
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
EDITOR’S NOTE
Change the World
Keith Ward page 4

TOOLBOX
Visual Studio Tools and Extensions
Terrence Dorsey page 6

CUTTING EDGE
Interceptors in Unity 2.0
Dino Esposito page 10

FORECAST: CLOUDY
Branch-Node Synchronization
with SQL Azure
Joseph Fultz page 16

THE WORKING
PROGRAMMER
Multiparadigmatic .NET, Part 5:
Automatic Metaprogramming
Ted Neward page 78

UI FRONTIERS
A Color Scroll for XNA
Charles Petzold page 82

DON’T GET ME STARTED
Turn! Turn! Turn!
David Platt page 88

JANUARY 2011 VOL 26 NO 1

WORKFLOWS
Scalable, Long-Running Workfl ows with
Windows Server AppFabric
Rafael Godinho . 24

Authoring Custom Control Flow Activities in WF 4
Leon Welicki . 30

PLUS

Using MEF to Expose Interfaces in Your
Silverlight MVVM Apps
Sandrino Di Mattia . 40

Data Processing: Parallelism and Performance
Johnson Hart . 48

Use Multiple Visual Studio Project Types
for Cloud Success
Patrick Foley . 58

Build a Data-Driven Enterprise Web Site
in 5 Minutes
James Henry . 68

Using Quince™, you and your team can
collaborate on the user interface using
wireframes, designs and examples.

Then use NetAdvantage® UI controls,
like the map control used here, to bring
the application to life quickly & easily.

...

..

...

Untitled-7 2 11/10/10 10:59 AM

www.Infragistics.com/impress

From start to finish, Infragistics gives you the tools to create
impressive user experiences that'll make end users happy!

SEE HOW WE USE THE TOOLS
TO CREATE THIS KILLER APP AT
INFRAGISTICS.COM/IMPRESS

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics

..

...

Untitled-7 3 11/10/10 10:59 AM

www.Infragistics.com/impress

magazine

Printed in the USA

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director/mmeditor@microsoft.com
KERI GRASSL Site Manager

KEITH WARD Editor in Chief/mmeditor@microsoft.com
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or IMS/NJ. Attn: Returns, 310 Paterson Plank Road, Carlstadt, NJ 07072.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

JANUARY 2011 VOLUME 26 NUMBER 1

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

programmersparadise.com

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/textcontrol

Download a demo today.

New
Service
Pack!

Professional Edition
Paradise #

T79 02101A02
$1,220.99

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/embarcadero

Embarcadero RAD Studio XE
by Embarcadero
Embarcadero RAD Studio XE is a comprehensive
application development suite and the fastest
way to visually build GUI-intensive, data-driven
applications for Windows, .NET, PHP and the Web.
RAD Studio includes Delphi®, C++Builder®, Delphi
Prism™, and RadPHP™; providing powerful com-
piled, managed and dynamic language support,
heterogeneous database connectivity, rich visual
component frameworks, and a vast 3rd party
ecosystem – enabling you to deliver
applications up to 5x faster across multiple
Windows, Web, and database platforms.Paradise #

CGI 15401A01
$1,383.99

programmers.com/vSphereprogrammers.com/LEAD

LEADTOOLS Document
Imaging SDK v17.0
by LEAD Technologies
LEADTOOLS Document Imaging has every compo-
nent you need to develop powerful image-enabled
business applications including specialized bi-tonal
image processing, document clean up, annota-
tions, high-speed scanning, advanced compression
(CCITT G3/G4, JBIG2, MRC, ABC), and
Win32/64 binaries for C/C++, .NET, Silverlight,
WPF, WCF, & WF. Available add-ons include:
• Multi-threaded OCR/ICR/OMR/MICR/

Barcodes (1D/2D)
• Forms Recognition/Processing
• Print Capture and Document Writers
• PDF, PDF/A and XPS

Paradise #
L05 03301A01
$2,007.99

VMware vSphere
Essentials Kit Bundle
vSphere Essentials provides an all-in-one
solution for small offices to virtualize three
physical servers for consolidating and
managing applications to reduce hardware
and operating costs with a low up-front
investment. vSphere Essentials includes:

• VMware ESXi and VMware ESX
(deployment-time choice)

• VMware vStorage VMFS
• Four-way virtual SMP
• VMware vCenter Server Agent
• VMware vStorage APIs/VCB
• VMware vCenter Update Manager
• VMware vCenter Server for Essentials

for 3 hosts
Paradise #

V55 85101C02

$446.99

programmers.com/vmware

VMware Workstation 7
VMware Workstation 7 is the gold-standard
virtualization software for desktop and laptop
computers, with the richest feature set and
broadest platform support available. VMware
Workstation enables users to create and host
multiple virtual machines on a single desktop,
expanding the power of desktop systems for
IT administrators; software development and
test engineers; technical sales, training and
support staff; and PC enthusiasts.

VMware Workstation transforms the way
technical professionals develop, test, demo,
and deploy software. Workstation’s innovative
features for VMware environments help to
reduce hardware cost, save time, minimize
risk, and streamline tasks that save time
and improve productivity.

for Linux &
Windows

Paradise #
V55 22301A04

$149.99

ActiveReports 6
by GrapeCity

The de facto standard reporting tool for
Microsoft Visual Studio.NET

• Fast and Flexible reporting engine
• Flexible event-driven API to completely

control the rendering of reports
• Wide range of Export and Preview formats

including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

• XCopy deployment
• Royalty-Free Licensing for Web and

Windows applications

Professional Ed.
Paradise #
D03 04301A01
$1,310.99

NEW
VERSION

6!

programmers.com/grapecity

866-719-1528

programmers.com/microsoft

Microsoft Visual Studio
Professional 2010 Upgrade
by Microsoft
Upgrade to Microsoft Visual Studio 2010
Professional — the integrated environment that
simplifies creating, debugging and deploying
applications. Unleash your creativity and bring
your vision to life with powerful design surfaces
and innovative collaboration methods for devel-
opers and designers. Work within a personalized
environment, targeting a growing number of
platforms, including Microsoft SharePoint and
cloud applications and accelerate the coding
process by using your existing skills. Integrated
support for Test-First Development and new
debugging tools let you find and fix bugs quickly
and easily to ensure high quality solutions.

with MSDN
Single user
Paradise #

M47 40201B02

$488.99

New Intel Visual
Fortran Compiler
by Intel
Intel® Visual Fortran Composer XE
2011 includes the latest generation of Intel®

Fortran compilers, Intel® Visual Fortran Compiler
XE 12.0 for Windows. Intel® Fortran Composer
XE is available for Linux and Mac OS X. This
package delivers advanced capabilities for
development of application parallelism and
winning performance for the full range of Intel®

processor-based platforms and other compatible
platforms. It includes the compiler’s breadth of
advanced optimization, multithreading, and
processor support, as well as automatic proces-
sor dispatch, vectorization, and loop unrolling.

for Windows
Single (SSR)
Paradise #
I23 86101E03
$263.99

programmers.com/intel programmers.com/microsoft

Microsoft SQL Server
Developer Edition 2008 R2
by Microsoft
SQL Server 2008 Developer enables
developers to build and test applications
that run on SQL Server on 32-bit, ia64, and
x64 platforms. SQL Server 2008 Developer
includes all of the functionality of Enterprise
Edition, but is licensed only for development,
test, and demo use. The license for SQL
Server 2008 Developer entitles one developer
to use the software on as many systems
as necessary. For rapid deployment into
production, instances of SQL Server 2008
Developer can easily be upgraded to SQL
Server 2008 Enterprise without reinstallation.

2-bit/x64
IA64 DVD
Paradise #

M47 31101A04

$41.99

NEW
RELEASE!

programmers.com/sparxsystems

Enterprise Architect
Corporate Edition
Visualize, Document and
Control Your Software Project
by Sparx Systems
Enterprise Architect is a comprehensive,
integrated UML 2.1 modeling suite
providing key benefits at each stage of
system development. Enterprise Architect
7.5 supports UML, SysML, BPMN and
other open standards to analyze, design,
test and construct reliable, well under-
stood systems. Additional plug-ins are
also available for Zachman Framework,
MODAF, DoDAF and TOGAF, and to
integrate with Eclipse and Visual Studio
2005/2008.

1-4 Licenses
Paradise #

SP6 03101A02
$182.99

programmers.com/idm

IDM UltraEdit
The #1 Best Selling Text Editor
in the World

by IDM
UltraEdit is the world’s standard in text
editors. Millions use UltraEdit as the
ideal text/hex/programmers editor
on any platform — Windows, Linux,
or Mac!

Features include syntax highlighting
for nearly any programming language;
powerful Find, Replace, Find in Files,
and Replace in Files; FTP support, sort,
column mode, hex, macros/scripting,
large file handling (4+ GB), projects,
templates, Unicode, and more.

Named User
1-24 Users
Paradise #

I84 01201A01
$59.95

NEW
RELEASE!

Win an iPad
Place an Order for Software
(or Hardware) with
Programmer’s Paradise
and You’ll be Entered
for a Drawing to Win
an iPad Wi-Fi 32GB.

Just Use the Offer Code TRWD01
When You Place Your Order On-line or with
Your Programmer’s Paradise Representative.

Untitled-2 1 12/13/10 4:30 PM

www.programmersparadise.com

msdn magazine4

web of information nodes rather than a hierarchical tree or an
ordered list is the basic concept behind HyperText.”

Systems integration never sounded so simple, did it? Th e key
component to tie the information together is described here:

“A program which provides access to the hypertext world we call
a browser. When starting a hypertext browser on your workstation,
you will fi rst be presented with a hypertext page which is personal
to you: your personal notes, if you like. A hypertext page has pieces
of text which refer to other texts. Such references are highlighted
and can be selected with a mouse (on dumb terminals, they would
appear in a numbered list and selection would be done by entering
a number). When you select a reference, the browser presents you
with the text which is referenced: you have made the browser follow
a hypertext link. Th at text itself has links to other texts and so on.”

And here, in a nutshell, is why it’s so cool:
“Th e texts are linked together in a way that one can go from one

concept to another to fi nd the information one wants. Th e network
of links is called a web. Th e web need not be hierarchical, and there-
fore it is not necessary to ‘climb up a tree’ all the way again before
you can go down to a diff erent but related subject.”

And the rest is history. Th e point of our little trip in Doc Brown’s
DeLorean back to the Web’s beginning: You never know where an
idea will lead. But if you don’t break through boundaries, don’t
ask “What if ...?” enough, don’t aspire to make a bigger impact,
you surely won’t.

It’s now 2011. Th e year ahead looms. Will you be content with
doing the same old thing you’ve been doing for weeks, months or
years? Or will you invent something? You can’t invent the Web,
but you can invent a way to do it better. Can you make the world
better with your soft ware, even if it’s only a tiny little corner of it?
In other words—are you satisfi ed, or are you wanting to do more
than you’ve done?

Stay thirsty, my friends.

Change the World

Th e Internet, of course, has no end. But it did have a beginning.
Nov. 12, 1990, was when Tim Berners-Lee detailed his plan for
a “Hypertext Project” (w3.org/Proposal.html). For geeks like me,
reading it can raise goosebumps. In a way, it’s like reading the U.S.
Constitution—this document established a framework for a new
way of doing things.

Back in 1989-1990, Berners-Lee was looking for a way to more
easily share information around the massive physics lab at which
he worked. Th e idea was actually pretty basic, but of course what
came out of it is not.

Here’s a pretty nice summation of their plan. How can you not
get excited while reading this description?

“HyperText is a way to link and access information of various
kinds as a web of nodes in which the user can browse at will.
Potentially, HyperText provides a single user-interface to many large
classes of stored information such as reports, notes, data-bases,
computer documentation and on-line systems help.”

Being, among other things, a first-class software engineer,
Berners-Lee had a specifi c problem in mind that he wanted to solve:

“Th ere is a potential large benefi t from the integration of a variety
of systems in a way which allows a user to follow links pointing
from one piece of information to another one. Th is forming of a

EDITOR’S NOTE KEITH WARD

© 2011 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

The point of our little trip
in Doc Brown’s DeLorean

back to the Web’s beginning:
You never know where an

idea will lead.

mailto:mmeditor@microsoft.com
http://w3.org/Proposal.html
http://msdn.microsoft.com/magazine
http://microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx

Untitled-2 1 12/13/10 4:28 PM

www.axosoft.com

msdn magazine6

Scott Guthrie explains how each of the features
in Productivity Power Tools works on his blog, so
check that out for details (bit.ly/aopeNt).

PowerCommands 10.0 PowerCommands
10.0 (bit.ly/hUY9tT), like Productivity Power Tools,
is a grab bag of useful extra tools that will speed
up or simplify common tasks in the IDE. You
get 25 features in the package; they include
robust copy and paste enhancements (copying
entire classes, for example). The package also
includes the ability to format your code, sort
using statements and remove unused using
references when saving.

Team Foundation Server Power
Tools September 2010 Don’t feel left out
if you’re using Visual Studio Team Foundation
Server (TFS). Microsoft has a set of Power Tools
for you, too. This extension (bit.ly/hyUNqo) gives
you 11 new features that include check-in policies
and item templates, a process editor, TFS
command-line tools and Windows Powershell

cmdlets, team member management, Windows shell integration and
automated database backup.

Visual Studio Color Theme Editor It may not sound
as glamorous, but sometimes it’s the little details that make coding
that much easier. Take the colors used in the Visual Studio windows,

tabs and menus, for instance. Do
brighter colors cheer your mood?
Are you particularly fond of
magenta? Whatever you prefer,
Visual Studio Color Theme Editor
(bit.ly/fPKKEV) lets you customize all
of the environment colors used in
the IDE. You can also save themes
and share them with your friends.

StudioStyles An even more
personal choice is the colorization
used for the code itself in your
editor. StudioStyles (studiostyl.es) is
a Web site that lets you download,
create and share the .vssettings fi les
that specify code colorization.
Added bonus: These themes can be
used with Visual Studio 2010, 2008,
2005 and even the Express versions.

Visual Studio Tools and Extensions

 TOOLBOX TERRENCE DORSEY

Because you’re reading this magazine, there’s a
good chance you sling code for a living. And if
you sling code for a living, you probably spend
a lot of time in your IDE ... which is—because
you’re reading this magazine—probably
Visual Studio.

Visual Studio 2010 is already an incredibly
versatile coding tool. It does pretty much every-
thing except write the code for you, and in many
cases it’s getting good at doing that, too. Still,
Visual Studio can’t do it all out of the box.

That’s where extensions come to the rescue.
Visual Studio 2010 provides robust support for
extensibility via custom tools, templates and
plug-ins. (Note, however, that the Express ver-
sions of Visual Studio don’t support extensions.)
If you can’t fi nd the feature you need in Visual
Studio, chances are there’s an extension that
helps you customize the IDE or provides the
tools you need to write code better and faster.

We’ll cover a few of the most popular free
extensions for Visual Studio 2010.

Power Tools for Visual Studio There are thousands of
extensions out there, and it just so happens that one of the most robust
extensions was created by the Visual Studio team. Visual Studio 2010
Productivity Power Tools (bit.ly/g4fUGG) is a package of 15 handy features
that range from Solution Navigator (think Solution Explorer on steroids)
to tab autocompletion and highly confi gurable enhancements to tabs.

Solution Navigator in Productivity
Power Tools

StudioStyles

http://bit.ly/g4fUGG
http://bit.ly/aopeNt
http://bit.ly/hyUNqo
http://bit.ly/fPKKEV
http://studiostyl.es
http://bit.ly/hUY9tT

Essential Studio Enterprise Edition:

1-888-9DOTNET | www.syncfusion.com

Untitled-4 1 12/9/10 3:21 PM

http://www.syncfusion.com

msdn magazine8 Toolbox

WordLight Do you ever want to quickly
fi nd all the places you’ve used a method or
variable name? WordLight (code.google.com/p/
wordlight) is a simple extension for Visual Studio
2008 that lets you select some text and
instantly highlights all other occurrences of
that string in the code fi le. It also works in the
Output, Command and Immediate windows.

Spell Checker If y0u tpye lke I do, the
Spell Checker is a lifesaver. The Spell Checker
extension (bit.ly/aMrXoM) looks for errors in the
non-code portions of your fi les. It works in
any plain-text fi les, for comments and strings
in source code, and for non-tag elements of
HTML and ASP fi les.

TortoiseSVN Add-in for Visual
Studio So you’ve written and tested your
code. If you’re working on a team or open
source project, you probably need to
commit your source to a repository. There’s
a tool for that.

If you’re using Apache Subversion (subversion.apache.org) source
control along with a TortoiseSVN client for Windows (tortoisesvn.tigris.org),
there are a couple of Visual Studio extensions that incorporate the
TortoiseSVN functionality into the IDE (tsvnaddin.codeplex.com), saving
you many steps in the commit process.

VsTortoise When using TFS, you’ll need to add a layer such as
SvnBridge (svnbridge.codeplex.com) that translates APIs between
Subversion clients like TortoiseSVN (vstortoise.codeplex.com) and TFS.

Another popular source-code management system is Git (git-scm.com),
and if that’s your preferred repository, then there’s an extension for
you, too. Git Extensions (code.google.com/p/gitextensions) includes
shell extensions for Windows Explorer and a Visual Studio plug-in.
Plus, you can run most features from the command line.

NuGet Inspired by RubyGems and similar package-management
systems from the Linux development world, NuGet (nuget.codeplex.com/)
gives Microsoft .NET Framework developers the ability to easily

incorporate libraries from source-code repositories directly into their
local development projects. NuGet integrates with the Visual Studio
2010 IDE, and you can also run NuGet from the command line or via
Windows PowerShell cmdlets.

Emacs and Vim Emulation In the beginning there was vi, and it
was diffi cult to learn. Since those early days, Emacs and Vim have battled
for supremacy as the One True Editor among coders. If you’ve chosen
sides in that debate, yet fi nd yourself using Visual Studio, then rejoice! The
keybindings and many other features you know and love from Emacs and
Vim are now available in extensions for Visual Studio.

You can follow the progress of VsVim (bit.ly/e3GsMf) developer Jared
Parsons via his blog (blogs.msdn.com/b/jaredpar/). More information about
Emacs emulation (bit.ly/eXhaIK), along with lots of other great tips, can
be found on the Visual Studio Team blog (blogs.msdn.com/b/visualstudio/).

A Gallery of Extensions This is just the tip of the iceberg as far as
Visual Studio extensions are concerned. Thousands of templates, custom
controls and extensions are available through the Visual Studio Gallery
(visualstudiogallery.msdn.microsoft.com), and more are being added all the
time. Many are free, and there are trial versions available for many of the
commercial products.

Write Your Own Extensions Don’t see what you need in the
Visual Studio Gallery? Write your own! Visual Studio 2010 includes
deep hooks for extensibility—anything from a custom project template
to third-party tools that integrate directly with the IDE. Through the
Extending Visual Studio developer center (msdn.microsoft.com/vstudio/
vextend), MSDN Library articles and other resources in the Visual Studio
community (bit.ly/aT1bDe), you’ll fi nd a vast amount of information to
start creating custom Visual Studio extensions. You’ve already got the
tools ... start coding!

Terrence Dorsey is the technical editor of MSDN Magazine. You can read his blog
at terrencedorsey.com or follow him on Twitter at @tpdorsey.

NuGet

If y0u tpye lke I do,
the Spell Checker is a lifesaver.
The Spell Checker extension

(bit.ly/aMrXoM) looks for errors
in the non-code portions

of your fi les.

TOOLBOX

http://code.google.com/p/wordlight
http://code.google.com/p/wordlight
http://bit.ly/aMrXoM
http://subversion.apache.org
http://tortoisesvn.tigris.org
http://tsvnaddin.codeplex.com
http://svnbridge.codeplex.com
http://vstortoise.codeplex.com
http://git-scm.com
http://code.google.com/p/gitextensions
http://nuget.codeplex.com/
http://bit.ly/e3GsMf
http://blogs.msdn.com/b/jaredpar/
http://bit.ly/eXhaIK
http://blogs.msdn.com/b/visualstudio/
http://visualstudiogallery.msdn.microsoft.com
http://msdn.microsoft.com/vstudio/vextend
http://msdn.microsoft.com/vstudio/vextend
http://bit.ly/aT1bDe
www.terrencedorsey.com
http://twitter.com/tpdorsey

Untitled-5 1 12/14/10 11:45 AM

www.DevExpress.com/grids

msdn magazine10

 Interceptors in Unity
ing the interception API in Unity 2.0.
That quick demo made a few assump-
tions, however.

First, it worked on a type registered
with the Unity Inversion of Control
(IoC) infrastructure and instantiated
via the Unity factory layer.

Second, the pointcut was only defi ned
through an interface. In AOP jargon, a
pointcut represents a collection of places
in the body of the target class where the
framework will inject extra behaviors
on demand. An interface-based point-

cut means that only the members of the interface will be extended
at runtime via code injection.

Th ird, I mostly focused on the confi guration settings to enable
interception and disregarded the fl uent API that allows you to
confi gure Unity in code.

In the rest of this article, I’ll explore the fl uent API and alternative
ways of defi ning Unity interceptors.

Interceptable Instances
To add a new behavior to an existing or freshly created instance of a
class, you must take some control over the factory. In other words,
AOP is not pure magic and you’ll never be able to hook up a plain
CLR class instantiated via the standard new operator:

var calculator = new Calculator();

The way in which an AOP framework gains control over the
instance may diff er quite a bit. In Unity, you can resort to some
explicit calls that return a proxy for the original object or keep the
whole thing running behind an IoC framework. For this reason,
most IoC frameworks off er AOP capabilities. Spring.NET and Unity
are two examples. When AOP meets IoC, the result is a seamless,
easy and eff ective coding experience.

Let’s start with an example where no IoC capabilities are used.
Here’s some basic code that makes an existing instance of the
Calculator class interceptable:

var calculator = new Calculator();
var calculatorProxy = Intercept.ThroughProxy<ICalculator>(calculator,
 new InterfaceInterceptor(), new[] { new LogBehavior() });
Console.WriteLine(calculatorProxy.Sum(2, 2));

You end up working with an interceptable proxy that wraps your
original object. In this case, I’m assuming that the Calculator class
implements the ICalculator interface. To be interceptable, a class
must either implement an interface or inherit from MarshalByRef-
Object. If the class derives from MarshalByRefObject, then the
interceptor must be of type TransparentProxyInterceptor:

In last month’s column, I briefl y intro-
duced the interception mechanism used
in the Unity 2.0 dependency injection
container. After illustrating the core
principles of aspect-oriented program-
ming (AOP), I presented a concrete
example of interception that’s prob-
ably very close to the needs of many
developers today.

Have you ever wanted to extend the
behavior of an existing piece of code
without having to touch the source
code in any way? Have you just wanted
to be able to run some additional code around the existing code?

AOP was created to provide an approach that isolates core code
from other concerns that crosscut the core business logic. Unity
2.0 off ers a Microsoft .NET Framework 4-based framework for
achieving this in a surprisingly quick and easy way.

To fully comprehend the purpose of this follow-up article, I’ll begin
by summing up what I discussed last month. As you’ll fi nd out, in
last month’s code I made some assumptions and used some default
components. Th is month I’ll step back and discuss in more detail
the choices and options that you typically encounter along the way.

AOP in Unity
Imagine you’ve a deployed application where, at some point, you
perform some business-specifi c action. One day, your customer
asks to extend that behavior to perform some more work. You
grab the source code, modify it, and bill a few hours of consulting
time for coding up and testing the new features. But wouldn’t it
be better if you could add new behaviors seamlessly and without
touching the existing source code?

Imagine a slightly different scenario. First, what if you’re not
an independent consultant, but work full time for the company?
Th e more requests for change you get, the more hours you spend
outside your current project and, worse yet, you risk creating new
(and not necessarily required) branches of your codebase. So, you’d
heartily welcome any solutions that would let you add new behaviors
seamlessly and with no exposure to the source code.

Finally, imagine that someone reports a bug or a serious perfor-
mance hit. You need to investigate and fi x the problem and you want it
to be absolutely unobtrusive. In this case, too, it would be better to add
new behaviors seamlessly and with no exposure to the source code.

AOP helps you in all of these scenarios.
Last month I demonstrated how to add pre- and post-processing

code around an existing method without touching it by leverag-

CUTTING EDGE DINO ESPOSITO

Figure 1 Instance Interceptor and Type Interceptor

Instance Interceptor

Application Code

Target
Object Type Interceptor

Application Code

Actual
Target

Untitled-5 1 12/14/10 11:46 AM

www.DevExpress.com/Reporting

msdn magazine12 Cutting Edge

var calculator = new Calculator();
var calculatorProxy = Intercept.ThroughProxy(calculator,
 new TransparentProxyInterceptor(), new[] { new LogBehavior() });
Console.WriteLine(calculatorProxy.Sum(2, 2));

Th e Intercept class also off ers a NewInstance method you can call to
create an interceptable object in a more direct way. Here’s how to use it:

var calculatorProxy = Intercept.NewInstance<Calculator>(
 new VirtualMethodInterceptor(), new[] { new LogBehavior() });

Note that when you use NewInstance, the interceptor compo-
nent has to be slightly diff erent—neither InterfaceInterceptor nor
TransparentProxyInterceptor, but rather a VirtualMethodInterceptor
object. So how many types of interceptors exist in Unity?

Instance and Type Interceptors
An interceptor is the Unity component responsible for capturing
the original call to the target object and routing it through a pipe-
line of behaviors so that each behavior has its chance to run before
or aft er the regular method call. Interception can be of two types:
instance interception and type interception.

Instance interceptors create a proxy to fi lter incoming calls directed
at the intercepted instance. Type interceptors generate a new class
derived from the type being intercepted, and work on an instance
of that derived type. Needless to say, the delta between the original
and derived type is all in the logic required to fi lter incoming calls.

In case of instance interception, the application code fi rst creates
the target object using a classic factory (or the new operator), and
then is forced to interact with it through the proxy provided by Unity.

In the case of type interception, the application creates the target
object through the API or Unity, then works with that instance.
(You can’t create the object directly with the new operator and get
type interception.) Th e target object, however, is not of the original
type. Th e actual type is derived by Unity on the fl y and incorporates
interception logic (see Figure 1).

InterfaceInterceptor and TransparentProxyInterceptor are two
Unity interceptors that belong to the instance interceptor category.
VirtualMethodInterceptor belongs to the type interceptor category.

InterfaceInterceptor can intercept public instance methods on
just one interface on the target object. The interceptor can be
applied to new and existing instances.

TransparentProxyInterceptor can intercept public instance meth-
ods on more than one interface, and marshal-by-reference objects.
Th is is the slowest approach for interception, but it can intercept
the widest set of methods. Th e interceptor can be applied to new
and existing instances.

VirtualMethodInterceptor can intercept virtual methods both public
and protected. Th e interceptor can only be applied to new instances.

It should be noted that instance interception can
be applied to any public instance methods, but not
to constructors. Th is is fairly obvious for the scenario
in which interception applies to an existing instance.
It’s a bit less obvious when interception is applied to a
newly created instance. Th e implementation of instance
interception is such that the constructor has already
executed by the time the application code gets back
an object to work with. As a result, any interceptable
action necessarily follows the creation of the instance.

Type interception uses dynamic code generation
to return an object that inherits from the original type. In doing
so, any public and protected virtual methods are overridden to
support interception. Consider the following code:

var calculatorProxy = Intercept.NewInstance<Calculator>(
 new VirtualMethodInterceptor(), new[] { new LogBehavior() });

Th e Calculator class looks like this:
public class Calculator {
 public virtual Int32 Sum(Int32 x, Int32 y) {
 return x + y;
 }
}

Figure 2 shows the actual name of the type that results from a
dynamic inspection of the calculatorProxy variable.

It’s also worth noting that there are some other signifi cant diff er-
ences between instance and type interception—for example, inter-
cepting calls by the object on itself. If a method is calling another
method on the same object when using type interception, then that
self-call can be intercepted because the interception logic is in the
same object. However, with instance interception, the interception
only happens if the call goes through the proxy. Self-calls, of course,
don’t go through the proxy and therefore no interception happens.

Using the IoC Container
In last month’s example, I used the IoC container of the Unity library
to take care of object creation. An IoC container is an extra layer
around object creation that adds fl exibility to the application. Th is
is even truer if you consider IoC frameworks with additional AOP
capabilities. Furthermore—and as I see things—the level of code fl ex-
ibility grows beyond imagination if you also combine IoC containers
with offl ine confi guration. However, let’s start with an example that
uses the Unity’s container with code-based fl uent confi guration:

// Configure the IoC container
var container = UnityStarter.Initialize();

// Start the application
var calculator = container.Resolve<ICalculator>();
var result = calculator.Sum(2, 2);

Any code needed to bootstrap the container can be isolated in a
distinct class and invoked once at application startup. Th e bootstrap
code will instruct the container how to resolve types around the
application and how to deal with interception. A call to the Resolve
method shields you from all the details of interception. Figure 3
shows a possible implementation of the bootstrap code.

The nice thing is that this code can be moved to a separate
assembly and loaded or changed dynamically. More importantly,
you have a single place to confi gure Unity. Th is won’t happen as long
as you stick to the Intercept class that behaves like a smart factory
and needs to be prepared every time you use it. So if you need AOP

Figure 2 Actual Type After Type Interception

Untitled-5 1 12/14/10 11:44 AM

www.DevExpress.com/Analytics

msdn magazine14 Cutting Edge

in your applications, by all means get it via an IoC container. Th e
same solution can be implemented in an even more fl exible way
by moving the confi guration details off to the app.confi g fi le (or
web.confi g if it’s a Web application). In this case, the bootstrap code
consists of the following two lines:

var container = new UnityContainer();
container.LoadConfiguration();

Figure 4 shows the script you need to have in the confi guration
fi le. Here I registered two behaviors for the ICalculator type. Th is
means that any calls to public members of the interface will be
pre- and post-processed by LogBehavior and BinaryBehavior.

Note that, because LogBehavior and BinaryBehavior are concrete
types, you actually don’t need to register them at all. Unity’s defaults
will automatically work for them.

Behaviors
In Unity, behaviors are objects that actually implement the crosscutting
concerns. A class that implements the IInterceptionBehavior interface,
a behavior rewrites the execution cycle of the intercepted method
and can modify method parameters or return values. Behaviors can
even stop the method from being called at all or call it multiple times.

A behavior is made of three methods. Figure 5 shows a sample
behavior that intercepts the method Sum and rewrites its return
value as a binary string. Th e method WillExecute is simply a way
to optimize the proxy. If it returns false, the behavior won’t execute.

Th is is actually a bit subtler. Invoke will always be called, so your
behavior will in fact execute even if you returned false. However,
when the proxy or derived type is being created, if all the behaviors
registered for the type have WillExecute set to false, then the proxy
itself won’t be created and you’ll be working with the raw object
again. It’s really about optimizing proxy creation.

Th e GetRequiredInterfaces method allows the behavior to add
new interfaces to the target object; interfaces returned from this
method will be added to the proxy. Hence, the core of a behavior
is the Invoke method. Th e parameter input gains you access to the
method being called on the target object. Th e parameter getNext
is the delegate for you to move to the next behavior in the pipeline
and eventually execute the method on the target.

Th e Invoke method determines the actual logic used to execute
a call to a public method on the target object. Note that all inter-
cepted methods on the target object will execute according to the
logic expressed in Invoke.

What if you want to use more specifi c matching rules? With
plain interception as I described in this article, all you can do is
run through a bunch of IF statements to fi gure out which method
is actually being invoked, like so:

if(input.MethodBase.Name == "Sum") {
 ...
}

Next month I’ll resume from here to discuss more eff ective ways to
apply interception and defi ne matching rules for intercepted methods.

