtfully
provides in a framework rather than wrapping them in my own
code. But I had in mind some multi-touch applications I thought
would benefi t from a more sophisticated event interface.

I wanted fi rst a more modular system. I wanted to mix custom
controls that would handle their own touch input with existing
Silverlight controls that simply let touch input be converted to mouse

input. I also wanted to implement capture. Although the Silverlight
application itself captures the multi-touch device, I wanted individual
controls to independently capture a particular touch point.

I also wanted Enter and Leave events. In a sense, these events
are the opposite of a capture paradigm. To understand the
diff erence, imagine an on-screen piano keyboard where each key
is an instance of the PianoKey control. At fi rst you might think of
these keys like mouse-triggered buttons. On a mouse down event
the piano key turns a note on, and on a mouse up event it turns
the note off .

But that’s not what you want for piano keys. You want the ability
to run your fi nger up and down the keyboard to make glissando
eff ects. Th e keys really shouldn’t even bother with Down and Up
events. Th ey’re really only concerned with Enter and Leave events.

WPF 4 and Microsoft Surface already have routed touch events,
and they’re likely coming to Silverlight in the future. But I met my
current needs with a class I called TouchManager, implemented in
the Petzold.MultiTouch library project in the TouchDialDemos
solution. A large portion of TouchManager consists of static methods,
fields, and a static handler for the Touch.FrameReported event
that allows it to manage touch events throughout an application.

A class that wants to register with TouchManager creates an
instance like so:

TouchManag er touchManager = new TouchManager(element);

Th e constructor argument is of type UIElement, and usually it
will be the element creating the object:

TouchManager touchManager = new TouchManager(this);

By registering with TouchManager, the class indicates that it is
interested in all multi-touch events where the DirectlyOver
property of TouchDevice is a child of the element passed to the
TouchManager constructor, and that these multi-touch events
should not be promoted to mouse events. There is no way to
unregister an element.

Aft er creating a new instance of TouchManager, a class can install
handlers for events named TouchDown, TouchMove, TouchUp,
TouchEnter, TouchLeave and LostTouchCapture:

touchManager.TouchEnter += OnTouchEnter;

<UserControl x:Class="SimpleTouchDialTemplate.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:multitouch="clr-namespace:Petzold.MultiTouch;assembly=Petzold.
MultiTouch">
 <UserControl.Resources>
 <Style x:Key="touchDialStyle"
 TargetType="multitouch:TouchDial">
 <Setter Property="Maximum" Value="180" />
 <Setter Property="Minimum" Value="-180" />
 <Setter Property="Width" Value="200" />
 <Setter Property="Height" Value="200" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="multitouch:TouchDial">
 <Grid>
 <Ellipse Fill="{TemplateBinding Background}" />
 <Grid RenderTransform="{TemplateBinding RotateTransform}">
 <Rectangle Width="20" Margin="10"
 Fill="{TemplateBinding Foreground}" />
 </Grid>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <multitouch:TouchDial Grid.Column="0"
 Background="Blue" Foreground="Pink"
 Style="{StaticResource touchDialStyle}" />

 <multitouch:TouchDial Grid.Column="1"
 Background="Red" Foreground="Aqua"
 Style="{StaticResource touchDialStyle}" />
 </Grid>
</UserControl>

Figure 4 The XAML File for the SimpleTouchDialTemplate Project

Figure 5 The SimpleTouchDialTemplate Program

Multi-touch input is captured on
an application level.

http://charlespetzold.com/silverlight/AltFingerManipulation
http://charlespetzold.com/silverlight/AltFingerManipulation

51March 2010msdnmagazine.com

All handlers are defined in accordance with the Event-
Handler<TouchEventArgs> delegate:

void OnTouchEnter(
 object sender, TouchEventArgs args) {
 ...
}

TouchEventArgs defi nes four properties:
• Source of type UIElement, which is the element originally

passed to the TouchManager constructor.
• Position of type Point. Th is position is relative to Source.
• DirectlyOver of type UIElement, simply copied from the

TouchDevice object.
• Id of type int, also just copied from the TouchDevice object.

Only while processing the TouchDown event is a class allowed
to call the Capture method with the touch point ID associated
with that event:

touchManager.Capture(id);

All further touch input for that ID goes to the element associated
with this TouchManager instance until the TouchUp event or an
explicit call to ReleaseTouchCapture. In either case, TouchManager
fi res the LostTouchCapture event.

Th e events are generally in the order: TouchEnter, TouchDown,
TouchMove, TouchUp, TouchLeave and LostTouchCapture (if
applicable). Of course there can be multiple TouchMove events
between TouchDown and TouchUp. When a touch point is not
captured, there can be multiple events in
the order TouchLeave, TouchEnter and
TouchMove as the touch point leaves one
registered element and enters another.

The TouchDial Control
Changes in user-input paradigms oft en
require you to question old assumptions
about the proper design of controls and other
input mechanisms. For example, few GUI
controls are as solidly entrenched as the

scrollbar and slider. You use these controls to navigate large documents
or images, but also as tiny volume controls on media players.

As I considered making an on-screen volume control that would
respond to touch, I wondered if the old approach was really the correct
one. In the real world, sliders are sometimes used as volume controls,
but generally restricted to professional mixing panels or graphic equal-
izers. Most volume controls in the real world are dials. Might a dial be
a better solution for a touch-enabled volume control?

I won’t pretend I have the defi nitive answer, but I’ll show you
how to build one.

Th e TouchDial control is included in the Petzold.MultiTouch
library in the TouchDialDemos solution (see the code down-
load for details). TouchDial derives from RangeBase so it can take
advantage of the Minimum, Maximum and Value properties—
including the coercion logic to keep Value within the Minimum
and Maximum range—and the ValueChanged event. But in Touch-
Dial, the Minimum, Maximum and Value properties are all angles
in units of degrees.

TouchDial responds to both mouse and touch, and it uses the
TouchManager class to capture a touch point. With either the mouse
or touch input, TouchDial changes the Value property during
a Move event based on the new location and previous location of
the mouse or fi nger relative to a center point. Th e action is quite
similar to Figure 3 except that no scaling is involved. Th e Move
event uses the Math.Atan2 method to convert Cartesian coordinates
to angles, and then adds the diff erence in the two angles to Value.

TouchDial does not include a default template, and hence has no
default visual appearance. When using TouchDial, your job is to
supply a template, but it can be as simple as a few elements. Obviously
something on this template should probably rotate in accordance
with changes in the Value property. For convenience, TouchDial
supplies a get-only RotateTransform property where the Angle
property is equal to the Value property of the RangeBase, and the
CenterX and CenterY properties refl ect the center of the control.

Figure 4 shows a XAML fi le with two TouchDial controls that
reference a style and template defi ned as a resource.

Notice that the style sets the Maximum
property to 180 and the Minimum to -180 to
allow the bar to be rotated 180 degrees to the
left and right. (Oddly, the program did not
function correctly when I switched the order
of those two properties in the style defi nition.)
Th e dial consists simply of a bar made from
a Rectangle element within an Ellipse. Th e
Bar is inside a single-cell Grid, which has its
RenderTransform bound to the Rotate-
Transform property calculated by TouchDial.

<UserControl x:Class="OffCenterTouchDial.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:multitouch="clr-namespace:Petzold.MultiTouch;assembly=Petzold.
MultiTouch">
 <Grid x:Name="LayoutRoot">
 <multitouch:TouchDial Width="300" Height="200"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Minimum="-20" Maximum="20"
 InputCenterX="35" InputCenterY="100"
 RenderCenterX="15" RenderCenterY="15">
 <multitouch:TouchDial.Template>
 <ControlTemplate TargetType="multitouch:TouchDial">
 <Grid Background="Pink">
 <Rectangle Height="30" Width="260"
 RadiusX="15" RadiusY="15" Fill="Lime"
 RenderTransform="{TemplateBinding RotateTransform}" />
 <Ellipse Width="10" Height="10"
 Fill="Black" HorizontalAlignment="Left"
 Margin="30" />
 </Grid>
 </ControlTemplate>
 </multitouch:TouchDial.Template>
 </multitouch:TouchDial>
 </Grid>
</UserControl>

Figure 6 The OffCenterTouchDial XAML File

Figure 7 The OffCenterTouchDial Program

In real life, it is very common to
rotate objects with your fi ngers,
but very unusual to scale them.

www.msdnmagazine.com

msdn magazine52 Finger Style

Th e SimpleTouchDialTemplate program is shown running
in Figure 5.

You can try it out (along with the next two programs I’ll be
discussing here) at charlespetzold.com/silverlight/TouchDialDemos.

Turning the bar within the circle is a little awkward with the mouse
and feels much more natural with a fi nger. Notice that you can turn
the bar when you press the left mouse button (or put your fi nger
on the screen) anywhere within the circle. While turning the bar,
you can move the mouse or fi nger away because both are captured.

If you want to restrict the user from turning the bar unless the
mouse or fi nger is pressed directly over the bar, you can set the
IsHitTestVisible property of the Ellipse to False.

My fi rst version of the TouchDial control didn’t include the
RotateTransform property. It made more sense to me that the
template could include an explicit RotateTransform where the Angle
property was the target of a TemplateBinding to the Value property
of the control. However, in Silverlight 3, bindings don’t work on
properties of classes not derived from FrameworkElement, so the
Angle property of RotateTransform can’t be a binding target (this
is fi xed in Silverlight 4).

Rotation is always in reference to a center point, and that little fact
complicates the TouchDial control. TouchDial uses a center point

in two ways: to calculate the angles shown in Figure 3, and also to
set the CenterX and CenterY properties of the Rotate Transform
it creates. By default, TouchDial calculates both centers as half the
ActualWidth and ActualHeight properties, which is the center of
the control, but there are very many cases where that’s not quite
what you want.

For example, in the template in Figure 4, suppose you want
to bind the RenderTransform property of the Rectangle to the
RotateTransform property of TouchDial. It won’t work correctly
because TouchDial is setting the CenterX and CenterY properties
of RotateTransform to 100, but the center of the Rectangle relative
to itself is actually the point (10, 90). To let you override these
defaults that TouchDial calculates from the size of the control, the
control defi nes RenderCenterX and RenderCenterY properties. In
the SimpleTouchDialTemplate property you can set these properties
in the style like so:

<Setter Property="RenderCenterX" Value="10" />
<Setter Property="RenderCenterY" Value="90" />

Or, you can set these properties to zero and set the Render-
TransformOrigin of the Rectangle element to indicate the center
relative to itself:

RenderTransformOrigin="0.5 0.5"

You might also want to use TouchDial in cases where the point
used to reference the mouse or fi nger movement isn’t in the center
of the control. In that case, you can set the InputCenterX and
InputCenterY properties to override the defaults.

Figure 6 shows the OffCenterTouchDial project XAML file.
This file contains a single TouchDial control where properties
are set on the control itself, and the Template property is set to a
Control template containing a single-cell Grid with a Rectangle
and Ellipse. The Ellipse is a tiny symbolic pivot point for the
Rectangle, which you can swivel up and down by 20 degrees, as
shown in Figure 7.

Th e InputCenterX and InputCenterY properties are always relative
to the entire control, so they indicate the location of the center of

using System;
using System.Windows;
using System.Windows.Controls;

namespace Petzold.MultiTouch {
 public partial class VolumeControl : UserControl {
 public static readonly DependencyProperty VolumeProperty =
 DependencyProperty.Register("Volume",
 typeof(double),
 typeof(VolumeControl),
 new PropertyMetadata(0.0, OnVolumeChanged));

 public event DependencyPropertyChangedEventHandler VolumeChanged;

 public VolumeControl() {
 DataContext = this;
 InitializeComponent();
 }

 public double Volume {
 set { SetValue(VolumeProperty, value); }
 get { return (double)GetValue(VolumeProperty); }
 }

 void OnTouchDialValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> args) {

 Volume = 96 * (args.NewValue + 150) / 300;
 }

 static void OnVolumeChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args) {

 (obj as VolumeControl).OnVolumeChanged(args);
 }

 protected virtual void OnVolumeChanged(
 DependencyPropertyChangedEventArgs args) {

 touchDial.Value = 300 * Volume / 96 - 150;

 if (VolumeChanged != null)
 VolumeChanged(this, args);
 }
 }
}

Figure 8 The C# File for VolumeControl

Figure 9 The PitchPipe Program

Changes in user-input
paradigms often require you to

question old assumptions.

http://charlespetzold.com/silverlight/TouchDialDemos

Project3 11/5/09 2:54 PM Page 1

www.xceed.com

msdn magazine54 Finger Style

the Ellipse element within the pink Grid. Th e RenderCenterX and
RenderCenterY properties are always relative to the part of the
control to which the RotateTransform property is applied.

Volume Controls and Pitch Pipes
Th e two previous examples demonstrate how you can give a visual
appearance to TouchDial by either setting the Template property
explicitly in markup or, if you need to share templates among multiple
controls, by referencing a ControlTemplate defi ned as a resource.

You can also derive a new class from TouchDial and use the XAML
fi le solely for setting a template. Th is is the case with the Ridged-
TouchDial in the Petzold.MultiTouch library. RidgedTouchDial
is the same as TouchDial except it has a specifi c size and visual
appearance (which you’ll see shortly).

It is also possible to use TouchDial (or a derived class like Ridged-
TouchDial) within a class derived from UserControl. Th e advantage
of this approach is that you can hide all the properties defi ned
by RangeBase, including Minimum, Maximum and Value, and
replace them with a new property.

Th is is the case with VolumeControl. VolumeControl derives
from RidgedTouchDial for its visual appearance and defi nes a
new property named Volume. Th e Volume property is backed by a
dependency property and any changes to that property fi re a
VolumeChanged event.

Th e XAML fi le for VolumeControl simply references the Ridged-
TouchDial control and sets several properties, including Minimum,
Maximum and Value:

<src:RidgedTouchDial
 Name="touchDial"
 Background="{Binding Background}"
 Maximum="150"
 Minimum="-150"
 Value="-150"
 ValueChanged="OnTouchDialValueChanged" />

Th us, the TouchDial can rotate through 300 degrees from
the minimum position to the maximum position. Figure 8 shows
the Volume Control.xaml.cs. Th e control translates the 300 degree
range of the dial into the logarithmic decibel scale 0 through 96.

Why 96? Well, although the decibel scale is based on decimal
numbers—whenever the amplitude of a signal increases by a multi-
plicative factor of 10, the loudness increases linearly by 20 decibels—
it is also true that 10 to the 3rd power is approximately 2 to the 10th
power. Th is means that when the amplitude doubles, the loudness
increases by 6 decibels. Th erefore, if you represent amplitude with

a 16-bit value—which is the case with CD and PC sound—you get
a range of 16 bits times 6 decibels per bit, or 96 decibels.

Th e PitchPipeControl class also derives from UserControl and
defi nes a new property named Frequency. Th e XAML fi le includes
a TouchDial control as well as a bunch of TextBlocks to show the
12 notes of the octave. PitchPipeControl also makes use of another
property of TouchDial I haven’t discussed yet: If you set Snap-
Increment to a non-zero value in angles, the motion of the dial
will not be smooth, but will jump between increments. Because
PitchPipeControl can be set for the 12 notes of the octave, the Snap-
Increment is set to 30 degrees.

Figure 9 shows the PitchPipe program that combines Volume Control
and PitchPipeControl. You can run PitchPipe at charlespetzold. com/
silverlight/TouchDialDemos.

The Bonus Program
Earlier in this article I mentioned a control named PianoKey in the
context of an example. PianoKey is an actual control, and it is one of
several controls in the Piano program you can run at charlespetzold. com/
silverlight/Piano. Th e program is intended to be displayed with your
browser maximized. (Or press F11 to make Internet Explorer go into
Full Screen mode and get even more room.) A very tiny rendition
is shown in Figure 10. Th e keyboard is divided into overlapping
treble and bass parts. Th e red dots indicate Middle C.

It is for this program that I wrote TouchManager because the Piano
program uses touch in three diff erent ways. I’ve already discussed
the blue VolumeControl, which captures the touch point on a
TouchDown event and releases capture on TouchUp. Th e PianoKey
controls that make up the keyboards also use TouchManager, but
these controls only listen to the TouchEnter and TouchLeave events.
You can indeed run your fi ngers across the keys for glissando eff ects.
Th e brown rectangles that function as sustain pedals are ordinary
Silverlight ToggleButton controls. Th ese are not specifi cally touch-
enabled; instead touch points are converted to mouse events.

Th e Piano program demonstrates three diff erent ways to use
multi-touch. I suspect that there are many, many more.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine. His
most recent book is “The Annotated Turing: A Guided Tour Through Alan
Turing’s Historic Paper on Computability and the Turing Machine” (Wiley, 2008).
Petzold blogs on his Web site charlespetzold.com.

THANKS to the following technical experts for reviewing this article:
Robert Levy and Anson Tsao

Figure 10 The Piano Program

The Piano program
demonstrates three different

ways to use multi-touch. I
suspect that there are many,

many more.

http://charlespetzold.com/silverlight/TouchDialDemos
http://charlespetzold.com/silverlight/TouchDialDemos
http://charlespetzold.com/silverlight/Piano
http://charlespetzold.com/silverlight/Piano
http://charlespetzold.com

New in

Version 2010:

 • 64-bit version

 • Support for WSDL 2.0

• Enhanced XBRL support

• JSON editing and conversion

 • SharePoint® server support

 • True electronic forms design

 through absolute positioning

 •
 And much more...

Untitled-1 1 1/26/10 11:37 AM

www.altova.com

msdn magazine56

TH RE A D D IAGNOST IC S

Performance
Tuning with the
Concurrency Visualizer
in Visual Studio 2010

Multicore processors have become widely available,
and single-threaded performance in new processors is likely to
remain relatively fl at. Th at means added pressure on soft ware
developers to improve application performance by taking better
advantage of parallelism.

Parallel programming is challenging for many reasons, but in this
article I’d like to focus on the performance aspects of parallel appli-
cations. Multithreaded applications are not only prone to common
sources of ineffi ciency in sequential implementations, such as
ineffi cient algorithms, poor cache behavior, and excessive I/O, but they
can also suff er from parallel performance bugs. Parallel performance
and scalability may be limited by load imbalance, excessive synchro-
nization overhead, inadvertent serialization, or thread migration.

Disclaimer: This article discusses a prerelease version of
Visual Studio 2010. All information is subject to change.

This article discusses:
• CPU, Thread and Core views

• Blocking and inter-thread dependencies

• Creating reports

• Support for PPL, TPL and PLINQ

Technologies discussed:
Visual Studio 2010

Hazim Shafi

Understanding such performance bottlenecks used to require
signifi cant instrumentation and analysis by expert developers. Even
for those elite programmers, performance tuning was a tedious and
time-consuming process.

