
Building Hybrid Applications
in the Cloud on Windows Azure

For more information explore:
msdn.microsoft.com/practices

Software Architecture and
Software Development

patterns & practices
		 Proven practices for predictable results

Save time and reduce risk on your 	
software development projects by 	
incorporating patterns & practices, 	
Microsoft’s applied engineering 	
guidance that includes both production
quality source code and documentation.

The guidance is designed to help 	
software development teams:

Make critical design and technology
selection decisions by highlighting
the appropriate solution architectures,
technologies, and Microsoft products
for common scenarios

Understand the most important 	
concepts needed for success by 	
explaining the relevant patterns and
prescribing the important practices

Get started with a proven code base
by providing thoroughly tested
software and source that embodies
Microsoft’s recommendations

The patterns & practices team consists 	
of experienced architects, developers,
writers, and testers. We work openly 	
with the developer community and
industry experts, on every project, to
ensure that some of the best minds in
the industry have contributed to and
reviewed the guidance as it is being
developed.

We also love our role as the bridge
between the real world needs of our
customers and the wide range of 	
products and technologies that 	
Microsoft provides.

The IT industry has been evolving at a rapid pace; and with the advent
of the cloud computing the rate of evolution is accelerating significantly.
However, most organizations still have a lot of IT assets running in on-
premises datacenters.

We are in the middle of a transition between running everything on-premises
and hosting everything in the cloud. Hybrid is a term that represents the
application that positions its architecture somewhere along this continuum.
Hybrid applications span the on-premises and cloud divide, and bring with
them a unique set of challenges.

This guide addresses these challenges by mapping Windows Azure features
to specific scenarios encountered in the hybrid application design and
development. A case study of a fictitious company named Trey Research
explains the challenges encountered in a hybrid application, and describes
solutions using Windows Azure features such as Service Bus, Caching, Traffic
Manager, Azure Connect, SQL Azure Data Sync, ACS, and more.

Building Hybrid
Applications in the Cloud
on Windows Azure™

Scott Densmore
Alex Homer
Masashi Narumoto
John Sharp
Hanz Zhang

The guide is divided into two main sections. The first describes the specific
design decisions Trey Research made when designing their application.
The second provides general guidance on typical scenarios and use cases
encountered in each of the challenge areas. Together they will help you to
find solutions for the challenges you will meet when developing your own
hybrid applications.

B
u

ild
in

g H
ybrid A

pplicatio
n

s in th
e C

lo
u

d o
n W

in
d

o
w

s A
zu

re ™

Hybrid Challenge Scenarios
Replicating, Distributing, and Synchronizing Data
Authenticating Users and Authorizing Requests
Implementing Cross-Boundary Communication
Implementing Business Logic and Message Routing
Maximizing Scalability, Availability, and Performance
Monitoring and Managing Hybrid Applications

Implementing Reliable Messaging and
Communications with the Cloud

The Trey Research Scenario
Introduction to the Guide

Deploying Functionality and
Data in the Cloud

Data synchronization and Reporting

Authenticating Users in
the Orders Application

Maximizing Scalability,
Performance, and Availability

in the Orders Application

Monitoring and Managing
the Orders Application

Processing Orders in the
Trey Research Solution

Building Hybrid Applications in the Cloud

Building Hybrid Applications
in the Cloud

Scott Densmore
Alex Homer
Masashi Narumoto
John Sharp
Hanz Zhang

978-1-62114-013-9

This document is provided “as-is”. Information and views expressed in
this document, including URL and other Internet Web site references,
may change without notice.

Some examples depicted herein are provided for illustration only and
are fictitious. No real association or connection is intended or should
be inferred.

This document does not provide you with any legal rights to any
intellectual property in any Microsoft product. You may copy and use
this document for your internal, reference purposes.

© 2012 Microsoft. All rights reserved.

Microsoft, Active Directory, BizTalk, Hotmail, MSDN, SharePoint,
SQL Azure, Visual C#, Visual Studio, Windows, Windows Azure,
Windows Live, and Windows PowerShell are trademarks of the
Microsoft group of companies. All other trademarks are property of
their respective owners.

Contents

Contents	 v

Foreword	 xi

Preface	 xiii
Who This Book Is For	 xiv
Why This Book Is Pertinent Now	 xiv
How This Book Is Structured	 xv
What You Need to Use the Code	 xvi
Who’s Who	 xvii
Where to Go for More Information	 xviii

Acknowledgments	 xix

1	 The Trey Research Scenario	 1
Integrating with the Cloud	 1

The Challenges of Hybrid Application Integration	 2
The Trey Research Company	 4

Trey Research’s Strategy	 5
The Orders Application	 5

The Original On-Premises Orders Application	 6
The Windows Azure Hybrid Application	 7
How Trey Research Tackled the Integration Challenges	 10

Staged Migration to the Cloud	 12
Technology Map of the Guide	 12
Summary	 13
More Information	 14

vi

2	 Deploying the Orders Application and Data in the Cloud	 15
Scenario and Context	 15
Deploying the Application and Data to the Cloud	 17

Choosing the Location for Data	 17
Deploy All of the Data in the Cloud	 18
Keep All Data On-premises	 18
Deploy Some of the Data in the Cloud	 19

How Trey Research Chose the Location for Deploying Data	 19
Customer Data	 20
Product Data	 20
Order Data	 20
Audit Log Data	 21

Choosing the Data Storage Mechanism	 21
Windows Azure Storage	 21
SQL Azure	 22
Alternative Database System or Custom Repository	 23

How Trey Research Chose a Storage Mechanism for Data	 23
Encrypting Data Stored in Windows Azure Storage and
Databases	 23

Synchronizing Data across Cloud and On-Premises Locations	 24
Choosing a Data Synchronization Solution	 24

SQL Azure Data Sync	 24
Microsoft Sync Framework	 25
A Custom or Third Party Synchronization Solution	 25

How Trey Research Chose the Data Synchronization Solution	 26
How Trey Research Uses SQL Azure Data Sync	 26

Implementing a Reporting Solution for Cloud-Hosted Data	 29
Choosing a Reporting Solution	 29

SQL Server Reporting Services	 30
SQL Azure Reporting Service	 30
A Custom or Third Party Reporting Solution	 31

How Trey Research Chose the Reporting Solution	 31
How Trey Research Uses the SQL Azure Reporting Service	 31
How Trey Research Makes Reporting Data Available to
External Partners	 32

Summary	 36
More Information	 37

3	 Authenticating Users in the Orders Application	 39
Scenario and Context	 39
Authenticating Visitors to the Orders Application	 42

Choosing an Authentication Technique	 42
ASP.NET Forms Authentication	 42
Claims-Based Authentication with Microsoft Active
Directory Federation Service	 42

 vii

Claims-Based Authentication with Windows Azure Access
Control Service	 43
Claims-Based Authentication with ACS and ADFS	 44
Combined Forms and Claims-Based Authentication	 45

How Trey Research Chose an Authentication Technique	 45
How Trey Research Uses ACS and ADFS to Authenticate
Visitors	 45

Access Control Service Configuration	 47
Handling Multiple User IDs	 48
Authentication Implementation	 48
Authentication with Windows Identity Foundation 	 49
ASP.NET Request Validation	 52
Visitor Authentication and Authorization	 53
The Custom Logon Page	 54
Using a Custom Authorization Attribute	 55
Customer Details Storage and Retrieval	 56

Authenticating Access to Service Bus Queues and Topics	 60
Summary	 61
More Information	 61

4	 Implementing Reliable Messaging and Communications
	 with the Cloud	 63

Scenario and Context 	 63
Communicating with Transport Partners	 67

Choosing a Communications Mechanism	 68
Electronic Data Interchange (EDI)	 68
Web Services (Push Model)	 68
Web Services (Pull Model)	 69
Windows Azure Storage Queues	 69
Windows Azure Service Bus Queues	 70
Windows Azure Service Bus Topics and Subscriptions	 71

How Trey Research Communicates with Transport Partners	 71
Sending Messages to a Service Bus Queue Asynchronously	 75
Receiving Messages from a Service Bus Queue and
Processing Them Asynchronously	 77
Sending Messages to a Service Bus Topic	 84
Subscribing to a Service Bus Topic	 88
Receiving Messages from a Topic and Processing Them
Asynchronously	 90
Implementing Adapters and Connectors for Translating
and Reformatting Messages	 91
Correlating Messages and Replies	 93
Securing Message Queues, Topics, and Subscriptions	 94
Securing Messages	 97

viii

Sending Orders to the Audit Log	 100
Choosing a Mechanism for Sending Orders to the Audit Log	 100
How Trey Research Sends Orders to the Audit Log	 101

Verifying Orders to Ensure Regulatory Compliance	 104
Choosing Where to Host the Compliance Application 	 105
How Trey Research Hosted the Compliance Application	 105

Summary	 107
More Information	 107

5	 Processing Orders in the Trey Research Solution	 109
Scenario and Context 	 109
Processing Orders and Interacting with Transport Partners	 111

How Trey Research Posts Messages to a Topic in a Reliable
Manner	 112

Recording the Details of an Order	 114
Sending an Order to a Service Bus Topic from the Orders
Application	 117

How Trey Research Decouples the Order Process from the
Transport Partners’ Systems	 131

Receiving and Processing an Order in a Transport Partner	 132
Acknowledging an Order or Indicating that it has Shipped
in a Transport Partner	 135
Receiving Acknowledgement and Status Messages in the
Orders Application	 139

Summary	 141
More Information	 141

6	 Maximizing Scalability, Availability, and Performance
	 in the Orders Application	 143

Scenario and Context 	 143
Controlling Elasticity in the Orders Application	 144

Choosing How to Manage Elasticity in the Orders
Application	 144

Do Not Scale the Application	 144
Implement Manual Scaling	 145
Implement Automatic Scaling using a Custom Service	 145
Implement Automatic Scaling using the Enterprise Library
Autoscaling Application Block	 146

How Trey Research Controls Elasticity in the Orders
Application	 146

Hosting the Autoscaling Application Block	 147
Defining the Autoscaling Rules	 148

 ix

Managing Network Latency and Maximizing Connectivity
to the Orders Application	 152

Choosing How to Manage Network Latency and Maximize
Connectivity to the Orders Application	 152

Build a Custom Service to Redirect Traffic	 152
Use Windows Azure Traffic Manager to Route
Customers’ Requests	 153

How Trey Research Minimizes Network Latency and
Maximizes Connectivity to the Orders Application	 154

Optimizing the Response Time of the Orders Application	 156
Choosing How to Optimize the Response Time of the
Orders Application	 156

Implement Windows Azure Caching	 156
Configure the Content Delivery Network	 157

How Trey Research Optimizes the Response Time of the
Orders Application	 158

Defining and Configuring the Windows Azure Cache	 158
Synchronizing the Caches and Databases in the Orders
Application	 159
Retrieving and Managing Data in the Orders Application	 159
Implementing Caching Functionality for the Products
Catalog	 160
Instantiating and Using a ProductsStoreWithCache
Object	 164

Summary	 167
More Information	 167

7	 Monitoring and Managing the Orders Application	 169
Scenario and Context	 169
Monitoring Services, Logging Activity, and Measuring
Performance	 170

Choosing a Monitoring and Logging Solution	 171
Windows Azure Diagnostics	 172
Enterprise Library Logging Application Block	 172
Third Party Monitoring Solution	 173
Custom Logging Solution	 173

How Trey Research Chose a Monitoring and Logging
Solution	 174
How Trey Research Uses Windows Azure Diagnostics	 174

Selecting the Data and Events to Record	 175
Configuring the Diagnostics Mechanism	 176
Implementing Trace Message Logging and Specifying the
Level of Detail	 177
Writing Trace Messages	 179
Transferring Diagnostics Data from the Cloud	 181

x

Deployment and Management	 184
Choosing Deployment and Management Solutions	 184

Windows Azure Management Portal	 184
Windows Azure Service Management REST API and
Windows Azure SDK	 185
Windows Azure PowerShell Cmdlets	 185

How Trey Research Chose Deployment and Management
Solutions	 185
How Trey Research Deploys and Manages the Orders
Application	 186

Configuring Windows Azure by Using the Service
Management Wrapper Library 	 186
Configuring Windows Azure by Using the Built-in
Management Objects	 188

Summary	 190
More Information	 190

Appendix A: Replicating, Distributing, and Synchronizing
Data	 193

Use Cases and Challenges	 193
Replicating Data across Data Sources in the Cloud and
On-Premises	 194
Synchronizing Data across Data Sources	 199

Cross-Cutting Concerns	 201
Data Access Security	 201
Data Consistency and Application Responsiveness	 201
Integrity and Reliability	 202

Windows Azure and Related Technologies	 202
Replicating and Synchronizing Data Using SQL Azure
Data Sync	 203

Guidelines for Configuring SQL Azure Data Sync	 203
Guidelines for Using SQL Azure Data Sync	 211
SQL Azure Data Sync Security Model	 220

Implementing Custom Replication and Synchronization
Using the Sync Framework SDK	 221
Replicating and Synchronizing Data Using Service Bus
Topics and Subscriptions	 222

Guidelines for Using Service Bus Topics and
Subscriptions	 223

More Information	 227

Appendix B: Authenticating Users and Authoring Requests	 229
Uses Cases and Challenges	 230

Authenticating Public Users	 230
Authenticating Corporate Users and Users from Partner
Organizations	 230

 xi

Authorizing User Actions	 231
Authorizing Service Access for Non-Browser Clients	 231
Authorizing Access to Service Bus Queues	 232
Authorizing Access to Service Bus Relay Endpoints	 232

Cross-Cutting Concerns	 232
Security	 232
Responsiveness	 233
Reliability	 233
Interoperability	 233

Claims-Based Authentication and Authorization
Technologies	 233

Federated Authentication	 234
An Overview of the Claims-Based Authentication
Process	 235
Authorizing Web Service Requests	 236

Windows Identity Foundation	 237
Windows Azure Access Control Service	 238

ACS and Unique User IDs	 239
Windows Azure Service Bus Authentication and
Authorization 	 239

Client Authentication	 240
Service Bus Tokens and Token Providers	 243

Service Bus Endpoints and Relying Parties	 243
Authorization Rules and Rule Groups	 244

More Information	 244

Appendix C: Implementing Cross-Boundary
Communication	 245

Uses Cases and Challenges	 245
Accessing On-Premises Resources From Outside the
Organization	 246
Accessing On-Premises Services From Outside the
Organization	 246
Implementing a Reliable Communications Channel across
Boundaries	 247

Cross-Cutting Concerns	 248
Security	 248
Responsiveness	 248
Interoperability	 249

Windows Azure Technologies for Implementing
Cross-Boundary Communication	 249

Accessing On-Premises Resources from Outside the
Organization Using Windows Azure Connect	 251

Guidelines for Using Windows Azure Connect	 251
Windows Azure Connect Architecture and Security
Model	 253

xii

Limitations of Windows Azure Connect	 255
Accessing On-Premises Services from Outside the
Organization Using Windows Azure Service Bus Relay	 256

Guidelines for Using Windows Azure Service Bus Relay	 256
Guidelines for Securing Windows Azure Service Bus
Relay	 264
Guidelines for Naming Services in Windows Azure
Service Bus Relay	 267
Selecting a Binding for a Service	 268
Windows Azure Service Bus Relay and Windows Azure
Connect Compared	 270

Implementing a Reliable Communications Channel across
Boundaries Using Service Bus Queues	 271

Service Bus Messages	 271
Guidelines for Using Service Bus Queues	 272
Guidelines for Sending and Receiving Messages Using
Service Bus Queues	 283
Guidelines for Securing Service Bus Queues 	 286

More Information	 287

Appendix D: Implementing Business Logic and Message
Routing across Boundaries	 289

Use Cases and Challenges	 289
Separating the Business Logic from Message Routing	 290
Routing Messages to Multiple Destinations	 291

Cross-Cutting Concerns	 291
Security	 291
Reliability	 291
Responsiveness and Availability	 291
Interoperability	 291

Windows Azure Technologies for Routing Messages	 292
Separating the Business Logic from Message Routing Using
Service Bus Topics and Subscriptions	 292

Guidelines for Using Service Bus Topics and
Subscriptions to Route Messages	 293
Limitations of Using Service Bus Topics and
Subscriptions to Route Messages	 304

Routing Messages to Multiple Destinations Using
Service Bus Topics and Subscriptions	 304

Guidelines for Using Service Bus Topics and Subscriptions
to Route Messages to Multiple Destinations	 304
Limitations of Using Service Bus Topics and Subscriptions
to Route Messages to Multiple Destinations	 308

Security Guidelines for Using Service Bus Topics and
Subscriptions	 308

More Information	 308

 xiii

Appendix E: Maximizing Scalability, Availability, and
Performance	 309

Requirements and Challenges	 310
Managing Elasticity in the Cloud	 310
Reducing Network Latency for Accessing Cloud
Applications	 311
Maximizing Availability for Cloud Applications	 312
Optimizing the Response Time and Throughput for Cloud
Applications	 312

Windows Azure and Related Technologies	 313
Managing Elasticity in the Cloud by Using the Microsoft
Enterprise Library Autoscaling Application Block	 314

How the Autoscaling Application Block Manages Role
Instances	 315
Constraint Rules	 316
Reactive Rules 	 316
Actions	 316
Guidelines for Using the Autoscaling Application Block	 317

Reducing Network Latency for Accessing Cloud
Applications with Windows Azure Traffic Manager	 318

How Windows Azure Traffic Manager Routes Requests	 319
Using Monitoring Endpoints	 321
Windows Azure Traffic Manager Policies	 321
Guidelines for Using Windows Azure Traffic Manager	 322
Guidelines for Using Windows Azure Traffic Manager to
Reduce Network Latency	 323
Limitations of Using Windows Azure Traffic Manager 	 323

Maximizing Availability for Cloud Applications with
Windows Azure Traffic Manager	 324

Guidelines for Using Windows Azure Traffic Manager to
Maximize Availability	 326

Optimizing the Response Time and Throughput for Cloud
Applications by Using Windows Azure Caching	 327

Provisioning and Sizing a Windows Azure Cache	 327
Implementing Services that Share Data by Using
Windows Azure Caching	 329
Updating Cached Data	 331
Implementing a Local Cache	 334
Caching Web Application Session State	 335

xiv

Caching HTML Output	 335
Guidelines for Using Windows Azure Caching	 336
Limitations of Windows Azure Caching	 346
Guidelines for Securing Windows Azure Caching	 347

More Information	 347

Appendix F: Monitoring and Managing Hybrid
Applications	 349

Use Cases and Challenges	 350
Measuring and Adjusting the Capacity of Your System	 350
Monitoring Services to Detect Performance Problems and
Failures Early	 351
Recovering from Failure Quickly	 352
Logging Activity and Auditing Operations	 352
Deploying and Updating Components	 353

Cross-Cutting Concerns	 353
Performance	 353
Security	 353

Windows Azure and Related Technologies	 354
Monitoring Services, Logging Activity, and Measuring
Performance in a Hybrid Application by Using Windows
Azure Diagnostics	 355

Guidelines for Using Windows Azure Diagnostics	 356
Guidelines for Securing Windows Azure Diagnostic Data	 360

Deploying, Updating, and Restoring Functionality by Using
the Windows Azure Service Management API and
PowerShell	 360

Guidelines for using the Windows Azure
Service Management API and PowerShell	 361
Guidelines for Securing Management Access to
Windows Azure Subscriptions	 363

More Information	 364

Index	 367

 xv

Foreword

The first platform-as-a-service cloud capabilities to be released by Microsoft as a technical preview
were announced on May 31, 2006 in form of the “Live Labs” Relay and Security Token services (see
http://blogs.msdn.com/b/labsrelay/archive/2006/05/31/612288.aspx), well ahead of the compute, stor-
age, and networking capabilities that are the foundation of the Windows Azure platform. In the in-
tervening years, these two services have changed names a few times and have grown significantly, both
in terms of capabilities and most certainly in robustness, but the mission and course set almost six
years ago for the Windows Azure Service Bus and the Windows Azure Access Control Service has
remained steady: Enable Hybrid Solutions.

We strongly believe that our cloud platform – and also those that our competitors run – provides
businesses with a very attractive alternative to building and operating their own datacenter capacity.
We believe that the overall costs for customers are lower, and that the model binds less capital. We
also believe that Microsoft can secure, run, and manage Microsoft’s server operating systems, runtime,
and storage platforms better than anyone else. And we do believe that the platform we run is more
than ready for key business workloads. But that’s not enough.

From the start, the Microsoft cloud platform, and especially the Service Bus and Access Control
services, was built recognizing that “moving to the cloud” is a gradual process and that many work-
loads will, in fact, never move into the cloud. Some services are bound to a certain location or a person.
If you want to print a document, the end result will have to be a physical piece of paper in someone’s
hand. If you want to ring an alarm to notify a person, you had better do so on a device where that
person will hear it. And other services won’t “move to the cloud” because they are subjectively or
objectively “perfectly fine” in the datacenter facilities and on their owner’s existing hardware – or they
won’t move because regulatory or policy constraints make that difficult, or even impossible.

However, we did, and still do, anticipate that the cloud value proposition is interesting for corpo-
rations that have both feet solidly on the ground in their own datacenters. Take the insurance business
as an example. Insurance companies were some of the earliest adopters of Information Technology. It
wouldn’t be entirely inaccurate to call insurance companies (and banks) “datacenters with a consumer
service counter.” Because IT is at the very heart of their business operations (and has been there for
decades) and because business operations fall flat on the floor when that heart stops beating, many
of them run core workloads that are very mature; and these workloads run on systems that are just as
mature and have earned their trust.

Walking into that environment with a cloud value proposition is going to be a fairly sobering ex-
perience for a young, enthusiastic, and energetic salesperson. Or will it be? It turns out that there are
great opportunities for leveraging the undeniable flexibility of cloud environments, even if none of
the core workloads are agile and need to stay put. Insurance companies spend quite a bit of energy
(and money) on client acquisition, and some of them are continuously present and surround us with
advertising. With the availability of cloud computing, it’s difficult to justify building up dedicated
on-premises hardware capacity to run the website for a marketing campaign – if it weren’t for the

http://blogs.msdn.com/b/labsrelay/archive/2006/05/31/612288.aspx

xvi

nagging problem that the website also needs to deliver a rate-quote that needs to be calculated by
the core backend system and, ideally, can close the deal right away.

But that nagging problem would not be a problem if the marketing solution was “hybrid” and
could span cloud and the on-premises assets. Which is exactly why we’ve built what we started build-
ing six years ago.

A hybrid application is one where the marketing website scales up and runs in the cloud environ-
ment, and where the high-value, high-touch customer interactions can still securely connect and send
messages to the core backend systems and run a transaction. We built Windows Azure Service Bus and
the “Service Bus Connect” capabilities of BizTalk Server for just this scenario. And for scenarios involv-
ing existing workloads, we offer the capabilities of the Windows Azure Connect VPN technology.

Hybrid applications are also those where data is spread across multiple sites (for the same reasons
as cited above) and is replicated and updated into and through the cloud. This is the domain of SQL
Azure Data Sync. And as workloads get distributed across on-premises sites and cloud applications
beyond the realms of common security boundaries, a complementary complexity becomes the man-
agement and federation of identities across these different realms. Windows Azure Access Control
Service provides the solution to this complexity by enabling access to the distributed parts of the
system based on a harmonized notion of identity.

This guide provides in-depth guidance on how to architect and build hybrid solutions on and with
the Windows Azure technology platform. It represents the hard work of a dedicated team who col-
lected good practice advice from the Windows Azure product teams and, even more importantly,
from real-world customer projects. We all hope that you will find this guide helpful as you build your
own hybrid solutions.

Thank you for using Windows Azure!

Clemens Vasters
Principal Technical Lead and Architect
Windows Azure Service Bus

xvii

Preface

Modern computing frameworks and technologies such as the Microsoft .NET Framework, ASP.NET,
Windows Communication Foundation, and Windows Identity Framework make building enterprise
applications much easier than ever before. In addition, the opportunity to build applications that you
deploy to the cloud using the Windows Azure™ technology platform can reduce up-front infrastruc-
ture costs, and reduce ongoing management and maintenance requirements.

Most applications today are not simple; they may consist of many separate features that are imple-
mented as services, components, third-party plug-ins, and other systems or resources. Integrating
these items when all of the components are hosted locally in your datacenter is not a trivial task, and
it can become even more of a challenge when you move your applications to a cloud-based environ-
ment.

For example, a typical application may use web and worker roles running in Windows Azure, store
its data in a SQL Azure™ technology database, and connect to third-party services that perform tasks
such as authenticating users or delivering goods to customers. However, it is not uncommon for an
application to also make use of services exposed by partner organizations, or services and components
that reside inside the corporate network which, for a variety of reasons, cannot be migrated to the
cloud.

Applications such as this are often referred to as hybrid applications. The issues you encounter
when building them, or when migrating parts of existing on-premises applications to the cloud, prompt
questions such as “How can I integrate the various parts across network boundaries and domains so
that all of the parts can work together to implement the complete application?” and “How do I
maximize performance and availability when some parts of the application are located in the cloud?”

This guide focuses on the common issues you will encounter when building applications that run
partly in the cloud and partly on-premises, or when you decide to migrate some or all elements of an
existing on-premises application to the cloud. It focuses on using Windows Azure as the host environ-
ment, and shows how you can take advantage of the many features of this platform, together with
SQL Azure, to simplify and speed the development of these kinds of applications.

Windows Azure provides a set of infrastructure services that can help you to build hybrid applica-
tions. These services, such as Service Bus Security, Messaging, Caching, Traffic Manager, and Azure
Connect, are the main topics of this guide. The guide demonstrates scenarios where these services are
useful, and shows how you can apply them in your own applications.

This guide is based on the experiences of a fictitious corporation named Trey Research who
evolved their existing on-premises application to take advantage of Windows Azure. The guide does
not cover the individual migration tasks, but instead focuses on the way that Trey Research utilizes
the services exposed by Windows Azure and SQL Azure to manage interoperability, process control,
performance, management, data synchronization, and security.

xviii

Who This Book Is For
This book is the third volume in a series on Windows Azure. Volume 1, Moving Applications to the
Cloud on Windows Azure, provides an introduction to Windows Azure, discusses the cost model and
application life cycle management for cloud-based applications, and describes how to migrate an exist-
ing ASP.NET application to the cloud. Volume 2, Developing Applications for the Cloud on Windows
Azure, discusses the design considerations and implementation details of applications that are designed
from the beginning to run in the cloud. It also extends many of the areas covered in Volume 1 to
provide information about more advanced techniques that you can apply in Windows Azure applica-
tions.

This third volume in the series demonstrates how you can use the powerful infrastructure ser-
vices that are part of Windows Azure to simplify development; integrate the component parts of a
hybrid application across the cloud, on-premises, and third-party boundaries; and maximize security,
performance scalability, and availability.

This guide is intended for architects, developers, and information technology (IT) professionals
who design, build, or operate applications and services that run on or interact with the cloud. Although
applications do not need to be based on the Microsoft® Windows® operating system to operate in
Windows Azure, this book is written for people who work with Windows-based systems. You should
be familiar with the Microsoft .NET Framework, the Microsoft Visual Studio® development system,
ASP.NET MVC, and the Microsoft Visual C#® development language.

Why This Book Is Pertinent Now
Software designers, developers, project managers, and administrators are increasingly recognizing the
benefits of locating IT services in the cloud to reduce infrastructure and ongoing data center runtime
costs, maximize availability, simplify management, and take advantage of a predictable pricing model.
However, it is common for an application to contain some components or features that cannot be
located in the cloud, such as third-party services or sensitive data that must be maintained onsite
under specialist control.

Applications such as this require additional design and development effort to manage the com-
plexities of communication and integration between components and services. To prevent these
complexities from impeding moving applications to the cloud, Windows Azure is adding a range of
framework services that help to integrate the cloud and on-premises application components and
services. This guide explains how these services can be applied to typical scenarios, and how to use
them in applications you are building or migrating right now.

Hybrid Challenge Scenarios
Replicating, Distributing, and Synchronizing Data
Authenticating Users and Authorizing Requests
Implementing Cross-Boundary Communication
Implementing Business Logic and Message Routing
Maximizing Scalability, Availability, and Performance
Monitoring and Managing Hybrid Applications

Implementing Reliable Messaging and
Communications with the Cloud

The Trey Research Scenario
Introduction to the Guide

Deploying Functionality and
Data in the Cloud

Data synchronization and Reporting

Authenticating Users in
the Orders Application

Maximizing Scalability,
Performance, and Availability

in the Orders Application

Monitoring and Managing
the Orders Application

Processing Orders in the
Trey Research Solution

 xix

How This Book Is Structured
This is the road map of the guide.

Chapter 1, “The Trey Research Scenario” provides an introduction to Trey Research and its plan
for evolving the on-premises Orders application into a hybrid application. It also contains overviews
of the architecture and operation of the original on-premises application and the completed hybrid
implementation to provide you with context for the remainder of the guide.

Chapter 2, “Deploying the Orders Application and Data in the Cloud” discusses the techniques
and technologies Trey Research considered for deploying the application and the data it uses to the
cloud, how Trey Research decided which data should remain on-premises, and the deployment archi-
tecture that Trey Research decided would best suite its requirements. The chapter also explores
technologies for synchronizing the data across the on-premises and cloud boundary, and how business
intelligence reporting could still be maintained.

Chapter 3, “Authenticating Users in the Orders Application” describes the technologies and archi-
tectures that Trey Research examined for evolving the on-premises application from ASP.NET Forms
authentication to use claims-based authentication when deployed as a hybrid application.

Chapter 4, “Implementing Reliable Messaging and Communications with the Cloud” describes the
technologies that Trey Research investigated for sending messages across the on-premises and cloud
boundary, and the solutions it chose. This includes the architecture and implementation for sending
messages to partners in a reliable way, as well as to on-premises services.

preface

xx

Chapter 5, “Processing Orders in the Trey Research Solution” describes the business logic that
Trey Research requires to securely and reliably process customers’ orders placed by using the Orders
website. This logic includes directing messages to the appropriate partner or service, receiving ac-
knowledgements, and retrying operations that may fail due to transient network conditions.

Chapter 6, “Maximizing Scalability, Availability, and Performance in the Orders Application” de-
scribes how Trey Research explored techniques for maximizing the performance of the Orders ap-
plication by autoscaling instances of the web and worker roles in the application, deploying the ap-
plication in multiple datacenters, and improving data access performance through caching.

Chapter 7, “Monitoring and Managing the Orders Application” describes the techniques that Trey
Research examined and chose for monitoring and managing the Orders application. These techniques
include capturing diagnostic information, setting up and configuring the Windows Azure services, and
remotely managing the application configuration and operation.

While the main chapters of this guide concentrate on Trey Research’s design process and the
choices it made, the “Hybrid Challenge Scenarios” appendices focus on a more generalized series of
scenarios typically encountered when designing and building hybrid applications. Each appendix ad-
dresses one specific area of challenges and requirements for hybrid applications described in Chap-
ter 1, “The Trey Research Scenario,” going beyond those considered by the designers at Trey Research
for the Orders application. In addition to the scenarios, the appendices provide more specific guidance
on the technologies available for tackling each challenge. The appendices included in this guide are:

•	 Appendix A - Replicating, Distributing, and Synchronizing Data
•	 Appendix B - Authenticating Users and Authorizing Requests
•	 Appendix C - Implementing Cross-Boundary Communication
•	 Appendix D - Implementing Business Logic and Message Routing across Boundaries
•	 Appendix E - Maximizing Scalability, Availability, and Performance
•	 Appendix F - Monitoring and Managing Hybrid Applications

The information in this guide about Windows Azure, SQL Azure, and the services they expose is up
to date at the time of writing. However, Windows Azure is constantly evolving and new capabilities
and features are frequently added. For the latest information about Windows Azure, see “What’s
New in Windows Azure” and the Windows Azure home page at http://www.microsoft.com/
windowsazure/.

What You Need to Use the Code
These are the system requirements for running the scenarios:

•	 Microsoft Windows 7 with Service Pack 1 or later (32 bit or 64 bit edition), or Windows
Server 2008 R2 with Service Pack 1 or later

•	 Microsoft Internet Information Server (IIS) 7.0
•	 Microsoft .NET Framework version 4.0
•	 Microsoft ASP.NET MVC Framework version 3
•	 Microsoft Visual Studio 2010 Ultimate, Premium, or Professional edition with Service Pack 1

installed
•	 Windows Azure SDK for .NET (includes the Visual Studio Tools for Windows Azure)
•	 Microsoft SQL Server or SQL Server Express 2008
•	 Windows Identity Foundation

http://msdn.microsoft.com/en-us/library/windowsazure/gg441573
http://msdn.microsoft.com/en-us/library/windowsazure/gg441573
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/

 xxi

•	 Microsoft Enterprise Library 5.0 (required assemblies are included in the source code
download)

•	 Windows Azure Cmdlets (install the Windows Azure Cmdlets as a Windows PowerShell®
snap-in, this is required for scripts that use the Azure Management API)

•	 Sample database (scripts are included in the Database folder of the source code)

You can download the sample code from http://wag.codeplex.com/releases/. The sample code
contains a dependency checker utility you can use to check for prerequisites and install any that are
required. The dependency checker will also install the sample databases.

Who’s Who
This book uses a sample application that illustrates integrating applications with the cloud. A panel of
experts comments on the development efforts. The panel includes a cloud specialist, a software ar-
chitect, a software developer, and an IT professional. The delivery of the sample application can be
considered from each of these points of view. The following table lists these experts.

Bharath is a cloud specialist. He checks that a cloud-based solution will work for a company
and provide tangible benefits. He is a cautious person, for good reasons.
“Implementing hybrid applications for the cloud can be a challenge, but the many services and features
offered by Windows Azure can help you to resolve these issues quickly and easily”.

Jana is a software architect. She plans the overall structure of an application. Her perspective
is both practical and strategic. In other words, she considers the technical approaches that are
needed today and the direction a company needs to consider for the future.
“It’s not easy to balance the needs of the company, the users, the IT organization, the developers,
and the technical platforms we rely on.”

Markus is a senior software developer. He is analytical, detail-oriented, and methodical. He’s
focused on the task at hand, which is building a great cloud-based application. He knows that
he’s the person who’s ultimately responsible for the code.
“For the most part, a lot of what we know about software development can be applied to the cloud.
But, there are always special considerations that are very important.”

Poe is an IT professional who’s an expert in deploying and running applications in the cloud.
Poe has a keen interest in practical solutions; after all, he’s the one who gets paged at 03:00 when
there’s a problem.
“Running applications in the cloud that are accessed by thousands of users involves some big challenges.
I want to make sure our cloud apps perform well, are reliable, and are secure. The reputation of Trey
Research depends on how users perceive the applications running in the cloud.”

If you have a particular area of interest, look for notes provided by the specialists whose interests align
with yours.

preface

http://wag.codeplex.com/releases/

xxii

Where to Go for More Information
There are a number of resources listed in text throughout the book. These resources will provide ad-
ditional background, bring you up to speed on various technologies, and so forth. For your conve-
nience, there is a bibliography online that contains all the links so that these resources are just a click
away.

You can find the bibliography at: http://msdn.microsoft.com/en-us/library/hh968447.aspx.

http://msdn.microsoft.com/en-us/library/hh968447.aspx

 xxiii

 xxiii

Acknowledgments

The IT industry has been evolving, and will continue to evolve at a rapid pace; and with the advent of
the cloud computing, the rate of evolution is accelerating significantly. Back in January 2010, when we
started work on the first guide in this series, Windows Azure offered only a basic set of features such
as compute, storage and database. Two years later, as we write this guide, we have available many more
advanced features that are useful in a variety of scenarios.

Meanwhile, general acceptance and use of cloud computing by organizations has also been evolv-
ing. In 2010, most of the people I talked to were interested in the cloud, but weren’t actually working
on real projects. This is no longer the case. I’m often impressed by the amount of knowledge and ex-
perience that customers have gained. There’s no doubt in my mind that industry as a whole is heading
for the cloud.

However, transition to the cloud is not going to happen overnight. Most organizations still have
a lot of IT assets running in on-premises datacenters. These will eventually be migrated to the cloud,
but a shift to the next paradigm always takes time. At the moment we are in the middle of a transition
between running everything on-premises and hosting everything in the cloud. “Hybrid” is a term that
represents the application that positions its architecture somewhere along this continuum. In other
words, hybrid applications are those that span the on-premises and cloud divide, and which bring with
them a unique set of challenges that must be addressed. It is to address these challenges that my team
and I have worked hard to provide you with this guide.

The goal of this guide is to map Windows Azure features with the specific challenges encountered
in the hybrid application scenario. Windows Azure now offers a number of advanced services such as
Service Bus, Caching, Traffic Manager, Azure Connect, SQL Azure Data Sync, VM Role, ACS, and
more. Our guide uses a case study of a fictitious organization to explain the challenges that you may
encounter in a hybrid application, and describes solutions using the features of Windows Azure that
help you to integrate on-premises and the cloud.

As we worked with the Windows Azure integration features, we often needed to clarify and
validate our guidelines for using them. We were very fortunate to have the full support of product
groups and other divisions within Microsoft. First and foremost, I want to thank the following subject
matter experts: Clemens Vasters, Mark Scurrell, Jason Chen, Tina Stewart, Arun Rajappa, and Corey
Sanders. We relied on their knowledge and expertise in their respective technology areas to shape this
guide. Many of the suggestions raised by these reviewers, and the insightful feedback they provided,
have been incorporated into this guide.

The following people were also instrumental in providing technical expertise during the develop-
ment of this guide: Kashif Alam, Vijaya Alaparthi, Matias Woloski, Eugenio Pace, Enrique Saggese, and
Trent Swanson (Full Scale 180). We relied on their expertise to validate the scenario as well as to shape
the solution architecture.

xxiv

I also want to extend my thanks to the project team. As the technical writers, John Sharp (Content
Master) and Alex Homer brought to the project both considerable writing skill and expertise in soft-
ware engineering. Scott Densmore, Jorge Rowies (Southworks), Alejandro Jezierski (Southworks),
Hanz Zhang, Ravindra Mahendravarman (Infosys Ltd.), and Ravindran Paramasivam (Infosys Ltd.)
served as the development and test team. By applying their expertise with Windows Azure, excep-
tional passion for technology, and many hours of patient effort, they developed the sample code.

I also want to thank RoAnn Corbisier and Richard Burte (ChannelCatalyst.com, Inc.) for helping
us to publish this guide. I relied on their expertise in editing and graphic design to make this guide
accurate, as well as interesting to read.

The visual design concept used for this guide was originally developed by Roberta Leibovitz and
Colin Campbell (Modeled Computation LLC) for “A Guide to Claims-Based Identity and Access Con-
trol.” Based on the excellent responses we received, we decided to reuse it for this book. The book
design was created by John Hubbard (eson). The cartoon faces were drawn by the award-winning
Seattle-based cartoonist Ellen Forney.

Many thanks also go out to the community at our CodePlex website. I’m always grateful for the
feedback we receive from this very diverse group of readers.

Masashi Narumoto
Senior Program Manager – patterns & practices
Microsoft Corporation
Redmond, January 2012

 1

1

This guide focuses on the ways that you can use the services exposed
by Windows Azure™ technology platform, and some other useful
frameworks and components, to help you integrate applications with
components running in the cloud to build hybrid solutions. A hybrid
application is one that uses a range of components, resources, and
services that may be separated across datacenter, organizational, net-
work, or trust boundaries. Some of these components, resources, and
services may be hosted in the cloud, though this is not mandatory.
However, in this guide, we will be focusing on applications that have
components running in Windows Azure.

The guide is based on the scenario of a fictitious company named
Trey Research that wants to adapt an existing application to take ad-
vantage of the opportunities offered by Windows Azure. It explores
the challenges that Trey Research needed to address and the architec-
tural decisions Trey Research made.

Integrating with the Cloud
Using the cloud can help to minimize running costs by reducing the
need for on-premises infrastructure, provide reliability and global
reach, and simplify administration. It is often the ideal solution for
applications where some form of elasticity or scalability is required.

The Trey Research Scenario

Hybrid applications make use of resources and
services that are located in different physical or
virtual locations; such as on-premises, hosted
by partner organizations, or hosted in the cloud.
Hybrid applications represent a continuum between
running everything on-premises and everything in
the cloud. Organizations building hybrid solutions
are most likely to position their architectures
somewhere along this continuum.

2 chapter one

It’s easy to think of the cloud as somewhere you can put your
applications without requiring any infrastructure of your own other
than an Internet connection and a hosting account; in much the same
way as you might decide to run your ASP.NET or PHP website at a
web hosting company. Many companies already do just this. Applica-
tions that are self-contained, so that all of the resources and compo-
nents can be hosted remotely, are typical candidates for the cloud.

But what happens if you cannot relocate all of the resources for
your application to the cloud? It may be that your application ac-
cesses data held in your own datacenter where legal or contractual
issues limit the physical location of that data, or the data is so sensitive
that you must apply special security policies. It could be that your
application makes use of services exposed by other organizations,
which may or may not run in the cloud. Perhaps there are vital manage-
ment tools that integrate with your application, but these tools run on
desktop machines within your own organization.

In fact there are many reasons why companies and individuals may
find themselves in the situation where some parts of an application
are prime targets for cloud hosting, while other parts stubbornly defy
all justification for relocating to the cloud. In this situation, to take
advantage of the benefits of the cloud, you can implement a hybrid
solution by running some parts in the cloud while other parts are de-
ployed on-premises or in the datacenters of your business partners.

The Challenges of Hybrid Application
Integration

When planning to move parts of an existing application from on-
premises to the cloud, it is likely that you will have concerns centered
on issues such as communication and connectivity. For example, how
will cloud-based applications call on-premises services, or send mes-
sages to on-premises applications? How will cloud-based applications
access data in on-premises data stores? How can you ensure that all
instances of the application running in cloud datacenters have data
that is up-to-date?

In addition, moving parts of an application to the cloud prompts
questions about performance, availability, management, authentica-
tion, and security. When elements of your application are now running
in a remote location, and are accessible only over the Internet, can
they still work successfully as part of the overall application?

It is possible to divide the many challenges into separate areas of
concern. This helps you to identify them more accurately, and dis-
cover the solutions that are available to help you to resolve them. The
areas of concern typically consist of the following:

Self-contained applications
are often easy to locate
in the cloud, but complex
applications may contain
parts that are not suitable
for deployment to the
cloud.

It is often helpful to divide
the challenges presented by
hybrid applications into
distinct categories that focus
attention on the fundamental
areas of concern.

 3The Trey Research Scenario

•	 Deploying functionality and data to the cloud. It is likely that you will need to modify the
code in your existing on-premises applications to some extent before it, and the data it uses,
can be deployed to the cloud. At a minimum you will need to modify the configuration, and you
may also need to refactor the code so that it runs in the appropriate combination of Windows
Azure web and worker roles. You must also consider how you will deploy data to the cloud; and
handle applications that, for a variety of reasons, may not be suitable for deploying to Windows
Azure web and worker roles.

•	 Authenticating users and authorizing requests. Most applications will need to authenticate
and authorize visitors, customers, or partners at some stage of the process. Traditionally,
authentication was carried out against a local application-specific store of user details, but
increasingly users expect applications to allow them to use more universal credentials; for
example, existing accounts with social network identity providers such as Windows Live® ID,
Google, Facebook, and Open ID. Alternatively, the application may need to authenticate using
accounts defined within the corporate domain to allow single sign on or to support federated
identity with partners.

•	 Cross-boundary communication and service access. Many operations performed in hybrid
applications must cross the boundary between on-premises applications, partner organizations,
and applications hosted in Windows Azure. Service calls and messages must be able to pass
through firewalls and Network Address Translation (NAT) routers without compromising
on-premises security. The communication mechanisms must work well over the Internet and
compensate for lower bandwidth, higher latency, and less reliable connectivity. They must also
protect the contents of messages, authenticate senders, and protect the services and endpoints
from Denial of Service (DoS) attacks.

•	 Business logic and message routing. Many hybrid applications must process business rules or
workflows that contain conditional tests, and which result in different actions based on the
results of evaluating these rules. For example, an application may need to update a database,
send the order to the appropriate transport and warehouse partner, perform auditing opera-
tions on the content of the order (such as checking the customer’s credit limit), and store the
order in another database for accounting purposes. These operations may involve services and
resources located both in the cloud and on-premises.

•	 Data synchronization. Hybrid applications that run partly on-premises and partly in the cloud,
run in the cloud and use on-premises data, or run wholly in the cloud but in more than one
datacenter, must synchronize and replicate data between locations and across network bound-
aries. This may involve synchronizing only some rows and columns, and you may also want to
perform translations on the data.

•	 Scalability, performance, and availability. While cloud platforms provide scalability and
reliability, the division of parts of the application across the cloud/on-premises boundary may
cause performance issues. Bandwidth limitations, the use of chatty interfaces, and the possibil-
ity of throttling in Windows Azure may necessitate caching data at appropriate locations,
deploying additional instances of the cloud-based parts of the application to handle varying
load and to protect against transient network problems, and providing instances that are close
to the users to minimize response times.

4 chapter one

•	 Monitoring and management. Companies must be able to
effectively manage their remote cloud-hosted applications,
monitor the day-to-day operation of these applications, and
have access to logging and auditing data. They must also be able
to configure, upgrade, and administer the applications, just as
they would if the applications were running in an on-premises
datacenter. Companies also need to obtain relevant and timely
business information from their applications to ensure that they
are meeting current requirements such as Service Level Agree-
ments (SLAs), and to plan for the future.

To help you meet these challenges, Windows Azure provides a com-
prehensive package of cloud-based services, management tools, and
development tools that make it easier to build integrated and hybrid
applications. You can also use many of these services when the entire
application is located within Windows Azure, and has no on-premises
components.

The Trey Research Company
Trey Research is a medium sized organization of 600 employees, and
its main business is manufacturing specialist bespoke hardware and
electronic components for sale to research organizations, laboratories,
and equipment manufacturers. It sells these products over the Internet
through its Orders application. As an Internet-focused organization,
Trey Research aims to minimize all non-central activities and concen-
trate on providing the best online service and environment without
being distracted by physical issues such as transport and delivery. For
this reason, Trey Research has partnered with external companies that
provide these services. Trey Research simply needs to advise a trans-
port partner when an order is received into manufacturing, and spec-
ify a date for collection from Trey Research’s factory. The transport
partner may also advise Trey Research when delivery to the customer
has been made.

The developers at Trey Research are knowledgeable about various
Microsoft products and technologies, including the .NET Framework,
ASP.NET MVC, SQL Server®, and the Microsoft Visual Studio® devel-
opment system. The developers are also familiar with Windows Azure,
and aim to use any of the available features of Windows Azure that
can help to simplify their development tasks.

The services exposed
by Windows Azure are
useful for both integrating
on-premises applications
with the cloud, and for
applications that run
entirely in the cloud.

The Orders application is just
one of the many applications
that Trey Research uses to
run its business. Other
on-premises applications
are used to manage invoicing,
raw materials, supplier
orders, production planning,
and more. However, this guide
is concerned only with the
Orders application and how
it integrates with other
on-premises systems such as
the main management and
monitoring applications.

 5The Trey Research Scenario

Trey Research’s Strategy
Trey Research was an early adopter of cloud-based computing and
Windows Azure; it has confirmed this as the platform for new applica-
tions and for extended functionality in existing applications. Trey
Research hopes to minimize on-premises datacenter costs, and is well
placed to exploit new technologies and the business opportunities
offered by the cloud.

Although they are aware of the need to maintain the quality and
availability of existing services to support an already large customer
base, the managers at Trey Research are willing to invest in the devel-
opment of new services and the modification of existing services to
extend their usefulness and to improve the profitability of the com-
pany. This includes planning ahead for issues such as increased demand
for their services, providing better reporting and business information
capabilities, improving application performance and availability, and
handling additional complexity such as adding external partners.

The Orders Application
Trey Research’s Orders application enables visitors to place orders for
products. It is a web application that has evolved over time to take
advantage of the benefits of cloud-based deployment in multiple
datacenters in different geographical locations, while maintaining
some essential services and applications within the on-premises cor-
porate infrastructure. This is a common scenario for many organiza-
tions, and it means that solutions must be found to a variety of chal-
lenges. For example, how will the application connect cloud-based
services with on-premises applications in order to perform tasks that
would normally communicate over a corporate datacenter network,
but most now communicate over the Internet?

In Trey Research’s case, some vital functions connected with the
application are not located in the cloud. Trey Research’s management
and operations applications and some databases are located on-
premises in their own datacenter. The transport and delivery func-
tions are performed by separate transport partners affiliated to Trey
Research. These transport partners may themselves use cloud-hosted
services, but this has no impact on Trey Research’s own application
design and implementation.

The developers at Trey Research use the latest
available technologies: Visual Studio 2010, ASP.
NET MVC 3.0, and .NET Framework 4. Over
time they have maintained and upgraded the
Orders application using these technologies.

Head Office

Customers Products

Monitoring and management applications

Audit Log

Transport
Partners

Auth Get Log

Orders
Application

Store<- Advise
Orders

SQL
Server

Reporting
Services

Acknowledge ->

Compliance
application

Check

Client access

6 chapter one

The Original On-Premises Orders Application
When Trey Research originally created the Orders application it ran entirely within their own data-
center, with the exception of the partner services for transport and delivery. The application was
created as two separate components: the Orders application itself (the website and the associated
business logic), and the suite of management and reporting applications.

In addition, the public Orders web application would need to be able to scale to accommodate
the expected growth in demand over time, whereas the management and reporting applications would
not need to scale to anything like the same extent. Trey Research proposed to scale the management
and reporting applications as demand increases by adding additional servers to an on-premises web
farm in their datacenter. Figure 1 shows the application running on-premises.

Figure 1
High-level overview of the Trey Research Orders application running on-premises

As you can see in Figure 1, the Orders application accesses several databases. It uses ASP.NET
Forms authentication to identify customers and looks up their details in the Customers table using a
unique user ID. It obtains a list of the products that Trey Research offers from the Products table in
the database, and stores customer orders in the Orders table. The Audit Log table in the on-premises
database holds a range of information including runtime and diagnostic information, together with
details of notable orders such as those over a specific total value. Managers can obtain business infor-
mation from the Orders table by using SQL Server Reporting Services.

 7The Trey Research Scenario

The Orders application sends a message to the appropriate trans-
port partner when a customer places an order. Currently, Trey Research
has two transport partners: one for local deliveries in neighboring
states and one for deliveries outside of the area. This message indicates
the anticipated delivery date and packaging information for the order
(such as the weight and number of packages). The transport partner
may send a message back to the Orders application after the delivery
is completed so that the Orders database table can be updated.

Due to the nature of the products Trey Research manufactures,
it must also ensure that it meets legal requirements for the distribu-
tion of certain items, particularly for export to other countries and
regions. These requirements include keeping detailed records of the
sales of certain electronic components that may be part of Trey Re-
search’s products, and hardware items that could be used in the
manufacture of munitions. Analyzing the contents of orders is a
complex and strictly controlled process accomplished by a legal com-
pliance application from a third party supplier, and it runs on a spe-
cially configured server.

Finally, Trey Research uses separate applications to monitor the
Orders application, manage the data it uses, and perform general ad-
ministrative tasks. These monitoring and management applications
interact with Trey Research’s corporate systems for performing tasks
such as invoicing and managing raw materials stock, but these interac-
tions are not relevant to the topics and scenarios of this guide.

The Windows Azure Hybrid Application
With the availability of affordable and reliable cloud hosting services,
Trey Research decided to investigate the possibility of moving the
application to Windows Azure.

Applications that run across the cloud and on-premises boundary
may use web, worker, and virtual machine roles hosted in one or more
Windows Azure data centers; SQL Azure™ technology platform da-
tabases in the same or different data centers; third-party remote ser-
vices built using Windows or other technologies; and on-premises
resources such as databases, services, and file shares. Integrating and
communicating between these resources and services is not a trivial
task, especially when there are firewalls and routers between them.

In addition, applications should be designed and deployed in such
a way as to be scalable to meet varying loads, robust so that they are
available at all times, secure so that you have full control over who can
access them, and easy to manage and monitor.

One of the most immediate
concerns when evolving
applications to the cloud is
how you will expose internal
services and data stores to
your cloud-based applications
and services.

US North Datacenter

Head Office

Monitoring and management applications

Audit Log

Audit Log
Listener

Business
Logic

SQL Azure

Orders

Customers
Products

Transport
Partners

Request
Routing

Orders
Application

Acknowledge
delivery

Advise
order
placed

Social
Identity

Providers

Replicate
Customers

and Products

Synchronize
Orders

Data
Market

Acquire
Reporting

Data
Customers
Products

Other Windows Azure
Datacenters

Reporting
Service

External
access to
reports

Compliance
application

Reports

Authentication

Replicate
Customers

and Products

8 chapter one

Figure 2 shows a high-level view of the architecture Trey Research implemented for their hybrid
application. Although Figure 2 may seem complicated, the Orders application works in much the same
way as when it ran entirely on-premises. You will see more details about the design decisions and
implementation of each part of the application in subsequent chapters of this guide.

Figure 2
High-level overview of the Trey Research Orders application running in the cloud

 9The Trey Research Scenario

Here is a brief summary of the features shown in Figure 2:
•	 Customer requests all pass through Windows Azure Traffic Manager, which redirects the

customer to the instance of the Orders application running in the closest datacenter, based
on response time and availability.

•	 Instead of using ASP.NET Forms authentication, customers authenticate using a social identity
provider such as Windows Live ID, Yahoo!, or Google. Windows Azure Access Control Service
(ACS) manages this process, and returns a token containing a unique user ID to the Orders
application. The Orders application uses this token to look up the customer details in the
Customers and Products tables of the database running in a local SQL Azure datacenter.

•	 New customers can register with Trey Research and obtain an account for using the Orders
application. (Registration is performed as an out-of-band operation by the Head Office ac-
counting team, and this process is not depicted in Figure 2.) When a customer has been provi-
sioned within Trey Research’s on-premises customer management system, the account details
are synchronized between the Customers table held in the on-premises database and SQL
Azure in all the datacenters. This enables customers to access the application in any of the
global datacenters Trey Research uses.

After the initial deployment, Trey Research decided to allow customers to edit some of their details,
such as the name, billing address, and password (but not critical data such as the user’s social
identity information) using the application running in the cloud. These changes are be made to the
local SQL Azure database, and subsequently synchronized with the on-premises data and SQL Azure
in the other datacenters. You will see how this is done in Chapter 2, “Deploying the Orders
Application and Data in the Cloud.” However, the example application provided with this guide
works in a different way. It allows you to register only by using the cloud application. This is done
primarily to avoid the need to configure SQL Data Sync before being able to use the example
application.

•	 The Orders application displays a list of products stored in the Products table. The Products
data is kept up to date by synchronizing it from the master database located in the head office
datacenter.

•	 When a customer places an order, the Orders application:
•	 Stores the order details in the Orders table of the database in the local SQL Azure datacen-

ter. All orders are synchronized across all Windows Azure datacenters so that the order
status information is available to customers irrespective of the datacenter to which they are
routed by Traffic Manager.

•	 Sends an order message to the appropriate transport partner. The transport company chosen
depends on the type of product and delivery location.

•	 Sends any required audit information, such as orders over a specific total value, to the
on-premises management and monitoring application, which will store this information
in the Audit Log table of the database located in the head office datacenter.

10 chapter one

•	 The third-party compliance application running in a virtual
machine role in the cloud continually validates the orders in the
Orders table for conformance with legal restrictions and sets
a flag in the database table on those that require attention by
managers. It also generates a daily report that it stores on a
server located in the head office datacenter.

•	 When transport partners deliver the order to the customer they
send a message to the Orders application (running in the data-
center that originally sent the order advice message) so that it
can update the Orders table in the database.

•	 To obtain management information, the on-premises Reporting
application uses the Business Intelligence features of the SQL
Azure Reporting service running in the cloud to generate reports
from the Orders table. These reports can be combined with data
obtained from the Data Market section of Windows Azure
Marketplace to compare the results with global or local trends.
The reports are accessible by specific external users, such as
remote partners and employees.

How Trey Research Tackled the
Integration Challenges

This guide shows in detail how the designers and developers at Trey
Research evolved the Orders application from entirely on-premises
architecture to a hybrid cloud-hosted architecture. To help you under-
stand how Trey Research uses some of the technologies available in
Windows Azure and SQL Azure, Figure 3 shows them overlaid onto
the architectural diagram you saw earlier in this chapter.

Keep in mind that, for
simplicity, some of the
features and processes
described here are not fully
implemented in the example
we provide for this guide,
or may work in a slightly
different way. This is done
to make it easier for you to
install and configure the
example, without requiring
you to obtain and configure
Azure accounts in multiple
data centers, and for services
such as SQL Azure Data Sync
and SQL Reporting.

Head Office

Monitoring and management applications

Audit Log

Audit Log
Listener

Business
Logic

SQL Azure

Orders

Customers
Products

Transport
Partners

Traffic
Manager

Orders
Application

Acknowledge
delivery

Advise
order
placed

Social
Identity

Providers

Data
Market

Customers
Products

Other Windows Azure
Datacenters

Reporting
Service

External
access to
reports

Compliance
application

Reports

Authentication

Connect

Service Bus
Queue

Cache

Web &
Worker Roles

Diagnostics
& Enterprise

Library

Management APIs

Service Bus
Relay

Access Control

SQL Azure
Data Sync

SQL Azure
Reporting

VM
Role

Service
Bus Topic

SQL Azure
Data Sync

SQL Azure
Data Sync

 11The Trey Research Scenario

Figure 3
Technology map of the Trey Research Orders application running in the cloud

12 chapter one

Staged Migration to the Cloud
When converting an existing solution into a hybrid application, you
may consider whether to carry out a staged approach by moving ap-
plications and services one at a time to the cloud. While this seems to
be an attractive option that allows you to confirm the correct opera-
tion of the system at each of the intermediate stages, it is not always
the best approach.

For example, the developers at Trey Research considered moving
the web applications into Windows Azure web roles and using a con-
nectivity solution such as the Windows Azure Connect service to al-
low the applications to access on-premises database servers. This ap-
proach introduces latency that will have an impact on the web
application responsiveness, and it will require some kind of caching
solution in the cloud to overcome this effect. It also leaves the applica-
tion open to problems if connectivity should be disrupted.

Another typical design Trey Research considered was using Win-
dows Azure Service Bus Relay to enable cloud-based applications to
access on-premises services that have not yet moved to the cloud. As
with the Windows Azure Connect service, Windows Azure Service
Bus Relay depends on durable connectivity; application performance
may suffer from the increased latency and transient connection fail-
ures that are typical on the Internet.

However, applications that are already designed around a Service
Oriented Architecture (SOA) are likely to be easier to migrate in
stages than monolithic or closely-coupled applications. It may not re-
quire that you completely redesign the connectivity and communica-
tion features to suit a hybrid environment, though there may still be
some effort required to update these features to work well over the
Internet if they were originally designed for use over a high-speed and
reliable corporate network.

Technology Map of the Guide
The following chapters of this guide discuss the design and implemen-
tation of the Trey Research’s hybrid Orders application in detail, based
on a series of scenarios related to the application. The table below
shows these scenarios, the integration challenges associated with each
one, and the technologies that Trey Research used to resolve these
challenges.

The information in this guide
about Windows Azure, SQL
Azure, and the services they
expose is up to date at the
time of writing. However,
Windows Azure is constantly
evolving and adding new
capabilities and features.
For the latest information
about Windows Azure, see
“What’s New in Windows
Azure” on MSDN.

Staged or partial migration
of existing on-premises
applications to Windows
Azure hybrid applications
is not straightforward, and
can require considerable
effort and redesign
to maintain security,
reliability, and performance
when communication
channels cross the
Internet. However, in
large applications the
effort required may be
worthwhile compared to
the complexity of a single-
step migration.

http://msdn.microsoft.com/en-us/library/windowsazure/gg441573
http://msdn.microsoft.com/en-us/library/windowsazure/gg441573

 13The Trey Research Scenario

Chapter Challenge Technologies

Chapter 2, “Deploying the
Orders Application and Data
in the Cloud”

Deploying functionality
and data to the cloud.
Data synchronization.

SQL Azure
SQL Azure Data Sync
SQL Azure Reporting Service
Windows Azure Marketplace (Data Market)
Service Bus Relay

Chapter 3, “Authenticating
Users in the Orders Applica-
tion”

Authenticating users
and authorizing
requests in the cloud.

Windows Azure Access Control Service
Windows Identity Framework
Enterprise Library Transient Fault Handling Application Block

Chapter 4, “Implementing
Reliable Messaging and
Communications with the
Cloud”

Cross-boundary
communication and
service access.

Windows Azure Connect service
Service Bus Queues
Service Bus Topics and Rules

Chapter 5, “Processing Orders
in the Trey Research Solution”

Business logic and
message routing.

Service Bus Queues
Service Bus Topics and Rules

Chapter 6, “Maximizing
Scalability, Availability, and
Performance in the Orders
Application”

Scalability, perfor-
mance, and availability.

Windows Azure Caching service
Windows Azure Traffic Manager
Enterprise Library Autoscaling Application Block

Chapter 7, “Monitoring and
Managing the Orders
Application”

Monitoring and
management.

Windows Azure Diagnostics
Windows Azure Management REST APIs
Windows Azure Management Cmdlets

Some of the features and services listed here (such as Windows Azure virtual machine role,
Windows Azure Connect service, and Windows Azure Traffic Manager) were still prerelease or
beta versions at the time of writing. For up to date information, see the Microsoft Windows Azure
home page at http://www.microsoft.com/windowsazure/. In addition, this guide does not cover
ACS in detail. ACS is discussed in more depth in "Claims Based Identity & Access Control Guide"
(see http://claimsid.codeplex.com/), which is part of this series of guides on Windows Azure.

Summary
This chapter introduced you to hybrid applications that take advantage of the benefits available from
hosting in the cloud. Cloud services provide a range of opportunities for Platform as a Service (Paas)
and Infrastructure as a Service (IaaS) deployment of applications, together with a range of built-in
features that can help to resolve challenges you may encounter when evolving an existing application
to the cloud or when building new hybrid applications that run partially on-premises and partially in
the cloud.

This chapter also introduced you to Trey Research’s online Orders application, and provided an
overview of how Trey Research evolved it from an entirely on-premises application into a hybrid ap-
plication where some parts run in the cloud, while maintaining other parts in their on-premises data-
center. Finally, this chapter explored the final architecture of the Orders application so that you are
familiar with the result.

The subsequent chapters of this guide drill down into the application in more detail, and provide
a great deal more information about choosing the appropriate technology, how Trey Research imple-
mented solutions to the various challenges faced, and how these solutions could be extended or
adapted to suit other situations.

http://www.microsoft.com/windowsazure/
http://claimsid.codeplex.com/

14 chapter one

You’ll see how Trey Research modified its application to work seamlessly across on-premises and
cloud locations, and to integrate with external partner companies (whose applications may also be
running on-premises or in the cloud), using services exposed by Windows Azure and SQL Azure.

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx.

•	 For the latest information about Windows Azure, see “What’s New in Windows Azure” at
http://msdn.microsoft.com/en-us/library/windowsazure/gg441573.

•	 The website for this series of guides at http://wag.codeplex.com/ provides links to online
resources, sample code, Hands-on-Labs, feedback, and more.

•	 The portal with information about Microsoft Windows Azure is at
http://www.microsoft.com/windowsazure/. It has links to white papers, tools, and many other
resources. You can also sign up for a Windows Azure account here.

•	 Find answers to your questions on the Windows Azure Forum at
http://social.msdn.microsoft.com/Forums/en-US/category/windowsazureplatform.

•	 Eugenio Pace, a principal program manager in the Microsoft patterns & practices group,
is creating a series of guides on Windows Azure, to which this documentation belongs.
To learn more about the series, see his blog at http://blogs.msdn.com/eugeniop.

•	 Masashi Narumoto is a program manager in the Microsoft patterns & practices group, work-
ing on guidance for Windows Azure. His blog is at http://blogs.msdn.com/masashi_narumoto.

•	 Scott Densmore, lead developer in the Microsoft patterns & practices group, writes about
developing applications for Windows Azure on his blog at http://scottdensmore.typepad.com/.

•	 Steve Marx’s blog is at http://blog.smarx.com/ is a great source of news and information on
Windows Azure.

•	 Code and documentation for the patterns & practice Windows Azure Guidance project
is available on the Codeplex Windows Azure Guidance site at http://wag.codeplex.com/.

•	 Comprehensive guidance and examples on Windows Azure Access Control Service is
available in the patterns & practices book “A Guide to Claims–based Identity and Access
Control,” also available online at http://claimsid.codeplex.com/ and on MSDN at
http://msdn.microsoft.com/en-us/library/ff423674.aspx.

http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg441573
http://wag.codeplex.com/
http://www.microsoft.com/windowsazure/
http://social.msdn.microsoft.com/Forums/en-US/category/windowsazureplatform
http://blogs.msdn.com/eugeniop
http://blogs.msdn.com/masashi_narumoto
http://scottdensmore.typepad.com/
http://blog.smarx.com/
http://wag.codeplex.com/
http://claimsid.codeplex.com/
http://msdn.microsoft.com/en-us/library/ff423674.aspx

 15

2 Deploying the Orders Application
and Data in the Cloud

The first stage in moving parts of the Orders system to the cloud as elements of a hybrid application
required the designers at Trey Research to consider how to deploy these pieces in Windows Azure™
technology platform. Windows Azure offers several options for deployment of application function-
ality, and a wide range of associated services that Trey Research can take advantage of when designing
and building hybrid applications.

In this chapter, you will see how Trey Research addressed the challenges associated with deploying
the key elements of the Orders application to the cloud, and how the designers integrated the ap-
plication with the services provided by Windows Azure and the SQL Azure™ technology platform.

Scenario and Context
In the original implementation of the Orders application, the components and services it uses ran
on-premises and accessed data stored in local SQL Server databases in Trey Research’s datacenter. You
saw the architecture and a description of the original on-premises system in Chapter 1, “The Trey
Research Scenario.” Trey Research had to decide how to segregate the functionality, the types of
Windows Azure roles to use, and how this might architecture affects the security, performance, and
reliability of the application.

In addition, the designers had to consider where and how to host the data used by the application
when some parts of the application are located remotely and communication must cross the Internet,
and how to maintain the ability to produce business reports from that data.

When they examined the existing Orders application with a view to moving some parts to
Windows Azure, it soon became clear that the management and reporting part of the application,
which does not need to scale to the same extent as the public website, should remain on premises.
This allowed Trey Research to more closely control the aspects of the application that require addi-
tional security and which, for logistical reasons, they felt would be better kept within their own
datacenter. However, Trey Research wished to make some non-confidential elements of the reporting
data available to trusted partners for use in their own systems.

The public section of the application could easily be deployed to the cloud as it was already ef-
fectively a separate application, and is the part of the application that will be required to scale most
over time to meet elastic demand. This allowed Trey Research to take full advantage of the cloud in
terms of reliability, availability, security, lower running costs, reduced requirements for on-premises
infrastructure, and the capability to scale up and down at short notice to meet peaks in demand.

Head Office

Monitoring and
Management

US South
Datacenter

Orders
Application

US North
Datacenter

Orders
Application

Application
management and
reporting

Orders for
shipping

Automatic client
request routing

Reports

Transient data caching, federated
authentication, secure connectivity

for communication and service access
across cloud and on-premises

boundaries, data synchronization,
comprehensive reporting features,
and third-party components and

frameworks

Transport
Partners

.

16 chapter two

There are other advantages to hosting in Windows Azure that
served to make a strong case for moving the public parts of the Or-
ders application to the cloud. These include the ability to deploy it to
multiple datacenters in different geographical locations to provide
better response times and to maximize availability for customers. By
using Windows Azure Traffic Manager, requests to the application are
automatically routed to the instance that will provide the best user
experience. Traffic Manager also handles failed instances by rerouting
requests to other instances.

In addition, Trey Research were able to take advantage of the
built-in distributed data caching feature for transient data used by the
public website, the claims-based authentication service for easily im-
plementing federated authentication, the connectivity features for
secure communication and service access across the cloud/on-prem-
ises boundary, the capabilities for data synchronization, a comprehen-
sive cloud-based reporting system, and the availability of third party
components and frameworks to simplify development.

Figure 1 shows a high-level view of the way that Trey Research
chose to segregate the parts of the application across the cloud and
on-premises boundary.

Figure 1
A high-level view of the segregation across the cloud and on-premises boundary

Taking advantage of
available components,
services, frameworks, and
features designed and
optimized for the cloud
simplifies both the design
and development of cloud-
based applications.

 17Deploying the Orders Application and Data in the Cloud

In this chapter you will see how the designers at Trey Research
chose where to locate the data the application uses, how they imple-
mented a synchronization mechanism that ensures that the relevant
data is available and consistent in all of the locations where it is re-
quired, and how they maintain comprehensive business intelligence
reporting capabilities. These decisions required the designers to con-
sider the options available, and the tradeoffs that apply to each one.

Deploying the Application and Data to the Cloud
The Orders application is a website, and so the designers at Trey Re-
search realized that this could easily be deployed in Windows Azure
as a web role. Deploying multiple instances of the web role allows the
website to scale to meet demand, and ensures that it provides the
availability and reliability that Trey Research requires. Background
processing tasks, which occur after a customer places an order, are
handed off to a worker role. Trey Research can deploy multiple in-
stances of the worker role to handle the varying load as customers
place orders in the website.

The Orders website requires access to several items of data as it
runs. This data includes the list of products that customers can order,
the list of customers so that the application can authenticate visitors
and access information about them, the orders that customers place
at the website, and auditing and runtime logging information. The
designers at Trey Research needed to decide where and how to locate
each of these items, and also identify the appropriate storage mecha-
nism for this data.

Choosing the Location for Data
All elements of a hybrid application, whether they are located on-
premises, in the cloud, or at a partner location, are likely to need to
access data. A fundamental part of the design of a hybrid application
is locating this data in the appropriate places to maximize efficiency
and performance, while maintaining security and supporting any rep-
lication and synchronization requirements. Typically, data should be
located as close as possible to the applications and components that
use it. However, this is not always advisable, or possible, depending on
individual circumstances.

You write new web
applications or adapt
existing web applications
for deployment to Windows
Azure in a very similar
manner to that you would
follow if you were building
items for local deployment
in your own datacenter.
However, there are some
aspects that differ, such as
session state management,
data storage, and
configuration.

18 chapter two

The major decision is whether to locate data remotely (such as in the cloud or at a partner loca-
tion), or to keep it on-premises. The Orders application uses four types of data:
•	 Customer information, including sensitive data such as credit limits and payment information.

This includes personally identifiable information (PII) and must be protected to the highest
extent possible.

•	 Product information such as the product catalog, prices, and details. Trey Research manufac-
tures all products to order, and so there is no stock level data.

•	 Order information, including full details of orders placed by customers and delivery information.
•	 Audit log information, such as events and exceptions raised by the application and details of

orders over a total value of $10,000. This data may contain sensitive information that must be
fully secured against access by non-administrative staff.

The designers at Trey Research considered three options for locating the data used by the Orders
application. They could deploy all of the data in the cloud, keep all of the data on-premises, or deploy
some in the cloud while the rest remains on-premises.

Deploy All of the Data in the Cloud
Deploying all of the data in the cloud so that it is close to the Orders application can help to maximize
performance and minimize response times, and removes the requirement to synchronize data between
cloud and on-premises locations. It also allows Trey Research to take advantage of the scalability and
performance of either Windows Azure storage or SQL Azure, both of which provide reliable, fast, and
efficient data access for the application and make it easy to expand storage availability as required.

However, deploying all of the data in the cloud would mean head-office applications that require
access to this data must do so over the Internet. This could cause users in the head office to encoun-
ter delays and failed connections due to occasional Internet networking and performance issues, and
additional costs would be incurred for access to the data from the on-premises applications. In addi-
tion, the storage costs for deploying large volumes of data or multiple databases could be an issue, and
there is still likely to be a requirement to synchronize the data between these deployments if the
application is located in more than one datacenter.

Keep All Data On-premises
Keeping all of the data on-premises means that it can be secured and managed by Trey Research ad-
ministrators and operations staff more easily, especially if most of the update operations are done by
on-premises staff and other on-premises applications within the organization. This approach also al-
lows Trey Research to ensure they comply with legal or regulatory limitations on the location and
security of sensitive information. In addition, there is no requirement to migrate or deploy data to a
remote location, and other operations such as backing up data are easier.

 19Deploying the Orders Application and Data in the Cloud

However, keeping all of the data on-premises means that remote
applications and services in the cloud or at partner locations must
access the data over the Internet, although this can be mitigated to
some extend by the judicious use of caching. The designers at Trey
Research also considered whether it would be possible to implement
the required business logic so that it worked securely and reliably
when remote applications and services must perform updates across
the Internet in multiple databases.

Deploy Some of the Data in the Cloud
Deploying some of the data in the cloud and keeping the remainder
on-premises provides several advantages. For example, data for appli-
cations and services that require fast and reliable access can be located
in the cloud, close to the application or service that uses it, whereas
data that is mostly accessed by head office applications can remain
on-premises to provide fast and reliable access for these applications.
In addition, data that is subject to legal or regulatory limitations re-
garding its storage location, or requires specific security mechanisms
to be in place, can remain on-premises. Finally, data that does not need
to scale can remain on-premises, saving hosting costs, whereas data
that must scale can be located in Windows Azure storage or SQL
Azure to take advantage of the scalability these services offer.

However, deploying some of the data in the cloud means that,
where it is used in both cloud-hosted or on-premises applications, it
will still need to be accessed across the Internet. A suitably secure and
reliable connectivity mechanism will be required, and a data replica-
tion and synchronization solution will be necessary to ensure that
data in all locations is consistent.

How Trey Research Chose the Location for
Deploying Data

After considering the options for where to deploy data, Trey Research
made the following decisions for locating the information used by the
Orders application.

Accessing data held
on-premises from a cloud-
hosted application is not
usually the best approach
due to the inherent
network latency and
reliability of the Internet.
If you decide to follow
this approach, you must
consider using a robust
caching mechanism such as
Windows Azure Caching
to minimize the impact of
network issues.

20 chapter two

Customer Data
Customer information is maintained by Trey Research’s own operations staff in conjunction with the
existing on-premises accounting system that Trey Research uses within its wider organization. Trey
Research requires customers to register through the head office, and operators add customers to the
on-premises database. Using the Orders application, it is planned that customers will be able modify
some of their own information (this functionality is not yet implemented), but the application will not
allow them to modify critical identity or other secure data. Customer data is likely to be relatively
static and not change much over time.

Trey Research decided to keep the master Customer database on-premises to maximize security,
and to maintain the existing capabilities of all the on-premises applications to interact with the data
efficiently. However, customer data is also required by the Orders website to authenticate visitors and
to accept orders from them. Therefore, to maximize performance and reliability, Trey Research de-
cided to locate a replica of the customer data in the cloud, close to the Orders website.

This means that a bidirectional synchronization mechanism is required to ensure that updates to
the customer data made by on-premises operators are replicated to all datacenters that host the Or-
ders application, and changes made in the Orders application by customers to certain parts of their
own data are replicated back to the master copy of the data held on-premises and out to the SQL
Azure databases located in other datacenters.

Product Data
Product information is also maintained by Trey Research’s operations staff. This data can only be up-
dated on-premises in conjunction with the existing on-premises manufacturing processes and parts
catalogs that Trey Research uses within its wider organization. Because there is no stock level informa-
tion (all products are manufactured on-demand), the Product data is relatively static.

Trey Research decided to keep the master Product data on-premises to maintain the existing ca-
pabilities of all the on-premises applications to interact with the data efficiently. However, to maxi-
mize performance and reliability, Trey Research decided to locate a replica of some fields of the
Product data (just the data required to list products, show product details, and accept orders) in the
cloud, close to the Orders application. This means that a unidirectional synchronization mechanism is
required to ensure that updates to the Product data made by on-premises operators are replicated to
all datacenters that host the Orders application.

Order Data
Order information is generated by the Orders application running in the cloud, and cannot be edited
elsewhere. The Orders application also reads Order data when displaying lists of current orders and
delivery information to users. Unlike Customer and Product data, which is relatively static, Order data
is highly dynamic because it changes as customer place orders and as they are shipped by the transport
partners.

 21Deploying the Orders Application and Data in the Cloud

Trey Research decided that there was no requirement to locate Order data on-premises. Instead,
Order data is stored only in the cloud, close to the Orders application. However, when the Orders
application is deployed to more than one datacenter, bi-directional synchronization of the order data
between datacenters ensures that customers see their order information if, due to an application
failure (or when a user moves to a new geographical location), they are redirected to a different
datacenter. The only issue with this decision is that Trey Research will no longer be able to use SQL
Server Reporting Services to create business intelligence reports on the data directly. You will see how
Trey Research resolved this issue later in this chapter, in the section “Choosing a Reporting Solution.”

Audit Log Data
Audit log information is generated by the Orders application in response to events and exceptions
raised by the application, and for orders over a total value of $10,000. It is also generated by other
on-premises applications within Trey Research’s organization, and so the Audit Log database is a
complete repository for all application management and monitoring facilities.

Trey Research decided that, because the most intensive access to this data is from monitoring
tools and administrative management applications, the data should remain on-premises. In addition,
government regulations on the sale of some high-tech products that Trey Research manufactures
means Trey Research must maintain full and accurate records of such sales and store these records
locally. Keeping the Audit Log data, which may contain sensitive information about the application,
on-premises also helps to ensure that it is fully secured within Trey Research’s domain against access
by unauthorized parties.

Choosing the Data Storage Mechanism
Having decided that some of the data used by the Orders application will be hosted in Windows
Azure, the designers at Trey Research needed to choose a suitable mechanism for storing this data in
the cloud. The most common options are Windows Azure storage, SQL Azure or another database
system, or a custom repository.

Windows Azure Storage
Windows Azure storage provides blob storage, table storage, and queues. Queues are typically used
for passing information between roles and services, and are not designed for use as a persistent stor-
age mechanism. However, Trey Research could use table storage or blob storage. Both of these are
cost-effective ways of storing data.

Blob storage is ideal for storing unstructured information such as images, files, and other re-
sources. Table storage is best suited to structured information. Table storage is very flexible and can
be very efficient, especially if the table structure is designed to maximize query performance. It also
supports geographical replication, so that access is fast and efficient from different client locations.
Table storage is significantly cheaper than using a SQL Azure database.

22 chapter two

However, table storage does not support the familiar SQL-based techniques for reading and writ-
ing data, and some of the standard relational database data types. Data is stored as collections of
entities, which are similar to rows but each has a primary key and a set of properties. These properties
consist of a name and a series of typed-value pairs. The designers at Trey Research realized that migrat-
ing an existing application that uses a SQL database to the cloud, and deciding to use Windows Azure
table storage, meant that they would need to redesign their data model and rewrite some of the data
access code. This would add cost and time to the migration process.

In addition, Windows Azure table storage does not support the concept of database transactions,
although it does provide transacted access to a single table. Finally, data cannot be directly imported
from a relational database system such as SQL Server into table storage. Trey Research would need to
create or source tools to perform the translation and upload the data.

For more information about using Windows Azure table storage, see the section “Storing Business
Expense Data in Windows Azure Table Storage” in Chapter 5 of the guide “Moving Applications to
the Cloud.”

SQL Azure
SQL Azure is a high-performance database service that fully supports SQL-based operations, and can
be used to create relational databases in the cloud. It is implemented by SQL Server instances installed
in Microsoft datacenters.

SQL Azure offers much of the core functionality of a local SQL Server installation, and it delivers
data to the application using the familiar SQL Server Tabular Data Stream (TDS) protocol. This archi-
tecture enables you to use the same .NET Framework data providers (such as System.Data.SqlClient)
to connect to the database, and T-SQL to access and manipulate the data. SQL Azure is also compat-
ible with existing connectivity APIs, such as the Entity Framework (EF), ADO.NET, and Open Data-
base Connectivity (ODBC). Data can be updated using database transactions to ensure consistency.

These advantages mean that developers at Trey Research would not have to make major changes
to the application code, and administrators could quickly and easily deploy the data to SQL Azure
without needing to change the schema of the tables. Trey Research administrators and operators can
manage SQL Azure databases through the Windows Azure Management Portal, and by using familiar
tools such as SQL Server Management Studio and the Visual Studio database tools. A range of other
tools for activities such as moving and migrating data, as well as command line tools for deployment
and administration, are also available.

In addition, data synchronization across cloud-hosted and on-premises databases is easy to achieve
through the Windows Azure Data Sync service or the Data Sync APIs. SQL Azure supports business
intelligence reporting with the SQL Azure Reporting Service.

However, the designers at Trey Research also needed to consider that, while SQL Azure is very
similar to SQL Server, certain concepts such as server-level controls or physical file management do
not apply in an auto-managed environment such as SQL Azure. In addition, the subscription costs for
SQL Azure are higher than those of Windows Azure storage.

 23Deploying the Orders Application and Data in the Cloud

Alternative Database System or Custom Repository
If your application currently uses a relational database system, or utilizes a custom repository to store
its data, you may be able to migrate the data to SQL Azure easily—depending on the existing format
of the data. Alternatively, if you use a database system other than SQL Server (such as Mongo DB,
see http://www.mongodb.org/), you might be able to run this database system in the cloud using the
Windows Azure worker role or VM role.

Using an existing database system or custom repository that already provides data for your ap-
plication means that you will probably be able to use the same data access code as you employed
on-premises. This is an advantage if developers are familiar with the mechanism you choose, and it can
reduce the transition time and effort of learning a new system.

However, using an alternative database system or custom repository means that you must main-
tain this database or repository yourself. For example, you must install updated versions of the data-
base management software or debug your own custom code. You may also have difficulty importing
data or moving data to another data storage mechanism in the future.

How Trey Research Chose a Storage Mechanism for Data
Trey Research uses SQL Server to store data in their on-premises applications, including the original
Orders application. The data formats and types, and the data access code, are all designed to work
with SQL Server. Therefore, it made sense for Trey Research to choose SQL Azure as the data storage
mechanism for the hybrid version of the Orders application. The additional cost compared to using
Windows Azure table storage is partly mitigated by the savings in schema redesign and code develop-
ment costs.

In addition, Trey Research wanted to be able to use database transactions and perform complex
queries when working with data. Implementing code to achieve the equivalent functionality using
Windows Azure table storage would require additional development time and incur subsequent ad-
ditional costs. Administrators at Trey Research are also familiar with SQL Server, including the tools
used to manage data, and are comfortable using systems based on SQL Server so working with SQL
Azure does not require them to learn new paradigms.

Encrypting Data Stored in Windows Azure Storage and Databases
The designers at Trey Research realized that when moving data to the cloud, they must consider the
level of protection required for that data, irrespective of the selected storage mechanism. Sensitive
data, such as customers’ passwords and credit card numbers, and PII such as addresses and telephone
numbers, typically require higher levels of protection than data such as product lists.

At the time of writing, neither Windows Azure storage nor SQL Azure support built-in data en-
cryption mechanisms. This means that the application is responsible for encrypting or decrypting
sensitive data that requires an additional level of protection. Trey Research achieves this by using the
standard cryptography algorithms exposed by the .NET Framework, or with other code libraries.

For information about encrypting data in Windows Azure, see “Crypto Services and Data Security
in Windows Azure” in MSDN® Magazine and “Encrypting Data in Windows Azure Storage.”
For details of the security features of SQL Azure, see “Security Guidelines and Limitations (SQL
Azure Database).”

http://www.mongodb.org/
http://msdn.microsoft.com/en-us/magazine/ee291586.aspx
http://msdn.microsoft.com/en-us/magazine/ee291586.aspx
http://cm-bloggers.blogspot.com/2011/07/encrypting-data-in-windows-azure.html
http://msdn.microsoft.com/en-gb/library/ff394108.aspx
http://msdn.microsoft.com/en-gb/library/ff394108.aspx

24 chapter two

Synchronizing Data across Cloud and On-Premises Locations
The architecture Trey Research chose for the Orders application has some data located in the cloud
in SQL Azure, and some data located on-premises. This means that the designers at Trey Research
must consider how to synchronize data across these locations to ensure it is consistent.

Choosing a Data Synchronization Solution
The choice of data synchronization solution depends on both the type of data stores that hold the
data and the requirements for consistency. For example, if data must always be consistent across
different locations, the solution must detect and replicate changes to data in each location as soon as
they occur. If the application can work successfully when data is eventually consistent, but may be
stale for short periods, a scheduled synchronization process may be sufficient. The following sections
of this chapter describe the options that Trey Research considered for synchronizing data in the Or-
ders application.

SQL Azure Data Sync
If data is deployed to SQL Azure, the natural solution for synchronizing this data is to use SQL Azure
Data Sync. This is a service that can synchronize data between on-premises SQL Server databases and
one or more SQL Azure databases hosted in the cloud. SQL Azure Data Sync offers a variety of op-
tions for unidirectional and bi-directional synchronization.

Using SQL Azure Data Sync would mean that the developers at Trey Research wouldn’t need to
write any custom code because synchronization is configured and managed through the Windows
Azure web portal. This helps to reduce the cost and time required to implement a solution compared
to building a custom solution.

However, SQL Azure Data Sync works with only SQL Server and SQL Azure databases; it cannot
be used if data is stored in Windows Azure storage or another database system. In addition, SQL Azure
Data Sync imposes some restrictions on column data types and nullability that may necessitate
changes to existing database schemas. SQL Azure Data Sync handles conflicting changes made in
different databases by using one of a small number of predefined policies. It isn’t possible to custom-
ize these policies, and SQL Azure Data Sync does not provide synchronization events that you can
use to implement your own mechanism.

The designers at Trey Research also realized that in some scenarios synchronization requires two
passes to complete; the data is moved to a hub database first (which may be one of the existing op-
erational databases) and then to client databases. This means that, when there is more than one data-
base synchronizing from the hub database, some instances of the data may be stale until the second
synchronization pass occurs. However, when simply synchronizing one on-premises database to the
SQL Azure hub database, all updates are applied during a single pass.

See “Appendix A - Replicating, Distributing, and Synchronizing Data” for more information about
using SQL Azure Data Sync.

 25Deploying the Orders Application and Data in the Cloud

Microsoft Sync Framework
SQL Azure Data Sync uses the components of the Microsoft Sync Framework to perform data syn-
chronization. The Sync Framework is a comprehensive synchronization platform that supports any
data type, any data store, any transfer protocol, and any network topology. It is not confined to use
with just SQL Server and SQL Azure databases.

If the developers at Trey Research needed more control over the synchronization process, they
could use the components of the Sync Framework SDK directly in code. This has the advantage that
the application could react to events, such as data being changed, and initiate synchronization. The
application could also handle events occurring during the synchronization process to manage conflicts
and errors, or to provide more traceability. Of course, it will also mean that the developers would have
to write additional code to control the synchronization process, which would incur additional cost
and time compared to using the SQL Azure Data Sync service.

For more information about the Sync Framework SDK, see “Microsoft Sync Framework Developer
Center.”

A Custom or Third Party Synchronization Solution
If Trey Research decided not to use SQL Azure Data Sync or the Microsoft Sync Framework, the de-
signers could have considered implementing a custom or third party solution for synchronizing data. In
particular, where there are special requirements for synchronizing or replicating data, a custom mecha-
nism might be a better choice than an off the shelf solution. For example, if Trey Research needed to
carry out specific types of synchronization not supported by available third-party solutions or services,
a custom mechanism that passes messages between services located on-premises and at each datacen-
ter using Windows Azure Service Bus brokered messaging could have been be a good choice.

Messaging solutions are flexible and can be used across different types of data repository because
the service that receives update messages can apply the update operations in the repository using the
appropriate methods. Message-based replication and synchronization solutions are particularly suited
to performing real-time updates, but this was not a requirement of the Orders application.

In addition, messaging solutions can expose more information about the synchronization process
as it proceeds; for example, allowing developers to trace each data modification and handle conflicts
or errors in an appropriate way. It is also possible to implement a solution that follows the principles
of the Command Query Responsibility Segregation (CQRS) pattern by separating the queries that
extract data from the commands that update the target data repository.

However, if you cannot locate a third party solution that provides the required features and can
interface with your existing data stores, and you decide to create a custom solution, implementing,
testing, and debugging this solution is likely to incur additional costs and require additional develop-
ment time.

See “Appendix A - Replicating, Distributing, and Synchronizing Data” for more information about
creating a custom message-based data synchronization solution.

http://msdn.microsoft.com/en-us/sync/bb736753
http://msdn.microsoft.com/en-us/sync/bb736753

26 chapter two

How Trey Research Chose the Data
Synchronization Solution

The designers at Trey Research decided to use SQL Azure Data Sync
as the replication and synchronization solution for the Orders applica-
tion. All of the data is stored in either SQL Server on-premises or SQL
Azure in the cloud, and so SQL Azure Data Sync will be able to access
and synchronize all of the data as required. The saving in development
cost and time compared to a custom solution compensated to some
extent for the costs of using the SQL Azure Data Sync service.

How Trey Research Uses SQL Azure
Data Sync

Trey Research stores information about products, customers, and the
orders that these customers have placed. Trey Research uses a combi-
nation of SQL Server running on-premises and SQL Azure hosted at
each datacenter to manage the data required by the Orders applica-
tion. Therefore Trey Research decided to implement data replication
and synchronization in the Orders application.

The different types of information that Trey Research synchro-
nizes are managed and maintained in different ways, specifically:
•	 Order data is maintained exclusively in the cloud by the Orders

application using SQL Azure, and is synchronized between
datacenters. This information is not propagated back to the
on-premises database.

•	 Product information is maintained exclusively on-premises by
using SQL Server, but the details required for placing orders are
copied to each SQL Azure database at each datacenter on a
periodic basis.

•	 New customers are registered on-premises and their details
are added to the SQL Server database held at Head Office.
These details are replicated out to SQL Azure at each datacen-
ter, enabling a customer to log in and access the Orders applica-
tion without the system requiring recourse to the Head Office.
In the future, once an account has been created, the Orders
application may enable certain customer information to be
changed by a customer without requiring the intervention of
the Head Office, and these changes will be made to the SQL
Azure database located in whichever datacenter the customer
is currently connected to (this functionality is not currently
implemented, but Trey Research wished to deploy the Custom-
ers data to allow for this eventuality). These changes will then
be subsequently propagated back to the Head Office, and also
replicated out to the other datacenters.

This section is provided
for information only. For
simplicity, the sample solution
is deployed to a single
datacenter and, therefore, is
not configured to replicate
and synchronize data across
multiple datacenters.

US South DatacenterUS North Datacenter

Head Office

SQL Azure

Synchronize Orders data across
all instances in the cloud

SQL Azure

SQL Server

Replicate new Customer accounts out to the
cloud and synchronize changes to Customer
details between the cloud and on-premises

Replicate Products
data out to the cloud

Orders
Application

Orders
Application

Orders Orders

Customers

Customers

Products

Products

Customers

Products

. .

 27Deploying the Orders Application and Data in the Cloud

Figure 2 shows the solution Trey Research adopted.

Figure 2
Data replication in the Trey Research Orders application

Head Office

US North Datacenter
Order data is synchronized

bidirectionally only in the cloud

Product data is
synchronized through

the hub to each
datacenter

SQL Azure database
in North datacenter
acts as the hub for
synchronization of
Customer & Order

data

Details of newly registered
customers are added to the

head office database and
synchronized through the
hub to each datacenter.

Product data is managed and
edited at the head office and

propagated out to each
datacenter.

