

Windows Embedded Automotive 7 Deep Dive:

Phone and Media Cores

Abstract

Windows Embedded Automotive 7―based on the newest generation of embedded operating
systems from Microsoft, and combining the award-winning Windows Automotive and Microsoft
Auto platforms―is designed specifically for developing state-of-the-art, in-vehicle infotainment
systems. It offers a standardized, industry-proven platform for building communication,
entertainment, and service-enabled location-based solutions.

The Phone Core and Media Core components, part of Windows Embedded Automotive 7, are
robust, integrated technologies that allow easy and safe access to phone and media features.
Phone Core and Media Core establish a solid foundation for automotive original equipment
manufacturers (OEMs) by providing standardized tools and application programming interfaces
(APIs) compatible with a wide range of mobile devices. Automotive OEMs can build solutions
with the assurance that Microsoft’s extensive testing of devices and frequent software updates
ensure interoperability with the latest mobile handset and media player technologies.

This white paper discusses the Phone Core and Media Core components of Windows Embedded
Automotive 7 in detail and provides specific industry examples of how these technologies are
currently being used.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 2

Table of Contents

INTRODUCTION ...4

WINDOWS EMBEDDED AUTOMOTIVE IN USE TODAY ..4

SIMPLIFIED UI DEVELOPMENT WITH SILVERLIGHT FOR WINDOWS EMBEDDED5

DISPLAY .. 8
Display Driver ... 8
Native Display API .. 9

PROJEKT 2 SAMPLE APPLICATION .. 10

PHONE CORE DEEP DIVE ... 11

PHONE CORE ARCHITECTURE OVERVIEW .. 11
PHONE CONNECTION MANAGEMENT .. 13

Automatic Connection .. 14
Manual Connection .. 14
Disconnection ... 14
Phone Availability ... 14

PHONE CORE REGISTRY SETTINGS ... 14
PHONE CORE WINDOWS MESSAGES ... 16
BLUETOOTH HARDWARE AND STACK ... 18
ACOUSTIC ECHO CANCELLATION/NOISE SUPPRESSION .. 20

AEC/NS Configuration Registry Keys .. 20
SUPPORTED BLUETOOTH PROFILES .. 21
BLUETOOTH QUALIFICATION .. 22
BLUETOOTH PAIRING CORE AND SERVICE ... 22

Bluetooth Pairing Core ... 22
Bluetooth Pairing Service ... 24
Discovery Mode and Discoverable Mode ... 26
Special Pairing Features ... 26

HANDS-FREE PHONE ... 26
Hands-free Profile Service .. 27
HFPCore Service .. 27
Call Handling .. 29
Dialing Feature Support ... 32
Phone Feature Support ... 32
Phone Core Versus HFPAPI ... 33

HIGH-QUALITY RINGTONE ... 33
PHONE GETLASTERROR ... 34
SYNC MANAGER AND PHONEBOOK ... 36

Phonebook Text Storage .. 37
Phonebook Storage Using the Pocket Outlook Object Model .. 37
Phone Contact Image Auto Compression ... 39
Phonebook Implementations ... 40
OBEX Phonebook Stores ... 40
Sync Manager Architecture .. 41

SMS SUPPORT AND EMAIL .. 42

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 3

GSM SMS AT Command Support .. 44
SMS Stack and MAP Service ... 44

BLUETOOTH AUDIO/VIDEO (BTAV) SERVICE .. 45
CALENDAR ... 48
INDIVIDUAL PHONE CONFIGURABILITY ... 49
CONNECTION MANAGER ... 52
DATA CONNECTIVITY ... 53

Bluetooth Dial-up Networking ... 53
Bluetooth Gateway Services ... 54
Personal Area Network .. 54

SIM ACCESS PROFILE .. 56

MEDIA CORE DEEP DIVE ... 57

MEDIA CORE ARCHITECTURE OVERVIEW .. 57
Media Source Plug-ins .. 59

SUPPORTED TECHNOLOGIES ... 60
MEDIA FEATURE ENHANCEMENTS ... 61
BUILDING A MEDIA APPLICATION .. 62

Sysgen Variables ... 62
Browsing the Content ... 62
Playback ... 63
Album Art ... 63
Device Tips .. 63

MEDIA CORE CONFIGURATION ... 64
MEDIA CORE WINDOWS MESSAGES .. 65
CUSTOM MEDIA DEVICE CLASS ... 68
CUSTOM FILE AND PLAYLIST PARSER .. 68

File Parser ... 68
Playlist Parser ... 69

ALBUM ART ... 69
METADATA PLUG-IN API ... 69
IPOD APPLICATION TO ACCESSORY COMMUNICATION .. 70
IAP AND MTP PASSTHROUGH .. 71

Considerations for iPod .. 71
Considerations for MTP .. 72

DEVICE LAB .. 72

CONCLUSION ... 73

APPENDIX 1: GLOBALIZATION FEATURES .. 74

APPENDIX 2: BLUETOOTH PAIRING SERVICE REGISTRY KEY VALUES 76

APPENDIX 3: MEDIA CORE REGISTRY SETTINGS ... 79

MTP-RELATED REGISTRY KEYS .. 88
Zune .. 91

APPENDIX 4: COMPATIBLE DEVICES .. 93

GLOSSARY ... 101

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 4

Introduction

With Windows Embedded Automotive 7 application software developers and automotive

electronics engineers gain a rich environment from which they can add their own functionality

to create a broad range of advanced, in-vehicle solutions that meet the growing needs of

consumers while setting the products apart from the rest of the field. The flexible Windows

Embedded Automotive 7 platform targets a wide range of devices, including connectivity

gateways, connected radios, and multimedia devices.

This white paper takes a closer look at the benefits of developing applications around Phone

Core and Media Core, two of the components that form the foundation of the Automotive 7

platform. This paper also explores exciting new user interface (UI) design possibilities using

Microsoft Silverlight for Windows Embedded. These components provide standardized tools and

APIs, forming a solid foundation for in-car infotainment systems.

Windows Embedded Automotive In Use Today

Several automobile manufacturers and OEMs, including Ford, Kia, and Fiat, have developed and

deployed Windows Embedded Automotive applications that take advantage of Phone Core and

Media Core. These applications provide in-car services such as hands-free capabilities for

Bluetooth-enabled phones, emergency 911 assistance, and voice-activated

media playback.

Ford
Ford introduced the Ford SYNC in-car communications and entertainment

system in 2007 in Ford, Lincoln, and Mercury vehicles, and has shipped nearly 3 million units.

Ford builds upon the Windows Embedded Automotive system—in particular, Phone Core and

Media Core—to allow users to operate their Bluetooth-enabled phones via simple voice

commands, respond to accidents or emergencies with 911 Assist, and receive text messages,

and hear the messages read aloud using a digitized voice.

With Ford SYNC users can also enjoy their music on a wide variety of media devices, and control

the devices with voice commands. Ford introduced its second-generation in-car infotainment

system, the MyFord Touch, in 2010. MyFord Touch features improved voice recognition, touch-

sensitive buttons, touch screens, and thumb-wheel controls to replace the usual knobs and

switches. MyFord Touch also boosts Wi-Fi and connectivity with the help of a secure digital (SD)

card slot.

Kia
Kia recently introduced Kia UVO, an in-car infotainment system that

employs the Windows Embedded Automotive system. Kia UVO builds upon Phone Core and

Media Core with advanced features such as voice-activated and touch-activated phone and

media commands. Kia UVO includes a full-color in-dash screen, and uses voice commands to

help drivers and passengers access music files, operate a rear-view camera, change radio

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 5

stations, make or answer phone calls, and more. By supporting complex grammar, UVO needs

only short voice commands to connect drivers and passengers with their desired functions. An

interactive system, UVO responds to inquiries such as “What’s playing?” and provides audible

responses and related functions, allowing drivers to stay safely focused on the road.

Fiat
Fiat Blue&Me empowers customers to connect their personal mobile

devices with the integrated solution found in many vehicle models from

Fiat, Alfa Romeo, Lancia, Iveco, and Fiat Light Commercial Vehicles. First presented in 2006,

Blue&Me was originally developed as an infotainment system capable of allowing mobile

phones and MP3 players to be used in the car safely with voice-recognition commands and

steering wheel controls.

In 2008, the system evolved further with the introduction of eco:Drive, a free application

exclusive to Fiat that helps drivers understand how their driving style can affect consumption

and CO2 emissions. Fiat continues to press forward with development of the Blue&Me system,

from Blue&Me Nav to TomTom integration, from Nokia Ovi integration to eco:Drive―numerous

applications continue to make Fiat Blue&Me an international success.

And More!
Microsoft is also partnering with other automobile manufacturers and original equipment

manufacturers (OEMs), such as Chrysler, PACCAR, and Alpine, to bring new Windows Embedded

Automotive–powered products to market.

With a proven track record of deployed products, Automotive 7 provides a flexible, mature

platform for OEMs, centered on Phone Core and Media Core components.

Simplified UI Development with Silverlight for Windows Embedded

Today’s consumers expect a compelling user experience (UX), but creating these user
experiences can consume a lot of time and resources.

Typically, Human-Machine Interface (HMI) design follows these steps:

1. Create the design using Adobe Photoshop and Microsoft PowerPoint.
2. Define the HMI behavior in Microsoft Excel worksheets and Microsoft Word documents.
3. Roll the design and behavior into a rapid prototype (in Adobe Flash, for example).
4. Build the prototypes into an actual HMI.

Essentially, the work is being done twice: once by the designer and again by the developer. This
system also adds delays and imposes additional risk. After the developer re-creates the UX code,
the back-end code must be created as well (or at least enough of the code must be created to
get the HMI running). It is only at this point that the HMI can be reviewed. If there is a problem,
the HMI goes back to the developer to be corrected; if the UX designer created an interface that
is not practical, the cycle may need to start over from the beginning.

With Microsoft Silverlight for Windows Embedded, a new design/develop paradigm is possible:

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 6

1. Design the user experience in Microsoft Expression Blend.
2. Develop the business logic in Microsoft Visual Studio with Silverlight for Windows

Embedded.
3. Run the HMI on the embedded device.

This is a significantly easier process. Figure 1 compares current HMI design with that possible
with Silverlight for Windows Embedded.

Figure 1: Comparing typical HMI design with Silverlight for Windows Embedded Automotive

A design process based on Microsoft Silverlight for Windows Embedded reduces delays and last-
minute design changes. The developer can take the UX that the designer created as is. No
changes are needed―the UX can be imported directly into the developer’s Visual Studio
development environment. The review process is instant as well―as soon as an HMI is
developed, developers can see exactly what the HMI will look like on the device before any
additional code is created. This saves time and reduces the risk of identifying UX issues late in
the design cycle.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 7

Figure 2 shows the Silverlight for Windows Embedded workflow.

Figure 2: Silverlight for Windows Embedded workflow

Silverlight for Windows Embedded provides a subset of the overall Microsoft Silverlight
functionality for embedded devices. Unlike other versions of Silverlight, there is no managed
application programming interface (API) and no browser plug-in.

The version of Silverlight for Windows Embedded included with Windows Embedded
Automotive 7 extends the version of Silverlight that is available with Windows Embedded
Compact with the following key features:

• Additional behaviors, or self-contained, reusable snippets of interactivity, that can be
applied to any Silverlight UI object. These behaviors can support configuration options
that are accessible through the property inspector.

• Automotive button, a specialized version of the standard UI.
• OpenVG support, support for graphics acceleration using the OpenVG capabilities of the

graphics card.

Extensible Application Markup Language (XAML), a markup language for declarative application
programming, makes it possible for designers and developers to work simultaneously. As with
Silverlight on the desktop, the designer creates the visible UI elements in XAML, and the
developer creates the separate code-behind files to respond to events, manipulate the elements
declared in the XAML, and control the underlying business logic of the application. Unlike
Silverlight on the desktop (which uses managed code like C# or Microsoft Visual Basic),
Silverlight for Windows Embedded uses native code (C++) and does not run in a security
sandbox. This means that Silverlight has access to any API and resource on the device. However,
this also means that desktop Silverlight applications will not run on Windows Embedded CE
devices.

To achieve smooth, responsive animations, devices often take advantage of Graphics Processing
Unit (GPU) acceleration from their hardware. The automotive version of Silverlight for Windows
Embedded provides for hardware-accelerated vector drawing through cached composition. An

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 8

OpenVG1.1-based sample render plug-in is provided, and customers can modify it to use any
vector graphic APIs (see Figure 3).

Figure 3: Detail of Silverlight for Windows Embedded

The automotive version of Microsoft Silverlight for Windows Embedded has extra elements that
use XAML to compose additional, out-of-process graphics, such as maps and browsers, into an
HMI.

Microsoft also provides a default template for an automotive solution, with a reference to the
module host binary (shipped with Windows Embedded Automotive 7 or the HMI Toolkit), a
bezel proxy and the outline for a media-pseudo application (a managed application that mimics
a small subset of the functionality of a real application, used for design purposes and meant to
be replaced by a real application when moving to native code).

For further information about the version of Silverlight for Windows Embedded, see the
Microsoft Silverlight for Windows Embedded web page.

Display

The ability to display text, buttons, and graphics on the display screen complements speech-
based interaction with the user—provided that the display is accomplished with consideration
for avoiding driver distraction. The display screen is especially useful for scenarios in which the
persistence of visual input has a higher value than auditory input (for example, if a turn
announcement is missed, the driver can still look at the display to find out what to do next).

Windows Embedded Automotive 7 can use a display component to work with a remote display,
which is typically accessed through the vehicle network. The display service manages the use of
the shared display screen by Automotive 7. It provides mechanisms to help ensure that
applications can be written to easily accommodate variations in the display type and layouts.
This benefits application developers because it lets them write code that is display agnostic, and
can be easily adapted to multiple display types.

Display Driver

The display driver abstracts the display-specific communication that is required on the controller
area network (CAN) bus from the higher layers. It also provides character-set mapping.

http://go.microsoft.com/fwlink/?LinkId=192016

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 9

When the system starts up, the display driver determines what type of vehicle display it needs
to adapt to on the basis of a CAN message broadcast by the display head unit. Until that
message is received, any requests for display write operations fail. Based on the received
information the display driver chooses the appropriate character-set translation map, the
supported display layouts, and a display-specific CAN signal assembly.

The display driver implements two sets of input/output controls (IOCTLs)—one for determining
the supported layouts and another for writing a message or for clearing the display. Applications
communicate directly with the display driver for streaming information, requesting display
capabilities, and more. The display driver also needs to maintain state information with the
audio subsystem because of dependencies between the audio source and a particular display
control. The display driver does not distinguish between the different display sections on the
display screen. It does not perform any queuing of requests. It also does not perform any
verification of whether the application writing to the display has permission to do so.

The display driver relies on the character-set map to perform a mapping of Unicode characters
to codes that the display understands. The character codes that are sent to the display are
6-bits long and are chosen from a set of 64 characters, which includes a default character used
to map any unknown characters. The display driver also truncates the number of lines in a
display request to actual lines that the layout supports (it does not truncate characters on a
line—that is the responsibility of the display head unit or of the application itself).

Native Display API

The native display API layer uses the services of the display driver after opening a handle to the
display driver through a call to CreateFile on “ICD1” (the device name for the display head unit).
The handle is stored for subsequent DeviceIoControl calls. Upon success, the native display API
layer requests the supported display layouts by calling IOCTL_DISPLAY_GET_LAYOUTS and then
caches them.

The native display API layer is a pass-through to the display driver. The native display API layer
performs focus and parameter validation and packages arguments to send to the display driver.
All calls into the native display API are synchronous, and there are no callback or event
mechanisms.

This API layer helps ensure that the application that is making a display request has obtained the
display focus. Display focus is determined by whether the application has the current graphics,
windowing, and events subsystem (GWES) foreground window. If the requesting application
does have display focus, an appropriate IOCTL call is issued to the display driver. Applications
can also query supported capabilities of the vehicle display from this API layer.

Note that a Windows Embedded Automotive HMI is typically defined using XAML and rendered
through the XAML renderer. But some applications, such as map and video, have their own
graphical outputs from their processes. These graphical outputs are composited into a single
HMI and presented as one UI screen from a user viewpoint. Typically, this composition is done
using a hardware overlay. Microsoft Silverlight for Windows Embedded provides a feature which
blends the graphical outputs of the applications into the Windows Embedded Automotive HMI
through the CompositorCore.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 10

Projekt 2 Sample Application

Microsoft provides the Projekt 2 sample UX application to help jumpstart OEM UX development.
This application provides a sample framework that designers and application developers can use
to design their own UIs. This speeds up the design and development process while providing an
example of a safe and robust UI.

Projekt 2 demonstrates the types of interactions that are supported by Microsoft Silverlight for
Windows Embedded. The UI encompasses three key areas of automotive UI: phone, radio, and
media playback. These UIs are tied into the Phone, Radio, and Media Cores, which help users
receive and interact with phone calls, listen to the radio and manage radio station lists, and
browse and play songs in the media library, respectively.

Table 1 shows a sampling of the Projekt 2 UIs.

Table 1: Projekt 2 UI elements

Projekt 2 UI Description

The menu UI demonstrates user workflows for
accessing the various Windows Embedded
Automotive 7 components, such as navigation,
phone, radio, media, and setup.

The media UI provides the user access to the media
library and playback control of supported audio file
types. The UI also demonstrates the display of
imported images associated with albums.

The radio UI provides the user controls for
managing radio functions. These controls include
station lists, frequency tuning, and frequency band
selection. The UI also displays the currently selected
radio station, and any information that is sent over-
the-air by the radio station.

Note that the UI provides information about the
phone, including Bluetooth connection status, signal
strength, and battery level.

The phone UI provides access to the most
commonly accessed phone features. These include
outbound dialing, contact management, messaging,
and call history. The UI also displays message and
call status information, such as the number of calls
missed and the number of new received messages,
including email and SMS.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 11

Projekt 2 UI Description

The incoming call UI displays as a pop-up dialog over
the currently selected UI. When a call is received,
the application matches the caller ID information
against contacts in the phonebook. If a match is
found, the contact information is displayed,
including name, phone number, and image. The UI
provides options for controlling the call, including
accept, ignore, and decline.

The contacts UI provides the user access to the
phonebook synchronized with the phone. The UI
provides advanced features such as sort and search,
as well as the capability to edit individual contacts.

Phone Core Deep Dive

Telephone and data communications are a key component of an in-vehicle infotainment system,

helping consumers access their phones and data in a safe, hands-free manner. Phone Core

supplies a robust set of services and APIs that allow software engineers to design powerful

phone and data applications that integrate with other Windows Embedded Automotive 7

applications to provide consumers a safe and accessible solution.

Phone Core Architecture Overview

Phone Core provides a uniform interface with services for hands-free telephony, managing

Bluetooth profiles, phone management, data connectivity, and Short Message Service (SMS).

These services integrate with the vehicle’s audio system and provide a voice-based and touch-

based interface.

Note that Microsoft recommends using the Phone Core API for all application development,

unless otherwise noted.

The foundation of Phone Core resides in three components:

• Bluetooth profile: Applications that rely on telephony and data communications—such

as a phone application—reside at the topmost layer of the telephony and data

communications architecture and use Windows Embedded Automotive middleware

services and/or Bluetooth profiles. For applications that use Bluetooth wireless

technology for data communications, a profile is applied to describe how to exchange

specific types of data over Bluetooth. For example, a hands-free phone application must

apply the hands-free profile (HFP) to define how to place and receive phone calls, as

well as perform other phone-related functionality on the Automotive 7–based device

using a Bluetooth audio gateway (a paired mobile phone).

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 12

• SMS: The SMS supports access to SMS messages that are received by a connected

Bluetooth phone and supports sending of SMS messages by a connected Bluetooth

phone. SMS messages can be retrieved via AT commands or the Message Access Profile

(MAP) service. Automotive 7 also supports MAP email from any Message Access Service

(MAS) instance. Email can be retrieved from the Bluetooth-connected device and then

handled by an appropriate application or service.

• Connection Manager: Data connections established with other data sources—through

the external mobile phone—are managed by the Connection Manager. The Connection

Manager centralizes and automates the establishment and management of these

connections for Windows Embedded Automotive applications, handling the details of

each connection. The Connection Manager can establish and manage network

connections and route data to the network using the Bluetooth stack. For connections

to data sources established over Bluetooth, the Bluetooth stack is used to transport

data to a Bluetooth host. Figure 4 shows the overall architecture of Phone Core. See the

Glossary for definitions of unfamiliar terms and acronyms.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 13

Figure 4: Phone Core architecture

Phone Connection Management

Windows Embedded Automotive 7 provides features to connect to a previously paired
Bluetooth-enabled phone, as well as features to handle phone disconnects and phone
availability. Only one Bluetooth-enabled phone can be connected at a time, and any additional
attempts from other phones to connect to the Windows Embedded Automotive device are
rejected.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 14

Automatic Connection

Windows Embedded Automotive 7 can automatically connect to a previously-paired phone,
based on events initiated from applications or phone-related functions initiated by the user,
such as pressing the Send button on the phone.

Automotive 7 supports connection to a phone with an active call. If a call is in-progress at
connection time, Windows Embedded Automotive queries the phone for the phone number and
contact information if this feature is supported by the Bluetooth phone.

Manual Connection

Automotive 7 supports manual connection to a previously-paired Bluetooth device. A user can
select a paired device from the UI and manually initiate a connection. If the connection is
successful, a notification appears indicating that the device is connected. If the selected device is
not found or fails to connect after one minute, the connection times out and the user is
returned to the paired device selection UI.

Automotive 7 also supports manual connection events while automatic connection sequences
are underway. If a user selects a manual connection routine for a paired device during an
automatic connection sequence, Automotive terminates the automatic sequence. If a phone
fails to connect during the manual connect routine, the automatic connection routine does not
automatically resume unless the user either initiates a key-on event or presses a phone-related
button.

Automotive 7 includes a feature that returns a notification of why a particular connection
failed—either that the device is out of range, or that the link key is no longer valid. If the link key
is no longer valid, a UI can be displayed that automatically begins a pairing sequence.

Disconnection

When a connected phone disconnects, Automotive 7 does not automatically trigger the
automatic connection sequence to search for a device. Windows Embedded Automotive
typically does not have any indication as to what caused the disconnect, such as whether or not
a user powered off the phone, selected a privacy option, or manually disconnected the phone.
Therefore, Automotive will not try to reconnect to the disconnected device.

Phone Availability

When a user attempts to perform an interaction that requires a Bluetooth-enabled phone be
connected while no phone is paired, Automotive 7 notifies the user that no phone is connected.
If a paired phone is available, Automotive notifies the user that it is trying to connect to the
phone.