Th is is about to change for the better. Visual Studio 2010 includes
a new profi ling tool—the Concurrency Visualizer—that should
signifi cantly reduce the burden of parallel performance analysis.
Moreover, the Concurrency Visualizer can help developers analyze
their sequential applications to discover opportunities for paral-
lelism. In this article, I present an overview of the features of the
Concurrency Visualizer in Visual Studio 2010, along with some
practical usage guidance.

CPU Utilization
Th e Concurrency Visualizer comprises several visualization and
reporting tools. Th ere are three main views: CPU Utilization,
Th reads, and Cores.

Th e CPU Utilization view, shown in Figure 1, is intended to be
the starting point in Concurrency Visualizer. Th e x axis shows the
time elapsed from the start of the trace until the end of application
activity (or the end of the trace, whichever is earlier). Th e y axis
shows the number of logical processor cores in the system.

Before I describe the purpose of the view, it is important that
you understand what a logical core is. A single CPU chip today can
include multiple microprocessor circuits, referred to as physical
cores. Each physical core may be capable of running multiple ap-

57March 2010msdnmagazine.com

plication threads simultaneously. Th is is oft en
referred to as simultaneous multithreading
(SMT); Intel calls it Hyper-Th reading Tech-
nology. Each hardware-supported thread
on an SMT-capable core presents itself as a
logical core to the operating system.

If you collect a trace on a quad-core
system that does not support SMT, the y axis
would show four logical cores. If each core in
your quad-core system is capable of running
two SMT threads, then the y axis would show
eight logical cores. Th e point here is that
the number of logical cores is a refl ection
of the number of threads that can simultane-
ously execute in your system, not the num-
ber of physical cores.

Now, let’s get back to the view. Th ere are four areas shown in
the graph, as described in the legend. Th e green area depicts the
average number of logical cores that the application being analyzed
is using at any given time during the profi ling run. Th e rest of the
logical cores are either idle (shown in gray), used by the System
process (shown in red), or used by other processes running on the
system (shown in yellow).

Th e blue vertical bars in this view correspond to an optional
mechanism that allows users to instrument their code in order to
correlate the visualizations in the tool with application constructs.
I will explain how this can be done later in this article.

Th e Zoom slider control at the top left allows you to zoom in
on the view to get more details, and the graph control supports a
horizontal scrollbar when zoomed. You can also zoom by clicking
the left mouse button and dragging in the area graph itself.

Th is view has three main purposes. First, if you are interested in
parallelizing an application, you can look for areas of execution that
either exhibit signifi cant serial CPU-bound work, shown as lengthy
green regions at the single-core level on the y axis, or regions where
there isn’t much CPU utilization, where the green doesn’t show or
is considerably less than 1 on average. Both of these circumstances
might indicate an opportunity for parallelization. CPU-intensive
work can be sped up by leveraging parallelism, and areas of
unexpected low CPU utilization might imply blocking (perhaps
due to I/O) where parallelism may be used by overlapping other
useful work with such delays.

Second, if you are trying to tune your parallel application, this
view allows you to confi rm the degree of parallelism that exists
when your application is actually running. Hints of many common
parallel performance bugs are usually apparent just by examining
this graph. For example, you can observe load imbalances as
stair-step patterns in the graph, or contention for synchronization
objects as serial execution when parallelism is expected.

Th ird, since your application lives in a system that may be executing
many other applications that are competing for its resources, it is
important to understand whether your application’s performance is
aff ected by other apps. When interference is unexpected, it is usually
a good idea to reduce it by disabling applications or services to
improve the fi delity of data, because performance is usually an itera-

tive process. Sometimes, interference is caused by other processes
with which your application collaborates to deliver an experience.
Either way, you will be able to use this view to discover whether such
interference exists, and then identify the actual processes involved
by using the Th reads view, which I will discuss later.

Another feature that can help reduce interference is using the
profi ler command-line tools to collect traces rather than doing so
from within the Visual Studio IDE.

Focus your attention on some window of execution that piques
your interest, zoom in on it, and then switch to the Th reads view
for further analysis. You can always come back to this view to fi nd
the next region of interest and repeat the process.

Th reads
Th e Th reads view, shown in Figure 2, contains the bulk of the
detailed analysis features and reports in the Concurrency Visualizer.
Th is is where you’ll fi nd information that explains behavior you
identifi ed in the CPU Utilization or Cores views. It is also where
you can fi nd data to link behavior to application source code
when possible. Th ere are three main components of this view: the
timeline, the active legend and the reporting/details tab control.

Like the CPU Utilization view, the Th reads view shows time on the
x axis. (When switching between views in Concurrency Visualizer,
the range of time shown on the x axis is preserved.) However, the
Th reads view y axis contains two types of horizontal channels.

Th e top channels are usually dedicated to physical disks on your
system if they had activity in your application’s profi le. Th ere are two
channels per disk, one each for reads and writes. Th ese channels show
disk accesses that are made by your application threads or by the
System process threads. (It shows the System accesses because they
can sometimes refl ect work being done on behalf of your process,
such as paging.) Every read or write is drawn as a rectangle. Th e
length of the rectangle depicts the latency of the access, including
queuing delays; therefore, multiple rectangles may overlap.

To determine which fi les were accessed at a given point in time,
select a rectangle by clicking the left mouse button. When you do
that, the reports view below will switch to the Current Stack tab,
which is the standard location for displaying data interactively
with the timeline. Its contents will list the names of fi les that were

F igure 1 CPU Utilization View

www.msdnmagazine.com

msdn magazine58 Thread Diagnostics

either read or written, depending on the disk channel selected. I
will return to I/O analysis later.

One thing to be aware of is that not all fi le read and write
operations performed by the application may be visible when they
are expected to occur. Th is is because the operating system’s fi le
system uses buff ering, allowing some disk I/O operations to
complete without accessing the physical disk device.

Th e remaining channels in the timeline list all the threads that
existed in your application during the profi le collection period.
For each thread, if the tool detected any activity during the
profi ler run, it will display the state of the thread throughout the
trace until it is terminated.

If a thread is running, which is depicted by the green Execution
category, the Concurrency Visualizer shows you what the thread
was doing by leveraging sample profi le information. Th ere are two
ways to get at this data. One is by clicking on a green segment, in
which case you’ll see the nearest (within +/- 1 ms) profi le sample
call stack in the Current Stack tab window.

You can also generate a sample profi le report for the visible time
range to understand where most of the work was spent. If you click
on the Execution label in the active legend, the report will show up
in the Profi le Report tab. Th e profi le report has two features that
may be used to reduce complexity. One is a noise reduction feature
that, by default, removes call stacks responsible for 2 percent or less
of the profi le samples. Th is threshold can be changed by the user.
Another feature, called Just My Code, can be used to reduce the
number of stack frames due to system DLLs in the report, if that’s
desirable. I’ll cover the reports in more detail later.

Before going on, I’d like to point out a few more features for man-
aging complexity in the reports and views. You will oft en encounter
application scenarios consisting of many threads, some of which
may not be doing anything useful in a given profi ler run. Besides
fi ltering reports based on the time range, the Concurrency Visual-
izer also allows you to fi lter by the threads that are active. If you’re

interested in threads that do work, you can
use the Sort By option to sort the threads by
the percentage of time that they are in the
Execution state. You can then select the group
of threads that are not doing much useful
work and hide them from the display either by
right-clicking and selecting the Hide option
from the context menu or by clicking the
Hide button in the toolbar at the top of
the view. You can sort by all thread state
categories and can hide/unhide as you see fi t.

Th e eff ect of hiding threads is that their con-
tributions to all the reports will be removed,
in addition to hiding their channels from the
timeline. All statistics and reports in the tool
are kept up-to-date dynamically as fi ltering is
performed on threads and time range.

Blocking Categories
Th reads can block for many reasons. Th e
Th reads view attempts to identify the rea-

son why a thread blocked by mapping each instance to a set of
blocking categories. I say attempts because this categorization
can sometimes be inaccurate, as I’ll explain in a moment, so it should
be viewed as a rough guide. Th at said, the Th reads view shows all
thread delays and accurately depicts execution periods. You should
focus your attention on categories responsible for signifi cant delays in
the view based on your understanding of the application’s behavior.

In addition, the Th reads view provides the call stack at which
the thread stopped execution in the Current Stack tab if you click
on a blocking event. By clicking on a stack frame in the Current
Stack window, the user will be taken to the source code fi le (when
available) and line number where the next function is called. Th is
is an important productivity feature of the tool.

Let’s take a look at the various blocking categories:
Synchronization Almost all blocking operations can be
attributed to an underlying synchronization mechanism in
Windows. Th e Concurrency Visualizer attempts to map blocking
events due to synchronization APIs such as EnterCriticalSection
and WaitForSingleObject to this category, but sometimes other
operations that result in synchronization internally may be mapped
to this category—even though they might make more sense
elsewhere. Th erefore, this is oft en a very important blocking
category to analyze during performance tuning, not just because
synchronization overheads are important but also because it can
refl ect other important reasons for execution delays.
Preemption This includes preemption due to quantum
expiration when a thread’s share of time on its core expires. It also
includes preemption due to OS scheduling rules, such as another
process thread with a higher priority being ready to run. Th e
Concurrency Visualizer also maps other sources of preemption here,
such as interrupts and LPCs, which can result in interrupting a
thread’s execution. At each such event, the user can get the process
ID/name and thread ID that took over by hovering over a preemp-
tion region and examining the tooltip (or clicking on a yellow re-

Fi gure 2 Threads View

59March 2010msdnmagazine.com

gion and observing the Current Stack tab
contents). Th is can be a valuable feature for
understanding the root causes of yellow in-
terference in the CPU Utilization view.
Sleep Th is category is used to report thread
blocking events as a result of an explicit request
by the thread to sleep or yield its core voluntarily.
Paging/Memory Management Th is
category covers blocking events due to
memory management, which includes any
blocking operations started by the system’s memory manager as a
response to an action by the application. Th ings like page faults, cer-
tain memory allocation contentions or blocking on certain resources
would show up here. Page faults in particular are noteworthy
because they can result in I/O. When you see a page fault blocking
event, you should both examine the call stack and look for a
corresponding I/O read event on the disk channel in case the page
fault required I/O. A common source of such page faults is loading
DLLs, memory- mapped I/O and normal virtual-memory
paging by the kernel. You can identify whether this was a DLL load
or paging by clicking on the corresponding I/O segment to get
the fi lename involved.
I/O Th is category includes events such as blocking on fi le reads and
writes, certain network socket operations and registry accesses. A
number of operations considered by some to be network-related may
not show up here, but rather in the synchronization category. Th is is
because many I/O operations use synchronization mechanisms to
block and the Concurrency Visualizer may not be looking for those
API signatures in this category. Just as with the memory/paging
category, when you see an I/O blocking event that seems to be related
to accessing your disk drives, you should fi nd out if there’s a corre-
sponding disk access in the disk channels. To make this easier, you
can use the arrow buttons in the toolbar to move your threads closer
to the disk channel. To do this, select a thread channel by clicking
on its label on the left , then click on the appropriate toolbar button.
UI Processing Th is is the only form of blocking that is usually
desirable. It is the state of a thread that is pumping messages. If your
UI thread spends most of its time in this state, this implies that your
application is responsive. On the other hand, if the UI thread does
excessive work or blocking for other reasons, from the application
user’s perspective the UI will appear to hang. Th is category off ers
a great way to study the responsiveness of
your application, and to tune it.

Inter-Thread Dependencies
One of the most valuable features of the
Th reads view is the ability to determine
inter-thread synchronization dependencies.
In Figure 2 I have selected a synchronization
delay segment. Th e segment gets enlarged and
its color is highlighted (in this case, it’s red).
Th e Current Stack tab shows the call stack
of the thread at that moment. By examining
the call stack, you can determine the API that
resulted in blocking the thread’s execution.

Another visualization feature is a line that connects the blocking
segment to an execution segment on a diff erent thread. When
this visualization is visible, it illustrates the thread that ended up
unblocking the blocked thread. In addition, you can click on the
Unblocking stack tab in this case to see what the unblocking thread
was doing when it released the blocked thread.

As an example, if the blocking thread was waiting on a Win32
critical section, you would see the signature of EnterCriticalSection
on its blocking call stack. When it is unblocked, you should see the
signature of LeaveCriticalSection in the call stack of the unblocking
thread. Th is feature can be very valuable when analyzing complex
application behavior.

Reports
Th e profi le reports off er a simple way of identifying major contrib-
utors to the performance behavior of your application. Whether
you are interested in execution overheads, blocking overheads or
disk I/O, these reports allow you to focus on the most signifi cant
items that may be worth investigating.

Th ere are four types of reports in the Th reads view: execution
sampling profi les, blocking profi les, fi le operations and per-thread
summaries. All the reports are accessed using the legend. For
example, to get the execution profi le report, click the execution
legend entry. Th is produces a report in the Profi le Report tab. Th e
reports look similar to what is shown in Figure 3.

For an execution profi le report, the Concurrency Visualizer
analyzes all the call stacks collected when sampling your applica-
tion’s execution (green segments) and collates them by identifying
shared stack frames to assist the user in understanding the execution
structure of the application. Th e tool also computes inclusive
and exclusive costs for each frame. Inclusive samples account

F ig ure 3 A Typical Profi le Report

Figu re 4 File Operations Report

www.msdnmagazine.com

msdn magazine60 Thread Diagnostics

for all samples in a given execution path, including all paths
below it. Exclusive samples correspond to the number of samples of
call-graph stack-frame leaves.

To get a blocking profi le, you click on the blocking category of
interest in the legend. Th e generated report is constructed like the
execution profi le report, but the inclusive and exclusive columns
now correspond to blocking time attributed to the call stacks
or frames in the report. Another column shows the number of
instances of blocking attributed to that stack frame in the call tree.

Th ese reports off er a convenient way of prioritizing performance
tuning eff orts by identifying the parts of your application responsible
for most delays. Th e preemption report is informational and usually
does not off er any actionable data due to the nature of this category.
All the reports allow you to jump to source code. You may do so by
right-clicking on a stack frame of interest. Th e context menu that
appears allows you to jump either to the function defi nition (the
View Source option) or to the location in your application where
that function was called (the View Call Sites option). If there were
multiple callers, you will be presented with multiple options. Th is
allows a seamless integration between the diagnostic data and
the development process to tune your application’s behavior. Th e
reports may also be exported for cross-profi le comparisons.

Th e File Operations report shown in Figure 4 includes a
summary of all fi le read and write operations visible in the
current time range. For every fi le, the Concurrency Visualizer lists
the application thread that accessed it, the number of read and
write operations, the total bytes read or written, and the total read
or write latency. Besides showing fi le operations directly attributed
to the application, the Concurrency Visualizer also shows those
performed by the System process. Th ese are shown, as mentioned
earlier, because they might include fi le operations performed by

the system on behalf of your application. Exporting the report
allows cross-profi le comparisons during tuning eff orts.

Th e Per Th read Summary report, shown in Figure 5, presents a
bar graph for each thread. Th e bar is divided into the various thread
state categories. Th is can be a useful tool to track your performance
tuning progress. By exporting the graph data across various tuning
iterations, you can document your progress and provide a means
of comparing runs. Th e graph will not show all threads for
applications that have too many threads to fi t within the view.

Cores
Excessive context switches can have a detrimental eff ect on
application performance, especially when threads migrate across
cores or processor sockets when they resume execution. Th is is
because a running thread loads instructions and data it needs
(oft en referred to as the working set) into the cache hierarchy. When
a thread resumes execution, especially on another core, it can suff er
signifi cant latency while its working set is reloaded from memory
or other caches in the system.

Th ere are two common ways to reduce this overhead. A developer
can either reduce the frequency of context switches by resolving
the underlying causes, or he can leverage processor or core affi nity.
Th e former is almost always more desirable because using thread
affi nity can be the source of other performance issues and should
only be used in special circumstances. Th e Cores view is a tool that
aids in identifying excessive context switches or performance bugs
introduced by thread affi nity.

As with the other views, the Cores view displays a timeline with
time on the x axis. Th e logical cores in the system are shown on
the y axis. Each thread in the application is allocated a color, and
thread execution segments are drawn on the core channels. A
legend and context switch statistics are shown in the bottom pane,
as shown in Figure 6.

Th e statistics help the user identify threads that have exces-
sive context switches and those that incur excessive core migra-
tions. Th e user can then use this view to focus her attention on
areas of execution where the threads in question are interrupt-
ed, or jump back and forth across cores by following the visual
color hints. Once a region that depicts the problem is identifi ed,
the user can zoom in on it and switch back to the Th reads view
to understand what triggered the context switches and fi x them
if possible (for example, by reducing contention for a critical

section). Th read affi nity bugs can also mani-
fest themselves in some cases when two or
more threads contend for a single core while
other cores appear to be idle.

Support for PPL, TPL and PLINQ
The Concurrency Visualizer supports
the parallel programming models shipping
in Visual Studio 2010 aside from existing
Windows native and managed program-
ming models. Some of the new parallel
constructs—parallel_ for in the Parallel Pattern
Library (PPL), Parallel.For in the Task Parallel Figur e 5 Per Thread Summary Report

Profi le reports offer a simple way
of identifying major contributors
to the performance behavior of

your application.

61March 2010msdnmagazine.com

Library (TPL) and PLINQ queries—include visualization aids in
the performance tool that allow you to focus your attention on
those regions of execution.

PPL requires turning on tracing for this functionality to be
enabled, as shown in this example:

Concurrency::EnableTracing();
parallel_for (0, SIZE, 1, [&] (int i2) {
 for (int j2=0; j2<SIZE; j2++) {
 A[i2+j2*SIZE] = 1.0;
 B[i2+j2*SIZE] = 1.0;
 C[i2+j2*SIZE] = 0.0;
 }
});
Concurrency::DisableTracing();

When tracing is enabled, the Th reads and Cores views will
depict the parallel_for execution region by drawing vertical markers
at the beginning and end of its execution. Th e vertical bars are
connected via horizontal bars at the top and bottom of the view.
By hovering with the mouse over the horizontal bars, a tooltip
showing the name of the construct is drawn, as shown in Figure 7.

TPL and PLINQ do not require manual enabling of tracing for
the equivalent functionality in the Concurrency Visualizer.

Collecting a Profi le
Th e Concurrency Visualizer supports both the application launch
and attach methods for collecting a profi le. Th e behavior is exactly
the same as users of the Visual Studio Profi ler are accustomed to. A
new profi ling session may be initiated through the Analyze menu
option either by launching the Performance Wizard, shown in
Figure 8, or via the Profi ler | New Performance Session option. In
both cases, the Concurrency Visualizer is activated by choosing the
Concurrency profi ling method and then selecting the “Visualize
the behavior of a multithreaded application” option.

Th e Visual Studio Profi ler’s command-line tools allow you to collect
Concurrency Visualizer traces and then analyze them using the IDE.
Th is lets users who are interested in server scenarios where installing
the IDE is impossible collect a trace with the least intrusion possible.

You will notice that the Concurrency Visualizer does not have
integrated support for profi ling ASP.NET applications However,

it may be possible to attach to the host
process (usually w3wp.exe) while running
your ASP.NET application in order to
analyze its performance.

