
Exploring CQRS and
Event Sourcing

A journey into high scalability, availability,
and maintainability with Windows Azure

Exploring CQRS and
Event Sourcing

A journey into high scalability, availability,
and maintainability with Windows Azure

Dominic Betts
Julián Domínguez
Grigori Melnik
Fernando Simonazzi
Mani Subramanian

978-1-62114-016-0

This document is provided “as-is”. Information and views expressed in
this document, including URL and other Internet Web site references,
may change without notice.

Some examples depicted herein are provided for illustration only and are
fictitious. No real association or connection is intended or should be
inferred.

This document does not provide you with any legal rights to any
intellectual property in any Microsoft product. You may copy and use
this document for your internal, reference purposes. You may modify this
document for your internal, reference purposes

© 2012 Microsoft. All rights reserved.

Microsoft, MSDN, SQL Azure, SQL Server, Visual Studio, Windows, and
Windows Azure are trademarks of the Microsoft group of companies. All
other trademarks are property of their respective owners.

 v

What other readers are saying about this guide	 xvii

Foreword by Greg Young	 xxi

Preface	 xxiii
Why we created this guidance now	 xxiii
How is this guidance structured?	 xxiii
A CQRS journey	 xxiv

CQRS reference	 xxv
Tales from the trenches	 xxv

A CQRS journey	 xxv
CQRS reference	 xxvi
Tales from the trenches	 xxvi

Selecting the domain for the RI	 xxvi
Arrow legend	 xxvii

Where to go for more information	 xxviii

The Crew	 xxix

Journey 1: Our Domain: Conference Management System	 1
The Contoso Corporation	 1
Who is coming with us on the journey?	 2
The Contoso Conference Management System	 3

Overview of the system	 3
Selling seats for a conference	 4
Creating a conference	 4

Nonfunctional requirements	 4
Scalability	 4
Flexibility	 5

Beginning the journey	 5
More information	 5

Contents

vi

Journey 2: Decomposing the Domain	 7
Definitions used in this chapter	 7
Bounded contexts in the conference management system	 8

Bounded contexts not included	 9
The context map for the Contoso Conference Management
System	 10

Why did we choose these bounded contexts?	 11
More information	 11

Journey 3: Orders and Registrations Bounded Context	 13
A description of the bounded context	 13
Working definitions for this chapter	 14
Domain definitions (ubiquitous language)	 15
Requirements for creating orders	 17
Architecture	 18
Patterns and concepts	 18

Validation	 23
Transaction boundaries	 24
Concurrency	 25
Aggregates and aggregate roots	 25

Implementation details	 25
High-level architecture	 26

1. Querying the read model	 27
2. Issuing commands	 28
3. Handling commands	 28
4. Initiating business logic in the domain	 29
5. Persisting the changes	 29
6. Polling the read model	 29

Inside the write model	 31
Aggregates	 31
Aggregates and process managers	 34
Infrastructure	 40

Using the Windows Azure Service Bus	 42
Delivering a command to a single recipient	 44
Why have separate CommandBus and EventBus
classes?	 48
How scalable is this approach?	 48
How robust is this approach?	 48
What is the granularity of a topic and a subscription?	 48
How are commands and events serialized?	 49

Impact on testing	 49
Summary	 52
More information	 52

 vii

Journey 4: Extending and Enhancing the Orders and
Registrations Bounded Context	 53

Changes to the bounded context	 53
Working definitions for this chapter	 53
User stories	 54

Implement a login using a record locator	 54
Tell the registrant how much time remains to complete
an order	 55
Enable a registrant to create an order that includes
multiple seat types	 55

Architecture	 55
Patterns and concepts	 56

Record locators	 56
Querying the read side	 56

Storing denormalized views in a database	 57
Making information about partially fulfilled orders
available to the read side	 60
CQRS command validation	 61
The countdown timer and the read model	 62

Implementation details	 62
The order access code record locator	 63
The countdown timer	 64
Using ASP.NET MVC validation for commands	 66
Pushing changes to the read side	 69
Querying the read side	 72
Refactoring the SeatsAvailability aggregate	 73

The AddSeats method	 74
Impact on testing	 74

Acceptance tests and the domain expert	 74
Defining acceptance tests using SpecFlow features	 74
Making the tests executable	 76

Using tests to help developers understand message flows	 81
A journey into code comprehension: A tale of pain, relief,
and learning	 83

Testing is important	 83
Domain tests	 84
The other side of the coin	 86

Summary	 90
More information	 90

Journey 5: Preparing for the V1 Release	 91
The Contoso Conference Management System V1 release	 91

Working definitions for this chapter	 91
User stories	 92

Ubiquitous language definitions	 92
Conference Management bounded context user stories	 92
Ordering and Registration bounded context user stories	 92

viii

Architecture	 93
Conference Management bounded context	 97

Patterns and concepts	 97
Event sourcing	 97

Identifying aggregates	 98
Task-based UI	 99
CRUD	 101
Integration between bounded contexts	 101

Pushing changes from the Conference Management
bounded context	 102
Pushing changes to the Conference Management
bounded context	 104
Choosing when to update the read-side data	 105

Distributed transactions and event sourcing	 105
Autonomy versus authority	 105

Favoring autonomy	 106
Favoring authority	 106
Choosing between autonomy and authority	 106

Approaches to implementing the read side	 107
Eventual consistency	 107

Implementation details	 108
The Conference Management bounded context	 108

Integration with the Orders and Registration bounded
context	 108

The Payments bounded context	 109
Integration with online payment services, eventual
consistency, and command validation	 111

Event sourcing	 113
Raising events when the state of an aggregate changes	 113
Persisting events to the event store	 117
Replaying events to rebuild state	 118
Issues with the simple event store implementation	 120

Windows Azure table storage-based event store	 120
Calculating totals	 122

Impact on testing	 123
Timing issues	 123
Involving the domain expert	 123

Summary	 124
More information	 124

Journey 6: Versioning Our System	 125
Working definitions for this chapter	 125
User stories	 126

No down time upgrade	 126
Display remaining seat quantities	 126
Handle zero-cost seats	 126

Architecture	 126

 ix

Patterns and concepts	 127
Handling changes to events definitions	 128

Mapping/filtering event messages in the infrastructure	128
Handling multiple message versions in the aggregates	 128

Honoring message idempotency	 128
Avoid processing events multiple times	 129

Persisting integration events	 131
Message ordering	 133

Implementation details	 133
Adding support for zero-cost orders	 134

Changes to the RegistrationProcessManager class	 134
Changes to the UI	 134
Data migration	 136

Displaying remaining seats in the UI	 138
Adding information about remaining seat quantities
to the read model	 138
Modifying the UI to display remaining seat quantities	 140
Data migration	 140

De-duplicating command messages	 141
Guaranteeing message ordering	 142
Persisting events from the Conference Management
bounded context	 146

Adding additional metadata to the messages	 146
Capturing and persisting messages to the message log	 146
Data migration	 148

Migrating from V1 to V2	 150
Generating past log messages for the Conference
Management bounded context	 151
Migrating the event sourcing events	 151
Rebuilding the read models	 151

Impact on testing	 151
SpecFlow revisited	 152
Discovering a bug during the migration	 155

Summary	 155
More information	 155

Journey 7: Adding Resilience and Optimizing Performance	 157
Working definitions for this chapter	 157
Architecture	 158
Adding resilience	 159

Making the system resilient when an event is reprocessed	 161
Ensuring that commands are always sent	 161

Optimizing performance	 162
UI flow before optimization	 162
Optimizing the UI	 163

UI optimization 1	 164
UI optimization 2	 165

x

Optimizing the infrastructure	 165
Sending and receiving commands and events
asynchronously	 165
Optimizing command processing	 166
Using snapshots with event sourcing	 166
Publishing events in parallel	 167
Filtering messages in subscriptions	 167
Creating a dedicated receiver for the SeatsAvailability
aggregate	 167
Caching conference information	 167
Partitioning the Service Bus	 168
Other optimizations	 168
Further changes that would improve performance	 169
Further changes that would enhance scalability	 171

No down-time migration	 172
Rebuilding the read models	 173

Implementation details	 174
Hardening the RegistrationProcessManager class	 174

Detecting out-of-order SeatsReserved events	 175
Detecting duplicate OrderPlaced events	 178
Creating a pseudo transaction when the
RegistrationProcessManager class saves its state
and sends a command	 178

Optimizing the UI flow	 181
Receiving, completing, and sending messages
asynchronously	 186

Receiving messages asynchronously	 186
Completing messages asynchronously	 186
Sending messages asynchronously	 186

Handling commands synchronously and in-process	 186
Implementing snapshots with the memento pattern	 189
Publishing events in parallel	 191
Filtering messages in subscriptions	 192
Creating a dedicated SessionSubscriptionReceiver
instance for the SeatsAvailability aggregate	 193
Caching read-model data	 194
Using multiple topics to partition the service bus	 195
Other optimizing and hardening changes	 196

Sequential GUIDs	 196
Asynchronous ASP.NET MVC controllers.	 198
Using prefetch with Windows Azure Service Bus	 198
Accepting multiple sessions in parallel	 199
Adding an optimistic concurrency check	 199
Adding a time-to-live value to the
MakeSeatReservation command	 199
Reducing the number of round-trips to the database	 199

 xi

Impact on testing	 200
Integration tests	 200
User interface tests	 200

Summary	 200
More information	 200

Journey 8: Epilogue: Lessons Learned	 201
What did we learn?	 201

Performance matters	 201
Implementing a message-driven system is far from simple	 202
The cloud has challenges	 203
CQRS is different	 204
Event sourcing and transaction logging	 205
Involving the domain expert	 206
When to use CQRS	 206

What would we do differently if we started over?	 207
Start with a solid infrastructure for messaging and
persistence	 207
Leverage the capabilities of the infrastructure more	 207
Adopt a more systematic approach to implementing
process managers	 208
Partition the application differently	 208
Organize the development team differently	 208
Evaluate how appropriate the domain and the bounded
contexts are for the CQRS pattern	 208
Plan for performance	 208
Think about the UI differently	 209
Explore some additional benefits of event sourcing	 209
Explore the issues associated with integrating bounded
contexts	 210

More information	 210

Reference 1: CQRS in Context	 211
What is domain-driven design?	 212
Domain-driven design: concepts and terminology	 212

Domain model	 213
Ubiquitous language	 213
Entities, value objects, and services	 214
Aggregates and aggregate roots	 215

Bounded contexts	 215
Anti-corruption layers	 217
Context maps	 218
Bounded contexts and multiple architectures	 218
Bounded contexts and multiple development teams	 219
Maintaining multiple bounded contexts	 220

CQRS and DDD	 220
More information	 221

xii

Reference 2: Introducing the Command Query
Responsibility Segregation Pattern	 223

What is CQRS?	 223
Read and write sides	 225

CQRS and domain-driven design	 227
Introducing commands, events, and messages	 228
Why should I use CQRS?	 230

Scalability	 230
Reduced complexity	 231
Flexibility	 231
Focus on the business	 232
Facilitates building task-based UIs	 232

Barriers to adopting the CQRS pattern	 232
When should I use CQRS?	 232

Collaborative domains	 233
Stale data	 233
Moving to the cloud	 234

When should I avoid CQRS?	 234
Summary	 234
More information	 234

Reference 3: Introducing Event Sourcing	 235
What is event sourcing?	 236

Comparing using an ORM layer with event sourcing	 236
Why should I use event sourcing?	 240
Event sourcing concerns	 242
CQRS/ES	 243
Standalone event sourcing	 245
Event stores	 245

Basic requirements	 245
Underlying storage	 245
Performance, scalability, and consistency	 245

More information	 246

Reference 4: A CQRS and ES Deep Dive	 247
Introduction	 247

Read models and write models	 247
Commands and data transfer objects	 247
Domain-driven design (DDD) and aggregates	 248
Data and normalization	 248
Events and event sourcing	 248
Eventual consistency	 248

Defining aggregates in the domain model	 249
Aggregates and object-relational mapping layers	 249
Aggregates and event sourcing	 250

 xiii

Commands and command handlers	 252
Commands	 253

Example code	 253
Command handlers	 254
Commands and optimistic concurrency	 256

Events and event handlers	 256
Events and intent	 256

How to model intent	 258
Events	 259

Sample Code	 259
Event handlers	 260

Sample code	 260
Embracing eventual consistency	 261
Eventual consistency and CQRS	 263
Optimizing the read-side	 266
Optimizing the write side	 267

Concurrency and aggregates	 267
Messaging and CQRS	 268

Messaging considerations	 268
Duplicate messages	 268
Lost messages	 269
Out-of-order messages	 269
Unprocessed messages	 269

Event versioning	 269
Redundant events	 270
New event types	 270
Changing existing event definitions	 270

Task-based UIs	 271
Taking advantage of Windows Azure	 272

Scaling out using multiple role instances	 273
Implementing an event store using Windows Azure
table storage	 273

Persisting events	 274
Retrieving events	 275
Publishing events	 276

Implementing a messaging infrastructure using
the Windows Azure Service Bus	 278
A word of warning	 279

More information	 279

Reference 5: Communicating Between Bounded Contexts	 281
Introduction	 281
Context maps	 281
The anti-corruption layer	 281

xiv

Integration with legacy systems	 282
Reading the database	 282
Generating events from the database	 282
Modifying the legacy systems	 282
Implications for event sourcing	 282

More information	 283

Reference 6: A Saga on Sagas	 285
Clarifying the terminology	 285
Process Manager	 286

Messages and CQRS	 286
What is a process manager?	 286
When should I use a process manager?	 290
When should I not use a process manager?	 290
Sagas and CQRS	 290

More information	 290

Reference 7: Technologies Used in the Reference
Implementation	 291

Windows Azure Service Bus	 291
Queues	 292
Topics and Subscriptions	 293
Useful API features	 294

Reading messages	 294
Sending messages	 294
Expiring messages	 294
Delayed message processing	 294
Serializing messages	 295

Further information	 295
Unity Application Block	 296

Further information	 296
More information	 296

Tales from the Trenches	 297

Twilio	 297
Product overview	 297
Lessons learned	 297

Separating reads and writes	 297
Designing for high availability	 297
Idempotency	 298
No-downtime deployments	 298
Performance	 298

References	 299
More information	 299

 xv

Tales from the Trenches: Lokad Hub	 300
Project overview	 300
Lessons learned	 300

Benefits of DDD	 301
Reducing dependencies	 301
Using sagas	 301
Testing and documentation	 301
Migration to ES	 301
Using projections	 301
Event sourcing 	 301
Infrastructure	 302

References	 302
More information	 302

Tales from the Trenches: DDD/CQRS for large financial
company	 303

Project overview	 303
Lessons learned	 304

Query performance	 304
Commands	 304
Working with legacy databases	 304
Using an Inversion of Control (IoC) container	 304
Key lessons learned	 305

More information	 305

Tales from the Trenches: Digital Marketing	 306
Single Responsibility of Objects	 309

More information	 309

Tales from the Trenches: TOPAZ Technologies	 310
What did we hope to accomplish by using CQRS/ES?	 310
What were the biggest challenges and how did we
overcome them?	 310
What were the most important lessons learned?	 311
With hindsight, what would we have done differently?	 311
Further information	 311
More information	 311

Tales from the Trenches: eMoney Nexus	 312
eMoney Nexus: Some CQRS lessons	 312
About eMoney & the Nexus	 312
System overview	 313
The evolution of the system	 314
Lessons learned	 320
Making it better	 321

xvi

Appendix 1: Release Notes	 323
System evolution	 323
Building and running the sample code (RI)	 323
Prerequisites	 324
Obtaining the code	 325
Creating the databases	 325

SQL Express Database	 325
Windows Azure SQL Database instance	 325

Creating the Settings.xml File	 327
Building the RI	 327

Build Configurations	 328
Release	 328
Debug	 328
DebugLocal	 328

Running the RI	 328
Scenario 1. Local Web Server, SQL Event Bus,
SQL Event Store	 328
Scenario 2. Local Web Server, Windows Azure
Service Bus, Table Storage Event Store	 329
Scenario 3. Compute Emulator, SQL Event Bus,
SQL Event Store	 329
Scenario 4. Compute Emulator, Windows Azure
Service Bus, Table Storage Event Store	 329
Scenario 5. Windows Azure, Windows Azure
Service Bus, Table Storage Event Store	 329

Running the Tests	 329
Running the Unit and Integration Tests	 329
Running the Acceptance Tests	 330

Known issues	 330
More information	 330

Appendix 2: Migrations	 331
Migrating from the V1 to the V2 release	 331

Running the migration program to migrate the data	 331
If the data migration fails	 332

Migrating from the V2 to the V3 Release	 333
More information	 333

Index	 335

 xvii

This is another excellent guide from the patterns & practices team—real software engineering with
no comforting illusions taken or offered. This guide provides a detailed journal of the practitioners
implementing a real production system using the CQRS and Event Sourcing patterns, and also high-
lights the tradeoffs and teaches the principles that underlie them. The topics presented are relevant
and useful, especially if you are building highly scalable Windows Azure applications. You’ll be both
challenged and inspired!

—Scott Guthrie, Corporate Vice-President, Azure App Platform, Microsoft

Having participated and co-authored various guides from patterns & practices, the “CQRS Journey”
follows the same walkthrough, scenario-based style, but adding even more fresh empirical content.
It’s a true testament of a skilled development team without previous CQRS experience, going through
the journey of implementing a complex system and documenting their adventures and lessons learnt
in this diary. If I had to recommend to someone where to start with CQRS, I would definitely point
them to this guide.

—Matias Woloski, CTO, Auth10 LLC

The “CQRS Journey” guide is an excellent resource for developers who want to begin developing a
CQRS system or convert their current system. It’s a true “trial by fire” approach to the concepts and
implementation hurdles that a team would encounter when adopting CQRS. I would recommend
reading it twice as I picked up even more lessons the second time through.

—Dan Piessens, Lead Software Architect, Zywave

I think it’s a really big step in communication with the developer community. You not only share your
development experience with a broad audience (which is very valuable by itself) but you’re also open
for learning from the community. While working on real projects it’s difficult to stop, find some time
to structure your knowledge, prepare it in the form understandable for others. It’s very cool that you
found time and resources for such educational effort, I really appreciate this.

—Ksenia Mukhortova, Business Applications Developer, Intel

I’m very excited about A CQRS Journey for a number of reasons. It explores, with an even hand and a
fair mind, a topic where opinions are both diverse and numerous. True to its name, the guide captures
the progression of learning. Conclusions are not simply stated; they arrive as a result of experience.
Additionally, the project embraced a passionate community with a spirit of inclusion and transparency.
The result is friendly-to-read guidance that is both diligent in execution and rigorous in its research.

—Christopher Bennage, Software Development Engineer, Microsoft

What other readers are
saying about this guide

xviii

The journey project used Windows Azure SQL Database (backing write & read models), Service Bus
(for reliable messaging), and Tables (for event store). Production-quality, scalable cloud services that
can be provisioned on-demand with a few mouse-clicks (or API calls) can turn some tough infrastruc-
ture problems into trivial ones.

—Bill Wilder, MVP, Independent Consultant

Perhaps the best lessons out of this guidance will be just how easy it is to work with Microsoft now
that they are embracing more community and open source.

—Adam Dymitruk, Systems Architect

The work that patterns & practices is doing here is very important as it is packaging the concepts in
a digestible fashion and helping developers to wade through the ambiguities of CQRS. The real world
experiences captured within the journey project will be invaluable to folks looking at applying CQRS
within their application development”

—Glenn Block, Senior Program Manager, Microsoft, Windows Azure SDK for Node.js,
Organizer at ALT.NET Seattle Chapter

The p&p team’s dedication and hard work go hand-in-hand with the very high level of competency
present on the team. Their attention to detail, insistence on clarity, and open collaboration with the
community all led to the creation of material representing enormous value to consumers of the guid-
ance. I definitely plan on referencing this material and code in future engagements because I think my
clients will derive many benefits from it–a win-win for everyone!

—Josh Elster, Principal, Liquid Electron

CQRS is a very important pattern, and a tool that any cloud developer should have in his or her tool-
belt. It is particularly well-suited for the cloud since it allows for the implementation of massively
scalable solutions based on simple, common patterns (like queues, event handlers, and view models,
to name a few). Like all patterns, there are several concrete, correct ways of implementing CQRS. A
journey of the type undertaken by Microsoft’s patterns & practices team is a great way to explore the
different options, tradeoffs, and even possible mistakes one can make along the way, and accelerate
one’s learning of the CQRS pattern.

—Shy Cohen, Principal, Shy Cohen Consulting

patterns & practices assembled many of the active and key people in the CQRS community to join
them on the their journey with CQRS and along the way discovered confusing terminology and con-
cepts that created opportunities for leaders in the community to bring clarity to a broad audience.
The material produced is influenced from the results of building a real world application and ex-
presses the experiences from advisors and the patterns & practices team during the development
process. By request from the community to allow outside contributions, everything has been open
sourced on GitHub. Anyone interested is encouraged to take a look at the guide or implementation.
The patterns & practices team has been very welcoming to anyone who wants to collaborate on
covering additional areas, alternative implementations or further extending what is currently in place.

—Kelly Sommers, Developer

 xix

Congratulations on getting to what looks to be nice guidance. I know that the announcement that
p&p was going to embark on this project caused a twitter firestorm but you seem to have come
through it well. I’m a fan of the p&p books and think you’ve done a great job in sharing good prac-
tices with the community.

—Neil Mackenzie, Windows Azure MVP

CQRS is as much about architecture community as it is about concrete patterns—thus the project is
aptly named “CQRS Journey.” The community involvement and engagement in this project is unprec-
edented for Microsoft and reflects the enthusiasm amongst the many (if may say: young) software
architects from across the industry who are rediscovering proven architecture patterns and are recom-
posing them in new ways to solve today’s challenges. For me, one takeaway from this project is that
the recipes developed here need to be carefully weighed against their alternatives. As with any soft-
ware architecture approaches that promise easy scalability or evolvability of solutions, the proof will
be in concrete, larger production implementations and how they hold up to changing needs over time.
Thus, the results of this Journey project mark a start and not a finish line.

—Clemens Vasters, Principal Technical Lead, Microsoft Corporation

The experiences and conclusions of the p&p team match up very well with our own real-world expe-
riences. Their conclusions in Chapter 8 are spot on. One of the best aspects of this guidance is that
the p&p team exposes more of their thought processes and learning throughout the Journey than
most write-ups that you may read. From arguments between Developer 1 and Developer 2 on the
team, to discussions with experts such as Greg Young and Udi Dahan, to an excellent post-project
review in Chapter 8, the thought process is out there for you to learn from.

Thanks for this great work, guys. I hope you keep this style with your upcoming guidance pieces.
—Jon Wagner, SVP & Chief Architect, eMoney Advisor

The CQRS journey release by patterns & practices provides real world insight into the increasingly
popular CQRS pattern used in distributed systems that rely upon asynchronous, message based ap-
proaches to achieve very large scale. The exploration of the issues the team faced throughout the
implementation of the pattern is extremely useful for organizations considering CQRS, both to de-
termine where the pattern is appropriate for them, and to go into the design and implementation with
a baseline understanding of the complexity it will introduce. I really enjoyed the candor around the
approach taken, the issues encountered, and the early design choices that the team would change in
hindsight. This is a must read for any organization embarking upon CQRS, regardless of what platform
they are using.

—Chris Keyser, VP Engineering, CaseNetwork

It is a great resource on tactical and technical aspects of building a distributed system.
—Rinat Abdullin, Technology Leader, Lokad

I’d like to personally thank the team for putting together such a transparent journey throughout this
project. I’m very pleased with the final release.

—Truong Nguyen, CEO, Nepsoft

It’s a good read. Lots to learn from it.
—Christian Horsdal Gammelgaard, Lead Software Architect, Mjølner Informatics

Foreword by Greg Young

I started off the new year on January 3rd with a few hour long meeting showing the team at patterns
& practices a bit about Command and Query Responsibility Segregation (CQRS) and Event Sourcing
(ES). Most of the team had previously not been exposed to these ideas. Today is almost exactly six
months later and they have produced a document of over 200 pages of discussions and guidance as
well as a full end to end example hosted in Windows Azure. This is certainly not a small feat.

When the announcement of the project came out, the twitter stream near instantly went nega-
tive as many thought that Microsoft was building a CQRS framework; which was premature from the
community. The process followed similar paths to other patterns & practices projects with a large
advisor board being set up. I believe however that the most interesting part of the process was the
decision to host the work on GitHub and allow pull requests which is an extremely open and transpar-
ent way of communicating during the project.

One of the main benefits for the community as a whole of going through such a process is that
people were forced to refine their vocabularies. There are in the DDD/CQRS/ES communities many
different voices and often times, especially in younger groups, vocabularies will go down divergent paths
leading to fractured community. An example of nebulous terminologies can be seen in the terms ”saga,”
”process manager,” and ”workflow”; the community as a whole I believe benefited from the discussions
over defining what it actually is. One of the most interesting conversations brought up for me person-
ally was defining the difference between an Event Store and a Transaction Log as legitimate arguments
can be made that either is a higher level abstraction of the other. This has led not only to many interest-
ing discussions in the community but to a far stricter future definition of what an Event Store is.

”For the things we have to learn before we can do them, we learn by doing them. ~Aristotle”

The quote above was the team motto during the project. Many will be looking towards the guidance
presented as being authoritative guidance of how things should be done. This is however not the
optimal way to look at the guidance as presented (though it does contain many bits of good authori-
tative guidance). The main benefit of the guidance is the learning experience that it contains. It is
important to remember that the team came into the ideas presented as non-experienced in CQRS
and they learned in the process of doing. This gives a unique perspective throughout much of the text
where things are learned along the way or are being seen through fresh eyes of someone recently
having learned and attempted to apply the ideas. This perspective has also brought up many interest-
ing conversations within the community. The patterns & practices team deserves credit for digging
deep, facilitating these discussions, and bringing to light various incongruities, confusions and incon-
sistencies as they went along.

 xxi

xxii

Keeping in mind the origination point of the team, the most valuable bits in the text that a
reader should focus on aside from general explanations are places where tradeoffs are discussed.
There is an unfortunate tendency to seek authoritative answers that ”things should be done in this
way” when they in fact do not exist. There are many ways to proverbially skin a cat and all have their
pros and cons. The text is quite good at discussing alternative points of view that came up as possible
answers, or that received heavy discussion within the advisor group, these can often be seen in the
“developer 1/developer 2 discussions.” One such discussion I mentioned previously in defining the
difference between event sourcing and a transaction log. Many of these types of discussions come at
the end of the guidance.

How might things be approached differently? One of my favourite discussions towards the end
of the guidance dealing with performance is the independent realization that messaging is not
equivalent to distribution. This is a very hard lesson for many people to understand and the way that
it comes up rather organically and much like it would on most teams as a performance problem is a
great explanation. I can say 100 times to apply the first law of distributed computing, don’t distribute;
however seeing it from the eyes of a team dealing with a performance problem who has already made
the mistake of equating the two is a very understandable path and a great teaching tool. This section
also contains a smörgåsbord of information and insights in terms of how to build performant applica-
tions in Windows Azure.

Out in the wild, there are plenty of naïve samples of CQRS/ES implementations, which are great
for describing the concepts. There are details and challenges that will not surface till you work on a
complex, real-world production system. The value of the p&p’s sample application is that it uses a
fairly complex domain and the team went through multiple releases and focused on infrastructure
hardening, performance optimizations, dealing with transient faults and versioning, etc. — many
practical issues that you face when implementing CQRS and ES.

As with any project, people may disagree with implementation choices and decisions made. It is
important to remember the scoping of the project. The guidance is not coming from an expert view-
point throughout the process, but that of a group “learning by doing.” The process was and remains
open to contributions, and in fact this version has been reviewed, validated, and guided by experts in
the community. In the spirit of OSS “send a pull request.” This guide can serve as a valuable point to
start discussions, clear up misconceptions, and refine how we explain things, as well as drive improve-
ment both in the guidance itself and in getting consistent viewpoints throughout the community.

In conclusion I think patterns & practices has delivered to the community a valuable service in the
presentation of this guidance. The view point the guidance is written from is both an uncommon and
valuable one. It has also really been a good overall exercise for the community in terms of setting the
bar for what is being discussed and refining of the vocabularies that people speak in. Combine this
with the amount of previously difficult to find Windows Azure guidance and the guidance becomes
quite valuable to someone getting into the ideas.

Greg Young

Preface
Why are we embarking on this journey?

“The best way to observe a fish is to become a fish.”
Jacques Cousteau

Why we created this guidance now
The Command Query Responsibility Segregation (CQRS) pattern and event sourcing (ES) are cur-
rently generating a great deal of interest from developers and architects who are designing and build-
ing large-scale, distributed systems. There are conference sessions, blogs, articles, and frameworks all
dedicated to the CQRS pattern and to event sourcing, and all explaining how they can help you to
improve the maintainability, testability, scalability, and flexibility of your systems.

However, like anything new, it takes some time before a pattern, approach, or methodology is
fully understood and consistently defined by the community and has useful, practical guidance to help
you to apply or implement it.

This guidance is designed to help you get started with the CQRS pattern and event sourcing. It is
not intended to be the guide to the CQRS pattern and event sourcing, but a guide that describes the
experiences of a development team in implementing the CQRS pattern and event sourcing in a real-
world application. The development team did not work in isolation; they actively sought input from
industry experts and from a wider group of advisors to ensure that the guidance is both detailed and
practical.

The CQRS pattern and event sourcing are not mere simplistic solutions to the problems associ-
ated with large-scale, distributed systems. By providing you with both a working application and
written guidance, we expect you’ll be well prepared to embark on your own CQRS journey.

How is this guidance structured?
There are two closely related parts to this guidance:
•	 A working reference implementation (RI) sample, which is intended to illustrate many of the

concepts related to the CQRS pattern and event sourcing approaches to developing complex
enterprise applications.

•	 This written guidance, which is intended to complement the RI by describing how it works,
what decisions were made during its development, and what trade-offs were considered.

 xxiii

xxiv

This written guidance is itself split into three distinct sections that you can read independently: a
description of the journey we took as we learned about CQRS, a collection of CQRS reference ma-
terials, and a collection of case studies that describe the experiences other teams have had with the
CQRS pattern. The map in Figure 1 illustrates the relationship between the first two sections: a
journey with some defined stopping points that enables us to explore a space.

Figure 1
A CQRS journey

A CQRS journey
This section is closely related to the RI and the chapters follow the chronology of the project to de-
velop the RI. Each chapter describes relevant features of the domain model, infrastructure elements,
architecture, and user interface (UI) that the team was concerned with during that phase of the
project. Some parts of the system are discussed in several chapters, and this reflects the fact that the
team revisited certain areas during later stages. Each of these chapters discuss how and why particu-
lar CQRS patterns and concepts apply to the design and development of particular bounded contexts,
describe the implementation, and highlight any implications for testing.

 xxv

Other chapters look at the big picture. For example, there is a chapter that explains the rationale
for splitting the RI into the bounded contexts we chose, another chapter analyzes the implications of
our approach for versioning the system, and other chapters look at how the different bounded con-
texts in the RI communicate with each other.

This section describes our journey as we learned about CQRS, and how we applied that learn-
ing to the design and implementation of the RI. It is not prescriptive guidance and is not intended
to illustrate the only way to apply the CQRS approach to our RI. We have tried wherever possible
to capture alternative viewpoints through consultation with our advisors and to explain why we
made particular decisions. You may disagree with some of those decisions; please let us know at
cqrsjourney@microsoft.com.

This section of the written guidance makes frequent cross-references to the material in the sec-
ond section for readers who wish to explore any of the concepts or patterns in more detail.

CQRS reference
The second section of the written guidance is a collection of reference material collated from many
sources. It is not the definitive collection, but should contain enough material to help you to under-
stand the core patterns, concepts, and language of CQRS.

Tales from the trenches
This section of the written guidance is a collection of case studies from other teams that describe
their experiences of implementing the CQRS pattern and event sourcing in the real world. These case
studies are not as detailed as the journey section of the guidance and are intended to give an overview
of these projects and to summarize some of the key lessons learned.

The following is a list of the chapters that comprise both sections of the written guidance:

A CQRS journey
•	 Chapter 1, “The Contoso Conference Management System,” introduces our sample applica-

tion and our team of (fictional) experts.
•	 Chapter 2, “Decomposing the Domain,” provides a high-level view of the sample application

and describes the bounded contexts that make up the application.
•	 Chapter 3, “Orders and Registrations Bounded Context,” introduces our first bounded

context, explores some CQRS concepts, and describes some elements of our infrastructure.
•	 Chapter 4, “Extending and Enhancing the Orders and Registrations Bounded Context,”

describes adding new features to the bounded context and discusses our testing approach.
•	 Chapter 5, “Preparing for the V1 Release,” describes adding two new bounded contexts and

handling integration issues between them, and introduces our event-sourcing implementa-
tion. This is our first pseudo-production release.

•	 Chapter 6, “Versioning Our System,” discusses how to version the system and handle
upgrades with minimal down time.

•	 Chapter 7, “Adding Resilience and Optimizing Performance,” describes what we did to make
the system more resilient to failure scenarios and how we optimized the performance of the
system. This was the last release of the system in our journey.

•	 Chapter 8, “Lessons Learned,” collects the key lessons we learned from our journey and
suggests how you might continue the journey.

mailto:cqrsjourney@microsoft.com

xxvi

CQRS reference
•	 Chapter 1, “CQRS in Context,” provides some context for CQRS, especially in relation to the

domain-driven design approach.
•	 Chapter 2, “Introducing the Command Query Responsibility Segregation Pattern,” provides a

conceptual overview of the CQRS pattern.
•	 Chapter 3, “Introducing Event Sourcing,” provides a conceptual overview of event sourcing.
•	 Chapter 4, “A CQRS and ES Deep Dive,” describes the CQRS pattern and event sourcing in

more depth.
•	 Chapter 5, “Communicating between Bounded Contexts,” describes some options for

communicating between bounded contexts.
•	 Chapter 6, “A Saga on Sagas,” explains our choice of terminology: process manager instead of

saga. It also describes the role of process managers.
•	 Chapter 7, “Technologies Used in the Reference Implementation,” provides a brief overview

of some of the other technologies we used, such as the Windows Azure Service Bus.
•	 Appendix 1, “Release Notes,” contains detailed instructions for downloading, building, and

running the sample application and test suites.
•	 Appendix 2, “Migrations,” contains instructions for performing the code and data migrations

between the pseudo-production releases of the Contoso Conference Management System.

Tales from the trenches
•	 Chapter 1, “Twilio,” describes a highly available, cloud-hosted, communications platform.

Although the team who developed this product did not explicitly use CQRS, many of the
architectural concepts they adopted are very closely related to the CQRS pattern.

•	 Chapter 2, “Lokad Hub,” describes a project that made full use of domain-driven design,
CQRS, and event sourcing in an application designed to run on multiple cloud platforms.

•	 Chapter 3, “DDD/CQRS for large financial company,” describes a project that made full use
of domain-driven design and CQRS to build a reference application for a large financial
company. It used CQRS to specifically address the issues of performance, scalability, and
reliability.

•	 Chapter 4, “Digital Marketing,” describes how an existing application was refactored over
time while delivering new features. This project adopted the CQRS pattern for one of its
pieces as the project progressed.

•	 Chapter 5, “TOPAZ Technologies,” describes a project that used the CQRS pattern and
event sourcing to simplify the development of an off-the-shelf enterprise application.

•	 Chapter 6, “eMoney Nexus,” describes migration project for an application that used legacy
three-tier architecture to an architecture that used the CQRS pattern and event sourcing.
Many of the conclusions drawn in this project are similar to our own experiences on our
CQRS journey.

Selecting the domain for the RI
Before embarking on our journey, we needed to have an outline of the route we planned to take and
an idea of what the final destination should be. We needed to select an appropriate domain for the RI.

We engaged with the community and our advisory board to help us choose a domain that would
enable us to highlight as many of the features and concepts of CQRS as possible. To help us select be-
tween our candidate domains, we used the criteria in the following list. The domain selected should be:

 xxvii

•	 Non-trivial. The domain must be complex enough to exhibit real problems, but at the same
time simple enough for most people to understand without weeks of study. The problems
should involve dealing with temporal data, stale data, receiving out-of-order events, and
versioning. The domain should enable us to illustrate solutions using event sourcing, sagas, and
event merging.

•	 Collaborative. The domain must contain collaborative elements where multiple actors can
operate simultaneously on shared data.

•	 End to end. We wanted to be able illustrate the concepts and patterns in action from the
back-end data store through to the user interface. This might include disconnected mobile and
smart clients.

•	 Cloud friendly. We wanted to have the option of hosting parts of the RI on Windows Azure
and be able to illustrate how you can use CQRS for cloud-hosted applications.

•	 Large. We wanted to be able to show how our domain can be broken down into multiple
bounded contexts to highlight when to use and when not use CQRS. We also wanted to
illustrate how multiple architectural approaches (CQRS, CQRS/ES, and CRUD) and legacy
systems can co-exist within the same domain. We also wanted to show how multiple develop-
ment teams could carry out work in parallel.

•	 Easily deployable. The RI needed to be easily deployable so that you can install it and experi-
ment with it as you read this guidance.

As a result, we chose to implement the conference management system that Chapter 1, “Our Domain:
The Contoso Conference Management System,” introduces.

Arrow legend
Many illustrations in the guidance have arrows. Here is their associated meaning.

Figure 2
Legend for arrows

Event message

Command message

Method call

Flow of data

Object relationship

xxviii

Where to go for more information
There are a number of resources listed in text throughout the book. These resources will provide
additional background, bring you up to speed on various technologies, and so forth. For your conve-
nience, there is a bibliography online that contains all the links so that these resources are just a click
away.

You can find the bibliography on MSDN at: http://msdn.microsoft.com/en-us/library/jj619274.

http://msdn.microsoft.com/en-us/library/jj619274

 xxix

The Crew

Captain Ernest Shackleton’s Antarctic expedition recruitment ad (1913) stated:

No fewer than 5000 people replied…

When we embarked on our journey half a
year ago, it felt almost the same. With no
fewer than 70 community members (both ex-
perts and enthusiastic novices) answering the
call for advisory board and offering to volun-
teer their time to help us steer this project!

We have now reached the end of the
journey. These are the members of the devel-
opment team who endured the challenges of
the journey and produced this guide:

Vision and Program Management Grigori Melnik (Microsoft Corporation)
Development Julián Domínguez (Microsoft Corporation), Daniel Cazzulino and Fernando Simon-

azzi (Clarius Consulting)
Testing Mani Subramanian (Microsoft Corporation), Hernan de Lahitte (Digit Factory), and Rathi

Velusamy (Infosys Technologies Ltd.)
Documentation Dominic Betts (Content Master Ltd.), Julián Domínguez, Grigori Melnik, and Mani

Subramanian (Microsoft Corporation), and Fernando Simonazzi (Clarius Consulting)
Graphic Design Alexander Ustinov and Anton Rusecki (JetStyle)
Editing and Production RoAnn Corbisier and Nelly Delgado (Microsoft Corporation), Nancy Mi-

chell (Content Master Ltd.), and Chris Burns (Linda Werner & Associates Inc)
The development team didn’t embark on this journey by themselves and didn’t work in isolation.

We actively sought input from industry experts and from a wider group of advisors to ensure that the
guidance is detailed, practical, and informed by real-world experience. We would like to thank our
advisory board members and the DDD/CQRS community members in general who have accompanied
us on this journey for their active participation, insights, critiques, challenges, and reviews. We have
learned and unlearned many things, we’ve explored and experimented a lot. The journey wasn’t easy
but it was so worth it and we enjoyed it. Thank you for keeping us grounded in the real-world chal-
lenges. Thank you for your ongoing support of our effort. We hope the community will continue
exploring the space, pushing the state of the practice further, and extending the reference implemen-
tation and the guidance.

http://cqrsjourney.github.com/advisors/members/

xxx

Specifically, we’d like to acknowledge the following people who have contributed to the journey
in many different ways:
•	 Greg Young for your pragmatism, patience with us, continuous mentoring and irreplaceable

advice;
•	 Udi Dahan for challenging us and offering alternative views on many concepts;
•	 Clemens Vasters for pushing back on terminology and providing a very valuable perspective from

the distributed database field;
•	 Kelly Sommers for believing in us and bringing sanity to the community as well as for deep

technical insights;
•	 Adam Dymitruk for jumpstarting us on git and extending the RI;
•	 Glenn Block for encouraging us to go all the way with the OSS initiative and for introducing us

to many community members;
•	 Our GM Lori Brownell and our director Björn Rettig for providing sponsorship of the initiative

and believing in our vision;
•	 Scott Guthrie for supporting the project and helping amplify the message;
•	 Josh Elster for exploring and designing the MIL (Messaging Intermediate Language) and pushing

us to make it easier to follow the workflow of messages in code;
•	 Cesar De la Torre Llorente for helping us spike on the alternatives and bringing up terminological

incongruities between various schools and thought leaders;
•	 Rinat Abdullin for active participation at the beginning of the project and contributing a case

study;
•	 Bruno Terkaly and Ricardo Villalobos for exploring the disconnected client scenario that would

integrate with the RI;
•	 Einar Otto Stangvik for spiking on the Schedule Builder bounded context implementation in

Node.js;
•	 Mark Seemann for sending the very first pull request focusing on code quality;
•	 Christopher Bennage for helping us overcome GitHub limitations by creating the pundit review

system and the export-to-Excel script to manage iteration backlog more effectively;
•	 Bob Brumfield, Eugenio Pace, Carlos Farre, Hanz Zhang, and Rohit Sharma for many insights

especially on the perf and hardening challenges;
•	 Chris Tavares for putting out the first CQRS experiment at p&p and suggesting valuable scenarios;
•	 Tim Sharkinian for your perspectives on CQRS and for getting us on the SpecFlow train;
•	 Jane Sinyagina for helping solicit and process feedback from the advisors;
•	 Howard Wooten and Thomas Petchel for feedback on the UI style and usability;
•	 Kelly Leahy for sharing your experience and making us aware of potential pitfalls;
•	 Dylan Smith for early conversations and support of this project in pre-flight times;
•	 Evan Cooke, Tim Walton, Alex Dubinkov, Scott Brown, Jon Wagner, and Gabriel N. Schenker for

sharing your experiences and contributing mini-case studies.
We feel honored to be supported by such an incredible group of people.
Thank you!

 1

“I am prepared to go anywhere, provided it be forward.”
David Livingstone

This chapter introduces a fictitious company named Contoso. It describes Contoso’s plans to launch
the Contoso Conference Management System, a new online service that will enable other companies
or individuals to organize and manage their own conferences and events. This chapter describes, at a
high-level, some of the functional and non-functional requirements of the new system, and why
Contoso wants to implement parts of it using the Command Query Responsibility Segregation
(CQRS) pattern and event sourcing (ES). As with any company considering this process, there are
many issues to consider and challenges to be met, particularly because this is the first time Contoso
has used both the CQRS pattern and event sourcing. The chapters that follow show, step by step,
how Contoso designed and built its conference management application.

This chapter also introduces a panel of fictional experts to comment on the development efforts.

The Contoso Corporation
Contoso is a startup ISV company of approximately 20 employees that specializes in developing solu-
tions using Microsoft technologies. The developers at Contoso are knowledgeable about various
Microsoft products and technologies, including the .NET Framework, ASP.NET MVC, and Windows
Azure. Some of the developers have previous experience using the domain-driven design (DDD) ap-
proach, but none of them have used the CQRS pattern previously.

The Conference Management System application is one of the first innovative online services that
Contoso wants to take to market. As a startup, Contoso wants to develop and launch these services
with a minimal investment in hardware and IT personnel. Contoso wants to be quick to market in
order to start growing market share, and cannot afford the time to implement all of the planned
functionality in the first releases. Therefore, it is important that the architecture it adopts can easily
accommodate changes and enhancements with minimal impact on existing users of the system. Con-
toso has chosen to deploy the application on Windows Azure in order to take advantage of its ability
to scale applications as demand grows.

Our Domain:
Conference Management System

The starting point: Where have we come from,
what are we taking, and who is coming with us?

Journey 1:

2 Journey one

Who is coming with us on the journey?
As mentioned earlier, this guide and the accompanying RI describe a CQRS journey. A panel of experts
will comment on our development efforts as we go. This panel includes a CQRS expert, a software
architect, a developer, a domain expert, an IT Pro, and a business manager. They will all comment from
their own perspectives.

Gary is a CQRS expert. He ensures that a CQRS-based solution will
work for a company and will provide tangible benefits. He is a
cautious person, for good reason.

“Defining the CQRS pattern is easy. Realizing the benefits that implementing the
CQRS pattern can offer is not always so straightforward.”

Jana is a software architect. She plans the overall structure of an
application. Her perspective is both practical and strategic. In other
words, she considers not only what technical approaches are needed
today, but also what direction a company needs to consider for the future.
Jana has worked on projects that used the domain-driven design approach.

“It’s not easy to balance the needs of the company, the users, the IT organization, the
developers, and the technical platforms we rely on.”

Markus is a software developer who is new to the CQRS pattern. He is
analytical, detail-oriented, and methodical. He’s focused on the task at
hand, which is building a great application. He knows that he’s the
person who’s ultimately responsible for the code.

“I don’t care what architecture you want to use for the application; I’ll make it work.”

Carlos is the domain expert. He understands all the ins and outs of
conference management. He has worked in a number of organizations that
help people run conferences. He has also worked in a number of different
roles: sales and marketing, conference management, and consultant.

“I want to make sure that the team understands how this business works so that we can
deliver a world-class online conference management system.”

 3Our Domain: Conference M anagement System

Poe is an IT professional who’s an expert in deploying and running
applications in the cloud. Poe has a keen interest in practical solutions;
after all, he’s the one who gets paged at 3:00 AM when there’s a problem.

“Running complex applications in the cloud involves challenges that are different than
the challenges in managing on-premises applications. I want to make sure our new
conference management system meets our published service-level agreements (SLA).”

Beth is a business manager. She helps companies to plan how their business will
develop. She understands the market that the company operates in, the resources
that the company has available, and the goals of the company. She has both a
strategic view and an interest in the day-to-day operations of the company.

“Organizations face many conflicting demands on their resources. I want to make sure that our
company balances those demands and adopts a business plan that will make us successful in the
medium and long term.”If you have a particular area of interest, look for notes provided by the
specialists whose interests align with yours.

The Contoso Conference Management System
This section describes the Contoso Conference Management System as the team envisaged it at the
start of the journey. The team has not used the CQRS pattern before; therefore, the system that is
delivered at the end of our journey may not match this description exactly because:
•	 What we learn as we go may impact what we ultimately deliver.
•	 Because this is a learning journey, it is more difficult to estimate what we can achieve in the

available time.

Overview of the system
Contoso plans to build an online conference management system that will enable its customers to
plan and manage conferences that are held at a physical location. The system will enable Contoso’s
customers to:
•	 Manage the sale of different seat types for the conference.
•	 Create a conference and define characteristics of that conference.

The Contoso Conference Management System will be a multi-tenant, cloud-hosted application. Busi-
ness customers will need to register with the system before they can create and manage their confer-
ences.

4 Journey one

Selling seats for a conference
The business customer defines the number of seats available for the conference. The business cus-
tomer may also specify events at a conference such as workshops, receptions, and premium sessions
for which attendees must have a separate ticket. The business customer also defines how many seats
are available for these events.

The system manages the sale of seats to ensure that the conference and sub-events are not
oversubscribed. This part of the system will also operate wait-lists so that if other attendees cancel,
their seats can be reallocated.

The system will require that the names of the attendees be associated with the purchased seats
so that an on-site system can print badges for the attendees when they arrive at the conference.

Creating a conference
A business customer can create new conferences and manage information about the conference such
as its name, description, and dates. The business customer can also make a conference visible on the
Contoso Conference Management System website by publishing it, or hide it by unpublishing it.

Additionally, the business customer defines the seat types and available quantity of each seat type
for the conference.

Contoso also plans to enable the business customer to specify the following characteristics of a
conference:
•	 Whether the paper submission process will require reviewers.
•	 What the fee structure for paying Contoso will be.
•	 Who key personnel, such as the program chair and the event planner, will be.

Nonfunctional requirements
Contoso has two major nonfunctional requirements for its conference management system—scal-
ability and flexibility—and it hopes that the CQRS pattern will help it meet them.

Scalability
The conference management system will be hosted in the cloud; one of the reasons Contoso chose a
cloud platform was its scalability and potential for elastic scalability.

Although cloud platforms such as Windows Azure enable you to scale applications by adding (or
removing) role instances, you must still design your application to be scalable. By splitting responsibil-
ity for the application’s read and write operations into separate objects, the CQRS pattern allows
Contoso to split those operations into separate Windows Azure roles that can scale independently of
each other. This recognizes the fact that for many applications, the number of read operations vastly
exceeds the number of write operations. This gives Contoso the opportunity to scale the conference
management system more efficiently, and make better use of the Windows Azure role instances it uses.

 5Our Domain: Conference M anagement System

Flexibility
The market that the Contoso Conference Management System oper-
ates in is very competitive, and very fast moving. In order to compete,
Contoso must be able to quickly and cost effectively adapt the con-
ference management system to changes in the market. This require-
ment for flexibility breaks down into a number of related aspects:
•	 Contoso must be able to evolve the system to meet new

requirements and to respond to changes in the market.
•	 The system must be able to run multiple versions of its software

simultaneously in order to support customers who are in the
middle of a conference and who do not wish to upgrade to a
new version immediately. Other customers may wish to migrate
their existing conference data to a new version of the software
as it becomes available.

•	 Contoso intends the software to last for at least five years. It
must be able to accommodate significant changes over that
period.

•	 Contoso does not want the complexity of some parts of the
system to become a barrier to change.

•	 Contoso would like to be able to use different developers for
different elements of the system, using cheaper developers for
simpler tasks and restricting its use of more expensive and
experienced developers to the more critical aspects of the
system.

Beginning the journey
The next chapter is the start of our CQRS journey. It provides more
information about the Contoso Conference Management System and
describes some of the high-level parts of the system. Subsequent
chapters describe the stages of the journey as Contoso implements
the conference management system.

More information
All links in this book are accessible from the book’s online bibliogra-
phy available at: http://msdn.microsoft.com/en-us/library/jj619274.

Contoso plans to compete
by being quick to respond
to changes in the market
and to changing customer
requirements. Contoso
must be able to evolve
the system quickly and
painlessly.

This is a big challenge:
keeping the system running
for all our customers while
we perform upgrades with
no down time.

There is some debate in the CQRS community about whether,
in practice, you can use different development teams for
different parts of the CQRS pattern implementation.

http://msdn.microsoft.com/en-us/library/jj619274

 7

“Without stones there is no arch.”
Marco Polo

In this chapter, we provide a high-level overview of the Contoso Conference Management System.
The discussion will help you understand the structure of the application, the integration points, and
how the parts of the application relate to each other.

Here we describe this high-level structure in terms borrowed from the domain-driven design
(DDD) approach that Eric Evans describes in his book, Domain-Driven Design: Tackling Complexity in
the Heart of Software (Addison-Wesley Professional, 2003). Although there is no universal consensus
that DDD is a prerequisite for implementing the Command Query Responsibility Segregation (CQRS)
pattern successfully, our team decided to use many of the concepts from the DDD approach, such as
domain, bounded context, and aggregate, in line with common practice within the CQRS community.
Chapter 1, “CQRS in Context,” in the Reference Guide discusses the relationship between the DDD
approach and the CQRS pattern in more detail.

Definitions used in this chapter
Throughout this chapter we use a number of terms, which we’ll define in a moment. For more detail,
and possible alternative definitions, see Chapter 1, “CQRS in Context,” in the Reference Guide.

Domain: The domain refers to the business domain for the Contoso Conference Management
System (the reference implementation). Chapter 1, “Our Domain: The Contoso Conference Manage-
ment System,” provides an overview of this domain.

Decomposing the Domain
Planning the stops.

Journey 2:

8 Journey two

Bounded context: The term bounded context comes from Eric
Evans’ book. In brief, Evans introduces this concept as a way to de-
compose a large, complex system into more manageable pieces; a
large system is composed of multiple bounded contexts. Each bound-
ed context is the context for its own self-contained domain model,
and has its own ubiquitous language. You can also view a bounded
context as an autonomous business component defining clear consis-
tency boundaries: one bounded context typically communicates with
another bounded context by raising events.

Context map: According to Eric Evans, you should “Describe the
points of contact between the models, outlining explicit translation
for any communication and highlighting any sharing.” This exercise
results in what is called a context map, which serves several purposes
that include providing an overview of the whole system and helping
people to understand the details of how different bounded contexts
interact with each other.

Bounded contexts in the conference management
system
The Orders and Registrations bounded context: Within the orders
and registrations bounded context are the reservations, payment, and
registration items. When a registrant interacts with the system, the
system creates an order to manage the reservations, payment, and
registrations. An order contains one or more order items.

A reservation is a temporary reservation of one or more seats at a
conference. When a registrant begins the ordering process to pur-
chase a number of seats at a conference, the system creates reserva-
tions for that number of seats. Those seats are then unavailable for
other registrants to reserve. The reservations are held for 15 minutes,
during which time the registrant can complete the ordering process
by making a payment for the seats. If the registrant does not pay for
the tickets within 15 minutes, the system deletes the reservation and
the seats become available for other registrants to reserve.

The Conference Management bounded context: Within this
bounded context, a business customer can create new conferences
and manage them. After a business customer creates a new confer-
ence, he can access the details of the conference by using his email
address and conference locator access code. The system generates
the access code when the business customer creates the conference.

When you use the CQRS
pattern, you often use
events to communicate
between bounded contexts.
There are alternative
approaches to integration,
such as sharing data at the
database level.

We discussed making the
period of time that the
system holds reservations
a parameter that a business
customer can adjust for
each conference. This may
be a feature that we add if
we determine that there is
a requirement for this level
of control.

 9Decomposing the Domain

The business customer can specify the following information about a conference:
•	 The name, description, and slug (part of the URL used to access the conference).
•	 The start and end dates of the conference.
•	 The different types and quotas of seats available at the conference.

Additionally, the business customer can control the visibility of the conference on the public website
by either publishing or unpublishing the conference.

The business customer can also use the conference management website to view a list of orders
and attendees.

The Payments bounded context: The payments bounded context is responsible for managing the
interactions between the conference management system and external payment systems. It forwards
the necessary payment information to the external system and receives an acknowledgement that the
payment was either accepted or rejected. It reports the success or failure of the payment back to the
conference management system.

Initially, the payments bounded context will assume that the business customer has an account
with the third-party payment system (although not necessarily a merchant account), or that the busi-
ness customer will accept payment by invoice.

Bounded contexts not included
Although they didn’t make it into the final release of the Contoso Conference Management System,
some work was done on three additional bounded contexts. Members of the community are working
on these and other features, and any out-of-band releases and updates will be announced on the
Project “a CQRS Journey” website. If you would like to contribute to these bounded contexts or any
other aspect of the system, visit the Project “a CQRS Journey” website or let us know at cqrsjourney@
microsoft.com.

The Discounts bounded context: This is a bounded context to handle the process of managing
and applying discounts to the purchase of conference seats that would integrate with all three exist-
ing bounded contexts.

The Occasionally Disconnected Conference Management client: This is a bounded context to
handle management of conferences on-site with functionality to handle label printing, recording at-
tendee arrivals, and additional seat sales.

The Submissions And Schedule Management bounded context: This is a bounded context to
handle paper submissions and conference event scheduling written using Node.js.

Note: Wait listing is not implemented in this release, but members of the community are working
on this and other features. Any out-of-band releases and updates will be announced on the Project
“a CQRS Journey” website.

http://cqrsjourney.github.com/
mailto:cqrsjourney@microsoft.com
mailto:cqrsjourney@microsoft.com

10 Journey two

The context map for the Contoso
Conference Management System
Figure 1 and the table that follows it represent a context map that
shows the relationships between the different bounded contexts
that make up the complete system, and as such it provides a high-
level overview of how the system is put together. Even though this
context map appears to be quite simple, the implementation of these
bounded contexts, and more importantly the interactions between
them, are relatively sophisticated; this enabled us to address a wide
range of issues relating to the CQRS pattern and event sourcing (ES),
and provided a rich source from which to capture many valuable les-
sons learned.

Figure 1 shows the three bounded contexts that make up the
Contoso Conference Management System. The arrows in the diagram
indicate the flow of data as events between them.

Figure 1
Bounded contexts in the Contoso Conference Management System

A frequent comment
about CQRS projects is
that it can be difficult to
understand how all of
the pieces fit together,
especially if there a great
many commands and events
in the system. Often, you
can perform some static
analysis on the code to
determine where events
and commands are handled,
but it is more difficult to
automatically determine
where they originate. At a
high level, a context map
can help you understand
the integration between
the different bounded
contexts and the events
involved. Maintaining
up-to-date documentation
about the commands
and events can provide
more detailed insight.
Additionally, if you have
tests that use commands as
inputs and then check for
events, you can examine
the tests to understand the
expected consequences
of particular commands
(see the section on testing
in Chapter 4, “Extending
and Enhancing the Orders
and Registrations Bounded
Context” for an example of
this style of test).

 11Decomposing the Domain

The following list provides more information about the arrows in
Figure 1. You can find additional details in the chapters that discuss
the individual bounded contexts.

1.	 Events that report when conferences have been created,
updated, or published. Events that report when seat types
have been created or updated.

2.	 Events that report when orders have been created or up-
dated. Events that report when attendees have been assigned
to seats.

3.	 Requests for a payment to be made.
4.	 Acknowledgement of the success or failure of the payment.

Why did we choose these bounded contexts?
During the planning stage of the journey, it became clear that these
were the natural divisions in the domain that could each contain their
own, independent domain models. Some of these divisions were eas-
ier to identify than others. For example, it was clear early on that the
conference management bounded context is independent of the re-
mainder of the domain. It has clearly defined responsibilities that re-
late to defining conferences and seat types and clearly defined points
of integration with the rest of the application.

On the other hand, it took some time to realize that the orders and
registrations bounded context is separate from the Payments bounded
context. For example, it was not until the V2 release of the application
that all concepts relating to payments disappeared from the orders and
registrations bounded context when the OrderPaymentConfirmed
event became the OrderConfirmed event.

More practically, from the perspective of the journey, we wanted
a set of bounded contexts that would enable us to release a working
application with some core functionality and that would enable us to
explore a number of different implementation patterns: CQRS,
CQRS/ES, as well as integration with a legacy, CRUD-style bounded
context.

More information
All links in this book are accessible from the book’s online bibliogra-
phy available at: http://msdn.microsoft.com/en-us/library/jj619274.

Some of the events
that the Conference
Management bounded
context raises are coarse-
grained and contain
multiple fields. Remember
that conference
management is a create,
read, update and delete
(CRUD)-style bounded
context and does
not raise fine-grained
domain-style events. For
more information, see
Chapter 5, “Preparing for
the V1 Release.”

We continued to
refine the domain
models right through
the journey as our
understanding of the
domain deepened.

Contoso wants to release a usable application as soon as possible, but
be able to add both planned features and customer-requested features
as they are developed and with no down time for the upgrades.

http://msdn.microsoft.com/en-us/library/jj619274

 13

“The Allegator is the same, as the Crocodile, and differs only in Name.”
John Lawson

A description of the bounded context
The Orders and Registrations bounded context is partially responsible for the booking process for
attendees planning to come to a conference. In the Orders and Registrations bounded context, a
person (the registrant) purchases seats at a particular conference. The registrant also assigns names of
attendees to the purchased seats (this is described in Chapter 5, “Preparing for the V1 Release”).

This was the first stop on our CQRS journey, so the team decided to implement a core, but self-
contained part of the system—orders and registrations. The registration process must be as painless
as possible for attendees. The process must enable the business customer to ensure that the maximum
possible number of seats can be booked, and give them the flexibility set the prices for the different
seat types at a conference.

Because this was the first bounded context addressed by the team, we also implemented some
infrastructure elements of the system to support the domain’s functionality. These included command
and event message buses and a persistence mechanism for aggregates.

The Contoso Conference Management System described in this chapter is not the final version of
the system. This guidance describes a journey, so some of the design decisions and implementation
details change later in the journey. These changes are described in subsequent chapters.

Plans for enhancements to this bounded context in some future journey include support for wait
listing, whereby requests for seats are placed on a wait list if there aren’t sufficient seats available, and
enabling the business customer to set various types of discounts for seat types.

Wait listing is not implemented in this release, but members of the community are working on this
and other features. Any out-of-band releases and updates will be announced on the Project “a
CQRS Journey” website.

Orders and Registrations
Bounded Context

The first stop on our CQRS journey.

Journey 3:

http://cqrsjourney.github.com/
http://cqrsjourney.github.com/

14 Journey three

Working definitions for this chapter
This chapter uses a number of terms that we will define in a moment.
For more detail, and possible alternative definitions, see “A CQRS and
ES Deep Dive” in the Reference Guide.

Command. A command is a request for the system to perform an
action that changes the state of the system. Commands are impera-
tives; MakeSeatReservation is one example. In this bounded context,
commands originate either from the UI as a result of a user initiating
a request, or from a process manager when the process manager is
directing an aggregate to perform an action.

A single recipient processes a command. A command bus trans-
ports commands that command handlers then dispatch to aggregates.
Sending a command is an asynchronous operation with no return
value.

Event. An event, such as OrderConfirmed, describes something
that has happened in the system, typically as a result of a command.
Aggregates in the domain model raise events.

Multiple subscribers can handle a specific event. Aggregates pub-
lish events to an event bus; handlers register for specific types of
events on the event bus and then deliver the event to the subscriber.
In this bounded context, the only subscriber is a process manager.

Process manager. In this bounded context, a process manager is a
class that coordinates the behavior of the aggregates in the domain.
A process manager subscribes to the events that the aggregates raise,
and then follow a simple set of rules to determine which command or
commands to send. The process manager does not contain any busi-
ness logic; it simply contains logic to determine the next command to
send. The process manager is implemented as a state machine, so
when it responds to an event, it can change its internal state in addi-
tion to sending a new command.

Our process manager is an implementation of the Process Man-
ager pattern defined on pages 312 to 321 of the book by Gregor
Hohpe and Bobby Woolf, entitled Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions (Addison-
Wesley Professional, 2003).

For a discussion of some
possible optimizations
that also involve a slightly
different definition of a
command, see Chapter 6,
“Versioning our System.”

It can be difficult for someone new to the code to follow
the flow of commands and events through the system. For
a discussion of a technique that can help, see the section
“Impact on testing” in Chapter 4, “Extending and Enhancing
the Orders and Registrations Bounded Contexts.”

 15Orders and Registr ations Bounded Context

The process manager in this bounded context can receive com-
mands as well as subscribe to events.

The Reference Guide contains additional definitions and explana-
tions of CQRS-related terms.

Domain definitions (ubiquitous language)
The following list defines the key domain-related terms that the team
used during the development of this Orders and Registrations bound-
ed context.

Attendee. An attendee is someone who is entitled to attend a
conference. An Attendee can interact with the system to perform
tasks such as manage his agenda, print his badge, and provide feed-
back after the conference. An attendee could also be a person who
doesn’t pay to attend a conference such as a volunteer, speaker, or
someone with a 100% discount. An attendee may have multiple as-
sociated attendee types (speaker, student, volunteer, track chair, and
so on.)

Registrant. A registrant is a person who interacts with the sys-
tem to place orders and to make payments for those orders. A regis-
trant also creates the registrations associated with an order. A regis-
trant may also be an attendee.

User. A user is a person such as an attendee, registrant, speaker,
or volunteer who is associated with a conference. Each user has a
unique record locator code that the user can use to access user-spe-
cific information in the system. For example, a registrant can use a
record locator code to access her orders, and an attendee can use a
record locator code to access his personalized conference agenda.

Seat assignment. A seat assignment associates an attendee with
a seat in a confirmed order. An order may have one or more seat as-
signments associated with it.

Order. When a registrant interacts with the system, the system
creates an order to manage the reservations, payment, and registra-
tions. An order is confirmed when the registrant has successfully paid
for the order items. An order contains one or more order items.

Order item. An order item represents a seat type and quantity,
and is associated with an order. An order item exists in one of three
states: created, reserved, or rejected. An order item is initially in the
created state. An order item is in the reserved state if the system has
reserved the quantity of seats of the seat type requested by the regis-
trant. An order item is in the rejected state if the system cannot re-
serve the quantity of seats of the seat type requested by the registrant.

The team initially referred
to the process manager
class in the orders bounded
context as a saga. To find
out why we decided to
change the terminology,
see the section “Patterns
and concepts” later in this
chapter.

We intentionally
implemented a record
locator mechanism to
return to a previously
submitted order via the
mechanism. This eliminates
an often annoying
requirement for users to
create an account in the
system and sign in in order
to evaluate its usefulness.
Our customers were
adamant about this.

16 Journey three

Seat. A seat represents the right to be admitted to a conference or to access a specific session at
the conference such as a cocktail party, a tutorial, or a workshop. The business customer may change
the quota of seats for each conference. The business customer may also change the quota of seats for
each session.

Reservation. A reservation is a temporary reservation of one or more seats. The ordering process
creates reservations. When a registrant begins the ordering process, the system makes reservations
for the number of seats requested by the registrant. These seats are then not available for other
registrants to reserve. The reservations are held for n minutes during which the registrant can com-
plete the ordering process by making a payment for those seats. If the registrant does not pay for the
seats within n minutes, the system cancels the reservation and the seats become available to other
registrants to reserve.

Seat availability. Every conference tracks seat availability for each type of seat. Initially, all of the
seats are available to reserve and purchase. When a seat is reserved, the number of available seats of
that type is decremented. If the system cancels the reservation, the number of available seats of that
type is incremented. The business customer defines the initial number of each seat type to be made
available; this is an attribute of a conference. A conference owner may adjust the numbers for the
individual seat types.

Conference site. You can access every conference defined in the system by using a unique URL.
Registrants can begin the ordering process from this site.

Each of the terms defined here was formulated through active discussions between the devel-
opment team and the domain experts. The following is a sample conversation between devel-
opers and domain experts that illustrates how the team arrived at a definition of the term at-
tendee.

Developer 1: Here’s an initial stab at a definition for attendee. “An attendee is someone who
has paid to attend a conference. An attendee can interact with the system to perform tasks
such as manage his agenda, print his badge, and provide feedback after the conference.”

Domain Expert 1: Not all attendees will pay to attend the conference. For example, some
conferences will have volunteer helpers, also speakers typically don’t pay. And, there may be
some cases where an attendee gets a 100% discount.

Domain Expert 1: Don’t forget that it’s not the attendee who pays; that’s done by the regis-
trant.

Developer 1: So we need to say that Attendees are people who are authorized to attend a
conference?

Developer 2: We need to be careful about the choice of words here. The term authorized will
make some people think of security and authentication and authorization.

Developer 1: How about entitled?

Domain Expert 1: When the system performs tasks such as printing badges, it will need to
know what type of attendee the badge is for. For example, speaker, volunteer, paid attendee,
and so on.

 17Orders and Registr ations Bounded Context

Developer 1: Now we have this as a definition that captures everything we’ve discussed. An
attendee is someone who is entitled to attend a conference. An attendee can interact with
the system to perform tasks such as manage his agenda, print his badge, and provide feedback
after the conference. An attendee could also be a person who doesn’t pay to attend a confer-
ence such as a volunteer, speaker, or someone with a 100% discount. An attendee may have
multiple associated attendee types (speaker, student, volunteer, track chair, and so on.)

Requirements for creating orders
A registrant is the person who reserves and pays for (orders) seats at a conference. Ordering is a
two-stage process: first, the registrant reserves a number of seats and then pays for the seats to
confirm the reservation. If registrant does not complete the payment, the seat reservations expire
after a fixed period and the system makes the seats available for other registrants to reserve.

Figure 1 shows some of the early UI mockups that the team used to explore the seat-ordering
story.

Figure 1
Ordering UI mockups

18 Journey three

These UI mockups helped the team in several ways, allowing them to:
•	 Communicate the core team’s vision for the system to the

graphic designers who are on an independent team at a third-
party company.

•	 Communicate the domain expert’s knowledge to the developers.
•	 Refine the definition of terms in the ubiquitous language.
•	 Explore “what if” questions about alternative scenarios and

approaches.
•	 Form the basis for the system’s suite of acceptance tests.

Architecture
The application is designed to deploy to Windows Azure. At this
stage in the journey, the application consists of a web role that con-
tains the ASP.NET MVC web application and a worker role that
contains the message handlers and domain objects. The application
uses a Windows Azure SQL Database instance for data storage, both
on the write side and the read side. The application uses the Win-
dows Azure Service Bus to provide its messaging infrastructure.

While you are exploring and testing the solution, you can run it
locally, either using the Windows Azure compute emulator or by run-
ning the MVC web application directly and running a console applica-
tion that hosts the handlers and domain objects. When you run the
application locally, you can use a local SQL Server Express database
instead of SQL Database, and use a simple messaging infrastructure
implemented in a SQL Server Express database.

For more information about the options for running the applica-
tion, see Appendix 1, “Release Notes.”

Patterns and concepts
The team decided to implement the first bounded context without us-
ing event sourcing in order to keep things simple. However, they did
agree that if they later decided that event sourcing would bring specific
benefits to this bounded context, then they would revisit this decision.

For a description of how event sourcing relates to the CQRS
pattern, see “Introducing Event Sourcing” in the Reference Guide.

One of the important discussions the team had concerned the choice
of aggregates and entities that they would implement. The following
images from the team’s whiteboard illustrate some of their initial
thoughts, and questions about the alternative approaches they could
take with a simple conference seat reservation scenario to try and
understand the pros and cons of alternative approaches.

A frequently cited
advantage of the CQRS
pattern is that it enables
you to scale the read
side and write side of the
application independently
to support the different
usage patterns. In this
bounded context,
however, the number of
read operations from the
UI is not likely to hugely
out-number the write
operations: this bounded
context focuses on
registrants creating orders.
Therefore, the read side and
the write side are deployed
to the same Windows Azure
worker role rather than
to two separate worker
roles that could be scaled
independently.

“A value I think developers
would benefit greatly from
recognizing is the de-emphasis
on the means and methods for
persistence of objects in terms
of relational storage. Teach
them to avoid modeling the
domain as if it was a rela-
tional store, and I think it will
be easier to introduce and
understand both domain-
driven design (DDD) and
CQRS.”
—Josh Elster, CQRS Advisors
Mail List

 19Orders and Registr ations Bounded Context

This scenario considers what happens when a registrant tries to book several seats at a confer-
ence. The system must:

•	 Check that sufficient seats are available.
•	 Record details of the registration.
•	 Update the total number of seats booked for the conference.

We deliberately kept the scenario simple to avoid distractions while the team examines the
alternatives. These examples do not illustrate the final implementation of this bounded context.

The first approach considered by the team, shown in Figure 2, uses two separate aggregates.

These diagrams deliberately exclude details of how the
system delivers commands and events through command
and event handlers. The diagrams focus on the logical
relationships between the aggregates in the domain.

Figure 2
Approach 1: Two separate aggregates

20 Journey three

The numbers in the diagram correspond to the following steps:
1.	 The UI sends a command to register attendees X and Y for

conference 157. The command is routed to a new Order
aggregate.

2.	 The Order aggregate raises an event that reports that an
order has been created. The event is routed to the Seats-
Availability aggregate.

3.	 The SeatsAvailability aggregate with an ID of 157 is re-
hydrated from the data store.

4.	 The SeatsAvailability aggregate updates its total number of
seats booked.

5.	 The updated version of the SeatsAvailability aggregate is
persisted to the data store.

6.	 The new Order aggregate, with an ID of 4239, is persisted to
the data store.

You could consider using the Memento pattern to
handle the persistence and rehydration.

The term rehydration
refers to the process of
deserializing the aggregate
instance from a data store.

http://www.oodesign.com/memento-pattern.html

 21Orders and Registr ations Bounded Context

The second approach considered by the team, shown in Figure 3, uses a single aggregate in place of two.