Phone Core Registry Settings

Phone Core is managed through registry key values. These values can be programmatically

modified by applications.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 15

The Phone Core registry keys are:

• HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\PhoneCore
• HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\PhonebookOptions

Table 2 details the Phone Core registry values. Table 3 details the PhonebookOptions registry
key values.

Table 2: Phone Core registry values

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\PhoneCore

Key Value Type Description

AutoConnectAttempt DWORD Specifies the number of loops through the paired phone list to attempt
auto connect. The device attempts to connect to each of the paired
phones in the list and repeats this process for a total of three times
until a connection attempt is successful or until the third repetition of
the process completes.

The default value is 3.

AppConnectAttempt DWORD Specifies the number of times that the Windows Embedded
Automotive 7–based device attempts to connect to the paired phone
when the user initiates the connection.

The default value is 1.

ConnectTimeoutSec DWORD Contains the timeout value, in seconds, for making a manual
connection attempt. A manual connection attempt occurs when the
user attempts to make a connection either from the phone handset or
by making a selection from the Windows Embedded Automotive 7–
based device display menu.

Note that this timeout does not apply to auto connect.

The default value is 30.

RingCountToPlayLocalRingTone DWORD Specifies the number of times to ring before cancelling the attempt to
play a synchronous connection-oriented (SCO) ringtone. The default
value is 3.

PhonebookDownload DWORD Specifies the phonebook automatic download flag. This value can be 1
to specify automatic download upon connection or 0 to specify no
automatic download upon connection. The default value is 0.

PhonebookFull DWORD Specifies the value of the phonebook full flag. A 1 indicates the
phonebook is full. The default value is 0.

ContactAdded DWORD Specifies the value of the contact added flag. A 0 indicates none were
added to the phonebook. A 1 indicates a contact was added to the
phonebook. The default value is 0.

SCOringTone DWORD Specifies whether the phone has SCO ringtone capability. The default
value is 0.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 16

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\PhoneCore

Key Value Type Description

RingtoneOption DWORD Specifies the ringtone configuration options:

• 0—no ringtone

• 1—ringtone temporarily silent

• 2—in-band ringtone (SCO audio connection)

• 3—default local ringtone

• 4—local ringtone number 1

• 5—local ringtone number 2

• 6—local ringtone number 3

The default value is 0.

HQRTOption DWORD Enables or disables high-quality ringtones (HQRT). A value of 0 disables
HQRT, a value of 1 enables HQRT. The default value is 1.

Table 3: PhonebookOptions registry key values

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\PhonebookOptions

Key Value Description

ProgressInterval Specifies the phonebook download progress bar notification interval. This value
can be set to 0 to disable the progress bar. If set to any other value, the application
is notified of download progress for ProgressInterval items. The default value is 20.

Phone Core Windows Messages

Applications can receive phone-related event messages, such as when a phone call is received or

answered, and then act upon that message. For example, if an application receives a

WM_PHONE_CALLERID message, the application can display the incoming call’s caller ID on an

in-car display device.

Table 4 lists the Phone Core Windows messages and their descriptions.

Table 4: Phone Core messages

Message Description

WM_PHONE_ANSWERCOMPLETE Posted when a phone call is answered.

WM_PHONE_AUDIOTRANSFERRED Posted when an audio connection is transferred between
the Bluetooth phone and the Windows Embedded
Automotive–based device.

WM_PHONE_BATTERYLEVEL Posted to indicate the battery level of the Bluetooth phone.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 17

Message Description

WM_PHONE_CALL_CONNECTED Posted when a phone call is connected.

WM_PHONE_CALLACTIVATED Posted when a connected call becomes the active call.

WM_PHONE_CALLERID Posted to indicate the caller ID.

WM_PHONE_CALLINFO_UPDATE Posted when the connected call information is updated.

WM_PHONE_CALLONHOLD Posted when a single call is on hold.

WM_PHONE_CALLSTATE_CHANGE Posted when a call changes state.

WM_PHONE_CALLWAITING Posted when an incoming call is waiting.

WM_PHONE_CARRIERCHANGED Posted when the phone connects to a different carrier.

WM_PHONE_CONFCALLCONNECTED Posted when a conference call is connected.

WM_PHONE_DIALCOMPLETE Posted when the phone has dialed a requested phone
number.

WM_PHONE_HANGUPCOMPLETE Posted when a call is terminated.

WM_PHONE_HFPOBEXVCARDCOUNT Posted to indicate the number of virtual business cards
(vCards) received.

WM_PHONE_HFPPORT_CONNREQUEST Posted when the Windows Embedded Automotive–based
device attempts to connect to a paired phone.

WM_PHONE_HFPPORTCONNECTED Posted when a Bluetooth phone is connected.

WM_PHONE_HFPPORTCONNECTFAILURE Posted when an application-requested connection fails.

WM_PHONE_HFPPORTDISCONNECTED Posted when a Bluetooth phone is disconnected.

WM_PHONE_PHONEBOOK_STATUSCHANGED Posted when the phonebook status changes.

WM_PHONE_PHONEBOOKSYNCCOMPLETE Posted when the phonebook on the connected phone has
been downloaded.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 18

Message Description

WM_PHONE_RING Posted when the phone is ringing.

WM_PHONE_SENDDTMFCOMPLETE Posted when the user dials a digit, which generates a dual-
tone multi-frequency (DTMF) audio signal, during an active
phone call.

WM_PHONE_SERVICESTATE Posted to indicate the carrier and service state of the
phone.

WM_PHONE_SIGNALSTRENGTH Posted to indicate the signal strength.

WM_PHONECORE_START Posted when the Phone Core component is initialized.

Bluetooth Hardware and Stack

The Microsoft Bluetooth wireless technology stack implementation is a modular, general-
purpose Bluetooth 2.1+EDR–compatible software stack. This stack makes up the core portion of
the Bluetooth wireless technology implementation. Through a Bluetooth wireless technology
connection, devices can exchange data and interact with one another. The host controller
interface (HCI) software module supports various connections (universal asynchronous
receiver/transmitter [UART] and Universal Serial Bus [USB]) to the Bluetooth wireless
technology chip.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 19

Figure 5 shows the components and relationships in the Phone Core Bluetooth stack.

Figure 5: The Phone Core Bluetooth stack

Table 5 lists the additional layers that provide the core of the Bluetooth stack.

Table 5: Bluetooth stack layers

Layer Function

Baseband The physical radio layer.

LMP Handles Bluetooth link establishment, authentication, and encryption.

HCI Provides a uniform method of accessing the Bluetooth baseband capabilities by exposing a
command interface to the baseband controller and link manager, and access to hardware status
and control registers.

L2CAP Logical Link Control and Adaptation Layer Protocol (L2CAP) provides the following functions:

• Multiplexing data between the different higher-layer protocols

• Segmentation and reassembly of data packets

• Providing one-way transmission management of multicast data to a group of other
Bluetooth devices

• Quality of service (QOS) management for higher-layer protocols

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 20

Layer Function

eL2CAP Provides enhanced error detection and flow control.

SDP Gives devices the ability to discover what services other Bluetooth devices support and what
parameters to use to connect to them.

RFCOMM Provides RS-232 serial port emulation, up to 60 simultaneous connections.

AVDTP Applies point-to-point signaling over a connection-oriented L2CAP channel, which enables
Advanced Audio Distribution Profile (A2DP) streaming.

AVCTP Used by Audio/Video Remote Control Profile (AVRCP) to transfer Audio/Video Control (AV/C)
commands via L2CAP.

The Windows Embedded Automotive 7 reference platform uses the CSR BlueCore4 Bluetooth

chipset, a single-chip Bluetooth v2.1+EDR system. Microsoft provides the following key elements

where the Bluetooth chip, HCI, and audio meet in the Bluetooth hardware implementation:

• Bluetooth chips route asynchronous connection-oriented (ACO) traffic via USB or a

UART, which allows SCO audio to be routed via USB or PCM. The Automotive 7

hardware reference platform demonstrates BlueCore4 connections via both pathways.

• Registry configuration for BlueCore4 can be found in the registry at

HKEY_LOCAL_MACHINE\Software\Microsoft\Bluetooth\Transports\PnP\{B3DD867A-

1E6E-4215-8AA7-EAC1DFC46548}

• BlueCore4 can also be configured by setting the PSKEYs

\public\autocomp\oak\drivers\Bluetooth\csr_pskeys.h. The power settings may require

adjustment for controller subsystem qualification.

• The Bluetooth Class of Device (COD) for any device developed for Automotive 7 can be

set in the registry, but the recommended default is

HKEY_LOCAL_MACHINE\Software\Microsoft\Bluetooth\sys, “COD"=dword:340408

Acoustic Echo Cancellation/Noise Suppression

Windows Embedded Automotive 7 includes support for acoustic echo cancellation/noise

suppression (AEC/NS), which removes noise and echo from voice communications. This

improves voice quality on phone calls. Automotive 7 meets Verband der Automobilindustrie

(VDA) standards for AEC/NS performance with the following attributes:

• Sending delay of 67.5 milliseconds (ms).
• Receiving delay of 57.62 ms (VDA standard is less than 120 ms).
• Echo delay of 125.12 ms (VDA standard is less than 260 ms).

Individual phones can have custom AEC/NS settings.

AEC/NS Configuration Registry Keys

AEC/NS is configured via three registry keys. The gain and audio processing registry key is
HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio\AEC. This registry key provides two values that are a

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 21

bit mask for 16 tunable settings. Microsoft does not recommend changing the settings, as this
typically results in degraded audio quality.

Two additional registry keys hold AEC/NS configuration settings:

• HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\HFP\SendNRECSetting
• HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\HFP\NoiseSuppressSetting

Table 6 lists the key values that can be configured for each registry key.

Note: The first three values in the following table define whether or not the AT+NREC=0

command is sent to the phone’s audio gateway (AG). This HFP command turns off noise

reduction and echo cancellation on a phone.

Table 6: AEC/NS registry key values

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\HFP\SendNRECSetting
HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\HFP\NoiseSuppressSetting

Key Value Description

ALLOW_NREC_REGISTRY_OVERRIDE The Hands-Free Profile Service (HFPSvc) sends the AT+NREC=0 command
to the phone’s AG unless the PHONESPECIFIC_SKIP_AT registry setting is
active for this phone manufacturer/model. This is the default setting.

ALWAYS_SEND_NREC The HFPSvc always sends the AT+NREC=0 command to any AG.

NEVER_SEND_NREC The HFPSvc never sends the AT+NREC=0 command to any AG.

USE_NS_UNLESS_NO_NREC The HFPSvc enables AEC/NS unless the AT+NREC=0 command fails or is
blocked from being sent by the HFP\SendNRECSetting command. This is a
default setting.

ALWAYS_USE_NS The HFPSvc always enables AEC/NS, independent of the
HFP\SendNRECSetting command.

NEVER_USE_NS The HFPSvc always disables AEC/NS, independent of the
HFP\SendNRECSetting command.

Supported Bluetooth Profiles

Phone Core supports the Bluetooth Core 2.1+EDR specification with Secure Simple Pairing (SSP).
You can find the complete specification at
http://www.bluetooth.com/English/Technology/Building/Pages/Specification.aspx.

Phone Core supports the following Bluetooth profiles:

• Generic Object Exchange Profile (GOEP) 1.1
• Object Push Profile (OPP) 1.1

http://www.bluetooth.com/English/Technology/Building/Pages/Specification.aspx

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 22

• Serial Port Profile (SPP) 1.1
• Phone Book Access Profile (PBAP)-Phonebook Client Equipment (PCE) 1.1
• A2DP-SNK 1.2
• AVRCP-Controller 1.4
• HFP-HFP 1.5 (backward compatible to HFP 1.0)
• Dial-Up Networking Profile (DUN)-DT and GW 1.1
• MAP 1.0
• SyncML 1.1.2
• Bluetooth SYNCH IrMC-Client 1.1.
• SIM access profile (SAP) Client 1.1
• Device ID profile 1.3
• Human Interface Device (HID) Profile 1.0
• Personal Area Network (PAN) Profile 1.0
• Simplified extensibility model for new Bluetooth profiles

Bluetooth Qualification

Microsoft has several Bluetooth qualifications that are available to OEMs. A Bluetooth controller
subsystem must be qualified by a tier-one manufacturer to create an End Product Listing (EPL).
By combining Microsoft’s qualifications with their own qualifications, an OEM can create an EPL,
which allows them to use the Bluetooth logo on products built using the certified hardware.

Note: The qualification design ID QDID for the Windows Embedded Automotive 7 host
subsystem is B017024.

Bluetooth Pairing Core and Service

Windows Embedded Automotive 7 provides the Bluetooth Pairing Service that manages the
Bluetooth service discovery process and device pairing process. OEMs do not need to develop
the core functionality needed to pair with a Bluetooth-enabled device, as the Bluetooth pairing
core provides this functionality. Applications can build upon this functionality, as the Bluetooth
Pairing Service provides an interface to control the Bluetooth discovery and pairing process and
manages Bluetooth devices once they are paired. The pairing service also maintains a database
of Bluetooth profile information for each of the paired devices. Pairing creates a trusted
relationship between two devices. As defined by the Bluetooth SIG, the pairing procedure
creates a common link key that is used as the basis for a trusted relationship or a single secure
connection.

Prior to pairing, a Bluetooth-enabled device attempts to locate the address, clock, class-of-
device field, and used page scan mode from discoverable devices within range. Once discovered,
the devices initiate the pairing procedure.

Bluetooth Pairing Core

The Windows Embedded Automotive 7 Bluetooth Pairing Core provides pairing functionality and
paired device management to applications that require the establishment of pairing
relationships and access to paired device information. This capability frees OEMs from having to
develop custom code to handle Bluetooth device pairing management.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 23

Several Automotive 7 applications rely on the Bluetooth Pairing Core, including the phone
application, the media player, Windows Embedded Automotive shell, and the SMS application.
Other applications can also use the Bluetooth Pairing Core API to pair and communicate with
Bluetooth-enabled devices via the Bluetooth Pairing Service.

The Bluetooth Pairing Core consists of two parts: the service component, which is loaded by
Services.exe, and the in-process dynamic-link library (DLL), which provides the API that abstracts
the input/output control (IOCTL) calls to the service. All Bluetooth Pairing Core functions are
located in the in-process DLL, and each function has a corresponding IOCTL. The core APIs wrap
the task of packing function arguments into IOCTL calls to the service. The IOCTL packages the
function’s arguments inside of it in the DLL. The arguments are then unpacked in the service and
processed by the corresponding function in the service.

 The core functionality provided by the service is managing the paired device list. The service
maintains three paired device lists for phone, media, and other devices. The service also handles
the Bluetooth pairing procedure, but not the Bluetooth connecting procedure. The paired device
list is an access ordered list that can contain a configurable maximum of 12 paired devices.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 24

Figure 6 shows the components and data flow of the Bluetooth Pairing Core and Bluetooth
Pairing Service architecture.

Figure 6: Bluetooth Pairing Core and Bluetooth Pairing Service architecture

Bluetooth Pairing Service

The Bluetooth Pairing Service manages the Bluetooth service discovery process and the device
pairing process. It provides an interface to control the discovery and pairing process and to
manage the list of paired Bluetooth-enabled devices. The service also maintains a database of
Bluetooth profile information for each of the paired devices. Multiple phones can be paired to
the Automotive 7 device, but only one may be connected at a time. The Windows Embedded

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 25

Automotive 7 phone application currently supports up to five paired phones. Up to 12
configurable media devices can be simultaneously connected through A2DP, in addition to a
single phone.

The Bluetooth Pairing Service provides the following specific capabilities:

• Enable or disable the Bluetooth radio
• Start or stop discovery of nearby Bluetooth-enabled devices
• Start or stop pairing with a selected Bluetooth-enabled device
• Enable or disable Bluetooth discovery mode
• Provide a signal to the Phone Core API that a device has been paired
• Provide management capabilities to the Phone Core API to control paired devices’

profile information
• Allow the Phone Core API to activate or deactivate a specific paired device by

deregistering the communication port
• Provide the ability for the Phone Core API to append data to the paired device profile

record as name-value pairs

When Bluetooth discovery is enabled, the Bluetooth Pairing Service waits for a pairing event
from the Bluetooth stack. Once it receives an event and successfully authenticates using
personal identification number (PIN) negotiation, the connecting device’s Bluetooth address
(BT_ADDR) is checked against the existing set of known devices. If the service finds an existing
record, it obtains the Bluetooth link key again and then updates the device record. If an existing
device record is not found, the service queries the device for a set of Bluetooth profiles
Windows Embedded Automotive 7 can use. The service stores the list of supported services with
the device pairing record in the registry.

Higher protocol layers can append name/value pair attributes to each pairing record to support
storing custom data. As new devices are added to the device list, the higher protocol layers are
signaled via shared named events.

The discovery operation may pair only one device in each session. If no pairing event occurs, the
operation times out. When a paired device is deleted, the service removes the information
related to the device from the registry.

The Bluetooth Pairing Service information is located in the registry at the following location:

• HKEY_LOCAL_MACHINE\Drivers\BuiltIn\BTPairSvc

Please see

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 26

Appendix 2: Bluetooth Pairing Service Registry Key Values for the key values.

Discovery Mode and Discoverable Mode

Discovery mode allows an Automotive 7 device to search for a nearby Bluetooth-enabled device
to pair with. Discoverable mode allows an Automotive 7–based device to be found by a nearby
Bluetooth-enabled device so that the Bluetooth-enabled device may establish a pairing
relationship to the Automotive 7–based device.

When the device discovery starts, a phone or media application activates Bluetooth discovery
mode using the Bluetooth Pairing Core API, which communicates with the Bluetooth Pairing
Service to start an inquiry scan for nearby discoverable devices. When a nearby device is
discovered, the Bluetooth Pairing Service notifies the Bluetooth Pairing Core, which routes a
message to the application for each discovered device. When discovery mode ends, the
Bluetooth Pairing Service notifies the Bluetooth Pairing Core, which routes another message to
the application to notify it that discovery mode has ended.

To facilitate quick reconnection of a previously paired Bluetooth phone, an “ignition ON” event
triggers Windows Embedded Automotive to enter a listening mode so that previously paired
handsets can be reconnected as quickly as possible.

Special Pairing Features

Windows Embedded Automotive 7 includes support for the following features:

• Delayed PIN sharing
• SSP
• HID
• PAN
• Device ID

SSP simplifies the pairing procedure for Bluetooth users, while maintaining or improving
Bluetooth wireless security. Automotive 7 supports the following SSP association models:

• Numeric compare
• Just works
• Out-of-band

Hands-free Phone

Automotive 7 provides robust hands-free capabilities when paired with Bluetooth-enabled
mobile phones. These capabilities include the following:

• Authenticate command and control phones
• Receive service information from phones
• Manage incoming and outgoing calls
• Provide 3-way calling
• Maintain call history
• Receive call information from Bluetooth-enabled mobile phones

Automotive 7 provides the ability to download and access phone book data, in addition to
initiating phone calls using the downloaded phone book entries. This provides users easy and

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 27

fast access to the phone’s phonebook data through the Automotive 7 device’s UI. See the Sync
Manager and Phonebook sections for more information about this capability.

Hands-free Profile Service

HFP support is provided by the Hands-free Phone Core (HFPCore) service and the Bluetooth
Pairing Service, which provide support for the Bluetooth SIG Hands-free Profile v1.5.

The hands-free profile (HFP) service provides users with hands-free access to their mobile
phone. To place or receive calls, the service can use a mobile phone paired over Bluetooth, or an
embedded phone module. For a paired Bluetooth phone, various features of phone call
management—digit dialing, dialing by name, conference calling, call-hold, and so forth—are
supported. Only one Bluetooth phone can be connected at a time.

HFPCore Service

The HFPCore service coordinates the interaction between applications with Bluetooth-enabled
phones. HFPCore provides a native asynchronous (non-blocking) API (HFPAPI) that allows
programmatic access to call handling, phonebook management, phone call audio management,
and signals events—such as incoming calls—to its application clients through messages.

The HFPCore service hosts an implementation of the Bluetooth HFP 1.5 and controls the paired
Bluetooth-enabled phone using AT commands over the phone’s HFP and/or SPP ports. This
implementation is backward compatible with HFP 1.0. HFPCore also enables Global Systems for
Mobile Communications (GSM)-defined non-HFP AT commands for delivering uniform
functionality to its clients.

Figure 7 shows the HFPCore service architecture.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 28

Figure 7: HFPCore service architecture

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 29

The HFPCore provides the following capabilities:

• Handle Bluetooth HFP port connected/disconnected status
• Place calls by number
• Report whether a call is connected or disconnected
• Report call privacy status
• Notify an application of an incoming call
• Enable/disable in-band ringing
• Provide ring type, such as local ringtone (WAV), SCO, and A2DP
• Report various phone status items, such as caller ID, signal strength, and battery level
• Notify an application when caller ID is received
• Answer or reject calls
• Receive notification of a call-waiting call with caller ID
• Place a current call on hold and switch to a waiting call
• Switch back and forth between active calls and calls on hold
• Toggle audio to and from the phone and the Windows Embedded Automotive device
• Retrieve the call list from the paired phone
• Report the status on phonebook download
• Receive object exchanger (OBEX) vCards via OPP
• Retrieve phonebook records
• Delete phonebook records
• Provide HFP GetLastError functionality

Call Handling

Windows Embedded Automotive 7 provides capabilities for handling a variety of call situations.
These include:

• Incoming calls
• Multiple simultaneous calls
• Active call handling
• Conference calls
• Call termination

Incoming Calls
When an incoming call is initiated, Automotive 7 accesses the phonebook to determine whether
or not a phonebook entry exists for the incoming number. If the incoming call is successfully
matched to a phonebook contact, the contact name is passed back to the application. If the
incoming call is not successfully matched to a phonebook contact, but caller ID is available, the
caller ID number is passed back to the application. If the number is unknown for any reason—
such as when the phone fails to report caller ID, there are two names with the same phone
number in the phone book, or caller ID is blocked—HFPCore indicates to the application that the
number is unknown.

HFPCore passes caller ID information back to the application using the WM_PHONE_CALLERID
message.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 30

Multiple Simultaneous Calls
A user can accept or place a second call while on an active call. When the user makes or accepts
a second call—for example, a call waiting call—the active call is placed on hold, and the second
call becomes the active call. The user can then either switch the calls or join them into a
conference call. The application alerts the user through the UI that the first call is on hold.

Table 7 shows the multiple call behaviors supported by Windows Embedded Automotive 7.

Table 7: Supported multiple call behaviors

Status Action Behavior +CLCC Support

One call Place call on-hold First call placed on hold N/A

One call Second incoming call
accepted

First call placed on hold
Second call is active

N/A

One call Second incoming call
rejected or ignored

First call retains state (on hold or
active)

N/A

One call on hold Resume call First call active N/A

One call Terminate call No calls N/A

One call Initiate second call First call on hold
Second call outgoing

N/A

One call held
One call active

Third incoming call Ignore third call until it is
missed.Once “missed,” notify the
user with call history of who it was.