Since the Concurrency Visualizer uses
Event Tracing for Windows (ETW), it
requires administrative privileges to collect
data. You can either launch the IDE as an
administrator, or you will be prompted to do
so when necessary. In the latter case, the IDE
will be restarted with administrator rights.

Linking Visualizations
to Application Phases
Another feature in the Concurrency Visual-
izer is an optional instrumentation library that
allows developers to customize the views by
drawing markers for application phases they
care about. Th is can be extremely valuable

to allow easier correlation between visualizations and application
behavior. Th e instrumentation library is called the Scenario library and
is available for download from the MSDN Code Gallery Web site at
code.msdn.microsoft.com/scenario. Here’s an example using a C application:

#include "Scenario.h"
int _tmain(int argc, _TCHAR* argv[]) {
 myScenario = new Scenario(0, L"Scenario Example", (LONG) 0);
 myScenario->Begin(0, TEXT("Initialization"));

 // Initialization code goes here

 myScenario->End(0, TEXT("Initialization"));
 myScenario->Begin(0, TEXT("Work Phase"));

 // Main work phase goes here

 myScenario->End(0, TEXT("Work Phase"));
 exit(0);
}

Th e usage is pretty simple; you include the Scenario header fi le
and link the correct library. Th en you create one or more Scenario
objects and mark the beginning and end of each phase by invoking
the Begin and End methods, respectively. You also specify the
name of each phase to these methods. Th e visualization is identical
to that shown in Figure 7, except that the tooltip will display the
custom phase name you specify in your code. In addition, the

Figure 6 Cores View

Figure 7 An Example parallel_for Visual Marker in Threads View

www.msdnmagazine.com
http://code.msdn.microsoft.com/scenario

msdn magazine62 Thread Diagnostics

scenario markers are also visible in the CPU Utilization view,
which is not the case for other markers. An equivalent managed
implementation is also provided.

A word of caution is in order here. Scenario markers should be used
sparingly; otherwise, the visualizations can be completely obscured
by them. In fact, to avoid this problem, the tool will signifi cantly
reduce or eliminate the number of markers displayed if it detects
excessive usage. In such cases, you can zoom in to expose markers that
have been elided in most views. Further, when nesting of Scenario
markers takes place, only the innermost marker will be displayed.

Resources and Errata
Th e Concurrency Visualizer includes many features to help you
understand its views and reports. Th e most interesting such feature
is the Demystify button shown in the top-right corner of all views.
By clicking Demystify, you get a special mouse pointer allowing
you to click on any feature in view that you’d like help on. Th is is
our way of providing context-sensitive help in the tool.

In addition, there’s a Tips tab with more help content, including
a link to a gallery of visualization signatures for some common
performance issues.

As mentioned earlier, the tool leverages ETW. Some of the events
required by the Concurrency Analyzer do not exist on Windows XP
or Windows Server 2003, so the tool only supports Windows Vista,
Windows Server 2008, Windows 7 and Windows Server 2008 R2. Both
32-bit and 64-bit variants of these operating systems are supported.

In addition, the tool supports both native C/C++ and .NET
applications (excluding .NET 1.1 and earlier). If you are not running
on a supported platform, you should explore another valuable
concurrency tool in Visual Studio 2010, which is enabled by selecting
the “Collect resource contention data” option.

In certain cases, when there’s a signifi cant amount of activity in
a profi ling scenario or when there is contention for I/O bandwidth
from other applications, important trace events may be lost. Th is
results in an error during trace analysis. Th ere are two ways to
handle this situation. First, you could try profi ling again with a smaller
number of active applications, which is a good methodology to follow in
order to minimize interference while you are tuning your application.
Th e command-line tools are an additional option in this case.

Second, you can increase the number or size of ETW memory
buff ers. We provide documentation through a link in the output
window to instructions on how to accomplish this. If you choose
option two, please set the minimum total buff er size necessary to
collect a good trace since these buff ers will consume important
kernel resources when in use.

Any diagnostic tool is only as good as the data it provides back
to the user. Th e Concurrency Visualizer can help you pinpoint the

root causes of performance issues with references to source code,
but in order to do so, it needs access to symbol fi les. You can add
symbol servers and paths in the IDE using the Tools | Options |
Debugging | Symbols dialog. Symbols for your current solution
will be implicitly included, but you should enable the Microsoft
public symbol server as well as any other paths that are specifi c to
the application under study where important symbol fi les may be
found. It’s also a good idea to enable a symbol cache because that
will signifi cantly reduce profi le analysis time as the cache gets
populated with symbol fi les that you need.

Although ETW provides a low-overhead tracing mechanism,
the traces collected by the Concurrency Visualizer can be large.
Analyzing large traces can be very time-consuming and may
result in performance overheads in the visualizations provided by
the tool. Generally, profi les should be collected for durations not
exceeding one to two minutes to minimize the chances of these
issues aff ecting your experience. For most analysis scenarios, that
duration is suffi cient to identify the problem. Th e ability to attach
to a running process is also an important feature in order to avoid
collecting data before your application reaches the point of interest.

Th ere are multiple sources of information on the Concurrency Visual-
izer. Please visit the Visual Studio Profi ler forum (social.msdn. microsoft.com/
forums/en-us/vstsprofiler/threads) for community and development
team answers. Further information is available from the team blog
at blogs.msdn.com/visualizeparallel and my personal blog at blogs.msdn.com/
hshafi . Please feel free to reach out to me or my team if you have any
questions regarding our tool. We love hearing from people using the
Concurrency Visualizer, and your input helps us improve the tool.

DR. HAZIM SHAFI is the parallel performance and correctness tools architect
in the Parallel Computing Platform team at Microsoft. He has 15 years of
experience in many aspects of parallel and distributed computing and performance
analysis. He holds a B.S.E.E. from Santa Clara University, and M.S. and Ph.D.
degrees from Rice University.

THANKS to the following technical experts for reviewing this article:
Drake Campbell, Bill Colburn, Sasha Dadiomov and James Rapp

Figure 8 The Performance Wizard Profi ling Method Dialog

A single CPU chip today
can include multiple

microprocessor circuits.

http://social.msdn.microsoft.com/forums/en-us/vstsprofiler/threads
http://social.msdn.microsoft.com/forums/en-us/vstsprofiler/threads
http://blogs.msdn.com/visualizeparallel
http://blogs.msdn.com/hshafi
http://blogs.msdn.com/hshafi

Untitled-4 1 2/9/10 10:03 AM

www.telerik.com/WinForms

msdn magazine64

Although MIDI is still used to connect electronic-music hardware,
it can also be used entirely within a PC through soft ware. Sound
boards can include MIDI synthesizers, and Windows itself emulates
a MIDI synthesizer entirely in soft ware.

To access that synthesizer in your WinForms or WPF application
using the NAudio library, add NAudio.dll as a reference and include
this using directive in your source code:

using NAudio.Midi;

Suppose you want your application to play a single one-second
note that sounds like the middle C of a piano. You can do that with
the following code:

MidiOut midiOut = new MidiOut(0);
midiOut.Send(MidiMessage.StartNote(60, 127, 0).RawData);
Thread.Sleep(1000);
midiOut.Send(MidiMessage.StopNote(60, 0, 0).RawData);
Thread.Sleep(1000);
midiOut.Close();
midiOut.Dispose();

A PC might have access to multiple MIDI synthesizers; the
argument to the MidiOut constructor is a numeric ID to select the
one to open. Th e constructor will raise an exception if the MIDI
output device is already in use.

A program can obtain information about the MIDI synthesizers
by first using the static MidiOut.NumberOfDevices property to
discover how many synthesizers are present. The numeric
IDs range from 0 to one less than the number of devices. The
static Midi Out.Device Info method accepts a numeric ID and
returns an object of type MidiOutCapabilities that describe the
synthesizer. (I won’t be using these features. For the remainder
of this article I’ll simply use the default MIDI synthesizer avail-
able with an ID of zero.)

Th e Send method of the MidiOut class sends a message to the
MIDI synthesizer. A MIDI message comprises one, two or three
bytes, but the Win32 API (and NAudio) wants them packed into

UI FRONTIERS

MIDI Music in WPF Applications

Every PC contains a built-in 16-piece band ready to play some
music. Th e members of this band probably feel much neglected,
for they represent perhaps the most underutilized component
of the array of sound and video features supported by Windows.

Th is 16-piece band is an electronic music synthesizer implemented
in either hardware or soft ware that conforms to the standard known
as MIDI—the Musical Instrument Digital Interface. In the Win32
API, playing music through the MIDI synthesizer is supported
through functions beginning with the words midiOut.

MIDI support is not part of the .NET Framework, however, so
if you want to access this MIDI synthesizer in a Windows Forms
or Windows Presentation Foundation (WPF) application, you’ll
need to use either P/Invoke or an external library.

I was very pleased to fi nd MIDI support in the NAudio sound
library available on CodePlex that I discussed in my last column.
You can download that library with source code from codeplex.com/
naudio. For this article I used NAudio version 1.3.8.

A Brief Example
You can think of MIDI as a high-level interface to waveform audio
in which you’re working with musical instruments and notes.

Th e MIDI standard was developed in the early 1980s. Manufacturers
of electronic music synthesizers wanted a standard way to connect
electronic music controllers (such as keyboards) with synthesizers,
and they came up with a system to transmit small messages
(mostly one, two or three bytes in length) through a cable with a
5-pin connector at the pokey rate of 3,125 bytes per second.

Two of the most important of these messages are called Note On
and Note Off . When a musician presses a key on a MIDI keyboard,
the keyboard generates a Note On message indicating the note that
was pressed and the key’s velocity. Th e synthesizer responds by
playing that note, generally louder for higher key velocities. When
the musician releases the key, the keyboard generates a Note Off
message, and the synthesizer responds by turning the note off . No
actual audio data goes through the MIDI cable.

CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201003UIFrontiers.

Every PC contains a built-in
16-piece band ready to

play some music.

There is a MIDI fi le format that
combines MIDI messages with

timing information.

http://codeplex.com/naudio
http://codeplex.com/naudio
http://code.msdn.microsoft.com/mag201003UIFrontiers

65March 2010msdnmagazine.com

a single 32-bit integer. The MidiMessage.StartNote and Midi-
Message. StopNote methods do this packing for you. You can replace
the two arguments to Send with 0x007F3C90 and 0x00003C80,
respectively.

Th e fi rst argument to StartNote and StopNote is a code ranging
from 0 through 127 indicating the actual note, where the value 60 is
middle C. An octave higher is 72. An octave lower is 48. Th e second
argument is the velocity that the key is pressed or released. (Release
velocities are usually ignored by synthesizers.) Th ese can range from
0 to 127. Lower the second argument to MidiMessage.StartNote
to make the note soft er. (I’ll discuss the third argument shortly.)

Th e two calls to Th read.Sleep suspend the thread for 1,000
milliseconds. Th is is a very simple way of timing the messages, but
should be avoided in a user-interface thread. Th e second Sleep call
is necessary to let the note die off before it is abruptly truncated
by the Close call.

What About Polyphony?
Th at’s how you can play one note. What about multiple notes at the
same time? Th at’s possible as well. For example, if you wanted to play a
C-major chord rather than just a single C note, you can replace the
fi rst Send message with the following:

midiOut.Send(MidiMessage.StartNote(60, 127, 0).RawData);
midiOut.Send(MidiMessage.StartNote(64, 127, 0).RawData);
midiOut.Send(MidiMessage.StartNote(67, 127, 0).RawData);
midiOut.Send(MidiMessage.StartNote(72, 127, 0).RawData);

Th en replace the second Send message with:
midiOut.Send(MidiMessage.StopNote(60, 0, 0).RawData);
midiOut.Send(MidiMessage.StopNote(64, 0, 0).RawData);
midiOut.Send(MidiMessage.StopNote(67, 0, 0).RawData);
midiOut.Send(MidiMessage.StopNote(72, 0, 0).RawData);

If you want the various notes to start and stop at various times,
you’ll probably want to abandon the use of Th read.Sleep and get
an actual timer involved, particularly if you’re playing the music
on a user-interface thread. More on this shortly.

Th ere is a MIDI fi le format that combines MIDI messages with
timing information, but these fi les require specialized soft ware to
create and I won’t be discussing them here.

Instruments and Channels
So far I’ve been playing only piano sounds. You can switch the
synthesizer to play sounds of other instruments using the MIDI
Program Change message, implemented in NAudio with the
ChangePatch method:

midiOut.Send(MidiMessage.ChangePatch(47, 0).RawData);

Th e fi rst argument to ChangePatch is a numeric code ranging
from 0 to 127 to indicate a particular instrument sound.

Back in the early days of MIDI, the actual sounds coming out of
the synthesizers were entirely controlled by the performer through
dials and patch cables. (Th at’s why a particular synthesizer setup
or instrument sound is oft en referred to as a “patch.”) Later on,

creators of MIDI fi les wanted a standard set of instruments so the
fi les would sound pretty much the same regardless of the synthesizer
they played on. Th is led to a standard called General MIDI.

A good reference for General MIDI is the Wikipedia entry
en.wikipedia.org/wiki/General_midi. Under the heading “Melodic sounds”
are 128 instrument sounds with codes ranging from 1 to 128. You
use zero-based codes in the ChangePatch method, so code 47 in the
previous example is instrument 48 in this list, which is a Timpani sound.

I mentioned at the outset that the MIDI synthesizer is equivalent
to a 16-piece band. Th e MIDI synthesizer supports 16 channels. At
any time, each channel is associated with a particular instrument
based on the most recent Program Change message. Th e channel
number ranges from 0 through 15 and is specifi ed in the fi nal
argument of the StartNote, StopNote and ChangePatch methods.

Channel 9 is special. Th is is a percussion channel. (It’s oft en
referred to as Channel 10, but that’s if the channels are numbered
beginning at 1.) For channel 9, the codes passed to the StartNote and
StopNote methods refer to particular non-tonal percussion sounds
rather than pitches. In the Wikipedia entry on General MIDI, see
the list under the heading “Percussion.” For example, the following
call plays a cowbell sound, which is indicated by a code of 56:

midiOut.Send(MidiMessage.StartNote(56, 127, 9).RawData);

Th ere is much more to MIDI, but those are the essentials.

XAML-Based MIDI
In keeping with the spirit of WPF and XAML, I thought it would be
fun to develop a string-based format for embedding short pieces of
music directly in XAML fi les and playing them back. I call this format
a MIDI string—a text string of notes and timing information.
All tokens are separated by white space.

Notes are capital letters A through G, followed by any number
of + signs or # signs (each raises the pitch one semitone) or – signs
or the letter b (to lower the pitch one semitone) followed by an
optional octave number, where the octave beginning at middle C
is octave four. (Th is is a standard way of numbering octaves.) Th us,
the C# below middle C is:

C#3

Th e letter R by itself is a rest. A note or a rest can be optionally
followed by a duration, which indicates the period of time until
the next note. For example, this is a quarter note, which is also the
default if no duration is indicated:

1/4

Durations are sticky—that is, if a duration does not follow a note,
the last duration will be used. If the duration begins with a slash,
the numerator is assumed to be 1.

Th at duration indicates the time until the next note. Th is duration
is also used for the length of the note—that is, the time until
the note is turned off . For a more staccato sound, you may want
the note’s length to be less than its duration. Or you might want
successive notes to overlap somewhat. You indicate a note’s length
the same way as the duration, but with a minus sign:

–3/16

Durations and lengths always appear aft er the note to which
they apply, but the order doesn’t matter. Lengths are not sticky. If
a note length does not appear, the duration is used for the length.

The MIDI standard was
developed in the early 1980s.

www.msdnmagazine.com
http://en.wikipedia.org/wiki/General_midi

msdn magazine66 UI Frontiers

Notes can also be preceded by tokens. To set an instrument voice,
follow the letter I by the zero-based patch number. For example,
this indicates a violin for the successive notes:

I40

Th e piano is the default patch.
To set a new volume (that is, a velocity) for successive notes use

V, such as:
V64

For both I and V, the number that follows must range from zero
through 127.

By default, the tempo is 60 quarter notes per minute. To set a
new tempo for the following notes, use T followed by the number
of quarter notes per minute, for example:

T120

If you’d like a group of notes to be played with all the same
parameters, you can put them in parentheses. Here’s a C-major chord:

(C4 E4 G4 C5)

Only notes may appear in parentheses.

Th e vertical bar | separates channels. Th e channels are played simul-
taneously, and they are entirely independent, including the tempos.

If a particular channel contains a capital P anywhere within, that
channel becomes the percussion channel. Th at channel can contain
notes or rests in the normal notation, but also allows percussion
voices to be indicated numerically. For example, this is the cowbell:

P56

If you go to en.wikipedia.org/wiki/Charge_(fanfare), you’ll see the “Charge!”
tune oft en played at sporting events. Th at can be expressed in the
MIDI string format as:

"T100 I56 G4 /12 C5 E5 G5 3/16 -3/32 E5 /16 G5 /2"

The MidiStringPlayer
Th e MidiStringPlayer is the only public class in the Petzold.Midi
library project included with the downloadable source code. It derives
from FrameworkElement so you can embed it in the visual tree in a
XAML fi le, but it has no visual appearance. Set the MidiString prop-
erty to a string in the format shown in the previous example and call
Play (and, optionally, Stop to stop the sequence before it’s completed).

MidiStringPlayer also has a PlayOnLoad property to play a
sequence when the element loads, and a get-only IsPlaying property.
Th e element generates an Ended event when it’s completed playing a
sequence, and a Failed event that’s fi red if there’s an error in the syntax
of the MIDI string. Th e event includes an off set in the text string
indicating the problematic token and a text explanation of the error.

Two WPF programs are also included in the downloadable code.
Th e MusicComposer program lets you interactively put together a
MIDI string. Th e WpfMusicDemo program encodes some simple
sequences in a MIDI fi le, as shown in Figure 1.

A crucial part of any piece of music-playing soft ware is the timer,
but for MidiStringPlayer I used the very simple DispatcherTimer,
which runs on the UI thread. Th is is certainly not optimum. If another
program is hogging the CPU, the music playback will become irregular.
DispatcherTimer also cannot generate Tick events faster than about 60
per second, which is satisfactory for simple pieces, but doesn’t provide
the necessary precision of for more rhythmically complex music.

Th e Win32 API includes a high-resolution timer specifi cally for
playing MIDI sequences, but this has not yet made it to the NAudio
library. Perhaps at some later time I’ll replace the DispatcherTimer
with something a little more precise and regular, but for now I’m
happy that it works as well as it does with this simple solution.

CHARLES PETZOLD is a long-time Contributing Editor to MSDN Magazine.
His most recent book is “Th e Annotated Turing: A Guided Tour through Alan
Turing’s Historic Paper on Computability and the Turing Machine” (Wiley, 2008).
Petzold blogs on his Web site charlespetzold.com.