Customers

Orders

Customers

Products

Orders
Application

US South Datacenter

Orders

Customers

Products

Orders
Application

Products

Customer details are
synchronized bidirectionally

with the hub at the head
office and with the US

South datacenter

28 chapter two

In this solution, the Product data is synchronized one way, from the on-premises database to the
cloud. The Orders data is replicated bidirectionally between datacenters. The Customer data is also
replicated bidirectionally, but including the on-premises database as well as those in the datacenters.

Figure 3 shows the physical implementation of these approaches based on SQL Azure Data Sync.
This implementation uses three sync groups; each sync group defines a sync dataset and conflict
resolution policy for each type of data (as described above, there are two overlapping sync groups for
replicating customer details). The SQL Azure databases located in the US North Data Center also act
as the synchronization hubs. This is the nearest datacenter to the head office (the Trey Research head
office is located in Illinois), so selecting this location helps to reduce the network latency when syn-
chronizing with the on-premises database.

Figure 3
Physical implementation of data synchronization for Trey Research

 29Deploying the Orders Application and Data in the Cloud

The following table summarizes the configuration of each sync group implemented by Trey Research.

Name and Description Location of
Hub Database

Location of Member
Databases and
Replication Direction

DataSet Conflict
Resolution
Policy

ProductsSyncGroup
One way synchronization of
product information from
on-premises to the cloud

US North Data
Center

Head Office
Sync to the Hub

Product table (every
column required to place
an order)

Hub Wins

US South Data Center
Sync from the Hub

OrdersSyncGroup
Bidirectional synchronization
of order information between
datacenters in the cloud

US North Data
Center

US South Data Center
Bidirectional

Order, OrderDetail, and
OrderStatus tables (every
column in each table)

Hub Wins

CustomersSyncGroup
Bidirectional synchronization
of customer information
between on-premises and
the cloud

US North Data
Center

Head Office
Bidirectional

Customer and ACSIdentity
tables (every column in
each table)

Hub Wins

US South Data Center
Bidirectional

The information for each customer spans two tables; the Customer table which contains the
public information about a customer, and the ACSIdentity table which contains the ACS tokens
that identify each customer. This is required because, if more than one ACS instance is used to
authenticate customers, some identity providers will return a different ACS user identifier from
each instance. Therefore, the database must be able to associate more than one user ACS identifier
with each customer record.

However, the sample solution provided with this guide only implements a single ACS identity for
each user, stored in the UserName column in the Customer table in the TreyResearch database.
The sample solution does not include the ACSIdentity table because ACS identifiers are stored in
the UserName column in the Customer table.

See Chapter 3, “Authenticating Users in the Orders Application,” for more information about how
Trey Research uses ACS to authenticate users.

Implementing a Reporting Solution for Cloud-Hosted Data
In some cases, moving functionality to the cloud will preclude you from using existing services. For
example, in the original on-premises version of the Orders application, Trey Research used SQL
Server to store all corporate data, and generated business intelligence reports by using SQL Server
Reporting Services. However, when Trey Research moved the source data (the Orders database) to
SQL Azure, the designers needed to consider whether running a reporting system on the on-premises
network was still feasible. It is possible to run an on-premises reporting system and connect to a SQL
Azure database over the Internet, but this approach is likely to consume large amounts of bandwidth
and provide poor performance.

30 chapter two

Choosing a Reporting Solution
The designers at Trey Research decided that they would need to find
a better solution for creating business intelligence reports from the
cloud-hosted Orders database. The following sections of this chapter
describe the options for business intelligence reporting that Trey Re-
search considered.

SQL Server Reporting Services
SQL Server Reporting Services is a feature of SQL Server that allows
you to create attractive and comprehensive business intelligence re-
ports from data stored in the database tables, or from a variety of
other data sources. If you use SQL Server to store corporate informa-
tion, SQL Server Reporting Services provides an easy-to-use solution
for creating reports.

SQL Server Reporting Services can read data from relational,
multidimensional, XML, and custom data sources, and generate re-
ports in a variety of formats including web-oriented, page-oriented,
and desktop application formats. It also supports publishing reports
directly to a variety of targets, including a report server, SharePoint®
services, file shares, internal archive stores, and Office applications.

SQL Server Reporting Services must connect to the data source
to analyze the data. If the data source is remote to the application that
uses the report, the process may generate considerable network traffic
and may require a service that exposes the data for SQL Server Report-
ing Services to access. This may impact the security of the data source
if it is located remotely from the application that uses the report.

SQL Azure Reporting Service
The SQL Azure Reporting Service is a service exposed by Windows
Azure that can generate a range of customized business intelligence
reports in common web and Microsoft Office-ready formats. If you
use SQL Azure to store corporate information, the SQL Azure Re-
porting Service provides an easy-to-use solution for creating reports.

The SQL Azure Reporting Service runs in the same datacenter as
the SQL Azure database, and so network traffic between SQL Azure
Reporting Service and the application that displays the report is
minimized. This means that it is likely to provide much faster report
generation and better performance than connecting from an on-
premises reporting application to the SQL Azure database.

Wide-ranging and up to date information is vital in all companies for managing
investment, planning resource usage, and monitoring business performance. The SQL
Azure Reporting Service extends these capabilities to data hosted in SQL Azure.

 31Deploying the Orders Application and Data in the Cloud

However, the SQL Azure Reporting Service is a chargeable service and so incurs subscription
costs, though the consequential reduction in data transfer costs to a reporting system located on-
premises can help to compensate for this. It also avoids the high initial cost of an on-premises report-
ing system for organizations that do not already have such a system. Also consider that the SQL Azure
Reporting Service offers lower interactivity and reduced capabilities compared to SQL Server Report-
ing Services and other high-end reporting solutions, although the variety of report formats is usually
sufficient for the vast majority of requirements.

A Custom or Third Party Reporting Solution
It is possible to use any reporting package or create your own custom data analysis and reporting solu-
tion for a hybrid application provided that the solution you choose can access the data stored in your
application’s database or repository. Some organizations may require a custom solution that integrates
with other applications and services, or wish to continue using an existing custom or third party ap-
plication to create business intelligence reports.

Custom or third party reporting solutions may be closely tailored to the organization’s reporting
requirements, and this focus on specific areas of interest can provide faster report generation and
overall performance compared to more generic solutions. Specially tailored third party solutions may
be more appropriate for specialist types of applications, and may cost less than a more generalized
solution.

Using an existing reporting solution can reduce the cost of migrating an application to the cloud.
However, the reporting solution must be able to connect to the cloud-based data source without
compromising the security of the data; this may require developers to create additional services to
expose data. In addition, when the data source is remote to the application that uses the report, the
process may generate considerable network traffic. Finally, an existing or third party solution may not
offer the required variety of formats, or equivalent functionality, compared to SQL Server Reporting
Services or the SQL Azure Reporting Service.

How Trey Research Chose the Reporting Solution
When Trey Research moved the Orders application to the cloud, the designers chose to locate the data
generated by the application when customers place orders in SQL Azure. Before the move, Trey Re-
search used SQL Server Reporting Services to generate business information from the Orders database.

The designers at Trey Research realized that one solution when the source data is located re-
motely would be to download all the orders data to an on-premises database, and continue to use SQL
Server Reporting Services to analyze it. However, unless data synchronization occurs on a scheduled
basis, which will incur additional cost, the data transfer operation will result in longer waiting times
while reports are generated. This approach could also cause considerable network traffic over the
Internet as data would be repeatedly queried to build the reports.

Instead, after moving the data to SQL Azure, it made more sense to adopt the business intelli-
gence capabilities of the SQL Azure Reporting Service. This approach minimizes network traffic over
the Internet, ensures that the most recent data is included in the reports without incurring additional
delays, and can still generate the reporting information in a variety of formats.

Azure Data Center

Head Office

SQL Azure

Orders

Customers
Products

Orders
Application

Data
Market

Reporting
Service

SQL Azure
Reporting

External
access to
reports

32 chapter two

How Trey Research Uses the SQL Azure Reporting Service
An on-premises reporting service application uses SQL Azure Reporting Service to collate the reports
that the management applications running on-premises use. Trey Research extended the usefulness of
the reports by combining the raw data available from SQL Azure Reporting with data streams exposed
through Windows Azure Marketplace.

Figure 4 shows the architecture Trey Research implemented.

Figure 4
Creating business intelligence reports with SQL Azure Reporting Service

For simplicity of installation, the example application for this guide does not include an
implementation of the SQL Azure Reporting Service. For more information about the SQL Azure
Reporting Service, see “Business Analytics.” For more information about incorporating external
data feeds into your reports, see “One-Stop Shop for Premium Data and Applications.”

http://www.windowsazure.com/en-us/home/features/business-analytics/
http://datamarket.azure.com/

 33Deploying the Orders Application and Data in the Cloud

How Trey Research Makes Reporting Data Available to
External Partners

Trey Research also decided to expose the report data to specific users who access the on-premises
Reporting Service over the Internet through Service Bus Relay.

Trey Research chose to implement a trial version of this functionality while the organization
gathered more details on the type of information that external partners should be able to view with-
out intruding on the commercial confidentiality of the business. Therefore, in this first version, Trey
Research simply published the total value of goods sold, broken down by reporting quarter or by re-
gion, as defined by the service contract available in the IOrdersStatistics.cs file in the Services folder
of the HeadOffice project:

C#
[ServiceContract]
public interface IOrdersStatistics
{
 [OperationContract]
 double SalesByQuarter(int quarter);

 [OperationContract]
 double SalesByRegion(string region);
}

Subsequent versions of this service may provide a more detailed breakdown of the sales data.
The HeadOffice application, which runs on-premises within Trey Research, hosts a WCF service

called OrderStatistics that implements the SalesByQuarter and SalesByRegion operations. These
operations simply retrieve the requested data from the underlying database and pass it back as the
return value. The implementation of this service is available in the OrdersStatistics.cs file in the Ser-
vices folder of the HeadOffice project.

The code that initiates the service is located in the OpenServiceHost method in the Global.asax.cs
file also in the HeadOffice project.

The technique used by the sample application to start the OrderStatistics service is not necessarily
applicable to all web applications, and only works in the sample application because the user is
expected to explicitly start the web application that hosts the service. In other situations, it may
be preferable to utilize the Auto-Start feature of Windows Server and IIS to initialize the service.
For more information, see the topic “Auto-Start Feature.”

http://msdn.microsoft.com/en-us/library/ee677260.aspx

34 chapter two

The service was made available to external partners and users through Windows Azure Service
Bus Relay, using the service path Services/RelayedOrdersStatistics, and the application publishes the
service through a TCP endpoint using a netTcpRelayBinding binding. The connection to the Service
Bus is secured through ACS by using an authentication token; Chapter 3, “Authenticating Users in the
Orders Application,” provides more information about configuring ACS, and the section “Guidelines
for Securing Windows Azure Service Bus Relay” in “Appendix C - Implementing Cross-Boundary Com-
munication” includes guidance for authenticating and authorizing partners connecting to Service Bus
Relay. The details of the Service Bus namespace, the service path, the security credentials, and the
service configuration are stored in the web.config file of the project. Notice that the web application
connects to the Service Bus by using the identity named headoffice; this identity is granted the
privileges associated with the Listen claim, enabling the application to accept incoming requests but
preventing it from performing other operations such as sending requests:

XML
<?xml version="1.0" encoding="utf-8"?>
<configuration>
 ...
 <appSettings>
 ...
 <!-- ServiceBus config-->
 <add key="serviceBusNamespace"
 value="treyresearchscenario" />
 <add key="UriScheme" value="sb" />
 <add key="RelayServicePath"
 value="Services/RelayedOrdersStatistics" />
 ...
 </appSettings>
 ...
 <system.serviceModel>
 <services>
 <service name="HeadOffice.Services.OrdersStatistics">
 <endpoint behaviorConfiguration=
 "SharedSecretBehavior"
 binding="netTcpRelayBinding"
 contract=
 "HeadOffice.Services.IOrdersStatistics"
 name="RelayEndpoint"/>
 </service>
 </services>
 <behaviors>
 <endpointBehaviors>
 <behavior name="SharedSecretBehavior">
 <transportClientEndpointBehavior
 credentialType="SharedSecret">
 <clientCredentials>
 <sharedSecret issuerName="headoffice"

 35Deploying the Orders Application and Data in the Cloud

 issuerSecret="<data omitted>" />
 </clientCredentials>
 </transportClientEndpointBehavior>
 <serviceRegistrySettings
 discoveryMode="Public"
 displayName=
 "RelayedOrdersStatistics_Service"/>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 ...
 </system.serviceModel>
</configuration>

Trey Research also built a simple command-line application to test the connectivity to the Order-
Statistics service through Windows Azure Service Bus Relay, and verify that the SalesByQuarter and
SalesByRegion operations function as expected. This application is available in the ExternalData-
Analyzer project. It is a WCF client that establishes a connection to the service by using the Service
Bus APIs of the Windows Azure SDK together with the Service Model APIs of WCF. The connection
to the Service Bus is secured by providing the appropriate authentication token. The endpoint defini-
tion for connecting to the service and the security credentials are all defined in the app.config file.
Like the web application, the ExternalDataAnalyzer project connects to the Service Bus by using a
specific identifier, externaldataanalyzer, which has been granted the privileges associated with the
Send claim, enabling it to submit requests to the service but preventing it from performing other tasks
such as listening for requests from other clients.

XML
<?xml version="1.0" encoding="utf-8"?>
<configuration>
 ...
 <system.serviceModel>
 ...
 <behaviors>
 <endpointBehaviors>
 <behavior name="SharedSecretBehavior">
 <transportClientEndpointBehavior
 credentialType="SharedSecret">
 <clientCredentials>
 <sharedSecret issuerName=
 "externaldataanalyzer"
 issuerSecret="<data omitted>" />
 </clientCredentials>
 </transportClientEndpointBehavior>
 </behavior>
 </endpointBehaviors>
 </behaviors>

ExternalDataAnalyzer Application
(WCF)

US North Datacenter

Service Bus RelayEndpoint connected
through service path

RelayedOrdersStatistics

HeadOffice Application

OrderStatistics
Service (WCF)

Global.asax.cs
Web.config

Program.cs
app.config

Communications use
netTcpRelayBinding

Connections authenticated
by using ACS and an
authentication token

IOrdersStatistics.cs
OrdersStatistics.cs

36 chapter two

 ...
 </system.serviceModel>
</configuration>

Figure 5 summarizes the structure and implementation details of the OrderStatistics service and the
ExternalDataAnalyzer client application.

Figure 5
Structure of the OrderStatistics service and ExternalDataAnalyzer client application

Summary
This chapter concentrated on the deployment scenarios related to building applications where some
parts run on-premises, some parts run in the cloud, and some parts are implemented by or for external
partners. The topics in this chapter concern deployment challenges that Trey Research needed to
tackle, such as locating data in the cloud or on-premises, synchronizing data across the different loca-
tions that are part of a hybrid solution, and generating business intelligence reports.

 37Deploying the Orders Application and Data in the Cloud

Because Trey Research used SQL Server in the original Orders application, deploying data to SQL
Azure and using SQL Azure Data Sync to maintain consistency and replicate master data is a simple
and natural way to migrate the application to the cloud.

Finally, having chosen to use SQL Azure to store data in the cloud, the SQL Azure Reporting
Service is the obvious choice for implementing the business intelligence and reporting solution Trey
Research requires, while the Service Bus Relay provides the ideal mechanism for publishing reporting
data to partner organizations.

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx.
•	 Windows Azure features tour at http://www.windowsazure.com/en-us/home/tour/overview/.
•	 “Windows Azure Developer Center” at http://www.windowsazure.com/en-us/develop/overview/.
•	 “SQL Azure Data Sync Overview” at http://social.technet.microsoft.com/wiki/contents/articles/

sql-azure-data-sync-overview.aspx.
•	 “SQL Azure Data Sync FAQ” at http://social.technet.microsoft.com/wiki/contents/articles/

sql-azure-data-sync-faq.aspx.
•	 “SQL Azure Data Sync- Synchronize Data across On-Premise and Cloud (E2C)” at

http://channel9.msdn.com/Series/SQL-Azure-Data-Sync/SQL-Azure-Data-Sync-Synchronize-Data-
across-On-Premise-and-Cloud-E2C.

•	 “SQL Server to SQL Azure Synchronization using Sync Framework 2.1” at http://blogs.msdn.com/b/
sync/archive/2010/08/31/sql-server-to-sql-azure-synchronization-using-sync-framework-2-1.aspx.

•	 “Business Analytics” (SQL Azure Reporting) at http://www.windowsazure.com/en-us/home/tour/
business-analytics/.

•	 “One-Stop Shop for Premium Data and Applications” at http://datamarket.azure.com/.
•	 “Windows Azure AppFabric: An Introduction to Service Bus Relay” at http://www.microsoft.com/

en-us/showcase/details.aspx?uuid=395930db-6622-4a9f-8152-e0cb1fc5149c.

http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://www.windowsazure.com/en-us/home/tour/overview/
http://www.windowsazure.com/en-us/develop/overview/
http://social.technet.microsoft.com/wiki/contents/articles/sql-azure-data-sync-overview.aspx
http://social.technet.microsoft.com/wiki/contents/articles/sql-azure-data-sync-overview.aspx
http://social.technet.microsoft.com/wiki/contents/articles/sql-azure-data-sync-faq.aspx
http://social.technet.microsoft.com/wiki/contents/articles/sql-azure-data-sync-faq.aspx
http://channel9.msdn.com/Series/SQL-Azure-Data-Sync/SQL-Azure-Data-Sync-Synchronize-Data-across-On-Premise-and-Cloud-E2C
http://channel9.msdn.com/Series/SQL-Azure-Data-Sync/SQL-Azure-Data-Sync-Synchronize-Data-across-On-Premise-and-Cloud-E2C
http://blogs.msdn.com/b/sync/archive/2010/08/31/sql-server-to-sql-azure-synchronization-using-sync-framework-2-1.aspx
http://blogs.msdn.com/b/sync/archive/2010/08/31/sql-server-to-sql-azure-synchronization-using-sync-framework-2-1.aspx
http://www.windowsazure.com/en-us/home/tour/business-analytics/
http://www.windowsazure.com/en-us/home/tour/business-analytics/
http://datamarket.azure.com/
http://www.microsoft.com/en-us/showcase/details.aspx?uuid=395930db-6622-4a9f-8152-e0cb1fc5149c
http://www.microsoft.com/en-us/showcase/details.aspx?uuid=395930db-6622-4a9f-8152-e0cb1fc5149c

 39

3 Authenticating Users in the
Orders Application

This chapter explores how Trey Research adapted the authentication
and authorization implementation in the Orders application when
they migrated parts of the application to the cloud.

The original on-premises Orders application used ASP.NET Forms
authentication. All visitors to the site were required to log in using
credentials allocated to them by Trey Research employees. These
credentials were stored in a SQL Server® database.

When the designers at Trey Research were considering how to
adapt the application to run in the cloud, they realized that they could
take advantage of the Windows Azure™ technology platform Access
Control Service (ACS) to implement a more flexible and user-friendly
authentication approach for visitors, based on claims issued by trusted
identity providers.

Scenario and Context
Most corporate applications and websites require secure and reliable
authentication. Users establish their identity by providing a secret
that only they and the authentication mechanism know. Typically this
is a combination of a username and password, but it may instead be
done using a smartcard, a biometric technique such as a fingerprint or
iris scan, or some other approach. The important factor is that applica-
tion designers must choose a mechanism that can uniquely identify
each user, even if this identification consists only of establishing a
unique user ID.

ASP.NET Forms authentication is a natural approach for authen-
ticating visitors to a website created using ASP.NET, and for authoriz-
ing each visitor’s actions as they access the website. It is flexible and
easy to implement, and provides mechanisms for users to manage their
credentials (such as changing their password). It was for these reasons
that the designers at Trey Research originally used ASP.NET Forms
authentication in the on-premises version of the Orders application.

Forms authentication is
the natural approach for
authentication in ASP.NET
applications, but it does
not offer the flexibility of
a claim-based approach
for federated identity and
single sign-on.

40 chapter three

However, ASP.NET Forms authentication no longer meets the expectations of visitors who are
becoming more used to authentication mechanisms that allow them manage their credentials them-
selves, and that enable them to use the same credentials to access multiple websites. For example,
users that have a Windows Live® ID can set up and manage their account at Windows Live, and then
use the same credentials for accessing websites such as the Hotmail® web-based email service, the
MSDN® developer program, and other Microsoft and third-party websites.

In this situation, Windows Live acts as an identity provider by authenticating visitors and then
confirming their identity to websites that trust Windows Live. This mechanism is usually referred to
as federated authentication. It also supports the capability for single sign-on, where users sign on once
and do not need to re-enter their credentials when accessing another website.

For more information about federated authentication, claims-based authentication, identity
providers, and single sign-on see “Appendix B - Authenticating Users and Authorizing Requests”
of this guide.

The designers at Trey Research wanted to offer visitors the flexibility of using federated authen-
tication, and decided to examine the options available for implementing it in the Orders application.
In addition, they wanted to simplify access to the application for both Trey Research employees and
employees at partner organizations (such as transport partners).

Figure 1 shows the existing authentication architecture for the on-premises Orders application.
In this version of the application, customers are authenticated using ASP.NET Forms authentication
(shown at 1 in the diagram) and are granted access the Orders application if their web browser pres-
ents the correct ASP.NET authentication token to the application (2 in the diagram). Employees of
partner organizations, such as transport partners, are authenticated in the same way (3 and 4 in the
diagram). Employees in the Trey Research head office use credentials specific to the Orders application
to sign into the Orders application using the same ASP.NET Forms authentication mechanism used by
customers and partner employees (5 and 6 in the diagram). However, Trey Research employees also
use internal applications, such as accounting and manufacturing applications, and they must be au-
thenticated for these applications using different credentials that are stored in the on-premises Win-
dows Active Directory® (7 and 8 in the diagram).

Head Office

ASP.NET Forms
Authentication

Authenticate
customer

Manage
customer details

Monitoring and management
applications

Customers

Get customer
details

Orders
Application

Manage Active
Directory

Customers

1
23

4

5

6

8

7

Authenticate
Trey Research
Active Directory

Transport
Partners

Trey Research
Employees

 41Authenticating Users in the Orders Application

Figure 1
The original on-premises authentication mechanism at Trey Research

The following sections of this chapter describe how the designers at Trey Research evaluated and
chose a more flexible authentication and authorization approach for visitors, partners, and Trey Re-
search employees, and how they implemented this approach in the Orders application. The final sec-
tion of this chapter discusses how ACS can also act as the authentication mechanism for Windows
Azure Service Bus.

42 chapter three

Authenticating Visitors to the Orders Application
The designers at Trey Research were aware of the growing use of
federated identity on the Internet, and wanted to evaluate the op-
tions available for authentication in modern websites and web appli-
cations. The following sections of this chapter describe how they
carried out this evaluation.

Choosing an Authentication Technique
The designers at Trey Research assessed common authentication
techniques for the Orders application by considering the advantages
and limitations of using claims-based authentication compared to
ASP.NET Forms-based authentication, in conjunction with incorpo-
rating their existing user repository implemented by Windows Active
Directory.

ASP.NET Forms Authentication
Forms authentication is a built-in feature of ASP.NET, and is quick and
easy to implement in an ASP.NET website. There is a range of server
controls that can be inserted into web pages to enable users to man-
age their account credentials, apply for an account, and sign in and
sign out. The Orders application already used Forms authentication,
and so using this same mechanism in the hybrid version of the applica-
tion would not require any changes to the code.

Using ASP.NET Forms authentication would require the database
containing the user’s credentials to be available to the website, though
having already decided to deploy the Customers data to SQL Azure™
technology platform this would not be an issue.

However, Trey Research had already decided that it wanted to
offer more flexible options for visitors, Trey Research employees, and
partners by allowing them to access the Orders website using their
existing credentials rather than having to register new ones. Using
ASP.NET Forms authentication means that users must have a separate
account just for the Orders application.

Claims-Based Authentication with Microsoft Active
Directory Federation Service

Claims-based authentication allows visitors to use an existing account
that they have already established with an identity provider that Trey
Research trusts. This approach requires the designers at Trey Research
to decide which identity provider(s) they will trust. One option is to
use Microsoft Active Directory Federation Service (ADFS) in conjunc-
tion with their existing Windows Active Directory. ADFS allows users
to sign in over the Internet using credentials stored in Active Direc-
tory; they do not need to connect directly to the Active Directory
domain network.

ADFS acts as a Security
Token Service (STS) that
can authenticate users
against Windows Active
Directory and issue security
tokens containing claims
about the user. These
claims may be just an
authenticated user ID, or
there may be a larger set
of claims in the token that
specify more information
about the user such as their
name, roles, email address,
and more.

 43Authenticating Users in the Orders Application

However, using ADFS would mean that Trey Research employees
would need to create accounts for all visitors within their Windows
Active Directory domain or in a separate Windows Active Directory
domain dedicated to customers, which increases administrative re-
quirements and may have unwelcome security implications. It would
be an acceptable approach for authenticating a small and well-defined
subset of users, such as employees at Trey Research and at partner
organizations, but is not a practical approach for authenticating all
visitors.

Claims-Based Authentication with Windows Azure Access
Control Service

Trey Research can extend the capabilities for authenticating visitors
by using ACS. This service provides a mechanism for visitors to sign in
using their existing account credentials from a range of well-known
social networks and identity providers.

The designers at Trey Research realized that using ACS would give
visitors the flexibility required to use their existing identity and creden-
tials, with a corresponding improvement in users’ authentication expe-
rience. It also has the advantage that Trey Research would not need to
manage the users’ credentials, such as providing the facility to change a
password. All features of identity management are the responsibility of
the identity provider. Trey Research just needed to decide which iden-
tity providers it would trust to establish a user’s identity.

However, there are some issues that Trey Research had to address
when adopting this approach. Social identity providers typically re-
turn only claims containing a unique user identifier, and perhaps a user
name or an email address, and so the application code must associate
this identifier with a registered user stored in the Customers database
table. In addition, Trey Research may need to consider how to migrate
existing user accounts to use the claims-based approach. Using claims-
based authentication will also require the developers at Trey Research
to modify the application code to use the claims returned from ACS.

Trey Research also realized that using ACS with social identity
providers does not provide a single sign-on solution for Trey Research
employees and employees at Trey Research’s partners. Both of these
sets of employees sign into applications in their respective corporate
networks using an account defined in their company’s Active Direc-
tory (or other corporate credentials repository). However, they will be
required to sign into the Orders application using an account defined
by a social identity provider.

ACS is also a STS that issues
security tokens containing
claims about the user,
but it can authenticate
users against a range of
social identity providers
such as Windows Live ID,
Google, Facebook, and
OpenID. ACS can also act
as an identity provider;
a feature that is used for
authenticating access to
Windows Azure Service Bus
queues and topics.

44 chapter three

Claims-Based Authentication with ACS and ADFS
The designers at Trey Research recognized that they could resolve the
challenges encountered with the options presented in the previous
sections by combining ACS with ADFS authentication techniques.
Together ACS and ADFS can act as identity providers and token issu-
ers (STSs) for accounts defined at social identity providers such as
Windows Live ID, Google, Facebook, and OpenID, and accounts de-
fined within Windows Active Directory.

All this requires is for ACS to be configured to trust the ADFS
instances exposed by Trey Research and by partner organizations that
wish to take part in the federated identity authentication realm. Users
are directed to ACS for authentication. ACS sends a request to au-
thenticate each user to the appropriate identity provider. This may be
one of the configured social identity providers, or it may be one of the
configured ADFS instances. When an ADFS instance receives a re-
quest for authentication, it looks up the identity in its local Windows
Active Directory. After confirming the identity through one of the
identity providers or ADFS instances, ACS returns a token containing
any discovered claims to the application.

By combining ACS and ADFS, Trey Research enables visitors to
the Orders application to sign in using a social identity or with an
identity defined in one of the corporate Active Directory domains.
Customers can use Windows Live ID, Google, Facebook, OpenID, and
more; Trey Research employees can sign in with their corporate cre-
dentials defined within the Trey Research domain; and employees at
partner organizations can sign in using corporate credentials defined
within their own domain.

This means that Trey Research are no longer required to maintain
authentication details for visitors or partner employees, and the de-
tails for Trey Research’s own employee accounts are already managed
by the network administrator in Active Directory. Consequently,
there is no requirement for additional management of employee ac-
counts.

The only real issues are the additional complexity of configuring
ACS and ADFS to support this federated identity approach, and the
loss of absolute control over the list of permitted users. For example,
the administrator at partner companies will maintain the list of their
employees that have access to the Orders application. While freed of
the effort and responsibility for this task, Trey Research loses the abil-
ity to control which users do have access, and must trust the partner
organization to grant only the appropriate privileges. This may be an
issue if the permissions available to users depend on roles specified in
the claims returned from the identity provider, such as “Manager” or
“Administrator.”

Combining authentication
through social identities
and corporate directory
mechanisms by using ACS
offers flexibility and allows
the application to support
authentication for a broad
set of users. It also makes
it possible to use role-
based claims to authorize
user actions because role
information is typically
available from corporate
directories, even though it
is usually not available from
social identity providers.

 45Authenticating Users in the Orders Application

Combined Forms and Claims-Based Authentication
One final approach Trey Research considered was combining both a claims-based approach, as dis-
cussed above, with ASP.NET Forms authentication so that users can continue to use their existing
Forms authentication credentials. This approach would mean administrators at Trey Research would
not be required to migrate existing users to the claims-based approach. New and existing users would
be able to use the application, with new users being provided with claims-based authentication cre-
dentials, and existing users could be encouraged to change over to using claims-based authentication
credentials.

However, this means that developers and administrators at Trey Research would need to manage
and maintain two incompatible systems. It would also be more difficult to perform common tasks
such as generating a list of customers or managing the customer details held in the database. In addi-
tion, developers would still need to modify the application code to support both authentication
techniques.

How Trey Research Chose an Authentication Technique
After considering all of the options, Trey Research decided to adopt a claims-based federated authen-
tication approach based on combining ACS and ADFS. This approach offers the maximum flexibility
for new customers, and supports single sign-on for all visitors; including Trey Research employees and
employees at partner organizations.

The additional work and cost involved in also supporting Forms authentication was not considered
to be worthwhile, however, and so Trey Research needed to decide how to manage the accounts of
existing customers and employees. The developers discovered that they could add code to the applica-
tion so that users signing in with a social or federated identity could be connected to an existing user
account. This saves Trey Research from migrating the existing accounts from Forms authentication.

It also has the added benefit that customers and employees can have more than one identity
linked to their registered account in the Customers table, and can therefore access the application
when signed in to any of these identity providers. This offers an even better single sign-on experience
for visitors. This implementation is described in more detail in the section “Handling Multiple User
IDs,” later in this chapter.

How Trey Research Uses ACS and ADFS to Authenticate Visitors
Trey Research authenticates visitors to the Orders website through claims-based authentication using
ACS as the STS, three social identity providers (Windows Live ID, Yahoo!, and Google), and ADFS
instances exposed by Trey Research itself and by its main partner organizations. Figure 2 shows a
schematic view of the overall authentication cycle for different types of users and different identity
providers.

Wi
nd

ow
s A

zu
re

Head Office

Claims-based
authentication

modules

Customers

Get customer
details

Orders
Application

Manage Active
Directory

Transport Partners

Windows Azure
Access Control

Service

Corporate
Directory

Directory
Federation

Service

Active Directory
Federation
Services

Trust Trust

Social identity
providers

Windows Live ID
Google
Yahoo!

Trust

Authenticate

1

2

3

4

7

6

5

Authenticate using Trey
Research domain credentials

Manage
customer details

Customers

Monitoring and management applications

8

Trey Research
Employees

46 chapter three

Figure 2
The authentication architecture and sequence in the hybrid Orders application

 47Authenticating Users in the Orders Application

In this architecture, customers authenticate through ACS with their chosen social identity pro-
vider (shown at 1 in the diagram). These identity providers are configured in ACS, and are trusted by
ACS. The claims-based authentication modules in the Orders application pipeline validate the token
returned from ACS that the customer sends to the Orders application (2 in the diagram). The modules
extract the user identifier claim, and the Orders application can then look up the corresponding
customer details in the Customers database table.

Employees at Trey Research’s partners authenticate using ACS (3 in the diagram), but—because
ACS is configured to trust the partner’s directory federation service—these employees can sign into
the Orders application (4 in the diagram) using credentials stored in their own corporate directory.

Finally, Trey Research’s employees are authenticated by Trey Research’s own Active Directory over
the corporate network when they sign into their computer (5 in the diagram) and can then access Trey
Research’s internal applications (6 in the diagram). When these employees access the Orders applica-
tion, ACS authenticates their current credentials against Active Directory through ADFS (7 in the
diagram), and they are issued with a suitable token containing claims that the claims-based authentica-
tion modules in the Orders application pipeline can use to identify them (8 in the diagram).

The following sections of this guide explore in more detail how Trey Research implemented this
architecture in the Orders application.

Access Control Service Configuration
Trey Research uses a setup program (in the TreyResearch.Setup project of the example) to configure
ACS without needing to use the Windows Azure web portal. The setup program uses the classes in
the ACS.ServiceManagementWrapper project to access and configure ACS.

For more information about the ACS.ServiceManagementWrapper, see “Access Control Service
Samples and Documentation.”

The following table shows how Trey Research configured ACS for authenticating visitors to the
Orders application.

ACS artifact Setting

Windows Live ID
identity provider

Default rule group that contains rules to pass the visitor’s ID through as both the NameIdentifier
and the UserName (Windows Live ID does not reveal visitor’s email addresses).

Google identity
provider

Default rule group that contains a rule to pass the visitor’s ID through as the NameIdentifier and a
rule to pass the visitor’s email address through as the UserName.

Yahoo! Identity
provider

Default rule group that contains a rule to pass the visitor’s ID through as the NameIdentifier and a
rule to pass the visitor’s email address through as the UserName.

Trey Research
ADFS Identity
provider

Default rule group that contains a rule to pass the visitor’s user ID through as the NameIdentifier,
a rule to pass the visitor’s email address through as the UserName, and a rule to pass the visitor’s
account groups as the Roles claim.

Partner ADFS
identity providers

Default rule group that contains a rule to pass the visitor’s user ID through as the NameIdentifier,
a rule to pass the visitor’s email address through as the UserName, and a rule to pass the visitor’s
account groups as the Roles claim.

http://acs.codeplex.com/releases/view/57595
http://acs.codeplex.com/releases/view/57595

48 chapter three

Handling Multiple User IDs
Typically, each registered user of the Orders application has a single
unique user identifier, which links that customer to the corresponding
customer details stored in the database. This works well when there
is only a single authentication source, such as when using ASP.NET
Forms authentication. However, when authentication takes places in
multiple realms (such as different identity providers, each of which
authenticates users within a specific realm such as live.com or google.
com) the same customer may have more than one unique identifier.

This situation also arises when using more than one instance of
ACS. At the moment, Trey Research uses only one ACS namespace
configured in the US North datacenter. However, it may decide in the
future to configure additional ACS namespace instances in other
datacenters as it expands the deployment of the Orders application
to other national or international datacenters. Each instance of ACS
may, to minimize user privacy concerns, return a different unique user
identifier from each instance for the same customer.

This means that applications must be designed in such a way that
it is possible to link more than one user identifier claim value (received
from an identity provider or STS) to a single registered customer. Trey
Research accomplishes this by using two tables in the database. The
main Customer table contains a row for each of the registered cus-
tomers, with a unique customer identifier set by the accounts team at
Trey Research as the key. The ACSIdentity child table contains a row
for each unique identifier claim value for each customer, linked to the
relevant customer through the customer key value.

An important advantage of this approach is that it makes it pos-
sible to migrate users from one authentication mechanism, to another.
For example, when Trey Research changed from using ASP.NET Forms
authentication to claims-based authentication, the developers could
have provided a transition mechanism for existing customers. When a
customer first authenticates using a social identity provider or ADFS
(when the unique user identifier in the claims is not already in the
ACSIdentity table), Trey Research could provide a page that allowed
the user to also authenticate through ASP.NET Forms authentication,
and then link the new claims-based identity to their existing cus-
tomer details.

Authentication Implementation
Figure 3 shows a high-level view of the services and classes used for
authentication and authorizatio in the Orders application. You’ll see
details of the classes identified in the schematic in the following sec-
tions of this chapter.

The example application
available with this guide does
not fully implement the
authentication architecture
described here. This is done
to remove the requirement to
configure a suitable ADFS
and Windows Active Direc-
tory instance. The example
application is configured to
use only one instance of ACS
and three social identity
providers, and does not use a
separate ACSIdentity table. In
addition, it does not use roles
to authorize user actions. For
information about using role
claims to authorize visitors,
see “Federated Identity for
Web Applications” in “A Guide
to Claims-Based Identity and
Access Control (2nd Edition).”

http://msdn.microsoft.com/en-us/library/ff359110.aspx
http://msdn.microsoft.com/en-us/library/ff359110.aspx

Windows Azure

ACS

Social
Identity

Providers

SQL Azure

Customers
CustomerStore.cs

AccountController.cs
CheckoutController.cs
MyOrdersController.cs

AuthorizeAndRegister
UserAttribute.cs

Web.configOrders Application

WIF Authentication
Modules

 49Authenticating Users in the Orders Application

Figure 3
Overview of visitor authentication and authorization in the hybrid Orders application

Authentication with Windows Identity Foundation
Trey Research uses Windows Identity Foundation (WIF) to check for the presence of a valid token that
contains claims when each visitor accesses the website. The following extracts from the Web.config
file in the Orders.Website project show the relevant settings.

50 chapter three

XML
<configSections>
 <section name="microsoft.identityModel" type="..." />
 ...
</configSections>
...
<system.web>
 ...
 <authorization>
 <allow users="*" />
 </authorization>
 <authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" />
 </authentication>
 ...
 <httpModules>
 <add name="WSFederationAuthenticationModule"
 type="..." />
 <add name="SessionAuthenticationModule"
 type="..." />
 </httpModules>
</system.web>
...
<microsoft.identityModel>
 <service>
 <audienceUris>
 <add value="https://127.0.0.1" />
 </audienceUris>
 <federatedAuthentication>
 <wsFederation passiveRedirectEnabled="true"
 issuer="https://treyresearch.accesscontrol.
 windows.net/v2/wsfederation"
 realm="https://127.0.0.1" requireHttps="true" />
 <cookieHandler requireSsl="true" />
 </federatedAuthentication>
 <serviceCertificate>
 <certificateReference x509FindType="FindByThumbprint"
 findValue="..." />
 </serviceCertificate>
 <applicationService>
 <claimTypeRequired>
 <claimType
 type="http://schemas.xmlsoap.org/ws/2005/05/
 identity/claims/name" optional="true" />
 </claimTypeRequired>

 51Authenticating Users in the Orders Application

 </applicationService>
 <issuerNameRegistry
 type="Microsoft.IdentityModel.Tokens.
 ConfigurationBasedIssuerNameRegistry, ...">
 <trustedIssuers>
 <add thumbprint="..."
 name="https://treyresearch.accesscontrol.
 windows.net/" />
 </trustedIssuers>
 </issuerNameRegistry>
 <certificateValidation
 certificateValidationMode="None" />
 </service>
</microsoft.identityModel>

These settings insert the two WIF modules WSFederation-
AuthenticationModule and SessionAuthenticationModule into the
HTTP pipeline so that they are executed for each request. The set-
tings in the microsoft.identityModel section specify that the mod-
ules will redirect requests that require authentication to https://
treyresearch.accesscontrol.windows.net, which is the namespace Trey
Research configured in ACS. The version of the Web.config file you
see here is used when the application is running in the local compute
emulator, so the audience URI and realm is the local computer.

The applicationService section shows that the Orders website
accepts a Name claim in the token presented to the WIF modules,
though this is optional. The trustedIssuers section specifies that the
application trusts ACS, and specifies the thumbprint of the certificate
that the WIF modules can use to validate a token sent by the visitor.

When the WIF modules detect a request from a visitor that must
be authenticated they first check for a valid token from the trusted
issuer in the request. If one is not present, the modules redirect the
request to ACS. If a valid token is present, the modules extract the
claims and make them available to the application code so that it can
use the claims to authorize user actions.

The class named IdentityExtensions in the Orders.Website.
Helpers project contains two methods that Trey Research uses to
extract the values of claims. The GetFederatedUsername method
extracts the value of the IdentityProvider claim (the name of the
original claim issuer for this visitor, such as Windows Live ID or
Google) and the Name claim, and then concatenates them to create a
federated user name. The GetOriginalIssuer method simply returns
the name of the original claim issuer for this visitor.

When using WIF to
authenticate visitors you
must edit the values in the
Web.config file for the
audience URI and relying
party realm if you change
the URL of your application,
such as when deploying it to
the cloud after testing in the
Local Compute environment.

52 chapter three

C#
private const string ClaimType =
 "http://schemas.microsoft.com/accesscontrolservice"
 + "/2010/07/claims/identityprovider";

public static string GetFederatedUsername(this
 IClaimsIdentity identity)
{
 var originalIssuer = identity.Claims.Single(
 c => c.ClaimType == ClaimType).Value;
 var userName = string.Format(
 CultureInfo.InvariantCulture, "{0}-{1}",
 originalIssuer, identity.Name);
 return userName;
}

public static string GetOriginalIssuer(this
 IClaimsIdentity identity)
{
 return identity.Claims.Single(
 c => c.ClaimType == ClaimType).Value;
}

ASP.NET Request Validation
By default, ASP.NET checks for dangerous content in all values sub-
mitted with requests. This includes HTML and XML elements. Trey
Research uses a custom class that allows requests to contain security
tokens in XML format, but still protects the site from other dangerous
input. This is a better alternative to turning off ASP.NET request vali-
dation altogether.

The custom class is named WsFederationRequestValidator and
is defined in the Orders.Website project. The code, shown below,
checks if the request is a form post containing a SignInResponse-
Message result from a WS Federation request. If it is, the code allows
the request to be processed by returning true. If not, the code allows
the standard ASP.NET request validation handler to validate the re-
quest content.

Turning off the default ASP.
NET request validation
mechanism is not a good
idea. Instead, use a custom
request validator that
allows requests containing
XML documents (which
hold the user claims) to be
processed.

 53Authenticating Users in the Orders Application

C#
public class WsFederationRequestValidator
 : RequestValidator
{
 protected override bool IsValidRequestString(
 HttpContext context, string value,
 RequestValidationSource requestValidationSource,
 string collectionKey,
 out int validationFailureIndex)
 {
 validationFailureIndex = 0;
 if (requestValidationSource
 == RequestValidationSource.Form &&
 collectionKey.Equals(
 WSFederationConstants.Parameters.Result,
 StringComparison.Ordinal))
 {
 if (WSFederationMessage.CreateFromFormPost(
 context.Request) as SignInResponseMessage != null)
 {
 return true;
 }
 }
 return base.IsValidRequestString(context, value,
 requestValidationSource, collectionKey,
 out validationFailureIndex);
 }
}

Trey Research inserted the custom request validator into the HTTP pipeline by adding it to the
Web.config file for the Orders website, as shown here.

<system.web>
 <httpRuntime requestValidationType="Orders.Website.
 WsFederationRequestValidator, Orders.Website" />
 ...
</system.web>

Visitor Authentication and Authorization
Some pages in the Orders application, such as the Home page and the list of products for sale, do not
require visitors to be authenticated; visitors can browse these pages anonymously. However, the
pages related to placing an order, managing a visitor’s account, and viewing existing orders require the
visitor to be authenticated.

Trey Research allows visitors to log on and log off using links at the top of every page. These
are defined in the layout page that acts as a master page for the entire site. The layout page, named
_Layout.cshtml and located in the Views/Shared folder of the Orders website, contains the fol-
lowing code and markup.

54 chapter three

CSHTML
@if (User.Identity.IsAuthenticated)
{
 @Html.ActionLink("My Orders", "Index",
 "MyOrders")
 @Html.ActionLink("Log Out", "LogOff",
 "Account")
}
else
{
 @Html.ActionLink("Log On", "LogOn", "Account")
}

The WIF modules automatically populate an instance of a class that implements the IClaimsIdentity
interface with the claims in the token presented by a visitor, and assign this to the current context’s
User.Identity property. The code can check if a user is authenticated simply by reading the Is-
Authenticated property, as shown in the code above. You can also use all of the other methods and
properties of the User.Identity, such as testing if the visitor is in a specific role.

The Custom Logon Page
The ActionLink in the _Layout.cshtml page that generates the “Log On” hyperlink loads the Account-
Controller class (in the Controllers folder of the Orders.Website project) and then calls the LogOn
action method. This behavior is also defined in the Web.config file you saw earlier, specifying the page
to display when the user accesses a secured page when not authenticated.

XML
 <authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" />
 </authentication>

The Logon method, shown below, creates suitable values for the realm and the return URL so that the
visitor will go back to the correct page after logging on. It creates the return URL only if the visitor
was redirected here from another page. It uses another method named GetRealm, which is defined
within the AccountController class, to get the current realm in the form http://[host].[path]/. Finally,
the LogOn method returns the login page view with the customized Trey Research look and feel.

C#
[HttpGet]
public ActionResult LogOn()
{
 ViewData["realm"] = this.GetRealm();
 ViewData["returnUrl"] = Request.UrlReferrer != null
 ? Request.UrlReferrer.AbsoluteUri : this.GetRealm();
 ViewData["acsNamespace"] = CloudConfiguration
 .GetConfigurationSetting("acsNamespace", null);
 return View();
}

 55Authenticating Users in the Orders Application

The Logon view itself, located in the Views\Account folder of the
Orders.Website project, generates a custom logon page containing
buttons for each of the configured identity providers (such as Windows
Live ID, Google, and Yahoo!). Visitors can choose an identity provider
to use, and then log in using this provider. They are then returned to the
appropriate page of the Orders application.

Using a Custom Authorization Attribute
Some of the pages in the website, such as the “Checkout” and “My
Orders” pages, require visitors to have already been authenticated. To
implement this behavior, Trey Research uses a custom attribute
named AuthorizeAndRegisterUser. For example, the MyOrders-
Controller class has this attribute applied to the entire class (rather
than to a single method). The following code shows an outline of the
MyOrdersController class.

C#
[AuthorizeAndRegisterUser]
public class MyOrdersController : Controller
{
 ...
}

The custom AuthorizeAndRegisterUserAttribute class, shown be-
low, is defined in the CustomAttributes folder of the Orders.Website
project). It extends the standard AuthorizeAttribute class that is
used to restrict access by callers to an action method.

C#
public class AuthorizeAndRegisterUserAttribute
 : AuthorizeAttribute
{
 private readonly ICustomerStore customerStore;

 public AuthorizeAndRegisterUserAttribute()
 : this(new CustomerStore())
 { }

 public AuthorizeAndRegisterUserAttribute(
 ICustomerStore customerStore)
 {
 this.customerStore = customerStore;
 }

 public override void OnAuthorization(
 System.Web.Mvc.AuthorizationContext filterContext)
 {

The custom logon page is
created by modifying the
standard page that ACS
creates. The custom page uses
considerable amounts of
client-side JavaScript to
generate the visible content
and to handle user interaction.

Using a custom
authentication attribute
is a good way to perform
other tasks related to
authentication, such as
obtaining a user’s details
from a database, without
needing to include this code
in every class. It also makes
it easy to specify which
pages or resources require
users to be authenticated.

56 chapter three

 ...
 if (!filterContext.HttpContext.User.
 Identity.IsAuthenticated)
 {
 base.OnAuthorization(filterContext);
 return;
 }
 var federatedUsername =
 ((IClaimsIdentity)filterContext.
 HttpContext.User.Identity).GetFederatedUsername();
 var customer = this.customerStore.FindOne(
 federatedUsername);
 if (customer == null)
 {
 // Redirect to registration page.
 var redirectInfo = new RouteValueDictionary();
 redirectInfo.Add("controller", "Account");
 redirectInfo.Add("action", "Register");
 redirectInfo.Add("returnUrl",
 filterContext.HttpContext.Request
 .Url.AbsolutePath);
 filterContext.Result
 = new RedirectToRouteResult(redirectInfo);
 }
 }
}

The AuthorizeAndRegisterUserAttribute attribute creates an instance of the CustomerStore re-
pository class that is used to access the data for this customer in the SQL Azure Customers table (as
shown in Figure 3 earlier in this chapter). If the visitor is not authenticated, the attribute passes the
request to the base AuthorizeAttribute instance which forces the user, though the WIF modules, to
authenticate with ACS.

If the visitor is authenticated, the attribute uses the GetFederatedUsername method you saw
earlier to get the user name from the authentication token claims, and the FindOne method of the
CustomerStore class to retrieve this visitor’s details from the Customers table. If this visitor has not
yet registered, there will be no existing details in the Customers table and so the code redirects the
visitor to the Register page.

Customer Details Storage and Retrieval
Using claims-based identity with social identity providers usually means that your application must
maintain information about each registered user of the application because the token that authenti-
cated users present to the application contains only a minimal set of claims (typically just a user
identifier or name). Trey Research maintains this information in the Customers database table in SQL
Azure. This table contains the details customer provide when they register, and additional information
that is maintained for each customer by the head-office administration team (such as the credit limit).

 57Authenticating Users in the Orders Application

To connect to the database, Trey Research used the Microsoft Entity Framework and created a
class named CustomerStore, located in the Orders.Website.DataStores folder of the website project.
This class exposes several methods for storing and retrieving customer details, including the FindOne
method used in the previous code extract. This is the code of the FindOne method.

C#
public Customer FindOne(string userName)
{
 ...
 using (var database
 = TreyResearchModelFactory.CreateContext())
 {
 var customer
 = this.sqlCommandRetryPolicy.ExecuteAction(
 () => database.Customers.SingleOrDefault(
 c => c.UserName == userName));
 if (customer == null)
 {
 return null;
 }
 return new Customer
 {
 CustomerId = customer.CustomerId,
 UserName = customer.UserName,
 FirstName = customer.FirstName,
 LastName = customer.LastName,
 Address = customer.Address,
 City = customer.City,
 State = customer.State,
 PostalCode = customer.PostalCode,
 Country = customer.Country,
 Email = customer.Email,
 Phone = customer.Phone
 };
 }
}

This method searches for an entity using the federated user name. If it finds a match, it creates a new
Customer instance and populates it with the data from the database. If not, it returns null to indicate
that this visitor is not registered.

You can see that the FindOne method shown in the previous code first obtains a reference to the
database by calling the CreateContext method of the TreyResearchModelFactory class (located in
the DataStores folder of the Orders.Website project). This method uses another class named Cloud-
Configuration to read the connection string for the database from the ServiceConfiguration.cscfg
file, or return null if the setting is not found.

58 chapter three

C#
public static TreyResearchDataModelContainer
 CreateContext()
{
 return new TreyResearchDataModelContainer(
 CloudConfiguration.GetConfigurationSetting(
 "TreyResearchDataModelContainer", null));
}

After obtaining a reference to the database, the code uses the Enterprise Library Transient Fault
Handling Application Block to execute the method that connects to the data store and retrieves the
details for the specified customer. The Transient Fault Handling Application Block provides a ready-
built mechanism for attempting an action a specified number of times with a specified delay between
each attempt. It exposes events that you can use to monitor the execution and collect information
about execution failures.

The Transient Fault Handling Application Block can be used to manage connectivity to SQL Azure
databases, Service Bus queues, Service Bus topics, and the Windows Azure Cache. The block is part
of the Enterprise Library Integration Pack for Windows Azure. For more information, see
“Microsoft Enterprise Library” at http://msdn.microsoft.com/entlib/.

Although they could have used code to generate the policy dynamically at runtime, the developers
at Trey Research chose to define the retry policy that the block uses in the application’s Web.config
file. The following extract from the file shows the definition of the policy.

XML
<RetryPolicyConfiguration
 defaultRetryStrategy="Fixed Interval Retry Strategy"
 defaultAzureStorageRetryStrategy
 ="Fixed Interval Retry Strategy"
 defaultSqlCommandRetryStrategy="Backoff Retry Strategy"
 >
 <incremental name="Incremental Retry Strategy"
 retryIncrement="00:00:01"
 initialInterval="00:00:01"
 maxRetryCount="10" />
 <fixedInterval name="Fixed Interval Retry Strategy"
 retryInterval="00:00:05"
 maxRetryCount="6"
 firstFastRetry="true" />
 <exponentialBackoff name="Backoff Retry Strategy"
 minBackoff="00:00:05"
 maxBackoff="00:00:45"
 deltaBackoff="00:00:04"
 maxRetryCount="10" />
</RetryPolicyConfiguration>

http://msdn.microsoft.com/en-us/library/hh680934(v=pandp.50).aspx
http://msdn.microsoft.com/entlib/

 59Authenticating Users in the Orders Application

You can see that it contains a default strategy that retries the
action every second for a maximum of ten attempts. There is also a
strategy for accessing Windows Azure Storage (tables, queues, and
blobs) that retries the action every five seconds for a maximum of six
attempts, with the first retry occurring immediately after a failure.
Finally, there is a strategy for SQL database connections that retries
the action after 5 seconds, and then adds 4 seconds to the delay be-
tween each attempt up to a maximum of 45 seconds delay and ten
attempts.

The CustomerStore class that contains the FindOne method
initializes the retry policy in its class constructor using the static
GetDefaultSqlCommandRetryPolicy method of the RetryPolicy-
Factory class (which is part of the Transient Fault Handling Applica-
tion Block and is exposed when you add the block to your applica-
tion). The constructor also adds a handler for the Retrying method
of the block. This handler writes information to Windows Azure di-
agnostics each time the block detects a connection failure.

C#
this.sqlCommandRetryPolicy
 = RetryPolicyFactory.GetDefaultSqlCommandRetryPolicy();

this.sqlCommandRetryPolicy.Retrying += (sender, args)
 => TraceHelper.TraceInformation("Retry - Count:{0},"
 + "Delay:{1}, Exception:{2}",
 args.CurrentRetryCount, args.Delay,
 args.LastException);

With the retry policy defined and everything initialized, the code
simply needs to call the ExecuteAction method, specifying as a pa-
rameter the action to execute. In this case, the action to execute is the
SingleOrDefault method on the Customers collection exposed by
the TreyResearchDataModelContainer class.

C#
 var customer
 = this.sqlCommandRetryPolicy.ExecuteAction(
 () => database.Customers.SingleOrDefault(
 c => c.UserName == userName));

This code uses the simplest of the ExecuteAction overloads
available in the Transient Fault Handling Application Block.
Other overloads allow you to return a result from the method,
and perform the execution asynchronously. For more details of
all the overloads, see “ExecuteAction Method” on MSDN.

If the Transient Fault
Handling Application Block
cannot complete the specified
action within the specified
number of attempts, it will
throw an exception that you
can handle in your code.

http://msdn.microsoft.com/en-us/library/microsoft.practices.transientfaulthandling.retrypolicy.executeaction.aspx

On-premises

Azure Datacenter

Windows Azure Access
Control Service (ACS)

Service Bus
Queue or
Relay

Trust

ACS Token

ACS Token

Windows Azure
Service Bus

Authenticat
e

Internal
Services

Clients

60 chapter three

Authenticating Access to Service Bus Queues and Topics
Trey Research uses Service Bus queues and topics to pass messages between the Windows Azure
hosted Orders application, transport partners, and the on-premises audit logging service. The section
“Securing Message Queues, Topics, and Subscriptions” in Chapter 4, “Implementing Reliable Messag-
ing and Communications with the Cloud,” describes the security configuration Trey Research used to
protect the Service Bus queues and topics by authenticating users and authorizing the actions each
user can carry out.

Unlike the typical ACS authentication process described so far in this chapter, Service Bus “users”
are most likely to be services and other components, rather than visitors using a web browser. How-
ever, the overall principles are the same: each request to access a Service Bus queue or topic must be
authenticated by a trusted identity provider, and the STS must issue a token that indicates successful
authentication. For Service Bus authentication, the token must contain claims that can be used to
authorize actions such as sending messages to the queue or topic.

For example, applications and users that want to access the service that exposes reporting data
(described in the section “How Trey Research Uses the SQL Azure Reporting Service” in Chapter 2,
“Deploying the Orders Application and Data in the Cloud”) must authenticate with ACS and present
a token containing a suitable set of claims to Service Bus.

ACS can be configured to act as both the identity provider and the token issuer (STS) for Service
Bus endpoints. Figure 4 shows an overview of the process. Clients obtain a token from ACS that
contains the relevant claims (such as “Listen”, “Send”, or “Manage”) and present this token to Service
Bus when accessing a queue, topic, or Service Bus Relay endpoint.

Figure 4
Authenticating Service Bus endpoints with ACS

 61Authenticating Users in the Orders Application

For more information about how ACS can be used as both the identity provider and token issuer
for authenticating and authorizing requests to Service Bus endpoints, see the section “Windows
Azure Service Bus Authentication and Authorization” in “Appendix B - Authenticating Users and Au-
thorizing Requests.”

Summary
This chapter described how Trey Research tackled the challenge of authenticating visitors to the
Orders application, and authenticating access to Service Bus queues and topics when using it to
communicate between cloud-hosted and on-premises applications and services. The chapter focused
on the use of claims-based identity and authentication. This is the most common and fastest-growing
technique for Windows Azure hosted applications because it can take advantage of the frameworks
and services specifically designed to make this approach easier.

Claims-based authentication also offers advantages in that it makes it simpler for administrators
to manage lists of users and permissions, and it supports single sign-on and a choice of identity provid-
ers to make authentication easier for users. It is also a vital technique for securing services such as
Windows Azure Service Bus topics and queues.

The chapter also described how the fictional organization named Trey Research implemented
authentication and authorization in its hybrid Orders application.

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx.

•	 “Access Control Service Samples and Documentation” at http://acs.codeplex.com/releases/
view/57595.

•	 “Access Control Service 2.0” at http://msdn.microsoft.com/en-us/library/windowsazure/
gg429786.aspx.

•	 “How To: Implement Token Transformation Logic Using Rules” at http://msdn.microsoft.com/
en-us/library/gg185955.aspx.

•	 “Securing Services” in the MSDN WCF documentation at http://msdn.microsoft.com/en-us/
library/ms734769.aspx.

•	 “Service Bus Authentication and Authorization with the Access Control Service” at
http://msdn.microsoft.com/en-us/library/hh403962.aspx.

•	 “Securing and Authenticating a Service Bus Connection” at http://msdn.microsoft.com/en-us/
library/dd582773.aspx.

•	 “ACS How Tos” on MSDN at http://msdn.microsoft.com/en-us/library/gg185939.aspx provides
a comprehensive list of tutorials on using ACS, including configuring identities and identity
providers.

•	 The Identity Management home page at http://msdn.microsoft.com/en-us/security/aa570351.
aspx contains more information about Windows Identity Foundation.

•	 A detailed exploration of claims-based authentication, authorization, and Windows Azure
Access Control Service can be found at “A Guide to Claims-Based Identity and Access
Control (2nd Edition)” at http://msdn.microsoft.com/en-us/library/ff423674.aspx.

http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://acs.codeplex.com/releases/view/57595
http://acs.codeplex.com/releases/view/57595
http://msdn.microsoft.com/en-us/library/windowsazure/gg429786.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg429786.aspx
http://msdn.microsoft.com/en-us/library/gg185955.aspx
http://msdn.microsoft.com/en-us/library/gg185955.aspx
http://msdn.microsoft.com/en-us/library/ms734769.aspx
http://msdn.microsoft.com/en-us/library/ms734769.aspx
http://msdn.microsoft.com/en-us/library/hh403962.aspx
http://msdn.microsoft.com/en-us/library/dd582773.aspx
http://msdn.microsoft.com/en-us/library/dd582773.aspx
http://msdn.microsoft.com/en-us/library/gg185939.aspx
http://msdn.microsoft.com/en-us/security/aa570351.aspx
http://msdn.microsoft.com/en-us/security/aa570351.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx

62 chapter three

•	 “Federated Identity for Web Applications” in “A Guide to Claims-Based Identity and Access
Control (2nd Edition)” at http://msdn.microsoft.com/en-us/library/ff359110.aspx.

•	 Transient Fault Handling Application Block at http://msdn.microsoft.com/en-us/library/
hh680934(v=pandp.50).aspx.

•	 “ExecuteAction Method” at http://msdn.microsoft.com/en-us/library/microsoft.practices.
transientfaulthandling.retrypolicy.executeaction.aspx.

http://msdn.microsoft.com/en-us/library/ff359110.aspx
http://msdn.microsoft.com/en-us/library/hh680934(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/microsoft.practices.transientfaulthandling.retrypolicy.executeaction.aspx
http://msdn.microsoft.com/en-us/library/microsoft.practices.transientfaulthandling.retrypolicy.executeaction.aspx

 63

After Trey Research moved the web application that enables custom-
ers to place orders to the Windows Azure™ technology platform,
migrated the various databases used by the application, and secured
access to the application so that only authenticated customers can
place orders, the next step was to consider how the details of orders
could be passed to the various transport partners for shipping, and
recorded for audit and compliance purposes. This aspect of the sys-
tem is critical as it supports the core business function of Trey Re-
search fulfilling customers’ orders; the order handling process requires
a reliable mechanism for transmitting orders securely and reliably.

In this chapter, you will see how Trey Research addressed the
various challenges associated with implementing the messaging and
communications layer capable of handling orders in the cloud by using
Windows Azure Service Bus and Windows Azure Connect.

Chapter 5, “Processing Orders in the Trey Research Solution,”
describes how Trey Research use this communications and
messaging layer as a foundation supporting the business logic
for actually processing orders placed by customers.

Scenario and Context
In the original implementation of the Orders system, the elements of
the Orders application ran on-premises, and the order processing
workflow was performed in an environment that was completely con-
trolled by Trey Research. Figure 1 illustrates the original application,
with the components that handle the order processing highlighted.

4 Implementing Reliable
Messaging and Communications

with the Cloud

Reliable communication
between the Orders
application and the transport
partners is essential. If the
communication mechanism
is prone to failure, messages
could be lost, orders
might not be fulfilled,
and customers may go
elsewhere.

Head Office

Customers Products

Monitoring and management applications

Audit Log

Transport
Partners

Auth Get Log

Orders
Application

Store<- Advise
Orders

SQL
Server

Reporting
Services

Acknowledge ->

Compliance
application

Check

Client access

64 chapter four

Figure 1
The order processing components in the on-premises application

In the on-premises solution, when a customer places an order the application stores the order
details in the Orders table in the on-premises database. The Audit Log table in the on-premises data-
base holds a range of information including runtime and diagnostic information, together with details
of unusual orders such as those over a specific total value. The Orders application then sends a mes-
sage to the appropriate transport partner. This message indicates the anticipated delivery date and
packaging information for the order (such as the weight and number of packages). The transport
partner sends a message back to the Orders application after the delivery is completed so that the
Orders database table can be updated.

Due to the nature of the products Trey Research manufactures, it must also ensure that it meets
legal requirements for the distribution of certain items, particularly for export to other countries and
regions. These requirements include keeping detailed records of the sales of certain electronic com-
ponents that may be part of Trey Research’ products, and hardware items that could be used in ways
not originally intended. Analyzing the contents of orders is a complex and strictly controlled process
accomplished by a legal compliance application from a third party supplier, and it runs on a separate
specially configured server.

When the Orders application moved to the cloud, Trey Research had to consider how to imple-
ment this business logic using the new architecture. As you will recall from Chapter 2, “Deploying the
Orders Application and Data in the Cloud,” Trey Research deployed the data to the SQL Azure™
technology platform. The Orders database was replicated in each datacenter, and the Orders applica-
tion was modified to access the database co-located in the same datacenter that the user is con-
nected to. Additionally, with the expectation that the volume of orders was likely to increase expo-

US North Datacenter

Head Office

Monitoring and management applications

Audit Log

Audit Log
Listener

Business
Logic

SQL Azure

Orders

Customers
Products

Transport
Partners

Request
Routing

Orders
Application

Acknowledge
delivery

Advise
order
placed

Social
Identity

Providers

Replicate
Customers

and Products

Synchronize
Orders

Data
Market

Acquire
Reporting

Data
Customers
Products

Other Windows
Azure Datacenters

Reporting
Service

External
access to
reports

Compliance
application

Reports

Authentication

Replicate
Customers

and Products

 65Implementing Reliable Messaging and Communications with the Cloud

nentially, the compliance application was relocated to the cloud to take advantage of the inherent
scalability of Windows Azure; the compliance application is multi-threaded and can take full advantage
of the power of the platform on which it runs, so it was considered appropriate only to deploy it to a
single datacenter. However, for regulatory reasons, it was necessary to retain the audit log on-premis-
es. Figure 2 shows the structure of the resulting hybrid solution, again with the order processing ele-
ments highlighted.

Figure 2
The hybrid version of the Trey Research solution

66 chapter four

As far as a customer is concerned, the Orders application works
in similar way to the original solution, but the logic that processes an
order is now implemented as follows:
•	 When a customer places an order, the Orders application:
•	 Stores the order details in the Orders table of the database

in the local SQL Azure datacenter. All orders are synchro-
nized across all Windows Azure datacenters so that the order
status information is available to visitors irrespective of the
datacenter to which they are routed.

•	 Sends an advice message to the appropriate transport
partner. The transport company chosen depends on the
delivery location.

•	 Sends any required audit information, such as orders with
a value over $10,000, to the Audit Log table of the database
located in the head office datacenter. The on-premises
management and monitoring applications can examine this
information.

•	 The third-party compliance application running in the cloud
continually validates the orders in the Orders table for confor-
mance with legal restrictions and sets a flag in the database
table on those that require attention by managers. It also
generates a daily report that it stores in a secure location in
the head office datacenter.

•	 When transport partners deliver an order to the customer they
send a message to the Orders application (running in the
datacenter that originally sent the order advice message) so that
it can update the Orders table in the database.

In its simplest terms, the high-level structure of the cloud-based ele-
ments of the hybrid solution is reasonably straightforward. The Or-
ders application running in the cloud naturally maps to a Windows
Azure web role, as described in Chapter 1, “The Trey Research Sce-
nario,” while the business logic that actually processes orders can be
implemented as a Windows Azure worker role. The operation of the
order processing logic must be scalable to handle the expected growth
in demand as Trey Research expand their customer base, and it must
be reliable because orders must not be mislaid or duplicated.

The order processing business logic divides itself naturally into
three specific areas; how to communicate with transport partners,
how to determine which orders to audit, and how to pass orders to
the compliance application to ensure that they do not violate regula-
tory requirements. Trey Research considered the implementation
options for each of these areas in turn.

Keep in mind that, for simplic-
ity, some of the features and
processes described here are
not fully implemented in the
example we provide for this
guide, or may work in a
slightly different way. This is
done to make it easier for you
to install and configure the
example, without requiring
you to obtain and configure
Windows Azure accounts in
multiple datacenters, and for
services such as Windows
Azure Data Sync and SQL
Server Reporting Services.

 67Implementing Reliable Messaging and Communications with the Cloud

Communicating with Transport Partners
A key part of the order processing mechanism concerns the commu-
nication with the transport partners. The worker role must examine
each order and direct the order details to the most appropriate trans-
port partner. The definition of “most appropriate” is application-spe-
cific and may change over time, but currently it is an economic deci-
sion based on the proximity of the customer to the Trey Research
manufacturing plant from where the orders are shipped. Orders for
local customers (customers based in the same or a neighboring state
as the Trey Research manufacturing plant) use a local transport part-
ner, while orders for more remote customers require a distance trans-
port partner capable of shipping goods by rail or air if necessary.

After much negotiation and evaluation, Trey Research decided
to use Contoso, Inc. to provide the local transportation services,
while Fabrikam, Inc. was selected as the distance transport
partner.

During the design phase, the development team at Trey Research
insisted that all communications with the transport partners had to
fulfill a number of criteria:
•	 The solution must be responsive. All communication must

operate in a timely manner that does not block the operations
in the Orders application or adversely affect the experience of
customers placing orders.

•	 The communication mechanism must be robust and reliable.
Once a customer places an order, and that order is confirmed,
it must be fulfilled. The system must not be able to lose orders
as messages are passed from the Trey Research solution to the
appropriate transport partner, even if the connection with the
transport partner fails or the transport partner’s system suffers
a failure.

•	 The solution must be scalable. It must be possible to easily add
further transport partners to the solution without needing to
rewrite the order processing logic. Furthermore, it must be
possible to host the Orders application at multiple sites in the
cloud, again without requiring that this code is rewritten to
handle multiple instances of the application.

•	 The solution must be flexible. The actual list of transport
partners may vary over time, and the rationale for selecting
which partner to use for a specific order may also change as
delivery costs fluctuate.

•	 All data should be considered sensitive and must be protected
appropriately. All reasonable security measures should be taken
to prevent an unauthorized third party from intercepting the
details of orders placed by a customer.

The way in which messages
are passed between
distributed components in a
hybrid application must be
reliable, robust, responsive,
scalable, and secure.

68 chapter four

Choosing a Communications Mechanism
In the original on-premises application, communication between Trey Research and the transport
partners was achieved through a set of web service operations. Some of the calls to these operations
originated from within Trey Research’s network, but others required Trey Research to expose an on-
premises web service that partners called to update the delivery status. After moving to the cloud,
given the challenges listed above, Trey Research considered several options for implementing the
connectivity between the equivalent business logic hosted in the worker role and the transport part-
ners. The following sections summarize some of these options, together with their perceived advan-
tages and limitations.

Electronic Data Interchange (EDI)
The worker role could connect to the transport partner over an interface, protocol, and format that
the worker role and the transport partner both understand, such as EDIFACT, RosettaNet, cXML, and
BASDA. These are commonly accepted and well understood standards that many larger organizations
employ to exchange data with other businesses. Furthermore, most modern EDI protocols are asyn-
chronous as the corresponding business processes are expected to be long-lived; this can help to en-
sure that the worker role remains responsive during times of high demand.

However, the worker role may require additional software and infrastructure to connect to an EDI
interface. Microsoft BizTalk® Server provides adapters for many well-known protocols and formats,
but this solution requires passing all orders through BizTalk Server running on-premises. For more in-
formation, see “Hybrid Reference Implementation Using BizTalk Server, Windows Azure, Service Bus and
SQL Azure.” Each transport partner may expose a different EDI interface, making it difficult to easily
extend the Trey Research business logic to additional partners, although it may be possible to abstract
these differences into a connector layer within the worker role.

This approach would still require implementing a connector for each partner. Trey Research also
had to consider that not all transport partners would necessarily provide an EDI interface to their
systems. Finally, in this approach security and message protection is governed by the transport partner
rather than by Trey Research.

Web Services (Push Model)
If the transport partner exposes a web services interface into its delivery system, the worker role could
utilize this interface and invoke the appropriate operations to push the details of orders across to the
transport partner. Web services are a common, well-understood, and maturing technology. Addition-
ally, it is usually a straightforward task to invoke web service operations from a worker role. From a
security perspective, requests can be easily encrypted, although the degree of security and message
protection available is managed by the transport partner providing the web service.

There are some possible issues with this approach. Primarily, if the transport partner does not
provide a web service interface, then this approach cannot be used. If a transport partner does provide
such an interface, Trey Research also had to assess the possible complexity arising in the highly likely
scenario that different transport partners may implement a different set of web service operations,
and expect request messages in different formats. These differences could be abstracted by building
a connector layer within the worker role and constructing custom connectors for each transport
partner, but it adds complexity to the Trey research solution.

http://msdn.microsoft.com/en-us/windowsazure/hh547113(v=VS.103).aspx
http://msdn.microsoft.com/en-us/windowsazure/hh547113(v=VS.103).aspx

 69Implementing Reliable Messaging and Communications with the Cloud

Another issue is that the web service may not provide an appropriate level of reliability. The
worker role may be unaware if the transport partner’s system raises an error that causes the details of
the order to be lost; the transport partner may not know to call the operation that provides the details
of the order again.

Connectivity is also an issue; if the web service at the transport partner is temporarily unavailable or
a connection cannot be established, then Trey Research will not be able to send the details of any orders.

Web Services (Pull Model)
Web services can provide a secure, scalable, and reliable communication mechanism if they are imple-
mented correctly. For this reason, Trey Research considered turning the previous option around by
implementing a web service as part of the worker role, and exposing operations that transport partners
invoke to retrieve (or pull) information about orders from the Trey Research application. This approach
would give Trey Research full control over the degree of message protection and security available,
the web service can take advantage of the inherent scalability of the worker role hosted by Windows
Azure, and it affords better reliability; if the transport partner’s system fails while processing an order,
it can reconnect to the web service and retrieve the details of the order again when it restarts.

The worker role can expose the same web services interface to all transport partners. New trans-
port partners can be easily integrated without modifying the worker role. The worker role does not
have to wait while the transport partner retrieves the details of orders so the system remains respon-
sive to customers. Furthermore, the worker role can take advantage of Service Bus Relay to build lo-
cation-independence and security into the solution; the transport partner can connect to a well-
known endpoint advertised through Service Bus Relay which can authenticate the transport partner
through the Windows Azure Access Control Service (ACS), and then transparently route messages to
the web service endpoints published by the worker role.

However, transport partners would be expected to develop their own software to connect to the
web service; they may be unwilling or unable to develop and deploy custom software specifically for
integrating with Trey Research. If the transport partner is willing to connect to the web service, it is
the responsibility of the transport partner to query whether there are any orders to be shipped. If the
transport partner does not perform this query often enough, then orders may not be dispatched in a
timely manner, leading to customer complaints. If the transport partner’s system fails to query the web
service successfully, orders will not be shipped. Scalability within the transport partners systems may
also be an issue. As the volume of orders increases, transport partners may not query the web service
sufficiently often, causing a backlog of orders to build up.

Windows Azure Storage Queues
The Orders application runs in a Windows Azure role, so Trey Research considered posting the details
of orders as messages to a Windows Azure storage queue; transport partners could connect to this
queue to retrieve the orders to be shipped. Delivery acknowledgement messages could be posted back
to the worker role through another queue. This mechanism is relatively simple, reliable, scalable, and
secure; Windows Azure storage queues are managed and maintained within a datacenter, and Trey
Research has full control over which transport partners would have access rights to connect to the
queue to retrieve and post messages. Additionally, the semantics of the retrieve operation can be
implemented in a reliable manner; if the transport partner fails with an error after receiving a message
but before processing it, the message can be transparently returned to the queue from where it can
be received when the transport partner restarts.

70 chapter four

Windows Azure provides a REST API for accessing Windows Azure storage queues, so the trans-
port partner can implement their system by using any technology that can connect to the web and
transmit REST requests.

Again, there are some issues surrounding this approach. As with some of the preceding options,
each transport partner must be willing to implement software that connects to the Windows Azure
storage queue and integrate it into their own solution. Also, to prevent a transport partner from receiv-
ing an order intended for a different transport partner, Trey Research must create a separate queue
for each partner. This approach may complicate the logic inside the worker role, and also makes it more
difficult to add or remove transport partners. Finally, security is controlled by using storage account
keys rather than ACS, so each transport partner would have to be granted access to the entire storage
account rather than an individual queue. To ensure that each transport partner only has access to the
relevant queue, each queue must be created within a different storage account with its own key.

Windows Azure Service Bus Queues
To counter some of the complexity issues of using Windows Azure storage queues, a similar but more
advantageous option is to post the details of orders as messages to a Windows Azure Service Bus
queue; transport partners can connect to this queue to retrieve the orders to be shipped. Delivery
acknowledgement messages can be posted back to the worker role through another queue. This ap-
proach is highly scalable; the worker role can post messages to the Service Bus queue as quickly as
orders are placed. The Service Bus infrastructure can buffer messages until they have been retrieved
by the transport partner. It also offers improved reliability; after the worker role has posted a message
to a Service Bus queue, it will not be lost. It will either remain on the queue until it expires (the expira-
tion period for a message is configurable) or a transport partner retrieves it. Like a Windows Azure
storage queue, Service Bus queues support reliable retrieve operations so if the transport partner fails
after receiving a message, the message can be transparently returned to the queue. Security is highly
configurable and flexible, especially when compared to that available for Windows Azure storage
queues. It is managed through the Windows Azure Access Control Service (ACS).

However, as before, each transport partner must be prepared to connect to the appropriate Ser-
vice Bus queues to retrieve messages and send delivery acknowledgement messages. If the transport
partner is not amenable to this approach, and instead insists that orders are passed across using its own
system-defined interfaces (such as a set of web services), then Trey Research may need to build a
custom component to retrieve messages from the queue and convert them into the appropriate for-
mat for the transport partner, and transmit them using an agreed protocol. The same component can
include the logic for waiting for a delivery acknowledgement from the transport partner and posting
a message to the worker role. Again, as before, to prevent a transport partner from receiving an order
intended for a different transport partner, Trey Research may need to create a separate queue for each
partner. This approach may complicate the logic inside the worker role, and also makes it more difficult
to add or remove transport partners.

For information comparing the features and possible uses of Windows Azure storage queues and
Windows Azure Service Bus queues, see the article “Windows Azure Queues and Windows Azure
Service Bus Queues - Compared and Contrasted” on MSDN.

http://msdn.microsoft.com/en-us/library/windowsazure/hh767287(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287(v=vs.103).aspx

 71Implementing Reliable Messaging and Communications with the Cloud

Windows Azure Service Bus Topics and Subscriptions
Service Bus queues provide an attractive and scalable alternative, ex-
cept for the need to create and manage a separate queue for each
partner. Therefore, the final option assessed by Trey Research was to
post the details of orders as messages to a Windows Azure Service
Bus topic; transport partners subscribe to this topic to retrieve the
orders to be shipped. Messages acknowledging receipt of the order
details and messages indicating that delivery was completed are
posted back to the worker role through a Service Bus queue.

Like Service Bus queues, Service Bus topics and subscriptions are
highly scalable and reliable, with configurable security. However, they
are more flexible than using Service Bus queues to transmit messages
to a transport partner; the worker role can add metadata to messages
that indicate which transport partner should process them, and then
post these messages to a Service Bus topic. Each transport partner
can connect to the Service Bus topic through its own subscription,
which can filter the messages based on this metadata so that each
transport partner receives only the orders that it should process. Top-
ics also enable messages to be routed to multiple destinations, so or-
ders with a value over $10,000 can additionally be directed to the
Audit Log Listener.

The only real drawback to this approach, in common with most
of the options described previously, is that each transport partner
must be prepared to connect to the appropriate Service Bus topic to
retrieve messages. Alternatively, Trey Research can build custom con-
nectivity components to integrate with the transport partners’ sys-
tems. There are also some limitations imposed on topics; for example,
a topic can currently have a maximum of 2000 subscriptions and can
support up to 100 concurrent connections (the limit of 100 concur-
rent connections also applies to queues). However, Trey Research
considered that the Orders system was unlikely to hit either of these
two limits.

How Trey Research Communicates with
Transport Partners

In the end, Trey Research decided to send orders from the worker role
to the transport partners by using a Service Bus topic. Each transport
partner receives messages by using a subscription that filters the orders.
In this way, each transport partner receives only the orders that it
should ship. For more information about using Service Bus queues, top-
ics, and subscriptions, see “Queues, Topics, and Subscriptions” on MSDN.

Service Bus queues provide a reliable and scalable
mechanism for communicating between services running
in the cloud and applications running on-premises.

http://msdn.microsoft.com/en-us/library/windowsazure/hh367516.aspx

72 chapter four

To bridge the potential technology gap between the systems
implemented by the transport partners and the Service Bus, Trey Re-
search constructed a set of connectivity components to translate
messages retrieved from the Service Bus and convert them into for-
mat expected by the transport partner. The location of these con-
nectivity components depends on the relationship that Trey Research
has with the transport partner:
•	 In the case of the local transport partner, Contoso, Trey Re-

search was able to convince the partner to install a connector
and integrate it into their own proprietary system. Trey Re-
search provided credentials necessary to enable the connector
to listen to the appropriate Service Bus subscription. The
transport partner’s own system uses this connector to retrieves
the details of orders from the subscription. Additionally, the
connector exposes an interface that the transport partner’s
system uses to post acknowledgment messages back to the
Service Bus queue that the Orders application listens on.

Implementing a connector as part of the transport partner’s
system does not force the transport partner to incorporate .NET
Framework code into their solution. The features of the Windows
Azure Service Bus are exposed through a series of HTTP REST
APIs (the Windows Azure SDK simply provides a .NET Framework
wrapper around these APIs), so the transport partner can use any
familiar technology that can generate REST requests and consume
REST responses, including the Java programming language.

•	 The distance transport partner, Fabrikam, is a multinational
organization, and the operations staff were not willing to allow
Trey Research to install software on their own servers, prefer-
ring Trey Research to connect using the interfaces that they
provide to their systems. To accommodate this requirement,
Trey Research implemented an adapter for posting orders to
Fabrikam, and this adapter is hosted within the worker role. This
mechanism enables the logic that posts messages to transport
partners to remain the same, regardless of whether the partner
is the local or a distance partner. If Trey research decides to add
a new distance transport partner in the future, Trey Research
simply needs to create and install an appropriate adapter.

Implementing adapters and connectors enables applications
to remain independent of the communication mechanism. If
necessary, the Service Bus topic used by Trey Research could
be switched to a different means of transferring information,
and only the adapters and connectors would need to change.

Cloud

Orders
Application

Service Bus
Topic

Fabrikam
Distance

Transport
Partner

Contoso Local
Transport

Partner

Status
Message
Queue

Order message in format expected by
Distance Transport Partner

Connector

Order placed

Order
acknowledged

Order
placed

Order
placed

Order
placed

Order
placed

Fabrikam Distance
Transport Partner

Subscription

Contoso Local
Transport Partner

Subscription

Order
acknowledged

Adapter

Order
acknowledged

 73Implementing Reliable Messaging and Communications with the Cloud

Figure 3 summarizes the technologies that Trey Research decided to use to implement messaging
between the Orders application and the transport partners. The following sections describe the ap-
proach that Trey Research used to build their messaging solution based on these technologies.

Figure 3
Messaging technologies used by Trey Research to communicate with transport partners

74 chapter four

Using the Windows Azure SDK, you can implement applications
that send and receive messages by using the MessageSender and
MessageReceiver classes in the Microsoft.ServiceBus.Messaging
namespace. However, these operations are synchronous. For example,
the Send method of the MessageSender class waits for the send
operation to complete before continuing, and similarly the Receive
method of the MessageReceiver class either waits for a message to
be available or until a specified timeout period has expired. These
methods are really just façades in front of a series of HTTP REST re-
quests, and the Service Bus queues and topics are remote services
being accessed over the Internet. Therefore, your applications should
assume that:
•	 Send and receive operations may take an arbitrarily long time to

complete, and your application should not block waiting for
these operations to finish.

•	 A sender can post messages at any time, and a receiver may need
to listen for messages on more than one queue.

•	 Send and receive operations could fail for a variety of reasons,
such as a failure in connectivity between your application and
the Service Bus in the cloud, a security violation caused by a
change in the security implemented by the Service Bus queue or
topic (an administrator might decide to revoke or modify the
rights of an identity for some reason), the queue being full (they
have a finite size), and so on. Some of these failures might the
result of transient errors, while others may be more permanent.

Trey Research decided to implement a library that added wrappers
around the Service Bus queue and topic functionality available in the
Microsoft.ServiceBus.Messaging namespace. This library is provided
with the sample solution, in the Orders.Shared project. The classes
located in the Communication folder of this project encapsulate the
existing MessageSender, MessageReceiver, and BrokeredMessage
classes (amongst others). The purpose of the new classes is to abstract
the send and receive functionality so that all send and receive opera-
tions are performed asynchronously. This library also incorporates
elements of the security model implemented by Trey Research; for
more information, see the section “Securing Messages, Queues, Top-
ics, and Subscriptions” later in this chapter.

For additional information and guidelines on optimizing
performance when using Windows Azure Service Bus messaging,
see the topic “Best Practices for Performance Improvements
Using Service Bus Brokered Messaging” on MSDN.

The sample Trey Research
application that you can
download for this guide
implements many of the
technologies and techniques
described here. However, to
simplify installation and
setup, and reduce the prereq-
uisites and the requirements
for users to establish extensive
Windows Azure accounts, the
feature set and some of the
implementation details differ
from the text of this guide.

http://msdn.microsoft.com/en-us/library/windowsazure/hh528527.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh528527.aspx

 75Implementing Reliable Messaging and Communications with the Cloud

The following sections describe the structure of this library, the
classes that it provides, and how these classes extend the functional-
ity provided by Service Bus queues, topics, and subscriptions.

Sending Messages to a Service Bus Queue Asynchronously
Trey Research uses a Service Bus queue to enable transport partners
to communicate with the Orders application. To send a message to a
Service Bus queue by using the Orders.Shared library, an application
performs the following steps:

1.	 Create a BrokeredMessage object and populate it with the
required information. The BrokeredMessage class is the
type provided by Microsoft in the Microsoft.ServiceBus.
Messaging namespace.

2.	 Create a ServiceBusQueueDescription object and specify
the Service Bus namespace, the queue name, and a set of
valid credentials in the form of an access key and the name of
the associated identity. The ServiceBusQueueDescription
class is a member of the Orders.Shared project.

3.	 Create a ServiceBusQueue object using the ServiceBus-
QueueDescription object. The ServiceBusQueue type
encapsulates asynchronous functionality for sending messages.
Creating an instance of the ServiceBusQueue type connects
to the underlying Service Bus queue in PeekLock mode.

4.	 Call the Send method of the ServiceBusQueue object. The
parameter to the Send method must be a BrokeredMessage-
Adapter object that wraps the BrokeredMessage object
created earlier. The ServiceBusQueue class contains an
instance of the MessageSenderAdapter class (defined in the
Communication\Adapters folder in the Orders.Shared
project) which implements the IMessageSenderAdapter
interface. The Send method uses this MessageSender-
Adapter object to send the message.

The MessageSenderAdapter class is actually just a wrapper class
that was created to simplify unit testing with mock objects.

For an example of using the
ServiceBusQueue type to send
messages, see the SendTo-
UpdateStatusQueue method
in the OrderProcessor class in
the TransportPartner project.

The ServiceBusTopic and ServiceBusSubscription
classes in the Orders.Shared project implement a
similar approach to ServiceBusQueue, encapsulating
asynchronous functionality based on the MessageSender
and MessageReceiver classes respectively.

76 chapter four

The MessageSenderAdapter, MessageReceiverAdapter, and
BrokeredMessageAdapter classes enable the unit tests (in the
Orders.Shared.Tests project) to construct mock senders,
receivers, and brokered messages.

The following code fragment shows the implementation of the
Send method in the ServiceBusQueue class, together with the rele-
vant members used by the Send method:

C#
public class ServiceBusQueue
{
 private readonly ServiceBusQueueDescription description;
 ...
 private readonly IMessageSenderAdapter senderAdapter;
 ...

 public ServiceBusQueue(
 ServiceBusQueueDescription description)
 {
 Guard.CheckArgumentNull(description, "description");
 this.description = description;
 ...
 var sender = messagingFactory.CreateMessageSender(
 this.description.QueueName.ToLowerInvariant());
 this.senderAdapter = new MessageSenderAdapter(sender);
 ...
 }
 ...

 public void Send(IBrokeredMessageAdapter message)
 {
 Guard.CheckArgumentNull(message, "message");

 this.Send(message, this.senderAdapter);
 }

 public void Send(IBrokeredMessageAdapter message,
 IMessageSenderAdapter sender)
 {
 Guard.CheckArgumentNull(message, "message");
 Guard.CheckArgumentNull(sender, "sender");

 Task.Factory
 .FromAsync(sender.BeginSend, sender.EndSend, message,
 null,TaskCreationOptions.AttachedToParent)
 .ContinueWith(

The Guard method that
is used by methods in the
ServiceBusQueue class and
elsewhere checks that the
named parameter has been
initialized; it should not be
null or an empty string.

 77Implementing Reliable Messaging and Communications with the Cloud

 taskResult =>
 {
 try
 {
 if (taskResult.Exception != null)
 {
 TraceHelper.TraceError(
 taskResult.Exception.ToString());
 }
 }
 finally
 {
 message.Dispose();
 }
 });
 }
 ...
}

In the ServiceBusQueue class, the processing performed by the Send
method requires attaching the processing as a child task by using the
TaskCreationOptions.AttachedToParent option. In this way, a fail-
ure in the child task while sending the message can be detected and
handled by the parent, enabling the parent to abandon the Receive
operation more easily. In this example, any exceptions are simply
logged by using the static TraceError message of the TraceHelper
class. The TraceHelper class is defined in the Helpers folder in the
Orders.Shared project. This class simply acts as a wrapper around the
trace event handlers provided by the System.Diagnostics library and
is described in more detail in Chapter 7, “Monitoring and Managing
the Orders Application.”

Receiving Messages from a Service Bus Queue and
Processing Them Asynchronously

The ServiceBusQueue class creates and exposes a MessageReceiver
object that you can use to receive messages, through the GetReceiver
method. This is an ordinary message receiver object with no additional
functionality, and calling the Receive method on this object performs a
synchronous receive operation. In its simplest form, a receiver using this
technique may spend a lengthy period of time being blocked while wait-
ing for messages to appear. Additionally, when a message arrives, it may
require significant effort to perform the required processing, during
which time more messages may arrive. These messages will not be pro-
cessed until the receiver finishes its current work and retrieves the next
message. If a message is urgent, this response may not be acceptable.

Make sure your code
correctly disposes of
a BrokeredMessage
instance you create
after use to ensure that
all of the resources it
uses are released.

Notice that the
ServiceBusQueue class
does not utilize the
Transient Fault Handling
Exception Block. This
is because using the
Transient Fault Handling
Application Block to
start asynchronous
processes does not
provide the same
flexibility as using a
Task object. When
considering using the
Transient Fault Handling
Application Block,
you should weigh up
the advantages of the
declarative neatness of
the way in which critical
code can be executed
and retried, against
the fine control that
you may require when
running this code as a
background task.

78 chapter four

The MessageReceiver class also supports asynchronous operations through the BeginReceive
and EndReceive operations. The ServiceBusReceiverHandler type, also in the Orders.Shared proj-
ect, extends this functionality to provide a class that can receive and process messages asynchro-
nously while decoupling the business logic and exception-handling process from the code that con-
nects to the queue.

The ServiceBusReceiverHandler class provides a method called ProcessMessages that an ap-
plication can use to asynchronously wait for messages arriving on a Service Bus queue and process
them (the application specifies the queue to listen on as a parameter to the constructor of this class.)
The following code sample shows the constructor and the implementation of the ProcessMessages
method.

C#
public class ServiceBusReceiverHandler<T>
{
 private readonly IMessageReceiverAdapter receiver;
 private Func<T, ServiceBusQueueDescription, string, Task>
 messageProcessingTask;

 public ServiceBusReceiverHandler(
 IMessageReceiverAdapter receiver)
 {
 ...
 this.receiver = receiver;
 }

 ...

 // The Func parameter (that returns the Task) allows the
 // caller more control on the task result and the
 // exception handling
 public void ProcessMessages(Func<T,
 ServiceBusQueueDescription, string, Task>
 taskForProcessingMessage,
 CancellationToken cancellationToken)
 {
 ...
 this.messageProcessingTask = taskForProcessingMessage;

 this.ReceiveNextMessage(cancellationToken);
 }

 ...
}

 79Implementing Reliable Messaging and Communications with the Cloud

The ProcessMessages method expects a delegate as its first parameter. This delegate should
reference a method that will be run each time a message is received. The purpose of this delegated
method is to perform whatever business logic the application requires on receipt of each message (for
a detailed example of this logic, see the section “Receiving and Processing an Order in a Transport
Partner” in Chapter 5, “Processing Orders in the Trey Research Solution”). The ProcessMessages
method stores this delegate locally and then calls the local ReceiveNextMessage method, as shown
in the following code sample.