DINO ESPOSITO is the author of “Programming Microsoft ASP.NET MVC”
(Microsoft Press, 2010) and coauthored “Microsoft .NET: Architecting Applications
for the Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent
speaker at industry events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical expert for reviewing this article: Chris Tavares

<unity xmlns="http://schemas.microsoft.com/practices/2010/unity">
 <assembly name="SimplestWithConfigIoC"/>
 <namespace name="SimplestWithConfigIoC.Calc"/>
 <namespace name="SimplestWithConfigIoC.Behaviors"/>

 <sectionExtension
 type="Microsoft.Practices.Unity.
 InterceptionExtension.Configuration.
 InterceptionConfigurationExtension,
 Microsoft.Practices.Unity.Interception.Configuration" />

 <container>
 <extension type="Interception" />

 <register type="ICalculator" mapTo="Calculator">
 <interceptor type="InterfaceInterceptor"/>
 <interceptionBehavior type="LogBehavior"/>
 <interceptionBehavior type="BinaryBehavior"/>
 </register>

 <register type="LogBehavior">
 </register>

 <register type="BinaryBehavior">
 </register>

 </container>
</unity>

Figure 4 Adding Interception Details Via Confi guration

public class BinaryBehavior : IInterceptionBehavior {
 public IEnumerable<Type> GetRequiredInterfaces() {
 return Type.EmptyTypes;
 }

 public bool WillExecute {
 get { return true; }
 }

 public IMethodReturn Invoke(
 IMethodInvocation input,
 GetNextInterceptionBehaviorDelegate getNext) {

 // Perform the operation
 var methodReturn = getNext().Invoke(input, getNext);

 // Grab the output
 var result = methodReturn.ReturnValue;

 // Transform
 var binaryString = ((Int32)result).ToBinaryString();

 // For example, write it out
 Console.WriteLine("Rendering {0} as binary = {1}",
 result, binaryString);

 return methodReturn;
 }
}

Figure 5 A Sample Behavior

public class UnityStarter {
 public static UnityContainer Initialize() {
 var container = new UnityContainer();

 // Enable interception in the current container
 container.AddNewExtension<Interception>();

 // Register ICalculator with the container and map it to
 // an actual type. In addition, specify interception details.
 container.RegisterType<ICalculator, Calculator>(
 new Interceptor<VirtualMethodInterceptor>(),
 new InterceptionBehavior<LogBehavior>());

 return container;
 }
}

Figure 3 Bootstrapping Unity

http://weblogs.asp.net/despos

Untitled-5 1 12/14/10 11:45 AM

www.DevExpress.com/Charting

msdn magazine16

I think about synchronization in the following ways to get a rough
idea of the level of complexity (each one is subsequently more com-
plex to implement and support):

1. Push read-only data from corporate to branch and onward.
2. Two one-way pushes on diff erent data; one from

corporate to branch (for example, catalog) and one from
branch to corporate (for example, t-logs and inventory);
this includes branch to branch—the focus is on the fact
that it’s basically two or more one-way syncs.

3. Bidirectional data synchronization between corporate
and nodes (for example, manual product entry or
employee information).

4. Peer synchronization between branches and between
branches and corporate.

Type 4 is by far the most complex problem and typically leads to
many confl icts. Th erefore, I try to avoid this pattern, and the only
two criteria that would force it are the need for real-time updates
between nodes or the ability to sync branches if the corporate data
store isn’t accessible. Because near-real-time or real-time updates
among too many nodes would generally create too much traffi c and
isn’t typically a reasonable solution, the only criterion to which I
really pay attention is the ability to sync without the master. In some
cases, real-time information is needed between nodes, but this
isn’t generally the case for data synchronization. Rather, it’s an event
notifi cation scenario, and a diff erent tack is taken to address the need.

Defi ning the Solution Architecture
Generally, the most prevalent pattern that I see is to push data
directly from the corporate master database (via a distributor of
some type) down to servers at the branches and to mobile users.
Th e distribution to workstations, point-of-sale (POS) terminals and
other such devices is typically done from the server at the branch
location (commonly called “back-of-house servers”), whereas the

Branch-Node Synchronization
with SQL Azure

In my years prior to joining Microsoft and for the fi rst few years
thereaft er, I was heavily involved in the retail industry. During this
time, I found it almost humorous to see how many times the branch-
node synchronization problem gets resolved as technologies advance.

In my current role, I’ve had a fair amount of exposure to the oil
and gas (O&G) industry, and I’ve found that it has a similar prob-
lem of synchronizing data between nodes. Much like retail chains,
O&G companies have a wide range of devices and connectivity
challenges. From a latent satellite connection on an offshore oil
platform to an engineer in an oil fi eld, the requirement for timely,
accurate data doesn’t change.

So, with both retail and O&G in mind, I’m taking a look at the
challenge again, but this time with a little help from SQL Azure and
the Sync Framework. I’ll discuss how the cloud will help solve the
problem of moving data between the datacenter (corporate), the
branches (for example, store, rig, hub and so on) and to individual
devices (handheld, shared terminal, specifi c equipment and more).

Th is month, I’ll focus a little more on the general architecture and
a little less on the implementation. I’ll still give a few code examples
for setting up synchronization between nodes and SQL Azure
and fi ltering content as a way to reduce traffi c and time required
for synchronization. In next month’s column, I’ll examine using
a service-based synchronization approach to provide a scalable
synchronization solution beyond splitting data across SQL Azure
databases based on content or geographic distribution.

While the core problem hasn’t changed, what have changed are
the additional requirements that get added to the mix as technology
becomes more advanced. Instead of solving the simple problem
of moving data between nodes, we start adding things we’d like
to have, such as increasing the data volume to get more detail,
inclusion of various devices for collecting and displaying data, and
closer-to-real-time feeds.

Let’s face it, the more we have, the more we want. In most cases,
solving the data fl ow problems from a decade ago would be simple,
but in today’s world that solution would only represent the substrate
of a more robust solution. For retail, the data fl ow can be pretty
easy—taking the form of pushing catalog-type data (menu, ware-
house and so on) down and t-logs back up—to quite complex, by
frequently updating inventory levels, real-time loss-prevention
analysis, and manual product entries from the branch to corporate
and between branches. For the most part, O&G companies have
the same patterns, but they have some added complexities related
to the operation, evaluation and adjustment of equipment in use.

FORECAST: CLOUDY JOSEPH FULTZ

In some cases, real-time
information is needed between
nodes, but this isn’t generally the
case for data synchronization.

1110msdn_GrapeCity_Insert.indd 1 10/6/10 11:09 AM

www.GCPowerTools.com

1110msdn_GrapeCity_Insert.indd 2 10/6/10 11:10 AM

www.GCPowerTools.com

17January 2011msdnmagazine.com

synchronization to mobile users (for example, laptops) is done
directly from corporate to the machine via a client-initiated syn-
chronization process (see Figure 1).

Some organizations do this via the built-in replication features
of the relational database management system (RDBMS), while
others build processes to handle the distribution and collection of
data. I’ll maintain the pattern, but use an instance of SQL Azure
in place of the distributor; in place of replication, I’ll use the Sync
Framework, which supports SQL Azure. Th us, I simply add a layer
between the distributor and the branches (see Figure 2).

What do I get by inserting SQL Azure? Some of the benefi ts in
a branch-node scenario are:

1. Scaling the data service without having to grow the
datacenter footprint.

2. High availability of the data without additional cost
and eff ort.

3. Potentially less security sensitivity, because it isn’t the
master data store.

Consider that in the fi rst scenario, if the corporate connection
or data store is down, all of the clients will have to hold on to their
transactions. This could easily lead to lost data due to losing the

device while waiting for the connection or due to simply
running out of space on the device to store the transac-
tions, as mentioned earlier. Additionally, if the branches
have common data (for example, warehouse inventory
data), they’ll be working off of old data until corporate
is back up. While there’s no perfect solution, SQL
Azure addresses this scenario by automatically making
copies of the data and providing automatic failover.
Also, by segmenting the fl ow of data through multiple
SQL Azure databases, I can reduce the risk of being
down and reduce load exposure further by using not
only a separate instance but also diff erent datacenters.

As a point of design, I must consider the impact of
initiating synchronization from the branches or from
the server. If the application is designed to sync from the
master or distributor to the nodes, I enjoy the advantage of
fewer points of management and support; on the down-

side, it puts some technical strains on the implementation, requiring:
1. Knowing the endpoints.
2. Knowing the appropriate scopes for each target.
3. Complexity in the synchronization process in order

to make the synchronization of multiple nodes happen
in parallel; the API semantics are really one pair of
endpoints and one scope at a time.

By initiating synchronization from the target (node or branch,
for example) the complexity is diminished for the synchronization
code, as it:

• Can focus on the scope(s) for the application/device.
• More easily handles being occasionally connected.
• Only has to know and manage a few endpoints by which

the distribution data is synchronized.
However, it will put a bit more complexity into the applications

on the target device and could complicate support and maintenance
by potentially having to debug the sync process or agent at each
device. Ideally, if data must be synchronized for diff erent applications,
a separate process should be created that manages the synchroni-
zation based on a confi guration fi le where scope, frequency and
connection strings are defi ned for a sync agent to run. Th is sync

agent would exist externally to the
applications that are the data con-
sumers on the devices, although the
process would provide a means for
a given application to initiate syn-
chronization of its data. Th is gives
the benefi t of initiating synchroni-
zation from the node, but it also
reduces the support and mainte-
nance aspect, because it’s rolled up
into a single process.

Using the Sync Framework, I
tend to start with a mixed model
of synchronization by initiating
from the master data store to SQL
Azure and subsequently initiating
from the nodes to sync between Figure 2 Base Architecture Using SQL Azure and the Sync Framework

Corp Data
DistributorSQL Azure

Sync
Agent

Workstations and POS

Back-of-House/
Branch Servers

Mobile Users

Figure 1 Typical Architecture for Data Distribution

Corp Data
Distributor

Workstations and POS

Back-of-House Servers

Mobile Users

www.msdnmagazine.com

Untitled-6 2 12/14/10 11:43 AM

www.DevExpress.com

Untitled-6 3 12/14/10 11:43 AM

www.DevExpress.com

msdn magazine20 Forecast: Cloudy

the node and SQL Azure. Restated, one might say that data is
pushed from master and pulled from the branches, with SQL Azure
becoming the highly available central hub between the master
and branches. Based on the needs and constraints of the solution
being considered, I think about the costs and benefi ts of moving
the synchronization process control from one point in the chain to
another (for example, device to cloud or corporate to cloud). Just
a few of these considerations are questions such as:

• Is there a place to host the process for master?
• Are there security policies that confl ict with hosting the

sync process in SQL Azure?
• How many nodes at each level are synchronizing?
• Can the target device realistically support a sync process?
• What’s the requirement with regard to timeliness of data sync?

What’s more, each of these questions has multiple layers that need
to be considered and against which possible solution designs must
be vetted. While there isn’t a one-for-all design, I like to start with the
model described earlier and either synchronize multiple one-way
syncs to accomplish something similar to bidirectional data sync,
or use bidirectional synchronization between the device/corporate
database and SQL Azure. After which, I look for scenarios that
invalidate and force a modifi cation to the design. Generally, the
only synchronization style I attempt to avoid is peer-to-peer.

Setting up Synchronization
There are two methods to set up synchronization using Sync
Framework 2.1: sync client in the cloud and sync client on the local

SqlConnection azureConn = new SqlConnection(AzureConnectionString);
SqlConnection onPremiseConn = new SqlConnection(LocalConnectionString);

// List of columns to include
Collection<string> columnsToInclude = new Collection<string>();
columnsToInclude.Add("au_id");
columnsToInclude.Add("au_lname");
columnsToInclude.Add("au_fname");
columnsToInclude.Add("phone");
columnsToInclude.Add("address");
columnsToInclude.Add("city");
columnsToInclude.Add("state");
columnsToInclude.Add("zip");
columnsToInclude.Add("contact");

// Definition for authors from local DB
DbSyncTableDescription authorsDescription =
 SqlSyncDescriptionBuilder.GetDescriptionForTable("authors",
 columnsToInclude, onPremiseConn);

// Create a scope and add tables to it
DbSyncScopeDescription authorScopeDesc = new DbSyncScopeDescription(ScopeName);

// Add the authors table to the sync scope
authorsScopeDesc.Tables.Add(authorsDescription);

Figure 3 Creating a Synchronization Scope

SQL Azure Data Sync is a cloud-based service hosted in
Windows Azure that enables synchronization of entire databases
or specifi c tables between SQL Server and SQL Azure. At the
Microsoft Professional Developers Conference 2010, we announced
an update to this service called SQL Azure Data Sync Community
Technology Preview (CTP) 2. This update provides organizations
the ability to easily extend on-premises SQL Server databases
to the cloud, allowing for phased migrations of applications to the
cloud. Solutions leveraging SQL Azure Data Sync will allow users
to continue to access local data and have changes seamlessly
synchronized to SQL Azure as they occur. Similarly, any changes
made by applications to SQL Azure are synchronized back to the
on-premises SQL Server.

Keeping Data in Sync
SQL Azure Data Sync provides a central cloud-based management
system for all synchronization relationships. From any browser,
administrators can connect to the public service and manage and
monitor the various database endpoints. In addition, SQL Azure
Data Sync provides a scheduling service that allows synchroniza-
tion to take place as often as every fi ve minutes, or less frequently
if the preference is to run synchronization at off-peak times.

In the recent SQL Azure Data Sync CTP 2 update, we also
introduced a new component called the SQL Azure Data Sync
Agent. This agent is a Windows Service that’s installed
on-premises and links the local SQL Server databases to SQL
Azure Data Sync through a secure outbound HTTPS connection,
meaning there are no requirements from a fi rewall or security-
confi guration standpoint—which makes setup a snap. The Agent’s
job is to monitor and log tasks as well as to initiate synchronization
requests from the SQL Azure Data Sync.

New Scenarios
With SQL Azure Data Sync, synchronization between SQL Server
and SQL Azure databases provides for a wealth of new scenarios
that, in the past, were quite diffi cult to build. Imagine you wanted
to share data with your branch offi ces or retail store databases.
With SQL Azure Data Sync, this is easy because administrators
create “Sync Groups” that defi ne data to be shared among data-
bases. These Sync Groups could contain a corporate SQL Server
that synchronizes data to a centralized SQL Azure “Data Hub.”
Then, from this Data Hub, all of the remote or regional SQL Server
databases can synchronize data changes, enabling them to bring
data closer to the users, while also greatly reducing bandwidth
and requirements for Virtual Private Networks, or VPNs.

In addition, the ability to synchronize across multiple SQL
Azure datacenters makes it easy to scale out loads across
geographies. Imagine you have quarterly reporting requirements
that put a huge cyclical load on your SQL Server database. Why
not synchronize some of that data to your SQL Azure databases
around the world when needed? Then users could access the
data closest to them while reducing scalability requirements on
your local SQL Server.

For more information and to register for participation in the CTP 2,
please visit microsoft.com/en-us/sqlazure/datasync.aspx.

 —Liam Cavanagh, Senior Program Manager, SQL Azure Data Sync

SQL Azure Data Sync

SQL Azure becomes the highly
available central hub between

the master and branches.

http://microsoft.com/en-us/sqlazure/datasync.aspx

Untitled-1 1 10/4/10 11:54 AM

www.aspose.com

msdn magazine22 Forecast: Cloudy

machine. I’ll focus on the latter for the moment. At its simplest, here
are the steps to set up a synchronization relationship:

1. Identify the data to be synchronized and the direction of
data fl ow. Th is will be used to defi ne the scopes (SqlSync-
ScopeProvisioning) used to synchronize the data.

2. Download and install the Sync Framework 2.1 (bit.ly/gKQODZ).
Note: If x64 is the target platform, a build target for x64 will
need to be added or the SyncOrchestrator won’t be able to
resolve its dependencies.

3. Provision the databases and tables for synchronization;
the entire database could be provisioned, or only specifi c
tables, or it can be limited to given columns.

4. Add necessary fi lters. In the case that it’s desirable to
horizontally partition or otherwise fi lter the data, fi lters
may be used.

5. Create and run the process to synchronize.
I’ll be rather specifi c in this example, as it helps convey the message,

and I’ll start with databases in place at both ends. I create a connec-
tion to the local database and retrieve a defi nition (DbSyncTable-
Description) for the table to be synchronized and add that table
to the scope (DbSyncScopeDescription). In addition, I’ll specify
the particular columns, but this isn’t necessary if the desire is to
simply synchronize the entire table. Limiting the sync relationship to
specifi c columns is a good way to optimize bandwidth usage and
speed up processes (see Figure 3).

For each structure that needs to
be synchronized, a bit of code will
need to be added to get the descrip-
tion; you must subsequently add
it to the scope. Th e next step is to
grab a scope-provisioning object
and use it to provision each data-
base if the scope doesn’t already
exist in that database, as shown
in Figure 4.

Because this is the fi rst time that
the scope has been provisioned in
the database, there will be some
new tables for storing scope infor-
mation and also a table specifi cally
for tracking the Authors scope that
was provisioned in the databases.

A good example of a console app to provision or sync a local and
SQL Azure database can be found on the Sync Framework Team
Blog at bit.ly/dCt6T0.

Synchronizing the Data
Once the databases are properly provisioned, it’s pretty simple to get
them synchronizing. It requires the creation of a SqlSyncProvider
for each end of the activity with the scope specifi ed. Th is involves
the use of the SyncOrchestrator object, which is the magic behind
the curtains that identifies the changes and moves the changes
between them. Th at code looks something like this:

SqlConnection LocalConnection = new SqlConnection(LocalConnectionString);
SqlConnection AzureConnection = new SqlConnection(AzureConnectionString);

SqlSyncProvider LocalProvider = new SqlSyncProvider(ScopeName, LocalConnection);
SqlSyncProvider AzureProvider = new SqlSyncProvider(ScopeName, AzureConnection);

SyncOrchestrator orch= new SynOrchestrator();
orch.LocalProvider = new SqlSyncProvider(ScopeName, LocalConnection);
orch.RemoteProvider = new SqlSyncProvder(ScopeName, AzureConnection);
orch.Direction = SyncDirectionOrder.DownloadAndUpload;
orch.Synchronize();

Data and Geographic Dispersion
With simple replication of data handled, I can focus on optimiz-
ing the deployment architecture and data flow. Using the Sync
Framework, I can specify filters; this in combination with SQL
Azure can really be a huge benefi t in branch-node architectures.
Using the combination of the two, I can put the data closer to
the ultimate consumer and optimize the bandwidth usage (and
hence charges) by only synchronizing the data that matters for that

// Create a provisioning object for "customers" and
// apply it to the on-premises database
SqlSyncScopeProvisioning onPremScopeConfig =
 new SqlSyncScopeProvisioning(onPremiseConn, authorsScopeDesc);
if (!(onPremScopeConfig.ScopeExists(authorsScopeDesc.ScopeName)))
{
 onPremScopeConfig.Apply():
}
// Provision the SQL Azure database from the on-premises SQL Server database
SqlSyncScopeProvisioning azureScopeConfig =
 new SqlSyncScopeProvisioning(azureConn, authorsScopeDesc);
if (!(azureScopeConfig.ScopeExists(authorsScopeDesc.ScopeName)))
{
 azureScopeConfig.Apply();
}

Figure 4 Provisioning Scope

Figure 5 Synchronizing Data with Filters

Corp Data
Distributor

SQL Azure
(U.S.)

SQL Azure
(Europe)

SQL Azure
(Asia)

Sync
Agent

U.S. Filter

Europe
Filter

Asia Filter

Workstations and POS

Back-of-House/
Branch Servers

Mobile Users

Ta
rg

et
-B

as
ed

 F
ilt

er

Ta
rg

et
-B

as
ed

 F
ilt

er

By segmenting the fl ow of data
through multiple SQL Azure
databases, I can reduce the

risk of being down.

http://bit.ly/gKQODZ

msdnmagazine.com

region or data segmentation. Instead of using data servers in various
geographical areas, data can simply be synchronized to an instance
of SQL Azure in that geographical area, and those clients in that
area can synchronize to it.

By spreading the data around geographically and implementing
scopes that make sense for synchronizing particular data with a
particular frequency, one can achieve fi ne-grained control over what,
how, when and how much data fl ows across the wire, improving
the user experience as it relates to data availability and freshness.
Additionally, for end users who might travel between locations
where it would be nice to be location-aware, the sync agent could
locate itself and reach out to sync data specifi cally for the current
location. A couple of examples of this are current stats or alerts
for workers walking into a manufacturing/plant environment and
current-day sales for regional managers of retail chains (see Figure 5).

Enabling fi ltering is no harder than provisioning a synchroniza-
tion scope. Th us, there could be multiple scopes in existence that
have diff erent fi lters—or have none. Th e needed change is simply
to add two lines of code for each fi lter that’s being added: one line
to add a fi lter column to the table and a second to add the fi lter
clause, which is basically a “where” condition. For my sample, I’m
adding a fi lter based on state and synchronizing only changes for
the state of Utah, or UT, like so:

onPremScopeConfig.Tables["authors"].AddFilterColumn("state");
onPremScopeConfig.Tables["authors"].FilterClause = "[authors].[state] = 'UT'";

If I want it to synchronize in both directions based on the fi lter,
it will need to be added to both scopes as they’re provisioned on
each end.

Go Forth and Spread the Data
Adding SQL Azure to the mix, whether a single instance or
multiple ones, can really enhance the data availability and overall
performance when synchronizing to nodes by adding that ever-
important layer of indirection. Because it’s SQL Azure, one gets the
performance, scalability and reliability without all of the headaches
of designing, provisioning and managing the infrastructure. Look
for next month’s column, where I’ll expand on the implementa-
tion and show how Windows Azure can be added into the mix for
synchronization using the latest Sync Framework 4.0 CTP released
in October (bit.ly/dpyMP8).

JOSEPH FULTZ is an architect at the Microsoft Technology Center in Dallas, where
he works with both enterprise customers and ISVs designing and prototyping
soft ware solutions to meet business and market demands. He’s spoken at events
such as Tech·Ed and similar internal training events.

THANKS to the following technical expert for reviewing this article:
David Browne

Once the databases are properly
provisioned, it’s pretty simple to

get them synchronizing.

www.msdnmagazine.com
www.scaleoutsoftware.com/eval
http://bit.ly/dpyMP8

msdn magazine24

WO RK FLOW SER V IC ES

Scalable, Long-Running
Workfl ows with Windows
Server AppFabric

Business processes can cover a wide variety of applica-
tion scenarios. Th ey can include human workfl ows, business logic
exposed through services, coordination of presentation layers and
even application integration.

Although those scenarios are diff erent, successful business pro-
cesses have a few things in common. Th ey need to be simple to build,
use and modify. They need to be scalable to meet the changing
needs of the business. And, oft en, they need some form of logging
for status, compliance and debugging.

Workfl ows are a good example of business processes that have
been codifi ed into applications. Th ey embody all of those elements

Rafael Godinho

I mentioned: human business needs, business logic, coordination
between people and applications, and the ability to easily enter
data and retrieve status. Th at’s a lot for an application to do, and a
lot to code, too.

Fortunately, the Microsoft .NET Framework and Windows Server
AppFabric provide the tools you need to to create, deploy and confi g-
ure trackable, long-running workfl ow services. You’re probably already
familiar with the .NET Framework. Windows Server AppFabric is
a set of extensions for Windows Server that includes caching and
hosting services for services based on Windows Communication
Foundation (WCF) and Windows Workfl ow Foundation (WF).

In this article I’ll walk you through the process of building a
simple scalable workfl ow service using WCF, WF and Windows
Server AppFabric.

Creating a Workfl ow Service
To create a workfl ow service you need to combine two technologies:
WCF and WF. Th is integration is seamless to the developer and is
done using specifi c messaging activities to receive WCF messages
in the workflow. The workflow is hosted in a workflow-specific
WCF ServiceHost (the Workfl owServiceHost), which exposes WCF
endpoints for these messages.. Among the messaging activities
group, two of them can be used to receive information, allowing the
workfl ow to accept messages from external clients as Web service
calls: the Receive activity and the ReceiveAndSendReply template.

This article discusses:
• Creating a workfl ow service

• Simplifying workfl ow persistence

• Workfl ow tracking

• Scaling the workfl ow service

Technologies discussed:
Windows Server AppFabric, Windows Communication
Foundation, Windows Workfl ow Foundation

Code download available at:
code.msdn.microsoft.com/mag201101AppFabric

http://code.msdn.microsoft.com/mag201101AppFabric

25January 2011msdnmagazine.com

A Receive activity is used to receive infor-
mation to be processed by the workfl ow. It can
receive almost any kind of data, like built-in data
types, application-defi ned classes or even XML-
serializable types. Figure 1 shows an example
of a Receive activity on the workfl ow designer.

This type of activity has many properties,
but four of them are extremely important
to remember:

• CanCreateInstance is used to determine
if the workfl ow runtime must create a
new workfl ow instance to process the
incoming message, or if it will reuse an
existing one using correlation techniques.
I’ll discuss correlation in more detail later.
You’ll probably want to set it to true on
the fi rst Receive activity of the workfl ow.

• OperationName specifies the service
operation name implemented by this
Receive activity.

• Content indicates the data to be received
by the service. This is much like WCF
service operation contract parameters.

• ServiceContractName is used to create
service contracts grouping service operations inside the
generated Web Services Description Language (WSDL).

If used alone, the Receive activity implements a one-way
message-exchange pattern, which is used to receive information
from clients, but does not send them a reply. Th is kind of activity
can also be used to implement a request-response pattern by
associating it with a SendReply activity.

To help implement the request-response pattern, WF adds an
option to the Visual Studio toolbox called ReceiveAndSendReply.
When dropped on the workfl ow designer, it automatically creates a
pair of pre-confi gured Receive and SendReplyToReceive activities
within a Sequence activity (see Figure 2).

Th e idea behind the ReceiveAndSendReply template is to do some
processing between the Receive and SendReplyToReceive actions.
However, it’s important to notice that persistence is not allowed
between the Receive and SendReplyToReceive pair. A no-persist zone
is created and lasts until both activities have completed, meaning
if the workfl ow instance becomes idle, it won’t persist even if the
host is confi gured to persist workfl ows when they become idle.
If an activity attempts to explicitly persist the workfl ow instance
in the no-persist zone, a fatal exception is thrown, the workfl ow
aborts and an exception is returned to the caller.

Correlating Calls
Sometimes a business process can receive more than one external
call. When that happens, a new workflow instance is created at
the fi rst call, its activities are executed and the workfl ow stays idle,
waiting for subsequent calls. When a later call is made, the work-
fl ow instance leaves the idle state and continues to be executed.

In this way, the workflow runtime must have a way to use
information received on later calls and distinguish between the

previously created workfl ow instances to con-
tinue processing. Otherwise, it could call any
instance, leaving the whole process consistency
at risk. Th is is called correlation—you correlate
subsequent calls to the pending workfl ow with
which the call is associated.

A correlation is represented as an XPath
query to identify particular data in a specifi c
message. It can be initialized using an Initialize-
Correlation activity or by adding a value to
the CorrelationInitializers, a property of some
activities, such as: Receive, SendReply, Send
and ReceiveReply.

This initialization process can be done in
code or using the workflow designer from
Visual Studio 2010. Because Visual Studio
has a wizard to help create the XPath query,
it’s the easier—and probably the preferable—
way for most developers.

A possible scenario to use correlation is an
expense report workfl ow. First, an employee
submits the expense report data. Later, his
manager can review the report and approve
or deny the expenses (see Figure 3).

In this scenario the correlation is created when the workfl ow
returns the response to the employee client application. To create
a correlation you need some context-identifying information, like
the expense report ID (which is probably a unique ID already).
Th en the workfl ow instance becomes idle, waiting for the manager
to approve or deny the expense report. When the approval call
is made by the manager client application, the workfl ow runtime
correlates the received expense report ID with the previously
created workfl ow instance to continue the process.

To create a correlation in Visual Studio 2010, fi rst select in the
workfl ow designer the activity where the correlation is going to

Figure 1 A Receive Activity on
the Workfl ow Designer

Figure 2 ReceiveAndSendReply on
the Workfl ow Designer

Figure 3 Expense Report Sample Scenario

Submit Expense Report

Employee

Approve/Deny Expense Report

Approve Expense Report Deny Expense Report

Manager

www.msdnmagazine.com

msdn magazine26 Workfl ow Services

be initialized. In my example, this is the activity that returns the
expense report ID to the client. In the SendReply activity, I set the
CorrelationInitializers property in the Properties window by click-
ing the ellipsis button. Th is displays the Add Correlation Initializers
dialog box (see Figure 4) where you can confi gure the correlation.

Th ree items must be set: the correlation handle, the correlation
type and the XPath Queries. Th e correlation handle is a variable
the workflow runtime uses to store the correlation data and is
automatically created by Visual Studio.

Th e next step is to set the correlation type. Th e .NET Framework
has some types of correlation, but because I need to query part
of the information exchanged with the client—in other words, a
content-based correlation—my best option is to use the Query
correlation initializer. After doing that, the XPath queries can
be set to the expense report ID. When I click the arrow, Visual
Studio checks the message content and shows me a list to select
the appropriate information.

To continue the workfl ow aft er the expense approval is made, the
correlation must be used by the corresponding Receive activity. Th is is
done by setting the CorrelatesOn property. Just click the ellipsis button
near the property in the Properties window to open the Correlates On
Defi nition dialog box (see Figure 5). From this dialog, the Correlates-
With property needs to be set to the same handle used to initialize
the correlation for the SendReplyToReceive activity, and the XPath
Queries property must be set to the same key and expense report ID
received on the expense report approval message.

WF comes with a set of general-purpose activities called Base
Activity Library (BAL), some of which I’ve used to send and receive
information here. Th ough they are useful, sometimes activities
more related to business rules are needed. Based on the scenario
I’ve discussed so far, there are three activities needed for submitting
and approving expense reports: Create, Approve and Deny expense
report. Because all of those activities are pretty similar, I’m only going
to show the code of CreateExpenseReportActivity:

public sealed class CreateExpenseReportActivity
 : CodeActivity<int> {
 public InArgument<decimal> Amount { get; set; }
 public InArgument<string> Description { get; set; }
 protected override int Execute(CodeActivityContext context) {
 Data.ExpenseReportManager expenseReportManager =
 new Data.ExpenseReportManager();
 return expenseReportManager.CreateExpenseReport(
 Amount.Get(context), Description.Get(context));
 }
}

Th e activity receives the expense amount and description, both
declared as InArgument. Most of the heavy lift ing is done in the

Execute method. It accesses a class that
uses the Entity Framework to handle
database access and to save the expense
report information, and on the other
end the Entity Framework returns the
expense report ID. Because I only need
to execute CLR code and don’t need to
interact with the WF runtime, the easiest
option to create an activity is to inherit
from CodeActivity. Th e complete work-
fl ow can be seen in Figure 6.

Hosting the Workfl ow Service
Aft er the workfl ow service is created, you need to decide where
it will run. Th e traditional choice has been to run it on your own
hosting environment, IIS or Windows Process Activation Services
(WAS). Another option, however, is to take advantage of Windows
Server AppFabric, an enhancement to the Application Server role
in Windows Server 2008 R2 for hosting, managing, securing and
scaling services created with WCF or WF. You can also employ
Windows Server AppFabric on PCs running Windows Vista or
Windows 7 for development and testing.

Th ough IIS and WAS already support service hosting, Windows
Server AppFabric off ers a more useful and manageable environ-
ment that integrates WCF and WF features such as persistence and
tracking with IIS Manager.

Simplifi ed Workfl ow Persistence
Computers still have a limited set of resources to process all of
your business processes, and there’s no reason to waste computing
resources on idle workflows. For long-running processes, you
may have no control over the total amount of time from the
beginning of the process to its end. It can take minutes, hours,
days or even longer, and if it depends on external entities, such as
other systems or end users, most of the time it can be idle simply
waiting for a response.