THANKS to the following technical expert for reviewing this article:
Mark Heath

<Window x:Class="WpfMusicDemo.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:midi="clr-namespace:Petzold.Midi;assembly=Petzold.Midi"
 Title="WPF Music Demo"
 Height="300" Width="300">
 <Grid>
 <midi:MidiStringPlayer Name="player"
 PlayOnLoad="True"
 MidiString="{Binding ElementName=chargeButton, Path=Tag}" />

 <UniformGrid Rows="2"
 ButtonBase.Click="OnButtonClick">
 <UniformGrid.Resources>
 <Style TargetType="Button">
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Style.Triggers>
 <DataTrigger
 Binding="{Binding ElementName=player, Path=IsPlaying}"
 Value="True">
 <Setter Property="IsEnabled" Value="False" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </UniformGrid.Resources>

 <Button Name="chargeButton"
 Content="Charge!"
 Tag="T100 I56 G4 /12 C5 E5 G5 3/16 -3/32 E5 /16 G5 /2" />

 <Button Content="Bach D-Minor Toccata"
 Tag="T24 I19 A5 /64 G5 A5 5/32 R /32 G5 /64 F5 E5 D5 C#5 /32 D5
/16 R 4/16 A4 /64 G4 A4 5/32 R /32 E4 F4 C#4 D4 /16 R 4/16 | T24 I19 A4
/64 G4 A4 5/32 R /32 G4 /64 F4 E4 D4 C#4 /32 D4 /16 R 4/16 A3 /64 G3 A3
5/32 R /32 E3 F3 C#3 D3 /16 R 4/16"/>

 <Button Content="Shave & a Haircut"
 Tag="T130 I58 C5 G4 /8 G4 Ab4 /4 G4 R I75 B4 C5" />

 <Button Content="Beethoven Fifth"
 Tag="T200 I71 R /8 G4 G4 G4 Eb4 7/8 R /8 F4 F4 F4 D4 5/4 | T200
I40 R /8 G4 G4 G4 Eb4 7/8 R /8 F4 F4 F4 D4 5/4 | T200 I40 R /8 G4 G4 G4
Eb4 7/8 R /8 F4 F4 F4 D4 5/4 | T200 I41 R /8 G3 G3 G3 Eb3 7/8 R /8 F3 F3
F3 D3 5/4 | T200 I43 R /8 G2 G2 G2 Eb2 7/8 R /8 F2 F2 F2 D2 5/4 | T200
I43 R /8 G2 G2 G2 Eb2 7/8 R /8 F2 F2 F2 D2 5/4"/>

 </UniformGrid>
 </Grid>
</Window>

Figure 1 WpfMusicDemo.xaml Encodes
Several Simple MIDI Strings

The Win32 API includes a
high-resolution timer specifi cally

for playing MIDI sequences.

http://en.wikipedia.org/wiki/Charge_(fanfare)
http://charlespetzold.com

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine68

Th e fi rst is OK because IEnumerable(Of T) is an “out” interface,
which means that in IEnumerable(Of Control), users of the interface
can only take controls out of the list.

Th e second is unsafe because IList(Of T) is an “in-and-out”
interface, so in IList(Of Control), users of the interface can put in
controls as well as take them out.

Th e new language feature in Visual Studio 2010 that allows this
is called generic covariance. In the .NET Framework 4, Microsoft
has rewritten the framework along these lines:

Interface IEnumerable(Of Out T)
...
End Interface
Interface IList(Of T)
...
End Interface

Th e Out annotation in IEnumerable(Of Out T) indicates that if
a method in IEnumerable mentions T, it will do so only in an out
position, such as that for the return of a function or the type of a
read-only property. Th is allows users to cast any IEnumerable(Of
Derived) into an IEnumerable(Of Base) without running into an
InvalidCastException.

IList lacks an annotation because IList(Of T) is an in-and-out
interface. As a result, users can’t cast IList(Of Derived) into IList(Of
Base) or vice versa; doing so could lead to an InvalidCastException,
as you saw above.

Contravariance
Th ere’s a mirror of the Out annotation. It’s a bit more subtle, so I’ll
start with an example:

Dim _compOne As IComparer(Of Control) = New MyComparerByControlName()
Dim _compTwo As IComparer(Of Button) = _compOne
Dim btnOne = new Button with {.Name = "btnOne", OnClick = AddressOf
btnOneClick, Left=20}
Dim btnTwo = new Button with {.Name = "btnTwo", OnClick = AddressOf
btnTwoClick, Left=100}
Dim areSame = _compTwo.Compare(btnOne, btnTwo)

Here I’ve created a comparer that can determine whether
any two controls are the same, which it does by looking at their
names only.

Because the comparer can compare any controls at all, it certainly
has the ability to evaluate two controls that happen to be buttons. Th at’s
why you can safely cast it to an IComparer(Of Button). In general,
you can safely cast an IComparer(Of Base) into any IComparer(Of

 BASIC INSTINCTS

Generic Co- and Contravariance
in Visual Basic 2010

Visual Studio 2010 has a new feature called generic co- and
contravariance that is available when working with generic
interfaces and delegates. In versions that precede Visual Studio 2010
and the Microsoft .NET Framework 4, generics behave invariantly
with respect to subtyping, so conversions between generic types
with diff erent type arguments aren’t allowed.

For example, if you try passing a List(Of Derived) to a method
that accepts an IEnumerable(Of Base), you’ll get an error. But
Visual Studio 2010 can handle type-safe co- and contravariance
that supports declaration of covariant and contravariant type
parameters on generic interfaces and delegate type. In this article I’ll
discuss what this feature really is and how you can take advantage
of it in your applications.

Because a button is a control, you’d expect this code to work
because of basic object-oriented inheritance principles:

Dim btnCollection As IEnumerable(Of Button) = New List(Of Button) From
{New Button}
Dim ctrlCollection As IEnumerable(Of Control) = btnCollection

It’s not allowed, though, in Visual Studio 2008, which will
give the error “IEnumerable(Of Button) cannot be converted to
IEnumerable(Of Control) .” But as object-oriented programmers,
we know that a value of type Button can be converted to a control,
so as noted earlier, according to basic inheritance principles, the
code should be allowed.

Consider the following example:
Dim btnCollection As IList(Of Button) = New List(Of Button) From {New
Button}
Dim ctrlCollection As IList(Of Control) = btnCollection
ctrlCollection(0) = New Label
Dim firstButton As Button = btnCollection(0)

Th is would fail with an InvalidCastException because the
programmer converted the IList(Of Button) into an IList(Of Control),
then inserted a control into it that wasn’t even a button.

Visual Studio 2010 recognizes and allows code like that in the
fi rst case, but can still disallow the type of code shown in the second
case when targeting the .NET Framework 4. For most users, and
the majority of the time, programs will just work in the expected
way and there’ll be no need to dig deeper. In this article, though, I
will dig deeper to explain how and why the code works.

Covariance
In the fi rst listing, which viewed an IEnumerable(Of Button) as an
IEnumerable(Of Control), why was the code safe in Visual Studio
2010, while the second code sample, which viewed an IList(Of
Button) as an IList(Of Control), unsafe?

BINYAM KELILE

This article is based on a prerelease version of Visual Studio 2010.
All information is subject to change.

ENTERPRISE

SNMP

POP

TCP

UDP

2IP

SSL

SFTP

SSH

HTTP

TELNET

EMULATION

FTPSMTP

WEB
UI

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set
of native ActiveX, .NET and Compact Framework components.
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and
ASN.1 standards supported.

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET
applications. Develop unique solutions by including streaming file
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET
and Compact Framework projects. Reduce integration costs with
detailed documentation, hundreds of samples and an expert
in-house support staff.

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1 1 1/11/10 11:10 AM

mailto:sales@dart.com
www.dart.com
www.dart.com

msdn magazine70 Basic Instincts

Derived). Th is is called contravariance. It’s done with In annotations
and is the exact mirror image of the Out annotations.

Th e .NET Framework 4 has also been modifi ed to incorporate
In generic type parameters:

Interface IComparer(Of In T)
 ...
End Interface

Because of the IComparer(Of T) In annotation, every method in
IComparer that mentions T will do so only in an in position such
as that of a ByVal argument or the type of a write-only property.
Th us users can cast an IComparer(Of Base) into any IComparer(Of
Derived) without running into an InvalidCastException.

Let’s consider an example of the Action delegate in .NET 4 where
the delegate becomes contravariant in T:

Dim actionControl As Action(Of Control)
Dim actionButton As Action(Of Button) = actionControl

Th e example works in .NET 4 because the user of the delegate action-
Button will always invoke it with Button arguments, which are controls.

You can add In and Out annotations to your own generic
interfaces and delegates as well. But because of common language
runtime (CLR) limitations, you can’t use these annotations on
classes, structures or anything else. In short, only interfaces and
delegates can be co- or contravariant.

Declarations/Syntax
Visual Basic uses two new contextual keywords: Out, which intro-
duces covariance, and In, which does the same for contravariance,
as illustrated in this example:

Public Delegate Function Func(Of In TArg, Out TResult)(ByVal arg As
TArg) As TResult

Public Interface IEnumerable(Of Out Tout)

 Inherits IEnumerable
 Function GetEnumerator() As IEnumerator(Of Tout)
End Interface

Public Interface IEnumerator(Of Out Tout)
 Inherits IEnumerator
 Function Current() As Tout
End Interface

Public Interface IComparer(Of In Tin)
 Function Compare(ByVal left As Tin, ByVal right As Tin) As Integer
End Interface

Why do we need these two contextual keywords or the syntax at all,
though? Why don’t we infer variance In/Out automatically? First, it’s
useful for programmers to declare their intent. Second, there are places
where the compiler can’t infer the best variance annotation automatically.

Let’s consider two interfaces, IReadWriteBase and IReadWrite:
Interface IReadWriteBase(Of U)
 Function ReadWrite() As IReadWrite(Of U)
End Interface
Interface IReadWrite(Of T) : Inherits IReadWriteBase(Of T)
End Interface

If the compiler infers them both to be Out, as below, the code
works fi ne:

Interface IReadWriteBase(Of Out U)
 Function ReadWrite() As IReadWrite(Of U)
End Interface
Interface IReadWrite(Of Out T)
 Inherits IReadWriteBase(Of T)
End Interface

And if the compiler infers both to be In, as shown here, again
the code works fi ne:

Interface IReadWrite(Of In T)
 Inherits IReadWriteBase(Of T)
End Interface
Interface IReadWriteBase(Of In U)
 Function ReadWrite() As IReadWrite(Of U)
End Interface

Th e compiler can’t know which one to pick—In or Out—so it
provides a syntax.

Out/In contextual keywords appear in interface and delegate
declarations only. Using the keywords in any other generic
parameter declaration will cause a compile-time error. The
Visual Basic compiler doesn’t allow a variant interface to contain
nested enumerations, classes and structures because the CLR
doesn’t support variant classes. You can, however, nest variant
interfaces inside a class.

Dealing with Ambiguity
Co- and contravariance introduce ambiguity in member lookup,
so you should know what triggers ambiguity and how the Visual
Basic compiler handles it.

Option Strict On
Imports System.Windows.Forms
Interface IComparer(Of Out Tout)
End Interface
Class Comparer
 Implements IComparer(Of Button)
 Implements IComparer(Of CheckBox)
End Class

Module VarianceExample
 Sub Main()
 Dim iComp As IComparer(Of Control) = New Comparer()
 End Sub
End Module

Figure 1 An Ambiguous Conversion

Option Strict On
Imports System.Windows.Forms
Interface IEnumerable(Of Out Tout)
End Interface
Class ControlList
 Implements IEnumerable(Of Button)
 Implements IEnumerable(Of CheckBox)
End Class

Module VarianceExample
 Sub Main()
 Dim _ctrlList As IEnumerable(Of Control) = CType(New ControlList,
IEnumerable(Of Button))
 Dim _ctrlList2 As IEnumerable(Of Control) = CType(New ControlList,
IEnumerable(Of CheckBox))
 End Sub
End Module

Figure 2 A Conversion that Succeeds at Runtime

Only interfaces and delegates
can be co- and contravariant,

and only when the type
arguments are reference types.

71March 2010msdnmagazine.com

Let’s consider the example in Figure 1, in which we try to
convert Comparer to IComparer(Of Control) where Comparer
implements IComparer(Of Button) and IComparer(Of CheckBox).

Because both IComparer(Of Button) and IComparer(Of
 CheckBox) are variant-convertible to IComparer(Of Control), the
conversion will be ambiguous. As a result, the Visual Basic compiler
looks for ambiguities according to the CLR rules, and if Option
Strict is On, disallows such ambiguous conversions at compile
time; if Option Strict is Off , the compiler generates a warning.

Th e conversion in Figure 2 succeeds at runtime and doesn’t
generate a compile-time error.

Figure 3 illustrates the danger of implementing both IComparer(of
IBase) and IComparer(of IDerived) generic interfaces. Here,
Comparer1 and Comparer2 classes implement the same variant
generic interface with different generic type parameters in different
order. Even though Comparer1 and Comparer2 are identical,
apart from ordering when they implement the interface, the call
to the Compare method in those classes gives different results.

Here’s why different results emerge from the code in Figure
3, even though _comp and _comp2 are identical. The compiler
just emits Microsoft Intermediate Language that performs
the cast. Thus the choice of whether to get the IComparer(Of
IAccountRoot) or IComparer(Of IAccount) interface, given an
implementation of the Compare() method that’s different, falls
to the CLR, which always picks the first assignment-compatible
interface in the list of interfaces. So with the code in Figure 3,

the Compare() method gives different results because the
CLR chooses the IComparer(Of IAccountRoot) interface for
Comparer1 class and the IComparer(Of IAccount) interface
for Comparer2 class.

Option Strict On
Imports System.Windows.Forms
Module VarianceExample
 Interface IEnumerable(Of Out Tout)
 End Interface
 Class List(Of T)
 Implements IEnumerable(Of T)
 End Class
 Class Program
 Shared Function Foo(Of T As U, U)(ByVal arg As T) As U
 Return arg
 End Function

 Shared Sub Main()
 'This is allowed because it satisfies the constraint Button
AS Control
 Dim _ctrl As Control = Foo(Of Button, Control)(New Button)
 Dim _btnList As IEnumerable(Of Button) = New List(Of Button)
()
 'This is allowed because it satisfies the constraint
IEnumerable(Of Button) AS IEnumerable(Of Control)
 Dim _ctrlCol As IEnumerable(Of Control) = Foo(Of
IEnumerable(Of Button), IEnumerable(Of Control))(_btnList)

 End Sub
 End Class
End Module

Figure 4 How a Generic Constraint
Encompasses Variance-Convertibility

Option Strict Off
Module VarianceExample
 Sub Main()
 Dim _comp As IComparer(Of Account) = New Comparer1()
 Dim _comp2 As IComparer(Of Account) = New Comparer2()

 Dim _account = New Account With {.AccountType = "Checking",
.IsActive = True}
 Dim _account2 = New Account With {.AccountType = "Saving",
.IsActive = False}

 '// Even though _comp and _comp2 are *IDENTICAL*, they give
different results!
 Console.WriteLine(_comp.Compare(_account, _account2)) '; //
prints 0
 Console.WriteLine(_comp2.Compare(_account, _account2)) '; //
prints -1

 End Sub
 Interface IAccountRoot
 Property AccountType As String
 End Interface
 Interface IAccount
 Inherits IAccountRoot
 Property IsActive As Boolean
 End Interface
 Class Account
 Implements IAccountRoot, IAccount
 Public Property AccountType As String Implements IAccountRoot.
AccountType
 Public Property IsActive As Boolean Implements IAccount.IsActive
 End Class

 Class Comparer1
 Implements IComparer(Of IAccountRoot), IComparer(Of IAccount)

 Public Function Compare(ByVal x As IAccount, ByVal y As IAccount)
As Integer Implements System.Collections.Generic.IComparer(Of IAccount).
Compare

 Dim c As Integer = String.Compare(x.AccountType,
y.AccountType)
 If (c <> 0) Then
 Return c
 Else
 Return (If(x.IsActive, 0, 1)) - (If(y.IsActive, 0, 1))
 End If

 End Function

 Public Function Compare(ByVal x As IAccountRoot, ByVal y
As IAccountRoot) As Integer Implements System.Collections.Generic.
IComparer(Of IAccountRoot).Compare
 Return String.Compare(x.AccountType, y.AccountType)
 End Function
 End Class

 Class Comparer2
 Implements IComparer(Of IAccount), IComparer(Of IAccountRoot)

 Public Function Compare(ByVal x As IAccount, ByVal y As IAccount)
As Integer Implements System.Collections.Generic.IComparer(Of IAccount).
Compare
 Dim c As Integer = String.Compare(x.AccountType,
y.AccountType)
 If (c <> 0) Then
 Return c
 Else
 Return (If(x.IsActive, 0, 1)) - (If(y.IsActive, 0, 1))
 End If
 End Function

 Public Function Compare(ByVal x As IAccountRoot, ByVal y
As IAccountRoot) As Integer Implements System.Collections.Generic.
IComparer(Of IAccountRoot).Compare
 Return String.Compare(x.AccountType, y.AccountType)
 End Function
 End Class
End Module

Figure 3 Different Results from the Same Method

www.msdnmagazine.com

msdn magazine72 Basic Instincts

Constraints on a Generic Interface
When you write a generic constraint—(Of T As U, U)—As now
encompasses variance-convertibility in addition to inheritance.
Figure 4 demonstrates that (of T As U, U) encompasses variance-
convertibility. A variant generic parameter can be constrained to
a diff erent variant parameter. Consider this:

Interface IEnumerable(Of In Tin, Out Tout As Tin)
End Interface
Interface IEnumerable(Of Out Tout, In Tin As Tout)
End Interface

In this example, an IEnumerator(Of ButtonBase, ButtonBase)
can be variance-converted to an IEnumerator(Of Control, Button),
and IEnumerable(Of Control, Button) can be converted to

IEnumerable(Of ButtonBase, ButtonBase) with the constraints
still satisfi ed. Notionally, it could be further variance-converted to
IEnumerable(Of ButtonBase, Control), but this no longer satisfi es
the constraints, so it isn’t a valid type. Figure 5 represents a fi rst-in,
fi rst-out collection of objects where a constraint could be useful.

In Figure 5, if I give _IPipe to you, you can only push Button
into the pipe, and you can only read Control from it. Note that
you can constrain a variant interface to a value type, given that the
interface will never allow a variance conversion. Here’s an example
with value type constraint in a generic parameter:

Interface IEnumerable(Of Out Tout As Structure)
End Interface

Constraint to value type might be useless, given that variance
conversion is not allowed on a variant interface instantiated with
value types. But note that with Tout being a structure, it might be
useful to infer the type indirectly through constraints.

Constraints on a Function’s Generic Parameters
Constraints in methods/functions must have In types. Here
are two basic ways of thinking about constraints on a function’s
generic parameters:

• In most cases, a generic parameter to a function is basically
an input to the function, and all inputs must have In types.