Yes – Use +CLCC to
achieve behavior

No – Use +CLIP if
received or simply
state “missed call”

First call active
Second call on hold

Swap Second call active
First call on hold

N/A

One call active
One call held

Join calls One conference call with both calls
active

N/A

Conference call Place conference call
on hold

Not allowed N/A

Conference call on hold Change conference
call to active

Not allowed N/A

Conference call One incoming call Not allowed N/A

Conference call
One call on hold

Swap calls Not allowed N/A

Conference call
One call on hold

Remove call from
conference to active

Not allowed N/A

Conference call with 2 calls Remove call from
conference to active

Not allowed N/A

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 31

Status Action Behavior +CLCC Support

Conference call Regular terminate No calls N/A

One call active
Second call incoming

Regular terminate One call active
Second call rejected

N/A

One call active
Second call on hold

Regular terminate Second call active N/A

One call on hold Regular Terminate No calls N/A

Conference call with x and
y number of calls

Terminate call y Call x active
Call y terminated

+CLCC required

One call active
Second call on hold

Terminate second call First call active +CLCC required

Incoming call Ignore call Call ringing stops on head unit. Call
eventually goes to voice mail

N/A

One call active
Second call on hold

Place active call on
hold

Two held calls not allowed N/A

One call active
Second call on hold

Mute active call First call active but muted
Second call on hold

N/A

Active Call Handling
When a call is active, Automotive 7 displays the call information, as defined by the HMI
specifications, to the user. An active call can have the following options made available through
the UI:

 Privacy: This mode transfers the SCO audio to the phone handset. The call is still
handled by Automotive 7. Turning this mode off transfers the audio back to the
Automotive 7 device.

 Hold: This function places the active call on hold using the HFP_HOLD command, which
is part of the standard Bluetooth command set. If the user places an active call or calls
on hold using the handset, Automotive 7 indicates the hold status. An active call can be
placed on hold when a new call is placed or a second call is accepted by the user.

 Join: This function gives the user the capability to join two calls to create a conference
call. This function is allowed only when one call is on hold and the other call is active.
The user may only join calls that are connected and cannot join a call that is incoming.

Conference Calling
Users can control two active simultaneous calls using this feature, and join the two calls into a
conference call. Windows Embedded Automotive 7 only supports conference calling on phones
that support the AT+CLCC and AT+CHLD mode 3.

If one of the calls is terminated or lost while in a conference call, Automotive 7 automatically
reverts to a single active call state.

Call Termination
Automotive 7 provides the following call termination functionality:

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 32

• Pressing “END” while on a single active call terminates the call.
• Pressing “END” while in a conference call terminates both active calls.
• Pressing “END” during a dual-call state causes the active call to be terminated. The on

hold call is then made active.

Dialing Feature Support

Automotive 7 provides the following dialing capabilities:

• Handset keypad dialing
• Speed dial
• Redial
• Digit Dialing
• DTMF

Handset Keypad Dialing
Automotive 7 lets a user dial using a connected handset. For phones that enable SCO at all times
while connected, Automotive 7 mutes the SCO line unless a call is active or incoming. This
prevents button presses from interrupting the user’s audio experience.

When a call is connected using keypad dialing or any other means that does not immediately
report the number to the Automotive 7 device, Automotive 7 attempts to obtain caller ID
information after the call is connected.

Speed Dialing
Speed dialing is available when the Bluetooth-enabled phone contains speed dial information.
When using this feature, the Automotive 7 device can use the saved speed dial information on
the paired phone to dial the phone number.

Redial
Redial functionality is provided via the HFP redial command. Redial uses the last outgoing
number stored in the Bluetooth phone. When using redial, Windows Embedded Automotive 7
attempts to obtain caller ID information after a phone call is connected.

Digit Dialing
When a Bluetooth phone is connected, digit dialing is available to the user via a manual method
through the UI, a speech method, or a combination of both, depending on an application’s
implementation.

On vehicle platforms that include buttons numbering zero through nine, the user is able to enter
digits to dial a number. A button combination allows the user to delete the last digit and clear all
entered digits.

DTMF
Automotive 7 supports DTMF tones for all numerals, including the asterisk (*) and pound sign
(#). A user can enter digits manually or by voice. The digits are sent while a call is connected.

Phone Feature Support

Automotive 7 provides support for the calling and phone features shown in Table 8.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 33

Table 8: Phone feature support

Feature Description

Signal Strength On phones which support signal strength reporting over Bluetooth, Windows Embedded
Automotive 7 reports this value to the user.

Roaming
Report

On phones which have a roaming indicator available via Bluetooth, Windows Embedded
Automotive reports this value to the user when paired with a platform having the
appropriate display.

Battery Level On phones which have a battery level indicator available via Bluetooth, Windows
Embedded Automotive 7 reports this value to the user.

Power
Management

Windows Embedded Automotive 7 will transfer audio to the Bluetooth phone and
disconnect Bluetooth devices when power to the Windows Embedded Automotive 7
device is turned off.

Phone Core Versus HFPAPI

Microsoft recommends that OEMs develop applications using the Phone Core API instead of
HFPAPI when possible to maintain timing and command order. Table 9 provides details on what
features the Phone Core API manages.

Table 9: Phone Core API feature management

API Features

Phone Core • In-process DLL which wraps HFPAPI messages and extends the base
service for applications

• Manages Bluetooth phone objects and API routing

• Manages Bluetooth phone CONNECT_AUTO and CONNECT_APP

• Manages SCO audio connections

• Manages ring types (in-band SCO, HQRT, embedded)

• Provides interfaces to handle an embedded CellCore module

• Provides connection failure cause (not paired or out of range)

Host subsystem • In-process DLL interface to HFP service which provides call control
(call, ring, notifications, caller ID, answer, reject)

• HFP Service contains specific phone workarounds and fixes

High-Quality Ringtone

Motorola phones can use HQRTs, though they do not notify connected devices that they are
using HQRTs. Detection of HQRTs can take up to three rings and is configurable within the
registry. The phone application should track the proper ring type (SCO, HQRT, embedded) on a
per-connected phone basis.

HQRT can be configured using the following registry key:

• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Automotive\PhoneCore

The HQRTOption key value is used to set HQRT. A value of 0 disables HQRT, and a value of 1
enables HQRT. The RIngCountToPlayLocalRingTone key value controls the number of rings that

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 34

occur before defaulting back to the local ringtone. When this registry setting is not present, the
default value is 3. See Table 2 for more information about these settings.

Table 10 and Table 11 show the Windows Embedded Automotive 7 settings and the relationship
between phone behavior and the resulting ring.

Table 10: Ring behavior

Windows Embedded
Automotive 7 Settings

Phone Behavior Result Ring

Local Ring A2DP Ring

SCO Ring

No Ring

Local

Local

Local

In-band, HQRT Disable A2DP Ring

SCO Ring

No Ring

Local

SCO

Local

In-Band A2DP Ring

SCO Ring

No Ring

A2DP

SCO

Local

In-band, Media Core playing other
stereo source

A2DP Ring

SCO Ring

No Ring

A2DP

SCO

Local

In-band, Media Core playing other
A2DP source

A2DP Ring

SCO Ring

No Ring

Local

SCO

Local

Table 11: Ring behavior

Windows Embedded
Automotive 7 Multi-Zone
Settings

Phone Behavior Result Ring

In-band, Phone A2DP in front,
other source in rear

A2DP Ring

SCO Ring

No Ring

A2DP front

SCO

Local

In-band, other source in front,
phone A2DP in rear

A2DP Ring

SCO Ring

No Ring

A2DP F/R

SCO

Local

Phone GetLastError

The phone GetLastError feature is useful in tracking phone HFP errors in deployed Windows
Embedded Automotive 7 systems. OEMs can access the errors through a web service or local
application, and then report the errors to the phone manufacturer. Alternative implementations
include utilizing a USB memory stick to which error messages can be copied, or providing a
graphical user interface (GUI) that displays a code that the user can provide to a customer
support representative.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 35

The interface for GetLastError is located in HFPAPI.h. The WM_HFPERRORLOG message is raised
when a new error is logged by the HFPCore service.

The buffer that contains the errors is configurable through the registry key
HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\HFP

The ErrorLogMaxEntries key value determines the number of error messages that are stored in
the buffer. The default value is 5. The log is cleared when the HFP connection to the phone is
closed. HFPGetLastError is used to retrieve error logs.

Table 12 lists the GetLastError wParam values.

Table 12: GetLastError wParam values

Class Code in wParam

Outgoing Call Failures 0x00000001

Incoming Call Failures 0x00000002

Call Waiting Call Failures 0x00000004

Call Status Reporting Failures (CLCC) 0x00000008

Phonebook Download Failures 0x00000010

End Call Failure 0x00000020

2nd Outgoing Call Failure 0x00000040

Join Calls Failure 0x00000080

SCO Related Errors 0x00000100

Hold Call Failures 0x00000200

HFP AT Command Error 0x00000400

SMS Errors 0x00000800

CME Errors (phone response included) 0x00001000

Standard error values, as defined in the GSM
specification, are appended to the wParam value.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 36

Class Code in wParam

CMS Errors (phone response included) 0x00002000

Standard error values, as defined in the GSM
specification, are appended to the wParam value.

HFP Port Failures 0x00004000

Sync Manager and Phonebook

Windows Embedded Automotive 7 provides users with the ability to access their phone’s
contact information through the UI. This gives users a safe and fast way of accessing their
phone’s contact list to make calls, as well as providing OEMs a way to display contact
information based on caller ID information.

Prior to Microsoft Auto 4.0, the HFP Service contained all of the phonebook download
components, and the HFP API controlled the download initiation and messaging. In the legacy
model, the HFP Service downloaded the phonebook using PBAP, SyncML, and then AT
commands. Phonebooks were stored in a structure written to a persistent file in flash memory
and read into memory as a cache.

In Automotive 7, Microsoft separated the phonebook download components into individual
elements but maintained full-backwards compatibility. Each profile now has its own header in
autocomp\sdk\inc, including a Sync Manager header. This architecture change provides
significant advantages to developers using Automotive 7. During the design of the new
architecture, Microsoft ensured that code paths from their shipping, field-tested, and hardened
call handling and phonebook downloading compatibility code was preserved in the new
architecture.

Windows Embedded Automotive 7 supports the following mechanisms for downloading
phonebook data from supported phones:

• PBAP 1.1
• SyncML 1.1.2
• Phonebook-related AT commands
• OPP 1.1
• SYNCH 1.0 (Note that by default, this is disabled for phonebook and used for

downloading calendar items only.)
• OBEX

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 37

Figure 8 shows the phonebook architecture.

Figure 8: Phonebook architecture

Phonebooks are stored on a per-phone basis. Automotive 7 provides the following high-level
phonebook storage functions:

• When a phone is first paired the phonebook is downloaded from the phone and stored
locally.

• When a paired phone is reconnected, Automotive 7 refreshes the stored phonebook.
• When a paired phone is disconnected, Automotive 7 does not delete the phonebook,

but keeps it in storage.
• When a paired phone is deleted, the stored phonebook associated with that phone is

also deleted.

Phonebook Text Storage

Windows Embedded Automotive 7 can store phonebooks in flash storage as simple text files.
The maximum text file size is 384 KB, which allows approximately 2,000 contact names with an
average of four phone numbers per name to be stored. Note that the total number of contact
names cannot exceed 2,000. Contacts can have more than four phone numbers, but the
additional space usage may reduce the number of contacts available as the storage space
cannot exceed the 384 KB limit.

Phonebook Storage Using the Pocket Outlook Object Model

The Pocket Outlook Object Model (POOM) is a Component Object Model (COM)-based library
that provides access to personal information manager (PIM) data on mobile devices.
Automotive 7 includes a customized version of the POOM component that is optimized for use
in automotive applications.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 38

The enhanced POOM contains the following features:

• The AUTOPOOM schema, with support for Bluetooth addresses and the Bluetooth
SyncIndex

• Support for image files (for example, images of email recipients)
• Significantly increased contact search speed

Applications can access the contacts database and read and write to it when using POOM
storage. However, the Sync Manager service assumes that other applications will only read from
the contacts database. Therefore, other applications writing to POOM storage may cause errors
in Sync Manager operations.

The following are differences in how Sync Manager handles vCard information when using
POOM storage:

• If the address is identified as a business address, then the office location is saved in the
office location field. The office location field is attached to the street field.

• The first number retrieved is saved as a mobile number. Subsequent numbers are saved
as additional mobile numbers separated by semicolons. Numbers that exceed the length
of the POOM field are discarded. The same behavior occurs with home numbers, work
numbers, and other number fields.

• When the cache is populated from the POOM storage, vCard fields in the following table
are mapped to the corresponding HFP service-defined fields.

Table 13 enumerates the vCard to HFP field mappings.

Table 13: vCard field to HFP field mappings

vCard Field HFP Field

BusinessTelephoneNumber HFP_PNTYPE_LOC_WORK

HomeTelephoneNumber HFP_PNTYPE_LOC_HOME

OtherTelephoneNumber HFP_PNTYPE_UNKNOWN

MobileTelephoneNumber HFP_PNTYPE_LOC_MOBILE

Applications can save multiple records into POOM that contain the same contact name. To
ensure the best user experience when the user does this, consider the following items when
designing applications:

• When using the POOM synchronization manager with cache implementation, which is
the default setting, the name of the contact should serve as the unique identifier for
each record in your UI. The APIs are designed using this assumption and combine all
phone numbers that are listed under a first name and last name pair when queried.
Contact names and phone numbers should be retrieved through the HFP APIs to take
advantage of the cache when retrieval time is important (for example, during an
incoming call). Contact names, phone numbers, and all other contact fields can be
retrieved when contacts are accessed by using the POOM APIs.

• When retrieving data from the POOM based on a first name and last name combination,
the application should continue to search even after a single entry is found in the

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 39

database because several entries might exist with the same first name and last name
combinations.

• When designing a UI, assume that multiples of all fields in POOM may be returned for
any given first name and last name combination. Include the ability to display multiple
numbers under a single location tag (for example, HOME: 2065551212, 4255551212,).
The APIs provide parsing of multiple POOM fields when contact names and phone
numbers are retrieved. Other fields available using the POOM APIs should also be
considered in the UI design, such as a menu to select a specific field (for example, an
address or picture) when multiple contact records with the same contact names have
multiples of that field available.

Table 14 provides POOM storage information.

Table 14: POOM storage information

POOM Storage Item Description

Total downloadable contacts The default is 2,000. Contacts downloaded after 2,000 are discarded. This
value can be modified in the registry for flash memory space and grammar
considerations.

Total cache size The default is 384 kilobytes (KB). Contacts downloaded after the full name,
work, home, mobile, and other phonebook fields reach this limit are
discarded. This value can be modified in the registry for RAM space
considerations.

POOM MaxSize for flash The default value is 16 megabytes (MB), but can be limited by placing the
.vol file on a smaller partition.

POOM field maximum size The value is 1,200 bytes for each non-binary field and is not configurable.

POOM record limit The value is 64 KB and is not configurable.

AUTOPOOM special fields The phonebook work, home, mobile, and other fields can accept more
than one record with comma separations if an application uses Sync
Manager and cache. The rest of the fields accept only one entry, and the
1,200 byte limit still applies to each field.

Phone Contact Image Auto Compression

A new feature in Windows Embedded Automotive 7 is the capability to compress images that
are downloaded in phone vCards. This feature is configured via the following registry key and
value:

• HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\PhonebookOptions,
MaxPOOMImageSize

MaxPOOMImageSize, which is the POOM photo field maximum size, has a maximum value of
60 KB.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 40

Phonebook Implementations

Automotive 7 provides modern phonebook implementation types while remaining compatible
with prior Microsoft Auto phonebook types. All elements of pre-Microsoft Auto 4.0 phonebook
types are statically built into the HFP service.

Microsoft recommends using the Sync Manager because it can manage multiple download
types, it is extensible to providing new services and it can handle phonebook, calendar, and
email synchronizations. Table 15 lists the supported phonebook implementation types.

Table 15: Supported phonebook implementation types

Phonebook Implementation Type Description

Sync Manager Windows Embedded Automotive 7 Sync Manager provides phonebook
synchronization between Windows Embedded Automotive 7 systems
and Bluetooth devices. Sync Manager calls the various APIs for PBAP,
SyncML, ATCmd, SYNC, and OBEX to coordinate the download of
calendar and contact information from Bluetooth phones. By default,
Sync Manager automatically downloads vCard calendar and
phonebook information from Bluetooth devices. Sync Manager is fully
tested with devices for complete legacy phonebook compatibility. It
utilizes both POOM and a cache mechanism for improved speed. It
also includes RAM budgeting, multi-number handling, and command
and private OBEX store strategies. If POOM storage is used, all
information is downloaded, including appointments. Recursion and
notifications are supported.

Legacy phonebook The legacy phonebook type, used in Microsoft Automotive version 4.0
and earlier, uses a memory structure and flat flash file to store
phonebook contacts. Phonebooks downloaded using this method are
stored in a structure written to a persistent flat file structure in flash
memory and then read into memory as cache.

If file storage is used, only names and phone numbers are saved; no
calendar information is downloaded.

OBEX Phonebook Stores

Windows Embedded Automotive 7 supports two OBEX storage methods: the common OBEX
phonebook method and the private OBEX phonebook method.

The common OBEX phonebook method assigns a phonebook to the car, which is available to all
of the car’s users. Any contact received via OBEX is stored in a common phonebook.

The private OBEX phonebook method maintains a relationship with the last connected phone
such that any contact received from any previously paired device is saved to the phonebook of
the most recently connected phone. A sophisticated merging mechanism allows the HFPAPI to
view the private auto-downloaded and private OBEX stores as a single phonebook location.
Depending on the application UI, this method can be used to allow users to download the
private phonebook associated with their individual phone with contacts from a laptop computer
or personal digital assistant (PDA) device.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 41

Note: OBEX contacts are downloaded using the HFPAPI, not through the Phone Core API.

Figure 9 shows the various components and relationships of the OBEX stores.

Figure 9: OBEX phonebook stores

Sync Manager Architecture

The Sync Manager architecture provides interoperability between the various phonebook
features, such as POOM, image storage, multiple location, and other key features that are only
available when using POOM. The cache provides rapid access for names, phone numbers, and
phone number locations.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 42

Figure 10 illustrates the Sync Manager architecture.

Figure 10: Sync Manager architecture

SMS Support and Email

Windows Embedded Automotive 7 supports access to and sending of SMS messages using a
connected Bluetooth phone. SMS messages can be retrieved via GSM AT commands or the MAP
service. Automotive 7 also supports MAP email from any MAS instance. Email can be retrieved
from the Bluetooth-connected device and then handled by an appropriate application or
service.

When AT commands are used, the HFP service interacts with the Bluetooth phone through
either the SPP port or the HFP port. The HFP service sets up event notifications so that it can
receive SMS messages and send SMS messages, but does not necessarily enumerate through
and read the existing SMS messages that are stored on the phone.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 43

Figure 11 shows the SMS support architecture.

Figure 11: SMS support architecture

The SMS architecture contains both the SMS drivers and the subscriber identity module (SIM)
drivers. The SMS drivers provide the standard Windows Embedded Compact device driver
interface for SMS.dll. The SMS drivers also contain the SMS router and SMS store components.

The Bluetooth Text Provider handles text messages sent using a paired Bluetooth phone.

The SMS store caches SMS messages in the CellCore message queues. Each provider contains
one message queue. Each message queue is stored in a memory-mapped data file and map file
in the object store. Access to the message queue is protected by critical sections.

When a message is read from an embedded phone or a Bluetooth phone by the Radio Interface
Layer (RIL), by the HFP service (SMS via AT command), or by the MAP Manager, it is sent using
the CellCore SMS router. The message passes through the providers that are set up in the SMS
service, and the message is decoded. Applications that have subscribed to SMS router
notifications are alerted that the message is available. The message is cached in the SMS store
for a developer-configurable period of time.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 44

An SMS application that is provided by an OEM should use the SMS router API to subscribe to
messages. This method lets messages be filtered and even targeted for specific applications
through the SMS router. Message filtering, parsing, and targeting are all configurable.

GSM SMS AT Command Support

A phone must support MAP or GSM SMS AT commands to operate with Windows Embedded
Automotive 7. Phones must be able to send, receive, notify, and download all unread messages.
Automotive 7 supports USC2, GSM-encoded characters, and unpacked 8-bit encoding.

SMS Stack and MAP Service

The SMS stack includes services for SMS message retrieval via SMS and AT, Protocol Data Unit
(PDU) message parsers, and message routing mechanisms. Figure 12 illustrates the components
and relationships of the SMS stack.

Figure 12: SMS stack

The MAP provides a set of features and procedures to exchange SMS and e-mail messages
between devices. The MAP service interfaces to the OBEX layer of the Bluetooth stack and
provides functionality for new message notifications and folders for incoming and outgoing SMS
messages. The MAP Manager handles SMS download arbitration (SMS or MAP), phone-specific
SMS behaviors, and provides the overall SMS interfaces.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 45

Bluetooth Audio/Video (BTAV) Service

The BTAV service supports both A2DP 1.2 and AVRCP 1.4. This service manages the A2DP and
AVRCP profiles and interfaces to Phone Core and Media Core. For A2DP, Media Core controls
the connection management, media streaming, and player control.

Figure 13 illustrates the BTAV service architecture.

Figure 13: BTAV service architecture

The following tables list the registry settings for the BTAV service.

Note: Microsoft tests hundreds of devices and has tuned these registry settings for the widest
device compatibility possible. Modifying them may result in device incompatibility.

Table 16: BTAV service registry settings

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\BTAV
All keys and values under the BTAV key are optional. The BTAV service will use default values if a value is missing or
outside of the appropriate range. This key includes one subkey for each supported codec.

Name Type Description

ACPMode DWORD The default acceptor mode for A2DP.

Valid Data:

 BTAV_A2DP_ACP_ROLE_DISABLED (0) indicates that the acceptor
role is disabled.

 BTAV_A2DP_ACP_ROLE_ENABLED (1) indicates the acceptor role
is enabled.

The default value is 1.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 46

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\BTAV
All keys and values under the BTAV key are optional. The BTAV service will use default values if a value is missing or
outside of the appropriate range. This key includes one subkey for each supported codec.

Name Type Description

ConnectionStepWait DWORD The sleep time between each step (Discovery, GetCapabilities,
SetCapabilities, OpenStream) while connecting to the device. The default
value is 150.

MaxDevices DWORD The maximum number (1-12) of A2DP devices that can be open at one time.
The default value is 1.