WF provides a persistence framework capable of storing a
durable capture of a workfl ow instance’s state—independent of pro-
cess or computer information—into instance stores. WF 4 already
has a SQL Server instance store to be used out of the box. However,
because WF is very extensible, I could create my own instance store
to persist the workfl ow instance state if I wanted to. Once the work-

Figure 5 CorrelatesOn Defi nition

Figure 4 Setting the XPath Query Correlation

27January 2011msdnmagazine.com

fl ow instance is idle and has been persisted, it can be unloaded to
preserve memory and CPU resources, or eventually it could be
moved from one node to another in a server farm.

Windows Server AppFabric has an easy way to set up and main-
tain integration with WF persistence features. Th e whole process is
transparent to the workfl ow runtime, which delegates the persistence
tasks to AppFabric, extending the default WF persistence framework.

Th e fi rst step to confi gure persistence is to set up the SQL Server
database using the Windows Server AppFabric Configuration
Wizard or Windows PowerShell cmdlets. Th e wizard can create the
persistence database if it doesn’t exist, or just create the AppFabric

schema. With the database already created, all the other steps are
accomplished with IIS Manager.

In IIS Manager, right-click the node you want to confi gure (server,
Web site or application) and choose Manage WCF and WF Services
| Confi gure to open the Confi gure WCF and WF for Application
dialog, then click Workfl ow Persistence (see Figure 7). You can see
that you have the option to enable or disable workfl ow persistence.

You also have the option to set how long the workfl ow runtime
will take to unload the workflow instance from memory and
persist it on the database when the workfl ow becomes idle. Th e
default value is 60 seconds. If you set the value to zero it will be
persisted immediately. Th is is especially important for scaling out
via a load balancer.

Workfl ow Tracking
Sometimes something can go wrong with processes that interact
with external users and applications. Due to the detached nature of
long-running processes, it can be even worse on those scenarios. When
a problem occurs, as a developer you usually need to analyze a bunch
of logs to discover what happened, how to reproduce it and, most
important, how to correct the problem and keep the system up. If you

Figure 6 Complete Expense Report Workfl ow

Figure 7 Confi guring Workfl ow Persistence

Figure 8 Enabling Tracking on Windows Server AppFabric

www.msdnmagazine.com

msdn magazine28 Workfl ow Services

use WF, you already get this kind of
logging built into the framework.

The same way WF has an
extensible framework to persist
idle instances, it also has an exten-
sible framework to provide vis-
ibility into workflow execution.
This framework is called tracking,
which transparently instruments
a workflow, recording key events
during its execution. Windows
Server App Fabric uses this ex-
tensibility to improve the built-in
WF tracking functionality, record-
ing execution events on a SQL
Server database.

Th e Windows Server AppFabric
tracking confi guration is similar to that used for persistence and can
be accessed via either the Windows Server AppFabric Confi guration
Wizard or Windows PowerShell cmdlets. In the Confi gure WCF and
WF for Application dialog discussed earlier, click Monitoring. Now
you can choose to enable or disable the tracking and also the track-
ing level, as shown in Figure 8.

While confi guring tracking in Windows Server AppFabric, you
can choose fi ve monitoring levels:

• Off has the same eff ect as disabling monitoring and is best
used in scenarios that need minimal tracking overhead.

• Error Only gives visibility to only critical events like errors
and warnings. This mode is best for high-performance
scenarios that need only minimal error logging.

• Health Monitoring is the default monitoring level and
contains all the data captured at the Errors Only level, plus
some additional processing data.

• End-to-End Monitoring contains all data from level Health
Monitoring plus additional information to reconstruct
the entire message fl ow. Th is is used in scenarios where a
service calls another service.

• Troubleshooting, as the name suggests, is the most verbose
level and is useful in scenarios where an application is in
an unhealthy state and needs to be fi xed.

Scaling the Workfl ow Service
Because Windows Server AppFabric extends the Application Server
Role from Windows Server, it inherits the highly scalable infrastructure
from its predecessor and can be run on a server farm behind a network
load balancer (NLB). You’ve also seen that it has the ability to persist
and track workfl ow instances when needed. As a result, Windows
Server AppFabric is an excellent choice to host long-running workfl ow
processes and support a great number of requests from clients.

An exam ple of a workfl ow service scalable environment can be
seen in Figure 9. It has two Windows Server AppFabric instances,
both running copies of the same workfl ow defi nition. NLB routes
requests to the available AppFabric instance.

On the expense report scenario, when a client first accesses
the service to create an expense report, the balancer redirects the

requests to an available Windows Server AppFabric instance, which
saves the expense data in the database, returns the generated ID to
the client and, because the workfl ow becomes idle waiting for the
expense approval from the workfl ow runtime, persists the running
instance in the database.

Later, when the client application accesses the service to approve
or deny the expense report, the NLB redirects the request to an avail-
able Windows Server AppFabric instance (it can be a diff erent server
from the fi rst service call), and the server correlates the request and
restores the workfl ow instance from the persistence database.
Now, the instance in memory continues processing, saves the
approval on the database and returns to the client when it’s done.

Closing Notes
As you’ve seen, the use of workflow services with correlation,
persistence and tracking on a load-balancing environment is a
powerful technique for running those services in a scalable man-
ner. The combination of these features can increase operations
productivity, allowing proactive actions on running services, and
spreading workfl ows across threads, processes and even machines.
Th is allows developers to create a fully scalable solution that’s ready
to run on a single machine—or even large server farms—with no
worries about infrastructure complexity.

For further information about designing workfl ows with WCF and
WF, be sure to read Leon Welicki’s article, “Visual Design of Workfl ows
with WCF and WF 4,” from the May 2010 issue of MSDN Magazine
(msdn.microsoft.com/magazine/ff646977). And for a deeper discussion of long-
running processes and workfl ow persistence, see Michael Kennedy’s
article, “Web Apps Th at Support Long-Running Operations,” from
the January 2009 issue (msdn.microsoft.com/magazine/dd296718).

For details about Windows Server AppFabric, see the Windows
Server Developer Center at msdn.microsoft.com/windowsserver/ee695849.

RAFAEL GODINHO is an ISV developer evangelist at Microsoft Brazil helping
local partners adopt Microsoft technology. You can contact Godinho through his
blog at blogs.msdn.com/rafaelgodinho.

THANKS to the following technical experts for reviewing this article:
Dave Cliff e, Ron Jacobs and Leon Welicki

Figure 9 Workfl ows in a Scalable Environment

Client

Client

Client

W
C
F

WF

Pe
rs

ist
en

ce

NL
B

Windows Server AppFabric

Persistence
Database

Microsoft SQL Server

W
C
F

WF

Pe
rs

ist
en

ce

Windows Server AppFabric

http://msdn.microsoft.com/magazine/ff646977
http://msdn.microsoft.com/magazine/dd296718
http://msdn.microsoft.com/windowsserver/ee695849
http://blogs.msdn.com/rafaelgodinho

Free 60 Day Evaluation!
www.leadtools.com/msdn

(800) 637-1840

Silverlight: 100% pure Silverlight 3, 4 and Windows Phone Imaging SDK.
Image Formats & Compression: Supports 150+ image formats and compressions

including TIFF, EXIF, PDF, JPEG2000, JBIG2 and CCITT G3/G4.
Scanning: TWAIN & WIA (32 & 64-bit), auto-detect optimum driver settings for high speed

scanning.
Viewer Controls: Win Forms, Web Forms, WPF, Silverlight, ActiveX and COM.
Image Processing: 200+ lters, transforms, color conversion and drawing functions

supporting region of interest and extended grayscale data.
Document Cleanup/Preprocessing: Auto-deskew, despeckle, hole punch, line and

border removal, inverted text correction and more for optimum results in OCR and Barcode
recognition.
Barcode: Auto-detect, read and write 1D and 2D barcodes for multithreaded 32 & 64 bit

development.
OCR/ICR/OMR: Full page or zonal recognition for multithreaded 32 and 64 bit

development with PDF, PDF/A, XPS, DOC, XML and Text output.
Forms Recognition & Processing: Automatically identify and classify forms and extract

user lled data.
PDF & PDF/A: Read, write and view searchable PDF with text, images, bookmarks and

annotations.
Annotations: Interactive UI for document mark-up, redaction and image measurement

(including support for DICOM annotations).
DICOM: Full support for all IOD classes and modalities de ned in the DICOM standard

(including Encapsulated PDF/CDA and Raw Data).
PACS: Full support for DICOM messaging and secure communication enabling quick implementation of any DICOM SCU

and SCP services.
Medical Image Viewer: High level display control with built-in tools for image mark-up, window level, measurement,

zoom/pan, cine, and LUT manipulation.
Medical Web Viewer Framework: Plug-in enabled framework to quickly build high-quality, full-featured, web-based

medical image delivery and viewer applications.
Medical Workstation Framework: Set of .NET medical and PACS components that can be used to build a full featured

PACS Workstation application.
3D: Construct 3D volumes from 2D DICOM medical images and visualize with a variety of methods including MIP, MinIP,

MRP, VRT and SSD.
Multimedia: Capture, play, stream and convert MPEG, AVI, WMV, MP4, MP3, OGG, ISO, DVD and more. Stream from

RTSP Servers.
DVD: Play, create, convert and burn DVD images.
DVR: Pause, rewind and fast-forward live capture and UDP or TCP/IP streams.
MPEG Transport Stream: With DVR for UDP and TCP/IP streams

& auto-live support.

Develop your
application
with the

same robust
imaging

technologies
used by

Microsoft, HP,
Sony, Canon,
Kodak, GE,

Siemens, the US
 Air Force and

Veterans Affairs
Hospitals.

VectorDICOM Medical Form Recognition & Processing

MultimediaBarcodeDocument
Silverlight,
.NET, WPF,
WCF, WF, C API,
C++ Class Lib,
COM & more!

Install LEADTOOLS to eliminate months of research and programming time while
maintaining high levels of quality, performance and functionality. LEADTOOLS provides
developers easy access to decades of expertise in color, grayscale, document, medical,
vector and multimedia imaging development.

Untitled-2 1 12/13/10 4:29 PM

http://www.leadtools.com/msdn

msdn magazine30

W IN DOWS W OR KFLOW FOU NDAT ION 4

Authoring Control Flow
Activities in WF 4

Control fl ow refers to the way in which the individual
instructions in a program are organized and executed. In Windows
Workfl ow Foundation 4 (WF 4), control fl ow activities govern the
execution semantics of one or more child activities. Some examples
in the WF 4 activity toolbox include Sequence, Parallel, If, ForEach,
Pick, Flowchart and Switch, among others.

Th e WF runtime doesn’t have fi rst-class knowledge of any control
fl ow like Sequence or Parallel. From its perspective, everything is
just activities. Th e runtime only enforces some simple rules (for
example, “an activity can’t complete if any child activities are still
running”). WF control fl ow is based on hierarchy—a WF program
is a tree of activities.

Control flow options in WF 4 are not limited to the activities
shipped in the framework. You can write your own and use them
in combination with the ones provided in the box, and that’s what
this article will discuss. You’ll learn how to write your own control

Leon Welicki

fl ow activities following a “crawl, walk, run” approach: we’ll start
with a very simple control flow activity and add richness as we
progress, ending up with a new and useful control flow activity.
Th e source code for all of our examples is available for download.

But fi rst, let’s start with some basic concepts about activities to
set some common ground.

Activities
Activities are the basic unit of execution in a WF program; a work-
fl ow program is a tree of activities that are executed by the WF
runtime. WF 4 includes more than 35 activities, a comprehensive
set that can be used to model processes or create new activities.
Some of those activities govern the semantics of how other activ-
i ties are executed (such as Sequence, Flowchart, Parallel and
ForEach), and are known as composite activities. Others perform
a single atomic task (WriteLine, InvokeMethod and so forth). We
call these leaf activities.

WF activities are implemented as CLR types, and as such they
derive from other existing types. You can author activities visually
and declaratively using the WF designer, or imperatively writing
CLR code. The base types available to create your own custom
activity are defi ned in the activities type hierarchy in Figure 1. You’ll
find a detailed explanation of this type hierarchy in the MSDN
Library at msdn.microsoft.com/library/dd560893.

In this article I’ll focus on activities that derive from NativeActivity,
the base class that provides access to the full breadth of the WF

This article discusses:
• The activities type hierarchy in Windows Workfl ow Foundation 4

• Composite and leaf activities

• Bookmarks and execution properties

• GoTo activities

Technologies discussed:
Windows Workfl ow Foundation 4.0

http://msdn.microsoft.com/library/dd560893

31January 2011msdnmagazine.com

runtime. Control fl ow activities are composite activities that derive
from the NativeActivity type because they need to interact with the
WF runtime. Most commonly this is to schedule other activities (for
example, Sequence, Parallel or Flowchart), but it may also include
implementing custom cancellation using CancellationScope or
Pick, creating bookmarks with Receive and persisting using Persist.

Th e activity data model defi nes a crisp model for reasoning about
data when authoring and consuming activities. Data is defi ned using
arguments and variables. Arguments are the binding terminals of
an activity and defi ne its public signature in terms of what data can
be passed to the activity (input arguments) and what data will be
returned by the activity when it completes its execution (output
arguments). Variables represent temporary storage of data.

Activity authors use arguments to defi ne the way data fl ows in
and out of an activity, and they use variables in a couple of ways:

• To expose a user-editable collection of variables on an
activity defi nition that can be used to share variables
among multiple activities (such as a Variables collection
in Sequence and Flowchart).

• To model the internal state of an activity.
Workfl ow authors use arguments to bind activities to the environ-

ment by writing expressions, and they declare variables at diff erent
scopes in the workfl ow to share data between activities. Together,
variables and arguments combine to provide a predictable model
of communication between activities.

Now that I’ve covered some core activity basics, let’s start with
the fi rst control fl ow activity.

A Simple Control Flow Activity
I’ll begin by creating a very simple control flow activity called
ExecuteIfTrue. Th ere’s not much to this activity: It executes a con-
tained activity if a condition is true. WF 4 provides an If activity
that includes Th en and Else child activities; oft en we only want to
provide the Th en, and the Else is just overhead. For those cases we
want an activity that executes another activity based on the value
of a Boolean condition.

H ere’s how this activity should work:
• Th e activity user must provide a Boolean condition. Th is

argument is required.
• Th e activity user can provide a body—the activity to be

executed if the condition is true.
• At execution time: If the condition is true and the body

is not null, execute the body.
Here’s an implementation for an ExecuteIfTrue activity that behaves

in exactly this way:
public class ExecuteIfTrue : NativeActivity
{
 [RequiredArgument]
 public InArgument<bool> Condition { get; set; }

 public Activity Body { get; set; }

 public ExecuteIfTrue() { }

 protected override void Execute(NativeActivityContext context)
 {
 if (context.GetValue(this.Condition) && this.Body != null)
 context.ScheduleActivity(this.Body);
 }
}

Th is code is very simple, but there’s more here than meets the
eye. ExecuteIfTrue executes a child activity if a condition is true,
so it needs to schedule another activity. Th erefore, it derives from
NativeActivity because it needs to interact with the WF runtime
to schedule children.

Once you’ve decided the base class for an activity, you have to
define its public signature. In ExecuteIfTrue, this consists of a
Boolean input argument of type InArgument<bool> named
Condition that holds the condition to be evaluated, and a property
of type Activity named Body with the activity to be executed if
the condition is true. Th e Condition argument is decorated with
the RequiredArgument attribute that indicates to the WF run-
time that it must be set with an expression. Th e WF runtime will
enforce this validation when preparing the activity for execution:

[RequiredArgument]
public InArgument<bool> Condition { get; set; }

public Activity Body { get; set; }

Th e most interesting piece of code in this activity is the Execute
method, which is where the “action” happens. All NativeActivities
must override this method. Th e Execute method receives a Native-
ActivityContext argument, which is our point of interaction with
the WF runtime as activity authors. In ExecuteIfTrue, this con-
text is used to retrieve the value of the Condition argument
(context.GetValue(this.Condition)) and to schedule the Body using
the ScheduleActivity method. Notice that I say schedule and not
execute. Th e WF runtime does not execute the activities right away;
instead it adds them to a list of work items to be scheduled for execution:

protected override void Execute(NativeActivityContext context)
{
 if (context.GetValue(this.Condition) && this.Body != null)
 context.ScheduleActivity(this.Body);
}

Note as well that the type has been designed following the create-
set-use pattern. The XAML syntax is based on this pattern for
designing types, where the type has a public default constructor and
public read/write properties. Th is means the type will be XAML
serialization-friendly.

Th e following code snippet shows how to use this activity. In this
example, if the current day is Saturday, you write the string “Rest!”
to the console:

Figure 1 Activity Type Hierarchy

CodeActivity
<TResult>

AsyncCodeActivity
<TResult>

NativeActivity
<TResult>

Activity<TResult>
AsyncCodeActivity

NativeActivityCodeActivity

Activity

www.msdnmagazine.com

msdn magazine32 Windows Workfl ow Foundation 4

var act = new ExecuteIfTrue
{
 Condition = new InArgument<bool>(c => DateTime.Now.DayOfWeek == DayOfWeek.Tuesday),
 Body = new WriteLine { Text = "Rest!" }
};

WorkflowInvoker.Invoke(act);

Th e fi rst control fl ow activity has been created in 15 lines of code.
But don’t be fooled by the simplicity of that code—it’s actually a
fully functional control fl ow activity!

Scheduling Multiple Children
Th e next challenge is to write a simplifi ed version of the Sequence
activity. Th e goal of this exercise is to learn how to write a control
fl ow activity that schedules multiple child activities and executes
in multiple episodes. Th is activity is almost functionally equivalent
to the Sequence shipped in the product.

Here’s how this activity should work:
• Th e activity user must provide a collection of children to

be executed sequentially through the Activities property.
• At execution time:
 • Th e activity contains an internal variable with the index

of the last item in the collection that has been executed.
 • If there are items in the children collection, schedule

the fi rst child.
 • When the child completes:
 • Increment the index of the last item executed.
 • If the index is still within the boundaries of the

children collection, schedule the next child.
 • Repeat.

Th e code in Figure 2 implements a SimpleSequence activity that
behaves exactly as described.

Again, a fully functional control fl ow activity has been written
in just a few lines of codes—in this case, about 50 lines. Th e code
is simple, but it introduces some interesting concepts.

SimpleSequence executes a collection of child activities in sequen-
tial order, so it needs to schedule other activities. Th erefore, it derives
from NativeActivity because it needs to interact with the runtime
to schedule children.

The next step is to define the public signature for Simple-
Sequence. In this case it consists of a collection of activities (of
type Collection<Activity>) exposed through the Activities prop-
erty, and a collection of variables (of type Collection<Variable>)
exposed through the Variables property. Variables allow sharing
of data among all child activities. Note that these properties only
have “getters” that expose the collections using a “lazy instantiation”
approach (see Figure 3), so accessing these properties never results
in a null reference. Th is makes these properties compliant with the
create-set-use pattern.

There’s one private member in the class that’s not part of the
signature: a Variable<int> named “current” that holds the index of
the activity being executed:

// Pointer to the current item in the collection being executed
Variable<int> current = new Variable<int>() { Default = 0 };

Because this information is part of the internal execution state
for SimpleSequence, you want to keep it private and not expose
it to users of SimpleSequence. You also want it to be saved and
restored when the activity is persisted. You use an Implementation-
Variable for this.

Implementation variables are variables that are internal to an
activity. Th ey’re intended to be consumed by the activity author,
not the activity user. Implementation variables are persisted when

public class SimpleSequence : NativeActivity
{
 // Child activities collection
 Collection<Activity> activities;
 Collection<Variable> variables;

 // Pointer to the current item in the collection being executed
 Variable<int> current = new Variable<int>() { Default = 0 };

 public SimpleSequence() { }

 // Collection of children to be executed sequentially by SimpleSequence
 public Collection<Activity> Activities
 {
 get
 {
 if (this.activities == null)
 this.activities = new Collection<Activity>();

 return this.activities;
 }
 }

 public Collection<Variable> Variables
 {
 get
 {
 if (this.variables == null)
 this.variables = new Collection<Variable>();

 return this.variables;
 }
 }

 protected override void CacheMetadata(NativeActivityMetadata metadata)
 {
 metadata.SetChildrenCollection(this.activities);
 me tadata.SetVariablesCollection(this.variables);
 metadata.AddImplementationVariable(this.current);
 }

 protected override void Execute(NativeActivityContext context)
 {
 // Schedule the first activity
 if (this.Activities.Count > 0)
 context.ScheduleActivity(this.Activities[0], this.
OnChildCompleted);
 }

 void OnChildCompleted(NativeActivityContext context, ActivityInstance
completed)
 {
 // Calculate the index of the next activity to scheduled
 int currentExecutingActivity = this.current.Get(context);
 int next = currentExecutingActivity + 1;

 // If index within boundaries...
 if (next < this.Activities.Count)
 {
 // Schedule the next activity
 context.ScheduleActivity(this.Activities[next], this.
OnChildCompleted);

 // Store the index in the collection of the activity executing
 this.current.Set(context, next);
 }
 }
}

Figure 2 The SimpleSequence Activity

33January 2011msdnmagazine.com

the activity is persisted and restored when the activity is reloaded,
without requiring any work on our part. To make this clear—and
continuing with the Sequence example—if an instance of Simple-
Sequence is persisted, when it wakes up it will “remember” the
index of the last activity that has been executed.

Th e WF runtime can’t automatically know about implementa-
tion variables. If you want to use an ImplementationVariable in an
activity, you need to explicitly inform the WF runtime. You do this
during CacheMetadata method execution.

Despite its rather frightening name, CacheMetadata is not that
diffi cult. Conceptually, it’s actually simple: It’s the method where
an activity “introduces itself ” to the runtime. Th ink about the If
activity for a moment. In CacheMetadata this activity would say:
“Hi, I’m the If activity and I have an input argument named Condi-
tion, and two children: Th en and Else.” In the SimpleSequence case,
SimpleSequence is saying: “Hi, I’m SimpleSequence and I have a
collection of child activities, a collection of variables and an implemen-
tation variable.” Th ere’s no more than that in the SimpleSequence
code for CacheMetadata:

protected override void CacheMetadata(NativeActivityMetadata metadata)
{
 metadata.SetChildrenCollection(this.activities);
 metadata.SetVariablesCollection(this.variables);
 metadata.AddImplementationVariable(this.current);
}

Th e default implementation of CacheMetadata uses refl ection to
get this data from the activity. In the ExecuteIfTrue example, I didn’t
implement CacheMetadata and relied on the default implementa-
tion to refl ect on public members. For SimpleSequence, in contrast,
I did need to implement it because the default implementation can’t
“guess” about my desire to use implementation variables.

Th e next interesting piece of code in this activity is the Execute
method. In this case, if there are activities in the collection, you tell the
WF runtime: “Please execute the fi rst activity in the collection of activi-
ties and, when you’re done, invoke the OnChildCompleted method.” You
say this in WF terms using NativeActivityContext.ScheduleActivity.
Notice that when you schedule an activity, you supply a second
argument that’s a CompletionCallback. In simple terms, this is a
method that will be called once the activity execution is completed.
Again, it’s important to be aware of the diff erence between scheduling
and execution. Th e CompletionCallback won’t be called when the
activity is scheduled; it will be called when the scheduled activity
execution has been completed:

protected override void Execute(NativeActivityContext context)
{
 // Schedule the first activity
 if (this.Activities.Count > 0)
 context.ScheduleActivity(this.Activities[0], this.OnChildCompleted);
}

Th e OnChildCompleted method is the most interesting part of
this activity from a learning perspective, and it’s actually the main
reason I’ve included SimpleSequence in this article. Th is method
gets the next activity in the collection and schedules it. When the
next child is scheduled, a CompletionCallback is provided, which in
this case points to this same method. Th us, when a child completes,
this method will execute again to look for the next child and
execute it. Clearly, execution is happening in pulses or episodes.
Because workfl ows can be persisted and unloaded from memory,
there can be a large time diff erence between two pulses of execu-

tion. Moreover, these pulses can be executed in diff erent threads,
processes or even machines (as persisted instances of a workfl ow
can be reloaded in a diff erent process or machine). Learning how
to program for multiple pulses of execution is one of the biggest
challenges in becoming an expert control fl ow activity author:

void OnChildCompleted(NativeActivityContext context, ActivityInstance
completed)
{
 // Calculate the index of the next activity to scheduled
 int currentExecutingActivity = this.current.Get(context);
 int next = currentExecutingActivity + 1;

 // If index within boundaries...
 if (next < this.Activities.Count)
 {
 // Schedule the next activity
 context.ScheduleActivity(this.Activities[next], this.OnChildCompleted);

 // Store the index in the collection of the activity executing
 this.current.Set(context, next);
 }
}

The following code snippet shows how to use this activity. In
this example, I’m writing three strings to the console (“Hello,”
“Workflow” and “!”):

var act = new SimpleSequence()
{
 Activities =
 {
 new WriteLine { Text = "Hello" },
 new WriteLine { Text = "Workflow" },
 new WriteLine { Text = "!" }
 }
};

WorkflowInvoker.Invoke(act);

I’ve authored my own SimpleSequence! Now it’s time to move
on to the next challenge.

Implementing a New Control Flow Pattern
Next, I’ll create a complex control fl ow activity. As I mentioned
earlier, you’re not limited to the control fl ow activities shipped in
WF 4. Th is section demonstrates how to build your own control
fl ow activity to support a control fl ow pattern that’s not supported
out-of-the-box by WF 4.

Th e new control fl ow activity will be called Series. Its goal is
simple: to provide a Sequence with support for GoTos, where the

public Collection<Activity> Activities
{
 get
 {
 if (this.activities == null)
 this.activities = new Collection<Activity>();

 return this.activities;
 }
}

public Collection<Variable> Variables
{
 get
 {
 if (this.variables == null)
 this.variables = new Collection<Variable>();

 return this.variables;
 }
}

Figure 3 A Lazy Instantiation Approach

www.msdnmagazine.com

msdn magazine34 Windows Workfl ow Foundation 4

next activity to be executed can be manipulated either explicitly
from inside the workfl ow (through a GoTo activity) or from the
host (by resuming a well-known bookmark).

To implement this new control flow, I’ll need to author two
activities: Series, a composite activity that contains a collection of
activities and executes them sequentially (but allows jumps to any
item in the sequence), and GoTo, a leaf activity that I’ll use inside
of Series to explicitly model the jumps.

To recap, I’ll enumerate the goals and requirements for the custom
control activity:

1. It’s a Sequence of activities.
2. It can contain GoTo activities (at any depth), which change

the point of execution to any direct child of the Series.
3. It can receive GoTo messages from the outside (for

example, from a user), which can change the point of
execution to any direct child of the Series.

I’ll sta rt by implementing the Series activity. Here’s the execution
semantics in simple terms:

• Th e activity user must provide a collection of children to
be executed sequentially through the Activities property.

• In the execute method:
 • Create a bookmark for the GoTo in a way that’s

available to child activities.
 • Th e activity contains an internal variable with the

activity instance being executed.
 • If there are items in the children collection, schedule

the fi rst child.
 • When the child completes:
 • Lookup the completed a ctivity in the Activities collection.
 • Increment the index of the last item executed.
 • If the index is still within the boundaries of the

children collection, schedule the next child.
 • Repeat.
• If the GoTo bookmark is resumed:
 • Get the name of the activity we want to go to.
 • Find that activity in the activities collection.
 • Schedule the target activity in the set for execution

and register a completion callback that will schedule
the next activity.

 • Cancel the activity that’s currently executing.
 • Store the activity that’s currently being executed in the

“current” variable.
Th e code example in Figure 4 shows the implementation for a

Series activity that behaves exactly as described.
Some of this code will look familiar from the previous examples.

I’ll discuss the implementation of this activity.
Series derives from NativeActivity because it needs to interact

with the WF runtime to schedule child activities, create bookmarks,
cancel children and use execution properties.

As before, the next step is to defi ne the public signature for Series. As
in SimpleSequence, there are Activities and Variables collection prop-
erties. Th ere’s also a string input argument named BookmarkName
(of type InArgument<string>), with the name of the bookmark to be
created for host resumption. Again, I’m following the create-set-use
pattern in the activity type.

Series has a private member named “current” that contains
the ActivityInstance being executed, instead of just a pointer to
an item in a collection, as in SimpleSequence. Why is current a
Variable<ActivityInstance> and not a Variable<int>? Because I
need to get ahold of the currently executing child later in this
activity during the GoTo method. I’ll explain the actual details later;
the important thing to understand now is that I’ll have an imple-
mentation variable that holds the activity instance being executed:

Variable<ActivityInstance> current = new Variable<ActivityInstance>();

In CacheMetadata you provide runtime information about your
activity: the children and variables collections, the implementation
variable with the current activity instance and the bookmark name
argument. Th e only diff erence from the previous example is that I’m
manually registering the BookmarkName input argument within
the WF runtime—adding a new instance of RuntimeArgument to
the activity metadata:

protected override void CacheMetadata(NativeActivityMetadata metadata)
{
 metadata.SetVariablesCollection(this.Variables);
 metadata.SetChildrenCollection(this.Activities);
 metadata.AddImplementationVariable(this.current);
 metadata.AddArgument(new RuntimeArgument("BookmarkName",
 typeof(string),
ArgumentDirection.In));
}

Th e next new thing is the CanInduceIdle property overload. Th is
is just more metadata that the activity provides to the WF runtime.
When this property returns true, I’m telling the runtime that this
activity can cause the workfl ow to become idle. I need to override
this property and return true for activities that create bookmarks,
as they’ll make the workfl ow go idle waiting for its resumption. Th e
default value for this property is false. If this property returns false
and we create a bookmark, I’ll have an InvalidOperationException
exception when executing the activity:

protected override bool CanInduceIdle { get { return true; } }

Th ings get more interesting in the Execute method, where I cre-
ate a bookmark (internalBookmark) and store it in an execution
property. Before going further, though, let me introduce bookmarks
and execution properties.

Bookmarks are the mechanism by which an activity can passively
wait to be resumed. When an activity wishes to “block” pending a
certain event, it registers a bookmark and then returns an execution
status of continuing. Th is signals the runtime that although the
activity’s execution is not complete, it doesn’t have any more work
to do as part of the current work item. When you use bookmarks,
you can author your activities using a form of reactive execution:
when the bookmark is created the activity yields, and when the
bookmark is resumed a block of code (the bookmark resumption
callback) is invoked in reaction to the bookmark resumption.

Unlike programs directly targeting the CLR, workfl ow programs
are hierarchically scoped trees that execute in a thread-agnostic
environment. Th is implies that the standard thread local storage (TLS)
mechanisms can’t be directly leveraged to determine what context
is in scope for a given work item. Th e workfl ow execution context
introduces execution properties to an activity’s environment, so that
an activity can declare properties that are in scope for its sub-tree
and share them with its children. As a result, an activity can share
data with its descendants through these properties.

35January 2011msdnmagazine.com

Now that you know about bookmarks and execution properties, let’s
get back to the code. What I’m doing at the beginning of the Execute
method is creating a bookmark (using context.CreateBookmark) and
saving it into an execution property (using context.Properties.Add).
This bookmark is a multiple-resume bookmark, meaning it can
be resumed multiple times and it will be available while its parent
activity is in an executing state. It’s also NonBlocking, so it won’t
prevent the activity from completing once it’s done with its job. When
that bookmark is resumed, the GoTo method will be called because I
provided a BookmarkCompletionCallback to CreateBookmark (the
fi rst parameter). Th e reason to save it into an execution property is to
make it available to all child activities. (You’ll see later how the GoTo
activity uses this bookmark.) Notice that execution properties have
names. Because that name is a string, I defi ned a constant (Goto-

PropertyName) with the name for the property in the activity. Th at
name follows a fully qualifi ed name approach. Th is is a best practice:

internal static readonly string GotoPropertyName =
 "Microsoft.Samples.CustomControlFlow.
Series.Goto";

...

...