Figure 3
Approach 2: A single aggregate

The numbers in the diagram correspond to the following steps:
1.	 The UI sends a command to register Attendees X and Y for conference 157. The command is

routed to the Conference aggregate with an ID of 157.
2.	 The Conference aggregate with an ID of 157 is rehydrated from the data store.
3.	 The Order entity validates the booking (it queries the SeatsAvailability entity to see if there

are enough seats left), and then invokes the method to update the number of seats booked
on the Conference entity.

4.	 The SeatsAvailability entity updates its total number of seats booked.
5.	 The updated version of the Conference aggregate is persisted to the data store.

22 Journey three

The third approach considered by the team, shown in Figure 4, uses a process manager to coordinate
the interaction between two aggregates.

Figure 4
Approach 3: Using a process manager

The numbers in the diagram correspond to the following steps:
1.	 The UI sends a command to register Attendees X and Y for conference 157. The command is

routed to a new Order aggregate.
2.	 The new Order aggregate, with an ID of 4239, is persisted to the data store.
3.	 The Order aggregate raises an event that is handled by the RegistrationProcessManager

class.

 23Orders and Registr ations Bounded Context

4.	 The RegistrationProcessManager class determines that a
command should be sent to the SeatsAvailability aggregate
with an ID of 157.

5.	 The SeatsAvailability aggregate is rehydrated from the data
store.

6.	 The total number of seats booked is updated in the Seats-
Availability aggregate and it is persisted to the data store.

For more information about process managers and sagas, see Chapter
6, “A Saga on Sagas” in the Reference Guide.

The team identified the following questions about these ap-
proaches:
•	 Where does the validation that there are sufficient seats for the

registration take place: in the Order or SeatsAvailability
aggregate?

•	 Where are the transaction boundaries?
•	 How does this model deal with concurrency issues when

multiple registrants try to place orders simultaneously?
•	 What are the aggregate roots?

The following sections discuss these questions in relation to the three
approaches considered by the team.

Validation
Before a registrant can reserve a seat, the system must check that
there are enough seats available. Although logic in the UI can attempt
to verify that there are sufficient seats available before it sends a
command, the business logic in the domain must also perform the
check; this is because the state may change between the time the UI
performs the validation and the time that the system delivers the
command to the aggregate in the domain.

Process manager or saga?
Initially the team referred to
the RegistrationProcess-
Manager class as a saga.
However, after they
reviewed the original
definition of a saga from
the paper “Sagas” by
Hector Garcia-Molina
and Kenneth Salem, they
revised their decision. The
key reasons for this are that
the reservation process
does not include explicit
compensation steps,
and does not need to be
represented as a long-lived
transaction.

When we talk about UI
validation here, we are
talking about validation that
the Model-View Controller
(MVC) controller performs,
not the browser.

http://www.amundsen.com/downloads/sagas.pdf

24 Journey three

In the first model, the validation must take place in either the
Order or SeatsAvailability aggregate. If it is the former, the Order
aggregate must discover the current seat availability from the Seats-
Availability aggregate before the reservation is made and before it
raises the event. If it is the latter, the SeatsAvailability aggregate
must somehow notify the Order aggregate that it cannot reserve the
seats, and that the Order aggregate must undo (or compensate for)
any work that it has completed so far.

The second model behaves similarly, except that it is Order and
SeatsAvailability entities cooperating within a Conference aggregate.

In the third model, with the process manager, the aggregates ex-
change messages through the process manager about whether the
registrant can make the reservation at the current time.

All three models require entities to communicate about the vali-
dation process, but the third model with the process manager appears
more complex than the other two.

Transaction boundaries
An aggregate, in the DDD approach, represents a consistency bound-
ary. Therefore, the first model with two aggregates, and the third
model with two aggregates and a process manager will involve two
transactions: one when the system persists the new Order aggregate
and one when the system persists the updated SeatsAvailability ag-
gregate.

The term consistency boundary refers to a boundary within which
you can assume that all the elements remain consistent with each
other all the time.

To ensure the consistency of the system when a registrant creates an
order, both transactions must succeed. To guarantee this, we must
take steps to ensure that the system is eventually consistent by ensur-
ing that the infrastructure reliably delivers messages to aggregates.

In the second approach, which uses a single aggregate, we will
only have a single transaction when a registrant makes an order. This
appears to be the simplest approach of the three.

Undo is just one of many
compensating actions
that occur in real life. The
compensating actions could
even be outside of the
system implementation and
involve human actors: for
example, a Contoso clerk or
the business customer calls
the registrant to tell them
that an error was made and
that they should ignore the
last confirmation email they
received from the Contoso
system.

 25Orders and Registr ations Bounded Context

Concurrency
The registration process takes place in a multi-user environment where many registrants could at-
tempt to purchase seats simultaneously. The team decided to use the Reservation pattern to address
the concurrency issues in the registration process. In this scenario, this means that a registrant ini-
tially reserves seats (which are then unavailable to other registrants); if the registrant completes the
payment within a timeout period, the system retains the reservation; otherwise the system cancels
the reservation.

This reservation system introduces the need for additional message types; for example, an event
to report that a registrant has made a payment, or report that a timeout has occurred.

This timeout also requires the system to incorporate a timer somewhere to track when reserva-
tions expire.

Modeling this complex behavior with sequences of messages and the requirement for a timer is
best done using a process manager.

Aggregates and aggregate roots
In the two models that have the Order aggregate and the SeatsAvailability aggregate, the team
easily identified the entities that make up the aggregate, and the aggregate root. The choice is not so
clear in the model with a single aggregate: it does not seem natural to access orders through a Seats-
Availability entity, or to access the seat availability through an Order entity. Creating a new entity
to act as an aggregate root seems unnecessary.

The team decided on the model that incorporated a process manager because this offers the best
way to handle the concurrency requirements in this bounded context.

Implementation details
This section describes some of the significant features of the Orders and Registrations bounded
context implementation. You may find it useful to have a copy of the code so you can follow along.
You can download it from the Download center, or check the evolution of the code in the repository
on github: mspnp/cqrs-journey-code.

Do not expect the code samples to match the code in the reference implementation exactly. This
chapter describes a step in the CQRS journey, the implementation may well change as we learn
more and refactor the code.

http://www.rgoarchitects.com/nblog/2009/09/08/SOAPatternsReservations.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=30439
https://github.com/mspnp/cqrs-journey-code

26 Journey three

High-level architecture
As we described in the previous section, the team initially decided to implement the reservations
story in the conference management system using the CQRS pattern but without using event sourc-
ing. Figure 5 shows the key elements of the implementation: an MVC web application, a data store
implemented using a Windows Azure SQL Database instance, the read and write models, and some
infrastructure components.

We’ ll describe what goes on inside the read and write models later in this section.

Figure 5
High-level architecture of the registrations bounded context

 27Orders and Registr ations Bounded Context

The following sections relate to the numbers in Figure 5 and provide more detail about these
elements of the architecture.

1. Querying the read model
The ConferenceController class includes an action named Display that creates a view that contains
information about a particular conference. This controller class queries the read model using the
following code:

public ActionResult Display(string conferenceCode)
{
 var conference = this.GetConference(conferenceCode);
 return View(conference);
}
private Conference.Web.Public.Models.Conference GetConference(string conferenceCode)
{
 var repo = this.repositoryFactory();
 using (repo as IDisposable)
 {
 var conference = repo.Query<Conference>()
 .First(c => c.Code == conferenceCode);

 var conferenceModel =
 new Conference.Web.Public.Models.Conference
 {
 Code = conference.Code,
 Name = conference.Name,
 Description = conference.Description
 };

 return conferenceModel;
 }
}

The read model retrieves the information from the data store and returns it to the controller using a
data transfer object (DTO) class.

28 Journey three

2. Issuing commands
The web application sends commands to the write model through a command bus. This command bus
is an infrastructure element that provides reliable messaging. In this scenario, the bus delivers mes-
sages asynchronously and once only to a single recipient.

The RegistrationController class can send a RegisterToConference command to the write
model in response to user interaction. This command sends a request to register one or more seats at
the conference. The RegistrationController class then polls the read model to discover whether the
registration request succeeded. See the section “6. Polling the Read Model” below for more details.

The following code sample shows how the RegistrationController sends a RegisterToConference
command:

var viewModel = this.UpdateViewModel(conferenceCode, contentModel);

var command =
 new RegisterToConference
 {
 OrderId = viewModel.Id,
 ConferenceId = viewModel.ConferenceId,
 Seats = viewModel.Items.Select(x =>
 new RegisterToConference.Seat
 {
 SeatTypeId = x.SeatTypeId,
 Quantity = x.Quantity
 }).ToList()
 };

this.commandBus.Send(command);

All of the commands are sent asynchronously and do not expect return values.

3. Handling commands
Command handlers register with the command bus; the command bus can then forward commands
to the correct handler.

The OrderCommandHandler class handles the RegisterToConference command sent from the
UI. Typically, the handler is responsible for initiating any business logic in the domain and for persist-
ing any state changes to the data store.

The following code sample shows how the OrderCommandHandler class handles the Register-
ToConference command:

 29Orders and Registr ations Bounded Context

public void Handle(RegisterToConference command)
{
 var repository = this.repositoryFactory();

 using (repository as IDisposable)
 {
 var seats = command.Seats
 .Select(t => new OrderItem(t.SeatTypeId, t.Quantity))
 .ToList();

 var order = new Order(
 command.OrderId,
 Guid.NewGuid(),
 command.ConferenceId,
 seats);

 repository.Save(order);
 }
}

4. Initiating business logic in the domain
In the previous code sample, the OrderCommandHandler class creates a new Order instance. The
Order entity is an aggregate root, and its constructor contains code to initiate the domain logic. See
the section “Inside the Write Model” below for more details of what actions this aggregate root
performs.

5. Persisting the changes
In the previous code sample, the handler persists the new Order aggregate by calling the Save
method in the repository class. This Save method also publishes any events raised by the Order ag-
gregate on the command bus.

6. Polling the read model
To provide feedback to the user, the UI must have a way to check whether the RegisterToConference
command succeeded. Like all commands in the system, this command executes asynchronously and
does not return a result. The UI queries the read model to check whether the command succeeded.

The following code sample shows the initial implementation where the RegistrationController
class polls the read model until either the system creates the order or a timeout occurs. The Wait-
UntilUpdated method polls the read-model until it finds either that the order has been persisted or
it times out.

30 Journey three

[HttpPost]
public ActionResult StartRegistration(string conferenceCode,
 OrderViewModel contentModel)
{

 ...

 this.commandBus.Send(command);

 var draftOrder = this.WaitUntilUpdated(viewModel.Id);

 if (draftOrder != null)
 {
 if (draftOrder.State == "Booked")
 {
 return RedirectToAction(
 "SpecifyPaymentDetails",
 new { conferenceCode = conferenceCode, orderId = viewModel.Id });
 }
 else if (draftOrder.State == "Rejected")
 {
 return View("ReservationRejected", viewModel);
 }
 }

 return View("ReservationUnknown", viewModel);
}

The team later replaced this mechanism for checking whether the system saves the order with an
implementation of the Post-Redirect-Get pattern. The following code sample shows the new version
of the StartRegistration action method.

For more information about the Post-Redirect-Get pattern see the article Post/Redirect/Get on
Wikipedia.

http://en.wikipedia.org/wiki/Post/Redirect/Get

 31Orders and Registr ations Bounded Context

[HttpPost]
public ActionResult StartRegistration(string conferenceCode,
 OrderViewModel contentModel)
{

 ...

 this.commandBus.Send(command);

 return RedirectToAction(
 "SpecifyRegistrantDetails",
 new { conferenceCode = conferenceCode, orderId = command.Id });
}

The action method now redirects to the SpecifyRegistrantDetails view immediately after it sends
the command. The following code sample shows how the SpecifyRegistrantDetails action polls for
the order in the repository before returning a view.

[HttpGet]
public ActionResult SpecifyRegistrantDetails(string conferenceCode, Guid orderId)
{
 var draftOrder = this.WaitUntilUpdated(orderId);

 ...
}

The advantages of this second approach, using the Post-Redirect-Get pattern instead of in the
StartRegistration post action are that it works better with the browser’s forward and back naviga-
tion buttons, and that it gives the infrastructure more time to process the command before the
MVC controller starts polling.

Inside the write model

Aggregates
The following code sample shows the Order aggregate.

public class Order : IAggregateRoot, IEventPublisher
{
 public static class States
 {
 public const int Created = 0;
 public const int Booked = 1;
 public const int Rejected = 2;
 public const int Confirmed = 3;
 }

32 Journey three

 private List<IEvent> events = new List<IEvent>();

 ...

 public Guid Id { get; private set; }

 public Guid UserId { get; private set; }

 public Guid ConferenceId { get; private set; }

 public virtual ObservableCollection<TicketOrderLine> Lines { get; private set; }

 public int State { get; private set; }

 public IEnumerable<Ievent> Events
 {
 get { return this.events; }
 }

 public void MarkAsBooked()
 {
 if (this.State != States.Created)
 throw new InvalidOperationException();

 this.State = States.Booked;
 }

 public void Reject()
 {
 if (this.State != States.Created)
 throw new InvalidOperationException();

 this.State = States.Rejected;
 }
}

 33Orders and Registr ations Bounded Context

Notice how the properties of the class are not virtual. In the original version of this class, the proper-
ties Id, UserId, ConferenceId, and State were all marked as virtual. The following conversation be-
tween two developers explores this decision.

Developer 1: I’m really convinced you should not make the property virtual, except if required
by the object-relational mapping (ORM) layer. If this is just for testing purposes, entities and ag-
gregate roots should never be tested using mocking. If you need mocking to test your entities,
this is a clear smell that something is wrong in the design.

Developer 2: I prefer to be open and extensible by default. You never know what needs may
arise in the future, and making things virtual is hardly a cost. This is certainly controversial and a
bit non-standard in .NET, but I think it’s OK. We may only need virtuals on lazy-loaded collec-
tions.

Developer 1: Since CQRS usually makes the need for lazy load vanish, you should not need it
either. This leads to even simpler code.

Developer 2: CQRS does not dictate usage of event sourcing (ES), so if you’re using an aggre-
gate root that contains an object graph, you’d need that anyway, right?

Developer 1: This is not about ES, it’s about DDD. When your aggregate boundaries are right,
you don’t need delay loading.

Developer 2: To be clear, the aggregate boundary is here to group things that should change to-
gether for reasons of consistency. A lazy load would indicate that things that have been grouped
together don’t really need this grouping.

Developer 1: I agree. I have found that lazy-loading in the command side means I have it mod-
eled wrong. If I don’t need the value in the command side, then it shouldn’t be there. In addition,
I dislike virtuals unless they have an intended purpose (or some artificial requirement from an
object-relational mapping (ORM) tool). In my opinion, it violates the Open-Closed principle: you
have opened yourself up for modification in a variety of ways that may or may not be intended
and where the repercussions might not be immediately discoverable, if at all.

Developer 2: Our Order aggregate in the model has a list of Order Items. Surely we don’t need
to load the lines to mark it as Booked? Do we have it modeled wrong there?

Developer 1: Is the list of Order Items that long? If it is, the modeling may be wrong because
you don’t necessarily need transactionality at that level. Often, doing a late round trip to get and
updated Order Items can be more costly that loading them up front: you should evaluate the
usual size of the collection and do some performance measurement. Make it simple first, opti-
mize if needed.

—Thanks to Jérémie Chassaing and Craig Wilson

34 Journey three

Aggregates and process managers

Figure 6 shows the entities that exist in the write-side model. There are two aggregates, Order and
SeatsAvailability, each one containing multiple entity types. Also there is a RegistrationProcess-
Manager class to manage the interaction between the aggregates.

The table in the Figure 6 shows how the process manager behaves given a current state and a
particular type of incoming message.

 35Orders and Registr ations Bounded Context

Figure 6
Domain objects in the write model

The process of registering for a conference begins when the UI sends a RegisterToConference com-
mand. The infrastructure delivers this command to the Order aggregate. The result of this command
is that the system creates a new Order instance, and that the new Order instance raises an Order-
Placed event. The following code sample from the constructor in the Order class shows this happen-
ing. Notice how the system uses GUIDs to identify the different entities.

36 Journey three

public Order(Guid id, Guid userId, Guid conferenceId, IEnumerable<OrderItem> lines)
{
 this.Id = id;
 this.UserId = userId;
 this.ConferenceId = conferenceId;
 this.Lines = new ObservableCollection<OrderItem>(items);

 this.events.Add(
 new OrderPlaced
 {
 OrderId = this.Id,
 ConferenceId = this.ConferenceId,
 UserId = this.UserId,
 Seats = this.Lines.Select(x =>
 new OrderPlaced.Seat
 {
 SeatTypeId = x.SeatTypeId,
 Quantity = x.Quantity
 }).ToArray()
 });
}

To see how the infrastructure elements deliver commands and events, see Figure 7.

The system creates a new RegistrationProcessManager instance to manage the new order. The
following code sample from the RegistrationProcessManager class shows how the process manager
handles the event.

 37Orders and Registr ations Bounded Context

public void Handle(OrderPlaced message)
{
 if (this.State == ProcessState.NotStarted)
 {
 this.OrderId = message.OrderId;
 this.ReservationId = Guid.NewGuid();
 this.State = ProcessState.AwaitingReservationConfirmation;

 this.AddCommand(
 new MakeSeatReservation
 {
 ConferenceId = message.ConferenceId,
 ReservationId = this.ReservationId,
 NumberOfSeats = message.Items.Sum(x => x.Quantity)
 });
 }
 else
 {
 throw new InvalidOperationException();
 }
}

The code sample shows how the process manager changes its state
and sends a new MakeSeatReservation command that the Seats-
Availability aggregate handles. The code sample also illustrates how
the process manager is implemented as a state machine that receives
messages, changes its state, and sends new messages.

When the SeatsAvailability aggregate receives a MakeReservation
command, it makes a reservation if there are enough available seats. The
following code sample shows how the SeatsAvailability class raises dif-
ferent events depending on whether or not there are sufficient seats.

Notice how we generate
a new globally unique
identifier (GUID) to identify
the new reservation.
We use these GUIDs to
correlate messages to the
correct process manager
and aggregate instances.

38 Journey three

public void MakeReservation(Guid reservationId, int numberOfSeats)
{
 if (numberOfSeats > this.RemainingSeats)
 {
 this.events.Add(new ReservationRejected
 {
 ReservationId = reservationId,
 ConferenceId = this.Id
 });
 }
 else
 {
 this.PendingReservations.Add(new Reservation(reservationId, numberOfSeats));
 this.RemainingSeats -= numberOfSeats;
 this.events.Add(new ReservationAccepted
 {
 ReservationId = reservationId,
 ConferenceId = this.Id
 });
 }
}

The RegistrationProcessManager class handles the ReservationAccepted and ReservationRejected
events. This reservation is a temporary reservation for seats to give the user the opportunity to make
a payment. The process manager is responsible for releasing the reservation when either the purchase
is complete, or the reservation timeout period expires. The following code sample shows how the
process manager handles these two messages.

public void Handle(ReservationAccepted message)
{
 if (this.State == ProcessState.AwaitingReservationConfirmation)
 {
 this.State = ProcessState.AwaitingPayment;

 this.AddCommand(new MarkOrderAsBooked { OrderId = this.OrderId });
 this.commands.Add(
 new Envelope<ICommand>(
 new ExpireOrder
 {
 OrderId = this.OrderId,
 ConferenceId = message.ConferenceId
 })

 39Orders and Registr ations Bounded Context

 {
 Delay = TimeSpan.FromMinutes(15),
 });
 }
 else
 {
 throw new InvalidOperationException();
 }
}

public void Handle(ReservationRejected message)
{
 if (this.State == ProcessState.AwaitingReservationConfirmation)
 {
 this.State = ProcessState.Completed;
 this.AddCommand(new RejectOrder { OrderId = this.OrderId });
 }
 else
 {
 throw new InvalidOperationException();
 }
}

If the reservation is accepted, the process manager starts a timer run-
ning by sending an ExpireOrder command to itself, and sends a Mark-
OrderAsBooked command to the Order aggregate. Otherwise, it
sends a ReservationRejected message back to the Order aggregate.

The previous code sample shows how the process manager sends
the ExpireOrder command. The infrastructure is responsible for
holding the message in a queue for the delay of fifteen minutes.

You can examine the code in the Order, SeatsAvailability, and
RegistrationProcessManager classes to see how the other message
handlers are implemented. They all follow the same pattern: receive a
message, perform some logic, and send a message.

The code samples shown in this chapter are from an early
version of the conference management system. The next chapter
shows how the design and implementation evolved as the team
explored the domain and learned more about the CQRS pattern.

40 Journey three

Infrastructure
The sequence diagram in Figure 7 shows how the infrastructure elements interact with the domain
objects to deliver messages.

Figure 7
Infrastructure sequence diagram

A typical interaction begins when an MVC controller in the UI sends a message using the command
bus. The message sender invokes the Send method on the command bus asynchronously. The com-
mand bus then stores the message until the message recipient retrieves the message and forwards it
to the appropriate handler. The system includes a number of command handlers that register with the
command bus to handle specific types of commands. For example, the OrderCommandHandler class
defines handler methods for the RegisterToConference, MarkOrderAsBooked, and RejectOrder
commands. The following code sample shows the handler method for the MarkOrderAsBooked
command. Handler methods are responsible for locating the correct aggregate instance, calling meth-
ods on that instance, and then saving that instance.

 41Orders and Registr ations Bounded Context

public void Handle(MarkOrderAsBooked command)
{
 var repository = this.repositoryFactory();

 using (repository as IDisposable)
 {
 var order = repository.Find<Order>(command.OrderId);

 if (order != null)
 {
 order.MarkAsBooked();
 repository.Save(order);
 }
 }
}

The team later discovered
an issue with this when
they tried to use Windows
Azure Service Bus as the
messaging infrastructure.
Windows Azure Service
Bus does not support
distributed transactions
with databases. For a
discussion of this issue, see
Chapter 5, “Preparing for
the V1 Release.”

The class that implements the IRepository interface is responsible for
persisting the aggregate and publishing any events raised by the ag-
gregate on the event bus, all as part of a transaction.

The only event subscriber in the reservations bounded context is
the RegistrationProcessManager class. Its router subscribes to the
event bus to handle specific events, as shown in the following code
sample from the RegistrationProcessManager class.

We use the term handler to refer to the classes that handle
commands and events and forward them to aggregate instances,
and the term router to refer to the classes that handle events and
commands and forward them to process manager instances.

42 Journey three

public void Handle(ReservationAccepted @event)
{
 var repo = this.repositoryFactory.Invoke();
 using (repo as IDisposable)
 {
 lock (lockObject)
 {
 var process = repo.Find<RegistrationProcessManager>(@event.ReservationId);
 process.Handle(@event);

 repo.Save(process);
 }
 }
}

Typically, an event handler method loads a process manager instance,
passes the event to the process manager, and then persists the pro-
cess manager instance. In this case, the IRepository instance is re-
sponsible for persisting the process manager instance and for sending
any commands from the process manager instance to the command
bus.

Using the Windows Azure Service Bus
To transport command and event messages, the team decided to use
the Windows Azure Service Bus to provide the low-level messaging
infrastructure. This section describes how the system uses the Win-
dows Azure Service Bus and some of the alternatives and trade-offs
the team considered during the design phase.

Figure 8 shows how both command and event messages flow
through the system. MVC controllers in the UI and domain objects use
CommandBus and EventBus instances to send BrokeredMessage
messages to one of the two topics in the Windows Azure Service Bus.
To receive messages, the handler classes register with the Command-
Processor and EventProcessor instances that retrieve messages from
the topics by using the SubscriptionReceiver class. The Command-
Processor class determines which single handler should receive a com-
mand message; the EventProcessor class determines which handlers
should receive an event message. The handler instances are responsible
for invoking methods on the domain objects.

A Windows Azure Service Bus topic can have multiple
subscribers. The Windows Azure Service Bus delivers messages
sent to a topic to all its subscribers. Therefore, one message can
have multiple recipients.

The team at Contoso
decided to use the
Windows Azure Service
Bus because it offers out-
of-the-box support for the
messaging scenarios in the
conference management
system. This minimizes
the amount of code
that the team needs to
write, and provides for a
robust, scalable messaging
infrastructure. The team
plans to use features such
as duplicate message
detection and guaranteed
message ordering. For a
summary of the differences
between Windows Azure
Service Bus and Windows
Azure Queues, see
“Windows Azure Queues
and Windows Azure Service
Bus Queues - Compared and
Contrasted” on MSDN.

http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx

 43Orders and Registr ations Bounded Context

Figure 8
Message flows through a Windows Azure Service Bus topic

In the initial implementation, the CommandBus and EventBus classes are very similar. The only dif-
ference between the Send method and the Publish method is that the Send method expects the
message to be wrapped in an Envelope class. The Envelope class enables the sender to specify a time
delay for the message delivery.

Events can have multiple recipients. In the example shown in Figure 8, the ReservationRejected
event is sent to the RegistrationProcessManager, the WaitListProcessManager, and one other
destination. The EventProcessor class identifies the list of handlers to receive the event by examining
its list of registered handlers.

A command has only one recipient. In Figure 8, the MakeSeatReservation is sent to the Seats-
Availability aggregate. There is just a single handler registered for this subscription. The Command-
Processor class identifies the handler to receive the command by examining its list of registered
handlers.

44 Journey three

This implementation gives rise to a number of questions:
•	 How do you limit delivery of a command to a single recipi-

ent?
•	 Why have separate CommandBus and EventBus classes if

they are so similar?
•	 How scalable is this approach?
•	 How robust is this approach?
•	 What is the granularity of a topic and a subscription?
•	 How are commands and events serialized?

The following sections discuss these questions.

Delivering a command to a single recipient
This discussion assumes you that you have a basic understanding of
the differences between Windows Azure Service Bus queues and
topics. For an introduction to Windows Azure Service Bus, see “Tech-
nologies Used in the Reference Implementation” in the Reference
Guide.

With the implementation shown in Figure 8, two things are nec-
essary to ensure that a single handler handles a command message.
First, there should only be a single subscription to the conference/
commands topic in Windows Azure Service Bus; remember that a
Windows Azure Service Bus topic may have multiple subscribers.
Second, the CommandProcessor should invoke a single handler for
each command message that it receives. There is no way in Windows
Azure Service Bus to restrict a topic to a single subscription; there-
fore, the developers must be careful to create just a single subscrip-
tion on a topic that is delivering commands.

It is possible to have multiple SubscriptionReceiver instances
running, perhaps in multiple worker role instances. If multiple
SubscriptionReceiver instances can receive messages from the
same topic subscription, then the first one to call the Receive
method on the SubscriptionClient object will get and handle the
command.

An alternative approach is to use a Windows Azure Service Bus queue
in place of a topic for delivering command messages. Windows Azure
Service Bus queues differ from topics in that they are designed to
deliver messages to a single recipient instead of to multiple recipients
through multiple subscriptions. The developers plan to evaluate this
option in more detail with the intention of implementing this ap-
proach later in the project.

A separate issue is to ensure
that the handler retrieves
commands from the topic
and processes them only
once. You must ensure
either that the command
is idempotent, or that
the system guarantees to
process the command only
once. The team will address
this issue in a later stage of
the journey. See Chapter 7,
“Adding Resilience and
Optimizing Performance”
for more information.

 45Orders and Registr ations Bounded Context

The following code sample from the SubscriptionReceiver class shows how it receives a message
from the topic subscription.

private SubscriptionClient client;

...

private void ReceiveMessages(CancellationToken cancellationToken)
{
 while (!cancellationToken.IsCancellationRequested)
 {
 BrokeredMessage message = null;

 try
 {
 message = this.receiveRetryPolicy
 .ExecuteAction(this.DoReceiveMessage);
 }
 catch (Exception e)
 {
 Trace.TraceError(
 "An unrecoverable error occurred while trying to receive" +
 "a new message:\r\n{0}",
 e);

 throw;
 }

 try
 {
 if (message == null)
 {
 Thread.Sleep(100);
 continue;
 }

 this.MessageReceived(this, new BrokeredMessageEventArgs(message));
 }
 finally
 {
 if (message != null)
 {
 message.Dispose();
 }

46 Journey three

 }
 }
}

protected virtual BrokeredMessage DoReceiveMessage()
{
 return this.client.Receive(TimeSpan.FromSeconds(10));
}

The Windows Azure Service Bus SubscriptionClient class uses a
peek/lock technique to retrieve a message from a subscription. In the
code sample, the Receive method locks the message on the subscrip-
tion. While the message is locked, other clients cannot see it. The
Receive method then tries to process the message. If the client pro-
cesses the message successfully, it calls the Complete method; this
deletes the message from the subscription. Otherwise, if the client
fails to process the message successfully, it calls the Abandon method;
this releases the lock on the message and the same, or a different
client can then receive it. If the client does not call either the Com-
plete or Abandon methods within a fixed time, the lock on the mes-
sage is released.

The MessageReceived event passes a reference to the
SubscriptionReceiver instance so that the handler can call either
the Complete or Abandon methods when it processes the
message.

The following code sample from the MessageProcessor class shows
how to call the Complete and Abandon methods using the
BrokeredMessage instance passed as a parameter to the Message-
Received event.

private void OnMessageReceived(object sender, BrokeredMessageEventArgs args)
{
 var message = args.Message;

 object payload;
 using (var stream = message.GetBody<Stream>())
 using (var reader = new StreamReader(stream))
 {

This code sample shows
how the system uses the
Transient Fault Handling
Application Block to retrieve
messages reliably from the
topic.

http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx

 47Orders and Registr ations Bounded Context

 payload = this.serializer.Deserialize(reader);
 }

 try
 {
 ...

 ProcessMessage(payload);

 ...
 }
 catch (Exception e)
 {
 if (args.Message.DeliveryCount > MaxProcessingRetries)
 {
 Trace.TraceWarning(
 "An error occurred while processing a new message and" +
 "will be dead-lettered:\r\n{0}",
 e);
 message.SafeDeadLetter(e.Message, e.ToString());
 }
 else
 {
 Trace.TraceWarning(
 "An error occurred while processing a new message and" +
 "will be abandoned:\r\n{0}",
 e);
 message.SafeAbandon();
 }

 return;
 }

 Trace.TraceInformation("The message has been processed and will be completed.");
 message.SafeComplete();
}

This example uses an extension method to invoke the Complete and Abandon methods of the
BrokeredMessage reliably using the Transient Fault Handling Application Block.

48 Journey three

Why have separate CommandBus and EventBus classes?
Although at this early stage in the development of the conference
management system the implementations of the CommandBus and
EventBus classes are very similar and you may wonder why we have
both, the team anticipates that they will diverge in the future.

How scalable is this approach?
With this approach, you can run multiple instances of the Subscription-
Receiver class and the various handlers in different Windows Azure
worker role instances, which enables you to scale out your solution. You
can also have multiple instances of the CommandBus, EventBus, and
TopicSender classes in different Windows Azure worker role instances.

For information about scaling the Windows Azure Service Bus
infrastructure, see Best Practices for Performance Improvements Using
Service Bus Brokered Messaging on MSDN.

How robust is this approach?
This approach uses the brokered messaging option of the Windows
Azure Service Bus to provide asynchronous messaging. The Service
Bus reliably stores messages until consumers connect and retrieve
their messages.

Also, the peek/lock approach to retrieving messages from a
queue or topic subscription adds reliability in the scenario in which a
message consumer fails while it is processing the message. If a con-
sumer fails before it calls the Complete method, the message is still
available for processing when the consumer restarts.

What is the granularity of a topic and a subscription?
The current implementation uses a single topic (conference/commands)
for all commands within the system, and a single topic (conference/
events) for all events within the system. There is a single subscription
for each topic, and each subscription receives all of the messages pub-
lished to the topic. It is the responsibility of the CommandProcessor
and EventProcessor classes to deliver the messages to the correct
handlers.

In the future, the team will examine the options of using multiple
topics—for example, using a separate command topic for each
bounded context; and multiple subscriptions—such as one per event
type. These alternatives may simplify the code and facilitate scaling
of the application across multiple worker roles.

There may be differences in
how we invoke handlers and
what context we capture
for them: commands may
want to capture additional
runtime state, whereas
events typically don’t
need to. Because of these
potential future differences,
I didn’t want to unify the
implementations. I’ve been
there before and ended up
splitting them when further
requirements came in.

There are no costs
associated with
having multiple topics,
subscriptions, or queues.
Windows Azure Service
Bus usage is billed based
on the number of messages
sent and the amount of
data transferred out of a
Windows Azure sub-region.

http://msdn.microsoft.com/en-us/library/hh528527.aspx
http://msdn.microsoft.com/en-us/library/hh528527.aspx

 49Orders and Registr ations Bounded Context

How are commands and events serialized?
The Contoso Conference Management System uses the Json.NET se-
rializer. For details on how the application uses this serializer, see
“Technologies Used in the Reference Implementation” in the Refer-
ence Guide.

Impact on testing
Because this was the first bounded context the team tackled, one of
the key concerns was how to approach testing given that the team
wanted to adopt a test-driven development approach. The following
conversation between two developers about how to do TDD when
they are implementing the CQRS pattern without event sourcing
summarizes their thoughts:

“You should consider whether
you always need to use the
Windows Azure Service Bus for
commands. Commands are
typically used within a bounded
context and you may not need to
send them across a process
boundary (on the write side you
may not need additional tiers),
in which case you could use an
in memory queue to deliver your
commands.”
—Greg Young, conversation with
the patterns & practices team

Developer 1: If we were using event sourcing, it would be easy to use a TDD approach when
we were creating our domain objects. The input to the test would be a command (that per-
haps originated in the UI), and we could then test that the domain object fires the expected
events. However if we’re not using event sourcing, we don’t have any events: the behavior of
the domain object is to persist its changes in data store through an ORM layer.

Developer 2: So why don’t we raise events anyway? Just because we’re not using event sourc-
ing doesn’t mean that our domain objects can’t raise events. We can then design our tests in
the usual way to check for the correct events firing in response to a command.

Developer 1: Isn’t that just making things more complicated than they need to be? One of
the motivations for using CQRS is to simplify things! We now have domain objects that need
to persist their state using an ORM layer and raise events that report on what they have per-
sisted just so we can run our unit tests.

Developer 2: I see what you mean.

Developer 1: Perhaps we’re getting stuck on how we’re doing the tests. Maybe instead of de-
signing our tests based on the expected behavior of the domain objects, we should think
about testing the state of the domain objects after they’ve processed a command.

Developer 2: That should be easy to do; after all, the domain objects will have all of the data
we want to check stored in properties so that the ORM can persist the right information to
the store.

Developer 1: So we really just need to think about a different style of testing in this scenario.

http://james.newtonking.com/pages/json-net.aspx

50 Journey three

Developer 2: There is another aspect of this we’ll need to consider: we might have a set of
tests that we can use to test our domain objects, and all of those tests might be passing. We
might also have a set of tests to verify that our ORM layer can save and retrieve objects suc-
cessfully. However, we will also have to test that our domain objects function correctly
when we run them against the ORM layer. It’s possible that a domain object performs the
correct business logic, but can’t properly persist its state, perhaps because of a problem re-
lated to how the ORM handles specific data types.

For more information about the two approaches to testing discussed
here, see Martin Fowler’s article “Mocks Aren’t Stubs” and “Point/
Counterpoint” by Steve Freeman, Nat Pryce, and Joshua Kerievsky.

The tests included in the solution are written using xUnit.net.

The following code sample shows two examples of tests written us-
ing the behavioral approach discussed above.

public SeatsAvailability given_available_seats()
{
 var sut = new SeatsAvailability(SeatTypeId);
 sut.AddSeats(10);
 return sut;
}

[TestMethod]
public void when_reserving_less_seats_than_total_then_succeeds()
{
 var sut = this.given_available_seats();
 sut.MakeReservation(Guid.NewGuid(), 4);
}

[TestMethod]
[ExpectedException(typeof(ArgumentOutOfRangeException))]
public void when_reserving_more_seats_than_total_then_fails()
{
 var sut = this.given_available_seats();
 sut.MakeReservation(Guid.NewGuid(), 11);
}

These are the tests we started with, but we
then replaced them with state-based tests.

http://martinfowler.com/articles/mocksArentStubs.html
http://www.computer.org/portal/web/csdl/doi/10.1109/MS.2007.84
http://www.computer.org/portal/web/csdl/doi/10.1109/MS.2007.84

 51Orders and Registr ations Bounded Context

These two tests work together to verify the behavior of the SeatsAvailability aggregate. In the first
test, the expected behavior is that the MakeReservation method succeeds and does not throw an
exception. In the second test, the expected behavior is for the MakeReservation method to throw
an exception because there are not enough free seats available to complete the reservation.

It is difficult to test the behavior in any other way without the aggregate raising events. For ex-
ample, if you tried to test the behavior by checking that the correct call is made to persist the ag-
gregate to the data store, the test becomes coupled to the data store implementation (which is a
smell); if you want to change the data store implementation, you will need to change the tests on the
aggregates in the domain model.

The following code sample shows an example of a test written using the state of the objects
under test. This style of test is the one used in the project.

public class given_available_seats
{
 private static readonly Guid SeatTypeId = Guid.NewGuid();

 private SeatsAvailability sut;
 private IPersistenceProvider sutProvider;

 protected given_available_seats(IPersistenceProvider sutProvider)
 {
 this.sutProvider = sutProvider;
 this.sut = new SeatsAvailability(SeatTypeId);
 this.sut.AddSeats(10);

 this.sut = this.sutProvider.PersistReload(this.sut);
 }

 public given_available_seats()
 : this(new NoPersistenceProvider())
 {
 }

 [Fact]
 public void when_reserving_less_seats_than_total_then_seats_become_unavailable()
 {
 this.sut.MakeReservation(Guid.NewGuid(), 4);
 this.sut = this.sutProvider.PersistReload(this.sut);

 Assert.Equal(6, this.sut.RemainingSeats);
 }

52 Journey three

 [Fact]
 public void when_reserving_more_seats_than_total_then_rejects()
 {
 var id = Guid.NewGuid();
 sut.MakeReservation(id, 11);

 Assert.Equal(1, sut.Events.Count());
 Assert.Equal(id, ((ReservationRejected)sut.Events.Single()).ReservationId);
 }
}

The two tests shown here test the state of the SeatsAvailability aggregate after invoking the Make-
Reservation method. The first test tests the scenario in which there are enough seats available. The
second test tests the scenario in which there are not enough seats available. This second test can
make use of the behavior of the SeatsAvailability aggregate because the aggregate does raise an
event if it rejects a reservation.

Summary
In the first stage in our journey, we explored some of the basics of implementing the CQRS pattern
and made some preparations for the next stages.

The next chapter describes how we extended and enhanced the work already completed by
adding more features and functionality to the Orders and Registrations bounded context. We will
also look at some additional testing techniques to see how they might help us on our journey.

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://msdn.microsoft.com/en-us/library/jj619274

 53

“I see that it is by no means useless to travel, if a man wants to see something new.”
Jules Verne, Around the World in Eighty Days

Changes to the bounded context
The previous chapter described the Orders and Registrations bounded context in some detail. This
chapter describes some changes that the team made in this bounded context during the second stage
of our CQRS journey.

The specific topics described in this chapter include:
•	 Improvements to the way message correlation works with the RegistrationProcessManager

class. This illustrates how aggregate instances within the bounded context can interact in a
complex manner.

•	 Implementing a record locator to enable a registrant to retrieve an order that she saved
during a previous session. This illustrates adding some additional logic to the write side that
enables you to locate an aggregate instance without knowing its unique ID.

•	 Adding a countdown timer to the UI to enable a registrant to track how much longer they
have to complete an order. This illustrates enhancements to the write side to support the
display of rich information in the UI.

•	 Supporting orders for multiple seat types simultaneously. For example, a registrant requests
five seats for a preconference event and eight seats for the full conference. This requires
more complex business logic on the write side.

•	 CQRS command validation. This illustrates how to make use of the model validation feature
in MVC to validate your CQRS commands before you send them to the domain.

The Contoso Conference Management System described in this chapter is not the final version of the
system. This guidance describes a journey, so some of the design decisions and implementation details
change in later steps in the journey. These changes are described in subsequent chapters.

Working definitions for this chapter
This chapter uses a number of terms, which we will describe next. For more detail, and possible alter-
native definitions, see Chapter 4, “A CQRS and ES Deep Dive,” in the Reference Guide.

Extending and Enhancing the Orders
and Registrations Bounded Context

Further exploration of the Orders and Registrations bounded context.

Journey 4:

54 Journey four

Command. A command is a request for the system to perform an
action that changes the state of the system. Commands are impera-
tives; for example, MakeSeatReservation. In this bounded context,
commands originate from either the UI as a result of a user initiating
a request, or from a process manager when the process manager is
directing an aggregate to perform an action.

A single recipient processes a command. A command bus trans-
ports commands that command handlers then dispatch to aggregates.
Sending a command is an asynchronous operation with no return value.

Event. An event, such as OrderConfirmed, describes something
that has happened in the system, typically as a result of a command.
Aggregates in the domain model raise events.

Multiple subscribers can handle a specific event. Aggregates pub-
lish events to an event bus; handlers register for specific types of
events on the event bus and then deliver the events to the subscriber.
In this bounded context, the only subscriber is a process manager.

Process manager. In this bounded context, a process manager is a
class that coordinates the behavior of the aggregates in the domain.
A process manager subscribes to the events that the aggregates raise,
and then follows a simple set of rules to determine which command
or commands to send. The process manager does not contain any
business logic, only logic to determine the next command to send.
The process manager is implemented as a state machine, so when the
process manager responds to an event, it can change its internal state
in addition to sending a new command.

The process manager in this bounded context can receive com-
mands as well as subscribe to events.

Our process manager is an implementation of the Process Man-
ager pattern defined on pages 312 to 321 in the book Enterprise Inte-
gration Patterns: Designing, Building, and Deploying Messaging Solutions
by Gregor Hohpe and Bobby Woolf (Addison-Wesley Professional,
2003).

User stories
This chapter discusses the implementation of two user stories in ad-
dition to describing some changes and enhancements to the Orders
and Registrations bounded context.

Implement a login using a record locator
When a registrant creates an order for seats at a conference, the
system generates a five-character order access code and sends it to
the registrant by email. The registrant can use her email address and
the order access code on the conference web site as a record locator
to retrieve the order from the system at a later date. The registrant
may wish to retrieve the order to review it, or to complete the regis-
tration process by assigning attendees to seats.

From the business
perspective it was
important for us to be as
user-friendly as possible:
we don’t want to block
or unnecessarily burden
anyone who is trying to
register for a conference.
Therefore, we have no
requirement for a user to
create an account in the
system prior to registration,
especially since users
must enter most of their
information in a standard
checkout process anyway.

 55Extending and Enhancing the Orders and Registr ations Bounded Context

Tell the registrant how much time remains to complete an order
When a registrant creates an order, the system reserves the seats requested by the registrant until the
order is complete or the reservations expire. To complete an order, the registrant must submit her
details, such as name and email address, and make a successful payment.

To help the registrant, the system displays a countdown timer to inform her how much time re-
mains to complete the order before the seat reservations expire.

Enable a registrant to create an order that includes multiple seat types
When a registrant creates an order, she may request different numbers of different seat types. For
example, a registrant may request five seats for the full conference and three seats for the preconfer-
ence workshop.

Architecture
The application is designed to deploy to Windows Azure. At this stage in the journey, the application
consists of a web role that contains the ASP.NET MVC web application and a worker role that con-
tains the message handlers and domain objects. The application uses Windows Azure SQL Database
(SQL Database) instances for data storage, both on the write side and the read side. The application
uses the Windows Azure Service Bus to provide its messaging infrastructure. Figure 1 shows this
high-level architecture.

Figure 1
Contoso Conference Management System high-level architecture

56 Journey four

While you are exploring and testing the solution, you can run it
locally, either using the Windows Azure compute emulator or by run-
ning the MVC web application directly and running a console applica-
tion that hosts the handlers and domain objects. When you run the
application locally, you can use a local SQL Server Express database
instead of SQL Database, and use a simple messaging infrastructure
implemented in a SQL Server Express database.

For more information about the options for running the applica-
tion, see Appendix 1, “Release Notes.”

Patterns and concepts
This section describes some of the key areas of the application that
the team visited during this stage of the journey and introduces some
of the challenges met by the team when we addressed these areas.

Record locators
The system uses access codes instead of passwords so the registrant
is not forced to set up an account with the system. Many registrants
may use the system only once, so there is no need to create a perma-
nent account with a user ID and a password.

The system needs to be able to retrieve order information quick-
ly based on the registrant’s email address and access code. To provide
a minimum level of security, the access codes that the system gener-
ates should not be predictable, and the order information that regis-
trants can retrieve should not contain any sensitive information.

Querying the read side
The previous chapter focused on the write-side model and implemen-
tation; in this chapter we’ll explore the read-side implementation in
more detail. In particular, we’ll explain how we implemented the read
model and the querying mechanism from the MVC controllers.

In this initial exploration of the CQRS pattern, the team decided
to use SQL views in the database as the underlying source of the data
queried by the MVC controllers on the read side. To minimize the
work that the queries on the read side must perform, these SQL views
provide a denormalized version of the data. These views currently
exist in the same database as the normalized tables that the write
model uses.

The team will split the database into two and explore options for
pushing changes from the normalized write side to the denormalized
read side in a later stage of the journey. For an example of using
Windows Azure blob storage instead of SQL tables for storing the read-
side data, see the SeatAssignmentsViewModelGenerator class.

 57Extending and Enhancing the Orders and Registr ations Bounded Context

Storing denormalized views in a database
One common option for storing the read-side data is to use a set of
relational database tables to hold the denormalized views. You should
optimize the read side for fast reads, so there is typically no benefit
in storing normalized data because this will require complex queries
to construct the data for the client. This implies that goals for the
read side should be to keep the queries as simple as possible, and to
structure the tables in the database in such a way that they can be
read quickly and efficiently.

An important area for consideration is the interface whereby a
client such as an MVC controller action submits a query to the read-
side model.

Figure 2
The read side storing data in a relational database

In Figure 2, a client, such as an MVC controller action, invokes a
method on the ViewRepository class to request the data it needs. The
ViewRepository class in turn runs a query against the denormalized
data in the database.

The team at Contoso evaluated two approaches to implementing
the ViewRepository class: using the IQueryable interface and using
non-generic data access objects (DAOs).

Using the IQueryable interface
One approach to consider for the ViewRepository class is to have it
return an IQueryable instance that enables the client to use language-
integrated query (LINQ) to specify its query. It is very easy to return
an IQueryable instance from many ORMs such as Entity Framework
or NHibernate. The following code snippet illustrates how the client
can submit such queries.

A normalized database
schema can fail to
provide adequate
response times because
of the excessive table
JOIN operations. Despite
advances in relational
database technology, a
JOIN operation is still
very expensive compared
to a single-table read.

The Repository pattern mediates between the domain and data mapping layers using
a collection-like interface for accessing domain objects. For more info see Martin
Fowler, Catalog of Patterns of Enterprise Application Architecture, Repository.

Application scalability and
a responsive UI are often
explicit goals when people
choose to implement the
CQRS pattern. Optimizing
the read side to provide fast
responses to queries while
keeping resource utilization
low will help you to achieve
these goals.

http://msdn.microsoft.com/en-us/library/bb399572.aspx
http://nhforge.org/Default.aspx
http://martinfowler.com/eaaCatalog/repository.html

58 Journey four

var ordersummary = repository
 .Query<OrderSummary>()
 .Where(LINQ query to retrieve order summary);
var orderdetails = repository
 .Query<OrderDetails>()
 .Where(LINQ query to retrieve order details);

This approach has a number of advantages:

Simplicity
•	 This approach uses a thin abstraction layer over the underlying

database. Many ORMs support this approach and it minimizes
the amount of code that you must write.

•	 You only need to define a single repository and a single Query
method.

•	 You don’t need a separate query object. On the read side, the
queries should be simple because you have already denormal-
ized the data from the write side to support the read-side
clients.

•	 You can make use of Language-Integrated Query (LINQ) to
provide support for features such as filtering, paging, and
sorting on the client.

Testability
•	 You can use LINQ to Objects for mocking.

There are possible objections to this approach including that:
•	 It is not easy to replace the data store with a non-relational

database that does not expose an IQueryable object. However,
you can choose to implement the read model differently in each
bounded context using an approach that is appropriate to that
bounded context.

•	 The client might abuse the IQueryable interface by performing
operations that can be done more efficiently as a part of the
denormalization process. You should ensure that the denormal-
ized data fully meets the requirements of the clients.

•	 Using the IQueryable interface hides the queries away. How-
ever, since you denormalize the data from the write side, the
queries against the relational database tables are unlikely to be
complex.

•	 It’s hard to know if your integration tests cover all the different
uses of the Query method.

In the RI, using Entity
Framework, we didn’t need
to write any code at all to
expose the IQueryable
instance. We also had just
a single ViewRepository
class.

 59Extending and Enhancing the Orders and Registr ations Bounded Context

Using non-generic DAOs
An alternative approach is to have the ViewRepository expose custom Find and Get methods, as
shown in the following code snippets.

var ordersummary = dao.FindAllSummarizedOrders(userId);
var orderdetails = dao.GetOrderDetails(orderId);

You could also choose to use different DAO classes. This would make it easier to access different data
sources.

var ordersummary = OrderSummaryDAO.FindAll(userId);
var orderdetails = OrderDetailsDAO.Get(orderId);

This approach has a number of advantages:

Simplicity
•	 Dependencies are clearer for the client. For example, the client references an explicit IOrder-

SummaryDAO instance rather than a generic IViewRepository instance.
•	 For the majority of queries, there are only one or two predefined ways to access the object.

Different queries typically return different projections.

Flexibility
•	 The Get and Find methods hide details such as the partitioning of the data store and the data

access methods such as an object relational mapping (ORM) or executing SQL code explicitly.
This makes it easier to change these choices in the future.

•	 The Get and Find methods could use an ORM, LINQ, and the IQueryable interface behind the
scenes to get the data from the data store. This is a choice that you could make on a method-
by-method basis.

Performance
•	 You can easily optimize the queries that the Find and Get methods run.
•	 The data access layer executes all queries. There is no risk that the client MVC controller action

tries to run complex and inefficient LINQ queries against the data source.

Testability
•	 It is easier to specify unit tests for the Find and Get methods than to create suitable unit tests

for the range of possible LINQ queries that a client could specify.

Maintainability
•	 All of the queries are defined in the same location, the DAO classes, making it easier to modify

the system consistently.

60 Journey four

Possible objections to this approach include:
•	 Using the IQueryable interface makes it much easier to use

grids that support features such as paging, filtering, and sorting
in the UI. However, if the developers are aware of this downside
and are committed to delivering a task-based UI, then this
should not be an issue.

The team decided to adopt the second approach because of the clar-
ity it brings to the code; in this context, we did not see any significant
advantage in the simplicity of the first approach. For examples, see
the ConferenceDao and OrderDao classes in the Registration proj-
ect.

Making information about partially
fulfilled orders available to the read side
The UI displays data about orders that it obtains by querying the
model on the read side. Part of the data that the UI displays to the
registrant is information about partially fulfilled orders: for each seat
type in the order, the number of seats requested and the number of
seats that are available. This is temporary data that the system only
uses while the registrant is creating the order using the UI; the busi-
ness only needs to store information about seats that were actually
purchased, not the difference between what the registrant requested
and what the registrant purchased.

The consequence of this is that the information about how many
seats the registrant requested only needs to exist in the model on the
read side.

A further consequence is that the underlying storage on the read
side cannot be simple SQL views because it includes data that is not
stored in the underlying table storage on the write side. Therefore,
you must pass this information to the read side using events.

Figure 3 shows all the commands and events that the Order and
SeatsAvailability aggregates use and how the Order aggregate
pushes changes to the read side by raising events.

You can’t store this information in an HTTP session
because the registrant may leave the site between
requesting the seats and completing the order.

 61Extending and Enhancing the Orders and Registr ations Bounded Context

Figure 3
The new architecture of the reservation process

The OrderViewModelGenerator class handles the OrderPlaced,
OrderUpdated, OrderPartiallyReserved, OrderRegistrantAssigned,
and OrderReservationCompleted events and uses DraftOrder and
DraftOrderItem instances to persist changes to the view tables.

CQRS command validation
When you implement the write model, you should try to ensure that
commands very rarely fail. This gives the best user experience, and
makes it much easier to implement the asynchronous behavior in your
application.

One approach, adopted by the team, is to use the model valida-
tion features in ASP.NET MVC.

If you look ahead to
Chapter 5, “Preparing for
the V1 Release,” you’ll see
that the team extended the
use of events and migrated
the Orders and Registrations
bounded context to use
event sourcing.

62 Journey four

You should be careful to distinguish between errors and business
failures. Examples of errors include:
•	 A message is not delivered due to a failure in the messaging

infrastructure.
•	 Data is not persisted due to a connectivity problem with the

database.
In many cases, especially in the cloud, you can handle these errors by
retrying the operation.

A business failure should have a predetermined business response.
For example:
•	 If the system cannot reserve a seat because there are no seats

left, then it should add the request to a wait list.
•	 If a credit card payment fails, the user should be given the

chance to either try a different card, or set up payment by
invoice.

The countdown timer and the read model
The countdown timer that displays how much time remains to com-
plete the order to the registrant is part of the business data in the
system, and not just a part of the infrastructure. When a registrant
creates an order and reserves seats, the countdown begins. The count-
down continues, even if the registrant leaves the conference website.
The UI must be able to display the correct countdown value if the
registrant returns to the site; therefore, the reservation expiry time is
a part of the data that is available from the read model.

Implementation details
This section describes some of the significant features of the imple-
mentation of the Orders and Registrations bounded context. You may
find it useful to have a copy of the code so you can follow along. You
can download a copy from the Download center, or check the evolu-
tion of the code in the repository on GitHub: https://github.com/
mspnp/cqrs-journey-code.

Note: Do not expect the code samples to match exactly the code
in the reference implementation. This chapter describes a step in
the CQRS journey, but the implementation may well change as we
learn more and refactor the code.

The Transient Fault Handling
Application Block from
Microsoft patterns &
practices is designed to
make it easier to implement
consistent retry behavior
for any transient faults. It
comes with a set of built-in
detection strategies for
Windows Azure SQL
Database, Windows Azure
storage, Windows Azure
Caching, and Windows
Azure Service Bus, and it also
allows you to define your
own strategies. Similarly, it
comes with a set of handy
built-in retry policies and
supports custom ones. For
more information, see The
Transient Fault Handling
Application Block.

Your domain experts
should help you to identify
possible business failures
and determine the way that
you handle them: either
using an automated process
or manually.

http://www.microsoft.com/en-us/download/details.aspx?id=30439
https://github.com/mspnp/cqrs-journey-code
https://github.com/mspnp/cqrs-journey-code
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx

 63Extending and Enhancing the Orders and Registr ations Bounded Context

The order access code record locator
A registrant may need to retrieve an order, either to view it, or to complete the assignment of at-
tendees to seats. This may happen in a different web session, so the registrant must supply some in-
formation to locate the previously saved order.

The following code sample shows how the Order class generates a new five-character order ac-
cess code that is persisted as part of the Order instance.

public string AccessCode { get; set; }

protected Order()
{
 ...
 this.AccessCode = HandleGenerator.Generate(5);
}

To retrieve an Order instance, a registrant must provide her email address and the order access code.
The system will use these two items to locate the correct order. This logic is part of the read side.

The following code sample from the OrderController class in the web application shows how
the MVC controller submits the query to the read side using the LocateOrder method to discover
the unique OrderId value. This Find action passes the OrderId value to a Display action that displays
the order information to the registrant.

[HttpPost]
public ActionResult Find(string email, string accessCode)
{
 var orderId = orderDao.LocateOrder(email, accessCode);

 if (!orderId.HasValue)
 {
 return RedirectToAction(
 "Find",
 new { conferenceCode = this.ConferenceCode });
 }

 return RedirectToAction(
 "Display",
 new
 {
 conferenceCode = this.ConferenceCode,
 orderId = orderId.Value
 });
}

64 Journey four

The countdown timer
When a registrant creates an order and makes a seat reservation, those seats are reserved for a fixed
period of time. The RegistrationProcessManager instance, which forwards the reservation from
the SeatsAvailability aggregate, passes the time that the reservation expires to the Order aggre-
gate. The following code sample shows how the Order aggregate receives and stores the reserva-
tion expiry time.

public DateTime? ReservationExpirationDate { get; private set; }

public void MarkAsReserved(DateTime expirationDate, IEnumerable<SeatQuantity> seats)
{
 ...

 this.ReservationExpirationDate = expirationDate;
 this.Items.Clear();
 this.Items.AddRange(
 seats.Select(
 seat => new OrderItem(seat.SeatType, seat.Quantity)));
}

When the RegistrationProcessManager sends the MarkSeatsAs-
Reserved command to the Order aggregate with the expiry time that
the UI will display, it also sends a command to itself to initiate the
process of releasing the reserved seats. This ExpireRegistration-
Process command is held for the expiry duration plus a buffer of five
minutes. This buffer ensures that time differences between the serv-
ers don’t cause the RegistrationProcessManager class to release the
reserved seats before the timer in the UI counts down to zero. In the
following code sample from the RegistrationProcessManager class,
the UI uses the Expiration property in the MarkSeatsAsReserved
command to display the countdown timer, and the Delay property in
the ExpireRegistrationProcess command determines when the re-
served seats are released.

The ReservationExpiration-
Date is initially set in the
Order constructor to a
time 15 minutes after the
Order is instantiated. The
RegistrationProcess-
Manager class may revise
this time based on when
the reservations are actually
made. It is this time that
the process manager sends
to the Order aggregate in
the MarkSeatsAsReserved
command.

 65Extending and Enhancing the Orders and Registr ations Bounded Context

public void Handle(SeatsReserved message)
{
 if (this.State == ProcessState.AwaitingReservationConfirmation)
 {
 var expirationTime = this.ReservationAutoExpiration.Value;
 this.State = ProcessState.ReservationConfirmationReceived;

 if (this.ExpirationCommandId == Guid.Empty)
 {
 var bufferTime = TimeSpan.FromMinutes(5);

 var expirationCommand =
 new ExpireRegistrationProcess { ProcessId = this.Id };
 this.ExpirationCommandId = expirationCommand.Id;

 this.AddCommand(new Envelope<ICommand>(expirationCommand)
 {
 Delay = expirationTime.Subtract(DateTime.UtcNow).Add(bufferTime),
 });
 }

 this.AddCommand(new MarkSeatsAsReserved
 {
 OrderId = this.OrderId,
 Seats = message.ReservationDetails.ToList(),
 Expiration = expirationTime,
 });
 }

 ...
}

The MVC RegistrationController class retrieves the order information on the read side. The
DraftOrder class includes the reservation expiry time that the controller passes to the view using the
ViewBag class, as shown in the following code sample.

66 Journey four

[HttpGet]
public ActionResult SpecifyRegistrantDetails(string conferenceCode, Guid orderId)
{
 var repo = this.repositoryFactory();
 using (repo as IDisposable)
 {
 var draftOrder = repo.Find<DraftOrder>(orderId);
 var conference = repo.Query<Conference>()
 .Where(c => c.Code == conferenceCode)
 .FirstOrDefault();

 this.ViewBag.ConferenceName = conference.Name;
 this.ViewBag.ConferenceCode = conference.Code;
 this.ViewBag.ExpirationDateUTCMilliseconds =
 draftOrder.BookingExpirationDate.HasValue
 ? ((draftOrder.BookingExpirationDate.Value.Ticks - EpochTicks) / 10000L)
 : 0L;
 this.ViewBag.OrderId = orderId;

 return View(new AssignRegistrantDetails { OrderId = orderId });
 }
}

The MVC view then uses JavaScript to display an animated count-
down timer.

Using ASP.NET MVC validation for commands
You should try to ensure that any commands that the MVC control-
lers in your application send to the write model will succeed. You can
use the features in MVC to validate the commands on both the client
side and server side before sending them to the write model.

The following code sample shows the AssignRegistrantDetails
command class that uses DataAnnotations to specify the validation
requirements; in this example, the requirement is that the FirstName,
LastName, and Email fields are not empty.

Client-side validation is primarily a convenience to the user
in that it avoids the need for round trips to the server to
help the user complete a form correctly. You still need to
implement server-side validation to ensure that the data is
validated before it is forwarded to the write model.

 67Extending and Enhancing the Orders and Registr ations Bounded Context

using System;
using System.ComponentModel.DataAnnotations;
using Common;

public class AssignRegistrantDetails : ICommand
{
 public AssignRegistrantDetails()
 {
 this.Id = Guid.NewGuid();
 }

 public Guid Id { get; private set; }

 public Guid OrderId { get; set; }

 [Required(AllowEmptyStrings = false)]
 public string FirstName { get; set; }

 [Required(AllowEmptyStrings = false)]
 public string LastName { get; set; }

 [Required(AllowEmptyStrings = false)]
 public string Email { get; set; }
}

The MVC view uses this command class as its model class. The following code sample from the
SpecifyRegistrantDetails.cshtml file shows how the model is populated.

@model Registration.Commands.AssignRegistrantDetails

...

<div class="editor-label">@Html.LabelFor(model => model.FirstName)</div>
<div class="editor-field">@Html.EditorFor(model => model.FirstName)</div>
<div class="editor-label">@Html.LabelFor(model => model.LastName)</div>
<div class="editor-field">@Html.EditorFor(model => model.LastName)</div>
<div class="editor-label">@Html.LabelFor(model => model.Email)</div>
<div class="editor-field">@Html.EditorFor(model => model.Email)</div>

68 Journey four

The Web.config file configures the client-side validation based on the DataAnnotations attributes,
as shown in the following snippet.

<appSettings>
 ...
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />
</appSettings>

The server-side validation occurs in the controller before it sends the command. The following code
sample from the RegistrationController class shows how the controller uses the IsValid property to
validate the command. Remember that this example uses an instance of the command as the model.

[HttpPost]
public ActionResult SpecifyRegistrantDetails(
 string conferenceCode,
 Guid orderId,
 AssignRegistrantDetails command)
{
 if (!ModelState.IsValid)
 {
 return SpecifyRegistrantDetails(conferenceCode, orderId);
 }

 this.commandBus.Send(command);

 return RedirectToAction(
 "SpecifyPaymentDetails",
 new { conferenceCode = conferenceCode, orderId = orderId });
}

For an additional example, see the RegisterToConference command and the StartRegistration action
in the RegistrationController class.

For more information, see Models and Validation in ASP.NET MVC on MSDN.

http://msdn.microsoft.com/en-us/library/dd410405(VS.98).aspx

 69Extending and Enhancing the Orders and Registr ations Bounded Context

Pushing changes to the read side
Some information about orders only needs to exist on the read side. In particular, the information
about partially fulfilled orders is only used in the UI and is not part of the business information per-
sisted by the domain model on the write side.

This means that the system can’t use SQL views as the underlying storage mechanism on the read
side because views cannot contain data that does not exist in the tables that they are based on.

The system stores the denormalized order data in a SQL Database instance in two tables: the
OrdersView and OrderItemsView tables. The OrderItemsView table includes the RequestedSeats
column that contains data that only exists on the read side.

Column Description

OrderId A unique identifier for the Order

ReservationExpirationDate The time when the seat reservations expire

StateValue The state of the Order: Created, PartiallyReserved, ReservationCompleted, Rejected,
Confirmed

RegistrantEmail The email address of the Registrant

AccessCode The Access Code that the Registrant can use to access the Order

OrdersView Table descriptions

Column Description

OrderItemId A unique identifier for the Order Item

SeatType The type of seat requested

RequestedSeats The number of seats requested

ReservedSeats The number of seats reserved

OrderID The OrderId in the parent OrdersView table

OrderItemsView Table descriptions

To populate these tables in the read model, the read side handles events raised by the write side and
uses them to write to these tables. See Figure 3 above for more details.

The OrderViewModelGenerator class handles these events and updates the read-side repository.

70 Journey four

public class OrderViewModelGenerator :
 IEventHandler<OrderPlaced>, IEventHandler<OrderUpdated>,
 IEventHandler<OrderPartiallyReserved>, IEventHandler<OrderReservationCompleted>,
 IEventHandler<OrderRegistrantAssigned>
{
 private readonly Func<ConferenceRegistrationDbContext> contextFactory;

 public OrderViewModelGenerator(
 Func<ConferenceRegistrationDbContext> contextFactory)
 {
 this.contextFactory = contextFactory;
 }

 public void Handle(OrderPlaced @event)
 {
 using (var context = this.contextFactory.Invoke())
 {
 var dto = new DraftOrder(@event.SourceId, DraftOrder.States.Created)
 {
 AccessCode = @event.AccessCode,
 };
 dto.Lines.AddRange(
 @event.Seats.Select(
 seat => new DraftOrderItem(seat.SeatType, seat.Quantity)));

 context.Save(dto);
 }
 }

 public void Handle(OrderRegistrantAssigned @event)
 {
 ...
 }

 public void Handle(OrderUpdated @event)
 {
 ...
 }

 public void Handle(OrderPartiallyReserved @event)
 {
 ...
 }

 71Extending and Enhancing the Orders and Registr ations Bounded Context

 public void Handle(OrderReservationCompleted @event)
 {
 ...
 }

 ...
}

The following code sample shows the ConferenceRegistrationDbContext class.

public class ConferenceRegistrationDbContext : DbContext
{
 ...

 public T Find<T>(Guid id) where T : class
 {
 return this.Set<T>().Find(id);
 }

 public IQueryable<T> Query<T>() where T : class
 {
 return this.Set<T>();
 }

 public void Save<T>(T entity) where T : class
 {
 var entry = this.Entry(entity);

 if (entry.State == System.Data.EntityState.Detached)
 this.Set<T>().Add(entity);

 this.SaveChanges();
 }
}

Notice that this ConferenceRegistrationDbContext in the read side
includes a Save method to persist the changes sent from the write
side and handled by the OrderViewModelGenerator handler class.

72 Journey four

Querying the read side
The following code sample shows a nongeneric DAO class that the MVC controllers use to query for
conference information on the read side. It wraps the ConferenceRegistrationDbContext class
shown previously.

public class ConferenceDao : IConferenceDao
{
 private readonly Func<ConferenceRegistrationDbContext> contextFactory;

 public ConferenceDao(Func<ConferenceRegistrationDbContext> contextFactory)
 {
 this.contextFactory = contextFactory;
 }

 public ConferenceDetails GetConferenceDetails(string conferenceCode)
 {
 using (var context = this.contextFactory.Invoke())
 {
 return context
 .Query<Conference>()
 .Where(dto => dto.Code == conferenceCode)
 .Select(x =>
 new ConferenceDetails
 {
 Id = x.Id,
 Code = x.Code,
 Name = x.Name,
 Description = x.Description,
 StartDate = x.StartDate
 })
 .FirstOrDefault();
 }
 }

 public ConferenceAlias GetConferenceAlias(string conferenceCode)
 {
 ...
 }

 public IList<SeatType> GetPublishedSeatTypes(Guid conferenceId)
 {
 ...
 }
}

 73Extending and Enhancing the Orders and Registr ations Bounded Context

Refactoring the SeatsAvailability aggregate
In the first stage of our CQRS journey, the domain included a
ConferenceSeatsAvailabilty aggregate root class that modeled the
number of seats remaining for a conference. In this stage of the jour-
ney, the team replaced the ConferenceSeatsAvailabilty aggregate
with a SeatsAvailability aggregate to reflect the fact that there may
be multiple seat types available at a particular conference; for exam-
ple, full conference seats, pre-conference workshop seats, and cock-
tail party seats. Figure 4 shows the new SeatsAvailability aggregate
and its constituent classes.

Notice how this ConferenceDao class contains only methods that return
data. It is used by the MVC controllers to retrieve data to display in the UI.

Figure 4
The SeatsAvailability aggregate and its associated commands and events

This aggregate now models the following facts:
•	 There may be multiple seat types at a conference.
•	 There may be different numbers of seats available for each seat type.

74 Journey four

The domain now includes a SeatQuantity value type that you can use to represent a quantity of
a particular seat type.

Previously, the aggregate raised either a ReservationAccepted or a ReservationRejected event,
depending on whether there were sufficient seats. Now the aggregate raises a SeatsReserved event
that reports how many seats of a particular type it could reserve. This means that the number of seats
reserved may not match the number of seats requested; this information is passed back to the UI for
the registrant to make a decision on how to proceed with the registration.

The AddSeats method
You may have noticed in Figure 3 that the SeatsAvailability aggregate includes an AddSeats method
with no corresponding command. The AddSeats method adjusts the total number of available seats
of a given type. The business customer is responsible for making any such adjustments, and does this
in the Conference Management bounded context. The Conference Management bounded context
raises an event whenever the total number of available seats changes. The SeatsAvailability class then
handles the event when its handler invokes the AddSeats method.

Impact on testing
This section discusses some of the testing issues addressed during this stage of the journey.

Acceptance tests and the domain expert
In Chapter 3, “Orders and Registrations Bounded Context,” you saw some of the UI mockups that the
developers and the domain expert worked on together to refine some of the functional requirements
for the system. One of the planned uses for these UI mockups was to form the basis of a set of ac-
ceptance tests for the system.

The team had the following goals for their acceptance testing approach:
•	 The acceptance tests should be expressed clearly and unambiguously in a format that the

domain expert could understand.
•	 It should be possible to execute the acceptance tests automatically.

To achieve these goals, the domain expert paired with a member of the test team and used SpecFlow
to specify the core acceptance tests.

Defining acceptance tests using SpecFlow features
The first step in defining acceptance tests using SpecFlow is to define the acceptance tests using the
SpecFlow notation. These tests are saved as feature files in a Visual Studio project. The following code
sample from the ConferenceConfiguration.feature file in the Features\UserInterface\Views\Man-
agement folder shows an acceptance test for the Conference Management bounded context. A
typical SpecFlow test scenario consists of a collection of Given, When, and Then statements. Some
of these statements include the data that the test uses.