PowerRequirementDevice String Defines the device that provides access to the Bluetooth chip by the
Bluetooth stack. The device will be set to full power mode when an A2DP or
AVRCP connection has been established. There is no default value.

SCOBounce DWORD The A2DP audio temporarily turns off when the SCO notification is activated.
This value defines the delay time between the SCO notification and the
moment the A2DP audio is actually switched off. The default value is 0.

TimeoutA2DPConnection DWORD The timeout, in milliseconds, for establishing an A2DP connection; must be
between 100 and 600,001. The default value is 10,000.

TimeoutA2DP DWORD The timeout, in milliseconds, for all A2DP operations other than establishing
a connection, must be between 100 and 600,001. The default value is 5,000.

TimeoutAVRCP DWORD The timeout, in milliseconds, for all AVRCP operations. The default value is
2,500.

TimeoutDeviceRecycle DWORD The time, in milliseconds, that the BTAV service will keep a device open
before closing connections and closing the device. Applies only when the
BTAV service is in acceptor mode. The value must be greater than 100. The
default value is 60,000.

TimeoutStartStream DWORD The amount of time, in milliseconds, to wait for the device to start the
stream. The stream must be started manually if the device didn't start the
stream. The value must be between 100 and 600,001. The default value is
5,000.

WaveOutDevice DWORD The ID of the wave out device which receives the decoded audio data. The
default value is WAVE_MAPPER.

PlayThreadPriority DWORD The priority the play thread is running on. The value must be between 10
and 255. The default value is 230.

PlayThreadTimeout DWORD The timeout, in milliseconds, to wait for the play thread to start after the
stream has started, or the timeout to wait for the play thread to stop after
the stream is suspended. If the timeout expires upon starting, then an error
message is given. If the timeout expires upon suspending, then the play
thread is forcefully terminated. The value must be between 100 and
600,001. The default value is 1,500.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 47

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\BTAV
All keys and values under the BTAV key are optional. The BTAV service will use default values if a value is missing or
outside of the appropriate range. This key includes one subkey for each supported codec.

Name Type Description

WaveOutDevice DWORD The device Line Out ID for the wave driver that is assigned to A2DP when
the wave driver has multiple line outs. The default value is WAVE_MAPPER.

OutputWaveBufferSize DWORD The size of each output buffer in the output buffer set. The value must be
greater than 1,024. The default value is 1,024*5.

InputBufferTime DWORD The amount of time buffered for the input. The value must be greater than
100. The default value is 200.

OutputBufferTime DWORD The amount of time buffered for the output. The value must be greater than
100. The default value is 400.

DataTimeoutPercentage DWORD Indicates whether data is still being sent. The wait timeout is calculated by
OutputBufferTime * DataTimeoutPercentage / 100. If no data is received for
this amount of time, then it is presumed that the streaming has stopped.
The default value is 50.

PrintBPSAverage DWORD The time frequency, in milliseconds, that is taken to print out the average
bits/seconds. For example, if this registry setting is set to 30,000, then the
service will print out a message every 30 seconds. The minimum value is
1,000 and maximum value is INFINITE. A default value is not set.

TimeoutAVRCPConnection DWORD The AVRCP timeout for connection setup. The default value is 5,000.

TimeoutCheckPairing DWORD The timeout when checking for whether or not the device is paired. The
default value is 1,000.

NumItemsPerQuery DWORD The number for subrequests that constitute a query. With AVRCP 1.4, a
device can be queried using a file system folder model. For example, a folder
on the device file system named “Music” could contain all of a user’s music
files, which could number into the thousands. To handle the query for all of
the files in this folder, the query is automatically broken up into
subrequests, where the number of items per actual query is defined by this
registry setting. The minimum is 1 and the maximum is 1,000. The default
value is 5.

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT \BTAV\SBC
The Sub-Band Coding (SBC) codec is the only required codec for the A2DP. This registry key is used to store default
information for the SBC codec.

Name Type Description

CLSID_SBCDMOMediaObject GUID The universally unique identifier (UUID) to find the DirectX Media Object
(DMO) for the decoding process. The default value is {33FBF37D-60C9-
4fb6-9638-081AF124036D}.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 48

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT \BTAV\SBC
The Sub-Band Coding (SBC) codec is the only required codec for the A2DP. This registry key is used to store default
information for the SBC codec.

Name Type Description

MinBitpool DWORD The minimum bit pool value supported. This value must be between 2 and
25. The default value is used when data is outside the range of 2 to 250,
or if MaxBitpool is smaller than MinBitpool. The default value is 18.

MaxBitpool DWORD The maximum bit pool value supported. The default value is used when
data is outside the range of 2 to 250, or if MaxBitpool is smaller than
MinBitpool. The default value is 53.

44KHz DWORD The preference for a 44.1 KHz sample rate over a 48 KHz sample rate. A
value of 0 indicates 48 KHz, whereas a value of 1 indicates 44.1 KHz. The
default value is 1.

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT \BTAV\MP3
The information about the MP3 codec is stored in the registry. If no information for the MP3 codec is available, then
the default value is used.

Name Type Description

CLSID_MP3DMOMediaobject GUID The UUID to find the DMO for the decoding process. The default
value is {6b928210-84e7-4930-9b33-1eb6f02b526e}.

HKEY_LOCAL_MACHINE\Software\Microsoft\BTPairSvc\Profiles
The Bluetooth Pairing Service uses this registry key to maintain information about profiles and paired devices. The
BTAV service adds subkeys to the Profiles key for A2DP, audio source, and AVRCP profiles, and examines the Devices
key for profile information about paired devices. The BTAV service will not use devices that do not support the
required profiles.

Name Type Description

4 DWORD Profile 4, audio source. The default value is 4,362.

5 DWORD Profile 5, the AVRCP target. The default value is 4,364.

6 DWORD Profile 6, A2DP. The default value is 4,365.

Calendar

Windows Embedded Automotive 7 can download calendar information from mobile devices.
Devices that use standard Bluetooth protocols, such as OBEX, SyncML, and Sync Profile, support
import functionality for calendar and task information. Calendar storage is based on the
Bluetooth address of the device and is stored in POOM storage. Automotive 7 supports virtual
calendar (vCalendar) 1.0 and iCalendar 2.0, as well as vCalendar send.

Automotive 7 uses the CalNot.exe application for setting and deleting existing POOM
notifications. An application can turn notifications on and off for the currently connected phone.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 49

By default, notifications are turned on. You can also configure POOM notifications to download
calendar and task information and to alert users of upcoming appointments.

New to Automotive 7 is full appointment recursion support. Users can set up recurring
appointments on their mobile device. The recurring appointments are downloaded and handled
as recurrences in Automotive 7.

Individual Phone Configurability

As part of ongoing device support, the Phone Core services include over 700 workarounds for
specific phone devices. Certain phones may have issues that can cause problems with the user
experience, so Microsoft’s Device Lab tests hundreds of devices per year for compatibility and
creates workarounds for phones that do not function properly.

Automotive 7 identifies phones by issuing the AT+CGMI and AT+CGMM commands to get a
phone’s model name and manufacturer. Specific compatible behaviors are tied to the various
phone models that are tested by the Device Lab. These behaviors are stored in the registry. If a
specific phone cannot support critical hands-free functionality and no workarounds are
technically feasible, Automotive 7 can disable specific phone features.

Phones can further be fine-tuned through the following registry key and values. These settings
can be optimized for either a phone name or a specific Bluetooth address.

Table 17 shows the phone configuration key values.

Table 17: Individual phone configuration key values

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\HFP\PhoneSpecificMasks\<Manufa
cturer>\<Model>

Key Description

Character Sets Character sets supported by the device.

ENABLESYNCML

Uses the SyncML protocol to download the phonebook from the phone.

DISABLESNIFF

Disables sniff mode when connected to this phone.

SMSASSUMPTION

Assumes that the phone never reports new messages in the ME database unless
the SM database is full.

AVOIDSYNCMLIFLISTENPORT

Does not start a SyncML session when the listen port is being used for the HFP
port.

AVOIDSPPFORATPB Does not use the SPP port to download the phonebook contacts when using AT
commands.

DISABLESYNCML

Disables SyncML support.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 50

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\HFP\PhoneSpecificMasks\<Manufa
cturer>\<Model>

Key Description

SKIPCERTAINPBSTORE

Allows the HFP service to ignore certain AT PB phone stores during AT phonebook
download.

SKIP_AT+NREC Does not send the AT+NREC=0 command on the opening of the HFP port. Can be
overridden by HFPSetNRECOption.

TIMEOUT_AT_CPBS Addresses some phones timing out on the AT+CPBS.

TIMEOUT_AT_CPBS_2 Provides second chance for phones that time out on AT+CPBS.

AEC_REGOVERRIDE Allows the AEC registry settings at
HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\HFP\PhoneSpecificMa
sks\<manufacturer>\<model name>\AECReg to be overridden by phone specific
settings. Note that <model name> is optional.

USESPPFORATPB Uses the SPP when downloading a phone book from the mobile device using AT
commands.

SKIPPBAP Does not use the PBAP when exchanging the phone book, even if the mobile device
supports it.

AVOIDESCO Avoids using the extended synchronous connection oriented (eSCO) protocol with
the mobile device. Use the SCO protocol instead.

NOCLCC Does not use the AT+CLCC command to determine the call status.

NOMAP Does not use the MAP with the mobile device.

NOSYNCHP Does not use Synch profile even if the phone supports it.

NO_SYNCML_DEVINF Prevents Windows Embedded Automotive 7 from sending the device information
(Devinf) SyncML flags to request specific vCard and vCalendar fields. Using this
option prevents some SyncML issues.

NO_CONFCALL_END_CIEV Does not send CIEV confirmation when ending a conference call.

SMSDOWNLOAD_SKIP_SM Skips SMS download from SIM memory.

SMSDOWNLOAD_SCANALL Performs SMS download using the CMGL 'ALL' command.

MAPSMS_USENATIVE Uses the native character set, the PDU, to send or download SMS messages.

DISABLE_INBANDRING Ignores in-band ring support.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 51

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\HFP\PhoneSpecificMasks\<Manufa
cturer>\<Model>

Key Description

MAPSMS_SKIPUPDATESTATUS Does not update the read status for MAP.

SEND_NREC_ON_SCO Sends an NREC command when using SCO.

Windows Embedded Automotive 7 reports compatible behaviors for each paired device via the
HFPPHONECAPS API as determined by the phone services. These values are saved in the device
pairing key in the registry and can be modified by advanced users on a per-pairing basis.

Table 18 lists the key values that can be assigned to an individual phone.

Table 18: Individual phone key values

Key Value Description

eThreewayCallSupport Phone supports three-way calls.

eCallsetupSupport Phone supports call setup.

eATPBSupport Phone supports AT phonebook download.

eSMSReadSupport This setting can have three values:

• 2 – unknown
• 1 – supported
• 0 – not supported

The value is unknown until the functionality has been successfully exercised.

eSMSReceiveNotify This setting can have three values:

• 2 – unknown
• 1 – supported
• 0 – not supported

The value is unknown until the functionality has been successfully exercised.

eSMSSendSupport

This setting can have three values:

• 2 – unknown
• 1 – supported
• 0 – not supported

The value is unknown until the functionality has been successfully exercised.

eSyncMLSupport Phone supports SyncML.

eInBandRingingSupport

Phone supports in-band ringing.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 52

Key Value Description

eCallerIDSupport Phone supports AT+CLIP.

eSMSCmdSupport

This setting can have three values:

• 2 – unknown
• 1 – supported
• 0 – not supported

This value is initially it is set to 2. At the first connection, this value gets set to
either 0 or 1 depending on whether or not the phone passes the SMS scan. In
some application designs, if this value is 0, users cannot enter the SMS
application. A value of 0 should not get changed to 1 via the API unless the
phone passes SMS scan. A value of 1 should never get changed to 0 even if the
phone later fails SMS scan.

eSMSOffsetMEIndex On some phones the ME index is incorrectly reported by the handset. This
value notifies the application of the offset should the phone exhibit this issue.

dwRingEventAgedoutPeriod

This is the maximum ring period of the phone as learned by the software. This
is used internally in multi-call scenarios to improve accuracy.

ePBAPSupport

Phone supports PBAP as indicated by the existence of a PSE port.

dwBRSFSupport dwCHLDSupport

These values are pass throughs for the phones BRSF and CHLD responses.

Connection Manager

The Connection Manager is the central component for managing connections on the
Windows Embedded Automotive 7 platform. Connection Manager provides an API to let
applications request connections, specify priorities, and close connections after use. It can be
configured to manage platform network connections including embedded and Bluetooth-
connected phones, wireless connections (WLAN), and Wi-Fi. In the Automotive 7 default
configuration the Connection Manager is used to manage voice and data calls on the embedded
phone, and voice and data calls on the Bluetooth-connected phone.

When an application requests a network connection, the following steps occur:

1. The Connection Manager first retrieves all the possible connections from a set of
connection service providers (CSPs).

2. The Connection Manager then associates a set of costs with these routes and ultimately
determines the optimal connection based on cost, latency, bandwidth, and other
factors.

3. The Connection Manager queues the requested connection and uses the CSP to
establish the connection at the appropriate time.

Figure 14 provides a schematic of the Connection Manager.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 53

Figure 14: Connection Manager

The Connection Manager supports the following CSPs:

• RAS CSP provides General Packet Radio Services (GPRS) and dial-up connection support.
When used with a Bluetooth phone, RAS CSP relies on the setup menu HMI for
configuration of the dial strings.

• Voice CSP helps with the coordination of circuit switched data (CSD) and voice calls on
an embedded phone. The HFP service calls into the voice CSP for operations that are
related to voice calls on an embedded phone.

• Proxy CSP allows the insertion of proxy links between defined network destinations. It
could be used to create a “virtual” destination that is used by applications logically
linked to a “real” destination, which can then be reprovisioned without the need to
change the applications.

• Bluetooth Voice CSP coordinates between data and voice calls on a Bluetooth phone. It
keeps the Connection Manager aware of whether the Bluetooth phone is present or
not. When a Bluetooth voice call occurs, Bluetooth Voice CSP creates a pseudo-
Bluetooth voice connection so that attempts to create a CSD connection fail. Existing
CSD connections are then disconnected, and GPRS connections are suspended.

Data Connectivity

Windows Embedded Automotive 7 supports applications that use a paired Bluetooth phone for
data access. The Connection Manager supports the ability to share a mobile phone among
various applications for different access modes through intelligent, priority-based management
of the phone’s resources.

Automotive 7 provides the following data connectivity options:

• Bluetooth DUN
• Bluetooth Gateway Services (BGS)
• Virtual serial ports
• PAN

Bluetooth Dial-up Networking

Windows Embedded Automotive 7 supports the Bluetooth DUN Profile 1.1. This profile provides
the ability to access the internet and other dial-up services through a Bluetooth-enabled phone.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 54

The Bluetooth DUN profile defines two roles: Gateway (GW) and Data Terminal (DT).
Automotive 7 devices operate in the DT role, whereas Bluetooth-enabled phones with internet
access operate in the Gateway role.

Applications use the Connection Manager to establish a dial-up networking connection. The
Automotive 7 device first calls ActivateBTDevice to establish a Bluetooth DUN connection to the
Bluetooth-enabled phone. Once the Bluetooth DUN link is established, the Bluetooth-enabled
phone serves in the Gateway role, or modem, for the Automotive 7 device, in the Data Terminal
role.

The Bluetooth DUN profile depends on the SPP. SPP creates the Bluetooth link to the Bluetooth-
enabled device, which acts like a wireless serial cable.

Figure 15: Bluetooth Dial-Up Networking architecture

Bluetooth Gateway Services

BGS allows Automotive 7 to expose connectivity to external Bluetooth devices for streaming
National Marine Electronics Association (NMEA) data over serial ports. BGS runs in Services.exe
and, at startup, creates a Service Discovery Protocol (SDP) record so that it can be discovered. It
registers serial devices using port name, channel, and port number information read from the
registry. Applications can access a serial port added by BGS just as they would access a regular
serial port.

Personal Area Network

Windows Embedded Automotive 7 supports PAN profile networking, and in particular Personal
Area Network User (PANU) 1.0. Bluetooth Device PAN provides wireless connections by enabling
links between mobile devices, such as mobile phones and portable handheld devices. The PAN

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 55

service is a miniport network driver that creates network connectivity between two Bluetooth
devices.

PAN can be configured via the PAN registry keys and key values, shown in Table 19 and Table 20.

Table 19: PAN registry key values

HKEY_LOCAL_MACHINE\Software\Microsoft\Bluetooth\pan

Key Description

ActivateOnBoot Determines whether Bluetooth PAN is automatically activated when the device
starts up. Note that when PAN is activated, an SDP record is registered and the
application needs to stay loaded. If the application does not stay loaded, the
Bluetooth PAN profile becomes undetectable.

Authenticate Determines whether the connection is authenticated. Note that setting this value
to 0 disables authentication, which can result in potential security risks.

Encrypt Determines whether or not the connection is encrypted. Note that setting this
value to 0 disables authentication, which can result in potential security risks.

InquiryLength Specifies the length of the Bluetooth inquiry within the range of 1 to 255.

MediaDelay Specifies the total length of time, in milliseconds, between two Bluetooth inquiries.
Minimum value is 30,000 milliseconds (30 seconds).

Table 20: PAN registry key values

HKEY_LOCAL_MACHINE\Comm\BTPAN1\Parms

Key Description

AcceptConnections Determines whether new connections are allowed for PANU and Group Ad hoc
Network (GN) roles.

AdapterType Specifies the type of adapters. Possible string values include PANU, Network Access
Point (NAP), and GN.

ConnectionTimeout Specifies the total length of time, in milliseconds, that a device waits for a
connection to complete. If the specified time elapses before the connection
completes, the connection is closed. The value can be set from 1,000 to 30,000.

Description Specifies the service description to use in SDP records.

FriendlyName Specifies the friendly name of the service to use in SDP records.

MaxConnections Specifies the maximum number of simultaneous connections for GN and NAP roles.

SDP Specifies a binary large object (BLOB) that contains the SDP record for the service.
If this is not provided, the record is implicitly built.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 56

HKEY_LOCAL_MACHINE\Comm\BTPAN1\Parms

Key Description

ServiceID Specifies the global service identifier as a standard globally unique identifier (GUID)
string.

SIM Access Profile

Windows Embedded Automotive 7 provides support for SAP, a Bluetooth profile that makes the
account information on a Bluetooth-enabled phone available for use by the phone module
integrated into the Automotive 7–based device. The Windows Embedded Automotive SAP
manager service takes advantage of the phone functionality that is provided by Phone Core and
the Bluetooth Pairing Core and gives applications the ability to use SAP connections.

In Automotive 7, the embedded automotive device functions as an SAP client and connects to a
Bluetooth-enabled phone (which functions as an SAP server) over an SAP profile connection.
When this connection occurs, both devices enter SAP mode. The Automotive 7–based device
then uses the account information that is provided by the SIM module to make calls from the
Automotive 7 phone module.

The advantages of using SAP include:

 Improved reception using the antenna that is built into the car’s phone module.

 No need to hard code or manually enter account information in the car’s phone

module to use an existing mobile phone account.

 Reduced driver distraction because the user does not interact directly with the

Bluetooth-enabled phone used as an SAP server. Driver attentiveness can also be

improved by the integration of microphones and speakers into the car, together

with AEC/NS.

The disadvantages of using SAP include:

• The user’s phone UI is locked when in SAP mode, and information on that phone is

unavailable. This helps prevent driver distraction, but may dissatisfy some users.

• All SMS messages received when SAP is connected are stored on the phone module

integrated with the Automotive 7–based device. There is no widely used mechanism

for transferring these messages back to the phone.

• No phone data that would normally be accessed using HFP AT commands is

available in SAP mode.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 57

Media Core Deep Dive

With Windows Embedded Automotive 7 Media Core, users can use intuitive user interfaces to
enjoy their media—whether stored locally on the Automotive 7 device or through connected
media players or Bluetooth-enabled phones. Media Core provides OEMs a robust set of APIs
and services that access and control stored media and media metadata.

Media Core Architecture Overview

Media Core provides a uniform interface for indexing and using media from mass storage
devices (MSDs), MP3 players, Apple devices (including the iPhone), media transfer protocol
(MTP) devices, and media-capable Bluetooth phones.

Figure 16: Media Core logical architecture

An OEM must always develop the media player application and human machine interface (HMI)
layer at the top of the Media Core architecture. Automotive 7 provides a sample application
(MediaPlayerSample) that demonstrates how OEM developers can use the API set, but the
sample application is not intended as an example of excellent in-vehicle interface design.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 58

Figure 17: Media Core APIs

Another layer, the Media Core API, is delivered as part of the Windows Embedded Automotive 7
platform. Developers can configure and plug into it, but cannot change it because it is a binary.
The Media Core API layer comprises three parts: Playback, Browse, and Index Access APIs.

The Playback API set offers device-agnostic command and control. It includes play commands
(MediaPlayByFile, MediaPlayByFileEx, MediaPlayByIndex) and control commands
(MediaPlayControl which offers Stop, Pause, Resume, FFwd, Rewind, StopFFRewNext,
Previous).

The Browse API set (MediaBrowse) offers access to the contents of an attached device while the
device indexes, with additional flexibility for different HMI behaviors. An index is built in the
background, depending on the device type. Once the index is complete, the browse APIs
seamlessly switch to use the index data for even faster performance. The index is cached for
future connections to the device. The API uses a set of heuristics to determine how much of a
previously connected device’s content has changed and, based on the outcome, will reload the
index from flash memory, update the index, or recreate the index automatically.

The Index Access API set is the legacy Media Core API set that relies on a completed index
before the application can directly access the device. Much like the Browse API set, these
indexes are cached and reloaded automatically when a known device is reconnected.

Microsoft will add new Media Core functionality and extension to the Browse APIs, but the
Index APIs will be deprecated in a future release. OEMs should choose the Browse APIs for all
new development, and consider updating existing applications to Browse APIs.

All three of the API sets interact with the source plug-in manager, which enables the device-
agnostic aspects of the Media Core design. The source plug-in manager is not a separate
module—it is a Media Core layer beneath the APIs. Like the Media Core API layer, the source
plug-in manager is delivered as part of the Windows Embedded Automotive 7 platform.
Developers can access it but cannot change it directly.

The source plug-ins, another layer of the Media Core architecture, provide playback, browsing,
and indexing across a variety of devices. Windows Embedded Automotive delivers some
standard components at this layer, but developers can add components to bring additional
functionality.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 59

Finally, the device services layer of the Media Core architecture contains service modules for
devices that are supported out of the box. As with the source plug-ins layer, OEMs can access
the Windows Embedded Automotive 7 platform to extend or add functionality to the device
services layer.