C#
...
public TimeSpan? MessagePollingInterval { get; set; }
...
private void ReceiveNextMessage(
 CancellationToken cancellationToken)
{
 if (this.MessagePollingInterval.HasValue)
 {
 Thread.Sleep(this.MessagePollingInterval.Value);
 }

 Task.Factory
 .FromAsync<TimeSpan,
 IBrokeredMessageAdapter>(this.receiver.BeginReceive,
 this.receiver.EndReceive,
 TimeSpan.FromSeconds(10),
 null,
 TaskCreationOptions.None)
 .ContinueWith(
 taskResult =>
 {
 // Start receiving the next message as soon as we
 // received the previous one.
 // This will not cause a stack overflow because the
 // call will be made from a new Task.

 this.ReceiveNextMessage(cancellationToken);

 if (taskResult.Exception != null)
 {
 TraceHelper.TraceError(
 taskResult.Exception.Message);
 }

 this.ProcessMessage(taskResult.Result);
 },
 cancellationToken);
}

80 chapter four

The ReceiveNextMessage method implements a simple polling strategy; it sleeps for a configu-
rable period of time before attempting to receive a message from the queue (the message queue is read
in PeekLock mode). The receive operation is performed asynchronously, and if a message is available
the method starts a new task to listen for any subsequent messages and then calls the ProcessMessage
method to process the newly received message.

C#
private void ProcessMessage(
 IBrokeredMessageAdapter message)
{
 if (message != null)
 {
 ...
 this.messageProcessingTask(message.GetBody<T>(),
 queueDescription, token)
 .ContinueWith(
 processingTaskResult =>
 {
 if (processingTaskResult.Exception != null)
 {
 if (message.DeliveryCount <= 3 &&
 !(processingTaskResult.Exception.
 InnerException is InvalidTokenException))
 {
 // If the abandon fails, the message will
 // become visible anyway after the lock
 // times out
 Task.Factory.FromAsync(message.BeginAbandon,
 message.EndAbandon, message,
 TaskCreationOptions.AttachedToParent)
 .ContinueWith(
 taskResult =>
 {
 if (taskResult.Exception != null)
 {
 TraceHelper.TraceError(
 "Error while message abandon: {0}",
 taskResult.Exception.
 InnerException.Message);
 }

 var msg = taskResult.AsyncState
 as BrokeredMessage;
 if (msg != null)
 {
 msg.Dispose();

 81Implementing Reliable Messaging and Communications with the Cloud

 }
 });
 }
 else
 {
 Task.Factory.FromAsync(
 message.BeginDeadLetter,
 message.EndDeadLetter, message,
 TaskCreationOptions.AttachedToParent)
 .ContinueWith(
 taskResult =>
 {
 if (taskResult.Exception != null)
 {
 TraceHelper.TraceError(
 "Error while sending message to "
 + "the DeadLetter queue: {0}",
 taskResult.Exception.
 InnerException.Message);
 }

 var msg = taskResult.AsyncState
 as BrokeredMessage;
 if (msg != null)
 {
 msg.Dispose();
 }
 });
 TraceHelper.TraceError(
 processingTaskResult.
 Exception.TraceInformation());
 }
 }
 else
 {
 Task.Factory
 .FromAsync(message.BeginComplete,
 message.EndComplete, message,
 TaskCreationOptions.AttachedToParent)
 .ContinueWith(
 taskResult =>
 {
 if (taskResult.Exception != null)
 {
 TraceHelper.TraceError(
 "Error while executing "

82 chapter four

 + "message. Complete: {0}",
 taskResult.Exception.
 InnerException.Message);
 }
 var msg = taskResult.AsyncState
 as BrokeredMessage;
 if (msg != null)
 {
 msg.Dispose();
 }
 });
 }
 });
 }
}

The ProcessMessage method invokes the delegated method pro-
vided by the receiving application, which it has stored in message-
ProcessingTask property, to process the message. The Process-
Message method implements a simple but effective policy for
handling exceptions raised while receiving or processing messages.
For example, if a system exception occurs while receiving the mes-
sage, the ProcessMessage method will attempt to abandon the mes-
sage and release any locks; a subsequent invocation of the Receive-
NextMessage method may be able to read the message successfully
if the error was only transient. However, if the same message fails to
be received three times, or processing fails as the result of an authen-
tication failure (if the simple web token received from the transport
partner is invalid), the message is posted to the dead letter queue. If
the message is processed successfully, the ProcessMessage method
calls the asynchronous version of the Complete method to remove
the message from the queue.

The polling interval acts as a regulator to help prevent parts of the system becoming
overloaded. The ideal value for the polling interval depends on the computing resources
available at the transport partner, the expected volume of orders, and the number of
worker role instances. For example, specifying a small polling interval if the transport
partners have limited computing resources is probably a poor choice, especially during
periods of high demand when a large number of orders are generated. In this case a
lengthier interval between messages allows the transport partners’ systems to function
more effectively, with the topic effectively acting as a load-leveling buffer.

ServiceBusReceiverHandler

Receiving Application

Message
Processing

Business Logic

ProcessMessages
Method

ReceiveNext
Message Method ProcessMessage

Method

Receiving Application calls
ProcessMessages, and
provides a delegate to the
business logic for
processing messages

1

2
ProcessMessages
stores a reference to
the delegate

3

ProcessMessages calls
ReceiveNextMessage

4
ReceiveNextMessage
waits for the polling
interval to expire

5

6

ReceiveNextMessage
retrieves the next
message from the queue

ReceiveNextMessage starts a
new task for receiving the
next message and running the
ProcessMessage method
over the current message

ProcessMessage invokes the
delegate to perform the
application-specific business
processing for the message

8 ProcessMessage handles exceptions
raised while receiving messages.

Queue

7

 83Implementing Reliable Messaging and Communications with the Cloud

Figure 4 illustrates the flow of control through a ServiceBusReceiverHandler object when a re-
ceiving application retrieves and processes a message.

Figure 4
Flow of control when receiving messages through a ServiceBusReceiverHandler object

84 chapter four

Sending Messages to a Service Bus Topic
Although transport partners send messages to the Orders application through a Service Bus queue,
the worker role in the Trey Research implementation uses a Service Bus topic to send orders to each
transport partner. Service Bus topics are similar to queues with one important difference; the mes-
sages posted to a topic can be filtered by using a Service Bus subscription and directed to a specific
listener attached to that subscription. The filtering is based on metadata added to the message before
it is sent, and only subscriptions that specify a filter that matches the value of this metadata will re-
ceive the message.

Trey Research used this mechanism to add a property called TransportPartnerName to each or-
der message that specifies the transport partner that should process the message. In this way, each
order message will be received only by the intended transport partner that should ship the order.
Additionally, Trey Research also added a property called OrderAmount to each message. The auditing
application subscribes to the same topic as the transport partners, but filters messages, retrieving and
auditing the details of all orders with a value of more than $10,000 as specified by this property. The
following code, taken from the Execute method of the NewOrderJob class in the Jobs folder of the
Orders.Workers project, shows an example of how the Trey Research solution populates the proper-
ties of a message to direct it to a specific transport partner.

C#
var brokeredMessage = new BrokeredMessage(msg)
{
 ...
 Properties = {
 { "TransportPartnerName", transportPartnerName },
 ...
 { "OrderAmount", orderProcess.Order.Total } },
 ...
};

The NewOrderJob class is described in more detail in Chapter 5, “Processing Orders in the Trey
Research Solution.”

The Service Bus methods used to send messages to a topic are very similar to those used to send
messages to a queue. However, to manage the minor differences in these methods, the developers at
Trey Research created two custom classes specially targeted at making it easier to use Service Bus
topics. These classes are ServiceBusTopicDescription and ServiceBusTopic, and are located in the
Communication folder of the Orders.Shared project.

In the Trey Research sample solution there are only small differences between the Service-
BusQueueDescription class and the ServiceBusTopicDescription class. The ServiceBusQueue class
(which encapsulates the functionality of a Service Bus queue) and the ServiceBusTopic class (which
provides similar functionality, but for a Service Bus topic) also differ, but in a few more significant
ways, primarily due to the way in which Trey Research uses these types rather than any underlying
differences in the mechanisms that they expose for sending messages:

 85Implementing Reliable Messaging and Communications with the Cloud

•	 Unlike the ServiceBusQueue class, the ServiceBusTopic class
does not instantiate a receiver. Clients will subscribe to a topic
when required by creating a suitable receiver. This removes
coupling between the sender and receiver, and allows different
clients to subscribe and receive messages without needing to
reconfigure the topic. It also separates the business logic from
the message routing concerns.

•	 The ServiceBusQueue class sends the message and only raises
an exception (which it logs) if sending the message fails. In
contrast, the ServiceBusTopic class accepts two Action del-
egates that it executes when the message has been sent, or when
there is an error. This approach enables Trey Research to incorpo-
rate more extensive exception handling when sending order
details to a transport partner than was deemed necessary when
posting order status messages back to the Orders application.

•	 The ServiceBusQueue class uses the static FromAsync method
of the Task.Factory class to send messages asynchronously.
In contrast, the ServiceBusTopic class uses the Enterprise
Library Transient Fault Handling Application Block to detect
transient errors when posting a message to a topic, and transpar-
ently retries the Send operation when appropriate. The ratio-
nale behind this approach is similar to that described in the
previous point.

The following code shows the definition of the Send method in the
ServiceBusTopic class. As described above, two Action methods are
passed to the method as parameters (one to execute after a message
is sent and one to execute if sending fails), together with a function
that creates the message, and a state object.

C#
public void Send(Func<BrokeredMessage> createMessage,
 object objectState,
 Action<object> afterSendComplete,
 Action<Exception, object> processError)
{
 ...
}

The Send method uses the Transient Fault Handling Block. The con-
structor for the ServiceBusTopic class initializes the block, loads the
default policy for Windows Azure Service Bus connectivity, and sets
up a handler for the Retrying event that writes information to Win-
dows Azure diagnostics.

Code can only read the body of
a BrokeredMessage instance
once. When you implement a
method that uses a Brokered-
Message instance and may be
executed more than once, as is
the case when using the
Transient Fault Handling
Application Block, you must
create and populate the
BrokeredMessage instance
each time you call the method.
This is why the Send method
accepts a function that creates
the message, instead of
accepting an existing message
instance.

86 chapter four

C#
this.serviceBusRetryPolicy = RetryPolicyFactory.
 GetDefaultAzureServiceBusRetryPolicy();

this.serviceBusRetryPolicy.Retrying += (sender, args) =>
 TraceHelper.TraceWarning("Retry in ServiceBusTopic - "
 + "Count:{0}, Delay:{1}, Exception:{2}",
 args.CurrentRetryCount, args.Delay,
 args.LastException);

The Send method then calls one of the asynchronous overloads of the ExecuteAction method of the
Transient Fault Handling Block and passes in the required parameters, as shown in the following code
extract. These parameters are the asynchronous start and end delegates, an action to execute after
the process completes successfully, and an action to execute if it fails after retrying a number of times
(the retry policy parameters are specified in the configuration file).

C#
this.serviceBusRetryPolicy.ExecuteAction<BrokeredMessage>(
 ac =>
 {
 var message = createMessage();
 var dictionary
 = (objectState as Dictionary<string, object>);
 if (dictionary.ContainsKey("message"))
 {
 dictionary["message"] = message;
 }
 else
 {
 dictionary.Add("message", message);
 }
 this.sender.BeginSend(message, ac, objectState);
 },
 ar =>
 {
 this.sender.EndSend(ar);
 return (ar.AsyncState as Dictionary<string,
 object>)["message"] as BrokeredMessage;
 },
 (message) =>
 {
 try
 {
 afterSendComplete(objectState);
 }
 catch (Exception ex)

 87Implementing Reliable Messaging and Communications with the Cloud

 {
 TraceHelper.TraceError(ex.Message);
 }
 finally
 {
 message.Dispose();
 }
 },
 e =>
 {
 processError(e, objectState);
 var message = (objectState as Dictionary<string,
 object>)["message"] as BrokeredMessage;
 message.Dispose();
 });

The asynchronous start delegate (ac) first calls the function passed to the Send method as the create-
Message parameter to create the BrokeredMessage instance. Next, it obtains a reference to a
Dictionary stored in the object state (which is also passed to the Send method as a parameter) and
adds to it a reference to the BrokeredMessage instance. It must hold on to a reference to the
BrokeredMessage so that it can be disposed correctly afterwards. The code then calls the BeginSend
method of the Service Bus MessageSender instance referenced by the sender property of the
ServiceBusTopic class. It passes as parameters the BrokeredMessage instance to send, a reference to
the callback provided by the Transient Fault Handling Application Block, and a Dictionary containing
a copy of the message as the object state. A reference to this copy of the brokered message is main-
tained so that the code can dispose it and correctly release the resources it uses. This occurs in the
actions that are executed after sending the message, regardless of whether the send operation is
successful or if it fails.

The Dictionary provides a thread-safe object that holds the state information referenced by the
BeginSend and EndSend methods that send a message to the queue asynchronously.

The asynchronous end delegate (ar) first calls the EndSend method of the Service Bus Message-
Sender instance. Next, it extracts the Dictionary containing the message from the object state and
returns it as a BrokeredMessage instance. This is passed to the action that is executed when the
message is successfully sent.

If the process successfully posts the message to the topic, it invokes the Action referenced by the
afterSendComplete parameter. If it fails to execute this action, the code uses the TraceHelper class
to log an error message.

If the process fails to post the message to the topic, it invokes the Action referenced by the
processError parameter. The code passes to the processError action the exception returned from the
MessageSender class and the object state containing the message. After the processError action
completes, the code obtains a reference to the BrokeredMessage instance stored in the objectState
variable and disposes it.

88 chapter four

Subscribing to a Service Bus Topic
One of the major advantages of using Service Bus topics to distribute messages is that it provides a
level of decoupling between the sender and receivers. The sender can construct a message with ad-
ditional properties that filters within the topic use to redirect the message to specific receivers. How-
ever, receivers must subscribe to receive messages, and the number of subscribers is independent of
the topic. For example, Trey Research can add new transport partners and arrange to send messages
to these new partners simply by editing the filter criteria in the topic. New receivers can subscribe to
a topic and receive messages that match the appropriate filtering criteria. Trey Research could add
additional subscribers that listen for messages and pass them to auditing or other types of services.

In the Orders application, Trey Research created a single Service Bus topic for each deployed in-
stance of the application (in other words, there is one topic per datacenter). All of the transport
partners subscribe to all of these topics, and receive messages destined for them based on the filter
rules Trey Research established for the choice of transport partner.

The Service Bus subscriptions and filters themselves are created by the SetupServiceBusTopic-
AndQueue method in the setup program in the TreyResearch.Setup project. The following code
shows the relevant parts of this method.

C#
private static void SetupServiceBusTopicAndQueue()
{
 ...
 // Create one subscription per transport partner with
 // corresponding filter expression.
 var transportPartners = new[] {
 "Contoso", "Fabrikam" };
 for (int i = 0; i <= 1; i++)
 {
 string transportPartnerName = transportPartners[i];
 string formattedName = transportPartnerName.Replace(
 " ", string.Empty).ToLowerInvariant();
 ...

 var serviceBusTopicDescription =
 new ServiceBusSubscriptionDescription
 {
 Namespace = ServiceBusNamespace,
 TopicName = TopicName,
 SubscriptionName = string.Format(
 "{0}Subscription", formattedName),
 Issuer = Issuer,
 DefaultKey = DefaultKey
 };

 var serviceBusSubscription =
 new ServiceBusSubscription(
 serviceBusTopicDescription);

 89Implementing Reliable Messaging and Communications with the Cloud

 string filterExpression = string.Format(
 "TransportPartnerName = '{0}'",
 transportPartnerName);
 serviceBusSubscription.CreateIfNotExists(
 filterExpression);
 ...
 }
}

Trey Research implemented two custom classes (ServiceBusSubscriptionDescription and Service-
BusSubscription, located in the Communication folder of the Orders.Shared project) for connecting
to subscriptions. The ServiceBusSubscriptionDescription class specifies the properties for a subscrip-
tion, indicating which topic in which Service Bus namespace to connect to and the name of the sub-
scription to use. The following code example shows the definition of this class. Note that in the Trey
Research example, the code populates the SubscriptionName property with the name of the transport
partner; remember that each Service Bus subscription filters messages by using this property.

C#
public class ServiceBusSubscriptionDescription
{
 public string Namespace { get; set; }
 public string TopicName { get; set; }
 public string SubscriptionName { get; set; }
 ...
}

The constructor of the ServiceBusSubscription class accepts a populated instance of the ServiceBus-
SubscriptionDescription class and connects to the specified topic and subscription, as shown in the
following code. This method also creates a MessageReceiver for the topic subscription.

C#
public ServiceBusSubscription(
 ServiceBusSubscriptionDescription description)
{
 ...
 var runtimeUri
 = ServiceBusEnvironment.CreateServiceUri("sb",
 this.description.Namespace,
 string.Empty);
 var messagingFactory
 = MessagingFactory.Create(runtimeUri, ...);

 this.receiver
 = messagingFactory.CreateMessageReceiver(
 this.description.TopicName.ToLowerInvariant()
 + "/subscriptions/" +

90 chapter four

 this.description.SubscriptionName
 .ToLowerInvariant(),
 ReceiveMode.PeekLock);
}

Receiving Messages from a Topic and Processing Them
Asynchronously

To receive a message from a topic, an application can use a Service-
BusReceiverHandler object initialized with the receiver encapsulated
within a ServiceBusSubscription object. For more information about
the ServiceBusReceiverHandler class, see the section “Receiving
Messages from a Service Bus Queue and Processing Them Asynchro-
nously” earlier in this chapter. The following code example shows how
an application can create a ServiceBusReceiverHandler object to
receive NewOrderMessage messages from the subscription (the
NewOrderMessage class is described in Chapter 5, “Processing Or-
ders in the Trey Research Solution.”)

C#
var serviceBusSubscription = new ServiceBusSubscription(
 ...);
var receiverHandler
 = new ServiceBusReceiverHandler<NewOrderMessage>
 (serviceBusSubscription.GetReceiver())
{
 MessagePollingInterval = TimeSpan.FromSeconds(2)
};
...

An application can then call the ProcessMessages method of the
ServiceBusReceiverHandler instance it just retrieved, and pass it a
delegate specifying the code to be executed as each message is re-
ceived. Again, this process was described in the section “Receiving
Messages from a Service Bus Queue and Processing Them Asynchro-
nously” earlier in this chapter. The following code shows an example:

C#
 ...
receiverHandler.ProcessMessages(
 (message, queueDescription, token) =>
 {
 return Task.Factory.StartNew(
 () => this.ProcessMessage(message,
 queueDescription),
 this.tokenSource.Token,
 TaskCreationOptions.None,

The message polling interval
you specify for receiving
messages from a queue
or topic must take into
account variables specific
to your environment (such
as CPU processing power)
and the expected volume of
work (such as the number
of orders to process and
number of worker role
instances).

 91Implementing Reliable Messaging and Communications with the Cloud

 context);
 },
 this.tokenSource.Token);

Implementing Adapters and Connectors for Translating and Reformatting Messages
As described in the section “Selected Option for Communicating with Transport Partners” earlier in
this chapter, Trey Research uses connectors and adapters for retrieving messages from the Service Bus
subscription for each transport partner, and then translates these messages into a format that the
transport partner understands before handing the message off for processing.

In the solution code provided with this guide, mock versions of the local and distance transport
partners are both implemented by means of a Windows Forms application. For the local transport
partner, Contoso, the connector is integrated into the Windows Forms application. For the distance
transport partner, Fabrikam, the connector is implemented in a similar manner as part of the
Windows Forms code for this partner. However, this is for simplicity and demonstration purposes
only; in the real implementation Trey Research incorporates the adapter for the distance partner
into the worker role as described earlier.

The Trey Research solution includes two sample transport partners; one that handles deliveries to
local customers that reside in the same state or neighboring states as Trey Research and another that
delivers goods to more distant customers. These transport partners are defined in the Contoso-
TransportPartner and FabrikamTransportPartner Windows Forms classes in the TransportPartner
project. Both transport partners implement their own systems for tracking and delivering packages.

Contoso, the local transport partner runs a connector on its own infrastructure that connects
directly to the Windows Azure Service Bus to retrieve and send messages. This functionality is imple-
mented in the Connector class in the Connectivity folder. Fabrikam, the distance transport partner
exposes a service interface, and an adapter running as part of the Trey Research solution interacts with
the Service Bus and reformats messages into service calls; responses from the service are reformatted
as messages and posted back to the Service Bus. The adapter is implemented in the Adapter class, also
located in the Connectivity folder.

When the transport partner receives a request to deliver an order, the connector or adapter (de-
pending on the transport partner) posts an acknowledgement message to a Service Bus queue. This
queue constitutes a well-known but secure endpoint, available to all transport partners. The Connector
and Adapter classes are both descendants of the OrderProcessor class (defined in the Connectivity
folder in the TransportPartner project), and this class actually handles the connectivity between the
transport partner and the Service Bus. In the FabrikamTransportPartner Windows Forms class, the
flow of control is:
•	 The OnLoad method instantiates the Adapter object and invokes its Run method. The Run

method of the Adapter class is inherited from the OrderProcessor class.
•	 The Run method in the OrderProcessor class creates a ServiceBusReceiverHandler object to

connect to the Service Bus subscription on which it expects to receive orders, and calls the
ProcessMessages method of this object.

•	 The first parameter to the ProcessMessages method in the ServiceBusReceiverHandler class
is a delegated function (specified as a lambda expression in the sample code) that provides the
business logic to be performed when an order is received from the topic.

92 chapter four

•	 The ServiceBusReceiverHandler object invokes this function after it has received each mes-
sage. This strategy enables you to decouple the mechanics for receiving a message from a queue
or topic (as implemented by the ServiceBusReceiverHandler class) from the logic for convert-
ing this message into the format expected by the transport partner and sending this request to
the internal system implemented by the partner.

The following example, taken from the OrderProcessor.cs file, shows how this code is structured.

C#
public void Run()
{
 ...
 foreach (...)
 {
 ...
 var receiverHandler = new
 ServiceBusReceiverHandler<...>(...);

 receiverHandler.ProcessMessages(
 (message, ..., ...) =>
 {
 return Task.Factory.StartNew(
 // Message conversion logic goes here.
 // The message parameter contains the body of
 // the message received from the topic.
 () => this.ProcessMessage(
 message, ...),
 ...);
 }, ...);
 }
}

In the OrderProcessor class, the lambda expression invokes the local ProcessMessage method (not
to be confused with ServiceBusReceiverHandler.ProcessMessages) to pass the message to the local
partner’s internal system and wait for a response by calling the ProcessOrder method (this method
provides logic that is specific to the transport partner and is implemented in the Adapter class.) Be-
cause the ProcessMessage method runs by using a separate task, it can wait synchronously for the
ProcessOrder method to complete without affecting the responsiveness of the application. The
following code example shows part of the implementation of the ProcessMessage method in the
OrderProcessor class.

Many of the details of the ProcessMessage method, such as the purpose of the trackingId
variable, and the operations performed by the ProcessOrder method in the Connector and
Adapter classes provided in the sample solution are explained in detail in Chapter 5, “Processing
Orders in the Trey Research Solution”.

 93Implementing Reliable Messaging and Communications with the Cloud

C#
protected virtual void ProcessMessage(
 NewOrderMessage message,
 ServiceBusQueueDescription queueDescription)
{
 var trackingId = this.ProcessOrder(
 message, queueDescription);

 if (trackingId != Guid.Empty)
 {
 ...
 this.SendOrderReceived(message,
 queueDescription, statusMessage, trackingId, token);
 }
}

When the order has been processed by the transport partner, the ProcessMessage method invokes
the local SendOrderReceived method of the OrderProcessor object to send an appropriate response
message back to the Order application through the Service Bus queue specified as the second param-
eter to the ProcessMessage method.

The details of the SendOrderReceived method are also described in Chapter 5, “Processing Orders
in the Trey Research Solution.”

Correlating Messages and Replies
Unlike web service operations, messaging implemented by using Service Bus Message queues and
topics is an inherently one-way mechanism. Although sometimes viewed as a limitation, this is actu-
ally what makes this form of messaging extremely responsive; a sender does not have to wait for a
response from a distant, possible unreliable receiver whenever it posts a message. However, there will
inevitably be cases when a sender expects some form of reply, even if it is only an acknowledgement
that the receiver has actually received the message. This is precisely the situation in the Trey Research
scenario. When the Orders application posts the details of an order to a topic, the application expects
to receive a response that indicates the order has been received.

However, there may be a significant time between these two events, and the Orders application
must not block waiting for the response to arrive. To address this situation, Trey Research implements
two-way messaging by using a combination of Service Bus topics and queues. The Orders application
posts order messages to a Service Bus topic, and expects the responses from the various transport
partners to appear on a separate Service Bus queue. The key question is how does the Orders application
know which response belongs to which order message? The answer lies in using message correlation.

When the worker role for the Orders application sends an order message to a transport partner,
it populates the MessageId property with the identifier for the order (this identifier is generated when
the order is created), and it also specifies the name of the queue on which the Orders application
expects a response in the ReplyTo property, as shown in the following code sample taken from the
Execute method in the NewOrderJob class.

94 chapter four

C#
var brokeredMessage = new BrokeredMessage(msg)
{
 MessageId = msg.OrderId.ToString(),
 ...
 ReplyTo = this.replyQueueName
};

The transport partner constructs an OrderStatusUpdateMessage
object as a reply and then posts this message to the queue specified
by the ReplyTo property of the original order message. In the Trey
Research example, this logic occurs in the SendToUpdateStatus-
Queue method (invoked by the SendOrderReceived method) in the
OrderProcessor class. Chapter 5, “Processing Orders in the Trey Re-
search Solution” describes the message flow of through the transport
partners in more detail.

The worker role receives the response on the specified Service Bus
queue. When a response message is received it is used to update the sta-
tus of the order in the Orders database. This functionality is implemented
in the StatusUpdateJob class in the worker role, which is also described
in detail in Chapter 5, “Processing Orders in the Trey Research Solution.”

Securing Message Queues, Topics, and Subscriptions
A key requirement of the messaging solution is that all messages should
be protected from unauthorized access. As described in Chapter 3, “Au-
thenticating Users in the Orders Application,” the Windows Azure Service
Bus uses the ACS to protect Service Bus queues, topics, and subscriptions.
To connect to a queue, topic, or subscription, an application must present
a valid authentication token.

To secure the communication channels Trey Research defined rules
in ACS to allow the local and distance transport partners to connect to
the Service Bus subscription on which the Orders application posts order
messages; the transport partners are granted the “Listen” claim to the
subscription to enable them to receive messages only. The worker role in
the Orders application is granted the “Send” claim over the topic to en-
able it to post messages only.

For more information about these claims and how to configure ACS to
authenticate clients and authorize access to Service Bus artifacts, see
“Service Bus Authentication and Authorization with the Access
Control Service” on MSDN.

For the Service Bus queue that the worker role listens to for response
messages, the privileges are reversed; the transport partners are granted
the “Send” claim to the queue while the worker role has the “Listen” claim.

The various ACS rules and rule groups and identities used by the
Orders application and the transport partners are created by the
setup program in the TreyResearch.Setup project.

Passing the address
to which a receiving
application should post
a response by using the
ReplyTo property of a
message decouples the
receiving application from
using a specific hard-coded
queue.

http://msdn.microsoft.com/en-us/library/windowsazure/hh403962.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh403962.aspx

 95Implementing Reliable Messaging and Communications with the Cloud

For completeness, the following table summarizes how Trey Research configured ACS to enable
Service Bus authentication for applications and services connecting to the various Service Bus queues,
topics, and subscriptions in the Orders application.

Service Bus artifact Setting

Service identities. AuditLogListener, Fabrikam, HeadOffice, Contoso, NewOrderJob, NewOrdersTopic, owner,
StatusUpdateJob.

Default Service Bus (relying
party).

Name: ServiceBus.
Realm: http://treyresearch.servicebus.windows.net/
Claim issuer: ACS. Token type: SWT.
Rule groups:
•	 Default rule group containing: If name identifier=”owner” emit “Manage”, “Send”,

and “Listen” action claims.

Service Bus topic (relying
party) for sending new
order details to transport
partners and the on-
premises audit log.

Name: NewOrdersTopic
Realm: http://treyresearch.servicebus.windows.net/neworderstopic
Claim issuer: ACS. Token type: SWT.
Rule groups:
•	 Default rule group for ServiceBus
•	 Rule group containing: If name identifier=”NewOrderJob” emit “Send” action claim.

Subscriptions:
•	 Local (“Contoso”) and distance (“Fabrikam”) shipping partners.
•	 Audit log service.

Service Bus queue (relying
party) that transport
partners use to send
messages to the Orders
application that:
•	 Acknowledge receipt

of new order details.
•	 Indicate that the order

has been delivered.

Name: OrderStatusUpdateQueue
Realm: http://treyresearch.servicebus.windows.net/orderstatusupdatequeue
Claim issuer: ACS. Token type: SWT.
Rule groups:
•	 Default rule group for Service Bus.
•	 Rule group containing: If name identifier=”Contoso” emit “Send” action claim.
•	 Rule group containing: If name identifier=”Fabrikam” emit “Send” action claim.
•	 Rule group containing: If name identifier=”StatusUpdateJob” emit “Listen” action

claim.

Transport partner (relying
party) for local deliveries
(Contoso, Inc.)

Name: Contoso
Realm: http://treyresearch.servicebus.windows.net/neworderstopic/subscriptions/
 contososubscription
Claim issuer: ACS. Token type: SWT.
Rule groups:
•	 Default rule group for ServiceBus.
•	 Rule group containing: If name identifier=”Contoso” emit “Listen” action claim.

Transport partner (relying
party) for distance
deliveries (Fabrikam Inc.)

Name: Fabrikam
Realm: http://treyresearch.servicebus.windows.net/neworderstopic/subscriptions/
 fabrikamsubscription
Claim issuer: ACS. Token type: SWT.
Rule groups:
•	 Default rule group for ServiceBus.
•	 Rule group containing: If name identifier=”Fabrikam” emit “Listen” action claim.

On-premises management
and monitoring application
(relying party). Subscribes
to Topic to collect audit log
messages.

Name: AuditLogListener
Realm: http://treyresearch.servicebus.windows.net/neworderstopic/subscriptions/
 auditloglistenersubscription
Claim issuer: ACS. Token type: SWT.
Rule groups:
•	 Default rule group for ServiceBus.
•	 Rule group containing: If name identifier=”AuditLogListener” emit “Listen” action

claim.

96 chapter four

The worker role and transport partners are each configured with the appropriate storage account
key, and they present this information when they connect to the Service Bus queue, topic, or subscrip-
tion in the form of a simple web token. For example, the Run method in the NewOrderJob class in
the worker role uses the following code to extract the key and issuer details from the application
configuration and store them in a ServiceBusTopicDescription object, which is in turn used to create
a ServiceBusTopic object.

C#
public void Run()
{
 ...
 this.serviceBusNamespace = CloudConfiguration.
 GetConfigurationSetting("serviceBusNamespace",
 string.Empty);
 this.acsNamespace = CloudConfiguration.
 GetConfigurationSetting("acsNamespace", string.Empty);
 var topicName = CloudConfiguration.
 GetConfigurationSetting("topicName", string.Empty);
 var issuer = CloudConfiguration.
 GetConfigurationSetting("newOrdersTopicIssuer",
 string.Empty);
 var defaultKey = CloudConfiguration.
 GetConfigurationSetting("newOrdersTopicKey",
 string.Empty);
 ...

 var serviceBusTopicDescription =
 new ServiceBusTopicDescription
 {
 Namespace = this.serviceBusNamespace,
 TopicName = topicName,
 Issuer = issuer,
 DefaultKey = defaultKey
 };

 this.newOrderMessageSender =
 new ServiceBusTopic(serviceBusTopicDescription);
 ...
}

The constructor in the ServiceBusTopic class uses this information to create a token provider for a
MessageFactory object. The MessageFactory object is used to construct the MessageSender object
that the ServiceBusTopic object utilizes to actually post messages to the underlying Service Bus topic.

 97Implementing Reliable Messaging and Communications with the Cloud

C#
...
private readonly ServiceBusTopicDescription description;
private readonly TokenProvider tokenProvider;
private readonly MessageSender sender;
...

public ServiceBusTopic(
 ServiceBusTopicDescription description)
{
 ...

 this.description = description;
 this.tokenProvider = TokenProvider.
 CreateSharedSecretTokenProvider(
 this.description.Issuer,
 this.description.DefaultKey);

 var runtimeUri = ServiceBusEnvironment.
 CreateServiceUri("sb", this.description.Namespace,
 string.Empty);
 var messagingFactory = MessagingFactory.Create(
 runtimeUri, this.tokenProvider);
 this.sender = messagingFactory.CreateMessageSender(
 this.description.TopicName.ToLowerInvariant());
 ...
}

The constructors of the ServiceBusQueue and ServiceBusSubscription classes follow a similar pattern.

Securing Messages
To help prevent spoofing, Trey Research also implements a mechanism to verify the identity of a
transport partner posting messages to the Service Bus queue on which the Orders application listens.
This helps to ensure that a rogue third party is not somehow impersonating a valid transport partner
and sending fake messages. To accomplish this, each time a transport partner sends a message, it adds
a simple web token in the header of the message that indicates the identity of the sender, and the
receiver in the Orders application validates the token when each message arrives.

Adding tokens to the header and validating them cannot be achieved just by configuring the
Service Bus artifacts and ACS. Instead, Trey Research uses the following code to obtain a token from
ACS. This code is taken from the OrderProcessor class; this is the base class from which the Adapter
and Connector classes used by the transport partners descend.

98 chapter four

C#
private string GetToken(ServiceBusQueueDescription
 queueDescription)
{

 var realm = string.Format("urn:{0}/{1}",
 queueDescription.QueueName,
 HttpUtility.UrlEncode(this.acsServiceIdentity));

 var token = GetTokenFromAcs(string.Format(
 "https://{0}.accesscontrol.windows.net/",
 queueDescription.SwtAcsNamespace),
 this.acsServiceIdentity, this.acsPassword, realm);

 return token;
}

private string GetTokenFromAcs(string acsNamespace,
 string serviceIdentity, string password,
 string relyingPartyRealm)
{
 // request a token from ACS
 var client = new WebClient();
 client.BaseAddress = acsNamespace;
 var values = new NameValueCollection();
 values.Add("wrap_name", serviceIdentity);
 values.Add("wrap_password", password);
 values.Add("wrap_scope", relyingPartyRealm);
 byte[] responseBytes = client.UploadValues(
 "WRAPv0.9/", "POST", values);
 string response = Encoding.UTF8.GetString(responseBytes);
 return HttpUtility.UrlDecode(
 response
 .Split('&')
 .Single(value =>
 value.StartsWith("wrap_access_token=",
 StringComparison.OrdinalIgnoreCase))
 .Split('=')[1]);
}

The GetTokenFromAcs method (also shown in the previous code example) sends a request for a to-
ken to ACS. The GetToken method passes to it values extracted from the application’s configuration
file for the service identity name, password, and realm to create the appropriate token for this sender’s
identity.

After obtaining a suitable token, the transport partner can add it to the message that it posts to
the Service Bus queue.

 99Implementing Reliable Messaging and Communications with the Cloud

When a message is received, the receiver can extract the token and use it to verify the identity
of the sender. For example, the worker role uses the IsValidToken method in the StatusUpdateJob
class shown in the following code example to establish whether the token extracted from a message
is valid.

C#
private bool IsValidToken(Guid orderId, string token)
{
 string transportPartner;
 ...

 string acsServiceNamespace = CloudConfiguration.
 GetConfigurationSetting("acsNamespace", null);
 string acsUsername = CloudConfiguration.
 GetConfigurationSetting("acsUsername", null);
 string acsPassword = CloudConfiguration.
 GetConfigurationSetting("acsUserKey", null);

 var acsWrapper = new ServiceManagementWrapper(
 acsServiceNamespace, acsUsername, acsPassword);
 var relyingParty = acsWrapper.
 RetrieveRelyingParties().
 SingleOrDefault(
 rp => rp.Name.Contains(transportPartner));

 var keyValue = string.Empty;

 if (relyingParty != null)
 {
 var key = relyingParty.
 RelyingPartyKeys.
 FirstOrDefault();
 ...
 keyValue = Convert.ToBase64String(key.Value);
 }

 // Values for trustedAudience:
 // urn:[queue-name]/[partner-name]
 var trustedAudience = string.Format("urn:{0}/{1}",
 CloudConfiguration.GetConfigurationSetting(
 "orderStatusUpdateQueue", string.Empty),
 HttpUtility.UrlEncode(transportPartner));

 var validator = new TokenValidator(
 "accesscontrol.windows.net",
 RoleEnvironment.GetConfigurationSettingValue(

100 chapter four

 "acsNamespace"),
 trustedAudience, keyValue);

 return validator.Validate(token);
}

The IsValidToken method uses the classes in the ACS.ServiceManagementWrapper project to re-
trieve information about the various relying parties configured in ACS. For more information about
the ACS.ServiceManagementWrapper, see “Access Control Service Samples and Documentation” at
http://acs.codeplex.com/releases/view/57595.

The IsValidToken method also uses a separate class named TokenValidator in the Orders.Workers
project to actually validate the token given the ACS hostname, the service namespace, the audience
value, and the signing key.

Sending Orders to the Audit Log
Currently, all orders with a value over $10,000 must be audited, and the audit log is held on-premises.
The order processing logic must be able to quickly determine the total cost of an order and direct the
details to the audit log. This processing must happen quickly without impinging on the responsiveness
to customers, it must be scalable as the volume of orders increases, and it must be flexible enough to
allow the auditing criteria to be quickly changed, again without extensively rewriting the code for the
worker role. As with orders sent to transport partners, all audit information is extremely sensitive and
must be protected against unauthorized access, especially as it traverses the network.

Choosing a Mechanism for Sending Orders to the Audit Log
Once Trey Research had settled on the use of Service Bus topics as the mechanism for communicating
with transport partners, they decided to use the same approach for auditing messages. When a cus-
tomer places an order, the total value of the order is calculated and added as a property called Order-
Amount to the message. If the value is more than $10,000, it is picked up by the audit subscription
and sent to the on-premises auditing application at Trey Research. Figure 5 highlights how this tech-
nology fits into the Trey Research solution. Notice that the audit log uses the same Service Bus topic
as the transport partners, but with a subscription that applies a different filter.

Remember that if a message posted to a topic satisfies the filter associated with more than one
subscription, a copy of the message will be routed to all matching subscriptions.

http://acs.codeplex.com/releases/view/57595

Cloud

Orders
Application

Service Bus
Topic

Fabrikam
Distance

Transport
Partner

Contoso Local
Transport

Partner

Status
Message
Queue

Connector

Order placed

Fabrikam Distance
Transport Partner

Subscription

Contoso Local
Transport Partner

Subscription

Adapter

Audit Log
Listener

Audit Log

OrderValue > $10K

Audit
Subscription

 101Implementing Reliable Messaging and Communications with the Cloud

Figure 5
Messaging technology used by Trey Research to route orders to the audit log

How Trey Research Sends Orders to the Audit Log
The total value of the order is added as the OrderAmount property to every order message posted
by the worker role to the Service Bus topic. The Trey Research application identifies all orders that
require auditing by creating a Service Bus subscription with an appropriate filter. The code that creates
this Service Bus subscription is located in the SetupAuditLogListener method in the setup program
in the TreyResearch.Setup project. The following code example shows the parts of this method that
configure the filter.

102 chapter four

C#
private static void SetupAuditLogListener()
{
 var formattedName = AuditLogListener.Replace(" ",
 string.Empty).ToLowerInvariant();
 ...
 var serviceBusTopicDescription =
 new ServiceBusSubscriptionDescription
 {
 Namespace = ServiceBusNamespace,
 TopicName = TopicName,
 SubscriptionName = string.Format(
 "{0}Subscription", formattedName),
 Issuer = Issuer,
 DefaultKey = DefaultKey
 };

 var serviceBusSubscription =
 new ServiceBusSubscription(serviceBusTopicDescription);
 const int AuditAmount = 10000;
 var filterExpression = string.Format(
 "OrderAmount > {0}", AuditAmount);
 serviceBusSubscription.CreateIfNotExists(
 filterExpression);

 ...
}

The Trey Research Head Office web application in the HeadOffice project includes the Audit-
Controller class, which connects to this subscription and retrieves orders to be audited. The Download-
Logs method in this class contains the code that actually retrieves the details of the orders to be au-
dited. Note that this method connects to the Service Bus topic in each datacenter in which the Orders
application runs; each instance of the Orders application posts messages to the topic in its local data-
center. The name of the subscription to use, the name of the topic, and the security keys are stored in
the configuration file with the application.

C#
public ActionResult DownloadLogs()
{
 ...
 var serviceBusNamespaces = WebConfigurationManager.
 AppSettings["AuditServiceBusList"].Split(',').ToList();
 ...

 foreach (var serviceBusNamespace in serviceBusNamespaces)

 103Implementing Reliable Messaging and Communications with the Cloud

 {
 // Connect to servicebus, download messages from the
 // Audit log subscription, save to database.
 var serviceBusTopicDescription =
 new ServiceBusSubscriptionDescription
 {
 Namespace = serviceBusNamespace,
 TopicName = WebConfigurationManager.
 AppSettings["topicName"],
 SubscriptionName = WebConfigurationManager.
 AppSettings["subscriptionName"],
 Issuer = WebConfigurationManager.
 AppSettings["issuer"],
 DefaultKey = WebConfigurationManager.
 AppSettings["defaultKey"]
 };

 var serviceBusSubscription = new
 ServiceBusSubscription(serviceBusTopicDescription);

 // MessagePollingInterval should be configured taking
 // into consideration variables such as CPU
 // processing power, expected volume of orders to
 // process and number of worker role instances
 var receiverHandler =
 new ServiceBusReceiverHandler<NewOrderMessage>(
 serviceBusSubscription.GetReceiver()) {
 MessagePollingInterval =
 TimeSpan.FromSeconds(2) };

 receiverHandler.ProcessMessages(
 (message, queueDescription, token) =>
 {
 return Task.Factory.StartNew(
 () => this.ProcessMessage(
 message, queueDescription),
 ...);
 },
 ...);
 }

 return RedirectToAction("Index");
}

104 chapter four

The ProcessMessage method (called by the ProcessMessages method of the ServiceBusReceiverHan-
dler object) simply saves the order message data to a local SQL Server database.

C#
public void ProcessMessage(NewOrderMessage message,
 ServiceBusQueueDescription queueDescription)
{
 // Save the AuditLog to the database
 var auditLog = new AuditLog
 {
 OrderId = message.OrderId,
 OrderDate = message.OrderDate,
 Amount = Convert.ToDecimal(message.Amount),
 CustomerName = message.CustomerName
 };

 this.auditLogStore.Save(auditLog);
}

Verifying Orders to Ensure Regulatory Compliance
The final challenge concerns integration with the compliance application. This application examines
orders for compliance with export restrictions and government regulations for technical products.
The compliance application communicates with the Orders database using a standard SQL Server
connection string, and executes queries to determine compliance on a pre-determined schedule. Ad-
ditionally, the compliance application generates reports that are stored in a secure on-premises loca-
tion within the Trey Research Head Office.

When the application was deployed on-premises, it accessed the Orders database and the secure
reporting location that were also located on-premises. Now that the Orders database is located in the
cloud, the compliance application must connect to a SQL Azure instance. This is a simple configura-
tion issue that can be easily resolved. However, the volume of traffic between the compliance applica-
tion and the Orders database is considerable as the compliance application executes its many data
queries and searches. These factors led Trey Research to consider in more depth how the application
itself should be deployed.

The source code for this application is confidential and not available; a government department
specifies the processes it must follow and certifies the operation. This makes it difficult if not impos-
sible to refactor the application as a worker role. In addition, the reporting functionality requires au-
thenticated connectivity to the appropriate server, and all data transmitted over this connection must
be secure.

 105Implementing Reliable Messaging and Communications with the Cloud

Choosing Where to Host the Compliance
Application

For hosting the compliance application, Trey Research decided to in-
stall and configure the application using the Windows Azure Virtual
Machine (VM) role. This solution balances the need to configure, de-
ploy, and maintain a VM role in the cloud, close to the orders data
being examined, against the alternative of retaining the compliance
application on-premises and either connecting to the orders data in
the cloud or transferring the data from the cloud to an on-premises
database.

The compliance application needs to access the secure location
where it stores the various reports that it generates. This location is
on an on-premises server, and Trey Research decided to use Windows
Azure Connect to provide an authenticated, secure virtual network
connection between the VM role and this server.

Trey Research chose to deploy the VM role to the US North Data
Center as it is the closest datacenter to the Head Office, hopefully
minimizing any network latency that may result from connecting
across the on-premises/cloud boundary.

How Trey Research Hosted the Compliance
Application

The VM role that hosts the compliance application examines data held
in the SQL Azure Orders database. The VM role is deployed to the US
North Data Center, but the compliance application generates reports
that are stored in a secure on-premises location within the Trey Re-
search head office infrastructure. The compliance application also
sends data to the monitoring application, which is also located on-
premises; this application exposes a series of Distributed Component
Object Model (DCOM) interfaces to which the compliance applica-
tion connects for this purpose.

Trey Research implemented a separate small domain with its own
Domain Name System (DNS) service in the on-premises infrastructure
specifically for hosting the Windows Azure Connect endpoint soft-
ware, the reporting data, and the monitoring application. Reports are
stored in a share protected by using an Access Control List (ACL). Ac-
cess is granted to an account defined within the domain. The compli-
ance application, which is joined to the domain, provides these creden-
tials when writing reports to this share. The same approach is used to
protect the DCOM interface exposed by the monitoring application.

This section is provided for
information only, showing
how a solution could be
implemented. The Trey
Research example application
does not actually include the
compliance application or the
corresponding VM role.

When deciding whether
to deploy an application
to a VM role, you need
to consider the benefits
of reducing the network
overhead of a chatty
application such as the
compliance application
connecting to a database
in the cloud against the
cost of maintaining and
managing the VM role.

US North Datacenter

Head Office

Domain for Connect Components

Monitoring
application

SQL Azure

Customers
Products

Orders
Application

Compliance
application

Primary Domain

Management application

Audit Log

Audit Log
Listener

Customers
ProductsReports are stored in a

network share protected
by using ACLs

Trust relationship
between domains

Compliance application
provides the appropriate
credentials for accessing
the Reports share and
Monitoring application

DCOM interfaces
exposed by the

Monitoring
application are
protected by
using ACLs

Management Application
retrieves data from the
Reports share and the
monitoring application

Orders

Domain
Controller &
DNS Server

Domain
Controller

Reports

Windows
Azure Connect

Endpoint
Software

106 chapter four

This domain has a trust relationship with the primary domain within Trey Research, and the man-
agement application running in the primary domain can periodically retrieve the reporting data and
analyze the information logged by the monitoring application. Figure 6 shows the structure of the
compliance system.

Figure 6
Structure of the compliance system

 107Implementing Reliable Messaging and Communications with the Cloud

Summary
This chapter has looked at how Trey Research used two important Windows Azure technologies to
implement a reliable cross-boundary communication layer based on Service Bus topics, subscriptions,
and queues. These technologies provide a foundation that you can use to construct elegant hybrid
solutions comprising components that need to communicate across the cloud/on-premises divide.

Service Bus queues enable you to implement asynchronous messaging that helps to remove the
temporal dependency between the client application posting a request and the service receiving the
request. Message-oriented applications are highly suited to use in cloud environments as they can
more easily handle the variable volumes and peak loading that is typical of many commercial systems,
and can easily be made robust enough to handle network and communications failure. Using Service
Bus queues, you can implement a number of common messaging patterns and adapt them as appropri-
ate to the requirements of your system.

Service Bus topics and subscriptions enable you to intelligently route messages to services. An
application can post messages to a topic and include metadata that a filter can use to determine which
subscriptions to route the message through. Services listening on these subscriptions then receive all
matching messages. This simple but powerful mechanism enables you to address a variety of scenarios,
and easily construct elegant solutions for these scenarios.

Finally, Windows Azure Connect enables you to establish a virtual network connection between
a role hosted in the cloud and your on-premises infrastructure, and is suitable for situations where you
need a direct connection between components rather than a message-oriented interface. You can
share data across this network connection in a similar manner to accessing resources shared between
computers running on-premises.

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx.
•	 “Hybrid Reference Implementation Using BizTalk Server, Windows Azure, Service Bus and SQL

Azure” at http://msdn.microsoft.com/en-us/windowsazure/hh547113(v=VS.103).aspx.
•	 “An Introduction to Service Bus Queues” at http://blogs.msdn.com/b/appfabric/archive/

2011/05/17/an-introduction-to-service-bus-queues.aspx.
•	 “Windows Azure Queues and Windows Azure Service Bus Queues - Compared and Contrasted”

at http://msdn.microsoft.com/en-us/library/windowsazure/hh767287(v=vs.103).aspx.
•	 “Building loosely-coupled apps with Windows Azure Service Bus Topics and Queues” at

http://channel9.msdn.com/Events/BUILD/BUILD2011/SAC-862T.
•	 “Best Practices for Leveraging Windows Azure Service Bus Brokered Messaging API” at

http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-
brokered-messaging-api/.

•	 “Best Practices for Performance Improvements Using Service Bus Brokered Messaging” at
http://msdn.microsoft.com/en-us/library/windowsazure/hh528527.aspx.

•	 “Queues, Topics, and Subscriptions” at http://msdn.microsoft.com/en-us/library/windowsazure/
hh367516.aspx.

•	 “Service Bus Authentication and Authorization with the Access Control Service” at
http://msdn.microsoft.com/en-us/library/windowsazure/hh403962.aspx.

http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://msdn.microsoft.com/en-us/windowsazure/hh547113(v=VS.103).aspx
http://blogs.msdn.com/b/appfabric/archive/2011/05/17/an-introduction-to-service-bus-queues.aspx
http://blogs.msdn.com/b/appfabric/archive/2011/05/17/an-introduction-to-service-bus-queues.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287(v=vs.103).aspx
http://channel9.msdn.com/Events/BUILD/BUILD2011/SAC-862T
http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-brokered-messaging-api/
http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-brokered-messaging-api/
http://msdn.microsoft.com/en-us/library/windowsazure/hh528527.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh367516.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh367516.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh403962.aspx

108 chapter four

•	 “Using Service Bus Topics and Subscriptions with WCF” at http://blogs.msdn.com/b/tomholl/
archive/2011/10/09/using-service-bus-topics-and-subscriptions-with-wcf.aspx.

•	 “How to Simplify & Scale Inter-Role Communication Using Windows Azure Service Bus” at
http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-
windows-azure-service-bus/.

•	 “Service Bus REST API Reference” at http://msdn.microsoft.com/en-us/library/windowsazure/
hh780717.aspx.

•	 “Overview of Windows Azure Connect” at http://msdn.microsoft.com/en-us/library/
gg432997.aspx.

http://blogs.msdn.com/b/tomholl/archive/2011/10/09/using-service-bus-topics-and-subscriptions-with-wcf.aspx
http://blogs.msdn.com/b/tomholl/archive/2011/10/09/using-service-bus-topics-and-subscriptions-with-wcf.aspx
http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-windows-azure-service-bus/
http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-windows-azure-service-bus/
http://msdn.microsoft.com/en-us/library/windowsazure/hh780717.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh780717.aspx
http://msdn.microsoft.com/en-us/library/gg432997.aspx
http://msdn.microsoft.com/en-us/library/gg432997.aspx

 109

5 Processing Orders in the
Trey Research Solution

Having established an asynchronous messaging layer for communicating between the Orders applica-
tion and the transport partners based on Service Bus topics, subscriptions, and queues, the developers
at Trey Research were able to turn their attention to implementing the business logic for processing
orders. This is the primary function of the Orders application running on the Windows Azure™
technology platform, and it was important for Trey Research to establish a robust mechanism that
ensures orders will not be mislaid.

In this chapter, you will see how Trey Research designed the order processing and reporting logic
to take full advantage of the scalability of the messaging framework, while ensuring that customers’
orders are managed correctly and reliably.

Scenario and Context
Trey Research utilizes the services of external transport partners to ship orders to customers. These
transport partners may implement their own systems, and no two transport partners necessarily fol-
low the same procedures for handling orders; they simply guarantee that once Trey Research has
provided them with the details of an order and a shipping address, they will collect the goods from the
Trey Research manufacturing plant and deliver the goods to the customer.

For the reasons described in Chapter 4, “Implementing Reliable Messaging and Communications
with the Cloud,” Trey Research decided to use Service Bus topics, subscriptions, and queues to com-
municate with the transport partners. Using this infrastructure, after storing the details of a new
order in the local database running on the SQL Azure™ technology platform, the Orders application
posts these details to a well-known Service Bus topic and the transport partners each use their own
Service Bus subscription to retrieve orders and ship them (each subscription has a filter that ensures
that a transport partner receives only the orders that it should ship, and it does not have access to
the orders intended for other transport partners.) Each transport partner responds with one or more
messages indicating the current state of the shipping process; these messages are posted to a Service
Bus queue. The Orders application retrieves these messages and uses them to update the status of
the orders in the local SQL Azure database. Customers can use the Orders application to examine
the status of their orders.

Cloud

Orders
Application

Service Bus
Topic

Fabrikam
Distance

Transport
Partner

Contoso Local
Transport

Partner

Status
Message
Queue

Order message in format expected by
Distance Transport Partner

New Order

Order
Received / Shipped

New
Order

New
Order

New
Order

New
Order

Fabrikam Distance
Transport Partner

Subscription

Contoso Local
Transport Partner

Subscription

Order
Received

Adapter

Order
Received

SQL Azure

Orders

Order
Details

Order
Status

Order
Shipped

Connector

110 chapter five

Figure 1 illustrates the logical flow of messages and data through the Orders application and the
transport partners. Note that although the Order application always sends a single order message to
a transport partner for each new order placed, the message or messages returned by the transport
partner depend entirely on the internal systems implemented by that transport partner, and the Or-
ders application simply records the details of each response as a status message in the SQL Azure
database. This variation is reflected in the Trey Research sample solution. The local transport partner,
Contoso, sends two messages; the first message acknowledges receipt of the order and responds with
a tracking ID for the order while the second message is sent when the order has actually been shipped.
The distance transport partner, Fabrikam, only sends a reply acknowledging the order, again containing
a tracking ID.

Many commercial partners provide their own web applications that customers can use to query the
delivery status of an order; the customer simply has to provide the tracking ID. This functionality is
outside the scope of Trey Research.

Figure 1
Logical flow of messages and data when a customer places an order

 111Processing Orders in the Trey Research Solution

Orders with a value above $10,000 must be audited, and they are retrieved from the Service Bus
topic by using a separate Service Bus subscription and directed to the audit log. The implementation
of this part of the order process is described in the section “How Trey Research Sends Orders to the
Audit Log” in Chapter 4, “Implementing Reliable Messaging and Communications with the Cloud.”
Additionally, each order is subjected to checking against export regulations by a separate
compliance application. The section “How Trey Research Hosted the Compliance Application” (also
in Chapter 4) describes how Trey Research configured the solution to support this requirement.

Neither of these two aspects of the order process is covered further in this chapter.

Processing Orders and Interacting with Transport Partners
Although simple in theory, there were a number of technical and logistical challenges, spread across
two main areas of concern, which Trey Research had to address when implementing the order process.

•	 The process must be reliable and scalable.
Once a customer has placed an order, the order must be fulfilled and should not be lost.

Service Bus topics and queues provide a reliable mechanism for routing and receiving mes-
sages and, once posted, a message will not be lost. However, the act of posting a message
involves connecting to a topic or queue across the Internet, and this is a potential source of
failure. The order process must guarantee that orders are posted successfully.

Additionally, the volume of orders may vary significantly over time, so the business logic
implementing the order handling process must be scalable to enable it to post messages
quickly without consuming excessive resources.

•	 The order process must be decoupled from the internal logic, number, and location of
transport partners, as well as the location of the datacenter running the Orders application.

The transport partners internal systems may be unable to connect directly to the Service
Bus subscriptions and queues provided by Trey Research. Administrators at transport part-
ners may be unwilling to install Trey Research’s code on their systems.

Furthermore, Trey Research may work with the services of different transport partners
over time. The solution must be flexible enough to allow transport partners to be enrolled or
removed from the system quickly and easily.

Finally, the Orders application may be running in more than one datacenter, each hosting
its own set of Service Bus topics, subscriptions, and queues. Each transport partner must be
prepared to receive orders from a subscription in any of these datacenters, and post response
messages back to the queue in the correct datacenter.

The following sections describe how Trey Research resolved these issues in their implementation.

112 chapter five

How Trey Research Posts Messages to a
Topic in a Reliable Manner

When a customer places an order the Orders application, the web role
saves the order to a database. Subsequently, the worker role retrieves
the order, posts the delivery details as a message to a transport part-
ner through a Service Bus topic, and updates the status of the order
to indicate that it has been sent. It is vital that the send and update
operations both succeed, or that a corresponding recovery action or
notification occurs if one of these operations fails; this is essentially
the definition of a transaction. However, at the time of writing, Ser-
vice Bus messaging only provides transactional behavior within the
Service Bus framework. Windows Azure Service Bus does not cur-
rently support the use of the Microsoft Distributed Transaction Co-
ordinator (DTC), so you cannot combine SQL Azure database opera-
tions with a Service Bus send or receive operation within the same
transaction.

For this reason, Trey Research decided to implement a custom
implementation that keeps track of the success or failure of each send
operation that posts order messages to the Service Bus topic, and
maintains the status of the order accordingly. This mechanism imple-
ments a pseudo-transaction; it is arguably a more complex process
than may be considered necessary, but it can be more successful in
countering transient faults (such as those caused by an intermittent
connection to a Service Bus topic) and when using asynchronous mes-
saging operations. This approach is also highly extensible; it is likely to
be most useful when there are many operations to perform, or where
there is a complex inter-relationship between operations.

Figure 2 shows a high-level overview of the solution Trey Research
implemented to ensure that orders placed by customers are stored in
the database and the delivery request is successfully sent to a trans-
port partner and the audit log.

It is vital to design your
messaging code in such a
way that it can cope with
failures that may arise at
any point in the entire
messaging cycle, and not
just when code fails to send
or receive a message.
Frameworks, components,
and documentation are
available to help you
implement retry logic for
Windows Azure messaging,
such as “Best Practices
for Leveraging Windows
Azure Service Bus Brokered
Messaging API.”

http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-brokered-messaging-api/
http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-brokered-messaging-api/
http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-brokered-messaging-api/
http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-brokered-messaging-api/

Database

Order
Details

Web Role

Worker
Role

Order
details

Place
order

Topic

StatusStatusStatus

Transport
Partner

Audit Log
Listener

Database inserts
are executed as a
single transaction

Look for unprocessed orders in the database.

For each order, perform the following tasks as a pseudo-transaction:
 Post the delivery details of the order to the Topic
 Update the status of the order to indicate that it has been successfully posted

 113Processing Orders in the Trey Research Solution

Figure 2
The custom transactional and retry mechanism implemented for the Trey
Research Orders application

The implementation uses separate database tables that store the
details of the order and the current status of each order. When a
customer places an order, the web role populates these tables using a
database transaction to ensure that they all succeed. If there is an er-
ror, it notifies the administrator.

This approach separates the task of saving the order from the
tasks required to process the order, which are carried out by the
worker role, and releases the web role to handle other requests. It also
means that the web role can display information such as the order
number to the customer immediately, and the customer will be able
to view the current status of all of their orders without needing to
wait until the order processing tasks have completed.

If you need to perform complex processing on messages before posting them to a queue, or handle multiple messages
and perhaps combine them into one message, you might consider doing this in the web role and then storing the
resulting message in the database. This approach can improve performance and reduce the risk of failure for worker
roles, but can have a corresponding negative impact on the responsiveness of the web roles. It also splits the logic for
the order processing task across the worker roles and web roles, with a resulting loss of separation of responsibility.

114 chapter five

The worker role then carries out the tasks required to complete
the process. It sends each message to a Service Bus topic that passes
it to the transport partner to notify that a delivery is pending, and to
the audit log when the order value exceeds a specific amount.

The worker role also listens for a response from a transport part-
ner that indicates the message was received. This response will con-
tain information such as the delivery tracking number that the worker
role stores in the database (this part of the process is outside the
scope of the custom retry mechanism and is not depicted in Figure 2).

At each stage of the overall process, the worker role updates the
order status in the database to keep track of progress. For example,
the status details may indicate that an order has been accepted and
sent to a transport partner, but an acknowledgement has not yet been
received.

Typically, the status rows will also contain a count of the number
of times the send process has been attempted for each item, so the
worker role can abandon the process and raise an exception, or place
the message in a dead letter queue for human intervention, if a speci-
fied number of retries has been exceeded.

The following sections provide more detail on how Trey Research
designed and implemented this mechanism using SQL Azure and the
messaging layer defined in Chapter 4, “Implementing Reliable Messag-
ing and Communications with the Cloud.”

Recording the Details of an Order
A customer places an order by using the “Checkout” facility in the
Orders web application implemented by the Orders.Website proj-
ect. This operation invokes the AddressAndPayment action handler
in the CheckoutController class. The AddressAndPayment method
creates an Order object using the data entered by the customer, and
uses the Entity Framework (EF) to add this order to the SQL Azure
database. The following code sample shows the relevant sections of
the AddressAndPayment method. Note that the customer and ad-
dress information is added to the Order object by using the Try-
UpdateModel method.

C#
public ActionResult AddressAndPayment(
 FormCollection values)
{
 var order = new Order();
 this.TryUpdateModel(order);

 var identity = User.Identity as IClaimsIdentity;
 var userName = identity.GetFederatedUsername();

The sample Trey Research
application that you can
download for this guide
implements many of the
technologies and techniques
described here. However, to
simplify installation and
setup, and reduce the prereq-
uisites and the requirements
for users to establish extensive
Windows Azure accounts, the
feature set and some of the
implementation details differ
from the text of this guide.

 115Processing Orders in the Trey Research Solution

 var cartId = ShoppingCart.GetCartId(this.HttpContext);
 var cartItems = this.cartStore.FindCartItems(cartId);

 order.OrderDetails = cartItems.Select(
 i => new OrderDetail
 { ProductId = i.ProductId, Quantity = i.Count,
 Product = i.Product });
 order.UserName = userName;
 order.OrderDate = DateTime.Now;

 // Save the order
 this.ordersStore.Add(order);

 ...
}

For each order that is created, the Add method of the underlying entity model also creates a collection
of OrderDetail objects and populates these with the information about each item in the order. The
information that describes the order (the name, address, and contact details for the customer to-
gether with the date the order was placed, the total value of the order, and a unique order ID) is saved
to the Order table in the SQL Azure database. The line items that comprise the order (the product
and the quantity required) are saved to the OrderDetail table. The following code sample shows the
Add method.

C#
public void Add(Order order)
{
 ...
 var orderId = Guid.NewGuid();

 var orderToSave = new Entities.Order
 {
 OrderId = orderId,
 UserName = order.UserName,
 OrderDate = order.OrderDate,
 Address = order.Address,
 City = order.City,
 State = order.State,
 PostalCode = order.PostalCode,
 Country = order.Country,
 Phone = order.Phone,
 Email = order.Email,
 Total = order.OrderDetails.Sum(
 d => d.Quantity * d.Product.Price)
 };

 using (var database

116 chapter five

 = TreyResearchModelFactory.CreateContext())
 {
 database.Orders.AddObject(orderToSave);

 foreach (var orderDetail in order.OrderDetails)
 {
 var detailToSave = new OrderDetail
 {
 ProductId = orderDetail.ProductId,
 OrderId = orderId,
 Quantity = orderDetail.Quantity
 };
 database.OrderDetails.AddObject(detailToSave);
 }
 ...
 }
}

Processing an order requires the Orders application to keep track of the status of an order. The Orders
application records information in two tables; OrderStatus and OrderProcessStatus. These rows
indicate the current processing status of the order and the most recent operation carried out by the
order processing code. After it has created the Order and OrderDetail entities, the Add method
continues by creating rows for the OrderStatus and OrderProcessStatus tables.

C#
 ...
 var status = new Entities.OrderStatus
 {
 OrderId = orderId,
 Status = "TreyResearch: Order placed",
 Timestamp = DateTime.UtcNow
 };
 database.OrderStatus.AddObject(status);

 var orderProcess = new OrderProcessStatus
 {
 OrderId = orderId,
 ProcessStatus = "pending process"
 };
 database.OrderProcessStatus.AddObject(orderProcess);
 ...

Finally, the Add method saves all of the changes to the tables by calling the SaveChanges method of
the data model. Notice that it does so by calling the ExecuteAction method of the object defined in
the sqlCommandRetryPolicy property of the class.

 117Processing Orders in the Trey Research Solution

C#
 ...
 this.sqlCommandRetryPolicy.ExecuteAction(
 () => database.SaveChanges());
 order.OrderId = orderId;
 ...

The sqlCommandRetryPolicy property implements an example of a Transient Fault Handling
Application Block policy for accessing a SQL Azure database. For more information and further
examples, see the section “Customer Details Storage and Retrieval” in Chapter 3, “Authenticating
Users in the Orders Application.” Additional information is also available online; see the topic “The
Transient Fault Handling Application Block” on MSDN.

At this point, the order is ready to be sent for processing.

Sending an Order to a Service Bus Topic from the Orders Application
The order processing logic is initiated by the worker role in the Orders.Workers project. The worker
role uses two classes that encapsulate the logic for sending orders to transport partners, and for re-
ceiving order status and acknowledgement messages from transport partners. These two classes,
NewOrderJob and StatusUpdateJob, are referred to as “job processors.” The constructor for the
WorkerRole class (defined in the Orders.Workers project) executes the CreateJobProcessors
method to instantiate these objects.

C#
public class WorkerRole : RoleEntryPoint
{
 private readonly IEnumerable<IJob> jobs;
 ...

 public WorkerRole()
 {
 ...
 this.jobs = this.CreateJobProcessors();
 }

 ...

 private IEnumerable<IJob> CreateJobProcessors()
 {
 return new IJob[]
 {
 new NewOrderJob(),
 new StatusUpdateJob(),
 };
 }
}

file:///C:/Users/Chris/Microsoft/Book-Hybrid/WordFiles/at%20http:/msdn.microsoft.com/en-us/library/hh680934(v=pandp.50).aspx
file:///C:/Users/Chris/Microsoft/Book-Hybrid/WordFiles/at%20http:/msdn.microsoft.com/en-us/library/hh680934(v=pandp.50).aspx

118 chapter five

The job processors both implement the IJob interface (defined in the Jobs folder of the Orders.
Workers project). This interface defines methods for starting and stopping long-running jobs:

C#
public interface IJob
{
 void Run();
 void Stop();
}

Having created the job processors, the Run method in the worker role starts each job processor ex-
ecuting by using a separate Task. The worker role keeps track of the state of each task, polling every
30 seconds, and if necessary restarting any job processors that have failed. The following code ex-
ample shows the Run method of the worker role.

C#
public class WorkerRole : RoleEntryPoint
{
 private readonly IEnumerable<IJob> jobs;
 private readonly List<Task> tasks;
 private bool keepRunning;

 ...

 public override void Run()
 {
 this.keepRunning = true;

 // Start the jobs
 foreach (var job in this.jobs)
 {
 var t = Task.Factory.StartNew(job.Run);
 this.tasks.Add(t);
 }

 // Control and restart a faulted job
 while (this.keepRunning)
 {
 for (int i = 0; i < this.tasks.Count; i++)
 {
 var task = this.tasks[i];

 119Processing Orders in the Trey Research Solution

 if (task.IsFaulted)
 {
 // Observe unhandled exception
 if (task.Exception != null)
 {
 TraceHelper.TraceError(
 "Job threw an exception: " +
 task.Exception.InnerException.Message);
 }
 else
 {
 TraceHelper.TraceError(
 "Job Failed and no exception thrown.");
 }

 var jobToRestart = this.jobs.ElementAt(i);
 this.tasks[i] =
 Task.Factory.StartNew(jobToRestart.Run);
 }
 }

 Thread.Sleep(TimeSpan.FromSeconds(30));
 }
 }
}

The following section describes how the NewOrderJob class sends orders to transport partners. The
UpdateStatusJob class is described in the section “Receiving Acknowledgement and Status Messages
in the Orders Application,” later in this chapter.

The NewOrderJob Class
The worker role uses the NewOrderJob job processor to query the database for new orders and dis-
patch them to the appropriate transport provider.

The NewOrderJob class implements a reliable mechanism that sends messages to the Service Bus
topic. It tracks whether the send operation was successful, and if necessary can retry failed send op-
erations later. If (and only if) the message was sent successfully is the status of the order updated in
the database.

The mechanism implemented by the NewOrderJob class is a simplified adaptation of the Scheduler-
Agent-Supervisor pattern documented by Clemens Vasters. For more information, see the article
“Cloud Architecture - The Scheduler-Agent-Supervisor Pattern.”

http://vasters.com/clemensv/CommentView,guid,83f937f7-b838-43d0-ad61-74605eceafa2.aspx

NewOrderJob

ProcessStatusStore

ServiceBusTopic
Description

TransportPartnerStore

ProcessStatusStore

ServiceBusTopic

LockOrders
GetLockedOrders

Get Name

SendComplete

UpdateWithError

Get Topic

Get Orders to Process

Create Message

Set Filtering Properties

Send Message

Success

Failed

ServiceBusTopicSend

120 chapter five

Figure 3 shows a high-level view of the tasks that the NewOrderJob accomplishes and the ancil-
lary classes it uses. The ServiceBusTopic and ServiceBusTopicDescription classes are described in
Chapter 4, “Implementing Reliable Messaging and Communications with the Cloud,” but the remaining
classes are described later in this section.

Figure 3
Message flow for the order processing system

Recall that the worker role starts the NewOrderJob job processor by calling the Run method.
This method creates an instance of the ServiceBusTopicDescription class and populates it with the
required values for the target topic, then uses this to create an instance of the ServiceBusTopic class
named newOrderMessageSender.

C#
var serviceBusTopicDescription
 = new ServiceBusTopicDescription
{
 Namespace = this.serviceBusNamespace,
 TopicName = topicName,
 Issuer = issuer,
 DefaultKey = defaultKey
};
this.newOrderMessageSender
 = new ServiceBusTopic(serviceBusTopicDescription);

 121Processing Orders in the Trey Research Solution

The NewOrderJob job processor can then use the ServiceBusTopic instance to send the message,
which it does by calling its Execute method.

C#
while (this.keepRunning)
{
 this.Execute();
 Thread.Sleep(TimeSpan.FromSeconds(10));
}

The Execute method processes orders in batches, up to 32 at a time. Each order in a batch is
posted asynchronously by a separate task created by the Send method of a ServiceBusTopic object.
The NewOrderJob job processor sleeps for 10 seconds between invocations of the Execute method
to prevent resource starvation. This value was selected based the expected volume of orders and
profiling the performance of the application, but it may be changed if the number of orders
increases significantly.

Locking Orders for Processing
The details of orders are held in the local SQL Azure database (in tables named Order and Order-
Details), but to help keep track of the status of orders and ensure that they are processed reliably
Trey Research defined two further tables in the same database.

The first of these, the OrderStatus table, contains the status rows for each order. Each row indi-
cates the most recent publicly visible status of the order as displayed in the website page when cus-
tomers view the list of their current orders. New rows are added with a timestamp; to maintain his-
tory information existing rows are not updated. The following table describes the columns in the
OrderStatus table.

Column Description

OrderID The foreign key that links the row to the related row in the Order table.

Status A value that indicates the most recent publicly visible status of the order. Possible values are Order
placed, Order sent to transport partner, Order received (by transport partner), and Order shipped
(when the goods have been delivered).

Timestamp The UCT date and time when this change to the status of the order occurred.

The other table, OrderProcessStatus, contains the data that the retry mechanism uses to determine
whether an order message has been successfully posted to the Service Bus topic. The following table
describes the columns in the OrderProcessStatus table.

122 chapter five

Column Description

OrderID The foreign key that links the row to the related row in the Order table.

ProcessStatus A value used internally by the worker role that indicates the status of the process. Possible values are
pending process, processed, error, and critical error. These values are defined in the ProcessStatus
class located in the Stores folder of the Orders.Workers project.

LockedBy The ID of the worker role that is processing the order (obtained from RoleEnvironment.CurrentRole-
Instance.Id) or NULL if the order is not currently being processed.

LockedUntil The UCT date and time when the current processing of the order will timeout, or NULL if the order is
not currently being processed.

Version A value used to support optimistic locking by EF for rows in this table. It has the ConcurrencyMode
property set to Fixed and the StoreGeneratedPatterns property set to Computed. It is automatically
updated by EF when rows are inserted or updated.

RetryCount The number of times that processing of the order has been attempted so far. It is incremented each
time a worker role attempts to process the order. After a number of failed attempts, the worker role
sets the process status to critical error and raises an exception to advise administrators that there is a
problem.

BatchId A GUID that identifies this batch of orders being processed. Each time a worker role locks a batch of
orders that it will start processing it assigns the same BatchId to all of these so that it can extract them
after the lock is applied in the database.

As an optimization mechanism, the Execute method retrieves orders from the SQL Azure database in
batches, but it needs to ensure that the same orders are not going to be retrieved by another concurrent
invocation of the Execute method. Therefore, the Execute method locks a batch of rows in the Order
table that it will process, and then retrieves this batch of rows as a collection of OrderProcessStatus
objects by calling the LockOrders and GetLockedOrders methods in the Process-StatusStore class
(located in the Stores folder of the Orders.Workers project).

C#
var batchId = this.processStatusStore.LockOrders(
 RoleEnvironment.CurrentRoleInstance.Id);
var ordersToProcess
 = this.processStatusStore.GetLockedOrders(
 RoleEnvironment.CurrentRoleInstance.Id, batchId);

The LockOrders method in the ProcessStatusStore class locks the orders by executing a SQL state-
ment that sets the values in the OrderProcessStatus table rows. It assigns the current worker role
instance ID and the batch ID to each one that has not already been processed, has not resulted in a
critical error and been abandoned, and is not already locked by this or another instance of the New-
OrderJob job processor. Also, notice that the LockOrders method only locks the first 32 orders
available, and only for a specified period of time. This approach prevents the NewOrderJob job pro-
cessor from causing a bottleneck by attempting to process too many orders at a time, and also prevents
a failed instance of the NewOrderJob job processor causing an order to be locked indefinitely.

 123Processing Orders in the Trey Research Solution

C#
public Guid LockOrders(string roleInstanceId)
{
 using (var database =
 TreyResearchModelFactory.CreateContext())
 {
 var batchId = Guid.NewGuid();
 var commandText = “UPDATE TOP(32) OrderProcessStatus "
 + "SET LockedBy = {0}, LockedUntil = {1}, "
 + "BatchId = {2} "
 + "WHERE ProcessStatus != {3} "
 + "AND ProcessStatus != {4} "
 + "AND (LockedUntil < {5} OR LockedBy IS NULL)";
 this.sqlCommandRetryPolicy.ExecuteAction(
 () => database.ExecuteStoreCommand(
 commandText, roleInstanceId,
 DateTime.UtcNow.AddSeconds(320), batchId,
 ProcessStatus.Processed,
 ProcessStatus.CriticalError,
 DateTime.UtcNow));
 return batchId;
 }
}

The NewOrderJob job processor locks orders, processes them and finally sends “New Order”
messages asynchronously, which means that after sending the message, the execution continues.
Under some possible but unlikely circumstances, the Execute method of an instance of the
NewOrderJob class can be called when there are still some orders being processed by that same
instance. This will occur if processing the full batch of 32 orders takes more than 10 seconds (see
the earlier note regarding the sleep interval between invocations of the Execute method).

To prevent the job processor from attempting to handle the same order more than once, the
developers added the BatchId to each batch of orders as they are locked. This is a random value
generated for each batch of orders. Subsequently, when the Execute method processes each order,
it only fetches the orders that have the appropriate value for the BatchId.

The GetLockedOrders method in the ProcessStatusStore class queries the OrderProcessStatus
table to retrieve the rows that were successfully locked by the LockOrders method.

124 chapter five

C#
public IEnumerable<Models.OrderProcessStatus>
 GetLockedOrders(string roleInstanceId, Guid batchId)
{
 using (var database =
 TreyResearchModelFactory.CreateContext())
 {
 return
 this.sqlCommandRetryPolicy.ExecuteAction(
 () =>
 database.OrderProcessStatus.Where(
 o =>
 o.LockedBy.Equals(roleInstanceId,
 StringComparison.OrdinalIgnoreCase)
 && o.BatchId == batchId).Select(
 op =>
 new Models.OrderProcessStatus
 {
 LockedBy = op.LockedBy,
 LockedUntil = op.LockedUntil,
 OrderId = op.OrderId,
 ProcessStatus = op.ProcessStatus,
 Order =
 new Models.Order
 {
 OrderId = op.Order.OrderId,
 UserName = op.Order.UserName,
 OrderDate = op.Order.OrderDate,
 Address = op.Order.Address,
 City = op.Order.City,
 State = op.Order.State,
 PostalCode = op.Order.PostalCode,
 Country = op.Order.Country,
 Phone = op.Order.Phone,
 Email = op.Order.Email,
 Total = op.Order.Total
 }
 }).ToList());
 }
}

 125Processing Orders in the Trey Research Solution

Handling Orders with Expired Locks
The Execute method then iterates over the collection of locked or-
ders and sends a suitable message for each one to the Service Bus
topic. However, there is a small possibility, especially during initial
configuration and profiling of the application, that the batch size se-
lected for the NewOrderJob job processor may be too large, or the
interval between processing batches is too small, and the next itera-
tion commences before the current batch of orders has been dis-
patched but after the LockedUntil time for one or more orders in the
batch has passed. In this case these locks are considered to have ex-
pired and the next iteration of the NewOrderJob job processor may
have relocked these orders and be in the process of sending them. So,
to avoid the same order being posted twice, the Execute method
examines the LockedUntil property of each order in the batch, and if
the value of this property is before the current time then the order is
skipped and handled in a subsequent iteration, if necessary.

The following code shows how Trey Research iterates over the
orders to process and checks for expired messages.

C#
foreach (var orderProcess in ordersToProcess)
{
 if (orderProcess.LockedUntil < DateTime.UtcNow)
 {
 // If this orderProcess expired, ignore it and let
 // another Worker Role process it.
 continue;
 }

 ...
 // Code here to create the message, add the required
 // Service Bus topic filter properties, and then
 // send the message.
 ...
}

Posting Orders to the Service Bus Topic
The Service Bus topic that Trey Research uses in the Orders applica-
tion is configured to filter messages based on the delivery location and
the total value of the order. A summary of every order must be sent to
the appropriate transport partner to advise the requirement for deliv-
ery. Additionally, the details of all orders with a total value over $10,000
are sent to an on-premises service to be stored in the audit log data-
base. The Execute method therefore adds the required properties to
the message so that the Service Bus topic can filter them and post
them to the appropriate subscribers. The following code shows how
the Execute method uses a separate class named TransportPartner-
Store to obtain the appropriate transport partner name.

The use of filters in a
Service Bus topic allows you
to implement rudimentary
business logic, and even
modify the properties
of messages as they pass
through the topic. It also
allows you to decouple
senders and receivers by
allowing a varying number
of subscribers to listen to
a topic, each receiving only
messages that are targeted
to them by a filter in the
topic. However, topics and
filters do not provide a
general purpose workflow
mechanism, and you should
not try to implement
complex logic using Service
Bus topics.

126 chapter five

C#
 var transportPartnerName = this.transportPartnerStore
 .GetTransportPartnerName(orderProcess.Order.State);

Creating a New Order Message
The Execute method can now create the order message to send. To
handle failures when sending messages, the custom retry mechanism
might need to attempt to send the same message more than once. The
Execute method cannot just create the message and pass it to the
Send method of the ServiceBusTopic class because the serialization
mechanism used by Service Bus messages means that the body of a
message can only be read once. Therefore, the Execute method de-
fines a function that creates the message dynamically and then passes
this function to the Send method of the ServiceBusTopic class. The
Send method can then invoke this method to construct a fresh copy
of the message each time it is sent.

The following code shows the section of the Execute method
that defines this function. Notice that it does so by first creating an
instance of the NewOrderMessage class (defined in the Communica-
tion\Messages folder of the Orders.Shared project), which represents
the specific message that Trey Research needs to send, and then builds
a Service Bus BrokeredMessage instance from this. Finally, it sets the
following properties of the BrokeredMessage instance:
•	 The TransportPartnerName property, previously retrieved from

the TransportPartnerStore, is used by a Service Bus filter to
direct the message to the appropriate transport partner.

•	 The ServiceBusNamespace property indicates the Service Bus
namespace that contains the Service Bus queue specified in the
ReplyTo property. The Orders application may be deployed to
more than one datacenter, and the transport partner needs to
know which instance of Service Bus it should use when posting
a response.

•	 The AcsNamespace property allows the receiver to tell which
instance of ACS was used by the sender to authenticate (the
application may be configured to use ACS in more than one
datacenter for authenticating partners for Service Bus access).
This is required so that the receiver of the message can validate
the sender, as described in the section “Securing Messages” in
Chapter 4 “Implementing Reliable Messaging and Communica-
tions with the Cloud.”

•	 The OrderAmount property is used by a Service Bus filter to
detect orders over the specified total value and send a copy of
these messages to the on-premises audit log.

The TransportPartnerStore
class is used to determine
which transport partner a
message should be sent to; the
choice is based on the location
of the order recipient. It is
defined in the Transport-
PartnerStore.cs file in Stores
folder of the Orders.Workers
project.

 127Processing Orders in the Trey Research Solution

•	 The ReplyTo property specifies the Service Bus queue on which the receiver should send any
response messages. For example, the transport partner uses this queue to post the message that
acknowledges receipt of this message, as described in the section “Correlating Messages and
Replies” in Chapter 4, “Implementing Reliable Messaging and Communications with the Cloud.”

C#
 Func<BrokeredMessage> brokeredMessageFunc = () =>
 {
 // Send new order message
 var msg = new NewOrderMessage
 {
 OrderId = orderProcess.Order.OrderId,
 OrderDate = orderProcess.Order.OrderDate,
 ShippingAddress = orderProcess.Order.Address,
 Amount =
 Convert.ToDouble(orderProcess.Order.Total),
 CustomerName = orderProcess.Order.UserName
 };

 var brokeredMessage = new BrokeredMessage(msg)
 {
 MessageId = msg.OrderId.ToString(),
 CorrelationId = msg.OrderId.ToString(),
 Properties = { { "TransportPartnerName",
 transportPartnerName },
 { "ServiceBusNamespace",
 this.serviceBusNamespace },
 { "AcsNamespace",
 this.acsNamespace },
 { "OrderAmount",
 orderProcess.Order.Total } },
 ReplyTo = this.replyQueueName
 };

 return brokeredMessage;
 };

The message will be sent asynchronously, so the NewOrderJob class must also assemble an object that
can be passed as the state in the asynchronous method calls, as shown in the following code. This
object must contain the order ID (so that the retry mechanism can update the correct order status
rows in the OrderStatus table) and the name of the transport partner (so that it can be displayed when
customers view their existing orders).

128 chapter five

C#
var objectState = new Dictionary<string, object>
{
 { “orderId”, orderProcess.OrderId },
 { “transportPartner”, transportPartnerName }
}

Sending the New Order Messages
The Execute method can now send the order to the Service Bus topic. It does this by calling the Send
method of the ServiceBusTopic instance it created and saved in the variable named newOrder-
MessageSender. As described in the section “Sending Messages to a Service Bus Topic” in Chapter 4,
“Implementing Reliable Messaging and Communications with the Cloud,” the Send method of the
ServiceBusTopic class takes four parameters; the function that creates the BrokeredMessage in-
stance to send, the asynchronous state object, and two Action methods (one to execute after a
message is sent and one to execute if sending fails). The ProcessStatusStore class defines lambda
statements that are passed as these two actions, as shown in the following code.

C#
 this.newOrderMessageSender
 .Send(
 brokeredMessageFunc,
 objectState,
 (obj) =>
 {
 var objState = (IDictionary<string, object>)obj;
 var orderId = (Guid)objState["orderId"];
 var transportPartner
 = (string)objState["transportPartner"];
 this.processStatusStore.SendComplete(orderId,
 transportPartner);
 },
 (exception, obj) =>
 {
 var objState = (IDictionary<string, object>)obj;
 var orderId = (Guid)objState["orderId"];
 this.processStatusStore.UpdateWithError(
 exception, orderId);
 });
}

The first action, which is executed after the message has been sent successfully, extracts the order
ID and transport partner name from the asynchronous state object, and passes these to the Send-
Complete method of the ProcessStatusStore class instance that the NewOrderJob class is using.
The second action extracts only the order ID from the asynchronous state object, and passes it and
the current Exception instance to the UpdateWithError method instance.

 129Processing Orders in the Trey Research Solution

Completing the Reliable Send Process
The SendComplete method of the ProcessStatusStore class, called by the Execute method if the
message is posted successfully, performs the following tasks:
•	 It updates the matching row in the OrderProcessStatus table to modify the value in the

ProcessStatus column to “processed” (this prevents another iteration of the NewOrderJob job
processor from attempting to send the order again).

•	 It adds a new row to the OrderStatus table to show the current status of the order (“Order
sent to transport partner”), with the correct timestamp.

•	 It updates the Order table with the name of the transport partner that will deliver the order.

C#
public void SendComplete(Guid orderId,
 string transportPartner)
{
 using (var database =
 TreyResearchModelFactory.CreateContext())
 {
 try
 {
 using (var t = new TransactionScope())
 {
 // Avoid the transaction being promoted.
 this.sqlConnectionRetryPolicy.ExecuteAction(
 () => database.Connection.Open());

 // Update the OrderProcessStatus table row
 var processStatus =
 this.sqlCommandRetryPolicy.ExecuteAction(
 () => database.OrderProcessStatus
 .SingleOrDefault(
 o => o.OrderId == orderId));
 processStatus.ProcessStatus
 = ProcessStatus.Processed;
 processStatus.LockedBy = null;
 processStatus.LockedUntil = null;
 this.sqlCommandRetryPolicy.ExecuteAction(
 () => database.SaveChanges());

 // Add a new row to the OrderStatus table
 var status = new OrderStatus { OrderId = orderId,
 Status =
 "TreyResearch: Order sent to transport partner",
 Timestamp = DateTime.UtcNow };
 database.OrderStatus.AddObject(status);
 this.sqlCommandRetryPolicy.ExecuteAction(
 () => database.SaveChanges());

130 chapter five

 // Update the Order table row
 var order =
 this.sqlCommandRetryPolicy.ExecuteAction(
 () => database.Order.SingleOrDefault(
 o => o.OrderId == orderId));
 order.TransportPartner = transportPartner;
 this.sqlCommandRetryPolicy.ExecuteAction(
 () => database.SaveChanges());

 t.Complete();
 }
 }
 catch (UpdateException ex)
 {
 ...
 }
 }
}

The UpdateWithError method, called by the Execute method if the messages was not posted suc-
cessfully, generates suitable warning messages using the custom TraceHelper class, updates the
matching OrderProcessStatus table row with the value “error”, and sets the values of the LockedBy
and LockedUntil columns to null to unlock the message and make it available for processing again.

The UpdateWithError method also checks whether the number of retry attempts has exceeded
the specified maximum (defined in the ServiceConfiguration.cscfg file). If it has, it updates the Order-
ProcessStatus table row with the value “critical error” and generates a message that indicates the
administrator should investigate the failed order process.

C#
public void UpdateWithError(Exception exception,
 Guid orderId)
{
 TraceHelper.TraceWarning("NewOrderJob: The Order '{0}' "
 + "couldn't be processed. Error details: {1}",
 orderId.ToString(), exception.ToString());

 using (var database
 = TreyResearchModelFactory.CreateContext())
 {
 var processStatus =
 this.sqlCommandRetryPolicy.ExecuteAction(
 () => database.OrderProcessStatus
 .SingleOrDefault(
 o => o.OrderId == orderId));
 processStatus.ProcessStatus = ProcessStatus.Error;
 processStatus.LockedBy = null;

 131Processing Orders in the Trey Research Solution

 processStatus.LockedUntil = null;
 processStatus.RetryCount
 = processStatus.RetryCount + 1;

 var newOrderJobRetryCountCheck = int.Parse(
 CloudConfiguration.GetConfigurationSetting(
 "NewOrderJobRetryCountCheck", "3"));

 if (processStatus.RetryCount
 > newOrderJobRetryCountCheck)
 {
 processStatus.ProcessStatus
 = ProcessStatus.CriticalError;
 TraceHelper.TraceError("NewOrderJob: The Order '{0}' "
 + "has reached {1} retries. This order requires "
 + "manual intervention.",
 orderId.ToString(), processStatus.RetryCount);
 }

 this.sqlCommandRetryPolicy.ExecuteAction(
 () => database.SaveChanges());
 }
}

At this point, the message has been sent and the status recorded in the SQL Azure database is consis-
tent with the actual status of the message.

The next task is to retrieve the order from the subscription at the appropriate transport partner.

How Trey Research Decouples the Order Process from the
Transport Partners’ Systems

To communicate with the delivery systems of the various transport partners, Trey Research imple-
mented a series of connectivity components in the form of connectors and adapters. These compo-
nents provide an interface between the Service Bus and the transport partner. Each component is
specific to the transport partner, and provides the functionality to retrieve messages from the ap-
propriate Service Bus subscription, translate it into a format accepted by the transport partner, and
then pass it to the transport partner’s internal system.

Responses from the transport partner are passed back to the component, converted into Service
Bus messages, and then posted to the Service Bus queue for the Order application. Figure 1 earlier in
this chapter shows where these components are deployed. The following sections provide more infor-
mation on the sample implementation of these components provided with the Trey Research solution.

The adapter and connector included with the sample solution are provided as simple examples
for enabling a transport partner to interact with the Service Bus topics and queues used by Trey
Research. In the real world, the internal business logic for these connectivity components may be
considerably more complex than that illustrated by these samples.

132 chapter five

Receiving and Processing an Order in a Transport Partner
Transport partners connect to the Service Bus topic on which the NewOrderJob job processor has
posted the order messages. Each transport partner uses its own Service Bus subscription, configured
with a filter that examines the TransportPartnerName property of each message. The subscriptions
and filters themselves are created by the setup program in the TreyResearch.Setup project; for more
information, see the section “Subscribing to a Service Bus Topic” in Chapter 4, “Implementing Reliable
Messaging and Communications with the Cloud.”

Sample transport partners are provided in the TransportPartner project. The solution includes
two transport partners; Contoso (implemented by the ContosoTransportPartner class) which ships
orders to customers that reside in the same or an adjacent state to the Trey Research manufacturing
plant, and Fabrikam (implemented by the FabrikamTransportPartner class) which ships orders to
customers located elsewhere.

The local transport partner, Contoso, connects to the Service Bus topic by using the Connector
class defined in the Connectivity folder of the TransportPartner project, while the distance transport
partner, Fabrikam, uses the Adapter class defined in the same folder.

The section “Implementing Adapters and Connectors for Translating and Reformatting Messages”
in Chapter 4, “Implementing Reliable Messaging and Communications with the Cloud,” describes
the rationale behind the use of connectors and adapters.