// Create a bookmark for signaling the GoTo
Bookmark internalBookmark = context.CreateBookmark(this.Goto,
 BookmarkOptions.MultipleResume | BookmarkOptions.
NonBlocking);

// Save the name of the bookmark as an execution property
context.Properties.Add(GotoPropertyName, internalBookmark);

Once I’ve declared the bookmark, I’m ready to schedule my fi rst
activity. I’m already familiar with this, because I did it in my previous

public class Series : NativeActivity
{
 internal static readonly string GotoPropertyName =
 "Microsoft.Samples.CustomControlFlow.Series.Goto";

 // Child activities and variables collections
 Collection<Activity> activities;
 Collection<Variable> variables;

 // Activity instance that is currently being executed
 Variable<ActivityInstance> current = new Variable<ActivityInstance>();

 // For externally initiated goto's; optional
 public InArgument<string> BookmarkName { get; set; }

 public Series() { }

 public Collection<Activity> Activities
 {
 get {
 if (this.activities == null)
 this.activities = new Collection<Activity>();

 return this.activities;
 }
 }

 public Collection<Variable> Variables
 {
 get {
 if (this.variables == null)
 this.variables = new Collection<Variable>();

 return this.variables;
 }
 }

 protected override void CacheMetadata(NativeActivityMetadata metadata)
 {
 metadata.SetVariablesCollection(this.Variables);
 metadata.SetChildrenCollection(this.Activities);
 metadata.AddImplementationVariable(this.current);
 metadata.AddArgument(new RuntimeArgument("BookmarkName",
typeof(string),
 ArgumentDirection.In));
 }

 protected override bool CanInduceIdle { get { return true; } }

 protected override void Execute(NativeActivityContext context)
 {
 // If there activities in the collection...
 if (this.Activities.Count > 0)
 {
 // Create a bookmark for signaling the GoTo
 Bookmark internalBookmark = context.CreateBookmark(this.Goto,
 BookmarkOptions.MultipleResume | BookmarkOptions.
NonBlocking);

 // Save the name of the bookmark as an execution property
 context.Properties.Add(GotoPropertyName, internalBookmark);

 // Schedule the first item in the list and save the resulting
 // ActivityInstance in the "current" implementation variable
 this.current.Set(context, context.ScheduleActivity(this.Activities[0],
 this.OnChildCompleted));

 // Create a bookmark for external (host) resumption
 if (this.BookmarkName.Get(context) != null)
 context.CreateBookmark(this.BookmarkName.Get(context), this.Goto,
 BookmarkOptions.MultipleResume | BookmarkOptions.NonBlocking);
 }
 }

 void Got o(NativeActivityContext context, Bookmark b, object obj)
 {
 // Get the name of the activity to go to
 string targetActivityName = obj as string;

 // Find the activity to go to in the children list
 Activity targetActivity = this.Activities
 .Where<Activity>(a =>
 a.DisplayName.
Equals(targetActivityName))
 .Single();

 // Schedule the activity
 ActivityInstance instance = context.ScheduleActivity(targetActivity,
 this.
OnChildCompleted);

 // Cancel the activity that is currently executing
 context.CancelChild(this.current.Get(context));

 // Set the activity that is executing now as the current
 this.current.Set(context, instance);
 }

 void OnChildCompleted(NativeActivityContext context, ActivityInstance
completed)
 {
 // This callback also executes when cancelled child activities complete
 if (completed.State == ActivityInstanceState.Closed)
 {
 // Find the next activity and execute it
 int completedActivityIndex = this.Activities.IndexOf(completed.Activity);
 int next = completedActivityIndex + 1;

 if (next < this.Activities.Count)
 this.current.Set(context,
 context.ScheduleActivity(this.Activities[next],
 this.OnChildCompleted));
 }
 }
}

Figure 4 The Series Activity

www.msdnmagazine.com

msdn magazine36 Windows Workfl ow Foundation 4

activities. I’ll schedule the fi rst activity in the collection and tell the
runtime to invoke the OnChildCompleted method when the activ-
ity is done (as I did in SimpleSequence). Context.ScheduleActivity
returns an ActivityInstance that represents an instance of an activity
being executed, which I assign to our current implementation vari-
able. Let me clarify this a bit. Activity is the defi nition, like a class;
ActivityInstance is the actual instance, like an object. We can have
multiple ActivityInstances from the same Activity:

// Schedule the first item in the list and save the resulting
// ActivityInstance in the "current" implementation variable
this.current.Set(context, context.ScheduleActivity(this.Activities[0],
 this.OnChildCompleted));

Finally, we create a bookmark that can be used by the host to
jump to any activity within the series. Th e mechanics for this are
simple: Because the host knows the name of the bookmark, it can
resume it with a jump to any activity within the Series:

// Create a bookmark for external (host) resumption
 if (this.BookmarkName.Get(context) != null)
 context.CreateBookmark(this.BookmarkName.Get(context), this.Goto,
 BookmarkOptions.MultipleResume |
BookmarkOptions.NonBlocking);

Th e OnChildCompleted method should be straightforward now,
as it’s very similar to the one in SimpleSequence: I look up the
next element in the activities collection and schedule it. Th e main
diff erence is that I only schedule the next activity if the current
activity successfully completed its execution (that is, reached the
closed state and hasn’t been canceled or faulted).

Th e GoTo method is arguably the most interesting. Th is is the
method that gets executed as the result of the GoTo bookmark
being resumed. It receives some data as input, which is passed when
the bookmark is resumed. In this case, the data is the name of the
activity we want to go to:

void Goto(NativeActivityContext context, Bookmark b, object data)
{
 // Get the name of the activity to go to
 string targetActivityName = data as string;

 ...
 }

The target activity name is the DisplayName property of the
activity. I look up the requested activity defi nition in the “activities”
collection. Once I fi nd the requested activity, I schedule it, indicat-
ing that when the activity is done, the OnChildCompleted method
should be executed:

// Find the activity to go to in the children list
Activity targetActivity = this.Activities
 .Where<Activity>(a =>
 a.DisplayName.
Equals(targetActivityName))
 .Single();
// Schedule the activity
ActivityInstance instance = context.ScheduleActivity(targetActivity,
 this.
OnChildCompleted);

Next, I cancel the activity instance that’s currently being executed
and set the current activity being executed to the ActivityInstance
scheduled in the previous step. For both these tasks I use the “cur-
rent” variable. First, I pass it as a parameter of the CancelChild
method of NativeActivityContext, and then I update its value
with the ActivityInstance that has been scheduled in the previous
block of code:

// Cancel the activity that is currently executing
context.CancelChild(this.current.Get(context));

// Set the activity that is executing now as the current
this.current.Set(context, instance);

The GoTo Activity
Th e GoTo activity can be used only inside of a Series activity to jump
to an activity in its Activities collection. It’s similar to a GoTo statement
in an imperative program. Th e way it works is very simple: It resumes
the GoTo bookmark created by the Series activity in which it’s con-
tained, indicating the name of the activity we want to go to. When the
bookmark is resumed, the Series will jump to the activity indicated.

Here’s a simple description of the execution semantics:
• Th e activity user must provide a string TargetActivityName.

Th is argument is required.
• At execution time:
 • Th e GoTo activity will locate the “GoTo” bookmark

created by the Series activity.
 • If the bookmark is found, it will resume it, passing the

TargetActivityName.
 • It will create a synchronization bookmark, so the

activity does not complete.
 • It will be cancelled by the Series.

The code in Figure 5 shows the implementation for a GoTo
activity that behaves exactly as described.

GoTo derives from NativeActivity because it needs to interact
with the WF runtime to create and resume bookmarks and use
execution properties. Its public signature consists of the Target-
ActivityName string input argument that contains the name of
the activity we want to jump to. I decorated that argument with

public class GoTo : NativeActivity
{
 public GoTo()
 { }

 [RequiredArgument]
 public InArgument<string> TargetActivityName { get; set; }

 protected override bool CanInduceIdle { get { return true; } }

 protected override void Execute(NativeActivityContext context)
 {
 // Get the bookmark created by the parent Series
 Bookmark bookmark = context.Properties.Find(Series.GotoPropertyName)
as Bookmark;

 // Resume the bookmark passing the target activity name
 context.ResumeBookmark(bookmark, this.TargetActivityName.
Get(context));

 // Create a bookmark to leave this activity idle waiting when it does
 // not have any further work to do. Series will cancel this activity
 // in its GoTo method
 context.CreateBookmark("SyncBookmark");
 }

}

Figure 5 The GoTo Activity

The GoTo method is arguably
the most interesting.

DESIGN
Design Applications That Help Run the Business

Our xamMap™ control in Silverlight and
WPF lets you map out any geospatial
data like this airplane seating app to
manage your business. Come to
infragistics.com to try it today!

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91 80 4151 8042

@infragistics

Untitled-6 1 11/10/10 11:41 AM

www.infragistics.com

msdn magazine38 Windows Workfl ow Foundation 4

the RequiredArgument attribute, meaning that the WF validation
services will enforce that it’s set with an expression.

I rely on the default implementation of CacheMetadata that
reflects on the public surface of the activity to find and register
runtime metadata.

Th e most important part is in the Execute method. I fi rst look
for the bookmark created by the parent Series activity. Because
the bookmark was stored as an execution property, I look for it in
context.Properties. Once I fi nd that bookmark, I resume it, passing
the TargetActivityName as input data. Th is bookmark resumption
will result in the Series.Goto method being invoked (because it’s the
bookmark callback supplied when the bookmark was created). Th at
method will look for the next activity in the collection, schedule
it and cancel the activity that’s currently executing:

// Get the bookmark created by the parent Series
Bookmark bookmark = context.Properties.Find(Series.GotoPropertyName) as
Bookmark;

// Resume the bookmark passing the target activity name
context.ResumeBookmark(bookmark, this.TargetActivityName.Get(context));

Th e fi nal line of code is the trickiest one: creating a bookmark for
synchronization that will keep the GoTo activity running. Hence,
when the GoTo.Execute method is complete, this activity will still be
in executing state, waiting for a stimulus to resume the bookmark.
When I discussed the code for Series.Goto, I mentioned that it
cancelled the activity being executed. In this case, Series.Goto is
actually canceling a Goto activity instance that’s waiting for this
bookmark to be resumed.

To explain in more detail: Th e instance of GoTo activity was sched-
uled by the Series activity. When this activity completes, the comple-
tion callback in Series (OnChildCompleted) looks for the next activity
in Series.Activities collection and schedules it. In this case I don’t want
to schedule the next activity—I want to schedule the activity refer-
enced by TargetActivityName. Th is bookmark enables this because it
keeps the GoTo activity in an executing state while the target activity is
being scheduled. When GoTo is cancelled, there’s no action in the
Series.OnChildCompleted callback because it only schedules the next
activity if the completion state is Closed (and, in this case, is Cancelled):

// Create a bookmark to leave this activity idle waiting when it does
// not have any further work to do. Series will cancel this activity
// in its GoTo method
context.CreateBookmark(“SyncBookmark”);

Figure 6 shows an example using this activity. In this case, I’m loop-
ing back to a previous state according to the value of a variable. Th is
is a simple example to illustrate the basic use of Series, but this activ-
ity can be used to implement complex, real-world business scenarios
where you need to skip, redo or jump to steps in a sequential process.

Go with the Flow
In this article I presented the general aspects of writing custom
control fl ow activities. In WF 4, the control fl ow spectrum is not
fi xed; writing custom activities has been dramatically simplifi ed. If
the activities provided out-of-the-box don’t meet your needs, you
can easily create your own. In this article I started with a simple
control fl ow activity and then worked my way up to implement a
custom control fl ow activity that adds new execution semantics to
WF 4. If you want to learn more, a Community Technology Preview
for State Machine is available at CodePlex with full source code.
You’ll also fi nd a series of Channel 9 videos on activity authoring
best practices. By writing your own custom activities, you can
express any control fl ow pattern in WF and accommodate WF to
the particulars of your problem.

LEON WELICKI is a program manager in the Windows Workfl ow Foundation
(WF) team at Microsoft working on the WF runtime. Prior to joining Microsoft ,
he worked as lead architect and dev manager for a large Spanish telecom company
and as an external associate professor on the graduate computer science faculty
at the Pontifi cal University of Salamanca at Madrid.

THANKS to the following technical experts for reviewing this article:
Joe Clancy, Dan Glick, Rajesh Sampath, Bob Schmidt and Isaac Yuen

var counter = new Variable<int>();

var act = new Series
{
 Variables = { counter},
 Activities =
 {
 new WriteLine
 {
 DisplayName = "Start",
 Text = "Step 1"
 },
 new WriteLine
 {
 DisplayName = "First Step",
 Text = "Step 2"
 },
 new Assign<int>
 {
 To = counter,
 Value = new InArgument<int>(c => counter.Get(c) + 1)
 },
 new If
 {
 Condition = new InArgument<bool>(c => counter.Get(c) == 3),
 Then = new WriteLine
 {
 Text = "Step 3"
 },
 Else = new GoTo { TargetActivityName = "First Step" }
 },
 new WriteLine
 {
 Text = "The end!"
 }
 }
};

WorkflowInvoker.Invoke(act);

Figure 6 Using GoTo in a Series

Windows Workfl ow Foundation 4 Developer Center
msdn.microsoft.com/netframework/aa663328

Endpoint.tv: Activities Authoring Best Practices
channel9.msdn.com/shows/Endpoint/endpointtv-Workfl ow-and-Custom-

Activities-Best-Practices-Part-1/

Designing and Implementing Custom Activities
msdn.microsoft.com/library/dd489425

ActivityInstance Class
msdn.microsoft.com/library/system.activities.activityinstance

RuntimeArgument Class
msdn.microsoft.com/library/dd454495

References

http://msdn.microsoft.com/netframework/aa663328
http://channel9.msdn.com/shows/Endpoint/endpointtv-Workflow-and-Custom-Activities-Best-Practices-Part-1/
http://msdn.microsoft.com/library/dd489425
http://msdn.microsoft.com/library/system.activities.activityinstance
http://msdn.microsoft.com/library/dd454495

DEVELOP
Rich Business Intelligence Applications in WPF and Silverlight

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91 80 4151 8042

@infragistics

Robust Pivot Grids for WPF and
Silverlight let your users analyze data
to make key business decisions.
Visit infragistics.com to try it today!

Untitled-6 1 11/10/10 10:57 AM

www.infragistics.com

msdn magazine40

S I LV E RL I G HT EXPOSED

Using MEF to Expose
Interfaces in Your
Silverlight MVVM Apps

While many developers may think of Silverlight as a
Web-centric technology, in practice it has become a great platform
for building any type of application. Silverlight has built-in support
for concepts such as data binding, value converters, navigation,
out-of-browser operation and COM Interop, making it relatively
straightforward to create all kinds of applications. And when I say
all kinds, I also mean enterprise applications.

Creating a Silverlight application with the Model-View-View-
Model (MVVM) pattern gives you, in addition to the features
already in Silverlight, the advantages of greater maintainability,
testability and separation of your UI from the logic behind it. And,
of course, you don’t have to fi gure all this out on your own. Th ere’s
a wealth of information and tools out there to help you get started.
For example, the MVVM Light Toolkit (mvvmlight.codeplex.com) is a
lightweight framework for implementing MVVM with Silverlight
and Windows Presentation Foundation (WPF), and WCF RIA
Services (silverlight.net/getstarted/riaservices) helps you easily access

Sandrino Di Mattia

Windows Communication Foundation (WCF) services and data-
bases thanks to code generation.

You can take your Silverlight application a step further with the
Managed Extensibility Framework (mef.codeplex.com), also known as
MEF. Th is framework provides the plumbing to create extensible
applications using components and composition.

In the rest of the article I’ll show you how to use MEF to get cen-
tralized management of the View and ViewModel creation. Once you
have this, you can go much further than just putting a ViewModel in
the DataContext of the View. All this will be done by customizing
the built-in Silverlight navigation. When the user navigates to a
given URL, MEF intercepts this request, looks at the route (a bit like
ASP.NET MVC), fi nds a matching View and ViewModel, notifi es
the ViewModel of what’s happening and displays the View.

Getting Started with MEF
Because MEF is the engine that will connect all the parts of this
example, it’s best to start with it. If you’re not familiar with MEF already,
start by reading Glenn Block’s article, “Building Composable Apps in
.NET 4 with the Managed Extensibility Framework,” in the February
2010 issue of MSDN Magazine (msdn.microsoft.com/magazine/ee291628).

First you need to correctly confi gure MEF when the application
starts by handling the Startup event of the App class:

private void OnStart(object sender, StartupEventArgs e) {
 // Initialize the container using a deployment catalog.
 var catalog = new DeploymentCatalog();
 var container = CompositionHost.Initialize(catalog);
 // Export the container as singleton.
 container.ComposeExportedValue<CompositionContainer>(container);
 // Make sure the MainView is imported.
 CompositionInitializer.SatisfyImports(this);
}

This article discusses:
• Getting started with MEF

• Extending Silverlight and MEF

• Custom navigation

• Handling the View and ViewModel

Technologies discussed:
ASP.NET, Silverlight

Code download available at:
code.msdn.microsoft.com/mag201101MEF

http://mvvmlight.codeplex.com
http://silverlight.net/getstarted/riaservices
http://code.msdn.microsoft.com/mag201101MEF
http://mef.codeplex.com
http://msdn.microsoft.com/magazine/ee291628

EXPERIENCE
Beautiful Data Visualizations That Bring Your Data to Life

Use our Motion Framework™ to see your
data over time and give your users new
insight into their data. Visit infragistics.com
to try it today!

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.
Motion Framework is a trademark of Infragistics, Inc.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91 80 4151 8042

@infragistics

Untitled-6 1 11/10/10 10:57 AM

www.infragistics.com

msdn magazine42 Silverlight Exposed

Th e deployment catalog makes sure all assemblies are scanned for
exports and is then used to create a CompositionContainer. Because
the navigation will require this container to do some work later on, it’s
important to register the instance of this container as an exported value.
Th is will allow the same container to be imported whenever required.

Another option would be to store the container as a static
object, but this would create tight coupling between the classes,
which isn’t suggested.

Extending Silverlight Navigation
Silverlight Navigation Application is a Visual Studio template that
enables you to quickly create applications that support navigation
using a Frame that hosts the content. Th e great thing about Frames
is that they integrate with the Back and Forward buttons of your
browser and they support deep linking. Look at the following:

<navigation:Frame x:Name="ContentFrame"
 Style="{StaticResource ContentFrameStyle}"
 Source="Customers"
 NavigationFailed="OnNavigationFailed">
 <i:Interaction.Behaviors>
 <fw:CompositionNavigationBehavior />
 </i:Interaction.Behaviors>
</navigation:Frame>

Th is is just a regular frame that starts by navigating to Customers. As
you can see, this Frame doesn’t contain a UriMapper (where you could
link Customers to a XAML fi le, such as /Views/Customers.aspx). Th e
only thing it contains is my custom behavior, CompositionNavigation-
Behavior. A behavior (from the System.Windows.Interactivity assem-
bly) allows you to extend existing controls, such as a Frame in this case.

Figure 1 shows the behavior. Let’s take a look at what this
CompositionNavigationBehavior does. The first thing you can
see is that the behavior wants a CompositionContainer and a
CompositionNavigationLoader (more on this later) because of the
Import attributes. Th e constructor then forces the Import using
the SatisfyImports method on the CompositionInitializer. Note
that you should only use this method when you don’t have another
choice, as it actually couples your code to MEF.

When the Frame is attached, a NavigationService is created and
wrapped around the Frame. Using ComposeExportedValue, the
instance of this wrapper is registered in the container.

When the container was created, the instance of this container
was also registered in itself. As a result, an Import of Composition-
Container will always give you the same object; this is why I used
ComposeExportedValue in the Startup event of the App class. Now
the CompositionNavigationBehavior asks for a CompositionContainer
using the Import attribute and will get it aft er SatisfyImports runs.

When registering the instance of INavigationService the same
thing happens. It’s now possible from anywhere in the application
to ask for an INavigationService (that wraps around a Frame).
Without having to couple your ViewModels to a frame you get
access to the following:

public interface INavigationService {
 void Navigate(string path);
 void Navigate(string path, params object[] args);
}

public class CompositionNavigationBehavior : Behavior<Frame> {
 private bool processed;
 [Import]
 public CompositionContainer Container {
 get; set;
 }

 [Import]
 public CompositionNavigationContentLoader Loader {
 get; set;
 }

 public CompositionNavigationBehavior() {
 if (!DesignerProperties.IsInDesignTool)
 CompositionInitializer.SatisfyImports(this);
 }

 protected override void OnAttached() {
 base.OnAttached();
 if (!processed) {
 this.RegisterNavigationService();
 this.SetContentLoader();
 processed = true;
 }
 }

 private void RegisterNavigationService() {
 var frame = AssociatedObject;
 var svc = new NavigationService(frame);
 Container.ComposeExportedValue<INavigationService>(svc);
 }

 private void SetContentLoader() {
 var frame = AssociatedObject;
 frame.ContentLoader = Loader;
 frame.JournalOwnership = JournalOwnership.Automatic;
 }
}

Figure 1 CompositionNavigationBehavior

[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
public class ViewModelExportAttribute :
 ExportAttribute, IViewModelMetadata {
..public Type ViewModelContract { get; set; }
 public string NavigationPath { get; set; }
 public string Key { get; set; }

 public ViewModelExportAttribute(Type viewModelContract,
 string navigationPath) : base(typeof(IViewModel)) {

 this.NavigationPath = navigationPath;
 this.ViewModelContract = viewModelContract;
 if (NavigationPath != null &&
 NavigationPath.Contains("/")) {
 // Split the path to get the arguments.
 var split = NavigationPath.Split(new char[] { '/' },
 StringSplitOptions.RemoveEmptyEntries);
 // Get the key.
 Key = split[0];
 }
 else {
 // No arguments, use the whole key.
 Key = NavigationPath;
 }
 }
}

Figure 2 Creating the ViewModelExportAttribute

MEF is the engine that
will connect all the parts of

this example.

43January 2011msdnmagazine.com

Now, let’s assume you have a ViewModel showing all of your
customers and this ViewModel should be able to open a specifi c
customer. Th is could be achieved using the following code:

[Import]
public INavigationService NavigationService {
 get; set;
}

private void OnOpenCustomer() {
 NavigationService.Navigate(
 "Customer/{0}", SelectedCustomer.Id);
}

But before jumping ahead, let’s discuss the SetContentLoader
method in the CompositionNavigationBehavior. It changes the

ContentLoader of the Frame. This is a perfect example of the
support for extensibility in Silverlight. You can provide your own
ContentLoader (that implements the INavigationContentLoader
interface) to really provide something to show in the Frame.

Now that you can see how things start falling into place, the
following topic—extending MEF—will become clear.

Back to Extending MEF
Th e goal here is that you can navigate to a certain path (be it from
the ViewModel or your browser address bar) and the Composition-
NavigationLoader does the rest. It should parse the URI, find a
matching ViewModel and a matching View, and combine them.

Normally you’d write something like this:
[Export(typeof(IMainViewModel))]
public class MainViewModel

In this case it would be interesting to use the Export attribute
with some extra confi guration, referred to as metadata. Figure 2
shows an example of a metadata attribute.

Th is attribute doesn’t do anything special. In addition to the
ViewModel interface, it allows you to defi ne a navigation path such

[Export] public class CompositionNavigationContentLoader :
 INavigationContentLoader {
 [ImportMany(typeof(IView))]
 public IEnumerable<ExportFactory<IView, IViewMetadata>>
 ViewExports { get; set; }

 [ImportMany(typeof(IViewModel))]
 public IEnumerable<ExportFactory<IViewModel, IViewModelMetadata>>
 ViewModelExports { get; set; }

 public bool CanLoad(Uri targetUri, Uri currentUri) {
 return true;
 }

 public void CancelLoad(IAsyncResult asyncResult) {
 return;
 }

 public IAsyncResult BeginLoad(Uri targetUri, Uri currentUri,
 AsyncCallback userCallback, object asyncState) {
 // Convert to a dummy relative Uri so we can access the host.
 var relativeUri = new Uri("http://" + targetUri.OriginalString,
 UriKind.Absolute);

 // Get the factory for the ViewModel.
 var viewModelMapping = ViewModelExports.FirstOrDefault(o =>
 o.Metadata.Key.Equals(relativeUri.Host,
 StringComparison.OrdinalIgnoreCase));

 if (viewModelMapping == null)
 throw new InvalidOperationException(
 String.Format("Unable to navigate to: {0}. " +
 "Could not locate the ViewModel.",
 targetUri.OriginalString));

 // Get the factory for the View.
 var viewMapping = ViewExports.FirstOrDefault(o =>
 o.Metadata.ViewModelContract ==
 viewModelMapping.Metadata.ViewModelContract);

 if (viewMapping == null)
 throw new InvalidOperationException(
 String.Format("Unable to navigate to: {0}. " +
 "Could not locate the View.",
 targetUri.OriginalString));

 // Resolve both the View and the ViewModel.
 var viewFactory = viewMapping.CreateExport();
 var view = viewFactory.Value as Control;
 var viewModelFactory = viewModelMapping.CreateExport();

 var viewModel = viewModelFactory.Value as IViewModel;

 // Attach ViewModel to View.
 view.DataContext = viewModel;
 viewModel.OnLoaded();

 // Get navigation values.
 var values = viewModelMapping.Metadata.GetArgumentValues(targetUri);
 viewModel.OnNavigated(values);

 if (view is Page) {
 Page page = view as Page;
 page.Title = viewModel.GetTitle();
 }
 else if (view is ChildWindow) {
 ChildWindow window = view as ChildWindow;
 window.Title = viewModel.GetTitle();
 }

 // Do not navigate if it's a ChildWindow.
 if (view is ChildWindow) {
 ProcessChildWindow(view as ChildWindow, viewModel);
 return null;
 }
 else {
 // Navigate because it's a Control.
 var result = new CompositionNavigationAsyncResult(asyncState, view);
 userCallback(result);
 return result;
 }
 }

 private void ProcessChildWindow(ChildWindow window,
 IViewModel viewModel) {
 // Close the ChildWindow if the ViewModel requests it.
 var closableViewModel = viewModel as IClosableViewModel;

 if (closableViewModel != null) {
 closableViewModel.CloseView += (s, e) => { window.Close(); };
 }

 // Show the window.
 window.Show();
 }

 public LoadResult EndLoad(IAsyncResult asyncResult) {
 return new LoadResult((asyncResult as
 CompositionNavigationAsyncResult).Result);
 }
}

Figure 3 Custom INavigationContentLoader

Your attribute should implement
an interface with the values you’ll

want to expose as metadata.

www.msdnmagazine.com

msdn magazine44 Silverlight Exposed

as Customer/{Id}. Th en it will process this path using Customer
as Key and {Id} as one of the arguments. Here’s an example of how
this attribute is used:

[ViewModelExport(typeof(ICustomerDetailViewModel),
 "Customer/{id}")]
public class CustomerDetailViewModel
 : ICustomerDetailViewModel

Before continuing, there are a few important things to note. First,
your attribute should be decorated with the [MetadataAttribute] to
work correctly. Second, your attribute should implement an interface
with the values you’ll want to expose as metadata. And fi nally, mind
the constructor of the attribute—it passes a type to the base constructor.
Th e class that’s decorated with this attribute will be exposed using this
type. In the case of my example, this would be IViewModel.

Th at’s it for exporting the ViewModels. If you want to import
them somewhere, you should be writing something like this:

[ImportMany(typeof(IViewModel))]
public List<Lazy<IViewModel, IViewModelMetadata>> ViewModels {
 get;
 set;
}

Th is will give you a list that contains all exported ViewModels
with their respective metadata, allowing you to enumerate the list
and maybe pick out only the ones of interest to you (based on the
metadata). In fact, the Lazy object will make sure that only the ones
of interest are actually instantiated.

Th e View will need something similar:
[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
public class ViewExportAttribute :
 ExportAttribute, IViewMetadata {

 public Type ViewModelContract { get; set; }
 public ViewExportAttribute() : base(typeof(IView)) {
 }
}

There’s nothing special in this example, either. This attribute
allows you to set the contract of the ViewModel to which the View
should be linked.

Here’s an example of AboutView:
[ViewExport(ViewModelContract = typeof(IAboutViewModel))]
public partial class AboutView : Page, IView {
 public AboutView() {
 InitializeComponent();
 }
}

A Custom INavigationContentLoader
Now that the overall architecture has been set up, let’s take a look at
controlling what’s loaded when a user navigates. To create a custom
content loader, the following interface needs to be implemented:

public interface INavigationContentLoader {
 IAsyncResult BeginLoad(Uri targetUri, Uri currentUri,
 AsyncCallback userCallback, object asyncState);
 void CancelLoad(IAsyncResult asyncResult);
 bool CanLoad(Uri targetUri, Uri currentUri);
 LoadResult EndLoad(IAsyncResult asyncResult);
}

Th e most important part of the interface is the BeginLoad method,
because this method should return an AsyncResult containing the
item that will be displayed in the Frame. Figure 3 shows the imple-
mentation of the custom INavigationContentLoader.

As you can see, a lot happens in this class—but it’s actually simple.
Th e fi rst thing to notice is the Export attribute. Th is is required to
be able to import this class in the CompositionNavigationBehavior.

Th e most important parts of this class are the ViewExports and
ViewModelExports properties. These enumerations contain all
exports for the Views and the ViewModels, including their metadata.
Instead of using a Lazy object I’m using an ExportFactory. Th is is a
huge diff erence! Both classes will only instantiate the object when
required, but the diff erence is that with the Lazy class you can only
create a single instance of the object. Th e ExportFactory (named
aft er the Factory pattern) is a class that allows you to request a new
instance of the type of object whenever you feel like it.

Finally, there’s the BeginLoad method. Th is is where the magic
happens. Th is is the method that will provide the Frame with the
content to display aft er navigating to a given URI.

Creating and Processing Objects
Let’s say you tell the frame to navigate to Customers. Th is will be
what you’ll fi nd in the targetUri argument of the BeginLoad method.
Once you have this you can get to work.

Th e fi rst thing to do is fi nd the correct ViewModel. Th e ViewModel-
Exports property is an enumeration that contains all the exports with
their metadata. Using a lambda expression you can fi nd the correct
ViewModel based on its key. Remember the following:

[ViewModelExport(typeof(ICustomersViewModel), "Customers")]
public class CustomersViewModel :
 ContosoViewModelBase, ICustomersViewModel

Well, imagine you navigate to Customers. Th en the following
code will fi nd the right ViewModel:

var viewModelMapping = ViewModelExports.FirstOrDefault(o => o.Metadata.
Key.Equals("Customers",
 StringComparison.OrdinalIgnoreCase));

Once the ExportFactory is located, the same thing should hap-
pen for the View. However, instead of looking for the navigation
key, you look for the ViewModelContract as defi ned in both the
ViewModelExportAttribute and the ViewModelAttribute:

Figure 4 Extension Methods for Navigation Arguments

Figure 5 Setting a Custom Window Title

Instead of using a Lazy object I’m
using an ExportFactory.

45January 2011msdnmagazine.com

[ViewExport(ViewModelContract = typeof(IAboutViewModel))
public partial class AboutView : Page

Once both ExportFactories are found, the hard part is over. Now
the CreateExport method allows you to create a new instance of
the View and the ViewModel:

var viewFactory = viewMapping.CreateExport();
var view = viewFactory.Value as Control;
var viewModelFactory = viewModelMapping.CreateExport();
var viewModel = viewModelFactory.Value as IViewModel;

Aft er both the View and the ViewModel have been created, the
ViewModel is stored in the DataContext of the View, starting the
required data bindings. And the OnLoaded method of the ViewModel
is called to notify the ViewModel that all the heavy lift ing has been
done, and also that all Imports—if there are any—have been imported.