In fact, SpecFlow feature files use the Gherkin language—a domain
specific language (DSL) created especially for behavior descriptions.

http://www.specflow.org/specflownew/

 75Extending and Enhancing the Orders and Registr ations Bounded Context

Fe
at
ur
e:

Co
nf
er
en
ce
 c
on
fig
ur
at
io
n
sc
en
ar
io
s
fo
r
cr
ea
ti
ng
 a
nd
 e
di
ti
ng
 C
on
fe
re
nc
e
se
tt
in
gs

In
 o
rd
er
 t
o
cr
ea
te
 o
r
up
da
te
 a
 C
on
fe
re
nc
e
co
nfi
gu
ra
ti
on

As
 a
 B
us
in
es
s
Cu
st
om
er

I
wa
nt
 t
o
be
 a
bl
e
to
 c
re
at
e
or
 u
pd
at
e
a
Co
nf
er
en
ce
 a
nd
 s
et
 i
ts
 p
ro
pe
rt
ie
s

Ba
ck
gr
ou
nd
:

Gi
ve
n
th
e
Bu
si
ne
ss
 C
us
to
me
r
se
le
ct
ed
 t
he
 C
re
at
e
Co
nf
er
en
ce
 o
pt
io
n

Sc
en
ar
io
:
An
 e
xi
st
in
g
un
pu
bl
is
he
d
Co
nf
er
en
ce
 i
s
se
le
ct
ed
 a
nd
 p
ub
li
sh
ed

Gi
ve
n
th
is
 c
on
fe
re
nc
e
in
fo
rm
at
io
n

|
Ow
ne
r

|
Em
ai
l

 |
 N
am
e

 |
 D
es
cr
ip
ti
on

|
Sl
ug

 |
 S
ta
rt

|
En
d

| |
Wi
ll
ia
m
Fl
as
h
|
wi
ll
ia
m@
fa
br
ik
am
.c
om
 |
 C
QR
S2
01
2P
 |
 C
QR
S
su
mm
it
 2
01
2
co
nf
er
en
ce
 (
Pu
bl
is
he
d)
|
ra
nd
om
 |
 0
5/
02
/2
01
2
|
05
/1
2/
20
12

| An
d
th
e
Bu
si
ne
ss
 C
us
to
me
r
pr
oc
ee
ds
 t
o
cr
ea
te
 t
he
 C
on
fe
re
nc
e

Wh
en
 t
he
 B
us
in
es
s
Cu
st
om
er
 p
ro
ce
ed
s
to
 p
ub
li
sh
 t
he
 C
on
fe
re
nc
e

Th
en
 t
he
 s
ta
te
 o
f
th
e
Co
nf
er
en
ce
 c
ha
ng
es
 t
o
Pu
bl
is
he
d

Sc
en
ar
io
:
An
 e
xi
st
in
g
Co
nf
er
en
ce
 i
s
ed
it
ed
 a
nd
 u
pd
at
ed

Gi
ve
n
an
 e
xi
st
in
g
pu
bl
is
he
d
co
nf
er
en
ce
 w
it
h
th
is
 i
nf
or
ma
ti
on

|
Ow
ne
r

|
Em
ai
l

 |
 N
am
e

 |
 D
es
cr
ip
ti
on

|
Sl
ug

 |
 S
ta
rt

|
En
d

| |
Wi
ll
ia
m
Fl
as
h
|
wi
ll
ia
m@
fa
br
ik
am
.c
om
 |
 C
QR
S2
01
2U
 |
 C
QR
S
su
mm
it
 2
01
2
co
nf
er
en
ce
 (
Or
ig
in
al
)
|
ra
nd
om
 |
 0
5/
02
/2
01
2
|
05
/1
2/
20
12

| An
d
th
e
Bu
si
ne
ss
 C
us
to
me
r
pr
oc
ee
ds
 t
o
ed
it
 t
he
 e
xi
st
in
g
se
tt
in
gs
 w
it
h
th
is
 i
nf
or
ma
ti
on

|
De
sc
ri
pt
io
n

 |

|
CQ
RS
 s
um
mi
t
20
12
 c
on
fe
re
nc
e
(U
pd
at
ed
)|

Wh
en
 t
he
 B
us
in
es
s
Cu
st
om
er
 p
ro
ce
ed
s
to
 s
av
e
th
e
ch
an
ge
s

Th
en
 t
hi
s
in
fo
rm
at
io
n
ap
pe
ar
s
in
 t
he
 C
on
fe
re
nc
e
se
tt
in
gs

|
De
sc
ri
pt
io
n

 |

|
CQ
RS
 s
um
mi
t
20
12
 c
on
fe
re
nc
e
(U
pd
at
ed
)|

..
.

76 Journey four

For additional examples, see the Conference.AcceptanceTests
Visual Studio solution file included with the downloadable source.

Making the tests executable
An acceptance test in a feature file is not directly executable; you
must provide some plumbing code to bridge the gap between the
SpecFlow feature file and your application.

For examples of implementations, see the classes in the Steps
folder in the Conference.Specflow project in the Conference.Ac-
ceptanceTests solution.

These step implementations use two different approaches.
The first approach runs the test by simulating a user of the sys-

tem. It does this by driving a web browser directly using the WatiN
open source library. The advantages of this approach are that it exer-
cises the system in exactly the same way that a real user would inter-
act with the system and that it is simple to implement initially. How-
ever, these tests are fragile and will require a considerable maintenance
effort to keep them up to date as the UI and system change. The
following code sample shows an example of this approach, defining
some of the Given, When, and Then steps from the feature file
shown previously. SpecFlow uses the Given, When, and Then attri-
butes to link the steps to the clauses in the feature file and to pass
parameter values to step methods:

public class ConferenceConfigurationSteps : StepDefinition
{
 ...

 [Given(@"the Business Customer proceeds to edit the existing settings" +
 "with this information")]
 public void
 GivenTheBusinessCustomerProceedToEditTheExistingSettignsWithThisInformation(
 Table table)
 {
 Browser.Click(Constants.UI.EditConferenceId);
 PopulateConferenceInformation(table);
 }

 [Given(@"an existing published conference with this information")]
 public void GivenAnExistingPublishedConferenceWithThisInformation(Table table)
 {
 ExistingConferenceWithThisInformation(table, true);
 }

I found these acceptance
tests were a great way for
me to clarify my definitions
of the expected behavior
of the system to the
developers.

http://watin.org/

 77Extending and Enhancing the Orders and Registr ations Bounded Context

 private void ExistingConferenceWithThisInformation(Table table, bool publish)
 {
 NavigateToCreateConferenceOption();
 PopulateConferenceInformation(table, true);
 CreateTheConference();
 if(publish) PublishTheConference();

 ScenarioContext.Current.Set(
 table.Rows[0]["Email"],
 Constants.EmailSessionKey);
 ScenarioContext.Current.Set(
 Browser.FindText(Slug.FindBy),
 Constants.AccessCodeSessionKey);
 }

 ...

 [When(@"the Business Customer proceeds to save the changes")]
 public void WhenTheBusinessCustomerProceedToSaveTheChanges()
 {
 Browser.Click(Constants.UI.UpdateConferenceId);
 }

 ...

 [Then(@"this information appears in the Conference settings")]
 public void ThenThisInformationIsShowUpInTheConferenceSettings(Table table)
 {
 Assert.True(
 Browser.SafeContainsText(table.Rows[0][0]),
 string.Format(
 "The following text was not found on the page: {0}",
 table.Rows[0][0]));
 }

 private void PublishTheConference()
 {
 Browser.Click(Constants.UI.PublishConferenceId);
 }

 private void CreateTheConference()
 {
 ScenarioContext.Current.Browser().Click(Constants.UI.CreateConferenceId);
 }

78 Journey four

 private void NavigateToCreateConferenceOption()
 {
 // Navigate to Registration page
 Browser.GoTo(Constants.ConferenceManagementCreatePage);
 }

 private void PopulateConferenceInformation(Table table, bool create = false)
 {
 var row = table.Rows[0];

 if (create)
 {
 Browser.SetInput("OwnerName", row["Owner"]);
 Browser.SetInput("OwnerEmail", row["Email"]);
 Browser.SetInput("name", row["Email"], "ConfirmEmail");
 Browser.SetInput("Slug", Slug.CreateNew().Value);
 }

 Browser.SetInput("Tagline", Constants.UI.TagLine);
 Browser.SetInput("Location", Constants.UI.Location);
 Browser.SetInput("TwitterSearch", Constants.UI.TwitterSearch);

 if (row.ContainsKey("Name")) Browser.SetInput("Name", row["Name"]);
 if (row.ContainsKey("Description"))
 Browser.SetInput("Description", row["Description"]);
 if (row.ContainsKey("Start")) Browser.SetInput("StartDate", row["Start"]);
 if (row.ContainsKey("End")) Browser.SetInput("EndDate", row["End"]);
 }
}

You can see how this approach simulates clicking on, and entering text into, UI elements in the web
browser.

The second approach is to implement the tests by interacting with the MVC controller classes. In
the longer-term, this approach will be less fragile at the cost of an initially more complex implementa-
tion that requires some knowledge of the internal implementation of the system. The following code
samples show an example of this approach.

First, an example scenario from the SelfRegistrationEndToEndWithControllers.feature file in
the Features\UserInterface\Controllers\Registration project folder:

 79Extending and Enhancing the Orders and Registr ations Bounded Context

Scenario: End to end Registration implemented using controllers
 Given the Registrant proceeds to make the Reservation
 And these Order Items should be reserved
 | seat type | quantity |
 | General admission | 1 |
 | Additional cocktail party | 1 |
 And these Order Items should not be reserved
 | seat type |
 | CQRS Workshop |
 And the Registrant enters these details
 | first name | last name | email address |
 | William | Flash | william@fabrikam.com |
 And the Registrant proceeds to Checkout:Payment
 When the Registrant proceeds to confirm the payment
 Then the Order should be created with the following Order Items
 | seat type | quantity |
 | General admission | 1 |
 | Additional cocktail party | 1 |
 And the Registrant assigns these seats
 | seat type | first name | last name | email address |
 | General admission | William | Flash | William@fabrikam.com|
 | Additional cocktail party | Jim | Corbin | Jim@litwareinc.com |
 And these seats are assigned
 | seat type | quantity |
 | General admission | 1 |
 | Additional cocktail party | 1 |

Second, some of the step implementations from the SelfRegistrationEndToEndWithControllers-
Steps class:

[Given(@"the Registrant proceeds to make the Reservation")]
public void GivenTheRegistrantProceedToMakeTheReservation()
{
 var redirect = registrationController.StartRegistration(
 registration,
 registrationController.ViewBag.OrderVersion) as RedirectToRouteResult;

 Assert.NotNull(redirect);

 // Perform external redirection
 var timeout = DateTime.Now.Add(Constants.UI.WaitTimeout);

 while (DateTime.Now < timeout && registrationViewModel == null)

80 Journey four

 {
 //ReservationUnknown
 var result = registrationController.SpecifyRegistrantAndPaymentDetails(
 (Guid)redirect.RouteValues["orderId"],
 registrationController.ViewBag.OrderVersion);

 Assert.IsNotType<RedirectToRouteResult>(result);
 registrationViewModel =
 RegistrationHelper.GetModel<RegistrationViewModel>(result);
 }

 Assert.NotNull(
 registrationViewModel,
 "Could not make the reservation and get the RegistrationViewModel");
}

...

[When(@"the Registrant proceeds to confirm the payment")]
public void WhenTheRegistrantProceedToConfirmThePayment()
{
 using (var paymentController = RegistrationHelper.GetPaymentController())
 {
 paymentController.ThirdPartyProcessorPaymentAccepted(
 conferenceInfo.Slug, (Guid) routeValues["paymentId"], " ");
 }
}
...

[Then(@"the Order should be created with the following Order Items")]
public void ThenTheOrderShouldBeCreatedWithTheFollowingOrderItems(Table table)
{
 draftOrder =
 RegistrationHelper.GetModel<DraftOrder>(
 registrationController.ThankYou(registrationViewModel.Order.OrderId));
 Assert.NotNull(draftOrder);

 foreach (var row in table.Rows)
 {
 var orderItem = draftOrder
 .Lines
 .FirstOrDefault(l =>
 l.SeatType == conferenceInfo
 .Seats.First(s =>
 s.Description == row["seat type"]).Id);

 Assert.NotNull(orderItem);
 Assert.Equal(Int32.Parse(row["quantity"]), orderItem.ReservedSeats);
 }
}

 81Extending and Enhancing the Orders and Registr ations Bounded Context

public class given_placed_order
{
 ...

 private Order sut;

 public given_placed_order()
 {
 this.sut = new Order(
 OrderId, new[]
 {
 new OrderPlaced
 {
 ConferenceId = ConferenceId,
 Seats = new[] { new SeatQuantity(SeatTypeId, 5) },
 ReservationAutoExpiration = DateTime.UtcNow
 }
 });
 }

You can see how this approach uses the RegistrationController MVC
class directly.

Note: In these code samples, you can see how the values in the
attributes link the step implementation to the statements in the
related SpecFlow feature files.

The team chose to implement these steps as xUnit.net tests. To run these
tests within Visual Studio, you can use any of the test runners supported
by xUnit.net such as ReSharper, CodeRush, or TestDriven.NET.

Using tests to help developers understand
message flows
A common comment about implementations that use the CQRS pat-
tern or that use messaging extensively is the difficulty in understand-
ing how all of the different pieces of the application fit together
through sending and receiving commands and events. You can help
someone to understand your code base through appropriately de-
signed unit tests.

Consider this first example of a unit test for the Order aggregate:

Remember that these
acceptance tests are not the
only tests performed on the
system. The main solution
includes comprehensive
unit and integration tests,
and the test team also
performed exploratory and
performance testing on the
application.

http://xunit.codeplex.com/

82 Journey four

 [Fact]
 public void when_updating_seats_then_updates_order_with_new_seats()
 {
 this.sut.UpdateSeats(new[] { new OrderItem(SeatTypeId, 20) });

 var @event = (OrderUpdated)sut.Events.Single();
 Assert.Equal(OrderId, @event.SourceId);
 Assert.Equal(1, @event.Seats.Count());
 Assert.Equal(20, @event.Seats.ElementAt(0).Quantity);
 }

 ...
}

This unit test creates an Order instance and directly invokes the UpdateSeats method. It does not
provide any information to the person reading the test code about the command or event that causes
this method to be invoked.

Now consider this second example that performs the same test, but in this case by sending a
command:

public class given_placed_order
{
 ...

 private EventSourcingTestHelper<Order> sut;

 public given_placed_order()
 {
 this.sut = new EventSourcingTestHelper<Order>();
 this.sut.Setup(
 new OrderCommandHandler(sut.Repository, pricingService.Object));

 this.sut.Given(
 new OrderPlaced
 {
 SourceId = OrderId,
 ConferenceId = ConferenceId,
 Seats = new[] { new SeatQuantity(SeatTypeId, 5) },
 ReservationAutoExpiration = DateTime.UtcNow
 });
 }

 83Extending and Enhancing the Orders and Registr ations Bounded Context

 [Fact]
 public void when_updating_seats_then_updates_order_with_new_seats()
 {
 this.sut.When(
 new RegisterToConference
 {
 ConferenceId = ConferenceId,
 OrderId = OrderId,
 Seats = new[] { new SeatQuantity(SeatTypeId, 20)
 }});

 var @event = sut.ThenHasSingle<OrderUpdated>();
 Assert.Equal(OrderId, @event.SourceId);
 Assert.Equal(1, @event.Seats.Count());
 Assert.Equal(20, @event.Seats.ElementAt(0).Quantity);
 }

 ...
}

This example uses a helper class that enables you to send a command to the Order instance. Now
someone reading the test can see that when you send a RegisterToConference command, you expect
to see an OrderUpdated event.

A journey into code comprehension: A tale of pain, relief, and learning
This section describes the journey taken by Josh Elster, a member of the CQRS Advisory Board, as he
explored the source code of the Contoso Conference Management System.

Testing is important
I’ve once believed that well-factored applications are easy to comprehend, no matter how large or
broad the codebase. Any time I had a problem understanding how some feature of an application
behaved, the fault would lie with the code and not in me.

Never let your ego get in the way of common sense.
Truth was, up until a certain point in my career, I simply hadn’t had exposure to a large, well-fac-

tored codebase. I wouldn’t have known what one looked like if it walked up and hit me in the face.
Thankfully, as I got more experienced reading code, I learned to recognize the difference.

Note: In any well-organized project, tests are a cornerstone of comprehension for developers
seeking to understand the project. Topics ranging from naming conventions and coding styles to
design approaches and usage patterns are baked into test suites, providing an excellent starting
point for integrating into a codebase. It’s also good practice in code literacy, and practice makes
perfect!

84 Journey four

My first action after cloning the Conference code was to skim the tests. After a perusal of the integra-
tion and unit test suites in the Conference Visual Studio solution, I focused my attention on the
Conference.AcceptanceTests Visual Studio solution that contains the SpecFlow acceptance tests.
Other members of the project team had done some initial work on the .feature files, which worked
out nicely for me since I wasn’t familiar with the details of the business rules. Implementing step
bindings for these features would be an excellent way to both contribute to the project and learn
about how the system worked.

Domain tests
My goal then was to take a feature file looking something like this:

 Feature: Self Registrant scenarios for making a Reservation for
 a Conference site with all Order Items initially available
 In order to reserve Seats for a conference
 As an Attendee
 I want to be able to select an Order Item from one or many of
 the available Order Items and make a Reservation

 Background:
 Given the list of the available Order Items for the CQRS
 Summit 2012 conference with the slug code SelfRegFull
 | seat type | rate | quota |
 | General admission | $199 | 100 |
 | CQRS Workshop | $500 | 100 |
 | Additional cocktail party | $50 | 100 |
 And the selected Order Items
 | seat type | quantity |
 | General admission | 1 |
 | CQRS Workshop | 1 |
 | Additional cocktail party | 1 |

 Scenario: All the Order Items are available and all get reserved
 When the Registrant proceeds to make the Reservation
 Then the Reservation is confirmed for all the selected Order Items
 And these Order Items should be reserved
 | seat type |
 | General admission |
 | CQRS Workshop |
 | Additional cocktail party |
 And the total should read $749
 And the countdown started

http://www.specflow.org/

 85Extending and Enhancing the Orders and Registr ations Bounded Context

And bind it to code that either performs an action, creates expecta-
tions, or makes assertions:

 [Given(@"the '(.*)' site conference")]
 public void GivenAConferenceNamed(string conference)
 {
 ...
 }

All at a level just below the UI, but above (and beyond) infrastructure
concerns. Testing is tightly focused on the behavior of the overall
solution domain, which is why I’ll call these types of tests Domain
Tests. Other terms such as behavior-driven development (BDD) can
be used to describe this style of testing.

It may seem a little redundant to rewrite application logic already
implemented on the website, but there are a number of reasons why
it is worth the time:

•	 You aren’t interested (for these purposes) in testing how the
website or any other piece of infrastructure behaves; you’re
only interested in the domain. Unit and integration-level
tests will validate the correct functioning of that code, so
there’s no need to duplicate those tests.

•	 When iterating stories with product owners, spending time
on pure UI concerns can slow down the feedback cycle,
reducing the quality and usefulness of feedback.

•	 Discussing a feature in more abstract terms can lead to a
better understanding of the problem that the business is
trying to solve, given the sometimes large mismatches
between the vocabularies used by different people when
they discuss technological issues.

•	 Obstacles encountered in implementing the testing logic can
help improve the system’s overall design quality. Difficulty in
separating infrastructure code from application logic is
generally regarded as a smell.

Note: There are many more reasons not listed here why these
types of tests are a good idea, but these are the important ones
for this example.

The architecture for the Contoso Conference Management System is
loosely coupled, utilizing messages to transfer commands and events
to interested parties. Commands are routed to a single handler via a
command bus, while events are routed to their 0...N handlers via an
event bus. A bus isn’t tied to any specific technology as far as consum-
ing applications are concerned, allowing arbitrary implementations to
be created and used throughout the system in a manner transparent
to users.

These “below the UI”
tests are also known as
subcutaneous tests, (see
Meszaros, G., Melnik, G.,
Acceptance Test Engineering
Guide).

http://testingguidance.codeplex.com/
http://testingguidance.codeplex.com/
http://testingguidance.codeplex.com/

86 Journey four

Another bonus when it comes to behavioral testing of a loosely coupled message architecture is
related to the fact that BDD (or similarly styled) tests do not involve themselves with the inner work-
ings of application code. They only care about the observable behavior of the application under test.
This means that for the SpecFlow tests, we need only concern ourselves with publishing some com-
mands to the bus and examining the outward results by asserting expected message traffic and pay-
loads against the actual traffic/data.

Note: It’s OK to use mocks and stubs with these types of tests where appropriate. An appropriate
example would be in using a mock ICommandBus object instead of the AzureCommandBus type.
Mocking a complete domain service is an example where it is not appropriate. Use mocking
minimally, limiting yourself to infrastructure concerns and you’ ll make your life—and your tests—a
lot less stressful.

The other side of the coin
With all of the pixels I just spent describing how awesome and easy things are, where’s the pain? The
pain is in comprehending what goes on in a system. The loose coupling of the architecture has a
wicked flip side; techniques such as Inversion of Control and Dependency Injection hinder code read-
ability by their very nature, since one can never be sure what concrete class is being injected at a par-
ticular point without examining the container’s initialization closely. In the journey code, the IProcess
interface marks classes representing long-running business processes (also known as sagas or process
managers) responsible for coordinating business logic between different aggregates. In order to main-
tain the integrity, idempotency, and transactionality of the system’s data and state, processes leave the
actual publishing of their issued commands to the individual persistence repository’s implementation.
Since IoC and DI containers hide these types of details from consumers, it and other properties of the
system create a bit of difficulty when it comes to answering seemingly trivial questions such as:
•	 Who issues or issued a particular command or event?
•	 What class handles a particular command or event?
•	 Where are processes or aggregates created or persisted?
•	 When is a command sent in relation to other commands or events?
•	 Why does the system behave the way it does?
•	 How does the application’s state change as a result of a particular command?

Because the application’s dependencies are so loose, many traditional tools and methods of code
analysis become either less useful or completely useless.

Let’s take an example of this and work out some heuristics involved in answering these questions.
We’ll use as an example the RegistrationProcessManager.

1.	 Open the RegistrationProcessManager.cs file, noting that, like many process managers it has
a ProcessState enumeration. We take note of the beginning state for the process, Not-
Started. Next, we want to find code that does one of the following:
•	 A new instance of the process is created (where are processes created or persisted?)
•	 The initial state is changed to a different state (how does state change?)

 87Extending and Enhancing the Orders and Registr ations Bounded Context

2.	 Locate the first place in the source code where either or both of the above occur. In this
case, it’s the Handle method in the RegistrationProcessManagerRouter class. Important:
this does not necessarily mean that the process is a command handler! Process managers are
responsible for creating and retrieving aggregate roots (AR) from storage for the purpose of
routing messages to the AR, so while they have methods similar in name and signature to an
ICommandHandler implementation, they do not implement a command’s logic.

3.	 Take note of the message type that is received as a parameter to the method where the state
change occurs, since we now need to figure out where that message originated.
•	 We also note that a new command, MakeSeatReservation, is being issued by the

RegistrationProcessManager.
•	 As mentioned above, this command isn’t actually published by the process issuing it;

rather, publication occurs when the process is saved to disk.
•	 These heuristics will need to be repeated to some degree or another on any commands

issued as side-effects of a process handling a command.
4.	 Do a find references on the OrderPlaced symbol to locate the (or a) top-most (external

facing) component that publishes a message of that type via the Send method on the
ICommandBus interface.
•	 Since internally issued commands are indirectly published (by a repository) on save, it may

be safe to assume that any non-infrastructure logic that directly calls the Send method is
an external point of entry.

While there is certainly more to these heuristics than noted here, what is there is likely sufficient to
demonstrate the point that even discussing the interactions is a rather lengthy, cumbersome process.
That makes it easily prone to misinterpretation. You can come to understand the various command/
event messaging interactions in this manner, but it is not very efficient.

Note: As a rule, a person can really only maintain between four and eight distinct thoughts in their
head at any given time. To illustrate this concept, let’s take a conservative count of the number of
simultaneous items you’ ll need to maintain in your short-term memory while following the above
heuristics:
Process type + Process state property + Initial State (NotStarted) + new() location + message type
+ intermediary routing class types + 2 *N^n Commands issued (location, type, steps) +
discrimination rules (logic is data too!) > 8.

When infrastructure requirements get mixed into the equation, the issue of information saturation
becomes even more apparent. Being the competent, capable, developers that we all are (right?), we
can start looking for ways to optimize these steps and improve the signal-to-noise ratio of relevant
information.

To summarize, we have two problems:
•	 The number of items we are forced to keep in our heads is too great to allow efficient

comprehension.
•	 Discussion and documentation for messaging interactions is verbose, error-prone, and

complicated.
Fortunately, it is quite possible to kill two birds with a single stone, with MIL (messaging intermediate
language).

88 Journey four

MIL began as a series of LINQPad scripts and snippets that I created to help juggle all these facts
while answering questions. Initially, all that these scripts accomplished was to reflect through one or
more project assemblies and output the various types of messages and handlers. In discussions with
members of the team it became apparent that others were experiencing the same types of problems
I had. After a few chats and brainstorming sessions with members of the patterns & practices team,
we came up with the idea of introducing a small domain-specific language (DSL) that would encapsu-
late the interactions being discussed. The tentatively named SawMIL toolbox, located at http://jelster.
github.com/CqrsMessagingTools/ provides utilities, scripts, and examples that enable you to use MIL as
part of your development and analysis process managers.

In MIL, messaging components and interactions are represented in a specific manner: commands,
since they are requests for the system to perform some action, are denoted by ?, as in DoSomething?.
Events represent something definite that happened in the system, and hence gain a ! suffix, as in
SomethingHappened!.

Another important element of MIL is message publication and reception. Messages received from
a messaging source (such as Windows Azure Service Bus, nServiceBus, and so forth) are always pre-
ceded by the -> symbol, while messages that are being sent have the symbol following it. To keep the
examples simple for now, the optional nil element, (a period, .) is used to indicate explicitly a no-op
(in other words, nothing is receiving the message). The following snippet shows an example of the nil
element syntax:

SendCustomerInvoice? -> .
CustomerInvoiceSent! -> .

Once a command or event has been published, something needs to do something with it. Commands
have one and only one handler, while events can have multiple handlers. MIL represents this relation-
ship between message and handler by placing the name of the handler on the other side of the mes-
saging operation, as shown in the following snippet:

SendCustomerInvoice? -> CustomerInvoiceHandler
CustomerInvoiceSent! ->
 -> CustomerNotificationHandler
 -> AccountsAgeingViewModelGenerator

Notice how the command handler is on the same line as the command, while the event is separated
from its handlers? That’s because in CQRS, there is a 1:1 correlation between commands and com-
mand handlers. Putting them together helps reinforce that concept, while keeping events separate
from event handlers helps reinforce the idea that a given event can have 0...N handlers.

http://jelster.github.com/CqrsMessagingTools/
http://jelster.github.com/CqrsMessagingTools/

 89Extending and Enhancing the Orders and Registr ations Bounded Context

Aggregate Roots are prefixed with the @ sign, a convention that should be familiar to anyone who
has ever used twitter. Aggregate roots never handle commands, but occasionally may handle events.
Aggregate roots are most frequently event sources, raising events in response to business operations
invoked on the aggregate. Something that should be made clear about these events, however, is that
in most systems there are other elements that decide upon and actually perform the publication of
domain events. This is an interesting case where business and technical requirements blur boundaries,
with the requirements being met by infrastructure logic rather than application or business logic. An
example of this lies in the journey code: in order to ensure consistency between event sources and
event subscribers, the implementation of the repository that persists the aggregate root is the ele-
ment responsible for actually publishing the events to a bus. The following snippet shows an example
of the AggregateRoot syntax:

SendCustomerInvoice? -> CustomerInvoiceHandler
@Invoice::CustomerInvoiceSent! -> .

In the above example, a new language element called the scope context operator appears alongside
the @AggregateRoot. Denoted by double colons (::) the scope context element may or may not have
whitespace between its two characters, and is used to identify relationships between two objects.
Above, the AR ‘@Invoice’ is generating the CustomerSent! event in response to logic invoked by the
CustomerInvoiceHandler event handler. The next example demonstrates use of the scope element
on an AR, which generates multiple events in response to a single command:

SendCustomerInvoice? -> CustomerInvoiceHandler
@Invoice:
 :CustomerInvoiceSent! -> .
 :InvoiceAged! -> .

Scope context is also used to signify intra-element routing that does not involve infrastructure mes-
saging apparatus:

SendCustomerInvoice? -> CustomerInvoiceHandler
@Invoice::CustomerInvoiceSent! ->
 -> InvoiceAgeingProcessRouter::InvoiceAgeingProcess

The last element that I’ll introduce is the State Change element. State changes are one of the best
ways to track what is happening within a system, and thus MIL treats them as first-class citizens.
These statements must appear on their own line of text, and are prefixed with the ‘*’ character. It’s
the only time in MIL that there is any mention or appearance of assignment because it’s just that
important! The following snippet shows an example of the State Change element:

SendCustomerInvoice? -> CustomerInvoiceHandler
@Invoice::CustomerInvoiceSent! ->
 -> InvoiceAgegingProcessRouter::InvoiceAgeingProcess
 *InvoiceAgeingProcess.ProcessState = Unpaid

90 Journey four

Summary
We’ve just walked through the basic steps used when describing messaging interactions in a loosely
coupled application. Although the interactions described are only a subset of possible interactions,
MIL is evolving into a way to compactly describe the interactions of a message-based system. Differ-
ent nouns and verbs (elements and actions) are represented by distinct, mnemonically significant
symbols. This provides a cross-substrate (squishy human brains < - > silicon CPU) means of communi-
cating meaningful information about systems as a whole. Although the language describes some types
of messaging interactions very well, it is very much a work in progress with many elements of the
language and tooling in need of development or improvement. This presents some great opportunities
for people looking to contribute to OSS, so if you’ve been on the fence about contributing or are
wondering about OSS participation, there’s no time like the present to head over to http://jelster.
github.com/CqrsMessagingTools/, fork the repos, and get started!

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://jelster.github.com/CqrsMessagingTools/
http://jelster.github.com/CqrsMessagingTools/
http://msdn.microsoft.com/en-us/library/jj619274

 91

Preparing for the V1 Release
Adding functionality and refactoring in preparation for the V1 release.

Journey 5:

“Most people, after accomplishing something, use it over and over again like a gramophone record
till it cracks, forgetting that the past is just the stuff with which to make more future.”

Freya Stark

The Contoso Conference Management System V1 release
This chapter describes the changes made by the team to prepare for the first production release of
the Contoso Conference Management System. This work includes some refactoring and additions to
the Orders and Registrations bounded context that the previous two chapters introduced, as well as
a new Conference Management bounded context and a new Payments bounded context.

One of the key refactorings undertaken by the team during this phase of the journey was to in-
troduce event sourcing into the Orders and Registrations bounded context.

One of the anticipated benefits from implementing the CQRS pattern is that it will help us man-
age change in a complex system. Having a V1 release during the CQRS journey will help the team
evaluate how the CQRS pattern and event sourcing deliver these benefits when we move forward
from the V1 release to the next production release of the system. The remaining chapters will describe
what happens after the V1 release.

This chapter describes the user interface (UI) that the team added to the public website during
this phase and includes a discussion of task-based UIs.

Working definitions for this chapter
This chapter uses a number of terms that we will define next. For more detail, and possible alternative
definitions, see Chapter 4, “A CQRS and ES Deep Dive” in the Reference Guide.

Access code. When a business customer creates a new conference, the system generates a five-
character access code and sends it by email to the business customer. The business customer can use
his email address and the access code on the conference management website to retrieve the confer-
ence details from the system at a later date. The system uses access codes instead of passwords so
that the business customer need not set up an account just to make a purchase.

Event sourcing. Event sourcing is a way of persisting and reloading the state of aggregates within
the system. Whenever the state of an aggregate changes, the aggregate raises an event detailing the
state change. The system then saves this event in an event store. The system can recreate the state
of an aggregate by replaying all of the previously saved events associated with that aggregate instance.
The event store becomes the book of record for the data stored by the system.

92 Journey five

In addition, you can use event sourcing as a source of audit data, as a way to query historic state,
gain new business insights from past data, and replay events for debugging and problem analysis.

Eventual consistency. Eventual consistency is a consistency model that does not guarantee im-
mediate access to updated values. After an update to a data object, the storage system does not
guarantee that subsequent accesses to that object will return the updated value. However, the storage
system does guarantee that if no new updates are made to the object during a sufficiently long period
of time, then eventually all accesses can be expected to return the last updated value.

User stories
The team implemented the user stories described below during this stage of the journey.

Ubiquitous language definitions
Business customer. The business customer represents the organization that is using the conference

management system to run its conference.
Seat. A seat represents a space at a conference or access to a specific session at the conference

such as a welcome reception, tutorial, or workshop.
Registrant. A registrant is a person who interacts with the system to place orders and make pay-

ments for those orders. A registrant also creates the registrations associated with an order.

Conference Management bounded context user stories
A business customer can create new conferences and manage them. After a business customer creates
a new conference, he can access the details of the conference by using his email address and confer-
ence locator access code. The system generates the access code when the business customer creates
the conference.

The business customer can specify the following information about a conference:
•	 The name, description, and slug (part of the URL used to access the conference).
•	 The start and end dates of the conference.
•	 The different types and quotas of seats available at the conference.

Additionally, the business customer can control the visibility of the conference on the public website
by either publishing or unpublishing the conference.

The business customer can use the conference management website to view a list of orders and
attendees.

Ordering and Registration bounded context user stories
When a registrant creates an order, it may not be possible to fulfill the order completely. For example,
a registrant may request five seats for the full conference, five seats for the welcome reception, and
three seats for the preconference workshop. There may only be three seats available for the full confer-
ence and one seat for the welcome reception, but more than three seats available for the preconference
workshop. The system displays this information to the registrant and gives her the opportunity to ad-
just the number of each type of seat in the order before continuing to the payment process.

After a registrant has selected the quantity of each seat type, the system calculates the total price
for the order, and the registrant can then pay for those seats using an online payment service. Contoso
does not handle payments on behalf of its customers; each business customer must have a mechanism
for accepting payments through an online payment service. In a later stage of the project, Contoso will
add support for business customers to integrate their invoicing systems with the conference management
system. At some future time, Contoso may offer a service to collect payments on behalf of customers.

 93Preparing for the V1 Release

Note: In this version of the system, the actual payment is simulated.

After a registrant has purchased seats at a conference, she can assign attendees to those seats. The
system stores the name and contact details for each attendee.

Architecture
Figure 1 illustrates the key architectural elements of the Contoso Conference Management System
in the V1 release. The application consists of two websites and three bounded contexts. The infra-
structure includes Windows Azure SQL Database (SQL Database) instances, an event store, and
messaging infrastructure.

The table that follows Figure 1 lists all of the messages that the artifacts (aggregates, MVC control-
lers, read-model generators, and data access objects) shown in the diagram exchange with each other.

Note: For reasons of clarity, the handlers (such as the OrderCommandHandler class) that
deliver the messages to the domain objects are not shown.

Figure 1
Architecture of the V1 release

94 Journey five

Element Type Sends Receives

ConferenceController MVC Controller N/A ConferenceDetails

OrderController MVC Controller AssignSeat
 UnassignSeat

DraftOrder
OrderSeats
PricedOrder

RegistrationController MVC Controller RegisterToConference
AssignRegistrantDetails
InitiateThirdParty-
 ProcessorPayment

DraftOrder
PricedOrder
SeatType

PaymentController MVC Controller CompleteThirdParty-
 ProcessorPayment
CancelThirdParty-
 ProcessorPayment

ThirdPartyProcessor-
 PaymentDetails

Conference Management CRUD Bounded
Context

ConferenceCreated
ConferenceUpdated
ConferencePublished
ConferenceUnpublished
SeatCreated
SeatUpdated

OrderPlaced
OrderRegistrantAssigned
OrderTotalsCalculated
OrderPaymentConfirmed
SeatAssigned
SeatAssignmentUpdated
SeatUnassigned

Order Aggregate OrderPlaced
*OrderExpired
*OrderUpdated
*OrderPartiallyReserved
*OrderReservation-
 Completed
*OrderPaymentConfirmed
*OrderRegistrantAssigned

RegisterToConference
MarkSeatsAsReserved
RejectOrder
AssignRegistrantDetails
ConfirmOrderPayment

SeatsAvailability Aggregate SeatsReserved
*AvailableSeatsChanged
*SeatsReservation-
 Committed
*SeatsReservationCancelled

MakeSeatReservation
CancelSeatReservation
CommitSeatReservation
AddSeats
RemoveSeats

SeatAssignments Aggregate *SeatAssignmentsCreated
*SeatAssigned
*SeatUnassigned
*SeatAssignmentUpdated

AssignSeat
UnassignSeat

 95Preparing for the V1 Release

Element Type Sends Receives

RegistrationProcessManager Process manager MakeSeatReservation
ExpireRegistrationProcess
MarkSeatsAsReserved
CancelSeatReservation
RejectOrder
CommitSeatReservation
ConfirmOrderPayment

OrderPlaced
PaymentCompleted
SeatsReserved
ExpireRegistrationProcess

RegistrationProcessManager Process manager MakeSeatReservation
ExpireRegistrationProcess
MarkSeatsAsReserved
CancelSeatReservation
RejectOrder
CommitSeatReservation
ConfirmOrderPayment

OrderPlaced
PaymentCompleted
SeatsReserved
ExpireRegistrationProcess

OrderViewModelGenerator Handler DraftOrder OrderPlaced
OrderUpdated
OrderPartiallyReserved
OrderReservationCompleted
OrderRegistrantAssigned

PricedOrderViewModelGenerator Handler N/A SeatTypeName

ConferenceViewModelGenerator Handler Conference
AddSeats
RemoveSeats

ConferenceCreated
ConferenceUpdated
ConferencePublished
ConferenceUnpublished
**SeatCreated
**SeatUpdated

ThirdPartyProcessorPayment Aggregate PaymentCompleted
PaymentRejected
PaymentInitiated

InitiateThirdParty-
 ProcessorPayment
CompleteThirdParty-
 ProcessorPayment
CancelThirdParty-
 ProcessorPayment

 * These events are only used for persisting aggregate state using event sourcing.

** The ConferenceViewModelGenerator creates these commands from the SeatCreated and
SeatUpdated events that it handles from the Conference Management bounded context.

96 Journey five

The following list outlines the message naming conventions in the Contoso Conference Management
System

•	 All events use the past tense in the naming convention.
•	 All commands use the imperative naming convention.
•	 All DTOs are nouns.

The application is designed to deploy to Windows Azure. At this stage in the journey, the application
consists of two web roles that contain the ASP.NET MVC web applications and a worker role that
contains the message handlers and domain objects. The application uses SQL Database instances for
data storage, both on the write side and the read side. The Orders and Registrations bounded context
now uses an event store to persist the state from the write side. This event store is implemented using
Windows Azure table storage to store the events. The application uses the Windows Azure Service
Bus to provide its messaging infrastructure.

While you are exploring and testing the solution, you can run it locally, either using the Windows
Azure compute emulator or by running the ASP.NET MVC web application directly and running a
console application that hosts the handlers and domain objects. When you run the application lo-
cally, you can use a local SQL Server Express database instead of SQL Database, use a simple messag-
ing infrastructure implemented in a SQL Server Express database, and a simple event store also imple-
mented using a SQL Server Express database.

Note: The SQL-based implementations of the event store and the messaging infrastructure are only
intended to help you run the application locally for exploration and testing. They are not intended
to illustrate a production-ready approach.

For more information about the options for running the application, see Appendix 1, “Release Notes.”

 97Preparing for the V1 Release

Conference Management bounded context
The Conference Management bounded context is a simple two-tier,
create/read/update (CRUD)-style web application. It is implemented
using ASP.NET MVC 4 and Entity Framework.

This bounded context must integrate with other bounded con-
texts that implement the CQRS pattern.

Patterns and concepts
This section describes some of the key areas of the application that
the team visited during this stage of the journey and introduces some
of the challenges met by the team when we addressed these areas.

Event sourcing
The team at Contoso originally implemented the Orders and Registra-
tions bounded context without using event sourcing. However, dur-
ing the implementation it became clear that using event sourcing
would help to simplify this bounded context.

In Chapter 4, “Extending and Enhancing the Orders and Registra-
tions Bounded Contexts,” the team found that we needed to use
events to push changes from the write side to the read side. On the
read side, the OrderViewModelGenerator class subscribed to the
events published by the Order aggregate, and used those events to
update the views in the database that were queried by the read
model.

This was already half way to an event-sourcing implementation,
so it made sense to use a single persistence mechanism based on
events for the whole bounded context.

The event sourcing infrastructure is reusable in other bounded
contexts, and the implementation of the Orders and Registrations
becomes simpler.

The team implemented the basic event store using Windows
Azure table storage. If you are hosting your application in Windows
Azure, you could also consider using Windows Azure blobs or SQL
Database to store your events.

Evolution is key here; for
example, one could show how
implementing event sourcing
allows you to get rid of those
tedious data migrations, and
even allows you to build
reports from the past.
—Tom Janssens - CQRS
Advisors Mail List

The team implemented this
bounded context after it
implemented the public
conference management
website that uses ASP.NET
MVC 3. In a later stage of
the journey, as part of the
V3 release, the conference
management site will be
upgraded to ASP.NET MVC 4.

As a practical problem, the team had limited time before the V1
release to implement a production-quality event store. They created
a simple, basic event store based on Windows Azure tables as an
interim solution. However, they will potentially face the problem in
the future of migrating from one event store to another.

98 Journey five

When choosing the underlying technology for your event store,
you should ensure that your choice can deliver the level of availability,
consistency, reliability, scale, and performance your application re-
quires.

One of the issues to consider when choosing between storage mechanisms in Windows Azure is cost.
If you use SQL Database you are billed based on the size of the database, if you use Windows Azure
table or blob storage you are billed based on the amount of storage you use and the number of storage
transactions. You need to carefully evaluate the usage patterns on the different aggregates in your system
to determine which storage mechanism is the most cost effective. It may turn out that different storage
mechanisms make sense for different aggregate types. You may be able to introduce optimizations that
lower your costs, for example by using caching to reduce the number of storage transactions.

Identifying aggregates
In the Windows Azure table storage-based implementation of the
event store that the team created for the V1 release, we used the
aggregate ID as the partition key. This makes it efficient to locate the
partition that holds the events for any particular aggregate.

In some cases, the system must locate related aggregates. For
example, an order aggregate may have a related registrations aggre-
gate that holds details of the attendees assigned to specific seats. In
this scenario, the team decided to reuse the same aggregate ID for the
related pair of aggregates (the Order and Registration aggregates) in
order to facilitate look-ups.

My rule of thumb is that if
you’re doing green-field
development, you need very
good arguments in order to
choose a SQL Database.
Windows Azure Storage
Services should be the default
choice. However, if you
already have an existing SQL
Server database that you want
to move to the cloud, it’s a
different case.
—Mark Seemann - CQRS
Advisors Mail List

You want to consider in this case whether you should
have two aggregates. You could model the registrations
as an entity inside the Order aggregate.

 99Preparing for the V1 Release

A more common scenario is to have a one-to-many relationship
between aggregates instead of a one-to-one. In this case, it is not
possible to share aggregate IDs; instead, the aggregate on the “one
side” can store a list of the IDs of the aggregates on the “many side,”
and each aggregate on the “many side” can store the ID of the ag-
gregate on the “one side.”

Task-based UI
The design of UIs has improved greatly over the last decade. Applica-
tions are easier to use, more intuitive, and simpler to navigate than
they were before. Some examples of UI design guidelines that can
help you create such modern, user-friendly apps are the Microsoft
Inductive User Interface Guidelines and the Index of UX guidelines.

An important factor that affects the design and usability of the
UI is how the UI communicates with the rest of the application. If the
application is based on a CRUD-style architecture, this can leak
through to the UI. If the developers focus on CRUD-style operations,
this can result in a UI that looks like the one shown in the first screen
design in Figure 2 (on the left).

Sharing aggregate IDs is
common when the aggregates
exist in different bounded
contexts. If you have aggre-
gates in different bounded
contexts that model different
facets of the same real-world
entity, it makes sense for them
to share the same ID. This
makes it easier to follow a
real-world entity as different
bounded contexts in your
system process it.
—Greg Young - Conversation
with the patterns & practices
team

Figure 2
Example UIs for conference registration

On the first screen, the labels on the buttons reflect the underlying
CRUD operations that the system will perform when the user clicks
the Submit button, rather than displaying more user-focused action
words. Unfortunately, the first screen also requires the user to apply
some deductive knowledge about how the screen and the application
function. For example, the function of the Add button is not imme-
diately apparent.

http://msdn.microsoft.com/en-us/library/ms997506.aspx
http://msdn.microsoft.com/en-us/library/ms997506.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

100 Journey five

A typical implementation behind the first screen will use a data transfer object (DTO) to exchange
data between the back end and the UI. The UI will request data from the back end that will arrive
encapsulated in a DTO, it will modify the data in the DTO, and then return the DTO to the back end.
The back end will use the DTO to figure out what CRUD operations it must perform on the underly-
ing data store.

The second screen is more explicit about what is happening in terms of the business process: the
user is selecting quantities of seat types as a part of the conference registration task. Thinking about
the UI in terms of the task that the user is performing makes it easier to relate the UI to the write
model in your implementation of the CQRS pattern. The UI can send commands to the write side,
and those commands are a part of the domain model on the write side. In a bounded context that
implements the CQRS pattern, the UI typically queries the read side and receives a DTO, and sends
commands to the write side.

Figure 3
Task-based UI flow

 101Preparing for the V1 Release

Figure 3 shows a sequence of pages that enable the registrant to
complete the “purchase seats at a conference” task. On the first page,
the registrant selects the type and quantity of seats. On the second
page, the registrant can review the seats she has reserved, enter her
contact details, and complete the necessary payment information.
The system then redirects the registrant to a payment provider, and
if the payment completes successfully, the system displays the third
page. The third page shows a summary of the order and provides a link
to pages where the registrant can start additional tasks.

The sequence shown in Figure 3 is deliberately simplified in order
to highlight the roles of the commands and queries in a task-based UI.
For example, the real flow includes pages that the system will display
based on the payment type selected by the registrant, and error
pages that the system displays if the payment fails.

For more information, see Chapter 4, “A CQRS and ES Deep
Dive” in the Reference Guide.

CRUD
You should not use the CQRS pattern as part of your top-level archi-
tecture; you should implement the pattern only in those bounded
contexts where it brings clear benefits. In the Contoso Conference
Management System, the Conference Management bounded context
is a relatively simple, stable, and low-volume part of the overall system.
Therefore, the team decided that we would implement this bounded
context using a traditional two-tier, CRUD-style architecture.

For a discussion about when CRUD-style architecture is, or is not,
appropriate see the blog post, Why CRUD might be what they want,
but may not be what they need.

Integration between bounded contexts
The Conference Management bounded context needs to integrate
with the Orders and Registrations bounded context. For example, if
the business customer changes the quota for a seat type in the Con-
ference Management bounded context, this change must be propa-
gated to the Orders and Registrations bounded context. Also, if a
registrant adds a new attendee to a conference, the Business Cus-
tomer must be able to view details of the attendee in the list in the
conference management website.

I would like to state once and
for all that CQRS does not
require a task-based UI. We
could apply CQRS to a CRUD
based interface (though things
like creating separated data
models would be much
harder).
There is, however, one thing
that does really require a task
based UI. That is domain-
driven design.
—Greg Young, CQRS, Task
Based UIs, Event Sourcing
agh!.

You don’t always need to
use task-based UIs. In some
scenarios, simple CRUD-
style UIs work well. You
must evaluate whether the
benefits of task-based UIs
outweigh the additional
implementation effort
required. Very often, the
bounded contexts where
you choose to implement
the CQRS pattern are also
the bounded contexts that
benefit from task-based
UIs because of the more
complex business logic
and more complex user
interactions.

http://codebetter.com/iancooper/2011/07/15/why-crud-might-be-what-they-want-but-may-not-be-what-they-need/
http://codebetter.com/iancooper/2011/07/15/why-crud-might-be-what-they-want-but-may-not-be-what-they-need/
http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/
http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/
http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/

102 Journey five

Pushing changes from the Conference Management bounded context

The following conversation between several developers and the domain expert highlights some of
the key issues that the team needed to address in planning how to implement this integration.

Developer 1: I want to talk about how we should implement two pieces of the integration story
associated with our CRUD-style, Conference Management bounded context. First of all, when a
business customer creates a new conference or defines new seat types for an existing confer-
ence in this bounded context, other bounded contexts such as the Orders and Registrations
bounded context will need to know about the change. Secondly, when a business customer
changes the quota for a seat type, other bounded contexts will need to know about this change
as well.

Developer 2: So in both cases you are pushing changes from the Conference Management
bounded context. It’s one way.

Developer 1: Correct.

Developer 2: What are the significant differences between the scenarios you outlined?

Developer 1: In the first scenario, these changes are relatively infrequent and typically happen
when the business customer creates the conference. Also, these are append-only changes. We
don’t allow a business customer to delete a conference or a seat type after the conference has
been published for the first time. In the second scenario, the changes might be more frequent
and a business customer might increase or decrease a seat quota.

Developer 2: What implementation approaches are you considering for these integration sce-
narios?

Developer 1: Because we have a two-tier CRUD-style bounded context, for the first scenario
I was planning to expose the conference and seat-type information directly from the database
as a simple read-only service. For the second scenario, I was planning to publish events whenever
the business customer updates the seat quotas.

Developer 2: Why use two different approaches here? It would be simpler to use a single ap-
proach. Using events is more flexible in the long run. If additional bounded contexts need this
information, they can easily subscribe to the event. Using events provides for less coupling be-
tween the bounded contexts.

Developer 1: I can see that it would be easier to adapt to changing requirements in the future
if we used events. For example, if a new bounded context required information about who
changed the quota, we could add this information to the event. For existing bounded contexts,
we could add an adapter that converted the new event format to the old.

Developer 2: You implied that the events that notify subscribers of quota changes would send
the change that was made to the quota. For example, let’s say the business customer increased
a seat quota by 50. What happens if a subscriber wasn’t there at the beginning and therefore
doesn’t receive the full history of updates?

 103Preparing for the V1 Release

Developer 1: We may have to include some synchronization mechanism that uses snapshots of
the current state. However, in this case the event could simply report the new value of the quo-
ta. If necessary, the event could report both the delta and the absolute value of the seat quota.

Developer 2: How are you going to ensure consistency? You need to guarantee that your
bounded context persists its data to storage and publishes the events on a message queue.

Developer 1: We can wrap the database write and add-to-queue operations in a transaction.

Developer 2: There are two reasons that’s going to be problematic later when the size of the
network increases, response times get longer, and the probability of failure increases. First, our
infrastructure uses the Windows Azure Service Bus for messages. You can’t use a single transac-
tion to combine the sending of a message on the Service Bus and a write to a database. Second,
we’re trying to avoid two-phase commits because they always cause problems in the long run.

Domain Expert: We have a similar scenario with another bounded context that we’ll be looking
at later. In this case, we can’t make any changes to the bounded context; we no longer have an
up-to-date copy of the source code.

Developer 1: What can we do to avoid using a two-phase commit? And what can we do if we
don’t have access to the source code and thus can’t make any changes?

Developer 2: In both cases, we use the same technique to solve the problem. Instead of publish-
ing the events from within the application code, we can use another process that monitors the
database and sends the events when it detects a change in the database. This solution may in-
troduce a small amount of latency, but it does avoid the need for a two-phase commit and you
can implement it without making any changes to the application code.

Another issue concerns when and where to persist integration events.
In the example discussed above, the Conference Management bound-
ed context publishes the events and the Orders and Registrations
bounded context handles them and uses them to populate its read
model. If a failure occurs that causes the system to lose the read-
model data, then without saving the events there is no way to recre-
ate that read-model data.

Whether you need to persist these integration events will de-
pend on the specific requirements and implementation of your ap-
plication. For example:

•	 The write side may handle the integration instead of the read
side, as in the current example. The events will then result in
changes on the write side that are persisted as other events.

•	 Integration events may represent transient data that does
not need to be persisted.

•	 Integration events from a CRUD-style bounded context may
contain state data so that only the last event is needed. For
example if the event from the Conference Management
bounded context includes the current seat quota, you may
not be interested in previous values.

Another approach to consider
is to use an event store that
many bounded contexts share.
In this way, the originating
bounded context (for example
the CRUD-style Conference
Management bounded
context) could be responsible
for persisting the integration
events.
—Greg Young - Conversation
with the patterns & practices
team.

104 Journey five

Some comments on Windows Azure Service Bus
The previous discussion suggested a way to avoid using a distributed two-phase commit in the Con-
ference Management bounded context. However, there are alternative approaches.

Although the Windows Azure Service Bus does not support distributed transactions that com-
bine an operation on the bus with an operation on a database, you can use the RequiresDuplicate-
Detection property when you send messages, and the PeekLock mode when you receive messages
to create the desired level of robustness without using a distributed transaction.

As an alternative, you can use a distributed transaction to update the database and send a message
using a local Microsoft message queuing (MSMQ) queue. You can then use a bridge to connect the
MSMQ queue to a Windows Azure Service Bus queue.

For an example of implementing a bridge from MSMQ to Windows Azure Service Bus, see the
sample in the Windows Azure AppFabric SDK.

For more information about the Windows Azure Service Bus, see Chapter 7, “Technologies Used
in the Reference Implementation” in the Reference Guide.

Pushing changes to the Conference Management bounded context
Pushing information about completed orders and registrations from the Orders and Registrations
bounded context to the Conference Management bounded context raised a different set of issues.

The Orders and Registrations bounded context typically raises many of the following events
during the creation of an order: OrderPlaced, OrderRegistrantAssigned, OrderTotalsCalculated,
OrderPaymentConfirmed, SeatAssignmentsCreated, SeatAssignmentUpdated, SeatAssigned, and
SeatUnassigned. The bounded context uses these events to communicate between aggregates and
for event sourcing.

For the Conference Management bounded context to capture the information it requires to
display details about registrations and attendees, it must handle all of these events. It can use the in-
formation that these events contain to create a denormalized SQL table of the data, which the busi-
ness customer can then view in the UI.

The issue with this approach is that the Conference Management bounded context needs to
understand a complex set of events from another bounded context. It is a brittle solution because a
change in the Orders and Registrations bounded context may break this feature in the Conference
Management bounded context.

Contoso plans to keep this solution for the V1 release of the system, but will evaluate alternatives
during the next stage of the journey. These alternative approaches will include:
•	 Modifying the Orders and Registrations bounded context to generate more useful events

designed explicitly for integration.
•	 Generating the denormalized data in the Orders and Registrations bounded context and

notifying the Conference Management bounded context when the data is ready. The Confer-
ence Management bounded context can then request the information through a service call.

Note: To see how the current approach works, look at the OrderEventHandler class in the
Conference project.

http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=27421

 105Preparing for the V1 Release

Choosing when to update the read-side data
In the Conference Management bounded context, the business cus-
tomer can change the description of a seat type. This results in a
SeatUpdated event that the ConferenceViewModelGenerator class
in the Orders and Registrations bounded context handles; this class
updates the read-model data to reflect the new information about the
seat type. The UI displays the new seat description when a registrant
is making an order.

However, if a registrant views a previously created order (for ex-
ample to assign attendees to seats), the registrant sees the original
seat description.

Distributed transactions and event sourcing
The previous section that discussed the integration options for the
Conference Management bounded context raised the issue of using a
distributed, two-phase commit transaction to ensure consistency
between the database that stores the conference management data
and the messaging infrastructure that publishes changes to other
bounded contexts.

The same problem arises when you implement event sourcing:
you must ensure consistency between the event store in the bounded
context that stores all the events and the messaging infrastructure
that publishes those events to other bounded contexts.

A key feature of an event store implementation should be that it
offers a way to guarantee consistency between the events that it
stores and the events that the bounded context publishes to other
bounded contexts.

Autonomy versus authority
The Orders and Registrations bounded context is responsible for
creating and managing orders on behalf of registrants. The Payments
bounded context is responsible for managing the interaction with an
external payments system so that registrants can pay for the seats
that they have ordered.

When the team was examining the domain models for these two
bounded contexts, it discovered that neither context knew anything
about pricing. The Orders and Registrations bounded context created
an order that listed the quantities of the different seat types that the
registrant requested. The Payments bounded context simply passed a
total to the external payments system. At some point, the system
needed to calculate the total from the order before invoking the pay-
ment process.

If we did want to update
the seat description on
existing orders, we would
need to modify the
PricedOrderViewModel-
Generator class to handle
the SeatUpdated event and
adjust its view model.

This is a deliberate business
decision; we don’t want
to confuse registrants
by changing the seat
description after they
create an order.

This is a key challenge you should address if you decide to implement an event store yourself.
If you are designing a scalable event store that you plan to deploy in a distributed environment
such as Windows Azure, you must be very careful to ensure that you meet this requirement.

106 Journey five

The team considered two different approaches to solve this prob-
lem: favoring autonomy and favoring authority.

Favoring autonomy
The autonomous approach assigns the responsibility for calculating
the order total to the Orders and Registrations bounded context. The
Orders and Registrations bounded context is not dependent on an-
other bounded context when it needs to perform the calculation
because it already has the necessary data. At some point in the past,
it will have collected the pricing information it needs from other
bounded contexts (such as the Conference Management bounded
context) and cached it.

The advantage of this approach is that the Orders and Registra-
tions bounded context is autonomous. It doesn’t rely on the avail-
ability of another bounded context or service.

The disadvantage is that the pricing information could be out of
date. The business customer might have changed the pricing informa-
tion in the Conference Management bounded context, but that
change might not yet have reached the Orders and Registrations
bounded context.

Favoring authority
In this approach, the part of the system that calculates the order total
obtains the pricing information from the bounded contexts (such as
the Conference Management bounded context) at the point in time
that it performs the calculation. The Orders and Registrations bound-
ed context could still perform the calculation, or it could delegate the
calculation to another bounded context or service within the system.

The advantage of this approach is that the system always uses the
latest pricing information whenever it is calculating an order total.

The disadvantage is that the Orders and Registrations bounded
context is dependent on another bounded context when it needs to
determine the total for the order. It either needs to query the Confer-
ence Management bounded context for the up-to-date pricing infor-
mation, or call another service that performs the calculation.

Choosing between autonomy and authority
The choice between the two alternatives is a business decision. The
specific business requirements of your scenario should determine
which approach to take. Autonomy is often the preference for large,
online systems.

This choice may change
depending on the state
of your system. Consider
an overbooking scenario.
The autonomy strategy
may optimize for the
normal case when lots
of conference seats are
still available, but as a
particular conference fills
up, the system may need to
become more conservative
and favor authority, using
the latest information on
seat availability.

 107Preparing for the V1 Release

The way that the conference management system calculates the
total for an order represents an example of choosing autonomy over
authority.

The section “Calculating totals” below describes how the system
performs this calculation.

Approaches to implementing the read side
In the discussions of the read side in the previous chapters, you saw
how the team used a SQL-based store for the denormalized projec-
tions of the data from the write side.

You can use other storage mechanisms for the read-model data;
for example, you can use the file system or Windows Azure table or
blob storage. In the Orders and Registrations bounded context, the
system uses Windows Azure blobs to store information about the
seat assignments.

Note: See the SeatAssignmentsViewModelGenerator class to
understand how the data is persisted to blob storage and the
SeatAssignmentsDao class to understand how the UI retrieves
the data for display.

Eventual consistency
During testing, the team discovered a scenario in which the regis-
trant might see evidence of eventual consistency in action. If the
registrant assigns attendees to seats on an order and then quickly
navigates to view the assignments, then sometimes this view shows
only some of the updates. However, refreshing the page displays the
correct information. This happens because it takes time for the
events that record the seat assignments to propagate to the read
model, and sometimes the tester viewed the information queried
from the read model too soon.

When you are choosing
the underlying storage
mechanism for the read
side, you should consider
the costs associated with
the storage (especially in
the cloud) in addition to the
requirement that the read-
side data should be easy and
efficient to access using the
queries on the read side.

For Contoso, the clear
choice is autonomy.
It’s a serious problem if
registrants can’t purchase
seats because some other
bounded context is down.
However, we don’t really
care if there’s a short lag
between the business
customer modifying
the pricing information,
and that new pricing
information being used to
calculate order totals.

108 Journey five

The team decided to add a note to the view page warning users
about this possibility, although a production system is likely to update
the read model faster than a debug version of the application running
locally.

Implementation details
This section describes some of the significant features of the imple-
mentation of the Orders and Registrations bounded context. You may
find it useful to have a copy of the code so you can follow along. You
can download a copy from the Download center, or check the evolu-
tion of the code in the repository on GitHub: https://github.com/
mspnp/cqrs-journey-code. You can download the code from the V1
release from the Tags page on GitHub.

Note: Do not expect the code samples to match exactly the code
in the reference implementation. This chapter describes a step in
the CQRS journey, the implementation may well change as we
learn more and refactor the code.

The Conference Management bounded
context
The Conference Management bounded context that enables a busi-
ness customer to define and manage conferences is a simple two-tier,
CRUD-style application that uses ASP.NET MVC 4.

In the Visual Studio solution, the Conference project contains
the model code, and the Conference.Web project contains the MVC
views and controllers.

Integration with the Orders and Registration bounded context
The Conference Management bounded context pushes notifications
of changes to conferences by publishing the following events.
•	 ConferenceCreated. Published whenever a business customer

creates a new conference.
•	 ConferenceUpdated. Published whenever a business customer

updates an existing conference.
•	 ConferencePublished. Published whenever a business cus-

tomer publishes a conference.
•	 ConferenceUnpublished. Published whenever a business

customer unpublishes a new conference.
•	 SeatCreated. Published whenever a business customer defines a

new seat type.
•	 SeatsAdded. Published whenever a business customer increases

the quota of a seat type.
The ConferenceService class in the Conference project publishes
these events to the event bus.

So long as the registrant
knows that the changes
have been persisted, and
that what the UI displays
could be a few seconds out
of date, they are not going
to be concerned.

http://go.microsoft.com/fwlink/p/?LinkID=258548
https://github.com/mspnp/cqrs-journey-code
https://github.com/mspnp/cqrs-journey-code
https://github.com/mspnp/cqrs-journey-code/tags

 109Preparing for the V1 Release

The Payments bounded context
The Payments bounded context is responsible for handling the inter-
action with the external systems that validate and process payments.
In the V1 release, payments can be processed either by a fake, exter-
nal, third-party payment processor (that mimics the behavior of sys-
tems such as PayPal) or by an invoicing system. The external systems
can report either that a payment was successful or that it failed.

The sequence diagram in Figure 4 illustrates how the key ele-
ments that are involved in the payment process interact with each
other. The diagram is shows a simplified view, ignoring the handler
classes to better describe the process.

Figure 4
Overview of the payment process

At the moment, there is no distributed transaction to
wrap the database update and the message publishing.

110 Journey five

Figure 4 shows how the Orders and Registrations bounded context, the Payments bounded con-
text, and the external payments service all interact with each other. In the future, registrants will also
be able to pay by invoice instead of using a third-party payment processing service.

The registrant makes a payment as a part of the overall flow in the UI, as shown in Figure 3. The
PaymentController controller class does not display a view unless it has to wait for the system to
create the ThirdPartyProcessorPayment aggregate instance. Its role is to forward payment informa-
tion collected from the registrant to the third-party payment processor.

Typically, when you implement the CQRS pattern, you use events as the mechanism for commu-
nicating between bounded contexts. However, in this case, the RegistrationController and Payment-
Controller controller classes send commands to the Payments bounded context. The Payments
bounded context does use events to communicate with the RegistrationProcessManager instance in
the Orders and Registrations bounded context.

The implementation of the Payments bounded context implements the CQRS pattern without
event sourcing.

The write-side model contains an aggregate called ThirdPartyProcessorPayment that consists
of two classes: ThirdPartyProcessorPayment and ThirdPartyProcessorPaymentItem. Instances of
these classes are persisted to a SQL Database instance by using Entity Framework. The PaymentsDb-
Context class implements an Entity Framework context.

The ThirdPartyProcessorPaymentCommandHandler implements a command handler for the
write side.

The read-side model is also implemented using Entity Framework. The PaymentDao class ex-
poses the payment data on the read side. For an example, see the GetThirdPartyProcessorPayment-
Details method.

 111Preparing for the V1 Release

Figure 5 illustrates the different parts that make up the read side and the write side of the Pay-
ments bounded context.

Figure 5
The read side and the write side in the Payments bounded context

Integration with online payment services, eventual consistency, and command validation
Typically, online payment services offer two levels of integration with your site:
•	 The simple approach, for which you don’t need a merchant account with the payments pro-

vider, works through a simple redirect mechanism. You redirect your customer to the payment
service. The payment service takes the payment, and then redirects the customer back to a
page on your site along with an acknowledgement code.

•	 The more sophisticated approach, for which you do need a merchant account, is based on an
API. It typically executes in two steps. First, the payment service verifies that your customer
can pay the required amount, and sends you a token. Second, you can use the token within a
fixed time to complete the payment by sending the token back to the payment service.

112 Journey five

Contoso assumes that its business customers do not have a mer-
chant account and must use the simple approach. One consequence
of this is that a seat reservation could expire while the customer is
completing the payment. If this happens, the system tries to re-ac-
quire the seats after the customer makes the payment. In the event
that the seats cannot be re-acquired, the system notifies the business
customer of the problem and the business customer must resolve the
situation manually.

Note: The system allows a little extra time over and above the
time shown in the countdown clock to allow payment processing
to complete.

This specific scenario, in which the system cannot make itself fully
consistent without a manual intervention by a user (in this case the
business owner, who must initiate a refund or override the seat quota)
illustrates the following more general point in relation to eventual
consistency and command validation.

A key benefit of embracing eventual consistency is to remove the
requirement for using distributed transactions, which have a signifi-
cant, negative impact on the scalability and performance of large
systems because of the number and duration of locks they must hold
in the system. In this specific scenario, you could take steps to avoid
the potential problem of accepting payment without seats being
available in two ways:
•	 Change the system to re-check the seat availability just before

completing the payment. This is not possible because of the
way that the integration with the payments system works
without a merchant account.

•	 Keep the seats reserved (locked) until the payment is complete.
This is difficult because you do not know how long the pay-
ment process will take; you must reserve (lock) the seats for an
indeterminate period while you wait for the registrant to
complete the payment.

The team chose to allow for the possibility that a registrant could pay
for seats only to find that they are no longer available; in addition to
being very unlikely in practice because a timeout would have to occur
while a registrant is paying for the very last seats, this approach has
the smallest impact on the system because it doesn’t require a long-
term reservation (lock) on any seats.

In more general terms, you could restate the two options above
as:
•	 Validate commands just before they execute to try to ensure

that the command will succeed.
•	 Lock all the resources until the command completes.

To minimize further the
chance of this scenario
occurring, the team decided
to increase the buffer
time for releasing reserved
seats from five minutes
to fourteen minutes.
The original value of five
minutes was chosen to
account for any possible
clock skew between the
servers so that reservations
were not released before
the fifteen-minute
countdown timer in the UI
expired.

 113Preparing for the V1 Release

If the command only affects a single aggregate and does not
need to reference anything outside of the consistency boundary
defined by the aggregate, then there is no problem because all of the
information required to validate the command is within the aggre-
gate. This is not the case in the current scenario; if you could validate
whether the seats were still available just before you made the pay-
ment, this check would involve checking information from outside
the current aggregate.

If, in order to validate the command you need to look at data
outside of the aggregate, for example, by querying a read model or by
looking in a cache, the scalability of the system is going to be nega-
tively impacted. Also, if you are querying a read model, remember that
read models are eventually consistent. In the current scenario, you
would need to query an eventually consistent read model to check on
the seats availability.

If you decide to lock all of the relevant resources until the com-
mand completes, be aware of the impact this will have on the scal-
ability of your system.

For a detailed discussion of this issue, see Q/A Greg Young’s Blog.

Event sourcing
The initial implementation of the event sourcing infrastructure is
extremely basic: the team intends to replace it with a production-
quality event store in the near future. This section describes the initial,
basic implementation and lists the various ways to improve it.

The core elements of this basic event sourcing solution are that:
•	 Whenever the state of an aggregate instance changes, the

instance raises an event that fully describes the state change.
•	 The system persists these events in an event store.
•	 An aggregate can rebuild its state by replaying its past stream of

events.
•	 Other aggregates and process managers (possibly in different

bounded contexts) can subscribe to these events.

Raising events when the state of an aggregate changes
The following two methods from the Order aggregate are examples
of methods that the OrderCommandHandler class invokes when it
receives a command for the order. Neither of these methods updates
the state of the Order aggregate; instead, they raise an event that will
be handled by the Order aggregate. In the MarkAsReserved method,
there is some minimal logic to determine which of two events to raise.

It is far better to handle such
a problem from a business
perspective than to make large
architectural constraints upon
our system.
—Greg Young.

http://goodenoughsoftware.net/2012/05/08/qa/

114 Journey five

public void MarkAsReserved(
 DateTime expirationDate,
 IEnumerable<SeatQuantity> reservedSeats)
{
 if (this.isConfirmed)
 throw new InvalidOperationException("Cannot modify a confirmed order.");

 var reserved = reservedSeats.ToList();

 // Is there an order item which didn't get an exact reservation?
 if (this.seats.Any(item =>
 !reserved.Any(seat =>
 seat.SeatType == item.SeatType && seat.Quantity == item.Quantity)))
 {
 this.Update(
 new OrderPartiallyReserved
 {
 ReservationExpiration = expirationDate,
 Seats = reserved.ToArray()
 });
 }
 else
 {
 this.Update(
 new OrderReservationCompleted
 {
 ReservationExpiration = expirationDate,
 Seats = reserved.ToArray()
 });
 }
}

public void ConfirmPayment()
{
 this.Update(new OrderPaymentConfirmed());
}

 115Preparing for the V1 Release

The abstract base class of the Order class defines the Update method. The following code sample
shows this method and the Id and Version properties in the EventSourced class.

private readonly Guid id;
private int version = -1;

protected EventSourced(Guid id)
{
 this.id = id;
}

public int Version { get { return this.version; } }

protected void Update(VersionedEvent e)
{
 e.SourceId = this.Id;
 e.Version = this.version + 1;
 this.handlers[e.GetType()].Invoke(e);
 this.version = e.Version;
 this.pendingEvents.Add(e);
}

The Update method sets the Id and increments the version of the
aggregate. It also determines which of the event handlers in the ag-
gregate it should invoke to handle the event type.

Every time the system
updates the state of an
aggregate, it increments
the version number of the
aggregate.

116 Journey five

The following code sample shows the event handler methods in the Order class that are invoked
when the command methods shown above are called.

private void OnOrderPartiallyReserved(OrderPartiallyReserved e)
{
 this.seats = e.Seats.ToList();
}

private void OnOrderReservationCompleted(OrderReservationCompleted e)
{
 this.seats = e.Seats.ToList();
}

private void OnOrderExpired(OrderExpired e)
{
}

private void OnOrderPaymentConfirmed(OrderPaymentConfirmed e)
{
 this.isConfirmed = true;
}

These methods update the state of the aggregate.
An aggregate must be able to handle both events from other aggregates and events that it raises

itself. The protected constructor in the Order class lists all the events that the Order aggregate can
handle.

protected Order()
{
 base.Handles<OrderPlaced>(this.OnOrderPlaced);
 base.Handles<OrderUpdated>(this.OnOrderUpdated);
 base.Handles<OrderPartiallyReserved>(this.OnOrderPartiallyReserved);
 base.Handles<OrderReservationCompleted>(this.OnOrderReservationCompleted);
 base.Handles<OrderExpired>(this.OnOrderExpired);
 base.Handles<OrderPaymentConfirmed>(this.OnOrderPaymentConfirmed);
 base.Handles<OrderRegistrantAssigned>(this.OnOrderRegistrantAssigned);
}

 117Preparing for the V1 Release

Persisting events to the event store
When the aggregate processes an event in the Update method in the EventSourcedAggregateRoot
class, it adds the event to a private list of pending events. This list is exposed as a public, IEnumerable
property of the abstract EventSourced class called Events.

The following code sample from the OrderCommandHandler class shows how the handler in-
vokes a method in the Order class to handle a command, and then uses a repository to persist the
current state of the Order aggregate by appending all pending events to the store.

public void Handle(MarkSeatsAsReserved command)
{
 var order = repository.Find(command.OrderId);

 if (order != null)
 {
 order.MarkAsReserved(command.Expiration, command.Seats);
 repository.Save(order);
 }
}

The following code sample shows the initial simple implementation of the Save method in the Sql-
EventSourcedRepository class.

Note: These examples refer to a SQL Server-based event store. This was the initial approach that
was later replaced with an implementation based on Windows Azure table storage. The SQL
Server-based event store remains in the solution as a convenience; you can run the application
locally and use this implementation to avoid any dependencies on Windows Azure.

public void Save(T eventSourced)
{
 // TODO: guarantee that only incremental versions of the event are stored
 var events = eventSourced.Events.ToArray();
 using (var context = this.contextFactory.Invoke())
 {
 foreach (var e in events)
 {
 using (var stream = new MemoryStream())
 {
 this.serializer.Serialize(stream, e);
 var serialized = new Event
 {
 AggregateId = e.SourceId,
 Version = e.Version,
 Payload = stream.ToArray()
 };
 context.Set<Event>().Add(serialized);
 }
 }

118 Journey five

 context.SaveChanges();
 }

 // TODO: guarantee delivery or roll back,
 // or have a way to resume after a system crash
 this.eventBus.Publish(events);
}

Replaying events to rebuild state
When a handler class loads an aggregate instance from storage, it
loads the state of the instance by replaying the stored event stream.