Figure 18: Media Core source plug-ins

Media Source Plug-ins

Illustrated in Figure 18, the media source plug-ins provide Media Core with the necessary access
to the device to enable playback, browsing, and indexing across a variety of device types. These
plug-ins support the following types:

• A2DP/AVRCP: Supports Bluetooth devices
• iPod
• MTP: Supports MTP–based devices
• Local source
• MSDs, such as USB flash drives
• Compact Disc (CD)
• DLNA: Supports connecting to a Digital Media Server (DMS) or Mobile Digital Media

Server (M-DMS) devices to act as a Digital Media Player (DMP)
• Custom media device classes: Supports additional sources, such as devices based on

future media protocols, and provides a standard interface to expose indexing and
playback to the Media Core

Some devices (such as iPod and MTP-based devices) directly return the metadata and playlists
for audio tracks using their protocol. However, for MSDs developers can write and register a DLL
to extend the metadata or playlist parsing capabilities and provide metadata parsing for file
types that are not supported out of the box. Each file name extension (such as .mp3) is
associated with a file parser, encapsulated to prevent conflict between Media Core and the
media file format.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 60

Each metadata parser is a COM object associated with a registered file name extension and a
registered class identifier (CLSID). On startup, the mass storage class MSC plug-in reads the
registry and generates a list of known file name extensions. When an MSD or a direct mass
storage device (DMSD) source plug-in reads a file, the plug-in creates a metadata parser on
demand. Playlist parsers work in much the same way.

Supported Technologies

Media Core supports common media technologies and is responsible for actual media playback,
metadata indexing, hardware event handling (for example, power and speech), and maintaining
a “now-playing” list with history and shuffling ability. Supported technologies include:

• Zune: Windows Embedded Automotive 7 offers a software add-on package that lets a

device fully interact with all the available Zune devices for audio content playback

through a USB connection. Zune support includes full support for all digital rights

management (DRM)-protected content that is purchased through the Zune Marketplace

or obtained through the Zune Pass subscription service.

• iPod/iPhone: Older generation iPod models are supported through two-wire style

connections using USB Serial. Newer generation models that support a one-wire

connection using USB HID with Apple authentication hardware are also supported.

Playback of all audio content, even from the iPhone and iPod Touch (including content

that is protected by the FairPlay DRM mechanisms) is supported. Browsing and playback

of video from Apple devices is also supported, but requires an OEM to acquire the Apple

authentication hardware directly from Apple.

• Mass storage file allocation table (FAT) and FAT32 file systems: Media Core lets a user

bring digital audio that is not DRM protected into the vehicle on MSDs, such as USB

storage devices and SD cards.

• MTP-based devices: MTP refers to the communication protocol used to communicate

with a variety of media players over the USB connection. Automotive 7 supports MTP-

based devices from companies such as Sansa, Creative, and iRiver (including the DRM-

protected content on those devices) with a software add-on pack.

• Local storage: Media Core supports playback of digital audio and video stored on the

platform’s local storage device, which is typically flash memory.

• CD-ROM: Media Core supports Red Book audio (standard uncompressed format) and

can transfer music to the Windows Media Audio (WMA) format. It also supports data CD

compressed audio, CD-ROM file system (CDFS), and user-defined File System (UDFS).

Media Core provides an API that enables ripping CD content that lets users play back

ripped content while ripping is in progress. Ripped CD content is stored on fixed, local

storage and is accessible as an MSC source. Media Core natively supports CDTEXT

metadata and offers a plug-in to support other metadata sources accessed through a

look-up API. A WMA encoder is provided in the platform and features encoding speeds

of about 1.8x. Developers can replace this native encoder by adding a new encoder

DirectX Media Object DMO.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 61

• Digital Living Network Alliance (DLNA): DLNA defines a standard for transferring

movies, photos, music, and other media from one device to another. DLNA servers can

store media in one location and stream the media to DLNA-compliant players without

any setup or configuration. Media Core acts as a Digital Media Player (DMP) attached to

a Digital Media Server (DMS) or Mobile Digital Media Server (M-DMS) to consume audio

content.

• Bluetooth A2DP and Audio/Video Remote Control Profile (AVRCP) Bluetooth profiles:

Media Core can enable playback of music wirelessly from phones and other devices that

support these Bluetooth profiles.

• Supported media formats: Media Core can access, index, and play WMA, MP3, PCM,

WAV, and AAC files. Media Core also supports playlists, including those in Moving

Picture Experts Group Audio Layer 3 Uniform Resource Locator (M3U), Advanced

Stream Redirector (ASX), and Windows Media Player Playlist (WPL) formats, in addition

to the native formats that are supported on iPod and Zune devices. New playlist formats

and codecs can be added through the Media Core extension models.

• Album art: Supported album art formats include embedded metadata, folder.jpg,

iPod/iPhone, Zune, and MTP.

Media Core can query custom metadata, add custom metadata to the index, use a metadata file
parser plug-in, and direct access to services and devices. Additionally, new codecs can be added,
new playlist formats can be supported, and entirely new classes of devices can be added to
Media Core by using the extensibility model.

Media Feature Enhancements

The Media Core provided with Windows Embedded Automotive 7 provides a number of
enhancements over previous versions of Microsoft Auto.

DLNA provides the ability for media, such as music, pictures, and video, to be transferred
between multiple devices. Media can be stored on DLNA servers and then streamed to DLNA-
compliant players without any setup or configuration. Automotive 7 supports connecting to a
DLNA server to act as a digital media player.

Automotive 7 Media Core also adds and enhances support for Apple iPhone/iPod Touch
accessory protocol technologies, including changes made in iOS 4 that support new technologies
such as iDPS and the extended application framework (EAF) protocol. iDPS is a new
authentication and handshake protocol supported on iPhone/iPod Touch firmware 3.x and
higher. EAF requires iDPS and allows application-to-accessory communications. For example,
EAF could enable a telediagnosis application that could upload vehicle information to an
application on an iPhone for processing or forwarding to a technical support server.

Also new in Media Core is the ability for multiple applications to access the media index. A
secondary application can access the index for MSD devices and receive notifications from any
device types supported through Media Core.

http://en.wikipedia.org/wiki/MPEG_Audio_Layer_3
http://en.wikipedia.org/wiki/MPEG_Audio_Layer_3
http://en.wikipedia.org/wiki/Uniform_Resource_Locator

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 62

Building a Media Application

Media applications use Media Core to abstract and manage device-specific interactions, such as
indexing and playing. Automotive 7 includes a sample media player that OEMs can use as a
foundation for creating a media application.

Sysgen Variables

Before you create an application, make sure the following Sysgen variables are set to include
Media Core in your OS image:

• SYSGEN_AUTOMEDIA_GROUP1
• SYSGEN_AUTOMEDIA_DSHOW_AUDIO_CODECS

Browsing the Content

You can determine whether the user experience will be driven by buttons on the display or by
voice, depending on your design requirements. Note that Microsoft recommends that OEMs use
the Browse APIs because the Index APIs will be deprecated in a future release.

The following steps provide an example of how a media application is structured to allow media
browsing.

1. Initialize the media application with the function MediaInitializePlayer.
2. Wait for the WM_STORAGE_INSERTED message to be passed once a media device is

attached.
Once this message is received by the media application, the customer can then start the
Browse process.

3. Call MediaBrowseOpen to get a session handle, and then use that handle to select and
retrieve items.

4. Call the following functions to browse your media application:

o MediaBrowseSelect: Changes the directory.
o MediaBrowseGetItems: Retrieves items in the selected directory.
o MediaBrowseNowPlayingPlayEx: Builds the “Now Playing List” and starts

playing the media (either a folder or a file) the user has selected.

5. Call MediaBrowseClose to close the browse session.

Note: These functions provide a starting point for developing a media player application. The
Browse APIs provide additional functions to meet your specific application requirements.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 63

Playback

You can use the following control functions to automate stop, resume or fast forward for your
media application:

• MediaPlayControl: Pass commands to this function.
• MediaGetCurrentStatus: Retrieves the structure that has the current status and the

position of the current track. If you want to display the artist and title, use this function
to display metadata.

• Media Core Messages: You can use the following to get current play status (same as
Playback Update):

o WM_TRACK_STARTED: Passed when each track is started.
o WM_TRACK_COMPLETE: Passed when each track in a playlist is finished.

For information about other Windows messages, see Media Core Windows Messages.

Album Art

The album art functionality lets OEMs create interfaces that present album art to users. Album
art metadata groups and displays tracks by album, such that a media player application can
display album art for tracks from the current connected device.

The following steps provide an example of how to display album art:

1. Call the MediaBrowseGetAlbumArtCount or MediaNowPlayingGetAlbumArtCount
function to get the count, if album art is available. If album art is available, then go to
Step 2.

2. Call the following functions to get information about the image, such as the type of
image:

• MediaBrowseGetAlbumArtInfo
• MediaNowPlayingGetAlbumArtInfo

3. Call either the path or data functions, depending on the type of device:

• If the device is an MSD device, use the path functions
MediaBrowseGetAlbumArtPath or MediaNowPlayingGetAlbumArtPath.

• If the device is an iPod, use data functions MediaBrowseGetAlbumArtData or
MediaNowPlayingGetAlbumArtData.

Note: For iPod devices, you can only retrieve art from the currently playing track.

Device Tips

When Media Core requests a file to be played, the request is directed to a connected device.
Each connected device has unique behavior.

Consider the following when you are working with devices:

• Indexing starts when a user plugs in the device.
• Use the same set of APIs for all devices.
• Use Browse API commands.
• iPod devices have a category-based hierarchy model (genre/artist/album/track);

therefore, browse API commands work as soon as the device is connected.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 64

• Browsing by categories on iPod devices is not supported when the selection order is
lower to higher (for example, album, artist, and genre). There is no workaround for this.

• Other types of devices have a file/folder hierarchy model. Therefore, you must wait until
indexing is complete before calling browse API commands. If you issue a browse
command before the connected device is indexed, the media player will generate an
error message.

• If a user removes a CD or the power/ignition is cycled, the CD will begin playing at the
first track, regardless of where it was. To work around this issue, save the track number
and position in the track across ignition cycles. When the CD begins playing again, play
the specific track by using the function MediaNowPlayingPlayEx.

Media Core Configuration

Developers can configure and customize Media Core settings and behavior through the
following registry keys.

• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config
• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\MSD
• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\MTP
• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\MultiApp
• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\IPod
• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\Fields\<field

name>
• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\Fields\<field

name>\<source plug-in>
• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\LocalSource
• HKEY_LOCAL_MACHINE\Drivers\BuiltIn\IPDSvc
• HKEY_LOCAL_MACHINE\Services\IPDSvc
• HKEY_LOCAL_MACHINE\Services\IPDSvc\AccessoryInfo
• HKEY_LOCAL_MACHINE\Services\IPDSvc\AccessoryInfo\Protocols
• HKEY_LOCAL_MACHINE\Services\IPDSvc\MetadataEx\<name>
• HKEY_LOCAL_MACHINE\Drivers\BuiltIn\IPDSvc1
• HKEY_LOCAL_MACHINE\Drivers\BuiltIn\IPDSvc2

You can find information on the specific key values in

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 65

Appendix 3: Media Core Registry Settings.

Media Core Windows Messages

Media Core features a full set of messages it can send to registered applications. The messages
include SOURCEID, which is an important element that comes with many of the messages in the
lParam argument. SOURCEID allows the application to accurately map the message to the
source.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 66

Table 21 lists the messages provided by Media Core.

Table 21: Media Core messages

Message Description

WM_INDEXING_DONE

Posted when all indexing has been completed.

WM_MEDIA_COMMAND_ERROR

Posted when a MediaPlayControl command is not implemented
by the receiving source class type, or when the command failed
to execute.

WM_MEDIA_COMMAND_NOTIMPLEMENTED

Posted when a MediaPlayControl command is not implemented
by the receiving source class type, or when the command failed
to execute.

WM_MEDIA_CONNECTION_FAILURE Posted when the MediaInitiateDeviceConnection function is
called to connect to a specific remote device, but the connection
fails.

WM_MEDIA_CORE_ERROR Posted when an asynchronous error occurs.

WM_MEDIA_DUMP_INDEX For internal use and testing only.

WM_MEDIA_FOUND Posted as soon as media files are detected on the attached
media storage device.

WM_MEDIA_INITIALIZED Posted when Media Core has been initialized with a call to
MediaInitializePlayer.

WM_MEDIA_NO_CONNECTIONS_AVAILABLE

Posted when MediaInitiateDeviceConnection is called with a
search parameter specified, but no devices are available to
connect to.

WM_MEDIA_PLAYBACK_HOOK For internal use and testing only.

WM_POWER_FULL Posted when Media Core is working at full power.

WM_POWER_LOW Posted when Media Core has detected a low power condition
and will be suspending.

WM_STORAGE_AVAILABLE Posted as soon as a device is inserted and before any internal
consistency checks are performed.

WM_STORAGE_FULL_POWER Posted when a media source has been identified and is ready for
use after a power state change.

WM_STORAGE_INSERTED Posted when a storage card is inserted.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 67

Message Description

WM_STORAGE_LOST Posted when an index is lost because the media source for the
index was removed, and the original index was overwritten by
another index from a recently inserted device.

WM_STORAGE_LOW_POWER Posted when a media source is no longer available because of a
low power state.

WM_STORAGE_REMOVED Posted when a storage card is removed.

WM_TRACK_COMPLETE Posted when each audio track in a playlist is finished.

WM_TRACK_ENDOFPLAYLIST Posted by some device types in autoplay mode when there are
no more audio tracks to play.

WM_TRACK_PAUSED Posted when an audio track is paused.

WM_TRACK_RESUMED Posted when a paused audio track is started again by a call to
MediaResume.

WM_TRACK_STARTED Posted when an audio track is started.

WM_TRACK_STOPPED Posted when an audio track is stopped by a call to MediaStop.

WM_TRACK_SYSTEMMUTE Posted while in shared mode when the playback manager
pauses playback in the front zone because the speech service is
currently busy (see SSN_BUSY).

WM_TRACK_SYSTEMPAUSED Posted when the playback manager detects a loss of primary or
secondary stereo.

WM_TRACK_SYSTEMRESUMED Posted when the playback manager gets a resume request that
undoes a system pause state (indicated previously by a
WM_TRACK_SYSTEMPAUSED message).

WM_TRACK_SYSTEMUNMUTE Posted while in shared mode when the playback manager
resumes playback in the front zone because the speech service is
idle (see SSN_IDLE).

WM_BROWSE_ENUMERATION_DONE Posted by MediaBrowseGetItems when the enumeration of a
browse item is finished.

WM_BROWSE_NOWPLAYING_BUILT Posted by MediaBrowseNowPlayingPlay when the NowPlaying
playlist is built.

WM_BROWSE_GETMETADATA_DONE Posted by MediaBrowseGetPlayingMetadataItems when the
metadata values for the currently playing media are available.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 68

Custom Media Device Class

The custom media device class in Windows Embedded Automotive gives additional sources the
ability to plug into Media Core by providing standard interfaces to expose indexing and playback
to Media Core. Additional sources that take advantage of this capability might include DLNA-
certified devices and devices based on future or proprietary protocols.

This feature provides the ability to developers to create optional extensions for applications. For
example, developers could create a content parser to extract metadata or could enable playlist
parsing to interpret playlist formats. Developers could also create a service that interacts
directly with the device, similar to the MTP or iPod service Media Core provides.

The interfaces for a custom media device class are defined in
%WINCEROOT%\public\automedia\sdk\inc\mediacustomsource.h.

Each custom media device class is registered with Media Core in the registry, as shown in the
following example: [HKEY_CLASSES_ROOT\Mediacore\Devices\<NameOfDevice>]where
<NameOfDevice> is the device name. The default value for the key is the CLSID of the COM
object.

Media Core implements a custom, media-device class as a COM object. In addition, you must
implement the plug-in by using the following interfaces:

• IDevice
• IDeviceBrowse
• IDeviceHost
• IDeviceIndexer
• IDevicePlugin
• IDevicePlayback

Custom File and Playlist Parser

The custom file and playlist parser brings additional indexing and browsing functionality to the
mass storage media plug-in by extending the existing file type support. It is applicable to the
mass storage class only.

File Parser

The file parser extracts metadata from image files and maps that data to standard Media Core
metadata fields. The file parser could set one of those fields, such as Genre, to a standard string,
such as “X-JPEG” or “X-GIF.” The media player application could then easily filter these genre
fields when working with media, and use the genre fields when in picture viewer mode.

Each metadata parser is a COM object whose associated file extension and CLSID must be
registered so Media Core knows how to create it. On startup, Media Core reads the registry and
generates a list of known file extensions. When a file is read by the MSD or DMSD source plug-
in, Media Core creates a metadata parser on demand (at most, once per device insertion) and
lets the parser parse the file.

To support the DMSD source plug-in, Media Core first tries to call a parse function that takes file
data as the input parameter. If the parser does not support such an API, Media Core then tries

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 69

to call a parse function that takes the file path as an input parameter. If both parse functions
fail, Media Core tries the next parser of the file extension, if there is any.

Each metadata file parser must implement at least one of IMediacoreMetadataBufferParser
and IMediacoreMetadataFileParser. These interfaces are defined in
public\automedia\oak\inc\mediacoremetadataparser.h.

Playlist Parser

The playlist parser interprets playlist format. A playlist parser must create a special value in its
registry entry called Playlist. If a registry entry for a file extension contains a value by the name
of Playlist, Media Core treats this file extension as a playlist extension. When the MSD plug-in
encounters a file that it does not recognize, it checks with the parser manager to see if a parser
is registered for the file. If a parser is registered, then it is invoked to parse the file and feed the
file content to Media Core so that the file can be indexed. If a parser is not found, then the file is
skipped.

Each playlist parser is a COM object, and the registry entry for the file extension contains the
COM object’s CLSID so that Media Core can instantiate it.

The custom playlist parser must implement the IPlaylistParser interface, which is defined in
public\automedia\oak\inc\iplaylistparser.h and contains functions including OpenPlaylist,
GetPlaylistTitle, GetFirstFileinPlaylist, GetNextFileinPlaylist, and ClosePlaylistHandle, that are
called by Media Core so that Media Core can read the playlist through the custom parser.

Album Art

Windows Embedded Automotive 7 supports iPod album art for the now-playing item only, due
to a limitation of the iPod device. On MTP, mass storage, and Zune devices, Media Core supports
album art on all now-playing and indexed items if indexing is complete.

Metadata Plug-in API

The metadata plug-in API supports metadata functionality during both CD ripping and playback.
CDTEXT is supported out of the box, and developers can extend the API to include a built-in or
service-based metadata database.

The metadata provider is a COM object that can be registered with Media Core. When track or
CD information is available Media Core calls the provider, which can look up data (preferably
asynchronously). The provider can then call back into Media Core using the local source edit
APIs to update the metadata.

The following is the CD audio flow:

1. An audio CD is inserted and indexed, although the initial index is sparse.
2. At the end of indexing, the CD audio source class requests the appropriately registered

metadata provider to resolve the CD.
3. The WM_INDEXING_DONE message is sent to the application. Meanwhile, the

metadata provider retrieves the metadata and uses Media Core APIs to update the
metadata for those tracks in the index.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 70

4. As soon as track metadata is updated, the WM_UPDATE_METADATA_COMPLETE
message is sent to the application.

The COM object must implement and expose the IMediametadataProvider interface. This
interface is defined in public\automedia\oak\inc\mediametadataprovider.h.

These interfaces provide Media Core the ability to interface with the COM object. In addition,
the COM object uses some public Media Core APIs to complete the metadata process. These
APIs are: MediaBeginEditMetadata, MediaEditMetadataItem, and MediaEndEditMetadata.

These interfaces are defined in public\automedia\oak\sdk\inc\automediacore.h.

iPod Application to Accessory Communication

Windows Embedded Automotive 7 supports iPod device application-to-accessory
communication. This communication provides the capability for an application that resides on
an Apple iPod device to communicate with an application on the Automotive 7 device. The iPod
must have 3.x firmware and above and must be connected to the Automotive 7 device using the
standard iPod 30-pin-to-USB connector (1-wire connection using USB HID).

A BundleSeedID must be registered in order to activate the application-to-accessory
functionality. This value is set with the BundleSeedIDPrefToken key under the
HKEY_LOCAL_MACHINE\Services\IPDSvc registry key. Supported protocols for application-to-
accessory communication must be registered in the
HKEY_LOCAL_MACHINE\Services\IPDSvc\AccessoryInfo\Protocols portion of the registry in the
ProtocolTokenX key with the value <protocol id string>. In order to communicate with the iPod
service directly the application must use the MediaGetDeviceHandle API to get a handle to the
device.

To communicate with an iPod device:

1. Call the CreateMsqQueue function, and then create a queue for iPod service messages.

2. Call IPSRegisterForNotifications to receive a notification when the user attaches the
iPod device to the USB port.

3. After an IPS_MSG message of type IPM_IPODATTACHED is received, call
IPSOpenDevice to start working with the attached iPod device. If the iPod device is
already attached when you call IPSRegisterForNotifications, this message will be sent to
the message queue immediately.

After the iPod device connects, the application receives an IPM_IDPSCOMPLETED notification
that indicates whether the authentication protocol handshake was completed. If wParam is set
to TRUE, the application can receive open session requests from the iPod device. If it is set to
FALSE, the device does not support the Apple proprietary authentication protocol.

To subscribe to an application-to-accessory session request notification for a supported
protocol, the application must call IPSWatchA2ASessions. Only one application can be

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 71

subscribed for notifications for a specific protocol. To unsubscribe, the application must call
IPSUnregisterForNotifications.

After an application requests a session with Windows Embedded Automotive 7, the subscribed
application receives an IPM_OPENSESSION message with wParam set to SessionID and lParam
set to ProtocolIndex. The application can then open an application-to-accessory session by using
IPSOpenA2ASession. The application must provide a message queue that will be used to receive
notifications and data from the iPod device. To send data from the application to Windows
Embedded Automotive, use IPSSendA2AData.

When the iPod device closes a session or the device is disconnected, the application that
opened the session receives an IPM_A2A_CloseSession message. The application should honor
any IPM_A2A_Notification message that instructs the application not to send any requests
during a specified time period.

If an iPod application supports streaming media applications in Windows Embedded Automotive
7 information can be passed to the iPod service about the current playback state by using the
following APIs:

• IPSGetSetDigitalAudioStreaming() to start or stop audio streaming.
• IPSSetPlaybackStatus() to notify Automotive 7 about playback status and information

about the currently playing item.

iAP and MTP Passthrough

Passthrough capability for iPod accessory protocol (iAP) and MTP gives any application the
ability to directly call any iAP or MTP interface. Since passthrough mode is a state transition in
the service, developers must use it very carefully. An application should always wait until any
browsing functions are complete and be aware of any other interactions that may be going on
with the iPod.