• A client can variance-convert any Out type into System.Object.
If a generic parameter is constrained to some Out type, then
eff ectively, a client can remove that constraint, which isn’t what
constraints are about.
Let’s consider Figure 6, which makes clear what would happen

without this variance-validity rule on constraints.
In Figure 6, we’ve stored a Label inside m_data as Button,

which is illegal. Th erefore, constraints in methods/functions must
have In types.

Overload Resolution
Overloading refers to creating multiple functions with the same
name that take diff erent argument types. Overload resolution is
a compile-time mechanism for selecting the best function from
a set of candidates.

Let’s take a look at the following example:
Private Overloads Sub Foo(ByVal arg As Integer)
End Sub
Private Overloads Sub Foo(ByVal arg As String)
End Sub

Foo(2)

What actually happens behind the scenes here? When the
compiler sees the call to Foo(2), it has to fi gure out which Foo you
want to invoke. To do so, it uses the following simple algorithm:
1. Generate a set of all applicable candidates by looking up

everything with the name Foo. In our example, there are two
candidates to consider.

2. For each candidate, look at the arguments and remove
non-applicable functions. Note that the compiler also performs
a little verifi cation and type inference for generics.
With the introduction of variance, a set of predefi ned conversions is

expanded, and as the result, Step 2 will accept more candidate functions
than there were before. Also, in cases where there used to be two

Option Strict On
Imports System.Windows.Forms
Interface IEnumerable(Of Out Tout)
 Sub Foo(Of U As Tout)(ByVal arg As U)
End Interface

Class List(Of T)
 Implements IEnumerable(Of T)

 Private m_data As T
 Public Sub Foo(Of U As T)(ByVal arg As U) Implements IEnumerable(Of
T).Foo
 m_data = arg
 End Sub
End Class

Module VarianceExample
 Sub Main()
 'Inheritance/Implements
 Dim _btnCollection As IEnumerable(Of Button) = New List(Of
Button)
 'Covariance
 Dim _ctrlCollection As IEnumerable(Of Control) = _btnCollection
 'Ok, Constraint-satisfaction, because Label is a Control
 _ctrlCollection.Foo(Of Label)(New Label)
 End Sub
End Module

Figure 6 What Happens Without a
Variance-Validity Rule on Constraints

Option Strict On
Imports System.Windows.Forms

Interface IPipe(Of Out Tout, In Tin As Tout)
 Sub Push(ByVal x As Tin)
 Function Pop() As Tout
End Interface

Class Pipe(Of T)
 Implements IPipe(Of T, T)

 Private m_data As Queue(Of T)

 Public Function Pop() As T Implements IPipe(Of T, T).Pop
 Return m_data.Dequeue()
 End Function

 Public Sub Push(ByVal x As T) Implements IPipe(Of T, T).Push
 m_data.Enqueue(x)
 End Sub
End Class

Module VarianceDemo
 Sub Main()
 Dim _pipe As New Pipe(Of ButtonBase)
 Dim _IPipe As IPipe(Of Control, Button) = _pipe
 End Sub
End Module

Figure 5 Where a Constraint Is Useful in a Collection of Objects

73March 2010msdnmagazine.com

equally specifi c candidates, the compiler would have picked the
unshadowed one, but now the shadowed one may be wider, so the
compiler may pick it instead. Figure 7 demonstrates code that could
potentially break with the addition of variance into Visual Basic.

In Visual Studio 2008, the call to Add would bind to Object,
but with Visual Studio 2010’s variance-convertibility, we use
IEnumerable(Of Control) instead.

Th e compiler picks a narrowing candidate only if there’s no other,
but with variance-convertibility, if there’s a new widening candi-
date, the compiler picks it instead. If variance-convertibility makes
another new narrowing candidate, the compiler emits an error.

Extension Methods
Extension methods enable you to add methods to existing types
without creating a new derived type, recompiling or otherwise
modifying the original type. In Visual Studio 2008, extension
methods support array covariance, as in the following example:

Option Strict On
Imports System.Windows.Forms
Imports System.Runtime.CompilerServices
Module VarianceExample
 Sub Main()
 Dim _extAdd(3) As Button 'Derived from Control
 _extAdd.Add()
 End Sub

 <Extension()>
 Public Sub Add(ByVal arg() As Control)
 System.Console.WriteLine(arg.Length)
 End Sub

But in Visual Studio 2010, extension methods also dispatch on
generic variance. Th is may be a breaking change, as shown in Figure 8,
because you may have more extension candidates than before.

User-Defi ned Conversions
Visual Basic allows you to declare conversions on classes and
structures so that they can be converted to or from other classes and
structures as well as basic types. In Visual Studio 2010, variance-
convertibility is already added into user-defi ned conversion
algorithms. Th erefore, the scope of every user-defi ned conversion
will increase automatically, which might introduce breaks.

Because Visual Basic and C# don’t allow user-defi ned conversions
on interfaces, we need worry only about delegate types. Consider
the conversion in Figure 9, which works in Visual Studio 2008 but
causes an error in Visual Studio 2010.

Figure 10 gives another example of a conversion that would
cause a compile-time error in Visual Studio 2008 with Option
Strict On, but will succeed in Visual Studio 2010 with var-
iance-convertibility.

Effects of Option Strict Off
Option Strict Off normally allows narrowing conversions to be
done implicitly. But whether Option Strict is On or Off , variance-
convertibility requires its generic arguments to be related through
the CLR’s assignment-compatible widening; it’s not enough for
them to be related through narrowing (see Figure 11). Note: We
do count T->U as narrowing if there’s a variance conversion U->T,
and we count T->U as narrowing if T->U is ambiguous.

Restrictions on Co-and Contravariance
Here’s a list of restrictions with co- and contravariance:
1. In/Out contextual keywords may appear in interface declara-

tions or in delegate declarations. Using the keywords in any
other generic parameter declaration results in a compile-time
error. A variant interface can’t nest a class or structure inside it
but can contain nested interfaces and nested delegates, which
will then take on variance from the containing type.

2. Only interfaces and delegates can be co- or contravariant, and
only when the type arguments are reference types.

3. Variance conversion can’t be performed on variant interfaces
instantiated with value types.

4. Enumerations, classes, events and structures are not allowed
to go to inside a variant interface. Th is is because we emit these

Option Strict On
Imports System.Windows.Forms
Imports System.Collections.Generic
Module VarianceExample
 Sub Main()
 Dim _ctrlList = New ControlList(Of Button)
 'Picks Add(ByVal f As IEnumerable(Of Control)), Because of
variance-convertibility
 _ctrlList.Add(New ControlList(Of Button))
 End Sub
End Module
Interface IEnumerable(Of Tout)
End Interface
Class ControlList(Of T)
 Implements IEnumerable(Of T)

 Sub Add(ByVal arg As Object)
 End Sub

 Sub Add(ByVal arg As IEnumerable(Of Control))
 End Sub
End Class

Figure 7 Code that Might Break with
the Addition of Variance into Visual Basic

Option Strict On
Imports System.Runtime.CompilerServices
Imports System.Windows.Forms
Module VarianceExample
 Sub Main()
 Dim _func As Func(Of Button) = Function() New Button
 'This was a compile-time error in VB9, But in VB10 because of
variance convertibility, the compiler uses the extension method.
 _func.Add()
 End Sub

 <Extension()> _
 Public Sub Add(ByVal this As Func(Of Control))
 Console.WriteLine("A call to func of Control")
 End Sub
End Module

Figure 8 A Breaking Change

Enumerations, classes,
events and structures are
not allowed to go inside a

variant interface.

www.msdnmagazine.com

msdn magazine74 Basic Instincts

classes/structures/enumerations as generic, inheriting their
containers’ generic parameters, so they end up inheriting their
containers’ variance. Variant classes/structures/enumerations
are disallowed by the CLI spec.

More-Flexible, Cleaner Code
When working with generics, in some cases you may have
known you could have written simpler or cleaner code if co- and
contravariance had been supported. Now that these features are
implemented in Visual Studio 2010 and the .NET Framework
4, you can make your code much cleaner and more flexible by
declaring variance properties on type parameters in generic
interfaces and delegates.

To facilitate this, in the .NET Framework 4, IEnumerable is now
declared covariant using the Out modifi er in its type parameter, and
IComparer is declared contravariant using the In modifi er. So for

IEnumerable(Of T) to be variance-convertible to IEnumerable(Of U),
you have to have one of the following conditions:

• Either T inherits from U or
• T is variance-convertible to U or
• T has any other kind of predefi ned CLR reference conversion

In the Basic Class Library, these interfaces are declared as follows:
Interface IEnumerable(Of Out T)
 Function GetEnumerator() As IEnumerator(Of T)
End Interface
Interface IEnumerator(Of Out T)
 Function Current() As T
End Interface
Interface IComparer(Of In T)
 Function Compare(ByVal arg As T, ByVal arg2 As T) As Integer
End Interface
Interface IComparable(Of In T)
 Function CompareTo(ByVal other As T) As Integer
End Interface

To be type-safe, covariant type parameters can appear only
as return types or read-only properties (for example, they can
be result types, as in the GetEnumerator method and Current
property above); contravariant type parameters can appear only as
parameter or write-only properties (argument types, for instance,
as in the Compare and CompareTo methods above).

Co- and contravariance are interesting features that eliminate
certain infl exibilities when working with generic interfaces and
delegates. Having some basic knowledge about these features can
be very helpful when writing code that works with generics in
Visual Studio 2010.

BINYAM KELILE is a soft ware design engineer in Test with the Microsoft Managed
Language Team. During the VS 2008 release, he worked on many of the language
features, including LINQ Queries and Lexical Closure. For the upcoming Visual
Studio release, he worked on co- and contravariance features. You can reach him
at binyamk@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Beth Massi, Lucian Wischik

Option Strict On
Imports System.Windows.Forms
Module VarianceExample
 Class ControlList
 Overloads Shared Narrowing Operator CType(ByVal arg As
ControlList) As Func(Of Control)
 Return Function() New Control
 End Operator

 Overloads Shared Widening Operator CType(ByVal arg As
ControlList) As Func(Of Button)
 Return Function() New Button
 End Operator
 End Class

 Sub Main()
'This was an error in VB9 with Option Strict On, but the conversion will
succeed in VB10 using Variance->Func(Of Button)-[Covariance]-Func(Of
Control)
 Dim _func As Func(Of Control) = New ControlList
 End Sub
End Module

Figure 10 Visual Studio 2010 Allows a Formerly Illegal
Conversion by Using Variance Convertibility

Option Strict Off
Imports System.Windows.Forms
Module VarianceExample
 Interface IEnumerable(Of Out Tout)
 End Interface
 Class ControlList(Of T)
 Implements IEnumerable(Of T)
 End Class
 Sub Main()
 'No compile time error, but will throw Invalid Cast Exception at
run time
 Dim _ctrlList As IEnumerable(Of Button) = New ControlList(Of
Control)
 End Sub
End Module

Figure 11 With Option Strict Off

Variance conversion can’t be
performed on variant interfaces

instantiated with value types.

Option Strict On
Imports System.Windows.Forms
Module VarianceExample
 Class ControlList
 Overloads Shared Widening Operator CType(ByVal arg As
ControlList) As Func(Of Control)
 Console.WriteLine("T1->Func(Of Control)")
 Return Function() New Control
 End Operator
 End Class
 Class ButtonList
 Inherits ControlList
 Overloads Shared Widening Operator CType(ByVal arg As ButtonList) As
Func(Of Button)
 Console.WriteLine("T2->Func(Of Button)")
 Return Function() New Button
 End Operator
 End Class
 Sub Main()
 'The conversion works in VB9 using ButtonList->ControlList->Func(Of
Control)
'Variance ambiguity error in VB10, because there will be another widening path
(ButtonList-->Func(Of Button)--[Covariance]-->Func(Of Control)
 Dim _func As Func(Of Control) = New ButtonList
 End Sub
End Module

Figure 9 A Conversion that Works in Visual Studio 2008
but Produces an Error in Visual Studio 2010

mailto:binyamk@microsoft .com

Give your users an effective way to visualize and analyze their data

so they can make more informed decisions and solve business problems.

By subscribing to the ESRI® Developer Network (EDNSM), you have access to the complete ESRI

geographic information system (GIS) software suite for developing and testing applications on

every platform. Whether you’re a desktop, mobile, server, or Web developer, EDN provides the

tools you need to quickly and cost-effectively integrate mapping and GIS into your applications.

Subscribe to EDN and leverage the power of GIS to get more from your data.
Visit www.esri.com/edn.

ESRI
®

 Developer Network
Integrate Mapping and GIS into Your Applications

Copyright © 2009 ESRI. All rights reserved. The ESRI globe logo, ESRI, EDN, and www.esri.com are trademarks, registered trademarks, or service marks of ESRI in the United States, the European Community, or
certain other jurisdictions. Other companies and products mentioned herein may be trademarks or registered trademarks of their respective trademark owners.

Project2 12/3/09 10:01 AM Page 1

http://www.esri.com/edn
http://www.esri.com

msdn magazine76

• You can declaratively express validation rules for a page in a
single location.

• Client validation prevents a round trip to the server if the user
doesn’t fulfi ll the validation rules.

• Server validation prevents a malicious user from circumventing
the client script.

• Th e server and client validation logic stay in sync without
becoming a maintenance problem.
But in ASP.NET MVC, you can’t use these validation controls

and remain faithful to the spirit of the MVC design pattern.
Fortunately, with version 2 of the framework, there is something
even better.

Controls vs. Models
You can think of a WebForm control, like the TextBox, as a simple
container for user data. You can populate the control with an
initial value and display that value to the user, and you can retrieve
any value the user enters or edits by inspecting the control aft er a
postback. When using the MVC design pattern, the M (model)
plays this same role as a data container. You populate a model with
information you need to deliver to a user, and it will carry back
updated values into your application. Th us, the model is an ideal
place to express validation rules and constraints.

Here’s an example that comes out-of-the-box. If you create a
new ASP.NET MVC 2 application, one of the controllers you’ll
fi nd in the new project is the AccountController. It’s responsible for

EXTREME ASP.NET

Model Validation & Metadata
in ASP.NET MVC 2

One of the new features added to the ASP.NET MVC 2 release is
the ability to validate user input on both the server and client. All
you need to do is give the framework some information about the
data you need validated, and the framework will take care of the
hard work and details.

Th is feature is a tremendous boon for those of us who wrote
custom validation code and custom model binders to perform
simple model validation with ASP.NET MVC 1.0. In this article,
I’ll look at the built-in validation support in ASP.NET MVC 2.

Before I discuss the new capabilities, however, I’m going to revisit
the old methodology. Th e validation features in ASP.NET WebForms
have served me well for many years. I think it’s useful to review
them to understand what an ideal validation framework provides.

Controlling Validation
If you’ve ever used ASP.NET WebForms, you know it’s relatively
easy to add validation logic to a WebForm. You express the vali-
dation rules using controls. For example, if you wanted to make
sure the user enters some text into a TextBox control, you just add
a RequiredFieldValidator control pointing to the TextBox, like this:

<form id="form1" runat="server">
 <asp:TextBox runat="server" ID="_userName" />
 <asp:RequiredFieldValidator runat="server" ControlToValidate="_
userName"
 ErrorMessage="Please enter a username" />
 <asp:Button runat="server" ID="_submit" Text="Submit" />
</form>

Th e RequiredFieldValidator encapsulates both client-side and
server-side logic to ensure that the user provides a user name. To
provide client-side validation, the control emits JavaScript into
the client’s browser, and this script ensures that the user satisfi es
all the validation rules before posting the form back to the server.

Th ink about what these WebForm validation controls off er—
they’re incredibly powerful!

K. SCOTT ALLEN

This column is based on a prerelease version of ASP.NET MVC 2.
All information is subject to change.

Code download available at code.msdn.microsoft.com/mag201003ASPNET.

Figure 1 Register Information

If you’ve ever used ASP.NET
WebForms, you know it’s

relatively easy to add validation
logic to a WebForm.

http://code.msdn.microsoft.com/mag201003ASPNET

77March 2010msdnmagazine.com

handling new user registration requests, as well as log-in and change-
password requests. Each of these actions uses a dedicated model
object. You can fi nd these models in the AccountModels.cs fi le in
the Models folder. For example, the RegisterModel class, without
validation rules, looks like this:

public class RegisterModel
{
 public string UserName { get; set; }
 public string Email { get; set; }
 public string Password { get; set; }
 public string ConfirmPassword { get; set; }
}

Th e Register action of the AccountController takes an instance
of this RegisterModel class as a parameter:

[HttpPost]
public ActionResult Register(RegisterModel model)
{
 // ...
}

If the model is valid, the Register action forwards the model
information to a service that can create a new user.

Th e RegisterModel model is a great example of a view-specifi c
model, or view model. It’s not a model designed to work with a
specifi c database table, Web service call or business object. Instead,
it’s designed to work with a specifi c view (the Register.aspx
view, part of which is shown in Figure 1). Each property on the
model maps to an input control in the view. I encourage you
to use view models, as they simplify many scenarios in MVC
development, including validation.

Of Models and Metadata
When the user enters account information in the Register view,
the MVC framework ensures that the user provides a UserName
and Email. The framework also ensures that the Password and
ConfirmPassword strings match, and that the password is at
least six characters long. How does it do all this? By inspecting
and acting on metadata attached to the RegisterModel class.

Figure 2 shows the RegisterModel class with its validation
attributes showing.

When the user submits the Register view, the default model binder
in ASP.NET MVC will try to build a new instance of the Register Model
class to pass as the parameter to the Account Controller’s Register
action. Th e model binder retrieves information in the current
request to populate the RegisterModel object. For example, it can
automatically fi nd the POST value of an HTML input control named
UserName, and use that value to populate the UserName property
of RegisterModel. Th is behavior has been in ASP.NET MVC since
version 1.0, so it won’t be new if you’ve already used the framework.

What is new in version 2 is how the default model binder will
also ask a metadata provider if there is any metadata available for
the RegisterModel object. Th is process ultimately produces a
ModelMetaData derived object whose purpose is to describe
not only the validation rules associated with the model, but also
information related to the display of the model in a view. ASP.NET
team member Brad Wilson has an in-depth series of posts on how
this model metadata can infl uence the display of a model through
templates. Th e fi rst post in the series is at bradwilson.typepad.com/
blog/2009/10/aspnet-mvc-2-templates-part-1-introduction.html.

Once the model binder has a ModelMetaData object associated
with the model, it can use the validation metadata inside to validate
the model object. By default, ASP.NET MVC uses metadata from
data annotation attributes like [Required]. Of course, ASP.NET
MVC is pluggable and extensible, so if you want to devise a
diff erent source for model metadata, you can implement your own
metadata provider. Ben Scheirman has some great information
on this topic in an article titled “Customizing ASP.NET MVC 2—
Metadata and Validation,” available at dotnetslackers.com/articles/aspnet/
customizing-asp-net-mvc-2-metadata-and-validation.aspx.