The Connector and Adapter classes both inherit from the OrderProcessor class, which provides
the functionality for actually connecting to the Service Bus topic and receiving messages in the Run
method.

C#
public void Run()
{
 var serviceBusNamespaces = ConfigurationManager.
 AppSettings["serviceBusNamespaces"].
 Split(',').ToList();
 ...

 foreach (var serviceBusNamespace in serviceBusNamespaces)
 {
 this.serviceBusSubscriptionDescription.Namespace =
 serviceBusNamespace;
 var serviceBusSubscription = new
 ServiceBusSubscription(
 this.serviceBusSubscriptionDescription);
 var receiverHandler = new
 ServiceBusReceiverHandler<NewOrderMessage>(
 serviceBusSubscription.GetReceiver())
 {
 MessagePollingInterval = TimeSpan.FromSeconds(2)
 };

 receiverHandler.ProcessMessages(

 133Processing Orders in the Trey Research Solution

 (message, queueDescription, token) =>
 {
 return Task.Factory.StartNew(
 () => this.ProcessMessage(
 message, queueDescription),
 this.tokenSource.Token,
 TaskCreationOptions.None,
 context);
 },
 this.tokenSource.Token);
 }
}

Chapter 4, “Implementing Reliable Messaging and Communications with the Cloud,” describes how
and why the Run method creates a ServiceBusReceiverHandler object to retrieve messages. As far
as the order process is concerned, there are two important aspects of this method:
•	 The Trey Research web application and worker role may be deployed to multiple datacenters,

and the deployment at each datacenter is configured with its own set of Service Bus topics and
queues in its own Service Bus namespace. Therefore the Run method must connect to each
datacenter and listen for messages on the topic at each one. This is the purpose of the foreach
loop; the Service Bus namespaces to which the method must connect are defined in the con-
figuration file, and the loop connects to the Service Bus topic in each namespace.

•	 The call to the ProcessMessages method of the ServiceBusReceiverHandler object invokes
the ProcessMessage method. This method provides the logic for actually processing an order
message, as shown by the following code sample:

C#
protected virtual void ProcessMessage(
 NewOrderMessage message,
 ServiceBusQueueDescription queueDescription)
{
 var trackingId = this.ProcessOrder(message,
 queueDescription);

 if (trackingId != Guid.Empty)
 {
 // Get SWT from ACS.
 var token = this.GetToken(queueDescription);

 var statusMessage =

134 chapter five

 string.Format("{0}: Order Received",
 this.TransportPartnerDisplayName);
 this.SendOrderReceived(message, queueDescription,
 statusMessage, trackingId, token);
 }
}

The ProcessMessage method calls the ProcessOrder method to perform the transport partner-
specific business processing for the order. ProcessOrder is an abstract method with implementations
in the Adapter and Connector classes. In the sample transport partners, the orders are stored as a list
of ActiveOrder objects and each order is displayed on the Windows Form that provides the user in-
terface (the OnOrderProcessed event handler performs this task).

However, there is a small possibility that the same order may be received more than once; the
retry mechanism in the NewOrderJob class that posts orders to the Service Bus topic may cause the
same order message to be repeated, depending on the reliability and performance of the network
connection. Consequently, before creating the ActiveOrder object the ProcessOrder method verifies
that an order with the same ID as the message just received does not already exist in the list; if there
is such an order, this new one is assumed to be a duplicate and is discarded.

The following code sample shows the implementation of the ProcessOrder method in the
Adapter class.

C#
protected override Guid ProcessOrder(
 Orders.Shared.Communication.Messages.NewOrderMessage
 message, ServiceBusQueueDescription queueDescription)
{
 var processedOrder =
 this.orderStore.GetById(message.OrderId);

 if (processedOrder != null)
 {
 // This order has been received for processing more
 // than once, and will be discarded.
 return Guid.Empty;
 }

 var activeOrder = new ActiveOrder
 {
 OrderId = message.OrderId,
 ShippingAddress = message.ShippingAddress,
 Amount = message.Amount,
 ReplyTo = queueDescription.QueueName,
 ReplyToNamespace = queueDescription.Namespace,
 Status = "received",
 SwtAcsNamespace = queueDescription.SwtAcsNamespace
 };

 135Processing Orders in the Trey Research Solution

 this.orderStore.Add(activeOrder);

 // Call the transport partner service and
 // retrieve a tracking id.
 var trackingId = this.transportServiceWrapper.
 RequestShipment(activeOrder);

 if (this.OnOrderProcessed != null)
 {
 this.OnOrderProcessed(this,
 new OrderProcessedEventArgs
 { ActiveOrder = activeOrder });
 }

 // if tracking id received, delivery request is
 // acknowledged, it is safe to update the status queue
 // with the “Order Received” status.
 return trackingId;
}

Note that the sample assumes that the transport partners have internal systems that react in different
ways when they receive an order message. This is to provide a more real-world experience in the ap-
plication.
•	 The local transport partner, Contoso, responds immediately with an acknowledgement message

indicating that the order has been received. Later, when the order is shipped, the local transport
partner sends another message.

•	 The distance transport partner, Fabrikam, accepts the order and generates a tracking ID. It sends
a response message back to Trey Research containing this tracking ID. Many distance transport
partners provide their own web applications that enable customers to log in and query the
progress of the order by providing this tracking ID (these web applications are the responsibility
of the transport partner; an example is not provided as part of the sample solution.)

Acknowledging an Order or Indicating that it has Shipped in a Transport Partner
After receiving an order, the local transport partner, Contoso, should acknowledge successful receipt
of the message. Later on, the local transport partner sends another message when the order is dis-
patched. As described in the previous section, the distance transport partner, Fabrikam, only sends a
single message when the order is received. In both cases, the ProcessMessage method calls the Send-
OrderReceived method to construct and send an appropriate message to the Orders application.

136 chapter five

C#
protected virtual void ProcessMessage(
 NewOrderMessage message,
 ServiceBusQueueDescription queueDescription)
{
 var trackingId = this.ProcessOrder(message,
 queueDescription);

 if (trackingId != Guid.Empty)
 {
 // Get SWT from ACS.
 var token = this.GetToken(queueDescription);

 var statusMessage =
 string.Format("{0}: Order Received",
 this.TransportPartnerDisplayName);
 this.SendOrderReceived(message, queueDescription,
 statusMessage, trackingId, token);
 }
}

protected void SendOrderReceived(
 NewOrderMessage message,
 ServiceBusQueueDescription queueDescription,
 string statusMessage, Guid trackingId, string swt)
{
 this.SendToUpdateStatusQueue(message.OrderId, trackingId,
 statusMessage, queueDescription, swt);
}

The SendOrderReceived method calls the SendToUpdateStatusQueue method, which contains the
logic for composing an OrderStatusUpdateMessage that it posts to a Service Bus queue. The name
of the queue to use and the Service Bus namespace in which it resides were specified in the ReplyTo
and ServiceBusNamespace properties of the original order message. They were used to create a
ServiceBusQueueDescription object when the message was received by the ProcessMessage method
of the ServiceBusReceiverHandler class (for more information about the ServiceBusReceiverHandler
class, see the section “Receiving Messages from a Service Bus Queue and Processing Them Asynchro-
nously” in Chapter 4, “Implementing Reliable Messaging and Communications with the Cloud”).

When the transport partner sends a reply, it should include a security token to enable the Orders
application to authenticate the response. This mechanism is also described in Chapter 4, “Implement-
ing Reliable Messaging and Communications with the Cloud,” in the section “Securing Messages.” The
ACS namespace in which this token is defined is provided in AcsNamespace property in the original
order, and this value is also added to the ServiceBusQueueDescription object. When the transport
partner sends the reply, the security token is retrieved from the specified ACS namespace and added
to the response message.

 137Processing Orders in the Trey Research Solution

C#
public class ServiceBusReceiverHandler<T>
{
 ...
 private void ProcessMessage(
 IBrokeredMessageAdapter message)
 {
 if (message != null)
 {
 ...

 var queueDescription = new ServiceBusQueueDescription
 {
 QueueName = message.ReplyTo,
 };

 if (message.Properties.ContainsKey(
 "ServiceBusNamespace"))
 {
 queueDescription.Namespace = message.Properties[
 "ServiceBusNamespace"].ToString();
 }

 if (message.Properties.ContainsKey("AcsNamespace"))
 {
 queueDescription.SwtAcsNamespace =
 message.Properties["AcsNamespace"].ToString();
 }
 ...
 }
 ...
 }
 ...
}

The ServiceBusQueueDesciption object permeates down to the SendToUpdateStatusQueue
method in the queueDescription parameter. The SendToUpdateStatusQueue method creates an
OrderStatusUpdateMessage object, populating it with the acknowledgement details including the
“Order Received” status message and the tracking ID generated by the transport partner. This Order-
StatusObjectMessage object is packaged up inside a BrokeredMessage object and posted to the
queue specified by the queueDescription parameter. Notice that the CorrelationId property of this
response message is set to the order ID of the original request so that the Orders application can
correlate this response with the request when it is received.

138 chapter five

The following code sample shows the SendToUpdateStatusQueue method. Note that, as an
optimization mechanism, this method caches a copy of the ServiceBusQueue object that it creates
in a Dictionary object called statusUpdateQueueDictionary. When the SendToUpdateStatusQueue
method is called again, it should find this ServiceBusQueue in the Dictionary and should not need to
create it again.

C#
private void SendToUpdateStatusQueue(Guid orderId,
 Guid trackingId, string orderStatus,
 ServiceBusQueueDescription queueDescription, string swt)
{
 var updateStatusMessage =
 new BrokeredMessage(
 new OrderStatusUpdateMessage
 {
 OrderId = orderId,
 Status = orderStatus,
 TrackingId = trackingId,
 TransportPartnerName =
 this.TransportPartnerDisplayName,
 })
 { CorrelationId = orderId.ToString() };

 updateStatusMessage.Properties.Add(
 "SimpleWebToken", swt);

 ServiceBusQueue replyQueue;
 if (this.statusUpdateQueueDictionary.
 ContainsKey(queueDescription.Namespace))
 {
 replyQueue = this.statusUpdateQueueDictionary[
 queueDescription.Namespace];
 }
 else
 {
 var description = new ServiceBusQueueDescription
 {
 Namespace = queueDescription.Namespace,
 QueueName = queueDescription.QueueName,
 DefaultKey =
 this.serviceBusQueueDescription.DefaultKey,
 Issuer = this.serviceBusQueueDescription.Issuer
 };

 replyQueue = new ServiceBusQueue(description);
 this.statusUpdateQueueDictionary.Add(
 queueDescription.Namespace, replyQueue);

 139Processing Orders in the Trey Research Solution

 }

 var brokeredMessageAdapter =
 new BrokeredMessageAdapter(updateStatusMessage);
 replyQueue.Send(brokeredMessageAdapter);
}

For the local transport partner, Contoso, when an order is delivered the application calls the Send-
OrderShipped method in the OrderProcessor class. The SendOrderShipped method operates in
much the same way as the SendOrderReceived method, calling the SendToUpdateStatusQueue
method to create and post an OrderStatusUpdate message to the Service Bus queue.

Receiving Acknowledgement and Status Messages in the Orders Application
As well as starting a NewOrderJob object to post new orders to transport partners, each worker role
in the Trey Research solution creates a StatusUpdateJob object to listen for status messages received
from the transport partners. This class is located in the StatusUpdateJob.cs file in the Jobs folder in the
Orders.Workers project. In common with the OrderProcessor class, the Run method in the Status-
UpdateJob class employs a ServiceBusReceiverHandler object to actually connect to the queue and
retrieve messages.

The StatusUpdateJob object also provides the business logic that is run for each status message
as it is received, as a lambda expression, when it calls the ProcessMessages method of the Service-
BusReceiverHandler object. This lambda expression performs the following tasks:
•	 It checks the authentication token in the message and throws an InvalidTokenException

exception if it is not recognized (the message may be from a rogue third party).
•	 It creates an order status record with the status information provided by the transport partner.
•	 It discards the message if it is a duplicate of an existing order (retry logic in the transport partner

may cause it to send duplicate status messages if it detects a transient error).
•	 It updates the order with the name of the transport partner that will ship it to the customer.
•	 It adds the tracking ID provided by the partner to the order status record.
•	 It stores the order status record in the TreyResearch database (other parts of the application can

query this status; for example, if the customer wishes to know whether an order has been
shipped).

The following code sample shows how the StatusUpdateJob class defines this logic.

C#
public void Run()
{
 ...
 receiverHandler.ProcessMessages(
 (message, replyTo, token) =>
 {
 return Task.Factory.StartNew(
 () =>

140 chapter five

 {
 ...
 if (!this.IsValidToken(message.OrderId, token))
 {
 // Throw exception, to be caught by handler.
 // Will send it to the DeadLetter queue.
 throw new InvalidTokenException();
 }

 var orderStatus = new OrderStatus {
 OrderId = message.OrderId,
 Status = message.Status
 };

 using (var db =
 TreyResearchModelFactory.CreateContext())
 {
 // Checking for duplicate entries in the order
 // status table. If a duplicate message
 // arrives, it is discarded.
 var existingStatus =
 this.sqlCommandRetryPolicy.ExecuteAction(
 () => db.OrderStatus.SingleOrDefault(
 os => os.OrderId == message.OrderId &&
 os.Status == message.Status));
 if (existingStatus != null)
 {
 return;
 }

 var order = this.sqlCommandRetryPolicy.
 ExecuteAction(
 () => db.Order.Single(o =>
 o.OrderId == message.OrderId));

 order.TransportPartner =
 message.TransportPartnerName;

 if (message.TrackingId != Guid.Empty)
 {
 order.TrackingId = message.TrackingId;
 }

 db.OrderStatus.AddObject(
 new OrderStatus {
 OrderId = orderStatus.OrderId,

 141Processing Orders in the Trey Research Solution

 Status = orderStatus.Status,
 Timestamp = DateTime.UtcNow
 });

 this.sqlCommandRetryPolicy.ExecuteAction(
 () => db.SaveChanges());
 }
 });
 },
 ...);
}

Summary
This chapter has examined how Trey Research implemented the business logic for processing orders
in their Orders application. The business logic is based on Service Bus topics, subscriptions, and queues,
and uses the software infrastructure described in the Chapter 4, “Implementing Reliable Messaging
and Communications with the Cloud,” to provide an extensible layer for reliable, asynchronous mes-
saging.

This chapter has also described how Trey Research provided a reliable mechanism for posting
messages to a Service Bus topic, detecting and handling failures, and transparently retrying to send
messages when they occur.

Finally, this chapter described how the internal business logic for the transport partners was de-
coupled from the messaging infrastructure utilized by Trey Research; the connectors and adapters
defined in the sample solution call upon the existing business services provided by the transport
partners without requiring that they modify or disrupt their internal systems. These connectors and
adapters also provided location independence by tracking the source of incoming order requests and
routing any response messages back to the appropriate destination.

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx.
•	 “Best Practices for Leveraging Windows Azure Service Bus Brokered Messaging API” at

http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-
brokered-messaging-api/.

•	 “Cloud Architecture: The Scheduler-Agent-Supervisor Pattern” at http://vasters.com/clemensv/
CommentView,guid,83f937f7-b838-43d0-ad61-74605eceafa2.aspx.

•	 “Achieving Transactional Behavior with Messaging” at http://vasters.com/clemensv/2011/10/06/
Achieving+Transactional+Behavior+With+Messaging.aspx.

•	 “Queues, Topics, and Subscriptions” at http://msdn.microsoft.com/en-us/library/windowsazure/
hh367516.aspx.

•	 “The Transient Fault Handling Application Block” at http://msdn.microsoft.com/en-us/library/
hh680934(v=pandp.50).aspx.

http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-brokered-messaging-api/
http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-brokered-messaging-api/
http://vasters.com/clemensv/CommentView,guid,83f937f7-b838-43d0-ad61-74605eceafa2.aspx
http://vasters.com/clemensv/CommentView,guid,83f937f7-b838-43d0-ad61-74605eceafa2.aspx
http://vasters.com/clemensv/2011/10/06/Achieving+Transactional+Behavior+With+Messaging.aspx
http://vasters.com/clemensv/2011/10/06/Achieving+Transactional+Behavior+With+Messaging.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh367516.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh367516.aspx
http://msdn.microsoft.com/en-us/library/hh680934(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(v=pandp.50).aspx

 143

6 Maximizing Scalability,
Availability, and Performance

in the Orders Application

A primary reason for Trey Research migrating and reconfiguring the Orders application to run on the
Windows Azure™ technology platform was to take advantage of the improved scalability and avail-
ability that this environment provides. As Trey Research expand their operations, they expect to at-
tract an ever-increasing number of customers, so they designed their solution to be able to handle a
large volume of orders from clients located anywhere in the world. This was a challenging proposition
as the Orders application had to remain responsive but cost-effective, regardless of the number of
customers requesting service at any given point in time. Trey Research analyzed the operations of their
system, and identified three principal requirements. The solution should:
•	 Automatically scale up as demand increases (to process orders in a timely manner), but then

scale back when demand drops to keep running costs down.
•	 Reduce the network latency associated with a customer accessing the Orders web application

and its resources, hosted in a location remote across a public and uncontrollable (from Trey
Research’s perspective) network such as the Internet .

•	 Optimize the response time and throughput of the web application to maintain a satisfactory
user experience.

This chapter describes how Trey Research met these requirements in their solution.

Scenario and Context
Trey Research implemented their solution as a web application primarily targeting customers located
in the United States, so they initially deployed it to two Windows Azure datacenters; US North and
US South. However, Trey Research plans to expand their operations and can foresee a time when the
application will have to be deployed to other datacenters worldwide to satisfy the demands of over-
seas customers. For this reason, when Trey Research constructed the Orders application, they designed
it to allow customers to connect to any instance, and to provide functionality that was consistent
across all instances. In this way, Trey Research can start and stop instances of the Orders application
and customers will always be able to view products, place orders, and query the status of their orders
regardless of which instance they are connected to at any point in time. This approach also enables
Trey Research to balance the load evenly across the available instances of the Orders application and
maintain throughput. Additionally, if an instance becomes unavailable or a connection to an instance
fails, customers can be directed to other working instances of the application.

144 chapter six

In practice, this solution depends on a variety of components to
provide the necessary infrastructure to determine the optimal in-
stance of the Orders application to which a customer should connect,
transparently route customer requests (and reroute requests in the
event a connectivity failure with an instance occurs), and maintain
consistent data across all datacenters. Additionally, the resources that
the Orders application uses involve making further requests across
the network; for example to retrieve the Products catalog, Customer
details, or Order information. Access to these resources must be ac-
complished in a scalable and timely manner to provide customers with
a responsive user experience.

Controlling Elasticity in the Orders Application
Trey Research noticed that the Orders application experienced peaks
and troughs in demand throughout the working day. Some of these
patterns were predictable, such as low usage during the early hours of
the morning and high usage during the latter part of the working day,
while others were more unexpected; sometimes demand increased
due to a specific product being reviewed in a technical journal, but
occasionally the volume of use changed for no foreseeable reason.

Trey Research needed a solution that would enable them to scale
the Orders application to enable a highly variable number of customers
to log in, browse products, and place orders without experiencing ex-
tended response times, while at the same time remaining cost-efficient.

Choosing How to Manage Elasticity in the
Orders Application

Trey Research considered a number of options for determining how
best to scale the Orders application. These options, together with their
advantages and limitations, are described in the following sections.

Do Not Scale the Application
This is the simplest option. The Orders application has been designed
and implemented to take advantage of concurrent web and worker
role instances, and utilizes asynchronous messaging to send and re-
ceive messages while minimizing the response time to users. In this
case, why not simply deploy the application to number of web and
worker role instances in each possible datacenter, and allocate each
role the largest possible virtual machine size, with the maximum num-
ber of CPU cores and the largest available volume of memory?

Windows Azure provides
elasticity and scale by
allowing you to start and
stop instances of roles
on demand. However,
unless you actually do
manage your role instance
count proactively, you are
missing out on some of the
major benefits that cloud
computing offers.

 145M a ximizing Scalability, Availability, and Performance in the Orders Application

This approach is attractive because it involves the least amount of maintenance on the part of the
operations staff at Trey Research. It is also very straightforward to implement. However, it could be
very expensive; hosting a web or worker role using the “Extra Large” virtual machine size (as defined
by the Windows Azure pricing model) is currently 24 times more expensive on an hourly rate than
hosting the same role in an “Extra Small” virtual machine. If the volume of customers for much of the
time does not require the processing or memory capabilities of an extra-large virtual machine, then
Trey Research would be paying to host a largely idle virtual machine. If you multiply the charges by the
number of instances being hosted across all datacenters, the final sum can be a significant amount of
money.

There is one other question that this approach poses; how many web and worker role instances
should Trey Research create? If the number selected is too large, then the issues of cost described in
the previous paragraph become paramount. However, if Trey Research create too few instances, then
although the company is not necessarily paying for wasted resources, customers are likely to be un-
happy due to extended response times and slow service, possibly resulting in lost business.

For these reasons this approach is probably not going to be cost effective or desirable.

Implement Manual Scaling
Clearly, some kind of scale-up and scale-down solution is required. By using the Windows Azure
Management Portal it is possible to start and stop instances of web and worker roles manually; or even
deploy new instances of the Orders application to datacenters around the world. Decisions about
when to start, stop, or deploy new instances could be made based on usage information gathered by
monitoring the application; Chapter 7, “Monitoring and Managing the Orders Application” contains
more information on how to perform tasks such as these. However, this is potentially a very labor
intensive approach, and may require an operator to determine when best to perform these tasks.

Some of these operations can be scripted using the Windows Azure Powershell Cmdlets, but
there is always the possibility that having started up a number of expensive instances to handle a
current peak in demand, the operator may forget to shut them down again at the appropriate time,
leaving Trey Research liable for additional costs.

Implement Automatic Scaling using a Custom Service
Starting and stopping role instance manually was considered to be too inefficient and error prone, so
Trey Research turned their attention to crafting an automated solution. Theoretically, it should be able
to follow the same pattern and implement the same practices as the manual approach, except in a
more reliable and less labor intensive manner. To this end, Trey Research considered configuring the
web and worker roles to gather key statistical information, such as the number of concurrent requests,
the average response time, the activity of the CPU and disks, and the memory utilization. This informa-
tion could be obtained by using the Windows Azure Diagnostics and other trace event sources avail-
able to code running in the cloud, and then periodically downloaded and analyzed by a custom ap-
plication running on-premises within the Trey Research Head Office. This custom application could
then determine whether to start and stop additional role instances, and in which datacenters.

146 chapter six

The downside of this approach is the possible complexity of the
on-premises application; it could take significant effort to design,
build, and test such an application thoroughly (especially the logic
that determines whether to start and stop role instances). Addition-
ally, gathering the diagnostic information and downloading it from
each datacenter could impose a noticeable overhead on each role,
impacting the performance.

Implement Automatic Scaling using the Enterprise Library
Autoscaling Application Block

The Microsoft Enterprise Library Autoscaling Application Block pro-
vides a facility that you can integrate directly into your web and
worker roles running in the cloud, and also into on-premises applica-
tions. It is part of the Microsoft Enterprise Library 5.0 Integration
Pack for Windows Azure, and can automatically scale your Windows
Azure application or service based on rules that you define specifi-
cally for that application or service. You can use these rules to help
your application or service maintain its throughput in response to
changes in its workload, while at the same time minimize and control
hosting costs. The application block enables a cloud application to
start and stop role instances, change configuration settings to allow
the application to throttle its functionality and reduce its resource
usage, and send notifications according to a defined schedule.

The key advantages of this approach include the low implementa-
tion costs and ease of use; all you need to do is to provide the con-
figuration information that specifies the circumstances (in terms of a
schedule and performance measures) under which the block will apply
instance scaling or application throttling actions.

How Trey Research Controls Elasticity in
the Orders Application

Trey Research decided to use the Enterprise Library Autoscaling Ap-
plication Block to start and stop instances of web and worker roles as
the load from users changes. Initially, Trey Research deployed the Or-
ders application and made it available to a small but statistically sig-
nificant number of users, evenly spread across an area representing the
geographical location of their expected market. By gathering statistical
usage information based on this pilot, Trey Research identified how
the system functions at specific times in the working day, and identi-
fied periods during which performance suffered due to an increased
load from customers. Specifically, Trey Research noticed that:
•	 Many customers tended to place their orders towards the end

of the working day (between 15:30 and 20:30 Central time,
allowing for the spread of users across the United States), with
an especially large number placed between 17:30 and 18:30.

To simplify installation and
setup, and reduce the prereq-
uisites and the requirements
for users to establish extensive
Windows Azure accounts, the
Trey Research example
solution provided with this
guide is designed to be
deployed to a single datacen-
ter, and is not configured to
support autoscaling or request
rerouting. Consequently, the
sections in this chapter
describing how Trey Research
implemented the Enterprise
Library Autoscaling Applica-
tion Block and Windows
Azure Traffic Manager are
provided for information only.

External services that can
manage autoscaling are also
available. These services
remove the overhead
of developing your own
custom solution but you
must provide these services
with your Windows Azure
management certificate so
that they can access the
role instances, which may
not be acceptable to your
organization.

 147M a ximizing Scalability, Availability, and Performance in the Orders Application

•	 On Fridays, the peak loading tended to start and finish two hours earlier (13:30 to 18:30 Central
time).

•	 On the weekend, very few customers placed orders.
To cater for these peaks and troughs in demand, Trey Research decided to implement the Enterprise
Library Autoscaling Application Block as follows:
•	 The developers configured constraint rules for the application to start an additional three

instances of the web and worker roles at each datacenter at 15:15 Central time (it can take 10 or
15 minutes for the new instances to become available), and to shut these instances down at
20:30 between Monday and Thursday.

•	 At 17:15 the application was configured to start a further two instances of each role, which are
shut down at 18:30.

•	 On Fridays, the times at which the extra instances start and stop are two hours earlier.
•	 To handle unexpected demand, Trey Research also configured reactive rules to monitor the

number of customer requests, and start additional instances if the average CPU usage for a web
role exceeds 85% for 10 or more minutes, up to a maximum of 12 instances per datacenter.
When the CPU usage drops below 50%, instances are shut down, subject to a minimum of two
instances per datacenter.

•	 On weekends, the system is constrained to allow a maximum of four instances of each role at
each datacenter, and any additional instances above this number are shut down to reduce
running costs.

•	 When the system is inactive or lightly loaded, the system returns to its baseline configuration
comprising two instances of each role per datacenter.

Hosting the Autoscaling Application Block
The Autoscaling Application Block monitors the performance of one or more roles, starting and stop-
ping roles, applying throttling changes to configuration, or sending notifications as specified by the
various constraint rules and reactive rules. The Autoscaling Application Block also generates diagnos-
tic information and captures data points indicating the work that it has performed. For more informa-
tion about the information collected, see “Autoscaling Application Block Logging” on MSDN.

To perform this work, the Autoscaling Application Block uses an Autoscaler object (defined in
the Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling namespace), and you must
arrange for this object to start running when your application executes. The Trey Research solution
performs this task in the Run method in the WorkerRole class (in the Orders.Workers project), and
stops the Autoscaler in the OnStop method:

C#
public class WorkerRole : RoleEntryPoint
{
 private Autoscaler autoscaler;
 ...
 public override void Run()
 {
 this.autoscaler = EnterpriseLibraryContainer.Current.
 GetInstance<Autoscaler>();

http://msdn.microsoft.com/en-us/library/hh680883(v=pandp.50).aspx

148 chapter six

 this.autoscaler.Start();
 ...
 }
 ...
 public override void OnStop()
 {
 this.autoscaler.Stop();
 ...
 }
 ...
}

The information about which roles to monitor, the storage account to use for storing diagnostic data,
and the location of the rules defining the behavior of the Autoscaler object are specified in the
<serviceModel> section of the service information store file. This file was uploaded to blob storage
and stored in the blob specified by the <serviceInformationStores> section of the app.config file for
the worker role. For more information and an example of defining the service model for the Autoscal-
ing Application Block, see Chapter 5, “Making Tailspin Surveys More Elastic,” of the Developer’s Guide
to the Enterprise Library 5.0 Integration Pack for Windows Azure on MSDN.

Defining the Autoscaling Rules
The Trey Research solution implements a combination of constraint rules and reactive rules. The
constraint rules specify the schedule the Autoscaler object should use, in addition to the maximum
and minimum number of instances of roles during each scheduled period. The Autoscaler initiates
creation of instances of the web and worker roles, or stops existing instances, when the schedule
changes the boundaries and when the instance count is outside that new boundary. The reactive rules
start further instances of the web role or stop them, according to the CPU loading of the web role.
As an initial starting point, Trey Research defined the following set of rules:

XML
<?xml version="1.0" encoding="utf-8" ?>
<rules xmlns="http://schemas.microsoft.com/practices/2011/
entlib/autoscaling/rules">
 <constraintRules>
 <rule name="Weekday" enabled="true" rank="10">
 <timetable startTime="00:00:00" duration="23:59:59"
 utcOffset="-06:00">
 <weekly days=
 "Monday Tuesday Wednesday Thursday Friday"/>
 </timetable>
 <actions>
 <range target="Orders.Workers"
 min="2" max="12"/>
 <range target="Orders.Website"
 min="2" max="12"/>
 </actions>
 </rule>

http://msdn.microsoft.com/en-us/library/hh680942(PandP.50).aspx

 149M a ximizing Scalability, Availability, and Performance in the Orders Application

 <rule name="Weekend" enabled="true" rank="10">
 <timetable startTime="00:00:00" duration="23:59:59"
 utcOffset="-06:00">
 <weekly days="Sunday Saturday"/>
 </timetable>
 <actions>
 <range target="Orders.Workers"
 min="2" max="4"/>
 <range target="Orders.Website"
 min="2" max="4"/>
 </actions>
 </rule>
 <rule name="MondayToThursday" enabled="true" rank="2">
 <timetable startTime="15:15:00" duration="05:15:00"
 utcOffset="-06:00">
 <weekly days="Monday Tuesday Wednesday Thursday"/>
 </timetable>
 <actions>
 <range target=" Orders.Workers"
 min="4" max="12"/>
 <range target=" Orders.Website"
 min="4" max="12"/>
 </actions>
 </rule>
 <rule name="MondayToThursdayPeak" enabled="true"
 rank="3">
 <timetable startTime="17:15:00" duration="03:15:00"
 utcOffset="-06:00">
 <weekly days="Monday Tuesday Wednesday Thursday"/>
 </timetable>
 <actions>
 <range target=" Orders.Workers"
 min="6" max="12"/>
 <range target=" Orders.Website"
 min="6" max="12"/>
 </actions>
 </rule>
 <rule name="Friday" enabled="true" rank="2">
 <timetable startTime="13:15:00" duration="05:15:00"
 utcOffset="-06:00">
 <weekly days="Friday"/>
 </timetable>
 <actions>
 <range target=" Orders.Workers"
 min="6" max="12"/>
 <range target=" Orders.Website"

150 chapter six

 min="6" max="12"/>
 </actions>
 </rule>
 <rule name="FridayPeak" enabled="true" rank="3">
 <timetable startTime="15:15:00" duration="03:15:00"
 utcOffset="-06:00">
 <weekly days="Friday"/>
 </timetable>
 <actions>
 <range target=" Orders.Workers"
 min="7" max="12"/>
 <range target=" Orders.Website"
 min="7" max="12"/>
 </actions>
 </rule>
 </constraintRules>
 <reactiveRules>
 <rule name="HotCPU" enabled="true" rank="4">
 <when>
 <greater operand="CPU" than="85" />
 </when>
 <actions>
 <scale target="Orders.Website"
 by ="1"/>
 </actions>
 </rule>
 <rule name="CoolCPU" enabled="true" rank="4">
 <when>
 <less operand="CPU" than="50" />
 </when>
 <actions>
 <scale target="Orders.Website"
 by ="-1"/>
 </actions>
 </rule>
 </reactiveRules>
 <operands>
 <performanceCounter alias="CPU"
source="AccidentReporting_WebRole" performanceCounterName=
"\Processor(_Total)\% Processor Time" timespan="00:10:00"
aggregate="Average"/>
 </operands>
</rules>

 151M a ximizing Scalability, Availability, and Performance in the Orders Application

Hosting costs for Windows Azure services are calculated on an
hourly basis, with each part hour charged as a complete hour. This
means that if, for example, you start a new service instance at
14.50, and shut it down at 16.10, you will be charged for 3 hours.
You should keep this in mind when configuring the schedule for
the Autoscaler. For more information, see the “Pricing Overview”
page for Windows Azure.

The rules were uploaded to blob storage, to the blob specified by
the <rulesStores> section of the app.config file for the worker role.

The CPU operand referenced by the reactive rules calculates the
average processor utilization over a 30 minute period, using the
\Processor(_Total)\% Processor Time performance counter. The
Orders.Website web role was modified to collect this information by
using the following code shown in bold in the StartDiagnostics
method (called from the OnStart method) in the file WebRole.cs:

C#
public class WebRole : RoleEntryPoint
{
 ...
 private static void StartDiagnostics()
 {
 var config =
 DiagnosticMonitor.GetDefaultInitialConfiguration();
 ...
 config.PerformanceCounters.ScheduledTranferPeriod =
 Timespan.FromMinutes(10);

 config.PerformanceCounters.DataSources.Add(
 new PerformanceCounterConfiguration
 {
 CounterSpecifier =
 @"\Processor(_Total)\% Processor Time",
 SampleRate = TimeSpan.FromMinutes(30)
 });

 ...
 DiagnosticMonitor.Start(
 "DiagnosticsConnectionString", config);
 }
 ...
}

The performance counter data is written to the WADPerformance-
CountersTable table in Windows Azure Table storage. The web role
must be running in full trust mode to successfully write to this table.

Using automatic scaling
is an iterative process.
The configuration
defined by the team at
Trey Research is kept
constantly under review,
and the performance of the
solution is continuously
monitored as the pattern of
use by customers evolves.
The operators may modify
the configuration and
autoscaling rules in the
future to change the times
and circumstances under
which additional instances
are created and destroyed.

file:///C:/Users/Chris/Microsoft/Book-Hybrid/WordFiles/at%20http:/www.windowsazure.com/en-us/pricing/details/

152 chapter six

Managing Network Latency and Maximizing Connectivity to the Orders
Application

Trey Research initially deployed the Orders application to two datacenters, US North and US South,
both located in the United States. The rationale behind this decision was the US North datacenter is
located just a few miles from Trey Research, affording reasonable network response times for the
compliance application hosted in this datacenter (as described in Chapter 4, “Implementing Reliable
Messaging and Communications with the Cloud”), while the majority of Trey Research’s customers
are expected to be located in the continental United States.

However, as Trey Research expands their customer base, it expects users connecting to the Orders
application to be situated farther afield, perhaps on a different continent. The distance between
customers and the physical location in which the Orders application is deployed can have a significant
bearing on the response time of the system. Therefore Trey Research felt it necessary to adopt a
strategy that minimizes this distance and reduces the associated network latency for users accessing
the Orders application.

As its customers became distributed around the world, Trey Research considered hosting addi-
tional instances of the Orders application in datacenters that are similarly distributed. Customers
could then connect to the closest available instance of the application. The question that Trey Re-
search needed to address in this scenario was how to route a customer to the most local instance of
the Orders application?

Choosing How to Manage Network Latency and Maximize
Connectivity to the Orders Application

Trey Research investigated a number of solutions for directing customers to the most local instance
of the Orders application, including deploying and configuring a number of DNS servers around the
world (in conjunction with a number of network partners) based on the DNS address of the machine
from which the customer’s request originated. However, many of these solutions proved impractical
or expensive, leaving Trey Research to consider the two options described in the following sections.

Build a Custom Service to Redirect Traffic
Trey Research examined the possibility of building a custom service through which all customers
would connect, and then deploying this service to the cloud. The purpose of this service would be to
examine each request and forward it on to the Orders application running in the most appropriate
datacenter. This approach would enable Trey Research to filter and redirect requests based on criteria
such as the IP address of each request. The custom service could also detect whether the Orders ap-
plication at each datacenter was still running, and if it was currently unavailable it could transparently
redirect customer requests to functioning instances of the application. Additionally, the custom ser-
vice could attempt to distribute requests evenly across datacenters that are equally close (in network
terms) to the customer, implementing a load-balancing mechanism to ensure that no one instance of
the Orders application became unduly overloaded while others remained idle.

 153M a ximizing Scalability, Availability, and Performance in the Orders Application

This type of custom service is reasonably common, and can be implemented by using the System.
ServiceModel.Routing.RoutingService class of Windows Communication Foundation. However, a
custom service such as this is non-trivial to design, build, and test; and the routing rules that determine
how the service redirects messages can quickly become complex and difficult to maintain. Additionally,
this service must itself be hosted somewhere with sufficient power to handle every customer request,
and with good network connectivity to all customers. If the service is underpowered it will become a
bottleneck, and if customers cannot connect to the service quickly then the advantages of using this
service are nullified. Furthermore, this service constitutes a single point of failure; if it becomes unavail-
able then customers may not be able to connect to any instance of the Orders application.

Use Windows Azure Traffic Manager to Route Customers’ Requests
Windows Azure Traffic Manager is a Windows Azure service that enables you to set up request rout-
ing and load balancing based on predefined policies and configurable rules. It provides a mechanism
for routing requests to multiple deployments of your Windows Azure-hosted applications and ser-
vices, regardless of the datacenter location. The applications or services could be deployed in one or
more datacenters.

Traffic Manager is effectively a DNS resolver. When you use Traffic Manager, web browsers and
services accessing your application will perform a DNS query to Traffic Manager to resolve the IP
address of the endpoint to which they will connect, just as they would when connecting to any other
website or resource.

Traffic Manager addresses the network latency and application availability issues by providing
three mechanisms, or policies, for routing requests:
•	 The Performance policy redirects requests from users to the application in the closest data

center. This may not be the application in the data center that is closest in purely geographical
terms, but instead the one that provides the lowest network latency. Traffic Manager also
detects failed applications and does not route to these, instead choosing the next closest
working application deployment.

•	 The Failover policy allows you to configure a prioritized list of applications, and Traffic Manager
will route requests to the first one in the list that it detects is responding to requests. If that
application fails, Traffic Manager will route requests to the next applications in the list, and so on.

•	 The Round Robin policy routes requests to each application in turn; though it detects failed
applications and does not route to these. This policy evens out the loading on each application,
but may not provide users with the best possible response times as it ignores the relative
locations of the user and data center.

154 chapter six

You select which one of these policies is most appropriate to your
requirements; Performance to minimize network latency, Failover to
maximize availability, or Round Robin to distribute requests evenly
(and possibly improve response time as a result).

Traffic Manager is managed and maintained by Microsoft, and the
service is hosted in their datacenters. This means that there is no
maintenance overhead.

How Trey Research Minimizes Network
Latency and Maximizes Connectivity to
the Orders Application

Using the Enterprise Library Autoscaling Application Block helps to
ensure that sufficient instances of the Orders application web and
worker roles are running to service the volume of customers connect-
ing to a specific datacenter at a given point in time. With this in mind,
the operations staff at Trey Research decided to use Traffic Manager
simply to route customers’ requests to the nearest responsive data-
center by implementing the Performance policy.

The operation staff configured the policy to include the DNS
addresses of the Orders application deployed to the US North and US
South datacenters, and monitoring the Home page of the web appli-
cation to determine availability. The operations staff selected the
DNS prefix ordersapp.treyresearch, and mapped the resulting ad-
dress (ordersapp.treyresearch.trafficmanager.net) to the public ad-
dress used by customers, store.treyresearch.net. In this way, a cus-
tomer connecting to the URL http://store.treyresearch.net is
transparently rerouted by Traffic Manager to the Orders application
running in the US North datacenter or the US South datacenter. Fig-
ure 1 shows the structure of this configuration.

Implementing the Round
Robin policy may be detri-
mental to customers as they
might be routed to a more
distant datacenter, incurring
additional network latency
and impacting the response
time of the application.
Additionally, the Round
Robin policy may conceivably
route two consecutive requests
from the same customer to
different datacenters, possibly
leading to confusion if the
data cached at each datacen-
ter is not completely consis-
tent. The Performance policy
has the advantage of reducing
the network latency while
ensuring that requests from
the same customer are much
more likely to be routed to the
same datacenter.

The selection of the
Performance policy was
very easy; the Failover
policy is not suitable for
the Trey Research scenario,
and the Enterprise Library
Autoscaling Application
Block ensures that an
appropriate number of
instances of the Orders
application roles will be
available at each datacenter
to facilitate good
performance so the Round
Robin policy is unnecessary.

US South DatacenterUS North Datacenter

Head Office

Monitoring and management applications

Audit Log

Audit Log
Listener

SQL Azure

Orders

Customers
Products

ACS

Orders
Application

Social
Identity

Providers

Data
Market

Customers
Products

Compliance
application

Reports

SQL Azure

Orders

Customers
Products

Orders
Application

Reporting
Service

SQL Azure
Reporting

Service Bus

Connect

Service Bus

Traffic
Manager

Traffic Manager implements
the Performance Policy to
reroute Customer requests to
the nearest datacenter

External
access to
reports

Customers connect to
http://store.treyresearch.net

 155M a ximizing Scalability, Availability, and Performance in the Orders Application

Figure 1
How Trey Research uses Windows Azure Traffic Manager

Notice that the Orders application in both datacenters must connect to the head office audit log
listener service. Both deployments of the Orders application must also connect to all of Trey Re-
search’s transport partners; although, for simplicity, this is not shown in the diagram. Some features
of the application, such as the use of the SQL Azure™ technology platform Reporting Service and
the deployment of the compliance application in a Windows Azure VM Role, are not duplicated in
both datacenters. The Orders data is synchronized across both datacenters and so one instance of the
Reporting Service and the compliance application will provide the required results, without incurring
additional hosting and service costs.

156 chapter six

However, the designers at Trey Research realized that using a mechanism that may route users to
different deployments of the application in different datacenters will have some impact. For example,
data such as the user’s current shopping cart is typically stored in memory or local storage (such as
Windows Azure table storage or SQL Azure). When a user is re-routed to a different datacenter, this
data is lost unless the application specifically synchronizes it across all datacenters.

In addition, if Trey Research configured ACS in more than one datacenter to protect against au-
thentication issues should ACS in one datacenter be unavailable, re-routing users to another datacen-
ter would mean they would have to sign in again.

However, Trey Research considers that both of these scenarios were unlikely to occur often
enough to be an issue.

Optimizing the Response Time of the Orders Application
Windows Azure is a highly scalable platform that offers high performance for applications. However,
available computing power alone does not guarantee that an application will be responsive; an applica-
tion that is designed to function in a serial manner will not make best use of this platform and may
spend a significant period blocked waiting for slower, dependent operations to complete. The solution
is to perform these operations asynchronously, and the techniques that Trey Research adopted to
implement this approach have been described in Chapter 4, “Implementing Reliable Messaging and
Communications with the Cloud” and Chapter 5, “Processing Orders in the Trey Research Solution.”

Aside from the design and implementation of the application logic, the key factor that governs
the response time and throughput of a service is the speed with which it can access the resources and
data that it needs. In the case of the Orders application, the primary data source is the SQL Azure
database containing the customer, order, and product details. Chapter 2, “Deploying the Orders Ap-
plication and Data in the Cloud” described how Trey Research positioned the data within each data-
center to try and minimize the network overhead associated with accessing this information. How-
ever, databases are still relatively slow when compared to other forms of data storage. So, Trey
Research was left facing the question: How do you provide scalable, reliable, and fast access to the
customer, order and product data as this could be key to minimizing the response time of the Orders
application?

Choosing How to Optimize the Response Time of the Orders
Application

Upon investigating the issues surrounding response times in more detail, Trey Research found that that
there were two complimentary approaches available (both can be used, if appropriate).

Implement Windows Azure Caching
Windows Azure Caching is a service that enables you to cache data in the cloud, and provides scalable,
reliable, and shared access to this data.

On profiling the Orders application, the developers at Trey Research found that it spent a signifi-
cant proportion of its time querying the SQL Azure database, and the latency associated with con-
necting to this database, together with the inherent overhead of querying and updating data in the
database, accounted for a large part of this time. By caching data with the Windows Azure Caching
service, Trey Research hoped to reduce the overhead associated with repeatedly accessing remote
data, eliminate the network latency associated with remote data access, and improve the response
times for applications referencing this data.

 157M a ximizing Scalability, Availability, and Performance in the Orders Application

The overhead associated with querying and updating data in SQL Azure are not a criticism of this
database management system (DBMS). All DBMSs that support concurrent multiuser access have to
ensure consistency and integrity of data, typically by serializing concurrent requests from different
users and locking data. SQL Azure meets these requirements very efficiently. However, retrieving data
from a cache does not have this overhead; it is simply retrieved or updated. This efficiency comes at a
cost, as the application itself now has to take responsibility for ensuring the integrity and consistency
of cached data.

Additionally, sooner or later any updates to cached data must be copied back to the database,
otherwise the cache and the database will be inconsistent with each other or data may be lost; the
cache has a finite size, and the Windows Azure Caching service may evict data if there is insufficient
space available, or expire data that has remained in the cache for a lengthy period of time.

The Windows Azure Caching Service is also chargeable; it is hosted and maintained by Microsoft
in their datacenters, and they offer guarantees concerning the availability of this service and the
cached data, but you will be charged depending upon the size of the cache and the volume of traffic
read from or written to the cache. For more information, see "Caching, based on cache size per month."

Configure the Content Delivery Network
The Windows Azure Content Delivery Network (CDN) is a service designed to improve the response
time of web applications by caching the static output generated by hosted services, and also fre-
quently accessed blob data, closer to the users that request them. While Windows Azure Caching is
primarily useful for improving the performance of web applications and services running in the cloud,
users will frequently be invoking these web applications and services from their desktop, either by
using a custom application that connects to them or by using a web browser. The data returned from
a web application or service may be of a considerable size, and if the user is very distant it may take a
significant time for this data to arrive at the user’s desktop. The CDN enables you to cache the output
of web pages and frequently queried data at a variety of locations around the world. When a user
makes a request, the web content and data can be served from the most optimal location based on
the current volume of traffic at the various Internet nodes through which the request is routed.

Detailed information, samples, and exercises showing how to configure CDN are available on
MSDN; see the topic “Windows Azure CDN” at http://msdn.microsoft.com/en-us/gg405416.
Additionally Chapter 3, “Accessing the Surveys Application” in the guide “Developing Applications
for the Cloud, 2nd Edition” provides further implementation details.

While CDN is a useful technology, investigation by the developers at Trey Research suggested that
it would not be applicable in the current version of the Orders application; CDN is ideally suited to
caching web pages with static content and blob data for output or streaming to client applications,
while many of the pages generated by the Orders application may be relatively dynamic, and the ap-
plication does not store or emit blob data.

http://www.windowsazure.com/en-us/pricing/details/#caching
http://msdn.microsoft.com/en-us/gg405416
http://msdn.microsoft.com/en-us/library/ff966499.aspx

158 chapter six

How Trey Research Optimizes the Response
Time of the Orders Application

The Orders application uses several types of data; customer informa-
tion, order details, and the product catalog. Order information is rela-
tively dynamic, and customer details are accessed infrequently com-
pared to other data (only when the customer logs in). Furthermore the
same customer and order information tends not to be required by
concurrent instances of the Order application. However the product
catalog is queried by every instance of the Orders application when
the user logs in. It is also reasonably static; product information is
updated very infrequently. Additionally, the product catalog can com-
prise a large number of items. For these reasons, the developers at
Trey Research elected to cache the product catalog by using a shared
Windows Azure cache in each datacenter, while they decided that
caching order and customer details would bring few benefits.

Defining and Configuring the Windows Azure Cache
The Windows Azure Caching service runs in the cloud, and an applica-
tion should really connect only to an instance of the Windows Azure
Caching service located in the same datacenter that hosts the applica-
tion code. Therefore, Trey Research used the Windows Azure Caching
service to create separate caches in the US North and US South
datacenters, called TreyResearchCacheUSN (for the US North data-
center) and TreyResearchCacheUSS (for the US South datacenter).
This ensures that each cache has a unique and easily recognizable
name. The developers estimated that a 128MB cache (the minimum
size available, with the cheapest cost) would be sufficient. However,
the caches can easily be increased in size if necessary, without impact-
ing the operation of the Orders application.

The web application, implemented in the Orders.Website project,
defines the configuration parameters for accessing the cache in the
service configuration file for the solution (ServiceConfiguration.csfg).

XML
<?xml version="1.0" encoding="utf-8"?>
<ServiceConfiguration serviceName="Orders.Azure" ...>
 ...
 <Role name="Orders.Website">
 ...
 <ConfigurationSettings>
 ...
 <Setting name="CacheHost"
 value="TreyResearchCache.cache.windows.net" />
 <Setting name="CachePort" value="22233" />
 <Setting name="CacheAcsKey" value="[data omitted]" />
 <Setting name="IsLocalCacheEnabled" value="false" />

The Trey Research example
application provided in the
sample application is only
deployed to a single datacen-
ter, and the cache is named
TreyResearchCache.

 159M a ximizing Scalability, Availability, and Performance in the Orders Application

 <Setting name="LocalCacheObjectCount" value="1000" />
 <Setting name="LocalCacheTtlValue" value="60" />
 <Setting name="LocalCacheSync"
 value="TimeoutBased" />
 ...
 </ConfigurationSettings>
 ...
 </Role>
</ServiceConfiguration>

Synchronizing the Caches and Databases in the Orders Application
The Orders application was modified to retrieve and update data from the local instance of the
Windows Azure Cache, only fetching data from the SQL Azure database if the data is not currently
available in the cache. Any changes made to cached data are copied back to SQL Azure. The following
subsections describe how Trey Research implemented this approach.

Trey Research also had to consider the effects of caching on their data synchronization strategy.
Each datacenter has a copy of the SQL Azure database holding the customers, orders, and products
data. The Orders application can amend customers and orders information, and when it does so the
cached copy of this information is copied back to the local SQL Azure database. This database is
subsequently synchronized with the SQL Azure databases located in the other datacenters, as de-
scribed in Chapter 2, “Deploying the Orders Application and Data in the Cloud.”

However, suppose that the details of an order or customer have been cached by the Orders ap-
plication running in the US North datacenter, and the same details are queried and cached by the
Orders application running in the US South datacenter. At this point the two caches hold the same
data. If the information in the US North datacenter is changed and written back to the SQL Azure
database in the US North datacenter, and this database is subsequently synchronized with the US
South datacenter, then the cached data in the US South datacenter is now out of date. However, when
the cached data held in the US South datacenter expires or is evicted, the cache will be populated with
the fresh data the next time it is queried.

So, although caching can improve the response time for many operations, it can also lead to issues
of consistency if two instances of an item of data are not identical. Consequently, applications that
use caching should be designed to cope with data that may be stale but that eventually becomes
consistent.

This issue can become more acute if the same cached data is updated simultaneously in the US
North and US South datacenters; SQL Azure Data Sync will ensure consistency between the different
databases, but at least one of the caches will hold inconsistent data. For more advice and guidance on
how to address these problems refer to the section “Guidelines for Using Windows Azure Caching”
in “Appendix E - Maximizing Scalability, Availability, and Performance.”

Retrieving and Managing Data in the Orders Application
The Orders application uses a set of classes for storing and retrieving each of the types of information
it references. These classes are located in the DataStores folder of the Orders.Website project. For
example, the ProductStore class in the ProductStore.cs file provides methods for querying products.
These methods are defined by the IProductsStore interface:

160 chapter six

C#
public interface IProductStore
{
 IEnumerable<Product> FindAll();
 Product FindOne(int productId);
}

The FindAll method returns a list of all available products from the SQL Azure database, and the
FindOne method fetches the product with the specified product ID. In a similar vein, the OrderStore
class implements the IOrdersStore interface which defines methods for retrieving and managing or-
ders. None of these classes implements any form of caching.

Implementing Caching Functionality for the Products Catalog
The Orders.Website project contains a generic library of classes for caching data, located in the
DataStores\Caching folder. This library is capable of caching any of the data items defined by the
types in the DataStores folder, but for the reasons described earlier caching is only implemented for
the ProductStore class.

The DataStores\Caching folder contains the ICachingStrategy interface, the CachingStrategy
class, and the ProductStoreWithCache class. The following sections describe these classes.

The ICachingStrategy Interface
This is a simple interface that abstracts the caching functionality implemented by the library. It ex-
poses a property named DefaultTimeout and a method called Get, as follows:

C#
public interface ICachingStrategy
{
 TimeSpan DefaultTimeout
 {
 get;
 set;
 }

 object Get<T>(string key, Func<T> fallbackAction,
 TimeSpan? timeout) where T : class;
}

The key parameter of the Get method specifies the unique identifier of the object to retrieve from
the cache. If the object is not currently cached, the fallbackAction parameter specifies a delegate for
a method to run to retrieve the corresponding data, and the timeout parameter specifies the lifetime
of the object if it is added to the cache. If the timeout parameter is null, an implementation of this
interface should set the lifetime of the object to the value specified by the DefaultTimeout property.

 161M a ximizing Scalability, Availability, and Performance in the Orders Application

The CachingStrategy Class
This class implements the ICachingStrategy interface. The constructor for this class uses the Win-
dows Azure caching APIs to authenticate and connect to the Windows Azure cache using the values
provided as parameters (the web application retrieves these values from the service configuration file,
and invokes the constructor by using the Unity framework as described later in this chapter, in the
section “Instantiating and Using a ProductsStoreWithCache Object.”)

The Get method of the CachingStrategy class queries the cache using the specified key, and if
the object is found it is returned. If the object is not found, the method invokes the delegate to re-
trieve the missing data and adds it to the cache, specifying either the timeout value provided as the
parameter to the Get method (if it is not null) or the default timeout value for the CachingStrategy
object. The following code sample shows the important elements of this class:

C#
public class CachingStrategy :
 ICachingStrategy, IDisposable
{
 private readonly RetryPolicy cacheRetryPolicy;
 private DataCacheFactory cacheFactory;

 ...
 private TimeSpan defaultTimeout =
 TimeSpan.FromMinutes(10);

 public CachingStrategy(string host, int port,
 string key, bool isLocalCacheEnabled,
 long objectCount, int ttlValue, string sync)
 {
 // Declare array for cache host.
 var servers = new DataCacheServerEndpoint[1];

 servers[0] = new DataCacheServerEndpoint(
 host, port);

 // Setup DataCacheSecurity configuration.
 var secureAcsKey = new SecureString();
 foreach (char a in key)
 {
 secureAcsKey.AppendChar(a);
 }
 secureAcsKey.MakeReadOnly();
 var factorySecurity =
 new DataCacheSecurity(secureAcsKey);

 // Setup the DataCacheFactory configuration.
 var factoryConfig =
 new DataCacheFactoryConfiguration

162 chapter six

 {
 Servers = servers,
 SecurityProperties = factorySecurity
 };
 ...
 this.cacheFactory =
 new DataCacheFactory(factoryConfig);

 this.cacheRetryPolicy = RetryPolicyFactory.
 GetDefaultAzureCachingRetryPolicy();
 ...
 }

 public TimeSpan DefaultTimeout
 {
 get { return this.defaultTimeout; }
 set { this.defaultTimeout = value; }
 }

 public virtual object Get<T>(string key,
 Func<T> fallbackAction, TimeSpan? timeout)
 where T : class
 {
 ...
 try
 {
 var dataCache =
 this.cacheFactory.GetDefaultCache();

 var cachedObject =
 this.cacheRetryPolicy.ExecuteAction(
 () => dataCache.Get(key));

 if (cachedObject != null)
 {
 ...
 return cachedObject;
 }
 ...
 var objectToBeCached = fallbackAction();

 if (objectToBeCached != null)
 {
 try
 {
 this.cacheRetryPolicy.ExecuteAction(() =>

 163M a ximizing Scalability, Availability, and Performance in the Orders Application

 dataCache.Put(key, objectToBeCached,
 timeout != null ?
 timeout.Value : this.DefaultTimeout));
 ...
 return objectToBeCached;
 }
 ...
 }
 }
 }
 }
 ...
}

Notice that this class traps transient errors that may occur when fetching an item from the cache, by
using the Transient Fault Handling Application Block. The static GetDefaultAzureCachingRetry-
Policy method of the RetryPolicyFactory class referenced in the constructor returns the default
policy for detecting a transient caching exception, and provides a construct for indicating how such
an exception should be handled. The default policy implements the “Fixed Interval Retry Strategy”
defined by the Transient Fault Handling Block, and the web.config file configures this strategy to retry
to the failing operation up to six times with a five second delay between attempts.

The Get property of the CachingStrategy class invokes the ExecuteAction method of the retry
policy object, passing it a delegate that attempts to read the requested data from the cache (this is
the code that may exhibit a transient error, and if necessary will be retried based on the settings de-
fined by the retry policy object). If a non-transient error occurs or an attempt to read the cache fails
after six attempts, the exception handling strategy in the Get method (omitted from the code above)
will return the value from the underlying store, retrieved by calling the fallbackAction delegate.

The ProductStoreWithCache Class
This class provides the caching version of the ProductStore class. It implements the IProductsStore
interface, but internally employs an ICachingStrategy object to fetch data in the FindAll and Find-
One methods, as shown by the following code sample:

C#
public class ProductStoreWithCache : IProductStore
{
 private readonly IProductStore productStore;

 private readonly ICachingStrategy cachingStrategy;

 public ProductStoreWithCache(
 IProductStore productStore,
 ICachingStrategy cachingStrategy)
 {
 this.productStore = productStore;
 this.cachingStrategy = cachingStrategy;
 }

164 chapter six

 public IEnumerable<Product> FindAll()
 {
 ...
 return (IEnumerable<Product>)
 this.cachingStrategy.Get(
 "ProductStore/FindAll",
 () => this.productStore.FindAll(),
 TimeSpan.FromMinutes(10));
 }

 public Product FindOne(int productId)
 {
 ...
 return (Product)this.cachingStrategy.Get(
 string.Format(
 "ProductStore/Product/{0}", productId),
 () => this.productStore.FindOne(productId),
 TimeSpan.FromMinutes(10));
 }
}

Instantiating and Using a ProductsStoreWithCache Object
The Orders application creates a ProductsStoreWithCache object by using the Unity Application
Block. The static ContainerBootstrapper class contains the following code:

C#
public static class ContainerBootstrapper
{
 public static void RegisterTypes(
 IUnityContainer container)
 {
 ...
 container.RegisterType<IProductStore,
 ProductStoreWithCache>(
 new InjectionConstructor(
 new ResolvedParameter<ProductStore>(),
 new ResolvedParameter<ICachingStrategy>()));
 container.RegisterType<ProductStore>();

 // To change the caching strategy, replace the
 // CachingStrategy class with the strategy that
 // you want to use instead.
 var cacheAcsKey = CloudConfiguration.
 GetConfigurationSetting(“CacheAcsKey”, null);

 165M a ximizing Scalability, Availability, and Performance in the Orders Application

 var port = Convert.ToInt32(CloudConfiguration.
 GetConfigurationSetting("CachePort", null));
 var host = CloudConfiguration.
 GetConfigurationSetting("CacheHost", null);

 var isLocalCacheEnabled = Convert.ToBoolean(
 CloudConfiguration.GetConfigurationSetting(
 "IsLocalCacheEnabled", null));
 var localCacheObjectCount = Convert.ToInt64(
 CloudConfiguration.GetConfigurationSetting(
 "LocalCacheObjectCount", null));
 var localCacheTtlValue = Convert.ToInt32(
 CloudConfiguration.GetConfigurationSetting(
 "LocalCacheTtlValue", null));
 var localCacheSync =
 CloudConfiguration.GetConfigurationSetting(
 "LocalCacheSync", null);

 container.RegisterType<ICachingStrategy,
 CachingStrategy> (
 new ContainerControlledLifetimeManager(),
 new InjectionConstructor(host, port, cacheAcsKey,
 isLocalCacheEnabled, localCacheObjectCount,
 localCacheTtlValue, localCacheSync));
 }
}

These statements register the ProductStore and CachingStrategy ob-
jects, and the Unity Application Block uses them to create a Product-
StoreWithCache object whenever the application instantiates an
IProductStore object. Notice that the CachingStrategy class is config-
ured to use the ContainerControlledLifetimeManager class of the
Unity framework. This effectively ensures that the CachingStrategy
object used by the application is created as a singleton that spans the
life of the application. This is useful as the DataCache-Factory object
that the CachingStrategy class encapsulates is very expensive and time
consuming to create, so it is best to create a single instance of this class
that is available throughout the duration of the application. Addition-
ally, the parameters for the constructor for the CachingStrategy object
are read from the configuration file and are passed to the Caching-
Strategy class by using a Unity InjectionConstructor object.

The RegisterTypes
method of the
ContainerBootstrapper
class is called from the
SetupDependencies
method in the Global.asax.
cs file when the Orders
application starts running.
The SetupDependencies
method also assigns the
dependency resolver for
the Orders application to
the Unity container that
registered these types.
For more information about
using the Unity Application
Block see “Unity Application
Block” on MSDN.

http://msdn.microsoft.com/en-us/library/ff647202.aspx
http://msdn.microsoft.com/en-us/library/ff647202.aspx

166 chapter six

The StoreController class calls the FindAll method of the ProductStoreWithCache object when
it needs to fetch and display the entire product catalog, and the FindOne method when it needs to
retrieve the details for a single product:

C#
public class StoreController : Controller
{
 private readonly IProductStore productStore;

 public StoreController(IProductStore productStore)
 {
 ...
 this.productStore = productStore;
 }

 public ActionResult Index()
 {
 var products = this.productStore.FindAll();
 return View(products);
 }

 public ActionResult Details(int id)
 {
 var p = this.productStore.FindOne(id);
 return View(p);
 }
}

This code transparently accesses the Windows Azure cache, populating it if the requested data is not
currently available in the cache. You can change the caching configuration, and even elect not to cache
data if caching is found to have no benefit, without modifying the business logic for the Orders ap-
plication; all you need to do is switch the type for the IProductsStore interface in the Container-
Bootstrapper class to ProductStore, as highlighted in bold in the following code example:

C#
public static class ContainerBootstrapper
{
 public static void RegisterTypes(
 IUnityContainer container)
 {
 ...
 container.RegisterType<IProductStore, ProductStore>();
 ...
 }
}

 167M a ximizing Scalability, Availability, and Performance in the Orders Application

Summary
This chapter has described the Windows Azure technologies that Trey Research used to improve the
scalability, availability, and performance of the Orders application.

Windows Azure Traffic Manager can play an important role in reducing the network latency as-
sociated with sending requests to a web application by transparently routing these requests to the
most appropriate deployment of the web application relative to the location of the client submitting
these requests. Traffic Manager can also help to maximize availability by intelligently detecting
whether the application is responsive, and if not, re-routing requests to a different deployment of the
application.

Windows Azure provides a highly scalable environment for hosting web applications and services,
and the Enterprise Library Autoscaling Application Block implements a mechanism that can take full
advantage of this scalability by monitoring web applications and automatically starting and stopping
instances as the demand from clients requires.

Finally, Windows Azure caching is an essential element in improving the responsiveness of web
applications and services. It enables Trey Research to cache data locally to these applications, in the
same datacenter. This technique removes much of the network latency associated with remote data
access. However, as Trey Research discovered, you must be prepared to balance this improvement in
performance against the possible complexity introduced by maintaining multiple copies of data.

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx.
•	 “Autoscaling Application Block Logging” at http://msdn.microsoft.com/en-us/library/

hh680883(v=pandp.50).aspx
•	 Chapter 5, “Making Tailspin Surveys More Elastic,” of the Developer’s Guide to the Enterprise

Library 5.0 Integration Pack for Windows Azure at http://msdn.microsoft.com/en-us/library/
hh680942(PandP.50).aspx

•	 “Pricing Overview” at http://www.windowsazure.com/en-us/pricing/details/.
•	 “Caching, based on cache size per month” at http://www.windowsazure.com/en-us/pricing/

details/#caching
•	 “Windows Azure CDN” at http://msdn.microsoft.com/en-us/gg405416.
•	 Chapter 3, “Accessing the Surveys Application” in the guide “Developing Applications for the

Cloud, 2nd Edition” http://msdn.microsoft.com/en-us/library/ff966499.aspx.
•	 “Unity Application Block” at http://msdn.microsoft.com/en-us/library/ff647202.aspx.
•	 “Windows Azure Traffic Manager” at http://msdn.microsoft.com/en-us/gg197529.
•	 “Windows Azure Service Instances Auto Scaling” at http://azureautoscaling.codeplex.com/

releases/view/62421.
•	 “Windows Azure Caching Service” at http://msdn.microsoft.com/en-us/library/gg278356.aspx.
•	 “Windows Azure CDN” at http://msdn.microsoft.com/en-us/gg405416.

http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://msdn.microsoft.com/en-us/library/hh680883(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680883(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680942(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680942(PandP.50).aspx
http://www.windowsazure.com/en-us/pricing/details/
http://msdn.microsoft.com/en-us/gg405416
http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/ff647202.aspx
http://msdn.microsoft.com/en-us/gg197529
http://azureautoscaling.codeplex.com/releases/view/62421
http://azureautoscaling.codeplex.com/releases/view/62421
http://msdn.microsoft.com/en-us/library/gg278356.aspx
http://msdn.microsoft.com/en-us/gg405416

 169

7 Monitoring and Managing
the Orders Application

When the design and implementation of the hybrid Orders application was completed, Trey Research
considered how to monitor and manage the application as it runs on the Windows Azure™ technol-
ogy platform.

The Orders application comprises a number of components, built using a variety of technologies,
and distributed across a range of sites and connected by networks of varying bandwidth and reli-
ability. With this complexity, it was very important for Trey Research to be able to monitor how well
the system is functioning, and quickly take any necessary restorative action in the event of failure.
However, monitoring a complex system is itself a complex task, requiring tools that can quickly
gather performance data to help analyze throughput and pinpoint the causes of any errors, failures, or
other shortcomings in the system. The range of problems can vary significantly, from simple failures
caused by application errors in a service running in the cloud, through issues with the environment
hosting individual elements, to complete systemic failure and loss of connectivity between compo-
nents whether they are running on-premises or in the cloud.

This chapter focuses on the challenges associated with monitoring the Orders application, and
the decisions Trey Research made when tackling these challenges.

Scenario and Context
The hybrid Orders application has components running remotely from the on-premises services; in-
cluding a website, background order processing code, and databases. The application also communi-
cates with transport partners as it processes orders, listens for status messages from these partners,
and sends messages to the on-premises Audit Log service.

The designers at Trey Research had to decide how to monitor the application as it runs so that
administrators can measure performance, ensure it meets Service Level Agreements, and verify that it
provides acceptable response times to visitors. Administrators must also be able to retrieve data about
errors or exceptions that occur at runtime, and be able to trace operations to assist in debugging the
application. Developers had to add some code to the application before it was deployed in order to
accomplish many of these tasks.

Trey Research also had to consider how to deploy the application to Windows Azure, and how to
manage factors such as re-configuration and management of the individual Windows Azure services it
uses while the application is deployed and running. Trey Research created a set of scripts and other ex-
ecutable programs that allow these kinds of tasks to be performed repeatedly, accurately, and securely.

170 chapter seven

Monitoring Services, Logging Activity, and
Measuring Performance

Even though the Orders application runs remotely from Trey Re-
search’s head office, it is still possible for Trey Research administrators
to obtain the same kinds of information about its operation and any
exceptions or errors that occur as they would when administering an
application deployed locally in their own data center. However, the
way that this data is collected and accessed is very different in Win-
dows Azure compared to a local server deployment.

You can configure Windows Azure Diagnostics to collect perfor-
mance and diagnostics information. This data is stored in memory in
the worker or web role being monitored, but it can be transferred to
Windows Azure storage on a scheduled basis or on demand, so that it
can be accessed from on-premises applications and monitoring solu-
tions.

Figure 1 shows a high-level view of the monitoring mechanism in
Windows Azure and some of the ways that Trey Research considered
using it. The Windows Azure Diagnostics mechanism can be config-
ured to collect data from a range of sources, such as Windows event
logs and performance counters. It is also possible to use a third party
logging mechanism, such as the Enterprise Library Logging Applica-
tion Block, or custom code that writes events to the Window Azure
Diagnostics mechanism.

You can configure
the Windows Azure
Diagnostics mechanism to
collect the data you need
to monitor and debug
applications, and to transfer
this data to Windows Azure
storage so that you can
access it.

Windows Azure

 Head Office

Monitoring and management applications

Logging
Listener
Service

Windows
Azure
Storage

Windows Azure
Diagnostics

Custom Logging
Code

Orders
Application

Log Data
Enterprise

Library Logging
Block

Log Data

SQL Azure
Data Sync

 171Monitoring and M anaging the Orders Application

Figure 1
Monitoring approaches that Trey Research considered for the Orders
application

Choosing a Monitoring and Logging
Solution

Trey Research considered four ways of collecting information for
monitoring services, logging activity, and measuring performance in
the Orders application: Windows Azure Diagnostics, the Enterprise
Library Logging Application Block, a third party monitoring solution,
and using custom code in the application to generate logging mes-
sages. The following sections describe each of these options.

A range of comprehensive
ready-built monitoring
solutions designed to work
with applications deployed
in Windows Azure is
available. These products
typically provide functions
for collecting and analyzing
monitoring information,
displaying it in a dashboard,
and notifying operators
of significant events. Such
solutions include Microsoft
System Center Operations
Manager and products from
third parties.

172 chapter seven

Windows Azure Diagnostics
Windows Azure Diagnostics is the built-in mechanism for collecting
all kinds of monitoring and diagnostic information in Windows Azure.
It requires no additional code or assemblies. Windows Azure Diagnos-
tics can collect data from Windows event logs and performance
counters; the IIS log and failed request log; infrastructure logs; crash
dump files; and custom error logs. Developers or administrators at
Trey Research simply configure the diagnostics mechanism to collect
the required data, and specify the intervals for this data to be trans-
ferred to Windows Azure storage. They can also use Windows Azure
PowerShell cmdlets to reconfigure the diagnostics settings as the
application runs, initiate a transfer of the data to Windows Azure
storage on demand, and download the logged data to an on-premises
store.

However, there is only a limited set of options for filtering and
categorizing the logged information, and it can only be stored in Win-
dows Azure storage. There are no opportunities to store the data in a
database, or in a custom format or repository.

For more information about using Windows Azure Diagnostics,
see “Appendix F - Monitoring and Managing Hybrid
Applications” of this guide.

Enterprise Library Logging Application Block
The Logging Application Block is a component of Enterprise Library,
a framework of components for managing cross-cutting concerns in
most types of applications. Trey Research could configure the Logging
Application Block to send log entries to the Windows Azure Diagnos-
tic trace listener, which is a component of the Windows Azure Diag-
nostics system that stores the log entries in memory so that they can
be transferred to Windows Azure storage along with any other diag-
nostic data that the system collects.

Alternatively, Trey Research could configure the Logging Applica-
tion Block to send log entries to other types of storage such as a da-
tabase, text files in a range of formats, and XML files. One option that
Trey Research considered was using the Logging Application Block to
write log entries directly to a SQL Azure™ technology platform da-
tabase located in the cloud, and then transfer this data back to an
on-premises database for analysis. SQL Azure Data Sync could be
used to simplify the task of synchronizing the data between the cloud
and an on-premises database.

You might also consider
using the Enterprise
Library Exception Handling
Application Block to
provide a structured
policy-driven mechanism
for collecting and managing
exception information.
The Exception Handling
block can send its log entry
messages to the Enterprise
Library Logging Application
Block for exposure through
the Windows Azure
Diagnostics mechanism.

 173Monitoring and M anaging the Orders Application

The Logging Application Block is highly configurable and extensible, and includes a wide range of
options for filtering and categorizing log messages. This would make it easy for developers at Trey
Research to generate different types of log entries and provide useful additional support for adminis-
trators and operators.

The main limitation of the Enterprise Library Logging Application Block is that it cannot collect
data from the host system; such as Windows event log entries, performance counters, or IIS log files.
It is purely an activity logging mechanism where code generates the log entries in response to events
occurring in the application. Using any of the Enterprise Library Application Blocks also means that
external library assemblies must be uploaded and installed with the application code in Windows
Azure.

For more information about the Enterprise Library Logging Application Block and Exception
Handling Application Block, see “About This Release of Enterprise Library.” There is also a
whitepaper available that describes how you can use the Enterprise Library 5.0 application blocks
with Windows Azure-hosted applications. You can download the whitepaper from the Enterprise
Library CodePlex site.

Third Party Monitoring Solution
Trey Research could have adopted a third party monitoring solution. There are several solutions avail-
able that are aimed wholly or partly at monitoring Windows Azure applications and services. They
include the following:
•	 Windows Azure Management Pack for Microsoft System Center Operations Manager
•	 Azure Diagnostics Manager from Cerebrata
•	 AzureWatch from Paraleap Technologies
•	 ManageAxis from Cumulux

These solutions can monitor role status, collect performance information, gather event data, and raise
notifications to administration staff.

Custom Logging Solution
The developers at Trey Research considered building a custom logging and diagnostics solution for the
Orders application. The Windows Azure Diagnostic trace listener exposes methods for creating and
storing log entries, and so provides a way for Trey Research to monitor activity and expose these log
entries through the standard Windows Azure Diagnostics mechanism. For example, the developers
could add code to the Orders application that generates a message each time a visitor is initially au-
thenticated and signs in. This code can call the methods of the diagnostic trace listener to store the
message as a log entry. When the diagnostics data is later transferred to Windows Azure storage it
will include entries created by the custom code.

http://msdn.microsoft.com/en-us/library/ff664636(v=PandP.50).aspx
http://pinpoint.microsoft.com/en-us/applications/system-center-monitoring-pack-for-windows-azure-applications-12884907699
http://www.cerebrata.com/Products/AzureDiagnosticsManager/Default.aspx
http://www.paraleap.com/
http://www.cumulux.com/products-and-services/cloud-operations/

174 chapter seven

It is also possible to create custom logging solutions that store
data in other formats and locations. For example, like the Enterprise
Library Logging Application Block, the code could store the log en-
tries in a database, text file, or a repository in some other format. This
approach will require a mechanism for accessing the data remotely
from the on-premises applications and tools, or for transferring the
data back to on-premises storage for future analysis.

The main limitation that Trey Research considered with using a
custom logging solution is that, like the Logging Application Block, it
cannot collect data from the host system; such as Windows event log
entries, performance counters, or IIS log files. It is purely an activity
logging mechanism where code generates the log entries in response
to events occurring in the application.

How Trey Research Chose a Monitoring
and Logging Solution

Trey Research wanted to be able to generate some monitoring and
activity tracing information in the Orders application all of the time it
is running. However, the administrators did not want to collect full
tracing information or operating system diagnostics information all of
the time. Instead, they want to be able to change the configuration so
that additional information can be collected when required, such as
when debugging a problem with the application.

After careful consideration, Trey Research decided to use a cus-
tom solution for activity tracing and recording specific errors by
generating these log entries and then writing them to the Windows
Azure Diagnostics mechanism. While the Enterprise Library Logging
Application Block (and the Exception Handling Application Block)
would have been suitable, the types of information that Trey Research
collects are limited, and so the additional complexity of using these
blocks was not felt to be an advantage in Trey Research’s scenario.

How Trey Research Uses Windows Azure
Diagnostics

Trey Research implements diagnostic logging, and downloads the in-
formation from the cloud to their on-premises servers. Trey Research
traces the execution of each role instance, and also records the details
of any exceptions raised by the role instances using a combination of
a custom TraceHelper class and the standard Windows Azure Diag-
nostics mechanism. The data is initially stored in a table named WAD-
LogsTable, in table storage at each datacenter. Trey Research consid-
ered the following two options for monitoring this data and using it
to manage the system:

You can use the Windows
Azure Diagnostic trace
listener to generate
log entries containing
information you need for
monitoring events and
activity in your application.
The data is exposed
through the Windows
Azure Diagnostics
mechanism and can be
transferred to Windows
Azure storage for analysis
as required.

 175Monitoring and M anaging the Orders Application

•	 Using System Center Operations Manager with the Windows Azure Management Pack, or
another third party solution, to connect directly to each datacenter, examine the diagnostic
data, generate the appropriate usage reports, and alert an operator if an instance failed or some
other significant event occurred.

•	 Periodically transferring the diagnostic data to a secure on-premises location, and then refor-
matting this data for use by their own custom reporting and analytical tools.

Although System Center Operations Manager and other third party solutions provide many powerful
features, the existing investment that Trey Research has already made in developing and procuring
custom analytical tools led to the second option being more appealing. Additionally, it meant that Trey
Research could more easily retain a complete audit log of all significant operations and events locally,
which might be a requirement as ever-stricter compliance regulations become legally binding. How-
ever, this solution does not preclude Trey Research from deploying System Center Operations Man-
ager or another third party solution in the future.

Selecting the Data and Events to Record
Trey Research decided to record different types of events using trace messages and Windows Azure
Diagnostics. Under normal operation, Trey Research collects only trace messages that have a severity
of Warning or higher. However, the mechanism Trey Research implemented allows administrators to
change the behavior to provide more detail when debugging the application or monitoring specific
activity.

The following table shows the logging configuration that Trey Research uses. Notice that Trey
Research does not collect Windows event log events or Windows performance counter data. Instead,
Trey Research captures information at all stages of the operation of the application and sends this in-
formation to the Windows Azure Diagnostics mechanism through a custom class named TraceHelper.

Event or tract type Logging mechanism used Type of event that initiates logging

Application-defined
Error-level events

Collected by the custom
TraceHelper class

Posting a message to a topic or queue fails after all retries.
A job process task in a worker role fails.
Failure to access Windows Azure Cache.

Application-defined
Warning-level events

Collected by the custom
TraceHelper class

Posting a message to a topic or queue fails but will be
retried.
Updating a database fails but will be retried.

Application-defined
Information-level
events

Collected by the custom
TraceHelper class

Application startup.
Starting a job process task in a worker role.
Opening a view in the Orders website.
Detailed information on a web role’s interaction with
Windows Azure Cache.
Various events related to an order being placed, or
customer data being added.

Application-defined
Verbose-level events

Collected by the custom
TraceHelper class

None defined; available for future extensions.

Windows event logs Not collected by Trey Research. Windows internal operating system or software events.

Windows performance
counters

Not collected by Trey Research. Performance counters implemented by Windows operating
system and installed applications.

176 chapter seven

Configuring the Diagnostics Mechanism
The worker role in the Orders.Workers project and the web role in
the Orders.Website project are both configured to use Windows
Azure Diagnostics. The configuration file for both applications con-
tains the following settings:

XML
<?xml version="1.0" encoding="utf-8"?>
<configuration>
 ...
 <system.diagnostics>
 <sources>
 <source name="TraceSource">
 <listeners>
 <add type="Microsoft.WindowsAzure.Diagnostics
 .DiagnosticMonitorTraceListener, ..."
 name="AzureDiagnostics">
 <filter type="" />
 </add>
 </listeners>
 </source>
 </sources>
 </system.diagnostics>
</configuration>

This configuration defines a diagnostic source listener named Trace-
Source that sends trace messages to the Windows Azure Diagnostics-
MonitorTraceListener class. There is no filter level defined in the
configuration because this will be set in the code that initializes the
TraceSource listener.

To configure the diagnostics and schedule the transfer of diagnos-
tic data to Windows Azure storage, Trey Research initially considered
using an imperative approach by adding code such as that shown be-
low to the OnStart methods of the classes implementing the web and
worker roles.

C#
...
// Get default initial configuration.
var config =
 DiagnosticMonitor.GetDefaultInitialConfiguration();

// Update the initial configuration.
config.Logs.ScheduledTransferLogLevelFilter
 = LogLevel.Undefined;
config.Logs.ScheduledTransferPeriod
 = TimeSpan.FromSeconds(60);

To collect Windows event
logs and performance
counter data you must
configure Windows Azure
Diagnostics to transfer the
required data to Windows
Azure Table storage.
Windows event log entries
are transferred to a table
named WADWindows-
EventLogsTable, and
performance counter data
is transferred to a table
named WADPerformance-
CountersTable. If Trey
Research needs to capture
this data in the on-premises
management application,
its developers must
write additional code to
download the data in these
tables.

 177Monitoring and M anaging the Orders Application

// Start the monitor with this configuration.
DiagnosticMonitor.Start("DiagnosticsConnectionString",
 config);
...

However, although simple, Trey Research found that this approach could prove inflexible. If necessary,
Trey Research needs to be able to modify the diagnostics configuration and transfer schedule re-
motely (by using Windows Azure Powershell cmdlets or one of the available third party monitoring
solutions such as Cerebrata Diagnostics Manager listed earlier), but performing these tasks in code
will cause any remote changes to the configuration to be lost if a role restarts.

Therefore Trey Research opted to configure the diagnostics by using the diagnostics configuration
file, diagnostics.wadcfg. This file can be held in blob storage (and therefore survive role restarts) and
read by the Windows Azure Diagnostics monitor when the role starts. For more information, see
“Using the Windows Azure Diagnostics Configuration File” on MSDN.

Implementing Trace Message Logging and Specifying the Level of Detail
Trey Research collects trace messages generated by a custom class named TraceHelper (located in the
Helpers folder of the Orders.Shared project). The TraceHelper class instantiates a TraceSource in-
stance and exposes a set of static methods that make it easy to write trace messages with different
severity levels.

C#
public class TraceHelper
{
 private static readonly TraceSource Trace;

 static TraceHelper()
 {
 Trace = new TraceSource("TraceSource",
 SourceLevels.Information);
 }

 [EnvironmentPermissionAttribute(
 SecurityAction.LinkDemand, Unrestricted = true)]
 public static void Configure(SourceLevels sourceLevels)
 {
 Trace.Switch.Level = sourceLevels;
 }

 public static void TraceVerbose(string format,
 params object[] args)
 {
 Trace.TraceEvent(TraceEventType.Verbose, 0,
 format, args);
 }

http://msdn.microsoft.com/en-us/library/gg604918.aspx

178 chapter seven

 public static void TraceInformation(string format,
 params object[] args)
 {
 Trace.TraceEvent(TraceEventType.Information, 0,
 format, args);
 }

 public static void TraceWarning(string format,
 params object[] args)
 {
 Trace.TraceEvent(TraceEventType.Warning, 0,
 format, args);
 }

 public static void TraceError(string format,
 params object[] args)
 {
 Trace.TraceEvent(TraceEventType.Error, 0,
 format, args);
 }
}

Data recorded in this way is directed to the Windows Azure Diagnostics monitor trace listener (due
to the configuration shown in the section “Configuring the Diagnostics Mechanism” earlier in this
chapter), and subsequently into the WADLogsTable. By default the TraceHelper class captures mes-
sages with the severity filter level of Information. However, this setting can be changed by calling the
Configure method the TraceHelper class exposes, and supplying a value for the severity level of
messages to trace. The worker roles and web roles both configure this setting in the OnStart method
by reading it from the service configuration file.

C#
public override bool OnStart()
{
 ...
 ConfigureTraceListener(
 RoleEnvironment.GetConfigurationSettingValue(
 "TraceEventTypeFilter"));
 ...
}

private static void ConfigureTraceListener(
 string traceEventTypeFilter)
{
 SourceLevels sourceLevels;
 if (Enum.TryParse(traceEventTypeFilter, true,
 out sourceLevels))
 {

 179Monitoring and M anaging the Orders Application

 TraceHelper.Configure(sourceLevels);
 }
}

The roles also set up handlers for the RoleEnvironmentChanging and
RoleEnvironmentChanged events. These handlers reconfigure the
TraceHelper class for the role when the configuration changes. This
enables administrators to change the severity filter level to obtain ad-
ditional information for debugging and monitoring while the applica-
tion is running.

Writing Trace Messages
The web and worker roles use the TraceHelper class to record infor-
mation about events, errors, and other significant occurrences. For
example, exceptions are captured using code such as that shown in
the following example taken from the ReceiveNextMessage method
of the ServiceBusReceiverHandler class in the Orders.Shared proj-
ect. Note that this code calls the TraceError method of the Trace-
Helper class to write a trace message with severity “Error”.

C#
private void ReceiveNextMessage(
 CancellationToken cancellationToken)
{
 ...
 this.ReceiveNextMessage(cancellationToken);

 if (taskResult.Exception != null)
 {
 TraceHelper.TraceError(taskResult.Exception.Message);
 throw taskResult.Exception;
 }
 ...
}

The TraceHelper class is also used in the web role. Code in the Custom-
Attributes folder of the Orders.Website project defines a custom at-
tribute called LogActionAttribute that calls the TraceInformation
method of the TraceHelper class to write a trace message with sever-
ity “Information”.

C#
public class LogActionAttribute : ActionFilterAttribute
{
 public override void OnActionExecuting(
 ActionExecutingContext filterContext)
 {
 ...

The mechanism that Trey
Research implements for
specifying the trace level
offers a high degree of
control over the volume
and nature of data that
is captured. However, an
alternative approach is to
capture data for all events
and then apply filters when
transferring the trace
data to Windows Azure
storage by setting the
ScheduledTransferLog-
LevelFilter property of
the diagnostic monitor
configuration; this property
can be specified as part
of the Windows Azure
Diagnostics monitor
configuration stored in the
diagnostics.wadcfg and
can be updated remotely
without requiring the roles
to be restarted.

180 chapter seven

 TraceHelper.TraceInformation(
 "Executing Action '{0}', from controller '{1}'",
 filterContext.ActionDescriptor.ActionName,
 filterContext.ActionDescriptor.
 ControllerDescriptor.ControllerName);
 }

 public override void OnActionExecuted(
 ActionExecutedContext filterContext)
 {
 ...
 TraceHelper.TraceInformation(
 "Action '{0}', from controller '{1}'
 has been executed",
 filterContext.ActionDescriptor.ActionName,
 filterContext.ActionDescriptor.
 ControllerDescriptor.ControllerName);
 }
 }
}

The controller classes in the Orders.Website project are tagged with this attribute. The following
code shows the StoreController class, which retrieves products for display.

C#
[LogAction]
public class StoreController : Controller
{
 ...
 public ActionResult Index()
 {
 var products = this.productStore.FindAll();
 return View(products);
 }

 public ActionResult Details(int id)
 {
 var p = this.productStore.FindOne(id);
 return View(p);
 }
}

 181Monitoring and M anaging the Orders Application

This feature enables the application to generate a complete
record of all tagged actions performed on behalf of every user sim-
ply by changing the TraceEventTypeFilter setting in the Service-
Configuration.cscfg file to Information.

Transferring Diagnostics Data from the Cloud
Trey Research uses a custom mechanism for collating and analyzing
diagnostics information. It requires that all applications store event
and trace messages in an on-premises database named DiagnosticsLog
that the monitoring and analysis mechanism queries at preset intervals.

Trey Research could use a third-party tool to download the data
from the WADLogsTable, or write scripts that use the Windows
Azure PowerShell cmdlets (see http://wappowershell.codeplex.com).
However, the Windows Azure SDK provides classes that make it easy
to interact with Windows Azure storage through the management
API using the .NET Framework. This is the approach that Trey Re-
search chose.

The on-premises monitoring and management application (imple-
mented in the HeadOffice project of the example) contains a page
that administrators use to download and examine the diagnostics data
collected in the Orders application.

The code that interacts with Windows Azure storage and updates
the on-premises DiagnosticsLog database table is in the Diagnostics-
Controller class, located in the Controllers folder of the HeadOffice
project. The DiagnosticsController class uses the Enterprise Library
Transient Fault Handling Block to retry any failed connection to Win-
dows Azure storage and the on-premises database. The constructor
of the DiagnosticsController class reads the retry policy from the
application configuration file.

C#
this.storageRetryPolicy
 = RetryPolicyFactory.GetDefaultAzureStorageRetryPolicy();

When an administrator opens the Diagnostics page of the Head-
Office application, the TransferLogs action is executed. This action
extracts a list of the datacenters from which it will download data
from the application configuration, and then reads the corresponding
account details (from the same configuration) for each datacenter. As
the code iterates over the list of datacenters it creates a suitable
CloudStorageAccount instance using the credentials collected ear-
lier, and then calls a method named TransferLogs to download the
data from this datacenter.

In a real application the
diagnostics data would be
downloaded automatically at
preset intervals and stored in
the on-premises database by a
Windows service or other
background application. For
simplicity in the example
application, the data is only
downloaded when you open
the Diagnostics page of the
HeadOffice application.

http://wappowershell.codeplex.com

182 chapter seven

C#
[HttpPost]
public ActionResult TransferLogs(
 FormCollection formCollection)
{
 var deleteEntries
 = formCollection.GetValue("deleteEntries") != null;
 var dataCenters
 = WebConfigurationManager.AppSettings["dataCenters"]
 .Split(',');
 ...
 // Get account details for accessing each datacenter.
 var dataCenters2 = dataCenters.Select(
 dc => dc.Trim()).Where(dc =>
 !string.IsNullOrEmpty(dc.Trim()));
 var accountNames = dataCenters2.Select(
 dc => string.Format(CultureInfo.InvariantCulture,
 "diagnosticsStorageAccountName.{0}", dc));
 var accountKeys = dataCenters2.Select(
 dc => string.Format(CultureInfo.InvariantCulture,
 "diagnosticsStorageAccountKey.{0}", dc));

 for (var i = 0; i < dataCenters2.Count(); i++)
 {
 // Create credentials for this datacenter.
 var cred = new StorageCredentialsAccountAndKey(
 WebConfigurationManager.AppSettings[
 accountNames.ElementAt(i)],
 WebConfigurationManager.AppSettings[
 accountKeys.ElementAt(i)]);
 var storageAccount = new CloudStorageAccount(cred,
 true);

 // Download the data from this datacenter.
 this.TransferLogs(dataCenters2.ElementAt(i),
 storageAccount, deleteEntries);
 }
 ...
}

The TransferLogs method uses the CreateCloudTableClient class to access Windows Azure Table
storage. The code accesses the table service context and generates a query over the WADLogsTable
in Windows Azure storage. For each entry returned from the query (each row in the table) it creates
a new DiagnosticsLog instance and saves this instance in the DiagnosticsLog database by using the
DiagnosticsLogStore repository class. Notice how this method can also delete the entries in the
WADLogsTable in Windows Azure storage at the same time to reduce storage requirements in the
cloud.

 183Monitoring and M anaging the Orders Application

C#
private void TransferLogs(string dataCenter,
 CloudStorageAccount storageAccount,
 bool deleteWADLogsTableEntries)
{
 var tableStorage
 = storageAccount.CreateCloudTableClient();
 ...
 var context = tableStorage.GetDataServiceContext();

 if (!deleteWADLogsTableEntries)
 {
 context.MergeOption = MergeOption.NoTracking;
 }

 IQueryable<WadLog> query
 = this.storageRetryPolicy.ExecuteAction(() =>
 context.CreateQuery<WadLog>("WADLogsTable"));

 foreach (var logEntry in query)
 {
 var diagLog = new DiagnosticsLog
 {
 Id = Guid.NewGuid(),
 PartitionKey = logEntry.PartitionKey,
 RowKey = logEntry.RowKey,
 DeploymentId = logEntry.DeploymentId,
 DataCenter = dataCenter,
 Role = logEntry.Role,
 RoleInstance = logEntry.RoleInstance,
 Message = logEntry.Message,
 TimeStamp = logEntry.Timestamp
 };
 this.store.Save(diagLog);

 if (deleteWADLogsTableEntries)
 {
 context.DeleteObject(logEntry);
 this.storageRetryPolicy.ExecuteAction(() =>
 context.SaveChanges());
 }
 }
}

When accessing and
performing operations on
the Windows Azure Tables
that store diagnostics
information, consider
the transaction charges
that these operations will
incur. It may be better to
pay for storage than to
pay for a large number of
transactions that delete
individual rows; then drop
and recreate the table at
appropriate intervals.