You shouldn’t underestimate this last step when you’re using
the Import and ImportMany attributes. In many cases you’ll want
to do something when creating a ViewModel, but only when
everything has been loaded correctly. If you’re using an Importing-
Constructor you defi nitely know when all Imports were imported
(that would be when the constructor is called). But when working
with the Import/ImportMany attributes, you should start writing
code in all your properties to set fl ags in order to know when all
properties have been imported.

In this case the OnLoaded method solves this issue for you.

Passing Arguments to the ViewModel
Take a look at the IViewModel interface, and pay attention to the
OnNavigated method:

public interface IViewModel {
 void OnLoaded();
 void OnNavigated(NavigationArguments args);
 string GetTitle();
}

When you navigate to Customers/1, for example, this path is parsed
and the arguments are combined in the NavigationArguments class
(this is just a Dictionary with extra methods like GetInt, GetString and
so on). Because it’s mandatory that each ViewModel implements the
IViewModel interface, it’s possible to call the OnNavigated method
aft er resolving the ViewModel:

// Get navigation values.
var values = viewModelMapping.Metadata.GetArgumentValues(targetUri);
viewModel.OnNavigated(values);

When the CustomersViewModel wants to open a Customer-
DetailViewModel, the following happens:

NavigationService.Navigate("Customer/{0}", SelectedCustomer.Id);

Th ese arguments then arrive in the CustomerDetailViewModel
and can be used to pass to the DataService, for example:

public override void OnNavigated(NavigationArguments args) {
 var id = args.GetInt("Id");
 if (id.HasValue) {
 Customer = DataService.GetCustomerById(id.Value);
 }
}

To find the arguments, I wrote a class containing two exten-
sion methods that do some work based on the information in the
ViewModel metadata (see Figure 4). This proves again that the
metadata concept in MEF is really useful.

The Final Chores
If the View is a Page or a ChildWindow, the title of this control will
also be extracted from the IViewModel object. Th is allows you to
dynamically set the titles of your Pages and ChildWindows based
on the current customer, as shown in Figure 5.

Aft er all these great little things, there’s one last step. If the View
is a ChildWindow the window should be displayed. But if the
ViewModel implements IClosableViewModel, the CloseView
event of this ViewModel should be linked to the Close method on
the ChildWindow.

Th e IClosableViewModel interface is simple:
public interface IClosableViewModel : IViewModel {
 event EventHandler CloseView;
}

Processing the ChildWindow is also trivial. When the ViewModel
raises the CloseView event, the Close method of the ChildWindow gets
called. Th is allows you to indirectly connect the ViewModel to the View:

// Close the ChildWindow if the ViewModel requests it.
var closableViewModel = viewModel as IClosableViewModel;
if (closableViewModel != null) {
 closableViewModel.CloseView += (s, e) => {
 window.Close();
 };
}

// Show the window.
window.Show();

If the View isn’t a ChildWindow, then it should simply be made
available in the IAsyncResult. Th is will show the View in the Frame.

Th ere. Now you’ve seen the whole process of how the View and
ViewModel are constructed.

Using the Example Code
Th e code download for this article contains an MVVM application
using this type of custom navigation with MEF. Th e solution
contains the following examples:

• Navigating to a regular UserControl
• Navigating to a regular UserControl by passing

arguments (.../#Employee/DiMattia)
• Navigating to a ChildWindow by passing

arguments (.../#Customer/1)
• Imports of the INavigationService, the IDataService, ...
• Examples of ViewExport and ViewModelExport

confi guration
Th is article should have provided a good idea of how the

sample works. For a deeper understanding, play with the code and
customize it for your own applications. You’ll see how powerful
and fl exible MEF can be.

SA NDRINO DI MATTIA is a soft ware engineer at RealDolmen and has a passion
for everything that is Microsoft . He also participates in user groups and writes
articles on his blog at blog.sandrinodimattia.net.

THANKS to the following technical experts for reviewing this article:
Glenn Block and Daniel Plaisted

Now you’ve seen the whole
process of how the View and
ViewModel are constructed.

www.msdnmagazine.com
http://blog.sandrinodimattia.net

Untitled-3 2 12/2/10 10:47 AM

www.componentart.com

Untitled-3 3 12/2/10 10:47 AM

www.componentart.com

msdn magazine48

PARALLEL COMPUT ING

Data Processing:
Parallelism and
Performance

Processing data collections is a fundamental computing
task, and a number of practical problems are inherently parallel,
potentially enabling improved performance and throughput on
multicore systems. I’ll compare several distinct Windows-based
methods to solve problems with a high degree of data parallelism.

Th e benchmark I’ll use for this comparison is a search problem (“Geo-
names”) from Chapter 9 of Troy Magennis’ book, “LINQ to Objects
Using C# 4.0” (Addison-Wesley, 2010). Th e alternative solutions are:

• Parallel Language Integrated Query (PLINQ) and C# 4.0,
with and without enhancements to the original code.

• Windows native code using C, the Windows API, threads
and memory-mapped fi les.

• Windows C#/Microsoft .NET Framework
multithreaded code.

The source code for all solutions is available on my Web site
(jmhartsoftware.com). Other parallelism techniques, such as the
Windows Task Parallel Library (TPL), are not examined directly,
although PLINQ is layered on the TPL.

Johnson M. Hart

Comparing and Evaluating Alternative Solutions
Th e solution evaluation criteria, in order of importance, are:

• Total performance in terms of elapsed time to complete
the task.

• Scalability with the degree of parallelism (number of tasks),
core count and data collection size.

• Code simplicity, elegance, ease of maintenance and
similar intangible factors.

Results Summary
Th is article will show that for a representative benchmark search problem:

• You can successfully exploit multicore 64-bit systems to
improve performance in many data-processing problems,
and PLINQ can be part of the solution.

• Competitive, scalable PLINQ performance requires indexed
data collection objects; supporting the IEnumerable inter-
face isn’t suffi cient.

• Th e C#/.NET and native code solutions are fastest.
• Th e original PLINQ solution is slower by a factor of nearly

10, and it doesn’t scale beyond two tasks, whereas the other
solutions scale well up to six tasks with six cores (the maxi-
mum tested). However, code enhancements improve the
original solution signifi cantly.

• The PLINQ code is the simplest and most elegant in all
respects because LINQ provides a declarative query capabil-
ity for memory-resident and external data. Th e native code
is ungainly, and the C#/.NET code is considerably better
than—but not as simple as—the PLINQ code.

• All methods scale well with fi le size up to the limits of the
test system physical memory.

This article discusses:
• Evaluation criteria for alternative parallelism strategies

• Optimizing a benchmark data search problem

• A performance comparison of different approaches

Technologies discussed:
PLINQ, C#, Microsoft .NET Framework

Code download available at:
 jmhartsoftware.com

http://jmhartsoftware.com

49January 2011msdnmagazine.com

The Benchmark Problem: Geonames
Th e idea for this article came from Chapter 9 of Magennis’ LINQ
book, which demonstrates PLINQ by searching a geographic data-
base containing more than 7.25 million place names in an 825MB
fi le (that’s more than one location for every 1,000 people). Each
place name is represented by a UTF-8 (en.wikipedia.org/wiki/UTF-8) text
line record (variable length) with more than 15 tab-separated data
columns. Note: Th e UTF-8 encoding assures that a tab (0x9) or line
feed (0xA) value won’t occur as part of a multi-byte sequence; this is
essential for several implementations.

Magennis’ Geonames program implements a hard-coded query
to identify all locations with an elevation (column 15) greater than
8,000 meters, displaying the location name, country and elevation,
sorted by decreasing elevation. In case you’re wondering, there are
16 such locations, and Mt. Everest is the highest at 8,848 meters.

Magennis reports elapsed times of 22.3 seconds (one core) and
14.1 seconds (two cores). Previous experience (for example, see my
article “Windows Parallelism, Fast File Searching and Speculative
Processing” at informit.com/articles/article.aspx?p=1606242) shows that
fi les of this size can be processed in a few seconds and performance
scales well with the core count. Th erefore, I decided to attempt to
replicate that experience and also try to enhance Magennis’ PLINQ
code for better performance. The initial PLINQ enhancements
almost doubled the performance but didn’t improve scalability;
further enhancements, however, do yield performance nearly as
good as native and C# multithreaded code.

Th is benchmark is interesting for several reasons:
• Th e subject (geographical places and attributes) is inherently

interesting, and it’s easy to generalize the query.
• Th ere’s a high degree of data parallelism; in principle, every

record could be processed concurrently.
• Th e fi le size is modest by today’s standards, but it’s simple to

test with larger fi les simply by concatenating the Geonames
allCountries.txt fi le to itself multiple times.

• The processing is not stateless; it’s necessary to deter-
mine the line and field boundaries in order to partition
the fi le, and the lines need to be processed to identify the
individual fi elds.

An Assumption: Assume that the number of identifi ed records
(in this instance, locations higher than 8,000 meters) is small, so
that sorting and display time are minimal relative to the overall
processing time, which involves examining every byte.
Another Assumption: Th e performance results represent time
required to process memory-resident data collections, such as data
produced by a prior program step. Th e benchmark program does
read a fi le, but the test programs are run several times to assure
that the fi le is memory-resident. However, I’ll mention the time

required to load the fi le initially, and this time is approximately
the same for all solutions.

Performance Comparison
Th e fi rst test system is a six-core desktop system running Windows
7 (AMD Phenom II, 2.80 GHz, 4GB RAM). Later, I’ll present
results for three other systems with hyper-threading, or HT
(en.wikipedia.org/wiki/Hyper-threading), and diff erent core counts.

Figure 1 shows the results for six diff erent Geonames solutions,
with elapsed time (seconds) as a function of “Degree of Parallel-
ization,” or DoP (the number of parallel tasks, which can be set to
higher than the number of processors); the test system has six cores,
but the implementations control the DoP. Six tasks are optimal;
using more than six tasks degraded performance. All tests use the
original Geonames 825MB allCountries.txt data fi le.

Th e implementations are (fuller explanations will follow):
1. Geonames Original. This is Magennis’ original PLINQ

solution. Th e performance isn’t competitive and doesn’t
scale with processor count.

2. Geonames Helper. Th is is a performance-enhanced version
of Geonames Original.

Figure 1 Geonames Performance as a Function
of Degree of Parallelism

1 2 3 4 5 6 7 8

18

16

14

12

10

8

6

4

2

0

Ti
m

e
(s

)

Degree of Parallelism (DoP)

Original
Helper
MMChar
MMByte
Index
Multithreaded

Figure 2 Geonames Performance as a Function of File Size

Index Native .NET Th

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

825MB
1,651MB
3,302MB

A number of practical
problems are

inherently parallel.

www.msdnmagazine.com
http://en.wikipedia.org/wiki/UTF-8
http://informit.com/articles/article.aspx?p=1606242
http://en.wikipedia.org/wiki/Hyper-threading

msdn magazine50 Parallel Computing

3. Geonames MMChar. Th is was an unsuccessful attempt to
enhance Geonames Helper with a memory-mapped fi le class
similar to that used in Geonames Th reads. Note: Memory map-
ping allows a fi le to be referenced as if it was in memory without
explicit I/O operations, and it can provide performance benefi ts.

4. Geonames MMByte. Th is solution modifi es MMChar to
process the individual bytes of the input fi le, whereas the
previous three solutions convert UTF-8 characters to
Unicode (at 2 bytes each). The performance is the best
of the first four solutions and is more than double that
of Geonames Original.

5. Geonames Th reads doesn’t use PLINQ. Th is is the C#/.NET
implementation using threads and a memory-mapped
fi le. Th e performance is faster than Index (the next item)
and about the same as Native. Th is solution and Geonames
Native provide the best parallelism scalability.

6. Geonames Index. Th is PLINQ solution preprocesses the data
fi le (requiring about nine seconds) to create a memory-
resident List<byte[]> object for subsequent PLINQ
processing. Th e preprocessing cost can be amortized over
multiple queries, giving performance that’s only slightly
slower than Geonames Native and Geonames Th reads.

7. Geonames Native (not shown in Figure 1) doesn’t use
PLINQ. This is the C Windows API implementation
using threads and a memory-mapped fi le as in Chapter 10
of my book, “Windows System Programming” (Addison-
Wesley, 2010). Full compiler optimization is essential for
these results; the default optimization provides only about
half the performance.

All implementations are 64-bit builds. 32-bit builds work in most
cases, but they fail for larger fi les (see Figure 2). Figure 2 shows
performance using DoP 4 and larger fi les.

The test system in this case has four cores (AMD Phenom
Quad-Core, 2.40 GHz, 8GB RAM). Th e larger fi les were created by
concatenating multiple copies of the original fi le. Figure 2 shows just the
three fastest solutions, including Geonames Index—the fastest PLINQ
solution (not counting fi le preprocessing)—and performance scales
with the fi le size up to the limits of physical memory.

I’ll now describe implementations two through seven and discuss
the PLINQ techniques in more detail. Following that, I’ll discuss
results on other test systems and summarize the fi ndings.

The Enhanced PLINQ Solutions: Geonames Helper
Figure 3 shows Geonames Helper with my changes (in bold face)
to the Geonames Original code.

As many readers may not be familiar with PLINQ and C# 4.0,
I’ll provide a few comments about Figure 3, including descriptions
of the enhancements:

• Lines 9-14 allow the user to specify the input file name
and the degree of parallelism (the maximum number of
concurrent tasks) on the command line; these values are
hardcoded in the original.

• Lines 16-17 start to read the fi le lines asynchronously and
implicitly type lines as a C# String array. Th e lines values
aren’t used until Lines 19-27. Other solutions, such as
Geonames MMByte, use a diff erent class with its own Read-
Lines method, and these code lines are the only lines that
need to be changed.

• Lines 19-27 are LINQ code along with the PLINQ AsParallel
extension. Th e code is similar to SQL, and the variable “q”
is implicitly typed as an array of objects consisting of an
integer elevation and a String. Notice that PLINQ per-

 1 class Program
 2 {
 3 static void Main(string[] args)
 4 {
 5 const int nameColumn = 1;
 6 const int countryColumn = 8;
 7 const int elevationColumn = 15;
 8
9 String inFile = "Data/AllCountries.txt";
10 if (args.Length >= 1) inFile = args[0];
11
12 int degreeOfParallelism = 1;
13 if (args.Length >= 2) degreeOfParallelism = int.Parse(args[1]);
14 Console.WriteLine("Geographical data file: {0}.
 Degree of Parallelism: {1}.", inFile, degreeOfParallelism);
15
16 var lines = File.ReadLines(Path.Combine(
17 Environment.CurrentDirectory, inFile));
18
19 var q = from line in
 lines.AsParallel().WithDegreeOfParallelism(degreeOfParallelism)
20 let elevation =
 Helper.ExtractIntegerField(line, elevationColumn)
21 where elevation > 8000 // elevation in meters
22 orderby elevation descending
23 select new
24 {
25 elevation = elevation,
26 thisLine = line
27 };
28
29 foreach (var x in q)
30 {
31 if (x != null)
32 {
33 String[] fields = x.thisLine.Split(new char[] { '\t' });
34 Console.WriteLine("{0} ({1}m) - located in {2}",
35 fields[nameColumn], fields[elevationColumn],
 fields[countryColumn]);
36 }
37 }
38 }
39 }

Figure 3 Geonames Helper with Highlighted Changes to the
Original PLINQ Code

You can successfully
exploit multicore, 64-bit systems

to improve performance
in many data-processing

problems, and PLINQ can be
part of the solution.

Untitled-3 1 12/7/10 3:45 PM

www.xceed.com

© 1987-2010 ComponentOne LCC. All rights reserved. All other product and brand
names are trademarks and/or registered trademarks of their respective holders.

Untitled-4 2 11/8/10 2:58 PM

www.componentone.com/blueprint

Untitled-4 3 11/8/10 2:58 PM

www.componentone.com/blueprint

msdn magazine54 Parallel Computing

forms all the thread-management work; the AsParallel
method is all that’s needed to turn serial LINQ code into
PLINQ code.

• Line 20. Figure 4 shows the Helper.ExtractIntegerField
method. Th e original program uses the String.Split method
in a manner similar to that used to display the results in
Line 33 (Figure 3). Th is is the key to the improved perfor-
mance of Geonames Helper compared to Geonames Original,
as it’s no longer necessary to allocate String objects for every
fi eld in every line.

Note that the AsParallel method used in Line 19 can be used with
any IEnumerable object. As I mentioned earlier, Figure 4 shows
the Helper class Extract IntegerField method. It simply extracts and
evaluates the specifi ed fi eld (elevation in this case), avoiding library
methods for performance. Figure 1 shows that this enhancement
doubles the performance with DoP 1.

Geonames MMChar and Geonames MMByte
Geonames MMChar represents an unsuccessful attempt to improve
performance by memory mapping the input fi le, using a custom
class, FileMmChar. Geonames MMByte, however, does yield sig-
nifi cant benefi ts, as the input fi le bytes aren’t expanded to Unicode.

MMChar requires a new class, FileMmChar, which supports the
IEnumerable<String> interface. Th e FileMmByte class is similar
and deals with byte[] objects rather than String objects. Th e only
signifi cant code change is to Figure 3, Lines 16-17, which are now:

 var lines = FileMmByte.ReadLines(Path.Combine(
 Environment.CurrentDirectory, inFile));

Th e code for
public static IEnumerable<byte[]> ReadLines(String path)

that supports the IEnumerable<byte[]> interface in FileMmByte
constructs a FileMmByte object and an IEnumerator<byte[]>
object that scans the mapped fi le for individual lines.

Note that the FileMmChar and FileMmByte classes are “unsafe”
because they create and use pointers to access the fi les, and they use
C#/native code interoperability. All the pointer usage is, however,
isolated in a separate assembly, and the code uses arrays rather than
pointer dereferencing. Th e .NET Framework 4 MemoryMappedFile
class doesn’t help, because it’s necessary to use accessor functions
to move data from mapped memory.

Geonames Native
Geonames Native exploits the Windows API, threads and fi le mem-
ory mapping. Th e basic code patterns are described in Chapter 10
of “Windows System Programming.” Th e program must manage
the threads directly and must also carefully map the fi le to memory.
Th e performance is much better than all PLINQ implementations
except Geonames Index.

Th ere is, however, an important distinction between the Geo-
names problem and a simple, stateless fi le search or transformation.
The challenge is to determine the correct method to partition
the input data so as to assign diff erent partitions to diff erent tasks.
Th ere’s no obvious way to determine the line boundaries without
scanning the entire fi le, so it isn’t feasible to assign a fi xed-size par-
tition to each task. However, the solution is straightforward when
illustrated with DoP 4:

• Divide the input file into four equal partitions, with the
partition start location communicated to each thread as
part of the thread function argument.

• Have each thread then process all lines (records) that start
in the partition. Th is means that a thread will probably scan
into the next partition in order to complete processing of
the last line that starts in the partition.

Geonames Threads
Geonames Th reads uses the same logic as Geonames Native; in fact
some code is the same or nearly the same. However, lambda expres-
sions, extension methods, containers and other C#/.NET features
greatly simplify the coding.

As with MMByte and MMChar, the file memory mapping
requires “unsafe” classes and C#/native code interoperability in
order to use pointers to the mapped memory. Th e eff ort is worth-
while, however, because Geonames Threads performance is the
same as Geonames Native performance with much simpler code.

Geonames Index
Th e PLINQ results (Original, Helper, MMChar and MMByte) are
disappointing compared to the Native and .NET Th reads results. Is

41 class Helper
42 {
43 public static int ExtractIntegerField(String line, int fieldNumber)
44 {
45 int value = 0, iField = 0;
46 byte digit;
47
48 // Skip to the specified field number and extract the decimal value.
49 foreach (char ch in line)
50 {
51 if (ch == '\t') { iField++; if (iField > fieldNumber) break; }
52 else
53 {
54 if (iField == fieldNumber)
55 {
56 digit = (byte)(ch - 0x30); // 0x30 is the character '0'
57 if (digit >= 0 && digit <= 9)
 { value = 10 * value + digit; }
58 else // Character not in [0-9]. Reset the value and quit.
59 { value = 0; break; }
60 }
61 }
62 }
63 return value;
64 }
65 }

Figure 4 Geonames Helper Class and
ExtractIntegerField Method

The challenge is to
determine the correct method to
partition the input data so as to

assign different partitions
to different tasks.

Untitled-1 1 11/10/10 3:05 PM

www.techexcel.com

msdn magazine56 Parallel Computing

there a way to exploit the simplicity and elegance of PLINQ with-
out sacrifi cing performance?

Although it’s impossible to determine exactly how PLINQ pro-
cesses the query (Lines 16-27 in Figure 3), it’s probable that PLINQ
has no good way to partition the input lines for parallel processing
by separate tasks. As a working hypothesis, assume that partitioning
may be the cause of the PLINQ performance problem.

From Magennis’ book (pp. 276-279), the lines String array
supports the IEnumerable<String> interface (see also John Sharp’s
book, “Microsoft Visual C# 2010 Step by Step” [Microsoft Press,
2010], Chapter 19). However, lines isn’t indexed, so PLINQ probably
uses “chunk partitioning.” Furthermore, the IEnumerator.MoveNext
methods for the FileMmChar and FileMmByte classes are slow
because they need to scan every character until the next new
line is located.

What would happen if the lines String array were indexed?
Could we improve PLINQ performance, especially when supple-
mented by memory mapping the input fi le? Geonames Index shows
that this technique does improve performance, yielding results
comparable to native code. In general, however, either there’s a
necessary up-front cost to move the lines into an in-memory list
or array, which is indexed (the cost can then be amortized over
multiple queries), or the fi le or other data source is already indexed,
perhaps during generation in an earlier program step, eliminating
the preprocessing cost.

Th e up-front indexing operation is simple; just access each line,
one at a time, and then add the line to a list. Use the list object in
Lines 16-17, as illustrated in Figure 3, and in this code snippet,
which shows the preprocessing:

// Preprocess the file to create a list of byte[] lines
List<byte[]> lineListByte = new List<byte[]>();
var lines =
 FileMmByte.ReadLines(Path.Combine(Environment.CurrentDirectory, inFile));
// ... Multiple queries can use lineListByte
//
foreach (byte[] line in lines) { lineListByte.Add(line); }
//
var q = from line in lineListByte.AsParallel().
 WithDegreeOfParallelism(degreeOfParallelism)

Note that it’s slightly more effi cient to process the data further
by converting the list to an array, although this increases the
preprocessing time.

A Final Performance Enhancement
Geonames Index performance can be improved still further by
indexing the fi elds in each line so that the ExtractIntegerField method
doesn’t need to scan all the characters in a line out to the specifi ed fi eld.

Th e implementation, Geonames IndexFields, modifi es the Read-
Lines method so that a returned line is an object containing both

a byte[] array and a uint[] array containing the locations of each
fi eld. Th is results in about a 33 percent performance improvement
over Geonames Index and brings the performance fairly close to the
native and C#/.NET solutions. (Geonames IndexFields is included with
the code download.) Furthermore, it’s now much easier to construct
more general queries as the individual fi elds are readily available.

Limitations
Th e effi cient solutions all require memory-resident data, and the
performance advantages don’t extend to very large data collections.
“Very large” in this case refers to data sizes that approach the system
physical memory size. In the Geonames example, the 3,302MB file
(four copies of the original file) could be processed on the 8GB test
system. A test with eight concatenated copies of the fi le, however,
was very slow with all the solutions.

As mentioned earlier, performance is also best when the data
fi les are “live,” in the sense that they’ve been accessed recently and
are likely to be in memory. Paging in the data fi le during the initial
run can take 10 or more seconds and is comparable to the indexing
operation in the earlier code snippet.

In summary, the results in this article apply to memory-resident data
structures, and today’s memory sizes and prices allow signifi cant data
objects, such as a fi le of 7.25 million place names, to be memory-resident.

Additional Test System Results
Figure 5 shows test results on an additional system (Intel i7 860,
2.80GHz, four cores, eight threads, Windows 7, 4GB RAM). Th e
processor supports hyper-threading, so the tested DoP values are
1, 2, ..., 8. Figure 1 is based on a test system with six AMD cores;
this system doesn’t support hyper-threading..

Two additional test confi gurations produced similar results (and
the full data is available on my Web site):

• Intel i7 720, 1.60GHz, four cores, eight threads,
Windows 7, 8GB RAM

• Intel i3 530, 2.93GHz, two cores, four threads,
Windows XP64, 4GB RAM

Interesting performance characteristics include:
• Geonames Th reads consistently provides the best perfor-

1 2 3 4 5 6 7 8

16

14

12

10

8

6

4

2

0

Ti
m

e
(s

)

Degree of Parallelism (DoP)

Original
Helper
MMChar
MMByte
Index
.NET Th

Figure 5 Intel i7 860, 2.80GHz, Four Cores, Eight Threads,
Windows 7, 4GB RAM

PLINQ provides an excellent
model for processing

in-memory data structures.

57January 2011msdnmagazine.com

mance, along with Geonames Native.
• Geonames Index is the fastest PLINQ solution, app roaching

the Geonames Threads performance. Note: Geonames
IndexFields is slightly faster but isn’t shown in Figure 5.

• Other than Geonames Index, all PLINQ solutions scale
negatively with the DoP for DoP greater than two; that
is, performance decreases as the number of parallel tasks
increases. From this example, PLINQ produces good
performance only when used with indexed objects.

• Th e hyper-threading performance contribution is marginal.
Th erefore, Geonames Th reads and Geonames Index perfor-
mance doesn’t increase signifi cantly for DoP greater than
four. Th is poor HT scalability might be a consequence of
scheduling two threads on logical processors on the same
core, rather than assuring that they run on distinct cores
when possible. However, this explanation doesn’t appear
to be plausible as Mark E. Russinovich, David A. Solomon
and Alex Ionescu say that physical processors are sched-
uled before logical processors on p. 40 of their book,
“Windows Internals, Fift h Edition” (Microsoft Press, 2009).
Th e AMD systems without HT (Figure 1) provided about
three to four times the performance with DoP greater
than four, compared to the sequential DoP one results for
Th reads, Native and Index. Figure 1 shows that the best
performance occurs when the DoP is the same as the core
count, where the multithreaded performance is 4.2 times
the DoP one performance.

Results Summary
PLINQ provides an excellent model for processing in-memory data
structures, and it’s possible to improve existing code performance
with some simple changes (for example, Helper) or with more
advanced techniques, as was shown with MMByte. However, none
of the simple enhancements provide performance close to that of
native or multithreaded C#/.NET code. Furthermore, the enhance-
ment doesn’t scale with the core count and DoP.

PLINQ can come close to native and C#/.NET code performance,
but it requires the use of indexed data objects.

Using the Code and Data
All code is available on my Web site (jmhartsoftware.com/SequentialFile
ProcessingSupport.html), following these instructions:

• Go to the page to download a ZIP file containing PLINQ
code and Geonames Th reads code. All PLINQ variations
are in the GeonamesPLINQ project (Visual Studio 2010;
Visual Studio 2010 Express is sufficient). Geonames
Threads is in the GeonamesThreads Visual Studio 2010
project. The projects are both configured for 64-bit
release builds. The ZIP file also contains a spreadsheet
with the raw performance data used in Figures 1, 2 and 5.
A simple “Usage” comment at the head of the fi le explains
the command-line option to select the input file, DoP
and implementation.

• Go to the Windows System Programming support page
(jmhartsoftware.com/comments_updates.html) to download the
Geonames Native code and projects (a ZIP fi le), where you’ll
find the Geonames project. A ReadMe.txt file explains
the structure.

• Download the GeoNames database from download.geonames.org/
export/dump/allCountries.zip.

Unexplored Questions
This article compared the performance of several alternative
techniques to solve the same problem. The approach has been
to use standard interfaces as they’re described and to assume a
simple shared-memory model for the processors and threads.
Th ere was, however, no signifi cant eff ort to probe deeply into the
underlying implementations or specific features of the test
machines, and numerous questions could be investigated in the
future. Here are some examples:

• What’s the eff ect of cache misses, and is there any method
to reduce the impact?

• What would be the impact of solid-state disks?
• Is there any way to reduce the performance gap between

the PLINQ Index solution and the Threads and Native
solutions? Experiments reducing the amount of data copy-
ing in the FileMmByte IEnumerator.MoveNext and Current
methods didn’t show any signifi cant benefi t.

• Is the performance close to the theoretical maximum as
determined by memory bandwidth, CPU speed and other
architectural features?

• Is there a way to get scalable performance on HT systems
(see Figure 5) that’s comparable to systems without
HT (Figure 1)?

• Can you use profi ling and Visual Studio 2010 tools to identify
and remove performance bottlenecks?

I hope you’re able to investigate further.

JOHNSON (JOHN) M. HART is a consultant specializing in Microsoft Windows
and Microsoft .NET Framework application architecture and development,
technical training and writing. He has many years of experience as a soft ware
engineer, engineering manager and architect at Cilk Arts Inc. (since acquired by
Intel Corp.), Sierra Atlantic Inc., Hewlett-Packard Co. and Apollo Computer.
He served as computer science professor for many years and has authored four
editions of “Windows System Programming” (Addison-Wesley, 2010).

THANKS to the following technical experts for reviewing this article:
Michael Bruestle, Andrew Greenwald, Troy Magennis and CK Park

None of the simple
enhancements provide

performance close to that of
native or multithreaded

C#/.NET code.

www.msdnmagazine.com
http://jmhartsoftware.com/SequentialFileProcessingSupport.html
http://jmhartsoftware.com/SequentialFileProcessingSupport.html
http://jmhartsoftware.com/comments_updates.html
http://download.geonames.org/export/dump/allCountries.zip
http://download.geonames.org/export/dump/allCountries.zip

msdn magazine58

V I S UA L ST UD IO

Use Multiple
Visual Studio Project
Types for Cloud Success

As you’ve probably noticed, there are many diff erent
project types in Visual Studio these days. Which one do you choose?
All have strengths that help solve problems in diff erent situations.
Even within a single business problem, there are oft en multiple use
cases that can best be solved by diff erent Visual Studio project types.

I was confronted with a real-world example of such a problem
recently while building out the infrastructure for a cloud-based pro-
gram I lead that’s designed to highlight success stories: Microsoft
Solutions Advocates (microsoftsolutionsadvocates.com). I used several
diff erent Visual Studio project types to build my solution, and in
this article, I’ll walk through a simplifi ed example of my project
called “Customer Success Stories,” or CSS.

Patrick Foley

CSS has three distinct use cases:
1. Anonymous users read success stories on a public Web site.
2. Users who belong to the program log in to a private Web

site to create and edit their own success stories.
3. Administrators (like me) log in to an administrative Web

site to manage and edit all the data, including minutia such
as lookup tables.

The approach I settled on combined three Microsoft .NET
Framework technologies:

1. ASP.NET MVC for the public site
2. WCF RIA Services for the private, customer-edit site
3. ASP.NET Dynamic Data for the administrative site

Any of these technologies could’ve been used to create the whole
solution, but I preferred to take advantage of the best features of each.
ASP.NET MVC is an ideal technology for creating a public Web
site that will work everywhere, because it emits standard HTML,
for one thing. Th e public site has a marketing purpose, so I’ll even-
tually engage a designer to polish the appearance. Working with a
designer adds complexity, but ASP.NET MVC has a straightforward
view implementation that makes it easy to incorporate a designer’s
vision. Making the site read-only and separating it from the other
use cases helps isolate the scope of the designer’s involvement.

Although ASP.NET MVC could also be used to implement
the customer-editing functionality, WCF RIA Services is an even
better fi t. (Conversely, WCF RIA Services could be used to build
a great-looking public Web site, but Silverlight isn’t supported on
some devices, such as iPhones and iPads, and I wanted the greatest

This article discusses:
• Creating an Entity Framework data model

• Creating an ASP.NET Dynamic Data project

• Creating a Windows Azure service project

• Creating an ASP.NET MVC project

• Creating a WCF RIA Services project

• Adding the fi nal touches for a complete solution

Technologies discussed:
ASP.NET MVC, WCF RIA Services, ASP.NET Dynamic Data

Code download available at:
code.msdn.microsoft.com/mag201101VSCloud

http://microsoftsolutionsadvocates.com
http://code.msdn.microsoft.com/mag201101VSCloud

59January 2011msdnmagazine.com

reach for the public use case.) Silverlight is here to stay, and it’s
perfect for creating a rich editing experience with very little pro-
gramming, so long as it’s reasonable to expect users to have it or
install it, as would be the case with customers collaborating on a
success-stories site.