Data Annotations
As a brief aside, you can build your own validation attributes,
as we’ll see later, but [Required] is one of a number of standard
validation attributes that live inside the System.Component -
Model.DataAnnotations assembly. Figure 3 shows a complete list of
validation attributes from the annotations assembly.

Th ese data annotation attributes are quickly becoming pervasive
across the Microsoft .NET Framework. Not only can you use these
attributes in an ASP.NET MVC application, but ASP.NET Dynamic
Data, Silverlight and Silverlight RIA services understand them as well.

[PropertiesMustMatch("Password", "ConfirmPassword",
 ErrorMessage = "The password and confirmation password do not match.")]
public class RegisterModel
{
 [Required]
 public string UserName { get; set; }

 [Required]
 public string Email { get; set; }

 [Required]
 [ValidatePasswordLength]
 public string Password { get; set; }

 [Required]
 public string ConfirmPassword { get; set; }
}

Figure 2 The RegisterModel Class with Validation Attributes

Attribute Description
StringLength Specifi es the maximum length of the string allowed

in the data fi eld.
Required Specifi es that a data fi eld value is required.
RegularExpression Specifi es that a data fi eld value must match the

specifi ed regular expression.
Range Specifi es the numeric range constraints for the value

of a data fi eld.
DataType Specifi es the name of an additional type to associate

with a data fi eld (one of the DataType enumerated
values, like EmailAddress, Url or Password).

Figure 3 Validation Attributes from the Annotations Assembly

Server validation prevents
a malicious user from

circumventing the client script.

www.msdnmagazine.com
http://bradwilson.typepad.com/blog/2009/10/aspnet-mvc-2-templates-part-1-introduction.html
http://bradwilson.typepad.com/blog/2009/10/aspnet-mvc-2-templates-part-1-introduction.html
http://dotnetslackers.com/articles/aspnet/customizing-asp-net-mvc-2-metadata-and-validation.aspx
http://dotnetslackers.com/articles/aspnet/customizing-asp-net-mvc-2-metadata-and-validation.aspx

msdn magazine78 Extreme ASP.NET

Viewing Validations
With the validation metadata in place, errors will automatically
appear in a view when the user enters incorrect data. Figure 4
shows what the Register view looks like when a user hits Register
without supplying any information.

Th e display in Figure 4 was built using some of the new HTML
helpers in ASP.NET MVC 2, including the ValidationMessageFor
helper. ValidationMessageFor controls the placement of a validation
message when validation fails for a particular data fi eld. Figure 5
shows an excerpt from Register.aspx demonstrating how to use the
ValidationMessageFor and ValidationSummary helpers.

Custom Validations
Not all of the validation attributes on the RegisterModel class
are attributes from Microsoft ’s data annotations assembly. Th e
[PropertiesMustMatch] and [ValidatePasswordLength] are custom
attributes you’ll fi nd defi ned in the same AccountModel.cs fi le
that holds the RegisterModel class. Th ere is no need to worry
about custom metadata providers or metadata classes if you just
want to provide a custom validation rule. All you need to do is
derive from the abstract class ValidationAttribute and provide an
implementation for the IsValid method. Th e implementation of the
ValidatePasswordLength attribute is shown in Figure 6.

Th e other attribute, PropertiesMustMatch, is a great example
of a validation attribute you can apply at the class level to perform
cross-property validations.

Client Validation
Th e RegisterModel validation we’ve looked at so far all takes place
on the server. Fortunately, it’s easy to enable validation on the
client, too. I try to use client validation whenever possible because
it can give a user quick feedback while offl oading some work from
my server. Th e server-side logic needs to stay in place, however, in
case someone doesn’t have scripting enabled in a browser (or is
intentionally trying to send bad data to the server).

Enabling client validation is a two-step process. Step 1 is making
sure the view includes the proper validation scripts. All the scripts
you need reside in the Scripts folder of a new MVC application. Th e
Microsoft Ajax.js script is the core of the Microsoft AJAX libraries
and is the first script you’ll need to include. The second script is
MicrosoftMvc Validation.js. I generally add a ContentPlaceHolder
to my MVC application’s master page to hold scripts, as shown here:

<head runat="server">
 <title><asp:ContentPlaceHolder ID="TitleContent" runat=
"server" /></title>
 <link href="../../Content/Site.css" rel="stylesheet" type=
"text/css" />

 <asp:ContentPlaceHolder ID="Scripts" runat="server">

 </asp:ContentPlaceHolder>

</head>

A view can then include the scripts it needs using a Content control.
Th e code below would ensure the validation scripts are present:

<asp:Content ContentPlaceHolderID="Scripts" runat="server">
 <script src="../../Scripts/MicrosoftAjax.js"
 type="text/javascript"></script>
 <script src="../../Scripts/MicrosoftMvcValidation.js"
 type="text/javascript"></script>
</asp:Content>

Th e second step in using client-side validation is to invoke the
EnableClientValidation HTML helper method inside the view
where you need validation support. Make sure to invoke this method
before using the BeginForm HTML helper, as shown below:

 <%
 Html.EnableClientValidation();
 using (Html.BeginForm())
 {
 %>

 <!-- the rest of the form ... -->

 <% } %>

Note that the client-side validation logic only works with the
built-in validation attributes. For the Register view, this means the
client-side validation will ensure the required fi elds are present, but
will not know how to validate the password length or confi rm that
the two password fi elds match. Fortunately, it’s easy to add custom
JavaScript validation logic that plugs in to the ASP.NET MVC
JavaScript validation framework. Phil Haack has details on his blog
entry, “ASP.NET MVC 2 Custom Validation,” located at haacked.com/
archive/2009/11/19/aspnetmvc2-custom-validation.aspx.

<% using (Html.BeginForm()) { %>
 <%= Html.ValidationSummary(true, "Account creation was unsuccessful. " +
 "Please correct the errors and try again.") %>
 <div>
 <fieldset>
 <legend>Account Information</legend>

 <div class="editor-label">
 <%= Html.LabelFor(m => m.UserName) %>
 </div>
 <div class="editor-field">
 <%= Html.TextBoxFor(m => m.UserName) %>
 <%= Html.ValidationMessageFor(m => m.UserName) %>
 </div>

Figure 5 How to Use New HTML Helpers

Figure 4 Validation Fail

When using the MVC design
pattern, the M (model) plays this
same role as a data container.

http://haacked.com/archive/2009/11/19/aspnetmvc2-custom-validation.aspx
http://haacked.com/archive/2009/11/19/aspnetmvc2-custom-validation.aspx

Wrapping up, you can see that built-in support for common
validation scenarios is a huge new addition for ASP.NET MVC
2. Not only are the validation rules easy to add via attributes on a

model object, but the validation features themselves are fl exible and
easy to extend. Start taking advantage of these features to save time
and lines of code with your next ASP.NET MVC application.

K. SCOTT ALLEN is a member of the Pluralsight technical staff and the founder
of OdeToCode. You can reach Allen at scott@OdeToCode.com, read his blog
at odetocode.com/blogs/scott or follow him on Twitter at twitter.com/OdeToCode.

THANKS to the following technical expert for reviewing this article:
Brad Wilson

[AttributeUsage(AttributeTargets.Field |
 AttributeTargets.Property,
 AllowMultiple = false,
 Inherited = true)]
public sealed class ValidatePasswordLengthAttribute
 : ValidationAttribute
{
 private const string _defaultErrorMessage =
 "'{0}' must be at least {1} characters long.";

 private readonly int _minCharacters =
 Membership.Provider.MinRequiredPasswordLength;

 public ValidatePasswordLengthAttribute()
 : base(_defaultErrorMessage)
 {
 }

 public override string FormatErrorMessage(string name)
 {
 return String.Format(CultureInfo.CurrentUICulture,
 ErrorMessageString,
 name, _minCharacters);
 }

 public override bool IsValid(object value)
 {
 string valueAsString = value as string;
 return (valueAsString != null &&
 valueAsString.Length >= _minCharacters);
 }
}

Figure 6 Implementation of the
ValidatePasswordLength Attribute

There is no need to worry
about custom metadata

providers or metadata classes
if you just want to provide a

custom validation rule.

mailto:scott@OdeToCode.com
www.inishtech.com/redmond
http://odetocode.com/blogs/scott
http://twitter.com/OdeToCode

msdn magazine80

page for his team’s new Web application. Doug might classify the
vulnerability as shown in Figure 1.

Th e classifi cation shown in Figure 1 seems fairly straightforward
and eff ective. But consider that Doug’s tester colleague, Tina, might
see the exact same vulnerability in a completely diff erent way, as
shown in Figure 2.

Because Tina is aware that there are tools to automate blind SQL
injection attacks, she rated Exploitability as 10, whereas Doug saw it
as a diffi cult manual attack and rated the Exploitability as 2. Doug
gave Aff ected Users a 1,because it would only aff ect a very small
portion of the system’s users, but Tina rated it as 10 because the

SECURITY BRIEFS

Add a Security Bug Bar to Microsoft Team
Foundation Server 2010

One of the most contentious tasks a soft ware development team
faces during the course of its products’ lifecycles is triaging bugs.
Deciding the relative level of importance of any given bug—and
consequently determining the chance that that bug might not
be fi xed at all in time for release—is a serious matter to everyone
involved in the product’s development.

Programmers, testers, architects and program managers all have
diff erent viewpoints and base their individual triage decisions on
disparate factors such as:

• How much code would have to be regression-tested once the
fi x is made.

• How close to release the project is.
• How many users would be aff ected by the change.
• Whether the bug is blocking other issues from being tested or fi xed.

I will admit that these are all important factors to consider when
triaging functional bugs in product features. However, none of
these factors should play any role in determining whether to fi x
security bugs—that is, bugs that could potentially lead to security
vulnerabilities in the product. Classifi cation of security bugs must
be objective and consistent. It doesn’t make any diff erence to an
attacker that you found a vulnerability only a week before your
code-complete milestone; he’ll exploit it just the same.

Th is column describes the objective security bug classifi cation
system—the “bug bar”—used by Microsoft internal product and
online services teams, which is required by the Security Develop-
ment Lifecycle (SDL). It also shows how you can incorporate this
classifi cation system into your own development environment
using Microsoft Team Foundation Server 2010.

DREAD
Before I discuss the bug bar as it exists inside Microsoft today, it’s
worth describing an earlier Microsoft initiative to classify security
bugs: DREAD. DREAD is a mnemonic that stands for:

• Damage Potential
• Reproducibility
• Exploitability
• Aff ected Users
• Discoverability

Anyone fi ling a new security bug would assign each of the DREAD
parameters a value from 1 to 10, with 10 being the most severe
and 1 the least. Th e values were then averaged to form an overall
DREAD rating. For example, say a developer called Doug discovers
a blind SQL injection vulnerability in the administration portal

BRYAN SULLIVAN

DREAD Parameter Rating Rationale
Damage Potential 5 An attacker could read and alter data in

the product database.
Reproducibility 10 Can reproduce every time.
Exploitability 2 Requires expert knowledge and large time

investment.
Affected Users 1 Only affects small subset of user base.
Discoverability 1 Affected page not linked from any user pages.
Overall Rating 3.8

Figure 1 A Developer’s Security Vulnerability Classifi cation

DREAD Parameter Rating Rationale
Damage Potential 10 An attacker could read and alter data in

the product database.
Reproducibility 10 Can reproduce every time.
Exploitability 10 Easily exploitable by automated tools

found on the Internet.
Affected Users 10 Affects critical administrative users.
Discoverability 10 Affected page “admin.aspx” easily guessed

by an attacker.
Overall Rating 10.0

Figure 2 The Same Bug as Classifi ed by a Tester

The Microsoft security bug bar
classifi es vulnerabilities based

on their effects.

81March 2010msdnmagazine.com

users affected would have administrative rights. Perhaps the
parameter of most concern is Damage Potential: both
Doug and Tina gave the exact same rationale but scored it with
different values!

The question we need to ask at this point is not, “Which team
member’s DREAD rating is better?” but rather, “How can we

rely on a system that produces such subjective, variable results?”
If Tina had been the first person to find the bug, it certainly
would have been fixed before release; but if Doug found it
first, there’s a good chance it would have been deferred and
the application released with the vulnerability. The SDL
team concluded that we can’t rely on such a system, and

STRIDE Value
Client/
Server Scope Severity

Spoofi ng Client Ability for attacker to present a UI that is different from but visually identical to the UI that users must rely on to make valid
trust decisions in a default/common scenario. A trust decision is defi ned as any time the user takes an action believing some
information is being presented by a particular entity—either the system or some specifi c local or remote source.

Important

Ability for attacker to present a UI that is different from but visually identical to the UI that users are accustomed to trust in a
specifi c scenario. “Accustomed to trust” is defi ned as anything a user is commonly familiar with based on normal interaction
with the OS or application but does not typically think of as a “trust decision.”

Moderate

Ability for attacker to present a UI that is different from but visually identical to the UI that is a single part of a bigger attack
scenario.

Low

Server Computer connecting to server is able to masquerade as a different user or computer of his or her choice using a protocol
that is designed and marketed to provide strong authentication.

Important

Client user or computer is able to masquerade as a different, random user or computer using a protocol that is designed and
marketed to provide strong authentication.

Moderate

Tampering/
Repudiation

Client Permanent modifi cation of any user data or data used to make trust decisions in a common or default scenario that persists
after restarting the OS/application.

Important

Temporary modifi cation of any data that does not persist after restarting the OS/application. Low
Server Permanent modifi cation of any user data or data used to make trust decisions in a common or default scenario that persists

after restarting the OS/application.
Important

Permanent modifi cation of any user data or data used to make trust decisions in a specifi c scenario that persists after
restarting the OS/application.

Moderate

Temporary modifi cation of data in a common or default scenario that does not persist after restarting the OS/application. Moderate
Temporary modifi cation of data in a specifi c scenario that does not persist after restarting the OS/application. Low

Information
Disclosure

Client Cases where the attacker can locate and read information on the system, including system information that was not
intended or designed to be exposed.

Important

Cases where the attacker can read information on the system from known locations, including system information that was
not intended or designed to be exposed.

Moderate

Any untargeted information disclosure (that is, disclosure of random data). Low
Server Cases where the attacker can locate and read information from anywhere on the system, including system information that

was not intended or designed to be exposed.
Important

Cases where the attacker can easily read information on the system from known locations, including system information that
was not intended or designed to be exposed.

Moderate

Any untargeted information disclosure (for example, disclosure of random data) including runtime data. Low

Denial of
Service

Client “System corruption DoS”: Requires reinstallation of system and/or components. Important

“Permanent DoS”: Requires cold reboot or causes Blue Screen/Bug Check. Moderate

“Temporary DoS”: Requires restart of application. Low

Server Anonymous, must be “easy to exploit” by sending a small amount of data or be otherwise quickly induced. Important

Anonymous, temporary DoS without amplifi cation in a default/common install. Moderate

Authenticated, permanent DoS. Moderate

Authenticated, temporary DoS with amplifi cation in a default/common install. Moderate

Elevation of
Privilege

Client Remote user, the ability to either execute arbitrary code or to obtain more privilege than intended. Critical

Remote user, execution of arbitrary code with extensive user action. Important

Local, low-privilege user can elevate himself to another user, administrator or local system. Important

Server Remote anonymous user, the ability to either execute arbitrary code or to obtain more privilege than intended. Critical
Remote authenticated user, the ability to either execute arbitrary code or to obtain more privilege than intended. Important

Local authenticated user, the ability to either execute arbitrary code or to obtain more privilege than intended. Important

Figure 3 Sample Security Bug Bar

www.msdnmagazine.com

msdn magazine82 Security Briefs

consequently Microsoft devel-
oped a more consistent approach:
the security bug bar.

The Microsoft
Security Bug Bar
Th e Microsoft security bug bar
classifi es vulnerabilities based on
their eff ects. Th e person fi ling the
bug starts by assigning the bug a
security eff ect value from a list of
STRIDE values. STRIDE is another
mnemonic, in this case used to
categorize threats. Unlike DREAD,
STRIDE is still very much used by the SDL and is a core component
of several SDL tools, including the SDL Th reat Modeling Tool. Th e
STRIDE values are:

• Spoofi ng
• Tampering
• Repudiation
• Information Disclosure
• Denial of Service (DoS)
• Elevation of Privilege (EoP)

However, the broad STRIDE threat category alone isn’t suffi cient
to classify and triage a bug. In most cases, we need to know whether
the bug aff ects client-side code or server-side code. For example,
a DoS attack that takes out a single targeted user would not be
considered as severe as one that takes out an entire server. We also
need to know some specifi c scope information for the bug, depending
on the STRIDE and client/server classifi cation.

Continuing the DoS vulnerability example, we need to know who
can execute the attack (for example, what privilege level) and how
long the eff ects will last. A vulnerability exploitable by an anonymous
user is worse than one exploitable only by an authenticated user,
and a vulnerability that locks up the aff ected server until someone
physically reboots it is worse than one that just makes it unavailable
for a few seconds.

Armed with the primary STRIDE classifi cation plus the additional
scope characteristics, the person triaging the bug can now use this
information to look up the bug’s severity on the bug bar. Figure 3
shows a sample security bug bar, as published in the Security
Development Lifecycle Process Guidance document version 4.1a.
Th e bug bar defi nes four levels of severity: Critical, Important,
Moderate and Low.

Note that in order for this system to work, the bug-tracking
database you’re using must have a fi eld for STRIDE security eff ect.
Th is makes it easy to distinguish security bugs from functional bugs
and also to determine the correct bug bar classifi cation. Tracking
your bugs’ security eff ects is so important that there is actually a
separate SDL requirement to do this work. Luckily, this is fairly
easy in most cases. If you’re using Team Foundation Server (TFS),
the next section will show how to add security eff ect fi elds and bug
bar ratings to Bug work items in your Team Projects.

Adding Bug Bar Functionality
to Team Foundation Server
In order to add a bug bar to a TFS Team Project, you need to make
a change to the underlying process template that the project was
created from. For the purposes of this article, we will assume the
project was created from the MSF-Agile for Soft ware Development
version 5.0 (beta) template that ships with the TFS 2010 beta 2.
However, if you primarily use a diff erent process template, such as
the MSF for CMMI Process Improvement template, or any custom
third-party template, the techniques used to edit these templates
would be the same.

Figure 4 The Process Template Manager for TFS 2010 Server

<FIELD
reportable="dimension"
type="String"
name="Effect"
refname="MSDN.SDL.Security.Effect">
<HELPTEXT>The effect of the security bug</HELPTEXT>
</FIELD>
<FIELD
reportable="dimension"
type="String"
name="EffectScope"
refname="MSDN.SDL.Security.Effect.Scope">
<HELPTEXT>The scope of the effect of the security bug. This value is used
to determine the default bug bar severity</HELPTEXT>
</FIELD>
<FIELD
reportable="dimension"
type="String"
name="BugBarSeverity"
refname="MSDN.SDL.Security.Severity.BugBar">
<HELPTEXT>The suggested severity of the bug as determined by the security
bug bar</HELPTEXT>
</FIELD>

Figure 5 Adding Fields for Security Effect, Security Effect
Scope and Bug Bar Severity

Unlilke DREAD, STRIDE is still very
much used by the SDL

and is a core component of
several SDL tools.