184 chapter seven

The strategy that Trey Research adopted for deleting diagnostic data from Windows Azure stor-
age after it has been downloaded prevents this data from growing indefinitely, but it does come at a
cost. Each record being deleted is counted as a single transaction against Windows Azure storage and
Trey Research is billed accordingly. As the number of customers increase, the volume of diagnostics
data that Trey Research captures will increase as well, and eventually the transaction charges associ-
ated with deleting each record individually as it is downloaded may become prohibitive.

To counter this overhead, Trey Research are currently evaluating an alternative approach; rather
than deleting individual records from tables in Windows Azure storage, simply drop and recreate the
tables themselves at an appropriate juncture, after downloading the data. This approach comprises far
fewer transactions, but adds complexity to the code in the role that downloads the data; it may need
to implement a locking mechanism to prevent a scheduled transfer of diagnostics data to a table that
has just been dropped but has yet to be recreated. Additionally, dropping and creating tables may be
more time consuming than removing individual records from an existing table, so this functionality
may need to be implemented as a background task in a web or worker role.

Deployment and Management
Trey Research wanted to be able to configure and manage all of the services within its Windows Azure
account that are used by the Orders application. Trey Research required that the configuration of
features such as ACS and Service Bus be automated and reliably repeatable. This configuration is
necessarily complex, and includes configuration of services in multiple datacenters where the applica-
tion is deployed.

Trey Research also wanted to automate the deployment and redeployment of the application as
it is updated and extended. Automating the deployment reduces the chances of errors, and helps to
control the permissions for the employees that can perform these tasks.

Choosing Deployment and Management Solutions
Trey Research considered a range of solutions for deploying and managing the Orders application.
These options included using the Windows Azure Management Portal, the Windows Azure Service
Management REST API and Windows Azure SDK, and the Windows Azure PowerShell Cmdlets. The
following sections describe each of these options.

Windows Azure Management Portal
The Management Portal is the primary location for creating service namespaces, and can also be used
to configure all of the Windows Azure services for a subscription. It provides a graphical and intuitive
interface that is easy to use, and provides feedback on the state of each service. However, all users of
the Management Portal must access it by providing the administrative credentials for the Trey Re-
search Windows Azure subscription, which means that they will have access to all features of the
subscription.

The administrators at Trey Research are aware that using the Management Portal is the only way
to create new namespaces for the services such as Service Bus, ACS, and Traffic Manager, although
these namespaces can be configured afterwards using the portal, scripts, or code.

 185Monitoring and M anaging the Orders Application

Windows Azure Service Management REST API and Windows Azure SDK
With the exception of creating namespaces for services, all of the features of the Windows Azure
services can be accessed using the Windows Azure Service Management REST API and the Windows
Azure SDK. The Windows Azure SDK contains assemblies used for performing service management
tasks against the Service Management REST API. Alternatively, you can use third party tools or create
your own code that accesses the REST interfaces of the Service Management API to automate man-
agement tasks. This approach is useful if you are building a solution based on a language that is not
supported by the Windows Azure SDK; for example, you can install the Windows Azure SDK for Java
and use the Java programming language.

Administrators and developers at Trey Research realized that they could use code inside their
applications and management tools to perform complex tasks by using the Service Management API,
including creation of setup programs and tools for managing most aspects of the application and the
services it uses.

The major limitation with the Windows Azure Service Management REST API is that it cannot be
used directly in scripts.

For more information about the Windows Azure Service Management REST API, see “About the
Service Management API” on MSDN.

Windows Azure PowerShell Cmdlets
The Windows Azure PowerShell cmdlets library that you can download from the Codeplex website
contains almost one hundred PowerShell cmdlets that can accomplish most common Windows Azure
management and configuration tasks.

These cmdlets are extremely useful for performing a wide range of management tasks, and they
can be used within other scripts as well as being executed directly from the command line. The admin-
istrators at Trey Research realized that the cmdlets provide an ideal solution for accomplishing simple,
everyday tasks.

However, while the Windows Azure PowerShell cmdlets can be used in scripts for complex manage-
ment tasks, this can be more difficult than using the Windows Azure Service Management REST API.

For more information about the Windows Azure PowerShell cmdlets, see “Windows Azure
PowerShell Cmdlets” at http://wappowershell.codeplex.com.

How Trey Research Chose Deployment and Management
Solutions

Managing Windows Azure applications and services typically involves two types of tasks:
•	 Occasional or infrequent tasks, such as configuring namespaces and features such as ACS,

Windows Azure Service Bus, and Windows Azure Traffic Manager. These tasks are often
complex.

•	 Frequent tasks, such as deploying and updating services, downloading logging data, adding and
removing certificates, manipulating storage services, setting firewall rules, and interacting with
SQL Azure. These tasks are typically more straight-forward.

http://msdn.microsoft.com/en-us/library/windowsazure/ee460807.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee460807.aspx
http://wappowershell.codeplex.com

186 chapter seven

For the occasional tasks, Trey Research decided to create applica-
tions and tools that use the Windows Azure Management REST API
through objects exposed by the Windows Azure SDK and by a sepa-
rate library. For example, Trey Research decided to create a setup
program that can be executed to set many of the configuration op-
tions in Windows Azure instead of using the Management Portal.

For the more frequently performed tasks, administrators at Trey
Research decided to use the Windows Azure PowerShell cmdlets
within scripts to provide a repeatable, reliable, and automated pro-
cess. For example, Trey Research uses a PowerShell script that is exe-
cuted before deployment to set the appropriate values for namespac-
es, user names, passwords, and keys in the source files. These items are
different for each datacenter in which the application is deployed.

Administrators at Trey Research also use PowerShell scripts to
perform tasks such as changing the Windows Azure Diagnostics con-
figuration for tracing and debugging, managing certificates, starting
and stopping instances of the application roles, and managing SQL
Azure databases.

How Trey Research Deploys and Manages
the Orders Application

The following sections describe how Trey Research uses the Windows
Azure Management REST API though a management wrapper library
and directly to automate much of the configuration of Windows
Azure services such as ACS and Service Bus.

Configuring Windows Azure by Using the Service
Management Wrapper Library

Trey Research uses a library of functions that was originally developed
by the Windows Azure team to help automate configuration of Win-
dows Azure namespaces through the REST-based Management API.
The library code is included in the ACS.ServiceManagementWrapper
project of the sample code, and you can reuse this library in your own
applications.

The setup program Trey Research created instantiates a Service-
ManagementWrapper object and then calls several separate methods
within the setup program to configure ACS and Service Bus for the
Orders application. The Service Bus configuration Trey Research uses
depends on ACS to authenticate the identities that post messages to,
or subscribe to, queues and topics.

The workings of the Service
Management wrapper
library are not described
here, but you can examine
the source code and
modify it if you wish. It
is a complex project, and
exposes a great deal of
functionality that makes
many tasks for configuring
Windows Azure much
easier that writing your
own custom code.

 187Monitoring and M anaging the Orders Application

C#
internal static void Main(string[] args)
{
 try
 {
 var acs = new ServiceManagementWrapper(
 acsServiceNamespace,
 acsUsername, acsPassword);

 Console.WriteLine("Setting up ACS namespace:"
 + acsServiceNamespace);

 // ACS namespace setup for the Orders Website
 CleanupIdenityProviders(acs);
 CleanupRelyingParties(acs);
 CreateIdentityProviders(acs);
 CreateRelyingPartysWithRules(acs);

 // Create Service Bus topic, subscriptions and queue.
 SetupServiceBusTopicAndQueue();
 }
 catch (Exception ex)
 {
 ... display exception information ...
 }
 Console.ReadKey();
}

The values used by the setup program for namespace names, account IDs, passwords, and keys are
stored in the App.config file of the setup program project named TreyResearch.Setup. Notice that
the code first cleans up the current ACS namespace by removing any existing settings so that the new
settings replace the old ones. If not, ACS may attempt to add duplicate settings or features such as
identity providers or rule sets, which could cause an error.

To illustrate how easy the Service Management wrapper library is to use, the following code from
CleanupRelyingParties method of the setup program removes all existing relying parties with the
name “AccessControlManagement” from the current ACS namespace.

C#
var rps = acsWrapper.RetrieveRelyingParties();
foreach (var rp in rps)
{
 if (rp.Name != "AccessControlManagement")
 {
 acsWrapper.RemoveRelyingParty(rp.Name);
 }
}

188 chapter seven

The setup program creates service identities by first removing any identity with the same name,
and then adding a new one with the specified name and password. The values used in this code come
from the App.config file.

C#
acswrapper.RemoveServiceIdentity(ContosoDisplayName);
acswrapper.AddServiceIdentity(ContosoDisplayName,
 ContosoPassword);

The setup program also uses the Service Management wrapper library to create rules that map claims
from identity providers to the claims required by the Orders application. For example, the following
code creates a pass-through rule for the Windows Live ID® identity provider that maps the Name-
Identifier claim provided by Windows Live ID to a new Name claim.

C#
var identityProviderName
 = SocialIdentityProviders.WindowsLiveId.DisplayName;

// pass nameidentifier as name
acsWrapper.AddPassThroughRuleToRuleGroup(
 defaultRuleGroup.RuleGroup.Name,
 identityProviderName,
 ClaimTypes.NameIdentifier, ClaimTypes.Name);

Configuring Windows Azure by Using the Built-in Management Objects
It is also possible to use the built-in objects that are part of the Windows Azure SDK to configure
Windows Azure namespaces. For example, the setup program configures the access rules for the
Service Bus endpoints in ACS. To do this it uses the classes in the Microsoft.ServiceBus.Access-
ControlExtensions.AccessControlManagement namespace.

The following code shows how the setup program creates a rule group for the Orders Statistics
service. You can see that it sets ACS as the claim issuer, and adds two rules to the rule group. The
first rule allows the authenticated identity externaldataanalyzer (a small and simple demonstration
program that can display order statistics) to send requests. The second rule allows the authenti-
cated identity headoffice (the on-premises management and monitoring application) to listen for
requests. The code then adds the rule group to the OrdersStatisticsService relying party, and saves
all the changes.

 189Monitoring and M anaging the Orders Application

C#
var settings = new AccessControlSettings(
 ServiceBusNamespace, DefaultKey);
ManagementService serviceClient = ManagementServiceHelper
 .CreateManagementServiceClient(settings);

serviceClient.DeleteRuleGroupByNameIfExists(
 "Rule group for OrdersStatisticsService");
serviceClient.SaveChanges(SaveChangesOptions.Batch);

var ruleGroup = new RuleGroup {
 Name = "Rule group for OrdersStatisticsService" };
serviceClient.AddToRuleGroups(ruleGroup);

// Equivalent to selecting "Access Control Service" as
// the input claim issuer in the Management portal.
var issuer = serviceClient.GetIssuerByName(
 "LOCAL AUTHORITY");

serviceClient.CreateRule(
 issuer,
 "http://schemas.xmlsoap.org/ws/2005/05/identity/
 claims/nameidentifier",
 "externaldataanalyzer",
 "net.windows.servicebus.action",
 "Send",
 ruleGroup,
 string.Empty);

serviceClient.CreateRule(
 issuer,
 "http://schemas.xmlsoap.org/ws/2005/05/identity/
 claims/nameidentifier",
 "headoffice",
 "net.windows.servicebus.action",
 "Listen",
 ruleGroup,
 string.Empty);

var relyingParty = serviceClient.GetRelyingPartyByName(
 "OrdersStatisticsService", true);
var relyingPartyRuleGroup = new
 Microsoft.ServiceBus.AccessControlExtensions
 .AccessControlManagement.RelyingPartyRuleGroup();
relyingParty.RelyingPartyRuleGroups.Add(
 relyingPartyRuleGroup);

There is a great deal of
code in the TreyResearch.
Setup project. You may find
it useful to examine this
project when you create
your own setup programs,
and reuse some of the
generic routines it contains.

190 chapter seven

serviceClient.AddToRelyingPartyRuleGroups(
 relyingPartyRuleGroup);

serviceClient.AddLink(relyingParty,
 "RelyingPartyRuleGroups", relyingPartyRuleGroup);
serviceClient.AddLink(ruleGroup,
 "RelyingPartyRuleGroups", relyingPartyRuleGroup);

serviceClient.SaveChanges(SaveChangesOptions.Batch);

Summary
This chapter described how Trey Research tackled the issues surrounding deploying, configuring,
monitoring and managing a hybrid application. The important point to realize is that the complexity
of the environment and its distributed nature means it is inevitable that performance issues and fail-
ures will occur in such a system. The key to maintaining a good level of service is detecting these issues
and failures, and responding quickly in a controlled, secure, and repeatable manner.

Windows Azure Diagnostics provides the basic tools to enable you to detect and determine the
possible causes of errors and performance problems, but it is important that you understand how to
relate the diagnostic information that is generated to the structure of your application. Analyzing this
information is a task for a domain expert who not only understands the architecture and business
operations of your application, but also has a thorough familiarity with the way in which this architec-
ture maps to the services provided by Windows Azure.

The Windows Azure Service Management API provides controlled access to Windows Azure fea-
tures, enabling you to build scripts and applications that an operator can use to deploy and manage the
elements that comprise your application. This approach eliminates the need for an operator to have the
same level of expertise with Windows Azure as the solution architect, and can also reduce the scope
for errors by automating and sequencing many of the tasks involved in a complex deployment.

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx .
•	 “About This Release of Enterprise Library” at http://msdn.microsoft.com/en-us/library/

ff664636(v=PandP.50).aspx.
•	 Whitepaper on the Enterprise Library Codeplex site that describes how you can use the

Enterprise Library 5.0 application blocks with Windows Azure-hosted applications at
http://entlib.codeplex.com/releases/view/75025#DownloadId=336804.

•	 Windows Azure Management Pack for Microsoft System Center Operations Manager at
http://pinpoint.microsoft.com/en-us/applications/system-center-monitoring-pack-for-windows-azure-
applications-12884907699.

•	 Azure Diagnostics Manager from Cerebrata at http://www.cerebrata.com/Products/
AzureDiagnosticsManager/Default.aspx.

•	 AzureWatch from Paraleap Technologies at http://www.paraleap.com/.

http://msdn.microsoft.com/en-us/library/ff664636(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/ff664636(v=PandP.50).aspx
http://pinpoint.microsoft.com/en-us/applications/system-center-monitoring-pack-for-windows-azure-applications-12884907699
http://pinpoint.microsoft.com/en-us/applications/system-center-monitoring-pack-for-windows-azure-applications-12884907699
http://www.cerebrata.com/Products/AzureDiagnosticsManager/Default.aspx
http://www.cerebrata.com/Products/AzureDiagnosticsManager/Default.aspx
http://www.paraleap.com/

 191Monitoring and M anaging the Orders Application

•	 “Using the Windows Azure Diagnostics Configuration File” at http://msdn.microsoft.com/en-us/
library/gg604918.aspx.

•	 “About the Service Management API” at http://msdn.microsoft.com/en-us/library/windowsazure/
ee460807.aspx.

•	 “Collecting Logging Data by Using Windows Azure Diagnostics” at http://msdn.microsoft.com/
en-us/library/windowsazure/gg433048.aspx.

•	 “Monitoring Windows Azure Applications” at http://msdn.microsoft.com/en-us/library/
windowsazure/gg676009.aspx.

•	 “Windows Azure Service Management REST API Reference” at http://msdn.microsoft.com/en-us/
library/windowsazure/ee460799.aspx.

•	 “Take Control of Logging and Tracing in Windows Azure” at http://msdn.microsoft.com/en-us/
magazine/ff714589.aspx.

•	 “Windows Azure PowerShell Cmdlets” at http://wappowershell.codeplex.com.

http://msdn.microsoft.com/en-us/library/gg604918.aspx
http://msdn.microsoft.com/en-us/library/gg604918.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee460807.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee460807.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433048.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433048.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg676009.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg676009.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee460799.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee460799.aspx
http://msdn.microsoft.com/en-us/magazine/ff714589.aspx
http://msdn.microsoft.com/en-us/magazine/ff714589.aspx
http://wappowershell.codeplex.com

 193

All but the most trivial of applications have a requirement to store and retrieve data. For many sys-
tems, this aspect employs a database to act as a reliable repository. Modern database management
systems, such as Microsoft SQL Server, provide multiuser access capable of handling many thousands
of concurrent connections if the appropriate hardware and network bandwidth is available. However,
to support highly-scalable data storage that reduces the need to install and maintain expensive hard-
ware within an organization’s data center, solutions such as the SQL Azure™ technology platform
provide a cloud-based database management system that implements many of the same features.

Using SQL Azure, you can deploy a database to the same datacenter hosting the cloud-based
applications and services that use it, which helps to minimize the network latency frequently associ-
ated with remote database access. However, in a hybrid system that spans applications running in a
variety of distributed locations, using a single instance of SQL Azure in isolation may not be sufficient
to ensure a good response time. Instead, an organization might decide to maintain a copy of the data-
base at each location. In this scenario, it is necessary to ensure that all instances of the database
contain the same data. This can be a non-trivial task, especially if the data is volatile.

Additionally, you may decide to store data in a different repository; for example, you may choose
to use a different database management system or implement a different form of data source. In these
cases, you may need to implement your own custom strategies to synchronize the data that they
contain.

This appendix examines the issues concerned with distributing and replicating data the between
services running in the cloud and across the cloud/on-premises divide by using the technologies avail-
able on the Windows Azure™ technology platform. It describes some possible solutions that an or-
ganization can implement to keep the data sources synchronized.

Use Cases and Challenges
A primary motivation for replicating data in a hybrid cloud-based solution is to reduce the network
latency of data access by keeping data close to the applications and services that use it, thereby im-
proving the response time of these applications and services. As described previously, if a service
running in a datacenter uses data held in a local database stored in the same datacenter then it has
eliminated the latency and reliability issues associated with sending and receiving messages across the
Internet. However, these benefits are not necessarily cost-free as you must copy data held in a local
database to other datacenters, and ensure that any changes to this data are correctly synchronized
across all datacenters.

appendix a Replicating,
Distributing, and

Synchronizing Data

194 appendix a

You must also consider that replicating data can introduce inconsistencies. When you modify
data, the same modification must be made to all other copies of that data and this process may take
some time. Fully transactional systems implement procedures that lock all copies of a data item before
changing them, and only releasing this lock when the update has been successfully applied across all
instances. However, in a globally distributed system such an approach is impractical due to the inher-
ent latency of the Internet, so most systems that implement replication update each site individually.
After an update, different sites may see different data but the system becomes “eventually consistent”
as the synchronization process ripples the data updates out across all sites.

Consequently, replication is best suited to situations where data changes relatively infrequently
or the application logic can cope with out-of-date information as long as it is eventually updated,
possibly minutes or even hours later. For example, in an application that enables customers to place
orders for products, the application may display the current stock level of each product. The number
displayed is likely to be inaccurate if a product is popular; other concurrent users may be placing orders
for the same product. In this case, when a user actually submits an order, the stock level should be
checked again, and if necessary the customer can be alerted that there may be a delay in shipping if
there are none left.

Depending on the strategy you choose to implement, incorporating replication and managing
eventual consistency is likely to introduce complexity into the design, implementation, and manage-
ment of your system. When you are considering replicating data, there are two main issues that you
need to focus on:
•	 Which replication topology should you use?
•	 Which synchronization strategy should you implement?

The selection of the replication topology depends on how and where the data is accessed, while the
synchronization strategy is governed by the requirements for keeping data up-to-date across replicas.
The following sections describe some common use cases for replicating, distributing, and synchroniz-
ing data and summarize the key challenges that each use case presents.

Replicating Data across Data Sources in the Cloud and
On-Premises

Description: Data must be positioned close to the application logic that uses it, whether this
logic is running at a datacenter in the cloud or on-premises.

Replication is the process of copying data, and the problems associated with replication are those
of managing and maintaining multiple copies of the same information. Choosing an appropriate repli-
cation topology can have a major impact on how you address these problems.

In its simplest form, the implementation of this use case copies all data in a data source to all
other instances of the same data source, whether these data sources are located in the cloud or on-
premises. In this scenario, applications running on-premises and services running in the cloud may be
able to query and modify any data. They connect to the most local instance of the data source, per-
form queries, and make any necessary updates. At some point, these updates must be transmitted to
all other instances of the data source, and these updates must be applied in a consistent manner.
Figure 1 illustrates this topology, referred to as “Topology A” throughout this appendix.

Datacenter A

On-Premises Infrastructure

Datacenter B

Applications running on-
premises query and update
the on-premises database

Data must be replicated and
synchronized between databases

in the cloud and on-premises

Services running in the cloud
query and update the local
database in the cloud

 195Replicating, Distributing, and Synchronizing Data

Figure 1
Topology A: Bidirectional synchronization across all databases on-premises and in the cloud

If your principal reason for moving data services to the cloud is purely for scalability and avail-
ability you might conclude that the data sources should just be removed from your on-premises serv-
ers, relocated to the cloud, and duplicated across all datacenters. Such a strategy might be useful if
the bulk of the application logic that accesses the data has previously been migrated to the cloud. The
same concerns surrounding updating data and propagating these changes consistently, as described in
Topology A still apply, the only difference is that there is no data source located on-premises. Figure
2 shows this scenario.

In the diagrams in this section, the bold arrows indicate the synchronization paths between
databases.

Datacenter A

On-Premises Infrastructure

Datacenter B

Data must be replicated and
synchronized only between

databases in the cloud

Services running in the cloud
query and update the local
database in the cloud

Applications running on-
premises do not directly
access a database, although
they may invoke services
running in the cloud

196 appendix a

Figure 2
Topology B: Bidirectional synchronization only across databases in the cloud

Although Topology A and Topology B are simple to understand, such blanket strategies might not
always be appropriate, especially if the data naturally partitions itself according to the location of the
services that most use it. For example, consider a stock control system for an organization that main-
tains several warehouses at different geographical locations. A service running at a datacenter in the
same geographical region as a warehouse might be responsible for managing only the data in that
warehouse. In this case, it may be sensible to replicate just the data pertaining to that warehouse to
the datacenter hosting the corresponding service instance, while retaining a copy of the entire data-
base on-premises.

When a service modifies data in its local database, it can arrange to make the same change to the
on-premises database. If a service should need to access data held elsewhere, it can query the on-
premises database for this information. The on-premises database effectively acts as a master reposi-
tory for the entire system, while the databases running at each datacenter act as a cache holding just
the local data for that datacenter.

“Appendix E - Maximizing Scalability, Availability, and Performance” describes additional ways to
implement a cache by using the Windows Azure Caching.

Datacenter A

On-Premises Infrastructure

Datacenter B

Services running in the cloud
can update local data, but must
also replicate the updates to
the master database.

Services running in the cloud
query the local database in
the cloud, or the master
database on-premises if the
data is not available locally.

Databases in the cloud hold only
local data . Data is partitioned by
datacenter, and no two datacenters
host the same data.

 197Replicating, Distributing, and Synchronizing Data

This approach reduces the need to copy potentially large amounts of data that is rarely used by a
datacenter at the cost of the developing the additional logic required in the code for the service to
determine the location of the data. Additionally, if a service regularly requires query access to non-
local data or makes a large number of updates then the advantages of adopting this strategy over
simply accessing the on-premises data source for every request are reduced. This approach also as-
sumes that each item in a data source is managed exclusively by one and only one datacenter, other-
wise there is a risk of losing data updates (services running at two datacenters might attempt to update
the same item).

Figure 3
Topology C: On-premises master repository with one-way synchronization from the cloud

In a variation on this scenario, services running in the cloud primarily query the data, and send all
updates to an application running on-premises; if a service running in the cloud needs to modify data,
it sends a request to the on-premises application, which is designed to listen for and handle such re-
quests. The on-premises application can modify the information in the master data source, also
hosted on-premises, and then arrange for the corresponding changes to be copied out to the appropri-
ate databases running in the cloud. This approach keeps the logic for the services in the cloud rela-
tively straightforward (compared to Topology C) at the expense of providing an on-premises applica-
tion to manage updates. This topology, shown in Figure 4, also ensures that all data sources in the
cloud are eventually consistent by virtue of the replication process from the master data source.

Datacenter A

On-Premises Infrastructure

Datacenter B

Application running on-premises
updates the master database

Services running in the cloud
query the local database in the
cloud, or the master database
on-premises if the data is not
available locally.

Relevant changes to the master
database must be replicated to

each database in the cloud

Databases in the cloud
hold only local data

Services running in the cloud can
update local data, but also send
update requests to the application
running on-premises to maintain
the master database.

198 appendix a

Figure 4
Topology D: On-premises master repository with one-way synchronization to the cloud

In a simple variant of Topology D, the application running on-premises updates the master data-
base of its own volition rather than in response to requests from services in the cloud. The application
may be performing some data maintenance tasks under the direct control of a user at the host orga-
nization. In this scenario, the updated data is simply replicated to each of the databases in the cloud.

A final use case concerns an organization spread across multiple sites not in the cloud. The orga-
nization retains the data and the applications that use it on-premises, but replicates this data between
sites through the cloud. In this case, the cloud simply acts as a conduit for passing data between sites.
You can apply this technique to situations such as remote branch offices which may require either a
complete copy of the data, or just the subset that relates to the branch office. In either case, applica-
tions running at each branch office access the local data source hosted at the same site, and any up-
dates are propagated through the cloud. A copy of the data source in the cloud through which all
updates pass can act as the replication hub which gathers all updates and redistributes them, as well
as performing the role of a master repository if a branch office requires access to non-local data.

Datacenter

Head Office

Changes to local databases
must be replicated through the
master database in the cloud

Master database in the cloud
holds a copy of all data and
acts as the replication hub

Branch Office A Branch Office B

Databases at head office
and each branch office may
hold the entire data for
the organization or just
local data for the office

Local applications access and
update data in local databases

 199Replicating, Distributing, and Synchronizing Data

Figure 5
Topology E: On-premises databases synchronized through the cloud

Synchronizing Data across Data Sources
Description: Applications and services modify data, and these modifications must be propagated
across all instances of the database.

Data changes, it is rarely entirely static. Applications inevitably insert, update, and delete records.
In a replicated environment you must ensure that all such changes are propagated to all appropriate
instances of a data source. Synchronizing data can be expensive in terms of network bandwidth re-
quirements, and it may be necessary to implement the synchronization process as a periodic task that
performs a batch of updates. Therefore you must be prepared to balance the requirements for data
consistency against the costs of performing synchronization and ensure that your business logic is
designed with eventual rather than absolute consistency in mind, as descried earlier in this appendix.

200 appendix a

In determining your synchronization strategy you should consider
the following questions:

•	 What data do you need to synchronize and how will you
handle synchronization conflicts?

The answer to this question depends largely on when
and where the data is updated, as described by the topolo-
gies listed in the previous section. For example, in Topology
D the master data source is only modified by applications
running on-premises, so synchronization will be a matter of
copying the changes made on-premises to each datacenter
in the cloud. This is a one-way operation (on-premises out
to the cloud) with little or no possibility of synchronization
conflicts; the on-premises master database holds the defini-
tive copy of the data, overwriting data held by datacenters
in the cloud.

Where data is modified by services in the cloud but not
by applications running on-premises (Topology C), if the data
is partitioned by datacenter again there is no possibility of
conflicts (services at two different datacenters will not up-
date the same data) and the synchronization process is ef-
fectively one-way, and instant. In this case, the datacenters
in the cloud hold the definitive data and overwrite the data
held on-premises.

Where applications and services may modify data locat-
ed anywhere in the cloud or on-premises (Topologies A, B,
and E) the synchronization process is multi-way as each data-
base must be synchronized with every other database. The
data is not partitioned, so there is a possibility that conflict-
ing changes can occur, and you must define a strategy for
handling this situation.

•	 What are the expected synchronization data volumes? If there
is a large amount of volatile data then replicating the effects of
every insert, update, and delete operation may generate a lot of
network traffic and consume considerable processing power,
impacting the performance of each data source, and possibly
nullifying the reason for replicating data in the first place. For
example, in Topology C, if each service running in the cloud
performs a large number of updates then maintaining a replica in
the cloud becomes an overhead rather than a performance asset.

Full multi-way
synchronization between
replicated relational
databases can be a resource-
intensive operation and
the latency associated with
transmitting and applying
large numbers of updates
across a number of sites
may mean that some of the
data held in one or more
databases is inconsistent
until all the sites are
synchronized. To minimize
the time taken and resources
required to synchronize
databases, you should
carefully consider which
data your applications and
services need to replicate,
whether your applications
and services can live with
potentially stale data, and
whether any data should be
read-only at each site.

 201Replicating, Distributing, and Synchronizing Data

•	 When do you need to synchronize data? Does every instance of the database have to be fully
up-to-date all of the time; does your system depend on complete transactional integrity all of
the time? If so, then replication might not be the most appropriate solution as synchronization
will necessarily be a continuous process, circulating all changes immediately that they occur and
locking resources in each data source while it does so to prevent inconsistency from occurring. In
this case, using a single centralized data source is a better choice than implementing replication.

Cross-Cutting Concerns
Effective data replication has a high level of dependency on the network in terms of security, reli-
ability, and performance. System requirements and application design can also have a significant bear-
ing on how well your chosen replication approach functions. The following sections provide a sum-
mary of the possible issues.

Data Access Security
Each data source, whether it is a SQL Azure database or some other repository, must protect the data
that it contains to prevent unauthorized access. This requirement applies during the synchronization
process as well as during the regular data access cycle. The network packets containing the data being
replicated must also be protected as a security breach at this point could easily propagate corrupted
information to multiple instances of your precious data.

Data Consistency and Application Responsiveness
Data consistency and application responsiveness are conflicting requirements that you must balance
to address the needs of your users.

If you require a high level of consistency across all replicated databases, then you must take steps
to prevent competing applications from accessing data that may be in a state of flux somewhere in
the system. This approach depends on application logic locking data items and their replicas before
changing them and then releasing the locks. While the data is locked, no other applications can access
it, adversely affecting the responsiveness of the system from the users’ perspective. As mentioned
elsewhere in this appendix, in many distributed systems immediate and absolute consistency may not
be as important as maintaining application responsiveness; users want to be able to use the system
quickly, and as long as information is not lost and eventually becomes consistent then they should be
satisfied.

202 appendix a

Integrity and Reliability
Even in a solution where immediate data consistency is not a critical
requirement the system must still update data in a reliable manner to
preserve the integrity of the information the application presents. For
example, in the Orders application cited earlier, if the system accepts
an order from a customer then that order should be fulfilled; the data
comprising the order should not be lost and the order process must
be completed. Therefore, any solution that replicates data between
databases must implement a reliable mechanism for transporting and
processing this data. If some aspect of the system handling this syn-
chronization process fails, it should be possible to restart this process
without losing or duplicating any data.

Windows Azure and Related Technologies
If you are implementing databases in the cloud using SQL Azure, you
can configure replication and manage synchronization between these
databases and SQL Server databases running on-premises by using
SQL Azure Data Sync. This technology is a cloud-based synchroniza-
tion service based on the Microsoft Sync Framework. Using the Win-
dows Azure Management Portal you can quickly configure synchroni-
zation for the most common scenarios between your on-premises
SQL Server databases and SQL Azure databases running in the cloud.
Additionally, SQL Azure Data Sync is compatible with the Microsoft
Sync Framework 2.1, so you can use the Sync Framework SDK to im-
plement a custom synchronization strategy and incorporate addi-
tional validation logic if necessary.

SQL Azure Data Sync is compatible with SQL Server 2005 Service
Pack 2 and later.

The Sync Framework SDK is also useful for scenarios where you
need to implement a custom synchronization approach that you can-
not configure easily by using the Management Portal. For example,
you can build your own synchronization services if you need to syn-
chronize data between databases located on-premises and mobile
devices for roaming users.

Another approach is to implement a custom mechanism that
passes updates between databases using messaging, with sender and
listener applications applying the logic to publish updates and syn-
chronize them with the exiting data. Service Bus topics and subscrip-
tions provide an ideal infrastructure for implementing this scenario.

The following sections provide more information on how to use
SQL Azure Data Sync, the Sync Framework SDK, and Service Bus
topics and subscriptions for implementing replication in some com-
mon scenarios.

Don’t forget that the
network is a critical
component that impacts
reliability. A reliable solution
is one that is resilient in the
case of network failure.

 203Replicating, Distributing, and Synchronizing Data

Replicating and Synchronizing Data Using SQL Azure Data Sync
Using SQL Azure Data Sync to implement SQL Server synchronization provides many benefits,
including:

•	 Elastic scalability. The SQL Azure Data Sync service runs in the cloud and scales automati-
cally as the amount of data and number of sites participating in the synchronization process
increases.

•	 Simple configuration. You can use the Management Portal to define the synchronization
topology. The portal provides wizards that step through the configuration process and
enable you to specify the data to be synchronized. You can also indicate whether replication
should be one-way or bidirectional. The portal provides a graphical view of your topology
and its current health status through the Sync Group dashboard.

•	 Scheduled synchronization. You can specify how frequently the synchronization process
occurs, and you can easily modify this frequency even after synchronization has been
configured. Using the Management Portal you can also force an immediate synchronization.

•	 Preconfigured conflict handling policies. SQL Azure Data Sync enables you to select how
to resolve any conflicts detected during synchronization by selecting from a set of built-in
conflict resolution policies.

•	 Comprehensive logging features. SQL Azure Data Sync logs all events and operations. The
Management Portal enables you to examine this information, and filter it in a variety of ways,
enabling you to quickly determine the cause of any problems and take the necessary correc-
tive action.

The following sections provide information about the way in which SQL Azure Data Sync operates,
and include guidance on using SQL Azure Data Sync in a number of common scenarios.

Guidelines for Configuring SQL Azure Data Sync
When you configure SQL Azure Data Sync, you must make a number of decisions concerning the
definition of the data that you want to replicate, and the location of the databases holding this data.
This section provides guidance for defining the key elements of a synchronization architecture.

Defining a Sync Group and Sync Dataset
SQL Azure Data Sync organizes the synchronization process by defining a sync group. A sync group is
a collection of member databases that need to be synchronized, together with a hub database that
acts as a central synchronization point. All member databases participating in a topology synchronize
through the hub; they send local updates to the hub and receive updates made by other databases
from the hub.

When you define a sync group, you also define a sync dataset that specifies the tables, rows, and
columns to synchronize. You do not have to select every table in a database, and you can define filters
to restrict the rows that are synchronized. However, every table that participates in a sync dataset
must have a primary key; otherwise synchronization will fail. Additionally, although you do not need
to include every column in each participating table, you must include all columns that do not allow
null values; again synchronization will fail otherwise.

SQL Azure Data Sync creates triggers on each table in a sync group. These triggers track the
changes made to the data in each table in the sync group. For more information about the triggers
that SQL Azure Data Sync generates, see “Considerations for Using Azure Data Sync” on MSDN.

http://sqlcat.com/sqlcat/b/technicalnotes/archive/2011/12/21/considerations-when-using-data-sync.aspx

204 appendix a

It is important to understand that SQL Azure Data Sync imposes
some constraints on the column types in the tables that participate in
the synchronization process. These constraints are due to the Sync
Framework on which SQL Azure Data Sync is based; the Sync Frame-
work is designed to operate with a variety of database management
systems, not just SQL Server, and so the types it supports are limited
to those common across the major database management systems.
For example, you cannot synchronize columns based on user-defined
data types, spatial data types, or CLR types. For a full list of supported
and unsupported types see “SQL Azure Data Sync – Supported SQL
Azure Data Types” on MSDN.

Implementing the Database Schema for Member Databases
In a typical scenario, the schema of the data that you want to replicate
may already exist in an on-premises or SQL Azure database. When
you deploy a sync group, if the necessary tables do not already exist
in the other member databases or the hub, then SQL Azure Data Sync
will automatically create them based on the definition of the sync
dataset. In this case, the deployment process will only generate the
columns specified by the sync dataset, and will add an index for the
primary key of each table. While the deployment process does a rea-
sonable job of replicating the schema for the sync dataset, it may not
always be identical due to the differences between SQL Azure and
SQL Server.

Additionally, any indexes other than that for the primary key will
not be generated, and this may have an impact on the performance of
queries performed against a replicated database. Therefore, to ensure
complete accuracy and avoid any unexpected results, it is good prac-
tice to create a SQL script containing the commands necessary to
create each table to be replicated, together with the appropriate in-
dexes. You can also define any views and stored procedures that each
member database may require as these cannot be replicated auto-
matically. You can then run this script against each database in turn
before provisioning replication.

If you attempt to create a
sync dataset that includes
columns with unsupported
types, these columns will be
ignored and the data that
they contain will not be
replicated.

The same sync dataset applies globally across all member databases
in the sync group. You define the sync dataset when you add the
first member database to the sync group, and if necessary, the
tables that underpin the sync dataset will be automatically added to
subsequent member databases when they are enrolled in the sync
group. However, once you have defined the sync dataset for a sync
group you cannot modify the definition of this dataset; you must
drop the sync group and build a new one with the new sync dataset.

http://msdn.microsoft.com/en-us/library/hh667319.aspx
http://msdn.microsoft.com/en-us/library/hh667319.aspx

 205Replicating, Distributing, and Synchronizing Data

Managing Synchronization Conflicts
During the synchronization process, SQL Azure Data Sync connects
to each member database in turn to retrieve the updates performed
in that database and applies them to the hub. Any updates previously
applied to the hub from another member database are transmitted to
the database and applied.

The hub is the focus for detecting and resolving conflicts. SQL
Azure Data Sync enables you to select from two conflict resolution
policies:
•	 Hub Wins. If the data at the hub has already been changed,

then overwrite changes to this data made at the member
database with the data at the hub. In effect, this means that
the first member database to synchronize with the hub pre-
dominates.

•	 Client Wins. If the data has been changed at the member
database, this change overwrites any previous changes to this
data at the hub. In contrast to the Hub Wins policy, in this case
the last member database to synchronize with the hub pre-
dominates.

During synchronization, each batch of updates is applied as a transac-
tion; either all the updates in a batch are applied successfully or they
are rolled back. However, these batch transactions do not necessarily
reflect the business transactions performed by your system. For ex-
ample, a business transaction that modifies data in two tables may
have these updates propagated by different batches when these
changes are synchronized.

Additionally, each synchronization applies only the changes in
effect at that time to each database. If a row undergoes several up-
dates between synchronizations, only the final update will be repli-
cated; SQL Azure Data Sync does not keep a log of every change
made between synchronizations.

Use a tool such as Microsoft
SQL Server Management
Studio to generate and
edit the SQL scripts that
create the tables, views,
and stored procedures for
each member database. If
you have the appropriate
credentials, you can also
connect to each member
database using SQL Server
Management Studio and run
these scripts.

The synchronization process visits each member database in
turn in a serial manner and applies the necessary updates to
synchronize that member database and the hub. Databases
visited earlier will not incorporate the changes resulting from
the synchronization with databases visited later. For member
databases to be fully synchronized with each other, you need
to perform two synchronizations across the sync group.

206 appendix a

Note that, although you can select the conflict resolution policy,
you cannot currently influence the order in which databases are syn-
chronized with the hub. Ideally, you should design your solution to
minimize the chances of conflicts occurring; in a typical distributed
scenario, applications running at different sites tend to manage their
own subset of an organization’s data so the chances of conflict are
reduced. Remember that the primary purpose of replication is to
propagate updates made at one site to all other sites so that they all
have the same view of the data.

If you need to guarantee the effects of the conflict resolution
policy, you can divide your replication topology into a series of sync
groups with each sync group containing the hub and a single member
database. The synchronization schedule for each sync group deter-
mines the order in which each member database is synchronized with
the hub. The sync group for a high priority member database with
updates that must always take precedence can select the Client Wins
conflict resolution policy so that these changes are always replicated.

The policy for other sync groups can be set to Hub Wins, and in
this way the changes made at the high priority database will always be
replicated out to the other member databases. You can implement
many variations on this topology. For example you can place several
member databases into the Hub Wins sync group if none of these
databases are likely to contain changes that conflict with each other.

Conflict is typically a result of bidirectional synchronization. To
reduce the chances of a conflict occurring you can configure one-way
replication and specify the synchronization direction for each mem-
ber database in a sync group relative to the hub. For more information,
see the section “Selecting the Synchronization Direction for a Data-
base” later in this appendix.

To avoid issues with conflicting primary key values,
do not use columns with automatically generated
key values in replicated tables. Instead use a value
that is guaranteed to be unique, such as a GUID.

You should give the conflict
resolution policy careful
thought as the same
policy applies across all
databases in a sync group.
Additionally, you specify
this policy when you first
create the sync group
and you cannot change
it without dropping and
recreating the sync group.

 207Replicating, Distributing, and Synchronizing Data

Pay careful attention to the definition of the columns in replicated tables as this can have a
significant impact on the likelihood of conflict. For example, if you define the primary key column
of a replicated table with the SQL Server IDENTITY attribute, then SQL Server will automatically
generate values for this column in a monotonic increasing sequence, typically starting at 1 and
incrementing by 1 for each newly inserted row. If rows are added at multiple member databases in
a sync group, several of these rows might be given the same primary key value and will collide when
the tables are synchronized. Only one of these rows will win and the rest will be removed. The results
could be disastrous if, for example, this data represented orders for different customers; you will
have lost the details of all the orders except for the winner selected by the conflict resolution policy!

To avoid situations such as this, do not use columns with automatically generated key values in
replicated tables, but instead use a value that is guaranteed to be unique, such as a GUID.

Locating and Sizing the Hub Database
The hub must be a SQL Azure database. After synchronizing with all the member databases, it holds
the definitive and most up-to-date version of the data. The location of this database is key to main-
taining the performance of the synchronization process; you should store it at a datacenter that is
geographically closest to the most active member databases, whether these databases are located
on-premises or in the cloud. This will help to reduce the network latency associated with transmitting
potentially large amounts of data across the Internet. If your databases are distributed evenly around
the world, and the volume of database updates and query traffic is roughly the same for each one, then
you should position the hub at the datacenter closest to your highest priority sites.

SQL Azure Data Sync replicates and synchronizes data between your databases through the hub.
You can provision a single instance of the SQL Azure Data Sync Server for each Windows Azure
subscription that you own, and you can specify the region in which to run this server. Ideally, you
should locate this server in the same region that you plan to use for hosting the hub database.

You create the hub database manually, and it should be at least as big as the largest of the member
databases. SQL Azure does not currently support automatic growth for databases, so if you make the
hub database too small synchronization could fail. You should also note that when you configure
synchronization, SQL Azure Data Sync creates additional metadata tables in your databases to track
the changes made, and you must take these tables into account when sizing the hub database.

Apart from acting as the focus around which the synchronization process revolves, the hub con-
tains exactly the same data as any other SQL Azure member database in the sync group. You can insert,
update, and delete data in this database and these changes will be replicated throughout the sync
group. In some situations, you can elect to use one of the SQL Azure databases originally intended as
a member of the sync group as the hub. For example, you may opt to designate the SQL Azure data-
base for the most active site as the hub. This strategy can help to minimize the network latency and
thereby improve the performance of the synchronization process.

208 appendix a

However, every other member database in the sync group will
periodically synchronize with this database, and the work involved in
performing the synchronization operations may impact the perfor-
mance of this database, especially if the tables in the sync dataset
contain a complex collection of indexes. You must strike a balance
between the overhead associated with a database being the hub of a
sync group against the time required to synchronize this database
with a hub located elsewhere.

Specifying the Synchronization Schedule for a Sync Group
Synchronization is a periodic process rather than a continuous opera-
tion; you can specify a simple synchronization schedule for a sync
group, and you can also force synchronization to occur manually by
using the Management Portal. If you set a synchronization schedule,
you must select a synchronization frequency that is appropriate to
your solution; if it is too long, then member databases may contain
outdated information for an extended period, while if it is too short
a previous synchronization might not have completed and the at-
tempt will fail. As described previously, the time taken to complete
the synchronization process depends on the location of the hub da-
tabase.

It will also depend on the volume of data to be synchronized; the
longer the interval between synchronizations the more data will need
to be synchronized and transmitted to and from the hub. Additionally,
as the synchronization period increases, it is more likely that conflicts
will occur and the synchronization process will have to expend effort
resolving these conflicts, which will increase the time taken still fur-
ther. You may need to determine the optimal synchronization period
based on observations, and tune it accordingly as you establish the
data timeliness requirements of your applications and services.

Finally, you should also consider that SQL Azure charges are ap-
plied to data that is moved in and out of SQL Azure datacenters; the
more data you synchronize between datacenters and the more fre-
quently you perform this synchronization, the higher the cost.

As with the conflict
resolution policy, the
synchronization schedule
applies globally across all
databases in the sync group.
However, you can modify
this schedule at any time,
so you can observe the
effects of synchronizing
data at different intervals
and then select the period
most appropriate to your
requirements.

 209Replicating, Distributing, and Synchronizing Data

Selecting the Synchronization Direction for a Database
When you add a member database to a sync group, you specify the
synchronization direction. Synchronization can be:
•	 Bidirectional. The member database can make changes and

upload them to the hub, and it can also receive updates from
the hub. This is likely to be the most common form of synchro-
nization implemented by many organizations.

•	 To the hub. The member database can make changes and upload
them to the hub, but it will not receive changes from the hub.
This form of synchronization is useful for situations such as
Topology D (on-premises master repository with one-way
synchronization to the cloud) described earlier in this appendix.
A service running in the cloud updates the local member
database and also copies changes to the database running
on-premises as they occur. The on-premises database can be
configured to synchronize to the hub. When synchronization
occurs, the changes made by each service in the cloud can be
propagated out to the member databases for the other services
via the hub. The on-premises database does not need to be
synchronized as it already contains all the updates.

•	 From the hub. The member database can receive changes from
the hub, but will not upload any local changes to the hub. Again,
this form of synchronization is useful for implementing sce-
narios similar to Topology D. In this case, the member databases
can be configured to synchronize from the hub; any changes
made locally will have already been made to the on-premises
database by the services running in the cloud, so the only
changes that need to be replicated are those originating from
other services located elsewhere that have also updated the
on-premises database.

The synchronization
direction is an attribute
of each member database;
each database in a sync
group can specify a
different synchronization
direction.

Datacenter A

On-Premises Infrastructure

Datacenter B

Member
Database

Member
Database

Master
Database

Member databases
synchronize from the hub

Updates from services
running in the cloud

Hub Datacenter

Hub
Database

Data Sync
Service

Master database
synchronizes to the hub

210 appendix a

Figure 6 depicts an updated version of Topology D with the hub database and Data Sync Service
required by SQL Azure Data Sync.

Figure 6
Specifying the synchronization direction for databases participating in Topology D

Although Figure 6 shows the hub as a separate database, except for the circumstances described at
the end of the section “Locating and Sizing the Hub Database” it is likely that one of the member
databases in the cloud would perform this role. The examples in the section “Guidelines for Using
SQL Azure Data Sync” illustrate this approach.

Avoiding Sync Loops
A member database can participate in more than one sync group. However, such a configuration can
result in a sync loop. A sync loop occurs when the synchronization process in one sync group results
in synchronization being required in another sync group, and when this second synchronization occurs
the configuration of this sync group results in synchronization being required again in the first group,
which again may render synchronization necessary in the second group, and so on. Sync loops are
self-perpetuating and can result in large amounts of data being repeatedly written and rewritten, re-
sulting in degraded performance and increased costs.

 211Replicating, Distributing, and Synchronizing Data

When you define a sync group, you must be careful to ensure that
sync loops cannot exist by evaluating the role of any databases that
participate in multiple sync groups, selecting the appropriate conflict
resolution policy for each sync group, using row filtering to prevent
the same rows in a table participating in different sync groups, and by
carefully setting the synchronization direction for each database. For
a more detailed description of sync loops and the circumstances un-
der which they can occur, see “Synchronization Loops” on MSDN.

Guidelines for Using SQL Azure Data Sync
You can use SQL Azure Data Sync to implement the replication to-
pologies described earlier in this appendix. You can apply these to-
pologies with SQL Azure Data Sync to many common scenarios, as
described in the following list.
•	 Applications running on-premises access a SQL Server

database also held on-premises. Services running in the cloud
use a copy of the same data. Any changes made at any site
must eventually be propagated to all other sites, although
these updates do not have to occur immediately.

This is possibly the most common scenario for using SQL
Azure Data Sync, and describes the situation covered by Topol-
ogy A (bidirectional synchronization across all databases on-
premises and in the cloud). As an example of this scenario, con-
sider a database holding customer and order information. An
application running on-premises maintains customer informa-
tion, while customers use a web application running in the cloud
that creates new orders. The web application requires access to
the customer information managed by the on-premises applica-
tion, and the code running on-premises frequently queries the
order details to update the status of orders when they are deliv-
ered and paid for.

In this example, response time is important, but neither the
application running on-premises nor the web application run-
ning in the cloud requires access to completely up-to-date infor-
mation. As long as the data is available at some near point in the
future, that is good enough. Therefore, to minimize the effects
of network latency and ensure that it remains responsive, the
web application employs a SQL Azure database hosted in the
same datacenter as the application and the on-premises applica-
tion uses a SQL Server database also located on-premises.

If you are using Windows
Azure Traffic Manager to
route requests to a datacenter,
be aware that services running
at different datacenters may
see different data if each
datacenter has its own replica
database. This is because the
synchronization process may
not have been completed at all
sites, so updates visible in one
datacenter might not have
been propagated to other
datacenters.
For further guidance about
using Windows Azure Traffic
Manager, see “Appendix E -
Maximizing Scalability,
Availability, and Perfor-
mance.” For an example
describing how Trey Research
used Windows Azure Traffic
Manager, refer to Chapter 6,
“Maximizing Scalability,
Availability, and Performance
in the Orders Application.”

http://msdn.microsoft.com/en-us/library/hh667312.aspx

Datacenter A

On-Premises Infrastructure

Datacenter B

SQL
Azure

SQL
Azure

SQL
Server

Applications running on-
premises query order
data and modify customer
and order status data

SQL Azure database in
Datacenter A is also the
synchronization hub

Data Sync
Service

Web applications
query customer data
and modify order data

The on-premises database and the
cloud databases implement bidirectional
synchronization through the hub

212 appendix a

SQL Azure Data Sync enables you to replicate and share the customer and order informa-
tion between the on-premises application and the cloud by using bidirectional synchronization,
as shown in Figure 7. Note that, in this diagram, the SQL Azure database in Datacenter A also
acts as the synchronization hub running the Data Sync service.

Figure 7
Sharing data between the applications running in the cloud and on-premises

Datacenter A Datacenter B

SQL
Azure

SQL
Azure

Synchronization hub

Data Sync
Service

Application logic queries
and modifies data

Cloud databases implement bidirectional
synchronization through the hub

 213Replicating, Distributing, and Synchronizing Data

•	 You have relocated the logic for your business applications to services running in the cloud.
The business applications previously used data held in a SQL Server database. The services
have been distributed across different datacenters, and the SQL Server database has been
migrated to SQL Azure. To minimize network latency each data center has a replica of the
SQL Azure database.

This is the scenario that compares to Topology B (bidirectional synchronization only across
databases in the cloud). In this example, the application logic that accesses the database has
been completely relocated to the cloud, so the on-premises database has been eliminated. How-
ever, the cloud based applications all require access to the same data, and may modify this infor-
mation, so each instance of the SQL Azure database must be periodically synchronized with the
other instances. This replication will be bidirectional. Figure 8 shows the structure of a possible
solution, with the SQL Azure database in Datacenter A also performing the role of the synchro-
nization hub. In this example, any of the applications may query and modify any data. Conse-
quently, the application logic might need to be amended to handle data that may be out of date
until the next synchronization cycle.

Figure 8
Replicating data between data centers in the cloud

Datacenter A

On-Premises Infrastructure

Datacenter B

SQL
Azure

SQL
Azure

SQL
Server

Applications running
on-premises query
and modify data

Synchronization hub

Data Sync
Service

Services in the
cloud query data

Other cloud databases
synchronize from the hub

On-premises database
synchronizes to the hub

214 appendix a

•	 You need to make your data held in an on-premises SQL Server database available to
services running in the cloud. These services only query data and do not modify it; all
modifications are performed by applications running on-premises.

This is the simple variant of Topology D (on-premises master repository with one-way syn-
chronization to the cloud) described earlier. In this scenario, the services that query the data
execute remotely from your on-premises database. To minimize response times, you can repli-
cate the data to one or more SQL Azure databases hosted in the same datacenters as each of
the services. Using SQL Azure Data Sync, you can publish the data held on premises and peri-
odically synchronize any updates made by the on-premises applications with the databases in
the cloud. Figure 9 shows an example. This configuration requires one-way replication, with the
on-premises database synchronizing to a hub database in the cloud and each of the SQL Azure
member databases synchronizing from the hub.

Figure 9
Publishing an on-premises database to the cloud

Datacenter A

On-Premises Infrastructure

Datacenter B

SQL
Azure

SQL
Azure

SQL
Server

Synchronization hub.
Synchronization scheduled
to run weekly

Data Sync
Service

Business intelligence
service in the cloud
queries data

Replicated BI databases
synchronize from the hub

On-premises databases
synchronize to the hub

SQL
Server

SQL
Server

SQL
Server

 215Replicating, Distributing, and Synchronizing Data

•	 You have a number of applications and SQL Server databases running on-premises. How-
ever, you have migrated much of your business intelligence and reporting functionality to
services running in the cloud. This functionality runs weekly, but to support your business
operations it requires query access to your business data.

In this scenario, all the data modifications are performed against a number of SQL Server
databases hosted within the organization by applications running on-premises. These applica-
tions may be independent from each other and operate by using completely different databases.
However, assume that the business intelligence functionality performs operations that span all
of these databases, querying data held across them all, and generating the appropriate reports
to enable a business manager to make the appropriate business decisions for the organization.
Some of these reports may involve performing intensive processing, which is why these features
have been moved to the cloud.

Figure 10
Aggregating and consolidating data in the cloud

216 appendix a

You can use SQL Azure Data Sync to aggregate and consolidate data from the multiple on-
premises databases into a single SQL Azure database in the cloud, possibly replicated to different
datacenters as shown in Figure 10. The business intelligence service at each datacenter can then
query this data locally. The synchronization process only needs to be one way, from the on-premises
databases to the hub and then from the hub to each SQL Azure database; no data needs to be sent
back to the on-premises database. Additionally, synchronization can be scheduled to occur weekly,
starting a few hours before the business intelligence service needs to run (the exact schedule can be
determined based on how much data is likely to be replicated and the time required for this replication
to complete).

You can use the same approach to aggregate data from multiple offices to the cloud, the only
difference being that the on-premises SQL Server databases are held at different locations.
•	 You have a number of services running in the cloud at different datacenters. The services at

each datacenter maintain a separate, distinct subset of your organization’s data. However,
each service may occasionally query any of the data, whether it is managed by services in
that datacenter or any other datacenter. Additionally, applications running on-premises
require access to all of your organization’s data.

This situation occurs when the data is partitioned between different sites, as described in
Topology C (on-premises master repository with one-way synchronization from the cloud). In
this scenario, a SQL Server database running on-premises holds a copy of all the data for the
organization, but each datacenter has a SQL Azure database holding just the subset of data re-
quired by the services running at that datacenter. This topology allows the services running at a
datacenter to query and update just its subset of the data, and periodically synchronize this sub-
set of the data with the on-premises database.

If a service needs to query data that it does not hold locally, it can retrieve this information
from the on-premises database. As described earlier, this mechanism necessitates implementing
logic in each service to determine the location of the data, but if the bulk of the queries are per-
formed against the local database in the same datacenter then the service should be responsive
and maintain performance.

Datacenter A

On-Premises Infrastructure

Datacenter B

SQL
Azure

SQL
Azure

SQL
Server

Hub database at Datacenter B
synchronizes using the sync
group and sync dataset for
Datacenter B

Hub database at Datacenter A
synchronizes using the sync
group and sync dataset for
Datacenter A

Data Sync
Service

Services in the cloud query
and update local data

Each datacenter synchronizes
bidirectionally with the on-
premises database by using a
different sync group and
sync dataset

Data Sync
Service

Local SQL Azure database for
each datacenter also acts as the
hub for synchronizing with the
on-premises database

 217Replicating, Distributing, and Synchronizing Data

Implementing this system through SQL Azure Data Sync
requires defining a separate sync group for each SQL Azure
database. This is because the sync dataset for each SQL Azure
database will be different; the data will be partitioned by data-
center. The on-premises database will be a member common
to each sync group. To simplify the structure, you can specify
that the SQL Azure database for each datacenter should act as
its own synchronization hub. Figure 11 shows an implementa-
tion of this solution.

Figure 11
Using SQL Azure Data Sync to partition and replicate data in the cloud

Be careful to avoid introducing a sync loop if you
follow this strategy; make sure that the different sync
datasets do not overlap and include the same data.

Hub Datacenter

Head Office

SQL
Azure

SQL
Server

All databases perform
bidirectional synchronization
with the hub

Branch Office A

SQL
Server

Branch Office B

SQL
Server

Branch office
applications can
query the hub for
non-local data

Head office
database holds
all data

Data Sync
Service Each branch office

synchronizes with SQL Azure
by using a separate sync
group and sync dataset

Branch Office
databases hold only
data for that branch

218 appendix a

•	 Your organization comprises a head office and a number of remote branch offices. The
applications running at head office require query access to all of the data managed by each
of the branch offices, and may occasionally modify this data. Each branch office can query
any data held in that branch office, any other branch office, or at head office, but can only
modify data that relates to the branch office.

This is the scenario for Topology E (on-premises databases synchronized through the
cloud). The data can be stored in a SQL Server database, and each branch office can retain a
replica of this database. Other than the hub database, no data is stored in the cloud. The loca-
tion of the hub should be close to the most active office (possibly the head office). Synchroni-
zation should be bidirectional, and can be scheduled to occur with a suitable frequency depend-
ing on the requirement for other branch offices to see the most recent data for any other
branch. If each branch only stores its own local subset of the data, you will need to create a
separate sync group for each branch database with the appropriate sync dataset, as described
in the previous scenario. If the sync datasets for each branch do not overlap, it is safe to use the
same SQL Azure database as the synchronization hub for each sync group. Figure 12 shows a
possible structure for this solution.

Figure 12
Using SQL Azure Data Sync to partition and replicate data across branch offices

Datacenter

OLTP
Database

OLTP database is also the
synchronization hub

Data Sync
Service

OLTP services
performing update-
intensive operations

Synchronization is one-
way from the hub

Reporting services
performing query-
intensive operations

Reporting
Database

 219Replicating, Distributing, and Synchronizing Data

•	 Many of your services running in the cloud perform a large number of on-line transaction
processing (OLTP) operations, and the performance of these operations is crucial to the
success of your business. To maintain throughput and minimize network latency you store
the information used by these services in a SQL Azure database at the same datacenter
hosting these services. Other services at the same site generate reports and analyze the
information in these databases. Some of this reporting functionality involves performing
very complex queries. However, you have found that performing these queries causes
conflict in the database that can severely impact the performance of the OLTP services.

In this scenario, the solution is to replicate the database supporting the OLTP operations to
another database intended for use by the reporting and analytical services, implementing a read
scale-out strategy. The synchronization only needs to be performed one-way, from the OLTP
database to the reporting database, and the schedule can be set to synchronize data during off-
peak hours. The OLTP database can perform the role of the hub. Additionally, the reporting
database can be optimized for query purposes; the tables can be configured with indexes to
speed the various data retrieval operations required by the analytical services, and the data can
be denormalized to reduce the processing requirements of complex queries. In contrast, the
number of indexes in the OLTP database should be minimized to avoid the overhead associated
with maintaining them during update-intensive operations. Figure 13 shows this solution.

Figure 13
Replicating a database to implement read scale-out

220 appendix a

SQL Azure Data Sync Security Model
SQL Azure Data Sync uses a piece of software called the Data Sync
client agent to communicate between your on-premises instances of
SQL Server and the SQL Azure Data Sync Server in the cloud; you
must download and install the Data Sync client agent on one of your
on-premises servers. The communications between the SQL Azure
Data Sync Server and the Data Sync client agent are encrypted. The
Data Sync client agent uses an outbound HTTPS connection to com-
municate with the SQL Azure Data Sync Server. Additionally, all sensi-
tive configuration information used by the Data Sync client agent and
SQL Azure Data Sync Server are encrypted, including the credentials
used to connect to each on-premises database and SQL Azure data-
base. The agent key defined in the Management Portal is used by the
Data Sync Service for authentication.

The Data Sync client agent software consists of two elements:
•	 A Windows service that connects to the on-premises databases,

and
•	 A graphical utility for configuring the agent key and registering

on-premises databases with this service.
The client agent service must be configured to run using a Windows
account that has the appropriate rights to connect to each server host-
ing on-premises databases to be synchronized; these databases do not
have to be located on the same server as the client agent service. When
you register an on-premises database with the client agent you must
provide the login details for accessing the SQL Server hosting the data-
base, and this information is stored (encrypted) in the client agent con-
figuration file. When the SQL Azure Data Sync Server synchronizes with
an on-premises database, the client agent uses these details to connect
to the database.

For more information about the SQL Azure Data Sync security
model, see “Data Security” on MSDN.

For additional security, if
the client agent is running
on a different server from
your databases, you can
configure the client agent
service to encrypt the
connection with each
on-premises database by
using SSL. This requires
that you have installed the
appropriate SSL certificates
installed in each instance
of SQL Server. For more
information, see “Encrypting
Connections to SQL Server”
on MSDN.

http://msdn.microsoft.com/en-us/library/hh667329.aspx
http://msdn.microsoft.com/en-us/library/ms189067.aspx
http://msdn.microsoft.com/en-us/library/ms189067.aspx

 221Replicating, Distributing, and Synchronizing Data

Implementing Custom Replication and Synchronization Using
the Sync Framework SDK

The Management Portal enables you to replicate and synchronize SQL Server and SQL Azure data-
bases without writing any code, and it is suitable for configuring many common replication scenarios.
However, there may be occasions when you require more control over the synchronization process,
for example a service may need to force a synchronization to occur at a specific time. For example, if
you are caching data by using the Windows Azure Caching service, using SQL Azure Data Sync may
render any cached data invalid after synchronization occurs. You may need to more closely coordinate
the lifetime of cached data with the synchronization frequency, perhaps arranging to flush data from
the cache when synchronization occurs, to reduce the likelihood of this possibility. You might also
need to implement a different conflict resolution mechanism from the policies provided by SQL Azure
Data Sync, or replicate data from a source other than SQL Server. You can implement a just such
customized approach to synchronization in your applications by using the Sync Framework SDK.

Chapter 6, “Maximizing Scalability, Availability, and Performance in the Orders Application”
describes how Trey Research implemented caching. “Appendix E - Maximizing Scalability,
Availability, and Performance” provides further details and guidance on using Windows Azure
Caching.

The Sync Framework 2.1 SDK includes support for building applications that can synchronize
with SQL Azure. Using this version of the Sync Framework SDK, you can write your own custom
synchronization code and control the replication process directly.

Using this approach, you can address a variety of scenarios that are not easy to implement by
using SQL Azure Data Sync, such as building offline-capable/roaming applications. As an example,
consider an application running on a mobile device such as a notebook computer used by a plumber
or a building maintenance engineer. At the start of each day, he or she uses the application to connect
to the local branch office and receive a work schedule with a list of customers’ addresses and job
details. As each job is completed, an application running on the mobile device is used to input the
details, which are stored in a database on the mobile device. Between jobs, he or she can connect to
the branch office again and upload the details of the work completed so far, and the application also
downloads any amendments to the work schedule for that day. For example, he or she can be di-
rected to attend an urgent job prior to moving on to the previously scheduled engagement. Every
Friday afternoon, an administrator in the branch office generates a report detailing the jobs carried
out by all workers reporting to that branch.

Datacenter

Mobile Device

SQL
Azure

Work Schedule Application
synchronizes local jobs
database with SQL Azure,
on demand

Branch Office

Branch office
applications connect
directly to SQL Azure

Custom synchronization
downloads work schedule and
uploads completed jobs,
implemented by using the Sync
Framework SDK

Work
Schedule

Application
Local
Jobs

Database

Mobile Device

Work
Schedule

Application
Local
Jobs

Database

Repair Job
Scheduling
Application

Reporting
Application

222 appendix a

If the branch office database is implemented by using SQL Azure, the mobile application running
on the mobile device can use the Sync Framework SDK to connect to the datacenter hosting this
database and synchronize with the local database on the device. Figure 14 shows a simplified view of
this architecture.

Figure 14
Using the Data Sync SDK to implement custom synchronization

For more information about using the Sync Framework SDK with SQL Azure, see “SQL Server to
SQL Azure Synchronization using Sync Framework 2.1” on MSDN.

Replicating and Synchronizing Data Using Service Bus Topics
and Subscriptions

SQL Azure Data Sync provides an optimized mechanism for synchronizing SQL Server and SQL Azure
databases, and is suitable for an environment where changes can be batched together, propagated as
a group, and any conflicts resolved quickly. In a dynamic environment such batch processing this may
be inappropriate; it may be necessary to replicate changes as they are made rather than batching them
up and performing them at some regular interval. In these situations, you may need to implement a
custom strategy. Fortunately, this is a well-researched area, and several common patterns are available.
This section describes two generic scenarios that cover most situations, and summarizes how you
might implement solutions for these scenarios by using Service Bus topics and subscriptions.

http://blogs.msdn.com/b/sync/archive/2010/08/31/sql-server-to-sql-azure-synchronization-using-sync-framework-2-1.aspx
http://blogs.msdn.com/b/sync/archive/2010/08/31/sql-server-to-sql-azure-synchronization-using-sync-framework-2-1.aspx

Datacenter A

Datacenter B

Which data is correct?

Application
Instance

Application instance
updates database in
Datacenter A

Other application instances
in the same datacenter see
the same dataApplication

Instance

Application
Instance

Application
Instance

Other application instances in the
other datacenters see the original
data, and might modify it

?

 223Replicating, Distributing, and Synchronizing Data

Guidelines for Using Service Bus Topics and Subscriptions
You can use Service Bus topics and subscriptions to implement a reliable infrastructure for routing
messages between sender and receiver applications. You can exploit this infrastructure to provide a
basis for constructing a highly customizable mechanism for synchronizing data updates made across
a distributed collection of data sources, as described by the following scenarios:
•	 Concurrent instances of applications or services running as part of your system require read

and write access to a set of distributed resources. To maintain responsiveness, read opera-
tions should be performed quickly, and so the resources are replicated to reduce network
latency. Write operations can occur at any time, so you must implement controlled, coordi-
nated write access to each replica to reduce the possibility of any updates being lost.

As an example of this scenario, consider a distributed system that comprises multiple in-
stances of an application accessing a database. The instances run in various datacenters in the
cloud, and to minimize network latency a copy of the database is maintained at each datacenter.
If an application instance at datacenter A needs to modify an item in the database at datacenter
A, the same change must be propagated to all copies of the database residing at other datacen-
ters. If this does not happen in a controlled manner, application instances running in different
datacenters might update the local copy of the same data to different values, resulting in a con-
flict, as shown in Figure 15.

Figure 15
Conflict caused by uncontrolled updates to replicas of a database

224 appendix a

In the classic distributed transaction model, you can address this problem by implementing trans-
action managers coordinating with each other by using the Two-Phase Commit protocol (2PC). How-
ever, although 2PC guarantees consistency, it does not scale well. In a global environment based on
networks that are not always fully reliable this could lead to data being locked for excessively long
periods, reducing the responsiveness of applications that depend on this data. Therefore you must be
prepared to make some compromises between consistency and availability.

One way to approach this problem is to implement update operations as BASE transactions. BASE
is an acronym for Basic Availability, Soft-state, and Eventual consistency, and is an alternative view-
point to traditional ACID (Atomic, Consistent, Isolated, and Durable) transactions. With BASE transac-
tions, rather than requiring complete and total consistency all of the time, it is considered sufficient
for the database to be consistent eventually, as long as no changes are lost in the meantime. What this
means in practice, in the example shown in Figure 15, is that an application instance running at Data-
center A can update the database in the same datacenter, and this update must be performed in such
a way that it is replicated in the database a Datacenter B. If an application instance running at Data-
center B updates the same data, it must likewise be propagated to Datacenter A. The key point is that
after both of the updates are complete, the result should be consistent and both databases should
reflect the most recent update.

There may be a period during which the modification made at Datacenter A has yet to be copied
to Datacenter B, and during this time an application instance running at Datacenter B may see old,
stale data, so the application has to be designed with this possibility in mind; consider the orders
processing system displaying the stock levels of products to customers cited earlier in this appendix
as an example.

Service Bus topics and subscriptions provide one solution to implementing controlled updates in
this scenario. Application instances can query data in the local database directly, but all updates should
be formatted as messages and posted to a Service Bus topic. A receiving application located in each
datacenter has its own subscription for this topic with a filter that simply passes all messages through
to this subscription. Each receiver therefore receives a copy of every message and it uses these mes-
sages to update the local database. Figure 16 shows the basic structure of this solution.

Datacenter B

Service
Bus Topic

Service Bus
Subscriptions

Receiver

Update
Query

Filters pass all
“update” messages to
both subscriptions

Application instances
create “update” messages
and send them to the
Service Bus Topic

Receivers retrieve
“update” messages
and apply changes to
the local database

Application
Instance

Update 1Update 2

Update 1Update 2

Update
Message

Datacenter A

Receiver

Update
Query

Application
Instance

 225Replicating, Distributing, and Synchronizing Data

Figure 16
Routing update messages through a Service Bus topic and subscriptions

226 appendix a

You can use the Enterprise Library Transient Fault Handling Block to provide a structure for
posting messages reliably to a topic and handling any transient errors that may occur. As an ad-
ditional safeguard, you should configure the topic with duplicate detection enabled, so if the
same update message does get posted twice any duplicates will be discarded.

The receiver should retrieve messages by using the PeekLock receive mode. If the update
operation succeeds, the receive process can be completed, otherwise it will be abandoned and
the update message will reappear on the subscription. The receiver can retrieve the message
again and retry the operation.

•	 Instances of a long-running service executing in the cloud access a single remote data
source, but to maintain response times each instance has a cache of the data that it uses.
The volume of data is reasonably small and is held in-memory. The data acting as the source
of the cache may be updated, and when this happens each service instance should be
notified so that it can maintain its cached copy.

An example of this scenario is a job processor service. Client applications store information
about business tasks that need to be performed in a database. The job processor service peri-
odically polls the database looking for new tasks to perform, and then executes the appropriate
actions when a task appears.

In this scenario, each instance of the job processor service is seeded with data from the da-
tabase when it starts up. When a new job is added by a client application it is stored in the da-
tabase. However, the client application can also post a message to a Service Bus topic with the
details of the new job. Each instance of the job processor service has a subscription to this top-
ic, and uses the messages posted to this topic to update its local copy of the cached data and
perform the appropriate processing. The job processor service no longer needs to poll the data-
base which now acts purely as an audit log of jobs.

This architecture optimizes the use of the database and also reduces the possibility of con-
flict occurring; if multiple instances of the job processor service have to poll the database, there
is the possibility that they might all pick up the details of the same new job unless the database
query logic includes a mechanism for exclusively locking data as it is retrieved, whereas a Service
Bus subscription automatically prevents multiple instances from retrieving the same message.
Additionally, this architecture can more easily spread the load evenly and is naturally scalable;
you can partition the job messages to direct them to different subscriptions by defining an ap-
propriate set of filters, and you can start and stop instances of the job processor service listen-
ing on each subscription as the queue length grows and shrinks. Figure 17 shows the structure
of this solution.

“New Job”
Message

Job Processor
Service

Job processor service
seeds its local cache from
the Jobs database when it
starts running

Job processor service receives
notification that a new job has arrived,
and updates its cache accordingly

Job Processor
Service

Query

Subscription filters direct
“New Job” messages to the
most appropriate instance of
the Job Processor Service

Cache

Cache

Service Bus
Subscriptions

“New Job”
Message

Insert

Service
Bus Topic

Jobs
Database

Application adds the details
of jobs to the database and
posts a "New Job" message
to the Service Bus Topic

“New Job”
Message

Application

 227Replicating, Distributing, and Synchronizing Data

Figure 17
Implementing update notifications by using a Service Bus topic and subscriptions

The logic of the client application and job processor service can easily be extended if, for example,
the client application wishes to cancel a job, or change some of the details for a job. In these cases,
the client application can remove or update the job information in the database and post a job cancel-
lation or job update message to the Service Bus topic.

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx.
•	 “Considerations for Using Azure Data Sync” at http://sqlcat.com/sqlcat/b/technicalnotes/

archive/2011/12/21/considerations-when-using-data-sync.aspx.
•	 “SQL Azure Data Sync – Supported SQL Azure Data Types” at http://msdn.microsoft.com/en-us/

library/hh667319.aspx.
•	 “Synchronization Loops” at http://msdn.microsoft.com/en-us/library/hh667312.aspx.
•	 “Encrypting Connections to SQL Server” at http://msdn.microsoft.com/en-us/library/

ms189067.aspx.
•	 “Data Security” at http://msdn.microsoft.com/en-us/library/hh667329.aspx.
•	 “SQL Server to SQL Azure Synchronization using Sync Framework 2.1” at

http://blogs.msdn.com/b/sync/archive/2010/08/31/sql-server-to-sql-azure-synchronization-using-
sync-framework-2-1.aspx.

http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://sqlcat.com/sqlcat/b/technicalnotes/archive/2011/12/21/considerations-when-using-data-sync.aspx
http://sqlcat.com/sqlcat/b/technicalnotes/archive/2011/12/21/considerations-when-using-data-sync.aspx
http://msdn.microsoft.com/en-us/library/hh667319.aspx
http://msdn.microsoft.com/en-us/library/hh667319.aspx
http://msdn.microsoft.com/en-us/library/hh667312.aspx
http://msdn.microsoft.com/en-us/library/ms189067.aspx
http://msdn.microsoft.com/en-us/library/ms189067.aspx
http://msdn.microsoft.com/en-us/library/hh667329.aspx
http://blogs.msdn.com/b/sync/archive/2010/08/31/sql-server-to-sql-azure-synchronization-using-sync-framework-2-1.aspx
http://blogs.msdn.com/b/sync/archive/2010/08/31/sql-server-to-sql-azure-synchronization-using-sync-framework-2-1.aspx

 229

appendix b Authenticating Users
and Authoring Requests

Most applications will need to authenticate and authorize visitors or
partners at some stage of the process. Traditionally, authentication
was carried out against a local application-specific store of user de-
tails, but increasingly users expect applications to allow them to use
more universal credentials; for example, existing accounts with social
network identity providers such as Windows Live, Google, Facebook,
and Open ID.

This process, called federated authentication, also offers the op-
portunity for applications to support single sign-on (SSO). With SSO,
users that sign in to one application by means of, for example, their
Windows Live® ID credentials are able to visit other sites that use
Windows Live ID without being prompted to reenter their credentials.

Alternatively, applications may need to authenticate users with
accounts defined within the corporate domain; or support a combina-
tion of federated and corporate credentials, and allow users to choose
which they specify to sign in. In addition, when using Service Bus in
the Windows Azure™ technology platform, access to Service Bus
Relay, queue, and topic endpoints must be secured by requiring a to-
ken containing the appropriate claims to be presented.

All of these scenarios can be implemented using claims-based
authentication, where a Security Token Service (STS) generates to-
kens that are stored in cookies in the user’s web browser or presented
by services when they make a request to a server. This appendix de-
scribes the Windows technologies that are available to help you imple-
ment claims-based authentication, federated authentication, single
sign-on, and security for Service Bus queues.

This appendix does not provide a full reference to claims-based
authentication technologies and techniques. A detailed
exploration of claims-based authentication, authorization,
and Windows Azure Access Control Service can be found at
“Claims-Based Identity and Access Control Guide” available
at http://claimsid.codeplex.com/.

Federated claims-based
authentication and single
sign-on are powerful
techniques that can simplify
development as well as
providing benefits to users
by making it easier to access
different applications
without requiring them to
reenter their credentials
every time.

http://claimsid.codeplex.com/

230 appendix b

Uses Cases and Challenges
Most business applications require that users are authenticated and
authorized to perform the operations provided by the application.
The following sections describe the most common generic use cases
for authentication and authorization. The solutions you implement
must be reliable, responsive, available, and secure. They must be able
to uniquely and accurately identify users and provide information that
the application can use to decide what actions that user can take. The
solutions should also be as unobtrusive as possible so that the task of
signing in is simple and painless.

Authenticating Public Users
Publicly available applications, such as online shopping sites or forums,
typically need to authenticate a large number of users, of whom the
application has no prior knowledge. Users register by providing infor-
mation that the site requires, such as a name and address, but the key
factor is to be able to uniquely identify each user so that the correct
information can be mapped to them as they sign on next time.

Applications may store the users’ credentials and prompt for users
to enter these when signing on. However, for public applications, it is
useful to allow users to sign in with credentials that they use for
other websites and applications so that they do not need to remember
another user name and password. By using federated authentication,
an application can delegate the responsibility for this task to an exter-
nal identity provider that handles storing the credentials and checking
them when the user signs in. This approach also removes the respon-
sibility for storing sensitive credentials from your application, as this
is now the responsibility of the identity provider.

The section “Federated Authentication” later in this appendix
provides more details of how this works.

Authenticating Corporate Users and Users
from Partner Organizations

Applications used by only a limited and known set of users generally
have different requirements than public applications. Users are not usu-
ally expected to register before using their account; they expect the
organization to already have an account configured for them. In addi-
tion, the account details will often be more comprehensive than those
held by a public application or social identity provider, and not editable
by the user. For example, the account will typically define the member-
ship of security groups and the users’ corporate email addresses.

Poorly designed or badly
implemented authentication
can be a performance
bottleneck in applications.
Users expect authentication
to be simple and quick; it
should not get in the way of
using the application.

 231Authenticating Users and Authoring Requests

This approach is generally used for “internal” or corporate ac-
counts in most organizations, and is exposed to applications though
the built-in operating system features and a directory service. How-
ever, where known users from partner organizations must be able to
authenticate, an intermediary service that is available outside of the
organization is required to generate the claims-based identity tokens.
This can be achieved using the same federated authentication tech-
niques as described later in this appendix.

Authorizing User Actions
Identifying individual users is only part of the process. After authenti-
cation, the application must be able to control the actions users can
take. With claims-based authentication, the token the user obtained
from their chosen identity provider may contain claims that specify
the role or permissions for the user.

However, this is generally only the case when the user was au-
thenticated by a trusted identity provider that is an enterprise direc-
tory service, and consequently contains role information for each user
(such as “Manager” or “Accounting”). Social identity providers such as
Windows Live ID and Google typically include only a claim that is the
unique user identifier, and perhaps the name, so in this case you must
implement a mechanism that matches the user identifier with data
held by your application or located in a central user repository.

This repository must contain the roles, permissions, or rights in-
formation for each user that the application can use to authorize the
users’ actions. In the case of a public application such as a shopping
website the repository will typically hold the information provided by
users when they register, such as address and payment details, allow-
ing you to match users with their stored account details when they
sign in.

Authorizing Service Access for Non-
Browser Clients

Claims-based identity techniques work well in web browsers because
the automatic redirection capabilities of the browser make the pro-
cess seamless and automatic from the user’s point of view. For non-
browser clients, such as other applications that make service requests
to your application’s web services, you must publish information that
allows the client to discover how to obtain the required token, the
accepted formats, and the claims that the token must contain.

The client is responsible for obtaining the required token from a
suitable identity provider and STS, and presenting this token with the
request. After the application receives the token, it can use the claims
it contains to authorize access. If the token contains only a unique
identifier, the application may need to map this to an existing account
to discover the roles applicable to that client.

Claims-based and federated
identity solutions allow
you to clearly separate the
tasks of authentication
and authorization, so that
changes to one of these do
not impact the other. This
decoupling makes it easier
to maintain and update
applications to meet new
requirements.

232 appendix b

Authorizing Access to Service Bus Queues
Hybrid applications that use Windows Azure Service Bus queues must
be able to authenticate users, client applications, and partner applica-
tions that access the queues. Clients accessing a Service Bus queue
can have one of three permission levels: Send, Listen, or Manage. It is
vital for security reasons that clients connecting to a queue have the
appropriate permissions to prevent reading messages that should not
be available to them, or sending messages that may not be valid.

Authorizing Access to Service Bus Relay
Endpoints

Hybrid applications that use Windows Azure Service Bus Relay must
be able to authenticate users, client applications, and partner applica-
tions that access Service Bus Relay endpoints. Clients accessing a
Service Bus Relay endpoint must present a suitable token unless the
endpoint is configured to allow anonymous (unauthenticated) access.
The service is likely to be inside the corporate network or a protected
boundary, so is vital for security reasons that clients accessing it
through Service Bus Relay have the appropriate permissions in order
to prevent invalid access.

Cross-Cutting Concerns
Authentication and authorization mechanisms must, by definition, be
secure and robust to protect applications from invalid access and il-
legal operations. However, other requirements are also important
when considering how to implement authentication and authoriza-
tion in Windows Azure hybrid applications.

Security
The identity of a user or client must be established in a way that
uniquely identifies the user with a sufficiently high level of confidence,
and is not open to spoofing or other types of attack that may com-
promise the accuracy of the result. When using federated authentica-
tion and delegating responsibility for validating user identity, you must
be able to trust the identity provider and any intermediate services
with the appropriate level of confidence.

Access to STSs and identity providers should take place over a
secure connection protected by Secure Sockets Layer (SSL) or Trans-
port Layer Security (TLS) to counter man-in-the-middle attacks and
prevent access to the credentials or authentication tokens while pass-
ing over the network.

Service Bus integrates with
Windows Azure Access
Control Service, which acts as
the default identity provider
for Service Bus queues and
Service Bus Relay endpoints.
However, you can configure
Service Bus to use other
identity providers if you wish.

Service Bus topics and
subscriptions behave in the
same way as queues from
a security perspective, and
you authenticate users
and authorize access to
operations in the same way.

 233Authenticating Users and Authoring Requests

Many STSs can encrypt the authentication tokens they return, and this should be considered as
an additional layer of protection, even when using secure connections.

If an in-house repository of user information is maintained, this must be protected from external
penetration through unauthorized access over the network, and from internal attack achieved by
means of physical access to the servers, by setting appropriate permissions on the repository tables and
content. All sensitive information should be encrypted so that it is of no use if security is compromised.

You must be aware of legal and contractual obligations with regard to personally identifiable in-
formation (PII) about users that is held in the repository.

Responsiveness
Authentication mechanisms can be a bottleneck in applications that have many users signing in at the
same time, such as the start of a working day. The implementation you choose must be able to satisfy
requests quickly during high demand periods. Keep in mind that the process can involve several net-
work transitions between identity providers and STSs, and any one of these may be a weak point in
the chain of events.

Reliability
Authentication mechanisms are often a single point of failure. While it is easy to add more servers to
an application to handle additional capacity, this approach is often more difficult with authentication
mechanisms that must all access a single repository, or use an external identity provider over which you
have no control. If the authentication mechanism fails, users will not be able to access the application.

Interoperability
The protocols and mechanisms for claims-based authentication are interoperable by default. They use
standards-based protocols and formats for communication and security tokens. However, some STSs
and identity providers may only provide one type of token, such as a Simple Web Token (SWT),
whereas others might accept or return other types such as Security Assertions Markup Language
(SAML) tokens. You must ensure that the external providers and services you choose are compatible
with requirements and with each other.

Claims-Based Authentication and Authorization Technologies
This section provides a brief overview of the technologies for authentication and authorization that
are typically used in Windows applications and applications hosted in Windows Azure. It focuses on
claims-based authentication, which is likely to be the most appropriate approach for hybrid applica-
tions. It covers:
•	 Federated authentication, security token services, and identity providers
•	 Windows Identity Foundation (WIF)
•	 Windows Azure Access Control Service (ACS)

234 appendix b

Federated Authentication
In traditional applications, authentication and authorization are typi-
cally operating system features that make use of enterprise directory
services such as Microsoft Active Directory® and resource permis-
sions settings such as Access Control Lists (ACLs). More recently,
frameworks and technologies such as Microsoft ASP.NET have pro-
vided built in mechanisms that implement a similar approach for web-
based applications.

However, all of these approaches require the maintenance of a
user directory that defines which users can access the application or
service, and what these users can do within the application or service.
Maintaining such lists is cumbersome and can even be prone to errors
or lack of security. For example, if you store the list of users in a
partner organization that can access your application, you depend on
that partner to tell you when a user leaves the company or when the
permissions required by specific users change.

Instead, you can choose to trust the partner and allow that part-
ner to maintain the list of users and their roles. You still retain control
of authorization so you can manage what users can do within the
application, but you are freed from the need to authenticate every
user and allocate them to the appropriate authorization roles or
groups.

This approach to delegated authentication requires a standard
way of querying user repositories and distributing tokens that contain
claims. Security Token Services (STSs) such as Microsoft Active Direc-
tory Federation Service (ADFS) and Windows Azure Access Control
Service provide this capability, and compatible STSs are available for
other platforms and operating systems.

Each STS uses Identity Providers (IdPs) that are responsible for
authenticating users. After the identity provider authenticates the
user, the STS will create a token containing the claims for this user.
When using a web browser, this token is delivered in a cookie; for
smart clients and service applications the token is delivered within the
service response (depending on the protocol in use). An STS may also
deliver a cookie to the web browser that indicates the user has been
authenticated, allowing this user to access other applications without
needing to reenter credentials. This provides a single sign-in (SSO)
experience.

ADFS is an IdP as well
as an STS because it can
use Active Directory
to validate a user based
on credentials the user
provides. ACS uses external
IdPs such as Windows Live
ID, Google, Facebook, and
OpenID, but you can also
define service identities in
ACS that allow clients to
authenticate without using
an external IdP.

Trust

Trust Trust

Claims-aware
website

ADFS (STS)

Active
Directory

ACS (STS) Identity Provider
Windows Live

Google

Facebook
[others]

Partner STS
Trust

User
Directory

 235Authenticating Users and Authoring Requests

In practice, you decide which STS your application will trust. This may be an STS that you own,
such as ADFS connected to your corporate Active Directory. Alternatively, it may be an external STS
such as ACS. You can also configure an STS to trust another STS, so that users can be authenticated
by any of the STSs in the trust chain, as shown in Figure 1.

Figure 1
An authentication trust chain that can support federated identity and single sign-on

An Overview of the Claims-Based Authentication Process
An STS chooses an IdP that will authenticate the user based on the user’s home realm or domain. For
example, a user has a home realm of Google if this user has an identity that is managed and authenti-
cated by Google. If a user’s account is in a company’s Active Directory, their home realm will be that
company’s corporate domain. For users authenticating through a web browser, the STS directs the
user to the appropriate IdP. If the user can be successfully authenticated, the IdP returns a token
containing claims (information) about that user to the STS. The STS then generates an application-
specific token, which can contain these claims or some augmented version of the claims, and redirects
the user to the application with this token. The application can use the claims in this token to autho-
rize user actions. Figure 2 shows a simplified view of the process when using ACS as the token issuer.

Issuer (ACS)

Claims-aware
website Issue token and

redirect to ACS
Send ACS token

Access site1

2

9

74

6

5

3

Redirect to ACS Authenticate

Return Home Realm
Discovery page

Return token
containing
transformed claims

Se
nd

 id
en

tit
y

pr
ov

ide
r t

ok
en

Se
nd

 re
qu

es
t f

or

au
th

en
tic

at
ion

8Trust Trust

Identity Provider
Windows Live

Google

Facebook
[others]

236 appendix b

Figure 2
A simplified view of the browser authentication process using ACS and social identity providers

To support single sign-on, the STS can store an additional cookie containing an STS-specific token
in the browser to indicate that the user was successfully authenticated. When the user accesses an-
other application that trusts the same STS, this STS can generate a suitable token without requiring
the user to authenticate again with the original IdP.

Authorizing Web Service Requests
The automatic redirection process described above is only applicable when authenticating requests
that come from a web browser. Requests to a web service may be generated by code running in an-
other application, such as a smart client application or service application. In an environment such as
this, outside of a web browser, request redirection and cookies cannot be used to direct the request
along the chain of STSs and IdPs.

When using claims authentication with a smart client application or a web service, the client must
actively request the tokens it requires at each stage, and send these tokens along with the request to
the next party in the authentication chain. Figure 3 shows a simplified view of the process for a smart
client or service application when using ACS as the token issuer.

Issuer (ACS)

Claims-aware
serviceIssue token

Send ACS token 5

4

2

1

3

Authenticate

Return token
containing
transformed claims

Se
nd

 id
en

tit
y

pr
ov

ide
r t

ok
en

Smart
Client or
Service

Trust
Trust

Identity Provider
Windows Live

Google

Facebook
[others]

 237Authenticating Users and Authoring Requests

Figure 3
A simplified view of the smart client or service authentication process using

ACS and social identity providers

Windows Identity Foundation
Microsoft provides a framework that makes it easy to implement
claims-based authentication and authorization in web applications
and service applications. Windows Identity Foundation (WIF) is a
core part of the Microsoft identity and access management frame-
work based on Active Directory, Active Directory Federation Services,
Windows Azure Access Control Services, and federated claims-based
authentication.

WIF automatically checks requests for the presence of the re-
quired claims tokens, and performs redirection for web browsers to
the specified STS where these can be obtained. It also exposes the
claims in valid tokens to application code, so that the code can make
authorization decisions based on these claims. WIF includes a wizard
that developers can use in the Visual Studio® development system, or
from the command line, to configure applications for claims-based
identity.

Claims-based authentication
for web browsers is known as
passive authentication because
the browser automatically
handles the redirection and
presentation of tokens at the
appropriate points in the
authentication chain of events.
Authentication for service
calls, where this process must
be specifically managed by the
application code, is referred to
as active authentication. For
more information about active
authentication, see “Claims
Enabling Web Services.”

http://msdn.microsoft.com/en-us/library/hh446528.aspx
http://msdn.microsoft.com/en-us/library/hh446528.aspx

238 appendix b

The WIF components expose events as they handle requests, al-
lowing developers to control the process as required. WIF also in-
cludes controls that can be embedded in the application UI to initiate
sign-in and sign-out functions.

For more information about Windows Identity Foundation, see
the Identity Management home page and the patterns &
practices “Claims Based Identity & Access Control Guide”
at http://claimsid.codeplex.com/.

Windows Azure Access Control Service
Windows Azure Access Control Service (ACS) is a cloud-based service
that makes it easy to authenticate and authorize website, application,
and service users and is compatible with popular programming and
runtime environments. ACS integrates with the WIF tools and environ-
ments and Microsoft Active Directory Federation Services (ADFS),
and supports a range of protocols that includes OAuth, OpenID, WS-
Federation, and WS-Trust. It allows authentication to take place
against many popular web and enterprise identity providers.

When a user requests authentication from a web browser, ACS
receives a request for authentication from the web application and
presents a home realm discovery page that lists the identity providers
the web application trusts. The user selects an identity provider, and
ACS redirects the user to that identity provider’s login page. The user
logs in and is returned to ACS with a token containing the claims this
user has agreed to share in that particular identity provider. ACS then
applies the appropriate rules to transform the claims, and creates a
new token containing the transformed claims. The rules configured
within ACS can perform protocol transition and claims transforma-
tion as required by the web application. It then redirects the user back
to the web application with the ACS token. The web application can
use the claims in this token to apply authorization rules appropriate
for this user.