ASP.NET Dynamic Data provides a handy way to build an
administrative solution without too much work. Th e administrative
site doesn’t need to be fancy; it simply needs to provide a way to
manage all of the data in the solution without having to resort
to SQL Server Management Studio. As my solution evolves, the
ASP.NET Dynamic Data site could conceivably be subsumed by
the WCF RIA Services site. Nevertheless, it’s useful at the beginning
of a data-centric development project such as this one, and it costs
almost nothing to build.

Targeting Windows Azure
Again, this example is based on a
real-world problem, and because
the solution requires a public Web
site, I’m going to target Windows
Azure and SQL Azure. Windows
Server and SQL Server might be
more familiar, but I need the
operational benefits of running
in the cloud (no need to maintain
the OS, apply patches and so on).
I barely have time to build the
solution—I certainly don’t have
time to operate it, so Windows
Azure is a must for me.

To work through this example
and try it on Windows Azure, you
need an account. Th ere are various
options and packages found at

microsoft.com/windowsazure/offers. MSDN subscribers and Microsoft part-
ners (including BizSpark startups—visit bizspark.com to learn more)
have access to several months of free resources. For prototyping
and learning (such as working through this example), you can use
the “Introductory Special.” It includes three months of a 1GB SQL
Azure database and 25 hours of a Windows Azure small compute
instance, which should be enough to familiarize yourself with
the platform. I built this example using the Introductory Special
without incurring any additional charges.

‘Customer Success Stories’ Overview
Th is example is presented in the form of a tutorial. Several impor-
tant aspects of a real-world implementation are out of scope for
this article, including user-level security, testing, working with a

designer and evolving beyond an extremely simplifi ed
model. I’ll attempt to address these in future articles
or on my blog at pfoley.com.

Th e steps are presented at a high level and assume
some familiarity with Visual Studio and with the tech-
nologies involved. Code for the entire solution can be
downloaded from code.msdn.microsoft.com/mag201101VSCloud,
and click-by-click instructions for each step can be found
at pfoley.com/mm2011jan.

Step 1: Create a Project for the Entity
Framework Data Model
Th e Web technologies used in this example all use the
Entity Framework eff ectively, so I chose to integrate
the three use cases by having them all share a common
Entity Framework model. When working with an
existing database, you have to generate the model from
the database. Whenever possible, I prefer to create the
model fi rst and generate the database from it, because
I like to think about my design more at the model
level than the database level. To keep things simple, this
example uses just two entities: Company and Story.

Figure 1 Adding Company and Story Entities to the Visual Studio Project

Figure 2 Confi guring Settings in the SQL Azure Portal

www.msdnmagazine.com
http://microsoft.com/windowsazure/offers
http://pfoley.com
http://code.msdn.microsoft.com/mag201101VSCloud
http://pfoley.com/mm2011jan
http://bizspark.com

msdn magazine60 Visual Studio

Th e Entity Framework model will be created in its own project
and shared across multiple projects (I learned how to do this from
Julie Lerman; see pfoley.com/mm2011jan01 for more on that). I call
best practices like these “secret handshakes”—fi guring it out the
fi rst time is a challenge, but once you know the secret, it’s simple:

1. Create the Entity Framework model in a “class library” project.
2. Copy the connection string into any projects that share

the model.
3. Add a reference to the Entity Framework project and

System.Data.Entity in any projects that share the model.
To start, create a Blank Solution in Visual Studio 2010 named

“Customer Success Stories” and add a Class Library project named
“CSSModel.” Delete the class file and add an empty ADO.NET
Entity Data Model item named “CSSModel.” Add Company and Story

entities with an association between
them as in Figure 1 (when you
right-click on Company to add the
association, make sure that “Add
foreign key properties to ‘Person’
Entity” is checked on the ensuing
dialog—foreign key properties are
required in future steps).

Th e model is now ready to gener-
ate database tables, but a SQL Azure
database is needed to put them in.
When prototyping is completed and
the project is evolving, it’s useful to
add a local SQL Server database for
testing purposes, but at this point,
it’s less complicated to work directly
with a SQL Azure database.

From your SQL Azure account
portal, create a new database called

“CSSDB” and add rules for your current IP address and to “Allow
Microsoft Services access to this server” on the Firewall Settings tab.
Your SQL Azure account portal should look something like Figure 2.

In Visual Studio, right-click on the design surface and select
“Generate Database from Model.” Add a connection to your new
SQL Azure database and complete the wizard, which generates
some Data Defi nition Language (DDL) and opens it in a .sql fi le,
as shown in Figure 3.

Before you can execute the SQL, you must connect to the SQL
Azure database (click the Connect button on the Transact-SQL
Editor toolbar). The “USE” statement is not supported in SQL
Azure, so you must choose your new database from the Database
dropdown on the toolbar and then execute the SQL. Now you
have a SQL Azure database that you can explore in Visual Studio

Server Explorer, SQL Server Management Studio or
the new management tool, Microsoft Project Code-
Named “Houston” (sqlazurelabs.com/houston.aspx). Once
you build the solution, you have an Entity Framework
project that you can use to access that database pro-
grammatically, as well.

Step 2: Create the ASP.NET
Dynamic Data Project
An ASP.NET Dynamic Data Web site provides a simple
way to work with all the data in the database and
establishes baseline functionality to ensure the envi-
ronment is working properly—all with one line of code.

Add a new ASP.NET Dynamic Data Entities Web App-
lication project to the solution and call it “CSSAdmin.”
To use the data model from the first step, copy the
connectionStrings element from App.Config in
CSSModel to web.confi g in CSSAdmin. Set CSSAdmin
as the startup project and add references to the
CSSModel project and System.Data.Entity.

Th ere are lots of fancy things you can do with ASP.NET
Dynamic Data projects, but it’s surprisingly useful to Figure 4 Creating Services in the Windows Azure Portal

Figure 3 Generating the Database Model

http://pfoley.com/mm2011jan01
http://sqlazurelabs.com/houston.aspx

ENTERPRISE

SNMP

POP

TCP

UDP

2IP

SSL

SFTP

SSH

HTTP

TELNET

EMULATION

FTPSMTP

WEB
UI

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set
of native ActiveX, .NET and Compact Framework components.
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and
ASN.1 standards supported.

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET
applications. Develop unique solutions by including streaming file
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET
and Compact Framework projects. Reduce integration costs with
detailed documentation, hundreds of samples and an expert
in-house support staff.

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1 1 1/11/10 11:10 AM

mailto:sales@dart.com
www.Dart.com
www.dart.com
www.dart.com

msdn magazine62 Visual Studio

implement the default behavior that comes by simply uncommenting
the RegisterContext line in Global.asax.cs and changing it to:

DefaultModel.RegisterContext(typeof(CSSModel.CSSModelContainer), new
ContextConfiguration() { ScaffoldAllTables = true });

Build and run the project, and you have a basic site to manage
your data. Add some test data to make sure everything’s working.

Step 3: Create the Windows Azure Services Project
Th e result of the previous step is a local Web site that accesses a
database on SQL Azure—the next step is it to get that
Web site running on Windows Azure.

From your Windows Azure account portal, create
a Storage Service called “CSS Storage” and a Hosted
Service called “CSS Service.” Your Windows Azure
account portal should look similar to Figure 4.

In Visual Studio, add a new Windows Azure Cloud
Service project to your solution called “CSSAdmin-
Service” (you must have Windows Azure Tools for
Visual Studio installed), but don’t add additional “cloud
service solutions” from the wizard. Th e cloud service
project adds the infrastructure necessary to run your
application in a local version of the “cloud fabric” for
development and debugging. It also makes it easy to
publish to Windows Azure interactively. Th is is great
for prototyping and for simpler Windows Azure
solutions, but once you get serious about develop-
ing on Windows Azure, you’ll probably want to use
Windows PowerShell to script deployment, perhaps
as part of a continuous integration solution.

Right-click on the Roles folder in CSSAdmin Service,
then select “Add | Web Role Project in solution” to
associate the CSSAdmin project with the cloud service
project. Now when you compile and run the solution,

it runs in the development fabric. At this point, the
solution doesn’t look any diff erent than it did running on
IIS or Cassini, but it’s important to run on the dev fabric
anyway to catch mistakes such as using unsupported
Windows APIs as you evolve a Windows Azure solution.

Deploy to your Windows Azure account by right-
clicking on the CSSAdminService project and selecting
Publish. Th e fi rst time you do this, you’ll need to add
credentials (follow the instructions to copy a certifi -
cate to your Windows Azure account). Th en select a
“Hosted Service Slot” and a “Storage Account” to deploy
your solution to. Th ere are two options for the hosted
service slot: production and staging. When updating a
real-world solution in production, deploy fi rst to staging
to make sure everything works and then promote the
staging environment into production. While prototyp-
ing, I prefer to deploy straight to production because I’m
not going to leave the solution running anyway. Click
OK to deploy to Windows Azure, which can take several
minutes. Once complete, run your Windows Azure
application using the Web site URL shown on the
service page, which should look similar to Figure 5.

Aft er verifying that the service works, suspend and delete the
deployment to avoid charges (consumption-based plans are billed
for any time a service package is deployed, whether or not it’s actu-
ally running). Don’t delete the service itself, because doing so returns
the Web site URL back into the pool of available URLs. Obviously,
when you’re ready to fl ip the switch on a real production solution,
you’ll have to budget for running Windows Azure services nonstop.

When a service deployment fails, it doesn’t always tell you exactly
what’s wrong. It usually doesn’t even tell you something is wrong.

Figure 5 A Windows Azure Deployed Service

Figure 6 Enabling IntelliTrace While Publishing to Windows Azure

Project3 12/16/09 11:55 AM Page 1

www.nsoftware.com

msdn magazine64 Visual Studio

Th e service status just enters a loop such as “Initializing … Busy
… Stopping … Initializing …” When this happens to you—and it
will—look for problems such as attempting to access local resources
(perhaps a local SQL Server database) or referencing assemblies
that don’t exist on Windows Azure. Enabling IntelliTrace when

you deploy the package (see Figure 6) can help you
pinpoint problems by identifying the specifi c excep-
tions that are being thrown.

Step 4: Create the ASP.NET MVC Project
Th e solution so far consists of an administrative Web site
(albeit with no user-level security) that runs on Windows
Azure and accesses a SQL Azure database, all with one
line of code. Th e next step is to create the public Web site.

Add a new ASP.NET MVC 2 Web Application project
to the solution named “CSSPublic” (don’t create a unit
test project while working through this example). If
you’re already quite experienced with ASP.NET MVC,
you might prefer to start with an ASP.NET MVC 2
Empty Web Application, but I prefer to start from a
Web site structure that already works and modify it
bit by bit to make it do what I want.

Right-click on CSSPublic to make it your startup proj-
ect, and then run it to see what you’re starting with. Th e public site for
CSS is read-only and anonymous, so remove all login and account
functionality with these steps:

1. Delete the “logindisplay” div from Site.Master.
2. Delete the ApplicationServices connection string and authen-

tication element from the main Web.confi g.
3. Delete AccountController.cs, AccountModels.cs,

LogOnUserControl.ascx and the entire Account
folder under Views.

4. Run it again to make sure it still works.
5. Copy the connection string from the CSSModel

App.Confi g into the CSSPublic Web.confi g and add
references to CSSModel and System.Data.Entity
as before.

6. Select all the references for CSSPublic and set the
Copy Local property to true.
I think it makes sense to add separate controllers

(with associated views) for Companies and Stories,
while keeping the Home controller as a landing page.
Th ese are important decisions; a designer can make the
site look good, but the information architecture—the
site structure—has to be right fi rst.

Naming is relevant in a Model View Controller
(MVC) project. Use plural controller names (Com-
panies, not Company) and matching view folders.
Use the standard conventions of Index, Details and so
on for controller methods and view names. You can
tweak these conventions if you really want to, but that
adds complexity.

Right-click on the Controllers folder to add a new
controller named “CompaniesController.” This site
won’t implement any behavior—it’s read-only—so there’s
no need for an explicit model class. Treat the Entity
Framework model container itself as the model. In
Companies Controller.cs, add “using CSSModel” and
change the Index method to return a list of companies
as follows:Figure 8 Adding a Domain Service Class

Figure 7 A List of Companies in ASP.NET MVC Web Site

65January 2011msdnmagazine.com

CSSModelContainer db = new CSSModelContainer();
return View(db.Companies.ToList());

To create the view, create an empty Companies folder under
Views and right-click on it to add a view called “Index.” Make it
strongly typed with a View data class of CSSModel.Company and
View content of List.

In Site.Master, add a list item in the menu to reference the new
Controller:

<%: Html.ActionLink("Companies", "Index", "Companies")%>

Run the app and click the menu to see the list of Companies. Th e
default view is a good starting point, but remove the unnecessary
“Id” fi eld. Because this site is intended to be read-only, delete the
ActionLink entries for “Edit,” “Delete” and “Create.” Finally, make
the company name itself a link to the Details view:

<%: Html.ActionLink(item.Name, "Details", new { id=item.Id })%>

Your Companies list should now look similar to what is shown
in Figure 7.

To implement Details, add a method to CompaniesController:
public ActionResult Details(int id)
{
 CSSModelContainer db = new CSSModelContainer();
 return View(db.Companies.Single(c => c.Id.Equals(id)));
}

Th e id parameter represents the integer following Companies\
Details\ in the URL. Th at integer is used to fi nd the appropriate
company using a simple LINQ expression.

Add the Details view underneath the Companies folder as
before, but this time select “Details” as the View content and name
the view “Details.”

Run the project, navigate to Companies, and then click one
of the company names to see the
default Details view.

Adding a controller and views
for Stories is similar. Th e views still
require a fair amount of tweaking
before being ready for a designer,
but this is a good start, and it’s easy
to evolve.

To verify this project will work
on Windows Azure, create a cloud
service project called “CSSPublic-
Service” and add the CSSPublic
role to it. Run the service locally
in the dev fabric and then publish
the site to Windows Azure and
run it from the public URL. Don’t
forget to suspend and delete the
deployment when you’re done to
avoid being billed.

Step 5: Create the WCF
RIA Services Project
Th e solution at this point contains
ASP.NET MVC and ASP.NET
Dynamic Data Web sites running
(or at least runnable) on Windows
Azure, using a shared Entity

Framework model to access a SQL Azure database. Very little
manual plumbing code has been required to obtain a decent amount
of functionality. Adding a WCF RIA Services Web site adds another
dimension: a rich editing experience.

Add a Silverlight Business Application project named “CSS-
CustomerEdit” (no spaces) and Visual Studio adds two projects to
your solution: a Silverlight client (CSSCustomerEdit) and a Web
service (CSSCustomerEdit.Web). Run the solution to see what you’re
starting with. Open ApplicationStrings.resx in CSSCustomerEdit
project and change the value for ApplicationName to “Customer
Success Stories” to make it look nice.

In CSSCustomerEdit.Web, copy connectionStrings from
CSSModel into Web.config, add references to CSSModel and
System.Data.Entity and set Copy Local to true for all the references.
Th en right-click on the Services folder and add a new Domain Service
Class item called “CSSDomainService.” Make sure the name of this
class ends in Service—without a number—to gain the full benefi t of

Figure 9 XAML for the Stories View

While prototyping, I prefer to
deploy straight to production
because I’m not going to leave
the solution running anyway.

www.msdnmagazine.com

msdn magazine66 Visual Studio

the tooling between the two projects (another “secret handshake”).
Click OK to bring up the Add New Domain Service Class dialog and
check all the entities along with Enable editing for each (Figure 8).

Notice that “Generate associated classes for metadata” is grayed
out. This illustrates a tradeoff with the approach I’m espousing
here. In a Silverlight Business Application, metadata classes can be
used to add additional validation logic such as ranges and display
defaults. However, when the Entity Framework model is in a
separate project from CSSCustomerEdit.Web, the toolkit doesn’t
let you add these metadata classes. If this feature is important to
you or if you know you’re going to invest most of your energy in
the Silverlight Business Application part of your solution, you
might want to create your Entity Framework model directly in
the “.Web” project instead of a separate project. You could still
reference CSSCustomerEdit.Web to share the Entity Framework
model in another project.

As mentioned, authentication and authorization are out of
scope for this article, but it’s possible to punt and still be precise. In
the CSSDomainService class, add a placeholder property named
“myCompany” to represent the company the user is authorized to
edit. For now, hardcode it to 1, but eventually the login process will
set it to the right company for the authenticated user.

Edit the CSSDomainService class to refl ect the specifi c use case
for the project: the user can update companies but not insert or
delete them (an administrator does that in the ASP.NET Dynamic
Data Web site), so remove those service methods. Also, the user can
only edit the single company they work for, not a list of companies,

so change GetCompanies to GetMyCompany. Similarly, change
GetStories to GetMyStories and ensure that the user creates stories
whose CompanyId is equal to myCompany:

private int myCompany = 1; // TODO: set myCompany during authentication
public Company GetMyCompany()
{
 return this.ObjectContext.Companies.Single(c=>c.Id.Equals(myCompany));
}
...
public IQueryable<Story> GetMyStories()
{
 return this.ObjectContext.Stories.Where(s=>s.CompanyId.Equals(myCompany));
}

public void InsertStory(Story story)
{
 story.CompanyId = myCompany;
 story.Id = -1; // database will replace with next auto-increment value
 ...
}

WCF RIA Services shines in the creation of editable, fi eld-oriented
interfaces, but it’s important to start simply and add functionality
slowly. The DataGrid and DataForm controls are powerful, but
whenever I work too fast or try to add too much functionality at
once, I end up messing up and having to backtrack. It’s better to
work incrementally and add one UI improvement at a time.

To implement a baseline UI for this example, add references to Sys-
tem.Windows.Controls.Data and System.Windows.Con trols.Domain-
Services in CSSCustomerEdit. Create new views (Silverlight Page
items) for Company (singular) and Stories, then mimic the XAML
from the existing Home and About views. Edit MainPage.xaml to
add new dividers and link buttons (alternatively, just co-opt the
existing Home and About views to use for Company and Stories).

In Silverlight development, most of the magic involves editing
XAML. In CSSCustomerEdit, add namespace entries, a Domain-
DataSource and a DataForm for the Company view. In addition,
add a DataGrid for the Stories view. In both DataForms, handle
the EditEnded event to call MyData.SubmitChanges. Stories.xaml,
which should look similar to Figure 9.

Build it … run it … it works! A rich editing experience that’s
ready to evolve (see Figure 10).

As before, create a new cloud service project, publish
it and test it on Windows Azure. Copy CSSCustomer-
EditTestPage.aspx to Default.aspx for a cleaner
experience, and you’re done.

No ‘One True Way’
Visual Studio and the .NET Framework provide myriad
choices for creating solutions that can run on Windows
Azure. While it’s tempting to search for the “one true way”
to create the next killer app for the cloud, it’s more reward-
ing to leverage capabilities from multiple technologies to
solve complex problems. It’s easier to code, easier to evolve
and—thanks to Windows Azure—easier to operate.

PATRICK FOLEY is an ISV architect evangelist for Microsoft , which
means he helps soft ware companies succeed in building on the
Microsoft platform. Read his blog at pfoley.com.

THANKS to the following technical expert for reviewing this
article: Hanu KommalapatiFigure 10 The Stories View in Action

In Silverlight development,
most of the magic involves

editing XAML.

http://pfoley.com

Create accurate PDF documents in a fraction of the time needed
with other tools

WHQL tested for all Windows 32 and 64-bit platforms

Produce fully compliant PDF/A documents

Standard PDF features included with a number of unique features

Interface with any .NET or ActiveX programming language

High-Performance PDF Printer Driver

Edit, process and print PDF 1.7 documents programmatically

Fast and lightweight 32 and 64-bit managed code assemblies
for Windows, WPF and Web applications

Support for dynamic objects such as edit-fields and sticky-notes

Save image files directly to PDF, with optional OCR

Multiple image compression formats such as PNG, JBIG2 and TIFF

■

■

■

■

■

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2010 AMYUNI Technologies. All rights reserved.

www.amyuni.com

New Touchscreen Tablet
for Mobile Development!

The DevTouch Pro is a new color
touchscreen tablet designed to provide
mobile application developers with a
customizable develo pment, testing
and deployment platform.

Fully open customizable tablet

Develop with .NET, Java or C++

Unrestricted development and
flexible quantities

Fully supported in North America

Learn more at www.devtouchpro.com

PDF Integration into Silverlight Applications

More Development Tools Available at:

v4.5!

v4.5!

New!

PDF Editor for .NET, now Webform Enabled

Server-side PDF component based on the robust Amyuni PDF
Creator ActiveX or .NET components

Client-side C# Silverlight 3 control provided with source-code

Optimization of PDF documents prior to converting them into XAML

Conversion of PDF edit-boxes into Silverlight TextBox objects

Support for other document formats such as TIFF and XPS

■

■

■

■

■

■

■

■

■

■

■

■

■

■

Untitled-3 1 11/8/10 2:53 PM

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com
http://www.devtouchpro.com

msdn magazine68

A S P. N E T DYNAMIC DATA

Build a Data-Driven
Enterprise Web Site
in 5 Minutes

For years, developers have wrestled with the tedious
tasks of building data layers with Create, Read, Update and Delete
(CRUD) functionality to be consumed by the UI. I can personally
remember a project from more than 10 years ago that required me
to write code that automatically generated business and data layers
from a Rational Rose object model. It was a lot of work.

A few years later Microsoft introduced the Microsoft .NET Frame-
work and the DataSet object. With the DataSet designer, you could
connect a strongly typed DataSet to a back-end database such as SQL
Server and then work with the DataSet throughout the application.
Th is minimized the need to work directly with SQL, but it still required
the manual creation of Web pages to display data from the database.

Fast-forward a few more years and Microsoft introduced the
Entity Framework. Th is Object Relational Mapping (ORM) frame-
work uses LINQ to abstract a database schema and presents it to an
application as a conceptual schema. Like the DataSet, this technology

James Henry

also minimized the need to work directly with SQL. However, it
still required the manual creation of Web pages to display data.

Now Microsoft has introduced ASP.NET Dynamic Data—a combi-
nation of the Entity Framework and ASP.NET Routing—which allows
an application to respond to URLs that do not physically exist. With
these features you can create a production-ready, data-driven Web site
in just a few minutes. In this article I’ll show you how.

Getting Started
Just to set up the scenario, let’s say I’m building an intranet Web
site for a fi ctional company called Adventure Works. Th is Web site
allows the company to manage employee information.

The company’s data is stored in a Microsoft SQL Server 2008
database. (You can download and install the database from
msftdbprodsamples.codeplex.com.)

Now, open Microsoft Visual Studio 2010 and create a new ASP.NET
Dynamic Data Entities Web Site C# project.

The ASP.NET Dynamic Data Entities Web Site project type
takes advantage of ASP.NET Routing and the Entity Framework to
enable you to quickly create data-driven Web sites. To get this
functionality, you need to add an Entity Framework data model
to the project. To do this, choose Add New Item from the Web site
menu. In the Add New Item dialog box, choose ADO.NET Entity
Data Model. Name it HumanResources.edmx.

Visual Studio will then prompt you to add the model to the
App_Code folder. Choose Yes and allow it to make this change.

This article discusses:
• Starting a Dynamic Data project

• Using ASP.NET Routing

• Supporting metadata

• Customizing Dynamic Data templates

Technologies discussed:
ASP.NET, SQL Server

http://msftdbprodsamples.codeplex.com

69January 2011msdnmagazine.com

When you create Web site projects, Visual Studio dynamically
compiles all code that is placed in the App_Code folder. In the
case of the Entity Data Model, Visual Studio automatically gen-
erates a partial class for the data context and partial classes for
the entities. In this example, it places the code in a file named
HumanResources.Designer.cs.

Next, the Entity Data Model Wizard appears, as shown in Figure 1.
Choose Generate from Database and click Next.

Now choose a connection to the Adventure Works database. If a
connection doesn’t already exist, you need to create a new
one. Figure 2 shows a connection to AdventureWorks
on a SQL Server instance named Dev\BlueVision.

On the next page you can choose all tables in the
Human Resources schema. The name of the schema
appears in parenthesis. Figure 3 shows some of the
tables that are selected.

When you click Finish, Visual Studio automatically
generates entities from the tables that you chose for your
project. Figure 4 shows seven entities that Visual Studio
generated from the database schema. Visual Studio used
the foreign key constraints in the database to create rela-
tionships between the entities. For example, the Employee

entity participates in a one-to-many relationship with the
JobCandidate entity. Th is means that an employee can be
a candidate for multiple jobs within the company.

Also note that the EmployeeDepartmentHistory
entity joins the Employee and Department entities. Had
the EmployeeDepartmentHistory table contained only
the fi elds that were necessary for joining the Employee
and Department tables, Visual Studio would have simply
omitted the EmployeeDepartmentHistory entity. Th is
would have allowed direct navigation between the
Employee and Department entities.

Using ASP.NET Routing
ASP.NET Routing allows an application to respond to
URLs that do not physically exist. For example, two
URLs—http://mysite/Employee and http://mysite/
Department—could be directed to a page at http://
mysite/Template.aspx. Th e page itself could then extract
information from the URL to determine whether to
display a list of employees or a list of departments, with
both views using the same display template.

A route is simply a URL pattern that’s mapped to an
ASP.NET HTTP handler. It’s the handler’s responsibility

to determine how the actual URL maps to the interpreted pattern.
ASP.NET Dynamic Data uses a route handler named DynamicData-
RouteHandler that interprets placeholders named {table} and {action}
in URL patterns. For example, a handler could use this URL pattern:

http://mysite/{table}/{action}.aspx

That pattern could then be used to interpret the URL http://
mysite/Employee/List.aspx.

Employee is processed as the {table} placeholder and List is pro-
cessed as the {action} placeholder. Th e handler could then display

Figure 1 Starting the Entity Data Model Wizard

Figure 2 Confi guring the Data Connection

You can create a
production-ready,

data-driven Web site in
just a few minutes.

www.msdnmagazine.com

msdn magazine70 ASP.NET Dynamic Data

a list of Employee entity instances. DynamicDataRouteHandler
uses the {table} placeholder to determine the name of the entity to
display, and it uses the {action} parameter to determine the page
template used to display the entity.

Th e Global.asax fi le contains a static method named RegisterRoutes
that gets called when the application fi rst starts, as shown here:

public static void RegisterRoutes(RouteCollection routes) {
 // DefaultModel.RegisterContext(typeof(YourDataContextType),
 // new ContextConfiguration() { ScaffoldAllTables = false });
 routes.Add(new DynamicDataRoute("{table}/{action}.aspx") {
 Constraints = new RouteValueDictionary(
 new { action = "List|Details|Edit|Insert" }),
 Model = DefaultModel
 });
}

Th e fi rst thing you need to do is uncomment the code
that calls the RegisterContext method of the DefaultModel
instance. This method registers the Entity Framework
data context with ASP.NET Dynamic Data. You need to
modify the line of code as follows:
 DefaultModel.RegisterContext(
 typeof(AdventureWorksModel.AdventureWorksEntities),
 new ContextConfiguration() { ScaffoldAllTables = true });

Th e fi rst parameter specifi es the type of the data con-
text, which is AdventureWorksEntities in this example. By
setting the Scaff oldAllTables property to true, you allow
all entities to be viewed on the site. Had you set this prop-
erty to false, you’d need to apply the Scaff oldTable(true)
attribute to each entity that should be viewed on the
site. (In practice, you should set the Scaff oldAllTables
property to false to prevent the accidental exposure of
the entire database to end users.)

Th e Add method of the RouteCollection class adds
a new Route instance to the route table. With ASP.NET
Dynamic Data, the Route instance is actually a Dynamic-
DataRoute instance. The DynamicDataRoute class
internally uses DynamicDataRouteHandler as its handler.
Th e parameter passed to the constructor of Dynamic-
Data Route represents the pattern that the handler should

use to process physical URLs. A constraint is also set to limit the
{action} values to List, Details, Edit or Insert.

Th is is theoretically all you need to do to use ASP.NET Dynamic
Data. If you build and run the application, you should see the page
shown in Figure 5.

Supporting Metadata
One thing you should notice is that the entity names are identical
to the table names that they represent. In code and in the database
this might be fi ne, however, usually this is not the case in the UI.

ASP.NET Dynamic Data makes it easy to change the name of a
displayed entity by applying the Display attribute to the class that

represents that entity. Because the entity class-
es are contained in a fi le that’s automatically
regenerated by Visual Studio, you should
make any code changes to partial classes in a
separate code fi le. Th erefore, add a new code
file named Metadata.cs to the App_Code
folder. Th en add the following code to the fi le:
 using System;
 using System.Web;
 using System.ComponentModel;
 using System.ComponentModel.DataAnnotations;

 namespace AdventureWorksModel {
 [Display(Name = "Employee Addresses")]
 public partial class EmployeeAddress { }
 }

Th en rebuild and run the application. You
should notice that EmployeeAddresses is
now Employee Addresses.

Similarly, you can change the names of
EmployeeDepartmentHistories, Employee-
PayHistories and JobCandidates to more
appropriate names. Figure 4 Entities Generated from Database Tables in Visual Studio

Figure 3 Selecting Tables for the Human Resources Schema in Visual Studio

(888) 850-9911
Sales Hotline - US & Canada:

/update/2011/01

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

BEST SELLER TX Text Control .NET for Windows Forms/WPF from $499.59
Word processing components for Visual Studio .NET.

NEW VERSION

FusionCharts from $195.02
Interactive Flash & JavaScript (HTML5) charts for web apps.

BEST SELLER

BEST SELLER Spread for Windows Forms from $959.04
A comprehensive Excel compatible spreadsheet component for Windows Forms applications.

BEST SELLER

BEST SELLER ActiveReports 6 from $685.02
Latest release of the best selling royalty free .NET report writer.

BEST SELLER

Untitled-1 1 12/2/10 10:39 AM

http://www.componentsource.com

msdn magazine72 ASP.NET Dynamic Data

Next click the Shift s link. Th is displays a list of employee shift s.
I’ll change the names StartTime and EndTime to Start Time and
End Time, respectively.

Another issue is that the Start Time and End Time values show
both the date and the time. In this context, the user really only
needs to see the time, so I’ll format the Start Time and End Time
values so that they display times only. An attribute named DataType
allows you to specify a more specifi c data type for a fi eld, such as
EmailAddress or Time. You apply the DataType attribute to the
fi eld to which it applies.

First, open the Metadata.cs fi le and
add the following class defi nitions:

[MetadataType(typeof(ShiftMetadata))]
public partial class Shift { }
public partial class ShiftMetadata { }

Notice that an attribute named
MetadataType is applied to the
Shift class. This attribute allows
you to designate a separate class
that contains additional metadata
for an entity’s fi elds. You can’t apply
the additional metadata directly to
members of the Shift class because
you can’t add the same class mem-
bers to more than one partial class.
For example, the Shift class defi ned
in HumanResources.Designer.cs
already has a field named Start-
Time. So you can’t add the same
field to the Shift class defined in

Metadata.cs. Also, you shouldn’t manually modify
HumanResources.Designer.cs because that fi le gets
regenerated by Visual Studio.