83March 2010msdnmagazine.com

Start by opening the Process Template Manager for the TFS 2010
server you want to work on. You can do this by bringing up the
context menu for the server in the Team Explorer window, then
navigating to Team Project Collection Settings | Process Template
Manager, as shown in Figure 4.

In the Process Template Manager, choose the MSF for Agile Soft ware
Development v5.0 and click the Download button to bring the
template source fi les down locally. Save them to a folder of your choice.

Once the download is complete, close the Process Template
Manager. We want to add the bug bar to the Bug work item type,
so open the folder to which you just downloaded the MSF-Agile
template, then open the fi le \WorkItem Tracking\TypeDefi nitions\
Bug.xml in the XML editor of your choice.

Th e fi rst task is to add fi elds for Security Eff ect, Security Ef-
fect Scope and Bug Bar Severity. (Bug Bar Severity should remain
distinct from the inherent Severity fi eld for reasons I’ll explain later.)
Under the witd:WITD/WORKITEMTYPE/FIELDS element, add
the block of XML shown in Figure 5.

Th is code defi nes the three new fi elds, including their names,
types and help text; but there’s still no logic implemented. Start
adding logic by adding allowed-value constraints that lock the
possible values for the fi eld.

For Eff ect, the allowed values are each of the STRIDE values:
Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service and Elevation of Privilege. It’s also a good idea to
add Attack Surface Reduction as an allowed value for cases that may
not be vulnerabilities in and of themselves, but are good opportu-
nities to reduce potential future vulnerabilities. Finally, add Not a

Security Bug as an allowed value for cases where the bug is just a
normal functional bug with no security implications (see Figure 6).

For Eff ectScope, summarize each of the possible scope items
in the bug bar and add these summaries as allowed values for the
Eff ectScope fi eld (see Figure 7).

We also want to further restrict the allowed value of Eff ectScope
depending on the current value of Eff ect. If Eff ect is currently set to
Spoofi ng, only the spoofi ng-related Eff ectScope values should be
valid. If Eff ect is set to Tampering, only the tampering-related Eff ect-
Scope values should be valid, and so on. We can accomplish this by adding
WHEN clause elements to the FIELD defi nition (see Figure 8).

Now it’s time to implement the allowed values logic for the BugBar-
Severity fi eld. Th e logic for BugBarSeverity is slightly diff erent from
the Eff ect logic in that we don’t want the user to be able to directly
set the value of the BugBarSeverity fi eld. Th e whole point of im-
plementing a bug bar like this is that the severity should refl ect the
characteristics of the vulnerability. If a user could just set the se-
verity to any value he or she wanted, it would completely defeat
the purpose.

Instead of creating a list of allowed values for BugBarSeverity,
we will use WHEN fi elds to copy the appropriate value into the
BugBarSeverity fi eld, as determined by the bug bar we defi ned
earlier, based on the current value of Eff ect. For example, the bug
bar specifi es that a spoofed trusted UI in a common or default

<FIELD
reportable="dimension"
type="String"
name="Effect"
refname="MSDN.SDL.Security.Effect">
<HELPTEXT>The effect of the security bug</HELPTEXT>
<ALLOWEDVALUES>
<LISTITEM value="Not a Security Bug" />
<LISTITEM value="Spoofing" />
<LISTITEM value="Tampering" />
<LISTITEM value="Repudiation" />
<LISTITEM value="Information Disclosure" />
<LISTITEM value="Denial of Service" />
<LISTITEM value="Elevation of Privilege" />
<LISTITEM value="Attack Surface Reduction" />
</ALLOWEDVALUES>
<DEFAULT from="value" value="Not a Security Bug" />
</FIELD>

Figure 6 Adding Allowed Values for Effect

<FIELD
reportable="dimension"
type="String"
name="EffectScope"
refname="MSDN.SDL.Security.Effect.Scope">
<HELPTEXT>The scope of the effect of the security bug. This value is used to
determine the default bug bar severity</HELPTEXT>
<ALLOWEDVALUES>
<LISTITEM value="Not Applicable" />
<LISTITEM value="Client - Spoofed trusted UI in common/default scenario" />
<LISTITEM value="Client - Spoofed trusted UI in specific other scenario" />
<LISTITEM value="Client - Spoofed UI as part of a larger attack scenario" />
<LISTITEM value="Server - Spoofed specific user or computer over secure
protocol" />
<LISTITEM value="Server - Spoofed random user or computer over secure
protocol" />
<LISTITEM value="Client - Tampered trusted data that persists after restart"
/>
<LISTITEM value="Client - Tampered data that does not persist after restart"
/>
<!-- additional allowed values omitted for brevity -->
</ALLOWEDVALUES>
<DEFAULT from="value" value="Not Applicable" />
</FIELD>

Figure 7 Adding Allowed Values for EffectScope

Tracking your bugs’ security
effects is so important that

there is actually a separate SDL
requirement to do this work.

One of the most contentious
tasks a software development
team faces during the course

of its products’ lifecycles is
triaging bugs.

www.msdnmagazine.com

msdn magazine84 Security Briefs

scenario should be treated as an Important bug, so when Eff ect is
“Client – Spoofed trusted UI in common/default scenario,” we copy
“2 – Important” into BugBarSeverity (see Figure 9).

You might be wondering why I’ve added number prefi xes to
the values, like “1 – Critical” and “2 – Important,” instead of just
defi ning them as “Critical” and “Important.” Th e answer is that TFS
automatically alphabetizes lists of allowed values, and without the
number prefi xes the choices would be displayed out of order and
could confuse the user.

Also, the inherent MSF-Agile Severity fi eld (Microsoft .VSTS.
Common.Severity) values have the same number prefi xes applied to
them, so adding the prefi xes to the BugBarSeverity fi elds reinforces
the fact that there is a relationship between these two fi elds.

Speaking of the relationship between Severity and BugBarSeverity,
it’s time to enforce that relationship in the template. Th e next step
in the process is to constrain the value of the Severity fi eld so that
it’s at least as severe as the BugBarSeverity fi eld. If the team has a
specifi c business reason to make the actual severity higher than the
value determined by the bug bar, that’s OK—we just don’t want it
to work the other way.

To make this work, we use the same ALLOWEDVALUES tech-
nique we used to constrain the Eff ectScope fi eld based on the value
of the Eff ect fi eld (see Figure 10).

Th ere is one fi nal change you need to make to the Bug work
item: you need to add UI controls for the new fi elds we’ve added,
as shown in the snippet below. Work item controls are defi ned in

the witd:WITD/WORKITEMTYPE/FORM/Layout section of
the document. It’s up to you where you place the new fi elds, but
I suggest adding a new “Security” tab to the main TabGroup and
adding the fi elds there:

<Tab Label="Security">
<Control Field Name="MSDN.SDL.Security.Effect" Type="FieldControl"
Label="Effect "LabelPosition="Top" />
<Control Field Name="MSDN.SDL.Security.Effect.Scope" Type="FieldControl"
Label="Scope" LabelPosition="Top" />
<Control Field Name="MSDN.SDL.Security.Severity.BugBar"
Type="FieldControl" Label="Bug Bar Rating" ReadOnly="True"
LabelPosition="Top" />
</Tab>

You are now fi nished editing the Bug work item defi nition. However,
before you can use the new bug bar functionality, you have to
import the modifi ed process template defi nition back into Team
Foundation Server. You have two choices for how to do this. You
can either replace the existing MSF-Agile for Soft ware Development
template with the new template, or you can add the new template
side-by-side with the previous version.

If you choose to replace the existing template, open the Process
Template Manager, select the MSF-Agile for Soft ware Development
template and click the Delete button. Note that this is a non-
reversible action. You won’t be able to get the original template
back without reinstalling Team Foundation Server. Once you’ve
deleted the existing MSF-Agile template, click the Upload button
and select the folder containing the edited process template.
Th e template will appear in the list as “MSF-Agile for Soft ware
Development” just as before, but now any future projects created
from this template will have the bug bar functionality.

If you choose to add the new template side-by-side with the
existing MSF-Agile template instead of replacing it, you’ll
need to change the name of your new template so that it doesn’t
confl ict with the existing one. To do this, you need to make one
more fi le edit. In your XML editor of choice, edit the fi le Process-

Template.xml, which can be found in the folder to which you originally
downloaded the template. Change the value of the Process Template/
metadata/name element to something like “MSF for Agile Software

<FIELD
reportable="dimension"
type="String"
name="EffectScope"
refname="MSDN.SDL.Security.Effect.Scope">
<HELPTEXT>The scope of the effect of the security bug. This value is used to
determine the default bug bar severity</HELPTEXT>
<ALLOWEDVALUES>
<!-- omitted for brevity -->
</ALLOWEDVALUES>
<DEFAULT from="value" value="Not Applicable" />
<WHEN field="MSDN.SDL.Security.Effect" value="Not a Security Bug">
<ALLOWEDVALUES>
<LISTITEM value="Not Applicable" />
</ALLOWEDVALUES>
</WHEN>
<WHEN field="MSDN.SDL.Security.Effect" value="Attack Surface Reduction">
<ALLOWEDVALUES>
<LISTITEM value="Not Applicable" />
</ALLOWEDVALUES>
</WHEN>
<WHEN field="MSDN.SDL.Security.Effect" value="Spoofing">
<ALLOWEDVALUES>
<LISTITEM value="Client - Spoofed trusted UI in common/default scenario" />
<LISTITEM value="Client - Spoofed trusted UI in specific other scenario" />
<LISTITEM value="Client - Spoofed UI as part of a larger attack scenario" />
<LISTITEM value="Server - Spoofed specific user or computer over secure
protocol" />
<LISTITEM value="Server - Spoofed random user or computer over secure
protocol" />
<LISTITEM value="Not Applicable" />
</ALLOWEDVALUES>
</WHEN>

<!-- Additional WHEN elements for the other STRIDE values omitted for
brevity -->

</FIELD>

Figure 8 Adding a WHEN Clause
to Restrict Allowed EffectScope Values

A vulnerability exploitable by
an anonymous user is worse
than one exploitable only by
an authenticated user, and a
vulnerability that locks up the
affected server until someone

physically reboots it is worse than
one that just makes it unavailable

for a few seconds.

85March 2010msdnmagazine.com

Development plus Bug Bar,” save the file and exit. Open the
Process Template Manager, click the Upload button and select the
folder containing the edited template. Th e new template will appear
in the list with the name you’ve given it, and any future projects
created from this template will include the bug bar.

Using the Bug Bar to Determine Exit Criteria
Of course, all the process template functionality in the world still
won’t help you unless you have an organizational policy to back it
up. Th e standard for internal development teams at Microsoft is
that any security bug that falls above the “Low” category of the bug
bar must be fi xed before release. Th is standard is never relaxed, no
matter how close the product is to release. Th is approach assures
the objectivity of security bug triage, based solely on the possible
eff ect and scope of the bug.

Th is is the reason we defi ne a separate BugBarSeverity fi eld
instead of just constraining the value of the common Severity fi eld
based on Eff ectScope. From a strict security standpoint, we don’t
care if the product ships with any severity Critical bugs as long
as those bugs have no security eff ects. All we really care about is
whether the bug has a BugBarSeverity higher than “4 – Low.” If so,
that bug must be fi xed before release.

Call to Action
Without a consistent, objective process for triaging security
bugs, you will not be able to create secure applications. Using the
Microsoft security bug bar is an excellent way to accomplish this,
and it’s a key component of the Security Development Lifecycle,
which has been proven to reduce vulnerabilities in soft ware.

Additionally, if you are using Microsoft Team Foundation Server,
you can easily add bug bar functionality to your team projects. Th is
makes it even easier for your team to appropriately classify security
bugs, even if the developers are not necessarily security experts.

As a fi nal thought, I’d like to encourage you to download the
MSF-Agile + SDL process template for Visual Studio 2010. Th is
process template will be available for free at microsoft.com/sdl shortly
aft er the release of Visual Studio 2010. It incorporates the bug bar
described in this article, as well as many other features designed
to help you create more secure soft ware.

BRYAN SULLIVAN is a security program manager for the Microsoft Security
Development Lifecycle team, where he specializes in Web application and .NET
security issues. He is the author of “Ajax Security” (Addison-Wesley, 2007).

THANKS to the following technical expert for reviewing this article:
Brian Harry

<FIELD
name="Severity"
refname="Microsoft.VSTS.Common.Severity"
type="String"
reportable="dimension">
<HELPTEXT>Assessment of the effect of the bug on the project</HELPTEXT>
<ALLOWEDVALUES expanditems="true">
<LISTITEM value="1 - Critical"/>
<LISTITEM value="2 - High"/>
<LISTITEM value="3 - Medium"/>
<LISTITEM value="4 - Low"/>
</ALLOWEDVALUES>
<DEFAULT from="value "value="3 - Medium" />

<WHEN field="MSDN.SDL.Security.Severity.BugBar"value="1 - Critical">
<ALLOWEDVALUES expanditems="true">
<LISTITEM value="1 - Critical"/>
</ALLOWEDVALUES>
</WHEN>
<WHEN field="MSDN.SDL.Security.Severity.BugBar" value="2 - Important">
<ALLOWEDVALUES expanditems="true">
<LISTITEM value="1 - Critical"/>
<LISTITEM value="2 - High"/>
</ALLOWEDVALUES>
</WHEN>
<WHEN field="MSDN.SDL.Security.Severity.BugBar" value="3 - Moderate">
<ALLOWEDVALUES expanditems="true">
<LISTITEM value="1 - Critical"/>
<LISTITEM value="2 - High"/>
<LISTITEM value="3 - Medium"/>
</ALLOWEDVALUES>
</WHEN>
</FIELD>

Figure 10 Constraining Allowed Values for the Severity Field

<FIELD
reportable="dimension"
type="String"
name="BugBarSeverity"
refname="MSDN.SDL.Security.Severity.BugBar">
<HELPTEXT>The suggested severity of the bug as determined by the security
bug bar</HELPTEXT>
<WHEN field="MSDN.SDL.Security.Effect.Scope" value="Not Applicable">
<COPY from="value" value="4 - Low"/>
</WHEN>
<WHEN field="MSDN.SDL.Security.Effect.Scope" value="Client - Spoofed
trusted UI in common/default scenario">
<COPY from="value" value="2 - Important"/>
</WHEN>
<WHEN field="MSDN.SDL.Security.Effect.Scope" value="Client - Spoofed
trusted UI in specific other scenario">
<COPY from="value" value="3 - Moderate"/>
</WHEN>
<WHEN field="MSDN.SDL.Security.Effect.Scope" value="Client - Spoofed UI
as part of a larger attack scenario">
<COPY from="value" value="4 - Low"/>
</WHEN>
<WHEN field="MSDN.SDL.Security.Effect.Scope" value="Server - Spoofed
specific user or computer over secure protocol">
<COPY from="value" value="2 - Important"/>
</WHEN>
<WHEN field="MSDN.SDL.Security.Effect.Scope" value="Server - Spoofed
random user or computer over secure protocol">
<COPY from="value" value="3 - Moderate"/>
</WHEN>

<!-- additional WHEN clauses omitted for brevity -->

</FIELD>

Figure 9 Implementing Value Logic for the BugBarSeverity Field

If the team has a specifi c
business reason to make the

actual severity higher than the
value determined by the bug bar,
that’s OK—we just don’t want it

to work the other way.

www.msdnmagazine.com
http://microsoft.com/sdl

msdn magazine86

Figure 1, then I explain how to instrument the application. I wrap
up by describing alternative testing approaches.

The Application Under Test
Let’s take a look at the code for the Silverlight MicroCalc application
that is the target of my test automation example. I created Micro-
Calc using Visual Studio 2010 beta 2. Silverlight 3 is fully integrated
into Visual Studio 2010, but the code I present here also works with
Visual Studio 2008 with the Silverlight 3 SDK installed separately.

Aft er launching Visual Studio, I clicked on File | New | Project.
Note that a Silverlight application is a .NET component that may be
hosted in a Web application, rather than a Web application itself. In
the New Project dialog, I selected the C# language templates option.

TEST RUN

Testing Silverlight Apps Using Messages

I am a big fan of Silverlight and in this month’s column I describe
a technique you can use to test Silverlight applications.

Silverlight is a complete Web application framework that was
initially released in 2007. Th e current version, Silverlight 3, was
released in July 2009. Visual Studio 2010 provides enhanced
support for Silverlight, in particular a fully integrated visual designer
that makes designing Silverlight user interfaces a snap.

Th e best way for you to see where I’m headed in this article is
to take a look at the apps themselves. Figure 1 shows a simple
but representative Silverlight application named MicroCalc. You
can see that MicroCalc is hosted inside Internet Explorer, though
Silverlight applications can also be hosted by other browsers
including Firefox, Opera and Safari.

Figure 2 shows a lightweight test harness, which is also a
Silverlight application.

In this example, the fi rst test case has been selected. When the
button control labeled Run Selected Test was clicked, the Silverlight
test harness sent a message containing the selected test case input
data to the Silverlight MicroCalc application under test. Th is test
case data consists of instructions to simulate a user typing 2.5 and
3.0 into the input areas of the application, selecting the Multiply
operation, and then clicking the Compute button.

Th e application accepted the test case data and programmatically
exercised itself using test code that is instrumented into the
application. Aft er a short delay, the test harness sends a second
message to the application under test, requesting that the application
send a message containing information about the application’s
state—namely, the value in the result fi eld. Th e test harness received
the resulting message from the application and determined that

the actual value in the application, 7.5000, matched the expected
value in the test case data, and displayed a Pass test case result in
the harness comments area.

Th is article assumes you have basic familiarity with the C#
language, but does not assume you have any experience with
Silverlight. In the sections of this column that follow, I fi rst describe
the Silverlight application under test. I walk you through the details
of creating the lightweight Silverlight-based test harness shown in

JAMES MCCAFFREY

This article discusses a prerelease version of Visual Studio 2010. All information
is subject to change.

Code download available at code.msdn.microsoft.com/mag201003TestRun.

Figure 1 MicroCalc Silverlight App

Visual Studio 2010 provides
enhanced support for Silverlight.

http://code.msdn.microsoft.com/mag201003TestRun

Untitled-1 1 1/29/10 10:18 AM

www.aspose.com

msdn magazine88 Test Run

Silverlight applications can also be created using Visual Basic, and
you can even create Silverlight libraries using the new F# language.

I selected the default Microsoft .NET Framework 4 library
option and the Silverlight Application template. Silverlight
contains a subset of the .NET Framework, so not all parts of the
.NET Framework 4 are available to Silverlight applications. Aft er
fi lling in the Name (SilverCalc) and Location (C:\SilverlightTesting)
fi elds, I clicked the OK button. (Note that SilverCalc is the Visual
Studio project name, and MicroCalc is the application name.)