The following code sample from the OrderCommandHandler class shows how calling the Find
method in the repository initiates this process.

public void Handle(MarkSeatsAsReserved command)
{
 var order = repository.Find(command.OrderId);

 ...
}

We later found that using event sourcing and being able to replay
events was invaluable as a technique for analyzing bugs in the
production system running in the cloud. We could make a local copy
of the event store, then replay the event stream locally and debug the
application in Visual Studio to understand exactly what happened in
the production system.

 119Preparing for the V1 Release

The following code sample shows how the SqlEventSourcedReposi-
tory class loads the event stream associated with the aggregate.

public T Find(Guid id)
{
 using (var context = this.contextFactory.Invoke())
 {
 var deserialized = context.Set<Event>()
 .Where(x => x.AggregateId == id)
 .OrderBy(x => x.Version)
 .AsEnumerable()
 .Select(x => this.serializer.Deserialize(new MemoryStream(x.Payload)))
 .Cast<IVersionedEvent>()
 .AsCachedAnyEnumerable();

 if (deserialized.Any())
 {
 return entityFactory.Invoke(id, deserialized);
 }

 return null;
 }
}

The following code sample shows the constructor in the Order class that rebuilds the state of the
order from its event stream when it is invoked by the Invoke method in the previous code sample.

public Order(Guid id, IEnumerable<IVersionedEvent> history) : this(id)
{
 this.LoadFrom(history);
}

The LoadFrom method is defined in the EventSourced class, as shown in the following code sample.
For each stored event in the history, it determines the appropriate handler method to invoke in the
Order class and updates the version number of the aggregate instance.

The team later developed a simple event store
using Windows Azure tables instead of the
SqlEventSourcedRepository. The next section
describes this Windows Azure table storage-based
implementation.

120 Journey five

protected void LoadFrom(IEnumerable<IVersionedEvent> pastEvents)
{
 foreach (var e in pastEvents)
 {
 this.handlers[e.GetType()].Invoke(e);
 this.version = e.Version;
 }
}

Issues with the simple event store implementation
The simple implementation of event sourcing and an event store
outlined in the previous sections has a number of shortcomings. The
following list identifies some of these shortcomings that should be
overcome in a production-quality implementation.
•	 There is no guarantee in the Save method in the SqlEvent-

Repository class that the event is persisted to storage and
published to the messaging infrastructure. A failure could result
in an event being saved to storage but not being published.

•	 There is no check that when the system persists an event, that
it is a later event than the previous one. Potentially, events
could be stored out of sequence.

•	 There are no optimizations in place for aggregate instances that
have a large number of events in their event stream. This could
result in performance problems when replaying events.

Windows Azure table storage-based event store
The Windows Azure table storage-based event store addresses some
of the shortcomings of the simple SQL Server-based event store.
However, at this point in time, it is still not a production-quality imple-
mentation.

The team designed this implementation to guarantee that events
are both persisted to storage and published on the message bus. To
achieve this, it uses the transactional capabilities of Windows Azure
tables.

The EventStore class initially saves two copies of every event to
be persisted. One copy is the permanent record of that event, and the
other copy becomes part of a virtual queue of events that must be
published on the Windows Azure Service Bus. The following code
sample shows the Save method in the EventStore class. The prefix
“Unpublished” identifies the copy of the event that is part of the
virtual queue of unpublished events.

Windows Azure table
storage supports
transactions across records
that share the same
partition key.

 121Preparing for the V1 Release

public void Save(string partitionKey, IEnumerable<EventData> events)
{
 var context = this.tableClient.GetDataServiceContext();
 foreach (var eventData in events)
 {
 var formattedVersion = eventData.Version.ToString("D10");
 context.AddObject(
 this.tableName,
 new EventTableServiceEntity
 {
 PartitionKey = partitionKey,
 RowKey = formattedVersion,
 SourceId = eventData.SourceId,
 SourceType = eventData.SourceType,
 EventType = eventData.EventType,
 Payload = eventData.Payload
 });

 // Add a duplicate of this event to the Unpublished "queue"
 context.AddObject(
 this.tableName,
 new EventTableServiceEntity
 {
 PartitionKey = partitionKey,
 RowKey = UnpublishedRowKeyPrefix + formattedVersion,
 SourceId = eventData.SourceId,
 SourceType = eventData.SourceType,
 EventType = eventData.EventType,
 Payload = eventData.Payload
 });
 }
 try
 {
 this.eventStoreRetryPolicy.ExecuteAction(() =>
 context.SaveChanges(SaveChangesOptions.Batch));
 }
 catch (DataServiceRequestException ex)
 {
 var inner = ex.InnerException as DataServiceClientException;
 if (inner != null && inner.StatusCode == (int)HttpStatusCode.Conflict)
 {
 throw new ConcurrencyException();
 }
 throw;
 }
}

122 Journey five

Note: This code sample also illustrates how a duplicate key error is used to identify a concurrency
error.

The Save method in the repository class is shown below. This method is invoked by the event handler
classes, invokes the Save method shown in the previous code sample, and invokes the SendAsync
method of the EventStoreBusPublisher class.

public void Save(T eventSourced)
{
 var events = eventSourced.Events.ToArray();
 var serialized = events.Select(this.Serialize);

 var partitionKey = this.GetPartitionKey(eventSourced.Id);
 this.eventStore.Save(partitionKey, serialized);

 this.publisher.SendAsync(partitionKey);
}

The EventStoreBusPublisher class is responsible for reading the un-
published events for the aggregate from the virtual queue in the
Windows Azure table store, publishing the event on the Windows
Azure Service Bus, and then deleting the unpublished event from the
virtual queue.

If the system fails between publishing the event on the Win-
dows Azure Service Bus and deleting the event from the virtual
queue then, when the application restarts, the event is published a
second time. To avoid problems caused by duplicate events, the
Windows Azure Service Bus is configured to detect duplicate mes-
sages and ignore them.

Calculating totals
To ensure its autonomy, the Orders and Registrations bounded
context calculates order totals without accessing the Conference
Management bounded context. The Conference Management
bounded context is responsible for maintaining the prices of seats
for conferences.

In the case of a failure,
the system must include a
mechanism for scanning all
of the partitions in table
storage for aggregates
with unpublished events
and then publishing those
events. This process will
take some time to run, but
will only need to run when
the application restarts.

 123Preparing for the V1 Release

Whenever a business customer adds a new seat type or changes
the price of a seat, the Conference Management bounded context
raises an event. The Orders and Registrations bounded context han-
dles these events and persists the information as part of its read
model (see the ConferenceViewModelGenerator class in the refer-
ence implementation solution for details).

When the Order aggregate calculates the order total, it uses the
data provided by the read model. See the MarkAsReserved method
in the Order aggregate and the PricingService class for details.

Impact on testing

Timing issues
One of the acceptance tests verifies the behavior of the system when
a business customer creates new seat types. The key steps in the test
create a conference, create a new seat type for the conference, and
then publish the conference. This raises the corresponding sequence
of events: ConferenceCreated, SeatCreated, and Conference-
Published.

The Orders and Registrations bounded context handles these
integration events. The test determined that the Orders and Regis-
trations bounded context received these events in a different order
from the order that the Conference Management bounded context
sent them.

The Windows Azure Service Bus only offers best-effort first in
first out (FIFO), therefore, it may not deliver events in the order in
which they were sent. It is also possible in this scenario that the issue
occurs because of the different times it takes for the steps in the test
to create the messages and deliver them to the Windows Azure Ser-
vice Bus. The introduction of an artificial delay between the steps in
the test provided a temporary solution to this problem.

In the V2 release, the team plans to address the general issue of
message ordering and either modify the infrastructure to guarantee
proper ordering or make the system more robust if messages do arrive
out of order.

Involving the domain expert
In Chapter 4, “Extending and Enhancing the Orders and Registrations
Bounded Contexts,” you saw how the domain expert was involved
with designing the acceptance tests and how his involvement helped
clarify domain knowledge.

The UI also displays a
dynamically calculated total
as the registrant adds seats
to an order. The application
calculates this value using
JavaScript. When the
registrant makes a payment,
the system uses the total
that the Order aggregate
calculates.

Don’t let your passing
unit tests lull you into a
false sense of security.
There are lots of
moving parts when you
implement the CQRS
pattern. You need to
test that they all work
correctly together.

Don’t forget to create
unit tests for your read
models. A unit test
on the read-model
generator uncovered
a bug just prior to the
V1 release whereby the
system removed order
items when it updated
an order.

124 Journey five

You should also ensure that the domain expert attends bug triage meetings. He or she can help
clarify the expected behavior of the system, and during the discussion may uncover new user stories.
For example, during the triage of a bug related to unpublishing a conference in the Conference Man-
agement bounded context, the domain expert identified a requirement to allow the business cus-
tomer to add a redirect link for the unpublished conference to a new conference or alternate page.

Summary
During this stage of our journey, we completed our first pseudo-production release of the Contoso
Conference Management System. It now comprises several integrated bounded contexts, a more
polished UI, and uses event sourcing in the Orders and Registrations bounded context.

There is still more work for us to do, and the next chapter will describe the next stage in our
CQRS journey as we head towards the V2 release and address the issues associated with versioning
our system.

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://msdn.microsoft.com/en-us/library/jj619274

 125

Versioning Our System
Preparing for the next stop: upgrading and migrating

Journey 6:

“Variety is the very spice of life.”
William Cowper

The top-level goal for this stage in the journey is to learn about how to upgrade a system that includes
bounded contexts that implement the CQRS pattern and event sourcing. The user stories that the
team implemented in this stage of the journey involve both changes to the code and changes to the
data: some existing data schemas changed and new data schemas were added. In addition to upgrad-
ing the system and migrating the data, the team planned to do the upgrade and migration with no
down time for the live system running in Windows Azure.

Working definitions for this chapter
This chapter uses a number of terms, which we will define next. For more detail, and possible alterna-
tive definitions, see Chapter 4, “A CQRS and ES Deep Dive” in the Reference Guide.

Command. A command is a request for the system to perform an action that changes the state of
the system. Commands are imperatives; for example, MakeSeatReservation. In this bounded context,
commands originate from either the user interface (UI) as a result of a user initiating a request, or from
a process manager when the process manager is directing an aggregate to perform an action.

A single recipient processes a command. A command bus transports commands that command
handlers then dispatch to aggregates. Sending a command is an asynchronous operation with no re-
turn value.

Event. An event, such as OrderConfirmed, describes something that has happened in the system,
typically as a result of a command. Aggregates in the domain model raise events. Events can also come
from other bounded contexts.

Multiple subscribers can handle a specific event. Aggregates publish events to an event bus; han-
dlers register for specific types of events on the event bus and then deliver the events to the sub-
scriber. In the orders and registrations bounded context, the subscribers are a process manager and
the read model generators.

Idempotency. Idempotency is a characteristic of an operation that means the operation can be
applied multiple times without changing the result. For example, the operation “set the value x to ten”
is idempotent, while the operation “add one to the value of x” is not. In a messaging environment, a
message is idempotent if it can be delivered multiple times without changing the result: either because
of the nature of the message itself, or because of the way the system handles the message.

126 Journey six

User stories
The team implemented the following user stories during this phase of
the project.

No down time upgrade
The goal for the V2 release is to perform the upgrade, including any
necessary data migration, without any down time for the system. If
this is not feasible with the current implementation, then the down
time should be minimized, and the system should be modified to sup-
port zero down-time upgrades in the future (starting with the V3 re-
lease).

Display remaining seat quantities
Currently, when a registrant creates an order, there is no indication
of the number of seats remaining for each seat type. The UI should
display this information when the registrant is selecting seats for
purchase.

Handle zero-cost seats
Currently, when a registrant selects seats that have no cost, the UI
flow still takes the registrant to the payments page even though there
is nothing to pay. The system should detect when there is nothing to
pay and adjust the flow to take the registrant directly to the confir-
mation page for the order.

Architecture
The application is designed to deploy to Windows Azure. At this
stage in the journey, the application consists of web roles that contain
the ASP.NET MVC web applications and a worker role that contains
the message handlers and domain objects. The application uses Win-
dows Azure SQL Database (SQL Database) instances for data storage,
both on the write side and the read side. The application uses the
Windows Azure Service Bus to provide its messaging infrastructure.

Ensuring that we can
perform upgrades with
no down time is crucial
to our credibility in the
marketplace.

 127Versioning Our System

Figure 1
The top-level architecture in the V2 release

While you are exploring and testing the solution, you can run it locally, either using the Windows
Azure compute emulator or by running the MVC web application directly and running a console ap-
plication that hosts the handlers and domain objects. When you run the application locally, you can
use a local SQL Server Express database instead of SQL Database, and use a simple messaging infra-
structure implemented in a SQL Server Express database.

For more information about the options for running the application, see Appendix 1, “Release
Notes.”

Patterns and concepts
During this stage of the journey, most of the key challenges addressed by the team related to how
best to perform the migration from V1 to V2. This section describes some of those challenges.

Figure 1 shows this high-level architecture.

128 Journey six

Handling changes to events definitions
When the team examined the requirements for the V2 release, it be-
came clear that we would need to change some of the events used in
the Orders and Registrations bounded context to accommodate
some of the new features: the RegistrationProcessManager would
change and the system would provide a better user experience when
the order had a zero cost.

The Orders and Registrations bounded context uses event sourc-
ing, so after the migration to V2, the event store will contain the old
events but will start saving the new events. When the system events
are replayed, the system must operate correctly when it processes
both the old and new sets of events.

The team considered two approaches to handle this type of
change in the system.

Mapping/filtering event messages in the infrastructure
Mapping and filtering event messages in the infrastructure is one ap-
proach. This option handles old event messages and message formats
by dealing with them somewhere in the infrastructure before they
reach the domain. You can filter out old messages that are no longer
relevant and use mapping to transform old-format messages to a new
format. This approach is initially the more complex approach because
it requires changes in the infrastructure, but it has the advantage of
keeping the domain pure because the domain only needs to under-
stand the current set of events.

Handling multiple message versions in the aggregates
Handling multiple message versions in the aggregates is another alter-
native; in this approach all the message types (both old and new) are
passed through to the domain where each aggregate must be able to
handle both the old and new messages. This may be an appropriate
strategy in the short term, but it will eventually cause the domain
model to become polluted with legacy event handlers.

The team selected this option for the V2 release because it in-
volved the minimum number of code changes.

Honoring message idempotency
One of the key issues to address in the V2 release is to make the
system more robust. In the V1 release, in some scenarios it is possible
that some messages might be processed more than once, resulting in
incorrect or inconsistent data in the system.

Dealing with both old
and new events in the
aggregates now does
not prevent you from
later employing the first
option: using a mapping/
filtering mechanism in the
infrastructure.

 129Versioning Our System

In some scenarios, it would be possible to design idempotent
messages; for example, by using a message that says “set the seat
quota to 500” rather than a message that says “add 100 to the seat
quota.” You could safely process the first message multiple times, but
not the second.

However, it is not always possible to use idempotent messages,
so the team decided to use the de-duplication feature of the Win-
dows Azure Service Bus to ensure that it delivers messages only once.
The team made some changes to the infrastructure to ensure that
Windows Azure Service Bus can detect duplicate messages, and
configured Windows Azure Service Bus to perform duplicate mes-
sage detection.

To understand how Contoso implemented this, see the section
“De-duplicating command messages” below. Additionally, we
needed to consider how the message handlers in the system retrieve
messages from queues and topics. The current approach uses the
Windows Azure Service Bus peek/lock mechanism. This is a three-
stage process:

1.	 The handler retrieves a message from the queue or topic and
leaves a locked copy of the message there. Other clients
cannot see or access locked messages.

2.	 The handler processes the message.
3.	 The handler deletes the locked message from the queue. If a

locked message is not unlocked or deleted after a fixed time,
the message is unlocked and made available so that it can be
retrieved again.

If step 3 fails for some reason, this means that the system can process
the message more than once.

Avoid processing events multiple times
In V1, in certain scenarios it was possible for the system to process an
event multiple times if an error occurred while the event was being
processed. To avoid this scenario, the team modified the architecture
so that every event handler has its own subscription to a Windows
Azure topic. Figure 2 shows the two different models.

Message idempotency
is important in any
system that uses
messaging, not just in
systems that implement
the CQRS pattern or
use event sourcing.

The team plans to
address this issue in
the next stage of the
journey. See Chapter
7, “Adding Resilience
and Optimizing
Performance” for
more information.

130 Journey six

Figure 2
Using one subscription per event handler

In V1, the following behavior could occur:
1.	 The EventProcessor instance receives an OrderPlaced event from the all subscription in the

service bus.
2.	 The EventProcessor instance has two registered handlers, the RegistrationProcessManager-

Router and OrderViewModelGenerator handler classes, so it invokes the Handle method
on each of them.

3.	 The Handle method in the OrderViewModelGenerator class executes successfully.
4.	 The Handle method in the RegistrationProcessManagerRouter class throws an exception.

 131Versioning Our System

5.	 The EventProcessor instance catches the exception and abandons the event message. The
message is automatically put back into the subscription.

6.	 The EventProcessor instance receives the OrderPlaced event from the all subscription for a
second time.

7.	 It invokes the two Handle methods, causing the RegistrationProcessManagerRouter class
to retry the message and the OrderViewModelGenerator class to process the message a
second time.

8.	 Every time the RegistrationProcessManagerRouter class throws an exception, the Order-
ViewModelGenerator class processes the event.

In the V2 model, if a handler class throws an exception, the EventProcessor instance puts the event
message back on the subscription associated with that handler class. The retry logic now only causes
the EventProcessor instance to retry the handler that raised the exception, so no other handlers re-
process the message.

Persisting integration events
One of the concerns raised with the V1 release centered around the way the system persists the in-
tegration events that are sent from the Conference Management bounded context to the Orders and
Registrations bounded context. These events include information about conference creation and
publishing, and details of seat types and quota changes.

In the V1 release, the ConferenceViewModelGenerator class in the Orders and Registrations
bounded context handles these events by updating its view model and sending commands to the
SeatsAvailability aggregate to tell it to change its seat quota values.

This approach means that the Orders and Registrations bounded context is not storing any his-
tory, which could cause problems. For example, other views look up seat type descriptions from this
projection, which contains only the latest value of the seat type description. As a result, replaying a
set of events elsewhere may regenerate another read-model projection that contains incorrect seat
type descriptions.

The team considered the following five options to rectify the situation:
•	 Save all of the events in the originating bounded context (the Conference Management

bounded context) and use a shared event store that the Orders and Registrations bounded
context can access to replay these events. The receiving bounded context could replay the
event stream up to a point in time when it needed to see what the seat type description was
previously.

•	 Save all of the events as soon as they arrive in the receiving bounded context (the Orders
and Registrations bounded context).

•	 Let the command handler in the view-model generator save the events, selecting only those
that it needs.

•	 Let the command handler in the view-model generator save different events, in effect using
event sourcing for this view model.

•	 Store all command and event messages from all bounded contexts in a message log.

132 Journey six

The first option is not always viable. In this particular case it
would work because the same team is implementing both bounded
contexts and the infrastructure, making it easy to use a shared event
store.

A possible risk with the third option is that the set of events that
are needed may change in the future. If we don’t save events now,
they are lost for good.

Although the fifth option stores all the commands and events,
some of which you might never need to refer to again, it does provide
a complete log of everything that happens in the system. This could
be useful for troubleshooting, and also helps you to meet require-
ments that have not yet been identified. The team chose this option
over option two because it offers a more general-purpose mechanism
that may have future benefits.

The purpose of persisting the events is to enable them to be
played back when the Orders and Registrations bounded context
needs the information about current seat quotas in order to calculate
the number of remaining seats. To calculate these numbers consis-
tently, you must always play the events back in the same order. There
are several choices for this ordering:
•	 The order in which the events were sent by the Conference

Management bounded context.
•	 The order in which the events were received by the Orders and

Registrations bounded context.
•	 The order in which the events were processed by the Orders

and Registrations bounded context.
Most of the time these orderings will be the same. There is no correct
order; you just need to choose one to be consistent. Therefore, the
choice is determined by simplicity. In this case, the simplest approach
is to persist the events in the order that the handler in the Orders and
Registrations bounded context receives them (the second option).

There is a similar issue with saving timestamps for these events.
Timestamps may be useful in the future if there is a requirement to
look at the number of remaining seats at a particular time. The choice
here is whether you should create a timestamp when the event is cre-
ated in the Conference Management bounded context or when it is
received by the Orders and Registrations bounded context. It’s pos-
sible that the Orders and Registrations bounded context is offline for
some reason when the Conference Management bounded context
creates an event; therefore, the team decided to create the timestamp
when the Conference Management bounded context publishes the
event.

This choice does not
typically arise with event
sourcing. Each aggregate
creates events in a fixed
order, and that is the order
that the system uses to
persist the events. In this
scenario, the integration
events are not created by a
single aggregate.

Although from a purist’s
perspective the first
option breaks the strict
isolation between bounded
contexts, in some scenarios
it may be an acceptable and
pragmatic solution.

 133Versioning Our System

Message ordering
The acceptance tests that the team created and ran to verify the V1
release highlighted a potential issue with message ordering: the ac-
ceptance tests that exercised the Conference Management bounded
context sent a sequence of commands to the Orders and Registra-
tions bounded context that sometimes arrived out of order.

The team considered two alternatives for ensuring that messages
arrive in the correct order.
•	 The first option is to use message sessions, a feature of the

Windows Azure Service Bus. If you use message sessions, this
guarantees that messages within a session are delivered in the
same order that they were sent.

•	 The second alternative is to modify the handlers within the
application to detect out-of-order messages through the use of
sequence numbers or timestamps added to the messages when
they are sent. If the receiving handler detects an out-of-order
message, it rejects the message and puts it back onto the queue
or topic to be processed later, after it has processed the mes-
sages that were sent before the rejected message.

The preferred solution in this case is to use Windows Azure Service
Bus message sessions because this requires fewer changes to the ex-
isting code. Both approaches would introduce some additional la-
tency into the message delivery, but the team does not anticipate that
this will have a significant effect on the performance of the system.

Implementation details
This section describes some of the significant features of the imple-
mentation of the Orders and Registrations bounded context. You
may find it useful to have a copy of the code so you can follow along.
You can download a copy from the Download center, or check the
evolution of the code in the repository on GitHub: https://github.com/
mspnp/cqrs-journey-code. You can download the code from the V2
release from the Tags page on GitHub.

Note: Do not expect the code samples to exactly match the code
in the reference implementation. This chapter describes a step in
the CQRS journey; the implementation may well change as we
learn more and refactor the code.

This effect was not noticed
when a human user tested
this part of the system
because the time delay
between the times that the
commands were sent was
much greater, making it less
likely that the messages
would arrive out of order.

http://go.microsoft.com/fwlink/p/?LinkID=258548
https://github.com/mspnp/cqrs-journey-code
https://github.com/mspnp/cqrs-journey-code
https://github.com/mspnp/cqrs-journey-code/tags

134 Journey six

Adding support for zero-cost orders
There were three specific goals in making this change, all of which are
related. We wanted to:
•	 Modify the RegistrationProcessManager class and related

aggregates to handle orders with a zero cost.
•	 Modify the navigation in the UI to skip the payment step when

the total cost of the order is zero.
•	 Ensure that the system functions correctly after the upgrade to

V2 with the old events as well as the new.

Changes to the RegistrationProcessManager class
Previously, the RegistrationProcessManager class sent a Confirm-
OrderPayment command after it received notification from the UI
that the registrant had completed the payment. Now, if there is a zero-
cost order, the UI sends a ConfirmOrder command directly to the
Order aggregate. If the order requires a payment, the Registration-
ProcessManager class sends a ConfirmOrder command to the Order
aggregate after it receives notification of a successful payment from
the UI.

When the Order aggregate receives the ConfirmOrder com-
mand, it raises an OrderConfirmed event. In addition to being per-
sisted, this event is also handled by the following objects:
•	 The OrderViewModelGenerator class, where it updates the

state of the order in the read model.
•	 The SeatAssignments aggregate, where it initializes a new

SeatAssignments instance.
•	 The RegistrationProcessManager class, where it triggers a

command to commit the seat reservation.

Changes to the UI
The main change in the UI is in the RegistrationController MVC
controller class in the SpecifyRegistrantAndPaymentDetails action.
Previously, this action method returned an InitiateRegistrationWith-
ThirdPartyProcessorPayment action result; now, if the new Is-
FreeOfCharge property of the Order object is true, it returns a
CompleteRegistrationWithoutPayment action result. Otherwise, it
returns a CompleteRegistrationWithThirdPartyProcessorPayment
action result.

Notice that the name of the
command has changed from
ConfirmOrderPayment
to ConfirmOrder. This
reflects the fact that the
order doesn’t need to
know anything about the
payment; all it needs to
know is that the order is
confirmed. Similarly, there
is a new OrderConfirmed
event that is now used
in place of the old
OrderPaymentConfirmed
event.

 135Versioning Our System

[HttpPost]
public ActionResult SpecifyRegistrantAndPaymentDetails(
 AssignRegistrantDetails command,
 string paymentType,
 int orderVersion)
{
 ...

 var pricedOrder = this.orderDao.FindPricedOrder(orderId);
 if (pricedOrder.IsFreeOfCharge)
 {
 return CompleteRegistrationWithoutPayment(command, orderId);
 }

 switch (paymentType)
 {
 case ThirdPartyProcessorPayment:

 return CompleteRegistrationWithThirdPartyProcessorPayment(
 command,
 pricedOrder,
 orderVersion);

 case InvoicePayment:
 break;

 default:
 break;
 }

 ...
}

The CompleteRegistrationWithThirdPartyProcessorPayment redirects the user to the ThirdParty-
ProcessorPayment action and the CompleteRegistrationWithoutPayment method redirects the
user directly to the ThankYou action.

136 Journey six

Data migration
The Conference Management bounded context stores order infor-
mation from the Orders and Registrations bounded context in the
PricedOrders table in its Windows Azure SQL Database instance.
Previously, the Conference Management bounded context received
the OrderPaymentConfirmed event; now it receives the Order-
Confirmed event that contains an additional IsFreeOfCharge prop-
erty. This becomes a new column in the database.

During the migration, any in-flight ConfirmOrderPayment com-
mands could be lost because they are no longer handled by the Order
aggregate. You should verify that none of these commands are cur-
rently on the command bus.

The system persists the state of RegistrationProcessManager
class instances to a SQL Database table. There are no changes to the
schema of this table. The only change you will see after the migration
is an additional value in the StateValue column. This reflects the ad-
ditional PaymentConfirmationReceived value in the ProcessState
enumeration in the RegistrationProcessManager class, as shown in
the following code sample:

public enum ProcessState
{
 NotStarted = 0,
 AwaitingReservationConfirmation = 1,
 ReservationConfirmationReceived = 2,
 PaymentConfirmationReceived = 3,
}

In the V1 release, the events that the event sourcing system persisted
for the Order aggregate included the OrderPaymentConfirmed
event. Therefore, the event store contains instances of this event
type. In the V2 release, the OrderPaymentConfirmed event is re-
placed with the OrderConfirmed event.

The team decided for the V2 release not to introduce mapping
and filtering events at the infrastructure level when events are dese-
rialized. This means that the handlers must understand both the old
and new events when the system replays these events from the event
store. The following code sample shows this in the SeatAssignments-
Handler class:

We didn’t need to modify
the existing data in this
table during the migration
because the default value
for a Boolean is false. All
of the existing entries were
created before the system
supported zero-cost orders.

We need to plan
carefully how to deploy
the V2 release so that
we can be sure that all
the existing, in-flight
ConfirmOrderPayment
commands are processed
by a worker role instance
running the V1 release.

 137Versioning Our System

static SeatAssignmentsHandler()
{
 Mapper.CreateMap<OrderPaymentConfirmed, OrderConfirmed>();
}

public SeatAssignmentsHandler(
 IEventSourcedRepository<Order> ordersRepo,
 IEventSourcedRepository<SeatAssignments> assignmentsRepo)
{
 this.ordersRepo = ordersRepo;
 this.assignmentsRepo = assignmentsRepo;
}

public void Handle(OrderPaymentConfirmed @event)
{
 this.Handle(Mapper.Map<OrderConfirmed>(@event));
}

public void Handle(OrderConfirmed @event)
{
 var order = this.ordersRepo.Get(@event.SourceId);
 var assignments = order.CreateSeatAssignments();
 assignmentsRepo.Save(assignments);
}

You can also see the same technique in use in the OrderViewModel-
Generator class.

The approach is slightly different in the Order class because this
is one of the events that is persisted to the event store. The following
code sample shows part of the protected constructor in the Order
class:

protected Order(Guid id)
 : base(id)
{
 ...
 base.Handles<OrderPaymentConfirmed>(e =>
 this.OnOrderConfirmed(Mapper.Map<OrderConfirmed>(e)));
 base.Handles<OrderConfirmed>(this.OnOrderConfirmed);
 ...
}

Handling the old
events in this way was
straightforward for this
scenario because the only
change needed was to
the name of the event. It
would be more complicated
if the properties of the
event changed as well. In
the future, Contoso will
consider doing the mapping
in the infrastructure to
avoid polluting the domain
model with legacy events.

138 Journey six

Displaying remaining seats in the UI
There were three specific goals in making this change, all of which are related. We wanted to
•	 Modify the system to include information about the number of remaining seats of each seat

type in the conference read model.
•	 Modify the UI to display the number of remaining seats of each seat type.
•	 Ensure that the system functions correctly after the upgrade to V2.

Adding information about remaining seat quantities to the read model
The information that the system needs to be able to display the number of remaining seats comes
from two places.
•	 The Conference Management bounded context raises the SeatCreated and SeatUpdated

events whenever the business customer creates new seat types or modifies seat quotas.
•	 The SeatsAvailability aggregate in the Orders and Registrations bounded context raises the

SeatsReserved, SeatsReservationCancelled, and AvailableSeatsChanged events while a
registrant is creating an order.

Note: The ConferenceViewModelGenerator class does not use the SeatCreated and
SeatUpdated events.

The ConferenceViewModelGenerator class in the Orders and Registrations bounded context now
handles these events and uses them to calculate and store the information about seat type quantities
in the read model. The following code sample shows the relevant handlers in the ConferenceView-
ModelGenerator class:

public void Handle(AvailableSeatsChanged @event)
{
 this.UpdateAvailableQuantity(@event, @event.Seats);
}

public void Handle(SeatsReserved @event)
{
 this.UpdateAvailableQuantity(@event, @event.AvailableSeatsChanged);
}

public void Handle(SeatsReservationCancelled @event)
{
 this.UpdateAvailableQuantity(@event, @event.AvailableSeatsChanged);
}

private void UpdateAvailableQuantity(
 IVersionedEvent @event,
 IEnumerable<SeatQuantity> seats)

 139Versioning Our System

{
 using (var repository = this.contextFactory.Invoke())
 {
 var dto = repository.Set<Conference>()
 .Include(x => x.Seats)
 .FirstOrDefault(x => x.Id == @event.SourceId);
 if (dto != null)
 {
 if (@event.Version > dto.SeatsAvailabilityVersion)
 {
 foreach (var seat in seats)
 {
 var seatDto = dto.Seats
 .FirstOrDefault(x => x.Id == seat.SeatType);
 if (seatDto != null)
 {
 seatDto.AvailableQuantity += seat.Quantity;
 }
 else
 {
 Trace.TraceError(
 "Failed to locate Seat Type read model being updated with id {0}.",
 seat.SeatType);
 }
 }

 dto.SeatsAvailabilityVersion = @event.Version;

 repository.Save(dto);
 }
 else
 {
 Trace.TraceWarning ...
 }
 }
 else
 {
 Trace.TraceError ...
 }
 }
}

140 Journey six

The UpdateAvailableQuantity method compares the version on the
event to current version of the read model to detect possible dupli-
cate messages.

Modifying the UI to display remaining seat quantities
Now, when the UI queries the conference read model for a list of seat types, the list includes the
currently available number of seats. The following code sample shows how the RegistrationController
MVC controller uses the AvailableQuantity of the SeatType class:

private OrderViewModel CreateViewModel()
{
 var seatTypes =
 this.ConferenceDao.GetPublishedSeatTypes(this.ConferenceAlias.Id);
 var viewModel =
 new OrderViewModel
 {
 ConferenceId = this.ConferenceAlias.Id,
 ConferenceCode = this.ConferenceAlias.Code,
 ConferenceName = this.ConferenceAlias.Name,
 Items =
 seatTypes.Select(s =>
 new OrderItemViewModel
 {
 SeatType = s,
 OrderItem = new DraftOrderItem(s.Id, 0),
 AvailableQuantityForOrder = s.AvailableQuantity,
 MaxSelectionQuantity = Math.Min(s.AvailableQuantity, 20)
 }).ToList(),
 };

 return viewModel;
}

Data migration
The database table that holds the conference read-model data now has a new column to hold the
version number that is used to check for duplicate events, and the table that holds the seat type
read-model data now has a new column to hold the available quantity of seats.

As part of the data migration, it is necessary to replay all of the events in the event store for each
of the SeatsAvailability aggregates in order to correctly calculate the available quantities.

This check only detects duplicate messages,
not out-of-sequence messages.

 141Versioning Our System

De-duplicating command messages
The system currently uses the Windows Azure Service Bus to transport messages. When the system
initializes the Windows Azure Service Bus from the start-up code in the ConferenceProcessor class,
it configures the topics to detect duplicate messages, as shown in the following code sample from the
ServiceBusConfig class:

private void CreateTopicIfNotExists()
{
 var topicDescription =
 new TopicDescription(this.topic)
 {
 RequiresDuplicateDetection = true,
 DuplicateDetectionHistoryTimeWindow = topic.DuplicateDetectionHistoryTimeWindow,
 };
 try
 {
 this.namespaceManager.CreateTopic(topicDescription);
 }
 catch (MessagingEntityAlreadyExistsException) { }
}

Note: You can configure the DuplicateDetectionHistoryTimeWindow in the Settings.xml file
by adding an attribute to the Topic element. The default value is one hour.

However, for the duplicate detection to work, you must ensure that every message has a unique ID.
The following code sample shows the MarkSeatsAsReserved command:

public class MarkSeatsAsReserved : ICommand
{
 public MarkSeatsAsReserved()
 {
 this.Id = Guid.NewGuid();
 this.Seats = new List<SeatQuantity>();
 }

 public Guid Id { get; set; }

 public Guid OrderId { get; set; }

 public List<SeatQuantity> Seats { get; set; }

 public DateTime Expiration { get; set; }
}

142 Journey six

The BuildMessage method in the CommandBus class uses the command Id to create a unique mes-
sage Id that the Windows Azure Service Bus can use to detect duplicates:

private BrokeredMessage BuildMessage(Envelope command)
{
 var stream = new MemoryStream();
 ...

 var message = new BrokeredMessage(stream, true);
 if (!default(Guid).Equals(command.Body.Id))
 {
 message.MessageId = command.Body.Id.ToString();
 }

 ...

 return message;
}

Guaranteeing message ordering
The team decided to use Windows Azure Service Bus Message Sessions to guarantee message order-
ing in the system.

The system configures the Windows Azure Service Bus topics and subscriptions from the On-
Start method in the ConferenceProcessor class. The configuration in the Settings.xml file specifies
whether a particular subscription should use sessions. The following code sample from the Service-
BusConfig class shows how the system creates and configures subscriptions.

private void CreateSubscriptionIfNotExists(
 NamespaceManager namespaceManager,
 TopicSettings topic,
 SubscriptionSettings subscription)
{
 var subscriptionDescription =
 new SubscriptionDescription(topic.Path, subscription.Name)
 {
 RequiresSession = subscription.RequiresSession
 };

 try
 {
 namespaceManager.CreateSubscription(subscriptionDescription);
 }
 catch (MessagingEntityAlreadyExistsException) { }
}

 143Versioning Our System

The following code sample from the SessionSubscriptionReceiver class shows how to use sessions
to receive messages:

private void ReceiveMessages(CancellationToken cancellationToken)
{
 while (!cancellationToken.IsCancellationRequested)
 {
 MessageSession session;
 try
 {
 session =
 this.receiveRetryPolicy.ExecuteAction(this.DoAcceptMessageSession);
 }
 catch (Exception e)
 {
 ...
 }

 if (session == null)
 {
 Thread.Sleep(100);
 continue;
 }

 while (!cancellationToken.IsCancellationRequested)
 {
 BrokeredMessage message = null;
 try
 {
 try
 {
 message = this.receiveRetryPolicy.ExecuteAction(
 () => session.Receive(TimeSpan.Zero));
 }
 catch (Exception e)
 {
 ...
 }

 if (message == null)
 {
 // If we have no more messages for this session,
 // exit and try another.
 break;
 }

144 Journey six

 this.MessageReceived(this, new BrokeredMessageEventArgs(message));
 }
 finally
 {
 if (message != null)
 {
 message.Dispose();
 }
 }
 }

 this.receiveRetryPolicy.ExecuteAction(() => session.Close());
 }
}

private MessageSession DoAcceptMessageSession()
{
 try
 {
 return this.client.AcceptMessageSession(TimeSpan.FromSeconds(45));
 }
 catch (TimeoutException)
 {
 return null;
 }
}

To be able to use message sessions when you receive a message, you
must ensure that when you send a message you include a session ID.
The system uses the source ID from the event as the session ID, as
shown in the following code sample from the BuildMessage method
in the EventBus class.

var message = new BrokeredMessage(stream, true);
message.SessionId = @event.SourceId.ToString();

In this way, you can guarantee that all of the messages from an indi-
vidual source will be received in the correct order.

You may find it useful to
compare this version of the
ReceiveMessages method
that uses message sessions
with the original version in
the SubscriptionReceiver
class.

 145Versioning Our System

However, sessions can only guarantee to deliver messages in order
if the messages are placed on the bus in the correct order. If the sys-
tem sends messages asynchronously, then you must take special care
to ensure that messages are placed on the bus in the correct order. In
our system, it is important that the events from each individual ag-
gregate instance arrive in order, but we don’t care about the ordering
of events from different aggregate instances. Therefore, although the
system sends events asynchronously, the EventStoreBusPublisher
instance waits for an acknowledgement that the previous event was
sent before sending the next one. The following sample from the
TopicSender class illustrates this:

In the V2 release, the team changed the way the system creates the Windows Azure Service Bus topics and
subscriptions. Previously, the SubscriptionReceiver class created them if they didn’t exist already. Now, the system
creates them using configuration data when the application starts up. This happens early in the start-up process to
avoid the risk of losing messages if one is sent to a topic before the system initializes the subscriptions.

public void Send(Func<BrokeredMessage> messageFactory)
{
 var resetEvent = new ManualResetEvent(false);
 Exception exception = null;
 this.retryPolicy.ExecuteAction(
 ac =>
 {
 this.DoBeginSendMessage(messageFactory(), ac);
 },
 ar =>
 {
 this.DoEndSendMessage(ar);
 },
 () => resetEvent.Set(),
 ex =>
 {
 Trace.TraceError(
 "An unrecoverable error occurred while trying to send a message:\n{0}"
 , ex);
 exception = ex;
 resetEvent.Set();
 });

 resetEvent.WaitOne();
 if (exception != null)
 {
 throw exception;
 }
}

146 Journey six

For additional information about message ordering and Windows
Azure Service Bus, see Windows Azure Queues and Windows Azure
Service Bus Queues - Compared and Contrasted.

For information about sending messages asynchronously and or-
dering, see the blog post Windows Azure Service Bus Splitter and Ag-
gregator.

Persisting events from the Conference
Management bounded context
The team decided to create a message log of all the commands and
events that are sent. This will enable the Orders and Registrations
bounded context to query this log for the events from the Confer-
ence Management bounded context that it requires to build its read
models. This is not event sourcing because we are not using these
events to rebuild the state of our aggregates, although we are using
similar techniques to capture and persist these integration events.

Adding additional metadata to the messages
The system now persists all messages to the message log. To make it
easier to query the message log for specific commands or events, the
system now adds more metadata to each message. Previously, the
only metadata was the event type; now, the event metadata includes
the event type, namespace, assembly, and path. The system adds the
metadata to the events in the EventBus class and to the commands
in the CommandBus class.

Capturing and persisting messages to the message log
The system uses an additional subscription to the conference/
commands and conference/events topics in Windows Azure Service
Bus to receive copies of every message in the system. It then appends
the message to a Windows Azure table storage table. The following
code sample shows the entity that the AzureMessageLogWriter
class uses to save the message to the table:

This code sample shows
how the system uses the
Transient Fault Handling
Application Block to make
the asynchronous call
reliably.

This message log ensures
that no messages are lost,
so that in the future it
will be possible to meet
additional requirements.

http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://geekswithblogs.net/asmith/archive/2012/04/10/149275.aspx
http://geekswithblogs.net/asmith/archive/2012/04/10/149275.aspx
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx

 147Versioning Our System

public class MessageLogEntity : TableServiceEntity
{
 public string Kind { get; set; }
 public string CorrelationId { get; set; }
 public string MessageId { get; set; }
 public string SourceId { get; set; }
 public string AssemblyName { get; set; }
 public string Namespace { get; set; }
 public string FullName { get; set; }
 public string TypeName { get; set; }
 public string SourceType { get; set; }
 public string CreationDate { get; set; }
 public string Payload { get; set; }
}

The Kind property specifies whether the message is either a command or an event. The MessageId
and CorrelationId properties are set by the messaging infrastructure. The remaining properties are
set from the message metadata.

The following code sample shows the definition of the partition and row keys for these messages:

PartitionKey = message.EnqueuedTimeUtc.ToString("yyyMM"),
RowKey = message.EnqueuedTimeUtc.Ticks.ToString("D20") + "_" + message.MessageId

This is different from the
event store where the
partition key identifies the
aggregate instance and
the row key identifies the
aggregate version number.

Notice how the row key preserves the order in which the messages
were originally sent and adds on the message ID to guarantee unique-
ness just in case two messages were enqueued at exactly the same
time.

148 Journey six

Data migration
When Contoso migrates the system from V1 to V2, it will use the
message log to rebuild the conference and priced-order read models
in the Orders and Registrations bounded context.

The conference read model holds information about conferences
and contains information from the ConferenceCreated, Conference-
Updated, ConferencePublished, ConferenceUnpublished, Seat-
Created, and SeatUpdated events that come from the Conference
Management bounded context.

The priced-order read model holds information from the Seat-
Created and SeatUpdated events that come from the Conference
Management bounded context.

However, in V1, these event messages were not persisted, so the
read models cannot be repopulated in V2. To work around this prob-
lem, the team implemented a data migration utility that uses a best
effort approach to generate events that contain the missing data to
store in the message log. For example, after the migration to V2, the
message log does not contain any ConferenceCreated events, so the
migration utility finds this information in the database used by the
Conference Management bounded context and creates the missing
events. You can see how this is done in the GeneratePastEventLog-
MessagesForConferenceManagement method in the Migrator class
in the MigrationToV2 project.

The RegenerateViewModels method in the Migrator class
shown below rebuilds the read models. It retrieves all the events from
the message log by invoking the Query method, and then uses the
ConferenceViewModelGenerator and PricedOrderViewModel-
Updater classes to handle the messages.

Contoso can use the
message log whenever
it needs to rebuild the
read models that are
built from events that
are not associated with
an aggregate, such as the
integration events from the
Conference Management
bounded context.

You can see in this class that Contoso also copies
all of the existing event sourced events into the
message log.

 149Versioning Our System

internal void RegenerateViewModels(
 	 AzureEventLogReader logReader,
 	 string dbConnectionString)
{
 var commandBus = new NullCommandBus();

 Database.SetInitializer<ConferenceRegistrationDbContext>(null);

 var handlers = new List<IEventHandler>();
 handlers.Add(new ConferenceViewModelGenerator(() =>
 new ConferenceRegistrationDbContext(dbConnectionString), commandBus));
 handlers.Add(new PricedOrderViewModelUpdater(() =>
 new ConferenceRegistrationDbContext(dbConnectionString)));

 using (var context =
 new ConferenceRegistrationMigrationDbContext(dbConnectionString))
 {
 context.UpdateTables();
 }

 try
 {
 var dispatcher = new MessageDispatcher(handlers);
 var events = logReader.Query(new QueryCriteria { });

 dispatcher.DispatchMessages(events);
 }
 catch
 {
 using (var context =
 new ConferenceRegistrationMigrationDbContext(dbConnectionString))
 {
 context.RollbackTablesMigration();
 }

 throw;
 }
}

The query may not be fast
because it will retrieve entities
from multiple partitions.

150 Journey six

Notice how this method uses a NullCommandBus instance to
swallow any commands from the ConferenceViewModelGenerator
instance because we are only rebuilding the read model here.

Previously, the PricedOrderViewModelGenerator used the
ConferenceDao class to obtain information about seats; now, it is
autonomous and handles the SeatCreated and SeatUpdated events
directly to maintain this information. As part of the migration, this
information must be added to the read model. In the previous code
sample, the PricedOrderViewModelUpdater class only handles the
SeatCreated and SeatUpdated events and adds the missing informa-
tion to the priced-order read model.

Migrating from V1 to V2
Migrating from V1 to V2 requires you to update the deployed applica-
tion code and migrate the data. You should always rehearse the migra-
tion in a test environment before performing it in your production
environment. These are the required steps:

1.	 Deploy the V2 release to your Windows Azure staging
environment. The V2 release has a MaintenanceMode
property that is initially set to true. In this mode, the applica-
tion displays a message to the user stating that the site is
currently undergoing maintenance and the worker role does
not process messages.

2.	 When you are ready, swap the V2 release (still in maintenance
mode) into your Windows Azure production environment.

3.	 Leave the V1 release (now running in the staging environ-
ment) to run for a few minutes to ensure that all in-flight
messages complete their processing.

4.	 Run the migration program to migrate the data (see below).
5.	 After the data migration completes successfully, change the

MaintenanceMode property of each role type to false.
6.	 The V2 release is now live in Windows Azure.

The following sections summarize the data migration from V1 to V2.
Some of these steps were discussed previously in relation to a spe-
cific change or enhancement to the application.

One of the changes the team introduced for V2 is to keep a copy
of all command and event messages in a message log in order to future-
proof the application by capturing everything that might be used in
the future. The migration process takes this new feature into account.

The team considered using
a separate application to
display a message to users
during the upgrade process
telling them that the site is
undergoing maintenance.
However, using the
MaintenanceMode
property in the V2 release
provides a simpler process,
and adds a potentially
useful new feature to the
application.

Because of the changes to
the event store, it is not
possible to perform a no
down-time upgrade from
V1 to V2. However, the
changes that the team has
made will ensure that the
migration from V2 to V3
will be possible with no
down time.

The team applied various optimizations to the
migration utility, such as batching the operations,
in order to minimize the amount of down time.

 151Versioning Our System

Because the migration process copies large amounts of data
around, you should run it in a Windows Azure worker role in order to
minimize the cost. The migration utility is a console application, so
you can use Windows Azure and Remote Desktop Services. For infor-
mation about how to run an application inside a Windows Azure role
instance, see “Using Remote Desktop with Windows Azure Roles” on
MSDN.

Generating past log messages for the Conference Management
bounded context
Part of the migration process is to recreate, where possible, the mes-
sages that the V1 release discarded after processing and then add
them to the message log. In the V1 release, all of the integration
events sent from the Conference Management bounded context to
the Orders and Registrations bounded context were lost in this way.
The system cannot recreate all of the lost events, but it can create
events that represent the state of system at the time of the migration.

For more information, see the section “Persisting events from the
Conference Management bounded context” earlier in this chapter.

Migrating the event sourcing events
In the V2 release, the event store stores additional metadata for each
event in order to facilitate querying for events. The migration process
copies all of the events from the existing event store to a new event
store with the new schema.

At the same time, the system adds a copy of all of these events to
the message log that was introduced in the V2 release.

For more information, see the MigrateEventSourcedAnd-
GeneratePastEventLogs in the Migrator class in the MigrationToV2
project.

Rebuilding the read models
The V2 release includes several changes to the definitions of the read
models in the Orders and Registrations bounded context. The Migra-
tionToV2 project rebuilds the Conference read model and Priced-or-
der read model in the Orders and Registrations bounded context.

For more information, see the section “Persisting events from the
Conference Management bounded context” earlier in this chapter.

Impact on testing
During this stage of the journey, the test team continued to expand
the set of acceptance tests. They also created a set of tests to verify
the data migration process.

In some organizations,
the security policy will
not allow you to use
Remote Desktop Services
with Windows Azure in a
production environment.
However, you only need the
worker role that hosts the
Remote Desktop session
for the duration of the
migration; you can delete
it after the migration is
complete. You could also
run your migration code
as a worker role instead of
as a console application
and ensure that it logs the
status of the migration for
you to verify.

The original events are not
updated in any way and are
treated as being immutable.

http://msdn.microsoft.com/en-us/library/windowsazure/gg443832.aspx

152 Journey six

SpecFlow revisited

Previously, the set of SpecFlow tests were implemented in two ways:
either simulating user interaction by automating a web browser, or by
operating directly on the MVC controllers. Both approaches had their
advantages and disadvantages, which are discussed in Chapter 4, “Ex-
tending and Enhancing the Orders and Registrations Bounded Con-
texts.”

After discussing these tests with another expert, the team also
implemented a third approach. From the perspective of the domain-
driven design (DDD) approach, the UI is not part of the domain
model, and the focus of the core team should be on understanding
the domain with the help of the domain expert and implementing the
business logic in the domain. The UI is just the mechanical part added
to enable users to interact with the domain. Therefore acceptance
testing should include verifying that the domain model functions in
the way that the domain expert expects. Therefore the team created
a set of acceptance tests using SpecFlow that are designed to exercise
the domain without the distraction of the UI parts of the system.

The following code sample shows the SelfRegistrationEndToEnd-
WithDomain.feature file in the Features\Domain\Registration folder
in the Conference.AcceptanceTests Visual Studio solution. Notice
how the When and Then clauses use commands and events.

Typically, you would expect the When clauses to send commands and
the Then clauses to see events or exceptions if your domain model uses
just aggregates. However, in this example, the domain-model includes
a process manager that responds to events by sending commands. The
test is checking that all of the expected commands are sent and all of
the expected events are raised.

 153Versioning Our System

Feature: Self Registrant end to end scenario for making a Registration for
 a Conference site with Domain Commands and Events
 In order to register for a conference
 As an Attendee
 I want to be able to register for the conference, pay for the
 Registration Order and associate myself with the paid Order automatically

Scenario: Make a reservation with the selected Order Items
Given the list of the available Order Items for the CQRS summit 2012 conference
 | seat type | rate | quota |
 | General admission | $199 | 100 |
 | CQRS Workshop | $500 | 100 |
 | Additional cocktail party | $50 | 100 |
And the selected Order Items
 | seat type | quantity |
 | General admission | 1 |
 | Additional cocktail party | 1 |
When the Registrant proceeds to make the Reservation
 # command:RegisterToConference
Then the command to register the selected Order Items is received
 # event: OrderPlaced
And the event for Order placed is emitted
 # command: MakeSeatReservation
And the command for reserving the selected Seats is received
 # event: SeatsReserved
And the event for reserving the selected Seats is emitted
 # command: MarkSeatsAsReserved
And the command for marking the selected Seats as reserved is received
 # event: OrderReservationCompleted
And the event for completing the Order reservation is emitted
 # event: OrderTotalsCalculated
And the event for calculating the total of $249 is emitted

154 Journey six

The following code sample shows some of the step implementations for the feature file. The steps
use the command bus to send the commands.

[When(@"the Registrant proceed to make the Reservation")]
public void WhenTheRegistrantProceedToMakeTheReservation()
{
 registerToConference = ScenarioContext.Current.Get<RegisterToConference>();
 var conferenceAlias = ScenarioContext.Current.Get<ConferenceAlias>();

 registerToConference.ConferenceId = conferenceAlias.Id;
 orderId = registerToConference.OrderId;
 this.commandBus.Send(registerToConference);

 // Wait for event processing
 Thread.Sleep(Constants.WaitTimeout);
}

[Then(@"the command to register the selected Order Items is received")]
public void ThenTheCommandToRegisterTheSelectedOrderItemsIsReceived()
{
 var orderRepo = EventSourceHelper.GetRepository<Registration.Order>();
 Registration.Order order = orderRepo.Find(orderId);

 Assert.NotNull(order);
 Assert.Equal(orderId, order.Id);
}

[Then(@"the event for Order placed is emitted")]
public void ThenTheEventForOrderPlacedIsEmitted()
{
 var orderPlaced =
 MessageLogHelper.GetEvents<OrderPlaced>(orderId).SingleOrDefault();

 Assert.NotNull(orderPlaced);
 Assert.True(orderPlaced.Seats.All(os =>
 registerToConference.Seats.Count(cs =>
 cs.SeatType == os.SeatType && cs.Quantity == os.Quantity) == 1));
}

 155Versioning Our System

Discovering a bug during the migration
When the test team ran the tests on the system after the migration,
we discovered that the number of seat types in the Orders and Reg-
istrations bounded context was different from the number prior to
the migration. The investigation revealed the following cause.

The Conference Management bounded context allows a business
customer to delete a seat type if the conference has never been pub-
lished, but does not raise an integration event to report this fact to
the Orders and Registrations bounded context. Therefore, the Orders
and Registrations bounded context receives an event from the Con-
ference Management bounded context when a business customer
creates a new seat type, but not when a business customer deletes a
seat type.

Part of the migration process creates a set of integration events
to replace those that the V1 release discarded after processing. It cre-
ates these events by reading the database used by the Conference
Management bounded context. This process did not create integra-
tion events for the deleted seat types.

In summary, in the V1 release, deleted seat types incorrectly ap-
peared in the read models in the Orders and Registrations bounded
context. After the migration to the V2 release, these deleted seat
types did not appear in the read models in the Orders and Registra-
tions bounded context.

Summary
During this stage of our journey, we versioned our system and com-
pleted the V2 pseudo-production release. This new release included
some additional functionality and features, such as support for zero-
cost orders and more information displayed in the UI.

We also made some changes in the infrastructure. For example,
we made more messages idempotent and now persist integration
events. The next chapter describes the final stage of our journey as
we continue to enhance the infrastructure and harden the system in
preparation for our V3 release.

More information
All links in this book are accessible from the book’s online bibliogra-
phy available at: http://msdn.microsoft.com/en-us/library/jj619274.

Testing the migration
process not only verifies
that the migration runs as
expected, but potentially
reveals bugs in the
application itself.

http://msdn.microsoft.com/en-us/library/jj619274

 157

“You cannot fly like an eagle with the wings of a wren.”
Henry Hudson

The three primary goals for this last stage in our journey are to make the system more resilient to
failures, to improve the responsiveness of the UI, and to ensure that our design is scalable. The effort
to harden the system focuses on the RegistrationProcessManager class in the Orders and Registra-
tions bounded context. Performance improvement efforts are focused on the way the UI interacts
with the domain model during the order creation process.

Working definitions for this chapter
The following terms are used in this chapter. For more detail, and possible alternative definitions, see
Chapter 4, “A CQRS and ES Deep Dive” in the Reference Guide.

Command. A command is a request for the system to perform an action that changes the state of
the system. Commands are imperatives; an example is MakeSeatReservation. In this bounded con-
text, commands originate either from the user interface (UI) as a result of a user initiating a request,
or from a process manager when the process manager is directing an aggregate to perform an action.

Commands are processed once by a single recipient. Commands are either transported to their
recipients by a command bus, or delivered directly in-process. If a command is delivered through a
command bus, then the command is sent asynchronously. If the command can be delivered directly
in-process, then the command is sent synchronously.

Event. An event, such as OrderConfirmed, describes something that has happened in the system,
typically as a result of a command. Aggregates in the domain model raise events. Events can also come
from other bounded contexts.

Multiple subscribers can handle a specific event. Aggregates publish events to an event bus; han-
dlers register for specific types of events on the event bus and then deliver the events to the sub-
scriber. In the Orders and Registrations bounded context, the subscribers are a process manager and
the read-model generators.

Adding Resilience and
Optimizing Performance

Reaching the end of our journey: the final tasks.

Journey 7:

158 Journey seven

Snapshots. Snapshots are an optimization that you can apply to event sourcing; instead of replay-
ing all of the persisted events associated with an aggregate when it is rehydrated, you load a recent
copy of the state of the aggregate and then replay only the events that were persisted after saving
the snapshot. In this way you can reduce the amount of data that you must load from the event store.

Idempotency. Idempotency is a characteristic of an operation that means the operation can be
applied multiple times without changing the result. For example, the operation “set the value x to ten”
is idempotent, while the operation “add one to the value of x” is not. In a messaging environment, a
message is idempotent if it can be delivered multiple times without changing the result: either because
of the nature of the message itself, or because of the way the system handles the message.

Eventual consistency. Eventual consistency is a consistency model that does not guarantee im-
mediate access to updated values. After an update to a data object, the storage system does not
guarantee that subsequent accesses to that object will return the updated value. However, the storage
system does guarantee that if no new updates are made to the object during a sufficiently long period
of time, then eventually all accesses can be expected to return the last updated value.

Architecture
The application is designed to deploy to Windows Azure. At this stage in the journey, the application
consists of web roles that contain the ASP.NET MVC web applications and a worker role that contains
the message handlers and domain objects. The application uses Windows Azure SQL Database (SQL
Database) instances for data storage, both on the write side and the read side. The application also
uses Windows Azure table storage on the write side and blob storage on the read side in some places.
The application uses the Windows Azure Service Bus to provide its messaging infrastructure. Figure
1 shows this high-level architecture.

 159Adding Resilience and Optimizing Performance

Figure 1
The top-level architecture in the V3 release

While you are exploring and testing the solution, you can run it locally, either using the Windows
Azure compute emulator or by running the MVC web application directly and running a console ap-
plication that hosts the handlers and domain objects. When you run the application locally, you can
use a local SQL Server Express database instead of SQL Database, and use a simple messaging infra-
structure implemented in a SQL Server Express database.

For more information about the options for running the application, see Appendix 1, “Release
Notes.”

Adding resilience
During this stage of the journey the team looked at options for hardening the RegistrationProcess-
Manager class. This class is responsible for managing the interactions between the aggregates in the
Orders and Registrations bounded context and for ensuring that they are all consistent with each
other. It is important that this process manager is resilient to a wide range of failure conditions if the
bounded context as a whole is to maintain its consistent state.

160 Journey seven

Typically, a process manager receives incoming events and then,
based on the state of the process manager, sends out one or more
commands to aggregates within the bounded context. When a pro-
cess manager sends out commands, it typically changes its own state.

The Orders and Registrations bounded context contains the
RegistrationProcessManager class. This process manager is respon-
sible for coordinating the activities of the aggregates in both this
bounded context and the Payments bounded context by routing
events and commands between them. The process manager is there-
fore responsible for ensuring that the aggregates in these bounded
contexts are correctly synchronized with each other.

A failure in the registration process could have adverse conse-
quences for the system; the aggregates could get out of synchroniza-
tion with each other, which may cause unpredictable behavior in the
system, or some processes might end up as zombie processes continu-
ing to run and use resources while never completing. The team identi-
fied the following specific failure scenarios related to the Registration-
ProcessManager process manager. The process manager could:
•	 Crash or be unable to persist its state after it receives an event

but before it sends any commands. The message processor may
not be able to mark the event as complete, so after a timeout,
the event is placed back in the topic subscription and repro-
cessed.

•	 Crash after it persists its state but before it sends any com-
mands. This puts the system into an inconsistent state because
the process manager saves its new state without sending out
the expected commands. The original event is put back in the
topic subscription and reprocessed.

•	 Fail to mark that an event has been processed. The process
manager will process the event a second time because after a
timeout, the system will put the event back onto the Service
Bus topic subscription.

•	 Timeout while it waits for a specific event that it is expecting.
The process manager cannot continue processing and reach an
expected end state.

•	 Receive an event that it does not expect to receive while the
process manager is in a particular state. This may indicate a
problem elsewhere that implies that it is unsafe for the process
manager to continue.

An aggregate determines
the consistency boundaries
within the write model with
respect to the consistency
of the data that the system
persists to storage. The
process manager manages
the relationship between
different aggregates,
possibly in different
bounded contexts, and
ensures that the aggregates
are eventually consistent
with each other.

 161Adding Resilience and Optimizing Performance

These scenarios can be summarized to identify two specific issues to address:
•	 The RegistrationProcessManager handles an event successfully but fails to mark the message

as complete. The RegistrationProcessManager will then process the event again after it is
automatically returned to the Windows Azure Service Bus topic subscription.

•	 The RegistrationProcessManager handles an event successfully, marks it as complete, but then
fails to send out the commands.

Making the system resilient when an event is reprocessed
If the behavior of the process manager itself is idempotent, then if it receives and processes an event
a second time, no inconsistencies within the system will result. Making the behavior of the process
manager idempotent would prevent the problems inherent in the first three failure conditions. After
a crash, you could simply restart the process manager and reprocess the incoming event a second time.

Instead of making the process manager idempotent, you could ensure that all the commands that
the process manager sends are idempotent. Restarting the process manager may result in sending
commands a second time, but if those commands are idempotent, there will be no adverse effect on
the process or the system. For this approach to work, you still need to modify the process manager
to guarantee that it sends all commands at least once. If the commands are idempotent, it doesn’t
matter if they are sent multiple times, but it does matter if a command is never sent at all.

In the V1 release, most message handling is already either idempotent, or the system detects
duplicate messages and sends them to a dead-letter queue. The exceptions are the OrderPlaced event
and the SeatsReserved event, so the team modified the way that the V3 release of the system pro-
cesses these two events in order to address this issue.

Ensuring that commands are always sent
Transactional behavior is required to ensure that the system always sends commands when the
RegistrationProcessManager class saves its state. This requires the team to implement a pseudo-
transaction because it is neither advisable nor possible to enlist the Windows Azure Service Bus and
a SQL Database table together in a distributed transaction.

The solution adopted by the team for the V3 release ensures that the system persists all com-
mands that the RegistrationProcessManager generates at the same time that it persists the state of
the RegistrationProcessManager instance. Then the system tries to send the commands, removing
them from storage after they have been sent successfully. The system also checks for undispatched
messages whenever it loads a RegistrationProcessManager instance from storage.

162 Journey seven

Optimizing performance
During this stage of the journey we ran performance and stress tests
using Visual Studio 2010 to analyze response times and identify bottle-
necks. The team used Visual Studio Load Test to simulate different
numbers of users accessing the application, and added additional trac-
ing into the code to record timing information for detailed analysis.
The team created the performance test environment in Windows
Azure, running the test controller and test agents in Windows Azure
VM role instances. This enabled us to test how the Contoso Confer-
ence Management System performed under different loads by using
the test agents to simulate different numbers of virtual users.

As a result of this exercise, the team made a number of changes
to the system to optimize its performance.

UI flow before optimization
When a registrant creates an order, she visits the following sequence
of screens in the UI.

1.	 The register screen. This screen displays the ticket types for
the conference and the number of seats currently available
according to the eventually consistent read model. The
registrant selects the quantities of each seat type that she
would like to purchase.

2.	 The checkout screen. This screen displays a summary of the
order that includes a total price and a countdown timer that
tells the registrant how long the seats will remain reserved.
The registrant enters her details and preferred payment
method.

3.	 The payment screen. This simulates a third-party payment
processor.

4.	 The registration success screen. This displays if the payment
succeeded. It displays to the registrant an order locator code
and link to a screen that enables the registrant to assign
attendees to seats.

See the section “Task-based UI” in Chapter 5, “Preparing for the V1
Release” for more information about the screens and flow in the UI.

In the V2 release, the system must process the following com-
mands and events between the register screen and the checkout
screen:

•	 RegisterToConference
•	 OrderPlaced
•	 MakeSeatReservation
•	 SeatsReserved
•	 MarkSeatsAsReserved
•	 OrderReservationCompleted
•	 OrderTotalsCalculated

Although in this journey the
team did their performance
testing and optimization
work at the end of the
project, it typically makes
sense to do this work as you
go, addressing scalability
issues and hardening the
code as soon as possible.
This is especially true if
you are building your own
infrastructure and need
to be able to handle high
volumes of throughput.

Because implementing
the CQRS pattern leads
to a very clear separation
of responsibilities for the
many different parts that
make up the system, we
found it relatively easy
to add optimizations and
hardening because many of
the necessary changes were
very localized within the
system.

http://msdn.microsoft.com/en-us/library/dd293540.aspx

 163Adding Resilience and Optimizing Performance

In addition, the MVC controller is also validating that there are
sufficient seats available by querying the read model to fulfill the or-
der before it sends the initial RegisterToConference command.

When the team load tested the application using Visual Studio
Load Test with different user load patterns, we noticed that with
higher loads, the UI often has to wait for the domain to complete its
processing and for the read models to receive data from the write
model, before it can display the next screen to the registrant. In par-
ticular, with the V2 release deployed to medium-sized web and
worker role instances we found that:
•	 With a constant load pattern of less than five orders per second,

all orders are processed within a five-second window.
•	 With a constant load pattern of between eight and ten orders

per second, many orders are not processed within the five-
second window.

•	 With a constant load pattern of between eight and ten orders
per second, the role instances are used sub-optimally (for
example CPU usage is low).

Note: The five-second window is the maximum duration that we
want to see between the time that the UI sends the initial
command on the Service Bus and the time when the priced order
becomes visible in the read model, enabling the UI to display the
next screen to the user.

To address this issue, the team identified two targets for optimization:
the interaction between the UI and the domain, and the infrastruc-
ture. We decided to address the interaction between the UI and the
domain first; when this did not improve performance sufficiently, we
made infrastructure optimizations as well.

Optimizing the UI
The team discussed with the domain expert whether or not is always
necessary to validate the seats availability before the UI sends the
RegisterToConference command to the domain.

This scenario illustrates some practical issues in relation to eventual
consistency. The read side—in this case the priced order view model—is
eventually consistent with the write side. Typically, when you implement the
CQRS pattern you should be able to embrace eventual consistency and not
need to wait in the UI for changes to propagate to the read side. However,
in this case, the UI must wait for the write model to propagate to the read
side information that relates to a specific order. This may indicate a problem
with the original analysis and design of this part of the system.

164 Journey seven

The domain expert was clear that the system should confirm that
seats are available before taking payment. Contoso does not want to
sell seats and then have to explain to a registrant that those seats are
not available. Therefore, the team looked for ways to streamline the
process up to the point where the registrant sees the payment screen.

The team identified the following two optimizations to the UI
flow.

UI optimization 1
Most of the time, there are plenty of seats available for a conference
and registrants do not have to compete with each other to reserve
seats. It is only for a brief time, as the conference comes close to
selling out, that registrants do end up competing for the last few
available seats.

If there are plenty of available seats for the conference, then
there is minimal risk that a registrant will get as far as the payment
screen only to find that the system could not reserve the seats. In this
case, some of the processing that the V2 release performs before get-
ting to the checkout screen can be allowed to happen asynchro-
nously while the registrant is entering information on the checkout
screen. This reduces the chance that the registrant experiences a delay
before seeing the checkout screen.

However, if the controller checks and finds that there are not
enough seats available to fulfill the order before it sends the Register-
ToConference command, it can re-display the register screen to en-
able the registrant to update her order based on current availability.

Essentially, we are
relying on the fact that
a reservation is likely
to succeed, avoiding a
time-consuming check.
We still perform the
check to ensure the seats
are available before the
registrant makes a payment.

This cautious strategy is not
appropriate in all scenarios.
In some cases, the business
may prefer to take the
money even if it cannot
immediately fulfill the order.
The business may know that
the stock will be replenished
soon, or that the customer
will be happy to wait. In our
scenario, although Contoso
could refund the money to
a registrant if tickets turned
out not to be available, a
registrant may decide to
purchase flight tickets that
are not refundable in the
belief that the conference
registration is confirmed.
This type of decision is
clearly one for the business
and the domain expert.

 165Adding Resilience and Optimizing Performance

UI optimization 2
In the V2 release, the MVC controller cannot display the checkout
screen until the domain publishes the OrderTotalsCalculated event
and the system updates the priced-order view model. This event is the
last event that occurs before the controller can display the screen.

If the system calculates the total and updates the priced-order
view model earlier, the controller can display the checkout screen
sooner. The team determined that the Order aggregate could calcu-
late the total when the order is placed instead of when the reserva-
tion is complete. This will enable the UI flow to move more quickly to
the checkout screen than in the V2 release.

Optimizing the infrastructure

“Every day some new fact comes to light—some new obstacle
which threatens the gravest obstruction. I suppose this is the
reason which makes the game so well worth playing.”

Robert Falcon Scott

The second set of optimizations that the team added in this stage of
the journey related to the infrastructure of the system. These chang-
es addressed both the performance and the scalability of the system.
The following sections describe the most significant changes we
made here.

Sending and receiving commands and events
asynchronously
As part of the optimization process, the team updated the system to
ensure that all messages sent on the Service Bus are sent asynchro-
nously. This optimization is intended to improve the overall respon-
siveness of the application and improve the throughput of messages.
As part of this change, the team also used the Transient Fault Handling
Application Block to handle any transient errors encountered when
using the Service Bus.

For other proven practices
to help you optimize
performance when using
the Windows Azure Service
Bus, see this guide: Best
Practices for Performance
Improvements Using Service
Bus Brokered Messaging.

This optimization resulted
in major changes to the
infrastructure code.
Combining asynchronous
calls with the Transient
Fault Handling Application
Block is complex; we would
benefit from some of the
new simplifying syntax in
C# 4.5!

http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://aka.ms/SBperf
http://aka.ms/SBperf
http://aka.ms/SBperf
http://aka.ms/SBperf

166 Journey seven

Optimizing command processing
The V2 release used the same messaging infrastructure, the Windows
Azure Service Bus, for both commands and events. The team evalu-
ated whether the Contoso Conference Management System needs to
send all its command messages using the same infrastructure.

There are a number of factors that we considered when we de-
termined whether to continue using the Windows Azure Service Bus
for transporting all command messages.
•	 Which commands, if any, can be handled in-process?
•	 Will the system become less resilient if it handles some com-

mands in-process?
•	 Will there be any significant performance gains if it handles

some commands in-process?
We identified a set of commands that the system can send synchro-
nously and in-process from the public conference web application. To
implement this optimization we had to add some infrastructure ele-
ments (the event store repositories, the event bus, and the event
publishers) to the public conference web application; previously,
these infrastructure elements were only in the system’s worker role.

Using snapshots with event sourcing
The performance tests also uncovered a bottleneck in the use of the
SeatsAvailability aggregate that we addressed by using a form of
snapshot.

When the system rehydrates an aggregate instance from the
event store, it must load and replay all of the events associated with
that aggregate instance. A possible optimization here is to store a
rolling snapshot of the state of the aggregate at some recent point in
time so that the system only needs to load the snapshot and the sub-
sequent events, thereby reducing the number of events that it must
reload and replay. The only aggregate in the Contoso Conference
Management System that is likely to accumulate a significant number
of events over time is the SeatsAvailability aggregate. We decided to
use the Memento pattern as the basis for the snapshot solution to use
with the SeatAvailability aggregate. The solution we implemented
uses a memento to capture the state of the SeatAvailability aggre-
gate, and then keeps a copy of the memento in a cache. The system
then tries to work with the cached data instead of always reloading
the aggregate from the event store.

An asynchronous command
doesn’t exist; it’s actually
another event. If I must accept
what you send me and raise an
event if I disagree, it’s no longer
you telling me to do something,
it’s you telling me something has
been done. This seems like a
slight difference at first, but it
has many implications.
— Greg Young - Why do lots of
developers use one-way
command messaging (async
handling) when it’s not needed?,
DDD/CQRS Group

Often, in the context of event sourcing, snapshots are persistent,
not transient local caches as we have implemented in our project.