Considerations for iPod

iPod passthrough is only available to one-wire iPod connections that have already been
authenticated. The application must get a handle to the device through the iPod Service.

The service handles are found through the following APIs:

• MediaGetDeviceHandle
• MediaBrowseGetItemObjectHandle
• MediaGetItemObjectHandle

These APIs are defined in public\automedia\sdk\inc\automediacoreex.h. These handles can be
used to directly issue iAP commands through the iPod Service using the passthrough APIs. These
APIs are defined in public\automedia\sdk\inc\ipdsrv.h.

The following are the iPod Service interfaces for passthrough:

• IPSEnterPassthroughMode
• IPSExitPassthroughMode
• IPSSendPassthroughData

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 72

Considerations for MTP

To control devices that use MTP an application must get a handle to the device and control the
device through the MTP service. The service handles are found through the following APIs:

• MediaGetDeviceHandle
• MediaBrowseGetItemObjectHandle
• MediaGetItemObjectHandle

These APIs are defined in public\automedia\sdk\inc\automediacoreex.h.

Applications can issue commands directly to the device handle using MTP IOCTLs. All of the
standard, extended, and proprietary MTP IOCTLs are supported. Unlike iPod devices, there is no
passthrough state when calling directly to an MTP device. An application could cause
performance or other issues if using passthrough while the MTP device is being heavily used for
other functions, such as indexing.

Device Lab

Microsoft has created a device lab to help facilitate compatibility between Windows Embedded
Automotive 7 and a growing number of media devices, including devices under development by
automakers. The Device Lab tests approximately 400 phones and 150 media players each year
to ensure that the Windows Embedded Automotive platform works with the latest devices. Each
release of the Automotive platform includes test reports and feature compatibility statements
for each supported device.

Staff members from the Device Lab select devices for testing from markets in North America,
Europe, and Asia based on several elements, including:

 Popularity/sales figures
 Mobile operator distribution and supported technologies
 OEM/customer request
 Compatibility complaints from end users

The Device Lab staff considers devices to be compatible devices if
there is a test report listed for the device on the Automotive results
website on or before the release date of each new version of the
Automotive platform. A compatible device should function as
reported on the results website.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 73

Appendix 4: Compatible Deviceslists the compatible devices as of this document’s publication
date.

During extensive testing in the Device Lab, Microsoft engineers make a reasonable effort to
work around device issues. The engineers inform device manufacturers when incompatibility
and specification compliance issues are discovered during testing. If problems with compatible
devices are discovered, the Microsoft Auto QFE process is used to address them.

Microsoft provides device interoperability testing and software patches so that devices that may
not strictly adhere to standards function correctly with Automotive 7 products. Automotive
OEMs benefit from the Device Lab testing, which provides the OEMs the ability to focus on other
development areas.

Conclusion

Windows Embedded Automotive 7 provides a proven, highly reliable, and extensible software
platform and hardware reference design on which automakers can distinguish themselves by
building innovative solutions to help drive sales and customer loyalty. In particular, the Phone
Core and Media Core components provide automakers, suppliers, and developers with the
building blocks that they need to set themselves apart from the rest of the field while quickly
and reliably creating a broad range of advanced in-vehicle solutions that meet the growing
needs of automotive consumers.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 74

Appendix 1: Globalization Features

In today’s international business climate, OEMs with multinational product lines require a

platform that can be used across the globe. Windows Embedded Automotive 7 is designed with

globalization in mind, and supports multiple code pages and encodings for various global

languages. This support for a wide range of character sets and languages makes Automotive 7

an ideal platform for creating global solutions.

Table 22 shows the supported locales and languages for Windows Embedded Automotive 7.

Table 22: Supported locales and languages

Locale Languages

Europe and North America  US English

 Canadian French

 French

 Italian

 German

 Spanish

 Dutch

 Danish

 Swedish

 Norwegian

 Finnish

 Portuguese for Portugal

 Portuguese for Brazil

 Turkish

 Polish

 Czech

 Slovak

 Russian

 Greek

 Hungarian

Asia  Japanese

 Korean

 Chinese Traditional

 Chinese Simplified

Table 23 shows the code pages and encodings supported by Windows Embedded Automotive.

Table 23: Feature code pages and encodings

Feature Code Pages/Encodings

vCard  ASCII

 UTF8

 BIG5 (Taiwanese)

 GB18030 (Chinese Simplified and

Chinese Traditional)

 SHIFT_JIS (Japanese)

 EUC-KR (Korean)

 GB2312/GBK (Chinese Simplified

SMS  7-bit SMS PUD  Text mode

HFP  UTF-8

 ISO-8859-1

 GSM

 USC(2)

PBAP  UTF-8

Media Indexing  ISO-8859-1

 UTF-16

 BIG5 (Taiwanese)

 GB18030 (Chinese Simplified and

Chinese Traditional)

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 75

Feature Code Pages/Encodings

Media Playlist Parsing  UTF-8

 Unicode big-endian

 Unicode little endian

 BIG5 (Taiwanese)

 GB18030 (Chinese Simplified and

Chinese Traditional)

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 76

Appendix 2: Bluetooth Pairing Service Registry Key Values

After a Bluetooth-enabled device has paired successfully to a Windows Embedded Automotive 7
device, information about the paired device is available in the Automotive 7 system registry.

Each paired device has a corresponding registry entry under
HKEY_LOCAL_MACHINE\Drivers\BuiltIn\BTPairSvc\Devices. This registry key contains subkeys
for each Bluetooth profile supported, and a subkey named \Attributes which contains device-
specific information.

To retrieve device attribute values stored in the registry, you can use the GetBTDeviceAttribute
functions. You can retrieve or set attributes in the form of a DWORD, a BYTE array (BLOB), or a
WCHAR.

The functions that retrieve device attributes are GetBTDeviceAttributeDWORD,
GetBTDeviceAttributeBLOB, and GetBTDeviceAttributeWCHAR. The functions that set device
attributes are SetBTDeviceAttributeDWORD, SetBTDeviceAttributeBLOB, and
SetBTDeviceAttributeWCHAR.

Note: When the Windows Embedded Automotive 7 device is cold booted, the registry, including
the paired device list, is cleared.

Table 24 lists the device attributes available under the \Attributes subkey.

Table 24: Device list attributes under the \Attributes sub-key

Sub–key Value Description

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\RingtoneOption]

DWORD Indicates whether ring-tone
option is present for
notification of incoming
calls.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\AccessOrder_HFP]

DWORD Indicates order in which
paired phones are accessed
for Hands-Free Profile (HFP).

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\SupportsATCOPS]

DWORD Indicates whether device
supports AT+COPS
command, which is used to
indicate whether the phone
is connected to a network,
or to change the GSM
network.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\ListCurrCalls]

DWORD Indicates list of current calls.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\HFPSMSSupport]

DWORD Indicates whether device
supports Hands-Free Profile
(HFP) Short Message Service
(SMS).

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\HFPPBSupport]

DWORD Indicates whether device
supports Hands-Free Profile
(HFP) Phonebook (PB).

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 77

Sub–key Value Description

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\CHLDFeatures]

DWORD Indicates CHLD features.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\Manuf]

String Indicates manufacturer of
the paired device.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\Model]

String Indicates model of the
paired device.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\BatteryCINDIndex]

DWORD AT+CIND command that
indicates cell-indicator
status for "battery".

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\CallheldCINDIndex]

DWORD AT+CIND command that
indicates cell-indicator
status for "callheld".

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\SignalCINDIndex]

DWORD AT+CIND command that
indicates cell-indicator
status for "signal".

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\Call_StatusCINDIndex]

DWORD AT+CIND command that
indicates cell-indicator
status for "call_status".

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\RoamCINDIndex]

DWORD AT+CIND command that
indicates cell-indicator
status for "roaming".

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\CallSetupCINDIndex]

DWORD AT+CIND commands
indicates cell-indicator
status for "callsetup".

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\ServiceCINDIndex]

DWORD AT+CIND command
indicates cell-indicator
status for "service".

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\CallCINDIndex]

DWORD AT+CIND command
indicates cell-indicator
status for "call".

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\CINDCount]

DWORD AT+CIND command
indicates cell-indicator
status for "count".

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\CINDData]

BLOB AT+CIND command
indicates cell-indicator
status for "data".

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\BRSFeatures]

DWORD Indicates Broadband Radio
Service (BRS) features. BRS
provides high-speed and
high-capacity broadband
service.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\IsHFP10]

DWORD Indicates support for HFP
1.0 spec.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 78

Sub–key Value Description

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\PhoneCAP]

BLOB Indicates phone capabilities.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\ContactAdded]

DWORD Indicates whether a new
contact has been added.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\Exclusive]

DWORD Indicates exclusive attribute
value.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\AccessOrder_BTAV]

DWORD Indicates order in which
paired devices are accessed
for Bluetooth Audio/Video.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn

\BTPairSvc\Devices\<UniqueDeviceID>\Attributes\AccessOrder_PAIR]

DWORD Indicates order in which
paired devices are accessed.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 79

Appendix 3: Media Core Registry Settings

Table 25: Media Core registry settings

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config

Key Value Type Description

MountWaitTimeout DWORD How long the media player waits after an ignition on event before releasing
audio focus back to the radio if no media is detected. If this time-out period
is longer then there is more quiet time while no media is found. The default
value is 0x1f40 (8 seconds).

PauseDelay DWORD The amount of time the system sleeps after the media player pauses for
speech interaction (SSN_BUSY). Sleep time prevents overlap between
media player output and speech output. A short sleep time may result in
“loud” media playback. The default value is 0x0064 (100 milliseconds).

MaxPlaylistSize DWORD The maximum size of a playlist. For WPL parsing, the whole file must be
loaded into memory, which means that increasing this value could cause
out-of-memory errors. The default value is 1 MB.

MaxID3V2HeaderSize DWORD The maximum size for MP3 metadata sections. Very large MP3 metadata
sections can cause slow performance, so for headers over this size,
metadata is not parsed. You can increase or decrease this value. The default
value is 1 MB.

IgnDebounce DWORD The amount of time that must elapse after an ignition on event before the
system processes media player events. This value should be fairly short and
is intended to help primarily with testing scenarios in which the ignition
switch is toggled for long periods of time at fairly high rates. The default
value is 2,000.

IgnFilterDebounce DWORD The time in which all devices must reattach after an ignition event. In the
event that a device fails to reattach within this time, Media Core assumes
that the device is no longer plugged in. The default value is 20,000.

FileCacheSize DWORD The amount of space to allocate for non-metadata media files. The default
value is 1 MB.

MetadataCacheSize DWORD The amount of space to allocate for string data per table (for example, for
artists, for albums, and so on). The default value applies to each string
table.

GenreCacheSize DWORD The amount of space to allocate for genres. Generally, this amount is much
smaller than the other space allocations. The default value is 50,000.

TotalIndexSize DWORD The maximum size for a single index. The default value includes 2.4 MB plus
the FinalBuffer value.

FinalizeBuffer DWORD The amount of buffer that remains to leave some space for playlists.

The current indexing algorithm only files metadata up to TotalIndexSize
minus FinalizeBuffer bytes for file metadata. This remaining space exists to
make sure that, even with very large devices, Media Core indexes playlists,
which are always indexed towards the end of the indexing process. The
default value is 15,000, which is 86 KB.

CurrentSrcId

DWORD An internal counter to determine an order for device inserts. Do not modify
this value.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 80

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config

Key Value Type Description

AllowableUsedSpace DWORD The threshold at which Windows Embedded Automotive dumps the old
index because it contains too much stale information. This value is used
when multiple Quick Scans are performed on the index. The default value is
A (10).

SpaceDifference DWORD The space difference between two indexes. This is used to determine
whether the current index is a possible match for a previously built index.
This value is expressed in a percentage of space difference between two
indexes, and accounts for changes that are made to the index—such as
adding a new album—that result in space differences.

Lower percentage values for this entry increase the constraints and are
used to determine whether the indexes are the same. For example, if the
percentage is changed from 10 percent to 5 percent, the probability that
two indexes will be considered from the same device will decrease. The
default value is 10 percent.

FileCheckDuration DWORD The amount of time that Media Core looks for files to determine whether
the new disk is the same disk that was seen last time. The default value is
0x07D0 (2 seconds).

IdleDelay DWORD The amount of time to wait after a speech idle (SSN_IDLE) message is
posted before Media Core resumes playback. The default value is 0x01C0
(448 milliseconds).

MaxIndexedSourceCount DWORD The maximum number of RAM sources, also known as full sources. These
contain full sets of metadata. This controls the number of concurrently
available supported devices. The default value is 5.

MaxCncCount DWORD The maximum number of command-and-control devices that are
supported. Be aware that these sources are not persisted so this is the
number of concurrent sources. A Bluetooth music device is an example of a
command-and-control device. The default value is 1.

MaxPersistedCount DWORD The maximum number of full sources that are persisted to flash memory.
The default value is 6.

ExtraDataCacheSize DWORD The maximum size of the extra data table in bytes. The default value is 1.3
MB, which is enough for 86,000 GUIDs. The default value is 150,000 (1.3
MB).

StringHashSize DWORD The number of pages to allocate each string metadata hash table (for
Genre, Title, Artist, Album, and so on). The default value is 2.

FileHashSize DWORD The number of pages to allocate for the file hash table. The default value is
10 pages.

ExtraHashSize DWORD The number of pages to allocate for the extra hash table. The default value
is 2 pages.

VideoSupport DWORD Whether Media Core can play video from video-enabled media files. The
default value is 0 (no video).

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 81

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config

Key Value Type Description

PlaybackTimerDelay DWORD The number of milliseconds to wait after a play request before begin
rendering media. This is a performance-tuning setting that enables the
playback manager to better handle the action of the user quickly pressing a
button that corresponds to playback controls such as Play, Next, or
Previous. The default value is 0x00C8 (200 milliseconds).

RemovableMediaOnly DWORD Whether to index attached as well as removable media.

1: Media Core indexes removable media only. This is the default value.

0: Media Core indexes all attached media.

MaxIndexingThreadsCount DWORD The maximum number of concurrent indexing threads allowed. This
controls the number of concurrently indexed devices and the number of
index builder instances per media source. The default value is 3.

IndexingPriority DWORD Used for each indexing thread. This is one of the priorities from Winbase.h.
Uses the default data if the key is missing. The default value is
THREAD_PRIORITY_NORMAL.

IndexMgrPriority DWORD Used for each indexing thread. This is one of the priorities from Winbase.h.
Uses the default data if the key is missing. The default value is
THREAD_PRIORITY_NORMAL.

PlayPriority DWORD Used for each indexing thread. This is one of the priorities from Winbase.h.
Uses the default data if the key is missing. The default value is
THREAD_PRIORITY_NORMAL.

PlayMgrPriority DWORD Used for each indexing thread. This is one of the priorities from Winbase.h.
Uses the default data if the key is missing. The default value is
THREAD_PRIORITY_NORMAL.

ZoneFrontBus DWORD This value must be set to the corresponding arbitrator bus ID used for the
front zone. Be aware that there are no checks made to make sure that
ZoneFrontBus and ZoneBackBus are not the same. The default value is
AUDIO_BUS_PRIMARY_STEREO. Uses the default data if the key is missing.

ZoneBackBus DWORD This value must be set to the corresponding arbitrator bus ID used for the
back zone. Be aware that there are no checks made to make sure that
ZoneFrontBus and ZoneBackBus are not the same. The default value is
AUDIO_BUS_SECONDARY_STEREO. Uses the default data if the key is
missing.

TotalBrowseSize DWORD The maximum size in bytes for the browse cache for a particular source
device. The default value is 2 MB.

DisableAutoIndexing DWORD Disables automatic indexing. Set the value to 1 to disable automatic
indexing when a device is inserted. If set to 0 then auto indexing is enabled.
The default value is 0.

DisableAlbumartIndexing DWORD Disables album/CD cover art indexing. Set the value to 1 to disable album
art indexing. If set to 0 then album art indexing is enabled. The default
value is 0.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 82

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\MSD

Key Value Type Description

PreScanDuration DWORD The length of time that the media player collects track information before it
starts AutoPlay. The collected track information becomes the complete
selection of files available for AutoPlay. Increasing this length of time also
increases how long you must wait to hear media playback. The default
value is 0x0FA0 (4 seconds).

BrowseOption DWORD This value specifies how the browse APIs determine whether the device or
the index tables should be used for queries.

For MSDs, the APIs use this value as follows:

0—Browse APIs only query index tables. If index tables are not built, then
the API returns an error.

1—Browse APIs only query the device, ignoring index tables.

2—Default. Browse APIs query the index tables if they are built.

Otherwise, they query the device.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\MultiApp

Key Value Type Description

MaxServers DWORD The number of client applications that can be supported concurrently. The
maximum is four. The default value is 2.

ServerThreadPriority DWORD Thread priority for client applications. The default value is 251.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\IPod

Key Value Type Description

PreScanDuration DWORD The length of time that the media player collects track information before it
starts AutoPlay. The collected track information becomes the complete
selection of files available for AutoPlay. Increasing this length of time also
increases how long you must wait to hear media playback. The default
value 0x0FA0 (4 seconds).

BrowseOption DWORD This value specifies how the browse APIs determine whether the device or
the index tables should be used for queries.

For iPod devices, the APIs use this value as follows:

0—Browse APIs do not work. Index tables are built when the device is
attached.

1—Default. Browse APIs query the device directly. No index tables are built;
the API works on top-level category lists.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 83

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\Fields\<field name>
These keys enable new metadata fields to be indexed by Media Core. Each key contains the
following values.

Key Value Type Description

CategoryId DWORD The unique identifier for this metadata field. The value must be greater
than 0x100 and cannot exceed 0xFFFF.

MediaDataType DWORD The type of data that is expected for the metadata. The value must be of
type MEDIA_DATA_TYPE. The default value is MediaTypeUnknown.

IndexField DWORD Optional. A Boolean flag that specifies if the metadata field is to be indexed
as an extended metadata field. If the value is not specified, then the field is
not indexed. The default value is 1 (TRUE).

TrackType DWORD A Boolean flag that specifies if the metadata field is to be a playable type. If
the value is 0, it is not played by Media Core. The default value is 0.

FieldNameString REG_SZ Optional. The default string name for the field. If this value is specified, it is
returned by the MediaGetSupportedFieldsInfo API. Otherwise, <field
name> is returned.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\Fields\<field
name>\<source plug-in>
These keys contain configuration values that are specific to source plug-ins. These values describe
how metadata is retrieved from the source device.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\LocalSource
These keys contain configurations common to all local sources.

Key Value Type Description

CopyDRM DWORD If set to 1, all files with DRM are copied to local source. Otherwise, they are
ignored. This field is optional. The default value is 0.

CopyDups DWORD If set to 1, then files that have the same name as an existing file (but contain
different metadata) are copied to local source by appending a unique
number to their name. This field is optional. The default value is 1.

CopyThreadPriority DWORD 0 to 255. Thread priority for thread copying files to local source. This field is
optional.

CurrentLocalSource STRING Name of the current active local source. This field is mandatory. If this is not
set, then no local source is used.

TotalIndexSize DWORD Size of the index in bytes.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 84

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AutoMediaCore\Config\LocalSource
These keys contain configurations common to all local sources.

Key Value Type Description

BackupPersist DWORD If set to 1, then a backup of a persisted index is created before trying to
create a new persisted index. If the current persisted index is corrupt when
initializing the local source then the backup is used.

SourcePath STRING Fully qualified path of the local source. For example, \ATAPI Disk\User
1\Local Source. This field is mandatory, and this folder should exist already.
Media Core does not create this folder structure.

CachePath STRING Fully qualified path of the folder to put persisted metadata information. For
example, \\LocalSourceCache\User 1. This field is optional.

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\IPDSvc

Key Type Value

StreamingThreadPriority DWORD Digital audio streaming thread priority. The default value is F9 (249).

MaxWavePoolSize DWORD The maximum number of wave headers. The default value is F.

WaveBufferFrameCount DWORD Number of wave frames sent at a time. The default value is 5.

WaveDataTimeout DWORD The timeout value. The default value is 1388.

InputSampleRate DWORD The sampling rate. The default value is AC44.

MinReadyHeaders DWORD The number of wave headers that must be received before playback will start.
The default value is 5.

MaxnotReceiveTime DWORD The maximum time without receiving wave data before streaming will be
stopped. The default value is 190.

PersistShuffleAndRepeat DWORD Sets the shuffle and repeat persistence when an iPod device is attached. A
value of 1 means that the current shuffle and repeat settings of the attached
device will be used for playback. The default value is 1.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 85

HKEY_LOCAL_MACHINE\Services\IPDSvc
These keys contain general settings for the iPod service.

Key Value

ComPort Force service to search for iPod device on specified COM port. If this is not set,
service will monitor for attachment of USB2SERIAL cable.

SamplingRates List of audio sampling rates that hardware audio decoder supports. By default,
it is 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000. iPod
specification requires support for at least: 32000, 44100 and 48000

BundleSeedIDPrefToken A null-terminated UTF-8 string that identifies the vendor of the application.
Case sensitive. This string is derived from the vendor's App ID which is assigned
by Apple.

AudioDevice Audio device ID that will be passed to waveOutOpen. If that is not specified,
iPod driver will open WAVE_MAPPER device.

DisplayImage_Color/DisplayImage File with color/black-and-white display image that will be sent to iPod.

HandlesComIndex Service instance that handles 2-wire devices.

DisableDigitalAudio Disables 1-wire digital audio streaming. A value of 0 implies not set. The default
value is 0.

HKEY_LOCAL_MACHINE\Services\IPDSvc\AccessoryInfo
Accessories are required to send information to the connected iPod device that identifies them.
Accessory information is required to get “Works for iPod/Made for iPhone” certification. The
iPod service will load the following configurable registry keys and send the required information
to the iPod when the iPod device is connected.

Key Type Value

FirmwareVersion DWORD Accessory firmware version. The format is 0x00[Major Byte][Minor
Byte][Revision Byte]. For example, firmware version 1.2.0 is 0x00010200.
The default value is 0x00000000.

HardwareVersion DWORD Accessory hardware version. The format is 0x00[Major Byte][Minor
Byte][Revision Byte]. The default value is 0x00000000.

AccessoryName String The general name for this accessory. The value will be trimmed to a
maximum of 64 characters (not including the null terminator). If not
specified, an empty string is used.

Manufacturer String The name of the manufacturer of this accessory. The value will be
trimmed to a maximum of 64 characters (not including the null
terminator). If not specified, an empty string is used.

ModelNumber String The model number of this accessory. The value will be trimmed to a
maximum of 64 characters (not including the null terminator). If not
specified, an empty string is used.