The process for authentication of requests from smart clients and
other service applications is different because there is no user interac-
tion. Instead, the service must first obtain a suitable token from an
identity provider, present this token to ACS for transformation, and
then present the token that ACS issues to the relying party.

ACS accepts SAML 1.1,
SAML 2.0, and SWT
formatted tokens, and can
issue a SAML 1.1, SAML 2.0,
or SWT token.

http://msdn.microsoft.com/en-us/security/aa570351.aspx
http://claimsid.codeplex.com/

 239Authenticating Users and Authoring Requests

ACS also acts as a token issuer for Windows Azure Service Bus. You can configure roles and
permissions for Service Bus queues and Service Bus Relay endpoints within ACS. Service Bus auto-
matically integrates with ACS and uses it to validate access and operations on queues and endpoints.

ACS is configured through the service interface using an OData-based management API, or
through the web portal that provides a graphical and interactive administration experience. You can
also use Windows Azure PowerShell® command-line interface cmdlets to configure ACS. These cmd-
lets provide wrappers around the OData API and enable you to write scripts that you can use to help
automate many ACS configuration tasks.

For more information about the Windows Azure PowerShell cmdlets visit the “Windows Azure
PowerShell Cmdlets” page on CodePlex, at http://wappowershell.codeplex.com/.

ACS and Unique User IDs
One point to be aware of if you decide to use ACS is that the user ID it returns after authenticating a
user is unique not only to the user, but also to the combination of ACS instance and user. Each con-
figured instance of an ACS namespace generates a different user ID for the same user. If a user is au-
thenticated through Windows Live ID in one ACS instance, the ID it returns will be different from the
ID returned when the same user was authenticated by Windows Live ID through a different ACS in-
stance. This is done to protect user privacy; it prevents different applications from identifying users
through their ID when they are authenticated by different ACS instances.

If you deploy multiple instances of ACS in different datacenters or change the namespace of your
ACS instance you must implement a mechanism that matches multiple ACS-delivered unique IDs to
each user in your user data store.

For more information about the Windows Azure PowerShell cmdlets visit the Windows Azure
Download page at http://www.windowsazure.com/en-us/manage/downloads/.

Windows Azure Service Bus Authentication and Authorization
Windows Azure Service Bus is a technology that allows you to expose internal services through a
corporate firewall or router without having to open inbound ports or perform address mapping. It
creates a virtual endpoint in the cloud that users connect to, and the requests and messages are passed
to your service or message queue. “Appendix C - Implementing Cross-Boundary Communication”
covers Service Bus in more detail; in this section you will see how the integration with ACS is used to
authenticate Service Bus requests.

http://wappowershell.codeplex.com/
http://www.windowsazure.com/en-us/manage/downloads/

On-premises

Windows Azure Datacenter

Windows Azure Access
Control Service (ACS)

Service Bus
Queue or
Relay

Trust

ACS Token

ACS Token

Windows Azure
Service Bus

Authenticat
e

Internal
Services

External client
or smart client

application

1

4

2

3

240 appendix b

Service Bus integrates with ACS for authenticating requests. For
every Service Bus namespace created in the Windows Azure Manage-
ment Portal there is a matching ACS namespace, created automati-
cally, which is used to authenticate Service Bus requests. This ACS
namespace is the Service Bus namespace with the suffix “-sb”. It has
the Service Bus namespace as its realm, and generates SWTs with an
expiration time of 1200 seconds. You cannot change these settings for
the default internal identity provider, but you can add additional iden-
tity providers that have different behavior. You can also configure ac-
cess rules and rule groups for your services within this ACS namespace.

Client Authentication
Figure 4 shows the overall flow of requests for authenticating a client
and accessing an on-premises service through Service Bus. Clients ac-
cessing Service Bus Relay endpoints or Service Bus queues must obtain
a token from ACS that contains claims defining the client’s roles or
permissions (1 and 2), and present this token to Service Bus (3) along
with the request for the service or access to a message queue. Service
Bus validates the token and allows the request to pass to the required
service (4). The only exception is if you specifically configure a Service
Bus Relay endpoint to all allow unauthenticated access. You cannot
configure unauthenticated access for Service Bus queues.

Figure 4
Authenticating a Service Bus request with ACS

To allow unauthenticated
access to a Service Bus Relay
endpoint you set the Relay-
ClientAuthenticationType
property of the WCF relay
binding security element to
None. For more information,
see “Securing Services” in the
MSDN WCF documentation
and “Securing and Authenticat-
ing a Service Bus Connection.”

To view and configure
the settings and rules for
an ACS namespace that
authenticates Service Bus
requests, navigate to the
Service Bus namespace in
the Azure portal and click
the “Access Control” icon at
the top of the window. You
can also configure the ACS
namespace programmatically
using the Management API.

http://msdn.microsoft.com/en-us/library/ms734769.aspx
http://msdn.microsoft.com/en-us/library/dd582773.aspx
http://msdn.microsoft.com/en-us/library/dd582773.aspx

 241Authenticating Users and Authoring Requests

The token issued by ACS can contain multiple claims. For example,
when using Service Bus queues the token may contain claims that al-
low the client to send messages to a queue, listen on a queue, and
manage a queue. When using Service Bus Relay, the claims can allow
a client to register an endpoint to listen for requests, send requests to
a service, and manage the endpoint. However, it is possible that the
service itself (in Figure 4, the internal on-premises service) will require
additional credentials not related to Service Bus. The ACS token sim-
ply allows access to the service through Service Bus; other authentica-
tion and message security issues are the same as when calling a service
directly. For example, you may need to provide separate credentials
within the service call headers that allow the client to access specific
resources within the server that is hosting the service.

ACS is an STS that can be configured to trust other identity pro-
viders. This is useful where you want to be able to authenticate clients
in a specific domain, such as your own corporate domain, to manage
access to internal services exposed through Service Bus. For example,
you may expose a service that external employees and partners use to
submit expenses. Each valid user will have an existing account in your
corporate directory.

The authentication process for accessing a Service Bus Relay
endpoint is entirely separate from any other authentication and
security concern related to calling the service itself. Service
Bus Relay simply provides a routing mechanism that can expose
internal services in a secure way; the techniques you use to
protect and secure the service itself and the resources it uses are
no different from when you expose it directly over a network.

On-premises

Windows Azure Datacenter

Windows Azure Access
Control Service (ACS)

Service Bus
Queue or
Relay

Trust

ACS Token

ACS
Token

Windows Azure
Service Bus

Internal
Services

External client
or smart client

application

1

4

Trust

ADFS & Active
DirectoryADFS Token

Authenticate

2

ADFS
Token

6

5

3

242 appendix b

Figure 5 shows this approach. A client first obtains a token from the corporate ADFS and Active
Directory service (1 and 2), then presents this token to ACS (3). ACS is configured to trust the ADFS
instance as an identity provider. ACS validates the token presented by the user with ADFS, and ex-
changes it for an ACS token containing the appropriate claims based on transformations performed
by ACS rules (4). The client can then present the ACS token with the service request to Service
Bus (5). Service Bus validates the token and allows the request to pass to the required service (6).

Figure 5
Authenticating a Service Bus request with ADFS and ACS

A similar approach can be taken with other identity providers that can generate SAML tokens.
The ACS namespace used by Service Bus can also be configured with several identity providers, allow-
ing clients to choose which one to use.

 243Authenticating Users and Authoring Requests

Service Bus Tokens and Token Providers
Unless the endpoint is configured for unauthenticated access, clients must provide a token to ACS
when accessing Service Bus endpoints and queues. This token can be one of the following types:
•	 Shared secret. In this approach, the client presents a token containing the service identity and

the associated key to ACS to obtain an ACS token to send with the request to Service Bus. The
service identity is configured in the ACS Service Bus namespace, which can generate a suitable
key that the client will use. This is the approach shown in Figure 4 earlier in this appendix.

•	 Simple Web Token (SWT). In this approach, the client obtains an SWT from an identity
provider and presents this to ACS to obtain an ACS token to send with the request to Service
Bus. Figure 5 earlier in this appendix shows the overall process for this approach.

•	 SAML Token. In this approach, the client obtains a SAML token from an identity provider and
presents this to ACS to obtain an ACS token to send with the request to Service Bus. Figure 5
earlier in this appendix also shows the overall process for this approach.

To include the required token with a request, the client uses the Service Bus MessagingFactory,
NamespaceManager, or TransportClientEndpointBehavior class. All of these types contain methods
that accept an instance of a concrete class that inherits the abstract TokenProvider base class, such
as SamlTokenProvider, SharedSecretTokenProvider, and SimpleWebTokenProvider.

The concrete TokenProvider implementations contain methods that create the corresponding
type of token from string values and byte arrays, or from existing tokens. You can create custom imple-
mentations of TokenProvider to perform other approaches to token creation; perhaps to implement
a federated authentication mechanism if this is required.

For more information, see “TokenProvider Class” on MSDN.

Service Bus Endpoints and Relying Parties
ACS automatically generates a default relying party in the corresponding ACS namespace when you
configure a namespace in Service Bus. This relying party has a realm value that encompasses all end-
point addresses you define within the namespace. It is effectively the root of your Service Bus
namespace.

However, you can define additional relying parties within the ACS namespace that correspond to
endpoint addresses you add to the Service Bus namespace. For example, if your root namespace in
Service Bus is treyresearch, you might define additional endpoints such as the following:
•	 http://treyresearch.servicebus.windows.net/orders/
•	 http://treyresearch.servicebus.windows.net/orders/usnorth/partners
•	 http://treyresearch.servicebus.windows.net/orders/usnorth/partners/partner1
•	 http://treyresearch.servicebus.windows.net/orders/usnorth/partners/partner2

You can create multiple relying party definitions in ACS that correspond to any subsection of the
endpoints defined in Service Bus. ACS matches a request with the longest matching definition, and
applies the permissions specified for that definition. This allows you to set up granular control of per-
missions to each endpoint, or to groups of endpoints. For example, from the list of shown above, the
definition for http://treyresearch.servicebus.windows.net/orders/usnorth/partners would be used
for requests to http://treyresearch.servicebus.windows.net/orders/usnorth/partners/partner3 be-
cause there is no more specific match available.

http://http://msdn.microsoft.com/en-us/library/microsoft.servicebus.tokenprovider.aspx

244 appendix b

Authorization Rules and Rule Groups
The ACS Service Bus namespace contains rules and rule groups that specify the roles and permissions
for clients based on their authenticated identity. ACS automatically creates a default rule that provides
Send, Listen, and Manage permissions to the service owner and the root relying party definition. The
default owner identity should be used only for administrative tasks. You should create additional
service identities within ACS for clients, and assign the appropriate permissions (Send, Listen, and
Manage) to each one to restrict access to the minimum required.

For each relying party definition you specify rules that transform the claims in the token received
by ACS, and/or rules that add claims. When using the shared secret approach for authentication, there
is no existing token and so there are no existing input claims. The output claims are of the type net.
windows.servicebus.action, and have the values Send, Listen, and Manage. You can add more than one
claim to any rule. To make configuration easier, you can create rule groups and apply these to multiple
relying parties.

For a comprehensive list of tutorials on using ACS, including configuring identities and identity
providers, see “ACS How Tos” on MSDN. For a step-by-step guide to configuring rules and rule
groups, see “How To Implement Token Transformation Logic Using Rules” on MSDN.

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx.
•	 “ Claims-Based Identity and Access Control Guide” at http://claimsid.codeplex.com/ and on

MSDN at http://msdn.microsoft.com/en-us/library/ff423674.aspx
•	 “Claims Enabling Web Services” at http://msdn.microsoft.com/en-us/library/hh446528.aspx.
•	 Identity Management home page at http://msdn.microsoft.com/en-us/security/aa570351.aspx
•	 Windows Azure PowerShell Cmdlets are available from the Windows Azure Download page at

http://www.windowsazure.com/en-us/manage/downloads/.
•	 “Access Control Service 2.0” at http://msdn.microsoft.com/en-us/library/windowsazure/

gg429786.aspx
•	 “Securing Services” in the MSDN WCF documentation at http://msdn.microsoft.com/en-us/

library/ms734769.aspx
•	 “Securing and Authenticating a Service Bus Connection” at http://msdn.microsoft.com/en-us/

library/dd582773.aspx.
•	 “TokenProvider Class” at http://msdn.microsoft.com/en-us/library/microsoft.servicebus.

tokenprovider.aspx.
•	 “ACS How Tos” at http://msdn.microsoft.com/en-us/library/gg185939.aspx.
•	 “How To Implement Token Transformation Logic Using Rules” at http://msdn.microsoft.com/

en-us/library/gg185955.aspx.

http://msdn.microsoft.com/en-us/library/gg185939.aspx
http://msdn.microsoft.com/en-us/library/gg185955.aspx
http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://claimsid.codeplex.com/
http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://msdn.microsoft.com/en-us/library/hh446528.aspx
http://msdn.microsoft.com/en-us/security/aa570351.aspx
http://www.windowsazure.com/en-us/manage/downloads/
http://msdn.microsoft.com/en-us/library/windowsazure/gg429786.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg429786.aspx
http://msdn.microsoft.com/en-us/library/ms734769.aspx
http://msdn.microsoft.com/en-us/library/ms734769.aspx
http://msdn.microsoft.com/en-us/library/dd582773.aspx
http://msdn.microsoft.com/en-us/library/dd582773.aspx
http://msdn.microsoft.com/en-us/library/microsoft.servicebus.tokenprovider.aspx
http://msdn.microsoft.com/en-us/library/microsoft.servicebus.tokenprovider.aspx
http://msdn.microsoft.com/en-us/library/gg185939.aspx
http://msdn.microsoft.com/en-us/library/gg185955.aspx
http://msdn.microsoft.com/en-us/library/gg185955.aspx

 245

A key aspect of any solution that spans the on-premises infrastructure
of an organization and the cloud concerns the way in which the ele-
ments that comprise the solution connect and communicate. A typi-
cal distributed application contains many parts running in a variety of
locations, which must be able to interact in a safe and reliable manner.
Although the individual components of a distributed solution typi-
cally run in a controlled environment, carefully managed and pro-
tected by the organizations responsible for hosting them, the network
that joins these elements together commonly utilizes infrastructure,
such as the Internet, that is outside of these organizations’ realms of
responsibility.

Consequently the network is the weak link in many hybrid sys-
tems; performance is variable, connectivity between components is
not guaranteed, and all communications must be carefully protected.
Any distributed solution must be able to handle intermittent and un-
reliable communications while ensuring that all transmissions are
subject to an appropriate level of security.

The Windows Azure™ technology platform provides technolo-
gies that address these concerns and help you to build reliable and
safe solutions. This appendix describes these technologies.

Uses Cases and Challenges
In a hybrid cloud-based solution, the various applications and services
will be running on-premises or in the cloud and interacting across a
network. Communicating across the on-premises/cloud divide typi-
cally involves implementing one or more of the following generic use
cases. Each of these use cases has its own series of challenges that you
need to consider.

appendix C Implementing
Cross-Boundary
Communication

Making the most
appropriate choice for
selecting the way in which
components communicate
with each other is crucial,
and can have a significant
bearing on the entire
systems design.

246 appendix C

Accessing On-Premises Resources From
Outside the Organization

Description: Resources located on-premises are required by com-
ponents running elsewhere, either in the cloud or at partner orga-
nizations.

The primary challenge associated with this use case concerns
finding and connecting to the resources that the applications and
services running outside of the organization utilize. When running
on-premises, the code for these items frequently has direct and con-
trolled access to these resources by virtue of running in the same
network segment. However, when this same code runs in the cloud it
is operating in a different network space, and must be able to connect
back to the on-premises servers in a safe and secure manner to read
or modify the on-premises resources.

Accessing On-Premises Services From
Outside the Organization

Description: Services running on-premises are accessed by applica-
tions running elsewhere, either in the cloud or at partner organiza-
tions.

In a typical service-based architecture running over the Internet,
applications running on-premises within an organization access ser-
vices through a public-facing network. The environment hosting the
service makes access available through one or more well-defined ports
and by using common protocols; in the case of most web-based ser-
vices this will be port 80 over HTTP, or port 443 over HTTPS. If the
service is hosted behind a firewall, you must open the appropriate
port(s) to allow inbound requests. When your application running
on-premises connects to the service it makes an outbound call
through your organization’s firewall. The local port selected for the
outbound call from your on-premises application depends on the
negotiation performed by the HTTP protocol (it will probably be
some high-numbered port not currently in use), and any responses
from the service return on the same channel through the same port.
The important point is that to send requests from your application to
the service, you do not have to open any additional inbound ports in
your organization’s firewall.

Opening ports in your
corporate firewall without
due consideration of the
implications can render
your systems liable to
attack. Many hackers run
automated port-scanning
software to search for
opportunities such as
this. They then probe any
services listening on open
ports to determine whether
they exhibit any common
vulnerabilities that can be
exploited to break into your
corporate systems.

 247Implementing Cross-Boundary Communication

When you run a service on-premises, you are effectively reversing the communication require-
ments; applications running in the cloud and partner organizations need to make an inbound call
through your organization’s firewall and, possibly, one or more Network Address Translation (NAT)
routers to connect to your services. Remember that the purpose of this firewall is to help guard against
unrestrained and potentially damaging access to the assets stored on-premises from an attacker lo-
cated in the outside world. Therefore, for security reasons, most organizations implement a policy that
restricts inbound traffic to their on-premises business servers, blocking access to your services. Even
if you are allowed to open up various ports, you are then faced with the task of filtering the traffic to
detect and deny access to malicious requests.

The vital question concerned with this use case therefore, is how do you enable access to ser-
vices running on-premises without compromising the security of your organization?

Implementing a Reliable Communications Channel across
Boundaries

Description: Distributed components require a reliable communications mechanism that is resil-
ient to network failure and enables the components to be responsive even if the network is slow.

When you depend on a public network such as the Internet for your communications, you are
completely dependent on the various network technologies managed by third party operators to
transmit your data. Utilizing reliable messaging to connect the elements of your system in this environ-
ment requires that you understand not only the logical messaging semantics of your application, but
also how you can meet the physical networking and security challenges that these semantics imply.

A reliable communications channel does not lose messages, although it may choose to discard
information in a controlled manner in well-defined circumstances. Addressing this challenge requires
you to consider the following issues:
•	 How is the communications channel established? Which component opens the channel; the

sender, the receiver, or some third-party?
•	 How are messages protected? Is any additional security infrastructure required to encrypt

messages and secure the communications channel?
•	 Do the sender and receiver have a functional dependency on each other and the messages that

they send?
•	 Do the sender and receiver need to operate synchronously? If not, then how does the sender

know that a message has been received?
•	 Is the communications channel duplex or simplex? If it is simplex, how can the receiver transmit

a reply to the sender?
•	 Do messages have a lifetime? If a message has not been received within a specific period should

it be discarded? In this situation, should the sender be informed that the message has been
discarded?

•	 Does a message have a specific single recipient, or can the same message be broadcast to
multiple receivers?

•	 Is the order of messages important? Should they be received in exactly the same order in which
they were sent? Is it possible to prioritize urgent messages within the communications channel?

•	 Is there a dependency between related messages? If one message is received but a dependent
message is not, what happens?

248 appendix C

Cross-Cutting Concerns
In conjunction with the functional aspects of connecting compo-
nents to services and data, you also need to consider the common
non-functional challenges that any communications mechanism must
address.

Security
The first and most important of these challenges is security. You
should treat the network as a hostile environment and be suspicious
of all incoming traffic. Specifically, you must also ensure that the com-
munications channel used for connecting to a service is well pro-
tected. Requests may arrive from services and organizations running
in a different security domain from your organization. You should be
prepared to authenticate all incoming requests, and authorize them
according to your organization’s data access policy to guard your or-
ganization’s resources from unauthorized access.

You must also take steps to protect all outgoing traffic, as the
data that you are transmitting will be vulnerable as soon as it leaves
the environs of your organization.

The questions that you must consider when implementing a safe
communications channel include:
•	 How do you establish a communications channel that traverses

the corporate firewall securely?
•	 How do you authenticate and authorize a sender to enable it to

transmit messages over a communications channel? How do you
authenticate and authorize a receiver?

•	 How do you prevent an unauthorized receiver from intercepting
a message intended for another recipient?

•	 How do you protect the contents of a message to prevent an
unauthorized receiver from examining or manipulating sensitive
data?

•	 How do you protect the sender or receiver from attack across
the network?

Responsiveness
A well designed solution ensures that the system remains responsive,
even while messages are flowing across a slow, error prone network
between distant components. Senders and receivers will probably be
running on different computers, hosted in different datacenters (ei-
ther in the cloud, on-premises, or within a third-party partner organi-
zation), and located in different parts of the world. You must answer
the following questions:
•	 How do you ensure that a sender and receiver can communicate

reliably without blocking each other?

Robust security is a vital
element of any application
that is accessible across
a network. If security is
compromised, the results
can be very costly and
users will lose faith in your
system.

 249Implementing Cross-Boundary Communication

•	 How does the communications channel manage a sudden influx
of messages?

•	 Is a sender dependent on a specific receiver, and vice versa?

Interoperability
Hybrid applications combine components built using different tech-
nologies. Ideally, the communications channel that you implement
should be independent of these technologies. Following this strategy
not only reduces dependencies on the way in which existing elements
of your solution are implemented, but also helps to ensure that your
system is more easily extensible in the future.

Maintaining messaging interoperability inevitably involves adopt-
ing a standards-based approach, utilizing commonly accepted net-
working protocols such as TCP and HTTP, and message formats such
as XML and SOAP. A common strategy to address this issue is to select
a communications mechanism that layers neatly on top of a standard
protocol, and then implement the appropriate libraries to format mes-
sages in a manner that components built using different technologies
can easily parse and process.

Windows Azure Technologies for Implementing
Cross-Boundary Communication

If you are building solutions based on direct access to resources lo-
cated on-premises, you can use Windows Azure Connect to establish
a safe, virtual network connection to your on-premises servers. Your
code can utilize this connection to read and write the resources to
which it has been granted access.

If you are following a service-oriented architecture (SOA) ap-
proach, you can build services to implement more functionally fo-
cused access to resources; you send messages to these services that
access the resources in a controlled manner on your behalf. Commu-
nication with services in this architecture frequently falls into one of
two distinct styles:
•	 Remote procedure call (RPC) style communications.

In this style, the message receiver is typically a service that
exposes a set of operations a sender can invoke. These opera-
tions can take parameters and may return results, and in some
simple cases can be thought of as an extension to a local meth-
od call except that the method is now running remotely. The
underlying communications mechanism is typically hidden by a
proxy object in the sender application; this proxy takes care of
connecting to the receiver, transmitting the message, waiting
for the response, and then returning this response to the sender.
Web services typically follow this pattern.

You can also deploy data to
the cloud and store it in
Windows Azure blob and
table storage. The Windows
Azure SDK provides APIs that
enable you to access this data
from applications running
on-premises as well as other
services running in the cloud
or at partner organizations.
These scenarios are described
in detail in the patterns &
practices guide “Developing
Applications for the Cloud on
the Microsoft Windows Azure
Platform” (available at http://
wag.codeplex.com) but are not
covered in this guide.

http://wag.codeplex.com
http://wag.codeplex.com

250 appendix C

This style of messaging lends itself most naturally to syn-
chronous communications, which may impact responsiveness
on the part of the sender; it has to wait while the message is re-
ceived, processed, and a response sent back. Variations on this
style support asynchronous messaging where the sender pro-
vides a callback that handles the response from the receiver,
and one-way messaging where no response is expected.

You can build components that provide RPC-style messag-
ing by implementing them as Windows Communication Founda-
tion services. If the services must run on-premises, you can pro-
vide safe access to them using the Windows Azure Service Bus
Relay mechanism described later in this appendix.

If these services must run in the cloud you can host them as
Windows Azure roles. This scenario is described in detail in the
patterns & practices guide “Developing Applications for the Cloud
(2nd Edition)” on MSDN.

•	 Message-oriented communications.
In this style, the message receiver simply expects to receive

a packaged message rather than a request to perform an opera-
tion. The message provides the context and the data, and the
receiver parses the message to determine how to process it and
what tasks to perform.

This style of messaging is typically based on queues, where
the sender creates a message and posts it to the queue, and the
receiver retrieves messages from the queue. It’s also a naturally
asynchronous method of communications because the queue
acts as a repository for the messages, which the receiver can
select and process in its own time. If the sender expects a re-
sponse, it can provide some form of correlation identifier for
the original message and then wait for a message with this same
identifier to appear on the same or another queue, as agreed
with the receiver.

Windows Azure provides an implementation of reliable
message queuing through Service Bus queues. These are covered
later in this appendix.

The following sections provide more details on Windows Azure Con-
nect, Windows Azure Service Bus Relay, and Service Bus queues; and
describe when you should consider using each of them.

Older applications and
frameworks also support the
notion of remote objects.
In this style of distributed
communications, a service
host application exposes
collections of objects
rather than operations.
A client application can
create and use remote
objects using the same
semantics as local objects.
Although this mechanism
is very appealing from an
object-oriented standpoint,
it has the drawback of being
potentially very inefficient
in terms of network use
(client applications send lots
of small, chatty network
requests), and performance
can suffer as a result. This
style of communications is
not considered any further
in this guide.

http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/ff966499.aspx

 251Implementing Cross-Boundary Communication

Accessing On-Premises Resources from
Outside the Organization Using Windows
Azure Connect

Windows Azure Connect enables you integrate your Windows Azure
roles with your on-premises servers by establishing a virtual network
connection between the two environments. It implements a network
level connection based on standard IP protocols between your ap-
plications and services running in the cloud and your resources lo-
cated on-premises, and vice versa.

Guidelines for Using Windows Azure Connect
Using Windows Azure Connect provides many benefits over common
alternative approaches:
•	 Setup is straightforward and does not require any changes to

your on-premises network. For example, your IT staff do not
have to configure VPN devices or perform any complex network
or DNS configuration, nor are they required to modify the
firewall configuration of any of your on-premises servers or
change any router settings.

•	 You can selectively relocate applications and services to the
cloud while protecting your existing investment in on-premises
infrastructure.

•	 You can retain your key data services and resources on-premises
if you do not wish to migrate them to the cloud, or if you are
required to retain these items on-premises for legal or compli-
ance reasons.

Windows Azure Connect is suitable for the following scenarios:
•	 An application or service running in the cloud requires access

to network resources located on on-premises servers.
Using Windows Azure Connect, code hosted in the cloud

can access on-premises network resources using the same pro-
cedures and methods as code executing on-premises. For ex-
ample, a cloud-based service can use familiar syntax to connect
to a file share or a device such as a printer located on-premises.
The application can implement impersonation using the creden-
tials of an account with permission to access the on-premises
resource. With this technique, the same security semantics avail-
able between on-premises applications and resources apply, en-
abling you to protect resources using access control lists (ACLs).

If you are exposing
resources from a VM role,
you may need to configure
the firewall of the virtual
machine hosted in the
VM role. For example, file
sharing may be blocked by
Windows Firewall.

252 appendix C

•	 An application running in the cloud requires access to data
sources managed by on-premises servers.

Windows Azure Connect enables a cloud-based service to
establish a network connection to data sources running on-
premises that support IP connectivity. Examples include SQL
Server, a DCOM component, or a Microsoft Message queue.
Services in the cloud specify the connection details in exactly
the same way as if they were running on-premises. For instance,
you can connect to SQL Server by using SQL Server authentica-
tion, specifying the name and password of an appropriate SQL
Server account (SQL Server must be configured to enable SQL
Server or mixed authentication for this technique to work.)

This approach is especially suitable for third-party packaged
applications that you wish to move to the cloud. The vendors
of these applications do not typically supply the source code,
so you cannot modify the way in which they work.

•	 An application running in the cloud needs to execute in the
same Windows security domain as code running on-premises.

Windows Azure Connect enables you to join the roles run-
ning in the cloud to your organization’s Windows Active Direc-
tory® domain. In this way you can configure corporate authenti-
cation and resource access to and from cloud-based virtual
machines. This feature enables you take advantage of integrated
security when connecting to data sources hosted by your on-
premises servers. You can either configure the role to run using
a domain account, or it can run using a local account but config-
ure the IIS application pool used to run the web or worker role
with the credentials of a domain account.

•	 An application requires access to resources located on-
premises, but the code for the application is running at a
different site or within a partner organization.

You can use Windows Azure Connect to implement a sim-
plified VPN between remote sites and partner organizations.
Windows Azure Connect is also a compelling technology for
solutions that incorporate roaming users who need to connect
to on-premises resources such as a remote desktop or file share
from their laptop computers.

Using Windows Azure
Connect to bring cloud
services into your corporate
Windows domain solves
many problems that would
otherwise require complex
configuration, and that may
inadvertently render your
system open to attack if
you get this configuration
wrong.

On-Premises Infrastructure

Cloud

Folder

Server1

\\Server2\Printer

Partner Organization

Partner
Application

Roaming
Computer

Printer

Server2

\\Server1\Folder

 253Implementing Cross-Boundary Communication

Figure 1
Connecting to on-premises resources from a partner organization and roaming computers

For up-to-date information about best practices for implementing Windows Azure Connect, visit
the Windows Azure Connect Team Blog.

Windows Azure Connect Architecture and Security Model
Windows Azure Connect is implemented as an IPv6 virtual network by Windows Azure Connect
endpoint software running on each server and role that participates in the virtual network. The end-
point software transparently handles DNS resolution and manages the IP connections between your
servers and roles. It is installed automatically on roles running in the cloud that are configured as
connect-enabled. For servers running on-premises, you download and install the Windows Azure
Connect endpoint software manually. This software executes in the background as a Windows ser-
vice. Similarly, if you are using Windows Azure Connect to connect from a VM role, you must install
the Windows Azure Connect endpoint software in this role before you deploy it to the cloud.

You use the Windows Azure Management Portal to generate an activation token that you include
as part of the configuration for each role and each instance of the Windows Azure Connect endpoint
software running on-premises. Windows Azure Connect uses this token to link the connection end-
point to the Windows Azure subscription and ensures that the virtual network is only accessible to
authenticated servers and roles. Network traffic traversing the virtual network is protected end-to-
end by using certificate-based IPsec over Secure Socket Tunneling Protocol (SSTP). Windows Azure
Connect provisions and configures the appropriate certificates automatically, and does not require
any manual intervention on the part of the operator.

http://blogs.msdn.com/b/windows_azure_connect_team_blog

On-Premises Infrastructure

Cloud

IPSec over SSTP

Cloud Service

Windows Azure Connect
Endpoint Software

Windows Azure
Connect Relay

Windows Azure Connect
Endpoint Software

IPSec over SSTP

254 appendix C

The Windows Azure Connect endpoint software establishes com-
munications with each node by using Connect Relay service, hosted
and managed by Microsoft in their datacenters. The endpoint software
uses outbound HTTPS connections only to communicate with the
Windows Azure Connect Relay service. However, the Windows Azure
Connect endpoint software creates a firewall rule for Internet Control
Message Protocol for IPv6 (ICMPv6) communications which allows
Router Solicitation (Type 133) and Router Advertisement (Type 134)
messages when it is installed. These messages are required to establish
and maintain an IPv6 link. Do not disable this rule.

Figure 2
The security architecture of Windows Azure Connect

Microsoft implements
separate instances of the
Windows Azure Connect
Relay service in each region.
For best performance,
choose the relay region
closest to your organization
when you configure
Windows Azure Connect.

 255Implementing Cross-Boundary Communication

You manage the connection security policy that governs which servers and roles can communicate
with each other using the Management Portal; you create one or more endpoint groups containing
the host servers that comprise your solution (and that have the Windows Azure Connect endpoint
software installed), and then specify the Windows Azure roles that they can connect to. This collec-
tion of host servers and roles constitutes a single virtual network.

For more information about configuring Windows Azure Connect and creating endpoint groups, see
“Windows Azure Connect” on MSDN.

Limitations of Windows Azure Connect
Windows Azure Connect is intended for providing direct access to corporate resources, either lo-
cated on-premises or in the cloud. It provides a general purpose solution, but is subject to some
constraints as summarized by the following list:
•	 Windows Azure Connect is an end-to-end solution; participating on-premises computers and

VM roles in the cloud must be defined as part of the same virtual network. Resources (on-
premises and in a VM role) can be protected by using ACLs, although this protection relies on
the users accessing those resources being defined in the Windows domain spanning the virtual
network or in another domain trusted by this domain. Consequently, Windows Azure Connect
is not suitable for sharing resources with public clients, such as customers communicating with
your services across the Internet. In this case, Windows Azure Service Bus Relay is a more
appropriate technology.

•	 Windows Azure Connect implements an IPv6 network, although it does not require any IPv6
infrastructure on the underlying platform. However, any applications using Windows Azure
Connect to access resources must be IPv6 aware. Older legacy applications may have been
constructed based on IPv4, and these applications will need to be updated or replaced to
function correctly with Windows Azure Connect.

•	 If you are using Windows Azure Connect to join roles to your Windows domain, the current
version of Windows Azure Connect requires that you install the Windows Azure Connect
endpoint software on the domain controller. This same machine must also be a Windows
Domain Name System (DNS) server. These requirements may be subject to approval from your
IT department, and you organization may implement policies that constrain the configuration of
the domain controller. However, these requirements may change in future releases of Windows
Azure Connect.

•	 Windows Azure Connect is specifically intended to provide connectivity between roles running
in the cloud and servers located on-premises. It is not suitable for connecting roles together; if
you need to share resources between roles, a preferable solution is to use Windows Azure
storage, Windows Azure queues, or databases tables deployed to the SQL Azure™ technology
platform.

http://msdn.microsoft.com/en-us/library/gg433122.aspx

256 appendix C

•	 You can only use Windows Azure Connect to establish network connectivity with servers
running the Windows® operating system; the Windows Azure Connect endpoint software is
not designed to operate with other operating systems. If you require cross-platform connectiv-
ity, you should consider using Windows Azure Service Bus.

Accessing On-Premises Services from Outside the Organization
Using Windows Azure Service Bus Relay

Windows Azure Service Bus Relay provides the communication infrastructure that enables you to
expose a service to the Internet from behind your firewall or NAT router. The Windows Azure Service
Bus Relay service provides an easy to use mechanism for connecting applications and services running
on either side of the corporate firewall, enabling them to communicate safely without requiring a
complex security configuration or custom messaging infrastructure.

Guidelines for Using Windows Azure Service Bus Relay
Windows Azure Service Bus Relay is ideal for enabling secure communications with a service running
on-premises, and for establishing peer-to-peer connectivity. Using Windows Azure Service Bus Relay
brings a number of benefits:
•	 It is fully compatible with Windows Communication Foundation (WCF). You can leverage your

existing WCF knowledge without needing to learn a new model for implementing services and
client applications. Windows Azure Service Bus Relay provides WCF bindings that extend those
commonly used by many existing services.

•	 It is interoperable with platforms and technologies for operating systems other than Windows.
Windows Azure Service Bus Relay is based on common standards such as HTTPS and TCP/SSL
for sending and receiving messages securely, and it exposes an HTTP REST interface. Any
technology that can consume and produce HTTP REST requests can connect to a service that
uses Windows Azure Service Bus Relay. You can also build services using the HTTP REST
interface.

•	 It does not require you to open any inbound ports in your organization’s firewall. Windows
Azure Service Bus Relay uses only outbound connections.

•	 It supports naming and discovery. Windows Azure Service Bus Relay maintains a registry of
active services within your organization’s namespace. Client applications that have the appro-
priate authorization can query this registry to discover these services, and download the
metadata necessary to connect to these services and exercise the operations that they expose.
The registry is managed by Windows Azure and exploits the scalability and availability that
Windows Azure provides.

 257Implementing Cross-Boundary Communication

•	 It supports federated security to authenticate requests. The identities of users and applications
accessing an on-premises service through Windows Azure Service Bus Relay do not have to be
members of your organization’s security domain.

•	 It supports many common messaging patterns, including two-way request/response processing,
one-way messaging, service remoting, and multicast eventing.

•	 It supports load balancing. You can open up to 25 listeners on the same endpoint. When the
Service Bus receives requests directed towards an endpoint, it load balances the requests across
these listeners.

You should note that Windows Azure Service Bus Relay is not suitable for implementing all commu-
nication solutions. For example, it imposes a temporal dependency between the services running
on-premises and the client applications that connect to them; a service must be running before a client
application can connect to it otherwise the client application will receive an EndpointNotFound-
Exception exception (this limitation applies even with the NetOnewayRelayBinding and NetEvent-
RelayBinding bindings described in the section “Selecting a Binding for a Service” later in this ap-
pendix.) Furthermore, Windows Azure Service Bus Relay is heavily dependent on the reliability of the
network; a service may be running, but if a client application cannot reach it because of a network
failure the client will again receive an EndpointNotFoundException exception. In these cases using
Windows Azure Service Bus queues may provide a better alternative; see the section “Implementing
a Reliable Communications Channel across Boundaries Using Service Bus Queues” later in this ap-
pendix for more information.

You should consider using Windows Azure Service Bus Relay in the following scenarios:
•	 An application running in the cloud requires controlled access to your service hosted

on-premises. Your service is built using WCF.
This is the primary scenario for using Windows Azure Service Bus Relay. Your service is built

using WCF and the Windows Azure SDK. It uses the WCF bindings provided by the Microsoft.
ServiceBus assembly to open an outbound communication channel through the firewall to the
Windows Azure Service Bus Relay service and wait for incoming requests. Client applications in
the cloud also use the same Windows Azure SDK and WCF bindings to connect to the service
and send requests through the Windows Azure Service Bus Relay service. Responses from the
on-premises services are routed back through the same communications channel through the
Windows Azure Service Bus Relay service to the client application. On-premises services can be
hosted in a custom application or by using Internet Information Services (IIS). When using IIS,
an administrator can configure the on-premises service to start automatically so that it registers
a connection with Windows Azure Service Bus Relay and is available to receive requests from
client applications.

On-Premises Infrastructure

Cloud

Cloud
Application

Service
Bus
Relay

WCF Service (hosted in IIS) starts and
registers with Service Bus Relay. Outbound
message is sent through the firewall.

Cloud application connects with WCF service
through Service Bus Relay.

Cloud application sends a request.

Request is routed by Service Bus Relay through
the channel opened by the WCF service, back
through the firewall to WCF service.

WCF service sends a response using the same
channel through the firewall.

Response is routed by Service Bus Relay back
to Cloud application.

Firewall

WCF Service

1

2
3

6

5

4

1

2

3

6

5

4

258 appendix C

Figure 3
Routing requests and responses through Windows Azure Service Bus Relay

This pattern is useful for providing remote access to existing on-premises services that were not
originally accessible outside of your organization. You can build a façade around your services that
publishes them in Windows Azure Service Bus Relay. Applications external to your organization and
that have the appropriate security rights can then connect to your services through Windows Azure
Service Bus Relay.

Service
Bus
Relay

On-Premises Infrastructure

Cloud
Cloud

Application

WCF Service and Cloud Application
establish a connection through Service
Bus Relay over TCP/SSL.

Service Bus Relay coordinates
negotiation of direct connection between
WCF Service and Cloud Application.

Subsequent messages between Cloud
application and WCF Service pass over
direct TCP/SSL connection, bypassing
Service Bus Relay.

WCF Service

1

1

2

3

Firewall

3

1

2

 259Implementing Cross-Boundary Communication

Initially all messages are routed through the Windows Azure Service Bus Relay service, but as an
optimization mechanism a service exposing a TCP endpoint can use a direct connection, bypassing the
Windows Azure Service Bus Relay service once the service and client have both been authenticated.
The coordination of this direct connection is governed by the Windows Azure Service Bus Relay
service. The direct socket connection algorithm uses only outbound connections for firewall tra-
versal and relies on a mutual port prediction algorithm for NAT traversal. If a direct connection can
be established, the relayed connection is automatically upgraded to the direct connection. If the direct
connection cannot be established, the connection will revert back to passing messages through the
Windows Azure Service Bus Relay service.

The NAT traversal algorithm is dependent on a very narrowly timed coordination and a best-guess
prediction about the expected NAT behavior. Consequently the algorithm tends to have a very high
success rate for home and small business scenarios with a small number of clients but degrades in its
success rate as the size of the network increases.

Figure 4
Establishing a direct connection over TCP/SSL

Partner OrganizationOn-Premises Infrastructure

Non-WCF Client
Application

Service Bus
Relay

WCF Service

Firewall
HTTP REST

260 appendix C

•	 An application running at a partner organization requires controlled access to your service
hosted on-premises. The client application is built by using a technology other than WCF.

In this scenario, a client application can use the HTTP REST interface exposed by the Windows
Azure Service Bus Relay service to locate an on-premises service and send it requests.

Figure 5
Connecting to an on-premises service by using HTTP REST requests

On-Premises Infrastructure

Cloud
Cloud

Application

Ruby Service

Partner Organization

Partner
Client

Application
Firewall

HTTP REST

Service
Bus
Relay

 261Implementing Cross-Boundary Communication

•	 An application running in the cloud or at a partner organization requires controlled access to
your service hosted on-premises. Your service is built by using a technology other than WCF.

You may have existing services that you have implemented using a technology such as Perl or
Ruby. In this scenario, the service can use the HTTP REST interface to connect to the Windows
Azure Service Bus Relay service and await requests.

Figure 6
Connecting to an on-premises service built with Ruby using Windows Azure Service Bus Relay

On-Premises Infrastructure

Cloud
Cloud

Application

Ruby Service

One-way
messaging

WCF Service Self-hosted
WCF Service

Firewall

Service
Bus
Relay

262 appendix C

•	 An application running in the cloud or at a partner organiza-
tion submits requests that can be sent to multiple services
hosted on-premises.

In this scenario, a single request from a client application
may be sent to and processed by more than one service running
on-premises. Effectively, the message from the client applica-
tion is multicast to all on-premises services registered at the
same endpoint with the Windows Azure Service Bus Relay ser-
vice. All messages sent by the client are one-way; the services
do not send a response. This approach is useful for building
event-based systems; each message sent by a client application
constitutes an event, and services can transparently subscribe
to this event by registering with the Windows Azure Service
Bus Relay service.

Figure 7
Multicasting using Windows Azure Service Bus Relay

You can also implement an
eventing system by using
Service Bus topics and
subscriptions. Windows
Azure Service Bus Relay
is very lightweight and
efficient, but topics and
subscriptions provide
more flexibility. Guidelines
for routing messages
using Service Bus topics
and subscriptions are
provided in “Appendix
D - Implementing Business
Logic and Message Routing
across Boundaries.”

Partner OrganizationOn-Premises Infrastructure

Partner Client
Application

On-premises
application

Firewall

Cloud
Service

(Worker Role)

Service Bus
Relay

 263Implementing Cross-Boundary Communication

•	 An application running on-premises or at a partner organization requires controlled access
to your service hosted in the cloud. Your service is implemented as a Windows Azure
worker role and is built using WCF.

This scenario is the opposite of the situation described in the previous cases. In many situa-
tions, an application running on-premises or at a partner organization can access a WCF service
implemented as a worker role directly, without the intervention of Windows Azure Service Bus
Relay. However, this scenario is valuable if the WCF service was previously located on-premises
and code running elsewhere connected via Windows Azure Service Bus Relay as described in
the preceding examples, but the service has now been migrated to Windows Azure. Refactoring
the service, relocating it to the cloud and publishing it through Windows Azure Service Bus Re-
lay enables you to retain the same endpoint details, so client applications do not have to be
modified or reconfigured in any way; they just carry on running as before. This architecture also
enables you to more easily protect communications with the service by using the appropriate
WCF bindings.

Figure 8
Routing requests to a worker role through Windows Azure Service Bus Relay

264 appendix C

Guidelines for Securing Windows Azure Service Bus Relay
Windows Azure Service Bus Relay endpoints are organized by using
Service Bus namespaces. When you create a new service that com-
municates with client applications by using Windows Azure Service
Bus Relay you can use the Management Portal to generate a new
service namespace. This namespace must be unique, and it determines
the uniform resource identifier (URI) that your service exposes; client
applications specify this URI to connect to your service through
Windows Azure Service Bus Relay. For example, if you create a
namespace with the value TreyResearch and you publish a service
named OrdersService in this namespace, the full URI of the service
is sb://treyresearch.servicebus.windows.net/OrdersService.

The services that you expose through Windows Azure Service
Bus Relay can provide access to sensitive data, and are themselves
valuable assets; therefore you should protect these services. There are
several facets to this task:
•	 You should restrict access to your Service Bus namespace to

authenticated services and client applications only. This requires
that each service and client application runs with an associated
identity that the Windows Azure Service Bus Relay service can
verify. As described in “Appendix B - Authenticating Users and
Authorizing Requests,” Service Bus includes its own identity
provider as part of the Windows Azure Access Control Service
(ACS), and you can define identities and keys for each service and
user running a client application. You can also implement feder-
ated security through ACS to authenticate requests against a
security service running on-premises or at a partner organization.

When you configure access to a service exposed through
Windows Azure Service Bus Relay, the realm of the relying party
application with which you associate authenticated identities is
the URL of the service endpoint on which the service accepts
requests.

•	 You should limit the way in which clients can interact with the
endpoints published through your Service Bus namespace. For
example, most client applications should only be able to send
messages to a service (and obtain a response) while services
should be only able to listen for incoming requests. Service Bus
defines the claim type net.windows.servicebus.action which
has the possible values Send, Listen, and Manage. Using ACS
you can implement a rule group for each URI defined in your
Service Bus namespace that maps an authenticated identity to
one or more of these claim values.

Remember that even though
Service Bus is managed and
maintained by one or more
Microsoft datacenters,
applications connect to
Windows Azure Service Bus
Relay across the Internet.
Unauthorized applications
that can connect to your
Service Bus namespaces can
implement common attacks,
such as denial of service
to disrupt your operations,
or Man-in-the-Middle to
steal data as it is passed to
your services. Therefore,
you should protect your
Service Bus namespaces and
the services that use it as
carefully as you would defend
your on-premises assets.

Service Bus can also use third
party identity providers,
such as Windows Live ID,
Google, and Yahoo!, but the
default is to use the built-in
identity provider included
within ACS.

 265Implementing Cross-Boundary Communication

When a service starts running and attempts to advertise an
endpoint, it provides its credentials to Windows Azure Service
Bus Relay service. These credentials are validated, and are used to
determine whether the service should be allowed to create the
endpoint. A common approach used by many services is to de-
fine an endpoint behavior that references the transportClient-
EndpointBehavior element in the configuration file. This ele-
ment has a clientCredentials element that enables a service to
specify the name of an identity and the corresponding symmetric
key to verify this identity. A client application can take a similar
approach, except that it specifies the name and symmetric key
for the identity running the application rather than that of the
service.

For more information about protecting services through Windows
Azure Service Bus Relay, see “Securing and Authenticating a
Service Bus Connection” on MSDN.

Note that using the shared secret token provider is just one
way of supplying the credentials for the service and the client
application. When you specify this provider, ACS itself authen-
ticates the name and key, and if they are valid it generates a
Simple Web Token (SWT) containing the claims for this iden-
tity, as determined by the rules configured in ACS. These claims
determine whether the service or client application has the ap-
propriate rights to listen for, or send messages. Other authenti-
cation provider options are available, including using SAML to-
kens. You can also specify a different Security Token Service
(STS) other than that provided by ACS to authenticate creden-
tials and issue claims.

•	 When a client application has established a connection to a
service through Windows Azure Service Bus Relay, you should
carefully control the operations that the client application can
invoke. The authorization process is governed by the way in
which you implement the service and is outside the scope of
ACS, although you can use ACS to generate the claims for an
authenticated client, which your service can use for authoriza-
tion purposes.

•	 All communications passing between your service and client
applications is likely to pass across a public network or the
Internet. You should protect these communications by using an
appropriate level of data transfer security, such as SSL or HTTPS.

If you are using
WCF to implement
your services, you
should consider
building a Windows
Identity Foundation
authorization provider
to decouple the
authorization rules
from the business
logic of your service.

If you are using WCF
to implement your
services, implementing
transport security is
really just a matter
of selecting the most
appropriate WCF
binding and then
setting the relevant
properties to specify
how to encrypt and
protect data.

http://msdn.microsoft.com/en-us/library/dd582773.aspx
http://msdn.microsoft.com/en-us/library/dd582773.aspx

On-Premises
Infrastructure

Service

Access
Control
Service

TCP (SSL)
or HTTPS

Client Application
Encrypted
message and
authenticated
credentials

Signed
request

Decrypted
message

Credentials
authorized
by service

Authenticated
claims (Send)

HTTPS

HTTPS

Signed
request

Authenticated
claims (Listen)

Service
Bus
Relay

266 appendix C

Figure 9 illustrates the core recommendations for protecting services exposed through Windows
Azure Service Bus Relay.

You can configure message authentication and encryption by configuring the WCF binding used
by the service. For more information, see “Securing and Authenticating a Service Bus Connection”
on MSDN.

Figure 9
Recommendations for protecting services exposed through Windows Azure Service Bus Relay

http://msdn.microsoft.com/en-us/library/windowsazure/dd582773.aspx

 267Implementing Cross-Boundary Communication

Many organizations implement outbound firewall rules that are
based on IP address allow-listing. In this configuration, to provide ac-
cess to Service Bus or ACS you must add the addresses of the corre-
sponding Windows Azure services to your firewall. These addresses
vary according to the region hosting the services, and they may also
change over time, but the following list shows the addresses for each
region at the time of writing:
•	 Asia (SouthEast): 207.46.48.0/20, 111.221.16.0/21,

111.221.80.0/20
•	 Asia (East): 111.221.64.0/22, 65.52.160.0/19
•	 Europe (West): 94.245.97.0/24, 65.52.128.0/19
•	 Europe (North): 213.199.128.0/20, 213.199.160.0/20,

213.199.184.0/21, 94.245.112.0/20, 94.245.88.0/21,
94.245.104.0/21, 65.52.64.0/20, 65.52.224.0/19

•	 US (North/Central): 207.46.192.0/20, 65.52.0.0/19,
65.52.48.0/20, 65.52.192.0/19, 209.240.220.0/23

•	 US (South/Central): 65.55.80.0/20, 65.54.48.0/21,
65.55.64.0/20, 70.37.48.0/20, 70.37.64.0/18, 65.52.32.0/21,
70.37.160.0/21

Guidelines for Naming Services in Windows Azure Service
Bus Relay

If you have a large number of services, you should adopt a standard-
ized convention for naming the endpoints for these services. This will
help you manage, protect, and monitor services and the client applica-
tions that connect to them. Many organizations commonly adopt a
hierarchical approach. For example, if Trey Research had sites in Chi-
cago, New York, and Washington, each of which provided ordering
and shipping services, an administrator might register URIs following
the naming convention shown in this list:

IP address allow-listing is
not really a suitable security
strategy for an organization
when the target addresses
identify a massively multi-
tenant infrastructure such
as Windows Azure (or any
other public cloud platform,
for that matter).

•	 sb://treyresearch.servicebus.windows.net/chicago/ordersservice
•	 sb://treyresearch.servicebus.windows.net/chicago/shippingservice
•	 sb://treyresearch.servicebus.windows.net/newyork/ordersservice
•	 sb://treyresearch.servicebus.windows.net/newyork/shippingservice
•	 sb://treyresearch.servicebus.windows.net/washington/ordersservice
•	 sb://treyresearch.servicebus.windows.net/washington/shippingservice

268 appendix C

However, when you register the URI for a service with Windows
Azure Service Bus Relay, no other service can listen on any URI scoped
at a lower level than your service. What this means that if in the future
Trey Research decided to implement an additional orders service for
exclusive customers, they could not register it by using a URI such as
sb://treyresearch.servicebus.windows.net/chicago/ordersservice/
exclusive.

To avoid problems such as this, you should ensure that the initial
part of each URI is unique. You can generate a new GUID for each
service, and prepend the city and service name elements of the URI
with this GUID. In the Trey Research example, the URIs for the Chi-
cago services, including the exclusive orders service, could be:
•	 sb://treyresearch.servicebus.windows.net/B3B4D086-BEB9-

4773-97D3-064B0DD306EA/chicago/ordersservice
•	 sb://treyresearch.servicebus.windows.net/DD986578-EAB6-

FC84-5490-075F34CD8B7A/chicago/ordersservice/exclusive
•	 sb://treyresearch.servicebus.windows.net/A8B3CC55-1256-

5632-8A9F-FF0675438EEC/chicago/shippingservice
For more information about naming guidelines for Windows

Azure Service Bus Relay services, see “AppFabric Service Bus – Things
You Should Know – Part 1 of 3 (Naming Your Endpoints).”

Selecting a Binding for a Service
The purpose of Windows Azure Service Bus Relay is to provide a safe
and reliable connection to your services running on-premises for cli-
ent applications executing on the other side of your corporate fire-
wall. Once a service has registered with the Windows Azure Service
Bus Relay service, much of the complexity associated with protecting
the service and authenticating and authorizing requests can be han-
dled transparently outside the scope of the business logic of the ser-
vice. If you are using WCF to implement your services, you can use the
same types and APIs that you are familiar with in the System.Service-
Model assembly. The Windows Azure SDK includes transport bind-
ings, behaviors, and other extensions in the Microsoft.ServiceBus
assembly for integrating a WCF service with Windows Azure Service
Bus Relay.

As with a regular WCF service, selecting an appropriate binding
for a service that uses Windows Azure Service Bus Relay has an im-
pact on the connectivity for client applications and the functionality
and security that the transport provides. The Microsoft.ServiceBus
assembly provides four sets of bindings:

If you are familiar with
building services and client
applications using WCF, you
should find Windows Azure
Service Bus Relay quite
straightforward.

http://http://windowsazurecat.com/2011/05/appfabric-service-bus-things-you-should-know-part-1-of-3-naming-your-endpoints
http://http://windowsazurecat.com/2011/05/appfabric-service-bus-things-you-should-know-part-1-of-3-naming-your-endpoints

 269Implementing Cross-Boundary Communication

•	 HTTP bindings; BasicHttpRelayBinding, WSHttpRelayBinding,
WS2007HttpRelayBinding and WebHttpRelayBinding.

These bindings are very similar to their standard WCF equiv-
alents (BasicHttpBinding, WSHttpBinding, WS2007-Http-
Binding, and WebHttpBinding) except that they are designed
to extend the underlying WCF channel infrastructure and route
messages through the Windows Azure Service Bus Relay service.
They offer the same connectivity and feature set as their WCF
counterparts, and they can operate over HTTP and HTTPS. For
example, the WS2007HttpRelayBinding binding supports
SOAP message-level security, reliable sessions, and transaction
flow. These bindings open a channel to the Windows Azure
Service Bus Relay service by using outbound connections only;
you do not need to open any additional inbound ports in your
corporate firewall.

•	 TCP binding; NetTcpRelayBinding.
This binding is functionally equivalent to the NetTcpBinding

binding of WCF. It supports duplex callbacks and offers better
performance than the HTTP bindings although it is less portable.
Client applications connecting to a service using this binding may
be required to send requests and receive responses using the
TCP binary encoding, depending on how the binding is config-
ured by the service. Although this binding does not require you
to open any additional inbound ports in your corporate firewall,
it does necessitate that you open outbound TCP port 808, and
port 828 if you are using SSL.

This binding also supports the hybrid mode through the
ConnectionMode property (the HTTP bindings do not support
this type of connection). The default connection mode for this
binding is Relayed, but you should consider setting it to Hybrid
if you want to take advantage of the performance improve-
ments that bypassing the Windows Azure Service Bus Relay ser-
vice provides. However, the NAT prediction algorithm that es-
tablishes the direct connection between the service and client
application requires that you also open outbound TCP ports 818
and 819 in your corporate firewall. Finally, note that the hybrid
connection mode requires that the binding is configured to im-
plement message-level security.

The network scheme
used for addresses
advertised through the
NetTcpRelayBinding
binding is sb rather than
the net.tcp scheme used by
the WCF NetTcpBinding
binding. For example, the
address of the Orders
service implemented
by Trey Research could
be sb://treyresearch.
servicebus.windows.net/
OrdersService

270 appendix C

•	 One-way binding; NetOnewayRelayBinding.
This binding implements one-way buffered messaging. A client application sends requests

to a buffer managed by the Windows Azure Service Bus Relay service which delivers the mes-
sage to the service. This binding is suitable for implementing a service that provides asynchro-
nous operations as they can be queued and scheduled by the Windows Azure Service Bus Relay
service, ensuring an orderly throughput without swamping the service. However message deliv-
ery is not guaranteed; if the service shuts down before the Windows Azure Service Bus Relay
service has forwarded messages to it then these messages will be lost. Similarly, the order in
which messages submitted by a client application are passed to the service is not guaranteed
either.

This binding uses a TCP connection for the service, so it requires outbound ports 808 and
828 (for SSL) to be open in your firewall.

•	 Multicasting binding; NetEventRelayBinding.
This binding is a specialized version of the NetOnewayRelayBinding binding that enables

multiple services to register the same endpoint with the Windows Azure Service Bus Relay
service. Client applications can connect using either the NetEventRelayBinding binding or
NetOnewayRelayBinding binding. All communications are one-way, and message delivery and
order is not guaranteed.

This binding is ideal for building an eventing system; N client applications can connect to
M services, with the Windows Azure Service Bus Relay service effectively acting as the event
hub. As with the NetOnewayRelayBinding binding, this binding uses a TCP connection for the
service, so it requires outbound ports 808 and 828 (for SSL) to be open.

Windows Azure Service Bus Relay and Windows Azure Connect Compared
There is some overlap in the features provided by Windows Azure Service Bus Relay and Windows
Azure Connect. However, when deciding which of these technologies you should use, consider the
following points:
•	 Windows Azure Service Bus Relay can provide access to services that wrap on-premises re-

sources. These services can act as façades that implement highly controlled and selective access
to the wrapped resources. Client applications making requests can be authenticated with a
service by using ACS and federated security; they do not have to provide an identity that is
defined within your organization’s corporate Windows domain.

Windows Azure Connect is intended to provide direct access to resources that are not ex-
posed publicly. You protect these resources by defining ACLs, but all client applications using
these resources must be provisioned with an identity that is defined within your organization’s
corporate Windows domain.

•	 Windows Azure Service Bus Relay maintains a registry of publicly accessible services within a
Windows Azure namespace. A client application with the appropriate security rights can query
this registry and obtain a list of services and their metadata (if published), and use this informa-
tion to connect to the service and invoke its operations. This mechanism supports dynamic
client applications that discover services at runtime.

Windows Azure Connect does not support enumeration of resources; a client application
cannot easily discover resources at runtime.

 271Implementing Cross-Boundary Communication

•	 Client applications communicating with a service through
Windows Azure Service Bus Relay can establish a direct connec-
tion, bypassing the Windows Azure Service Bus Relay service
once an initial exchange has occurred.

All Windows Azure Connect requests pass through the
Windows Azure Service Bus Relay service; you cannot make
direct connections to resources (although the way in which
Windows Azure Connect uses the Windows Azure Service
Bus Relay service is transparent).

Implementing a Reliable Communications
Channel across Boundaries Using Service
Bus Queues

Service Bus queues enable you to decouple services from the client
applications that use them, both in terms of functionality (a client
application does not have to implement any specific interface or
proxy to send messages to a receiver) and time (a receiver does not
have to be running when a client application posts it a message). Ser-
vice Bus queues implement reliable, transactional messaging with
guaranteed delivery, so messages are never inadvertently lost. More-
over, Service Bus queues are resilient to network failure; as long as a
client application can post a message to a queue it will be delivered
when the service is next able to connect to the queue.

Service Bus Messages
A Service Bus message is an instance of the BrokeredMessage class.
It consists of two elements; the message body which contains the
information being sent, and a collection of message properties which
can be used to add metadata to the message.

The message body is opaque to the Service Bus queue infrastruc-
ture and it can contain any application-defined information, as long as
this data can be serialized. The message body may also be encrypted
for additional security. The contents of the message are never visible
outside of a sending or receiving application, not even in the Manage-
ment Portal.

When you are dealing with
message queues, keep in mind
that client applications and
services can both send and
receive messages. The descrip-
tions in this section therefore
refer to “senders” and “receiv-
ers” rather than client
applications and services.

The data in a message must be serializable. By default the
BrokeredMessage class uses a DataContractSerializer object
with a binary XmlDictionaryWriter to perform this task,
although you can override this behavior and provide your own
XmlObjectSerializer object if you need to customize the way
the data is serialized. The body of a message can also be a stream.

272 appendix C

In contrast, the Service Bus queue infrastructure can examine the
metadata of a message. Some of the metadata items define standard
messaging properties that an application can set; and are used by the
Service Bus queues infrastructure for performing tasks such as
uniquely identifying a message, specifying the session for a message,
indicating the expiration time for a message if it is undelivered, and
many other common operations. Messages also expose a number of
system-managed read-only properties, such as the size of the message
and the number of times a receiver has retrieved the message in Peek-
Lock mode but not completed the operation successfully. Addition-
ally, an application can define custom properties and add them to the
metadata. These items are typically used to pass additional informa-
tion describing the contents of the message, and they can also be used
by Service Bus to filter and route messages to message subscribers.

Guidelines for Using Service Bus Queues
Service Bus queues are perfect for implementing a system based on
asynchronous messaging. You can build applications and services that
utilize Service Bus queues by using the Windows Azure SDK. This
SDK includes APIs for interacting directly with the Service Bus queues
object model, but it also provides bindings that enable WCF applica-
tions and services to connect to queues in a similar way to consuming
Microsoft Windows Message Queuing queues in an enterprise envi-
ronment.

Service Bus queues enable a variety of common patterns and can
assist you in building highly elastic solutions as described in the fol-
lowing scenarios:
•	 A sender needs to post one or more messages to a receiver.

Messages should be delivered in order and message delivery
must be guaranteed, even if the receiver is not running when the
sender posts the message.

This is the most common scenario for using a Service Bus
queue and is the typical model for implementing asynchronous
processing. A sender posts a message to a queue and at some
later point in time a receiver retrieves the message from the
same queue. A Service Bus queue is an inherently first-in-first-
out (FIFO) structure, and by default messages will be received
in the order in which they are sent.

Prior to the availability
of Service Bus queues,
Windows Azure
provided message
buffers. These are still
available, but they
are only included for
backwards compatibility.
If you are implementing
a new system, you
should use Service Bus
queues instead.

You should also note
that Service Bus
queues are different
from Windows Azure
storage queues, which
are used primarily
as a communication
mechanism between
web and worker roles
running on the same
site.

On-Premises Infrastructure

Cloud

Receiver Service
(WCF Worker Role

Sender Application
(Java/Linux)

Service Bus Queue

HTTP REST

Message 1

Message 2

Message 3
Service Bus
Queue APIs

 273Implementing Cross-Boundary Communication

The sender and receiver are independent; they may be executing remotely from each other
and, unlike the situation when using Windows Azure Service Bus Relay, they do not have to be
running concurrently. For example, the receiver may be temporarily offline for maintenance. The
queue effectively acts as a buffer, reliably storing messages for subsequent processing. An im-
portant point to note is that although Service Bus queues reside in the cloud, both the sender
and the receiver can be located elsewhere. For example, a sender could be an on-premises ap-
plication and a receiver could be a service running in a partner organization.

The Service Bus queue APIs in the Windows Azure SDK are actually wrappers around a se-
ries of HTTP REST interfaces. Applications and services built by using the Windows Azure SDK,
and applications and services built using technologies not supported by the Windows Azure
SDK, can all interact with Service Bus queues. Figure 10 shows an example architecture where
the sender is an on-premises application and the receiver is a worker role running in the cloud.
In this example, the on-premises application is built using the Java programming language and is
running on Linux, so it performs HTTP REST requests to post messages. The worker role is a
WCF service built using the Windows Azure SDK and the Service Bus queue APIs.

Figure 10
Sending and receiving messages, in order, using a Service Bus queue

Partner Organization Cloud

Sender Application
Sender Application

Service Bus Queue

Message
1

Message
2

Message
3

On-premises Infrastructure

Scheduled Message
Processing Application

274 appendix C

•	 Multiple senders running at partner organizations or in the cloud need to send messages
to your system. These messages may require complex processing when they are received.
The receiving application runs on-premises, and you need to optimize the time at which
it executes so that you do not impact your core business operations.

Service Bus queues are highly suitable for batch-processing scenarios where the message-
processing logic runs on-premises and may consume considerable resources. In this case, you
may wish to perform message processing at off-peak hours so as to avoid a detrimental effect
on the performance of your critical business components. To accomplish this style of process-
ing, senders can post requests to a Service Bus queue while the receiver is offline. At some
scheduled time you can start the receiver application running to retrieve and handle each mes-
sage in turn. When the receiver has drained the queue it can shut down and release any resourc-
es it was using.

Figure 11
Implementing batch processing by using a Service Bus queue

 275Implementing Cross-Boundary Communication

You can use a similar solution to address the fan-in problem, where an unexpectedly large
number of client applications suddenly post a high volume of requests to a service running on-
premises. If the service attempts to process these requests synchronously it could easily be
swamped, leading to poor performance and failures caused by client applications being unable
to connect. In this case, you could restructure the service to use a Service Bus queue. Client ap-
plications post messages to this queue, and the service processes them in its own time. In this
scenario, the Service Bus queue acts as a load-leveling technology, smoothing the workload of
the receiver while not blocking the senders.

•	 A sender posting request messages to a queue expects a response to these requests.
A message queue is an inherently asynchronous one-way communication mechanism. If a

sender posting a request message expects a response, the receiver can post this response to a
queue and the sender can receive the response from this queue. Although this is a straightfor-
ward mechanism in the simple case with a single sender posting a single request to a single re-
ceiver that replies with a single response, in a more realistic scenario there will be multiple send-
ers, receivers, requests, and responses. In implementing a solution, you have to address two
problems:
•	 How can you prevent a response message being received by the wrong sender?
•	 If a sender can post multiple request messages, how does the sender know which response

message corresponds to which request?
The answer to the first question is to create an additional queue that is specific to each

sender. All senders post messages to the receiver using the same queue, but listen for the re-
sponse on their own specific queues. All Service Bus messages have a collection of properties
that you use to include metadata. A sender can populate the ReplyTo metadata property of a
request message with a value that indicates which queue the receiver should use to post the
response.

All messages should have a unique MessageId value, set by the sender. The second problem
can be handled by the sender setting the CorrelationId property of the response message to
the value held in the MessageId of the original request. In this way, the sender can determine
which response relates to which original request.

Sender B

Sender A

Receiver

Correlation ID: 1534
Response Data

ReplyTo: QueueA
Message ID: 0099
Message Data

Correlation ID: 0098
Response Data

ReplyTo: QueueB
Message ID: 1535
Message Data

Response to an earlier message
with Message ID 0098

QueueA

Receiver Queue

QueueB

276 appendix C

Figure 12
Implementing two-way messaging with response queues and message correlation

•	 You require a reliable communications channel between a sender and a receiver.
You can extend the message-correlation approach if you need to implement a reliable com-

munications channel based on Service Bus queues. Service Bus queues are themselves inherently
reliable, but the connection to them across the network might not be, and neither might the
applications sending or receiving messages. It may therefore be necessary not only to implement
retry logic to handle the transient network errors that might occur when posting or receiving a
message, but also to incorporate a simple end-to-end protocol between the sender and receiver
in the form of acknowledgement messages.

As a simple example, when a sender posts a message to a queue, it can wait (using an asyn-
chronous task or background thread) for the receiver to respond with an acknowledgement.
The CorrelationId property of the acknowledgement message should match the MessageId
property of the original request. If no correlating response appears after a specified time inter-
val, the sender can repost the message and wait again. This process can repeat until either the
sender receives an acknowledgement, or a specified number of iterations have occurred; in
which case the sender gives up and handles the situation as a failure to send the message.

 277Implementing Cross-Boundary Communication

However, it is possible that the receiver has retrieved the
message posted by the sender and has acknowledged it, but this
acknowledgement has failed to reach the sender. In this case,
the sender may post a duplicate message that the receiver has
already processed. To handle this situation, the receiver should
maintain a list of message IDs for messages that it has handled.
If it receives another message with the same ID, it should simply
reply with an acknowledgement message but not attempt to
repeat the processing associated with the message.

Do not use the duplicate detection feature of Service Bus queues
to eliminate duplicate messages in this scenario. If you enable
duplicate detection, repeated request or acknowledgement
messages may be silently removed causing the end-to-end
protocol to fail. For example, if a receiver reposts an
acknowledgement message, duplicate detection may cause
this reposted message to be removed and the sender will
eventually abort, possibly causing the system to enter an
inconsistent state; the sender assumes that the receiver has
not received or processed the message while the receiver is
not aware that the sender has aborted.

•	 Your system experiences spikes in the number of messages
posted by senders and needs to handle a highly variable
volume of messages in a timely manner.

Service Bus queues are a good solution for implementing
load-leveling, preventing a receiver from being overwhelmed
by a sudden influx of messages. However, this approach is only
useful if the messages being sent are not time sensitive. In some
situations, it may be important for a message to be processed
within a short period of time. In this case, the solution is to add
further receivers listening for messages on the same queue.
This fan-out architecture naturally balances the load amongst
the receivers as they compete for messages from the queue; the
semantics of message queuing prevents the same message from
being dequeued by two concurrent receivers. A monitor process
can query the length of the queue, and dynamically start and
stop receiver instances as the queue grows or drains.

Senders do not have to be modified in any way as they con-
tinue to post messages to the queue in the same manner as be-
fore. This solution even works for implementing two-way mes-
saging, as shown in Figure 13.

You can use the Enterprise
Library Autoscaling
Application Block to
monitor the length of a
Service Bus queue and start
or stop worker roles acting
as receivers, as necessary.

Sender B

Sender A
QueueA

Receiver Queue

QueueB

Receiver

Receiver

Receiver

278 appendix C

Figure 13
Implementing load-balancing with multiple receivers

•	 A sender posts a series of messages to a queue. The messages
have dependencies on each other and must be processed by
the same receiver. If multiple receivers are listening to the
queue, the same receiver must handle all the messages in the
series.

In this scenario, a message might convey state information
that sets the context for a set of following messages. The same
message receiver that handled the first message may be required
to process the subsequent messages in the series.

In a related case, a sender might need to send a message
that is bigger than the maximum message size (currently 256Kb).
To address this problem, the sender can divide the data into
multiple smaller messages. These messages will need to be re-
trieved by the same receiver and then reassembled into the orig-
inal large message for processing.

Service Bus queues can be configured to support sessions.
A session consists of a set of messages that comprise a single
conversation. All messages in a session must be handled by the
same receiver. You indicate that a Service Bus queue supports
sessions by setting the RequiresSession property of the queue
to true when it is created. All messages posted to this queue
must have their SessionId property set to a string value. The
value stored in this string identifies the session, and all messages
with the same SessionId value are considered part of the same
session. Notice that it is possible for multiple senders to post
messages with the same session ID, in which case all of these
messages are treated as belonging to the same session.

You should bear in mind that
a sudden influx of a large
number of requests might
be the result of a denial of
service attack. To help reduce
the threat of such an attack,
it is important to protect the
Service Bus queues that your
application uses to prevent
unauthorized senders from
posting messages. For more
information, see the section
“Guidelines for Securing
Service Bus Queues” later in
this appendix.

Sender A Receiver for
Session B

Receiver for
Session ASender B

Sending messages
for Session A

Sending messages
for Session B

Messages for
Session A

Messages for
Session B

 279Implementing Cross-Boundary Communication

A receiver willing to handle the messages in the session calls the AcceptMessageSession
method of a QueueClient object. This method establishes a session object that the receiver can
use to retrieve the messages for the session, in much the same way as retrieving the messages
from an ordinary queue. However, the AcceptMessageSession method effectively pins the
messages in the queue that comprise the session to the receiver and hides them from all other
receivers. Another receiver calling AcceptMessageSession will receive messages from the next
available session. Figure 14 shows two senders posting messages using distinct session IDs; each
sender generates its own session. The receivers for each session only handle the messages post-
ed to that session.

Figure 14
Using sessions to group messages

You can also establish duplex sessions if the receiver needs
to send a set of messages as a reply. You achieve this by setting
the ReplyToSessionId property of a response message with the
value in the SessionId property of the received messages before
replying to the sender.
The sender can then establish its own session and use the ses-
sion ID to correlate the messages in the response session with
the original requests.

A message session can include session state information,
stored with the messages in the queue. You can use this infor-
mation to track the work performed during the message session
and implement a simple finite state machine in the message re-
ceiver. When a receiver retrieves a message from a session, it can
store information about the work performed while processing
the message in the session state and write this state information
back to the session in the queue. If the receiver should fail or
terminate unexpectedly, another instance can connect to the
session, retrieve the session state information, and continue the
necessary processing where the previous failed receiver left off.
Figure 15 illustrates this scenario.

Use the GetState and
SetState methods of a
MessageSession object
to retrieve and update the
state information for a
message session.

Sender Receiver for
Session

Receiver updates the
message session state each
time it receives a message

Message session state Messages for session

280 appendix C

Figure 15
Retrieving and storing message session state information

•	 A sender needs to post one or more messages to a queue as
a singleton operation. If some part of the operation fails, then
none of the messages should be sent and they must all be
removed from the queue.

The simplest way to implement a singleton operation that
posts multiple messages is by using a local transaction. You initi-
ate a local transaction by creating a TransactionScope object.
This is a programmatic construct that defines the scope for a set
of tasks that comprise a single transaction.

To post a batch of messages as part of the same transaction
you should invoke the send operation for each message within
the context of the same TransactionScope object. In effect, the
messages are simply buffered and are not actually sent until the
transaction completes. To ensure that all the messages are actu-
ally sent, you must complete the transaction successfully. If the
transaction fails, none of the messages are sent but are instead
removed from the queue. For more information about the
TransactionScope class, see the topic “TransactionScope Class”
on MSDN.

It is possible for a session to
be unbounded—there might
be a continuous stream of
messages posted to a session
at varying and sometimes
lengthy intervals. In this case,
the message receiver should be
prepared to hibernate itself if
it is inactive for a predefined
duration. When a new
message appears for the
session, another process
monitoring the system can
reawaken the hibernated
receiver which can then
resume processing.

http://http://msdn.microsoft.com/en-us/library/system.transactions.transactionscope.aspx

 281Implementing Cross-Boundary Communication

If you are sending messages asynchronously (the recom-
mended approach), it may not be feasible to send messages with-
in the context of a TransactionScope object. Note that if you
are incorporating operations from other transactional sources,
such as a SQL Server database, then these operations cannot be
performed within the context of the same TransactionScope
object; the resource manager that wraps Service Bus queues
cannot share transactions with other resource managers.

In these scenarios, you can implement a custom-pseudo
transactional mechanism based on manual failure detection,
retry logic, and the duplicate message elimination (dedupe) of
Service Bus queues.

To use dedupe, each message that a sender posts to a queue
should have a unique message ID. If two messages are posted to
the same queue with the same message ID, both messages are
assumed to be identical and duplicate detection will remove the
second message. Using this feature, in the event of failure in its
business logic, a sender application can simply attempt to re-
send a message as part of its failure/retry processing. If the mes-
sage had been successfully posted previously the duplicate will
be eliminated; the receiver will only see the first message. This
approach guarantees that the message will always be sent at
least once (assuming that the sender has a working connection
to the queue) but it is not possible to easily withdraw the mes-
sage if the failure processing in the business logic determines
that the message should not be sent at all.

You enable
duplication detection
by setting the
RequiresDuplicate-
Detection property of
the queue to true when
you create it. It is not
possible to change the
value of this property
on a queue that already
exists. Additionally,
you should set the
DuplicateDetection-
HistoryTimeWindow
property to a
TimeSpan value
that indicates the
period during which
duplicate messages
for a given message
ID are discarded; if
a new message with
an identical message
ID appears when this
period has expired then
it will be queued for
delivery.

If you attempt to use
a TransactionScope
object to perform local
transactions that enlist
a Service Bus queue
and other resource
managers, your code
will throw an exception.

282 appendix C

•	 A receiver retrieves one or more messages from a queue,
again as part of a transactional operation. If the transaction
fails, then all messages must be replaced into the queue to
enable them to be read again.

A message receiver can retrieve messages from a Service Bus
queue by using one of two receive modes; ReceiveAndDelete
and PeekLock. In ReceiveAndDelete mode, messages are re-
moved from the queue as soon as they are read. In PeekLock
mode, messages are not removed from the queue as they are
read, but rather they are locked to prevent them from being
retrieved by another concurrent receiver, which will instead re-
trieve the next available unlocked message. If the receiver suc-
cessfully completes any processing associated with the message
it can call the Complete method of the message, which removes
the message from the queue. If the receiver is unable to handle
the message successfully, it can call the Abandon method,
which releases the lock but leaves the message on the queue.
This approach is suitable for performing asynchronous receive
operations.

As with message send operations, a message receive opera-
tion performed using PeekLock mode can also be performed
synchronously as part of a local transaction by defining a
TransactionScope object, as long as the transaction does not
attempt to enlist any additional resource managers. If the
transaction does not complete successfully, all messages re-
ceived and processed within the context of the Transaction-
Scope object will be returned to the queue.

•	 A receiver needs to examine the next message on the queue
but should only dequeue the message if it is intended for the
receiver.

In this scenario, the receiver can retrieve the message by us-
ing the PeekLock receive mode, copy the message into a local
buffer and examine it. If the message is not intended for this re-
ceiver, it can quickly call the Abandon method of the message
to make it available to another receiver.

If a message contents are confidential and should only be
read by a specific receiver, the sender can encrypt the message
body with a key that only the correct receiver knows. The send-
er can also populate the To property of the message with an
identifier that specifies the correct receiver. Message properties
are not encrypted, so any receiver can retrieve the message, but
if it does not recognize the address in the To property it will
probably not have the appropriate key to decrypt the message
contents, so it can abandon the message and leave it for the cor-
rect receiver.

Only PeekLock
mode respects
local transactions;
ReceiveAndDelete
mode does not.

The ReceiveAndDelete
receive mode provides
better performance
than the PeekLock
receive mode, but
PeekLock provides a
greater degree of safety.
In ReceiveAndDelete
mode, if the receiver fails
after reading the message
then the message will be
lost. In PeekLock mode,
if the receive operation
or message processing
are not successfully
completed, the message
can be abandoned and
returned to the queue
from where it can be
read again.
The default receive mode
for a Service Bus queue is
PeekLock.

To: Receiver A
Encrypted
Message Data

Message
encrypted
with key for
Receiver A

Encryption Key
for Receiver A

Encryption Key
for Receiver B

To: Receiver B
Encrypted
Message Data

Sender

Decryption Key
for Receiver A

Receiver A

Decryption Key
for Receiver B

Receiver B

Message
encrypted
with key for
Receiver B

- Message received using PeekLock receive mode.
- To address examined.
- If To address does not match receiver then Abandon.
- If To address does match receiver then decrypt
 the message body using the decryption key.

 283Implementing Cross-Boundary Communication

Figure 16
Using PeekLock with encryption to examine messages without dequeueing

Guidelines for Sending and Receiving Messages Using
Service Bus Queues

You can implement the application logic that sends and receives mes-
sages using a variety of technologies:
•	 You can use the Service Bus queue APIs in the Windows Azure

SDK. For more information and good practices for following
this approach, see “Best Practices for Leveraging Windows Azure
Service Bus Brokered Messaging API” on MSDN.

As an alternative approach to implementing this scenario,
you could consider using a Service Bus topic with a separate
Service Bus subscription for each receiver. However, using
subscriptions can become unwieldy and difficult to manage
if there are a large or variable number of receivers.

http://msdn.microsoft.com/en-us/library/hh545245(v=VS.103).aspx
http://msdn.microsoft.com/en-us/library/hh545245(v=VS.103).aspx

284 appendix C

•	 You can use the Service Bus queue bindings to connect to a
queue from WCF client applications and services. For more
information, see “How to: Build an Application with WCF and
Service Bus Queues” on MSDN.

•	 If you are building applications that connect to Service Bus
queues by using a technology that does not support the
Windows Azure SDK, you can use the HTTP REST interface
exposed by Service Bus.

Sending and Receiving Messages Asynchronously
If you are using the Windows Azure SDK, you can implement applica-
tions that send and receive messages by using the MessageSender and
MessageReceiver classes in the Microsoft.ServiceBus.Messaging
namespace. These types expose the messaging operations described
earlier in this appendix. The basic functionality for sending and receiv-
ing messages is available through the Send and Receive methods of
these types. However, these operations are synchronous. For example,
the Send method of the MessageSender class waits for the send op-
eration to complete before continuing, and similarly the Receive
method of the MessageReceiver class either waits for a message to be
available or until a specified timeout period has expired. Remember
that these methods are really just façades in front of a series of HTTP
REST requests, and that the Service Bus queue is a remote service
being accessed over the Internet. Therefore, your applications should
assume that:
•	 Send and receive operations may take an arbitrarily long time

to complete, and your application should not block waiting
for these operations to finish.

The MessageSender class exposes an asynchronous version
of the Send method, and a MessageReceiver class provides an
asynchronous implementation of the Receive method through
the BeginSend/EndSend and BeginReceive/EndReceive meth-
od pairs respectively. You should use these methods in prefer-
ence to their synchronous counterparts. These methods follow
the standard asynchronous pattern implemented throughout
the .NET Framework.

The same issues arise with other operations, such as deter-
mining whether a queue exists, creating and deleting a queue,
connecting to a queue, and querying the length of a queue.
Therefore, you should perform these operations following the
same robust, asynchronous approach.

You can also use the Queue-
Client class in the Microsoft.
ServiceBus.Messaging
namespace to connect to a
queue and send and receive
messages. The QueueClient
type is an abstract class that
implements a superset of the
functionality available in
the MessageSender and
MessageReceiver classes.
The Windows Azure SDK
provides additional types for
sending messages to topics
(TopicClient) and receiving
messages from subscriptions
(SubscriptionClient).
However, the MessageSender
and MessageReceiver classes
abstract the differences
between these types.
For example, if you use a
MessageSender to send
and receive messages using
queues, you can switch to
using topics with minimal
modifications to your code.
Similarly, a MessageReceiver
object enables you to retrieve
messages from a queue and
a subscription using the same
code.
However, before you modify
all of your existing code to
use MessageSender and
MessageReceiver objects, be
aware that not all of the
functionality implemented by
the QueueClient, TopicClient,
and SubscriptionClient types
is available in the Message-
Sender and MessageReceiver
classes. For example, the
MessageReceiver class does
not support sessions.

http://msdn.microsoft.com/en-us/library/windowsazure/hh243674.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh243674.aspx

 285Implementing Cross-Boundary Communication

•	 A sender can post messages at any time, and a receiver
may need to listen for messages on more than one
queue.

There are many possible solutions to this problem, but
the most common approaches involve using a thread or task
to wait for messages on each queue, and triggering an event
when a message is available. Application code that catches
this event can then process the message. For example, you
can define an async method that makes use of the await
operator available in the Visual C#® language to create a
series of tasks that wait for a message on each possible
queue and raise an event. You can then use a framework
such as the Microsoft Reactive Extensions to catch these
events and process messages as they become available.

•	 Send and receive operations could fail for a variety
of reasons.

These can include a failure in connectivity between
your application and the Service Bus in the cloud, a secu-
rity violation caused by a change in the security imple-
mented by the Service Bus queue (an administrator might
decide to revoke or modify the rights of an identity for
some reason), the queue being full (they have a finite size),
and so on. Some of these failures might the result of tran-
sient errors, while others may be more permanent Asyn-
chronous send and receive operations must incorporate
the appropriate cancellation handling to enable any back-
ground threads to be tidied up appropriately and messag-
ing resources released.

When you retrieve a message from a queue, you can
read it by using the GetBody method of the Brokered-
Message class. This method deserializes the message
body. You can only deserialize this data once. This is an
important factor to bear in mind when designing your
fault-handling logic. If you attempt to call the GetBody
method on the same message again (inside an exception
handler, for example), it will fail. Therefore, if you antici-
pate requiring repeated access to the data in the message
body, you should store this data in an appropriate object
and use this object instead.

If a receiver expects to handle
multiple messages as part of a
business operation, you can optimize
the receiving process by using the
prefetch functionality of the Queue-
Client class.
By default, when a QueueClient
object performs the Receive method,
only the next available message is
taken from the queue. You can,
however, set the PrefetchCount
property of the QueueClient object
to a positive integer value, and the
Receive method will actually pull
the specified number of messages
from the queue (if they are available).
The messages are buffered locally
with the receiving application and
are no longer available to other
receivers. The Receive method then
returns the first message from this
buffer. Subsequent calls to Receive
retrieve the remaining messages from
the buffer until it is empty, when
the next Receive operation will fetch
the next batch of messages from the
queue and buffer them. This ap-
proach makes more efficient use of
the network bandwidth at the cost
of lengthening the time taken to
retrieve the first message. However,
subsequent messages are returned
much more quickly.
Prefetched messages are subject to the
same timeout semantics as unbuffered
messages. If they are not processed
within the timeout period starting
from when they are fetched from the
queue, then the receiver is assumed to
have failed and the messages are
returned to the queue. Therefore, if
you implement prefetching, you
should only buffer sufficient messages
that the receiver can retrieve and
process within this timeout period.

286 appendix C

Scheduling, Expiring, and Deferring Messages
By default, when a sender posts a message to a queue, it is immediately available for a receiver to re-
trieve and process. However, you can arrange for a message to remain invisible when it is first sent and
only appear on the queue at a later time. This technique is useful for scheduling messages that should
only be processed after a particular point in time; for example, the data could be time sensitive and
may not be released until after midnight. To specify the time when the message should appear on the
queue and be available for processing, set the ScheduledEnqueueTimeUtc property of the Brokered-
Message object.

When a sender posts a message to a queue, that message might wait in the queue for some con-
siderable time before a receiver picks it up. The message might have a lifetime after which it becomes
stale and the information that it holds is no longer valid. In this case, if the message has not been re-
ceived then it should be silently removed from the queue. You can achieve this by setting the Time-
ToLive property of the BrokeredMessage object when the sender posts the message.

In some situations, an application may not want to process the next available message but skip
over it, retrieve subsequent messages, and only return to the skipped message later. You can achieve
this by deferring the message, using the Defer method of the BrokeredMessage class. To implement
this mechanism, an application must retrieve messages by using PeekLock mode. The Defer method
leaves the message on the queue, but it is locked and unavailable to other receivers. At the appropri-
ate juncture, the application can return to the message to process it, and then finish by calling the
Complete or Abandon methods as described earlier in this appendix. In the event that a message is
no longer useful or valid at the time that it is processed, the application can optionally dead letter it.
Note that if the application fails, the lock eventually times out and the message becomes available in
the queue. You can specify the lock duration by setting the LockDuration property of the queue
when it is created.

Guidelines for Securing Service Bus Queues
Service Bus queues provide a messaging infrastructure for business applications. They are created and
managed by Windows Azure, in the cloud. Consequently they are reliable and durable; once a sender
has posted a message to a queue it will remain on the queue until it has been retrieved by a receiver
or it has expired.

A Service Bus queue is held in a Service Bus namespace identified by a unique URI. You establish
this URI when you create the namespace, and the URI structure is similar to that described in the
section “Windows Azure Service Bus Relay Security Model” earlier in this appendix. An application
instantiates a MessagingFactory object using this URI. The MessagingFactory object can then be
used to create a MessageSender or MessageReceiver object that connects to the queue.

The Service Bus namespace provides the protection context for a queue, and the namespace
holding your queues should only be made available to authenticated senders and receivers. You pro-
tect namespaces by using ACS, in a manner very similar to that described in the section “Guidelines
for Securing Windows Azure Service Bus Relay” earlier in this appendix, except that the realm of the
relying party application is the URI of the Service Bus namespace with the name of the Service Bus
queue, topic, or subscription appended (such as http://treyresearch.servicebus.windows.net/order-
statusupdatequeue) rather than the address of a WCF service.

 287Implementing Cross-Boundary Communication

You can create an ACS rule group for this URI and assign the net.windows.servicebus.action
claim type values Send, Listen, and Manage to authenticated identities, as appropriate. You should
note that the Send and Listen claims each confer a very minimal set of privileges, enabling an applica-
tion to post messages to a queue or retrieve messages from a queue respectively, but very little else.
If your application needs to perform tasks such as creating a new queue, querying the number of
messages currently posted to a queue, or even simply determining whether a queue with a given name
exists, the application must run with an identity that has been granted the rights associated with the
Manage claim.

All communications with a Service Bus queue occur over a TCP channel, encrypted by using SSL.
If you need to implement additional security at the message level, you should encrypt the contents of
messages and the receiver should be provided with the decryption key. In this way, if a message is
somehow intercepted by a rogue receiver it will not be able to examine the contents of the message.
Similarly, if the valid receiver of a message is not able to decrypt that message, it should be treated as
a poison message from a rogue sender and moved to the dead letter queue.

You can also implement a mechanism to verify the identity of a sender posting a message to a
Service Bus queue by adding an identity token to the header of the message. If this token is missing
or unrecognized by the receiving application, the message should be treated as suspect. For an
example of how to implement this approach, see the section “Securing Messages” in Chapter 4,
“Implementing Reliable Messaging and Communications with the Cloud.”

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx.
•	 “Developing Applications for the Cloud on the Microsoft Windows Azure Platform” on

CodePlex at http://wag.codeplex.com and “Developing Applications for the Cloud (2nd Edition)”
on MSDN at http://msdn.microsoft.com/en-us/library/ff966499.aspx.

•	 Windows Azure Connect Team Blog at http://blogs.msdn.com/b/windows_azure_connect_
team_blog.

•	 “Windows Azure Connect” at http://msdn.microsoft.com/en-us/library/gg433122.aspx.
•	 “Securing and Authenticating a Service Bus Connection” at http://msdn.microsoft.com/en-us/

library/dd582773.aspx.
•	 “AppFabric Service Bus – Things You Should Know – Part 1 of 3 (Naming Your Endpoints)”

at http://windowsazurecat.com/2011/05/appfabric-service-bus-things-you-should-know-part-1-of-
3-naming-your-endpoints.

•	 “TransactionScope Class” at http://msdn.microsoft.com/en-us/library/system.transactions.-
transactionscope.aspx.

•	 “Best Practices for Leveraging Windows Azure Service Bus Brokered Messaging API” at
http://msdn.microsoft.com/en-us/library/hh545245(v=VS.103).aspx.

•	 “How to: Build an Application with WCF and Service Bus Queues” at http://msdn.microsoft.com/
en-us/library/windowsazure/hh243674.aspx.

http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://wag.codeplex.com
http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://blogs.msdn.com/b/windows_azure_connect_team_blog
http://blogs.msdn.com/b/windows_azure_connect_team_blog
http://msdn.microsoft.com/en-us/library/gg433122.aspx
http://msdn.microsoft.com/en-us/library/dd582773.aspx
http://msdn.microsoft.com/en-us/library/dd582773.aspx
http://windowsazurecat.com/2011/05/appfabric-service-bus-things-you-should-know-part-1-of-3-naming-your-endpoints
http://windowsazurecat.com/2011/05/appfabric-service-bus-things-you-should-know-part-1-of-3-naming-your-endpoints
http://msdn.microsoft.com/en-us/library/system.transactions.transactionscope.aspx
http://msdn.microsoft.com/en-us/library/system.transactions.transactionscope.aspx
http://msdn.microsoft.com/en-us/library/hh545245(v=VS.103).aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh243674.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh243674.aspx

 289

A simple, reliable messaging strategy enables secure point-to-point communications between compo-
nents participating in a distributed system. The implementation determines the degree of indepen-
dence that message senders and receivers have from each other, but the system still needs some means
for physically directing messages to a destination. In many solutions, this mechanism may be built into
the application logic; a sender using RPC-style communications to communicate with a Windows
Communication Foundation (WCF) service might specify the address of the destination, or an ap-
plication implementing message-oriented communications might direct messages to a queue that a
specific receiver listens on. This opaque approach can make it difficult to change the way in which
messages are routed if destinations change their location, or new destinations are added, without
reworking the underlying business logic.