Once the team identified
this bottleneck, it was
easy to implement and test
this solution. One of the
advantages of the approach
we followed when
implementing the CQRS
pattern is that we can make
small localized changes in
the system. Updates don’t
require us to make complex
changes across multiple
parts of the system.

http://www.oodesign.com/memento-pattern.html
http://go.microsoft.com/fwlink/p/?LinkID=259604
http://go.microsoft.com/fwlink/p/?LinkID=259604
http://go.microsoft.com/fwlink/p/?LinkID=259604
http://go.microsoft.com/fwlink/p/?LinkID=259604

 167Adding Resilience and Optimizing Performance

Publishing events in parallel
Publishing events in parallel proved to be one of the most significant
optimizations in terms of improving the throughput of event mes-
sages in the system. The team went through several iterations to ob-
tain the best results:
•	 Iteration 1: This approach used the Parallel.ForEach method

with a custom partitioning scheme to assign messages to
partitions and to set an upper bound on the degree of parallel-
ism. It also used synchronous Windows Azure Service Bus API
calls to publish the messages.

•	 Iteration 2: This approach used some asynchronous API calls. It
required the use of custom semaphore-based throttling to
handle the asynchronous callbacks correctly.

•	 Iteration 3: This approach uses dynamic throttling that takes
into account the transient failures that indicate that too many
messages are being sent to a specific topic. This approach uses
more asynchronous Windows Azure Service Bus API calls.

Filtering messages in subscriptions
Another optimization adds filters to the Windows Azure Service Bus
topic subscriptions to avoid reading messages that would later be ig-
nored by the handlers associated with the subscription.

Creating a dedicated receiver for the SeatsAvailability
aggregate
This enables the receiver for the SeatsAvailability aggregate to use a
subscription that supports sessions. This is to guarantee that we have
a single writer per aggregate instance because the SeatsAvailability
aggregate is a high-contention aggregate. This prevents us from re-
ceiving a large number of concurrency exceptions when we scale out.

Caching conference information
This optimization caches several read models that the public confer-
ence web site uses extensively. It includes logic to determine how to
keep the data in the cache based on the number of available seats for
a particular conference: if there are plenty of seats available, the sys-
tem can cache the data for a long period of time, but if there are very
few seats available the data is not cached.

We adopted the same
dynamic throttling
approach in the
SubscriptionReceiver
and SessionSubscription-
Receiver classes when the
system retrieves messages
from the service bus.

Elsewhere, we use subscriptions with sessions to guarantee the ordering
of events. In this case we are using sessions for a different reason—to
guarantee that we have a single writer for each aggregate instance.

Here we are taking advantage
of a feature provided by
Windows Azure Service Bus.

http://msdn.microsoft.com/en-us/library/dd460720.aspx

168 Journey seven

Partitioning the Service Bus
The team also partitioned the Service Bus to make the application
more scalable and to avoid throttling when the volume of messages
that the system sends approaches the maximum throughput that the
Service Bus can handle. Each Service Bus topic may be handled by a
different node in Windows Azure, so by using multiple topics we can
increase our potential throughput. We considered the following par-
titioning schemes:
•	 Use separate topics for different message types.
•	 Use multiple, similar topics and listen to them all on a round-

robin to spread the load.
For a detailed discussion of these partitioning schemes, see Chapter
11, “Asynchronous Communication and Message Buses” in “Scalabil-
ity Rules: 50 Principles for Scaling Web Sites” by Martin L. Abbott and
Michael T. Fisher (Addison-Wesley, 2011).

We decided to use separate topics for the events published by
the Order aggregates and the SeatAvailability aggregates because
these aggregates are responsible for the majority of events flowing
through the service bus.

Other optimizations
The team performed some additional optimizations that are listed in
the “Implementation details” section below. The primary goal of the
team during this stage of the journey was to optimize the system to
ensure that the UI appears sufficiently responsive to the user. There
are additional optimizations that we could perform that would help
to further improve performance and to optimize the way that the
system uses resources. For example, a further optimization that the
team considered was to scale out the view model generators that
populate the various read models in the system. Every web role that
hosts a view-model generator instance must handle the events pub-
lished by the write side by creating a subscription to the Windows
Azure Service Bus topics.

Not all messages have the
same importance. You
could also use separate,
prioritized message buses
to handle different message
types or even consider not
using a message bus for
some messages.

Treat the Service Bus just like any other critical component of your
system. This means you should ensure that your service bus can
be scaled. Also, remember that not all data has the same value to
your business. Just because you have a Service Bus, doesn’t mean
everything has to go through it. It’s prudent to eliminate low-value,
high-cost traffic.

 169Adding Resilience and Optimizing Performance

Further changes that would improve performance
In addition to the changes we made during this last stage of the jour-
ney to improve the performance of the application, the team identi-
fied a number of other changes that would result in further improve-
ments. However, the available time for this journey was limited so it
was not possible to make these changes in the V3 release.
•	 We added asynchronous behavior to many areas of the applica-

tion, especially in the calls the application makes to the Win-
dows Azure Service Bus. However, there are other areas where
the application still makes blocking, synchronous calls that we
could make asynchronous: for example, when the system
accesses the data stores. In addition, we would make use of new
language features such as async and await in Visual Studio 2012
RC (the application is currently implemented using .NET 4.0 and
Visual Studio 2010).

•	 There are opportunities to process messages in batches and to
reduce the number of round-trips to the data store by adopting
a store-and-forward design. For example, taking advantage of
Windows Azure Service Bus sessions would enable us to accept
a session from the Service Bus, read multiple items from the
data store, process multiple messages, save once to the data
store, and then complete all the messages.

•	 The website already caches some frequently accessed read-
model data, but we could extend the use of caching to other
areas of the system. The CQRS pattern means that we can
regard a cache as part of the eventually consistent read model
and, if necessary, provide access to read-model data from
different parts of the system using different caches or no
caching at all.

•	 We could improve the cached snapshot implementation that we
have for the SeatsAvailability aggregate. The current implemen-
tation is described in detail later in this chapter, and is designed
to always check the event store for events that arrived after the
system created the latest cached snapshot. When we receive a
new command to process, if we could check that we are still
using the same Service Bus session as we were using when the
system created the latest cached snapshot, then we would
know if there could be other events in the event store. If the
session hasn’t changed, then we know we are the only writer, so
there is no need to check the event store. If the session has
changed, then someone else might have written events associ-
ated with the aggregate to the store, and we need to check.

By accepting a Service Bus
session you have a single
writer and listener for that
session for as long as you
keep the lock; this reduces
the chances of an optimistic
concurrency exception.
This design would fit
particularly well in the
SeatsAvailability read and
write models. For the read
models associated with the
Order aggregates, which
have very small partitions,
you could acquire multiple
small sessions from the
Service Bus and use the
store-and-forward approach
on each session. Although
both the read and write
models in the system could
benefit from this approach,
it’s easier to implement
in the read models where
we expect the data to be
eventually consistent, not
fully consistent.

170 Journey seven

•	 The application currently listens for all messages on all Service
Bus subscriptions using the same priority. In practice, some
messages are more important than others; therefore, when the
application is under stress we should prioritize some message
processing to minimize the impact on core application function-
ality. For example, we could identify certain read models where
we are willing to accept more latency.

•	 The current implementation uses randomly generated GUIDs as
keys for all of the entities stored in our SQL Database instance.
When the system is under heavy load, it may perform better if
we use sequential GUIDs, especially in relation to clustered
indexes. For a discussion of sequential GUIDs, see The Cost of
GUIDs as Primary Keys.

•	 As part of our optimizations to the system, we now process
some commands in-process instead of sending them through
the Service Bus. We could extend this to other commands and
potentially the process manager.

•	 In the current implementation, the process manager processes
incoming messages and then the repository tries to send the
outgoing messages synchronously (it uses the Transient Fault
Handling Application Block to retry sending commands if the
Service Bus throws any exceptions due to throttling behavior).
We could instead use a mechanism similar to that used by the
EventStoreBusPublisher class so that the process manager
saves a list of messages that must be sent along with its state in
a single transaction, and then notifies a separate part of the
system, which is responsible for sending the messages, that
there are some new messages ready to send.

•	 Our current event store implementation publishes a single, small
message on the Service Bus for every event that’s saved in the
event store. We could group some of these messages together
to reduce the total number of I/O operations on the Service
Bus. For example, a SeatsAvailability aggregate instance for a
large conference publishes a large number of events, and the
Order aggregate publishes events in bursts (when an Order
aggregate is created it publishes both an OrderPlaced event and
an OrderTotalsCalculated event). This will also help to reduce
the latency in the system because currently, in those scenarios
in which ordering is important, we must wait for a confirmation
that one event has been sent before sending the next one.
Grouping sequences of events in a single message would mean
that we don’t need to wait for the confirmation between
publishing individual events.

We could also use
autoscaling to scale out
the application when the
load increases (for example
by using the Autoscaling
Application Block), but
adding new instances
takes time. By prioritizing
certain message types, we
can continue to deliver
performance in key areas
of the application while the
autoscaler adds resources.

The part of the system that
is responsible for sending
the messages can do so
asynchronously. It could
also implement dynamic
throttling for sending the
messages and dynamically
control how many parallel
senders to use.

http://www.informit.com/articles/article.aspx?p=25862
http://www.informit.com/articles/article.aspx?p=25862
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://aka.ms/autoscaling
http://aka.ms/autoscaling

 171Adding Resilience and Optimizing Performance

Further changes that would enhance scalability
The Contoso Conference Management System is designed to allow
you to deploy multiple instances of the web and worker roles to scale
out the application to handle larger loads. However, the design is not
fully scalable because some of the other elements of the system, such
as the message buses and data stores place constraints on the maxi-
mum achievable throughput. This section outlines some changes that
we could make to the system to remove some of these constraints
and significantly enhance the scalability of the system. The available
time for this journey was limited so it was not possible to make these
changes in the V3 release.
•	 Partition the data: The system stores different types of data in

different partitions. You can see in the bootstrapping code how
the different bounded contexts use different connection
strings to connect to the SQL Database instance. However,
each bounded context currently uses a single SQL Database
instance and we could change this to use multiple different
instances, each holding a specific set of data that the system
uses. For example the Orders and Registrations bounded
context could use different SQL Database instances for the
different read models. We could also consider using the federa-
tions feature to use sharding to scale out some of the SQL
Database instances.

•	 Further partition the Service Bus: We already partition the
Service Bus, by using different topics for different event
publishers, to avoid throttling when the volume of messages
that the system is sending approaches the maximum throughput
that the Service Bus can handle. We could further partition the
topics by using multiple, similar topics and listening to them all
on a round-robin to spread the load. For a detailed description
of this approach, see Chapter 11, “Asynchronous Communica-
tion and Message Buses” in Scalability Rules: 50 Principles for
Scaling Web Sites, by Abbott and Fisher (Addison-Wesley, 2011).

•	 Store and forward: We introduced the store-and-forward
design in the earlier section on performance improvement. By
batching multiple operations, you not only reduce the number
of round-trips to the data store and reduce the latency in the
system, you also enhance the scalability of the system because
issuing fewer requests reduces the stress on the data store.

“Data persistence is the
hardest technical problem
most scalable SaaS busi-
nesses face.”
—Evan Cooke, CTO, Twilio,
Scaling High-Availability
Infrastructure in the Cloud

Where the system stores
data in Windows Azure
table storage, we chose
keys to partition the
data for scalability. As an
alternative to using SQL
Database federations to
shard the data, we could
move some of the read-
model data currently in the
SQL Database instance to
either Windows Azure table
storage or blob storage.

http://www.twilio.com/engineering/2011/12/12/scaling-high-availablity-infrastructure-in-cloud
http://www.twilio.com/engineering/2011/12/12/scaling-high-availablity-infrastructure-in-cloud

172 Journey seven

•	 Listen for and react to throttling indicators: Currently, the
system uses the Transient Fault Handling Application Block to
detect transient error conditions such as throttling indicators
from the Windows Azure Service Bus, the SQL Database
instance, and Windows Azure table storage. The system uses
the block to implement retries in these scenarios, typically by
using an exponential back-off strategy. At present, we use
dynamic throttling at the level of an individual subscription;
however, we’d like to modify this to perform the dynamic throt-
tling for all of the subscriptions to a specific topic. Similarly,
we’d like to implement dynamic throttling at the level of the
SQL Database instance, and at the level of the Windows Azure
storage account.

For some additional information relating to scalability, see:
•	 Windows Azure Storage Abstractions and their Scalability Targets
•	 Best Practices for Performance Improvements Using Service Bus

Brokered Messaging
It’s important not to get a false sense of optimism when it comes to
scalability and high availability. While with many of the suggested
practices the applications tend to scale more efficiently and become
more resilient to failure, they are still prone to high-demand bottle-
necks. Make sure to allocate sufficient time for performance testing
and for meeting your performance goals.

No down-time migration

“Preparation, I have often said, is rightly two-thirds of any
venture.”

Amelia Earhart

The team planned to have a no-downtime migration from the V2
to the V3 release in Windows Azure. To achieve this, the migration
process uses an ad-hoc processor running in a Windows Azure
worker role to perform some of the migration steps.

The migration process still requires you to complete a configura-
tion step to switch off the V2 processor and switch on the V3 proces-
sor. In retrospect, we would have used a different mechanism to
streamline the transition from the V2 to the V3 processor based on
feedback from the handlers themselves to indicate when they have
finished their processing.

For details of these steps, see Appendix 1, “Release Notes.”

Each service (Windows Azure
Service Bus, SQL Database,
Windows Azure storage)
has its own particular way
of implementing throttling
behavior and notifying you
when it is placed under
heavy load. For example,
see SQL Azure Throttling. It’s
important to be aware of
all the throttling that your
application may be subjected
to by different services your
application uses.

The team also considered using the Windows Azure SQL Database Business edition instead of the
Windows Azure SQL Database Web edition but, upon investigation, we determined that at present the
only difference between the editions is the maximum database size. The different editions are not tuned
to support different types of workload, and both editions implement the same throttling behavior.

For an example of
implementing dynamic
throttling within the
application to avoid throttling
from the service, see how the
EventStoreBusPublisher,
SubscriptionReceiver,
and SessionSubscription-
Receiver classes use the
DynamicThrottling class
to manage the degree of
parallelism they use to send
or receive messages.

http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://aka.ms/SBperf
http://aka.ms/SBperf

 173Adding Resilience and Optimizing Performance

Rebuilding the read models
During the migration from V2 to V3, one of the steps we must per-
form is to rebuild the DraftOrder and PricedOrder view models by
replaying events from the event log to populate the new V3 read-
model tables. We can do this asynchronously. However, at some point
in time, we need to start sending events from the live application to
these read models. Furthermore, we need to keep both the V2 and V3
versions of these read models up to date until the migration process
is complete because the V2 front-end web role will need the V2 read-
model data to be available until we switch to the V3 front-end web
role. At the point at which we switch to the V3 front end, we must
ensure that the V3 read models are completely up to date.

To keep these read models up to date, we created an ad-hoc pro-
cessor as a Windows Azure worker role that runs just while the migra-
tion is taking place. See the MigrationToV3 project in the Conference
solution for more details. The steps that this processor performs are to:
•	 Create a new set of topic subscriptions that will receive the live

events that will be used to populate the new V3 read models.
These subscriptions will start accumulating the events that will
be handled when the V3 application is deployed.

•	 Replay the events from the event log to populate the new V3
read models with historical data.

•	 Handle the live events and keep the V2 read models up to date
until the V3 front end is live, at which point we no longer need
the V2 read models.

The migration process first replays the events from the event store to
populate the new V3 read models. When this is complete, we stop
the V2 processor that contains the event handlers, and start the new
handlers in their V3 processor. While these are running and catching
up on the events that were accumulated in the new topic subscrip-
tions, the ad-hoc processor is also keeping the V2 read models up to
date because at this point we still have the V2 front end. When the
V3 worker roles are ready, we can perform a VIP switch to bring the
new V3 front end into use. After the V3 front end is running, we no
longer have any need for the V2 read models.

You should always
rehearse the migration in
a test environment before
performing it in your
production environment.

174 Journey seven

One of the issues to address with this approach is how to deter-
mine when the new V3 processor should switch from processing ar-
chived events in the event log to the live stream of events. There is
some latency in the process that writes events to the event log, so an
instantaneous switch could result in the loss of some events. The team
decided to allow the V3 processor to temporarily handle both archived
events and the live stream, which means there is a possibility that
there will be duplicate events; the same event exists in the event store
and in the list of events accumulated by the new subscription. How-
ever, we can detect these duplicates and handle them accordingly.

An alternative approach that we considered was to include both
V2 and V3 handling in the V3 processor. With this approach, there is
no need for an ad-hoc worker role to process the V2 events during
the migration. However, we decided to keep the migration-specific
code in a separate project to avoid bloating the V3 release with func-
tionality that is only needed during the migration.

Implementation details
This section describes some of the significant features of the imple-
mentation of the Orders and Registrations bounded context. You
may find it useful to have a copy of the code so you can follow
along. You can download a copy of the code from the Download
center, or check the evolution of the code in the repository on
GitHub: https://github.com/mspnp/cqrs-journey-code. You can down-
load the code from the V3 release from the Tags page on GitHub.

Note: Do not expect the code samples to exactly match the code
in the reference implementation. This chapter describes a step in
the CQRS journey; the implementation may well change as we
learn more and refactor the code.

Hardening the RegistrationProcessManager
class
This section describes how the team hardened the Registration-
ProcessManager process manager by checking for duplicate instanc-
es of the SeatsReserved and OrderPlaced messages.

The intervals between each
step of the migration take
some time to complete, so the
migration achieves no
downtime, but the user does
experience delays. We would
have benefited from some
faster mechanisms to deal
with the toggle switches, such
as stopping the V2 processor
and starting the V3 processor.

The migration process would be slightly easier if we
included both V2 and V3 handling in the V3 processor.
We decided that the benefit of such an approach was
outweighed by the benefit of not having to maintain
duplicate functionality in the V3 processor.

Typically, we rely on the
infrastructure to detect
duplicate messages. In this
particular scenario where
duplicate events may come
from different sources,
we cannot rely on the
infrastructure and must add
the duplicate detection logic
into our code explicitly.

http://go.microsoft.com/fwlink/p/?LinkID=258548
http://go.microsoft.com/fwlink/p/?LinkID=258548
https://github.com/mspnp/cqrs-journey-code
https://github.com/mspnp/cqrs-journey-code/tags

 175Adding Resilience and Optimizing Performance

Detecting out-of-order SeatsReserved events
Typically, the RegistrationProcessManager class sends a MakeSeatReservation command to the
SeatAvailability aggregate, the SeatAvailability aggregate publishes a SeatsReserved event when
it has made the reservation, and the RegistrationProcessManager receives this notification. The
RegistrationProcessManager sends a MakeSeatReservation command both when the order is cre-
ated and when it is updated. It is possible that the SeatsReserved events could arrive out of order;
however, the system should honor the event related to the last command that was sent. The solution
described in this section enables the RegistrationProcessManager to identify the most recent Seats-
Reserved message and then ignore any earlier messages instead of reprocessing them.

Before the RegistrationProcessManager class sends the MakeSeatReservation command, it
saves the Id of the command in the SeatReservationCommandId variable, as shown in the following
code sample:

public void Handle(OrderPlaced message)
{
 if (this.State == ProcessState.NotStarted)
 {
 this.ConferenceId = message.ConferenceId;
 this.OrderId = message.SourceId;
 // Use the order id as an opaque reservation id for the seat reservation.
 // It could be anything else, as long as it is deterministic from the
 // OrderPlaced event.
 this.ReservationId = message.SourceId;
 this.ReservationAutoExpiration = message.ReservationAutoExpiration;
 var expirationWindow =
 message.ReservationAutoExpiration.Subtract(DateTime.UtcNow);

 if (expirationWindow > TimeSpan.Zero)
 {
 this.State = ProcessState.AwaitingReservationConfirmation;
 var seatReservationCommand =
 new MakeSeatReservation
 {
 ConferenceId = this.ConferenceId,
 ReservationId = this.ReservationId,
 Seats = message.Seats.ToList()
 };
 this.SeatReservationCommandId = seatReservationCommand.Id;

 this.AddCommand(new Envelope<ICommand>(seatReservationCommand)
 {
 TimeToLive = expirationWindow.Add(TimeSpan.FromMinutes(1)),
 });

 ...
}

176 Journey seven

Then, when it handles the SeatsReserved event, it checks that the CorrelationId property of the
event matches the most recent value of the SeatReservationCommandId variable, as shown in the
following code sample:

public void Handle(Envelope<SeatsReserved> envelope)
{
 if (this.State == ProcessState.AwaitingReservationConfirmation)
 {
 if (envelope.CorrelationId != null)
 {
 if (string.CompareOrdinal(
 this.SeatReservationCommandId.ToString(),
 envelope.CorrelationId)
 != 0)
 {
 // Skip this event.
 Trace.TraceWarning(
 "Seat reservation response for reservation id {0}" +
 "does not match the expected correlation id.",
 envelope.Body.ReservationId);
 return;
 }
 }

 ...
}

Notice how this Handle method handles an Envelope instance in-
stead of a SeatsReserved instance. As a part of the V3 release, events
are wrapped in an Envelope instance that includes the CorrelationId
property. The DoDispatchMessage method in the EventDispatcher
assigns the value of the correlation Id.

During performance testing, the team identified a further issue
with this specific SeatsReserved event. Because of a delay elsewhere
in the system when it was under load, a second copy of the Seats-
Reserved event was being published. This Handle method was then
throwing an exception that caused the system to retry processing the
message several times before sending it to a dead-letter queue. To
address this specific issue, the team modified this method by adding
the else if clause, as shown in the following code sample:

As a side-effect of
adding this feature, the
EventProcessor class can
no longer use the dynamic
keyword when it forwards
events to handlers. Now
in V3 it uses the new
EventDispatcher class;
this class uses reflection
to identify the correct
handlers for a given
message type.

 177Adding Resilience and Optimizing Performance

public void Handle(Envelope<SeatsReserved> envelope)
{
 if (this.State == ProcessState.AwaitingReservationConfirmation)
 {
 ...
 }
 else if (string.CompareOrdinal(
 this.SeatReservationCommandId.ToString(),
 envelope.CorrelationId) == 0)
 {
 Trace.TraceInformation(
 "Seat reservation response for request {1} for reservation" +
 "id {0} was already handled. Skipping event.",
 envelope.Body.ReservationId,
 envelope.CorrelationId);
 }
 else
 {
 throw new InvalidOperationException("Cannot handle seat reservation at this stage.");
 }
}

This optimization was only applied
for this specific message. Notice
that it makes use of the value of
the SeatReservationCommandId
property that was previously saved
in the instance. If you want to
perform this kind of check on other
messages you’ll need to store more
information in the process manager.

178 Journey seven

Detecting duplicate OrderPlaced events
To detect duplicate OrderPlaced events, the RegistrationProcessManagerRouter class now per-
forms a check to see if the event has already been processed. The new V3 version of the code is shown
in the following code sample:

public void Handle(OrderPlaced @event)
{
 using (var context = this.contextFactory.Invoke())
 {
 var pm = context.Find(x => x.OrderId == @event.SourceId);
 if (pm == null)
 {
 pm = new RegistrationProcessManager();
 }

 pm.Handle(@event);
 context.Save(pm);
 }
}

Creating a pseudo transaction when the Registration-Process-
Manager class saves its state and sends a command
It is not possible to have a transaction in Windows Azure that in-
cludes persisting the RegistrationProcessManager to storage and
sending the command. Therefore, the team decided to save all the
commands that the process manager generates so that if the process
crashes, the commands are not lost and can be sent later. We use
another process to handle sending the commands reliably.

The migration utility for
moving to the V3 release
updates the database
schema to accommodate the
new storage requirement.

 179Adding Resilience and Optimizing Performance

The following code sample from the SqlProcessDataContext class shows how the system per-
sists all the commands along with the state of the process manager:

public void Save(T process)
{
 var entry = this.context.Entry(process);

 if (entry.State == System.Data.EntityState.Detached)
 this.context.Set<T>().Add(process);

 var commands = process.Commands.ToList();
 UndispatchedMessages undispatched = null;
 if (commands.Count > 0)
 {
 // If there are pending commands to send, we store them as undispatched.
 undispatched = new UndispatchedMessages(process.Id)
 {
 Commands = this.serializer.Serialize(commands)
 };
 this.context.Set<UndispatchedMessages>().Add(undispatched);
 }

 try
 {
 this.context.SaveChanges();
 }
 catch (DbUpdateConcurrencyException e)
 {
 throw new ConcurrencyException(e.Message, e);
 }

 this.DispatchMessages(undispatched, commands);
}

180 Journey seven

The following code sample from the SqlProcessDataContext class shows how the system tries to
send the command messages:

private void DispatchMessages(UndispatchedMessages undispatched,
 List<Envelope<ICommand>> deserializedCommands = null)
{
	 if (undispatched != null)
	 {
		 if (deserializedCommands == null)
		 {
			 deserializedCommands = this.serializer
 .Deserialize<IEnumerable<Envelope<ICommand>>>(
 undispatched.Commands).ToList();
		 }

		 var originalCommandsCount = deserializedCommands.Count;
		 try
		 {
			 while (deserializedCommands.Count > 0)
			 {
				 this.commandBus.Send(deserializedCommands.First());
				 deserializedCommands.RemoveAt(0);
			 }
		 }
		 catch (Exception)
		 {
		 // We catch a generic exception as we don't know
 // what implementation of ICommandBus we might be using.
			 if (originalCommandsCount != deserializedCommands.Count)
			 {
	 // If we were able to send some commands,
	 // then update the undispatched messages.
	 undispatched.Commands =
	 this.serializer.Serialize(deserializedCommands);
	 try
	 {
					 this.context.SaveChanges();
				 }
				 catch (DbUpdateConcurrencyException)
				 {
				 // If another thread already dispatched the messages,
 // ignore and surface original exception instead.
				 }
			 }

			 throw;
		 }

 181Adding Resilience and Optimizing Performance

		 // We remove all the undispatched messages for this process manager.
		 this.context.Set<UndispatchedMessages>().Remove(undispatched);
		 this.retryPolicy.ExecuteAction(() => this.context.SaveChanges());
	 }
}

The DispatchMessages method is also invoked from the Find method in the SqlProcessDataContext
class so that it tries to send any un-dispatched messages whenever the system rehydrates a Registration-
ProcessManager instance.

Optimizing the UI flow
The first optimization is to allow the UI to navigate directly to the registrant screen provided that
there are plenty of seats still available for the conference. This change is introduced in the Start-
Registration method in the RegistrationController class that now performs an additional check to
verify that there are enough remaining seats to stand a good chance of making the reservation before
it sends the RegisterToConference command, as shown in the following code sample:

[HttpPost]
public ActionResult StartRegistration(
 RegisterToConference command,
 int orderVersion)
{
 var existingOrder = orderVersion != 0
 ? this.orderDao.FindDraftOrder(command.OrderId)
 : null;
 var viewModel = existingOrder == null
 ? this.CreateViewModel()
 : this.CreateViewModel(existingOrder);
 viewModel.OrderId = command.OrderId;

 if (!ModelState.IsValid)
 {
 return View(viewModel);
 }

 // Checks that there are still enough available seats,
 // and the seat type IDs submitted are valid.
 ModelState.Clear();
 bool needsExtraValidation = false;
 foreach (var seat in command.Seats)
 {
 var modelItem = viewModel.Items
 .FirstOrDefault(x => x.SeatType.Id == seat.SeatType);
 if (modelItem != null)
 {

182 Journey seven

 if (seat.Quantity > modelItem.MaxSelectionQuantity)
 {
 modelItem.PartiallyFulfilled = needsExtraValidation = true;
 modelItem.OrderItem.ReservedSeats =
 modelItem.MaxSelectionQuantity;
 }
 }
 else
 {
 // Seat type no longer exists for conference.
 needsExtraValidation = true;
 }
 }

 if (needsExtraValidation)
 {
 return View(viewModel);
 }

 command.ConferenceId = this.ConferenceAlias.Id;
 this.commandBus.Send(command);

 return RedirectToAction(
 "SpecifyRegistrantAndPaymentDetails",
 new
 {
 conferenceCode = this.ConferenceCode,
 orderId = command.OrderId,
 orderVersion = orderVersion
 });
}

If there are not enough available seats, the controller redisplays the current screen, displaying the
currently available seat quantities to enable the registrant to revise her order.

This remaining part of the change is in the SpecifyRegistrantAndPaymentDetails method in the
RegistrationController class. The following code sample from the V2 release shows that before the
optimization, the controller calls the WaitUntilSeatsAreConfirmed method before continuing to
the registrant screen:

 183Adding Resilience and Optimizing Performance

[HttpGet]
[OutputCache(Duration = 0, NoStore = true)]
public ActionResult SpecifyRegistrantAndPaymentDetails(
 Guid orderId,
 int orderVersion)
{
 var order = this.WaitUntilSeatsAreConfirmed(orderId, orderVersion);
 if (order == null)
 {
 return View("ReservationUnknown");
 }

 if (order.State == DraftOrder.States.PartiallyReserved)
 {
 return this.RedirectToAction(
 "StartRegistration",
 new
 {
 conferenceCode = this.ConferenceCode,
 orderId, orderVersion = order.OrderVersion
 });
 }

 if (order.State == DraftOrder.States.Confirmed)
 {
 return View("ShowCompletedOrder");
 }

 if (order.ReservationExpirationDate.HasValue
 && order.ReservationExpirationDate < DateTime.UtcNow)
 {
 return RedirectToAction(
 "ShowExpiredOrder",
 new { conferenceCode = this.ConferenceAlias.Code, orderId = orderId });
 }

 var pricedOrder = this.WaitUntilOrderIsPriced(orderId, orderVersion);
 if (pricedOrder == null)
 {
 return View("ReservationUnknown");
 }

 this.ViewBag.ExpirationDateUTC = order.ReservationExpirationDate;

 return View(
 new RegistrationViewModel

184 Journey seven

 {
 RegistrantDetails = new AssignRegistrantDetails { OrderId = orderId },
 Order = pricedOrder
 });
}

The following code sample shows the V3 version of this method, which no longer waits for the res-
ervation to be confirmed:

[HttpGet]
[OutputCache(Duration = 0, NoStore = true)]
public ActionResult SpecifyRegistrantAndPaymentDetails(
 Guid orderId,
 int orderVersion)
{
 var pricedOrder = this.WaitUntilOrderIsPriced(orderId, orderVersion);
 if (pricedOrder == null)
 {
 return View("PricedOrderUnknown");
 }

 if (!pricedOrder.ReservationExpirationDate.HasValue)
 {
 return View("ShowCompletedOrder");
 }

 if (pricedOrder.ReservationExpirationDate < DateTime.UtcNow)
 {
 return RedirectToAction(
 "ShowExpiredOrder",
 new { conferenceCode = this.ConferenceAlias.Code, orderId = orderId });
 }

 return View(
 new RegistrationViewModel
 {
 RegistrantDetails = new AssignRegistrantDetails { OrderId = orderId },
 Order = pricedOrder
 });
}

Note: We made this method asynchronous later on during this stage of the journey.

 185Adding Resilience and Optimizing Performance

The second optimization in the UI flow is to perform the calculation of the order total earlier in
the process. In the previous code sample, the SpecifyRegistrantAndPaymentDetails method still
calls the WaitUntilOrderIsPriced method, which pauses the UI flow until the system calculates an
order total and makes it available to the controller by saving it in the priced-order view model on the
read side.

The key change to implement this is in the Order aggregate. The constructor in the Order class
now invokes the CalculateTotal method and raises an OrderTotalsCalculated event, as shown in the
following code sample:

public Order(
 Guid id,
 Guid conferenceId,
 IEnumerable<OrderItem> items,
 IPricingService pricingService)
 : this(id)
{
 var all = ConvertItems(items);
 var totals = pricingService.CalculateTotal(conferenceId, all.AsReadOnly());

 this.Update(new OrderPlaced
 {
 ConferenceId = conferenceId,
 Seats = all,
 ReservationAutoExpiration = DateTime.UtcNow.Add(ReservationAutoExpiration),
 AccessCode = HandleGenerator.Generate(6)
 });
 this.Update(
 new OrderTotalsCalculated
 {
 Total = totals.Total,
 Lines = totals.Lines != null ? totals.Lines.ToArray() : null,
 IsFreeOfCharge = totals.Total == 0m
 });
}

Previously, in the V2 release the Order aggregate waited until it received a MarkAsReserved com-
mand before it called the CalculateTotal method.

186 Journey seven

Receiving, completing, and sending messages
asynchronously
This section outlines how the system now performs all I/O on the
Windows Azure Service Bus asynchronously.

Receiving messages asynchronously
The SubscriptionReceiver and SessionSubscriptionReceiver classes
now receive messages asynchronously instead of synchronously in the
loop in the ReceiveMessages method.

For details see either the ReceiveMessages method in the
SubscriptionReceiver class or the ReceiveMessagesAndClose-
Session method in the SessionSubscriptionReceiver class.

Completing messages asynchronously
The system uses the peek/lock mechanism to retrieve messages from
the Service Bus topic subscriptions. To learn how the system per-
forms these operations asynchronously, see the ReceiveMessages
methods in the SubscriptionReceiver and SessionSubscriptionRe-
ceiver classes. This provides one example of how the system uses
asynchronous APIs.

Sending messages asynchronously
The application now sends all messages on the Service Bus asynchro-
nously. For more details, see the TopicSender class.

Handling commands synchronously and
in-process
In the V2 release, the system used the Windows Azure Service Bus to
deliver all commands to their recipients. This meant that the system
delivered the commands asynchronously. In the V3 release, the MVC
controllers now send their commands synchronously and in-process
in order to improve the response times in the UI by bypassing the
command bus and delivering commands directly to their handlers. In
addition, in the ConferenceProcessor worker role, commands sent to
Order aggregates are sent synchronously in-process using the same
mechanism.

This code sample also
shows how to use
the Transient Fault
Handling Application
Block to reliably
receive messages
asynchronously from
the Service Bus topic.
The asynchronous
loops make the code
much harder to
read, but much more
efficient. This is a
recommended best
practice. This code
would benefit from the
new async keywords
in C# 4.

We still continue to
send commands to
the SeatsAvailability
aggregate asynchronously
because with
multiple instances
of the Registration-
ProcessManager running
in parallel, there will be
contention as multiple
threads all try to access
the same instance of
the SeatsAvailability
aggregate.

http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx

 187Adding Resilience and Optimizing Performance

The team implemented this behavior by adding the SynchronousCommandBusDecorator and
CommandDispatcher classes to the infrastructure and registering them during the start-up of the
web role, as shown in the following code sample from the OnCreateContainer method in the
Global.asax.Azure.cs file:

var commandBus = new CommandBus(
 new TopicSender(settings.ServiceBus, "conference/commands"),
 metadata,
 serializer);
var synchronousCommandBus = new SynchronousCommandBusDecorator(commandBus);

container.RegisterInstance<ICommandBus>(synchronousCommandBus);
container.RegisterInstance<ICommandHandlerRegistry>(synchronousCommandBus);

container.RegisterType<ICommandHandler, OrderCommandHandler>(
 "OrderCommandHandler");
container.RegisterType<ICommandHandler, ThirdPartyProcessorPaymentCommandHandler>(
 "ThirdPartyProcessorPaymentCommandHandler");
container.RegisterType<ICommandHandler, SeatAssignmentsHandler>(
 "SeatAssignmentsHandler");

Note: There is similar code in the Conference.Azure.cs file to configure the worker role to send
some commands in-process.

The following code sample shows how the SynchronousCommandBusDecorator class implements
the sending of a command message:

public class SynchronousCommandBusDecorator : ICommandBus, ICommandHandlerRegistry
{
 private readonly ICommandBus commandBus;
 private readonly CommandDispatcher commandDispatcher;

 public SynchronousCommandBusDecorator(ICommandBus commandBus)
 {
 this.commandBus = commandBus;
 this.commandDispatcher = new CommandDispatcher();
 }

 ...

 public void Send(Envelope<ICommand> command)
 {
 if (!this.DoSend(command))
 {

188 Journey seven

 Trace.TraceInformation(
 "Command with id {0} was not handled locally. Sending it through the bus.",
 command.Body.Id);
 this.commandBus.Send(command);
 }
 }

 ...

 private bool DoSend(Envelope<ICommand> command)
 {
 bool handled = false;

 try
 {
 var traceIdentifier =
 string.Format(
 CultureInfo.CurrentCulture,
 " (local handling of command with id {0})",
 command.Body.Id);
 handled = this.commandDispatcher.ProcessMessage(traceIdentifier,
 command.Body, command.MessageId, command.CorrelationId);

 }
 catch (Exception e)
 {
 Trace.TraceWarning(
 "Exception handling command with id {0} synchronously: {1}",
 command.Body.Id,
 e.Message);
 }

 return handled;
 }
}

Notice how this class tries to send the command synchronously without using the Service Bus, but if
it cannot find a handler for the command, it reverts to using the Service Bus. The following code
sample shows how the CommandDispatcher class tries to locate a handler and deliver a command
message:

 189Adding Resilience and Optimizing Performance

public bool ProcessMessage(
 string traceIdentifier,
 ICommand payload,
 string messageId,
 string correlationId)
{
 var commandType = payload.GetType();
 ICommandHandler handler = null;

 if (this.handlers.TryGetValue(commandType, out handler))
 {
 Trace.WriteLine(
 "-- Handled by " + handler.GetType().FullName + traceIdentifier);
 ((dynamic)handler).Handle((dynamic)payload);
 return true;
 }
 else
 {
 return false;
 }
}

Implementing snapshots with the memento
pattern
In the Contoso Conference Management System, the only event
sourced aggregate that is likely to have a significant number of events
per instance and benefit from snapshots is the SeatAvailability ag-
gregate.

The following code sample from the Save method in the Azure-
EventSourcedRepository class shows how the system creates a
cached memento object if there is a cache and the aggregate imple-
ments the IMementoOriginator interface.

public void Save(T eventSourced, string correlationId)
{
 ...

 this.cacheMementoIfApplicable.Invoke(eventSourced);
}

Then, when the system loads an aggregate by invoking the Find
method in the AzureEventSourcedRepository class, it checks to see
if there is a cached memento containing a snapshot of the state of the
object to use:

Because we chose to use
the memento pattern, the
snapshot of the aggregate
state is stored in the
memento.

190 Journey seven

private readonly Func<Guid, Tuple<IMemento, DateTime?>> getMementoFromCache;

...

public T Find(Guid id)
{
	 var cachedMemento = this.getMementoFromCache(id);
	 if (cachedMemento != null && cachedMemento.Item1 != null)
	 {
		 IEnumerable<IVersionedEvent> deserialized;
		 if (!cachedMemento.Item2.HasValue
 || cachedMemento.Item2.Value < DateTime.UtcNow.AddSeconds(-1))
		 {
			 deserialized = this.eventStore
 .Load(GetPartitionKey(id), cachedMemento.Item1.Version + 1)
 .Select(this.Deserialize);
		 }
		 else
		 {
			 deserialized = Enumerable.Empty<IVersionedEvent>();
		 }

		 return this.originatorEntityFactory

 .Invoke(id, cachedMemento.Item1, deserialized);
	 }
	 else
	 {
		 var deserialized = this.eventStore.Load(GetPartitionKey(id), 0)
			 .Select(this.Deserialize)
			 .AsCachedAnyEnumerable();

		 if (deserialized.Any())
		 {
			 return this.entityFactory.Invoke(id, deserialized);
		 }
	 }

	 return null;
}

If the cache entry was updated in the last few seconds, there is a high probability that it is not stale
because we have a single writer for high-contention aggregates. Therefore, we optimistically avoid
checking for new events in the event store since the memento was created. Otherwise, we check in
the event store for events that arrived after the memento was created.

The following code sample shows how the SeatsAvailability class adds a snapshot of its state
data to the memento object to be cached:

 191Adding Resilience and Optimizing Performance

public IMemento SaveToMemento()
{
 return new Memento
 {
 Version = this.Version,
 RemainingSeats = this.remainingSeats.ToArray(),
 PendingReservations = this.pendingReservations.ToArray(),
 };
}

Publishing events in parallel
In Chapter 5, “Preparing for the V1 Release,” you saw how the system publishes events whenever it
saves them to the event store. This optimization enables the system to publish some of these events
in parallel instead of publishing them sequentially. It is important that the events associated with a
specific aggregate instance are sent in the correct order, so the system only creates new tasks for
different partition keys. The following code sample from the Start method in the EventStoreBus-
Publisher class shows how the parallel tasks are defined:

Task.Factory.StartNew(
 () =>
 {
 try
 {
 foreach (var key in GetThrottlingEnumerable(
 this.enqueuedKeys.GetConsumingEnumerable(cancellationToken),
 this.throttlingSemaphore,
 cancellationToken))
 {
 if (!cancellationToken.IsCancellationRequested)
 {
 ProcessPartition(key);
 }
 else
 {
 this.enqueuedKeys.Add(key);
 return;
 }
 }
 }
 catch (OperationCanceledException)
 {
 return;
 }
 },
 TaskCreationOptions.LongRunning);

The SubscriptionReceiver and SessionSubscriptionReceiver classes use the same Dynamic-
Throttling class to dynamically throttle the retrieval of messages from the service bus.

192 Journey seven

Filtering messages in subscriptions
The team added filters to the Windows Azure Service Bus subscriptions to restrict the messages that
each subscription receives to those messages that the subscription is intended to handle. You can see
the definitions of these filters in the Settings.Template.xml file, as shown in the following snippet:

<Topic Path="conference/events" IsEventBus="true">
 <Subscription Name="log" RequiresSession="false"/>
 <Subscription Name="Registration.RegistrationPMOrderPlaced"
 RequiresSession="false"
 SqlFilter="TypeName IN ('OrderPlaced')"/>
 <Subscription Name="Registration.RegistrationPMNextSteps"
 RequiresSession="false"
 SqlFilter="TypeName IN ('OrderUpdated','SeatsReserved',
	 'PaymentCompleted','OrderConfirmed')"/>
 <Subscription Name="Registration.OrderViewModelGenerator"
 RequiresSession="true"
 SqlFilter="TypeName IN ('OrderPlaced','OrderUpdated',
	 'OrderPartiallyReserved','OrderReservationCompleted',
	 'OrderRegistrantAssigned','OrderConfirmed',
	 'OrderPaymentConfirmed')"/>
 <Subscription Name="Registration.PricedOrderViewModelGenerator"
 RequiresSession="true" SqlFilter="TypeName IN ('OrderPlaced',
				 'OrderTotalsCalculated', 'OrderConfirmed','OrderExpired',
				 'SeatAssignmentsCreated','SeatCreated','SeatUpdated')"/>
 <Subscription Name="Registration.ConferenceViewModelGenerator"
 RequiresSession="true"
 SqlFilter="TypeName IN ('ConferenceCreated','ConferenceUpdated',
	 'ConferencePublished','ConferenceUnpublished',
	 'SeatCreated', 'SeatUpdated','AvailableSeatsChanged',
	 'SeatsReserved','SeatsReservationCancelled')"/>
 <Subscription Name="Registration.SeatAssignmentsViewModelGenerator"
 RequiresSession="true"
		 SqlFilter="TypeName IN ('SeatAssignmentsCreated','SeatAssigned',
			 'SeatUnassigned','SeatAssignmentUpdated')"/>
 <Subscription Name="Registration.SeatAssignmentsHandler"
 RequiresSession="true"
 	SqlFilter="TypeName IN ('OrderConfirmed','OrderPaymentConfirmed')"/>
 <Subscription Name="Conference.OrderEventHandler"
 RequiresSession="true"
		 SqlFilter="TypeName IN ('OrderPlaced','OrderRegistrantAssigned',
			 'OrderTotalsCalculated','OrderConfirmed','OrderExpired',
			 'SeatAssignmentsCreated','SeatAssigned',
			 'SeatAssignmentUpdated','SeatUnassigned')"/>

 ...
</Topic>

 193Adding Resilience and Optimizing Performance

Creating a dedicated SessionSubscriptionReceiver instance for
the SeatsAvailability aggregate
In the V2 release, the system did not use sessions for commands because we do not require ordering
guarantees for commands. However, we now want to use sessions for commands to guarantee a single
listener for each SeatsAvailability aggregate instance, which will help us to scale out without getting
a large number of concurrency exceptions from this high-contention aggregate.

The following code sample from the Conference.Processor.Azure.cs file shows how the system
creates a dedicated SessionSubscriptionReceiver instance to receive messages destined for the Seats-
Availability aggregate:

var seatsAvailabilityCommandProcessor =
 new CommandProcessor(
 new SessionSubscriptionReceiver(
 azureSettings.ServiceBus,
 Topics.Commands.Path,
 Topics.Commands.Subscriptions.SeatsAvailability,
 false),
 serializer);

...

container.RegisterInstance<IProcessor>(
 "SeatsAvailabilityCommandProcessor",
 seatsAvailabilityCommandProcessor);

The following code sample shows the new abstract SeatsAvailabilityCommand class that includes a
session ID based on the conference that the command is associated with:

public abstract class SeatsAvailabilityCommand : ICommand, IMessageSessionProvider
{
 public SeatsAvailabilityCommand()
 {
 this.Id = Guid.NewGuid();
 }

 public Guid Id { get; set; }
 public Guid ConferenceId { get; set; }

 string IMessageSessionProvider.SessionId
 {
 get { return "SeatsAvailability_" + this.ConferenceId.ToString(); }
 }
}

194 Journey seven

The command bus now uses a separate subscription for commands
destined for the SeatsAvailability aggregate.

Caching read-model data
As part of the performance optimizations in the V3 release, the team
added caching behavior for the conference information stored in the
Orders and Registrations bounded context read model. This reduces
the time taken to read this commonly used data.

The following code sample from the GetPublishedSeatTypes
method in the CachingConferenceDao class shows how the system
determines whether to cache the data for a conference based on the
number of available seats:

TimeSpan timeToCache;
if (seatTypes.All(x => x.AvailableQuantity > 200 || x.AvailableQuantity <= 0))
{
 timeToCache = TimeSpan.FromMinutes(5);
}
else if (seatTypes.Any(x => x.AvailableQuantity < 30 && x.AvailableQuantity > 0))
{
 // There are just a few seats remaining. Do not cache.
 timeToCache = TimeSpan.Zero;
}
else if (seatTypes.Any(x => x.AvailableQuantity < 100 && x.AvailableQuantity > 0))
{
 timeToCache = TimeSpan.FromSeconds(20);
}
else
{
 timeToCache = TimeSpan.FromMinutes(1);
}

if (timeToCache > TimeSpan.Zero)
{
 this.cache.Set(
 key,
 seatTypes,
 new CacheItemPolicy
 {
 AbsoluteExpiration = DateTimeOffset.UtcNow.Add(timeToCache)
 });
}

The team applied a similar technique to the RegistrationProcess-Manager process
manager by creating a separate subscription for OrderPlaced events to handle new orders.
A separate subscription receives all the other events destined for the process manager.

 195Adding Resilience and Optimizing Performance

The system now also uses a cache to hold seat type descriptions in the
PricedOrderViewModelGenerator class.

Using multiple topics to partition the
service bus
To reduce the number of messages flowing through the service bus
topics, we partitioned the service bus by creating two additional top-
ics to transport events published by the Order and SeatAvailability
aggregates. This helps us to avoid being throttled by the service bus
when the application is experiencing very high loads. The following
snippet from the Settings.xml file shows the definitions of these new
topics:

You can see how we
manage the risks associated
with displaying stale data
by adjusting the caching
duration, or even deciding
not to cache the data at all.

<Topic Path="conference/orderevents" IsEventBus="true">
 <Subscription Name="logOrders" RequiresSession="false"/>
 <Subscription Name="Registration.RegistrationPMOrderPlacedOrders"
 RequiresSession="false" SqlFilter="TypeName IN ('OrderPlaced')"/>
 <Subscription Name="Registration.RegistrationPMNextStepsOrders"
 RequiresSession="false" SqlFilter="TypeName IN ('OrderUpdated',
			 'SeatsReserved','PaymentCompleted','OrderConfirmed')"/>
 <Subscription Name="Registration.OrderViewModelGeneratorOrders"
 RequiresSession="true" SqlFilter="TypeName IN (‘OrderPlaced',
 'OrderUpdated','OrderPartiallyReserved','OrderReservationCompleted',
 'OrderRegistrantAssigned','OrderConfirmed','OrderPaymentConfirmed')"/>
 <Subscription Name="Registration.PricedOrderViewModelOrders"
 RequiresSession="true" SqlFilter="TypeName IN ('OrderPlaced',
 'OrderTotalsCalculated','OrderConfirmed', 'OrderExpired',
 'SeatAssignmentsCreated','SeatCreated','SeatUpdated')"/>
 <Subscription Name="Registration.SeatAssignmentsViewModelOrders"
 RequiresSession="true" SqlFilter="TypeName IN ('SeatAssignmentsCreated',
 'SeatAssigned','SeatUnassigned','SeatAssignmentUpdated')"/>
 <Subscription Name="Registration.SeatAssignmentsHandlerOrders"
 RequiresSession="true"
 SqlFilter="TypeName IN ('OrderConfirmed','OrderPaymentConfirmed')"/>
 <Subscription Name="Conference.OrderEventHandlerOrders" RequiresSession="true"
 SqlFilter="TypeName IN ('OrderPlaced','OrderRegistrantAssigned',
 'OrderTotalsCalculated', 'OrderConfirmed','OrderExpired',
 'SeatAssignmentsCreated','SeatAssigned','SeatAssignmentUpdated',
 'SeatUnassigned')"/>
</Topic>

196 Journey seven

<Topic Path="conference/availabilityevents" IsEventBus="true">
 <Subscription Name="logAvail" RequiresSession="false"/>
 <Subscription Name="Registration.RegistrationPMNextStepsAvail"
 RequiresSession="false" SqlFilter="TypeName IN (‘OrderUpdated',
 'SeatsReserved','PaymentCompleted','OrderConfirmed')"/>
 <Subscription Name="Registration.PricedOrderViewModelAvail"
 RequiresSession="true" SqlFilter="TypeName IN ('OrderPlaced',
 'OrderTotalsCalculated','OrderConfirmed', 'OrderExpired',
 'SeatAssignmentsCreated','SeatCreated','SeatUpdated')"/>
 <Subscription Name="Registration.ConferenceViewModelAvail"
 RequiresSession="true" SqlFilter="TypeName IN ('ConferenceCreated',
 'ConferenceUpdated','ConferencePublished', 'ConferenceUnpublished',
 'SeatCreated','SeatUpdated','AvailableSeatsChanged',
 'SeatsReserved','SeatsReservationCancelled')"/>
</Topic>

Other optimizing and hardening changes
This section outlines some of the additional ways that the team optimized the performance of the
application and improved its resilience:
•	 Using sequential GUIDs
•	 Using asynchronous ASP.NET MVC controllers.
•	 Using prefetch to retrieve multiple messages from the Service Bus.
•	 Accepting multiple Windows Azure Service Bus sessions in parallel.
•	 Expiring seat reservation commands.

Sequential GUIDs
Previously, the system generated the GUIDs that it used for the IDs of aggregates such as orders and
reservations using the Guid.NewGuid method, which generates random GUIDs. If these GUIDs are
used as primary key values in a SQL Database instance, this causes frequent page splits in the indexes,
which has a negative impact on the performance of the database. In the V3 release, the team added a
utility class that generates sequential GUIDs. This ensures that new entries in the SQL Database tables
are always appends; this improves the overall performance of the database. The following code sample
shows the new GuidUtil class:

 197Adding Resilience and Optimizing Performance

public static class GuidUtil
{
	 private static readonly long EpochMilliseconds =
 new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc).Ticks / 10000L;

	 /// <summary>
	 /// Creates a sequential GUID according to SQL Server’s ordering rules.
	 /// </summary>
	 public static Guid NewSequentialId()
	 {
		 // This code was not reviewed to guarantee uniqueness under most
		 // conditions, nor completely optimize for avoiding page splits in SQL
		 // Server when doing inserts from multiple hosts, so do not re-use in
		 // production systems.
		 var guidBytes = Guid.NewGuid().ToByteArray();

		 // Get the milliseconds since Jan 1 1970.
		 byte[] sequential = BitConverter.GetBytes(
 (DateTime.Now.Ticks / 10000L) - EpochMilliseconds);

		 // Discard the 2 most significant bytes, as we only care about the
		 // milliseconds increasing, but the highest ones should be 0 for several
		 // thousand years to come.
		 if (BitConverter.IsLittleEndian)
		 {
			 guidBytes[10] = sequential[5];
			 guidBytes[11] = sequential[4];
			 guidBytes[12] = sequential[3];
			 guidBytes[13] = sequential[2];
			 guidBytes[14] = sequential[1];
			 guidBytes[15] = sequential[0];
		 }
		 else
		 {
			 Buffer.BlockCopy(sequential, 2, guidBytes, 10, 6);
		 }

		 return new Guid(guidBytes);
	 }
}

For further information, see The Cost of GUIDs as Primary Keys and Good Page Splits and Sequential
GUID Key Generation.

http://www.informit.com/articles/article.aspx?p=25862
http://blogs.msdn.com/b/dbrowne/archive/2012/06/26/good-page-splits-and-sequential-guid-key-generation.aspx
http://blogs.msdn.com/b/dbrowne/archive/2012/06/26/good-page-splits-and-sequential-guid-key-generation.aspx

198 Journey seven

Asynchronous ASP.NET MVC controllers.
The team converted some of the MVC controllers in the public conference web application to be
asynchronous controllers. This avoids blocking some ASP.NET threads and enabled us to use the
support for the Task class in ASP.NET MVC 4.

For example, the team modified the way that the controller polls for updates in the read models
to use timers.

Using prefetch with Windows Azure Service Bus
The team enabled the prefetch option when the system retrieves messages from the Windows Azure
Service Bus. This option enables the system to retrieve multiple messages in a single round-trip to the
server and helps to reduce the latency in retrieving existing messages from the Service Bus topics.

The following code sample from the SubscriptionReceiver class shows how to enable this option.

protected SubscriptionReceiver(
 ServiceBusSettings settings,
 string topic,
 string subscription,
 bool processInParallel,
 ISubscriptionReceiverInstrumentation instrumentation,
 RetryStrategy backgroundRetryStrategy)
{
 this.settings = settings;
 this.topic = topic;
 this.subscription = subscription;
 this.processInParallel = processInParallel;

 this.tokenProvider = TokenProvider.CreateSharedSecretTokenProvider(

 settings.TokenIssuer,

 settings.TokenAccessKey);
 this.serviceUri = ServiceBusEnvironment.CreateServiceUri(
 settings.ServiceUriScheme,
 settings.ServiceNamespace,
 settings.ServicePath);

 var messagingFactory = MessagingFactory.Create(this.serviceUri, tokenProvider);
 this.client = messagingFactory.CreateSubscriptionClient(topic, subscription);
 if (this.processInParallel)
 {
 this.client.PrefetchCount = 18;
 }
 else
 {
 this.client.PrefetchCount = 14;
 }

 ...
}

 199Adding Resilience and Optimizing Performance

Accepting multiple sessions in parallel
In the V2 release, the SessionSubscriptionReceiver creates sessions
to receive messages from the Windows Azure Service Bus in se-
quence. However if you are using a session, you can only handle mes-
sages from that session; other messages are ignored until you switch
to a different session. In the V3 release, the SessionSubscription-
Receiver creates multiple sessions in parallel, enabling the system to
receive messages from multiple sessions simultaneously.

For details, see the AcceptSession method in the Session-
SubscriptionReceiver class.

Adding an optimistic concurrency check
The team also added an optimistic concurrency check when the
system saves the RegistrationProcessManager class by adding a
timestamp property to the RegistrationProcessManager class, as
shown in the following code sample:

[ConcurrencyCheck]
[Timestamp]
public byte[] TimeStamp { get; private set; }

For more information, see Code First Data Annotations on the MSDN
website.

With the optimistic concurrency check in place, we also removed
the C# lock in the Session-SubscriptionReceiver class that was a
potential bottleneck in the system.

Adding a time-to-live value to the MakeSeatReservation command
Windows Azure Service Bus brokered messages can have a value as-
signed to the TimeToLive property; when the time-to-live expires,
the message is automatically sent to a dead-letter queue. The applica-
tion uses this feature of the service bus to avoid processing Make-
SeatReservation commands if the order they are associated with has
already expired.

Reducing the number of round-trips to the database
We identified a number of locations in the PricedOrderViewModel-
Generator class where we could optimize the code. Previously, the sys-
tem made two calls to the SQL Database instance when this class han-
dled an order being placed or expired; now the system only makes a
single call.

The AcceptSession method
uses the Transient Fault
Handling Application Block
to reliably accept sessions.

http://msdn.microsoft.com/en-us/library/gg197525(VS.103).aspx

200 Journey seven

Impact on testing
During this stage of the journey the team reorganized the Confer-
ence.Specflow project in the Conference.AcceptanceTests Visual
Studio solution to better reflect the purpose of the tests.

Integration tests
The tests in the Features\Integration folder in the Conference.
Specflow project are designed to test the behavior of the domain
directly, verifying the behavior of the domain by looking at the com-
mands and events that are sent and received. These tests are designed
to be understood by programmers rather than domain experts and are
formulated using a more technical vocabulary than the ubiquitous
language. In addition to verifying the behavior of the domain and
helping developers to understand the flow of commands and events
in the system, these tests proved to be useful in testing the behavior
of the domain in scenarios in which events are lost or are received out
of order.

The Conference folder contains integration tests for the Confer-
ence Management bounded context, and the Registration folder
contains tests for the Orders and Registrations bounded context.

User interface tests
The UserInterface folder contains the acceptance tests. These tests
are described in more detail in Chapter 4, “Extending and Enhancing
the Orders and Registrations Bounded Context.” The Controllers
folder contains the tests that use the MVC controllers as the point of
entry, and the Views folder contains the tests that use WatiN to drive
the system through its UI.

Summary
The focus of the final stage in our CQRS journey and the V3 pseudo-
production release was on resilience and performance. The next
chapter summarizes the lessons we have learned during the entire
journey and also suggest some things that we might have done differ-
ently if we had the chance to start over with the knowledge we’ve
gained.

More information
All links in this book are accessible from the book’s online bibliogra-
phy available at: http://msdn.microsoft.com/en-us/library/jj619274.

These integration tests
make the assumption that
the command handlers
trust the sender of the
commands to send valid
command messages. This
may not be appropriate for
other systems you may be
designing tests for.

http://watin.org
http://msdn.microsoft.com/en-us/library/jj619274

 201

“This land may be profitable to those that will adventure it.”
Henry Hudson

Epilogue: Lessons Learned
How good was our map? How far did we get?

What did we learn? Did we get lost?

Journey 8:

“CQRS taught me that I can
optimize reads and writes
separately and I don’t have to
manually denormalize into
flat tables all the time.”
— Kelly Sommers – CQRS
Advisor

This chapter summarizes the findings from our journey. It highlights
what we feel were the most significant lessons we learned along the
way, suggests some things we would do differently if we were em-
barking on the journey with our newfound knowledge, and points out
some future paths for the Contoso Conference Management System.

You should bear in mind that this summary reflects our specific
journey; not all of these findings will necessarily apply to your own
CQRS journeys. For example, one of our goals was to explore how to
implement the CQRS pattern in an application that is deployed to
Windows Azure and that makes use of the scalability and reliability of
the cloud. For our project, this meant using messaging to enable mul-
tiple role types and instances to communicate with each other. It may
be that your project does not require multiple role instances or is not
deployed to the cloud and therefore may not need to use messaging
so extensively (or at all).

We hope these findings do prove useful, especially if you are just
starting out with CQRS and event sourcing.

What did we learn?
This section describes the key lessons we learned. They are not pre-
sented in any particular order.

Performance matters
At the start of our journey, one of our notions about the CQRS pat-
tern was that by separating the read and write sides of the application
we could optimize each for performance. This perspective is shared
by many in the CQRS community, for example:

202 Journey eight

This was borne out in practice during our journey and we bene-
fited significantly from this separation when we did need to solve a
performance issue.

During the last stage of our journey, testing revealed a set of
performance issues in our application. When we investigated them, it
turned out they had less to do with the way we had implemented the
CQRS pattern and more to do with the way we were using our infra-
structure. Discovering the root cause of these problems was the hard
part; with so many moving parts in the application, getting the right
tracing and the right data for analysis was the challenge. Once we
identified the bottlenecks, fixing them turned out to be relatively
easy, largely because of the way the CQRS pattern enables you to
clearly separate different elements of the system, such as reads and
writes. Although the separation of concerns that results from imple-
menting the CQRS pattern can make it harder to identify an issue,
once you have identified one, it is not only easier to fix, but also
easier to prevent its return. The decoupled architecture makes it
simpler to write unit tests that reproduce issues.

The challenges we encountered in tackling the performance is-
sues in the system had more to do with the fact that our system is a
distributed, message-based system than the fact that it implements
the CQRS pattern.

Chapter 7, “Adding Resilience and Optimizing Performance” pro-
vides more information about the ways we addressed the performance
issues in the system and makes some suggestions about additional
changes that we would like to make, but didn’t have time to imple-
ment.

Implementing a message-driven system is far
from simple
Our approach to infrastructure on this project was to develop it as
needed during the journey. We didn’t anticipate (and had no fore-
warning of) how much time and effort we would need to create the
robust infrastructure that our application required. We spent at least
twice as much time as we originally planned on many development
tasks because we continued to uncover additional infrastructure-re-
lated requirements. In particular, we learned that having a robust
event store from the beginning is essential. Another key idea we took
away from the experience is that all I/O on the message bus should
be asynchronous.

Although our application is not large, it illustrated clearly to us
the importance of having end-to-end tracing available, and the value
of tools that help us understand all of the message flows in the sys-
tem. Chapter 4, “Extending and Enhancing the Orders and Registra-
tions Bounded Context,” describes the value of tests in helping us
understand the system, and discusses the messaging intermediate
language (MIL) created by Josh Elster, one of our advisors.

Although our event store is
not production-ready, the
current implementation
gives a good indication
of the type of issues you
should address if you decide
to implement your own
event store.

It would also help if we
had a standard notation for
messaging that would help
us communicate some of
the issues with the domain
experts and people outside
of the core team.

 203Epilogue: Lessons Learned

In summary, many of the issues we met along the way were not
related specifically to the CQRS pattern, but were more related to the
distributed, message-driven nature of our solution.

The cloud has challenges
Although the cloud provides many benefits, such as reliable, scalable,
off-the-shelf services that you can provision with just a few mouse
clicks, cloud environments also introduce some challenges:
•	 You may not be able to use transactions everywhere you want

them because the distributed nature of the cloud makes ACID
(atomicity, consistency, isolation, durability) transactions
impractical in many scenarios. Therefore, you need to under-
stand how to work with eventual consistency. For examples, see
Chapter 5, “Preparing for the V1 Release,” and the section
Options to reduce the delay in the UI in Chapter 7, “Adding
Resilience and Optimizing Performance.”

•	 You may want to re-examine your assumptions about how to
organize your application into different tiers. For example, see
the discussion around in-process, synchronous commands in
Chapter 7, “Adding Resilience and Optimizing Performance.”

•	 You must take into account not only the latency between the
browser or on-premises environment and the cloud, but also the
latency between the different parts of your system that are
running in the cloud.

•	 You must take into account transient errors and be aware of
how different cloud services might implement throttling. If your
application uses several cloud services that might be throttled,
you must coordinate how your application handles being
throttled by different services at different times.

A complex cloud environment can make it harder to run quick tests
during development. A local test environment may not mimic the
behavior of the cloud exactly, especially with respect to performance
and throttling.

Note: The multiple build configurations in our Visual Studio
solution were partially designed to address this, but also to help
people downloading and playing with the code to get started
quickly.

We found that having a single bus abstraction in our code obscured the fact that
some messages are handled locally in-process and some are handled in a different
role instance. To see how this is implemented, look at the ICommandBus interface
and the CommandBus and SynchronousCommandBusDecorator classes.
Chapter 7, “Adding Resilience and Optimizing Performance” includes a discussion
of the SynchronousCommandBusDecorator class.

We found that partitioning
our service bus by using
different topics to transport
events published by
different aggregates helped
us to achieve scalability.
For more information,
see Chapter 7, “Adding
Resilience and Optimizing
Performance.” Also, see
these blog posts: “Windows
Azure Storage Abstractions
and their Scalability Targets”
and “Best Practices for
Performance Improvements
Using Service Bus Brokered
Messaging.”

http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://aka.ms/SBperf
http://aka.ms/SBperf
http://aka.ms/SBperf
http://aka.ms/SBperf

204 Journey eight

CQRS is different
At the start of our journey we were warned that although the CQRS
pattern appears to be simple, in practice it requires a significant shift
in the way you think about many aspects of the project. Again, this
was borne out by our experiences during the journey. You must be
prepared to throw away many assumptions and preconceived ideas,
and you will probably need to implement the CQRS pattern in sev-
eral bounded contexts before you begin to fully understand the
benefits you can derive from the pattern.

An example of this is the concept of eventual consistency. If you
come from a relational database background and are accustomed to
the ACID properties of transactions, then embracing eventual consis-
tency and understanding its implications at all levels in the system is
a big step to take. Chapter 5, “Preparing for the V1 Release” and
Chapter 7, “Adding Resilience and Optimizing Performance” both
discuss eventual consistency in different areas of the system.

In addition to being different from what you might be familiar
with, there is also no single correct way to implement the CQRS pat-
tern. We made more false starts on pieces of functionality and esti-
mated poorly how long things would take due to our unfamiliarity
with the pattern and approach. As we become more comfortable
with the approach, we hope to become faster at identifying how to
implement the pattern in specific circumstances and improve the ac-
curacy of our estimates.

Another situation in which we took some time to understand the
CQRS approach and its implications was during the integration be-
tween our bounded contexts. Chapter 5, “Preparing for the V1 Re-
lease,” includes a detailed discussion of how the team approached the
integration issue between the Conference Management and the Or-
ders and Registrations bounded contexts. This part of the journey
uncovered some additional complexity that relates to the level of
coupling between bounded contexts when you use events as the in-
tegration mechanism. Our assumption that events should only con-
tain information about the change in the aggregate or the bounded
context proved to be unhelpful; events can contain additional infor-
mation that is useful to one or more subscribers and helps to reduce
the amount of work that a subscriber must perform.

The CQRS pattern is
conceptually simple; the
devil is in the details.

 205Epilogue: Lessons Learned

The CQRS pattern introduces additional considerations for how
to partition your system. Not only do you need to consider how to
partition your system into tiers, but also how to partition your system
into bounded contexts, some of which will contain implementations
of the CQRS pattern. We revised some of our assumptions about tiers
in the last stage of our journey, bringing some processing into our web
roles from the worker role where it was originally done. This is de-
scribed in Chapter 7, “Adding Resilience and Optimizing Performance”
in the section that discusses moving some command processing in-
process. Partitioning the system into bounded contexts should be
done based on your domain model: each bounded context has its own
domain model and ubiquitous language. Once you have identified your
bounded contexts, you can then identify in which bounded contexts
to implement the CQRS pattern. This affects how and where you
need to implement integration between these isolated bounded con-
texts. Chapter 2, “Decomposing the Domain,” introduces our decisions
for the Contoso Conference Management System.

Implementing the CQRS pattern is more complex than imple-
menting a traditional (create, read, update, delete) CRUD-style sys-
tem. For this project, there was also the overhead of learning about
CQRS for the first time, and creating a distributed, asynchronous
messaging infrastructure. Our experiences during the journey have
clearly confirmed to us why the CQRS pattern is not a top-level ar-
chitecture. You must be sure that the costs associated with imple-
menting a CQRS-based bounded context with this level of complex-
ity are worth it; in general, it is in high-contention, collaborative
domains that you will see the benefits of the CQRS pattern.

Event sourcing and transaction logging
We had some debate about whether or not event sourcing and trans-
action logging amount to the same thing: they both create a record
of what happened, and they both enable you to recreate the state of
your system by replaying the historical data. The conclusion was that
the distinguishing feature is that events capture intent in addition to
recording the facts of what happened. For more detail on what we
mean by intent, see Chapter 4, “A CQRS and ES Deep Dive,” in the
Reference Guide.

A single process
(role instance in our
deployment) can host
multiple bounded
contexts. In this
scenario, you don’t
necessarily need to
use a service bus for
the bounded contexts
to communicate with
each other.

Analyzing the business
requirements, building
a useful model,
maintaining the model,
expressing it in code,
and implementing
it using the CQRS
pattern all take time
and cost money. If this
is the first time you
have implemented the
CQRS pattern, you’ll
also have the overhead
of investing in your
infrastructure elements
such as message buses
and event stores.

206 Journey eight

Involving the domain expert
Implementing the CQRS pattern encourages involvement of the do-
main expert. The pattern enables you to separate out the domain on
the write side and the reporting requirements on the read side and to
separate these from infrastructure concerns. This separation makes it
easier to involve the domain expert in those aspects of the system
where his expertise is most valuable. The use of domain-driven design
concepts such as bounded contexts and the ubiquitous language also
help to focus the team and to foster clear communication with the
domain expert.

Our acceptance tests proved to be an effective way to involve
the domain expert and capture his knowledge. Chapter 4, “Extending
and Enhancing the Orders and Registrations Bounded Context,” de-
scribes this testing approach in detail.

In addition to helping the team define the functional require-
ments of the system, the domain expert should also be involved in
evaluating the trade-offs between consistency, availability, durability,
and costs. For example, the domain expert should help to identify
when a manual process is acceptable and what level of consistency is
required in different areas of the system.

When to use CQRS
Now that we are at the end of our journey, we can suggest some of
the criteria you should evaluate to determine whether or not you
should consider implementing the CQRS pattern in one or more
bounded contexts in your application. The more of these questions
you can answer positively, the more likely it is that applying the CQRS
pattern to a given bounded context will benefit your solution:
•	 Does the bounded context implement an area of business

functionality that is a key differentiator in your market?
•	 Is the bounded context collaborative in nature with elements

that are likely to have high levels of contention at run time? In
other words, do multiple users compete for access to the same
resources?

•	 Is the bounded context likely to experience ever-changing
business rules?

•	 Do you have a robust, scalable messaging and persistence
infrastructure already in place?

•	 Is scalability one of the challenges facing this bounded context?
•	 Is the business logic in the bounded context complex?
•	 Are you clear about the benefits that the CQRS pattern will

bring to this bounded context?

As a side-effect, these
acceptance tests also
contributed to our ability
to handle our pseudo-
production releases quickly
because they enabled us
to run a full set of tests at
the UI level to verify the
behavior of the system in
addition to the unit and
integration tests.

Developers have a
tendency to try to lock
everything down to
transactions to guarantee
full consistency, but
sometimes it’s just not
worth the effort.

These are rules of
thumb, not hard
and fast rules.

 207Epilogue: Lessons Learned

What would we do differently if we started over?
This section is a result of our reflection on our journey and identifies
some things we’d do differently and some other opportunities we’d
like to pursue if we were starting over with the knowledge of the
CQRS pattern and event sourcing that we now have.

Start with a solid infrastructure for
messaging and persistence
We’d start with a solid messaging and persistence infrastructure. The
approach we took, starting simple and building up the infrastructure
as required meant that we built up technical debt during the journey.
We also found that taking this approach meant that in some cases,
the choices we made about the infrastructure affected the way we
implemented the domain.

Starting with a solid infrastructure would also enable us to start
performance testing earlier. We would also do some more research
into how other people do their performance testing on CQRS-based
systems, and seek out performance benchmarks on other systems
such as Jonathan Oliver’s EventStore.

One of the reasons we took the approach that we did was the
advice we received from our advisors: “Don’t worry about the infra-
structure.”

Leverage the capabilities of the
infrastructure more
Starting with a solid infrastructure would also allow us to make more
use of the capabilities of the infrastructure. For example, we use the
identity of the message originator as the value of the session ID in
Windows Azure Service Bus when we publish an event, but this is not
always the best use of the session ID from the perspective of the
parts of the system that process the event.

As part of this, we’d also investigate how the infrastructure could
support other special cases of eventual consistency such as timing
consistency, monotonic consistency, “read my writes,” and self-con-
sistency.