The MetadataType attribute allows you to spec-
ify an entirely different class so that you can apply
metadata to a field. Add the following code to the
Shift Metadata class:
 [DataType(DataType.Time)]
 [Display(Name = "Start Time")]
 public DateTime StartTime { get; set; }

Th e DataType attribute specifi es the Time enumer-
ated value to indicate that the StartTime fi eld should
be formatted as a time value. Other enumerated
values include PhoneNumber, Password, Currency
and EmailAddress, to name a few. Th e Display attri-
bute specifi es the text that should be displayed as the

fi eld’s column when the fi eld is displayed in a list, as well as the fi eld’s
label when it’s displayed in edit or read-only mode.

Now rebuild and run the application. Figure 6 shows the result
of clicking the Shift s link.

You can add similar code to change the appearance of the
EndTime fi eld.

Now let’s take a look at the JobCandidates link. Th e Employee
column displays values for the NationalIDNumber field. This
might not be useful. Although the Employee database table doesn’t
have a fi eld for an employee’s name, it does have a fi eld for an

Figure 5 A Basic ASP.NET Dynamic Data Site

Figure 6 Revised Shifts Page Using MetadataType Defi nitions

Figure 7 Identifying Employees with LoginIDs

Visual Studio
automatically generates
entities from the tables

that you chose.

Untitled-4 1 12/9/10 1:39 PM

www.textcontrol.com

msdn magazine74 ASP.NET Dynamic Data

employee’s login, which is LoginID. Th is fi eld might provide more
useful information to a user of this site.

To do this, I’ll again modify the metadata code so that all
Employee columns display the value of the LoginID fi eld. Open
the Metadata.cs fi le and add the following class defi nition:

[DisplayColumn("LoginID")]
public partial class Employee { }

Th e DisplayColumn attribute specifi es the name of the fi eld from
an entity that should be used to represent instances of that entity.
Figure 7 shows the new list with LoginIDs.

The ContactID field of the Employee
entity actually refers to a row in the Contact
table, which is part of the Person schema in
the database. Because I didn’t add any tables
from the Person schema, Visual Studio allows
direct editing of the ContactID fi eld. To
enforce relational integrity, I’ll prevent editing
of this fi eld while still allowing it to be displayed
for reference. Open the Metadata.cs fi le and
modify the Employee class by applying the
following MetadataType attribute:

[DisplayColumn("LoginID")]
[MetadataType(typeof(EmployeeMetadata))]
public partial class Employee { }

Th en defi ne the EmployeeMetadata class
as follows:

public partial class EmployeeMetadata {
 [Editable(false)]
 public int ContactID { get; set; }
}

Th e Editable attribute specifi es whether or not a fi eld is editable
in the UI.

Next, I’ll add metadata to the EmployeePayHistory entity to dis-
play the Rate fi eld as Hourly Rate, as well as format the fi eld’s value as
currency. Add the following class defi nitions to the Metadata.cs fi le:

[MetadataType(typeof(EmployeePayHistoryMetadata))]
public partial class EmployeePayHistory { }
public partial class EmployeePayHistoryMetadata {
 [DisplayFormat(DataFormatString="{0:c}")]
 [Display(Name = "Hourly Rate")]
 public decimal Rate { get; set; }
}

Customizing Templates
Th e Visual Studio project contains a folder named FieldTemplates.
Th is folder contains user controls for editing fi elds of various data
types. By default, ASP.NET Dynamic Data associates a fi eld with a

user control that has the same name as the
field’s associated data type. For example,
the Boolean.ascx user control contains the
UI for displaying Boolean fi elds, while the
Boolean_Edit.ascx user control contains
the UI for editing Boolean fi elds.

Alternatively, you can apply the UIHint
attribute to a fi eld to ensure that a diff erent
user control is used. I’ll add a custom fi eld
template to display a Calendar control for
editing of the Employee entity’s BirthDate fi eld.

In Visual Studio, add a new Dynamic
Data Field item to the project and name it
Date.ascx. Visual Studio automatically adds
a second fi le named Date_Edit.ascx to the

public partial class Date_EditField : System.Web.DynamicData.
FieldTemplateUserControl {
 protected void Page_Load(object sender, EventArgs e) {
 DateCalendar.ToolTip = Column.Description;
 }

 protected override void OnDataBinding(EventArgs e) {
 base.OnDataBinding(e);

 if (Mode == DataBoundControlMode.Edit &&
 FieldValue != null) {
 DateTime date = DateTime.MinValue;
 DateTime.TryParse(FieldValue.ToString(), out date);
 DateCalendar.SelectedDate =
 DateCalendar.VisibleDate = date;
 }
 }

 protected override void ExtractValues(
 IOrderedDictionary dictionary) {
 dictionary[Column.Name] = ConvertEditedValue(
 DateCalendar.SelectedDate.ToShortDateString());
 }

 public override Control DataControl {
 get {
 return DateCalendar;
 }
 }
}

Figure 8 Custom Date_EditField Class

Figure 9 Customized Employee Edit Form

Starting with the Microsoft .NET Framework 4, we
recommend that you use the Display attribute instead of the
DisplayName attribute from the .NET Framework 3.5. Display-
Name is obviously still in the framework, but we recommend
against it whenever the Display attribute can be used.

There are two reasons for preferring Display instead of
DisplayName. First, the Display attribute supports localization
while the DisplayName attribute does not.

Second, the Display attribute allows you to control all kinds of
things. For example, you can control the text for the various ways
a fi eld can be displayed (prompt, header and so on), whether a
fi eld shows up as a fi lter, or whether the fi eld is shown in the
scaffold (AutoGenerate=false turns it off).

So, while the code shown in the examples in this article is
completely valid, we recommend that you replace DisplayName
and ScaffoldColumn with the Display attribute. You still need to
use ScaffoldTable and the DisplayName attribute at the class level.

Following these recommendations is best because other teams at
Microsoft support the DataAnnotations namespace (WCF RIA Services),
and following these practices will make sure code works with them.

—Scott Hunter, Senior Program Manager Lead, ASP.NET

Attribute Changes in the .NET Framework 4

ASP.NET Routing allows an
application to respond to URLs

that do not physically exist.

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BarCoa C de bbarCoarCCode =de = newn EEanEan113SuS pp5(“12234556789001212345”, x, y + 21); barCode.X += (204 - barCodee.Get

ddUPCVersionA(GrouGroup elemenem ts, float x, floatfloa y) { AddCaptionAndRectangle(elemente s, “UPC Version A Bar Code”, x, y, 2y, 204, 99);9)99);9) Bar BarB rBa CodeC barbarCCode = neew UpcVepcVersionAA(“12345678901”, x, y + 21); barCode.X += (204 - baarCo

ddUPCVersionASSup2(up2 Grououpp elements,, floatoa xx, float y) { AddCaptionAndRectangle(ele(ments, “UPC Version E Bar Code, 2 digit git supsuppsuppup lement”nt”, x,x, x y, 204, 999); BaarCodde barCCode = new UpcVersionASup2(“123456787 90112”, xx, yx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup5(Group elements, float x, floato y) { AddCaptionAndRectangle(eleementmmentm s, “s, “UPC UPC VerVersion EE Bar Code, 5 diggit suupplemment”, x, y, 204, 99); BarCode barCode = n ew UpcVeeersio

ode.GetSymbolWWidth(dth)) / 2; 2 elements.AddAdd(bar(ba Code); } privatee voi v d AddEANEAN8(Group p elements, float x, float y) { AddCddCaptitionAnonAn dRecReccecttaangle(elemments, “EANN/JANN 8 BBar Codde”, x, y, 204, 99); BarCode barCode == newn Ean8(“123434

g(); fileDialog.Title =le = “Op “Open Fen File Dialogg”; filfi eDialog.Filter = “AdAdobe PDFF fileses (*.pdf)f)|*.pdf|All Files (*.*)|*.*”; if (fileDieDialog.log.ShSSShowwDDiallog()og == DialoggResult.OK) { pdfVieweewer.OppenFile(fileDialog.FileName, “”); } SaveSav FileF Diallog saavaveFa

File Dialog”; s saveFveFileDialoal gg.Filter = “AdoAdobee PDF files (*.pdf)f)|*.pdf|All Files (**.*)|*.*”; if (saveFileDialog.ShowDowDialoialoa g()=g()==DiaDi=DiaDi logResulsule t .OOK) {{ pdfVfVieweewerr.SaveAs(saveFileDiaDialog.FileNamee);); } } if (p(dfVidfV ewewer.PPagP e

WithDialog(); } e else se { MessMe aageBox.SShow(w “PPlease open a fifile tto printt”); } OOpenFileF Dialog fileDiD aloglog = n = nnnew Oew Oe pepenpenFileDDialog(); fifile Dialog.Tiitle = “Open File Dialoog”; filleDialog.InitialDirecectoory = @”c:\”:\ ; fi fileDleDialoglo .Filterter = “= “All F

) == DialogResules t.Ot.OK) { Dy D nnamicPDFFViewewerrClass test = new Dew DynammicPDFVieewerCr lass(); PDFDFPrinPrintter prinprinninterter er = = test.OpenFpe ileForPorPrinnter (file(fileDiaalog.FileName); pprinnter.PrintQuieQuiet();() } bytbybytby ee[] contcontentst =

pServices; GCHGC andandle gcchh = GCHandled .AllAl occ(contents, GCHHandndleTypType.Pinnedd); IntIntPtr contcontentsentsIntPtr ===gcch.ch.h.AAAddrOfPinnednn Objeect()ct ;ppdf Viewer.O.OpenBpepe ufffefeuff r(cor(r(cor(ntentsIntPtrt ,

kmark Page Elemelement:”, x,x, y); y); p pageEleementen s.AAdd(new Bookkmarrk(“(BBookB marked Text”x , x , x + 5,+ 5, y + 20,0 parpareenenttOe utline)); pageElg emennts.Ats.Add (new Label(“This tes texxt is bookmaokmaokmarkedrked ”, .”, xx + 5, y + 20, 2

ageElements, fls, float a x, float at y) {{ // Addsdss a circltt to the pageEllemeents AddCaptioonnAndRAndRectaectangle(paggpagpaggeEleeEl mentmen s, “Circle PPaage Elemment:ent:”, x, y); pageElgeElements.As.Add(ndddd(ndd ew CCircle(x (x + 112.5f2 ,

shLarge)); } pprivavate te void AddFAd orormattedteede TextArrea(Group pp ageeEg lemennts, float x,x, floafloat yt y)t { /{ / AdA dsds ads a for forfofoo matttedd text area too tthepageEeElle ments strring formattm edHtedHtml = “<p“<p><<i>Dynamic</i>PDb>P F</bb>&tm>&tmmtm; Generaeraaator oro v6.0 foror .NE

matting suppoort for or text thath t aappears s in the ddocument. Yt. Youuu havve “ + “comcompletetple e cooontrorol ovovovovver 8r 8e parar agraph pph properties: ssppacing befoeforee, spacingg after, firfirst liine “ + “indentantation, left indentatitation, righr t ininndentdentdentntatiotionn, a, aaliignment, alalllowi

fontt fac f e, </fonnt>t>><f> ont ppoino tSizSize=’6’>fffont “ + “““size, </</fonfonntn ><fo<f nt ct coolorloolorlol =’FF000000 ’>>coloor, >b old, </b<<i>italic aannd </i><<u>uunderline</u>>; “ + “and 2 line proopertrties: leaeadingng, anndd leleeeaadinaad g type. Text

extArea = neew FoFormatrm tedTdTextAArea(fororrmmattedHHtmtml, x + 5, y +++ 20,, 21555, 60, F, FontontFamilmmi y.HeHeelvvelveteticaica, 9, ffalse)e); // SSets the the indent properoperty foformatteatt ddTextAreeaa.Styyle.PParagrapph.Inndent = 18; AddCCapttionAndRectRectanglgle(pae(papa(paapae geEgeElements, ts, “F

ageElemem ntts, “Fo“FormmattedTdTextAtArea OOvvverflow flow TText:”, x + 27999, y); pagpaggeEleeEleementmen ss.AdAdAdd(fod(foodd ormrrmatrmatmatatttedTextAtArea)); // CCreate e an oa verflow formatteded t text art a ea for tr the ooverflflow textt FoormattedTextArea ova oveerflowForFormattma edTeTTeextArxtArxtArtxttArea =ea =e formatte

a(x + 284, y + 20)20); pap geEElemenements.Adddd(o(overflverflowwFowFoow rmatarm tedTeextAe rrea); } privprivate ate vvooidov AddAddA dA Imagmagmagmage(Group up paggeElememeents, float x, float y) { // A/ dds an in magee tto thhe paageElemmenents AddCaptionAndRedRectangle((pagpageElemmmentsenntstsnts, “Imagegee Pag

es/DPDFLoogo.pn.png”), x ++ 1112.55f, y ++ 550f,50f, 0.20.244f);4f // Image is sizeed annnd centeenteredd in tn tthe rrrrectataec nglengle imam ge.SetBoB unds(215, 60); image.VAlign = VAlign.Cenenterr; imaage.Alignn = Align.Center; paggeEeElements.Ad.Addd(imaggee)g ;; } } privvate ate vvoidv A

pageElemennts AdAddCapdC tiononAndRectaannglengle(pag(paggeeEleeElements, “LLabell & PPagePageNumbeerinerine gLgLabg bel PPage ElememE entts:”, x, y); string labelText = “Labels can be rottaated”; strring numbermbe Text = “PageNummbeeringLabelsels contcontaiain ppage nummbeerib ngTT

xt, x + 5, y + 12+ 12, 22220, 80, F0 ontt.TimemessRomRoman,an, 12, TextAlign..Cennter);; l lababel.AngAngglle = 8; 8; 8; PagePageeNNumNumbN erinri gLagLabel pageNumLabel = new PageNumberb ingLabelab (nnumbberText, x +x + 5, y + 55, 220, 880, FFont.TimesResRoman, 1212, TextAltAligignign.n Ce

mem nts.Add(labeabel); l); } private voe id AAddLdLinne(Gne(Groupp pageElemennts, flflfloat x, floaoat y) {{{) { / // Addss a l a lla inne to the phe pageEag lements AddCaptionAndRectangle(p(ageElemee nnts, ““Line Paage Element:”, x, y); ppageeElemennts.As.Add(neew Lw ine(x +x + + x 5, y5 +

w Liw ne(xx + 2+ 220, y + 20, x + + 5, yy + 8 + 0,0, 30, 3, Rg, RgbCoolor.Green)); } prprivivaate vvoid Ad AddLiinknk(Groupup p pagpap eElementments, float x, float y) { // Adds a link to the ppageElemeem ntts Foont font == Foont.TimesRoman;; st string text = “TThisT iss s a lia nk tnk tk o o Dynaamic

mentm :”, x, y); Label label == newne LaLabbbel(textt, x + 5, y + 20, 2155,5, 800, fonnnnt, 1t, 2, R2, RgbbColor.or.BBluelu); l; abel.UndUndererline = true; Link link = new Link(x + 5, y + 20, font.on GGetTeextWidthh(texxt, 12), 12 - font.GGetDDescendder(1r(12), neeww ee UrlUrlAlAction(“n(“hhttp

EleE mennts.Add(li(nk);; } p } privavate ve voidd AAddPath(ath Grroup pageElemmentts, floatoatfl x, floatt y) y) {{ // AddAd s a s pathh to the pageElements ceTe.DynamicPDF.PageElementen s.Pathh path = nneww ceTe.DynamicPDPDF.PF.PageElemenmennnts.Ps.Paaath(h(x + x + 55, y, y + + 2+ 20, R

PathP s.AAdd(new LineeSubPatPa h(xx ++ 2215, y + 4+ 0))); path.Suh.S bPatths.Ahs.AAAdddd((new CurvurveeToSubPatPa h(x h(x + 1008, y + 80, x + 160, y + 80)); path.SubPaths.Add(neww CCurvveSuubPath(x + 55, y + 40, x + 65, 6 y + y + 80, x + 5, y5, yy + + 60))); AddAddCCaCaptC ionAAnd

AAdd(ppaaath); } privatee void AAddRReccttaangle(GrG oupp pageeEElemennnts, flflflofloatat x, float yat y)) oorderee dLisdL t = t = ordderedList.GetOverFlowList(x + 5, y + 20); AddCaptionAnAndRRectaanggle(pagge.Elements, “Orderr ed Led List Pagegee Ele EleEl mentttn OOOve Ovev rflowrfl :”, x, y, 2

88; /8; // C/ Create an unoordereedd list UUnnornorderede List uunorderere edListt =t =stt neeew UUnonorderrderedLLied st(xx + 55, yy + 20+ 20, 400, 90, Font.Helvetica, 10); unorderedList.Items.Add(Add(“Fruits””); uunorderedere List.Items.Add(“d “VegeVegeg tablees””); UnU U ordeeer redSreedSd ubbList unord

tt((); (); unorderedSubList.Items.ms.Add(“dd((““ Citrus”); unordorderededederedSuSubLiist.Iteeemss.AdAddd(“ Nonn-Citrt us”)s” ; AdAddCCaptionAndRectangle(page.Elemennts, “Unordered Lisst Pagee Elemmente :”, x, yx, y, 225, 110); Unonn rddereedSubLisbLisst ununnu ordederedSredSdredSdd ubLiub st2 = uno

rederer SubbbList2.Items.Add((“PoPotato”); unorderedSSubLiiubLisstt2.Itemmms.Addddd(“BBeans”); Unorno derederedSubdSubLisst subUnorderedSubList = unorderede SubLS ist.Items[0]].SuubLists.AAddddUnorderrde edSubList(); subs bUnorUnorderedSubdSSubbLListLLL .Iteteeems.Ams.Am Addd(“Lime”); s

LList subbbUnorderedSSubList2st = unorderedSubLbLS iist.ist.Itemss[1].SuubLissts.AAddUnordeeredSuedS bLisbL t();t() suubUnorderedSubList2.Items.Add(“Mana go”); subUnorrdereedSSubList2.It2 temms.AAdd(“Banana”);); UnUnordderedSSuSubdS ListLissLis sububUnorn derede dSubList

tt(()(); subUUnordereddSSubList3.Items.Add(“SweSweew t PoPotato””); Unoorderred dSSubList subbUnorUno dereer dSubdSubListList44 = unorrderedSubList2.It2 ems[1].S].SubLists.AddUnoordeereddSubbList(s); subUnubU orderedSubLibubListst4.s Iteems.AdAdAdA d(“Sd(“S“Strining BeeBeean”)an” ; subUnoU rde

AAdddd(“Kiddney Beanean”); x += 279; paga e.Elemeements.Addd(ud nnordereedLisst); uunorderedListLis == unordnorderedere List.GetOvere FlowList(x + 5, y + 20);) AddA CaptionAndRecctanngle(ppageag .Elemeents, “UnorUnorderederer d Lid st PPage e ElemElemmmeent ee Oveverve flow:flow:flo ”, x, y, 225

ooiddd AdddTedTextFxtField(Group pageElemenme ts, , flofloat x,, flooat y)) { TexxtField txtt = new TextFixtF eeld(“txt“t fnafname”, x + 20, y + 40, 120, 20); txt.Defaulu tValue = “This iis s a Scrrollabble Te extFFieldd”; txt.BordederColrColC or =o RgbRgbCColoor.Br.Br.Br.Black; txtxttxtxt.BacackgrokgroundCun o

(td(d xt); TTexTextField txt1 = new TextFiField(ld “txxtf1naf1 me”,me” x + 175, yy + 440, 120, 20); txtt1.DefDe aultu Valualue = “TextField”; txt1.Password = true; ttxt1.MaxLength = = 99; txtt1.BoordderColor = RgbCollor.BBor.Black; txt1.B1.Backgckgrounou dCololor =oror =or = RgbRgbR ColoColor Alr.Al

eree ies(); pieSeries.DataLabel == da;a;da plop tAreAreaa.Sea riesrie .Add(pieSSeriess); ppieSeries.Elemelementss.Add(Add(27,27, “Website A”); pieSeries.Elements.Addd (19, “Website BB”)); pieSerrieses.Elementmen s.Add(21d(21, “WWWebsiseb te Cee ”); ”);); pieSpieSp eries.ElElemenmeements[0ts[0s[0s[0].Co].C lor or == a

esess.Elements[2].Color = aututograog diendientt3;”RgbCRgbColoor.AliceeBlue; txt2.Too.ToolTip = “Multilinnee”; pagepageElElements.Add(txt2); AddCaptionAndRectangle(pageElememennts, “TexxtFiField Formorm PagPage Ele Elemenemenemennnt:”,:”, x, y, 5, 5y 0404, 85);5) } p} rivaate ve ve ooid oid AddCdCombomb

CombCCC ooBox(“cmmbnambna e”, e”, x + x + 51, 51, y + y + 40,40, 150,15 220); cb.BBorderColoor = RgbColor.BlacBlack; ccb.Bab.BackckgroundColor = RgbColor.AliceBlue; cb.Font = Font.Helveelveticaa; cbb.FonFo tSizzSizze = e 12; cb.Icb.Itemsstemsstems.AddA (“Item 1eme ”);); cb.cb.Itemstems.AddAdAd.Add(“It(“It(“It(Item 2em ”); ”); cbcb

didd table””)”); cb.Itemms[s[“[“Editaabble”].Selectcteded = true; c; cb.Editable = truue; ccb.ToolTip == “Edi“Ed tablab e CoC mmbo Box”; pageElements.Add(cb); ComboBox cb1 = new Cew omboombbb Box(B x(“cmbmb1nammee”, x + 303,3303, y + y + 40, 150, 20 20); c); cb1.BBb1 ordedederderrColor == R

= F== ont.HHHelveticca;a; ca; cbb1.FontSnt ize = 122; cb1.Itemss.AAdd(“IItem 1”); ccb1.Ittems.Add(“It“Item 2em ”); ”) cb1.cb1.ItItems.Add(“Item 3”); cb1.Items.Add(“Item 4”); cb1.Itemss.AAddd(“Noon-Ediditabtablee”);); c cb1.Items[““[“Non-Non-EditEditableable”].S”].Seelected = tr= ue; ue; cb1.1 Edita

ntnntts.Ads dd(cb(cb(cb1); Converter.CoC nvert(“http://www.gogoogogle.ccom”, “Outputt.pdf”);Convertve er.Cer.Conveonvert(GetDocPath(“DocumentA.rtf”), “Output.pdf”);System.Diaiagnooosticscss.ProoPP cesssess.SStart(“Outptput.pput.pdf”)df”); As; AsyncCncConverterrt aCooCoonnvenverteer = new A

errr((aC(aCo(nverrter_Converted); aConverter.ConversionErroor += nnew ConnversionErrorEvventHtHandler(aConverter_ConversionError); aConverter.Convert(@”C:\tC:\ emmp\mpmm DDocummenmenttAA.rtf”, @”C:\tememmmp\Oup\OutputtputA.pdA.pdf”);f”);) aConverv rter.ter.Coonvert(@”C

verve t(@”C:\temp\DocumentC.rtf”, @”C:\temp\OutputCC.pdf”)); aCoonveerter.Convert(e “hhttp://p://www.yahoo.com”, @”C:\Temp\yahoo.pdf”); ConversionOptionsoni ooptop ionnsnsns = = new CConversiosionOptnOpttionsions(720(720, 72, 720, 72, ttrue); ceeTe.DTe. yynamicPDF

tempte \\ooutput.pdf”, options); ceTe.DynamicPDF.Conveersion.Connvertter.Convert(“C:\\\teemp\\Document2.docx”, “C:\\temp\\output.pdf”, options); string sg ammmpamplmpam eHtmH ml = l “<hth ml><ml><bodybody><p>><p>pp TThis is a very ssimplm e HTML ML strring includ

<tab<t le bborder=\”1\”>1 <tr><td>100</td><td>200</td>”” + “<ttd>3300<</td></tr><tr><<td>>400</td><td>500</td><td>600</t< d></tr></table><></bod/body><y><//</</hhthtmhtmlhtmhtm >”;Conveveo rsion.Con.CoCC nvernverter.ter.CConvvertHtmlString(saamplempleHtmll, “C“C:\\\temp\emp\\Sam\Sam

ererNamee”, Path.Combo ine(GetPath(), “LetterPortrait.pdff”)); prrintJoob.DDocumentNamee = “LettLetter Pe ortrait”; if (printJob.Pob. rinter.Color) prinprinprinprinpri tJobtJob P.PrintOpntOn tions.Cos. lor o = trtrue; ue; if (if (prinprinri tJobtJo .Printer.ColC late) printJob.Pb.P.PPrrintr OOptiOptip ons.ons.onons CoCoollollate at = tr= tr= uurr

innt

;ppd

t:: ,

Untitled-3 1 12/7/10 3:43 PM

www.dynamicpdf.com
www.dynamicpdf.com/eval

msdn magazine76 ASP.NET Dynamic Data

FieldTemplates folder. I’ll fi rst replace
the content of the Date_Edit.ascx
page with the following markup:

<asp:Calendar ID="DateCalendar"
runat="server"></asp:Calendar>

I’ll then modify the Date_Edit.ascx.cs
fi le with the complete class defi nition
shown in Figure 8.

I override the OnDataBinding
method to set the SelectedDate and
VisibleDate properties of the Calendar
control to the value of the FieldValue
fi eld. Th e FieldValue fi eld is inherited
from FieldTemplateUserControl, and it represents the value of the
data fi eld being rendered. I also modify the ExtractValues overrid-
den method to save any changes to the SelectedDate property to a
dictionary of fi eld name-value pairs. ASP.NET Dynamic Data uses
the values in this dictionary to update the underlying data source.

Next, I need to inform ASP.NET Dynamic Data to use the
Date.ascx and Date_Edit.ascx field templates for the BirthDate
fi eld. I can accomplish this in one of two ways. First, I can apply
the UIHint attribute as follows:

[UIHint("Date")]
public DateTime BirthDate { get; set; }

Alternatively, I can apply the DateType attribute as follows:
[DataType(DataType.Date)]
public DateTime BirthDate { get; set; }

Th e DataType attribute provides automatic mapping by match-
ing the data type name to the name of the user control. Th e UIHint
attribute gives you greater control in situations where the fi eld type
doesn’t match the name of the user control. Figure 9 shows the
result of editing an employee.

If you change the birth date of the selected employee and click
Update, the new data will be saved to the database.

Th e PageTemplates folder contains page templates that render
the appropriate views for entities. By default, fi ve page templates
are supported: List.aspx, Edit.aspx, Details.aspx, Insert.aspx and
ListDetails.aspx. Th e List.aspx page template renders a UI for dis-
playing entities as tabular data. Th e Details.aspx page template
renders a read-only view of an entity, while the Edit.aspx page
template displays an editable view of an entity. Th e Insert.aspx page
renders an editable view with default fi eld values. Th e ListDetails.
aspx page template allows you to view a list of entities as well as
details for the selected entity on a single page.

As I mentioned earlier in the article, ASP.NET Dynamic Data
automatically routes URL requests to the appropriate page by
examining the value of the {action} parameter defi ned for the route.
For example, if ASP.NET Dynamic Data evaluates an {action}
parameter as List, it uses the List.aspx page template to display a
list of entities. You can alter the existing page templates or add a
new one to the folder. If you add a new one, you must ensure that
you add it to the route table in the Global.asax fi le.

Th e EntityTemplates folder contains templates for displaying entity
 instances in read-only, edit and insert modes. By default, this folder
contains three templates named Default.ascx, Default_Edit.ascx
and Default_Insert.ascx, which display entity instances in read-only,

edit and insert mode, respectively.
To create a template that applies to
only a specifi c entity, simply add
a new user control to the folder
and give it the name of the entity
set. For example, if you add a new
user control named Shifts.ascx
to the folder, ASP.NET Dynamic
Data uses this user control to
render the read-only mode for
a Shift entity (Shifts entity set).
Similarly, Shifts_Edit.ascx and
Shift s_Insert.ascx render the edit

and insert modes of the Shift entity, respectively.
For each list of entities, ASP.NET Dynamic Data uses the entity’s

foreign key fi elds, Boolean fi elds and enumeration fi elds to build
a fi lter list. Th e fi lters are added as DropDown controls to the list
page, as shown in Figure 10.

For Boolean filters, the DropDownList control simply contains
three values: All, True and False. For enumeration filters, the Drop-
DownList control contains all enumerated values. For foreign key
filters, the DropDownList control contains all distinct foreign
key values. The filters are defined as user controls in the Filters
folder. By default, only three user controls exist: Boolean.ascx,
Enumeration.ascx and ForeignKey.ascx.

Ship It!
Although this was a fi ctional scenario, you’ve seen that it’s entirely
possible to create a fully operational Human Resources Web site in
just a few minutes. I then proceeded to enhance the UI by adding
metadata and a custom fi eld template.

ASP.NET Dynamic Data provides out-of-the-box functionality
that allows you to get a site up and running quickly. However, it’s
also entirely customizable, allowing it to meet the needs of indi-
vidual developers and organizations. ASP.NET Dynamic Data
support for ASP.NET Routing allows you to reuse page templates
for CRUD operations. If you’ve become frustrated with having to
continually perform the tedious tasks of implementing CRUD
pages on every Web application project, then ASP.NET Dynamic
Data should make your life a lot easier.

JAMES HENRY is an independent soft ware developer for BlueVision LLC, a company
that specializes in Microsoft technology consulting. He’s the author of “Developing
Business Intelli gence Solutions Using Information Bridge and Visual Studio .NET”
(Blue Vision, 2005) and “Developing .NET Custom Controls and Designers Using
C#” (Blue Vision, 2003). He can be reached at msdnmag@bluevisionsoft ware.com.

THANKS to the following technical expert for reviewing this article:
Scott Hunter

Figure 10 Including Data Filters on the Page

You can apply the UIHint
attribute to a fi eld to ensure that
a different user control is used.

mailto:msdnmag@bluevisionsoftware.com

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine78

Th en, once the class in question has been created, it needs only
to be compiled and either added to the project or else compiled
into its own assembly for reuse as a binary.

Of course, the language being generated doesn’t have to be the
language in which the code generator is written—in fact, it will
often help immensely if it isn’t, because then it will be easier
to keep the two more clearly distinct in the developer’s head
during debugging.

Commonality, Variability and Pros and Cons
In the commonality/variability analysis, automatic metaprogram-
ming occupies an interesting place. In the Figure 2 example, it
places structure and behavior (the outline of the class above) into
commonality, allowing for variability along data/type lines, that of
the type being stored in the generated class. Clearly, we can swap
in any type desired into the ListOf type.

Multiparadigmatic .NET, Part 5:
Automatic Metaprogramming

In last month’s piece, objects came under the microscope, and
in particular we looked at the “axis” of commonality/variability
analysis that inheritance off ers us. While inheritance isn’t the only
form of commonality/variability available within a modern object-
oriented (OO) language such as C# or Visual Basic, it certainly
stands at the center of the OO paradigm. And, as also discussed,
it doesn’t always provide the best solution to all problems.

To recap, what we’ve discovered so far is that C# and Visual Basic
are both procedural and OO languages—but clearly the story doesn’t
stop there. Both are also metaprogrammatic languages—each off ers
the Microsoft .NET Framework developer the opportunity to build
programs out of programs, in a variety of diff erent ways: automatic,
refl ective and generative.

Automatic Metaprogramming
Th e core idea behind metaprogramming is simple: the traditional
constructs of procedural or OO programming haven’t solved quite
all of our soft ware design issues, at least not in a way that we fi nd
satisfying. For example, to cite a basic fl aw, developers frequently
found a need for a data structure that maintained an ordered list
of some particular type, such that we could insert items into the
list in a particular slot and see the items in that exact order. For
performance reasons, sometimes the list wanted to be in a linked
list of nodes. In other words, we wanted an ordered linked list, but
strongly typed to the type being stored within it.

Developers who came to the .NET Framework from the C++
world know one solution to this problem—that of parameterized
types, also known more informally as generics. But, as developers
who came to .NET through Java’s early days know, another solu-
tion emerged long before templates (which did, eventually, make
it into the Java platform). Th at solution was to simply write each
needed list implementation as necessary, as shown in Figure 1.