Decoupling the data flow from the business logic of your applications brings many benefits. For
example, by following this strategy you can transparently scale your solution to incorporate addi-
tional service instances to process messages during times of heavy load, you can monitor and audit
messages without interrupting the natural progression from sender to receiver, or you can easily inte-
grate additional services into your solution by extending the list of message destinations.

This appendix examines some of the common challenges associated with directing and controlling
the flow of messages, and presents possible solutions and good practice for decoupling this data flow
from the application logic when using the Windows Azure™ technology platform.

Use Cases and Challenges
Many hybrid applications must process business rules or workflows that contain conditional tests, and
which result in different actions based on the results of the rules. For example, an application may
need to update a stock database, send the order to the appropriate transport and warehouse partner,
perform auditing operations on the content of the order (such as checking the customer’s credit
limit), and store the order in another database for accounting purposes. These operations may involve
services and resources located both in the cloud and on-premises. Building an extensible solution
based on these use cases typically requires that you address the specific challenges described in the
following sections.

appendix D Implementing Business
Logic and Message

Routing across Boundaries

290 appendix D

Separating the Business Logic from
Message Routing

Description: As part of its business processing, an application
needs to send and receive messages from other services which may
be located anywhere.

The business operations performed by a distributed application
are primarily concerned with gathering, examining, and processing
data. The gathering and processing aspects may involve sending re-
quests and passing messages to other services. However, the underly-
ing business logic should not be tied to the location of these services;
if a service migrates to a different address, you should not have to
modify the way in which the application works if it is still performing
the same business functions. Separating the business logic from the
message routing helps to achieve this location independence.

Decoupling the message routing from the application logic also
enables you to partition messages based on administrator-defined
criteria, and then route these messages to the most appropriate in-
stance of a service. These criteria are independent of the application.
For example, to reduce response times an administrator might decide
to run multiple instances of a service that processes mortgage re-
quests in the cloud. An application running on a mortgage advisor’s
desktop can submit mortgage requests, and these requests can be
transparently routed to a specific instance of the mortgage processing
service based on some attribute of the mortgage advisor such as their
assigned advisor number; requests from advisors 1 through 30 might
be directed to one instance of the service, requests from advisors 31
to 60 might be directed to another instance, and so on. As the mort-
gage application is rolled out in new offices and more advisors come
on line, the administrator can monitor how the workload of the ser-
vices is divided and, if necessary, run more instances of the service and
reconfigure the system to distribute mortgage processing requests
more evenly.

You must decide where the logic that controls the routing of mes-
sages will reside. If you are aiming to completely decouple this flow
from the business logic of the application it should not be managed
by the code that sends messages, and equally it should not be incor-
porated into the elements that receive and process messages. This
implies that the data flow logic must be contained within the middle-
ware components that connect senders to receivers.

The middleware elements effectively act as a message broker, in-
telligently routing messages to destinations. The approach that you
take to implement this broker should provide configurable routing
logic that is independent from components sending and receiving
messages, and be robust and compatible with whichever approach you
have taken to implement reliable messaging.

Designing the data flow
to be independent from
the implementation of the
application logic can help
to ensure that your solution
is adaptable and extensible
if business requirements
should quickly change, and
scalable as the traffic to
your services increases.

 291Implementing Business Logic and Message Routing across Boundaries

Routing Messages to Multiple Destinations
Description: As part of its business processing, an application may need to send the same message
to any number of services, and this list of services may vary over time.

It is frequently necessary to transmit the same message to different receivers, such as an order
shipping service and a stock control service in an order processing system. Being able to transparently
route messages to multiple destinations enables you to build extensible solutions. If your solution needs
to incorporate new partners or services, such as an auditing service for example, you can easily include
the additional destinations without modifying the applications that send messages to them.

This use case requires that the middleware components that route messages can transparently
copy them and send them to the appropriate destinations. This in turn means that the middleware
elements must be configurable to support this message duplication without introducing any depen-
dencies on the sending or receiving logic.

Cross-Cutting Concerns
Message routing has a high dependency on the underlying messaging platform, and the cross-cutting
concerns relating to message routing are essentially a superset of those that you must address when
implementing cross-boundary communications. The following sections summarize these areas of
concern.

Security
The messaging infrastructure must be robust and secure; it should prevent unauthorized applications
and services from sending or receiving messages.

The messages must be protected and made available only to their intended recipients. This restric-
tion also applies to the routing technology you use; the middleware implementing the router should
be able to make decisions on where to send a message without needing to examine the data in the
body of the message. If message confidentiality is paramount, then you should be able to encrypt the
message body without losing the ability to route messages.

If your solution copies and dispatches messages to multiple destinations, message duplication
must be performed in a controlled and secure manner, again without the middleware requiring direct
access to the data held in message bodies.

Reliability
The underlying messaging technology must not lose messages as they are transmitted, and the routing
mechanism must reliably arrange for messages to be sent to the correct destination(s).

Responsiveness and Availability
The messaging platform should not inhibit the flow of the business logic of your system. If the busi-
ness logic sends messages that cannot be delivered immediately because of some transient problem
in the infrastructure (such as a network failure between the messaging platform and the destination
service), the business logic should be allowed to continue. The messages should be delivered transpar-
ently when the issue is resolved.

Interoperability
You may need to route messages between services built by using different technologies. The routing
mechanism should be compatible with the technologies on which these services are based.

292 appendix D

Windows Azure Technologies for Routing
Messages

The primary Windows Azure technology that supports safe, reliable,
responsive, and interoperable messaging between distributed services
and applications is Service Bus queues.

A Service Bus queue is a simple first-in-first-out structure with
additional features such as timeouts, transactional support, and dead-
lettering. A Service Bus queue enables a variety of common messaging
scenarios as described in “Appendix C - Implementing Cross-Boundary
Communication.” Windows Azure extends Service Bus queues with
Service Bus topics and Service Bus subscriptions. These extensions
enable you to incorporate a range of message routing options into
your solutions, taking advantage of the security and reliability that
Service Bus queues provide.

The following sections provide more detail on using Service Bus
topics and subscriptions to implement message routing.

Separating the Business Logic from
Message Routing Using Service Bus Topics
and Subscriptions

Service Bus topics and subscriptions enable you to direct messages to
different receivers based on application-defined criteria. They provide
the advantages exhibited by Service Bus queues facilitating decou-
pling a message sender from a receiver but, in addition, they enable
messages to be routed to one or more receivers by using information
stored in the metadata of these messages.

A sender application posts a message to a Service Bus topic using
much the same technique as when posting to a Service Bus queue.
However, the sender typically adds one or more custom properties to
the metadata of the message, and this information is used to route the
message to the most appropriate receiver. While a Service Bus topic
represents the sending end of a queue, a Service Bus subscription
represents the receiving end; a receiver application waits for incoming
messages by connecting to a Service Bus subscription. A Service Bus
topic can be associated with multiple Service Bus subscriptions.

A message is routed from a Service Bus topic to a Service Bus
subscription by defining a filter that examines the metadata and cus-
tom properties attached the message. A filter is a predicate attached
to a Service Bus subscription, and all messages that match the predi-
cate are directed towards that Service Bus subscription. Filters enable
you to define simple message routing rules that might otherwise re-
quire writing a substantial amount of code.

All subscriptions have an
associated filter. If you don’t
specify how to filter data when
you create a subscription, the
default filter simply passes all
messages from the topic
through to the subscription.

Receiver A

Sender

Service Bus
Topic

Weight: 99
Message Data

Weight: 110
Message Data

Weight: 220
Message Data

Weight: 55
Message Data

Weight:250
Message Data

Receiver B

Receiver C

Service Bus
Subscriptions

Messages filtered by Weight

Weight < 100

Weight >= 200

Weight >= 100 AND Weight < 200

Message

 293Implementing Business Logic and Message Routing across Boundaries

Guidelines for Using Service Bus Topics and Subscriptions to Route Messages
Service Bus topics and subscriptions are suitable for implementing simple, static routing of messages
from a sender to a receiver. The filters that direct messages from a topic to a subscription are separate
from the business logic of the sending and receiving applications. All a sender has to do is provide the
metadata (in the form of message properties and values) that the filters can examine and use to make
routing decisions. Figure 1 depicts the message flow from a sender though a topic and three subscrip-
tions to the corresponding receivers. The data represents parcels being shipped, and messages are
filtered by the Weight property added by the sender; Receiver A receives all messages where the
value of the Weight property is less than 100, Receiver B receives messages for weights between 100
and 199, and Receiver C receives messages for all weights of 200 and over.

Figure 1
Routing messages to different receivers through a Service Bus topic and subscriptions

Service Bus topics and subscriptions expose a programmatic model through a series of APIs in the
Windows Azure SDK. Like Service Bus queues, these APIs are wrappers around a series of REST in-
terfaces, so you can utilize topics and subscriptions from technologies and platforms not directly
supported by the Windows Azure SDK.

Service Bus topics and subscriptions enable you to address a number of scenarios with require-
ments beyond those that you can easily implement by using Service Bus queues, as follows:
•	 Your system generates a number of messages, each of which must be handled by a specific

receiver. New receivers may be added over time, but for ease of maintenance you don’t want to
have to modify the business logic of the sender application when this occurs. This is the primary
scenario for using Service Bus topics and subscriptions rather than queues.

294 appendix D

As an example, consider an order processing system where
customers place orders using a web application. These orders
must be fulfilled and shipped to customers. The company uses a
number of transport partners to deliver goods, and the delivery
partner selected depends on the location of the customer. The
web application is not actually concerned with which transport
partner is used, but simply posts the relevant details of each or-
der to a Service Bus topic together with metadata that indicates
the location of the customer. Occasionally new transport part-
ners may be added or existing partners removed, but the busi-
ness logic in the orders web application should not have to
change when this happens. Each transport partner has its own
Service Bus subscription to this topic, with a filter that examines
the location metadata and directs the order message to the sub-
scription as appropriate.

If your application communicates with third-party organiza-
tions, it must be able to interact with the systems used by that
partner; these systems are unlikely to be based on Service Bus
subscriptions. For example, international commercial transport
providers typically have their own custom systems based on ex-
posed web services that you must use when interacting with
their systems. Therefore it may be necessary to construct a set
of adapters that retrieve the messages for each partner from the
appropriate Service Bus subscription, translate the messages into
the format expected by the partner, and then communicate with
the partner using its own web service interface. This is the push
model for messaging, and implementing these adapters is your
responsibility. The Service Bus subscriptions these adapters use
do not have to be exposed to the world outside of your organi-
zation, so the authentication and authorization requirements
can be handled directly by using Service Bus security and the
Windows Azure Access Control Service (ACS).

Alternatively, if a partner does not publish a programmatic
interface for interacting with its systems but is willing to host
the logic for connecting to the Service Bus subscription on its
own premises, it can connect directly to the Service Bus sub-
scription, retrieve and reformat messages into a style compatible
with its own internal processes, and then invoke these process-
es. This is the pull model for messaging. The logic for communi-
cating with Service Bus can be factored out into a separate con-
nector component to provide ease of maintenance should the
mechanism used to communicate with your application change
in the future.

You should factor out
the logic that determines
the message routing from
the main business logic
of the application. In this
way, if the algorithm that
defines the routing changes,
the business logic of the
application does not have
to be updated.

Web Services
implemented by

Transport Partner
for Location A

Adapter for
Transport
Partner A

Service Bus
Topic

Location: A
Order Data

Location: B
Order Data

Location: C
Order Data

Location: A
Order Data

Location: C
Order Data

Tracking and Shipping Process
Implemented by Transport

Partner for Location B

Adapter for
Transport
Partner C

Service Bus
Subscriptions

Messages filtered
by Location

Order
Message Location: B

Order Data

Web Services
implemented by

Transport Partner
for Location C

Orders Web Application

Location Logic
Component

Connector Logic for
Transport Partner B

Examine address of
customer and determine
the location code

Items in the cloud are the
responsibility of the vendor
organization

 295Implementing Business Logic and Message Routing across Boundaries

You must make the Service Bus subscription endpoint accessible to the transport partner.
This may necessitate implementing federated security across the Service Bus and the transport
partner’s own security domain.

Figure 2 shows the architecture of a possible solution based on communicating with three
commercial transport providers. The partners for locations A and C expose functionality as a
set of web services, so you must use adapters to communicate with them. The transport partner
for location B does not publish a public interface for its services, but instead implements its
own connector logic for pulling messages from the Service Bus subscription.

Figure 2
Decoupling a sender application from the message routing logic using a Service Bus topic and subscriptions

296 appendix D

•	 Your system generates a variety of messages. Some of these message are high priority and must
be processed as soon as possible, others are less urgent and can be handled at some later
convenient time, while still further messages have a limited lifetime; if they are not handled
within a specified timeframe they should simply be discarded.

Service Bus topics and subscriptions provide a mechanism to implement a priority queue.
When a sender posts a message, it can tag it with a Priority property, and you can define sub-
scriptions that filter messages by this property.

Urgent messages can be handled by a subscription with a pool of message receivers. You
can monitor the queue length of this subscription, and if it exceeds some predefined length you
can start new listeners. This technique is similar to the fan-out architecture for queues handling
a sudden influx of messages described in the section “Guidelines for Using Service Bus Queues”
in “Appendix C - Implementing Cross-Boundary Communication.”

Lower priority messages can be handled by a subscription with a fixed number of receivers,
implementing a load-leveling system as described in Appendix C.

Messages with a limited lifetime can be handled by using a subscription with a short value
for the DefaultMessageTimeToLive property. Additionally, if no trace of the message is re-
quired after it has expired, you can set the EnableDeadLetteringOnMessageExpiration prop-
erty of the subscription to false. In this configuration, if a message expires before it is received it
will automatically be discarded.

Figure 3 shows the structure of this system. In this example, messages marked as Critical
are high priority and must be processed immediately, messages marked as Important must be
processed soon (ideally within the next 10 minutes), while messages marked as Information are
non-urgent and if they are not handled within the next 20 minutes the data that they contain
will be redundant and they can be discarded.

Service Bus
Topic Priority: Information

Message Data

Priority: Critical
Message Data

Priority: Information
Message Data

Service Bus Subscriptions
Messages filtered
by Priority

Message Priority: Important
Message Data

Sender
Application

Sender assigns a
priority (Critical,
Important, Information)
to a message before
posting it to the topic

Low priority receiver
for handling information
messages

Priority: Important
Message Data

Receiver

Receiver Receiver Receiver

Receiver Receiver

Receiver

Receiver

Receiver

Fixed collection of
receivers sufficient
to handle important
messages within ten
minutes

Dynamic pool of receivers.
New receivers started if
subscription has messages
waiting to be processed

Subscription properties:
DefaultMessageTimeToLive: 20 minutes
EnableDeadLetteringOnMessageExpiration: False

 297Implementing Business Logic and Message Routing across Boundaries

Figure 3
Prioritizing messages by using a Service Bus topic and subscriptions

•	 Senders posting messages expect a response to this message from the receiver. The number of
senders can vary significantly over time.

The section “Guidelines for Using Service Bus Queues” in “Appendix C - Implementing
Cross-Boundary Communication” describes how a sender can post a message to a queue, receive
a response on another queue, and correlate this response with the original message by using the
CorrelationId property of the message. The sender specifies the queue on which to send the
response in the ReplyTo property of the message, and the receiver populates the CorrelationId
of the response message with a copy of the MessageId from the original request message.

This approach is very straightforward and suitable for a reasonably small and static set of
senders, but it does not scale well and can become unwieldy if the number of senders changes
quickly. This is because each sender requires its own Service Bus queue, these queues take time
to construct, and each queue has an associated monetary cost; ideally if a queue is no longer
required it should be removed. Service Bus topics and subscriptions provide a better variation
on this approach in a dynamic environment.

298 appendix D

Service Bus subscriptions support the notion of subscription
correlation. This mechanism enables an application to connect
to a topic and create a subscription that filters messages based
on the CorrelationId property. Service Bus subscriptions pro-
vide the CorrelationFilter filter specifically for this purpose. To
implement subscription correlation, you perform the following
tasks:
•	 The sender creates a message and populates the MessageId

property with a unique value.
•	 The sender connects to the Service Bus subscription on which

it expects to receive a response, and adds a CorrelationFilter
to this subscription specifying the MessageId property of the
original message. All senders share this same topic, but the
filter ensures that each sender only receives the responses to
the messages that it sent.

A single subscription can have more than one associated filter.
A message passes through to a subscriber as long as one filter
expression matches the message properties. However, if more
than one expression matches then the same message will appear
multiple times; once for each match.

•	 The sender posts the message to a Service Bus topic on
which one or more receivers have subscriptions.

•	 A receiver retrieves the message, based on any filtering
applied to the subscription, and then processes the message.

•	 The receiver creates a response message and populates the
CorrelationId property with a copy of the value in the
MessageId property of the original message.

•	 The receiver posts the response message to the Service Bus
topic shared by all sender applications.

•	 When a message with a value in the CorrelationId property
that matches the original MessageId appears in the topic, the
CorrelationFilter for the appropriate subscription ensures
that it is passed to the correct sender.

The CorrelationFilter
filter has been designed
specifically for this
scenario, and it provides
an extremely efficient
mechanism for filtering
messages. In contrast,
although a SqlFilter filter
is more flexible, it has to
undergo lexicographical
analysis when it is created,
and it has greater runtime
costs.

Service Bus Topic

MessageId: 502
Message Data

MessageId: 342
Message Data

MessageId: 99
Message Data

Service Bus Subscriptions

Receivers copy MessageId
property of original message
into CorrelationId property
of response messageSenders populate MessageId

property of message

Message

Service Bus Topic

Response

CorrelationId: 341
Message Data

CorrelationId: 98
Message Data

Sender A

Sender B

Receiver

Receiver

Senders connect to subscriptions
and add a CorrelationFilter where the
CorrelationId is the same as the
MessageId of the original message

Response to earlier message
98 sent by Sender A

Response to earlier
message 341 sent by
Sender B

Senders filter
response messages
by CorrelationID

.

.

.

 299Implementing Business Logic and Message Routing across Boundaries

Figure 4 shows the structure of this of this solution.

Figure 4
Using subscription correlation to deliver response messages to a sender

•	 Your system handles a continuous, large volume of messages. To maintain performance, you
previously decided to implement a scale-out mechanism by using Service Bus queues, but you
have found that you need more control over which receivers process which messages; you need
to direct messages to receivers running on specific servers.

On-premises
Infrastructure for

Warehouse B

On-premises
Infrastructure for

Warehouse A

ReceiverSender

Service Bus Topic
Warehouse: B
Message Data

Warehouse: B
Message Data

Warehouse: A
Message Data

Receiver

Receiver

Service Bus Subscriptions

Populates Warehouse property
of messages with A or B

Receivers for Warehouse B are
both located at the same site.
Receivers compete for messages
from the same subscription,
spreading the load.

Warehouse = A

Message

Warehouse = B

300 appendix D

As described in the section “Guidelines for Using Service Bus Queues” in “Appendix C - Im-
plementing Cross-Boundary Communication” Service Bus queues enable you to implement a
simple load leveling mechanism for processing messages; multiple receivers can listen to the
same queue, and the result is an approximate round robin distribution of messages. However,
you may require more control over which receiver handles which messages that the round robin
approach does not provide. For example, your system may require that all messages with the
Warehouse property set to A are processed by a receiver running on a server physically close to
warehouse A, messages marked as B are handled by a receiver running on a server close to ware-
house B, and so on.

Service Bus topics and subscriptions provide a useful mechanism for partitioning the mes-
sage-processing workload, based on one or more properties of each message. You can define a
set of mutually exclusive filters that cover different ranges of the values in the message proper-
ties and direct each range to a different subscription. The various receivers listening to these
subscriptions can run on specific on-premises servers, or they can be implemented as worker
roles in the cloud. Additionally, each subscription can have multiple receivers. In this case, the
receivers compete for messages from that subscription echoing the round robin load leveling
technique used for a queue.

Figure 5 shows an example structure for the warehouse system. The receivers are all built
using the Windows Azure SDK and connect directly to the various Service Bus subscriptions.
Warehouse B expects more traffic than warehouse A, so messages for warehouse B are handled
by multiple receivers, all running on hardware located locally to warehouse B.

Figure 5
Scaling out by using a Service Bus topic and subscriptions

 301Implementing Business Logic and Message Routing across Boundaries

•	 Messages received from a subscription may be need to be
forwarded to a final destination for additional processing,
depending on system-defined criteria. This forwarding mecha-
nism should be transparent to the sender as the forwarding
criteria and final destinations may change. The receiver applica-
tions should also be decoupled from any changes to these
criteria and final destinations.

Consider the example of an ordering processing system
where a web application sends orders to a receiving application
through a Service Bus topic. The receiving application is respon-
sible for arranging the packaging and dispatch of the order. All
orders may be subjected to additional scrutiny and auditing de-
pending on their value. This examination is performed by a sepa-
rate set of processes, implementing auditing logic defined by the
organization’s order handling policy.

For example if the value of the order is below 100 the order
is simply logged, if the value is between 100 and 499 the order is
logged and the details are printed for later scrutiny by an audi-
tor, and if the value is 500 or more the order is logged and the
details are emailed directly to an auditor for immediate examina-
tion. The auditor might choose to cancel the order if the cus-
tomer does not meet certain requirements. However, these
threshold values may change, and the business logic for the re-
ceiving application need to be insulated from this change.

You can accomplish this level of decoupling by using a filter
rule action. A filter rule action can change, add, or remove a
message property when the message is retrieved from a Service
Bus subscription. This action is performed transparently as the
message is retrieved by the receiving application. The receiving
application can create a copy of the message to perform its own
processing, and repost the received message to another topic
that routes the message on to the appropriate destination based
on the updated property set.

If you originally built the
sender application by using
the Send method of a
MessageSender object to
post messages to a Service
Bus queue, you do not have
to modify this part of the
code because you can use
the same method to post
messages to a topic. All you
need to do is create and
populate the appropriate
message properties
required by the subscription
filter before sending them
to the topic. To receive
messages from a Service
Bus subscription, use a
SubscriptionClient object.

Service Bus
Topic

TotalCost: 250
Order Data

Service Bus
Subscription

PriceRange property
added by filter rule action
and set to Medium

Sender adds TotalCost
property to message

Message

Service Bus Topic

PriceRange: High
Message Data

Service Bus Subscriptions

Orders Web
Application

Forwarding
Receiver

Auditing Receiver
(Low)

Forwarding Receiver posts the message
with the PriceRange property added and
the TotalCost property removed, and
processes a copy of this message

Subscription for a single
Forwarding Receiver, others
omitted for clarity

PriceRange: Medium
Order Data

PriceRange: Medium
Message Data

PriceRange: Low
Message Data

Auditing Receiver
(Medium)

Auditing Receiver
(High)

Messages filtered by
PriceRange property

.

302 appendix D

Figure 6 shows a possible structure for the order processing example. The sender adds the
total cost of the order as a property called TotalCost to the initial order message, together with
other properties (not shown) that are used to route the message to the receiving application
(labeled “Forwarding Receiver”). When the receiving application retrieves a message, a filter rule
action is applied that automatically adds a property called PriceRange to each message. The
value of the PriceRange property is set to Low, Medium, or High according to the cost; a cost
below 100 is Low, a cost between 100 and 499 is Medium, and cost of 500 or more is High.
The receiving application performs whatever processing is required. At the same time, it posts a
copy of the received message, which now has a PriceRange property appended, to the Service
Bus topic that the various Auditing Receivers subscribe to. The Auditing Receivers’ subscriptions
filter the message by the PriceRange property to route them to the receiver that performs the
appropriate operations, as described earlier.

Figure 6
Forward-routing messages by using a filter rule action

 303Implementing Business Logic and Message Routing across Boundaries

The following code example shows how to add the filter rule actions used by this example to a
subscription on which the Forwarding Receiver application listens. Note that these filter rule actions
also remove the TotalCost property from the message as it is not actually required to route the mes-
sage to the auditing application; the forward routing is based solely on the PriceRange property. The
full details of the order are still available to the Auditing Receiver in the body of the message, however.

C#
...
// Define action rule filters
var ruleLowPrice = new RuleDescription()
{
 Action = new SqlRuleAction(
 "set PriceRange='Low';remove TotalCost"),
 Filter = new SqlFilter("TotalCost < 100"),
 Name = "LowPrice"
};

var ruleMediumPrice = new RuleDescription()
{
 Action = new SqlRuleAction(
 "set PriceRange='Medium';remove TotalCost"),
 Filter = new SqlFilter(
 "TotalCost >= 100 AND TotalCost < 500"),
 Name = "MediumPrice"
};

var ruleHighPrice = new RuleDescription()
{
 Action = new SqlRuleAction(
 "set PriceRange='High';remove TotalCost"),
 Filter = new SqlFilter("TotalCost >= 500"),
 Name = "HighPrice"
};

...
var subscriptionClient =
 messagingFactory.CreateSubscriptionClient(...);

// Add the rules to the subscription
subscriptionClient.AddRule(ruleLowPrice);
subscriptionClient.AddRule(ruleMediumPrice);
subscriptionClient.AddRule(ruleHighPrice);

304 appendix D

Limitations of Using Service Bus Topics and Subscriptions to Route Messages
Service Bus topics and subscriptions only implement a simple routing mechanism. For security reasons,
the filters that you define cannot access the body of a message, so they can only make decisions based
on data exposed in message properties. Most commonly, you define filters by using the SqlFilter class.
For optimization purposes, the conditions specified in these filters are limited to a subset of SQL92
syntax. You can perform direct comparisons of data and values by using common arithmetic and
logical operators, but these filters do not support functions; for example, there is no Substring func-
tion. If you require routing based on more complex rules, you must implement this logic in your own
code by creating a receiver that examines the data of a message and then reposting it to another queue
or topic as necessary.

For more information about the types of expressions supported by the SqlFilter class, see the
topic “SqlFilter.SqlExpression Property” on MSDN.

Routing Messages to Multiple Destinations Using Service Bus
Topics and Subscriptions

The previous section described using filters that partition messages into distinct non-overlapping
groups and direct each group to a Service Bus subscription, and each message is sent exclusively to a
single subscription. However, it is also possible for different subscriptions to have filters with overlap-
ping predicates. In this case, a copy of the same message is routed to each matching subscription. This
mechanism provides a means for routing messages to multiple destinations.

The converse situation is also true; if all subscriptions have filters that fail to match the properties
for a message it will remain queued on a Service Bus topic until it expires.

Guidelines for Using Service Bus Topics and Subscriptions to Route Messages to
Multiple Destinations

Filters with overlapping predicates enable a number of powerful scenarios. The following list describes
some common cases:

“Appendix A - Replicating, Distributing, and Synchronizing Data” includes some additional patterns
for using Service Bus topics and subscriptions to query and update data in a system that uses
replicated data sources.

•	 Your system enables sender applications to post requests to services, but all of these requests
must be logged for auditing or diagnostic purposes. This logging must be transparent to the
sender applications.

Service Bus
Topic

Message A

Message B

Message BMessage A

Service Bus
Subscriptions

Message

Receiver

Sender
Application

TrueFilter copies all
messages to Audit
Log subscription

Filters direct messages
to specific subscriptions

Receiver

Audit Log

Audit Log
Receiver

 305Implementing Business Logic and Message Routing across Boundaries

This is an example of the most general pattern for posting
messages to multiple destinations. Services can use subscrip-
tions to retrieve their intended messages, but all messages must
additionally be posted to a logging service so that they can be
recorded and stored. The Windows Azure SDK provides the
TrueFilter type specifically for this purpose. This filter matches
all messages, and any subscription that utilizes this filter will au-
tomatically be fed with a replica of every message sent to the
topic.

Figure 7 shows an example system that uses a TrueFilter to
copy messages to an audit log for later examination.

Figure 7
Logging messages by using a TrueFilter

The TrueFilter is the
default filter for a
subscription; if you don’t
specify a filter when you
create a subscription,
the TrueFilter is applied
automatically.

306 appendix D

The Audit Log Receiver is simply an example application
that may benefit from this approach. Any functionality that re-
quires a copy of messages that pass through your system can be
implemented in a similar way. For example, you could implement
an application that measures the number of messages flowing
into your system over a given period of time and displays the
results, giving an indication of the message throughput and per-
formance of your solution.

Of course, you can also be more selective. Rather than using
a TrueFilter; you can define an overlapping SqlFilter that cap-
tures messages based on property values, and these messages
will be routed to the destination receivers expecting to process
these message as well as the Audit Log Receiver application.

•	 You system raises a number of business events. Each event may
be handled by zero or more processes, and your system must be
able to add or remove processes that can handle these events
without impacting the business logic of your system. The event
handlers may be running remotely from the processes that raise
the events.

Processes that trigger events do so to inform interested par-
ties that something significant has happened. The processes that
listen for events are inherently asynchronous and are decoupled
from the processes that raise events. Using Service Bus topics
and subscriptions provides an excellent basis for building such a
system, especially given the requirement that the event handlers
may be located anywhere and events should be delivered reliably.

In messaging terms, an application can notify interested par-
ties of an event simply by posting a message that contains the
event data to a Service Bus topic. Each application that is inter-
ested in an event can create its own subscription where the fil-
ter specifies the conditions for the messages that constitute the
event. The topic on which a sender application posts event mes-
sages can have the DefaultMessageTimeToLive property set
appropriately, so that if no applications subscribe to the event,
then it will be discarded when this period expires.

Do not attempt to share
the same event subscription
between two separate
applications if they must
both be notified of the
event; they will compete for
event messages routed to
the subscription, and each
message will only be passed
to one of the applications.

Service Bus
Topic

Service Bus
Subscriptions

Event
Message

Driver for
machine A

Controller
Application

Drivers for each machine create
their own subscriptions that
listen for “Start Machinery” and
“Stop Machinery” messages

Overlapping filters route
“Start Machinery” and
“Stop Machinery” messages
to each subscription

Driver for
machine B

Driver for
machine C

Start Machinery
Message

Start Machinery
Message

Start Machinery
Message

 307Implementing Business Logic and Message Routing across Boundaries

Figure 8 shows an example from a basic system controlling the assembly line in a manufac-
turing plant. When production is due to start, the Controller application posts a “Start Machin-
ery” message to a Service Bus topic. Each machine involved in the assembly process is driven by
software that listens for this message, and when it occurs the software driver starts the ma-
chine. Similarly, when production is halted, the Controller application posts a “Stop Machinery”
message, and the software drivers for each machine shut it down in a controlled manner. The
Controller application has no knowledge of the machinery involved in the production line, and
hardware can be added or removed without requiring the Controller application to be modified.

Figure 8
Controlling a production line by using events based on Service Bus subscriptions

For a detailed example and more information about using Service Bus to communicate between
roles and applications, see “How to Simplify & Scale Inter-Role Communication Using Windows
Azure Service Bus.”

http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-windows-azure-service-bus/
http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-windows-azure-service-bus/

308 appendix D

Limitations of Using Service Bus Topics and Subscriptions to Route Messages to
Multiple Destinations

It is important to understand that, while Service Bus topics and subscriptions can provide reliable
delivery of messages to one or more destinations, this delivery is not instantaneous. Topics and sub-
scriptions reside in the cloud, and there will inevitably be some delay caused by the network latency
associated with the Internet. Additionally, filters defined by using the SqlFilter type are subject to
runtime evaluation, and the properties attached to each message must be examined and compared
against every filter associated with each subscription. If a topic has a large number of subscriptions (a
topic can have up to 2000 subscriptions in the current release of Service Bus), then this evaluation and
examination may take some time to perform.

Security Guidelines for Using Service Bus Topics and
Subscriptions

Service Bus topics and subscriptions are subject to the same security mechanism as Service Bus queues.
You configure security, create identities, and associate privileges with these identities by using ACS.
See “Appendix B - Authenticating Users and Authorizing Requests” for more information about using
ACS. You can grant the privileges associated with the Manage and Send claims to a topic, and the
privileges associated with the Manage and Listen claims to a subscription. When an application con-
nects to a Service Bus namespace topic or subscription, it must authenticate with ACS and provide the
identity used by the application. See “Appendix C - Implementing Cross-Boundary Communication” for
further details about connecting to a Service Bus namespace and providing identity information.

As with Service Bus queues, all communications with Service Bus topics and subscriptions occur
over a TCP channel and are automatically protected by using SSL.

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx.
•	 “SqlFilter.SqlExpression Property” at http://msdn.microsoft.com/en-us/library/microsoft.servicebus.

messaging.sqlfilter.sqlexpression.aspx.
•	 “How to Simplify & Scale Inter-Role Communication Using Windows Azure Service Bus” at

http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-
windows-azure-service-bus/.

http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://msdn.microsoft.com/en-us/library/microsoft.servicebus.messaging.sqlfilter.sqlexpression.aspx
http://msdn.microsoft.com/en-us/library/microsoft.servicebus.messaging.sqlfilter.sqlexpression.aspx
http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-windows-azure-service-bus/
http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-windows-azure-service-bus/

 309

A key feature of the Windows Azure™ technology platform is the
robustness that the platform provides. A typical Windows Azure solu-
tion is implemented as a collection of one or more roles, where each
role is optimized for performing a specific category of tasks. For ex-
ample, a web role is primarily useful for implementing the web front-
end that provides the user interface of an application, while a worker
role typically executes the underlying business logic such as perform-
ing any data processing required, interacting with a database, orches-
trating requests to and from other services, and so on. If a role fails,
Windows Azure can transparently start a new instance and the ap-
plication can resume.

However, no matter how robust an application is, it must also
perform and respond quickly. Windows Azure supports highly scalable
services through the ability to dynamically start and stop instances of
an application, enabling a Windows Azure solution to handle an influx
of requests at peak times, while scaling back as the demand lowers,
reducing the resources consumed and the associated costs.

However, scalability is not the only issue that affects performance
and response times. If an application running in the cloud accesses
resources and databases held in your on-premises servers, bear in mind
that these items are no longer directly available over your local high-
speed network. Instead the application must retrieve this data across
the Internet with its lower bandwidth, higher latency, and inherent
unpredictably concerning reliability and throughput. This can result in
increased response times for users running your applications or re-
duced throughput for your services.

If you are building a
commercial system, you
may have a contractual
obligation to provide a
certain level of performance
to your customers. This
obligation might be
specified in a service level
agreement (SLA) that
guarantees the response
time or throughput. In this
environment, it is critical
that you understand
the architecture of your
application, the resources
that it utilizes, and the
tools that Windows Azure
provides for building and
maintaining an efficient
system.

appendix E Maximizing
Scalability, Availability,

and Performance

appendix E310

Of course, if your application or service is now running remotely from your organization, it will
also be running remotely from your users. This might not seem like much of an issue if you are building
a public-facing website or service because the users would have been remote prior to you moving
functionality to the cloud, but this change may impact the performance for users inside your organiza-
tion who were previously accessing your solution over a local area network. Additionally, the location
of an application or service can affect its perceived availability if the path from the user traverses
network elements that are heavily congested, and network connectivity times out as a result. Finally,
in the event of a catastrophic regional outage of the Internet or a failure at the datacenter hosting
your applications and services, your users will be unable to connect.

This appendix considers issues associated with maintaining performance, reducing application
response times, and ensuring that users can always access your application when you relocate func-
tionality to the cloud. It describes solutions and good practice for addressing these concerns by using
Windows Azure technologies.

Requirements and Challenges
The primary causes of extended response times and poor availability in a distributed environment are
lack of resources for running applications, and network latency. Scaling can help to ensure that suf-
ficient resources are available, but no matter how much effort you put into tuning and refining your
applications, users will perceive that your system has poor performance if these applications cannot
receive requests or send responses in a timely manner because the network is slow. A crucial task,
therefore, is to organize your solution to minimize this network latency by making optimal use of the
available bandwidth and utilizing resources as close as possible to the code and users that need them.

The following sections identify some common requirements concerning scalability, availability,
and performance, summarizing many of the challenges you will face when you implement solutions to
meet these requirements.

Managing Elasticity in the Cloud
Description: Your system must support a varying workload in a cost-effective manner.

Many commercial systems must support a workload that can vary considerably over time. For
much of the time the load may be steady, with a regular volume of requests of a predictable nature.
However, there may be occasions when the load dramatically and quickly increases. These peaks may
arise at expected times; for example, an accounting system may receive a large number of requests as
the end of each month approaches when users generate their month-end reports, and it may experi-
ence periods of increased usage towards the end of the financial year. In other types of application
the load may surge unexpectedly; for example, requests to a news service may flood in if some dra-
matic event occurs.

The cloud is a highly scalable environment, and you can start new instances of a service to meet
demand as the volume of requests increases. However, the more instances of a service you run, the
more resources they occupy; and the costs associated with running your system rise accordingly.
Therefore it makes economic sense to scale back the number of service instances and resources as
demand for your system decreases.

 311M a ximizing Scalability, Availability, and Performance

How can you achieve this? One solution is to monitor the solution
and start up more service instances as the number of requests arriving
in a given period of time exceeds a specified threshold value. If the load
increases further, you can define additional thresholds and start yet
more instances. If the volume of requests later falls below these
threshold values you can terminate the extra instances. In inactive
periods, it might only be necessary to have a minimal number of service
instances. However, there are a couple of challenges with this solution:
•	 You must automate the process that starts and stops service

instances in response to changes in system load and the number
of requests. It is unlikely to be possible to perform these tasks
manually as peaks and troughs in the workload may occur at
any time.

•	 The number of requests that occur in a given interval might not
be the only measure of the workload; for example, a small
number of requests that each incur intensive processing might
also impact performance. Consequently the process that
predicts performance and determines the necessary thresholds
may need to perform calculations that measure the use of a
complex mix of resources.

Reducing Network Latency for Accessing
Cloud Applications

Description: Users should be connected to the closest available
instance of your application running in the cloud to minimize net-
work latency and reduce response times.

A cloud application may be hosted in a datacenter in one part of
the world, while a user connecting to the application may be located
in another, perhaps on a different continent. The distance between
users and the applications and services they access can have a signifi-
cant bearing on the response time of the system. You should adopt a
strategy that minimizes this distance and reduces the associated net-
work latency for users accessing your system.

If your users are geographically dispersed, you could consider
replicating your cloud applications and hosting them in datacenters
that are similarly dispersed. Users could then connect to the closest
available instance of the application. The question that you need to
address in this scenario is how do you direct a user to the most local
instance of an application?

Remember that starting and
stopping service instances
is not an instantaneous
operation. It may take
10-15 minutes for Windows
Azure to perform these
tasks, so any performance
measurements should
include a predictive
element based on trends
over time, and initiate
new service instances so
that they are ready when
required.

appendix E312

Maximizing Availability for Cloud Applications
Description: Users should always be able to connect to the application running in the cloud.

How do you ensure that your application is always running in the cloud and that users can connect
to it? Replicating the application across datacenters may be part of the solution, but consider the
following issues:
•	 What happens if the instance of an application closest to a user fails, or no network connection

can be established?
•	 The instance of an application closest to a user may be heavily loaded compared to a more distant

instance. For example, in the afternoon in Europe, traffic to datacenters in European locations
may be a lot heavier than traffic in the Far East or West Coast America. How can you balance the
cost of connecting to an instance of an application running on a heavily loaded server against that
of connecting to an instance running more remotely but on a lightly-loaded server?

Optimizing the Response Time and Throughput for Cloud
Applications

Description: The response time for services running in the cloud should be as low as possible, and
the throughput should be maximized.

Windows Azure is a highly scalable platform that offers high performance for applications. How-
ever, available computing power alone does not guarantee that an application will be responsive. An
application that is designed to function in a serial manner will not make best use of this platform and
may spend a significant period blocked waiting for slower, dependent operations to complete. The
solution is to perform these operations asynchronously, and this approach has been described
throughout this guide.

Aside from the design and implementation of the application logic, the key factor that governs
the response time and throughput of a service is the speed with which it can access the resources it
needs. Some or all of these resources might be located remotely in other datacenters or on-premises
servers. Operations that access remote resources may require a connection across the Internet. To
mitigate the effects of network latency and unpredictability, you can cache these resources locally to
the service, but this approach leads to two obvious questions:
•	 What happens if a resource is updated remotely? The cached copy used by the service will be

out of date, so how should the service detect and handle this situation?
•	 What happens if the service itself needs to update a resource? In this case, the cached copy

used by other instances of this or other services may now be out of date.

 313M a ximizing Scalability, Availability, and Performance

Caching is also a useful strategy for reducing contention to shared
resources and can improve the response time for an application even
if the resources that it utilizes are local. However, the issues associ-
ated with caching remain the same; specifically, if a local resource is
modified the cached data is now out of date.

Windows Azure and Related Technologies
Windows Azure provides a number of technologies that can help you
to address the challenges presented by each of the requirements in
this appendix:
•	 Enterprise Library Autoscaling Application Block. You can

use this application block to define performance indicators,
measure performance against these indicators, and start and
stop instances of services to maintain performance within
acceptable parameters.

•	 Windows Azure Traffic Manager. You can use this service
to reduce network latency by directing users to the nearest
instance of an application running in the cloud. Windows Azure
Traffic Manager can also detect whether an instance of a service
has failed or is unreachable, automatically directing user re-
quests to the next available service instance.

•	 Windows Azure Caching. You can use this service to cache
data in the cloud and provide scalable, reliable, and shared
access for multiple applications.

•	 Content Delivery Network (CDN). You can use this service
to improve the response time of web applications by caching
frequently accessed data closer to the users that request it.

Windows Azure Caching is primarily useful for improving the
performance of web applications and services running in the cloud.
However, users will frequently be invoking these web applications and
services from their desktop, either by using a custom application that
connects to them or by using a web browser. The data returned from
a web application or service may be of a considerable size, and if the
user is very distant it may take a significant time for this data to arrive
at the user’s desktop. CDN enables you to cache frequently queried
data at a variety of locations around the world. When a user makes a
request, the data can be served from the most optimal location based
on the current volume of traffic at the various Internet nodes through
which the requests are routed. Detailed information, samples, and
exercises showing how to configure CDN are available on MSDN; see
the topic “Windows Azure CDN.” Additionally Chapter 3, “Accessing
the Surveys Application” in the guide “Developing Applications for
the Cloud, 2nd Edition” provides further implementation details.

The cloud is not a magic
remedy for speeding up
applications that are not
designed with performance
and scalability in mind.

http://msdn.microsoft.com/en-us/gg405416
http://msdn.microsoft.com/en-us/library/hh534477.aspx
http://msdn.microsoft.com/en-us/library/hh534477.aspx
http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/ff966499.aspx

appendix E314

The following sections describe the Enterprise Library Autoscal-
ing Application Block, Windows Azure Traffic Manager, and Windows
Azure Caching, and provide guidance on how to use them in a number
of scenarios.

Managing Elasticity in the Cloud by Using
the Microsoft Enterprise Library
Autoscaling Application Block

It is possible to implement a custom solution that manages the num-
ber of deployed instances of the web and worker roles your applica-
tion uses. However, this is far from a simple task and so it makes sense
to consider using a prebuilt library that is sufficiently flexible and
configurable to meet your requirements.

The Enterprise Library Autoscaling Application Block (also known
as “Wasabi”) provides such a solution. It is part of the Microsoft En-
terprise Library 5.0 Integration Pack for Windows Azure, and can au-
tomatically scale your Windows Azure application or service based on
rules that you define specifically for that application or service. You
can use these rules to help your application or service maintain its
throughput in response to changes in its workload, while at the same
time minimize and control hosting costs.

Scaling operations typically alter the number of role instances in
your application, but the block also enables you to use other scaling
actions such as throttling certain functionality within your applica-
tion. This means that there are opportunities to achieve very subtle
control of behavior based on a range of predefined and dynamically
discovered conditions. The Autoscaling Application Block enables you
to specify the following types of rules:
•	 Constraint rules, which enable you to set minimum and maxi-

mum values for the number of instances of a role or set of roles
based on a timetable.

•	 Reactive rules, which allow you to adjust the number of
instances of a role or set of roles based on aggregate values
derived from data points collected from your Windows Azure
environment or application. You can also use reactive rules to
change configuration settings so that an application can modify
its behavior and change its resource utilization by, for example,
switching off nonessential features or gracefully degrading its UI
as load and demand increases.

By applying a combination of these rules you can ensure that your
application or service will meet demand and load requirements, even
during the busiest periods, to conform to SLAs, minimize response
times, and ensure availability while still minimizing operating costs.

Rules are defined in XML
format and can be stored in
Windows Azure blob storage,
in a file, or in a custom store
that you create.

External services that can
manage autoscaling do
exist but you must provide
these services with your
management certificate
so that they can access
the role instances, which
may not be an acceptable
approach for your
organization.

Date

Aug 8 06:00 06:0012:00 12:00 18:0018:00 Aug 9

In
st

an
ce

s

2

3

4

5

6

C

A D

B

 Minimum instances Maximum instances Current instances

 315M a ximizing Scalability, Availability, and Performance

How the Autoscaling Application Block Manages Role Instances
The Autoscaling Application Block can monitor key performance indicators in your application roles
and automatically deploy or remove instances. For example, Figure 1 shows how the number of in-
stances of a role may change over time within the boundaries defined for the minimum and maximum
number of instances.

Figure 1
Data visualization of the scale boundaries and scale actions for a role

The behavior shown in Figure 1 was the result of the following configuration of the Autoscaling
Application Block:
•	 A default Constraint rule that is always active, with the range set to a minimum of two and a

maximum of five instances. At point B in the chart, this rule prevents the block from deploying
any additional instances, even if the load on the application justifies it.

•	 A Constraint rule that is active every day from 08:00 for two hours, with the range set to a
minimum of four and a maximum of six instances. The chart shows how, at point A, the block
deploys a new instance of the role at 08:00.

•	 An Operand named Avg_CPU_RoleA bound to the average value over the previous 10 minutes
of the Windows performance counter \Processor(_Total)\% Processor Time.

•	 A Reactive rule that increases the number of deployed role instances by one when the value of
the Avg_CPU_RoleA operand is greater than 80. For example, at point D in the chart the block
increases the number of roles to four and then to five as processor load increases.

appendix E316

•	 A Reactive rule that decreases the number of deployed role
instances by one when the value of the Avg_CPU_RoleA
operand falls below 20. For example, at point C in the chart the
block has reduced the number of roles to three as processor
load has decreased.

Constraint Rules
Constraint rules are used to proactively scale your application for the
expected demand, and at the same time constrain the possible in-
stance count, so that reactive rules do not change the instance count
outside of that boundary. There is a comprehensive set of options for
specifying the range of times for a constraint rule, including fixed
periods and fixed durations, daily, weekly, monthly, and yearly recur-
rence, and relative recurring events such as the last Friday of each
month.

Reactive Rules
Reactive rules specify the conditions and actions that change the
number of deployed role instances or the behavior of the application.
Each rule consists of one or more operands that define how the block
matches the data from monitoring points with values you specify, and
one or more actions that the block will execute when the operands
match the monitored values.

Operands that define the data points for monitoring activity of a
role can use any of the Windows® operating system performance
counters, the length of a Windows Azure storage queue, and other
built-in metrics. Alternatively you can create a custom operand that is
specific to your own requirements, such as the number of unprocessed
orders in your application.

Reactive rule conditions can use a wide range of comparison func-
tions between operands to define the trigger for the related actions
to occur. These functions include the typical greater than, greater
than or equal, less than, less than or equal, and equal tests. You can
also negate the tests using the not function, and build complex con-
ditional expressions using AND and OR logical combinations.

Actions
The Autoscaling Application Block provides the following types of
actions:
•	 The setRange action specifies the maximum and minimum

number of role instances that should be available over a specified
time period. This action is only applicable to Constraint rules.

The Autoscaling Application
Block reads performance
information collected by the
Windows Azure diagnostics
mechanism from Windows
Azure storage. Windows
Azure does not populate this
with data from the Windows
Azure diagnostics monitor by
default; you must run code in
your role when it starts or
execute scripts while the
application is running to
configure the Windows Azure
diagnostics to collect the
required information and then
start the diagnostics monitor.

By specifying the
appropriate set of rules for
the Autoscaling Application
Block you can configure
automatic scaling of the
number of instances of the
roles in your application
to meet known demand
peaks and to respond
automatically to dynamic
changes in load and
demand.

 317M a ximizing Scalability, Availability, and Performance

•	 The scale action specifies that the block should increase or
decrease the number of deployed role instances by an absolute
or relative number. You specify the target role using the name,
or you can define a scale group in the configuration of the
block that includes the names of more than one role and then
target the group so that the block scales all of the roles defined
in the group.

•	 The changeSetting action is used for application throttling. It
allows you to specify a new value for a setting in the applica-
tion’s service configuration file. The block changes this setting
and the application responds by reading the new setting. Code
in the application can use this setting to change its behavior. For
example, it may switch off nonessential features or gracefully
degrade its UI to better meet increased demand and load. This is
usually referred to as application throttling.

•	 The capability to execute a custom action that you create and
deploy as an assembly. The code in the assembly can perform
any appropriate action, such as sending an email notification or
running a script to modify a database deployed to the SQL
Azure™ technology platform.

The Autoscaling Application Block logs events that relate to scaling
actions and can send notification emails in response to the scaling of
a role, or instead of scaling the role, if required. You can also configure
several aspects of the way that the block works such as the scheduler
that controls the monitoring and scaling activates, and the stabilizer
that enforces “cool down” delays between actions to prevent re-
peated oscillation and optimize instance counts around the hourly
boundary.

For more information, see “Microsoft Enterprise Library 5.0
Integration Pack for Windows Azure” on MSDN.

Guidelines for Using the Autoscaling Application Block
The following guidelines will help you understand how you can obtain
the most benefit from using the Autoscaling Application Block:
•	 The Autoscaling Application Block can specify actions for

multiple targets across multiple Windows Azure subscriptions.
The service that hosts the target roles and the service that hosts
the Autoscaling Application Block do not have to be in the same
subscription. To allow the block to access applications, you must
specify the ID of the Windows Azure subscription that hosts
the target applications, and a management certificate that it
uses to connect to the subscription.

You are charged by the hour for
each Windows Azure role
instance you deploy, even if you
utilize only a few minutes of that
hour. The stabilizer in the
Autoscaling Application Block
can help to reduce costs by
forcing scale-out actions to take
place only during the first few
minutes of the hour, and
scale-back actions to take place
only during the last few minutes
of the hour. You can specify these
intervals so as to obtain maxi-
mum advantage from the hour
for which you are charged.

You can use the Autoscaling
Application Block to force
your application to change
its behavior automatically
to meet changes in load
and demand. The block can
change the settings in the
service configuration file,
and the application can
react to this to reduce its
demand on the underlying
infrastructure.

http://msdn.microsoft.com/en-us/library/hh680918(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680918(v=pandp.50).aspx

appendix E318

•	 Consider using Windows Azure blob storage to hold your rules and service information. This
makes it easy to update the rules and data when managing the application. Alternatively, if you
want to implement special functionality for loading and updating rules, consider creating a
custom rule store.

•	 You must define a constraint rule for each monitored role instance. Use the ranking for each
constraint or reactive rule you define to control the priority where conditions overlap.

•	 Constraint rules do not take into account daylight saving times. They simply use the UTC offset
that you specify at all times.

•	 Use scaling groups to define a set of roles that you target as one action to simplify the rules.
This also makes it easy to add and remove roles from an action without needing to edit every
rule.

•	 Consider using average times of half or one hour to even out the values returned by perfor-
mance counters or other metrics to provide more consistent and reliable results. You can read
the performance data for any hosted application or service; it does not have to be the one to
which the rule action applies.

•	 Consider enabling and disabling rules instead of deleting them from the configuration when
setting up the block and when temporary changes are made to the application.

•	 Remember that you must write code that initializes the Windows Azure Diagnostics mechanism
when your role starts and copies the data to Windows Azure storage.

•	 Consider using the throttling behavior mechanism as well as scaling the number of roles. This
can provide more fine-grained control of the way that the application responds to changes in
load and demand. Remember that it can take 10-15 minutes for newly deployed role instances
to start handling requests, whereas changes to throttling behavior occur much more quickly.

•	 Regularly analyze the information that the block logs about its activities to evaluate how well
the rules are meeting your initial requirements, keeping the application running within the
required constraints, and meeting any SLA commitments on availability and response times.
Refine the rules based on this analysis.

Reducing Network Latency for Accessing Cloud Applications
with Windows Azure Traffic Manager

Windows Azure Traffic Manager is a Windows Azure service that enables you to set up request rout-
ing and load balancing based on predefined policies and configurable rules. It provides a mechanism
for routing requests to multiple deployments of your Windows Azure-hosted applications and ser-
vices, irrespective of the datacenter location. The applications or services could be deployed in one or
more datacenters.

Windows Azure Traffic Manager monitors the availability and network latency of each application
you configure in a policy, on any HTTP or HTTPS port. If it detects that an application is offline it will
not route any requests to it. However, it continues to monitor the application at 30 second intervals
and will start to route requests to it, based on the configured load balancing policy, if it again becomes
available.

 319M a ximizing Scalability, Availability, and Performance

Windows Azure Traffic Manager does not mark an application as
offline until it has failed to respond three times in succession. This
means that the total time between a failure and that application being
marked as offline is three times the monitoring interval you specify.

How Windows Azure Traffic Manager Routes Requests
Windows Azure Traffic Manager is effectively a DNS resolver. When
you use Windows Azure Traffic Manager, web browsers and services
accessing your application will perform a DNS query to Windows
Azure Traffic Manager to resolve the IP address of the endpoint to
which they will connect, just as they would when connecting to any
other website or resource.

Windows Azure Traffic Manager uses the requested URL to iden-
tify the policy to apply, and returns an IP address resulting from evalu-
ating the rules and configuration settings for that policy. The user’s
web browser or the requesting service then connects to that IP ad-
dress, effectively routing them based on the policy you select and the
rules you define.

This means that you can offer users a single URL that is aliased to
the address of your Windows Azure Traffic Manager policy. For example,
you could use a CNAME record to map the URL you want to expose to
users of your application, such as http://store.treyresearch.net, in your
own or your ISPs DNS to the entry point and policy of your Windows
Azure Traffic Manager policy. If you have named your Windows Azure
Traffic Manager namespace as treyresearch and have a policy for the
Orders application named ordersapp, you would map the URL in your
DNS to http://ordersapp.treyresearch.trafficmanager.net. All DNS
queries for store.treyresearch.net will be passed to Windows Azure
Traffic Manager, which will perform the required routing by returning
the IP address of the appropriate deployed application. Figure 2 illus-
trates this scenario.

In future releases of Windows
Azure Traffic Manager you
will be able to change the
interval between the monitor-
ing checks.

Windows Azure Traffic
Manager does not perform
HTTP redirection or use
any other browser-based
redirection technique
because this would not
work with other types
of requests, such as from
smart clients accessing
web services exposed by
your application. Instead,
it acts as a DNS resolver
that the client queries to
obtain the IP address of
the appropriate application
endpoint. Windows Azure
Traffic Manager returns the
IP address of the deployed
application that best
satisfies the configured
policy and rules.

Europe DatacenterUS North Datacenter Asia Datacenter

Traffic Manager
Resolve ordersapp.treyresearch.trafficmanager.net

Your
application

Your
application

Your
application

DNS Server
Map store.treyresearch.net to

ordersapp.treyresearch.trafficmanager.net
Look up trafficmanager.netLook up store.treyresearch.net 1

2 Return IP address of Traffic Manager

3

4

Look up ordersapp.treyresearch.trafficmanager.net

Return the IP address
of the appropriate

hosted service

5
Connect to the

specified service

appendix E320

Figure 2
How Windows Azure Traffic Manager performs routing and redirection

The default time-to-live (TTL) value for the DNS responses that
Windows Azure Traffic Manager will return to clients is 300 seconds
(five minutes). When this interval expires, any requests made by a cli-
ent application may need to be resolved again, and the new address
that results can be used to connect to the service. For testing pur-
poses you may want to reduce this value, but you should use the de-
fault or longer in a production scenario.

Remember that there may be intermediate DNS servers between
clients and Windows Azure Traffic Manager that are likely to cache
the DNS record for the time you specify. However, client applications
and web browsers often cache the DNS entries they obtain, and so
will not be redirected to a different application deployment until their
cached entries expire.

Global experiments under-
taken by the team that
develops Windows Azure
Traffic Manager indicate that
DNS updates typically
propagate within the TTL
specified in the records in 97%
of cases. Changes to a policy
will usually propagate to all
of the Windows Azure Traffic
Manager DNS resolvers
within ten minutes. You can
check the global propagation
of DNS entries using a site
such as http://www.just-
dnslookup.com/.

http://www.just-dnslookup.com/
http://www.just-dnslookup.com/

 321M a ximizing Scalability, Availability, and Performance

Using Monitoring Endpoints
When you configure a policy in Windows Azure Traffic Manager you
specify the port and relative path and name for the endpoint that
Windows Azure Traffic Manager will access to test if the application
is responding. By default this is port 80 and “/” so that Windows Azure
Traffic Manager tests the root path of the application. As long as it
receives an HTTP “200 OK” response within ten seconds, Windows
Azure Traffic Manager will assume that the hosted service is online.

You can specify a different value for the relative path and name
of the monitoring endpoint if required. For example, if you have a
page that performs a test of all functions in the application you can
specify this as the monitoring endpoint. Hosted applications and
services can be included in more than one policy in Windows Azure
Traffic Manager, so it is a good idea to have a consistent name and
location for the monitoring endpoints in all your applications and
services so that the relative path and name is the same and can be
used in any policy.

If Windows Azure Traffic Manager detects that every service
defined for a policy is offline, it will act as though they were all online,
and continue to hand out IP addresses based on the type of policy you
specify. This ensures that clients will still receive an IP address in re-
sponse to a DNS query, even if the service is unreachable.

Windows Azure Traffic Manager Policies
At the time of writing Windows Azure Traffic Manager offers the
following three routing and load balancing policies, though more may
be added in the future:
•	 The Performance policy redirects requests from users to the

application in the closest data center. This may not be the
application in the data center that is closest in purely geographi-
cal terms, but instead the one that provides the lowest network
latency. This means that it takes into account the performance
of the network routes between the customer and the data
center. Windows Azure Traffic Manager also detects failed
applications and does not route to these, instead choosing the
next closest working application deployment.

If you implement special
monitoring pages in your
applications, ensure that
they can always respond
within ten seconds so that
Windows Azure Traffic
Manager does not mark
them as being offline.
Also consider the impact
on the overall operation
of the application of the
processes you execute in
the monitoring page.

appendix E322

•	 The Failover policy allows you to configure a prioritized list of
applications, and Windows Azure Traffic Manager will route
requests to the first one in the list that it detects is responding
to requests. If that application fails, Windows Azure Traffic
Manager will route requests to the next applications in the list,
and so on. The Failover policy is useful if you want to provide
backup for an application, but the backup application(s) are not
designed or configured to be in use all of the time. You can
deploy different versions of the application, such as restricted or
alternative capability versions, for backup or failover use only
when the main application(s) are unavailable. The Failover policy
also provides an opportunity for staging and testing applications
before release, during maintenance cycles, or when upgrading to
a new version.

•	 The Round Robin policy routes requests to each application in
turn; though it detects failed applications and does not route to
these. This policy evens out the loading on each application, but
may not provide users with the best possible response times as
it ignores the relative locations of the user and data center.

To minimize network latency and maximize performance you will
typically use the Performance policy to redirect all requests from all
users to the application in the closest data center. The following sec-
tions describe the Performance policy. The other policies are described
in the section “Maximizing Availability for Cloud Applications with
Windows Azure Traffic Manager” later in this appendix.

Guidelines for Using Windows Azure Traffic Manager
The following list contains general guidelines for using Windows
Azure Traffic Manager:
•	 When you name your hosted services and services, consider

using a naming pattern that makes them easy to find and
identify in the Windows Azure Traffic Manager list of services.
Use a naming pattern makes it easier to search for related
services using part of the name. Include the datacenter name in
the service name so that it is easy to identify the datacenter in
which the service is hosted.

•	 Ensure that Windows Azure Traffic Manager can correctly moni-
tor your hosted applications or services. If you specify a moni-
toring page instead of the default “/” root path, ensure that the
page always responds with an HTTP “200 OK” status, accurately
detects the state of the application, and responds well within
the ten seconds limit.

Keep in mind that, when
using the Performance policy,
Windows Azure Traffic
Manager bases its selection of
target application on avail-
ability and average network
latency, taking into account
the geographical location of
the originator of requests and
the geographical location of
each configured application in
the policy (Windows Azure
Traffic Manager periodically
runs its own internal tests
across the Internet between
specific locations worldwide
and each datacenter).
This means that the closest
one may always not be the
geographically nearest,
although this will usually be
the case. However, if the
application in the geographi-
cally nearest datacenter has
failed to respond to requests,
Windows Azure Traffic
Manager may select a
location that is not the
geographically nearest.

 323M a ximizing Scalability, Availability, and Performance

•	 To simplify management and administration, use the facility to enable and disable policies
instead of adding and removing policies. Create as many policies as you need and enable only
those that are currently applicable. Disable and enable individual services within a policy instead
of adding and removing services.

•	 Consider using Windows Azure Traffic Manager as a rudimentary monitoring solution, even if
you do not deploy your application in multiple datacenters or require routing to different
deployments. You can set up a policy that includes all of your application deployments (includ-
ing different applications) by using “/” as the monitoring endpoint. However, you do not direct
client requests to Windows Azure Traffic Manager for DNS resolution. Instead, clients connect
to the individual applications using the specific URLs you map for each one in your DNS. You
can then use the Windows Azure Traffic Manager Web portal to see which deployments of all
of the applications are online and offline.

Guidelines for Using Windows Azure Traffic Manager to Reduce Network Latency
The following list contains guidelines for using Windows Azure Traffic Manager to reduce network
latency:
•	 Choose the Performance policy so that users are automatically redirected to the datacenter and

application deployment that should provide best response times.
•	 Ensure that sufficient role instances are deployed in each application to ensure adequate

performance, and consider using a mechanism such as that implemented by the Autoscaling
Application Block (described earlier in this appendix) to automatically deploy additional in-
stances when demand increases.

•	 Consider if the patterns of demand in each datacenter are cyclical or time dependent. You may
be able to deploy fewer role instances at some times to minimize runtime cost (or even remove
all instances so that users are redirected to another datacenter). Again, consider using a mecha-
nism such as that described earlier in this appendix to automatically deploy and remove in-
stances when demand changes.

If all of the hosted applications or services in a Performance policy are offline or unavailable (or avail-
ability cannot be tested due to a network or other failure), Windows Azure Traffic Manager will act
as though all were online and route requests based on its internal measurements of global network
latency based on the location of the client making the request. This means that clients will be able to
access the application if it actually is online, or as soon as it comes back online, without the delay while
Windows Azure Traffic Manager detects this and starts redirecting users based on measured latency.

Limitations of Using Windows Azure Traffic Manager
The following list identifies some of the limitations you should be aware of when using Windows
Azure Traffic Manager:
•	 All of the hosted applications or services you add to a Windows Azure Traffic Manager policy

must exist within the same Windows Azure subscription, although they can be in different
namespaces.

•	 You cannot add hosted applications or services that are staged; they must be running in the
production environment. However, you can perform a virtual IP address (VIP) swap to move
hosted applications or services into production without affecting an existing Windows Azure
Traffic Manager policy.

appendix E324

•	 All of the hosted applications or services must expose the same
operations and use HTTP or HTTPS through the same ports so
that Windows Azure Traffic Manager can route requests to any
of them. If you expose a specific page as a monitoring endpoint,
it must exist at the same location in every deployed application
defined in the policy.

•	 Windows Azure Traffic Manager does not test the application
for correct operation; it only tests for an HTTP “200 OK”
response from the monitoring endpoint within ten seconds. If
you want to perform more thorough tests to confirm correct
operation, you should expose a specific monitoring endpoint
and specify this in the Windows Azure Traffic Manager policy.
However, ensure that the monitoring request (which occurs by
default every 30 seconds) does not unduly affect the operation
of your application or service.

•	 Take into account the effects of routing to different deploy-
ments of your application on data synchronization and caching.
Users may be routed to a datacenter where the data the applica-
tion uses may not be fully consistent with that in another
datacenter.

•	 Take into account the effects of routing to different deploy-
ments of your application on the authentication approach you
use. For example, if each deployment uses a separate instance of
Windows Azure Access Control Service (ACS), users will need
to sign in when rerouted to a different datacenter.

Maximizing Availability for Cloud
Applications with Windows Azure Traffic
Manager

Windows Azure Traffic Manager provides two policies that you can
use to maximize availability of your applications. You can use the
Round Robin policy to distribute requests to all application deploy-
ments that are currently responding to requests (applications that
have not failed). Alternatively, you can use the Failover policy to en-
sure that a backup deployment of the application will receive requests
should the primary one fail. These two policies provide opportunities
for two very different approaches to maximizing availability:
•	 The Round Robin policy enables you to scale out your applica-

tion across datacenters to achieve maximum availability. Re-
quests will go to a deployment in a datacenter that is online, and
the more role instances you configure the lower the average
load on each one will be. However, you are charged for each role
and application deployment in every datacenter, and you should
consider carefully how many role instances to deploy in each
application and datacenter.

There is little reason to
use the Round Robin
policy if you only deploy
your application to one
datacenter. You can
maximize availability and
scale it out simply by
adding more role instances.
However, the Failover policy
is useful if you only deploy
to one datacenter because it
allows you to define reserve
or backup deployments of
your application, which may
be different from the main
highest priority deployment.

US North Datacenter

Priorities:
1: US North Full application
2: US South Full application
3: US North Reserve application
4 :US North Backup application
5: US South Backup application

Traffic Manager
with Failover
policy defined

Full application

Reserve application

Backup application

Order
processing

system

Store

US South Datacenter

Full application
Order

processing
system

Store

Backup application

Fai
led

!

 325M a ximizing Scalability, Availability, and Performance

•	 The Failover policy enables you to deploy reserve or backup versions of your application that
only receive client requests when all of the higher deployments in the priority list are offline.
Unlike the Performance and Round Robin policies, this policy is suitable for use when you
deploy to only one datacenter as well as when deploying the application to multiple datacen-
ters. However, you are charged for each application deployment in every datacenter, and you
should consider carefully how many role instances to deploy in each datacenter.

A typical scenario for using the Failover policy is to configure an appropriate priority order
for one or more deployments of the same or different versions of the application so that the
maximum number of features and the widest set of capabilities are always available, even if ser-
vices and systems that the application depends on should fail. For example, you may deploy a
backup version that can still accept customer orders when the order processing system is un-
available, but stores them securely and informs the customer of a delay.

By arranging the priority order to use the appropriate reserve version in a different datacen-
ter, or a reduced functionality backup version in the same or a different datacenter, you can of-
fer the maximum availability and functionality at all times. Figure 3 shows an example of this
approach.

Figure 3
Using the Failover policy to achieve maximum availability and functionality

appendix E326

Guidelines for Using Windows Azure Traffic Manager to Maximize Availability
The following list contains guidelines for using Windows Azure Traffic Manager to maximize avail-
ability. Also see the sections “Guidelines for Using Windows Azure Traffic Manager” and “Limitations
of Using Windows Azure Traffic Manager” earlier in this appendix.
•	 Choose the Round Robin policy if you want to distribute requests evenly between all deploy-

ments of the application. This policy is typically not suitable when you deploy the application in
datacenters that are geographically widely separated as it will cause undue traffic across longer
distances. It may also cause problems if you are synchronizing data between datacenters because
the data in every datacenter may not be consistent between requests from the same client.
However, it is useful for taking services offline during maintenance, testing, and upgrade periods.

•	 Choose the Failover policy if you want requests to go to one deployment of your application,
and only change to another if the first one fails. Windows Azure Traffic Manager chooses the
application nearest the top of the list you configured that is online. This policy is typically
suited to scenarios where you want to provide backup applications or services.

•	 If you use the Round Robin policy, ensure that all of the deployed applications are identical so
that users have the same experience regardless of the one to which they are routed.

•	 If you use the Failover policy, consider including application deployments that provide limited
or different functionality, and will work when services or systems the application depends on
are unavailable, in order to maximize the users’ experience as far as possible.

•	 Consider using the Failover or Round Robin policy when you want to perform maintenance
tasks, update applications, and perform testing of deployed applications. You can enable and
disable individual applications within the policy as required so that requests are directed only
to those that are enabled.

•	 Because a number of the application deployments will be lightly loaded or not servicing client
requests (depending on the policy you choose), consider using a mechanism such as that provided
by the Autoscaling Application Block, described earlier in this appendix, to manage the number of
role instances for each application deployed in each datacenter to minimize runtime cost.

If all of the hosted applications or services in a Round Robin policy are offline or unavailable (or avail-
ability cannot be tested due to a network or other failure), Windows Azure Traffic Manager will act as
though all were online and will continue to route requests to each configured application in turn. If all
of the applications in a Failover policy are offline or unavailable, Windows Azure Traffic Manager will
act as though the first one in the configured list is online and will route all requests to this one.

For more information about Windows Azure Traffic Manager, see “Windows Azure Traffic
Manager.”

http://msdn.microsoft.com/en-us/gg197529
http://msdn.microsoft.com/en-us/gg197529

 327M a ximizing Scalability, Availability, and Performance

Optimizing the Response Time and
Throughput for Cloud Applications by
Using Windows Azure Caching

Windows Azure Caching service provides a scalable, reliable mecha-
nism that enables you to retain frequently used data physically close
to your applications and services. Windows Azure Caching runs in the
cloud, and you can cache data in the same datacenter that hosts your
code. If you deploy services to more than one datacenter, you should
create a separate cache in each datacenter, and each service should
access only the co-located cache. In this way, you can reduce the
overhead associated with repeatedly accessing remote data, eliminate
the network latency associated with remote data access, and improve
the response times for applications referencing this data.

However, caching does not come without cost. Caching data
means creating one or more copies of that data, and as soon as you
make these copies you have concerns about what happens if you
modify this data. Any updates have to be replicated across all copies,
but it can take time for these updates to ripple through the system.
This is especially true on the Internet where you also have to consider
the possibility of network errors causing updates to fail to propagate
quickly. So, although caching can improve the response time for many
operations, it can also lead to issues of consistency if two instances of
an item of data are not identical. Consequently, applications that use
caching effectively should be designed to cope with data that may be
stale but that eventually becomes consistent.

Do not use Windows Azure Caching for code that executes on-
premises as it will not improve the performance of your applications
in this environment. In fact, it will likely slow your system down due
to the network latency involved in connecting to the cache in the
cloud. If you need to implement caching for on-premises applications,
you should consider using Windows Server AppFabric Caching in-
stead. For more information, see “Windows Server AppFabric Caching
Features.”

Provisioning and Sizing a Windows Azure Cache
Windows Azure Caching is a service that is maintained and managed
by Microsoft; you do not have to install any additional software or
implement any infrastructure within your organization to use it. An
administrator can easily provision an instance of the Caching service
by using the Windows Azure Management Portal. The portal enables
an administrator to select the location of the Caching service and
specify the resources available to the cache. You indicate the resourc-
es to provision by selecting the size of the cache. Windows Azure
Caching supports a number of predefined cache sizes, ranging from
128MB up to 4GB. Note that the bigger the cache size the higher the
monthly charge.

Windows Azure Caching is
primarily intended for code
running in the cloud, such
as web and worker roles,
and to gain the maximum
benefit you implement
Windows Azure Caching in
the same datacenter that
hosts your code.

http://msdn.microsoft.com/en-us/library/ff383731.aspx
http://msdn.microsoft.com/en-us/library/ff383731.aspx

appendix E328

The size of the cache also determines a number of other quotas. The purpose of these quotas is
to ensure fair usage of resources, and imposes limits on the number of cache reads and writes per hour,
the available bandwidth per hour, and the number of concurrent connections; the bigger the cache,
the more of these resources are available. For example, if you select a 128MB cache, you can cur-
rently perform up to 40,000 cache reads and writes, occupying up to 1,400MB of bandwidth (MB per
hour), spanning up to 10 concurrent connections, per hour. If you select a 4GB cache you can perform
up to 12,800,000 reads and writes, occupying 44,800 MB of bandwidth, and supporting 160 concur-
rent users each hour.

The values specified here are correct at the time of writing, but these quotas are constantly under
review and may be revised in the future. You can find information about the current production
quota limits and prices at “Windows Azure Shared Caching FAQ.”

You can create as many caches as your applications require, and they can be of different sizes.
However, for maximum cost effectiveness you should carefully estimate the amount of cache memo-
ry your applications will require and the volume of activity that they will generate. You should also
consider the lifetime of objects in the cache. By default, objects expire after 48 hours and will then
be removed. You cannot change this expiration period for the cache as a whole, although you can
override it on an object by object basis when you store them in the cache. However, be aware that the
longer an object resides in cache the more likely it is to become inconsistent with the original data
source (referred to as the “authoritative” source) from which it was populated.

To assess the amount of memory needed, for each type of object that you will be storing:
1.	 Measure the size in bytes of a typical instance of the object (serialize objects by using the

NetDataContractSerializer class and write them to a file),
2.	 Add a small overhead (approximately 1%) to allow for the metadata that the Caching service

associates with each object,
3.	 Round this value up to the next nearest value of 1024 (the cache is allocated to objects in

1KB chunks),
4.	 Multiply this value by the maximum number of instances that you anticipate caching.

Sum the results for each type of object to obtain the required cache size. Note that the Management
Portal enables you to monitor the current and peak sizes of the cache, and you can change the size of
a cache after you have created it without stopping and restarting any of your services. However, the
change is not immediate and you can only request to resize the cache once a day. Also, you can in-
crease the size of a cache without losing objects from the cache, but if you reduce the cache size some
objects may be evicted.

http://msdn.microsoft.com/en-us/library/hh697522.aspx

 329M a ximizing Scalability, Availability, and Performance

You should also carefully consider the other elements of the cache
quota, and if necessary select a bigger cache size even if you do not
require the volume of memory indicated. For example, if you exceed
the number of cache reads and writes permitted in an hour, any subse-
quent read and write operations will fail with an exception. Similarly,
if you exceed the bandwidth quota, applications will receive an excep-
tion the next time they attempt to access the cache. If you reach the
connection limit, your applications will not be able to establish any
new connections until one or more existing connections are closed.

You are not restricted to using a single cache in an application.
Each instance of the Windows Azure Caching service belongs to a
service namespace, and you can create multiple service namespaces
each with its own cache in the same datacenter. Each cache can have
a different size, so you can partition your data according to a cache
profile; small objects that are accessed infrequently can be held in a
128MB cache, while larger objects that are accessed constantly by a
large number of concurrent instances of your applications can be held
in a 2GB or 4GB cache.

Implementing Services that Share Data by Using Windows
Azure Caching

The Windows Azure Caching service implements an in-memory
cache, located on a cache server in a Windows Azure datacenter,
which can be shared by multiple concurrent services. It is ideal for
holding immutable or slowly changing data, such as a product catalog
or a list of customer addresses. Copying this data from a database into
a shared cache can help to reduce the load on the database as well as
improving the response time of the applications that use this data. It
also assists you in building highly scalable and resilient services that
exhibit reduced affinity with the applications that invoke them. For
example, an application may call an operation in a service implement-
ed as a Windows Azure web role to retrieve information about a
specific customer. If this information is copied to a shared cache, the
same application can make subsequent requests to query and main-
tain this customer information without depending on these requests
being directed to the same instance of the Windows Azure web role.
If the number of client requests increases over time, new instances of
the web role can be started up to handle them, and the system scales
easily. Figure 4 illustrates this architecture, where an on-premises ap-
plications employs the services exposed by instances of a web role.
The on-premises application can be directed to any instance of the
web role, and the same cached data is still available.

Windows Azure Caching
enables an application to
pool connections. When
connection pooling is
configured, the same
pool of connections
is shared for a single
application instance. Using
connection pooling can
improve the performance
of applications that use
the Caching service, but
you should consider how
this affects your total
connection requirements
based on the number
of instances of your
application that may be
running concurrently.
For more information,
see “Understanding and
Managing Connections in
Windows Azure.”

http://msdn.microsoft.com/en-us/library/hh552970.aspx
http://msdn.microsoft.com/en-us/library/hh552970.aspx
http://msdn.microsoft.com/en-us/library/hh552970.aspx

Datacenter

On-Premises Infrastructure

Windows
Azure Cache

Web Role

Web Role Web Role

Web Role

Web roles
accessing the same
object in the cache

Web roles sharing
access to the cache

On-premises application
invoking operations in
web roles

appendix E330

Figure 4
Using Windows Azure Caching to provide scalability

Web applications access a shared cache by using the Windows
Azure Caching APIs. These APIs are optimized to support the cache-
aside programming pattern; a web application can query the cache to
find an object, and if the object is present it can be retrieved. If the
object is not currently stored in the cache, the web application can
retrieve the data for the object from the authoritative store (such as
a SQL Azure database), construct the object using this data, and then
store it in the cache.

You can specify which cache to connect to either programmati-
cally or by providing the connection information in a dataCache-
Client section in the web application configuration file. You can
generate the necessary client configuration information from the
Management Portal, and then copy this information directly into the
configuration file. For more information about configuring web ap-
plications to use Windows Azure Caching, see “How to: Configure a
Cache Client using the Application Configuration File for Windows Azure
Caching.”

Objects you store in the
cache must be serializable.

http://msdn.microsoft.com/en-us/library/windowsazure/gg278346.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg278346.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg278346.aspx

 331M a ximizing Scalability, Availability, and Performance

As described in the section “Provisioning and Sizing a Windows
Azure Cache,” an administrator specifies the resources available for
caching data when the cache is created. If memory starts to run short,
the Windows Azure Caching service will evict data on a least re-
cently used basis. However, cached objects can also have their own
independent lifetimes, and a developer can specify a period for cach-
ing an object when it is stored; when this time expires, the object is
removed and its resources reclaimed.

For detailed information on using Windows Azure Caching APIs
see “Developing for Windows Azure Shared Caching.”

Updating Cached Data
Web applications can modify the objects held in cache, but be aware
that if the cache is being shared, more than one instance of an applica-
tion might attempt to update the same information; this is identical
to the update problem that you meet in any shared data scenario. To
assist with this situation, the Windows Azure Caching APIs support
two modes for updating cached data:
•	 Optimistic, with versioning.

All cached objects can have an associated version number.
When a web application updates the data for an object it has
retrieved from the cache, it can check the version number of the
object in the cache prior to storing the changes. If the version
number is the same, it can store the data. Otherwise the web
application should assume that another instance has already
modified this object, fetch the new data, and resolve the con-
flict using whatever logic is appropriate to the business process-
ing (maybe present the user with both versions of the data and
ask which one to save). When an object is updated, it should be
assigned a new unique version number when it is returned to
the cache.

With the Windows
Azure Caching service,
your applications are not
notified when an object is
evicted from the cache or
expires, so be warned.

http://msdn.microsoft.com/en-us/library/windowsazure/gg278342.aspx

appendix E332

•	 Pessimistic, with locking.
The optimistic approach is primarily useful if the chances of a

collision are small, and although simple in theory the implementa-
tion inevitably involves a degree of complexity to handle the pos-
sible race conditions that can occur. The pessimistic approach
takes the opposite view; it assumes that more than one instance
of a web application is highly likely to try and simultaneously
modify the same data, so it locks the data when it is retrieved
from the cache to prevent this situation from occurring. When
the object is updated and returned to the cache, the lock is re-
leased. If a web application attempts to retrieve and lock an ob-
ject that is already locked by another instance, it will fail (it will
not be blocked). The web application can then back off for a
short period and try again. Although this approach guarantees the
consistency of the cached data, ideally, any update operations
should be very quick and the corresponding locks of a very short
duration to minimize the possibility of collisions and to avoid web
applications having to wait for extended periods as this can im-
pact the response time and throughput of the application.

If you are hosting multiple instances of the Windows Azure Caching
service across different datacenters, the update problem becomes
even more acute as you may need to synchronize a cache not only
with the authoritative data source but also other caches located at
different sites. Synchronization necessarily generates network traffic,
which in turn is subject to the latency and occasionally unreliable
nature of the Internet. In many cases, it may be preferable to update
the authoritative data source directly, remove the data from the cache
in the same datacenter as the web application, and let the cached data
at each remaining site expire naturally, when it can be repopulated
from the authoritative data source.

The logic that updates the authoritative data source should be
composed in such a way as to minimize the chances of overwriting a
modification made by another instance of the application, perhaps by
including version information in the data and verifying that this ver-
sion number has not changed when the update is performed.

An application specifies
a duration for the lock
when it retrieves data. If
the application does not
release the lock within
this period, the lock is
released by the Windows
Azure Caching service.
This feature is intended to
prevent an application that
has failed from locking data
indefinitely. You should
stipulate a period that
will give your application
sufficient time to perform
the update operation, but
not so long as to cause
other instances to wait for
access to this data for an
excessive time.

 333M a ximizing Scalability, Availability, and Performance

The purpose of removing the data from the cache rather than
simply updating it is to reduce the chance of losing changes made by
other instances of the web application at other sites and to minimize
the chances of introducing inconsistencies if the update to the au-
thoritative data store is unsuccessful. The next time this data is re-
quired, a consistent version of the data will be read from the authori-
tative data store and copied to the cache.

If you require a more immediate update across sites, you can im-
plement a custom solution by using Service Bus topics implementing
a variation on the patterns described in the section “Replicating and
Synchronizing Data Using Service Bus Topics and Subscriptions” in
“Appendix A - Replicating, Distributing, and Synchronizing Data.”

Both approaches are illustrated later in this appendix, in the sec-
tion “Guidelines for Using Azure Caching.”

The nature of the Windows Azure Caching service means that it
is essential you incorporate comprehensive exception-handling and
recovery logic into your web applications. For example:
•	 A race-condition exists in the simple implementation of the

cache-aside pattern, which can cause two instances of a web
application to attempt to add the same data to the cache.
Depending on how you implement the logic that stores data in
the cache, this can cause one instance to overwrite the data
previously added by another (if you use the Put method of the
cache), or it can cause the instance to fail with a DataCache-
Exception exception (if you use the Add method of the cache).
For more information, see the topic “Add an Object to a Cache.”

•	 Be prepared to catch exceptions when attempting to retrieve
locked data and implement an appropriate mechanism to retry
the read operation after an appropriate interval, perhaps by
using the Transient Fault Handling Application Block.

•	 You should treat a failure to retrieve data from the Windows
Azure Caching service as a cache miss and allow the web
application to retrieve the item from the authoritative data
source instead.

•	 If your application exceeds the quotas associated with the cache
size, your application may no longer be able to connect to the
cache. You should log these exceptions, and if they occur
frequently an administrator should consider increasing the size
of the cache.

Incorporating Windows
Azure Caching into a
web application must
be a conscious design
decision as it directly
affects the update logic
of the application. To
some extent you can hide
this complexity and aid
reusability by building the
caching layer as a library
and abstracting the code
that retrieves and updates
cached data, but you must
still implement this logic
somewhere.

http://msdn.microsoft.com/en-us/library/ee790846.aspx

appendix E334

Implementing a Local Cache
As well as the shared cache, you can configure a web application to
create its own local cache. The purpose of a local cache is to optimize
repeated read requests to cached data. A local cache resides in the
memory of the application, and as such it is faster to access. It oper-
ates in tandem with the shared cache. If a local cache is enabled, when
an application requests an object, the caching client library first
checks to see whether this object is available locally. If it is, a refer-
ence to this object is returned immediately without contacting the
shared cache. If the object is not found in the local cache, the caching
client library fetches the data from the shared cache and then stores
a copy of this object in the local cache. The application then refer-
ences the object from the local cache. Of course, if the object is not
found in the shared cache, then the application must retrieve the
object from the authoritative data source instead.

Once an item has been cached locally, the local version of this
item will continue to be used until it expires or is evicted from the
cache. However, it is possible that another application may modify the
data in the shared cache. In this case the application using the local
cache will not see these changes until the local version of the item is
removed from the local cache. Therefore, although using a local cache
can dramatically improve the response time for an application, the
local cache can very quickly become inconsistent if the information in
the shared cache changes. For this reason you should configure the
local cache to only store objects for a short time before refreshing
them. If the data held in a shared cache is highly dynamic and consis-
tency is important, you may find it preferable to use the shared cache
rather than a local cache.

After an item has been copied to the local cache, the application
can then access it by using the same Windows Azure Caching APIs
and programming model that operate on a shared cache; the interac-
tions with the local cache are completely transparent. For example, if
the application modifies an item and puts the updated item back into
the cache, the Windows Azure Caching APIs update the local cache
and also the copy in the shared cache.

A local cache is not subject to the same resource quotas as the
shared cache managed by the Windows Azure Caching service. You
specify the maximum number of objects that the cache can hold
when it is created, and the storage for the cache is allocated directly
from the memory available to the application.

You enable local caching
by populating the
LocalCacheProperties
member of the DataCache-
FactoryConfiguration
object that you use
to manage your cache
client configuration.
You can perform this
task programmatically
or declaratively in the
application configuration
file. You can specify the
size of the cache and the
default expiration period
for cached items. For more
information, see the topic
“Enable Windows Server
AppFabric Local Cache
(XML).”

http://msdn.microsoft.com/en-us/library/ee790880.aspx
http://msdn.microsoft.com/en-us/library/ee790880.aspx
http://msdn.microsoft.com/en-us/library/ee790880.aspx

 335M a ximizing Scalability, Availability, and Performance

Caching Web Application Session State
The Windows Azure Caching service enables you to use the DistributedCacheSessionStateStore-
Provider session state provider for ASP.NET web applications and services. With this provider, you
can store session state in a Windows Azure cache. Using a Windows Azure cache to hold session state
gives you several advantages:
•	 It can share session state among different instances of ASP.NET web applications providing

improved scalability,
•	 It supports concurrent access to same session state data for multiple readers and a single

writer, and
•	 It can use compression to save memory and bandwidth.

You can configure this provider either through code or by using the application configuration file; you
can generate the configuration information by using the Management Portal and copy this information
directly into the configuration file. For more information, see “How to: Configure the ASP.NET Session
State Provider for Windows Azure Caching.”

Once the provider is configured, you access it programmatically through the Session object, em-
ploying the same code as an ordinary ASP.NET web application; you do not need to invoke the Windows
Azure Caching APIs.

Caching HTML Output
The DistributedCacheOutputCacheProvider class available for the Windows Azure Caching service
implements output caching for web applications. Using this provider, you can build scalable web ap-
plications that take advantage of the Windows Azure Caching service for caching the HTTP respons-
es that they generate for web pages returned to client applications, and this cache can be shared by
multiple instances of an application. This provider has several advantages over the regular per process
output cache, including:
•	 You can cache larger amounts of output data.
•	 The output cache is stored externally from the worker process running the web application and

it is not lost if the web application is restarted.
•	 It can use compression to save memory and bandwidth.

Again, you can generate the information for configuring this provider by using the Management Portal
and copy this information directly into the application configuration file. For more information, see
“How to: Configure the ASP.NET Output Cache Provider for Windows Azure Caching.”

Like the DistributedCacheSessionStateStoreProvider class, the DistributedCacheOutput-
CacheProvider class is completely transparent; if your application previously employed output cach-
ing, you do not have to make any changes to your code.

http://msdn.microsoft.com/en-us/library/windowsazure/gg278339.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg278339.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg185676.aspx

appendix E336

Guidelines for Using Windows Azure Caching
The following scenarios describe some common scenarios for using
Windows Azure Caching:
•	 Web applications and services running in the cloud require

fast access to data. This data is queried frequently, but rarely
modified. The same data may be required by all instances of
the web applications and services.

This is the ideal case for using Windows Azure Caching. In
this simple scenario, you can configure the Windows Azure
Caching service running in the same datacenter that hosts the
web applications and services (implemented as web or worker
roles). Each web application or service can implement the cache-
aside pattern when it needs a data item; it can attempt to re-
trieve the item from cache, and if it is not found then it can be
retrieved from the authoritative data store and copied to cache.
If the data is static, and the cache is configured with sufficient
memory, you can specify a long expiration period for each item
as it is cached. Objects representing data that might change in
the authoritative data store should be cached with a shorter ex-
piration time; the period should reflect the frequency with
which the data may be modified and the urgency of the applica-
tion to access the most recently updated information.

Figure 5 shows a possible structure for this solution. In this
example, a series of web applications implemented as web roles,
hosted in different datacenters, require access to customer ad-
dresses held in a SQL Server database located on-premises with-
in an organization. To reduce the network latency associated
with making repeated requests for the same data across the In-
ternet, the information used by the web applications is cached
by using the Windows Azure Caching service. Each datacenter
contains a separate instance of the Caching service, and web
applications only access the cache located in the same datacen-
ter. The web applications only query customer addresses, al-
though other applications running on-premises may make the
occasional modification. The expiration period for each item in
the cache is set to 24 hours, so any changes made to this data
will eventually be visible to the web applications.

To take best advantage
of Windows Azure
Caching, only cache data
that is unlikely to change
frequently.

Datacenter B

On-Premises Infrastructure

Windows
Azure Cache

Web Role Web Role

Windows Azure web
roles only query
customer data

Applications running
on-premises may
occasionally modify
customer data

Datacenter A
Windows

Azure Cache

Web Role Web Role

Customer
Database

Cached data expires after
24 hours and will be
refreshed from the

Customer database by the
Windows Azure web roles

Windows Azure web
roles populate and
access the cache in
the same datacenter

 337M a ximizing Scalability, Availability, and Performance

Figure 5
Caching static data to reduce network latency in web applications

•	 Web applications and services running in the cloud require fast access to shared data, and
they may frequently modify this data.

This scenario is a potentially complex extension of the previous case, depending on the lo-
cation of the data, the frequency of the updates, the distribution of the web applications and
services, and the urgency with which the updates must be visible to these web applications and
services.

In the most straightforward case, when a web application needs to update an object, it re-
trieves the item from cache (first fetching it from the authoritative data store if necessary),
modifies this item in cache, and makes the corresponding change to the authoritative data store.
However, this is a two-step process, and to minimize the chances of a race condition occurring
all updates must follow the same order in which they perform these steps. Depending on the
likelihood of a conflicting update being made by a concurrent instance of the application, you
can implement either the optimistic or pessimistic strategy for updating the cache as described
in the earlier section “Updating Cached Data.” Figure 6 depicts this process. In this example, the
on-premises Customer database is the authoritative data store.

Datacenter

On-Premises Infrastructure

Windows
Azure Cache

Web application copies
customer data to the
Windows Azure cache

Web application updates
customer data in the
authoritative store

Customer
Database

Web application updates
customer data in the
Windows Azure cache

Web application fetches
customer data from the

authoritative store

4

2

1

3

appendix E338

Figure 6
Updating data in the cache and the authoritative data store

The approach just described is suitable for a solution contained within a single datacenter. How-
ever, if your web applications and services span multiple sites, you should implement a cache at each
datacenter. Now updates have to be carefully synchronized and coordinated across datacenters and
all copies of the cached data modified. As described in the section “Updating Cached Data,” you have
at least two options available for tackling this problem:
•	 Only update the authoritative data store and remove the item from the cache in the datacenter

hosting the web application. The data cached at each other datacenter will eventually expire
and be removed from cache. The next time this data is required, it will be retrieved from the
authoritative store and used to repopulate the cache.