MaxPayloadSize DWORD The maximum payload size of the accessory. The default value is 3fa, but
can be changed by the OEM.

mk:@MSITStore:C:/Users/teddin/Desktop/MSAutoPDK.chm::/html/e66c91c5-1cba-4350-9fe9-ff82c96240e2.htm

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 86

HKEY_LOCAL_MACHINE\Services\IPDSvc\AccessoryInfo
Accessories are required to send information to the connected iPod device that identifies them.
Accessory information is required to get “Works for iPod/Made for iPhone” certification. The
iPod service will load the following configurable registry keys and send the required information
to the iPod when the iPod device is connected.

Key Type Value

BundleSeedIDPrefToken String Identifies the application that is set up for EAF with the automotive
device.

HKEY_LOCAL_MACHINE\Services\IPDSvc\AccessoryInfo\Protocols

Key Type Value

ProtocolTokenCount DWORD Minimum value is 1 if a BundleSeedID is registered. The value must match the
number of ProtocolToken values in the registry.

ProtocolToken<value> String The protocol ID string. <value> begins with 1 and proceeds incrementally.

HKEY_LOCAL_MACHINE\Services\IPDSvc\MetadataEx\<name>

Key Type Value

FieldId DWORD Any value 32 and above. Must be unique for all sub-keys.

Name REG_SZ Any value. Optional, empty string will be used if not specified.

CmdType DWORD 0 - basic command, with 24 byte return value.

2 - buffer command, with variable sized buffer return value.

Optional, default value is 0.

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\IPDSvc

Key Type Definition

StreamingThreadPriority DWORD Digital audio streaming thread priority: 249.

MaxWavePoolSize DWORD Maximum number of wave headers.

WaveBufferFrameCount DWORD Number of wave frames sent at a time.

WaveDataTimeout DWORD Timeout number.

InputSampleRate DWORD Sampling rate.

MinReadyHeaders DWORD Number of wave headers that must be received before playback will start.

MaxNotReceiveTime DWORD Maximum time of no wave data received before streaming will be stopped.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 87

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\IPDSvc

Key Type Definition

PersistShuffleAndRepeat DWORD Sets the shuffle and repeat persistence when an iPod device is attached. A
value of 1 means that the current shuffle and repeat settings of the attached
device will be used for playback.

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\IPDSvc1

Key Type Definition

DLL REG_SZ Name of DLL. The default value is IPDSvc.DLL.

Prefix REG_SZ Prefix for registered device name. Prefix and Index together are the device
name. In this example, "IPD1:" is the registered device name. The default
value is IPD.

Index DWORD Hex value. Unique index from 1 to 9, inclusive. The default value is 1.

Order DWORD Hex value. Boot order: 110. The default value is 6E.

Flags DWORD DEVFLAGS_LOADLIBRARY

DEVFLAGS_LOAD_AS_USERPROC

UserProcGroup DWORD Hex value. Default group for udevice.exe. The default value is 3.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 88

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\IPDSvc2

Key Type Definition

DLL REG_SZ Name of DLL. The default value is IPDSvc.DLL.

Prefix REG_SZ Prefix for registered device name. Prefix and Index together are the device
name. In this example, "IPD1:" is the registered device name. The default
value is IPD.

Index DWORD Hex value. Unique index from 1 to 9, inclusive. The default value is 1.

Order DWORD Hex value. Boot order: 110. The default value is 6E.

Flags DWORD DEVFLAGS_LOADLIBRARY

DEVFLAGS_LOAD_AS_USERPROC

MTP-related Registry Keys

The following registry keys are used by the MTP service. The registry will not be explicitly
flushed whenever one of these values changes, which means that a sudden power loss could
result in a registry change not being saved.

Table 26: Picture transfer protocol (PTP) interface device registry key

HKEY_LOCAL_MACHINE\Drivers\USB\LoadClients\Default\Default\6_1_1\MtpHostUsbCddClass

Table 27: Generic USB device registry key

HKEY_LOCAL_MACHINE\Drivers\USB\LoadClients\Default\Default\Default\MtpHostUsbCddClass
This registry key causes the MTP class driver to be loaded for any device that is not recognized by
another driver.

Table 28: MTP driver registry key

HKEY_LOCAL_MACHINE\Drivers\MtpHostUsbCdd

Name Type Description

DLL String This key will cause MtpHostUsbCdd.DLL to be loaded as the driver for PTP
devices, which includes MTP devices. The default value is
MtpHostUsbCdd.DLL.

FriendlyName String Friendly name of the DLL. The default value is the MTP Host Device Driver.

Prefix String The default value is MHU.

Flags DWORD DEVFLAGS_LOADLIBRARY

DEVFLAGS_LOAD_AS_USERPROC

Profile String The default value is MTPHOST.

IClass String The unique identifier of the interface exposed by this driver. The default value
is {75DF55D2-E8EA-46e5-ABB5-5CB701205209}.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 89

HKEY_LOCAL_MACHINE\Drivers\MtpHostUsbCdd

Name Type Description

UnsupportedDeviceList Binary The list of devices with unknown interfaces that are not MTP. Will be updated
through usage. USB_DEVICE_LIST format. The default value is 0.

FuzzFlags DWORD Used by the test MtpHostUsbCddFuzzer.DLL only.

Bitfield of ORed values:

 0x0001 Fuzz header length

 0x0002 Fuzz header type

 0x0004 Fuzz header code

 0x0008 Fuzz header transaction id

 0x0100 Fuzz data

Note that fuzzing the header will often cause the device to appear
unresponsive because the MTP service will be waiting for data that the device
will never send. The device should be unplugged and plugged back in.

TenthsOfPercent DWORD What percentage of bits to fuzz. Only valid when FuzzFlags is used. The default
value is 0.

Table 29: MTP service registry key

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\MTP

Name Type Definition

BufferSize DWORD Buffer used for internal transactions. Needs to be large enough to store
GetObjectPropList PUID query for 32,000 songs and 3,000 other objects.
Each result is 29 bytes so 29 x 35,000 ~ 1 MB. The default value is 0x100000.

FindMemoryThreshold DWORD How much memory is allowed for the various types of MTP finds. If the
current finds exceed this amount, no further finds are possible until those
find handles are closed. The default value is 0x200000.

MaxOpenFinds DWORD How many find handles can be open at once. The default value is 256.

MaxOpenSessions DWORD How many MTP service sessions can be open at once. The default value is 16.

MaxOpenDevices DWORD How many MTP devices can be open at once. The default value is 16.

MaxRegisteredApps DWORD The number of message queues that can be registered for notifications. The
default value is 16.

PnpThreadDelay DWORD How many milliseconds to delay the plug and play thread before
communicating with MTP devices. The default value is 0x1388.

ConnectionThreadCount DWORD How many connection threads are used by the service to handle device
connect/disconnects. The default value is 2.

EventFlags DWORD 0 - Ignore MTP Events from devices.

1 – Forward MTP Events from devices to applications.

HKEY_LOCAL_MACHINE\BuiltIn\MTPSVC

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 90

Name Type Definition

DLL String DLL for MTP service. The default value is MtpSvc.DLL

Prefix String MTP Service name prefix. The default value is MTP.

Index DWORD MTP Service name index. The default value is 1.

Order DWORD Controls the order in which the MTP service is loaded compared to other
services. The default value is 0x6E.

Flags DWORD DEVFLAGS_LOADLIBRARY

DEVFLAGS_LOAD_AS_USERPROC

Table 30: MTP indexing feature registry key

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\MTP\Indexing

Name Type Definition

PUIDHashTableSize DWORD Sets the size of the PUID hash table. Should be prime for best performance.
Larger values result in better performance but consume more memory. The
default value is 0.

MaxPUIDHashSize DWORD Maximum number of PUIDs to store in the hash table. PUIDs beyond this
number are stored in a list. The default value is 0.

UseObjectPropertyCache DWORD 0 – Query for object properties on demand.

1 – Cache all properties of an object using GetObjectPropList to improve
property access performance. Caching is done when the PUID is requested.

The default value is 1.

Table 31: MTP audio feature registry key

 HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\MTP\Audio

Name Type Definition

UseGetObject DWORD Enables/disables the use of GetObject to stream data. If this is set to 0,
devices that only support GetObject streaming will show up as unsupported
devices. The default value is 1.

UseObjectPropertyCache DWORD This flag only applies if property groups are not supported or the song
metadata is not already cached due to indexing. This can improve
MtpSvcGetSongInfo performance.

0 – Query for song object properties on demand.

1 – Cache all properties of an object using GetObjectPropList to improve
song property access performance. Caching is done when the
MtpSvcGetSongInfo is called.

The default value is 1.

mk:@MSITStore:C:/Users/teddin/Desktop/MSAutoPDK.chm::/html/f3dfe357-eede-473b-b015-424bc6be35ab.htm
mk:@MSITStore:C:/Users/teddin/Desktop/MSAutoPDK.chm::/html/43a21c2d-d6e1-4bf2-9a00-d664ec66a516.htm
mk:@MSITStore:C:/Users/teddin/Desktop/MSAutoPDK.chm::/html/43a21c2d-d6e1-4bf2-9a00-d664ec66a516.htm

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 91

Table 32: MTP song formats registry key

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\MTP\Audio\SongFormats
This registry key is used to enumerate the object formats that will be considered songs by the
MTP service. Supported song formats are listed under this key by creating a new key with the
matching MTP format code in hex. Defaults to WAVE, MP3 and WMA (3008, 3009, B901).

Table 33: MTP USB transport registry key

HKEY_LOCAL_MACHINE\Drivers\MtpUsbTransport

Name Type Definition

UsbMaxTransferSize DWORD Sets the largest recommended transfer size for transferring data. The default
value is 0x10000.

PowerResetOnRecovery DWORD 0 – Nothing

1 – Repeated MTP errors will cause the MTP device to be automatically
disconnected and reconnected.

The default value is 0.

Table 34: Specific MTP devices registry keys

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\MTP\Devices\<device name>
This registry key holds device-specific registry settings.

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\MTP\Devices\<device
name>\Indexing
This registry key holds settings for the MTP indexing feature.

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\MTP\Devices\<device
name>\Audio
This registry key holds settings for the MTP audio feature.

Zune

The only specific device currently supported is the Zune. By default, there are no Zune registry
settings because different default values are used and you don’t need to override them. Any
SongFormats or PlaylistFormats registry entries will replace the defaults. They are not additive.
If you want to add one SongFormat, you must list all SongFormats in the registry.

Table 35: Zune registry key

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\MTP\Devices\Zune\Indexing

Name Type Definition

Indexing\PUIDHashTableSize DWORD Set to 0 to turn off PUID caching. The default value is 1021.

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 92

HKEY_LOCAL_MACHINE\Software\Microsoft\Automotive\MTP\Devices\Zune\Indexing

Name Type Definition

Indexing\MaxPUIDHashSize DWORD Set to 0 to turn off PUID caching. The default value is 50000.

Indexing\UseObjectPropertyCache DWORD This is should be set to 0 because PUID caching overlaps with
ObjectPropertyCaching. The default value is 0.

Audio\UseGetObject DWORD The default value is 1.

Audio\UseObjectPropertyCache DWORD Object property groups cannot be used with the Zune because it
always reports songs as WAVE format, so the actual property group
cannot be determined. The default value is 1.

Audio\SongFormats\XXXX DWORD 3008—WAVE

3009—MP3

B901—WMA

B215—M4A

Audio\PlaylistFormats\XXXX DWORD 0xBA05—Abstract Audio Video Playlist

0xBA03—Abstract Audio Albums

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 93

Appendix 4: Compatible Devices

The following is a list of phones tested and determined to be compatible with Windows
Embedded Automotive 7.

Table 36: Compatible phones

Phone Manufacturer Model Phone Manufacturer Model

Acer
DX900

Acer
M900

S200 F900

Alcatel Playboy

Apple

iPad A1219 64GB WiFi

Apple

iPad Wi-Fi + 3G 64GB iPhone

iPhone (3G) iPhone 3GS

iPhone4 BenQ T60

BenQ-SIEMENS EL71

BlackBerry

7105t

BlackBerry

7290 8120

8330 8350i

8520 8703e

8830 World Edition 8900

9000 9000 Bold

9100 3G 9700

Curve 8310 Curve 8320

BlackBerry

Curve 8900

BlackBerry

Pearl 8100

Pearl 8110 Pearl 8130

Pearl Flip 8220 Pearl Flip 8230

Tour 7130v

Storm Cingular 8125

Cingular Sync Dopod 828

Dopod C720w Garmin G60

Google Nexus One
HP

iPAQ 514

HP iPAQ 910 iPAQ 210

HTC

Advantage X7500

HTC

Apache (Sprint)

Apache (Verizon) Dash3G

Desire Droid Eris

EVO 4G Excalibur

FUZE HD2

Hero Hero A6262

Kit T-Mobile G1 Magic A6161

Mogul My Touch 3G

Ozone P3400

P3470 P3600i

Pure S710

S730 Shadow

Snap Tattoo A3288

TiLT2 T-Mobile G1

Tornado (2.0) Touch (Alltel)

Touch (Sprint) Touch Cruise P3650

Touch Diamond Touch Diamond2

Touch Pro Touch Pro 2

Touch_HD_T8282 Typhoon C500

TyTN II Wizard

Huawei

S660

Huawei

T2211

T550 U1270

U1300 U1310

U3300 U5700

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 94

Phone Manufacturer Model Phone Manufacturer Model

Huawei
U7300

Huawei
U7310

U7510 U9100

Kyocera
E2500 Kyocera E3500

Strobe

LG

600G (NET 10)

LG

AX490 AX565

AX585 Rhythm BL40

CF360 Chocolate (MX8500)

Chocolate (VX8500) Chocolate (VX8500R)

CT810 [Incite] CU400

CU500 Dare [VX 9700]

enV Touch VX11000 enV2[VX9100]

expo GW820 Fusic

GC900 GD510

GD580 GD900

GD910 Glimmer (AX830)

GM200 GM730

GR500 Xenon GT505

GW520 GW525

HB620T Invision

KC910 KC550

KC780 KE260

LG

KE500

LG

KE600

KE850 KE850 Prada

KE970 KF300

KF350 KF510

KF700 KF701

KF750 KF900 (Prada II)

KG195 KG320

KG800 (Chocolate) KM380

KM501 KM900 Arena

KP500 Cookie KS20

KS200 KS360

KS500 KS660

KU800 KU970

KU990 KU990I

LX160 LX290

ME770 MG810c

Muziq (LX570) Neon

Rumor Rumor2

Scoop (AX260) Shine (CU720)

Trax (CU575) TU915

Venus (VX8800) Versa

Voyager VX 8560 [Chocolate]

VX 9200 [LG enV3] VX5500

VX8300 VX8360

VX8575 Chocolate Touch VX8610 [Decoy]

VX9900 KB620

KF600 KM500D

Lotus W300

MIO A501

Motorola

E8

Motorola

L72 MB200

RAZR V8 VE66

W7 W755

Motoming A1600 Entice W766

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 95

Phone Manufacturer Model Phone Manufacturer Model

Motorola

A1200 Ming

Motorola

A810

ACTV Barrage

Clutch i465 Droid

E770 EM30

EM330 Evoke QA4

Hint QA30 i1

i365 i576

i580 i615

i776 i870

i880 Karma QA1

Krave ZN4 KRZR K1m (Sprint)

KRZR K1m (Verizon) MILESTONE

MPX220 Q

Q9C Q9h

Q9M Rapture VU30

RAZR Maxx Ve RAZR V3

RAZR V3a RAZR V3i

RAZR V3i/V3r RAZR V3m (Sprint)

RAZR V3m (Verizon) RAZR V3t

RAZR V3xx RAZR V6 Maxx

RAZR V8 RAZR VE20

Motorola

RAZR2 V8

Motorola

RAZR2 V9

RAZR2 V9M Renegade V950

Rival A455 RIZR Z3

RIZR Z6TV ROKR E6

Sidekick Slide SLVR L6

SLVR L7 SLVR L7C

U9 V325i

V525 V600

V635 V750

VA76r Tundra VE465

VE538 W376g

W377 W385

W490 W510

Z9 ZINE ZN5

L9
MWG

Atom Life

MWG Atom V Zinc 11

NEC e132

Nokia

2323

Nokia

2660B 2680s-2

2680s-2b 2700 Classic

2760 3230

3555 5000

5230 5300 Xpress Music

5310 Express 5310 XpressMusic

5500 5530

5610 XpressMusic 5630d XpressMusic

5730 5800 Express Music

6021 6085

6103 6111

6125 6126

6131 6133

6133 Black 6133b

6165 6208c

6210 Navigator 6230

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 96

Phone Manufacturer Model Phone Manufacturer Model

Nokia

6230i

Nokia

6263

6267 6270

6280 6300

6301 6303 Classic

6315i 6500 Classic

6500 Slide 6555

6600 6600i

6620 6650

6682 6700 Slide

6760 6820

6822a 7205 Intrigue

7210 Supernova 7310c

7373 7500 Prism

7510a-b 7610

7705 Twist 7900 Prism

809 8600 Luna

8800 8801

9500 9500 Communicator

E51 E52

E61i E63

E65 E66

Nokia

E71

Nokia

E72-1

E73 Mode E75

E90 N72

N73 N75

N76 N78

N79 N80

N81 N82

N85 N85-1

N86 N900

N91 N95

N96 X6-00

Palm

Centro (AT&T)

Palm

Centro (Sprint)

Pixi Pre

Treo 680 Treo 700WX

Treo 755p Treo 800w

Treo Pro

Pantech

Breeze C520

Pantech

C3B C610

C630 CDM8950

Duo Matrix [C740]

Pro C820 Slate C530

Pharos Traveller 117 Pharos Traveller 137

Porsche P'9521 Sagem my511X

Samsung

A237

Samsung

A257

A657 Ace

Alias 2 B2100

Behold-SGH-T919 Blackjack

C3053 D600

D807 D900

Delve SCH-R800 E2100B

E250 E370

Eternity Exclaim SPH-M550

F200 Flight A797

Giorgio Armani -SGH-P520 Gleam

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 97

Phone Manufacturer Model Phone Manufacturer Model

Samsung

GT-B3310

Samsung

GTC 3510

GT-I8000 GT-M2310

GTS 5230 GTS 3100

GT-S3653 GT-S5233S

GT-S5600 GT-S5600T

HIGHNOTE Hue

i600 i627

i760 Innov 8

Instinct Instinct s30

Intensity SCH-U450 L600

L770s M320

M520 Mantra SPH-M340

Omnia Player Pixon

Player5 Propel (SGH A767)

Rant Reclaim

Renown Rogue SCH-U960

S3600 S3600i

S8300 SCH-A950

SCH-A990 SCH-i770 Saga

SCH-R600 Hue II SCH-U520

SCH-U550 SCH-U650(Sway)

Samsung

Seek

Samsung

SGH-A747 (SLM)

SGH-A777 SGH-A827

SGH-A837 SGH-A877

SGH-A887 SGH-A897

SGH-D880 SGH-E215L

SGH-E380 SGH-E830

SGH-F110 SGH-F250

SGH-F330 SGH-F400

SGH-F480 SGH-F490

SGH-G800 SGH-I450

SGH-I637 SGH-I780

SGH-I900 Omnia SGH-J600

SGH-M150 SGH-M200

SGH-P180 SGH-T329

SGH-T429 SGH-T469

SGH-T539 (Beat) SGH-T619

SGH-T639 SGH-T729 (Blast)

SGH-T819 SGH-U600

SGH-U700 SGH-U800

SGH-U900 SGH-V777

SGH-Z510 SGH-ZV50

SPH-A900 SPH-A900M

SPH-i350 Intrepid T349

T509 Black T559

T629 T739

T939 U410

U740 V709

Z230 Z400

Z510 C6625

GT-I7500 S8003

Sanyo

Katana
Sanyo

Katana (Bell Mobility)

Pro 200 SCP2700

SCP-3810 Sharp Sidekick 2008

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 98

Phone Manufacturer Model Phone Manufacturer Model

Sharp Sidekick LX Sharper Image 202 TSI

SoftBank 706SC

Sony Ericsson

C510

Sony Ericsson

C902 C903

C905 C905A

D750i F100i

F305 G502

G705 G900

J105i K330

K510i K618i

K630i K660i

K700i K750i

K770i K800i

K810i K850i

M600i NWZ-A828

P1i P910a

P990i R300iTelfort

R306 S302

S312 S500i

S710a Saito

T280i T303

T610 T630

Sony Ericsson

T637

Sony Ericsson

T650i

T700 T707

T715 TM506

TM717 U100i

U10i V800

W205 W302

W350i W380i

W395 W508

W518a W595

W660i W700i

W705 W760

W760a W810i

W850i W880i

W890i W910i

W950i W960i

W980 W995

X1 X2

Z310a Z555

Z600 Z610i

Z750 z770i

T-Mobile

Dash (1.0)

T-Mobile

Dash (1.5)

MDA SDA

Sidekick 3 Tap

Wing
Toshiba

Portege G710

Toshiba Portege G900 TG01

UTStarcom Blitz TXT8010VW UTStarcom Quickfire

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 99

The following is a list of media devices tested and determined to be compatible with Windows
Embedded Automotive 7.