Another idea we’d like to explore is the use of the infrastructure
to support migration between versions. Instead of treating migration
in an ad-hoc manner for each version, we could consider using a
message-based or real-time communication process to coordinate
bringing the new version online.

From the perspective of the
journey, if we had started
with a solid infrastructure,
we would have had time
to tackle some of the
more complex parts of the
domain such as wait-listing.

https://github.com/joliver/EventStore

208 Journey eight

Adopt a more systematic approach to implementing process
managers
We began to implement our process manager very early in the journey and were still hardening it and
ensuring that its behavior was idempotent in the last stage of the journey. Again, starting with some
solid infrastructure support for process managers to make them more resilient would have helped us.
However, if we were starting over, we’d also wait to implement a process manager until a later stage
in the journey rather than diving straight in.

We began implementing the RegistrationProcessManager class during the first stage in our
journey. The initial implementation is described in Chapter 3, “Orders and Registrations Bounded
Context.” We made changes to this process manager during every subsequent stage of our journey.

Partition the application differently
We would think more carefully at the start of the project about the tiering of the system. We found
that the way we partitioned the application into web roles and worker roles as described in Chapter
4, “Extending and Enhancing the Orders and Registrations Bounded Context,” was not optimal, and
in the last stage of the journey, in Chapter 7, “Adding Resilience and Optimizing Performance,” we
made some major changes to this architecture as part of the performance optimization effort.

For example, as a part of this reorganization in the last stage of the journey, we introduced syn-
chronous command processing in the web application alongside the pre-existing asynchronous com-
mand processing.

Organize the development team differently
The approach we took to learning about the CQRS pattern was to iterate—develop, go back, discuss,
and then refactor. However, we may have learned more by having several developers work indepen-
dently on the same feature and then compare the result; that might have uncovered a broader set of
solutions and approaches.

Evaluate how appropriate the domain and the bounded contexts
are for the CQRS pattern
We would like to start with a clearer set of heuristics, such as those outlined earlier in this chapter,
to determine whether or not a particular bounded context will benefit from the CQRS pattern. We
might have learned more if we had focused on a more complex area of the domain such as wait-listing
instead of on the Orders and Registrations and Payments bounded contexts.

Plan for performance
We would address performance issues much earlier in the journey. In particular, we would:

•	 Set clear performance goals ahead of time.
•	 Run performance tests much earlier in the journey.
•	 Use larger and more realistic loads.

We didn’t do any performance testing until the last stage of our journey. For a detailed discussion of
the issues we found and how we addressed them, see Chapter 7, “Adding Resilience and Optimizing
Performance.”

 209Epilogue: Lessons Learned

During the last stage of our journey, we introduced some parti-
tioning on the Service Bus to improve the throughput of events. This
partitioning is done based on the publisher of the event, so events
published by one aggregate type go to one topic. We’d like to extend
this to use multiple topics where we currently have one, perhaps
partitioning based on a hash of the order ID in the message (this ap-
proach is often referred to as sharding). This would enable greater
scale-out for the application.

Think about the UI differently
We felt that the way our UI interacts with the write and read models,
and how it handles eventual consistency worked well and met the
business requirements. In particular, the way that the UI checks
whether a reservation is likely to succeed and modifies its behavior
accordingly and the way that the UI allows the user to continue enter-
ing data while it waits for the read model to be updated. For more
details about how the current solution works, see the section “Opti-
mizing the UI” in Chapter 7, “Adding Resilience and Optimizing Per-
formance.”

We’d like to investigate other ways to avoid waiting in the UI
unless it’s absolutely necessary, perhaps by using browser push tech-
niques. The UI in the current system still needs to wait, in some
places, for asynchronous updates to take place against the read
model.

Explore some additional benefits of event
sourcing
We found during the third stage of our journey, described in Chap-
ter 5, “Preparing for the V1 Release,” that modifying the Orders and
Registrations bounded context to use event sourcing helped to sim-
plify the implementation of this bounded context, in part because it
was already using a large number of events.

In the current journey, we didn’t get a chance to explore the fur-
ther promises of flexibility and the ability to mine past events for new
business insights from event sourcing. However, we did ensure that
the system persists copies of all events (not just those that are
needed to rebuild the state of the aggregates) and commands to en-
able these types of scenarios in the future. It would also be interesting

to investigate whether the
ability to mine past event
streams for new business
insights is easier to achieve
with event sourcing or
other technologies such as
database transaction logs or
the StreamInsight feature of
SQL Server.

http://www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/complex-event-processing.aspx

210 Journey eight

Explore the issues associated with integrating bounded contexts
In our V3 release, all of the bounded contexts are implemented by same core development team. We
would like to investigate how easy it is, in practice, to integrate a bounded context implemented by
a different development team with the existing system.

This is a great opportunity for you to contribute to the learning experience: go ahead and imple-
ment another bounded context (see the outstanding stories in the product backlog), integrate it into
the Contoso Conference Management System, and write another chapter of the journey describing
your experiences.

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

https://github.com/mspnp/cqrs-journey-code/issues?labels=Type.Story%2CStat.Pending&page=1&state=open
http://msdn.microsoft.com/en-us/library/jj619274

 211

This chapter is intended to provide some context for the main subject of this guide: a discussion of
the Command Query Responsibility Segregation (CQRS) pattern. It is useful to understand some of
the origins of the CQRS pattern and some of the terminology you will encounter in this guide and in
other material that discusses the CQRS pattern. It is particularly important to understand that the
CQRS pattern is not intended for use as the top-level architecture of your system; rather, it should be
applied to those subsystems that will gain specific benefits from the application of the pattern.

Before we look at the issues surrounding the use of different architectures within a complex
application, we need to introduce some of the terminology that we will use in this chapter and sub-
sequent chapters of this reference guide. Much of this terminology comes from an approach to de-
veloping software systems known as domain-driven design (DDD). There are a few important points
to note about our use of this terminology:
•	 We are using the DDD terminology because many CQRS practitioners also use this terminol-

ogy, and it is used in much of the existing CQRS literature.
•	 There are other approaches that tackle the same problems that DDD tackles, with similar

concepts, but with their own specific terminologies.
•	 Using a DDD approach can lead naturally to an adoption of the CQRS pattern. However, the

DDD approach does not always lead to the use of the CQRS pattern, nor is the DDD approach
a prerequisite for using the CQRS pattern.

•	 You may question our interpretation of some of the concepts of DDD. The intention of this
guide is to take what is useful from DDD to help us explain the CQRS pattern and related
concepts, not to provide guidance on how to use the DDD approach.

To learn more about the foundational principles of DDD, you should read the book Domain-Driven
Design: Tackling Complexity in the Heart of Software by Eric Evans (Addison-Wesley Professional, 2003).
To see how these principles apply to a concrete development project on the .NET platform, along
with insights and experimentation, you should read the book Applying Domain-Driven Design and
Patterns by Jimmy Nilsson (Addison-Wesley Professional, 2006).

In addition, to see how Eric Evans describes what works and what doesn’t in DDD, and for his
view on how much has changed over the previous five years, we recommend his talk at QCon London
2009.

For a summary of the key points in Eric Evans’ book, you should read the free book, Domain-
Driven Design Quickly by Abel Avram and Floyd Marinescu (C4Media, 2007).

CQRS in Context

Reference 1:

http://domaindrivendesign.org/library/evans_2009_1
http://domaindrivendesign.org/library/evans_2009_1
http://www.infoq.com/minibooks/domain-driven-design-quickly
http://www.infoq.com/minibooks/domain-driven-design-quickly

212 Reference one

What is domain-driven design?
As previously stated, DDD is an approach to developing software
systems, and in particular systems that are complex, that have ever-
changing business rules, and that you expect to last for the long term
within the enterprise.

The core of the DDD approach uses a set of techniques to ana-
lyze your domain and to construct a conceptual model that captures
the results of that analysis. You can then use that model as the basis
of your solution. The analysis and model in the DDD approach are
especially well suited to designing solutions for large and complex
domains. DDD also extends its influence to other aspects of the soft-
ware development process as a part of the attempt to help you man-
age complexity:
•	 In focusing on the domain, DDD concentrates on the area

where the business and the development team must be able to
communicate with each other clearly, but where in practice they
often misunderstand each other. The domain models that DDD
uses should capture detailed, rich business knowledge, but
should also be very close to the code that is actually written.

•	 Domain models are also useful in the longer term if they are
kept up to date. By capturing valuable domain knowledge, they
facilitate future maintenance and enhancement of the system.

•	 DDD offers guidance on how large problem domains can be
effectively divided up, enabling multiple teams to work in
parallel, and enabling you to direct appropriate resources to
critical parts of the system with the greatest business value.

The DDD approach is appropriate for large, complex systems that are
expected to have a long lifespan. You are unlikely to see a return on
your investment in DDD if you use it on small, simple, or short-term
projects.

Domain-driven design: concepts and terminology
This guide is not intended to provide guidance on using the DDD
approach. However, it is useful to understand some of the concepts
and terminology from DDD because they are useful when we describe
some aspects of CQRS pattern implementations. These are not offi-
cial or rigorous definitions; they are intended to be useful, working
definitions for the purposes of this guide.

“Every effective DDD person
is a Hands-on Modeler,
including me.”
—Eric Evans, What I’ve
learned about DDD since the
book

“Focus relentlessly on the core
domain! Find the differentia-
tor in software—something
significant!”
—Eric Evans, What I’ve
learned about DDD since the
book

http://domaindrivendesign.org/library/evans_2009_1
http://domaindrivendesign.org/library/evans_2009_1
http://domaindrivendesign.org/library/evans_2009_1
http://domaindrivendesign.org/library/evans_2009_1
http://domaindrivendesign.org/library/evans_2009_1
http://domaindrivendesign.org/library/evans_2009_1

 213CQRS in Context

Domain model
At the heart of DDD lies the concept of the domain model. This
model is built by the team responsible for developing the system in
question, and that team consists of both domain experts from the
business and software developers. The domain model serves several
functions:
•	 It captures all of the relevant domain knowledge from the

domain experts.
•	 It enables the team to determine the scope and verify the

consistency of that knowledge.
•	 The model is expressed in code by the developers.
•	 It is constantly maintained to reflect evolutionary changes in

the domain.
DDD focuses on the domain because that’s where the business value
is. An enterprise derives its competitive advantage and generates busi-
ness value from its core domains. The role of the domain model is to
capture what is valuable or unique to the business.

Much of the DDD approach focuses on how to create, maintain,
and use these domain models. Domain models are typically composed
of elements such as entities, value objects, aggregates, and described
using terms from a ubiquitous language.

Ubiquitous language
The concept of a ubiquitous language is very closely related to that
of the domain model. One of the functions of the domain model is to
foster a common understanding of the domain between the domain
experts and the developers. If both the domain experts and the de-
velopers use the same terms for objects and actions within the do-
main (for example, conference, chair, attendee, reserve, waitlist), the
risk of confusion or misunderstanding is reduced. More specifically, if
everyone uses the same language, there are less likely to be misunder-
standings resulting from translations between languages. For example,
if a developer has to think, “if the domain expert talks about a dele-
gate, he is really talking about an attendee in the software,” then
eventually something will go wrong as a result of this lack of clarity.

In our journey, we used
SpecFlow to express
business rules as acceptance
tests. They helped us to
communicate information
about our domain with
clarity and brevity, and
formulate a ubiquitous
language in the process.
For more information,
see Chapter 4, “Extending
and Enhancing the Orders
and Registrations Bounded
Context” in Exploring CQRS
and Event Sourcing.

214 Reference one

Entities, value objects, and services
DDD uses the following terms to identify some of the internal arti-
facts (or building blocks, as Eric Evans calls them) that will make up
the domain model.

Entities. Entities are objects that are defined by their identity,
and that identity continues through time. For example, a conference
in a conference management system will be an entity; many of its
attributes could change over time (such as its status, size, and even
name), but within the system each particular conference will have its
own unique identity. The object that represents the conference may
not always exist within the system’s memory; at times it may be per-
sisted to a database, only to be re-instantiated at some point in the
future.

Value objects. Not all objects are defined by their identity. For
some objects—value objects—what is important are the values of
their attributes. For example, within our conference management
system we do not need to assign an identity to every attendee’s ad-
dress (one reason is that all of the attendees from a particular organi-
zation may share the same address). All we are concerned with are the
values of the attributes of an address: street, city, state, and so on.
Value objects are usually immutable.

Services. You cannot always model everything as an object. For
example, in the conference management system it may make sense to
model a third-party payment processing system as a service. The
system can pass the parameters required by the payment processing
service and then receive a result back from the service. Notice that a
common characteristic of a service is that it is stateless (unlike enti-
ties and value objects).

Note: Services are usually implemented as regular class libraries
that expose a collection of stateless methods. A service in a DDD
domain model is not a web service; these are two different
concepts.

The following video is a
good refresher on using
value objects properly,
especially if you are
confusing them with DTOs:
Power Use of Value Objects
in DDD.

http://www.infoq.com/presentations/Value-Objects-Dan-Bergh-Johnsson
http://www.infoq.com/presentations/Value-Objects-Dan-Bergh-Johnsson

 215CQRS in Context

Aggregates and aggregate roots
Whereas entities, value objects, and services are terms for the elements that DDD uses to describe
things in the domain model, the terms aggregate and aggregate root relate specifically to the lifecycle
and grouping of those elements.

When you design a system that allows multiple users to work on shared data, you will have to
evaluate the trade-off between consistency and usability. At one extreme, when a user needs to make
a change to some data, you could lock the entire database to ensure that the change is consistent.
However, the system would be unusable for all other users for the duration of the update. At the
other extreme, you could decide not to enforce any locks at all, allowing any user to edit any piece of
data at any time, but you would soon end up with inconsistent or corrupt data within the system.
Choosing the correct granularity for locking to balance the demands of consistency and usability
requires detailed knowledge of the domain:
•	 You need to know which set of entities and value objects each transaction can potentially

affect. For example, are there transactions in the system that can update attendee, conference,
and room objects?

•	 You need to know how far the relationships from one object extend through other entities and
value objects within the domain, and where you must define the consistency boundaries. For
example, if you delete a room object, should you also delete a projector object, or a set of
attendee objects?

DDD uses the term aggregate to define a cluster of related entities and value objects that form a
consistency boundary within the system. That consistency boundary is usually based on transac-
tional consistency.

An aggregate root (also known as a root entity) is the gatekeeper object for the aggregate. All
access to the objects within the aggregate must occur through the aggregate root; external entities
are only permitted to hold a reference to the aggregate root, and all invariants should be checked by
the aggregate root.

In summary, aggregates are the mechanism that DDD uses to manage the complex set of relation-
ships that typically exist between the many entities and value objects in a typical domain model.

Bounded contexts
So far, the DDD concepts and terminology that we have briefly introduced are related to creating,
maintaining, and using a domain model. For a large system, it may not be practical to maintain a single
domain model; the size and complexity make it difficult to keep it coherent and consistent. To manage
this scenario, DDD introduces the concepts of bounded contexts and multiple models. Within a
system, you might choose to use multiple smaller models rather than a single large model, each one
focusing on some aspect or grouping of functionality within the overall system. A bounded context
is the context for one particular domain model. Similarly, each bounded context (if implemented
following the DDD approach) has its own ubiquitous language, or at least its own dialect of the do-
main’s ubiquitous language.

216 Reference one

Figure 1
Bounded contexts within a large, complex system

Figure 1 shows an example of a system that is divided into multiple
bounded contexts. In practice, there are likely to be more bounded
contexts than the three shown in the diagram.

There are no hard and fast rules that specify how big a bounded
context should be. Ultimately it’s a pragmatic issue that is determined
by your requirements and the constraints on your project.

“A given bounded context
should be divided into
business components, where
these business components
have full UI through DB code,
and are put together in
composite UI’s and other
physical pipelines to fulfill the
system’s functionality. A
business component can exist
in only one bounded context.”
—Udi Dahan, Udi & Greg
Reach CQRS Agreement

http://www.udidahan.com/2012/02/10/udi-greg-reach-cqrs-agreement
http://www.udidahan.com/2012/02/10/udi-greg-reach-cqrs-agreement

 217CQRS in Context

Eric Evans makes the case for larger bounded contexts:
“Favoring larger bounded contexts:
• Flow between user tasks is smoother when more is handled with
a unified model.
• It is easier to understand one coherent model than two distinct
ones plus mappings.
• Translation between two models can be difficult (sometimes
impossible).
• Shared language fosters clear team communication.
Favoring smaller bounded contexts:
• Communication overhead between developers is reduced.
• Continuous Integration is easier with smaller teams and code
bases.
• Larger contexts may call for more versatile abstract models,
requiring skills that are in short supply.
• Different models can cater to special needs or encompass the
jargon of specialized groups of users, along with specialized
dialects of the Ubiquitous Language.”
—Eric Evans, Domain-Driven Design: Tackling Complexity in
the Heart of Software, page 383.

You decide which patterns and approaches to apply (for example,
whether to use the CQRS pattern or not) within a bounded context,
not for the system.

Anti-corruption layers
Different bounded contexts have different domain models. When
your bounded contexts communicate with each other, you need to
ensure that concepts specific to one domain model do not leak into
another domain model. An anti-corruption layer functions as a gate-
keeper between bounded contexts and helps you keep your domain
models clean.

“For me, a bounded context is an
abstract concept (and it’s still an
important one!) but when it
comes to technical details, the
business component is far more
important than the bounded
context.”
—Greg Young, Conversation
with the patterns & practices
team

BC is often used as an
acronym for bounded
contexts (in DDD) and
business components
(in service-oriented
architecture (SOA)). Do
not confuse them. In
our guidance, BC means
“bounded context.”

218 Reference one

Context maps
A large complex system can have multiple bounded contexts that in-
teract with one another in various ways. A context map is the docu-
mentation that describes the relationships between these bounded
contexts. It might be in the form of diagrams, tables, or text.

A context map helps you visualize the system at a high level, show-
ing how some of the key parts relate to each other. It also helps to
clarify the boundaries between the bounded contexts. It shows where
and how the bounded contexts exchange and share data, and where
you must translate data as it moves from one domain model to another.

A business entity, such as a customer, might exist in several
bounded contexts. However, it may need to expose different facets
or properties that are relevant to a particular bounded context. As a
customer entity moves from one bounded context to another you
may need to translate it so that it exposes the relevant facets or prop-
erties for its current context.

Bounded contexts and multiple
architectures
A bounded context typically represents a slice of the overall system
with clearly defined boundaries separating it from other bounded
contexts within the system. If a bounded context is implemented by
following the DDD approach, the bounded context will have its own
domain model and its own ubiquitous language. Bounded contexts are
also typically vertical slices through the system, so the implementa-
tion of a bounded context will include everything from the data store,
right up to the UI.

The same domain concept can exist in multiple bounded contexts.
For example, the concept of an attendee in a conference management
system might exist in the bounded context that deals with bookings, in
the bounded context that deals with badge printing, and in the bound-
ed context that deals with hotel reservations. From the perspective of
the domain expert, these different versions of the attendee may require
different behaviors and attributes. For example, in the bookings
bounded context the attendee is associated with a registrant who
makes the bookings and payments. Information about the registrant is
not relevant in the hotel reservations bounded context, where informa-
tion such as dietary requirements or smoking preferences is important.

One important consequence of this split is that you can use dif-
ferent implementation architectures in different bounded contexts.
For example, one bounded context might be implemented using a
DDD layered architecture, another might use a two-tier CRUD archi-
tecture, and another might use an architecture derived from the
CQRS pattern. Figure 2 illustrates a system with multiple bounded
contexts, each using a different architectural style. It also highlights
that each bounded context is typically end-to-end, from the persis-
tence store through to the UI.

“I think context mapping is
perhaps one thing in there
that should be done on every
project. The context map helps
you keep track of all the
models you are using.”
—Eric Evans, What I’ve
learned about DDD since the
book

“Sometimes the process of
gathering information to draw
the context map is more
important than the map
itself.”
—Alberto Brandolini, Context
Mapping in action

http://domaindrivendesign.org/library/evans_2009_1
http://domaindrivendesign.org/library/evans_2009_1
http://domaindrivendesign.org/library/evans_2009_1
http://www.slideshare.net/ziobrando/context-mapping-in-action
http://www.slideshare.net/ziobrando/context-mapping-in-action

 219CQRS in Context

Figure 2
Multiple architectural styles within a large, complex application

In addition to managing complexity, there is another benefit of dividing the system into bounded
contexts. You can use an appropriate technical architecture for different parts of the system to ad-
dress the specific characteristics of each part. For example, you can address such questions as
whether it is a complex part of the system, whether it contains core domain functionality, and what
is its expected lifetime.

Bounded contexts and multiple development teams
Clearly separating out the different bounded contexts, and working with separate domain models and
ubiquitous languages also makes it possible to parallelize the development work by using separate
teams for each bounded context. This relates to the idea of using different technical architectures for
different bounded contexts because the different development teams might have different skill sets
and skill levels.

220 Reference one

Maintaining multiple bounded contexts
Although bounded contexts help to manage the complexity of large
systems because they’re divided into more manageable pieces, it is
unlikely that each bounded context will exist in isolation. Bounded
contexts will need to exchange data with each other, and this ex-
change of data will be complicated if you need to translate between
the different definitions of the same elements in the different domain
models. In our conference management system, we may need to move
information about attendees between the bounded contexts that
deal with conference bookings, badge printing, and hotel reserva-
tions. The DDD approach offers a number of approaches for handling
the interactions between multiple models in multiple bounded con-
texts such as using anti-corruption layers, or using shared kernels.

Note: At the technical implementation level, communication
between bounded contexts is often handled asynchronously using
events and a messaging infrastructure.

For more information about how DDD deals with large systems and
complex models, you should read “Part IV: Strategic Design” in Eric
Evans’ book, Domain-Driven Design: Tackling Complexity in the Heart
of Software.

CQRS and DDD
As stated in the introduction to this chapter, it is useful to understand
a little of the terminology and concepts from DDD when you are
learning about the CQRS pattern.

Many of the ideas that informed the CQRS pattern arose from
issues that DDD practitioners faced when applying the DDD ap-
proach to real-world problems. As such, if you decide to use the DDD
approach, you may find that the CQRS pattern is a very natural fit for
some of the bounded contexts that you identify within your system,
and that it’s relatively straightforward to move from your domain
model to the physical implementation of the CQRS pattern.

Some experts consider the DDD approach to be an essential
prerequisite for implementing the CQRS pattern.

“It is essential to write
the whole domain model,
ubiquitous language, use
cases, domain and user
intention specifications, and
to identify both context
boundaries and autonomous
components. In my experi-
ence, those are absolutely
mandatory.”
—José Miguel Torres
(Customer Advisory Council)

 221CQRS in Context

However, many people can point to projects where they have
seen real benefits from implementing the CQRS pattern while not
using the DDD approach for the domain analysis and model design.

In summary, the DDD approach is not a prerequisite for imple-
menting the CQRS pattern, but in practice they do often go together.

More information
All links in this book are accessible from the book’s online bibliogra-
phy available at: http://msdn.microsoft.com/en-us/library/jj619274.

“It is something of a tradition
to connect both paradigms
because using DDD can lead
naturally into CQRS, and
also the available literature
about CQRS tends to use
DDD terminology. However,
DDD is mostly appropriate
for very large and complex
projects. On the other hand,
there is no reason why a small
and simple project cannot
benefit from CQRS. For
example, a relatively small
project that would otherwise
use distributed transactions
could be split into a write side
and a read side with CQRS to
avoid the distributed transac-
tion, but it may be simple
enough that applying DDD
would be overkill.”
—Alberto Población (Cus-
tomer Advisory Council)

http://msdn.microsoft.com/en-us/library/jj619274

 223

In this chapter, we describe the Command Query Responsibility Seg-
regation (CQRS) pattern, which is at the heart of almost everything
discussed in this guidance. Here we will show you how applying this
pattern affects the architecture of your enterprise application. It is
important to understand that CQRS is not a silver bullet for all the
problems you encounter when you design and build enterprise appli-
cations, and that it is not a top-level architectural approach. You will
see the full benefits of applying the CQRS pattern when you apply it
selectively to key portions of your system. Chapter 2, “Decomposing
the Domain” in Exploring CQRS and Event Sourcing describes how
Contoso divided up the Contoso Conference Management System
into bounded contexts and identified which bounded contexts would
benefit from using the CQRS pattern.

Subsequent chapters in Exploring CQRS and Event Sourcing pro-
vide more in-depth guidance on how to apply the CQRS pattern and
other related patterns when building your implementation.

What is CQRS?
In his book “Object Oriented Software Construction,” Betrand Meyer
introduced the term “Command Query Separation” to describe the
principle that an object’s methods should be either commands or
queries. A query returns data and does not alter the state of the ob-
ject; a command changes the state of an object but does not return
any data. The benefit is that you have a better understanding what
does, and what does not, change the state in your system.

CQRS takes this principle a step further to define a simple pattern.

“CQRS is simply the creation
of two objects where there was
previously only one. The
separation occurs based upon
whether the methods are a
command or a query (the same
definition that is used by
Meyer in Command and
Query Separation: a command
is any method that mutates
state and a query is any
method that returns a value).”
—Greg Young, CQRS, Task
Based UIs, Event Sourcing agh!

Introducing the Command Query
Responsibility Segregation Pattern

Reference 2:

http://www.amazon.com/gp/product/0136291554
http://martinfowler.com/bliki/CommandQuerySeparation.html
http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/
http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/

224 Reference two

What is important and interesting about this simple pattern is
how, where, and why you use it when you build enterprise systems.
Using this simple pattern enables you to meet a wide range of architec-
tural challenges, such as achieving scalability, managing complexity, and
managing changing business rules in some portions of your system.

“CQRS is a simple pattern
that strictly segregates the
responsibility of handling
command input into an
autonomous system from the
responsibility of handling
side-effect-free query/read
access on the same system.
Consequently, the decoupling
allows for any number of
homogeneous or heterogeneous
query/read modules to be
paired with a command
processor. This principle
presents a very suitable
foundation for event sourcing,
eventual-consistency state
replication/fan-out and, thus,
high-scale read access. In
simple terms, you don’t service
queries via the same module of
a service that you process
commands through. In REST
terminology, GET requests
wire up to a different thing
from what PUT, POST, and
DELETE requests wire up to.”
—Clemens Vasters (CQRS
Advisors Mail List)

The following conversation between Greg Young and Udi
Dahan highlights some of the important aspects of the
CQRS pattern:

Udi Dahan: If you are going to be looking at applying CQRS,
it should be done within a specific bounded context, rather
than at the whole system level, unless you are in a special
case, when your entire system is just one single bounded
context.

Greg Young: I would absolutely agree with that statement.
CQRS is not a top-level architecture. CQRS is something
that happens at a much lower level, where your top level ar-
chitecture is probably going to look more like SOA and EDA
[service-oriented or event-driven architectures].

Udi Dahan: That’s an important distinction. And that’s some-
thing that a lot of people who are looking to apply CQRS
don’t give enough attention to: just how important on the
one hand, and how difficult on the other, it is to identify the
correct bounded contexts or services, or whatever you call
that top-level decomposition and the event-based synchroni-
zation between them. A lot of times, when discussing CQRS
with clients, when I tell them “You don’t need CQRS for
that,” their interpretation of that statement is that, in es-
sence, they think I’m telling them that they need to go back
to an N-tier type of architecture, when primarily I mean that
a two-tier style of architecture is sufficient. And even when I
say two-tier, I don’t necessarily mean that the second tier
needs to be a relational database. To a large extent, for a lot
of systems, a NoSQL, document-style database would prob-
ably be sufficient with a single data management-type tier
operated on the client side. As an alternative to CQRS, it’s
important to lay out a bunch of other design styles or ap-
proaches, rather than thinking either you are doing N-tier
object relational mapping or CQRS.

 225Introducing the Command Query Responsibility Segregation Pattern

When asked whether he considers CQRS to be an approach or a pattern, and if it’s a pattern,
what problem it specifically solves, Greg Young answered:

“If we were to go by the definition that we set up for CQRS a number of years ago, it’s going
to be a very simple low-level pattern. It’s not even that interesting as a pattern; it’s more just
pretty conceptual stuff; you just separate. What’s more interesting about it is what it en-
ables. It’s the enabling that the pattern provides that’s interesting. Everybody gets really
caught up in systems and they talk about how complicated CQRS is with Service Bus and all
the other stuff they are doing, and in actuality, none of that is necessary. If you go with the
simplest possible definition, it would be a pattern. But it’s more what happens once you ap-
ply that pattern—the opportunities that you get.”

Figure 1
A possible architectural implementation of the CQRS pattern

Read and write sides
Figure 1 shows a typical application of the CQRS pattern to a portion of an enterprise system. This
approach shows how, when you apply the CQRS pattern, you can separate the read and write sides
in this portion of the system.

226 Reference two

In Figure 1, you can see how this portion of the system is split into a read side and a write side.
The object or objects or the read side contain only query methods, and the objects on the write side
contain only command methods.

There are several motivations for this segregation including:
•	 In many business systems, there is a large imbalance between the number of reads and the

number of writes. A system may process thousands of reads for every write. Segregating the
two sides enables you to optimize them independently. For example, you can scale out the
read side to support the larger number of read operations independently of the write side.

•	 Typically, commands involve complex business logic to ensure that the system writes correct
and consistent data to the data store. Read operations are often much simpler than write
operations. A single conceptual model that tries to encapsulate both read and write opera-
tions may do neither well. Segregating the two sides ultimately results in simpler, more
maintainable, and more flexible models.

•	 Segregation can also occur at the data store level. The write side may use a database schema
that is close to third normal form (3NF) and optimized for data modifications, while the read
side uses a denormalized database that is optimized for fast query operations.

Note: Although Figure 1 shows two data stores, applying the CQRS pattern does not mandate
that you split the data store, or that you use any particular persistence technology such as a
relational database, NoSQL store, or event store (which in turn could be implemented on top of a
relational database, NoSQL store, file storage, blob storage and so forth.). You should view CQRS
as a pattern that facilitates splitting the data store and enabling you to select from a range of
storage mechanisms.

Figure 1 might also suggest a one-to-one relationship between the write side and the read side.
However, this is not necessarily the case. It can be useful to consolidate the data from multiple write
models into a single read model if your user interface (UI) needs to display consolidated data. The
point of the read-side model is to simplify what happens on the read side, and you may be able to
simplify the implementation of your UI if the data you need to display has already been combined.

There are some questions that might occur to you about the practicalities of adopting architec-
ture such as the one shown in Figure 1.
•	 Although the individual models on the read side and write side might be simpler than a single

compound model, the overall architecture is more complex than a traditional approach with a
single model and a single data store. So, haven’t we just shifted the complexity?

•	 How should we manage the propagation of changes in the data store on the write side to the
read side?

•	 What if there is a delay while the updates on the write side are propagated to the read side?
•	 What exactly do we mean when we talk about models?

The remainder of this chapter will begin to address these questions and to explore the motivations
for using the CQRS pattern. Later chapters will explore these issues in more depth.

 227Introducing the Command Query Responsibility Segregation Pattern

CQRS and domain-driven design
The previous chapter, “CQRS in Context,” introduced some of the
concepts and terminology from the domain-driven design (DDD) ap-
proach that are relevant to the implementation of the CQRS pattern.
Two areas are particularly significant.

The first is the concept of the model:
Eric Evans in his book “Domain-Driven Design: Tackling Complexity

in the Heart of Software,” (Addison-Wesley Professional, 2003) pro-
vides the following list of ingredients for effective modeling. This list
helps to capture the idea of a model, but is no substitute for reading
the book to gain a deeper understanding of the concept:
•	 Models should be bound to the implementation.
•	 You should cultivate a language based on the model.
•	 Models should be knowledge rich.
•	 You should brainstorm and experiment to develop the model.

In Figure 1, the implementation of the model exists on the write side;
it encapsulates the complex business logic in this portion of the sys-
tem. The read side is a simpler, read-only view of the system state
accessed through queries.

The second important concept is the way that DDD divides large,
complex systems into more manageable units known as bounded
contexts. A bounded context defines the context for a model:

Note: Other design approaches may use different terminology;
for example, in event-driven service-oriented architecture (SOA),
the service concept is similar to the bounded context concept
in DDD.

When we say that you should apply the CQRS pattern to a portion
of a system, we mean that you should implement the CQRS pattern
within a bounded context.

“CQRS is an architectural
style that is often enabling
of DDD.”
—Eric Evans, tweet February
2012.

“The model is a set of concepts
built up in the heads of people
on the project, with terms
and relationships that reflect
domain insight. These terms
and interrelationships provide
the semantics of a language
that is tailored to the domain
while being precise enough for
technical development.”
—Eric Evans, “Domain-
Driven Design: Tackling
Complexity in the Heart
of Software,” p23.

“Explicitly define the context
within which a model applies.
Explicitly set boundaries in
terms of team organization,
usage within specific parts of
the application, and physical
manifestations such as code
bases and database schemas.
Keep the model strictly
consistent within these
bounds, but don’t be distracted
or confused by issues outside.”
—Eric Evans, “Domain-
Driven Design: Tackling
Complexity in the Heart of
Software,” p335.

228 Reference two

The reasons for identifying context boundaries for your domain
models are not necessarily the same reasons for choosing the portions
of the system that should use the CQRS pattern. In DDD, a bounded
context defines the context for a model and the scope of a ubiquitous
language. You should implement the CQRS pattern to gain certain
benefits for your application such as scalability, simplicity, and main-
tainability. Because of these differences, it may make sense to think
about applying the CQRS pattern to business components rather
than bounded contexts.

It is quite possible that your bounded contexts map exactly onto
your business components.

Note: Throughout this guide, we use the term bounded context
in preference to the term business component to refer to the
context within which we are implementing the CQRS pattern.

In summary, you should not apply the CQRS pattern to the top level
of your system. You should clearly identify the different portions of
your system that you can design and implement largely indepen-
dently of each other, and then only apply the CQRS pattern to those
portions where there are clear business benefits in doing so.

Introducing commands, events, and messages
DDD is an analysis and design approach that encourages you to use
models and a ubiquitous language to bridge the gap between the busi-
ness and the development team by fostering a common understand-
ing of the domain. Of necessity, the DDD approach is oriented to-
wards analyzing behavior rather than just data in the business domain,
and this leads to a focus on modeling and implementing behavior in
the software. A natural way to implement the domain model in code
is to use commands and events. This is particularly true of applications
that use a task-oriented UI.

Note: DDD is not the only approach in which it is common to
see tasks and behaviors specified in the domain model
implemented using commands and events. However, many
advocates of the CQRS pattern are also strongly influenced by
the DDD approach so it is common to see DDD terminology in
use whenever there is a discussion of the CQRS pattern.

Commands are imperatives; they are requests for the system to per-
form a task or action. For example, “book two places for conference
X” or “allocate speaker Y to room Z.” Commands are usually processed
just once, by a single recipient.

“A given bounded context
should be divided into business
components, where these
business components have full
UI through DB code, and are
ultimately put together in
composite UIs and other
physical pipelines to fulfill
the system’s functionality.
 A business component can
exist in only one bounded
context.
 CQRS, if it is to be used
at all, should be used within
a business component.”
—Udi Dahan, Udi & Greg
Reach CQRS Agreement.

http://www.udidahan.com/2012/02/10/udi-greg-reach-cqrs-agreement/
http://www.udidahan.com/2012/02/10/udi-greg-reach-cqrs-agreement/

 229Introducing the Command Query Responsibility Segregation Pattern

Events are notifications; they report something that has already happened to other interested
parties. For example, “the customer’s credit card has been billed $200” or “ten seats have been booked
for conference X.” Events can be processed multiple times, by multiple consumers.

Both commands and events are types of message that are used to exchange data between objects.
In DDD terms, these messages represent business behaviors and therefore help the system capture
the business intent behind the message.

A possible implementation of the CQRS pattern uses separate data stores for the read side and
the write side; each data store is optimized for the use cases it supports. Events provide the basis of
a mechanism for synchronizing the changes on the write side (that result from processing commands)
with the read side. If the write side raises an event whenever the state of the application changes, the
read side should respond to that event and update the data that is used by its queries and views.
Figure 2 shows how commands and events can be used if you implement the CQRS pattern.

Figure 2
Commands and events in the CQRS pattern

230 Reference two

We also require some infrastructure to handle commands and
events, and we will explore this in more detail in later chapters.

Note: Events are not the only way to manage the push
synchronization of updates from the write side to the read side.

Why should I use CQRS?
Stepping back from CQRS for a moment, one of the benefits of divid-
ing the domain into bounded contexts in DDD is to enable you to
identify and focus on those portions (bounded contexts) of the sys-
tem that are more complex, subject to ever-changing business rules,
or deliver functionality that is a key business differentiator.

You should consider applying the CQRS pattern within a specific
bounded context only if it provides identifiable business benefits, not
because it is the default pattern that you consider.

The most common business benefits that you might gain from
applying the CQRS pattern are enhanced scalability, the simplification
of a complex aspect of your domain, increased flexibility of your solu-
tion, and greater adaptability to changing business requirements.

Scalability
In many enterprise systems, the number of reads vastly exceeds the
number of writes, so your scalability requirements will be different
for each side. By separating the read side and the write side into
separate models within the bounded context, you now have the abil-
ity to scale each one of them independently. For example, if you are
hosting applications in Windows Azure, you can use a different role
for each side and then scale them independently by adding a different
number of role instances to each.

Scalability should not be the
only reason why you choose to
implement the CQRS pattern
in a specific bounded context:
 “In a non-collaborative
domain, where you can
horizontally add more
database servers to support
more users, requests, and data
at the same time you’re adding
web servers, there is no real
scalability problem (until
you’re the size of Amazon,
Google, or Facebook).
Database servers can be cheap
if you’re using MySQL, SQL
Server Express, or others.”
—Udi Dahan, When to avoid
CQRS.

http://www.udidahan.com/2011/04/22/when-to-avoid-cqrs/
http://www.udidahan.com/2011/04/22/when-to-avoid-cqrs/

 231Introducing the Command Query Responsibility Segregation Pattern

Reduced complexity
In complex areas of your domain, designing and implementing objects
that are responsible for both reading and writing data can exacerbate
the complexity. In many cases, the complex business logic is only ap-
plied when the system is handling updates and transactional opera-
tions; in comparison, read logic is often much simpler. When the
business logic and read logic are mixed together in the same model, it
becomes much harder to deal with difficult issues such as multiple
users, shared data, performance, transactions, consistency, and stale
data. Separating the read logic and business logic into separate mod-
els makes it easier to separate out and address these complex issues.
However, in many cases it may require some effort to disentangle and
understand the existing model in the domain.

Like many patterns, you can view the CQRS pattern as a mecha-
nism for shifting some of the complexity inherent in your domain into
something that is well known, well understood, and that offers a
standard approach to solving certain categories of problems.

Another potential benefit of simplifying the bounded context by
separating out the read logic and the business logic is that it can make
testing easier.

Flexibility
The flexibility of a solution that uses the CQRS pattern largely derives
from the separation into the read-side and the write-side models. It
becomes much easier to make changes on the read side, such as add-
ing a new query to support a new report screen in the UI, when you
can be confident that you won’t have any impact on the behavior of
the business logic. On the write side, having a model that concerns
itself solely with the core business logic in the domain means that you
have a simpler model to deal with than a model that includes read
logic as well.

In the longer term, a good, useful model that accurately describes
your core domain business logic will become a valuable asset. It will
enable you to be more agile in the face of a changing business envi-
ronment and competitive pressures on your organization.

This flexibility and agility relates to the concept of continuous
integration in DDD:

In some cases, it may be possible to have different development
teams working on the write side and the read side, although in prac-
tice this will probably depend on how large the particular bounded
context is.

Separation of concerns is the
key motivation behind
Bertrand Meyer’s Command
Query Separation Principle:
 “The really valuable idea in
this principle is that it’s
extremely handy if you can
clearly separate methods that
change state from those that
don’t. This is because you can
use queries in many situations
with much more confidence,
introducing them anywhere,
changing their order. You have
to be more careful with
modifiers.”
—Martin Fowler, Command-
QuerySeparation

“Continuous integration
means that all work within
the context is being merged
and made consistent fre-
quently enough that when
splinters happen they are
caught and corrected quickly.”
—Eric Evans, “Domain-
Driven Design,” p342.

http://martinfowler.com/bliki/CommandQuerySeparation.html
http://martinfowler.com/bliki/CommandQuerySeparation.html

232 Reference two

Focus on the business
If you use an approach like CRUD, then the technology tends to
shape the solution. Adopting the CQRS pattern helps you to focus
on the business and build task-oriented UIs. A consequence of sepa-
rating the different concerns into the read side and the write side is
a solution that is more adaptable in the face of changing business
requirements. This results in lower development and maintenance
costs in the longer term.

Facilitates building task-based UIs
When you implement the CQRS pattern, you use commands (often
from the UI), to initiate operations in the domain. These commands
are typically closely tied to the domain operations and the ubiquitous
language. For example, “book two seats for conference X.” You can
design your UI to send these commands to the domain instead of
initiating CRUD-style operations. This makes it easier to design intui-
tive, task-based UIs.

Barriers to adopting the CQRS pattern
Although you can list a number of clear benefits to adopting the
CQRS pattern in specific scenarios, you may find it difficult in prac-
tice to convince your stakeholders that these benefits warrant the
additional complexity of the solution.

When should I use CQRS?
Although we have outlined some of the reasons why you might decide
to apply the CQRS pattern to some of the bounded contexts in your
system, it is helpful to have some rules of thumb to help identify the
bounded contexts that might benefit from applying the CQRS pat-
tern.

In general, applying the CQRS pattern may provide the most
value in those bounded contexts that are collaborative, complex, in-
clude ever-changing business rules, and deliver a significant competi-
tive advantage to the business. Analyzing the business requirements,
building a useful model, expressing it in code, and implementing it
using the CQRS pattern for such a bounded context all take time and
cost money. You should expect this investment to pay dividends in the
medium to long term. It is probably not worth making this investment
if you don’t expect to see returns such as increased adaptability and
flexibility in the system, or reduced maintenance costs.

“In my experience, the most
important disadvantage of
using CQRS/event sourcing
and DDD is the fear of
change. This model is
different from the well-known
three-tier layered architecture
that many of our stakeholders
are accustomed to.”
—Paweł Wilkosz (Customer
Advisory Council)

“The learning curve of
developer teams is steep.
Developers usually think in
terms of relational database
development. From my
experience, the lack of
business, and therefore
domain rules and specifica-
tions, became the biggest
hurdle.”
—José Miguel Torres
(Customer Advisory Council)

 233Introducing the Command Query Responsibility Segregation Pattern

Collaborative domains
Both Udi Dahan and Greg Young identify collaboration as the charac-
teristic of a bounded context that provides the best indicator that
you may see benefits from applying the CQRS pattern.

The CQRS pattern is particularly useful where the collaboration
involves complex decisions about what the outcome should be when
you have multiple actors operating on the same, shared data. For ex-
ample, does the rule “last one wins” capture the expected business
outcome for your scenario, or do you need something more sophisti-
cated? It’s important to note that actors are not necessarily people;
they could be other parts of the system that can operate indepen-
dently on the same data.

Note: Collaborative behavior is a good indicator that there will
be benefits from applying the CQRS pattern; however, this is not
a hard and fast rule!

Such collaborative portions of the system are often the most com-
plex, fluid, and significant bounded contexts. However, this character-
istic is only a guide: not all collaborative domains benefit from the
CQRS pattern, and some non-collaborative domains do benefit from
the CQRS pattern.

Stale data
In a collaborative environment where multiple users can operate on
the same data simultaneously, you will also encounter the issue of
stale data; if one user is viewing a piece of data while another user
changes it, then the first user’s view of the data is stale.

Whatever architecture you choose, you must address this prob-
lem. For example, you can use a particular locking scheme in your
database, or define the refresh policy for the cache from which your
users read data.

The two previous examples show two different areas in a system
where you might encounter and need to deal with stale data; in most
collaborative enterprise systems there will be many more. The CQRS
pattern helps you address the issue of stale data explicitly at the ar-
chitecture level. Changes to data happen on the write side, users view
data by querying the read side. Whatever mechanism you chose to
use to push the changes from the write side to the read side is also
the mechanism that controls when the data on the read side becomes
stale, and how long it remains so. This differs from other architec-
tures, where management of stale data is more of an implementation
detail that is not always addressed in a standard or consistent manner.

In the chapter “A CQRS and ES Deep Dive,” we will look at how
the synchronization mechanism between write side and the read side
determines how you manage the issue of stale data in your application.

“In a collaborative domain,
an inherent property of the
domain is that multiple actors
operate in parallel on the same
set of data. A reservation
system for concerts would be a
good example of a collabora-
tive domain; everyone wants
the good seats.”
—Udi Dahan, Why you should
be using CQRS almost
everywhere...

“Standard layered architec-
tures don’t explicitly deal with
either of these issues. While
putting everything in the same
database may be one step in
the direction of handling
collaboration, staleness is
usually exacerbated in those
architectures by the use of
caches as a performance-
improving afterthought.”
—Udi Dahan talking about
collaboration and staleness,
Clarified CQRS.

http://www.udidahan.com/2011/10/02/why-you-should-be-using-cqrs-almost-everywhere%E2%80%A6/
http://www.udidahan.com/2011/10/02/why-you-should-be-using-cqrs-almost-everywhere%E2%80%A6/
http://www.udidahan.com/2011/10/02/why-you-should-be-using-cqrs-almost-everywhere%E2%80%A6/
http://www.udidahan.com/2009/12/09/clarified-cqrs/

234 Reference two

Moving to the cloud
Moving an application to the cloud or developing an application for
the cloud is not a sufficient reason for choosing to implement the
CQRS pattern. However, many of the drivers for using the cloud such
as requirements for scalability, elasticity, and agility are also drivers for
adopting the CQRS pattern. Furthermore, many of the services typi-
cally offered as part of a platform as a service (PaaS) cloud-computing
platform are well suited for building the infrastructure for a CQRS
implementation: for example, highly scalable data stores, messaging
services, and caching services.

When should I avoid CQRS?
Simple, static, non-core bounded contexts are less likely to warrant
the up-front investment in detailed analysis, modeling, and complex
implementation. Again, non-collaborative bounded contexts are less
likely to see benefits from applying the CQRS pattern.

In most systems, the majority of bounded contexts will probably
not benefit from using the CQRS pattern. You should only use the
pattern when you can identify clear business benefits from doing so.

Summary
The CQRS pattern is an enabler for building individual portions
(bounded contexts) in your system. Identifying where to use the
CQRS pattern requires you to analyze the trade-offs between the
initial cost and overhead of implementing the pattern and the future
business benefits. Useful heuristics for identifying where you might
apply the CQRS pattern are to look for components that are complex,
involve fluid business rules, deliver competitive advantage to the busi-
ness, and are collaborative.

The next chapters will discuss how to implement the CQRS pat-
tern in more detail. For example, we’ll explain specific class-pattern
implementations, explore how to synchronize the data between the
write side and read side, and describe different options for storing data.

More information
All links in this book are accessible from the book’s online bibliogra-
phy available at: http://msdn.microsoft.com/en-us/library/jj619274.

“Most people using CQRS
(and event sourcing too)
shouldn’t have done so.”
—Udi Dahan, When to avoid
CQRS.

“It’s important to note though,
that these are things
you can do, not necessarily
things you should do. Separat-
ing the read and write models
can be quite costly.”
—Greg Young, CQRS and
CAP Theorem.

http://msdn.microsoft.com/en-us/library/jj619274
http://www.udidahan.com/2011/04/22/when-to-avoid-cqrs/
http://www.udidahan.com/2011/04/22/when-to-avoid-cqrs/
http://codebetter.com/gregyoung/2010/02/20/cqrs-and-cap-theorem/
http://codebetter.com/gregyoung/2010/02/20/cqrs-and-cap-theorem/

 235

Event sourcing (ES) and Command Query Responsibility Segregation (CQRS) are frequently men-
tioned together. Although neither one necessarily implies the other, you will see that they do comple-
ment each other. This chapter introduces the key concepts that underlie event sourcing, and provides
some pointers on the potential relationship with the CQRS pattern. This chapter is an introduction;
Chapter 4, “A CQRS and ES Deep Dive,” explores event sourcing and its relationship with CQRS in
more depth.

To help understand event sourcing, it’s important to have a basic definition of events that cap-
tures their essential characteristics:
•	 Events happen in the past. For example, “the speaker was booked,” “the seat was reserved,”

“the cash was dispensed.” Notice how we describe these events using the past tense.
•	 Events are immutable. Because events happen in the past, they cannot be changed or undone.

However, subsequent events may alter or negate the effects of earlier events. For example, “the
reservation was cancelled” is an event that changes the result of an earlier reservation event.

•	 Events are one-way messages. Events have a single source (publisher) that publishes the event.
One or more recipients (subscribers) may receive events.

•	 Typically, events include parameters that provide additional information about the event. For
example, “Seat E23 was booked by Alice.”

•	 In the context of event sourcing, events should describe business intent. For example, “Seat E23
was booked by Alice” describes in business terms what has happened and is more descriptive than,
“In the bookings table, the row with key E23 had the name field updated with the value Alice.”

We will also assume that the events discussed in this chapter are associated with aggregates; see the
chapter “CQRS in Context” for a description of the DDD terms: aggregates, aggregate roots, and
entities. There are two features of aggregates that are relevant to events and event sourcing:
•	 Aggregates define consistency boundaries for groups of related entities; therefore, you can use

an event raised by an aggregate to notify interested parties that a transaction (consistent set of
updates) has taken place on that group of entities.

•	 Every aggregate has a unique ID; therefore, you can use that ID to record which aggregate in
the system was the source of a particular event.

Introducing Event Sourcing

Reference 3:

236 Reference three

For the remainder of this chapter, we will use the term aggregate to refer to a cluster of associ-
ated objects that are treated as a unit for the purposes of data changes. This does not mean that event
sourcing is directly related to the DDD approach; we are simply using the terminology from DDD to
try to maintain some consistency in our language in this guide.

What is event sourcing?
Event sourcing is a way of persisting your application’s state by storing the history that determines
the current state of your application. For example, a conference management system needs to track
the number of completed bookings for a conference so it can check whether there are still seats
available when someone tries to make a new booking. The system could store the total number of
bookings for a conference in two ways:
•	 It could store the total number of bookings for a particular conference and adjust this number

whenever someone makes or cancels a booking. You can think of the number of bookings as
being an integer value stored in a specific column of a table that has a row for each conference
in the system.

•	 It could store all the booking and cancellation events for each conference and then calculate
the current number of bookings by replaying the events associated with the conference for
which you wanted to check the current total number of bookings.

Comparing using an ORM layer with event sourcing
Figure 1 illustrates the first approach to storing the total number of reservations. The following steps
correspond to the numbers in the diagram:

1.	 A process manager or a UI issues a command to reserve seats for two attendees to the
conference with an ID of 157. The command is handled by the command handler for the
SeatsAvailability aggregate type.

2.	 If necessary, the object-relational mapping (ORM) layer populates an aggregate instance
with data. The ORM layer retrieves the data by issuing a query against the table (or tables) in
the data store. This data includes the existing number of reservations for the conference.

3.	 The command handler invokes the business method on the aggregate instance to make the
reservations.

4.	 The SeatsAvailability aggregate performs its domain logic. In this example, this includes
calculating the new number of reservations for the conference.

5.	 The ORM persists the information in the aggregate instance to the data store. The ORM
layer constructs the necessary update (or updates) that must be executed.

Note: For a definition of process manager, see Chapter 6, “A Saga on Sagas.”

 237Introducing Event Sourcing

Figure 1
Using an object-relational mapping layer

Figure 1 provides a deliberately simplified view of the process. In practice, the mapping performed by
the ORM layer will be significantly more complex. You will also need to consider exactly when the
load and save operations must happen to balance the demands of consistency, reliability, scalability,
and performance.

238 Reference three

Figure 2
Using event sourcing

Figure 2 illustrates the second approach—using event sourcing in place of an ORM layer and a rela-
tional database management system (RDBMS).

Note: You might decide to implement the event store using an RDBMS. The relational schema will
be much simpler than the schema used by the ORM layer in the first approach. You can also use a
custom event store.

 239Introducing Event Sourcing

The following list of steps corresponds to the numbers in Figure 2.
Note that steps one, three, and four are the same as for the solution
that uses the ORM layer.

1.	 A process manager or a UI issues a command to reserve seats
for two attendees to a conference with an ID of 157. The
command is handled by the command handler for the
Seats-Availability aggregate type.

2.	 An aggregate instance is populated by querying for all of the
events that belong to SeatsAvailability aggregate 157.

3.	 The command handler invokes the business method on the
aggregate instance to make the reservations.

4.	 The SeatsAvailability aggregate performs its domain logic.
In this example, this includes calculating the new number of
reservations for the conference. The aggregate creates an
event to record the effects of the command.

5.	 The system appends the event that records making two new
reservations to the list of events associated with the aggre-
gate in the event store.

This second approach is simpler because it dispenses with the ORM
layer, and replaces a complex relational schema in the data store with
a much simpler one. The data store only needs to support querying
for events by aggregate ID and appending new events. You will still
need to consider performance and scalability optimizations for read-
ing from and writing to the store, but the impact of these optimiza-
tions on reliability and consistency should be much easier to under-
stand.

Note: Some optimizations to consider are using snapshots so you
don’t need to query and replay the full list of events to obtain the
current state of the aggregate, and maintaining cached copies of
aggregates in memory.

CQRS/ES makes it easy to
change your technologies.
For example, you could
start with a file-based
event store for prototyping
and development, and
later switch to a Windows
Azure table-based store for
production.

240 Reference three

You must also ensure that you have a mechanism that enables an ag-
gregate to rebuild its state by querying for its list of historical events.

What you have also gained with the second approach is a com-
plete history, or audit trail, of the bookings and cancellations for a
conference. Therefore, the event stream becomes your only source of
truth. There’s no need to persist aggregates in any other form or shape
since you can easily replay the events and restore the state of the
system to any point in time.

In some domains, such as accounting, event sourcing is the natu-
ral, well-established approach: accounting systems store individual
transactions from which it is always possible to reconstruct the cur-
rent state of the system. Event sourcing can bring similar benefits to
other domains.

Why should I use event sourcing?
So far, the only justification we have offered for the use of event
sourcing is the fact that it stores a complete history of the events
associated with the aggregates in your domain. This is a vital feature
in some domains, such as accounting, where you need a complete
audit trail of the financial transactions, and where events must be
immutable. Once a transaction has happened, you cannot delete or
change it, although you can create a new corrective or reversing trans-
action if necessary.

The following list describes some of the additional benefits that
you can derive from using event sourcing. The significance of the indi-
vidual benefits will vary depending on the domain you are working in.
•	 Performance. Because events are immutable, you can use an

append-only operation when you save them. Events are also
simple, standalone objects. Both these factors can lead to better
performance and scalability for the system than approaches that
use complex relational storage models.

•	 Simplification. Events are simple objects that describe what has
happened in the system. By simply saving events, you are
avoiding the complications associated with saving complex
domain objects to a relational store; namely, the object-relation-
al impedance mismatch.

The primary benefit of using
event sourcing is a built-in
audit mechanism that ensures
consistency of transactional
data and audit data because
these are the same data.
Representation via events
allows you to reconstruct the
state of any object at any
moment in time.
—Paweł Wilkosz (Customer
Advisory Council)

For additional insights into
using events as a storage
mechanism, see Events as a
Storage Mechanism by Greg
Young.

“Another problem with the
having of two models is that it is
necessarily more work. One must
create the code to save the
current state of the objects and
one must write the code to
generate and publish the events.
No matter how you go about
doing these things it cannot
possibly be easier than only
publishing events, even if you
had something that made storing
current state completely trivial to
say a document storage, there is
still the effort of bringing that
into the project.”
—Greg Young - Why use Event
Sourcing?

http://cqrs.wordpress.com/documents/events-as-storage-mechanism/
http://cqrs.wordpress.com/documents/events-as-storage-mechanism/
http://codebetter.com/gregyoung/2010/02/20/why-use-event-sourcing/
http://codebetter.com/gregyoung/2010/02/20/why-use-event-sourcing/

 241Introducing Event Sourcing

•	 Audit trail. Events are immutable and store the full history of
the state of the system. As such, they can provide a detailed
audit trail of what has taken place within the system.

•	 Integration with other subsystems. Events provide a useful
way of communicating with other subsystems. Your event store
can publish events to notify other interested subsystems of
changes to the application’s state. Again, the event store
provides a complete record of all the events that it published to
other systems.

•	 Deriving additional business value from the event history. By
storing events, you have the ability to determine the state of
the system at any previous point in time by querying the events
associated with a domain object up to that point in time. This
enables you to answer historical questions from the business
about the system. In addition, you cannot predict what ques-
tions the business might want to ask about the information
stored in a system. If you store your events, you are not discard-
ing information that may prove to be valuable in the future.

•	 Production troubleshooting. You can use the event store to
troubleshoot problems in a production system by taking a copy
of the production event store and replaying it in a test environ-
ment. If you know the time that an issue occurred in the
production system, then you can easily replay the event stream
up to that point to observe exactly what was happening.

•	 Fixing errors. You might discover a coding error that results in
the system calculating an incorrect value. Rather than fixing the
coding error and performing a risky manual adjustment on a
stored item of data, you can fix the coding error and replay the
event stream so that the system calculates the value correctly
based on the new version of the code.

•	 Testing. All of the state changes in your aggregates are recorded
as events. Therefore, you can test that a command had the
expected effect on an aggregate by simply checking for the
event.

•	 Flexibility. A sequence of events can be projected to any
desired structural representation.

“Event sourcing can also help
with complex testing scenarios
where you need to verify
that a given action triggered
a specific result. This is
especially relevant for
negative results, where you
need to verify that an action
did not trigger a result; this
is frequently not verified when
writing tests, but can easily
be instrumented when the
changes are being recorded
through events.”
—Alberto Población (Cus-
tomer Advisory Council)

“As long as you have a stream
of events, you can project it to
any form, even a conventional
SQL database. For instance,
my favorite approach is to
project event streams into
JSON documents stored in a
cloud storage.”
—Rinat Abdullin, Why Event
Sourcing?

http://bliki.abdullin.com/event-sourcing/why
http://bliki.abdullin.com/event-sourcing/why

242 Reference three

Chapter 4, “A CQRS and ES Deep Dive,” discusses these benefits
in more detail. There are also many illustrations of these benefits in
the reference implementation described in the companion guide Ex-
ploring CQRS and Event Sourcing.

Event sourcing concerns
The previous section described some of the benefits you might realize
if you decide to use event sourcing in your system. However, there are
some concerns that you may need to address, including:
•	 Performance. Although event sourcing typically improves the

performance of updates, you may need to consider the time it
takes to load domain object state by querying the event store
for all of the events that relate to the state of an aggregate.
Using snapshots may enable you to limit the amount of data
that you need to load because you can go back to the latest
snapshot and replay the events from that point forward. See the
chapter “A CQRS and ES Deep Dive,” for more information
about snapshots.

•	 Versioning. You may find it necessary to change the definition
of a particular event type or aggregate at some point in the
future. You must consider how your system will be able to
handle multiple versions of an event type and aggregates.

•	 Querying. Although it is easy to load the current state of an
object by replaying its event stream (or its state at some point in
the past), it is difficult or expensive to run a query such as, “find
all my orders where the total value is greater than $250.”
However, if you are implementing the CQRS pattern, you
should remember that such queries will typically be executed on
the read side where you can ensure that you can build data
projections that are specifically designed to answer such
questions.

“From experience, ORMs lead
you down the path of a
structural model while ES
leads you down the path of a
behavioral model. Sometimes
one just makes more sense
than the other. For example,
in my own domain (not model)
I get to integrate with other
parties that send a lot of
really non-interesting
information that I need to
send out again later when
something interesting happens
on my end. It’s inherently
structural. Putting those
things into events would be a
waste of time, effort, and
space. Contrast this with
another part of the domain
that benefits a lot from
knowing what happened, why
it happened, when it did or
didn’t happen, where time and
historical data are important
to make the next business
decision. Putting that into a
structural model is asking for
a world of pain. It depends,
get over it, choose wisely, and
above all: make your own
mistakes.”
—Yves Reynhout (CQRS
Advisors Mail List)

 243Introducing Event Sourcing

CQRS/ES
The CQRS pattern and event sourcing are frequently combined; each
adding benefit to the other.

Chapter 2, “Introducing the Command Query Responsibility Seg-
regation Pattern,” suggested that events can form the basis of the
push synchronization of the application’s state from the data store on
the write side to the data store on the read side. Remember that
typically the read-side data store contains denormalized data that is
optimized for the queries that are run against your data; for example,
to display information in your application’s UI.

You can use the events you persist in your event store to propa-
gate all the updates made on the write side to the read side. The read
side can use the information contained in the events to maintain
whatever denormalized data you require on the read side to support
your queries.

“ES is a great pattern to use
to implement the link between
the thing that writes and the
thing that reads. It’s by no
means the only possible way
to create that link, but it’s a
reasonable one and there’s
plenty of prior art with
various forms of logs and log
shipping. The major tipping
point for whether the link is
“ES” seem to be whether the
log is ephemeral or a perma-
nent source of truth. The
CQRS pattern itself merely
mandates a split between the
write and the read thing, so
ES is strictly complementary.”
—Clemens Vasters (CQRS
Advisors Mail List)

“Event sourcing is about the
state of the domain model
being persisted as a stream of
events rather than as a single
snapshot, not about how the
command and query sides are
kept in sync (usually with a
publish/subscribe message-
based approach).”
—Udi Dahan (CQRS Advisors
Mail List)

244 Reference three

Figure 3
CQRS and event sourcing

Notice how the write side publishes events after it persists them to the event store. This avoids the
need to use a two-phase commit, which you would need if the aggregate were responsible for saving
the event to the event store and publishing the event to the read side.

Normally, these events will enable you to keep the data on the read side up to date practically in
real time; there will be some delay due to the transport mechanism, and Chapter 4, “A CQRS and ES
Deep Dive” discusses the possible consequences of this delay.

You can also rebuild the data on the read side from scratch at any time by replaying the events
from your event store on the write side. You might need to do this if the read side data store got out
of synchronization for some reason, or because you needed to modify the structure of the read-side
data store to support a new query.

You need to be careful replaying the events from the event store to rebuild the read-side data
store if other bounded contexts also subscribe to the same events. It might be easy to empty the
read-side data store before replaying the events; it might not be so easy to ensure the consistency of
another bounded context if it sees a duplicate stream of events.

 245Introducing Event Sourcing

Remember that the CQRS pattern does not mandate that you use different stores on the read
side and write side. You could decide to use a single relational store with a schema in third normal
form and a set of denormalized views over that schema. However, replaying events is a very conve-
nient mechanism for resynchronizing the read-side data store with the write-side data store.

Standalone event sourcing
You can use event sourcing without also applying the CQRS pattern. The ability to rebuild the ap-
plication state, to mine the event history for new business data, and to simplify the data storage part
of the application are all valuable in some scenarios. However, this guide focuses on using event
sourcing in the context of the CQRS pattern.

Event stores
If you are using event sourcing, you will need a mechanism to store your events and to return the
stream of events associated with an aggregate instance so that you can replay the events to recreate
the state of the aggregate. This storage mechanism is typically referred to as an event store.

You may choose to implement your own event store, or use a third-party offering, such as Jona-
than Oliver’s EventStore. Although you can implement a small-scale event store relatively easily, a
production quality, scalable one is more of a challenge.

Chapter 8, “Epilogue: Lessons Learned,” summarizes the experiences that our team had imple-
menting our own event store.

Basic requirements
Typically, when you implement the CQRS pattern, aggregates raise events to publish information to
other interested parties, such as other aggregates, process managers, read models, or other bounded
contexts. When you use event sourcing, you persist these same events to an event store. This enables
you to use those events to load the state of an aggregate by replaying the sequence of events associ-
ated with that aggregate.

Therefore, whenever an aggregate instance raises an event, two things must happen. The system
must persist the event to the event store, and the system must publish the event.

Note: In practice, not all events in a system necessarily have subscribers. You may raise some events
solely as a way to persist some properties of an aggregate.

Whenever the system needs to load the current state of an aggregate, it must query the event store
for the list of past events associated with that aggregate instance.

Underlying storage
Events are not complex data structures; typically, they have some standard metadata that includes the
ID of the aggregate instance they are associated with and a version number, and a payload with the
details of the event itself. You do not need to use a relational database to store your events; you could
use a NoSQL store, a document database, or a file system.

Performance, scalability, and consistency
Stored events should be immutable and are always read in the order in which they were saved, so
saving an event should be a simple, fast append operation on the underlying store.

https://github.com/joliver/EventStore

246 Reference three

When you load the persisted events, you will load them in the order in which they were origi-
nally saved. If you are using a relational database, the records should be keyed using the aggregate ID
and a field that defines the ordering of events.

If an aggregate instance has a large number of events, this may affect the time that it takes to
replay all of the events to reload the state of the aggregate. One option to consider in this scenario
is to use a snapshot mechanism. In addition to the full stream of events in the event store, you can
store a snapshot of the state of the aggregate at some recent point in time. To reload the state of the
aggregate, you first load the most recent snapshot, then replay all of the subsequent events. You could
generate the snapshot during the write process; for example, by creating a snapshot every 100 events.

Note: How frequently you should take snapshots depends on the performance characteristics of
your underlying storage. You will need to measure how long it takes to replay different lengths of
event streams to determine the optimum time to create your snapshots.

As an alternative, you could cache heavily used aggregate instances in memory to avoid repeatedly
replaying the event stream.

When an event store persists an event, it must also publish that event. To preserve the consis-
tency of the system, both operations must succeed or fail together. The traditional approach to this
type of scenario is to use a distributed, two-phase commit transaction that wraps together the data
store append operation and the messaging infrastructure publishing operation. In practice, you may
find that support for two-phase commit transactions is limited in many data stores and messaging
platforms. Using two-phase commit transactions may also limit the performance and scalability of the
system.

Note: For a discussion of two-phase commit transactions and the impact on scalability, see the
article “Your Coffee Shop Doesn’t Use Two-Phase Commit” by Gregor Hohpe.

One of the key problems you must solve if you choose to implement your own event store is how to
achieve this consistency. For example, an event store built on top of Windows Azure table storage
could take the following approach to maintain consistency between persisting and publishing events:
use a transaction to write copies of the event to two entities in the same partition in the same table;
one entity stores an immutable event that constitutes part of the event stream of the aggregate; the
other entity stores an event that is part of a list of events pending publication. You can then have a
process that reads the list of events pending publication, guarantees to publish those events at least
once, and then after publication removes each event from the pending list.

An additional set of problems related to consistency occurs if you plan to scale out your event
store across multiple storage nodes, or use multiple writers to write to the store. In this scenario, you
must take steps to ensure the consistency of your data. The data on the write side should be fully
consistent, not eventually consistent. For more information about the CAP theorem and maintaining
consistency in distributed systems, see the next chapter “A CQRS and ES Deep Dive.”

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://eaipatterns.com/docs/IEEE_Software_Design_2PC.pdf
http://en.wikipedia.org/wiki/CAP_theorem
http://msdn.microsoft.com/en-us/library/jj619274

 247

Introduction
This chapter begins with a brief recap of some of the key points from the previous chapters, then
explores in more detail the important concepts that relate to the Command Query Responsibility
Segregation (CQRS) pattern and event sourcing (ES).

Read models and write models
The CQRS pattern assigns the responsibility for modifying and querying your application data to
different sets of objects: a write model and a read model. The immediate benefit of this segregation
is to clarify and simplify your code by applying the single-responsibility principle: objects are respon-
sible for either modifying data or querying data.

However, the most important benefit of this segregation of responsibility for reading and writing
to different sets of classes is that it is an enabler for making further changes to your application that
will provide additional benefits.

Commands and data transfer objects
A typical approach to enabling a user to edit data is to use data transfer objects (DTO): the UI re-
trieves the data to be edited from the application as a DTO, a user edits the DTO in the UI, the UI
sends the modified DTO back to the application, and then the application applies those changes to
the data in the database. For an example of implementing a DTO, see “Implementing Data Transfer
Object in .NET with a DataSet.”

This approach is data-centric and tends to use standard create, read, update, delete (CRUD) op-
erations throughout. In the user interface (UI), the user performs operations that are essentially CRUD
operations on the data in the DTO.

This is a simple, well understood approach that works effectively for many applications. How-
ever, for some applications it is more useful if the UI sends commands instead of DTOs back to the
application to make changes to the data. Commands are behavior-centric instead of data-centric,
directly represent operations in the domain, may be more intuitive to users, and can capture the user’s
intent more effectively than DTOs.

In a typical CQRS implementation, the read model returns data to the UI as a DTO. The UI then
sends a command (not a DTO) to the write model.

A CQRS and ES Deep Dive

Reference 4:

http://msdn.microsoft.com/en-us/library/ff649325.aspx
http://msdn.microsoft.com/en-us/library/ff649325.aspx

248 Reference four

Domain-driven design (DDD) and aggregates
Using commands enables you to build a UI that is more closely aligned
with the behaviors associated with your domain. Related to this are
the DDD concepts associated with a rich domain model, focusing on
aggregates as a way to model consistency boundaries based on do-
main concepts.

One of the advantages of using commands and aggregates instead
of DTOs is that it can simplify locking and concurrency management
in your application.

Data and normalization
One of the changes that the CQRS pattern enables in your applica-
tion is to segregate your data as well as your objects. The write
model can use a database that is optimized for writes by being fully
normalized. The read model can use a database that is optimized for
reads by being denormalized to suit the specific queries that the ap-
plication must support on the read side.

Several benefits flow from this: better performance because each
database is optimized for a particular set of operations, better scal-
ability because you can scale out each side independently, and simpler
locking schemes. On the write side you no longer need to worry
about how your locks impact queries, and on the read side your data-
base can be read-only.

Events and event sourcing
If you use relational databases on both the read side and write side
you will still be performing CRUD operations on the database tables
on the write side and you will need a mechanism to push the changes
from your normalized tables on the write side to your denormalized
tables on the read side.

If you capture changes in your write model as events, you can save
all of your changes simply by appending those events to your database
or data store on the write side using only Insert operations.

You can also use those same events to push your changes to the
read side. You can use those events to build projections of the data that
contain the data structured to support the queries on the read side.

Eventual consistency
If you use a single database in your application, your locking scheme
determines what version of a record is returned by a query. This pro-
cess can be very complex if a query joins records from multiple tables.

Additionally, in a web application you have to consider that as soon
as data is rendered in the UI it is potentially out of date because some
other process or user could have since changed it in the data store.

Think about the
complexities of how
transaction isolation levels
(read uncommitted, read
committed, repeatable
reads, serializable)
determine the locking
behavior in a database and
the differences between
pessimistic and optimistic
concurrency behavior.

 249A CQRS and ES Deep Dive

If you segregate your data into a write-side store and a read-side store, you are now making it
explicit in your architecture that when you query data, it may be out of date, but that the data on the
read side will be eventually consistent with the data on the write side. This helps you to simplify the
design of the application and makes it easier to implement collaborative applications where multiple
users may be trying to modify the same data simultaneously on the write side.

Defining aggregates in the domain model
In domain-driven design (DDD), an aggregate defines a consistency boundary. Typically, when you
implement the CQRS pattern, the classes in the write model define your aggregates. Aggregates are
the recipients of commands, and are units of persistence. After an aggregate instance has processed a
command and its state has changed, the system must persist the new state of the instance to storage.

An aggregate may consist of multiple related objects; an example is an order and multiple order
lines, all of which should be persisted together. However, if you have correctly identified your aggregate
boundaries, you should not need to use transactions to persist multiple aggregate instances together.

If an aggregate consists of multiple types, you should identify one type as the aggregate root. You
should access all of the objects within the aggregate through the aggregate root, and you should only
hold references to the aggregate root. Every aggregate instance should have a unique identifier.