•	 Implement a custom solution by using Service Bus topics similar to that described in the section
“Replicating and Synchronizing Data Using Service Bus Topics and Subscriptions” in “Appendix
A - Replicating, Distributing, and Synchronizing Data.”

Datacenter B
Windows

Azure Cache

Datacenter A
Windows

Azure Cache

When the cached item
expires it will be
refreshed by the web
application from the
local Customer database

Customer
Database

Customer
Database

Bidirectional replication
synchronizes the SQL
Azure databases

Updates to Customer records are
applied to the Customer database. The
corresponding item is removed from
the cache; it is retrieved and cached the
next time this information is required

Web application
populates the cache
from the local
Customer database

 339M a ximizing Scalability, Availability, and Performance

The first option is clearly the simpler of the two, but the various caches may be inconsistent with
each other and the authoritative data source for some time, depending on the expiration period ap-
plied to the cached data. Additionally, the web applications and services may employ a local SQL
Azure database rather than accessing an on-premises installation of SQL Server. These SQL Azure
databases can be replicated and synchronized in each datacenter as described in “Appendix A - Repli-
cating, Distributing, and Synchronizing Data.” This strategy reduces the network latency associated
with retrieving the data when populating the cache at the cost of yet more complexity if web applica-
tions modify this data; they update the local SQL Azure database, and these updates must be synchro-
nized with the SQL Azure databases at the other datacenters.

Depending on how frequently this synchronization occurs, cached data at the other datacenters
could be out of date for some considerable time; not only does the data have to expire in the cache,
it also has to wait for the database synchronization to occur. In this scenario, tuning the interval be-
tween database synchronization events as well as setting the expiration period of cached data is
crucial if a web application must minimize the amount of time it is prepared to handle stale informa-
tion. Figure 7 shows an example of this solution with replicated instances of SQL Azure acting as the
authoritative data store.

Figure 7
Propagating updates between Windows Azure caches and replicated data stores

appendix E340

Implementing a custom solution based on Service Bus topics and subscriptions is more complex,
but results in the updates being synchronized more quickly across datacenters. Figure 8 illustrates one
possible implementation of this approach. In this example, a web application retrieves and caches data
in the Windows Azure cache hosted in the same datacenter. Performing a data update involves the
following sequence of tasks:
•	 The web application updates the authoritative data store (the on-premises database).
•	 If the database update was successful, the web application duplicates this modification to the

data held in the cache in the same datacenter.
•	 The web application posts an update message to a Service Bus topic.
•	 Receiver applications running at each datacenter subscribe to this topic and retrieve the update

messages.
•	 The receiver application applies the update to the cache at this datacenter if the data is cur-

rently cached locally.

If the data is not currently cached at this datacenter the update message can simply be discarded.

The receiver at the datacenter hosting the web application that initiated the update will
also receive the update message. You might include additional metadata in the update message
with the details of the instance of the web application that posted the message; the receiver
can then include logic to prevent it updating the cache unnecessarily (when the web application
instance that posted the message is the same as the current instance).

Note that, in this example, the authoritative data source is located on-premises, but this model can be
extended to use replicated instances of SQL Azure at each datacenter. In this case, each receiver ap-
plication could update the local instance of SQL Azure as well as modifying the data in-cache.

On-Premises
Infrastructure

Datacenter B

Service Bus
Subscriptions

Receiver

Update

Receiver retrieves
“update” messages
and applies changes
to the cache

Web
Application

Update 1Update 2

Update 1Update 2

Update
Message

Datacenter A

Web
Application

Windows
Azure Cache

Service
Bus

Topic

Receiver

Update
Windows

Azure Cache

Query &
Update

Query &
Update

Filters pass all
“update”
messages to both
subscriptions

To modify data the web
application updates the
database and the cache,
and then posts an
“update” message to
the Service Bus Topic

Web application
populates and
uses the cache

 341M a ximizing Scalability, Availability, and Performance

Figure 8
Propagating updates between Windows Azure caches and an authoritative data store

appendix E342

It is also possible that there is no permanent data store and the
caches themselves act as the authoritative store. Examples of this
scenario include online gaming, where the current game score is
constantly updated but needs to be available to all instances of
the game application. In this case, the cache at each datacenter
holds a copy of all of the data, but the same general solution
depicted by Figure 8, without the on-premises database, can still
be applied.

•	 A web application requires fast access to the data that it uses.
This data is not referenced by other instances of the web
application.

In this scenario, the data is effectively private to an instance
of the web application and can be cached in-memory in the ap-
plication itself. You can implement this solution in many ways,
but the most convenient and extensible approach is probably to
use the Windows Azure Caching APIs, and to configure the ap-
plication as a Windows Azure cache client and enable the local
cache properties. This configuration was described in the sec-
tion “Implementing a Local Cache” earlier in this appendix. This
approach also enables you to quickly switch to using a shared
cache without modifying your code; you simply reconfigure the
data cache client settings.

As the data is not shared, updates are straightforward; the
application can simply modify the data in the authoritative data
source and, if successful, apply the same changes to the cached
data in-memory (this will also update data in the shared cache
from which the local cache is initially populated, as described in
the in the section “Implementing a Local Cache.”

In a variant on this scenario, two or more instances of a web
application cache data locally, but they access overlapping data
from the authoritative data store. In this case, if one instance
modifies the data and writes the changes to the authoritative
data store, the cached data at the other instance is now out of
date. This is essentially the same problem addressed earlier with
multiple shared caches. If immediate synchronization between
instances of the web application is important, then caching data
in-memory is not the most suitable approach and it is best to
use a shared cache. However, data in the local cache expires in a
manner similar to that of a shared cache except the default expi-
ration period is much shorter—5 minutes. If applications can
handle stale data for a short while, then using a local cache con-
figured with a suitable lifetime for cached objects may be ap-
propriate.

Unlike a shared cache, you
can modify the default
expiration time for a local
cache. You can still override
this period as you cache
each object, but beware
of attempting to retain
objects in a local cache for
a lengthy period as they
might become stale very
quickly.

Datacenter

On-Premises
Infrastructure

Windows
Azure Cache

Objects in the Windows Azure
Cache are copied transparently
to the local cache as the web
application requests them

Each instance of a web
application may modify
data and update the on-
premises database

Each instance of a web
application populates and
uses its own local cache

Updates to objects in the local
cache are transparently performed
on objects in the shared cache

Web application

Local Cache

Web application

Local Cache

Objects in the local cache are
configured with a suitable
expiration period to limit the
staleness of data

 343M a ximizing Scalability, Availability, and Performance

Caching data in-memory in the web application speeds access to this data, but as described
earlier it can reduce the consistency of your solution. You should also be aware of the increased
memory requirements of your applications and the potential charges associated with hosting
applications with an increased memory footprint, especially if they attempt to cache large
amounts of data. You should carefully balance these benefits and concerns against the require-
ments of your application.

Figure 9 shows an example of this scenario with several instances of a web application using
a local cache to optimize access to data held in an on-premises database. It does not matter
whether the web application instances are located in the same or different datacenters, caching
the data in-memory in each instance makes them independent from each other for query pur-
poses. Some updates may occur, and in this example the data referenced by each instance over-
laps. Therefore the cached objects are configured with a suitable expiration period to enable
them to be refreshed appropriately and to prevent them from becoming too stale.

Figure 9
Implementing local in-memory caching

appendix E344

•	 You have built a web application hosted by using a Windows Azure web role. The web
application needs to cache session state information, but this information must not be
pinned to a particular instance of the web role; if the web application fails and the web role
is restarted, the session state information must not be lost.

One of the primary reasons for using Windows Azure to host web applications is the scal-
ability that this platform provides. As the load on a web application increases, you can use a
technology such as the Enterprise Library Autoscaling Application Block to automatically start
new instances and distribute the work more evenly (for more information, see the section
“Managing Elasticity in the Cloud by Using the Enterprise Library Autoscaling Application
Block” earlier in this appendix.) Additionally, the reliability features of Windows Azure ensure
that an application can be restarted if it should fail for some reason.

However, these scalability and reliability features assume that a client using the web appli-
cation can connect to any instance of the web application. If the web application uses sessions
and stores session state information, then you must avoid tying this state information to a spe-
cific instance of the application. For example, if you are using ASP.NET to build a web applica-
tion, session state is stored in-memory within the web application by default. In this model, a
client connecting to different instances of the web application at different times may see dif-
ferent session state information each time it connects. This phenomenon is undesirable in a
scalable web application.

The DistributedCacheSessionStateStoreProvider session state provider enables you to
configure a web application to store session state out-of-process, using the Windows Azure
Caching service as the storage mechanism. Different instances of the web application can then
access the same session state information. This provider is transparent to the web application,
which can continue to use the same ASP.NET syntax to access session state information. For
more information, refer to the section “Caching Web Application Session State” earlier in this
appendix.

Note that while the DistributedCacheSessionStateStoreProvider session state provider
enables instances of web applications running in the same datacenter to share session data, each
datacenter should be configured with its own shared cache. This may have an impact on your
solution if you are using a technology such as Windows Azure Traffic Manager to route client
requests to web applications. For example, the Windows Azure Traffic Manager Round Robin
policy and some edge cases of the Performance policy may redirect a client to a different data-
center holding different session state for some requests, as shown in Figure 10.

Datacenter B

Windows Azure
Traffic Manager

Windows
Azure Cache

Web Role Web Role

Datacenter A
Windows

Azure Cache

Web Role Web Role

Requests from the same
client may be routed to
different datacenters,
depending on the Traffic
Manager policy and
network conditions

Each datacenter
has its own
shared cache
holding session
state

Session state
stored in shared
Windows Azure
Cache

Web application instances
in the same datacenter can
share session state

 345M a ximizing Scalability, Availability, and Performance

Figure 10
Client requests obtaining different session state from different datacenters

•	 You have built a web application that performs complex processing and rendering of results
based on a series of query parameters. You need to improve the response time of various
pages served by this application, and avoid repeatedly performing the same processing when
different clients request pages.

This is the classic scenario for implementing output caching. The output generated by an
ASP.NET web page can be cached at the server hosting the web application, and subsequent re-
quests to access the same page with the same query parameters can be satisfied by responding
with the cached version of the page rather than generating a new response. For more informa-
tion about how ASP.NET output caching works and how to use it, see “Caching ASP.NET Pages.”

http://msdn.microsoft.com/en-us/library/06bh14hk(v=VS.100).aspx

appendix E346

However, the default output cache provider supplied with ASP.NET operates on a per serv-
er basis. In the Windows Azure environment a web server equates to an instance of a web role,
so using the default output cache provider causes each web role instance to generate its own
cached output. If the volume of cached output is large and each cached page is the result of
heavy, intensive processing, then each web role instance may end up duplicating this processing
and storing a copy of the same results. The DistributedCacheOutputCacheProvider class en-
ables web roles to store the output cache in a shared Windows Azure cache, removing this du-
plication of space and effort. For more information, see the section “Caching HTML Output”
earlier in this appendix.

As with the session cache, you should create and use a separate shared cache for caching
output data at each datacenter.

Limitations of Windows Azure Caching
The features provided by the Windows Azure Caching service are very similar to those of Windows
Server AppFabric Caching; they share the same programmatic APIs and configuration methods. How-
ever the Windows Azure implementation provides only a subset of the features available to the
Windows Server version. Currently, the Windows Azure Caching service has the following limitations
compared to Windows Server AppFabric Caching:
•	 It does not support notifications. Your applications are not informed if an object expires or is

evicted from cache.
•	 You cannot change the default expiration period for a shared cache. Objects expire in the

shared cache after 48 hours, and you cannot modify this setting for the cache as a whole.
However, you can override this value on an object by object basis as you store them in the
cache. In contrast, you can modify the default expiration period for a local cache (the default
duration is 5 minutes).

•	 You cannot disable the eviction policy. If there is insufficient space in the cache for a new
object, older objects will be evicted following the least recently used principle.

•	 You cannot explicitly remove an item from the cache.
•	 You cannot partition cached data. A Windows Azure cache cannot contain user-defined named

regions.
•	 You cannot add tags to cached data to assist with object searches.

Windows Azure Caching may remove some of these limitations in future releases.

You should also note that a Windows Azure cache automatically benefits from the reliability and
scalability features of Windows Azure; you do not have to manage these aspects yourself. Conse-
quently, many of the high availability features of Windows Server AppFabric Caching are not available
because they are not required in the Windows Azure environment.

For more information about the differences between Windows Azure Caching and Windows
Server AppFabric Caching, see the topic “Differences Between Caching On-Premises and in the Cloud.”

http://msdn.microsoft.com/en-us/library/windowsazure/gg185678.aspx

 347M a ximizing Scalability, Availability, and Performance

Guidelines for Securing Windows Azure Caching
You access a Windows Azure cache through an instance of the Win-
dows Azure Caching service. You generate an instance of the Win-
dows Azure Caching service by using the Management Portal and
specifying a new service namespace for the Caching service. The
Caching service is deployed to a datacenter in the cloud, and has end-
points with URLs that are based on the name of the service namespace
with the suffix “.cache.windows.net”. Your applications connect to the
Caching service using these URLs. The Caching service exposes end-
points that support basic HTTP connectivity (via port 22233) as well
as SSL (via port 22243).

All connection requests from an application to the Windows
Azure Caching service are authenticated and authorized by using ACS.
To connect to the Caching service, an application must provide the
appropriate authentication token.

More Information
All links in this book are accessible from the book’s online bibliogra-
phy available at:
http://msdn.microsoft.com/en-us/library/hh968447.aspx.
•	 “Windows Azure CDN” at http://msdn.microsoft.com/en-us/

gg405416.
•	 Chapter 3, “Accessing the Surveys Application” in the guide

“Developing Applications for the Cloud, 2nd Edition” at
http://msdn.microsoft.com/en-us/library/hh534477.aspx.

•	 “Microsoft Enterprise Library 5.0 Integration Pack for Windows
Azure” at http://msdn.microsoft.com/en-us/library/
hh680918(v=pandp.50).aspx

•	 “Windows Azure Traffic Manager” at
http://msdn.microsoft.com/en-us/gg197529.

•	 “Windows Server AppFabric Caching Features” at
http://msdn.microsoft.com/en-us/library/ff383731.aspx.

•	 “Windows Azure Shared Caching FAQ” at
http://msdn.microsoft.com/en-us/library/hh697522.aspx.

•	 “Understanding and Managing Connections in Windows Azure”
at http://msdn.microsoft.com/en-us/library/hh552970.aspx.

•	 “How to: Configure a Cache Client using the Application
Configuration File for Windows Azure Caching” at http://msdn.
microsoft.com/en-us/library/windowsazure/gg278346.aspx.

•	 “Developing for Windows Azure Shared Caching” at http://
msdn.microsoft.com/en-us/library/windowsazure/gg278342.aspx.

•	 “Add an Object to a Cache” at http://msdn.microsoft.com/en-us/
library/ee790846.aspx.

Only web applications and
services running in the
cloud need to be provided
with the authentication
token for connecting to the
Windows Azure Caching
service as these are the only
items that should connect
to the cache. Utilizing a
Windows Azure cache from
code running externally to
the datacenter provides
little benefit other than
for testing when using the
Windows Azure compute
emulator, and is not a
supported scenario for
production purposes.

http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://msdn.microsoft.com/en-us/gg405416
http://msdn.microsoft.com/en-us/gg405416
http://msdn.microsoft.com/en-us/library/hh534477.aspx
http://msdn.microsoft.com/en-us/library/hh680918(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680918(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/gg197529
http://msdn.microsoft.com/en-us/library/ff383731.aspx
http://msdn.microsoft.com/en-us/library/hh697522.aspx
http://msdn.microsoft.com/en-us/library/hh552970.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg278346.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg278346.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg278342.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg278342.aspx
http://msdn.microsoft.com/en-us/library/ee790846.aspx
http://msdn.microsoft.com/en-us/library/ee790846.aspx

appendix E348

•	 “Enable Windows Server AppFabric Local Cache (XML)” at http://msdn.microsoft.com/en-us/
library/ee790880.aspx.

•	 “How to: Configure the ASP.NET Session State Provider for Windows Azure Caching” at
http://msdn.microsoft.com/en-us/library/windowsazure/gg278339.aspx.

•	 “How to: Configure the ASP.NET Output Cache Provider for Windows Azure Caching” at
http://msdn.microsoft.com/en-us/library/windowsazure/gg185676.aspx.

•	 “Caching ASP.NET Pages” at http://msdn.microsoft.com/en-us/library/06bh14hk(v=VS.100).aspx.
•	 “Differences Between Caching On-Premises and in the Cloud” at http://msdn.microsoft.com/

en-us/library/windowsazure/gg185678.aspx.

http://msdn.microsoft.com/en-us/library/ee790880.aspx
http://msdn.microsoft.com/en-us/library/ee790880.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg278339.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg185676.aspx
http://msdn.microsoft.com/en-us/library/06bh14hk(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg185678.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg185678.aspx

 349

A typical hybrid application comprises a number of components, built using a variety of technologies,
distributed across a range of sites and connected by networks of varying bandwidth and reliability. With
this complexity, it is very important to be able to monitor how well the system is functioning, and
quickly take any necessary restorative action in the event of failure. However, monitoring a complex
system is itself a complex task, requiring tools that can quickly gather performance data to help you
analyze throughput and pinpoint the causes of any errors, failures, or other shortcomings in the system.

The range of problems can vary significantly, from simple failures caused by application errors in
a service running in the cloud, through issues with the environment hosting individual elements, to
complete systemic failure and loss of connectivity between components whether they are running
on-premises or in the cloud.

Once you have been alerted to a problem, you must be able to take the appropriate steps to
correct it and keep the system functioning. The earlier you can detect issues and the more quickly you
can fix them, the less impact they will have on the operations that your business depends on, and on
the customers using your system.

It is important to follow a systematic approach, not only when managing hybrid applications but
also when deploying and updating the components of your systems. You should try to minimize the
performance impact of the monitoring and management process, and you should avoid making the
entire system unavailable if you need to update specific elements.

Collecting diagnostic information about the way in which your system operates is also a funda-
mentally important part in determining the capacity of your solution, and this in turn can affect any
service level agreement (SLA) that you offer users of your system. By monitoring your system you can
determine how it is consuming resources as the volume of requests increases or decreases, and this in
turn can assist in assessing the resources required and the running costs associated with maintaining
an agreed level of performance.

This appendix explores the challenges encountered in keeping your applications running well and
fulfilling your obligations to your customers. It also describes the technologies and tools that the
Windows Azure™ technology platform provides to help you monitor and manage your solutions in
a proactive manner, as well as assisting you in determining the capacity and running costs of your
systems.

appendix F Monitoring and
Managing Hybrid

Applications

appendix F350

Use Cases and Challenges
Monitoring and managing a hybrid application is a nontrivial task due
to the number, location, and variety of the various moving parts that
comprise a typical business solution. Gathering accurate and timely
metrics is key to measuring the capacity of your solution and monitor-
ing the health of the system. Additionally, well defined procedures for
recovering elements in the event of failure are of paramount impor-
tance. You may also be required to collect routine auditing informa-
tion about how your system is used, and by whom.

The following sections describe some common use cases for
monitoring and maintaining a hybrid solution, and summarize many of
the challenges you will encounter while performing the associated
tasks.

Measuring and Adjusting the Capacity of
Your System

Description: You need to determine the capacity of your system so
that you can identify where additional resources may be required,
and the running costs associated with these resources.

In a commercial environment, customers paying to use your ser-
vice expect to receive a quality of service and level of performance
defined by their SLA. Even nonpaying visitors to your web sites and
services will anticipate that their experience will be trouble-free;
nothing is more annoying to potential customers than running up
against poor performance or errors caused by a lack of resources.

One way to measure the capacity of your system is to monitor its
performance under real world conditions. Many of the issues associ-
ated with effectively monitoring and managing a system also arise
when you are hosting the solution on-premises using your organiza-
tion’s servers. However, when you relocate services and functionality
to the cloud, the situation can become much more complicated for a
variety of reasons, including:
•	 The servers are no longer running locally and may be starting

up and shutting down automatically as your solution scales
elastically.

•	 There may be many instances of your services running across
these servers.

•	 Applications in the cloud may be multi-tenanted.
•	 Communications may be brittle and sporadic.
•	 Operations may run asynchronously.

Customers care about
the quality of service that
your system provides, not
how well the network or
the cloud environment is
functioning. You should
ensure that your system is
designed and optimized for
the cloud as this will help
you set (and fulfill) realistic
expectations for your users.

 351Monitoring and M anaging Hybrid Applications

This is clearly a much more challenging environment than the on-
premises scenario. You must consider not just how to gather the sta-
tistics and performance data from each instance of each service run-
ning on each server, but also how to consolidate this information into
a meaningful view that an administrator can quickly use to determine
the health of your system and determine the cause of any perfor-
mance problems or failures. In turn, this requires you to establish an
infrastructure that can unobtrusively collect the necessary informa-
tion from your services and servers running in the cloud, and persist
and analyze this data to identify any trends that can highlight scope
for potential failure; such as excessive request queue lengths, process-
ing bottlenecks, response times, and so on.

You can then take steps to address these trends, perhaps by start-
ing additional service instances, deploying services to more datacen-
ters in the cloud, or modifying the configuration of the system. In
some cases you may also determine that elements of your system
need to be redesigned to better handle the throughput required. For
example, a service processing requests synchronously may need to be
reworked to perform its work asynchronously, or a different com-
munications mechanism might be required to send requests to the
service more reliably.

Monitoring Services to Detect
Performance Problems and Failures Early

Description: You need to maintain a guaranteed level of service.
In an ideal situation, software never fails and everything always

works. This is unrealistic in the real world, but you should aim to give
users the impression that your system is always running perfectly;
they should not be aware of any problems that might occur.

However, no matter how well tested a system is there will be
factors outside your control that can affect how your system func-
tions; the network being a prime example. Additionally, unless you
have spent considerable time and money performing a complete and
formal mathematical verification of the components in your solution,
you cannot guarantee that they are free of bugs. The key to maintain-
ing a good quality of service is to detect problems before your cus-
tomers do, diagnose their cause, and either repair these failures
quickly or reconfigure the system to transparently redirect customer
requests around them.

Remember that testing can
only prove the presence and
not the absence of bugs.

appendix F352

If designed carefully, the techniques and infrastructure you employ to monitor and measure the
capacity of your system can also be used to detect failures. It is important that the infrastructure flags
such errors early so that operations staff can take the proper corrective actions rapidly and effi-
ciently. The information gathered should also be sufficient to enable operations staff to spot any
trends, and if necessary dynamically reconfigure the system to add or remove resources as appropriate
to accommodate any change in demand.

Recovering from Failure Quickly
Description: You need to handle failure systematically and restore functionality quickly.

Once you have determined the cause of a failure, the next task is to recover the failed compo-
nents or reconfigure the system. In a live environment spanning many computers and supporting many
thousands of users, you must perform this task in a thoroughly systematic, documented, and repeat-
able manner, and you should seek to minimize any disruption to service. Ideally, the steps that you take
should be scripted so that you can automate them, and they must be robust enough to record and
handle any errors that occur while these steps are being performed.

Logging Activity and Auditing Operations
Description: You need to record all operations performed by every instance of a service in every
datacenter.

You may be required to maintain logs of all the operations performed by users accessing each
instance of your service, performance variations, errors, and other runtime occurrences. These logs
should be a complete, permanent, and secure record of events. Logging may be a regulatory require-
ment of your system, but even if is not, you may still need to track the resources accessed by each user
for billing purposes.

An audit log should include a record of all operations performed by the operations staff, such as
service shutdowns and restarts, reconfigurations, deployments, and so on. If you are charging custom-
ers for accessing your system, the audit log should also contain information about the operations re-
quested by your customers and the resources consumed to perform these operations.

An error log should provide a date and time-stamped list of all the errors and other significant
events that occur inside your system, such as exceptions raised by failing components and infrastruc-
ture, and warnings concerning unusual activity such as failed logins.

A performance log should provide sufficient data to help monitor and measure the health of the
elements that comprise your system. Analytical tools should be available to identify trends that may
cause a subsequent failure, such as a SQL Azure™ technology platform database nearing its config-
ured capacity, enabling the operations staff to perform the actions necessary to prevent such a failure
from actually occurring.

 353Monitoring and M anaging Hybrid Applications

Deploying and Updating Components
Description: You need to deploy and update components in a controlled, repeatable, and reliable
manner whilst maintaining availability of the system.

As in the use case for recovering from system failure, all component deployment and update op-
erations should be performed in a controlled and documented manner, enabling any changes to be
quickly rolled back in the event of deployment failure; the system should never be left in an indeter-
minate state. You should implement procedures that apply updates in a manner that minimizes any
possible disruption for your customers; the system should remain available while any updates occur.
In addition, all updates must be thoroughly tested in the cloud environment before they are made
available to live customers.

Cross-Cutting Concerns
This section summarizes the major cross-cutting concerns that you may need to address when imple-
menting a strategy for monitoring and managing a hybrid solution.

Performance
Monitoring a system and gathering diagnostic and auditing information will have an effect on the
performance of the system. The solution you use should minimize this impact so as not to adversely
affect your customers.

For diagnostic information, in a stable configuration, it might not be necessary to gather extensive
statistics. However, during critical periods collecting more information might help you to detect and
correct any problems more quickly. Therefore any solution should be flexible enough to allowing
tuning and reconfiguration of the monitoring process as the situation dictates.

The policy for gathering auditing information is unlikely to be as flexible, so you should deter-
mine an efficient mechanism for collecting this data, and a compact mechanism for transporting and
storing it.

Security
There are several security aspects to consider concerning the diagnostic and auditing data that you
collect:
•	 Diagnostic data is sensitive as it may contain information about the configuration of your

system and the operations being performed. If intercepted, an attacker may be able to use this
information to infiltrate your system. Therefore you should protect this data as it traverses the
network. You should also store this data securely.

•	 Diagnostic data may also include information about operations being performed by your
customers. You should avoid capturing any personally identifiable information about these
customers, storing it with the diagnostic data, or making it available to the operators monitoring
your system.

appendix F354

•	 Audit information forms a permanent record of the tasks
performed by your system. Depending on the nature of your
system and the jurisdiction in which you organization operates,
regulatory requirements may dictate that you must not delete
this data or modify it in any way. It must be stored safely and
protected resolutely.

Additionally, the monitoring, management, deployment, and mainte-
nance tasks associated with the components that comprise your sys-
tem are sensitive tasks that must only be performed by specified
personnel. You should take appropriate steps to prevent unauthorized
staff from being able to access monitoring data, deploy components,
or change the configuration of the system.

Windows Azure and Related Technologies
Windows Azure provides a number of useful tools and APIs that you
can employ to supervise and manage hybrid applications. Specifically
you can use:
•	 Windows Azure Diagnostics to capture diagnostic data for

monitoring the performance of your system. Windows Azure
Diagnostics can operate in conjunction with the Enterprise
Library Logging Application Block. Microsoft Systems Center
Operations Manager also provides a management pack for
Windows Azure, again based on Windows Azure Diagnostics.

•	 The Windows Azure Management Portal, which enables admin-
istrators to provision the resources and websites required by
your applications. It also provides a means for implementing the
various security roles required to protect these resources and
websites. For more information, log in to the Management
Portal at http://windows.azure.com.

•	 The Windows Azure Service Management API, which enables
you to create your own custom administration tools, as well as
carrying out scripted management tasks from the Windows
PowerShell® command-line interface.

The following sections provide more information about the Windows
Azure Service Management API and Windows Azure Diagnostics, and
summarize good practice for utilizing them to support a hybrid ap-
plication.

You can configure Remote
Desktop access for
the roles running your
applications and services
in the cloud. This feature
enables you to access the
Windows logs and other
diagnostic information on
these machines directly,
by means of the same
procedures and tools that
you use to obtain data
from computers hosted
on-premises.

http://windows.azure.com

 355Monitoring and M anaging Hybrid Applications

Monitoring Services, Logging Activity,
and Measuring Performance in a Hybrid
Application by Using Windows Azure
Diagnostics

An on-premises application typically consists of a series of well-de-
fined elements running on a fixed set of computers, accessing a series
of well-known resources. Monitoring such an application requires
being able to transparently trap and record the various requests that
flow between the components, and noting any significant events that
occur. In this environment, you have total control over the software
deployed and configuration of each computer. You can install tools to
capture data locally on each machine, and you combine this data to
give you an overall view of how well the system is functioning.

In a hybrid application, the situation is much more complicated;
you have a dynamic environment where the number of compute
nodes (implementing web and worker roles) running instances of your
services and components might vary over time, and the work being
performed is distributed across these nodes. You have much less con-
trol of the configuration of these nodes as they are managed and
maintained by the datacenters in which they are hosted. You cannot
easily install your own monitoring software to assess the performance
and well-being of the elements located at each node. This is where
Windows Azure Diagnostics is useful.

Windows Azure Diagnostics provides an infrastructure running
on each node that enables you to gather performance and other diag-
nostic data about the components running on these nodes. It is
highly configurable; you specify the information that you are inter-
ested in, whether it is data from event logs, trace logs, performance
counters, IIS logs, crash dumps, or other arbitrary log files. For detailed
information about how to implement Windows Azure Diagnostics
and configure your applications to control the type of information
that Windows Azure Diagnostics records, see “Collecting Logging Data
by Using Windows Azure Diagnostics” on MSDN.

Windows Azure Diagnostics is designed specifically to operate in
the cloud. As a result, it is highly scalable while attempting to minimize
the performance impact that it has on the roles that are configured to
use it. However, the diagnostic data itself is held locally in each com-
pute node being monitored. This data is lost if the compute node is
reset. Also, the Windows Azure diagnostic monitor applies a 4GB
quota to the data that it logs; if this quota is exceeded, information is
deleted on an age basis. You can modify this quota, but you cannot
exceed the storage capacity specified for the web or worker role. In
many cases you will likely wish to retain this data, and you can arrange
to transfer the diagnostic information to Windows Azure storage,
either periodically or on demand. The topics “How to Schedule a Trans-
fer” and “How to Perform an On-Demand Transfer” provide information
on how to perform these tasks.

Transferring diagnostic data
to Windows Azure storage
on demand may take some
time, depending on the
volume of information
being copied and the
location of the Windows
Azure storage. To ensure
best performance, use a
storage account hosted in
the same datacenter as the
compute node running the
web or worker role being
monitored. Additionally, you
should perform the transfer
asynchronously so that it
minimizes the impact on the
response time of the code.

http://msdn.microsoft.com/en-us/library/gg433048.aspx
http://msdn.microsoft.com/en-us/library/gg433048.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433085.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433085.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433075.aspx

appendix F356

Windows Azure storage is independent of any specific compute node and the information that it
contains will not be lost if any compute node is restarted. You must create a storage account for
holding this data, and you must configure the Windows Azure Diagnostics Monitor with the address
of this storage account and the appropriate access key. For more information, see “How to Specify a
Storage Account for Transfers.” Event-based logs are transferred to Windows Azure table storage and
file-based logs are copied to blob storage. The appropriate tables and blobs are created by the Win-
dows Azure Diagnostics Monitor; for example, information from the Windows Event Logs is trans-
ferred to a table named WADWindowsEventLogsTable, data gathered from performance counters
is copied to a table name WADPerformanceCountersTable. Crash dumps are transferred to a blob
storage container under the path wad-crash-dumps and IIS 7.0 logs are copied to another blob storage
container under the path wad-iis-logfiles.

Guidelines for Using Windows Azure Diagnostics
From a technical perspective, Windows Azure Diagnostics is implemented as a component within
the Windows Azure SDK that supports that standard diagnostic APIs. This component is called the
Windows Azure diagnostic monitor, and it runs in the cloud alongside each web role or worker role that
you wish to gather information about.

You can configure the diagnostic monitor to determine the data that it should collect by using
the Windows Azure Diagnostics configuration file, diagnostics.wadcfg. For more information, see
“How to Use the Windows Azure Diagnostics Configuration File.” Additionally, an application can record
custom trace information by using a trace log. Windows Azure Diagnostics provides the Diagnostic-
MonitorTraceListener class to perform this task, and you can configure this type of tracing by
adding the appropriate <system.diagnostics> section to the application configuration file of your
web or worker role. See “How to Configure the TraceListener in a Windows Azure Application” for more
information.

If you are building a distributed, hybrid solution, using Windows Azure Diagnostics enables you
to gather the data from multiple role instances located on distributed compute nodes, and combine
this data to give you an overall view of your system. You can use System Center Operations Manager,
or alternatively there are an increasing number of third-party applications available that can work with
the raw data available through Windows Azure Diagnostics to present the information in a variety of
easy to digest ways. These tools enable you to determine the throughput, performance, and respon-
siveness of your system and the resources that it consumes. By analyzing this information, you can
pinpoint areas of concern that may impact the operations that your system implements, and also
evaluate the costs associated with performing these operations.

The following list suggests opportunities for incorporating Windows Azure Diagnostics into your
solutions:

http://msdn.microsoft.com/en-us/library/windowsazure/gg433081.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433081.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh411551.aspx
http://msdn.microsoft.com/en-us/library/hh411522.aspx

 357Monitoring and M anaging Hybrid Applications

•	 You need to provide a centralized view of your system to help
ensure that you meet the SLA requirements of your custom-
ers and to maintain an accurate record of resource use for
billing purposes. Your organization currently uses System
Center Operations Manager to monitor and maintain services
running on-premises.

If you have deployed Systems Center Operations Manager
on-premises, you can also install the Monitoring Management
Pack for Windows Azure. This pack operates in conjunction
with Windows Azure Diagnostics on each compute node, en-
abling you to record and observe the diagnostics for your ap-
plications and services hosted in the cloud and integrate it with
the data for the other elements of your solution that are run-
ning on-premises. This tool is also invaluable for assessing how
the services that comprise your system are using resources, help-
ing you to determine the costs that you should be recharging to
your customers, if appropriate.

Using Systems Center Operations Manager, you can config-
ure alerts that are raised when various measurements exceed
specified thresholds. You can associate tasks with these alerts,
and automate procedures for taking any necessary corrective
action. For example, you can arrange for additional role instanc-
es to be started if the response time for handling client requests
is too long, or you can send an alert to an operator who can in-
vestigate the issue.

For more information, see “System Center Monitoring Pack
for Windows Azure Applications.”

•	 You need to provide a centralized view of your system to help
monitor your application and maintain an audit record of
selected operations. Your organization does not use System
Center Operations Manager.

You can periodically transfer the diagnostic data to Win-
dows Azure storage and examine it by using a utility such as
Windows Azure Storage Explorer from Neudesic (see http://
azurestorageexplorer.codeplex.com/). Additionally, if you have the
Visual Studio® development system and the Windows Azure
SDK, you can connect to Windows Azure storage and view the
contents of tables and blobs by using Server Explorer. For more
information, see “How to View Diagnostic Data Stored in Windows
Azure Storage.”

By default, the System Center
Monitoring Pack for Windows
Azure Applications monitors
the deployment state of roles,
the state of each hosted service
and role, and the performance
counters measuring ASP.NET
performance, disk capacity,
physical memory utilization,
network adapter utilization,
and processor performance.

http://pinpoint.microsoft.com/en-us/applications/system-center-monitoring-pack-for-windows-azure-applications-12884907699
http://pinpoint.microsoft.com/en-us/applications/system-center-monitoring-pack-for-windows-azure-applications-12884907699
http://azurestorageexplorer.codeplex.com/
http://azurestorageexplorer.codeplex.com/
http://msdn.microsoft.com/en-us/library/windowsazure/hh411547.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh411547.aspx

Datacenter A Datacenter B

On-Premises Infrastructure

SQL
Server

Windows Azure diagnostic
monitor in each service
instance transfers data to
Windows Azure storage in the
same datacenter

Application running on-
premises downloads data
from Windows Azure
storage and populates
tables in SQL Server SQL

Server
Reporting
Services

Windows
Azure
Storage

Windows
Azure
Storage

Services
configured with

diagnostic monitor

Services
configured with

diagnostic monitor

appendix F358

However, these tools simply provide very generalized access to Windows Azure storage. If
you need to analyze the data in detail it may be necessary to build a custom dashboard applica-
tion that connects to the tables and blobs in the storage account, aggregates the information
gathered for all the nodes, and generates reports that show how throughput varies over time.
This enables you to identify any trends that may require you to allocate additional resources.
You can also download the diagnostic data from Windows Azure storage to your servers locat-
ed on-premises if you require a permanent historical record of this information, such as an audit
log of selected operations, or you wish to analyze the data offline.

Figure 1 depicts the overall structure of a solution that gathers diagnostics data from mul-
tiple nodes and analyzes it on-premises. The diagnostics data is reformatted and copied into ta-
bles in a SQL Server database, and SQL Server Reporting Services outputs a series of reports
that provide a graphical summary showing the performance of the system.

Figure 1
Gathering diagnostic data from multiple nodes

 359Monitoring and M anaging Hybrid Applications

An alternative approach is to use a third party solution. Some that were available at the
time of writing include the following:
•	 Azure Diagnostics Manager from Cerebrata
•	 AzureWatch from Paraleap Technologies
•	 ManageAxis from Cumulux

•	 You need to instrument your web applications and services to identify any potential bottle-
necks and capture general information about the health of your solution.

Applications running in the cloud can use the Windows Azure Diagnostics APIs to incorpo-
rate custom logic that generates diagnostic information, enabling you to instrument your code
and monitor the health of your applications by using the performance counters applicable to
web and worker roles. You can also define your own custom diagnostics and performance coun-
ters. The topic “Tracing the Flow of Your Windows Azure Application” provides more information.

It is also useful to trace and record any exceptions that occur when a web application runs,
so that you can analyze the circumstances under which these exceptions arise and if necessary
make adjustments to the way in which the application functions. You can make use of program-
matic features such as the Microsoft Enterprise Library Exception Handling Application Block
to capture and handle exceptions, and you can record information about these exceptions to
Windows Azure Diagnostics by using the Enterprise Library Logging Application Block. This
data can then be examined by using a tool such as System Center Operations Manager with the
Monitoring Pack for Windows Azure, providing a detailed record of the exceptions raised in
your application across all nodes, and also generating alerts if any of these exceptions require
the intervention of an operator.

For more information about incorporating the Logging Application Block into a Windows Azure
solution, see “Using classic Enterprise Library 5.0 in Windows Azure” on CodePlex.

For more information about using the Exception Handling Application Block, see “The Exception
Handling Application Block.”

•	 Most of the time your web and worker roles function as expected, but occasionally they run
slowly and become unresponsive. At these times you need gather additional detailed
diagnostic data to help you to determine the cause of the problems. You need to be able to
modify the configuration of the Windows Azure diagnostic monitor on any compute node
without stopping and restarting the node.

To minimize the overhead associated with logging, only trace logs, infrastructure logs, and IIS
logs are captured by default. If you need to examine data from performance counters, Windows®
operating system event logs, IIS failed request logs, crash dumps, or other arbitrary logs and files
you must enable these items explicitly. An application can dynamically modify the Windows
Azure Diagnostics configuration by using the Windows Azure SDK from your applications and
services. For more information, see “How to: Initialize the Windows Azure Diagnostic Monitor and
Configure Data Sources.”

http://www.cerebrata.com/Products/AzureDiagnosticsManager/Default.aspx
http://www.paraleap.com/
http://www.cumulux.com/products-and-services/cloud-operations/
http://msdn.microsoft.com/en-us/library/windowsazure/hh411529.aspx
http://msdn.microsoft.com/en-us/library/ff664698(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/ff664698(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433049.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433049.aspx

appendix F360

You can also configure Windows Azure Diagnostics for a
web or worker role remotely by using the Windows Azure SDK.
You can follow this approach to implement a custom application
running on-premises that connects to a node running a web or
worker role, specify the diagnostics to collect, and transfer the
diagnostic data periodically to Windows Azure storage. For
more information, see “How to Remotely Change the Diagnostic
Monitor Configuration.”

Guidelines for Securing Windows Azure Diagnostic Data
Windows Azure Diagnostics requires that the roles being monitored
run with full trust; the enableNativeCodeExecution attribute in the
service definition file, ServiceDefinition.csdef, for each role must be
set to true. This is actually the default value.

The diagnostic information recorded for your system is a sensitive
resource and can yield critical information about the structure and
security of your system. This information may be useful to an attacker
attempting to penetrate your system. Therefore, you should carefully
guard the storage accounts that you use to record diagnostic data and
ensure that only authorized applications have access to the storage
account keys. You should also consider protecting all communications
between the Windows Azure storage service and your on-premises
applications by using HTTPS.

If you have built on-premises applications or scripts that can dy-
namically reconfigure the diagnostics configuration for any role, en-
sure that only trusted personnel with the appropriate authorization
can run these applications.

Deploying, Updating, and Restoring
Functionality by Using the Windows
Azure Service Management API and
PowerShell

The Windows Azure Management Portal provides the primary inter-
face for managing Windows Azure subscriptions. You can use this
portal to upload applications, and to manage hosted services and
storage accounts. However, you can also manage your Windows Azure
applications programmatically by using the Windows Azure Service
Management API. You can utilize this API to build custom manage-
ment applications that deploy, configure, and manage your web ap-
plications and services. You can also access these APIs through the
Windows Azure PowerShell cmdlets; this approach enables you to
quickly build scripts that administrators can run to perform common
tasks for managing your applications.

The Windows Azure
diagnostic monitor
periodically polls its
configuration information,
and any changes come into
effect after the polling
cycle that observes them.
The default polling interval
is 1 minute. You can
modify this interval, but
you should not make it too
short as you may impact
the performance of the
diagnostic monitor.

http://msdn.microsoft.com/en-us/library/windowsazure/gg432992.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg432992.aspx

 361Monitoring and M anaging Hybrid Applications

The Windows Azure SDK provides tools and utilities to enable a
developer to package web and worker roles, and to deploy these pack-
ages to Windows Azure. Many of these tools and utilities also employ
the Windows Azure Service Management API, and some are invoked
by several of the Microsoft Build Engine (MSBuild) tasks and wizards
implemented by the Windows Azure templates in Visual Studio.

You can download the Windows Azure PowerShell cmdlets at
http://www.windowsazure.com/en-us/manage/downloads/.

Guidelines for using the Windows Azure Service
Management API and PowerShell

While the Management Portal is a powerful application that enables
an administrator to manage and configure Windows Azure services,
this is an interactive tool that requires users to have a detailed under-
standing of the structure of the solution, where the various elements
are deployed, and how to configure the security requirements of these
elements. It also requires that the user has knowledge of the Windows
Live® ID and password associated with the Windows Azure subscrip-
tion for your organization, and any user who has this information has
full authority over your entire solution. If these credentials are dis-
closed to an attacker or another user with malicious intent, they can
easily disrupt your services and damage your business operations.

The following scenarios include suggestions for mitigating these
problems:
•	 You need to provide controlled access to an operator to

enable them to quickly perform everyday tasks such as
configuring a role, provisioning services, or starting and
stopping role instances. The operator should not require a
detailed understanding of the structure of the application,
and should not be able to perform tasks other than those
explicitly mandated.

This is a classic case for using scripts incorporating the
Windows Azure PowerShell cmdlets. You can provide a series
of scripts that perform the various tasks required, and you can
parameterize them to enable the operator to provide any ad-
ditional details, such as the filename of a package containing
a web role to be deployed, or the address of a role instance
to be taken offline. This approach also enables you to control
the sequence of tasks if the operator needs to perform a com-
plex deployment, involving not just uploading web and worker
roles, but also provisioning and managing SQL Azure databases,
for example.

You can download the code
for a sample application
that provides a client-side
command line utility for
managing Windows Azure
applications and services
from Windows Azure
ServiceManagement Sample.

http://www.windowsazure.com/en-us/manage/downloads/
http://code.msdn.microsoft.com/windowsazure/Windows-Azure-CSManage-e3f1882c
http://code.msdn.microsoft.com/windowsazure/Windows-Azure-CSManage-e3f1882c

appendix F362

To run these scripts, the operator does not need to be pro-
vided with the credentials for the Windows Azure subscription.
Instead, the security policy enforced by the Windows Azure
Service Management API requires that the account that the op-
erator is using to run the scripts is configured with the appropri-
ate management certificate, as described in the section “Guide-
lines for Securing Management Access to Azure Subscriptions”
later in this appendix. The fewer operators that know the cre-
dentials necessary for accessing the Windows Azure subscrip-
tion, the less likely it is that these credentials will be disclosed
to an unauthorized third party, inadvertently or otherwise.

Scripting also provides for consistency and repeatability,
reducing the chances of human error on the part of the operator,
especially when the same series of tasks must be performed across
a set of roles and resources hosted in different datacenters.

The disadvantage of this approach is that the scripts must
be thoroughly tested, verified, and maintained. Additionally,
scripts are not ideal for handling complex logic, such as perform-
ing error handling and graceful recovery.

•	 You need to provide controlled access to an operator to
enable them to quickly perform a potentially complex series
of tasks for configuring, deploying, or managing your system.
The operator should not require a detailed understanding of
the structure of the application, and should not be able to
perform tasks other than those explicitly mandated.

This scenario is an extension of the previous case, except
that the operations are more complex and potentially more
error-prone. In this scenario, it may be preferable to use the
Windows Azure Service Management API directly from a cus-
tom application running on-premises. This application can in-
corporate a high degree of error detection, handling, and retry
logic (if appropriate). You can also make the application more
interactive, enabling the operator to specify the details of
items such as the address of a role to be taken offline, or the
filename of a package to deploy, through a graphical user inter-
face with full error checking. A wizard oriented approach is
easier to understand and less error prone than expecting the
operator to provide a lengthy string of parameters on the com-
mand line as is common with the scripted approach.

A script that creates or
updates roles should deploy
these roles to the staging
environment in one or more
datacenters for testing prior
to making them available to
customers. Switching from
the staging to production
environment can also be
scripted, but should only be
performed once testing is
complete.

 363Monitoring and M anaging Hybrid Applications

A custom application also enables you to partition the tasks
that can be performed by different operators or roles; the ap-
plication can authenticate the user, and only enable the features
and operations relevant to the identity of the user or the role
that the user belongs to. However, you should avoid attempting
to make the application too complex; keep the features exposed
simple to use, and implement meaningful and intelligent default
values for items that users must select.

A custom application should audit all operations performed
by each user. This audit trail provides a full maintenance and
management history of the system, and it must be stored in a
secure location.

Of course, the disadvantage of this approach is that, being
interactive, such an application cannot easily be used to perform
automated routine tasks scheduled to occur at off-peak hours.
In this case, the scripted approach or a solution based on a con-
sole-mode command-line application may be more appropriate.

•	 You are using Systems Center Operations Manager to moni-
tor the health of your system. If a failure is detected in one or
more elements, you need to recover from this failure quickly.

System Center Operations Manager can raise an alert when
a significant event occurs or a performance measure exceeds a
specified threshold. You can respond to this alert in a variety of
ways, such as notifying an operator or invoking a script. You can
exploit this feature to detect the failure of a component in your
system and run a PowerShell script that attempts to restart it. For
more information, see the topic “Enable Notification Channels.”

Guidelines for Securing Management Access to Windows
Azure Subscriptions

The Windows Azure Service Management API ensures that only au-
thorized applications can perform management operations, by enforc-
ing mutual authentication using management certificates over SSL.

When an on-premises application submits a management request,
it must provide the key to a management certificate installed on the
computer running the application as part of the request. A manage-
ment certificate must have a key length of at least 2048 bits and must
be installed in the Personal certificate store of the account running
the application. This certificate must also include the private key.

The Windows Azure
Service Management
API is actually a wrapper
around a REST interface;
all service management
requests are actually
transmitted as HTTP
REST requests. Therefore,
you are not restricted
to using Windows
applications for building
custom management
applications; you can use
any programming language
or environment that is
capable of sending HTTP
REST requests. For more
information, see “Windows
Azure Service Management
REST API Reference.”

http://technet.microsoft.com/en-us/library/dd440882.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee460799.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee460799.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee460799.aspx

appendix F364

The same certificate must also be available in the management
certificates store in the Windows Azure subscription that manages
the web applications and services. You should export the certificate
from the on-premises computer as a .cer file without the private key
and upload this file to the Management Certificates store by using the
Management Portal. For more information about creating manage-
ment certificates, see the topic “How to: Manage Management Certifi-
cates in Windows Azure.”

More Information
All links in this book are accessible from the book’s online bibliography
available at: http://msdn.microsoft.com/en-us/library/hh968447.aspx.
•	 Management Portal at http://windows.azure.com.
•	 “Collecting Logging Data by Using Windows Azure Diagnostics”

at http://msdn.microsoft.com/en-us/library/gg433048.aspx.
•	 “How to Schedule a Transfer” at http://msdn.microsoft.com/

en-us/library/windowsazure/gg433085.aspx.
•	 “How to Perform an On-Demand Transfer” at http://msdn.

microsoft.com/en-us/library/windowsazure/gg433075.aspx.
•	 “How to Specify a Storage Account for Transfers” at http://

msdn.microsoft.com/en-us/library/windowsazure/gg433081.aspx.
•	 “How to Use the Windows Azure Diagnostics Configuration

File” at http://msdn.microsoft.com/en-us/library/windowsazure/
hh411551.aspx.

•	 “How to Configure the TraceListener in a Windows Azure
Application” at http://msdn.microsoft.com/en-us/library/
hh411522.aspx.

•	 “System Center Monitoring Pack for Windows Azure Applica-
tions” at http://pinpoint.microsoft.com/en-us/applications/
system-center-monitoring-pack-for-windows-azure-applica-
tions-12884907699.

•	 Windows Azure Storage Explorer from Neudesic at
http://azurestorageexplorer.codeplex.com/.

•	 “How to View Diagnostic Data Stored in Windows Azure
Storage” at http://msdn.microsoft.com/en-us/library/windowsa-
zure/hh411547.aspx.

•	 Azure Diagnostics Manager from Cerebrata at http://www.
cerebrata.com/Products/AzureDiagnosticsManager/Default.aspx.

•	 AzureWatch from Paraleap Technologies at
http://www.paraleap.com/.

Remember that the
Windows Azure SDK
includes tools that enable
a developer to package
web and worker roles,
and to deploy these
packages to Windows
Azure. These tools also
require you to specify a
management certificate.
However, you should be
wary of letting developers
upload new versions of
code to your production
site. This is a task that
must be performed in a
controlled manner and only
after the code has been
thoroughly tested. For this
reason, you should either
refrain from provisioning
your developers with the
management certificates
necessary for accessing
your Windows Azure
subscription, or you should
retain a separate Windows
Azure subscription (for
development purposes)
with its own set of
management certificates
if your developers need to
test their own code in the
cloud.

http://msdn.microsoft.com/en-us/library/windowsazure/gg551721.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg551721.aspx
http://msdn.microsoft.com/en-us/library/hh968447.aspx
http://windows.azure.com
http://msdn.microsoft.com/en-us/library/gg433048.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433085.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433085.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433075.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433075.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433081.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433081.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh411551.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh411551.aspx
http://msdn.microsoft.com/en-us/library/hh411522.aspx
http://msdn.microsoft.com/en-us/library/hh411522.aspx
http://pinpoint.microsoft.com/en-us/applications/system-center-monitoring-pack-for-windows-azure-applications-12884907699
http://pinpoint.microsoft.com/en-us/applications/system-center-monitoring-pack-for-windows-azure-applications-12884907699
http://pinpoint.microsoft.com/en-us/applications/system-center-monitoring-pack-for-windows-azure-applications-12884907699
http://azurestorageexplorer.codeplex.com/
http://msdn.microsoft.com/en-us/library/windowsazure/hh411547.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh411547.aspx
http://www.cerebrata.com/Products/AzureDiagnosticsManager/Default.aspx
http://www.cerebrata.com/Products/AzureDiagnosticsManager/Default.aspx
http://www.paraleap.com/

 365Monitoring and M anaging Hybrid Applications

•	 “Tracing the Flow of Your Windows Azure Application” at http://msdn.microsoft.com/en-us/
library/windowsazure/hh411529.aspx.

•	 “Using classic Enterprise Library 5.0 in Windows Azure” at http://entlib.codeplex.com/releases/
view/75025#DownloadId=336804.

•	 “The Exception Handling Application Block” at http://msdn.microsoft.com/en-us/library/
ff664698(v=PandP.50).aspx.

•	 “How to: Initialize the Windows Azure Diagnostic Monitor and Configure Data Sources” at
http://msdn.microsoft.com/en-us/library/windowsazure/gg433049.aspx.

•	 “How to Remotely Change the Diagnostic Monitor Configuration” at http://msdn.microsoft.com/
en-us/library/windowsazure/gg432992.aspx.

•	 Download the code for a sample application that provides a client-side command line utility for
managing Windows Azure applications and services from “Windows Azure ServiceManagement
Sample” at http://code.msdn.microsoft.com/windowsazure/Windows-Azure-CSManage-e3f1882c.

•	 Download the Windows Azure PowerShell cmdlets from http://www.windowsazure.com/en-us/
manage/downloads/.

•	 “Windows Azure Service Management REST API Reference” at http://msdn.microsoft.com/en-us/
library/windowsazure/ee460799.aspx.

•	 “Enable Notification Channels” at http://technet.microsoft.com/en-us/library/dd440882.aspx.
•	 “How to: Manage Management Certificates in Windows Azure” at http://msdn.microsoft.com/

en-us/library/windowsazure/gg551721.aspx.

http://msdn.microsoft.com/en-us/library/windowsazure/hh411529.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh411529.aspx
http://entlib.codeplex.com/releases/view/75025%23DownloadId=336804
http://entlib.codeplex.com/releases/view/75025%23DownloadId=336804
http://msdn.microsoft.com/en-us/library/ff664698(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/ff664698(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433049.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg432992.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg432992.aspx
http://code.msdn.microsoft.com/windowsazure/Windows-Azure-CSManage-e3f1882c
http://www.windowsazure.com/en-us/manage/downloads/
http://www.windowsazure.com/en-us/manage/downloads/
http://msdn.microsoft.com/en-us/library/windowsazure/ee460799.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee460799.aspx
http://technet.microsoft.com/en-us/library/dd440882.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg551721.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg551721.aspx

 367

Index

A
_Layout.cshtml, 53-54
access authentication to service bus queues and topics,

60-61
Access Control Service (ACS) See ACS
acknowledgments, xxiii-xxiv
ACS, 238-239

authentication, 43
configuration, 47
unique user IDs, 239

ACSIdentity table, 29
AcsNamespace property, 136-137
actions, 316-317
Active Directory Federation Service (ADFS), 42-43
adapters and connectors for translating and reformatting

messages, 91-93
Add method, 115-117
ADFS, 42-43
all data on premises, 18-19
App.config file, 188
applications See hybrid applications; Orders application
architecture

authentication
with ACS and social identity providers, 236
implementation, 49
and sequence in the hybrid Orders

application, 46
service bus endpoints with ACS, 61
trust chain to support federated identity

and SSO, 235
Autoscaling Application Block, 315-316
batch processing by Service Bus queue, 274
bidirectional synchronization

all databases on-premises and in the
cloud, 195

only databases in the cloud, 196

cache-aside programming pattern, 330
caching static data to reduce network latency, 337
cloud, 8
cloud technology map, 11
compliance system, 106
data

aggregating and consolidating in the
cloud, 215

physical implementation of
synchronization, 28

replication in the Trey application, 27
sharing between the cloud and

on-premises, 212
updating in the cache and the authoritative

data store, 338
Data Sync SDK for custom synchronization, 222
diagnostic data from multiple nodes, 358
DistributedCacheSessionStateStoreProvider

session state provider, 344
Execute method, 121
failover policy, 325
flow of control through a ServiceBusReceiver-

Handler object, 83
forward-routing messages, 302
hybrid version of the Trey Research solution, 65
load-balancing with multiple receivers, 278
local in-memory caching, 343
messages

decoupling sender applications from routing
logic, 295

flow for the order processing system, 120
prioritizing with Service Bus topic and

subscriptions, 297
retrieving and storing session state

information, 280

368

routing to different receivers, 293
TrueFilter logging, 304-307

messaging technology
for transport partners by Trey, 73
used by Trey to route orders to the audit

log, 101
monitoring approaches for Orders, 171
more information, 107-108, 227
multicasting with Service Bus Relay, 262
newOrderMessageSender instance, 120
on-premises, 6

authentication at Trey, 41
ordered messages with Service Bus queues, 273
OrderProcessStatus table, 121-122
orders

locking for processing, 121-124
processing components in the on-premises

application, 64
OrderStatus table, 121
PeekLock to examine messages without

dequeueing, 283
on premises

databases synchronized through the cloud, 199
master repository with one-way

synchronization from the cloud, 197
master repository with one-way

synchronization to the cloud, 198
resources from a partner organization and

roaming computers, 253
service built with Ruby with Service Bus

Relay, 261
service with HTTP REST requests, 260

publishing on-premises database to the cloud, 214
replication

data between data centers in the cloud, 213
database to implement read scale-out, 219

requests and responses through Windows Azure
Service Bus Relay, 258

scaling out with Service Bus topic and
subscriptions, 300

security architecture of Windows Azure
Connect, 254

segregation across the Orders application
deployment, 16

Service Bus Relay requests and responses, 258
Service Bus request authentication

with ACS, 240
with ADFS and ACS, 242

Service Bus topics and subscriptions limitations to
message routing, 304-308

services exposed through Service Bus Relay, 266
sessions

different state from different datacenters, 345
to group messages, 279

smart client or service authentication, 237
SQL Azure Data Sync

to partition and replicate data across branch
offices, 218

to partition and replicate data in the cloud, 217
subscription correlation to deliver response

messages, 299
sync group configuration table, 29
synchronization direction for databases participating

in Topology D, 210
TCP/SSL, 259
Traffic Manager routing and redirection, 320
transactional and retry mechanism, 113
two-way messaging with response queues and

message correlation, 276
updates

notifications by using a Service Bus topic and
subscriptions, 227

propagation between Azure caches and an
authoritative data store, 341

propagation between Windows Azure caches
and replicated data stores, 339

routing messages, 225
uncontrolled to replicas of a database, 223

Windows Azure Caching to provide scalability, 330
Windows Azure Traffic Manager, 155
worker role requests through Service Bus Relay, 263

ASP.NET Forms authentication, 42
ASP.NET request validation, 52
asynchronous messages, 284-285

to a Service Bus queue, 75-77
from a Service Bus queue, 77-83
from a topic, 90-91

audience, xviii
audit log data, 21

orders to the audit log mechanism choice, 100-101
authentication, 39-62, 59

See also users and requests authentication
access authentication to service bus queues and

topics, 60-61
ACS, 43
ACS configuration, 47
ADFS, 42-43
ASP.NET Forms authentication, 42
ASP.NET request validation, 52
authentication choice, 42-45

 369index

Trey’s choice, 45
AuthorizeAndRegisterUserAttribute class, 55-56
browser process using ACS and social identity

providers, 236
choice, 42-45

Trey’s choice, 45
claims-based, 43

with ACS and ADFS, 45
with ACS and ADFS by Trey, 45
with ACS and ADFS for visitor by Trey, 45-59

client, 240-242
combined forms and claims-based, 45
custom authorization attribute, 55-56
custom logon page, 54-55
customer details storage and retrieval, 56-57
ExecuteAction method, 59
federated authentication, 229, 234-235
FindOne method, 57-58
GetDefaultSqlCommandRetryPolicy method, 59
IdentityExtensions class, 51-52
implementation, 48-49
_Layout.cshtml, 53-54
LogOn method, 54-55
more information, 61-62
multiple user IDs, 48
MyOrdersController class, 55
Orders.Website project, 49-51
Orders.Website.Helpers project, 51-52
original on-premises mechanism at Trey Research, 41
public users, 230
retry policy, 58-59
scenario and context, 39-41
sequence in the hybrid Orders application, 46
service bus endpoints with ACS, 61
SingleOrDefault method, 59
smart client or service authentication, 237
summary, 61
Transient Fault Handling Application Block, 59
trust chain that can support federated identity

and SSO, 235
Views/Shared folder, 53-54
visitor authentication and authorization, 53-54
visitor authentication and authorizationLayout.

cshtml, 53-54
visitors, 42-59, 47
Web.config file, 53
with WIF, 49-52
WIF, 49-52
WsFederationRequestValidator class, 52-53

authorization
access to Service Bus queues, 232
rules and rule groups, 244
service access for non-browser clients, 231
user actions, 231

AuthorizeAndRegisterUserAttribute class, 55-56
automatic scaling, 145-146
Autoscaler object, 148-151
Autoscaling Application Block, 315-316

hosting, 147-148
use guidelines, 317-318

autoscaling rule definitions, 148-151
availability

See also scalability, availability, and performance
maximizing for cloud applications, 312
Windows Azure Traffic Manager, 324-326

Azure
See also cloud; Windows Azure
data encryption, 23
data synchronization, 24-29
moving to, 7-10
technologies for routing messages, 292-308

Azure Access Control Service (ACS) See ACS
Azure and related technologies, 202

hybrid application monitoring and managing, 354-364
maximizing, 313-347

Azure Content Delivery Network (CDN) See Content
Delivery Network (CDN)

Azure Service Bus topics and subscriptions See Service Bus;
Service Bus topics and subscriptions

Azure Service Management API and PowerShell, 360-364
guidelines, 361

B
batch processing by Service Bus queue, 274
Bharath See cloud specialist role (Bharath)
bibliography, xxii

Orders application deployment to the cloud, 37
Trey Research, 14

bidirectional synchronization
across all databases, 195
only across databases in the cloud, 196

bindings, 268-270
BrokeredMessage class, 271-272
browser authentication process using ACS and social

identity providers, 236
business logic

See also cross-boundary communication; cross-
boundary routing

370

from message routing, 290
Service Bus topics and subscriptions, 292

C
cache-aside programming pattern, 330
caching

cached data updating, 331
and database synching, 159
functionality, 160-164
guidelines, 336-346
local cache, 334
local in-memory caching, 343
overview, 313
static data to reduce network latency in web

applications, 337
web application session state, 335

CachingStrategy class, 161-163
changeSetting action, 317
channel across boundaries with Service Bus

queues, 271-287
claims-based authentication, 43

with ACS and ADFS, 45
Trey’s choice, 45

process overview, 235-236
CleanupRelyingParties method, 187
clients

authentication, 240-242
different session state from different

datacenters, 345
cloud

See also Azure; messaging and communications;
Orders application deployment to the cloud;
Windows Azure

complex applications in, 2
data sharing between on-premises and, 212
integration, 1-2
integration challenges, 2-4, 10-12
and on-premises replication, 194-199
staged migration to, 12
technology map, 11

cloud specialist role (Bharath), xxi
combined forms, 45
communication

See also messaging and communications
cross-boundary channel, 247
mechanism choice, 68-71
with transport partners, 67-100

complex applications, 2

compliance, 104-106
hosting location, 105

Trey’s choice, 105-106
system, 106

components in the on-premises application, 64
constraint rules, 314, 316
ContainerBootstrapper class, 164-165
Content Delivery Network (CDN), 157

overview, 313
contributors and reviewers, xxiii-xxiv
control when receiving messages through a ServiceBus-

ReceiverHandler object, 83
copyright, iv
CreateJobProcessors method, 117
cross-boundary communication, 245-287

See also cross-boundary routing
asynchronous messages, 284-285
bindings, 268-270
BrokeredMessage class, 271-272
channel across boundaries with Service Bus

queues, 271-287
communications channel across boundaries, 247
cross-cutting concerns, 248-249
firewall, 267
guidelines, 256-263
interoperability, 249
message-oriented communications, 250
message scheduling, expiring, and deferring, 286
more information, 287
Network Address Translation (NAT), 247, 259
on premises

resources from outside the organization, 246
services from outside the organization, 246-247
services from outside with Service Bus

Relay, 256-271
remote procedure call (RPC), 249-250
responsiveness, 248-249
security, 248
Service Bus message, 271-272
Service Bus queues

guidelines, 272-283
security guidelines, 286-287
sending and receiving guidelines, 283-286

Service Bus Relay
guidelines, 256-263
security guidelines, 264-267
service naming guidelines, 267-268

technologies, 249-287

 371index

use cases and challenges, 245
Windows Azure Connect, 251-256

vs. Service Bus Relay, 270-271
cross-boundary routing, 289-308

See also cross-boundary communication
Azure technologies for routing messages, 292-308
business logic from message routing, 290

using Service Bus topics and subscriptions, 292
cross-cutting concerns, 291
fan-out architecture, 296
filter rule action, 301, 302-303
interoperability, 291
load-leveling, 296
message routing

multiple destinations, 291
technologies, 292-308

more information, 308
priority queue, 296
production line with events based on Service Bus

subscriptions, 307
reliability, 291
responsiveness and availability, 291
security, 291
Service Bus topics and subscriptions

message routing guidelines, 293-303
to route messages to multiple destinations

guidelines, 304-307
to route messages to multiple destinations

limitations, 308
security guidelines, 308

subscription correlation, 298
cross-cutting concerns

cross-boundary communication, 248-249
cross-boundary routing, 291
data replicating, distributing, and

synchronizing, 201-202
hybrid application monitoring and managing, 353-354
users and requests authentication, 232-233

custom authorization attribute, 55-56
custom logging solution, 173-174
custom logon page, 54-55
custom reporting solution, 31
custom repository, 23
custom service to redirect traffic, 152-153
custom synchronization, 25
custom transactional and retry mechanism, 113
customer data, 20
customer details storage and retrieval, 56-57
Customer table, 29

D
data

See also deployment
access security, 201
all data on premises, 18-19
cache and the authoritative data store updating, 338
encryption, 23
physical implementation of data synchronization, 28
replication, 27
reporting data to external partners, 33-36
retrieving and managing, 159-160
sharing between the cloud and on-premises, 212
storage mechanism, 21-23
synchronization, 24-29
synchronization architecture, 28
synchronizing across data sources, 199-201
Trey Research Orders application, 27

data replicating, distributing, and synchronizing, 193-227
cloud and on-premises replication, 194-199
cross-cutting concerns, 201-202
data access security, 201
data consistency and application responsiveness, 201
data synchronizing across data sources, 199-201
database schema for member databases, 204
hub database locating and sizing, 207-208
integrity and reliability, 202
Service Bus topics and subscription

guidelines, 222-227
SQL Azure Data Sync configuration

guidelines, 203-211
SQL Azure Data Sync Security Model, 220
SQL Azure Data Sync to replicate and

synchronize, 203-220
SQL Azure Data Sync use guidelines, 211-220
sync datasets, 203-204
Sync Framework SDK for custom replication and

synchronization, 221-222
sync groups, 203-204
sync loop avoidance, 210-211
synchronization conflict management, 205-206
synchronization direction for a database, 209
synchronization schedule for a sync group, 208
use cases and challenges, 193-194
Windows Azure and related technologies, 202-227

Data Sync SDK, 222
databases

existing system, 23
publishing to the cloud, 214
schema for member databases, 204

372

decision recording, 175
deployment

all data to, 18
management, 184-190
solutions, 184-185
some data, 19

diagnostic data, 181-184
multiple nodes, 358

diagnostics mechanism configuration, 176-177
diagrams See architecture
direct connection over TCP/SSL, 259
DistributedCacheOutputCacheProvider class, 335
DistributedCacheSessionStateStoreProvider session

state provider, 334, 344
distribution See data replicating, distributing, and

synchronizing
DownloadLogs method, 102-103

E
elasticity

cloud management, 310-311
control, 144-151
Enterprise Library Autoscaling Application

Block, 314-318
management choices, 144-146

Electronic Data Interchange (EDI), 68
encryption, 23
Enterprise Library Autoscaling Application Block, 314-318

overview, 313
Enterprise Library Logging Application Block, 172-173
Execute method, 84, 121-122, 125-127
ExecuteAction method, 59, 86-87
external partners, 33-36
ExternalDataAnalyzer project, 35-36

F
Failover policy, 153, 322
failover policy to achieve maximum availability and

functionality, 325
fan-out architecture, 296
federated authentication, 229, 234-235
filter rule action, 301, 302-303
FindAll method, 166
FindOne method, 57-58
firewall, 267
flow of control when receiving messages through a

ServiceBusReceiverHandler object, 83
forward, xv-xvi
forward-routing messages with filter rule action, 302

G
GetDefaultSqlCommandRetryPolicy method, 59
GetLockedOrders method, 123
GetTokenFromAcs method, 97-98
Guard method, 76
guide

how to use, xix-xx
technology map, 12-13

guidelines, 256-263

H
how to use this guide, xix-xx
HTML output caching, 335
hub database locating and sizing, 207-208
hybrid application monitoring and managing, 349-364

See also Orders monitoring and managing
Azure and related technologies, 354-364
Azure Service Management API and

PowerShell, 360-364
guidelines, 361

cross-cutting concerns, 353-354
management access to Windows Azure subscriptions

guidelines, 363-364
more information, 364-365
use cases and challenges, 350-353
Windows Azure Diagnostics, 355-360

data security guidelines, 360
use guidelines, 356-360

hybrid applications, xvii, 1
and data deployment, 17
hybrid version of the Trey Research solution, 65

I
ICachingStrategy interface, 160-163
IdentityExtensions class, 51-52
IJob interface, 118
illustrations See architecture
integration challenges, 2-4, 10-12
integrity and reliability, 202
interoperability, 233, 249, 291
IOrdersStatistics.cs file, 33
IProductsStore interface, 163-164
IsValidToken method, 99-100
IT professional role (Poe), xxi

J
Jana See software architect role (Jana)
job processors, 117-119

 373index

L
_Layout.cshtml, 53-54
load-balancing with multiple receivers, 278
load-leveling, 296
local cache, 334
local in-memory caching, 343
location choosing, 17-19
locking for, 121-124
LockOrders method, 122-123
logging

configuration, 175
messages with TrueFilter, 304-307

LogOn method, 54-55

M
management access to Windows Azure subscriptions

guidelines, 363-364
managing See hybrid application monitoring and managing;

Orders monitoring and managing
manual scaling, 145
Markus See senior software developer role (Markus)
messages

See also asynchronous messages; messaging
adapters and connectors for translating and

reformatting, 91-93
flow for the order processing system, 120
message session state information retrieving and

storing, 280
to multiple destinations, 291
new order message

creation, 126
sending, 128

ordered messages with Service Bus queues, 273
posting to a topic by Trey, 112-114
replies correlating, 93-94
routing

Azure technologies, 292-308
to different receivers through a Service Bus

topic and subscriptions, 293
update messages through a Service Bus topic

and subscriptions, 225
scheduling, expiring, and deferring, 286
securing, 97-100
Service Bus topic, 84-87
Service Bus topic and subscriptions

prioritization, 297
ServiceBusReceiverHandler object, 83
session state information, 280
technologies, 292-308

messaging
message-oriented communications, 250
Trey’s technologies for transport partners, 73
Trey’s technology to route orders to the audit

log, 101
two-way with response queues and message

correlation, 276
messaging and communications, 63-108

adapters and connectors for translating and
reformatting messages, 91-93

asynchronous messages
to a Service Bus queue, 75-77
from a Service Bus queue, 77-83
from a topic, 90-91

communicating with transport partners, 67-100
communication mechanism choice, 68-71
compliance, 104-106

hosting location, 105
Trey’s choice, 105-106

DownloadLogs method, 102-103
Electronic Data Interchange (EDI), 68
Execute method, 84, 93-94
ExecuteAction method, 86-87
GetTokenFromAcs method, 97-98
Guard method, 76
IsValidToken method, 99-100
messages

replies correlation, 93-94
securing, 97-100
Service Bus topic, 84-87

NewOrderJob class, 93-94
OrderProcessor.cs file, 92
orders to the audit log, 100-104

mechanism choice, 100-101
Orders.Shared project library, 74
ProcessMessage method, 80-82, 92-93, 104
ProcessMessages method, 78-79, 90-91
ReceiveNextMessage method, 79-80
Run method, 96
scenario and context, 63-66
securing message queues, topics, and

subscriptions, 94-97
Send method, 76-77, 85-86
Service Bus queues, 70
Service Bus topics and subscriptions, 71, 88
ServiceBusQueue class, 84-85
ServiceBusReceiverHandler object, 83, 90
ServiceBusSubscriptionDescription class, 89-90
ServiceBusTopic class, 96-97

374

SetupAuditLogListener method, 101-102
SetupServiceBusTopicAndQueue method, 88-89
transport partners and Trey, 71-100
web services (pull model), 69
web services (push model), 68-69
Windows Azure storage queues, 69-70

Microsoft Active Directory Federation Service See ADFS
Microsoft Sync Framework, 25
monitoring

approaches that Trey considered for the Orders
application, 171

logging, and measuring, 170-184
logging solution choice, 171

monitoring and managing See hybrid application monitor-
ing and managing; Orders monitoring and managing

monitoring endpoints, 321
more information, xxii

See also bibliography
architecture, 107-108, 227
authentication, 61-62
cross-boundary communication, 287
cross-boundary routing, 308
hybrid application monitoring and

managing, 364-365
order processing, 141
Orders application deployment to the cloud, 37
Orders monitoring and managing, 190-191
scalability, availability, and performance, 167
scalability, availability, and performance

maximizing, 347-348
Trey Research, 14
users and requests authentication, 244

multicasting, 262
multiple user IDs, 48
MyOrdersController class, 55

N
naming conventions, 267-268
Network Address Translation (NAT), 247, 259
network latency

and connectivity, 152-156
connectivity management choices by Trey, 154-156
reduction for accessing cloud applications, 311

with Traffic Manager, 318-324
new order message

creation, 126
sending, 128

NewOrderJob class, 119-121, 127-128
messaging and communications, 93-94

newOrderMessageSender instance, 120
no scaling, 144-145

O
on-premise

all data, 18-19
architecture, 6
authentication mechanism at Trey Research, 41
data sharing between the cloud and, 212
databases synchronized through the cloud, 199
master repository with one-way synchronization to

the cloud, 198
original mechanism at Trey Research, 41
publishing database to the cloud, 214
resources

from a partner organization and roaming
computers, 253

from outside the organization, 246
services

built with Ruby with Service Bus Relay, 261
with HTTP REST requests, 260
from outside with Service Bus Relay, 256-271

OnStart method, 175-176, 178-179
OpenServiceHost method, 33-34
optimistic, with versioning mode, 331
order processing, 109-141

to a Service Bus topic from the Orders
application, 117-131

AcsNamespace property, 136-137
Add method, 115-117
components in the on-premises application, 64
CreateJobProcessors method, 117
decoupling from the transport partners’

systems, 131-141
detail recording, 114-117
Execute method, 125-127
IJob interface, 118
job processors, 117-119
locking for, 121-124
message flow, 120
message posting to a topic by Trey, 112-114
more information, 141
new order message creation, 126
new order message sending, 128
NewOrderJob class, 119-121, 127-128
order acknowledgment of shipping, 135-139
OrderProcessor class, 132-133
OrderProcessStatus tables, 116-117
Orders application acknowledgment and status

messages, 139-141

 375index

orders with expired locks, 125
OrderStatus tables, 116-117
posting to the service bus topic, 125
process decoupling from the transport partners’

systems, 131-141
ProcessMessages method, 133-134
ProcessOrder method, 134-135
reliable send process completion, 129-131
Run method of worker role, 118-119
SendComplete method, 129-130
SendOrderReceived method, 135-136
SendToUpdateStatusQueue method, 138-139
StatusUpdateJob class, 139-141
summary, 141
system message flow, 120
transport partners, 111-141

receiving and processing, 132-135
TransportPartnerStore class, 125-126
TryUpdateModel method, 114-115
UpdateWithError method, 130-131
worker role, 118

OrderProcessor class, 132-133
OrderProcessor.cs file, 92
OrderProcessStatus table, 116-117, 121-122
orders

to a Service Bus topic from the Orders
application, 117-131

acknowledgment of shipping, 135-139
to the audit log, 100-104
to the audit log mechanism, 100-101

Trey’s choice, 101-104
data, 20-21
detail recording, 114-117
with expired locks, 125
posting to the service bus topic, 125
receiving and processing in a transport

partner, 132-135
Orders application, 4, 5-7

acknowledgment and status messages, 139-141
monitoring and managing solution choice, 171-174
monitoring and managing solution choice by

Trey, 174-184
Orders application, 188
original, 6-7

Orders application deployment to the cloud, 15-37
See also cloud
all data on premises, 18-19
application and data deployment, 17
audit log data, 21

bibliography, 37
custom reporting solution, 31
custom repository, 23
custom synchronization, 25
customer data, 20
data encryption, 23
data replication, 27
data storage mechanism, 21-23
data synchronization architecture, 28
deploying all data to, 18
deploying some data, 19
existing database system, 23
ExternalDataAnalyzer client application, 36
ExternalDataAnalyzer project, 35-36
IOrdersStatistics.cs file, 33
location choosing, 17-19
Microsoft Sync Framework, 25
more information, 37
OpenServiceHost method, 33-34
order data, 20-21
OrderStatistics service, 36
product data, 20
reporting data to external partners, 33-36
reporting solution, 29-36
reporting solution implementation, 29-36
scenario and context, 15-17
SQL Azure, 22
SQL Azure Data Sync, 24

Trey’s choice, 26-29
SQL Azure Reporting Service, 30-31

Trey’s choice, 32
SQL Server Reporting Services, 30
third party reporting solution, 31
third party synchronization, 25
Trey Research

deployment criteria, 19-21
reporting criteria, 31
storage criteria, 23
synchronization criteria, 26

web.config file, 34-35
Windows Azure storage, 21-22

Orders application4, 5-7
See also authentication; Orders monitoring and

managing
Orders monitoring and managing, 169-193

See also hybrid application monitoring and managing
App.config file, 188
Azure configuring with built-in management

objects, 188

376

Azure Diagnostics, 172, 174
Azure Management Portal, 184
Azure PowerShell cmdlets library, 185
Azure SDK, 185
Azure Service Management REST API, 185
CleanupRelyingParties method, 187
custom logging solution, 173-174
deployment and management, 184-190

Trey’s choice, 186-190
deployment solution choices, 184-185

Trey’s choice, 185-186
diagnostic data from the cloud, 181-184
Enterprise Library Logging Application

Block, 172-173
monitoring, logging, and measuring, 170-184

solution choice, 171
more information, 190-191
OnStart method, 175-176, 178-179
Orders application, 188
Orders monitoring and managing solution

choice, 171-174
Trey’s choice, 174-184

Orders Statistics service, 188-190
ReceiveNextMessage method, 179-181
recording decisions, 175
scenario and context, 169
Service Management Wrapper Library, 186-188
ServiceManagementWrapper object, 186-187
StoreController class, 180-181
summary, 190
third party monitoring solutions, 173
trace message logging, 177-178
trace message writing, 179-181
TraceHelper class, 174-175, 177-178
TraceInformation method, 179-180
TransferLogs method, 181-183

Orders Statistics service, 188-190
Orders.Shared project library, 74
OrderStatistics service, 36
OrderStatus table, 121

architecture, 121
OrderStatus tables, 116-117
Orders.Website project, 49-51
Orders.Website.Helpers project, 51-52

P
partners

authenticating corporate users and users from
partner organizations, 230-231

communication with transport partners, 67-100
external partners, 33-36
messaging technologies for transport partners by

Trey, 73
resources from a partner organization and roaming

computers, 253
transport partners, 111-141

Trey’s choice, 71-100
PeekLock, 283
performance See scalability, availability, and performance
Performance policy, 153, 321
pessimistic, with locking mode, 332-333
physical implementation of data synchronization, 28
Poe See IT professional role (Poe)
policies, 321-322
preface, xvii-xxii
prerequisites, xx-xxi
priority queue, 296
processing See order processing
ProcessMessage method, 80-82, 92-93, 104
ProcessMessages method, 78-79, 90-91, 133-134
ProcessOrder method, 134-135
product data, 20
production line with events based on Service Bus

subscriptions, 307
ProductsStoreWithCache object, 164-165
ProductStore class, 159-160, 163-164, 166

R
reactive rules, 314
ReceiveNextMessage method, 179-181

messaging and communications, 79-80
relevance of this guide, xviii
reliability

cross-boundary routing, 291
send process completion, 129-131
users and requests authentication, 233

remote procedure call (RPC), 249-250
replication

data between data centers in the cloud, 213
a database to implement read scale-out, 219

requests and responses through Azure Service Bus
Relay, 258

requirements, xx-xxi
and challenges, 310-313

response time, 156-166
optimization, 156-157

Trey’s choice, 158-166
throughput for cloud applications, 312-313

with Azure Caching, 327-347

 377index

responsiveness, 233, 248-249
and availability, 291

retry policy, 58-59
reviewers, xxiii-xxiv
roles

See also cloud specialist role (Bharath); IT
professional role (Poe); senior software developer
role (Markus); software architect role (Jana)

described, xxi
Round Robin policy, 153, 322
Run method, 96

of worker role, 118-119

S
scalability, availability, and performance, 143-167

automatic scaling with custom service, 145-146
automatic scaling with Enterprise Library Autoscaling

Application Block, 146
Autoscaler object, 148-151
Autoscaling Application Block hosting, 147-148
autoscaling rule definitions, 148-151
Azure Caching, 156-157
Azure Caching defining and configuration, 158-159
Azure Traffic Manager to route customers’

requests, 153-154
cache and database synching, 159
caching functionality, 160-164
CachingStrategy class, 161-163
ContainerBootstrapper class, 164-165
Content Delivery Network (CDN), 157
custom service to redirect traffic, 152-153
data retrieving and managing, 159-160
elasticity control, 144-151
elasticity management choices, 144-146
Failover policy, 153
FindAll method, 166
ICachingStrategy interface, 160-163
IProductsStore interface, 163-164
manual scaling, 145
more information, 167
network latency and connectivity, 152-156

management choices, 152-154
Trey’s choices, 154-156

no scaling, 144-145
Performance policy, 153
ProductsStoreWithCache object, 164-165
ProductStore class, 159-160, 163-164, 166
response time, 156-166

optimization, 156-157
Trey’s choice, 158-166

Round Robin policy, 153
scenario and context, 143-144
ServiceConfiguration.csfg, 158-159
StartDiagnostics method, 151
StoreController class, 166
summary, 167
Traffic Manager, 153-154
Trey’s choices, 146-151

scalability, availability, and performance
maximizing, 309-348

actions, 316-317
Autoscaling Application Block, 315

use guidelines, 317-318
availability maximizing for cloud applications, 312

with Azure Traffic Manager, 324-326
Azure and related technologies, 313-347
Azure Caching limitations, 346
Azure Caching provisioning and sizing, 327-329
Azure Caching security guidelines, 347
Azure Traffic Manager applications, 318-324
caching

data updating, 331
guidelines, 336-346
overview, 313
web application session state, 335

changeSetting action, 317
constraint rules, 314, 316
Content Delivery Network (CDN) overview, 313
DistributedCacheOutputCacheProvider class, 335
DistributedCacheSessionStateStoreProvider

session state provider, 334
elasticity

in the cloud management, 310-311
with Enterprise Library Autoscaling Application

Block, 314-318
Enterprise Library Autoscaling Application

Block, 314-318
overview, 313

Failover policy, 322
HTML output caching, 335
local cache, 334
monitoring endpoints, 321
more information, 347-348
network latency reduction

accessing cloud applications, 311
accessing cloud applications with Traffic

Manager, 318-324
optimistic, with versioning mode, 331
Performance policy, 321
pessimistic, with locking mode, 332-333

378

policies, 321-322
reactive rules, 314
requirements and challenges, 310-313
response time and throughput

for cloud applications, 312-313
for cloud applications with Azure

Caching, 327-347
Round Robin policy, 322
scale action, 317
services that share data with Azure Caching, 329-331
setRange action, 316
Traffic Manager

limitations, 323-324
overview, 313
to reduce network latency guidelines, 323
request routing, 319-320
use guidelines, 322-323

scale action, 317
scaling

automatic, 145-146
autoscaling rule definitions, 148-151
no scaling, 144-145
Service Bus topic and subscriptions, 300

scenario and context, 143-144, 169
authentication, 39-41
messaging and communications, 63-66
Orders application deployment to the cloud, 15-17

scenarios, 1-14
See also Orders application; Trey Research

security
cross-boundary communication, 248
cross-boundary routing, 291
message queues, topics, and subscriptions, 94-97
users and requests authentication, 232-233
Windows Azure Connect, 253-255

security architecture of Windows Azure Connect, 254
segregation across the Orders application deployment, 16
Send method, 76-77
SendComplete method, 129-130
sender applications, 295
SendOrderReceived method, 135-136
SendToUpdateStatusQueue method, 138-139
senior software developer role (Markus), xxi

GUIDs, 206
Service Bus

authentication, 95
authentication and authorization, 239-244
endpoints and relying parties, 243
message, 271-272

queues, 70
request authentication with ACS, 240
request authentication with ADFS and ACS, 242
tokens and token providers, 243
topics and subscriptions, 71

Service Bus queues, 70
batch processing, 274
guidelines, 272-283
with ordered messages, 273
security guidelines, 286-287

Service Bus Relay, 240
guidelines, 256-263
requests and responses, 258
service naming guidelines, 267-268
vs.Windows Azure Connect, 270-271

Service Bus topics and subscriptions, 71, 88
decoupling a sender application from the message

routing logic, 295
guidelines, 222-227
message routing

guidelines, 293-303
limitations, 304-308
multiple destinations guidelines, 304-307
multiple destinations limitations, 308
updating, 225

security guidelines, 308
Service Management Wrapper Library, 186-188
ServiceBusQueue class, 84-85
ServiceBusReceiverHandler object, 83, 90
ServiceBusSubscriptionDescription class, 89-90
ServiceBusTopic class, 96-97
ServiceManagementWrapper object, 186-187
services

exposed through Service Bus Relay, 266
sharing data with Windows Azure Caching, 329-331

sessions
different states from different datacenters, 345
to group messages, 279

setRange action, 316
SetupAuditLogListener method, 101-102
SetupServiceBusTopicAndQueue method, 88-89
SingleOrDefault method, 59
smart client or service authentication, 237
software architect role (Jana), xxi
solutions

deployment, 184-185
implementation, 29-36
reporting, 29-36
third party monitoring, 173
third party reporting solution, 31

 379index

specifying the synchronization direction for databases
participating in Topology D, 210

SQL Azure, 22
SQL Azure Data Sync, 24

configuration guidelines, 203-211
to partition and replicate data across branch

offices, 218
to partition and replicate data in the cloud, 217
to replicate and synchronize, data replicating,

distributing, and synchronizing, 203-220
Trey’s choice, 26-29
use guidelines, 211-220

SQL Azure Data Sync Security Model, 220
SQL Azure Reporting Service, 30-31

Trey’s choice, 32
SQL Server Reporting Services, 30
SSO (single sign-on), 229
staged migration to cloud, 12
StartDiagnostics method, 151
StatusUpdateJob class, 139-141
StoreController class, 166, 180-181
strategy, 5
subscription correlation, 298

to deliver response messages to a sender, 299
summary

authentication, 61
order processing, 141
Orders monitoring and managing, 190
scalability, availability, and performance, 167
Trey Research, 13-14

support, xxii
sync datasets defined, 203-204
Sync Framework SDK for custom replication and

synchronization, 221-222
sync groups, 203-204

configuration table, 29
defined, 203

sync loop avoidance, 210-211
synchronization

See also data replicating, distributing, and
synchronizing

bidirectional
across all databases, 195
only across databases in the cloud, 196

conflict management, 205-206
direction for a database, 209
schedule for a sync group, 208

system requirements, xx-xxi

T
tables

authenticating visitors, 47
diagnostics mechanism configuration, 176-177
Execute method, 122
GetLockedOrders method, 123
LockOrders method, 122-123
logging configuration, 175
OrderProcessStatus table, 121-122
OrderStatus table, 121
Service Bus authentication, 95
sync group configuration, 29
technology map, 13

team, xxiii-xxiv
technology map, 13
third party monitoring solutions, 173
third party reporting solution, 31
third party synchronization, 25
trace messages

logging, 177-178
writing, 179-181

TraceHelper class, 174-175, 177-178
TraceInformation method, 179-180
Traffic Manager, 153-154

limitations, 323-324
overview, 313
to reduce network latency guidelines, 323
request routing, 319-320
routing and redirection, 320
use guidelines, 322-323

TransferLogs method, 181-183
Transient Fault Handling Application Block, 59
transport partners, 111-141

Trey’s choice, 71-100
TransportPartnerStore class, 125-126
Trey Research, xvii

See also Orders application
bibliography, 14
choices, elasticity, 146-151
deployment criteria, 19-21
more information, 14
original on-premises authentication mechanism, 41
reporting criteria, 31
scenario, 1-14
storage criteria, 23
strategy, 5
summary, 13-14
synchronization criteria, 26

TryUpdateModel method, 114-115

380

U
uncontrolled updates, 223
updates

notifications by Service Bus topic and
subscriptions, 227

propagation between Windows Azure caches and
replicated data stores, 339

uncontrolled, 223
UpdateWithError method, 130-131
URI naming conventions, 267-268
use cases and challenges, 230-232

cross-boundary communication, 245
data replicating, distributing, and

synchronizing, 193-194
hybrid application monitoring and managing, 350-353

users and requests authentication, 229-244
Access Control Service (ACS), 238-239
ACS and unique user IDs, 239
authentication

corporate users and users from partner
organizations, 230-231

public users, 230
authorization

access to Service Bus queues, 232
access to Service Bus Relay endpoints, 232
rules and rule groups, 244
service access for non-browser clients, 231
user actions, 231

claims-based authentication and authorization
technologies, 233-239

claims-based authentication process
overview, 235-236

client authentication, 240-242
cross-cutting concerns, 232-233
federated authentication, 229, 234-235
interoperability, 233
more information, 244
reliability, 233
responsiveness, 233
security, 232-233
Service Bus authentication and

authorization, 239-244
Service Bus endpoints and relying parties, 243
Service Bus Relay, 240
Service Bus tokens and token providers, 243
SSO, 229
uses cases and challenges, 230-232
web service requests authorizing, 236-237
Windows Identity Foundation (WIF), 237-238

V
Views/Shared folder, 53-54
visitor authentication and authorizationLayout.

cshtml, 53-54
visitors, 42-59

authentication and authorization, 53-54

W
web services

(pull model), 69
(push model), 68-69
requests authorizing, 236-237

web.config file, 34-35, 53
who’s who, xxi
WIF, 49-52, 237-238
Windows Azure

See also Azure; cloud
configuring with built-in management objects, 188
storage, 21-22
storage queues, 69-70
technologies for cross-boundary

communication, 249-287
Windows Azure Access Control Service (ACS) See ACS
Windows Azure and related technologies, 202-227
Windows Azure Caching, 156-157

See also caching
data sharing, 329-331
limitations, 346
to provide scalability, 330
provisioning and sizing, 327-329

Windows Azure Connect, 251-256
vs. Service Bus Relay, 270-271

Windows Azure Content Delivery Network (CDN) See
Content Delivery Network (CDN)

Windows Azure Diagnostics, 172, 174
data security guidelines, 360
hybrid application monitoring and managing, 355-360
use guidelines, 356-360

Windows Azure Management Portal, 184
Windows Azure PowerShell cmdlets library, 185
Windows Azure SDK, 185
Windows Azure Service Bus topics and subscriptions See

Service Bus
Windows Azure Service Management REST API, 185
Windows Azure Traffic Manager, 155

applications, 318-324
Windows Identity Foundation (WIF) See WIF
worker role requests through Service Bus Relay, 263
WsFederationRequestValidator class, 52-53