Visual Studio then prompted me with a New Silverlight Application
dialog box that can be confusing to Silverlight beginners. Let’s take
a closer look at the options in Figure 3.

Th e fi rst entry, “Host the Silverlight application in a new Web
site,” is checked by default. Th is instructs Visual Studio to create two
diff erent Web pages to host your Silverlight application.

Th e next entry is the name of the Visual Studio project that
contains the two host pages. Th e project will be added to your
Visual Studio solution.

The third entry in the dialog box is a dropdown control with
three options: ASP.NET Web Application Project, ASP.NET
Web Site, and ASP.NET MVC Web Project. A full discussion of
these options is outside the scope of this article, but the bottom

line is that the best general purpose option is ASP.NET Web
Application Project.

Th e fourth entry in the dialog box is a dropdown to select the
Silverlight version, in this case 3.0. Aft er clicking OK, Visual Studio
creates a blank Silverlight application.

I double-clicked on the MainPage.xaml file to load the XAML-
based UI definitions into the Visual Studio editor. I modified the
default attributes for the top-level Grid control by adding Width
and Height attributes and changing the Background color attribute:

<Grid x:Name="LayoutRoot"
 Background="PaleGreen"
 Width="300" Height="300>

By default, a Silverlight application occupies the entire client area
in its hosting page. Here I set the width and height to 300 pixels to
make my Silverlight application resemble the default size of a Win-
Form application. I adjusted the color to make the area occupied
by my Silverlight application clearly visible.

Next I used Visual Studio to add the labels, three TextBox controls,
two RadioButton controls and a Button control onto my application
as shown in Figure 1. Visual Studio 2010 has a fully integrated design
view so that when I drag a control, such as a TextBox, onto the design
surface, the underlying XAML code is automatically generated:

<TextBox Width="99" Height="23" Name="textBox1" ... />

Aft er placing the labels and controls onto my MicroCalc
application, I double-clicked on the Button control to add its event
handler to the MainPage.xaml.cs fi le. In the code editor I typed the
following C# code to give MicroCalc its functionality:

private void button1_Click(
 object sender, RoutedEventArgs e) {

 double x = double.Parse(textBox1.Text);
 double y = double.Parse(textBox2.Text);
 double result = 0;
 if (radioButton1.IsChecked == true)
 result = x * y;
 else if (radioButton2.IsChecked == true)
 result = x / y;
 textBox3.Text = result.ToString("0.0000");
}

I begin by grabbing the values entered as text into the textBox1
and textBox2 controls and converting them to type double. Notice
that, to keep my example short, I have omitted the normal error-
checking you’d perform in a real application.

Next I determine which RadioButton control has been selected
by the user. I must use the fully qualifi ed Boolean expression:

if radioButton1.IsChecked == true

You might have expected that I’d use the shortcut form:
if radioButton1.IsChecked

I use the fully qualifi ed form because the IsChecked property is
the nullable type bool? rather than plain bool.

Aft er computing the indicated result, I place the result formatted
to four decimal places into the textBox3 control.

MicroCalc is now ready to go and I can hit the F5 key to instruct
Visual Studio to run the application. By default, Visual Studio will
launch Internet Explorer and load the associated .aspx host page
that was automatically generated. Visual Studio runs a Silverlight
test host page through the built-in Web development server rather
than through IIS. In addition to an .aspx test host page, Visual Stu-
dio also generates an HTML test page that you can manually load
by typing its address into Internet Explorer.

Figure 2 Test Harness for MicroCalc

By default, a Silverlight
application occupies the entire
client area in its hosting page.

89March 2010msdnmagazine.com

The Test Harness
Now that you’ve seen the Silverlight application under test, let me
describe the test harness.

I decided to use Local Messaging to send messages between
the harness and the application. I began by launching a new
instance of Visual Studio 2010. Using the same process as
described in the previous section, I created a new Silverlight
application named TestHarness. As with the MicroCalc
application, I edited the top-level Grid control to change its
default size to 300x300 pixels, and its background color to
Bisque in order to make the Silverlight control stand out clearly.
Next I added a Label control, two ListBox controls and a
Button control to the harness design surface.

Aft er changing the Content property of the Button control to
Run Selected Test, I double-clicked the button to generate its event
handler. Before adding the logic code to the handler, I declare a
class-scope LocalMessageSender object and test case data in the
MainPage.xaml.cs fi le of the harness so that the harness can send
messages to the application under test:

public partial class MainPage : UserControl {
 LocalMessageSender lms = null;
 private string[] testCases = new string[] {
 "001:2.5:3.0:Multiply:7.5000",
 "002:8.6:2.0:Divide:4.3000"
 };
...

The LocalMessageSender class is contained in the
System. Windows.Messaging namespace so I added a reference
to it with a using statement at the top of the .cs file so that I don’t
have to fully qualify the class name. I employ a simple approach
for my test case data and use a colon-delimited string with fields
for test case ID, first input value, second input value, operation
and expected result. Next I add class scope string variables for
each test case field:

private string caseID;
private string input1;
private string input2;
private string operation;
private string expected;
...

Th ese variables aren’t technically necessary, but make the test
code easier to read and modify.

Now I instantiate a LocalMessageReceiver object into the Main-
Page constructor so that my test harness can accept messages from
the application under test:

public MainPage() {
 InitializeComponent();

 try {
 LocalMessageReceiver lmr =
 new LocalMessageReceiver("HarnessReceiver",
 ReceiverNameScope.Global,
 LocalMessageReceiver.AnyDomain);
...

Th e LocalMessageReceiver object constructor accepts three
arguments. Th e fi rst argument is a name to identify the receiver—
this will be used by a LocalMessageSender object to specify which
receiver to target. Th e second argument is an Enumeration type that
specifi es whether the receiver name is scoped to the global domain
or to a more restricted domain. Th e third argument specifi es where
the receiver will accept messages from, in this case any domain.

Next I wire up an event handler for the receiver, and then fi re
up the receiver object:

lmr.MessageReceived += HarnessMessageReceivedHandler;
lmr.Listen();
...

Here I indicate that when the test harness receives a message,
control should be transferred to a program-defi ned method named
HarnessMessageReceivedHandler. Th e Listen method, as you might
expect, continuously monitors for incoming messages sent from a
LocalMessageSender in the application under test.

Now I instantiate the sender object I declared earlier:
lms = new LocalMessageSender(
 "AppReceiver", LocalMessageSender.Global);
lms.SendCompleted += HarnessSendCompletedHandler;
...

Notice that the fi rst argument to the sender object is the name
of a target receiver object, not an identifying name of the sender.
Here my test harness sender will be sending messages only to a
receiver named AppReceiver located in the application under

I decided to use Local Messaging
to send messages between the

harness and the application.

www.steema.com
www.msdnmagazine.com

msdn magazine90 Test Run

test. In other words, receiver objects have
names and will accept messages from any
sender objects, but sender objects do not
have names and will send messages only to
a specific receiver.

After instantiating the sender object, I wire
up an event handler for the SendCompleted
event. Now I can load my test cases and
handle any exceptions:

 ...
 foreach (string testCase in testCases) {
 listBox1.Items.Add(testCase);
 }
 } // try
 catch (Exception ex) {
 listBox2.Items.Add(ex.Message);
 }
} // MainPage()

I simply iterate through the test case
array, adding each test case string to the list-
Box1 control. If any exception is caught, I just
display its text in the listBox2 control used
for comments.

At this point I have a sender object in
the harness that can send test case input to
the application, and a receiver object in the
harness that can accept state informa-
tion from the application. Now I go back to the button1_Click
handler method I added earlier. In the handler, I begin by
parsing the selected test case:

string testCaseData = (string)listBox1.SelectedItem;
string[] tokens = testCaseData.Split(':');
caseID = tokens[0];
input1 = tokens[1];
input2 = tokens[2];
operation = tokens[3];
expected = tokens[4];
...

Now I’m ready to send test case input to the Silverlight applica-
tion under test:

string testCaseInput =
 input1 + ":" + input2 + ":" + operation;
listBox2.Items.Add("========================");
listBox2.Items.Add("Test case " + caseID);
listBox2.Items.Add(
 "Sending '" + testCaseInput + "' to application");
lms.SendAsync("data" + ":" + testCaseInput);
...

I stitch back together just test case input. I do not send the test
case ID or the expected value to the application because only the
harness deals with those values. Aft er displaying some comments
to the listBox2 control, I use the SendAsync method of the
LocalMessageSender object to send the test case data. I prepend

the string “data” so that the application has a way to identify what
type of message is being received.

My button event handler fi nishes up by pausing for one second
in order to give the application time to execute, and then I send a
message asking the application for its state information:

 System.Threading.Thread.Sleep(1000);
 lms.SendAsync("response");
} // button1_Click

Recall that I wired up an event handler for send completion, but in
this design I do not need to perform any explicit post-send processing.

Th e fi nal part of the harness code deals with the message sent
from the Silverlight application to the harness:

private void HarnessMessageReceivedHandler(object sender,
 MessageReceivedEventArgs e) {

 string actual = e.Message;
 listBox2.Items.Add(
 "Received " + actual + " from application");
 if (actual == expected)
 listBox2.Items.Add("Pass");
 else
 listBox2.Items.Add("**FAIL**");

 listBox2.Items.Add("========================");
}

Here I fetch the message from the application, which is the value
in the textBox3 result control, and store that value into a variable
named actual. After displaying a comment, I compare the
actual value that was sent by the application with the expected
value parsed from the test case data to determine and display a test
case pass/fail result.

Instrumenting the Silverlight Application
Now let’s examine the instrumented code inside the Silverlight
application under test. I begin by declaring a class-scope
LocalMessage Sender object.

Figure 3 New Silverlight Application Dialog Box Options

I do not send the test case ID
or the expected value to the
application because only the

harness deals with those values.

91March 2010msdnmagazine.com

Th is sender will send messages to the test harness:
public partial class MainPage : UserControl {
 LocalMessageSender lms = null;
 public MainPage() {
 InitializeComponent();
...

Next I instantiate a receiver in the MainPage constructor to
accept messages from the test harness, wire up an event handler,
and start listening for messages from the harness:

try {
 LocalMessageReceiver lmr =
 new LocalMessageReceiver("AppReceiver",
 ReceiverNameScope.Global,
 LocalMessageReceiver.AnyDomain);
 lmr.MessageReceived += AppMessageReceivedHandler;
 lmr.Listen();
...

As before, note that you assign a name to the receiver object,
and that this name corresponds to the fi rst argument to the sender
object in the harness. Th en I deal with any exceptions:

...
 }
 catch (Exception ex) {
 textBox3.Text = ex.Message;
 }
} // MainPage()

I display exception messages in the textBox3 control, which is
the MicroCalc application result fi eld. Th is approach is completely
ad hoc, but sending the exception message back to the test harness
may not be feasible if the messaging code throws the exception.
Now I handle messages sent by the test harness:

private void AppMessageReceivedHandler(object sender,
 MessageReceivedEventArgs e) {
 string message = e.Message;
 if (message.StartsWith("data")) {
 string[] tokens = message.Split(':');
 string input1 = tokens[1];
 string input2 = tokens[2];
 string operation = tokens[3];
...

The test harness sends two types of messages. Test case
input data starts with “data” while a request for application state
is just “response.” I use the StartsWith method to determine if
the message received by the application is test case input. If so,
I use the Split method to parse the input into variables with
descriptive names.

Now the instrumentation uses the test case input to simulate
user actions:

textBox1.Text = input1;
textBox2.Text = input2;
if (operation == "Multiply")
 radioButton1.IsChecked = true;
else if (operation == "Divide")
 radioButton2.IsChecked = true;
...

In general, modifying properties of controls, such as the Text
and IsChecked properties in this example, to simulate user input is
straightforward. However, simulating events such as button clicks
requires a diff erent approach:

button1.Dispatcher.BeginInvoke(
 delegate { button1_Click(null,null); });

Th e Dispatcher class is part of the Windows.Th reading namespace
so I added a using statement referencing that class to the application.
Th e BeginInvoke method allows you to asynchronously call a method
on the Silverlight user interface thread. BeginInvoke accepts a delegate,
which is a wrapper around a method. Here I use the anonymous
delegate feature to simplify my call. Begin Invoke returns a Dispatcher-
Operation object, but in this case I can safely ignore that value.

Th e Dispatcher class also has a CheckAccess method you can
use to determine whether BeginIvoke is required (when Check-
Access returns false) or whether you can just modify a property
(CheckAccess returns true).

I fi nish my instrumentation by dealing with the message from
the test harness that requests application state:

...
 }
 else if (message == "response") {
 string actual = textBox3.Text;
 lms.SendAsync(actual);
 }
} // AppMessageReceivedHandler()

If the message received is just the string “response,” I grab the
value in the textBox3 control and send it back to the test harness.

Th e test system I describe in this article is just one of many approaches
you can use and is best suited for 4-4-4 ultra-light test automation. By
this I mean a harness that has an expected life of 4 weeks or less, consists
of 4 pages or less of code, and requires 4 hours or less to create.

Th e main advantage of testing using Messages compared to
other approaches is that the technique is very simple. Th e main
disadvantage is that the application under test must be heavily
instrumented, which may not always be feasible.

Two important alternatives to the technique I have presented
here are using the HTML Bridge with JavaScript and using the
Microsoft UI Automation library. As usual, I’ll remind you that
no one particular testing approach is best for all situations, but the
Messages-based approach I’ve presented here can be an effi cient and
eff ective technique in many soft ware development scenarios.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he
manages technical training for software engineers working at the Microsoft
Redmond, Wash., campus. He has worked on several Microsoft products includ-
ing Internet Explorer, and MSN Search. Dr. McCaff rey is the author of “.NET Test
Automation Recipes” (Apress, 2006). He can be reached at jammc@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Karl Erickson and Nitya Ravi

The Messages-based approach
is an effi cient and effective

technique.

The BeginInvoke method allows
you to asynchronously call a

method on the Silverlight user
interface thread.

www.msdnmagazine.com
mailto:jammc@microsoft.com

0310msdn_VSLive.indd 2 2/9/10 10:04 AM

www.vslive.com

0310msdn_VSLive.indd 3 2/9/10 10:05 AM

www.vslive.com

0310msdn_VSLive.indd 4 2/9/10 10:05 AM

www.vslive.com

0310msdn_VSLive.indd 5 2/9/10 10:05 AM

www.vslive.com

keep—one sneeze while clicking
the mouse, or my cat pouncing
on the keyboard (“Knock it off ,
Simba—no, NO, I meant stop
that!”) and it’s gone.

Suppose the dialog box read
“Th row away everything you
just did?” What dimwit would
ask such a silly question aft er
every editing session? But it’s
exactly the same question, re-
phrased from the program’s
viewpoint to the user’s.

We can break this anti-
pattern, and occasionally we do.

Microsoft One Note saves its documents automatically. We can
roll back changes with the undo key if we need to, but the program
doesn’t bother us about it every time. Quicken, the personal fi nance
manager from Intuit, works the same way. It never asks if we want
to save a check; the act of entering the check means that we want
it. If we change our minds, we’ll delete the check. Saving changes
is one less thing we have to think about to use these apps success-
fully. Studies show that users pick up this change from convention
very quickly, and they like it.

Clearly, some situations exist where this design approach can’t
apply, where our programs have to handle every case correctly the
fi rst time or we fail—air traffi c control springs to mind, or cancer
chemotherapy. But these life-critical applications have their own,
diff erent user interface problems that require specialist attention.

Th e case in which edge cases need equal treatment in the UI is
itself an uncommon edge case. If your program has to deal with
one of them, then attack it with my blessing. But for most business
and consumer programs, the world is a better place when you
handle the main case seamlessly and fi x edge cases only as they
arise, rather than annoying every user with every edge case that
might ever exist.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He is the author of 11 programming
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2003). Microsoft named
him a Soft ware Legend in 2002. He wonders whether he should tape down two
of his daughter’s fi ngers so she learns how to count in octal. You can contact him
at rollthunder.com.

Edge Cases

In my last column, I praised
Word’s auto-correct feature,
which automatically converts
the “hte” that I typed into the
“the” that I really meant. I got a
number of responses, saying, “No,
Plattski, that’s a really bad feature.
Sometimes you actually mean
“hte,” like when you wrote that
column, and auto-correct gets in
the way. Word shouldn’t do that,
because sometimes it’s wrong.”

Th is is the typical geek world-
view. We are trained mathemati-
cally, logically. We get hammered
into us from middle-school algebra onward that a theorem that’s
true in 99 cases but false in the 100th case is a false theorem. Bad
geek. Th row it away; go fi nd a true one.

Th at’s right for mathematical theorems, but it’s way wrong for
human users. Word’s auto-correct feature doesn’t always correct
our documents correctly. But making its best guess, which im-
proves as we use it, and having us correct any resulting errors, is
a large net profi t for the user. (If you don’t believe me, try writing
with WordPad for a whole week. I guarantee you’ll go crazy by
Wednesday.) Th at net result is what most users judge our prod-
ucts on, most of the time.

Unlike a theorem, if your program makes 99 out of 100 users
happy, you’re probably having a pretty good day. And it’s probably
more important to make those 99 users happy again tomorrow
than it is to fi gure out how to please that 100th user—especially
if what he needs to make him happy would annoy the other 99.

Consider the classic model of editing a document—when you
close the program, it asks, “Do you want to save your changes?”
How oft en do you want to discard all your changes? Once in a
while, but not oft en. Not once a day, probably not once a week, I
doubt even once a month; especially since the Undo capability in
most applications lets you revert to any intermediate state in your
editing session.

Yet this uncommon edge case gets equal treatment in the UI
with the almost-universal case of keeping the work you just spent
all that time on. Not only does it waste the time of almost all users,
not only is it diffi cult for new users to learn, but it places all users in
danger of wrongly discarding the work they almost always want to

DON’T GET ME STARTED DAVID S. PLATT

msdn magazine96

Platt.DGMS.0310.lay5_96.indd 96 2/10/10 4:15 PM

http://rollthunder.com

Untitled-4 1 2/9/10 2:23 PM

www.fpoint.com

From the industry leader in data visualization
technology comes an easy-to-integrate,
customizable, turnkey dashboard solution.

From the industry leader in data visualization
technology comes an easy-to-integrate,
customizable, turnkey dashboard solution.

• Rapid dashboard development

• Flexible integration and customization

• The latest Silverlight 3.0 technology

Silverlight is a trademark of Microsoft Corporation in the United States and/or other countries.

Project1 11/12/09 10:14 AM Page 1

www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, March 2010
	Contents
	Cutting Edge
	CLR Inside Out
	Data Points
	IIS Smooth Streaming
	Finger Style
	Thread Diagnostics
	UI Frontiers
	Basic Instincts
	Extreme ASP.NET
	Security Briefs
	Test Run
	Don’t Get Me Started