Aggregates and object-relational mapping layers
When you are using an object-relational mapping (ORM) layer such as Entity Framework to manage
your persistence, persisting your aggregates requires minimal code in your aggregate classes.

The following code sample shows an IAggregateRoot interface and a set of classes that define
an Order aggregate. This illustrates an approach to implementing aggregates that can be persisted
using an ORM.

public interface IAggregateRoot
{
 Guid Id { get; }
}

public class Order : IAggregateRoot
{
 private List<SeatQuantity> seats;

 public Guid Id { get; private set; }

 public void UpdateSeats(IEnumerable<OrderItem> seats)
 {
 this.seats = ConvertItems(seats);
 }
 ...
}
...

public struct SeatQuantity
{
 ...
}

250 Reference four

Aggregates and event sourcing
If you are using event sourcing, then your aggregates must create events to record all of the state
changes that result from processing commands.

The following code sample shows an IEventSourced interface, an EventSourced abstract class,
and a set of classes that define an Order aggregate. This illustrates an approach to implementing ag-
gregates that can be persisted using event sourcing.

public interface IEventSourced
{
 Guid Id { get; }

 int Version { get; }

 IEnumerable<IVersionedEvent> Events { get; }
}
...
public abstract class EventSourced : IEventSourced
{
 private readonly Dictionary<Type, Action<IVersionedEvent>> handlers =
 new Dictionary<Type, Action<IVersionedEvent>>();
 private readonly List<IVersionedEvent> pendingEvents =
 new List<IVersionedEvent>();

 private readonly Guid id;
 private int version = -1;

 protected EventSourced(Guid id)
 {
 this.id = id;
 }

 public Guid Id
 {
 get { return this.id; }
 }

 public int Version { get { return this.version; } }

 public IEnumerable<IVersionedEvent> Events
 {
 get { return this.pendingEvents; }
 }

 protected void Handles<TEvent>(Action<TEvent> handler)
 where TEvent : IEvent

 251A CQRS and ES Deep Dive

 {
 this.handlers.Add(typeof(TEvent), @event => handler((TEvent)@event));
 }

 protected void LoadFrom(IEnumerable<IVersionedEvent> pastEvents)
 {
 foreach (var e in pastEvents)
 {
 this.handlers[e.GetType()].Invoke(e);
 this.version = e.Version;
 }
 }

 protected void Update(VersionedEvent e)
 {
 e.SourceId = this.Id;
 e.Version = this.version + 1;
 this.handlers[e.GetType()].Invoke(e);
 this.version = e.Version;
 this.pendingEvents.Add(e);
 }
}

...

public class Order : EventSourced
{
 private List<SeatQuantity> seats;

 protected Order(Guid id) : base(id)
 {
 base.Handles<OrderUpdated>(this.OnOrderUpdated);
 ...
 }

 public Order(Guid id, IEnumerable<IVersionedEvent> history) : this(id)
 {
 this.LoadFrom(history);
 }

 public void UpdateSeats(IEnumerable<OrderItem> seats)
 {
 this.Update(new OrderUpdated { Seats = ConvertItems(seats) });
 }

252 Reference four

 private void OnOrderUpdated(OrderUpdated e)
 {
 this.seats = e.Seats.ToList();
 }

 ...
}

...

public struct SeatQuantity
{
 ...
}

In this example, the UpdateSeats method creates a new Order-
Updated event instead of updating the state of the aggregate di-
rectly. The Update method in the abstract base class is responsible for
adding the event to the list of pending events to be appended to the
event stream in the store, and for invoking the OnOrderUpdated
event handler to update the state of the aggregate. Every event that
is handled in this way also updates the version of the aggregate.

The constructor in the aggregate class and the LoadFrom method
in the abstract base class handle replaying the event stream to reload
the state of the aggregate.

Commands and command handlers
This section describes the role of commands and command handlers
in a CQRS implementation and shows an outline of how they might
be implemented in the C# language.

We tried to avoid polluting
the aggregate classes with
infrastructure-related code.
These aggregate classes
should implement the
domain model and logic.

 253A CQRS and ES Deep Dive

Commands
Commands are imperatives; they are requests for the system to per-
form a task or action. Two examples are: “book two places on confer-
ence X” or “allocate speaker Y to room Z.” Commands are usually
processed just once, by a single recipient.

Both the sender and the receiver of a command should be in the
same bounded context. You should not send a command to another
bounded context because you would be instructing that other bound-
ed context, which has separate responsibilities in another consistency
boundary, to perform some work for you. However, a process man-
ager may not belong to any particular bounded context in the system,
but it still sends commands. Some people also take the view that the
UI is not a part of the bounded context, but the UI still sends com-
mands.

Example code
The following code sample shows a command and the ICommand
interface that it implements. Notice that a command is a simple data
transfer object (DTO) and that every instance of a command has a
unique ID.

using System;

public interface ICommand
{
 Guid Id { get; }
}

public class MakeSeatReservation : ICommand
{
 public MakeSeatReservation()
 {
 this.Id = Guid.NewGuid();
 }

 public Guid Id { get; set; }

 public Guid ConferenceId { get; set; }
 public Guid ReservationId { get; set; }
 public int NumberOfSeats { get; set; }
}

“I think that in most circum-
stances (if not all), the
command should succeed (and
that makes the async story
way easier and practical). You
can validate against the read
model before submitting a
command, and this way being
almost certain that it will
succeed.”
—Julian Dominguez (CQRS
Advisors Mail List)

“When a user issues a
command, it’ ll give the best
user experience if it rarely
fails. However, from an
architectural/implementation
point of view, commands will
fail once in a while, and the
application should be able to
handle that.”
—Mark Seemann (CQRS
Advisors Mail List)

254 Reference four

Command handlers
Commands are sent to a specific recipient, typically an aggregate in-
stance. The command handler performs the following tasks:

1.	 It receives a command instance from the messaging infra-
structure.

2.	 It validates that the command is a valid command.
3.	 It locates the aggregate instance that is the target of the

command. This may involve creating a new aggregate in-
stance or locating an existing instance.

4.	 It invokes the appropriate method on the aggregate instance,
passing in any parameters from the command.

5.	 It persists the new state of the aggregate to storage.
Typically, you will organize your command handlers so that you have
a class that contains all of the handlers for a specific aggregate type.

You messaging infrastructure should ensure that it delivers just a
single copy of a command to single command handler. Commands
should be processed once, by a single recipient.

The following code sample shows a command handler class that
handles commands for Order instances.

“I don’t see the reason to retry
the command here. When you
see that a command could not
always be fulfilled due to race
conditions, go talk with your
business expert and analyze
what happens in this case,
how to handle compensation,
offer an alternate solution, or
deal with overbooking. As far
as I can see, the only reason to
retry is for technical transient
failures such as those that
could occur when accessing the
state storage.”
—Jérémie Chassaing (CQRS
Advisors Mail List)

public class OrderCommandHandler :
	 ICommandHandler<RegisterToConference>,
	 ICommandHandler<MarkSeatsAsReserved>,
	 ICommandHandler<RejectOrder>,
	 ICommandHandler<AssignRegistrantDetails>,
	 ICommandHandler<ConfirmOrder>
{
	 private readonly IEventSourcedRepository<Order> repository;

	 public OrderCommandHandler(IEventSourcedRepository<Order> repository)
	 {
		 this.repository = repository;
	 }

	 public void Handle(RegisterToConference command)
	 {
		 var items = command.Seats.Select(t => new OrderItem(t.SeatType,
 t.Quantity)).ToList();
		 var order = repository.Find(command.OrderId);
		 if (order == null)
		 {
			 order = new Order(command.OrderId, command.ConferenceId, items);
		 }

 255A CQRS and ES Deep Dive

		 else
		 {
			 order.UpdateSeats(items);
		 }

		 repository.Save(order, command.Id.ToString());
	 }

	 public void Handle(ConfirmOrder command)
	 {
		 var order = repository.Get(command.OrderId);
		 order.Confirm();
		 repository.Save(order, command.Id.ToString());
	 }

	 public void Handle(AssignRegistrantDetails command)
	 {
		 ...
	 }

	 public void Handle(MarkSeatsAsReserved command)
	 {
		 ...
	 }

	 public void Handle(RejectOrder command)
	 {
		 ...
	 }
}

This handler handles five different commands for the Order aggregate. The RegisterToConference
command is an example of a command that creates a new aggregate instance. The ConfirmOrder
command is an example of a command that locates an existing aggregate instance. Both examples use
the Save method to persist the instance.

If this bounded context uses an ORM, then the Find and Save methods in the repository class
will locate and persist the aggregate instance in the underlying database.

If this bounded context uses event sourcing, then the Find method will replay the aggregate’s
event stream to recreate the state, and the Save method will append the new events to the aggre-
gate’s event stream.

Note: If the aggregate generated any events when it processed the command, then these events are
published when the repository saves the aggregate instance.

256 Reference four

Commands and optimistic concurrency
A common scenario for commands is that some of the information included in the command is pro-
vided by the user of the system through the UI, and some of the information is retrieved from the read
model. For example, the UI builds a list of orders by querying the read model, the user selects one of
those orders, and modifies the list of attendees associated with that order. The UI then sends the com-
mand that contains the list of attendees associated with the order to the write model for processing.

However, because of eventual consistency, it is possible that the information that the UI retrieves
from the read side is not yet fully consistent with changes that have just been made on the write side
(perhaps by another user of the system). This raises the possibility that the command that is sent to
update the list of attendees results in an inconsistent change to the write model. For example, some-
one else could have deleted the order, or already modified the list of attendees.

A solution to this problem is to use version numbers in the read model and the commands.
Whenever the write model sends details of a change to the read model, it includes the current version
number of the aggregate. When the UI queries the read model, it receives the version number and
includes it in the command that it sends to the write model. The write model can compare the version
number in the command with the current version number of the aggregate and, if they are different,
it can raise a concurrency error and reject the change.

Events and event handlers
Events can play two different roles in a CQRS implementation.
•	 Event sourcing. As described previously, event sourcing is an approach to persisting the state

of aggregate instances by saving the stream of events in order to record changes in the state of
the aggregate.

•	 Communication and Integration. You can also use events to communicate between aggregates
or process managers in the same or in different bounded contexts. Events publish to subscrib-
ers information about something that has happened.

One event can play both roles: an aggregate may raise an event to record a state change and to notify
an aggregate in another bounded context of the change.

Events and intent
As previously mentioned, events in event sourcing should capture the business intent in addition to
the change in state of the aggregate. The concept of intent is hard to pin down, as shown in the fol-
lowing conversation:

 257A CQRS and ES Deep Dive

Developer 1: One of the claims that I often hear for using event sourcing is that it enables you
to capture the user’s intent, and that this is valuable data. It may not be valuable right now,
but if we capture it, it may turn out to have business value at some point in the future.

Developer 2: Sure. For example, rather than saving just a customer’s latest address, we might
want to store a history of the addresses the customer has had in the past. It may also be use-
ful to know why a customer’s address was changed; perhaps they moved into a new house or
you discovered a mistake with the existing address that you have on file.

Developer 1: So in this example, the intent might help you to understand why the customer
hadn’t responded to offers that you sent, or might indicate that now might be a good time to
contact the customer about a particular product. But isn’t the information about intent, in
the end, just data that you should store. If you do your analysis right, you’d capture the fact
that the reason an address changes is an important piece of information to store.

Developer 2: By storing events, we can automatically capture all intent. If we miss something
during our analysis, but we have the event history, we can make use of that information later.
If we capture events, we don’t lose any potentially valuable data.

Developer 1: But what if the event that you stored was just, “the customer address was
changed?” That doesn’t tell me why the address was changed.

Developer 2: OK. You still need to make sure that you store useful events that capture what is
meaningful from the perspective of the business.

Developer 1: So what do events and event sourcing give me that I can’t get with a well-de-
signed relational database that captures everything I may need?

Developer 2: It really simplifies things. The schema is simple. With a relational database you
have all the problems of versioning if you need to start storing new or different data. With
event sourcing, you just need to define a new event type.

Developer 1: So what do events and event sourcing give me that I can’t get with a standard
database transaction log?

Developer 2: Using events as your primary data model makes it very easy and natural to do
time-related analysis of data in your system; for example, “what was the balance on the ac-
count at a particular point in time?” or, “what would the customer’s status be if we’d intro-
duced the reward program six months earlier?” The transactional data is not hidden away and
inaccessible on a tape somewhere, it’s there in your system.

Developer 1: So back to this idea of intent. Is it something special that you can capture using
events, or is it just some additional data that you save?

Developer 2: I guess in the end, the intent is really there in the commands that originate from
the users of the system. The events record the consequences of those commands. If those
events record the consequences in business terms then it makes it easier for you to infer the
original intent of user.

—Thanks to Clemens Vasters and Adam Dymitruk

258 Reference four

How to model intent
This section examines two alternatives for modeling intent with reference to SOAP and REST-style
interfaces to help highlight the differences.

Note: We are using SOAP and REST here as an analogy to help explain the differences between
the approaches.

The following code samples illustrate two slightly different approaches to modeling intent alongside
the event data:

Example 1. The Event log or SOAP-style approach.

[
	 { "reserved": { "seatType": "FullConference", "quantity": "5" } },
	 { "reserved": { "seatType": "WorkshopA", "quantity": "3" } },
	 { "purchased": { "seatType": "FullConference", "quantity": "5" } },
	 { "expired": { "seatType": "WorkshopA", "quantity": "3" } }
]

Example 2. The Transaction log or REST-style approach.

[
 { "insert" : {
 "resource" : "reservations", "seatType" : "FullConference", "quantity" : "5"
 }},
 { "insert" : {
 "resource" : "reservations", "seatType" : "WorkshopA", "quantity" : "3"
 }},
 { "insert" : {
 "resource" : "orders", "seatType" : "FullConference", "quantity" : "5"
 }},
 { "delete" : {
 "resource" : "reservations", "seatType" : "WorkshopA", "quantity" : "3"
 }},
]

The first approach uses an action-based contract that couples the events to a particular aggregate
type. The second approach uses a uniform contract that uses a resource field as a hint to associate
the event with an aggregate type.

Note: How the events are actually stored is a separate issue. This discussion is focusing on how to
model your events.

The advantages of the first approach are:
•	 Strong typing.
•	 More expressive code.
•	 Better testability.

 259A CQRS and ES Deep Dive

The advantages of the second approach are:
•	 Simplicity and a generic approach.
•	 Easier to use existing internet infrastructure.
•	 Easier to use with dynamic languages and with changing schemas.

Events
Events report that something has happened. An aggregate or process
manager publishes one-way, asynchronous messages that are pub-
lished to multiple recipients. For example: SeatsUpdated, Payment-
Completed, and EmailSent.

Sample Code
The following code sample shows a possible implementation of an
event that is used to communicate between aggregates or process
managers. It implements the IEvent interface.

public interface IEvent
{
 Guid SourceId { get; }
}

...

public class SeatsAdded : IEvent
{
 public Guid ConferenceId { get; set; }

 public Guid SourceId { get; set; }

 public int TotalQuantity { get; set; }

 public int AddedQuantity { get; set; }
}

Note: For simplicity, in C# these classes are implemented as
DTOs, but they should be treated as being immutable.

Variable environment
state needs to be stored
alongside events in order
to have an accurate
representation of the
circumstances at the
time when the command
resulting in the event was
executed, which means that
we need to save everything!

260 Reference four

The following code sample shows a possible implementation of an event that is used in an event
sourcing implementation. It extends the VersionedEvent abstract class.

public abstract class VersionedEvent : IVersionedEvent
{
 public Guid SourceId { get; set; }

 public int Version { get; set; }
}

...

public class AvailableSeatsChanged : VersionedEvent
{
 public IEnumerable<SeatQuantity> Seats { get; set; }
}

The Version property refers to the version of the aggregate. The version is incremented whenever
the aggregate receives a new event.

Event handlers
Events are published to multiple recipients, typically aggregate instances or process managers. The
Event handler performs the following tasks:

1.	 It receives an Event instance from the messaging infrastructure.
2.	 It locates the aggregate or process manager instance that is the target of the event. This may

involve creating a new aggregate instance or locating an existing instance.
3.	 It invokes the appropriate method on the aggregate or process manager instance, passing in

any parameters from the event.
4.	 It persists the new state of the aggregate or process manager to storage.

Sample code

public void Handle(SeatsAdded @event)
{
 var availability = this.repository.Find(@event.ConferenceId);
 if (availability == null)
 availability = new SeatsAvailability(@event.ConferenceId);

 availability.AddSeats(@event.SourceId, @event.AddedQuantity);
 this.repository.Save(availability);
}

 261A CQRS and ES Deep Dive

If this bounded context uses an ORM, then the Find and Save
methods in the repository class will locate and persist the aggregate
instance in the underlying database.

If this bounded context uses event sourcing, then the Find
method will replay the aggregate’s event stream to recreate the state,
and the Save method will append the new events to the aggregate’s
event stream.

Embracing eventual consistency
Maintaining the consistency of business data is a key requirement in
all enterprise systems. One of the first things that many developers
learn in relation to database systems is the atomicity, consistency,
isolation, durability (ACID) properties of transactions: transactions
must ensure that the stored data is consistent and be atomic, isolated,
and durable. Developers also become familiar with complex concepts
such as pessimistic and optimistic concurrency, and their performance
characteristics in particular scenarios. They may also need to under-
stand the different isolation levels of transactions: serializable, re-
peatable reads, read committed, and read uncommitted.

In a distributed computer system, there are some additional fac-
tors that are relevant to consistency. The CAP theorem states that it
is impossible for a distributed computer system to provide the follow-
ing three guarantees simultaneously:
•	 Consistency (C). A guarantee that all the nodes in the system

see the same data at the same time.
•	 Availability (A). A guarantee that the system can continue to

operate even if a node is unavailable.
•	 Partition tolerance (P). A guarantee that the system continues

to operate despite the nodes being unable to communicate.
For more information about the CAP theorem, see CAP theorem on
Wikipedia and the article CAP Twelve Years Later: How the “Rules”
Have Changed by Eric Brewer on the InfoQ website.

“In larger distributed-scale
systems, network partitions
are a given; therefore,
consistency and availability
cannot be achieved at the
same time.”
—Werner Vogels, CTO,
Amazon in Vogels, E. Eventu-
ally Consistent, Communica-
tions of ACM, 52(1): 40-44,
Jan 2009.

Cloud providers
have broadened the
interpretation of the CAP
theorem in the sense that
they consider a system
to be unavailable if the
response time exceeds the
latency limit.

http://en.wikipedia.org/wiki/CAP_theorem
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

262 Reference four

The concept of eventual consistency offers a way to make it appear
from the outside that we are meeting these three guarantees. In the
CAP theorem, the consistency guarantee specifies that all the nodes
should see the same data at the same time; instead, with eventual con-
sistency we state that all the nodes will eventually see the same data.
It’s important that changes are propagated to other nodes in the
system at a faster rate than new changes arrive in order to avoid the
differences between the nodes continuing to increase. Another way
of viewing this is to say that we will accept that, at any given time,
some of the data seen by users of the system could be stale. For many
business scenarios, this turns out to be perfectly acceptable: a busi-
ness user will accept that the information they are seeing on a screen
may be a few seconds, or even minutes out of date. Depending on the
details of the scenario, the business user can refresh the display a bit
later on to see what has changed, or simply accept that what they see
is always slightly out of date. There are some scenarios where this
delay is unacceptable, but they tend to be the exception rather than
the rule.

Note: To better understand the tradeoffs described by the CAP
theorem, check out the special issue of IEEE Computer magazine
dedicated to it (Vol.45(no.2), Feb 2012).

“Very often people attempting
to introduce eventual consis-
tency into a system run into
problems from the business
side. A very large part of the
reason of this is that they use
the word consistent or
consistency when talking with
domain experts / business
stakeholders.
...
Business users hear “consis-
tency” and they tend to think
it means that the data will be
wrong. That the data will be
incoherent and contradictory.
This is not actually the case.
Instead try using the words
stale or old. In discussions
when the word stale is used
the business people tend to
realize that it just means that
someone could have changed
the data, that they may not
have the latest copy of it.”
—Greg Young, Quick
Thoughts on Eventual
Consistency.

Domain name servers (DNS) use the eventual consistency model to
refresh themselves, and that’s why DNS propagation delay can occur
that results in some, but not all users being able to navigate to a new or
updated domain name. The propagation delay is acceptable considering
that a coordinated atomic update across all DNS servers globally would
not be feasible. Eventually, however, all DNS servers get updated and
domain names get resolved properly.

http://www.computer.org/csdl/mags/co/2012/02/index.html
http://codebetter.com/gregyoung/2010/04/14/quick-thoughts-on-eventual-consistency/
http://codebetter.com/gregyoung/2010/04/14/quick-thoughts-on-eventual-consistency/
http://codebetter.com/gregyoung/2010/04/14/quick-thoughts-on-eventual-consistency/

 263A CQRS and ES Deep Dive

Eventual consistency and CQRS
How does the concept of eventual consistency relate to the CQRS pattern? A typical implementation
of the CQRS pattern is a distributed system made up of one node for the write side, and one or more
nodes for the read side. Your implementation must provide some mechanism for synchronizing data
between these two sides. This is not a complex synchronization task because all of the changes take
place on the write side, so the synchronization process only needs to push changes from the write
side to the read side.

If you decide that the two sides must always be consistent (the case of strong consistency), then
you will need to introduce a distributed transaction that spans both sides, as shown in Figure 1.

Figure 1
Using a distributed transaction to maintain consistency

The problems that may result from this approach relate to performance and availability. Firstly, both
sides will need to hold locks until both sides are ready to commit; in other words, the transaction can
only complete as fast as the slowest participant can.

264 Reference four

This transaction may include more than two participants. If we are scaling the read side by adding
multiple instances, the transaction must span all of those instances.

Secondly, if one node fails for any reason or does not complete the transaction, the transaction
cannot complete. In terms of the CAP theorem, by guaranteeing consistency, we cannot guarantee
the availability of the system.

If you decide to relax your consistency constraint and specify that your read side only needs to
be eventually consistent with the write side, you can change the scope of your transaction. Figure 2
shows how you can make the read side eventually consistent with the write side by using a reliable
messaging transport to propagate the changes.

Figure 2
Using a reliable message transport

 265A CQRS and ES Deep Dive

In this example, you can see that there is still a transaction. The
scope of this transaction includes saving the changes to the data store
on the write side, and placing a copy of the change onto the queue
that pushes the change to the read side.

This solution does not suffer from the potential performance
problems that you saw in the original solution if you assume that the
messaging infrastructure allows you to quickly add messages to a
queue. This solution is also no longer dependent on all of the read-
side nodes being constantly available because the queue acts as a
buffer for the messages addressed to the read-side nodes.

Note: In practice, the messaging infrastructure is likely to use a
publish/subscribe topology rather than a queue to enable multiple
read-side nodes to receive the messages.

This third example (Figure 3) shows a way you can avoid the need for
a distributed transaction.

Figure 3
No distributed transactions

This eventual consistency
might not be able to
guarantee the same order of
updates on the read side as
on the write side.

266 Reference four

This example depends on functionality in the write-side data store: it must be able to send a message
in response to every update that the write-side model makes to the data. This approach lends itself
particularly well to the scenario in which you combine CQRS with event sourcing. If the event store
can send a copy of every event that it saves onto a message queue, then you can make the read side
eventually consistent by using this infrastructure feature.

Optimizing the read-side
There are four goals to keep in mind when optimizing the read side. You typically want to:
•	 Have very fast responses to queries for data.
•	 Minimize resource utilization.
•	 Minimize latency.
•	 Minimize costs.

By separating the read side from the write side, the CQRS pattern enables you to design the read side
so that the data store is optimized for reading. You can denormalize your relational tables or choose
to store the data in some other format that best suits the part of the application that will use the data.
Ideally, the recipient of the data should not need to perform any joins or other complex, resource-
intensive operations on the data.

For a discussion of how to discourage any unnecessary operations on the data, see the section,
“Querying the read side” in Chapter 4, “Extending and Enhancing the Orders and Registrations
Bounded Contexts.”

If your system needs to accommodate high volumes of read operations, you can scale out the read
side. For example, you could do this in Windows Azure by adding additional role instances. You can
also easily scale out your data store on the read side because it is read-only. You should also consider
the benefits of caching data on the read side to further speed up response times and reduce process-
ing resource utilization.

For a description of how the team designed the reference implementation for scalability, see
Chapter 7, “Adding Resilience and Optimizing Performance.”

In the section “Embracing Eventual Consistency” earlier in this chapter, you saw how when you
implement the CQRS pattern that you must accept some latency between an update on the write
side and that change becoming visible on the read side. However, you will want to keep that delay to
a minimum. You can minimize the delay by ensuring that the infrastructure that transports update
information to the read side has enough resources, and by ensuring that the updates to your read
models happen efficiently.

You should also consider the comparative storage costs for different storage models on the read
side such as Windows Azure SQL Database, Windows Azure table storage, and Windows Azure blob
storage. This may involve a trade-off between performance and costs.

 267A CQRS and ES Deep Dive

Optimizing the write side
A key goal in optimizing the write side is to maximize the throughput of commands and events.
Typically, the write side performs work when it receives commands from the UI or receives integration
events from other bounded contexts. You need to ensure that your messaging infrastructure delivers
command and event messages with minimal delay, that the processing in the domain model is efficient,
and that interactions with the data store are fast.

Options for optimizing the way that messages are delivered to the write side include:
•	 Delivering commands in-line without using the messaging infrastructure. If you can host the

domain model in the same process as the command sender, you can avoid using the messaging
infrastructure. You need to consider the impact this may have on the resilience of your system
to failures in this process.

•	 Handling some commands in parallel. You need to consider whether this will affect the way
your system manages concurrency.

If you are using event sourcing, you may be able to reduce the time it takes to load the state of an
aggregate by using snapshots. Instead of replaying the complete event stream when you load an ag-
gregate, you load the most recent snapshot of its state and then only play back the events that oc-
curred after the snapshot was taken. You will need to introduce a mechanism that creates snapshots
for aggregates on a regular basis. However, given the simplicity of a typical event store schema, load-
ing the state of an aggregate is typically very fast. Using snapshots typically only provides a perfor-
mance benefit when an aggregate has a very large number of events.

Instead of snapshots, you may be able to optimize the access to an aggregate with a large number
of events by caching it in memory. You only need to load the full event stream when it is accessed for
the first time after a system start.

Concurrency and aggregates
A simple implementation of aggregates and command handlers will load an aggregate instance into
memory for each command that the aggregate must process. For aggregates that must process a large
number of commands, you may decide to cache the aggregate instance in memory to avoid the need
to reload it for every command.

If your system only has a single instance of an aggregate loaded into memory, that aggregate may
need to process commands that are sent from multiple clients. By arranging for the system to deliver
commands to the aggregate instance through a queue, you can ensure that the aggregate processes
the commands sequentially. Also, there is no requirement to make the aggregate thread-safe, because
it will only process a single command at a time.

In scenarios with an even higher throughput of commands, you may need to have multiple in-
stances of the aggregate loaded into memory, possibly in different processes. To handle the concur-
rency issues here, you can use event sourcing and versioning. Each aggregate instance must have a
version number that is updated whenever the instance persists an event.

268 Reference four

There are two ways to make use of the version number in the
aggregate instance:
•	 Optimistic: Append the event to the event-stream if the latest

event in the event-stream is the same version as the current,
in-memory, instance.

•	 Pessimistic: Load all the events from the event stream that have
a version number greater than the version of the current,
in-memory, instance.

Messaging and CQRS
CQRS and event sourcing use two types of messages: commands and
events. Typically, systems that implement the CQRS pattern are large-
scale, distributed systems and therefore you need a reliable, distrib-
uted messaging infrastructure to transport the messages between
your senders/publishers and receivers/subscribers.

For commands that have a single recipient you will typically use a
queue topology. For events, that may have multiple recipients you will
typically use a pub/sub topology.

The reference implementation that accompanies this guide uses
the Windows Azure Service Bus for messaging. Chapter 7, “Technolo-
gies Used in the Reference Implementation” provides additional infor-
mation about the Windows Azure Service Bus. Windows Azure Ser-
vice Bus brokered messaging offers a distributed messaging
infrastructure in the cloud that supports both queue and pub/sub
topologies.

Messaging considerations
Whenever you use messaging, there are a number of issues to consider.
This section describes some of the most significant issues when you
are working with commands and events in a CQRS implementation.

Duplicate messages
An error in the messaging infrastructure or in the message receiving
code may cause a message to be delivered multiple times to its re-
cipient.

There are two potential approaches to handling this scenario.
•	 Design your messages to be idempotent so that duplicate

messages have no impact on the consistency of your data.
•	 Implement duplicate message detection. Some messaging

infrastructures provide a configurable duplicate detection
strategy that you can use instead of implementing it yourself.

For a detailed discussion of idempotency in reliable systems, see the
article “Idempotence Is Not a Medical Condition” by Pat Helland.

“These are technical perfor-
mance optimizations that can
be implemented on case-by-
case bases.”
—Rinat Abdullin (CQRS
Advisors Mail List)

Some messaging
infrastructures offer a
guarantee of at least once
delivery. This implies that
you should explicitly handle
the duplicate message
delivery scenario in your
application code.

http://queue.acm.org/detail.cfm?id=2187821

 269A CQRS and ES Deep Dive

Lost messages
An error in the messaging infrastructure may cause a message not to
be delivered to its recipient.

Many messaging infrastructures offer guarantees that messages
are not lost and are delivered at least once to their recipient. Alterna-
tive strategies that you could implement to detect when messages
have been lost include a handshake process to acknowledge receipt
of a message to the sender, or assigning sequence numbers to mes-
sages so that the recipient can determine if it has not received a mes-
sage.

Out-of-order messages
The messaging infrastructure may deliver messages to a recipient in
an order different than the order in which the sender sent the mes-
sages.

In some scenarios, the order that messages are received in is not
significant. If message ordering is important, some messaging infra-
structures can guarantee ordering. Otherwise, you can detect out-of-
order messages by assigning sequence numbers to messages as they
are sent. You could also implement a process manager process in the
receiver that can hold out-of-order messages until it can reassemble
messages into the correct order.

If messages need to be ordered within a group, you may be able
to send the related messages as a single batch.

Unprocessed messages
A client may retrieve a message from a queue and then fail while it is
processing the message. When the client restarts, the message has
been lost.

Some messaging infrastructures allow you to include the read of
the message from the infrastructure as part of a distributed transac-
tion that you can roll back if the message processing fails.

Another approach offered by some messaging infrastructures, is
to make reading a message a two-phase operation. First you lock and
read the message, then when you have finished processing the mes-
sage you mark it as complete and it is removed from the queue or
topic. If the message does not get marked as complete, the lock on
the message times out and it becomes available to read again.

Event versioning
As your system evolves, you may find that you need to make changes
to the events that your system uses. For example:
•	 Some events may become redundant in that they are no longer

raised by any class in your system.
•	 You may need to define new events that relate to new features

or functionality within in your system.
•	 You may need to modify existing event definitions.

The following sections discuss each of these scenarios in turn.

If a message still cannot be
processed after a number
of retries, it is typically sent
to a dead-letter queue for
further investigation.

270 Reference four

Redundant events
If your system no longer uses a particular event type, you may be able to simply remove it from the
system. However, if you are using event sourcing, your event store may hold many instances of this
event, and these instances may be used to rebuild the state of your aggregates. Typically, you treat
the events in your event store as immutable. In this case, your aggregates must continue to be able to
handle these old events when they are replayed from the event store even though the system will no
longer raise new instances of this event type.

New event types
If you introduce new event types into your system, this should have no impact on existing behavior.
Typically, it is only new features or functionality that use the new event types.

Changing existing event definitions
Handling changes to event type definitions requires more complex changes to your system. For ex-
ample, your event store may hold many instances of an old version of an event type while the system
raises events that are a later version, or different bounded contexts may raise different versions of the
same event. Your system must be capable of handling multiple versions of the same event.

An event definition can change in a number of different ways; for example:
•	 An event gains a new property in the latest version.
•	 An event loses a property in the latest version.
•	 A property changes its type or supports a different range of values.

Note: If the semantic meaning of an event changes, then you should treat that as new event type,
and not as a new version of an existing event.

Where you have multiple versions of an event type, you have two basic choices of how to handle the
multiple versions: you can either continue to support multiple versions of the event in your domain
classes, or use a mechanism to convert old versions of events to the latest version whenever they are
encountered by the system.

The first option may be the quickest and simplest approach to adopt because it typically doesn’t
require any changes to your infrastructure. However, this approach will eventually pollute your domain
classes as they end up supporting more and more versions of your events, but if you don’t anticipate
many changes to your event definitions this may be acceptable.

 271A CQRS and ES Deep Dive

The second approach is a cleaner solution: your domain classes only need to support the latest
version of each event type. However you do need to make changes to your infrastructure to translate
the old event types to the latest type. The issue here is to decide whereabouts in your infrastructure
to perform this translation.

One option is to add filtering functionality into your messaging infrastructure so that events are
translated as they are delivered to their recipients; you could also add the translation functionality
into your event handler classes. If you are using event sourcing, you must also ensure that old versions
of events are translated as they are read from the event store when you are rehydrating your aggre-
gates.

Whatever solution you adopt, it must perform the same translation wherever the old version of
the event originates from—another bounded context, an event store, or even from the same bound-
ed context if you are in the middle of a system upgrade.

Your choice of serialization format may make it easier to handle different versions of events; for
example, JavaScript Object Notation (JSON) deserialization can simply ignore deleted properties, or
the class that the object is deserialized to can provide a meaningful default value for any new prop-
erty.

Task-based UIs
In Figure 3 above, you can see that in a typical implementation of the CQRS pattern, the UI queries
the read side and receives a DTO, and sends commands to the write side. This section describes some
of the impact this has on the design of your UI.

In a typical three-tier architecture or simple CRUD system, the UI also receives data in the form
of DTOs from the service tier. The user then manipulates the DTO through the UI. The UI then sends
the modified DTO back to the service tier. The service tier is then responsible for persisting the
changes to the data store. This can be a simple, mechanical process of identifying the CRUD opera-
tions that the UI performed on the DTO and applying equivalent CRUD operations to the data store.
There are several things to notice about this typical architecture:
•	 It uses CRUD operations throughout.
•	 If you have a domain model you must translate the CRUD operations from the UI into some-

thing that the domain understands.
•	 It can lead to complexity in the UI if you want to provide a more natural and intuitive UI that

uses domain concepts instead of CRUD concepts.
•	 It does not necessarily capture the user’s intent.
•	 It is simple and well understood.

272 Reference four

The following list identifies the changes that occur in your architec-
ture if you implement the CQRS pattern and send commands from
the UI to the write side:
•	 It does not use CRUD-style operations.
•	 The domain can act directly in response to the commands from

the UI.
•	 You can design the UI to construct the commands directly,

making it easier to build a natural and intuitive UI that uses
concepts from the domain.

•	 It is easier to capture the user’s intent in a command.
•	 It is more complex and assumes that you have a domain model

in the write side.
•	 The behavior is typically in one place: the write model.

A task-based UI is a natural, intuitive UI based on domain concepts
that the users of the system already understand. It does not impose
the CRUD operations on the UI or the user. If you implement the
CQRS pattern, your task-based UI can create commands to send to
the domain model on the write side. The commands should map very
closely onto the mental model that your users have of the domain,
and should not require any translation before the domain model re-
ceives and processes them.

In many applications, especially where the domain is relatively
simple, the costs of implementing the CQRS pattern and adding a
task-based UI will outweigh any benefits. Task-based UIs are particu-
larly useful in complex domains.

There is no requirement to use a task-based UI when you imple-
ment the CQRS pattern. In some scenarios a simple CRUD-style UI is
all that’s needed.

Taking advantage of Windows Azure
In Chapter 2, “Introducing the Command Query Responsibility Segre-
gation Pattern,” we suggested that the motivations for hosting an
application in the cloud were similar to the motivations for imple-
menting the CQRS pattern: scalability, elasticity, and agility. This sec-
tion describes in more detail how a CQRS implementation might use
some of specific features of the Windows Azure platform to provide
some of the infrastructure that you typically need when you imple-
ment the CQRS pattern.

“The concept of a task-based
UI is more often than not
assumed to be part of CQRS;
it is not; it is there so the
domain can have verbs, but
also capturing the intent of
the user is important in
general.”
—Greg Young - CQRS, Task
Based UIs, Event Sourcing agh!

“Every human-computer
interaction (HCI) professional
I have worked with has been
in favor of task-based UIs.
Every user that I have met
that has used both styles of
UI, task based and grid based,
has reported that they were
more productive when using
the task-based UI for interac-
tive work. Data entry is not
interactive work.”
—Udi Dahan - Tasks,
Messages, & Transactions.

http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/
http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/
http://www.udidahan.com/2007/03/31/tasks-messages-transactions-%E2%80%93-the-holy-trinity/
http://www.udidahan.com/2007/03/31/tasks-messages-transactions-%E2%80%93-the-holy-trinity/

 273A CQRS and ES Deep Dive

Scaling out using multiple role instances
When you deploy an application to Windows Azure, you deploy the application to roles in your
Windows Azure environment; a Windows Azure application typically consists of multiple roles. Each
role has different code and performs a different function within the application. In CQRS terms, you
might have one role for the implementation of the write-side model, one role for the implementation
of the read-side model, and another role for the UI elements of the application.

After you deploy the roles that make up your application to Windows Azure, you can specify (and
change dynamically) the number of running instances of each role. By adjusting the number of running
instances of each role, you can elastically scale your application in response to changes in levels of
activity. One of the motivations for using the CQRS pattern is the ability to scale the read side and
the write side independently given their typically different usage patterns. For information about how
to automatically scale roles in Windows Azure, see “The Autoscaling Application Block” on MSDN.

Implementing an event store using Windows Azure table storage
This section shows an event store implementation using Windows Azure table storage. It is not in-
tended to show production-quality code, but to suggest an approach. An event store should:
•	 Persist events to a reliable storage medium.
•	 Enable an individual aggregate to retrieve its stream of events in the order in which they were

originally persisted.
•	 Guarantee to publish each event at least once to a message infrastructure.

Windows Azure tables have two fields that together define the uniqueness of a record: the partition
key and the row key.

This implementation uses the value of the aggregate’s unique identifier as the partition key, and
the event version number as the row key. Partition keys enable you to retrieve all of the records with
the same partition key very quickly, and use transactions across rows that share the same partition key.

For more information about Windows Azure table storage see “Data Storage Offerings in Windows
Azure.”

http://msdn.microsoft.com/en-us/library/hh680892(PandP.50).aspx
https://www.windowsazure.com/en-us/develop/net/fundamentals/cloud-storage/
https://www.windowsazure.com/en-us/develop/net/fundamentals/cloud-storage/

274 Reference four

Persisting events
The following code sample shows how the implementation persists an event to Windows Azure table
storage.

public void Save(string partitionKey, IEnumerable<EventData> events)
{
 var context = this.tableClient.GetDataServiceContext();
 foreach (var eventData in events)
 {
 var formattedVersion = eventData.Version.ToString("D10");
 context.AddObject(
 this.tableName,
 new EventTableServiceEntity
 {
 PartitionKey = partitionKey,
 RowKey = formattedVersion,
 SourceId = eventData.SourceId,
 SourceType = eventData.SourceType,
 EventType = eventData.EventType,
 Payload = eventData.Payload
 });

 ...

 }

 try
 {
 this.eventStoreRetryPolicy.ExecuteAction(() =>
 context.SaveChanges(SaveChangesOptions.Batch));
 }
 catch (DataServiceRequestException ex)
 {
 var inner = ex.InnerException as DataServiceClientException;
 if (inner != null && inner.StatusCode == (int)HttpStatusCode.Conflict)
 {
 throw new ConcurrencyException();
 }

 throw;
 }
}

 275A CQRS and ES Deep Dive

There are two things to note about this code sample:
•	 An attempt to save a duplicate event (same aggregate ID and

same event version) results in a concurrency exception.
•	 This example uses a retry policy to handle transient faults and

to improve the reliability of the save operation. See The Tran-
sient Fault Handling Application Block.

Retrieving events
The following code sample shows how to retrieve the list of events associated with an aggregate.

public IEnumerable<EventData> Load(string partitionKey, int version)
{
 var minRowKey = version.ToString("D10");
 var query = this.GetEntitiesQuery(partitionKey, minRowKey,
 				 RowKeyVersionUpperLimit);
 var all = this.eventStoreRetryPolicy.ExecuteAction(() => query.Execute());
 return all.Select(x => new EventData
 {
 Version = int.Parse(x.RowKey),
 SourceId = x.SourceId,
 SourceType = x.SourceType,
 EventType = x.EventType,
 Payload = x.Payload
 });
}

The events are returned in the correct order because the version number is used as the row key.

The Transient Fault Handling Application Block provides extensible retry
functionality over and above that included in the Microsoft.WindowsAzure.
StorageClient namespace. The block also includes retry policies for Windows
Azure SQL Database, and Windows Azure Service Bus.

http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(PandP.50).aspx

276 Reference four

Publishing events
To guarantee that every event is published as well as persisted, you can use the transactional behavior
of Windows Azure table partitions. When you save an event, you also add a copy of the event to a
virtual queue on the same partition as part of a transaction. The following code sample shows a
complete version of the save method that saves two copies of the event.

public void Save(string partitionKey, IEnumerable<EventData> events)
{
 var context = this.tableClient.GetDataServiceContext();
 foreach (var eventData in events)
 {
 var formattedVersion = eventData.Version.ToString("D10");
 context.AddObject(
 		 this.tableName,
 		 new EventTableServiceEntity
 	 {
 		 PartitionKey = partitionKey,
 		 RowKey = formattedVersion,
 		 SourceId = eventData.SourceId,
 		 SourceType = eventData.SourceType,
 		 EventType = eventData.EventType,
 		 Payload = eventData.Payload
 	 });

 // Add a duplicate of this event to the Unpublished "queue"
 context.AddObject(
 		 this.tableName,
 		 new EventTableServiceEntity
 	 {
 		 PartitionKey = partitionKey,
 		 RowKey = UnpublishedRowKeyPrefix + formattedVersion,
 		 SourceId = eventData.SourceId,
 		 SourceType = eventData.SourceType,
 		 EventType = eventData.EventType,
 		 Payload = eventData.Payload
 	 });

 }

 try
 {
 this.eventStoreRetryPolicy.ExecuteAction(() =>
 context.SaveChanges(SaveChangesOptions.Batch));
 }

 277A CQRS and ES Deep Dive

 catch (DataServiceRequestException ex)
 {
 var inner = ex.InnerException as DataServiceClientException;
 if (inner != null && inner.StatusCode == (int)HttpStatusCode.Conflict)
 {
 throw new ConcurrencyException();
 }

 throw;
 }
}

You can use a task to process the unpublished events: read the unpublished event from the virtual
queue, publish the event on the messaging infrastructure, and delete the copy of the event from the
unpublished queue. The following code sample shows a possible implementation of this behavior.

private readonly BlockingCollection<string> enqueuedKeys;

public void SendAsync(string partitionKey)
{
 this.enqueuedKeys.Add(partitionKey);
}

public void Start(CancellationToken cancellationToken)
{
 Task.Factory.StartNew(
 () =>
 {
 while (!cancellationToken.IsCancellationRequested)
 {
 try
 {
 this.ProcessNewPartition(cancellationToken);
 }
 catch (OperationCanceledException)
 {
 return;
 }
 }
 },
 TaskCreationOptions.LongRunning);
}

private void ProcessNewPartition(CancellationToken cancellationToken)
{
 string key = this.enqueuedKeys.Take(cancellationToken);
 if (key != null)

278 Reference four

 {
 try
 {
 var pending = this.queue.GetPending(key).AsCachedAnyEnumerable();
 if (pending.Any())
 {
 foreach (var record in pending)
 {
 var item = record;
 this.sender.Send(() => BuildMessage(item));
 this.queue.DeletePending(item.PartitionKey, item.RowKey);
 }
 }
 }
 catch
 {
 this.enqueuedKeys.Add(key);
 throw;
 }
 }
}

There are three points to note about this sample implementation:
•	 It is not optimized.
•	 Potentially it could fail between publishing a message and deleting it from the unpublished

queue. You could use duplicate message detection in your messaging infrastructure when the
message is resent after a restart.

•	 After a restart, you need code to scan all your partitions for unpublished events.

Implementing a messaging infrastructure using the Windows
Azure Service Bus
The Windows Azure Service Bus offers a robust, cloud-based messaging infrastructure that you can
use to transport your command and event messages when you implement the CQRS pattern. Its
brokered messaging feature enables you to use either a point-to-point topology using queues, or a
publish/subscribe topology using topics.

You can design your application to use the Windows Azure Service Bus to guarantee at-least-
once delivery of messages, and guarantee message ordering by using message sessions.

The sample application described in Exploring CQRS and Event Sourcing uses the Windows Azure
Service Bus for delivering both commands and events. The following chapters in Exploring CQRS and
Event Sourcing contain further information.
•	 Chapter 3, “Orders and Registrations Bounded Context”
•	 Chapter 6, “Versioning Our System”
•	 Chapter 7, “Adding Resilience and Optimizing Performance”

You can find references to additional resources in Chapter 7 “Technologies Used in the Reference
Implementation.”

 279A CQRS and ES Deep Dive

A word of warning
For example, a process manager (described in Chapter 6, “A Saga on
Sagas”) may process a maximum of two messages per second during
its busiest periods. Because a process manager must maintain consis-
tency when it persists its state and sends messages, it requires trans-
actional behavior. In Windows Azure, adding this kind of transac-
tional behavior is nontrivial, and you may find yourself writing code
to support this behavior: using at-least-once messaging and ensuring
that all of the message recipients are idempotent. This is likely to be
more complex to implement than a simple distributed transaction.

More information
All links in this book are accessible from the book’s online bibliogra-
phy available at: http://msdn.microsoft.com/en-us/library/jj619274.

“Oftentimes when writing
software that will be cloud
deployed you need to take on
a whole slew of non-functional
requirements that you don’t
really have...”
—Greg Young (CQRS
Advisors Mail List)

http://msdn.microsoft.com/en-us/library/jj619274

 281

Introduction
Bounded contexts are autonomous components, with their own domain models and their own ubiq-
uitous language. They should not have any dependencies on each other at run time and should be
capable of running in isolation. However they are a part of the same overall system and do need to
exchange data with one another. If you are implementing the CQRS pattern in a bounded context,
you should use events for this type of communication: your bounded context can respond to events
that are raised outside of the bounded context, and your bounded context can publish events that
other bounded contexts may subscribe to. Events (one-way, asynchronous messages that publish in-
formation about something that has already happened), enable you to maintain the loose coupling
between your bounded contexts. This guidance uses the term integration event to refer to an event
that crosses bounded contexts.

Context maps
A large system, with dozens of bounded contexts, and hundreds of different integration event types,
can be difficult to understand. A valuable piece of documentation records which bounded contexts
publish which integration events, and which bounded contexts subscribe to which integration events.

The anti-corruption layer
Bounded contexts are independent of each other and may be modified or updated independently of
each other. Such modifications may result in changes to the events that a bounded context publishes.
These changes might include, introducing a new event, dropping the use of an event, renaming an
event, or changing the definition of event by adding or removing information in the payload. A
bounded context must be robust in the face of changes that might be made to another bounded
context.

A solution to this problem is to introduce an anti-corruption layer to your bounded context. The
anti-corruption layer is responsible for verifying that incoming integration events make sense. For
example, by verifying that the payload contains the expected types of data for the type of event.

Communicating Between
Bounded Contexts

Reference 5:

282 Reference five

You can also use the anti-corruption layer to translate incoming integration events. This transla-
tion might include the following operations:
•	 Mapping to a different event type when the publishing bounded context has changed the type

of an event to one that the receiving bounded context does not recognize.
•	 Converting to a different version of the event when the publishing bounded context uses a

different version to the receiving bounded context.

Integration with legacy systems
Bounded contexts that implement the CQRS pattern will already have much of the infrastructure
necessary to publish and receive integration events: a bounded context that contains a legacy system
may not. How you choose to implement with a bounded context that uses a legacy implementation
depends largely on whether you can modify that legacy system. It may be that it is a black-box with
fixed interfaces, or you may have access to the source code and be able to modify it to work with
events.

The following sections outline some common approaches to getting data from a legacy system
to a bounded context that implements the CQRS pattern.

Reading the database
Many legacy systems use a relational database to store their data. A simple way to get data from the
legacy system to your bounded context that implements the CQRS pattern, is to have your bounded
context read the data that it needs directly from the database. This approach may be useful if the
legacy system has no APIs that you can use or if you cannot make any changes to the legacy system.
However, it does mean that your bounded context is tightly coupled to the database schema in the
legacy system.

Generating events from the database
As an alternative, you can implement a mechanism that monitors the database in the legacy system,
and then publishes integration events that describe those changes. This approach decouples the two
bounded contexts and can still be done without changing the existing legacy code because you are
creating an additional process to monitor the database. However, you now have another program to
maintain that is tightly coupled to the legacy system.

Modifying the legacy systems
If you are able to modify the legacy system, you could modify it to publish integration events di-
rectly. With this approach, unless you are careful, you still have a potential consistency problem. You
must ensure that the legacy system always saves its data and publishes the event. To ensure consis-
tency, you either need to use a distributed transaction or introduce another mechanism to ensure that
both operations complete successfully.

Implications for event sourcing
If the bounded context that implements the CQRS pattern also uses event sourcing, then all of the
events published by aggregates in that domain are persisted to the event store. If you have modified
your legacy system to publish events, you should consider whether you should persist these integra-
tion events as well. For example, you may be using these events to populate a read-model. If you need
to be able to rebuild the read-model, you will need a copy of all these integration events.

 283Communicating Between Bounded Contexts

If you determine that you need to persist your integration events from a legacy bounded context,
you also need to decide where to store those events: in the legacy publishing bounded context, or the
receiving bounded context. Because you use the integration events in the receiving bounded context,
you should probably store them in the receiving bounded context.

Your event store must have a way to store events that are not associated with an aggregate.

Note: As a practical solution, you could also consider allowing the legacy bounded context to
persist events directly into the event store that your CQRS bounded context uses.

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://msdn.microsoft.com/en-us/library/jj619274

 285

Clarifying the terminology
The term saga is commonly used in discussions of CQRS to refer to a
piece of code that coordinates and routes messages between bound-
ed contexts and aggregates. However, for the purposes of this guid-
ance we prefer to use the term process manager to refer to this type
of code artifact. There are two reasons for this:
•	 There is a well-known, pre-existing definition of the term saga

that has a different meaning from the one generally understood
in relation to CQRS.

•	 The term process manager is a better description of the role
performed by this type of code artifact.

The term saga, in relation to distributed systems, was originally defined
in the paper “Sagas” by Hector Garcia-Molina and Kenneth Salem. This
paper proposes a mechanism that it calls a saga as an alternative to
using a distributed transaction for managing a long-running business
process. The paper recognizes that business processes are often com-
prised of multiple steps, each of which involves a transaction, and that
overall consistency can be achieved by grouping these individual trans-
actions into a distributed transaction. However, in long-running busi-
ness processes, using distributed transactions can impact on the per-
formance and concurrency of the system because of the locks that
must be held for the duration of the distributed transaction.

Note: The saga concept removes the need for a distributed
transaction by ensuring that the transaction at each step of the
business process has a defined compensating transaction. In this
way, if the business process encounters an error condition and is
unable to continue, it can execute the compensating transactions
for the steps that have already completed. This undoes the work
completed so far in the business process and maintains the
consistency of the system.

Although the term saga is
often used in the context of
the CQRS pattern, it has a
pre-existing definition. We
have chosen to use the term
process manager in this
guidance to avoid confusion
with this pre-existing
definition.

A Saga on Sagas
Process Managers, Coordinating Workflows, and Sagas

Reference 6:

http://www.amundsen.com/downloads/sagas.pdf

286 Reference six

Although we have chosen to use the term process manager, sagas may still have a part to play in
a system that implements the CQRS pattern in some of its bounded contexts. Typically, you would
expect to see a process manager routing messages between aggregates within a bounded context, and
you would expect to see a saga managing a long-running business process that spans multiple bound-
ed contexts.

The following section describes what we mean by the term process manager. This is the working
definition we used during our CQRS journey project.

Note: For a time the team developing the Reference Implementation used the term coordinating
workflow before settling on the term process manager. This pattern is described in the book
“Enterprise Integration Patterns” by Gregor Hohpe and Bobby Woolf.

Process Manager
This section outlines our definition of the term process manager. Before describing the process man-
ager there is a brief recap of how CQRS typically uses messages to communicate between aggregates
and bounded contexts.

Messages and CQRS
When you implement the CQRS pattern, you typically think about two types of message to exchange
information within your system: commands and events.

Commands are imperatives; they are requests for the system to perform a task or action. For
example, “book two places on conference X” or “allocate speaker Y to room Z.” Commands are usu-
ally processed just once, by a single recipient.

Events are notifications; they inform interested parties that something has happened. For exam-
ple, “the payment was rejected” or “seat type X was created.” Notice how they use the past tense.
Events are published and may have multiple subscribers.

Typically, commands are sent within a bounded context. Events may have subscribers in the same
bounded context as where they are published, or in other bounded contexts.

The chapter, “A CQRS and ES Deep Dive” in this Reference Guide describes the differences be-
tween these two message types in detail.

What is a process manager?
In a complex system that you have modeled using aggregates and bounded contexts, there may be
some business processes that involve multiple aggregates, or multiple aggregates in multiple bounded
contexts. In these business processes multiple messages of different types are exchanged by the
participating aggregates. For example, in a conference management system, the business process of
purchasing seats at a conference might involve an order aggregate, a reservation aggregate, and a
payment aggregate. They must all cooperate to enable a customer to complete a purchase.

Figure 1 shows a simplified view of the messages that these aggregates might exchange to com-
plete an order. The numbers identify the message sequence.

Note: This does not illustrate how the Reference Implementation processes orders.

 287A Saga on Sagas

Figure 1
Order processing without using a process manager

In the example shown in Figure 1, each aggregate sends the appropriate command to the aggregate
that performs the next step in the process. The Order aggregate first sends a MakeReservation
command to the Reservation aggregate to reserve the seats requested by the customer. After the
seats have been reserved, the Reservation aggregate raises a SeatsReserved event to notify the
Order aggregate, and the Order aggregate sends a MakePayment command to the Payment ag-
gregate. If the payment is successful, the Order aggregate raises an OrderConfirmed event to no-
tify the Reservation aggregate that it can confirm the seat reservation, and the customer that the
order is now complete.

288 Reference six

Figure 2
Order processing with a process manager

The example shown in Figure 2 illustrates the same business process as that shown in Figure 1, but
this time using a process manager. Now, instead of each aggregate sending messages directly to other
aggregates, the messages are mediated by the process manager.

This appears to complicate the process: there is an additional object (the process manager) and a
few more messages. However, there are benefits to this approach.

Firstly, the aggregates no longer need to know what is the next step in the process. Originally, the
Order aggregate needed to know that after making a reservation it should try to make a payment by
sending a message to the Payment aggregate. Now, it simply needs to report that an order has been
created.

Secondly, the definition of the message flow is now located in a single place, the process man-
ager, rather than being scattered throughout the aggregates.

In a simple business process such as the one shown in Figure 1 and Figure 2, these benefits are
marginal. However, if you have a business process that involves six aggregates and tens of messages,
the benefits become more apparent. This is especially true if this is a volatile part of the system where
there are frequent changes to the business process: in this scenario, the changes are likely to be local-
ized to a limited number of objects.

 289A Saga on Sagas

In Figure 3, to illustrate this point, we introduce wait listing to the process. If some of the seats
requested by the customer cannot be reserved, the system adds these seat requests to a waitlist. To
make this change, we modify the Reservation aggregate to raise a SeatsNotReserved event to report
how many seats could not be reserved in addition to the SeatsReserved event that reports how many
seats could be reserved. The process manager can then send a command to the WaitList aggregate
to waitlist the unfulfilled part of the request.

Figure 3
Order processing with a process manager and a waitlist

It’s important to note that the process manager does not perform any business logic. It only routes
messages, and in some cases translates between message types. For example, when it receives a
SeatsNotReserved event, it sends an AddToWaitList command.

290 Reference six

When should I use a process manager?
There are two key reasons to use a process manager:
•	 When your bounded context uses a large number of events and commands that would be

difficult to manage as a collection point-to-point interactions between aggregates.
•	 When you want to make it easier to modify message routing in the bounded context. A process

manager gives a single place where the routing is defined.

When should I not use a process manager?
The following list identifies reasons not to use a process manager:
•	 You should not use a Process manager if your bounded context contains a small number of

aggregate types that use a limited number of messages.
•	 You should not use a process manager to implement any business logic in your domain. Business

logic belongs in the aggregate types.

Sagas and CQRS
Although we have chosen to use the term process manager as defined earlier in this chapter, sagas may
still have a part to play in a system that implements the CQRS pattern in some of its bounded con-
texts. Typically, you would expect to see a process manager routing messages between aggregates
within a bounded context, and you would expect to see a saga managing a long-running business
process that spans multiple bounded contexts.

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://msdn.microsoft.com/en-us/library/jj619274

 291

Windows Azure Service Bus
This section is not intended to provide an in-depth description of the Windows Azure Service Bus,
rather it is intended to highlight those features that may prove useful in implementing the CQRS
pattern and event sourcing. The section “Further Information” below, includes links to additional re-
sources for you to learn more.

The Windows Azure Service Bus provides a cloud-hosted, reliable messaging service. It operates
in one of two modes:
•	 Relayed. Relayed messaging provides a direct connection between clients who need to perform

request/response messaging, one-way messaging, or peer-to-peer messaging.
•	 Brokered. Brokered messaging provides durable, asynchronous messaging between clients that

are not necessarily connected at the same time. Brokered messaging supports both queue and
publish/subscribe topologies.

In the context of CQRS and event sourcing, brokered messaging can provide the necessary messaging
infrastructure for delivering commands and events reliably between elements of an application. The
Windows Azure Service Bus also offers scalability in scenarios that must support high volumes of
messages.

Technologies Used in the
Reference Implementation

Reference 7:

292 Reference seven

Queues
Windows Azure Service Bus queues provide a durable mechanism for senders to send one-way mes-
sages for delivery to a single consumer.

Figure 1 shows how a queue delivers messages.

Figure 1
Windows Azure Service Bus Queue

The following list describes some of the key characteristics of queues.
•	 Queues deliver messages on a First In, First Out (FIFO) basis.
•	 Multiple senders can send messages on the same queue.
•	 A queue can have multiple consumers, but an individual message is only consumed by one

consumer. Multiple consumers compete for messages on the queue.
•	 Queues offer “temporal decoupling.” Senders and consumer do not need to be connected at

the same time.

 293Technologies Used in the Reference Implementation

Topics and Subscriptions
Windows Azure Service Bus topics provide a durable mechanism for senders to send one-way mes-
sages for delivery to a multiple consumers.

Figure 2 shows how a topic distributes messages.

Figure 2
Windows Azure Service Bus Topic

The following list describes some of the key characteristics of topics.
•	 Topics deliver a copy of each message to each subscription.
•	 Multiple senders can publish messages to the same topic.
•	 Each subscription can have multiple consumers, but an individual message in a subscription is

only consumed by one consumer. Multiple consumers compete for messages on the subscrip-
tion.

•	 Topics offer “temporal decoupling.” Senders and consumer do not need to be connected at the
same time.

•	 Individual subscriptions support filters that limit the messages available through that subscrip-
tion.

294 Reference seven

Useful API features
The following sections highlight some of the Windows Azure Service Bus API features that are used
in the project.

Reading messages
A consumer can use one of two modes to retrieve messages from queues or subscriptions: Receive-
AndDelete mode and PeekLock mode.

In the ReceiveAndDelete mode, a consumer retrieves a message in a single operation: the Service
Bus delivers the message to the consumer and marks the message as deleted. This is the simplest mode
to use, but there is a risk that a message could be lost if the consumer fails between retrieving the
message and processing it.

In the PeekLock mode, a consumer retrieves a message in two steps: first, the consumer requests
the message, the Service Bus delivers the message to the consumer and marks the message on the
queue or subscription as locked. Then, when the consumer has finished processing the message, it
informs the Service Bus so that it can mark the message as deleted. In this scenario, if the consumer
fails between retrieving the message and completing its processing, the message is re-delivered when
the consumer restarts. A timeout ensures that locked messages become available again if the con-
sumer does not complete the second step.

In the PeekLock mode, it is possible that a message could be delivered twice in the event of a
failure. This is known as at least once delivery. You must ensure that either the messages are idempo-
tent, or add logic to the consumer to detect duplicate messages and ensure exactly once processing.
Every message has a unique, unchanging Id which facilitates checking for duplicates.

You can use the PeekLock mode to make your application more robust when it receives mes-
sages. You can maintain consistency between the messages you receive and a database without using
a distributed transaction.

Sending messages
When you create a client to send messages, you can set the RequiresDuplicateDetection and Duplicate-
DetectionHistoryTimeWindow properties in the QueueDescription or TopicDescription class. You
can use duplicate detection feature to ensure that a message is sent only once. This is useful if you retry
sending a message after a failure and you don’t know whether it was previously sent.

You can use the duplicate detection feature to make your application more robust when it re-
ceives messages without using a distributed transaction. You can maintain consistency between the
messages you send and a database without using a distributed transaction.

Expiring messages
When you create a BrokeredMessage object, you can specify an expiry time using the ExpiresAtUtc
property or a time to live using the TimeToLive property. When a message expires you can specify
either to send the message to a dead letter queue or discard it.

Delayed message processing
In some scenarios, you may want to send the message now, but to delay delivery until some future
time. You can do this by using the ScheduleEnqueueTimeUtc property of the BrokeredMessage
instance.

 295Technologies Used in the Reference Implementation

Serializing messages
You must serialize your Command and Event objects if you are sending them over the Windows
Azure Service Bus.

The Contoso Conference Management System uses Json.NET serializer to serialize command and
event messages. The team chose to use this serializer because of its flexibility and resilience to version
changes.

The following code sample shows the adapter class in the Common project that wraps the Json.
NET serializer.

public class JsonSerializerAdapter : ISerializer
{
 private JsonSerializer serializer;

 public JsonSerializerAdapter(JsonSerializer serializer)
 {
 this.serializer = serializer;
 }

 public void Serialize(Stream stream, object graph)
 {
 var writer = new JsonTextWriter(new StreamWriter(stream));

 this.serializer.Serialize(writer, graph);

 // We don’t close the stream as it’s owned by the message.
 writer.Flush();
 }

 public object Deserialize(Stream stream)
 {
 var reader = new JsonTextReader(new StreamReader(stream));

 return this.serializer.Deserialize(reader);
 }
}

Further information
For general information about the Windows Azure Service Bus, see Service Bus on MSDN.

For more information about Service Bus topologies and patterns, see Overview of Service Bus
Messaging Patterns on MSDN.

For information about scaling the Windows Azure Service Bus infrastructure, see Best Practices
for Performance Improvements Using Service Bus Brokered Messaging on MSDN.

For information about Json.NET, see Json.NET.

http://msdn.microsoft.com/en-us/library/ee732537.aspx
http://msdn.microsoft.com/en-us/library/hh410103.aspx
http://msdn.microsoft.com/en-us/library/hh410103.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh528527.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh528527.aspx
http://james.newtonking.com/pages/json-net.aspx

296 Reference seven

Unity Application Block
The MVC web application in the Contoso Conference Management System uses the Unity Applica-
tion Block (Unity) dependency injection container. The Global.asax.cs file contains the type registra-
tions for the command and event buses, and the repositories. This file also hooks up the MVC infra-
structure to the Unity service locator as shown in the following code sample:

protected void Application_Start()
{
 this.container = CreateContainer();
 RegisterHandlers(this.container);

 DependencyResolver.SetResolver(new UnityServiceLocator(this.container));

 ...
}

The MVC controller classes no longer have parameter-less constructors. The following code sample
shows the constructor from the RegistrationController class:

private ICommandBus commandBus;
private Func<IViewRepository> repositoryFactory;

public RegistrationController(ICommandBus commandBus,
 [Dependency("registration")]Func<IViewRepository> repositoryFactory)
{
 this.commandBus = commandBus;
 this.repositoryFactory = repositoryFactory;
}

Further information
For more information about the Unity Application Block, see Unity Application Block on MSDN.

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://msdn.microsoft.com/en-us/library/ff647202.aspx
http://msdn.microsoft.com/en-us/library/jj619274

 297

Product overview
Twilio provides high-availability voice and SMS APIs, hosted in the cloud, that enable developers to
add automated voice and SMS capabilities to a wide range of applications.

Although Twilio did not explicitly implement the CQRS pattern or use event sourcing, many of
the fundamental concepts implicit in their designs are very similar to concepts that relate to the CQRS
pattern including splitting read and write models and relaxing consistency requirements.

Lessons learned
This section summarizes some of the key lessons learned by Twilio during the development of the
Twilio APIs and services.

Separating reads and writes
Rather than separating out the read side and write side explicitly as in the CQRS pattern, Twilio uses
a slightly different pair of concepts: in-flight data and post-flight data. In-flight data captures all of
the transactional data that is accessed by operations that are currently running through the system.
Once an operation completes, any data that needs to be saved becomes immutable post-flight data.
In-flight data must be very high performance and support inserts, updates, and reads. Post-flight data
is read-only and supports use cases such as analysis and logging. As such, post-flight data has very
different performance characteristics.

Typically, there is very little in-flight data in the system, which makes it easy to support no-
downtime upgrades that impact in these parts of the system. There is typically a lot more, immutable,
post-flight data and any schema change here would be very expensive to implement. Hence, a schema-
less data store makes a lot of sense for this post-flight data.

Designing for high availability
One of the key design goals for Twilio was to achieve high availability for their systems in a cloud
environment, and some of the specific architectural design principles that help to achieve this are:

Twilio

Tales from the Trenches

This study is contributed by Evan Cooke, CTO, Twilio.

298 Tales from the Trenches

•	 It’s important to understand, for a system, what are the units of failure for the different pieces
that make up that system, and then to design the system to be resilient to those failures.
Typical units of failure might be an individual host, a datacenter or zone, a geographic region, or
a cloud service provider. Identifying units of failure applies both to code deployed by Twilio,
and to technologies provided by a vendor, such as data storage or queuing infrastructure. From
the perspective of a risk profile, units of failure at the level of a host are to be preferred
because it is easier and cheaper to mitigate risk at this level.

•	 Not all data requires the same level of availability. Twilio gives its developers different primi-
tives to work with that offer three levels of availability for data; a distributed queuing system
that is resilient to host and zone failures, a replicated database engine that replicates across
regions, and an in-memory distributed data store for high availability. These primitives enable
the developers to select a storage option with a specified unit of failure. They can then choose
a store with appropriate characteristics for a specific part of the application.

Idempotency
An important lesson that Twilio learned in relation to idempotency is the importance of assigning the
token that identifies the specific operation or transaction that must be idempotent as early in the
processing chain as possible. The later the token is assigned, the harder it is to test for correctness and
the more difficult it is to debug. Although Twilio don’t currently offer this, they would like to be able
to allow their customers to set the idempotency token when they make a call to one of the Twilio APIs.

No-downtime deployments
To enable no-downtime migrations as part of the continuous deployment of their services, Twilio uses
risk profiles to determine what process must be followed for specific deployments. For example, a
change to the content of a website can be pushed to production with a single click, while a change
to a REST API requires continuous integration testing and a human sign-off. Twilio also tries to ensure
that changes to data schemas do not break existing code: therefore the application can keep running,
without losing requests as the model is updated using a pivoting process.

Some features are also initially deployed in a learning mode. This means that the full processing
pipeline is deployed with a no-op at the end so that the feature can be tested with production traffic,
but without any impact on the existing system.

Performance
Twilio has four different environments: a development environment, an integration environment, a
staging environment, and a production environment. Performance testing, which is part of cluster
testing, happens automatically in the integration and staging environments. The performance tests
that take a long time to run happen in an ongoing basis in the integration environment and may not
be repeated in the staging environment.

If load-levels are predictable, there is less of a requirement to use asynchronous service imple-
mentations within the application because you can scale your worker pools to handle the demand.
However, when you experience big fluctuations in demand and you don’t want to use a callback
mechanism because you want to keep the request open, then it makes sense to make the service
implementation itself asynchronous.

 299Twilio

Twilio identified a trade-off in how to effectively instrument their systems to collect performance
monitoring data. One option is to use a common protocol for all service interactions that enables the
collection of standard performance metrics through a central instrumentation server. However, it’s
not always desirable to enforce the use of a common protocol and enforce the use of specific inter-
faces because it may not be the best choice in all circumstances. Different teams at Twilio make their
own choices about protocols and instrumentation techniques based on the specific requirements of
the pieces of the application they are responsible for.

References
For further information relating to Twilio, see:
•	 Twilio.com
•	 High-Availability Infrastructure in the Cloud
•	 Scaling Twilio
•	 Asynchronous Architectures for Implementing Scalable Cloud Services
•	 Why Twilio Wasn’t Affected by Today’s AWS Issues

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://www.twilio.com/
http://www.slideshare.net/twilio/highavailability-infrastructure-in-the-cloud-evan-cooke-web-20-expo-nyc-2011
http://www.slideshare.net/twilio/scaling-twilio-evan-cooke-twilio-conference-2011-9451159
http://www.slideshare.net/twilio/asynchronous-architectures-for-implementing-scalable-cloud-services-evan-cooke-gluecon-2012
http://www.twilio.com/engineering/2011/04/22/why-twilio-wasnt-affected-by-todays-aws-issues
http://msdn.microsoft.com/en-us/library/jj619274

 300

Project overview
Lokad Hub is an infrastructure element that unifies the metered, pay-as-you-go, forecasting subscrip-
tion offered by Lokad. It also provides an intelligent, self-managing, business backend for Lokad’s
internal teams.

Lokad requires this piece of infrastructure to be extremely flexible, focused, self-managing, and
capable of surviving cloud outages. Key features of Lokad Hub include:
•	 Multi-tenancy
•	 Scalability
•	 Instant data replication to multiple locations
•	 Deployable to any cloud
•	 Supports multiple production deployments daily
•	 Full audit logs and the ability to roll back to any point in time
•	 Integration with other systems

The current version was developed using the domain-driven design (DDD) approach, implements the
CQRS pattern, and uses event sourcing (ES). It is a replacement for a legacy, CRUD-style system.

For Lokad, the two key benefits of the new system are the low development friction that makes
it possible to perform multiple deployments per day, and the ability to respond quickly to changes in
the system’s complex business requirements.

Lessons learned
This section summarizes some of the key lessons learned by Lokad during the development of
Lokad Hub.

Lokad Hub

Tales from the Trenches

This case study is based on the original contribution by Rinat Abdullin.

 301Lokad Hub

Benefits of DDD
The team at Lokad adopted the DDD approach in the design and development of Lokad Hub. The
DDD approach helped to divide the complex domain into multiple bounded contexts. It was then
possible to model each bounded context separately and select to most appropriate technologies for
that bounded context. In this project, Lokad chose a CQRS/ES implementation for each bounded
context.

Lokad captured all the business requirements for the system in the models as code. This code
became the foundation of the new system.

However, it did take some time (and multiple iterations) to build these models and correctly
capture all of the business requirements.

Reducing dependencies
The core business logic depends only on message contracts and the Lokad.CQRS portability inter-
faces. Therefore, the core business logic does not have any dependencies on specific storage provid-
ers, object-relational mappers, specific cloud services, or dependency injection containers. This makes
it extremely portable, and simplifies the development process.

Using sagas
Lokad decided not to use sagas in Lokad Hub because they found them to be overly complex and
non-transparent. Lokad also found issues with trying to use sagas when migrating data from the leg-
acy CRUD system to the new event sourced system.

Testing and documentation
Lokad uses unit tests as the basis of a mechanism that generates documentation about the system.
This is especially valuable in the cases where Lokad uses unit tests to define specifications for complex
business behaviors. These specifications are also used to verify the stability of message contracts and
to help visualize parts of the domain.