Table 37: Compatible media devices

Media Device
Manufacturer

Model Media Device
Manufacturer

Model

Apple
iPad A1219 64GB WiFi

Apple
iPad Wi-Fi + 3G 64GB

iPhone iPhone (3G)

Apple

iPhone 3GS

Apple

iPhone4

iPod Classic (6G) iPod Touch

iPod Nano (3G) iPod Classic (4G)

iPod Nano (2G) iPod Classic (5G)

iPod Mini (2G)

Archos

Archos 7

Archos

Archos 104 Archos 5

Archos 704 Wifi Archos AV500

Archos Gmini 402 Archos 7 6700

604 WiFi 705 WiFi

Gmini XS 100 Audiovox LYRA SLIDER

Centon MP3 player

Coby

MP836-4G

Coby
MP305-4G MP705

MP705-2G MP-C7095

Cowon

J3

Cowon

iAudio9

Q5W S9

iAudio U2 iAudio U5

iAudio X5 D2

iAudio 6

Creative

ZEN MX

Creative
Creative Zen Creative Zen Micro Photo

Creative Zen Sleek Photo Creative Zen V

Creative

Creative Zen V Plus

Creative

Creative Zen Vision M

Creative Zen Vision W Muvo T200

MuVo TX FM Zen Nano

Zen Stone Plus E-Matic EM108VIDB

E-Matic
EM108VIDB

Haier
Haier Video MP3 Player
8GB

Haier Haier ibiza Rhapsody Insignia Insignia Kix

Insignia Insignia Sport

iRiver

SPINN

iRiver

E150 E100

Clix H10

LPlayer T10

T30 T60

iSonic Snapbox X-2

LG

KS500

LG

KM501 GW520

KM900 (Arena) KP500 Cookie

KS660 T505

Meizu MP4
Microsoft

Zune

Microsoft Zune (2G) Zune HD

MobiBLU DAH-1500i MobiBLU DHH-200

Motorola
VE66 Motorola A1600

E8 Nexstar MA715

Nokia

N76

Nokia

X600

5730 5230

6303 classic 6610i slide

6760 7210 Supernova

7310c E52

E72 N85-1

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 100

Media Device
Manufacturer

Model Media Device
Manufacturer

Model

N86 N97

5610 7510

6301 6650

Philips

GoGear ViBE
SA1VBE08K/17

Philips

GoGear Ariaz

GoGear-Aria GoGear HDD1630

GoGear SA6045 GoGear SA9200

SA1ARA08K/17 SA52XXBT

RCA Lyra X3030 RCA M5002

RCA Opal M4004

Samsung

U5

Samsung

Samsung Player 5 A657

SGH-A897 L770S

F330 GT-M2310

S3600i L770s

SGH-i450 GT S5600

GT-S3100 GT-S5233S

Intensity SCH-U450 S8003

Samsung S5 Samsung YP-K3

Samsung YP-K5 Samsung YP-P2

Samsung YP-S5 Samsung YP-T10

Samsung YP-T9 Samsung YP-U2

SGH F-480 SGH-A837

SGH-A877 YP-S3

YP-T10JAG YP-T8A

YP-Z5AB
SanDisk

Sansa Clip+

SanDisk Sansa e250 Sansa c250

SanDisk

Sansa Connect

SanDisk

Sansa E270

Sansa Fuze Sansa M250

Sansa View Sansa Clip

Sansa E140 Sansa Express

Sony

Walkman NWZ-X1061

Sony

Walkman NWZ-S545

Walkman NWZ-E345 Walkman NWZ-E344

NW-A1200 NW-E003

NWZ-A829 NWZ-B105F

NWZ-S718 PSP

Walkman NW-S203F T700

T707 W518a

U100i G502

T700 TM717

C903 C905A

F100i J105i

NWZ-A726 NWZ-B135F

T715 U10i

W508 Walkman NWZ-A726

Walkman NWZ-B135F Super Talent MEGA Screen

Toshiba
Gigabeat Toshiba Toshiba Gigabeat S

Gigabeat MEG-F40S Transcend T.Sonic 610

Transcend MP860
Walletex

Wallet Flash

Zvue Zvue 250

 Windows Embedded Automotive 7 Deep Dive: Phone Core and Media Core 101

Glossary

A2DP—Advanced Audio Distribution Profile.
A2DP defines how high-quality audio
(stereo or mono) can be streamed from one
device to another over a Bluetooth wireless
technology connection.

AAC—Advanced Audio Coding. AAC is a
standardized, lossy compression and
encoding scheme for digital audio that is
designed to be the successor of the MP3
format. AAC generally achieves better
sound quality than MP3 at many bit rates.

AEC/NS—Acoustic echo cancellation/noise
suppression. AEC/NS is the process of
removing noise and echo from a voice
communication to improve voice quality on
a phone call.

API—Application programming interface.
An API is a source code interface that an

operating system or library provides to
support requests for services to be made by
computer programs.

ASX—Advanced Stream Redirector. One of
the three Windows Media metafile formats
(ASX, WAX, and WVX). The ASX file is a
metafile (a file that contains data about
another file).

ATCI—AT command interpreter. ATCI
enables the Windows Embedded
Automotive 7–based device to be used as a
modem. ATCI receives AT commands
through an input serial port and then parses
and interprets them into TAPI, Ex TAPI, or
RIL calls. The responses are then converted
to AT response codes and returned through
the output serial port handle. Typically, the
input and output serial ports are the same
port. ATCI is used with DUN over Bluetooth.

AT commands—The Hayes command set,
also called the AT (for attention) command
set, is used by dial-up modems. The

command set consists of a series of short
strings that combine together to produce
complete commands for operations such as
dialing, hanging up, and changing the
parameters of the connection.

AVRCP—Audio/Video Remote Control
Profile. AVRCP is designed to provide a
standard interface to control devices to let
a single remote control be in control of all
of the audio/visual equipment to which a
user has access.

BB—Baseband. The baseband is the
physical layer lying on top of the Bluetooth
radio layer in the Bluetooth stack. It
manages physical channels and links, apart
from other services such as error
correction, data whitening, hop selection,
and Bluetooth security. The baseband
protocol is implemented as a Link
Controller, which works with the link
manager for carrying out link-level routines
such as link connection and power control.
The baseband also manages asynchronous
and synchronous links, handles packets, and
does paging and inquiry to access and
inquire Bluetooth devices in the area. The
baseband transceiver applies a time-
division duplex (TDD) scheme.

Bluetooth wireless technology—An
industrial specification for wireless personal
area networks. Bluetooth provides
connection and information exchange
between devices, such as mobile phones,
laptops, personal computers, printers,
digital cameras, and video game consoles
over a secure, globally unlicensed, short-
range radio frequency.

Bluetooth version 2.0 + EDR introduced an
Enhanced Data Rate (EDR) of 3.0
megabit/sec (basic signaling rate; the
practical data transfer rate is 2.1
megabit/sec).

http://en.wikipedia.org/wiki/Stereo
http://en.wikipedia.org/wiki/Mono
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Lossy_data_compression
http://en.wikipedia.org/wiki/Audio_data_compression
http://en.wikipedia.org/wiki/Encoder
http://en.wikipedia.org/wiki/Digital_audio
http://en.wikipedia.org/wiki/MP3
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Interface_%28computer_science%29
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Library_%28computer_science%29
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Remote_control
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Laptop
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Computer_printer
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Radio_frequency

 A Technical Companion to Windows Embedded Automotive 7 102

Codec—A device or a program that is
capable of encoding and decoding a digital
data stream or signal. Windows Embedded
Automotive 7 only provides production-
licensed decoders for Windows Media
Audio and a development license for MP3.

CSP—Connection Service Provider. A CSP
provides connection information to the
Connection Manager application, writes
provisioning information that is received
from the service providers to the registry,
and binds connection requests to the
NDISUIO (NDIS User-Mode I/O) Driver.

DirectShow—A multimedia framework/API
produced by Microsoft. Software
developers can use DirectShow to perform
various operations with media files or
streams; DirectShow is based on the
Windows® Component Object Model (COM)
framework and provides a common
interface for media across many
programming languages. It is an extensible,
filter-based framework that can render or
record media files on demand.

DLL—Dynamic-Link Library. DLLs are
implementations of the shared library
concept in the Windows and OS/2
operating systems, and they have the file
extension DLL, OCX (for libraries containing
ActiveX® controls), or DRV (for earlier
system drivers). DLLs can contain code,
data, and resources, in any combination.

DLNA—Digital Living Network Alliance. A
standard for moving movies, photos, music,
and other media from one device to
another. DLNA servers can store media in
one location and stream the media to
DLNA-compliant players without any setup
or configuration.

DMP—Digital Media Player. Any home
theater system or game console that plays
audio or video material and/or displays
photos.

DMS—Digital Media Server. Software that
makes computer files available on the
network.

DRM—Digital Rights Management. DRM
refers to the access control technologies
that are used by publishers and copyright
holders to limit usage of digital media or
devices.

DUN—Dial-Up Networking profile. DUN
provides a standard to access the Internet
and other dial-up services over Bluetooth
wireless technology. DUN can be used to
access the Internet from a laptop by dialing
up wirelessly on a mobile phone.

Executable—A file the contents of which
are meant to be interpreted as a program
by a computer.

FAT—File Allocation Table. FAT is the
primary file system for various operating
systems. A TFAT is a Transaction Safe FAT.

Flash memory—Non-volatile computer
memory that can be electrically erased and
reprogrammed.

GOEP—Generic Object Exchange Profile.
The GOEP provides a basis for other data
profiles and is based on OBEX.

GPIO—General Purpose Input/Output. GPIO
devices provide a set of I/O ports that can
be configured for either input or output.

GPS—Global Positioning System. GPS
utilizes at least 24 satellites that transmit
precise microwave signals, enabling a GPS
receiver to determine its location, speed,
direction, and time.

GSM—Global System for Mobile
Communications. The most popular
standard for mobile phones in the world.

HCI—Host Controller Interface. An HCI is a
basic interface to Bluetooth hardware,

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Encoder
http://en.wikipedia.org/wiki/Decoding_methods
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Signal_%28information_theory%29
http://en.wikipedia.org/wiki/Multimedia_framework
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Component_Object_Model
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Shared_library
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/OS/2
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/File_extension
http://en.wikipedia.org/wiki/File_extension
http://en.wikipedia.org/wiki/ActiveX
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Code_%28computer_programming%29
http://en.wikipedia.org/wiki/Data_%28computing%29
http://en.wikipedia.org/wiki/Resource_%28Windows%29
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Copyright
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Dial-up_access
http://en.wikipedia.org/wiki/Laptop
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Computer_file
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Operating_systems
http://en.wikipedia.org/wiki/Operating_systems
http://en.wikipedia.org/wiki/Non-volatile_memory
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/OBEX
http://en.wikipedia.org/wiki/IO_port
http://en.wikipedia.org/wiki/Satellite
http://en.wikipedia.org/wiki/Microwave
http://en.wikipedia.org/wiki/Receiver_%28radio%29
http://en.wikipedia.org/wiki/Geographic_location

 A Technical Companion to Windows Embedded Automotive 7 103

responsible for controller management, link
establishment, and maintenance.

HFP—Hands-Free Profile. HFP is commonly
used to allow automotive hands-free kits to
communicate with mobile phones in the
car.

HMI—Human-Machine Interface. The HMI
is the means with which users can interact
with the system, including input and output
capabilities.

IMGFS—Image File System. IMGFS is the
main Windows Embedded CE image with
the TFAT partitions included.

IOCTL—Input/Output Control. A part of the
user-to-kernel interface of a conventional
operating system, IOCTLs are typically used
to enable userspace code to communicate
with hardware devices or kernel
components.

IPC—Inter-Process Communication. IPC is a
set of techniques (message passing,
synchronization, shared memory, and
remote procedure calls) for exchanging data
among multiple threads in one or more
processes that are running on one or more
networked computers.

L2CAP—Logical Link Control and Adaptation
Layer Protocol. The L2CAP is layered over
the baseband protocol and resides in the
data link layer. L2CAP provides connection-
oriented and connectionless data services
to upper layer protocols with protocol
multiplexing capability, segmentation and
reassembly operation, and group
abstractions. L2CAP permits higher-level
protocols and applications to transmit and
receive L2CAP data packets up to 64
kilobytes in length.

M3U—Moving Picture Experts Group Audio
Layer 3 Uniform Resource Locator (also
MP3 URL). M3U is a computer file format
that stores multimedia playlists.

MAP―Message Access Profile. MAP defines
a set of features and procedures to
exchange messages between devices.

M-DMP—Mobile Digital Media Player.

M-DMS— Mobile Digital Media Server.

Middleware—Computer software that
connects software components or
applications. Middleware consists of
services that allow multiple processes that
are running on one or more computers to
interact across a network.

MOST—Media-Oriented System Transport.
MOST is a serial communication system for
transmitting audio, video, and control data
through fiber-optic cables. This
multifunctional, high-performance
multimedia network technology is based on
synchronous data communication and
requires professional software tools and
hardware interfaces.

MP3—MPEG-1 Audio Layer 3. MP3 is a
digital audio encoding format that is used to
create a file to store a single segment of
audio so that it can be organized or easily
transferred between computers and other
devices.

MSD—Mass Storage Device. MSDs are used
to store data. MSDs use a set of computing
communications protocols defined by the
USB Implementers Forum that run on the
Universal Serial Bus.

MTP—Media Transfer Protocol. MTP is a
set of custom extensions to the Picture
Transfer Protocol (PTP) from Microsoft.
MTP supports the transfer of music files on
digital audio players and movie files on
portable media players. MTP is closely
related to Windows Media Player.

OBEX—Object Exchange. OBEX is a
communications protocol that facilitates
the exchange of binary objects between

http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/MPEG_Audio_Layer_3
http://en.wikipedia.org/wiki/MPEG_Audio_Layer_3
http://en.wikipedia.org/wiki/Uniform_Resource_Locator
http://en.wikipedia.org/wiki/Playlist
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_components
http://en.wikipedia.org/wiki/Picture_Transfer_Protocol
http://en.wikipedia.org/wiki/Picture_Transfer_Protocol
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/Portable_media_player
http://en.wikipedia.org/wiki/Windows_Media_Player

 A Technical Companion to Windows Embedded Automotive 7 104

devices. Many PDAs use OBEX to exchange
business cards, data, and applications.

OPP—Object Push Profile. OPP defines the
requirements for the protocols and the
procedures to be used by the applications
that are involved in the pushing and pulling
of data objects between Bluetooth devices.

PBAP—Phone Book Access Profile. PBAP
enables the exchange of Phone Book
Objects between devices. It can be used
between a car kit and a mobile phone to let
the car kit display the name of the incoming
caller.

PCE—Phonebook Client Equipment role.
The PCE role is for the device that retrieves
phonebook objects from the phonebook
server.

PCM—A term for data that is encoded as
Linear Pulse Code Modulation (LPCM).
LPCM is a method of encoding audio
information digitally.

PDA—Personal Digital Assistant. PDAs are
handheld (or palmtop) computers. Newer
PDAs also have color screens and audio
capabilities, which allows them to be used
as mobile phones (smartphones), Web
browsers, or portable media players.

PMP—Portable multimedia player. PMPs
are consumer electronics devices that are
capable of storing and playing digital media.
The data is typically stored on a hard drive,
microdrive, or flash memory. Mobile
phones are also sometimes referred to as
PMPs because of their playback capabilities.

POOM― Pocket Outlook Object Model, a
Microsoft Component Object Model (COM)-
based library that provides programmatic
access to Microsoft® Office Outlook®
Mobile Personal Information Management
(PIM) data items and container objects, for
phonebook storage.

PTT—Push-To-Talk. PTT is the process that
gives a user the ability to start a dialog with
the system by pressing a button and
verbally issuing a command. Any speech
process that is executing is paused, and the
system switches to listening mode. When
the system finishes listening, any process
that was paused resumes.

PWM module—Pulse Width Modulation
module. The purpose of the PWM module is
to enable time-critical waveform operations
to be handled by the hardware instead of
by software.

RDS—Radio Data System. A
communications protocol standard for
embedding small amounts of digital
information in conventional FM radio
broadcasts. The RDS system standardizes
several types of information transmitted,
including time, station identification, and
program information.

Remote layer—The layer that enables the
speech service to be invoked remotely on
the Windows Embedded Automotive 7–
based device.

RIL—Radio Interface Layer. RIL provides a
uniform radio interface API that can
interface with a diverse set of radio
modules and standards in the wireless
industry. The RIL makes port
communication easier by providing a
uniform API, because not all radio
interfaces that use an AT interface use the
same command set.

RPP—Recognition Pre-Process. RPP
determines a speech-recognition
confidence score based on user audio input.
The confidence score enables the speech
service to determine the best match
between user audio input and the current
grammar.

http://www.palowireless.com/bluetooth/shop.asp
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Smartphones
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Portable_media_player
http://en.wikipedia.org/wiki/Consumer_electronics
http://en.wikipedia.org/wiki/Digital_media
http://en.wikipedia.org/wiki/Hard_disk
http://en.wikipedia.org/wiki/Microdrive
http://en.wikipedia.org/wiki/Flash_memory

 A Technical Companion to Windows Embedded Automotive 7 105

RTC—Real-Time Clock. A computer clock,
usually in the form of an integrated circuit,
that keeps track of the current time.

SAPI—Speech API. SAPI is an API that was
developed by Microsoft for speech
recognition (converts spoken words to
machine-readable input) and text-to-speech
(the artificial production of human speech)
within Windows-based applications.

SAT―Satellite radio. A satellite radio or
subscription radio (SR) is a digital radio
signal that is broadcast by a
communications satellite, which covers a
much wider geographical range than
terrestrial radio signals.

SBC—Sub-band Codec. SBC is an audio
encoder and decoder used to connect to
the Internet, in addition to Bluetooth high-
quality audio devices, like headphones or
loudspeakers.

SBP2—Serial Bus Protocol 2. SBP2 is a transport
protocol that is defined within Serial Bus, IEEE
Standard 1394-1995 (also known as FireWire or
i.Link), developed by T10.

SCO—Synchronous Connection-Oriented
protocol. SCO is a type of communications
link that is used within the Bluetooth
wireless communications standard for small
electronic devices.

SD card—Secure Digital card. An SD card is
a flash (nonvolatile) memory card format
that was developed by Matsushita, SanDisk,
and Toshiba. SD cards are used in portable
devices, such as digital cameras, handheld
computers, PDAs, mobile phones, and GPS
units.

SDIO—Secure Digital Input/Output. Devices
that support SDIO (typically PDAs, laptops,
or mobile phones) can use small devices
that are designed for the SD form factor,
such as GPS receivers, Wi-Fi or Bluetooth
adapters, modems, Ethernet adapters, or

other mass storage media, such as hard
drives.

SDP—Service Discovery Profile. SDPs are
network protocols that enable automatic
detection of devices and services offered by
the devices on a computer network. (For
example, the Bluetooth SDP is a profile that
is used to find out which Bluetooth services
are offered by the remote device.)

SMS—Short Message Service. API and
router support the SMS services that are
available on mobile phones. SMS is a
communications protocol that enables the
interchange. The SMS API talks to the SMS
router to implement most of the short text
messages between mobile telephone
devices. SMS technology has facilitated the
development and growth of text messaging.

SPP—Serial Port Profile. The SPP emulates a
serial cable to provide an easily
implemented wireless replacement for
existing RS-232–based serial
communications applications, such as
familiar control signals. It provides the basis
for other profiles, such as DUN, Headset
Profile (HSP), and AVRCP profiles.

SyncML—Synchronization Markup
Language. SyncML is a platform-
independent information synchronization
standard.

System grammar—The speech grammar
that is associated with the system. The
system grammar is always active when the
speech system is in listening mode, even if
no application has the token.

TDI—Transport Driver Interface. An
interface in the Windows Embedded CE
operating system that serves as an
adaptation layer to Winsock-based user
APIs. It isolates the highly asynchronous
callback-based architecture of the stack

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Speech_communication
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Non-volatile_memory
http://en.wikipedia.org/wiki/Memory_card
http://en.wikipedia.org/wiki/Matsushita_Electric_Industrial_Co.
http://en.wikipedia.org/wiki/SanDisk
http://en.wikipedia.org/wiki/Toshiba
http://en.wikipedia.org/wiki/Digital_cameras
http://en.wikipedia.org/wiki/Mobile_device
http://en.wikipedia.org/wiki/Mobile_device
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/GPS
http://en.wikipedia.org/wiki/GPS
http://en.wikipedia.org/wiki/Wi-Fi
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Modem
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Text_messaging
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/Platform-independent
http://en.wikipedia.org/wiki/Platform-independent
http://en.wikipedia.org/w/index.php?title=Information_synchronization_standard&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Information_synchronization_standard&action=edit&redlink=1

 A Technical Companion to Windows Embedded Automotive 7 106

that is presenting a Windows® Sockets
Specification 1.1 interface.

TFAT—Transaction-safe FAT. A TFAT file
system is a file system that is designed
specifically to provide transaction safety for
data that is stored on a disk. TFAT requires
a hardware-specific driver that is designed
for the type of media on which the TFAT
volume resides.

TLB—Translation Lookaside Buffer. A TLB is
a CPU cache that memory management
hardware uses to improve virtual address
translation speed.

TMC—Traffic Message Channel. TMC is
digitally encoded traffic and travel
information (typically encoded using FM-
RDS).

UART—Universal Asynchronous
Receiver/Transmitter. UART is computer
hardware component (an individual or a
part of an integrated circuit) that translates
data between parallel and serial forms.
UARTs are now commonly included in
microcontrollers.

UPL—Update Loader.

USB—Universal Serial Bus. USB is a serial
bus standard for interface devices that is
designed to let peripherals be connected by
using a single standardized interface socket,
improving plug-and-play capabilities
because devices can be connected and
disconnected without restarting the
computer (called hot swapping).

vCard—A file format standard for electronic
business cards. vCards are frequently
attached to email messages but they can
also be exchanged on the World Wide Web.
vCards can contain name and address
information, telephone numbers, URLs,
logos, photographs, and audio clips.

VPN—Virtual Private Network. A VPN is a
computer network in which some of the
links between nodes are carried by open
connections or by virtual circuits in some
larger networks (such as the Internet), as
opposed to running across a single private
network.

VSP—Virtual Serial Port. A VSP is a
redirector without network software
support that is usually used to create a pair
of back-to-back virtual COM ports on the
same computer.

WAV—Waveform Audio Format. WAV is a
Microsoft and IBM audio file format
standard for storing an audio bitstream on a
computer. It is a variation of the RIFF
(Resource Interchange File Format, a
generic meta-format for storing data in
tagged chunks) bitstream format method
for storing data in “chunks” and it is the
main format used on Windows for raw and
typically uncompressed audio. The default
bitstream encoding is the Microsoft Pulse
Code Modulation (LPCM) format.

Wi-Fi—Wireless Fidelity. Wi-Fi is a wireless
technology that promotes standards for the
interoperability of wireless local area
network products based on the Institute of
Electrical and Electronics Engineers (IEEE)
802.11 standards. Common applications for
Wi-Fi include Internet and voice over IP
(VoIP) phone access, gaming, and network
connectivity for consumer electronics.

WMA—Windows Media Audio. WMA is an
audio data compression technology. WMA
can refer to the audio file format or its
audio codecs.

WPL—Windows Media Player Playlist. WPL
is a computer file format that stores
multimedia playlists.

http://en.wikipedia.org/wiki/Virtual_address
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Serial_communications
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Electrical_connector
http://en.wikipedia.org/wiki/Plug-and-play
http://en.wikipedia.org/wiki/Rebooting
http://en.wikipedia.org/wiki/Hot_swapping
http://en.wikipedia.org/wiki/Audio_format
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/International_Business_Machines
http://en.wikipedia.org/wiki/Audio_file_format
http://en.wikipedia.org/wiki/Resource_Interchange_File_Format
http://en.wikipedia.org/wiki/Bitstream_format
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Linear_pulse_code_modulation
http://en.wikipedia.org/wiki/Linear_pulse_code_modulation
http://en.wikipedia.org/wiki/Audio_data_compression
http://en.wikipedia.org/wiki/Audio_file_format
http://en.wikipedia.org/wiki/Audio_codecs
http://en.wikipedia.org/wiki/Playlist