Now, obviously, this fails the Don’t Repeat Yourself (DRY) test—
every time the design calls for a new list of this kind, it will need
to be written “by hand,” which will clearly be a problem as time
progresses. Although not complicated, it’s still going to be awkward
and time-consuming to write each of these, particularly if more
features become necessary or desirable.

Of course, nobody ever said developers had to be the ones writ-
ing such code. Which brings us around neatly to the solution of code
generation, or as it’s sometimes called, automatic metaprogramming.
Another program can easily do it, such as a program designed to
kick out classes that are customized to each type needed, as shown
in Figure 2.

THE WORKING PROGRAMMER TED NEWARD

Class ListOfInt32

 Class Node
 Public Sub New(ByVal dt As Int32)
 data = dt
 End Sub
 Public data As Int32
 Public nextNode As Node = Nothing
 End Class

 Private head As Node = Nothing

 Public Sub Insert(ByVal newParam As Int32)
 If IsNothing(head) Then
 head = New Node(newParam)
 Else
 Dim current As Node = head
 While (Not IsNothing(current.nextNode))
 current = current.nextNode
 End While
 current.nextNode = New Node(newParam)
 End If
 End Sub

 Public Function Retrieve(ByVal index As Int32)
 Dim current As Node = head
 Dim counter = 0
 While (Not IsNothing(current.nextNode) And counter < index)
 current = current.nextNode
 counter = counter + 1
 End While

 If (IsNothing(current)) Then
 Throw New Exception("Bad index")
 Else
 Retrieve = current.data
 End If
 End Function
End Class

Figure 1 An Example of Writing List Implementations as Necessary

Toll Free USA (888) 774-3273 | Phone (913) 390-4797 | sales@spreadsheetgear.com

Download the FREE fully functional 30-Day
evaluation of SpreadsheetGear 2010 today at

www.SpreadsheetGear.com.

ASP.NET Excel Reporting
Easily create richly formatted Excel reports without Excel using the
new generation of spreadsheet technology built from the ground up
for scalability and reliability.

Excel Compatible Windows Forms Control
Add powerful Excel compatible viewing, editing, formatting, calculating,
charting and printing to your Windows Forms applications with the
easy to use WorkbookView control.

Create Dashboards from Excel Charts and Ranges
You and your users can design dashboards, reports, charts, and
models in Excel rather than hard to learn developer tools and you can
easily deploy them with one line of code.

Microsoft Chose SpreadsheetGear...
“After carefully evaluating SpreadsheetGear, Excel Services, and other
3rd party options, we ultimately chose SpreadsheetGear for .NET
because it is the best fi t for MSN Money.”

Chris Donohue, MSN Money Program Manager

Untitled-9 1 11/2/10 12:10 PM

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com

msdn magazine80 The Working Programmer

But automatic metaprogramming can reverse that, too, if neces-
sary. Using a rich templating language, such as the Text Template
Transformation Toolkit (T4) that ships with Visual Studio, the code
generation templates can do source-time decision making, which
then allows the template to provide commonality along data/
structural lines, and vary by structural and behavioral lines. In fact, if
the code template is suffi ciently complex (and this isn’t necessarily a
good angle to pursue), it’s even possible to eliminate commonality
altogether and vary everything (data, structure, behavior and so on).
Doing so typically becomes unmanageable quite quickly, however,
and in general should be avoided. Th at leads to one of the key realiza-
tions about automatic metaprogramming: Because it lacks any sort
of inherent structural restrictions, choose the commonality and
variability explicitly, lest the source code template grow out of control
trying to be too fl exible. For example, given the ListOf example in
Figure 2, the commonality is in the structure and behavior, and the
variability is in the data type being stored—any attempt to introduce
variability in the structure or behavior should be considered to be a
red fl ag and a potential slippery slope to chaos.

Obviously, code generation carries with it some signifi cant risks,
particularly around areas of maintenance: Should a bug be discovered
(such as the concurrency one in the ListOf… example in Figure 2),
fi xing it isn’t a simple matter. Th e template can obviously be fi xed, but
that doesn’t do anything for the code already generated—each of those
source artifacts needs to be regenerated, in turn, and this is something
that’s hard to track and ensure automatically. And, what’s more, any
handmade changes to those generated fi les will be intrinsically lost,
unless the template-generated code has allowed for customizations.
Th is risk of overwrite can be mitigated by use of partial classes, allow-
ing developers to fi ll in the “other half ” (or not) of the class being
generated, and by extension methods, giving developers an opportu-
nity to “add” methods to an existing family of types without having to
edit the types. But partial classes must be in place from the beginning
within the templates, and extension methods carry some restrictions
that prevent them from replacing existing behavior—again leaving
neither approach as a good mechanism to carry negative variability.

Code Generation
Code generation—or automatic metaprogramming—is a technique
that’s been a part of programming for many years, ranging all the way
from the C preprocessor macro through to the C# T4 engine, and will
likely continue to carry forward, owing to the conceptual simplicity
of the idea. However, its principal fl aws are the lack of compiler struc-
ture and checking during the expansion process (unless, of course, that
checking is done by the code generator itself, a task that’s harder than it
sounds) and the inability to capture negative variability in any mean-
ingful way. Th e .NET Framework off ers some mechanisms to make
code generation easier—in many cases, those mechanisms were intro-
duced to save other Microsoft developers some grief—but they won’t
eliminate all the potential pitfalls in code generation, not by a long shot.

And yet, automatic metaprogramming remains one of the more
widely used forms of metaprogramming. C# has a macro preproces-
sor, as do C++ and C. (Using macros to create “tiny templates” was
common before C++ got templates.) On top of that, using metapro-
gramming as part of a larger framework or library is common,

particularly for inter-process communication scenarios (such as
the client and server stubs generated by Windows Communica-
tion Foundation). Other toolkits use automatic metaprogramming
to provide “scaffolding” to ease the early stages of an application
(such as what we see in ASP.NET MVC). In fact, arguably every
Visual Studio project begins with automatic metaprogramming,
in the form of the “project templates” and “item templates” that
most of us use to create new projects or add fi les to projects. And
so on. Like so many other things in computer science, automatic
metaprogramming remains a useful and handy tool to have in the
designer toolbox, despite its obvious fl aws and pitfalls. Fortunately,
it’s far from the only meta-tool in the programmer’s toolbox.

TED NEWARD is a principal with Neward & Associates, an independent fi rm
specializing in enterprise .NET Framework and Java platform systems. He’s
written more than 100 articles, is a C# MVP and INETA speaker, and has
authored and coauthored a dozen books, including “Professional F# 2.0” (Wrox,
2010). He also consults and mentors regularly. Reach him at ted@tedneward.com
and read his blog at blogs.tedneward.com.

Sub Main(ByVal args As String())
 Dim CRLF As String = Chr(13).ToString + Chr(10).ToString()
 Dim template As String =
 "Class ListOf{0}" + CRLF +
 " Class Node" + CRLF +
 " Public Sub New(ByVal dt As {0})" + CRLF +
 " data = dt" + CRLF +
 " End Sub" + CRLF +
 " Public data As {0}" + CRLF +
 " Public nextNode As Node = Nothing" + CRLF +
 " End Class" + CRLF +
 " Private head As Node = Nothing" + CRLF +
 " Public Sub Insert(ByVal newParam As {0})" + CRLF +
 " If IsNothing(head) Then" + CRLF +
 " head = New Node(newParam)" + CRLF +
 " Else" + CRLF +
 " Dim current As Node = head" + CRLF +
 " While (Not IsNothing(current.nextNode))" + CRLF +
 " current = current.nextNode" + CRLF +
 " End While" + CRLF +
 " current.nextNode = New Node(newParam)" + CRLF +
 " End If" + CRLF +
 " End Sub" + CRLF +
 " Public Function Retrieve(ByVal index As Int32)" + CRLF +
 " Dim current As Node = head" + CRLF +
 " Dim counter = 0" + CRLF +
 " While (Not IsNothing(current.nextNode) And counter < index)"+ CRLF +
 " current = current.nextNode" + CRLF +
 " counter = counter + 1" + CRLF +
 " End While" + CRLF +
 " If (IsNothing(current)) Then" + CRLF +
 " Throw New Exception()" + CRLF +
 " Else" + CRLF +
 " Retrieve = current.data" + CRLF +
 " End If" + CRLF +
 " End Sub" + CRLF +
 "End Class"

 If args.Length = 0 Then
 Console.WriteLine("Usage: VBAuto <listType>")
 Console.WriteLine(" where <listType> is a fully-qualified CLR typename")
 Else
 Console.WriteLine("Producing ListOf" + args(0))

 Dim outType As System.Type =
 System.Reflection.Assembly.Load("mscorlib").GetType(args(0))
 Using out As New StreamWriter(New FileStream("ListOf" + outType.Name + ".vb",
 FileMode.Create))
 out.WriteLine(template, outType.Name)
 End Using
 End If

Figure 2 An Example of Automatic Metaprogramming

mailto:ted@tedneward.com
http://blogs.tedneward.com

Untitled-1 1 6/9/10 11:03 AM

www.nevron.com

msdn magazine82

Games and Components
Just as the main class of a WPF, Silverlight or Windows Forms pro-
gram is a class that derives from Window, Page or Form, the main
class of an XNA program derives from Game. An XNA program
uses this Game derivative to draw bitmaps, text and 3D graphics
on the screen.

To help you organize your program into discrete functional
entities, XNA supports the concept of a component, which is perhaps
the closest that XNA comes to a control. Components come in
two varieties: GameComponent derivatives and DrawableGame-
Component derivatives. DrawableGameComponent itself derives
from GameComponent, and the names suggest the diff erence. I’ll
be using both base classes in this exercise.

Th e Game class defi nes a property named Components of type
GameComponentCollection. Any components that a game cre-
ates must be added to this collection. Doing so ensures that the
component gets the same calls to various overridden methods that
the game itself gets. A DrawableGameComponent draws on top
of whatever the Game draws.

Let’s begin the analysis of the XnaColorScroll program—not with
the Game derivative, but with the GameComponent derivatives.
Figure 2 shows the source code for a component I call TextBlock,
and it’s used in much the same way as a WPF or Silverlight TextBlock.

Notice the public properties following the constructor in Figure
2. Th ese indicate the text itself, and the font, color and position of the
text relative to the screen. Two additional properties, Horizontal-
Alignment and VerticalAlignment, allow that position to reference

A Color Scroll for XNA

One of the fi rst Windows programs I wrote for publication was
called COLORSCR (“color scroll”), and it appeared in the May 1987
issue of Microsoft Systems Journal, the predecessor to this magazine.

Over the years, I’ve frequently found it instructive to rewrite this
program for other APIs and frameworks. Although the program is
simple—you manipulate three scrollbars or sliders for red, green
and blue values to create a custom color—it involves crucial tasks
such as layout and event handling. In functionality, as well, the
program is not strictly a simple, meaningless demo. If you ever
found yourself creating a color-selection dialog, this program would
be a good place to start.

In this article, I want to show you how to write a color-scroll
program using the XNA Framework as implemented in Windows
Phone 7. Th e result is shown in Figure 1.

XNA is Microsoft .NET Framework-based managed code
for games programming, but if you start searching through the
Microsoft .Xna.Framework namespaces, you won’t fi nd any scroll-
bars or sliders or even buttons among the classes! XNA is simply
not that kind of framework. If you want a slider in your program,
it must be specially created for that job.

Showing you how to write an XNA color-scroll program isn’t just an
academic exercise, however. My intention is actually much broader.

As you know, Windows Phone 7 supports both Silverlight and
XNA, and generally for any particular application the choice between
the two is obvious. However, you might find that the graphical
demands of your application are simply too much for Silverlight,
but at the same time you might be hesitant about using XNA instead
because it’s missing familiar amenities, such as buttons and sliders.

My response is: Do not be afraid. Writing simple controls in
XNA is easier than you probably think.

You can also consider this article as an introduction to XNA
programming for Windows Presentation Foundation (WPF) and
Silverlight programmers. I found myself applying certain concepts
from WPF and Silverlight to this job, so the XNA color-scroll pro-
gram is a celebration of synergy as well.

All the downloadable source code is in one Visual Studio solution
called XnaColorScroll. Th is solution includes an XnaColorScroll proj-
ect for Windows Phone 7 and a library called Petzold.Xna.Controls
containing the four XNA “controls” that I created for this program.
(Obviously, loading the solution into Visual Studio requires that you
have the Windows Phone Development Tools installed.) Feel free to
steal these controls and supplement them with your own for your
own XNA controls library.

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201101UIFrontiers.

Figure 1 The Xnacolorscroll Program

http://code.msdn.microsoft.com/mag201101UIFrontiers

83January 2011msdnmagazine.com

the side or center of the text string. In XnaColorScroll, these prop-
erties are handy for centering the text relative to the sliders.

Th e class also includes a get-only Size property, which returns
the size of the rendered text with that particular font. (Th e XNA
Vector2 structure is oft en used for representing two-dimensional
positions and sizes as well as vectors.)

Th e TextBlock component overrides both the Update and Draw
methods, which is normal for a drawable component and normal for
Game derivatives as well. Th ese two methods constitute the program’s
“game loop,” and they’re called at the same rate as the video display—30
times per second for Windows Phone 7. You can think of the Draw
method like a WM_PAINT message or an OnPaint override, except
that it’s called for every screen refresh. Th e Update method is called
before each Draw call and is intended to be used for performing all
the necessary calculations and preparation for the Draw method.

TextBlock as written has lots of room for performance improve-
ments. For example, it could cache the value of the Size property
or only recalculate the textOrigin fi eld whenever any property that
contributes to it changes. Th ese enhancements might take priority
if you ever discover that the program has become sluggish because
all the Update and Draw calls in the program are taking longer than
0.03 seconds to execute.

Components and Child Components
As you can see in Figure 1, XnaColorScroll has six TextBlock
components but also three sliders, which are probably going to be
a little more challenging.

Very many years ago, I might have tried coding the entire slider
in a single class. With my experience in WPF and Silverlight con-
trol templates, however, I realize that the Slider control might best
be constructed by assembling a Th umb control and RepeatButton
controls. It seems reasonable to try to create an XNA Slider com-
ponent from similar child components.

A Game class adds child components to itself by adding them
to its Components property of type GameComponentCollection.
Th e big question now becomes: Does GameComponent itself have
a Components property for its own child components?

Unfortunately, the answer is no. However, a component has access
to its parent Game class, and if the component needs to instantiate its
own child components, it can add those additional components to the
same Components collection of the Game class. Do this in the right
order and you won’t even need to mess around with the DrawOrder
property—defi ned by DrawableGameComponent—that can help with
the order in which components are rendered. By default, the Draw
method in the Game class is called fi rst, then all the Draw methods
in the components as they appear in the Components collection.

So let’s begin. Like TextBlock, the Thumb class derives from
DrawableGameComponent. Th e entire Th umb class except for the

touch processing is shown in Figure 3. Th umb defi nes the same
three events as the WPF and Silverlight Th umb controls.

In the TextBlock component in Figure 2, the Position property
is a point of type Vector2; in Thumb, the Position property is a
Rectangle object, and defi nes not only the location of the Th umb,
but also its rectangular size. The Thumb visuals consist entirely
of a white 1 x 1 pixel bitmap that’s displayed at the location and
size indicated by the Position property. (Using single-pixel bit-
maps stretched to a particular size is one of my favorite XNA
programming techniques.)

Th e Th umb processes touch input but doesn’t move itself. Th e
Slider component is responsible for handling DragDelta events
from the Th umb and setting a new Position property.

public class TextBlock : DrawableGameComponent
{
 SpriteBatch spriteBatch;
 Vector2 textOrigin;

 public TextBlock(Game game) : base (game)
 {
 // Initialize properties
 this.Color = Color.Black;
 }

 public string Text { set; get; }
 public SpriteFont Font { set; get; }
 public Color Color { set; get; }
 public Vector2 Position { set; get; }
 public HorizontalAlignment HorizontalAlignment { set; get; }
 public VerticalAlignment VerticalAlignment { set; get; }

 public Vector2 Size
 {
 get
 {
 if (String.IsNullOrEmpty(this.Text) || this.Font == null)
 return Vector2.Zero;

 return this.Font.MeasureString(this.Text);
 }
 }

 protected override void LoadContent()
 {
 spriteBatch = new SpriteBatch(this.GraphicsDevice);
 base.LoadContent();
 }

 public override void Update(GameTime gameTime)
 {
 if (!String.IsNullOrEmpty(Text) && Font != null)
 {
 Vector2 textSize = this.Size;
 float xOrigin = (int)this.HorizontalAlignment * textSize.X / 2;
 float yOrigin = (int)this.VerticalAlignment * textSize.Y / 2;
 textOrigin = new Vector2((int)xOrigin, (int)yOrigin);
 }
 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 if (!String.IsNullOrEmpty(Text) && Font != null)
 {
 spriteBatch.Begin();
 spriteBatch.DrawString(this.Font, this.Text, this.Position, this.Color,
 0, textOrigin, 1, SpriteEffects.None, 0);
 spriteBatch.End();
 }
 base.Draw(gameTime);
 }
}

Figure 2 The TextBlock Game Component

If you want a slider in your
program, it must be specially

created for that job.

www.msdnmagazine.com

msdn magazine84 UI Frontiers

Besides the Th umb, my Slider also contains two RepeatButton
components, one on each side of the Th umb. Like the WPF and
Silverlight RepeatButton controls, these components generate a
series of Click events if you hold your fi nger on them.

In my XNA Slider, the RepeatButton components occupy a
particular area of the screen but are actually invisible. (Th e thin
vertical track down the center is drawn by Slider itself.) This
means that RepeatButton can derive from GameComponent
rather than DrawableGameComponent. Figure 4 shows the whole
RepeatButton control except for the touch processing.

At this point, we’re ready to build the Slider component. To keep
it reasonably simple, I restricted myself to a vertical orientation.
Slider has the usual public properties—Minimum, Maximum and
Value, among others—and also defi nes a ValueChanged event. In
its Initialize override, Slider creates the three child components
(and saves them as fi elds), sets the event handlers and adds them
to the Components collection of its parent Game class accessible
through its Game property:

public override void Initialize()
{
 thumb = new Thumb(this.Game);
 thumb.DragDelta += OnThumbDragDelta;
 this.Game.Components.Add(thumb);

 btnDecrease = new RepeatButton(this.Game);
 btnDecrease.Click += OnRepeatButtonClick;
 this.Game.Components.Add(btnDecrease);

 btnIncrease = new RepeatButton(this.Game);
 btnIncrease.Click += OnRepeatButtonClick;
 this.Game.Components.Add(btnIncrease);

 base.Initialize();
}

XNA Game derivatives and GameComponent derivatives have
three occasions to perform initialization—the class constructor, an
override of the Initialize method and an override of the LoadContent
method—and it might be a little confusing when to use which. As
the name suggests, LoadContent is great for loading content (such
as fonts or bitmaps) and should be used for all other initialization
that depends on the existence of the GraphicsDevice object.

I prefer creating components and adding them to the Compo-
nents collection during the Initialize override, as shown in the
previous code snippet. In XnaColorScroll, the Game derivative
class also creates six TextBlock components and three Slider
components in its Initialize override. When the Initialize method
in the base class is called at the end, then all the Initialize methods
for the child components are called. Th e Initialize method in each
Slider then creates the Th umb and two RepeatButton components.
Th is scheme ensures that all these components are added to the
Components collection in a proper order for rendering.

Processing Touch Input
Th e primary means of user input in most Windows Phone 7 pro-
grams is multi-touch, and XNA is no exception. (Keyboard input
is also available to XNA programs, and programs can also use the
phone’s accelerometer as an input device.)

An XNA program obtains touch input during the Update over-
ride. Th ere are no touch events. All touch input is polled and is acces-
sible through the TouchPanel class. Th e static TouchPanel.GetState

method provides low-level touch input that consists of Touch-
Location objects indicating Pressed, Moved and Released activity
with position information and integer ID numbers to distin-
guish between multiple fingers. The TouchPanel.ReadGesture
method (which I don’t use in this program) provides higher-level
gesture support.

When I fi rst started working with game components, I thought
that each component could obtain touch input on its own, take what
it needed and ignore the rest. Th is didn’t seem to work very well; it
was as if the game class and the components were all competing for
touch input rather than sharing it like polite children.

I decided to work out another system for processing touch input.
Only the Game class calls TouchPanel.GetState. Th en, each Touch-
Location object is passed to child components through a method
I call ProcessTouch. Th is allows the components to get fi rst dibs
on the input. A component that makes use of a TouchLocation
object returns true from the ProcessTouch method, and further
processing for that particular TouchLocation object ends. (Return-
ing true from ProcessTouch is like setting the Handled property of
RoutedEventArgs to true in WPF or Silverlight.)

public class Thumb : DrawableGameComponent
{
 SpriteBatch spriteBatch;
 Texture2D tinyTexture;
 int? touchId;

 public event EventHandler<DragEventArgs> DragStarted;
 public event EventHandler<DragEventArgs> DragDelta;
 public event EventHandler<DragEventArgs> DragCompleted;

 public Thumb(Game game) : base(game)
 {
 // Initialize properties
 this.Color = Color.White;
 }

 public Rectangle Position { set; get; }
 public Color Color { set; get; }

 protected override void LoadContent()
 {
 spriteBatch = new SpriteBatch(this.GraphicsDevice);
 tinyTexture = new Texture2D(this.GraphicsDevice, 1, 1);
 tinyTexture.SetData<Color>(new Color[] { Color.White });

 base.LoadContent();
 }

 ...

 public override void Draw(GameTime gameTime)
 {
 spriteBatch.Begin();
 spriteBatch.Draw(tinyTexture, this.Position, this.Color);
 spriteBatch.End();

 base.Draw(gameTime);
 }
}

Figure 3 Most of the Thumb Class

Writing simple controls in XNA is
easier than you probably think.

APRIL 18–22, 2011
LAS VEGAS, NEVADA
RIO ALL-SUITE HOTEL & CASINO

YOU ARE
NOT A
CODER:
YOU ARE A
CREATOR.

YOU TAKE AN IDEA AND MAKE IT A REALITY. You turn the

“impossible” into “possible.” You bring into being the applications

that your company relies on everyday.

Attend Visual Studio Live! for real-world education for creators

like you. Full-day intensive workshops. Practical how-to sessions.

Insightful keynotes from Microsoft MVPs. From Silverlight to

Sharepoint, Data Management to Visual Studio 2010, you’ll get

the training that will take your code to the next level.

REGISTER TODAY
SAVE $300!
USE CODE ADJAN

SUPPORTED BY:
WWW.VSLIVE.COM/LV

PRODUCED BY:

Untitled-1 1 12/2/10 10:33 AM

www.vslive.com/lv

msdn magazine86 UI Frontiers

In XnaColorScroll, the Update method in the main Game class
calls TouchPanel.GetState to get all the touch input and then calls
the ProcessTouch method in each Slider component as shown here:

TouchCollection touches = TouchPanel.GetState();

foreach (TouchLocation touch in touches)
{
 for (int primary = 0; primary < 3; primary++)
 if (sliders[primary].ProcessTouch(gameTime, touch))
 break;
}

Notice how further processing of each TouchLocation object
stops whenever ProcessTouch returns true.

Th e ProcessTouch method in each Slider control then calls the
ProcessTouch methods in the two RepeatButton components and
the Th umb component:

public bool ProcessTouch(GameTime gameTime, TouchLocation touch)
{
 if (btnIncrease.ProcessTouch(gameTime, touch))
 return true;

 if (btnDecrease.ProcessTouch(gameTime, touch))
 return true;

 if (thumb.ProcessTouch(gameTime, touch))
 return true;

 return false;
}

If any of these components (or the Game class itself) wished to
perform its own touch processing, it would fi rst call ProcessTouch
in each child. Any TouchLocation object that remained unprocessed
by the children could then be examined for the class’s own use. In
eff ect, this scheme allows the visually topmost children to have fi rst
access to touch input, which is oft en exactly what you want. It’s much
like the routed event handling implemented in WPF and Silverlight.

Both the RepeatButton and the Th umb are interested in touch
input if a fi nger is fi rst touched within the area indicated by the
component’s Position rectangle. Th e component then “captures”
that fi nger by saving the touch ID. All other touch input with that
ID belongs to that particular component until the fi nger is released.

Propagating Events
Th e touch processing of the Th umb and RepeatButton components
is really the crux of the Slider control, but that’s something you
can study on your own if you’re interested. When the Thumb
component detects finger movement on its surface, it generates
DragDelta events; when the RepeatButton component detects taps
or sustained presses, it fi res Click events.

Both these events are handled by the parent Slider compo-
nent, which adjusts its Value property accordingly, and this fi res a
ValueChanged event from the Slider. Th e Slider is also responsible

for setting the Position properties of the Th umb and two Repeat-
Button components based on the new Value.

Th e Game class handles the ValueChanged events from the three
Slider components in a single event handler, so the method simply
sets new values of the three TextBlock components and a new color:

void OnSliderValueChanged(object sender, EventArgs args)
{
 txtblkValues[0].Text = sliders[0].Value.ToString("X2");
 txtblkValues[1].Text = sliders[1].Value.ToString("X2");
 txtblkValues[2].Text = sliders[2].Value.ToString("X2");

 selectedColor = new Color(sliders[0].Value,
 sliders[1].Value,
 sliders[2].Value);
}

Th at leaves the Draw override in the Game class with just two
jobs: Draw the black rectangle that serves as background behind
the components, and draw the rectangle with a new selectedColor
on the right. Both jobs involve a 1 x 1 pixel bitmap stretched to fi ll
half the screen.

Better than Silverlight?
I recently also wrote a Silverlight version of the color-scroll pro-
gram for Windows Phone 7, and I discovered that the program only
allowed me to manipulate one Slider at a time. However, if you deploy
the XnaColorScroll program to a phone, you can manipulate all three
Slider controls independently. I fi nd that diff erence very interesting.
It illustrates once again how high-level interfaces such as Silverlight
may make our lives much simpler, but oft en something else needs
to be sacrifi ced. I believe the concept is called TANSTAAFL: Th ere
ain’t no such thing as a free lunch.

XNA is so low-level in some respects that it might remind us
of the Wild West. But with a little judicious use of components
(including components built from other components) and mim-
icking routed event handling, even XNA can be tamed and made
to seem more like Silverlight—perhaps even better.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine.
His new book, “Programming Windows Phone 7” (Microsoft Press, 2010), is avail-
able as a free download at bit.ly/cpebookpdf.

THANKS to the following technical expert for reviewing this article:
Shawn Hargreaves

public class RepeatButton : GameComponent
{
 static readonly TimeSpan REPEAT_DELAY = TimeSpan.FromMilliseconds(500);
 static readonly TimeSpan REPEAT_TIME = TimeSpan.FromMilliseconds(100);

 int? touchId;
 bool delayExceeded;
 TimeSpan clickTime;

 public event EventHandler Click;

 public RepeatButton(Game game) : base(game)
 {
 }

 public Rectangle Position { set; get; }

 ...

}

Figure 4 Most of the RepeatButton Class

The primary means of
user input in most Windows
Phone 7 programs is multi-

touch, and XNA is no exception.

http://bit.ly/cpebookpdf

Untitled-4 1 12/9/10 1:38 PM

www.codeproject.com

msdn magazine88

Rooney is one of my longtime infl uences.
We both graduated from Colgate University,
he in 1942 and I in 1979. I’ve sometimes
described my goals for this column as:
“Th ink of it as a cross between Andy Rooney,
Dennis Miller and George Will. Or maybe
it’s better if you don’t.”

I’ve blatantly plagiarized Sol’s and Pete’s
and Andy’s idea and made the following
observations about the contrasting times
in a geek’s life. I hope you’ll use the e-mail
link below to send me your own favorites.
My friends, there is:

A time to slam down a huge jolt of caf-
feine, and a time to sip it slowly over the
course of an hour.

A time to save state in object instances,
and a time to make them stateless.

A time for bullet-proofing your code and a time for taking
short cuts.

A time to listen to Clippy (“I see you’re writing a crude forgery”)
and a time to shoot him in the head.

A time to play Solitaire at meetings, and a time to pay attention
to the speaker (rare, unless that speaker is me).

A time for bullet points and a time to ditch PowerPoint and
actually talk to your audience.

A time to chase the cat off your laptop keyboard, and a time to
use your desktop and let her sleep.

A time to hold up delivery until you can fi x a particular feature,
a time to chop out the entire feature because you can’t fi x it and
need to make the ship date, and a time to just ship the damn thing.

A time to put your user fi rst and not stroke your own ego. Th ere
isn’t an opposite to this one.

A time to work until two in the morning, and a time to go home
and appreciate still having a family.

A time to read brilliant columns, and a time to quit goofi ng off
and get back to work already. Th at’s now.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming books,
including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006) and “Intro-
ducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Soft ware
Legend in 2002. He wonders whether he should tape down two of his daughter’s
fi ngers so she learns how to count in octal. You can contact him at rollthunder.com.

Turn! Turn! Turn!

I was listening to Pandora.com the other day,
and its algorithms decided to play me the
Byrds classic (1965) folk-rock song “Turn!
Turn! Turn!” I know you’ll recognize some
of its lyrics: “To everything, there is a season,
and a time for every purpose under heaven.
A time to be born, a time to die; a time to
plant, a time to reap; a time to kill, a time
to heal; a time to laugh, a time to weep.”

Th e words, of course, come from the bib-
lical book of Ecclesiastes, specifi cally the
third chapter. Th eir authorship is popularly
attributed to Shlomo ben David, Solomon
the Wise (although see the debate at bit.ly/
g8Q5I6). If true, an ancient Israelite king
would own credit for the lyrics to a Billboard
No. 1 hit (though I suspect the copyright has
expired, so he wouldn’t get much money for
it). Pete Seeger put the words to music in 1959, rearranging some
to make the song more singable (“poetic license,” another triumph
of usability over strict veracity) and adding six words of his own.

Geek that I am, I couldn’t help but realize the pattern that unites the
verses of this song. Th ey all describe opposite actions and state that
a time exists for each. To put it into canonical geek language, there
is a time for A and a time for !A (or ~A, if you’re going to get picky).

Andy Rooney extended this pattern in his book, “Th e Most of
Andy Rooney” (Galahad Books, 1991), when he suggested changes
to the list: “Th ere is a time for putting chocolate sauce on vanilla ice
cream, and a time for eating vanilla ice cream without chocolate
sauce. … A time for exercise and a time for lying down and taking
a little nap. … A time to play basketball, which shall be in the
wintertime, and a time to knock it off with the basketball, which
shall be as the wintertime comes to an end, and not in June.”

DON’T GET ME STARTED DAVID PLATT

To put it into canonical geek
language, there is a time for A

and a time for !A (or ~A, if you’re
going to get picky).

http://bit.ly/g8Q5I6
http://bit.ly/g8Q5I6
http://rollthunder.com

Untitled-14 1 10/7/10 3:47 PM

www.gcpowertools.com

Untitled-1 1 11/4/10 4:37 PM

www.dundas.com

	Back
	Print
	MSDN Magazine, January 2011
	Contents
	EDITOR’S NOTE: Change the World
	TOOLBOX: Visual Studio Tools and Extensions
	CUTTING EDGE: Interceptors in Unity 2.0
	FORECAST: CLOUDY: Branch-Node Synchronization with SQL Azure
	WORKFLOWS:
	Scalable, Long-Running Workflows with Windows Server AppFabric
	Authoring Custom Control Flow Activities in WF 4

	Using MEF to Expose Interfaces in Your Silverlight MVVM Apps
	Data Processing: Parallelism and Performance
	Use Multiple Visual Studio Project Types for Cloud Success
	Build a Data-Driven Enterprise Web Site in 5 Minutes
	THE WORKING PROGRAMMER: Multiparadigmatic .NET, Part 5: Automatic Metaprogramming
	UI FRONTIERS: A Color Scroll for XNA
	DON’T GET ME STARTED: Turn! Turn! Turn!

	GrapeCity Insert