Migration to ES
Lokad developed a custom tool to migrate data from the legacy SQL data stores into event streams
for the event-sourced aggregates in the new system.

Using projections
Projections of read-side data, in combination with state of the art UI technologies, made it quicker
and easier to build a new UI for the system.

The development process also benefited from the introduction of smart projections that are re-
built automatically on startup if the system detects any changes in them.

Event sourcing
Event sourcing forms the basis of the cloud failover strategy for the system, by continuously replicat-
ing events from the primary system. This strategy has three goals:
•	 All data should be replicated to multiple clouds and datacenters within one second.
•	 There should be read-only versions of the UI available immediately if the core system becomes

unavailable for any reason.
•	 A full read/write backup system can be enabled manually if the primary system becomes

unavailable.

302 Tales from the Trenches

Although, it would be is possible to push this further and even have a zero downtime strategy, this
would bring additional complexity and costs. For this system, a guaranteed recovery within a dozen
minutes is more than adequate.

The most important aspect of this strategy is the ability to keep valuable customer data safe and
secure even in the face of global cloud outages.

Event sourcing also proved invaluable when a glitch in the code was discovered soon after the
initial deployment. It was possible to roll the system back to a point in time before the glitch mani-
fested itself, fix the problem in the code, and then restart the system

Infrastructure
When there are multiple bounded contexts to integrate (at least a dozen in the case of Lokad Hub)
it’s important to have a high-level view of how they integrate with each other. The infrastructure that
supports the integration should also make it easy to support and manage the integration in a clean
and enabling fashion.

Once you have over 100,000 events to keep and replay, simple file-based or blob-based event
stores becoming limiting. With these volumes, it is better to use a dedicated event-streaming server.

References
For further information relating to Lokad Hub, see:
•	 Case: Lokad Hub
•	 Lokad.com
•	 Lokad Team

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://cqrsguide.com/case:lokad-hub
http://www.lokad.com/
http://www.lokad.com/aboutus.ashx
http://msdn.microsoft.com/en-us/library/jj619274

 303

DDD/CQRS for large
financial company

Tales from the Trenches

Project overview
The following is a list of the overall goals of the project. We wanted to:
•	 Build a sample reference architecture for enterprise level applications with the main emphasis

on performance, scalability, reliability, extensibility, testability, and modularity.
•	 Enforce SOLID (single responsibility, open-closed, Liskov substitution, interface segregation,

and dependency inversion) principles.
•	 Utilize test-driven development and evaluate performance early and often as part of our

application lifecycle management (ALM).
•	 Provide abstraction and interoperability with third-party and legacy systems.
•	 Address infrastructure concerns such as authentication (by using claims-based, trusted sub

systems), and server and client side caching (by using AppFabric for Windows Server).
•	 Include the capabilities necessary to support various types of clients.

We wanted to use the CQRS pattern to help us to improve the performance, scalability, and reli-
ability of the system.

On the read side, we have a specialized query context that exposes the data in the exact format
that the UI clients require which minimizes the amount of processing they must perform. This separa-
tion provided great value in terms of a performance boost and enabled us to get very close to the
optimal performance of our web server with the given hardware specification.

On the write side, our command service allows us to add queuing for commands if necessary and
to add event sourcing to create an audit log of the changes performed, which is a critical component
for any financial system. Commands provided a very loosely coupled model to work with our domain.
From the ALM perspective, commands provide a useful abstraction for our developers enabling them
to work against a concrete interface and with clearly defined contracts. Handlers can be maintained
independently and changed on demand through a registration process: this won’t break any service
contracts, and no code re-complication will be required.

This case study is based on contributions by Alex Dubinkov and Tim Walton.

304 Tales from the Trenches

The initial reference architecture application deals with financial advisor allocation models. The
application shows the customers assigned to the financial advisor, and the distribution of their alloca-
tions as compared to the modeled distribution that the customer and financial advisor had agreed
upon.

Lessons learned
This section summarizes some of the lessons learned during this project

Query performance
During testing of querying de-normalized context for one of the pilot applications, we couldn’t get
the throughput, measured in requests per second, that we expected even though the CPU and
memory counters were all showing in range values. Later on, we observed severe saturation of the
network both on the testing clients and on the server. Reviewing the amount of data we were query-
ing for each call, we discovered it to be about 1.6 Mb.

To resolve this issue we:
•	 Enabled compression on IIS, which significantly reduced amount of data returned from the

Open Data Protocol (OData) service.
•	 Created a highly de-normalized context that invokes a stored procedure that uses pivoting in

SQL to return just the final “model layout” back to the client.
•	 Cached the results in the query service.

Commands
We developed both execute and compensate operations for command handlers and use a technique
of batching commands that are wrapped in a transaction scope. It is important to use the correct
scope in order to reduce the performance impact.

One-way commands needed a special way to pass error notifications or results back to the caller.
Different messaging infrastructures (Windows Azure Service Bus, NServiceBus) support this func-
tionality in different ways, but for our on-premises solution, we had to come up with our own custom
approach.

Working with legacy databases
Our initial domain API relied on single GUID key type, but the customer’s DBA team has a com-
pletely different set of requirements to build normalized databases. They use multiple key types in-
cluding shorts, integers, and strings. The two solutions we explored that would enable our domain to
work with these key types were:
•	 Allow the use of generic keys.
•	 Use a mapping mechanism to translate between GUIDs and the legacy keys.

Using an Inversion of Control (IoC) container
Commands help to decouple application services functionality into a loosely coupled, message-driven
tier. Our bootstrapping process registers commands and command handlers during the initialization
process, and the commands are resolved dynamically using the generic type ICommandHandler-
<CommandType> from a Unity container. Therefore, the command service itself doesn’t have an
explicit set of commands to support, it is all initialized through the bootstrapping process.

 305DDD/CQRS for large financial company

Because the system is very loosely coupled, it is critical that we have a highly organized bootstrap-
ping mechanism that is generic enough to provide modularity and materialization for the specific
container, mapping and logging choices.

Key lessons learned
•	 There is no one right way to implement CQRS. However, having specific infrastructure ele-

ments in place, such as a service bus and a distributed cache, may reduce the overall complexity.
•	 Have clear performance SLAs on querying throughput and query flexibility.
•	 Test performance early and often using performance unit tests.
•	 Choose your serialization format wisely and only return the data that’s needed: for OData

services prefer JSON serialization over AtomPub.
•	 Design your application with upfront enforcement of SOLID principals.

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://msdn.microsoft.com/en-us/library/jj619274

 306

Digital Marketing

Tales from the Trenches

Refactoring an existing application has many challenges. Our story is about refactoring an existing
application over an extended period of time while still delivering new features. We didn’t start with
CQRS as the goal, which was a good thing. It became a good fit as we went along. Our product is
composed of multiple pieces, of which our customer facing portal (CFP) uses CQRS.

There are many aspects of the DMS that fit well with CQRS, but there were two main problems
we were trying to solve: slow reads and bloated View Objects (VO).

The CFP has a very large dataset with many tables containing tens of millions of rows; at the
extreme some tables have millions of rows for a single client. Generally, the best practice for this
amount of data in SQL Server is highly denormalized tables—ours is no exception. A large portion of
our value add is structured and reporting data together, allowing clients to make the most informed
decision when altering their structured data. The combination of structured and reporting data re-
quired many SQL joins and some of our page load times were over 20 seconds. There was a lot of
friction for users to make simple changes.

The combination of structured and reporting data also resulted in bloated View Objects. The CFP
suffered from the same woes that many long lived applications do—lots of cooks in the kitchen but
a limited set of ingredients. Our application has a very rich UI resulting in the common Get/Modify/
Save pattern. A VO started out with a single purpose: we need data on screen A. A few months later
we needed a similar screen B that had some of the same data. Fear not, we already had most of that,
we just needed to show it on screen B too—after all we wouldn’t want to duplicate code. Fast for-
ward a few months and our two screens have evolved independently even though they represented
“basically the same data.” Worse yet, our VO has been used in two more screens and one of them has
already been deprecated. At this point we are lucky if the original developers still remember what
values from the VO are used on which screens. Oh wait, it’s a few years later and the original develop-
ers don’t even work here anymore! We would often find ourselves trying to persist a VO from the UI
and unable to remember which magical group of properties must be set. It is very easy to violate the
Single Responsibility Principle in the name of reuse. There are many solutions to these problems and
CQRS is but one tool for making better software.

Before trying to make large architectural changes there are a few things we found to be very
successful for the CFP: Dependency Injection (DI) and Bounded Contexts.

This case study is contributed by Scott Brown.

 307Digital M arketing

Make your objects injectable and go get a DI Container. Changing a legacy application to be in-
jectable is a very large undertaking and will be painful and difficult. Often the hardest part is sorting
out the object dependencies. But this was completely necessary later on. As the CFP became inject-
able it was possible to write unit tests allowing us to refactor with confidence. Now that our applica-
tion was modular, injectable, and unit tested we could choose any architecture we wanted.

Since we decided to stick with CQRS, it was a good time to think about bounded contexts. First
we needed to figure out the major components of the overall product. The CFP is one bounded
context and only a portion of our overall application. It is important to determine bounded contexts
because CQRS is best applied within a bounded context and not as an integration strategy.

One of our challenges with CQRS has been physically separating our bounded contexts. Refactor-
ing has to deal with an existing application and the previous decisions that were made. In order to split
the CFP into its own bounded context we needed to vastly change the dependency graph. Code that
handles cross cutting concerns was factored into reference assemblies; our preference has been
NuGet packages built and hosted by TeamCity. All the remaining code that was shared between
bounded contexts needed to be split into separate solutions. Long term we would recommend sepa-
rate repositories to ensure that code is not referenced across the bounded contexts. For the CFP we
had too much shared code to be able to completely separate the bounded contexts right away, but
having done so would have spared much grief later on.

It is important to start thinking about how your bounded contexts will communicate with each
other. Events and event sourcing are often associated with CQRS for good reason. The CFP uses
events to keep an auditable change history which results in a very obvious integration strategy of
eventing.

At this point the CFP is modular, injectable, testable (not necessarily fully tested), and beginning
to be divided by bounded context but we have yet to talk about CQRS. All of this ground work is
necessary to change the architecture of a large application—don’t be tempted to skip it.

The first piece of CQRS we started with was the commands and queries. This might seem ob-
tusely obvious but I point it out because we did not start with eventing, event sourcing, caching, or
even a bus. We created some commands and a bit of wiring to map them to command handlers. If you
took our advice earlier and you are using an Inversion of Control (IoC) container, the mapping of
command to command handler can be done in less than a day. Since the CFP is now modular and in-
jectable our container can create the command handler dependencies with minimal effort which al-
lowed us to wire our commands into our existing middleware code. Most applications already have a
remoting or gateway layer that performs this function of translating UI calls into middleware / VO
functions. In the CFP, the commands and queries replaced that layer.

One of our challenges has been to refactor an existing UI to a one-way command model. We have
not been able to make a strict one-way contract mainly due to database side ID generation. We are
working towards client side ID generation which will allow us to make commands fire and forget. One
technique that has helped a bit was to wrap the one way asynchronous bus in a blocking bus. This
helped us to minimize the amount of code that depends on the blocking capability. Even with that
we have too much code that relies upon command responses simply because the functionality was
available, so try not to do this if possible.

308 Tales from the Trenches

Unfortunately we could only do this for so long before we realized it is just the same application
with a fancy new façade. The application was easier to work on, but that was more likely due to the
DI changes then to the commands and queries. We ran into the problem of where to put certain types
of logic. Commands and queries themselves should be very light weight objects with no dependencies
on VOs. There were a few occasions we were tempted during a complicated refactor to use an exist-
ing VO as part of a query but inevitably we found ourselves back down the path of bloated objects.
We also became tempted to use complex properties (getters and setters with code) on commands
and queries but this resulted in hidden logic—ultimately we found it better to put the logic in the
command handler or better yet in the domain or command validator.

At this point we also began to run into difficulties accomplishing tasks. We were in the middle of
a pattern switch and it was difficult to cleanly accomplish a goal. Should command handlers dispatch
other commands? How else will they exercise any logic that is now embedded in a command handler?
For that matter, what should be a command handler’s single responsibility?

We found that these questions could not be answered by writing more commands and queries
but rather by flushing out our CQRS implementation. The next logical choice was either the read or
the write model. Starting with the cached read model felt like the best choice since it delivers tangible
business value. We chose to use events to keep our read model up to date, but where do the events
come from? It became obvious that we were forced to create our write model first.

Choose a strategy for the write model that makes sense in your bounded context. That is, after
all, what CQRS allows: separating reads and writes to decouple the requirements of each. For the CFP
we use domains that expose behavior. We do not practice DDD, but a domain model fits well with
CQRS. Creating a domain model is very hard, we spent a lot of time talking about what our aggregate
roots are—do not underestimate how hard this will be.

When creating the write model we were very careful about introducing any dependencies to the
domain assembly. This will allow the domain to outlive other application specific technologies, but
was not without pain points. Our domain started out with a lot of validation that was eventually
moved into command validators; dependencies required for validation were not available from within
the domain. In the end, the domain simply translates behavior (methods) into events (class instances).
Most of our pain points were centered on saving the events without taking dependencies into the
domain assembly. The CFP does not use event sourcing, we were able to translate the domain events
into our existing SQL tables with objects we call Event Savers. This allows our domain to focus on
translating behavior to events and the command handler can publish and save the events. To prevent
the command handler from doing too much, we use a repository pattern to get and save a domain.
This allows us to switch to event sourcing in a later refactoring of the application if desired with
minimal effect on the domain. The Event Savers are simple classes that map an event to a stored
procedure call or table(s). We use RabbitMq to publish the events after saving, it is not transactional
but that has been ok so far.

As events become more ubiquitous it is possible to keep a read model up to date. We have a
separate service that subscribes to events and updates a Redis cache. By keeping this code separate
we isolate the dependencies for Redis and make our caching solution more pluggable. The choice of
caching technology is difficult and the best solution is likely to change over time. We needed the
flexibility to test multiple options and compare the performance vs. maintainability.

 309Digital M arketing

Once our cache was in place we discovered the oldest known theorem of caching: That which is
cached becomes stale. Invalid cache results can occur many different ways; we found enough that a
temporary measure was introduced to update items in the cache on a rolling schedule. The plan was
(and still is) to find and eliminate all sources of inconsistency. Database integrations or people/depart-
ments that update the write model directly will need to be routed through the domain to prevent the
cache from becoming incorrect. Our goal is total elimination of these discrepancies for complete
confidence in cached results.

Single Responsibility of Objects

Definitions specific to our implementation:
•	 Command – carries data
•	 Command Authorizer – authorizes user to place a command on the bus
•	 Command Validator – validates a command can be placed on the bus
•	 Command Handler – maps command to domain call
•	 Repository Factory – retrieves a repository for specified domain type
•	 Repository – retrieves/persists domain instance by key
•	 Domain – maps behavior to domain event
•	 Domain EventSaver – called by the repository and saves domain events to existing database

structure

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://msdn.microsoft.com/en-us/library/jj619274

 310

What did we hope to accomplish by using CQRS/ES?
We were looking for a way to radically simplify the development process of our off-the-shelf enter-
prise application. We wanted to minimize unnecessary complexity induced by heavyweight frame-
works, middleware, and servers like Oracle and SQL Server RDBMS.

In the past we spent too much time with technical implementation details and as a consequence
spent too little time on business relevant activities. Discussions about the business rules, the business
processes, and workflows were neglected. We wanted to refocus and to spend significantly more time
in discussions with our business analysts and testers. Ideally, we wanted to draft the workflow of a
feature with the business analyst, the product manager, and the tester, and then code it without any
translation into another language or model. The notions of a bounded context and a ubiquitous lan-
guage should be natural to all our stakeholders. We also realized that, from a business perspective,
verbs (commands, events and more general purpose messages) have a much higher significance than
nouns (entities).

Another goal was to get away from the form-over-data type of application and UI, and to de-
velop a more task oriented presentation layer.

Last but not least, we needed an easy way to horizontally scale our application. A short term goal
is to self-host the solution on an array inexpensive standard servers but the ultimate goal is to run our
software in the cloud.

What were the biggest challenges and how did we overcome them?
One of the biggest challenges was to convince management and other stakeholders in our company
to believe in the benefits of this new approach. Initially they were skeptical or even frightened at the
thought of not having the data stored in a RDBMS. DBAs, concerned about potential job loss, also
tried to influence management in a subtle, negative way regarding this new architecture.

We overcame these objections by implementing just one product using CQRS/ES, then show-
ing the stakeholders how it worked, and demonstrating how much faster we finished the implemen-
tation. We also demonstrated the significantly improved quality of the product compared to our
other products.

TOPAZ Technologies

Tales from the Trenches

This study is contributed by Gabriel N. Schenker, Chief Software Architect, TOPAZ Technologies LLC

 311TOPA Z Technologies

Another challenge was the lack of knowledge in the development team of this area. For everyone
CQRS and ES were completely new.

As an architect, I did a lot of teaching in the form of lunch-and-learns in which I discussed the
fundamental aspects of this new architecture. I also performed live coding in front of the team and
developed some end-to-end exercises, which all developers were required to solve. I encouraged our
team to watch the various free videos in which Greg Young was presenting various topics related to
CQRS and event sourcing.

Yet another challenge is the fact that this type of architecture is still relatively new and not fully
established. Thus, finding good guidance or adhering to best practices is not as straightforward as
with more traditional architectures. How to do CQRS and ES right is still invokes lively discussions,
and people have very different opinions about both the overall architecture and individual elements
of it.

What were the most important lessons learned?
When we choose the right tool for the job, we can spend much more time discussing the business
relevant questions and much less time discussing technical details.

It is more straightforward to implement a user story or a feature as is. Just like in real life, in code,
a feature is triggered by an action (command) that results in a sequence of events that might or might
not cause side effects.

Issues caused by changing business rules or code defects in the past often did not surface because
we could write SQL scripts to correct the wrong data directly in the database. Because the event store
is immutable, this is not possible any more—which is good thing. Now we are forced to discuss how
to address the issue from a business perspective. Business analysts, product managers and other stake-
holders are involved in the process of finding a solution. Often this results in the finding of a previ-
ously hidden concept in the business domain.

With hindsight, what would we have done differently?
We started to embrace CQRS and ES for the first time in one of our products, but we were forced
to use a hybrid approach due to time constraints and our lack of experience. We were still using an
RDBMS for the event store and the read model. We also generated the read model in a synchronous
way. These were mistakes. The short-term benefit over a full or pure implementation of CQRS/ES
was quickly annihilated by the added complexity and confusion amongst developers. In consequence,
we need to refactor this product in the near future.

We will strictly avoid such hybrid implementations in the future. Either we will fully embrace
CQRS and ES, or we will stick with a more traditional architecture.

Further information
This blog series discusses the details of the implementation.

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://lostechies.com/gabrielschenker/author/gabrielschenker/
http://msdn.microsoft.com/en-us/library/jj619274

 312

eMoney Nexus: Some CQRS lessons
Now that the Microsoft patterns & practices CQRS Journey is coming to a close, I thought it would
be a good time to relate some of our experiences with CQRS and Event Sourcing. We have been
working with similar patterns for a few years, and our experiences and conclusions are pretty close to
the MS p&p team.

About eMoney & the Nexus
eMoney Advisor provides wealth management software to financial advisors and their clients. One of
the core features of our product is the ability to aggregate financial account data from multiple finan-
cial institutions and use the data from within our client portal and planning products. The front-end
application is updated several times a year, and must go through customer and legal review before
each deployment, but the data processing system must be updated continuously to respond to daily
changes to the data sources. After running our original system for several years, we decided to rebuild
the data aggregation portion of our system to solve some performance, maintainability, and complex-
ity issues. In our design of the eMoney Nexus, we used a message-based architecture combined with
split read-write duties to solve our core issues.

Since we built the Nexus a few years ago, it is not a pure CQRS/ES implementation, but many of
our design choices line up with these patterns and we see the same types of benefits. Now that we
can take the learning from CQRS Journey, we will go back and evaluate how these patterns may help
us take the next steps to improve our system.

eMoney Nexus

Tales from the Trenches

This study is contributed by Jon Wagner, SVP & Chief Architect, eMoney Advisor

 313eMoney Nexus

System overview
The job of the Nexus is to fetch account data from a number of financial institutions, and publish that
data to a number of application servers.
Inputs
•	 Users – can tell the system to create a subscription to data updates from a source, force an

instant refresh of data, or modify processing rules for their accounts.
•	 Bulk Files – arrive daily with large workloads for account updates
•	 Timed Updates – arrive scheduled throughout the night to update individual subscriptions.

Subscribers
•	 Users – user interfaces need to update when operations complete or data changes.
•	 Planning Applications – multiple application instances need to be notified when data changes.
•	 Outgoing Bulk Files – enterprise partners need a daily feed of the changes to the account data.

Design Goals
•	 Decoupled Development – building and upgrading the Nexus should not be constrained by

application deployment lifecycles.
•	 Throughput Resilience – processing load for queries should not affect the throughput of the

data updates and vice versa.
•	 High Availability – processing should be fault tolerant for node outages.
•	 Continuous Deployment – connections and business logic should be upgradable during business

hours and should decouple Nexus changes from other systems.
•	 Long-Running Processes – data acquisition can take a long time, so an update operation must

be decoupled from any read/query operations.
•	 Re-playable Operations – data acquisition has a high chance of failure due to network errors,

timeouts, and so on, so operations must be re-playable for retry scenarios.
•	 Strong Diagnostics – since updated operations are complex and error-prone, diagnostic tools

are a must for the infrastructure.
•	 Non-Transactional – because our data is not the system of record, there is less of a need for

data rollbacks (we can just get a new update), and eventual consistency of the data is accept-
able to the end user.

314 Tales from the Trenches

The evolution of the system
The legacy system was a traditional 3-tier architecture with a Web UI Tier, Application Tier, and Da-
tabase Tier.

The first step was to decouple the processing engine from the application system. We did that be
adding a service layer to accept change requests and a publishing system to send change events back
to the application. The application would have its own copy of the account data that is optimized for
the planning and search operations for end users. The Nexus could store the data in the best way
possible for high-throughput processing.

 315eMoney Nexus

Partitioning the system allows us to decouple any changes to the Nexus from the other systems. Like
all good Partition / Bounded Context / Service boundaries, the interfaces between the systems are
contracts that must be adhered to, but can evolve over time with some coordination between the
systems. For example, we have upgraded the publishing interface to the core application 5 or 6 times
to add additional data points or optimize the data publishing process. Note that we publish to a SQL
Server Service Broker, but this could be another application server in some scenarios.

This allowed us to achieve our first two design goals: Decoupled Development and Throughput
Resilience. Large query loads on the application would be directed at its own database, and bulk load
operations on the back end do not slow down the user experience. The Nexus could be deployed on
a separate schedule from the application and we could continue to make progress on the system.

Next, we added Windows Load Balancing and WCF services to expose the Command service to
consumers.

316 Tales from the Trenches

This allows us to add additional processing nodes, as well as remove nodes from the pool in order to
upgrade them. This got us to our goal of High Availability, as well as Continuous Deployment. In
most scenarios, we can take a node out of the pool during the day, upgrade it, and return it to the
pool to take up work.

For processing, we decided to break up each unit of work into “Messages.” Most Messages are
Commands that tell the system to perform an operation. Messages can dispatch other messages as
part of their processing, causing an entire workflow process to unfold. We don’t have a great separa-
tion between Sagas (the coordination of Commands) and Commands themselves, and that is some-
thing we can improve in future builds.

Whenever a client calls the Command service, if the request cannot be completed immediately, it
is placed in a queue for processing. This can be an end user, or one of the automated data load sched-
ulers. We use SQL Server Service Broker for our Message processing Queues. Because each of our data
sources have different throughput and latency requirements, we wrote our own thread pooling
mechanism to allow us to apportion the right number of threads-per-source at runtime through a
configuration screen. We also took advantage of Service Broker’s message priority function to allow
user requests to jump to the front of the worker queues to keep end users happy. We also separated
the Command (API) service from the Worker service so we can scale the workloads differently.

 317eMoney Nexus

This message processing design gave us a lot of benefits. First of all, with Command/Query Separa-
tion, you are forced to deal with the fact that a Command may not complete immediately. By imple-
menting clients that need to wait for results, you are naturally going to be able to support Long-
Running Processes. In addition, you can persist the Command messages to a store and easily support
Replayable Operations to handle retry logic or system restores. The Nexus Service has its own
scheduler that sends itself Commands to start jobs at the appropriate time.

318 Tales from the Trenches

One unexpected benefit of using a queue infrastructure was more scalable performance. Partitioning
the workloads (in our case, by data source) allows for more optimal use of resources. When workloads
begin to block due to some resource slowness, we can dynamically partition that workload into a
separate processing queue so other work can continue.

One of the most important features that we added early on in development was Tracing and Di-
agnostics. When an operation is started (by a user or by a scheduled process), the system generates a
GUID (a “Correlation ID”) that is assigned to the message. The Correlation ID is passed throughout the
system, and any logging that occurs is tied to the ID. Even if a message dispatches another message to
be processed, the Correlation ID is along for the ride. This lets us easily figure out which log events in
the system go together (GUIDs are translated to colors for easy visual association). Strong Diagnostics
was one of our goals. When the processing of a system gets broken into individual asynchronous
pieces, it’s almost impossible to analyze a production system without this feature.

 319eMoney Nexus

To drive operations, the application calls the Nexus with Commands such as CreateSubscription,
UpdateSubscription, and RepublishData. Some of these operations can take a few minutes to com-
plete, and the user must wait until the operation is finished. To support this, each long-running Com-
mand returns an ActivityID. The application polls the Nexus periodically to determine whether the
activity is still running or if it has completed. An activity is considered completed when the update
has completed AND the data has been published to the read replica. This allows the application to
immediately perform a query on the read replica to see the data results.

320 Tales from the Trenches

Lessons learned
We’ve been running the Nexus in production for several years now, and for this type of system, the
benefits CQRS and ES are evident, at least for the read-write separation and data change events that
we use in our system.
•	 CQRS = Service Boundary + Separation of Concerns – the core of CQRS is creating service

boundaries for your inputs and outputs, then realizing that input and output operations are
separate concerns and don’t need to have the same (domain) model.

•	 Partitions are Important – define your Bounded Context and boundaries carefully. You will have
to maintain them over time.

•	 External systems introduce complexity – particularly when replaying an event stream, managing
state against an external system or isolating against external state may be difficult. Martin
Fowler has some great thoughts on it here.

•	 CQRS usually implies async but not always – because you generally want to see the results of
your Commands as Query results. It is possible to have Commands complete immediately if it’s
not a Query. In fact, it’s easier that way sometimes. We allow the CreateSubscription Com-
mand to return a SubscriptionID immediately. Then an async process fetches the data and
updates the read model.

http://www.martinfowler.com/eaaDev/EventSourcing.html

 321eMoney Nexus

•	 User Experience for async is hard – users want to know when their operation completes.
•	 Build in Diagnostics from the beginning – trust me on this.
•	 Decomposing work into Commands is good – our BatchUpdate message just spawns off a lot

of little SubscriptionUpdate messages. It makes it easier to extend and reuse workflows over
time.

•	 Queue or Bus + Partitions = Performance Control – this lets you fan out or throttle your
workload as needs change.

•	 Event Sourcing lets you have totally different read systems for your data – we split our event
stream and send it to a relational database for user queries and into flat files for bulk delivery to
partners.

If you want some more good practical lessons on CQRS, you should read Chapter 8, “Epilogue: Les-
sons Learned.”

Making it better
Like any system, there are many things we would like to do better.
•	 Workflow Testing is Difficult – we didn’t do quite enough work to remove dependencies from

our objects and messages, so it is tough to test sequences of events without setting up large
test cases. Doing a cleanup pass for DI/IOC would probably make this a lot easier.

•	 UI code is hard with AJAX and polling – but now that there are push libraries like SignalR, this
can be a lot easier.

•	 Tracking the Duration of an Operation – because our workflows are long, but the user needs to
know when they complete, we track each operation with an Activity ID. Client applications
poll the server periodically to see if an operation completes. This isn’t a scalability issue yet, but
we will need to do more work on this at some point.

As you can see, this implementation isn’t 100% pure CQRS/ES, but the practical benefits of these
patterns are real.

For more information, see Jon Wagner’s blog Zeros, Ones and a Few Twos.

http://code.jonwagner.com/

 323

The most up-to-date version of the release notes is available online:
http://go.microsoft.com/fwlink/p/?LinkID=258574.

These release notes apply to the Reference Implementation – Contoso Conference Management
System. This RI complements the “Exploring CQRS and Event Sourcing” guide and is for learning pur-
poses only.

System evolution
The system has gone through three pseudo-production releases and additional improvements af-
ter V3.

Note: While the team went through actual deployments to Windows Azure and performed
migrations, the releases are referred to as ‘pseudo-production’ because they lack critical security
and other features necessary for a full production release that are not the focus of this guidance.

The notes apply to the latest version (packaged in this self-extractable zip) unless specified otherwise.
To follow the project evolution, please check out specific versions of the entire system tagged V1-
pseudo-prod, V2-pseudo-prod or V3-pseudo-prod in the git repository history. Also, see the Migra-
tion notes and Chapter 5, “Preparing for the V1 Release,” Chapter 6, “Versioning Our System” and
Chapter 7, “Adding Resilience and Optimizing Performance” of the Guide.

Building and running the sample code (RI)
This appendix describes how to obtain, build, and run the RI.

These instructions describe five different scenarios for running the RI using the Conference Vi-
sual Studio solution:

1.	 Running the application on a local web server and using a local message bus and event store.
2.	 Running the application on a local web server and using the Windows Azure Service Bus and

an event store that uses Windows Azure table storage.
3.	 Deploying the application to the local Windows Azure compute emulator and using a local

message bus and event store.
4.	 Deploying the application to the local Windows Azure compute emulator and using the

Windows Azure Service Bus and an event store that uses Windows Azure table storage.

Release Notes

Appendix 1

http://go.microsoft.com/fwlink/p/?LinkID=258547

324 Appendix 1

5.	 Deploying the application to Windows Azure and using the Windows Azure Service Bus and
an event store that uses Windows Azure table storage.

Note: The local message bus and event store use SQL Express and are intended to help you run the
application locally for demonstration purposes. They are not intended to illustrate a production-
ready scenario.

Note: Scenarios 1, 2, 3 and 4 use SQL Express for other data storage requirements. Scenario 5
requires you to use SQL Database instead of SQL Express.

Note: The source code download for the V3 release also includes a Conference.NoAzureSDK
solution that enables you to build and run the sample application without installing the Windows
Azure SDK. This solution supports scenarios 1 and 2 only.

Prerequisites
Before you begin, you should install the following pre-requisites:
•	 Visual Studio 2010 or later
•	 SQL Server 2008 Express or later
•	 ASP.NET MVC 3 and MVC 4 for the V1 and V2 releases
•	 ASP.NET MVC 4 Installer (Visual Studio 2010) for the V3 release
•	 Windows Azure SDK for .NET - November 2011 for the V1 and V2 releases
•	 Windows Azure SDK for .NET - June 2012 or later for the V3 release

Note: The V1 and V2 releases of the sample application used ASP.NET MVC 3 in addition to ASP.
NET MVC 4. As of the V3 release all of the web applications in the project use ASP.NET MVC 4.

Note: The Windows Azure SDK is not a pre-requisite if you plan to use the Conference.
NoAzureSDK solution.

You can download and install all of these except for Visual Studio by using the Microsoft Web Platform
Installer 4.0.

You can install the remaining dependencies from NuGet by running the script install-packages.
ps1 included with the downloadable source.

If you plan to deploy any part of the RI to Windows Azure (scenarios 2, 4, 5), you must have a
Windows Azure subscription. You will need to configure a Windows Azure storage account (for blob
storage), a Windows Azure Service Bus namespace, and a SQL Database instance (they do not neces-
sarily need to be in the same Windows Azure subscription). You should be aware, that depending on
your Windows Azure subscription type, you may incur usage charges when you use the Windows
Azure Service Bus, Windows Azure table storage, and when you deploy and run the RI in Windows
Azure.

At the time of writing, you can sign-up for a Windows Azure free trial that enables you to run the
RI in Windows Azure.

Note: Scenario 1 enables you to run the RI locally without using the Windows Azure compute and
storage emulators.

http://www.microsoft.com/web/downloads/platform.aspx
http://www.microsoft.com/web/downloads/platform.aspx
http://www.windowsazure.com/en-us/pricing/free-trial/

 325Release Notes

Obtaining the code
•	 You can download the source code from the Microsoft Download Center as a self-extractable zip.
•	 Alternatively, you can get the source code with the full git history from github.

Creating the databases

SQL Express Database
For scenarios 1, 2, 3, and 4 you can create a local SQL Express database called Conference by running
the script Install-Database.ps1 in the scripts folder.

The projects in the solution use this database to store application data. The SQL-based message
bus and event store also use this database.

Windows Azure SQL Database instance
For scenario 5, you must create a SQL Database instance called Conference by running the script
Install-Database.ps1 in the scripts folder.

The follow command will populate a SQL Database instance called Conference with the tables
and views required to support the RI (this script assumes that you have already created the Conference
database in SQL Database):

.\Install-Database.ps1 -ServerName [your-sql-azure-server].database.windows.net
 -DoNotCreateDatabase -DoNotAddNetworkServiceUser –UseSqlServerAuthentication
 -UserName [your-sql-azure-username]

Note: The command above is displayed in multiple lines for better readability. This command
should be entered as a single line.

You must then modify the ServiceConfiguration.Cloud.cscfg file in the Conference.Azure project
to use the following connection strings.

SQL Database Connection String:
Server=tcp:[your-sql-azure-server].database.windows.net;Database=myDataBase;
User ID=[your-sql-azure-username]@[your-sql-azure-server];
Password=[your-sql-azure-password];Trusted_Connection=False;Encrypt=True;
MultipleActiveResultSets=True;

Windows Azure Connection String:
DefaultEndpointsProtocol=https;
AccountName=[your-windows-azure-storage-account-name];
AccountKey=[your-windows-azure-storage-account-key]

http://go.microsoft.com/fwlink/p/?LinkID=258571
http://go.microsoft.com/fwlink/p/?LinkID=258576

326 Appendix 1

Conference.Azure\ServiceConfiguration.Cloud.cscfg:
<?xml version="1.0" encoding="utf-8"?>
<ServiceConfiguration serviceName="Conference.Azure" osFamily="1" osVersion="*"
xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration">
 <Role name="Conference.Web.Admin">
 <Instances count="1" />
 <ConfigurationSettings>
 <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString"
 value="[your-windows-azure-connection-string]" />
 <Setting name="Diagnostics.ScheduledTransferPeriod" value="00:02:00" />
 <Setting name="Diagnostics.LogLevelFilter" value="Warning" />
 <Setting name="Diagnostics.PerformanceCounterSampleRate" value="00:00:30" />
 <Setting name="DbContext.ConferenceManagement"
 value="[your-sql-azure-connection-string]" />
 <Setting name="DbContext.SqlBus"
 value="[your-sql-azure-connection-string]" />
 </ConfigurationSettings>
 </Role>
 <Role name="Conference.Web.Public">
 <Instances count="1" />
 <ConfigurationSettings>
 <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString"
 value="[your-windows-azure-connection-string]" />
 <Setting name="Diagnostics.ScheduledTransferPeriod" value="00:02:00" />
 <Setting name="Diagnostics.LogLevelFilter" value="Warning" />
 <Setting name="Diagnostics.PerformanceCounterSampleRate" value="00:00:30" />
 <Setting name="DbContext.Payments"
 value="[your-sql-azure-connection-string]" />
 <Setting name="DbContext.ConferenceRegistration"
 value="[your-sql-azure-connection-string]" />
 <Setting name="DbContext.SqlBus"
 value="[your-sql-azure-connection-string]" />
 <Setting name="DbContext.BlobStorage"
 value="[your-sql-azure-connection-string]" />
 </ConfigurationSettings>
 </Role>
 <Role name="WorkerRoleCommandProcessor">
 <Instances count="1" />
 <ConfigurationSettings>
 <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString"
 value="[your-windows-azure-connection-string]" />
 <Setting name="Diagnostics.ScheduledTransferPeriod" value="00:02:00" />
 <Setting name="Diagnostics.LogLevelFilter” value="Information" />
 <Setting name="Diagnostics.PerformanceCounterSampleRate" value="00:00:30" />

 327Release Notes

 <Setting name="DbContext.Payments"
 value="[your-sql-azure-connection-string]" />
 <Setting name="DbContext.EventStore"
 value="[your-sql-azure-connection-string]" />
 <Setting name="DbContext.ConferenceRegistrationProcesses"
 value="[your-sql-azure-connection-string]" />
 <Setting name="DbContext.ConferenceRegistration"
 value="[your-sql-azure-connection-string]" />
 <Setting name="DbContext.SqlBus"
 value="[your-sql-azure-connection-string]" />
 <Setting name="DbContext.BlobStorage"
 value="[your-sql-azure-connection-string]" />
 <Setting name="DbContext.ConferenceManagement"
 value="your-sql-azure-connection-string]" />
 </ConfigurationSettings>
 </Role>
</ServiceConfiguration>

Note: The LogLevelFilter values for these roles is set to either Warning or Information. If you
want to capture logs from the application into the WADLogsTable, you should change these
values to Verbose.

Creating the Settings.xml File
Before you can build the solution, you must create a Settings.xml file in the Infrastructure Projects\
Azure solution folder. You can copy the Settings.Template.xml in this solution folder to create a
Settings.xml file.

Note: You only need to create the Settings.xml file if you plan to use either the Debug or Release
build configurations.

If you plan to use the Windows Azure Service Bus and the Windows Azure table storage based event
store then you must edit the Settings.xml file in the Infrastructure Projects\Azure solution folder
to include details of your Windows Azure storage account and a Windows Azure Service Bus
namespace.

Note: See the contents of the Settings.Template.xml for details of the configuration information
that is required.

Note: You cannot currently use the Windows Azure storage emulator for the event store. You must
use a real Windows Azure storage account.

Building the RI
Open the Conference Visual Studio solution file in the code repository that you downloaded and
un-zipped.

328 Appendix 1

You can use NuGet to download and install all of the dependencies by running the script install-
packages.ps1 before building the solution.

Build Configurations
The solution includes a number of build configurations. These are described in the following sections:

Release
Use the Release build configuration if you plan to deploy your application to Windows Azure.
This solution uses the Windows Azure Service Bus to provide the messaging infrastructure.
Use this build configuration if you plan to deploy the RI to Windows Azure (scenario 5).

Debug
Use the Debug build configuration if you plan either to deploy your application locally to the Win-
dows Azure compute emulator or to run the application locally and stand-alone without using the
Windows Azure compute emulator.
This solution uses the Windows Azure Service Bus to provide the messaging infrastructure and the
event store based on Windows Azure table storage (scenarios 2 and 4).

DebugLocal
Use the DebugLocal build configuration if you plan to either deploy your application locally to the
Windows Azure compute emulator or run the application on a local web server without using the
Windows Azure compute emulator.
This solution uses a local messaging infrastructure and event store built using SQL Server (scenarios
1 and 3).

Running the RI
When you run the RI, you should first create a conference, add at least one seat type, and then publish
the conference using the Conference.Web.Admin site.
After you have published the conference, you will then be able to use the site to order seats and use
the simulated the payment process using the Conference.Web site.
The following sections describe how to run the RI using in the different scenarios.

Scenario 1. Local Web Server, SQL Event Bus, SQL Event Store
To run this scenario you should build the application using the DebugLocal configuration.
Run the WorkerRoleCommandProcessor project as a console application.
Run the Conference.Web.Public and Conference.Web.Admin (located in the Conference-Manage-
ment folder) as web applications.

 329Release Notes

Scenario 2. Local Web Server, Windows Azure Service Bus, Table
Storage Event Store
To run this scenario you should build the application using the Debug configuration.

Run the WorkerRoleCommandProcessor project as a console application.

Run the Conference.Web.Public and Conference.Web.Admin (located in the Conference-Manage-
ment folder) as web applications.

Scenario 3. Compute Emulator, SQL Event Bus, SQL Event Store
To run this scenario you should build the application using the DebugLocal configuration.
Run the Conference.Azure Windows Azure project.

Note: To use the Windows Azure compute emulator you must launch Visual Studio as an
administrator.

Scenario 4. Compute Emulator, Windows Azure Service Bus, Table
Storage Event Store
To run this scenario you should build the application using the Debug configuration.
Run the Conference.Azure Windows Azure project.

Note: To use the Windows Azure compute emulator you must launch Visual Studio as an
administrator.

Scenario 5. Windows Azure, Windows Azure Service Bus, Table
Storage Event Store
Deploy the Conference.Azure Windows Azure project to your Windows Azure account.

Note: You must also ensure that you have created Conference database in SQL Database using
the Install-Database.ps1 in the scripts folder as described above. You must also ensure that you
have modified the connection strings in the configuration files in the solution to point to your SQL
Database Conference database instead of your local SQL Express Conference database as
described above.

Running the Tests
The following sections describe how to run the unit, integration, and acceptance tests.

Running the Unit and Integration Tests
The unit and integration tests in the Conference solution are created using xUnit.net.

330 Appendix 1

For more information about how you can run these tests, please visit the xUnit.net site on Codeplex.

Running the Acceptance Tests
The acceptance tests are located in the Visual Studio solution in the Conference.AcceptanceTests
folder.

You can use NuGet to download and install all of the dependencies by running the script install-
packages.ps1 before building this solution.

The acceptance tests are created using SpecFlow. For more information about SpecFlow, please visit
SpecFlow.

The SpecFlow tests are implemented using xUnit.net.

The Conference.AcceptanceTests solution uses the same build configurations as the Conference
solution to control whether you run the acceptance tests against either the local SQL-based messag-
ing infrastructure and event store or the Windows Azure Service Bus messaging infrastructure and
Windows Azure table storage based event store.

You can use the xUnit console runner or a third-party tool with Visual Studio integration and xUnit
support (for example TDD.net) to run the tests. The xUnit GUI tool is not supported.

Known issues
The list of known issues attached and is available online.

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://xunit.codeplex.com/
http://www.specflow.org/
http://go.microsoft.com/fwlink/?LinkID=259597
http://msdn.microsoft.com/en-us/library/jj619274

 331

Migrating from the V1 to the V2 release
If you have been running the V1 release and have data that you would like to preserve as you migrate
to the V2 release, the following steps describe how you can perform this migration if you are hosting
the V1 release in Windows Azure.

Note: You should create a backup of the Conference database before you begin the migration.

1.	 Make sure that the V1 release is running in your Windows Azure production environment.
2.	 Deploy the V2 release to your Windows Azure staging environment. The V2 release has a

global MaintenanceMode property that is initially set to true. In this mode, the application
displays a message to the user that site is currently undergoing maintenance.

3.	 When you are ready, swap the V2 release (still in maintenance mode) into your Windows
Azure production environment.

4.	 Leave the V1 release (now running in the staging environment) to run for a few minutes to
ensure that all in-flight messages complete their processing.

5.	 Run the migration program to migrate the data (see below).
6.	 After the data migration completes successfully, change the MaintenanceMode property to

false.
7.	 The V2 release is now live in Windows Azure.

Note: You can change the value of the MaintenanceMode property in the Windows Azure
management portal.

Running the migration program to migrate the data
Before beginning the data migration process, ensure that you have a backup of the data from your
SQL Database instance.

The MigrationToV2 utility uses the same Settings.xml file as the other projects in the Conference
solution in addition to its own App.config file to specify the Windows Azure storage account and SQL
connection strings.

Migrations

Appendix 2

332 Appendix 2

The Settings.xml file contains the names of the new Windows Azure tables that the V2 release
uses. If you are migrating data from V1 to V2 ensure that the name of the EventSourcing table is
different from the name of the table used by the V1 release. The name of the table used by the V1
release is hardcoded in the Program.cs file in the MigrationToV2 project:

var originalEventStoreName = "ConferenceEventStore";

The name of the new table for V2 is in the Settings.xml file:

<EventSourcing>
 <ConnectionString>...</ConnectionString>
 <TableName>ConferenceEventStoreApplicationDemoV2</TableName>
</EventSourcing>

Note: The migration utility assumes that the V2 event sourcing table is in the same Windows Azure
storage account as the V1 event sourcing table. If this is not the case, you will need to modify the
MigrationToV2 application code.

The App.config file contains the DbContext.ConferenceManagement connection string. The migra-
tion utility uses this connection string to connect to the SQL Database instance that contains the
SQL tables used by the application. Ensure that this connection string points to the Windows Azure
SQL Database that contains your production data. You can verify which SQL Database instance your
production environment uses by looking in the active ServiceConfiguration.csfg file.

Note: If you are running the application locally using the Debug configuration, the DbContext.
ConferenceManagement connection string will point to local SQL Express database.

Note: To avoid data transfer charges, you should run the migration utility inside a Windows Azure
worker role instead of on-premise. The solution includes an empty, configured Windows Azure
worker role in the MigrationToV2.Azure with diagnostics that you can use for this purpose. For
information about how to run an application inside a Windows Azure role instance, see Using
Remote Desktop with Windows Azure Roles.

Note: Migration from V1 to V2 is not supported if you are using the DebugLocal configuration.

If the data migration fails
If the data migration process fails for any reason, then before you retry the migration you should:

1.	 Restore the SQL database back to its state before you ran the migration utility.
2.	 Delete the two new Windows Azure tables defined in Settings.xml in the EventSourcing

and MessageLog sections.

http://msdn.microsoft.com/en-us/library/windowsazure/gg443832.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg443832.aspx

 333Migr ations

Migrating from the V2 to the V3 Release
If you have been running the V2 release and have data that you would like to preserve as you migrate
to the V3 release, the following steps describe how you can perform this migration if you are hosting
the V2 release in Windows Azure.

Note: You should create a backup of the Conference database before you begin the migration.

1.	 Make sure that the V2 release is running in your Windows Azure production environment.
2.	 Deploy the V3 release to your Windows Azure staging environment. In the V3 release, the

command processor worker role has a MaintenanceMode property that is initially set to
true.

3.	 Start the ad-hoc MigrationToV3.InHouseProcessor utility to rebuild the read models for the
V3 deployment.

4.	 Change the MaintenanceMode property of the command processor worker role in the V2
release (running in the production slot) to true. At this point, the application is still running,
but the registrations cannot progress. You should wait until the status of the worker role
instance shows as Ready in the Windows Azure portal (this may take some time).

5.	 Change the MaintenanceMode property of the command processor worker role in the V3
release (running in the staging slot) to false and allow the MigrationToV3.InHouseProcessor
utility to start handling the V2 events. The migration utility prompts you to start handling
these V2 events when you are ready. This change is faster than changing the value of the
MaintenanceMode property in the V2 release. When this change is complete, the V2 release
web roles are using the data processed by the V3 version of the worker role. This configura-
tion change also triggers the database migration.

6.	 In the Windows Azure Management Portal, perform a VIP swap to make the V3 web roles
visible externally.

7.	 Shutdown the V2 deployment that is now running in the staging slot.
8.	 The V3 release is now live in Windows Azure.

Note: You can change the value of the MaintenanceMode property in the Windows Azure
management portal.

More information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/jj619274.

http://msdn.microsoft.com/en-us/library/jj619274

 335

A
access code defined, 91
acknowledgments, xxix-xxx
AddSeats method, 74
aggregate roots, 89

described, 215
aggregates

and aggregate roots, 25
described, 215
in the domain model, 249
and event sourcing, 250-252
identification, 98-99
message versions in, 128
and ORM layers, 249
and process managers, 34-39
single aggregate, 21
state changes, 113-116
two separate aggregates, 19-20

anti-corruption layer, 281-282
described, 217

API features, 294
appendix one See release notes
appendix two See migrations
application partitioning, 208
architecture

multiple architectures described, 218-219
Orders and Registrations bounded context, 18, 26
Orders and Registrations bounded context

extension, 55-56
reservations, 61
resilience and performance, 158-159
V1 release, 93-95
versioning, 126-127

arrows legend, xxvii
ASP.NET MVC validation, 66-68
AssignRegistrantDetails class, 66-67

asynchronous ASP.NET MVC controllers, 198
asynchronous messages, 186
attendees defined, 15
autonomy versus authority, 105-106
AzureEventSourcedRepository class, 189-190
AzureMessageLogWriter class, 146-147

B
bounded contexts

See also Conference Management bounded context;
Orders and Registrations bounded context;
Payments bounded context

choices, 11
cross-communication, 281-283
defined, 8
described, 8, 215-217
lessons learned, 210
multiple, 220
not included, 9
Ordering and Registration, 92-93
user stories, 92

bugs in migration, 155
build configurations, 328
BuildMessage method, 144
business customer defined, 92
business focus, 232
business manager role (Beth), 3

C
CachingConferenceDao class, 194-195
CAP theorem, 261
cloud, 203
code comprehension, 83-89
collaborative domains, 233

Index

336

Command Query Responsibility Segregation (CQRS)
pattern, 1

CommandBus class, 48, 142
CommandDispatcher class, 187-189
commands

and command handlers, 252-256
CQRS and ES deep dive, 253
defined, 14, 54, 125, 157
described, 228
and DTOs, 247
ensuring that commands are sent, 161
handlers, 254
messages de-duplicating, 141-142
and optimistic concurrency, 256
processing optimizing, 166
single recipient, 44-47
synchronous commands, 186-189
Tales from the trenches, 304
validation, 61-62

Common project, 295
complexity reduction, 231
concepts and terminology, 212-215
concurrency, 25

and aggregates, 267-268
optimistic concurrency check, 199

Conference Management bounded context, 8-9
user stories, 92
V1 release, 97, 104, 108

conference sites defined, 16-17
ConferenceConfiguration.feature file, 74-76
ConferenceController class, 27
ConferenceProcessor class, 141
ConferenceRegistrationDbContext class, 71, 72
conferences, 4

information caching, 167
management system, 1

ConferenceViewModelGenerator class, 128, 138-140
consistency See eventual consistency
context maps

bounded contexts communication, 281
Contoso Conference Management System, 10-11
CQRS expert role (Gary), 10
defined, 8
described, 218

Contoso Conference Management System, 3-5, 7
See also V1 release
context map, 10-11

Contoso scenario, 1
contributors and reviewers, xxix
countdown timer, 64-66

CQRS and ES deep dive, 247-279
aggregates and event sourcing, 250-252
aggregates and ORM layers, 249
aggregates in the domain model, 249
CAP theorem, 261
commands

and command handlers, 252-256
and DTOs, 247
and optimistic concurrency, 256

concurrency and aggregates, 267-268
data and normalization, 248
DDD and aggregates, 248
distributed transaction, 263
duplicate messages, 268
event handlers, 260
events, 259-260

and event handlers, 256
and event sourcing, 248
versioning, 269-271

eventual consistency, 248-249, 261-262
and CQRS, 263-266

existing event definitions, 270-271
IAggregateRoot interface, 249
ICommand interface, 253
IEvent interface, 259
intent, 256-257

modelling, 258-259
lost messages, 269
messaging

and CQRS, 268-271
Windows Azure Service Bus, 278

more information, 279
multiple role instances, 273
new event types, 270
no distributed transactions, 265
Order instances, 254-255
out-of-order messages, 269
persisting events, 274-275
publishing events, 276-278
read models and write models, 247
read side optimizing, 266
redundant events, 270
reliable message transport, 264
retrieving events, 275
scaling out using multiple role instances, 273
task-based UIs, 271
unprocessed messages, 269
VersionedEvent abstract class, 260
Windows Azure, 272-279
Windows Azure table storage, 273-279
write side optimizing, 267

 337Indexindex

CQRS expert role (Gary), 2
context maps, 10

CQRS pattern
barriers to adopting, 232
beginning the journey, 5
business focus, 232
collaborative domains, 233
commands described, 228
complexity reduction, 231
in context, 211-221
DDD, 220-221, 227-228
differentness of, 204-205
event sourcing (ES) introduction, 243-245
events described, 229
flexibility, 231
introduction, 222
journey, xxiv-xxv
messages described, 228-230
more information, 234
read and write sides, 225-226
reference, xxv-xxvi
scalability, 230
stale data, 233
task-based UIs, 232
when to avoid?, 233
when to use?, 232-234
why use?, 230-232

crew, xxix-xxx
CRUD, 101

D
DAOs, 59-60
data

migration, 136, 140, 148-150
and normalization, 248
stale data, 233

databases
creating, 325-327
legacy, 304
reading, 282

DDD
acronym, 7
aggregate roots described, 215
and aggregates, 248
aggregates described, 215
anti-corruption layer described, 217
bounded contexts described, 215-217
concepts and terminology, 212-215
context maps described, 218
CQRS, 220-221

CQRS pattern introduction, 227-228
described, 212
domain models described, 213
entities described, 214
maintaining multiple bounded contexts, 220
multiple architectures described, 218-219
multiple development teams, 219
overview, 1
root entities described, 215
services described, 214
Tales from the trenches, 301
ubiquitous language described, 213
value objects described, 214

DDD/CQRS for large company, 303-305
definitions, 16-17
denormalized views, 57
dependency reduction, 301
development teams

multiple, 219
organization, 208

Digital Marketing, 306-309
distributed transactions, 263

and event sourcing, 105
domain-driven design See DDD
domain expert, 206

V1 release, 123-124
domain expert role (Carlos), 2
domains

decomposition, 7-11
defined, 7
definitions, 15
models described, 213
selecting, xxvi-xxvii
selection, xxvi-xxvii
tests, 84-86

duplicate messages, 268
duplicate OrderPlaced events, 178

E
else if clause, 176-177
eMoney Nexus, 312
entities described, 214
event sourcing (ES)

basic requirements, 245
bounded contexts communication, 282
concerns, 242
CQRS/ES, 243-245
defined, 91-92
in described, 236-240
event stores, 245

338

introduction, 235-246
lessons learned, 209
ORM layers, 236-240
overview, 1
performance, scalability, and consistency, 246-247
standalone event sourcing, 245
Tales from the trenches, 301-302
and transaction logging, 205
underlying storage, 245
V1 release, 97-98, 113
why use?, 240-242

event stores, 245
EventBus class, 48, 144
events

asynchronous commands, 165
bounded contexts communication, 282
CQRS and ES deep dive, 259-260
defined, 14, 54, 125, 157
definition changes, 128
definitions, 270-271
described, 229
and event handlers, 256
and event sourcing, 248
event sourcing events, 151
existing event definitions, 270-271
handlers, 260
new event types, 270
out-of-order SeatsReserved events, 175
persisting, 146-150, 274-275

to the event store, 117-118
integration events, 131-132

processing, 161
processing multiple times, 129-131
publishing, 276-278

in parallel, 167
redundant, 270
replaying to rebuild state, 118-120
retrieving, 275
versioning, 269-271

EventSourced class, 115, 119-120
EventStore class, 120-121
EventStoreBusPublisher class, 122, 191
eventual consistency, 107-108

and CQRS, 263-266
CQRS and ES deep dive, 248-249, 261-262
defined, 92, 158

executable tests, 76-81
existing event definitions, 270-271

F
flexibility, 5

CQRS pattern introduction, 231
foreward, xxi-xxii

G
Gary See CQRS expert role (Gary)
Global.asax.cs file, 296
granularity, 48
guide

how to use, xxiii-xxviii
structure, xxiii-xxiv

GUIDs, 196

H
high availability, 297-298
how to use this guide, xxiii-xxviii

I
IAggregateRoot interface, 249
ICommand interface, 253
idempotency, 125, 158

Tales from the trenches, 298
IEvent interface, 259
implementation details, 62-74, 133

Orders and Registrations bounded context, 25-49
infrastructure

leveraging, 207
optimizing, 165-172
Orders and Registrations bounded context, 40-42
Tales from the trenches, 302

integration, 111-113
between bounded contexts, 101-103
with legacy systems, 282-283
testing, 200

intent, 256-257
modelling, 258-259

Inversion of Control (IoC) container, 304-305
IQueryable interface, 57-58
IT professional role (Poe), 3

J
Jana See software architect role (Jana)
journey, xxiv-xxv

 339Indexindex

L
legacy databases, 304
legacy systems, 282
legend for arrows, xxvii
lessons learned, 201-210

application partitioning, 208
bounded contexts, 210
challenges of the cloud, 203
CQRS is different, 204-205
development team organization, 208
event sourcing, 209
event sourcing and transaction logging, 205
involving the domain expert, 206
leveraging the infrastructure, 207
message-driven systems, 202-203
more information, 210
performance, 201-202, 208-209
process manager implementation, 208
solid messaging and persistence, 207
starting over, 206-210
UI, 209
when to use CQRS, 206

LoadFrom method, 119-120
login using a record locator, 54
Lokad Hub, 300-302
lost messages, 269

M
MakeSeatReservation command, 175
map of journey, xxiv
mapping/filtering event messages, 128
Markus See software developer role (Markus)
memento pattern, 189
MessageProcessor class, 46-47
messages

asynchronous, 186
and CQRS, 268-271, 286
delayed processing, 294
described, 228-230
duplicate messages, 268
expiring, technologies used in the RI, 294
filtering in subscriptions, 167, 192
flow tests, 81-83
guaranteeing message ordering, 142
idempotency, 128-129
message-driven systems, 202-203
to the message log, 146-147

message versions in the aggregates, 128
metadata to the messages, 146
ordering, 133
out-of-order messages, 269
past log messages, 151
reading, technologies used in the RI, 294
reliable message transport, 264
sending, 294
serializing, 295
solid messaging and persistence, 207
unprocessed messages, 269
versions in the aggregates, 128
Windows Azure Service Bus, 278

metadata, 146
migration, 331

bugs, 155
data, 136, 140, 148-150
more information, 333
V1 to V2, 150-151, 331-333
V2 to V3, 333

Migrator class, 148-150
more information, 5

appendix two: migrations, 333
bounded contexts communication, 283
CQRS and ES deep dive, 279
CQRS pattern introduction, 234
domain decomposition, 11
lessons learned, 210
Orders and Registrations bounded context, 52
Orders and Registrations bounded context

extension, 90
resilience and performance, 200
Tales from the trenches: DDD/CQRS for large

company, 305
Tales from the trenches: Digital Marketing, 309
Tales from the trenches: Lokad Hub, 302
Tales from the trenches: TOPAZ Technologies, 310
technologies used in the RI, 295, 296
V1 release, 124
versioning, 155

N
new event types, 270
no distributed transactions, 265
no-downtime, 172

Tales from the trenches, 298
nonfunctional requirements, 4

340

O
OnCreateContainer method, 187
optimistic concurrency check, 199
optimizations, 196-199

other, 168
Order aggregate, 31-33, 64, 81-83, 113-114
Order class, 63, 116, 185
Order instances, 254-255
OrderCommandHandler class, 28-29, 113-114, 118
OrderController class, 63
OrderItemsView table, 69
OrderPlaced events, 178
orders

defined, 15
items, 15
partially fulfilled orders, 60-61
requirements for creating, 17-18
time remaining, 55
UI mockups, 17

Orders and Registrations bounded context, 13-52, 108
aggregates and aggregate roots, 25
aggregates and process managers, 34-39
architecture, 18, 26
bounded contexts, 92-93
command to a single recipient, 44-47
CommandBus class, 48
concurrency, 25
described, 8
EventBus class, 48
granularity, 48
implementation details, 25-49
infrastructure, 40-42
MessageProcessor class, 46-47
more information, 52
patterns and concepts, 18-25
process managers, 22-23, 34-39
Reservation pattern, 25
scalability, 48
serialization, 49
single aggregate, 21
SubscriptionReceiver class, 45-46
testing, 49-52
transaction boundaries, 24
two separate aggregates, 19-20
user stories, 92-93
validation, 23-24
Windows Azure Service Bus, 42

Orders and Registrations bounded context
extension, 53-90

acceptance tests and the domain expert, 74-81
AddSeats method, 74
architecture, 55-56
ASP.NET MVC validation, 66-68
code comprehension, 83-89
command validation, 61-62
ConferenceRegistrationDbContext class, 71
countdown timer, 64-66
DAOs, 59-60
denormalized views, 57
domain tests, 84-86
executable tests, 76-81
implementation details, 62-74
importance of testing, 83-84
login using a record locator, 54
message flow tests, 81-83
more information, 90
multiple seat types, 55
order access code record locator, 63
order time remaining, 55
OrderItemsView Table descriptions, 69
OrdersView Table descriptions, 69
OrderViewModelGenerator class, 69-71
partially fulfilled orders, 60-61
pushing changes to the read side, 69-71
querying the read side, 72
read side, 56
record locators, 56
reservation process architecture, 61
SeatsAvailability aggregate, 73-74
SpecFlow, 74-76
Transient Fault Handling Application Block, 62

OrdersView table, 69
OrdersView Table descriptions, 69
OrderTotalsCalculated event, 185
OrderViewModelGenerator class, 69-71
ORM layers, 236-240
out-of-order messages, 269
out-of-order SeatsReserved events, 175

P
partially fulfilled orders, 60-61
partitioning, 208
past log messages, 151

 341Index

patterns
memento pattern, 189
Reservation pattern, 25

patterns and concepts, 127-133
Orders and Registrations bounded context, 18-25

Payments bounded context, 109-111
described, 9

performance
additions, 169-170
lessons learned, 201-202, 208-209
optimizing, 162
scalability, and consistency, 246-247
Tales from the trenches, 298-299

Poe See IT professional role (Poe)
preface, xxiii-xxviii
prefetch with Windows Azure Service Bus, 198-199
process managers

defined, 14-15, 54, 285-289
implementation, 208
Orders and Registrations bounded

context, 22-23, 34-39
projections, 301
pseudo transaction, 178-179

Q
queries

performance, 304
the read side, 72

queues, 292

R
read and write sides, 225-226
read models

data caching, 194-195
versioning, 151
and write models, 247

read side, 107
data updates, 105
optimizing, 266
Orders and Registrations bounded context

extension, 56
pushing changes to, 69-71

reads and writes, 297-299
record locators, 56
RegenerateViewModels method, 148-150
RegisterToConference command, 29-31
registrants, 15, 92

RegistrationController class, 28, 65-66, 68, 134-135,
181-182

constructor, 296
RegistrationController controller, 140
RegistrationProcessManager class, 41-42, 64-65, 134-136,

157, 159-161
concurrency check, 199
hardening, 174-181

release notes, 322-330
build configurations, 328
building and running the sample code (RI), 325
building RI, 327-328
database creation, 325-327
more information, 323-324, 330
prerequisites, 324
running the tests, 329-330
Settings.xml file, 327
SQL Express database, 325
system evolution, 322
Windows Azure SQL database instance, 325-327

reliable message transport, 264
requirements, 4, 17

event sourcing (ES) introduction, 245
nonfunctional requirements, 4

Reservation pattern, 25
reservations

defined, 8, 16
process architecture, 61

resilience and performance, 157-200
architecture, 158-159
asynchronous ASP.NET MVC controllers, 198
asynchronous commands and events, 165
asynchronous messages, 186
AzureEventSourcedRepository class, 189-190
command processing optimization, 166
CommandDispatcher class, 187, 188-189
conference information caching, 167
duplicate OrderPlaced events, 178
else if clause, 176-177
ensuring that commands are sent, 161
event processing, 161
event publishing in parallel, 167
EventStoreBusPublisher class, 191
implementation details, 174-200
infrastructure optimizing, 165-172
integration tests, 200
MakeSeatReservation command, 175
memento pattern, 189

342

message filtering in subscriptions, 167, 192
more information, 200
multiple sessions in parallel, 199
multiple topics to partition the service bus, 195-196
no-downtime migration, 172
optimistic concurrency check, 199
OrderTotalsCalculated event, 185
other optimizations, 168
other optimizing and hardening changes, 196-199
out-of-order SeatsReserved events, 175
performance additions, 169-170
performance optimizing, 162
prefetch with Windows Azure Service Bus, 198-199
pseudo transaction, 178-179
read model data caching, 194-195
read model rebuilding, 173-174
RegistrationController class, 181-182
RegistrationProcessManager class, 157, 159-161
RegistrationProcessManager class

hardening, 174-181
resilience, 159-161
round-trip reduction, 199
scalability additions, 171-172
SeatsAvailability aggregate, 193-194
SeatsAvailability class, 190
SeatsAvailabilityCommand class, 193-194
sequential GUIDs, 196
Service Bus partitioning, 168
SessionSubscriptionReceiver instance, 193-194
snapshots with event sourcing, 166
SqlProcessDataContext class, 179-180
synchronous commands, 186-189
SynchronousCommandBusDecorator

class, 187-188
testing, 200
time-to-live value, 199
UI

flow before optimizing, 162-163
flow optimizing, 181-185
optimizing, 163-164
optimizing one, 164
optimizing two, 165

user interface tests, 200
WaitUntilSeatsAreConfirmed method, 182-184

RI See technologies used in the RI
role instances, 273

roles, 2-3
see also CQRS expert role (Gary); IT professional

role (Poe); software developer role (Markus);
software architect role (Jana); domain expert
role (Carlos);business manager role (Beth)

root entities described, 215
round-trip reduction, 199

S
sagas, 301

defined, 285
messages and CQRS, 286
process manager defined, 285-289
saga on sagas, 285-290
sagas defined, 285

sample code (RI), 330
scalability, 4

additions, 171-172
CQRS pattern introduction, 230
Orders and Registrations bounded context, 48
scaling out using multiple role instances, 273

scenarios See Contoso scenario
SeatAssignmentsHandler class, 136-137
seats, 4

defined, 16, 92
multiple types, 55
remaining seat quantities display, 140
remaining seats in the UI, 138
seat assignments, 15
seat availability, 16

SeatsAvailability aggregate, 73-74, 193-194
SeatsAvailability class, 190
SeatsAvailabilityCommand class, 193-194
SeatType class, 140
SelfRegistrationEndToEndWithControllers.feature

file, 78-79
SelfRegistrationEndToEndWithControllersSteps

class, 79-81
SelfRegistrationEndToEndWithDomain.feature

file, 152-154
sequential GUIDs, 196
serialization, 49
Service Bus partitioning, 168
ServiceBusConfig class, 141-142
services described, 214
sessions in parallel, 199
SessionSubscriptionReceiver class, 143-144
SessionSubscriptionReceiver instance, 193-194

 343Index

Settings.Template.xml file, 192
Settings.xml file, 327
simple event store implementation, 120
single aggregate, 21
single responsibility of objects, 309
snapshots

defined, 158
with event sourcing, 166

software architect role (Jana), 2
software developer role (Markus), 2

Transient Fault Handling Application Block, 62
SpecFlow, 74-76, 152-154
SpecifyRegistrantAndPaymentDetails method, 182-185
SpecifyRegistrantDetails.cshtml file, 67
SQL Express database, 325
SqlEventSourcedRepository class, 117-119
SqlProcessDataContext class, 179-180
stale data, 233
standalone event sourcing, 245
State Change element, 89
storage

underlying storage, 245
Windows Azure table storage, 273-279
Windows Azure table storage-based event store,

120-121
structure of this guide, xxiii-xxiv
SubscriptionReceiver class, 45-46, 198-199
synchronous commands, 186-189
SynchronousCommandBusDecorator class, 187-188
systems evolution, 322

T
Tales from the trenches, xxv-xxvi, 297-321

commands, 304
DDD, 301
DDD/CQRS for large company, 303-305
dependency reduction, 301
Digital Marketing, 306-309
eMoney Nexus, 312
event sourcing, 301-302
high availability, 297-298
idempotency, 298
infrastructure, 302
Inversion of Control (IoC) container, 304-305
legacy databases, 304
Lokad Hub, 300-302
more information, 299, 302, 305, 309, 310
no-downtime, 298
performance, 298-299

projections, 301
query performance, 304
reads and writes, 297-299
sagas, 301
single responsibility of objects, 309
TOPAZ Technologies, 310
Twilio, 297-299

task-based UIs, 99-101, 232
CQRS and ES deep dive, 271

team, xxix-xxx
development team organization, 208

technologies used in the RI, 291-296
messages, 294
more information, 295, 296
queues, 292
topics and subscriptions, 293
Unity Application Block, 296
useful API features, 294
Windows Azure Service Bus, 291

testing, 49-52, 200
executable tests, 76-81
impact on testing, 151-155
importance of testing, 83-84
running, 329-330
user interface tests, 200

time-to-live value, 199
timers, 64-66
timing issues, 123
TOPAZ Technologies, 310
topics

to partition the service bus, 195-196
and subscriptions, 293

TopicSender class, 145-146
transactions

boundaries, 24
no distributed transactions, 265

Transient Fault Handling Application Block, 62
Twilio, 297-299
two separate aggregates, 19-20

U
ubiquitous language described, 213
UI

changes to, 134
flow before optimizing, 162-163
flow optimizing, 181-185
lessons learned, 209
mockups, 17
optimizing, 163-164

344

optimizing one, 164
optimizing two, 165
orders, 17

Unity Application Block, 296
unprocessed messages, 269
useful API features, 294
user interface tests, 200
users defined, 15

V
V1 release, 91-124

aggregate identification, 98-99
aggregate state changes, 113-116
architecture, 93-95
autonomy versus authority, 105-106
calculating totals, 122-123
Conference Management bounded

context, 97, 104, 108
CRUD, 101
distributed transactions and event sourcing, 105
event sourcing, 97-98, 113
EventSourced class, 115
EventStore class, 120-121
EventStoreBusPublisher class, 122
eventual consistency, 107-108
impact on testing, 123-124
implementation details, 108-123
integration, 111-113

between bounded contexts, 101-103
involving the domain expert, 123-124
more information, 124
Order aggregate, 113-114
Order class, 116
OrderCommandHandler class, 113-114, 118
Orders and Registration bounded context, 108
patterns and concepts, 97-108
Payments bounded context, 109-111
persisting events to the event store, 117-118
read side, 107
read side data updates, 105
replaying events to rebuild state, 118-120
simple event store implementation, 120
SqlEventSourcedRepository class, 117-118, 119
task-based UI, 99-101
timing issues, 123
Windows Azure Service Bus, 104
Windows Azure table storage-based event

store, 120-121
V3 release, 159

validation, 23-24
ASP.NET MVC validation, 66-68
command validation, 61-62

value objects described, 214
VersionedEvent class, 260
versioning, 125-155

adding support for zero-cost orders, 134
architecture, 126-127
AzureMessageLogWriter class, 146-147
bugs in migration, 155
BuildMessage method, 144
changes to the UI, 134
command messages de-duplicating, 141-142
ConferenceProcessor class, 141
ConferenceViewModelGenerator

class, 128, 138-140
data migration, 136, 140, 148-150
event definition changes, 128
event persisting, 146-150
event sourcing events, 151
EventBus class, 144
guaranteeing message ordering, 142
impact on testing, 151-155
implementation details, 133
mapping/filtering event messages, 128
message idempotency, 128-129
message ordering, 133
messages to the message log, 146-147
metadata to the messages, 146
migrating from V1 to V2, 150-151
Migrator class, 148-150
more information, 155
multiple message versions in the aggregates, 128
past log messages, 151
patterns and concepts, 127-133
persisting integration events, 131-132
processing events multiple times, 129-131
read models, 151
RegenerateViewModels method, 148-150
RegistrationController controller, 140
RegistrationProcessManager class, 134
remaining seat quantities display, 140
remaining seats in the UI, 138
SeatAssignmentsHandler class, 136-137
SeatType class, 140
ServiceBusConfig class, 141-142
SessionSubscriptionReceiver class, 143-144
SpecFlow, 152-154
TopicSender class, 145-146
zero-cost orders, 134

views, 57

 345Index

W
WaitUntilSeatsAreConfirmed method, 182-184
Web.config file, 68
Windows Azure, 272-279
Windows Azure Service Bus, 42, 104

technologies used in the RI, 291
Windows Azure SQL database instance, 325-327
Windows Azure table storage, 273-279
Windows Azure table storage-based event store, 120-121
write side optimizing, 267

Z
zero-cost orders, 134

versioning, 134

