

POSReady: POS for .NET Overview

By Gordon H. Smith, Embedded MVP

Microsoft® Point of Service (POS) for .NET v1.12 is a class library that enables POS developers to

apply Microsoft .NET technologies in their products. POS for .NET provides a straightforward

and consistent interface and classes that enable .NET applications to interact with POS

peripheral devices, such as line displays or receipt printers. POS for .NET is part of the unified

POS industry standard for writing applications and POS drivers that interface with POS

peripherals devices. Going beyond the standard features, it includes support for Windows®

Plug-and-Play functionality, device simulators, as well as Windows Management Instrumentation

(WMI).

Prior to the introduction of POS for .NET, retail-oriented devices were implemented as OPOS

(OLE for Point of Sale) controls. The OPOS model had two deliverables for each hardware

device. One was a control object that was the interface delivered as a COM ActiveX object that

the application used to control the device. The other was a service object that provided a

device-specific interface to the hardware device and communicated with the control object.

Collectively, these are shown in Figure 1 as Legacy SOs. This style of service object was often

difficult to write and did not often benefit from Plug-and-Play support, which made

administration of such service objects challenging. The POS for .NET environment incorporates

support for these legacy service objects via the Legacy Interop System.

Figure 1 illustrates how POS for .NET uses service objects and operating system infrastructure to

provide programmatic access of POS devices to POS applications. A brief discussion of the

various components follows.

2

Figure 1. POS for .NET architecture

In POS for .NET, the POS for .NET PosExplorer object replaces the OPOS control objects,

eliminating a typical service object/control object mismatch issue in OPOS. A POS for .NET

service object, shown in Figure 1 as .NET SO, handles the control of the device and implements

interfaces as specified in the Unified Point of Service (UPOS) standard. These POS for .NET

service objects provide the appropriate hooks for retail application developers to read and write

to the device as well as react to the addition and removal of devices at runtime. The PosExplorer

object, shown in Figure 1 as the service object enumerator, gives applications the ability to

discover supported POS devices at runtime, which greatly eases the configuration of systems.

POS for .NET supports service object device classes for all thirty-six UPOS device categories.

These classes provide a common implementation of much of the logical interaction with POS

devices. POS for .NET supports Interface classes for all UPOS devices categories. The Interface

classes provide entry points as specified in the UPOS specification, but with minimal

functionality. Inheriting from each Interface class is a Basic class. Each Basic class provides

support for opening, claiming, and enabling the device, as well as device statistics, and the

management of delivering events to the application. Additionally, each Basic class contains a set

of inherited and protected methods that the service object can implement. Additionally, fully

functional Base classes are provided for a number of device categories that expand their

3

corresponding Basic class with device-specific members provide more specific support for the

nine primary UPOS device types. For further details, see http://msdn.microsoft.com/en-

us/library/bb411798(WinEmbedded.11).aspx.

The fundamental interface to the operating system is the Win32® API, which is a common

interface to all Windows operating systems. Unmanaged (or native) code uses this layer to

control Windows resources such as files, graphics, networking, threads, peripheral input/output

(I/O), and the registry. Application developers who leverage POS for .NET are isolated from this

layer and do not need to consider it in their designs.

Building on top of the Win32 API are Component Object Model (COM) interfaces. The COM

model is a legacy programming model that enables interprocess communication and dynamic

object creation. You can reuse created COM objects without knowing about their

implementation because COM provides a well-defined interface separate from the

implementation. The .NET Framework common language runtime is also built on top of the

Win32 API. The .NET Framework represents a programming model and provides far more

capability to developers than COM, such as memory management, strict type safety, and thread

management. To learn more about the .NET Framework, see http://msdn.microsoft.com/en-

us/netframework/default.aspx. Again, Application developers who leverage POS for .NET are

isolated from this layer.

Built into Windows operating systems is the Plug-and-Play subsystem, whose purpose is to

instantiate support for hardware devices at runtime. This subsystem provides the benefit of not

having to explicitly configure and load device drivers in case of hardware additions or

subtractions. When a bus identifies an unknown device, the Plug-and-Play subsystem searches

for compatible device drivers and loads them automatically. Application developers who use

POS for .NET are able to be notified of Plug-and-Play events by simply subscribing to the event

from the POSExplorer class.

POS for .NET exposes a public API that you can use to create instances of the various service

objects and enable the POS Application to control devices. Additionally, the API enables retail

developers to build more resilient applications that are capable of brand-agnostic hardware

support, and that react intelligently when peripherals are added or removed at runtime.

©2009 Microsoft Corporation. All rights reserved. Microsoft, Windows and Win32 are either registered trademarks or trademarks of

the Microsoft group of companies.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO

THE INFORMATION IN THIS DOCUMENT.

The information contained in this white paper represents the current view of Microsoft Corporation on the issues discussed as of the

date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a

commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of

publication.

http://msdn.microsoft.com/en-us/library/bb411798(WinEmbedded.11).aspx
http://msdn.microsoft.com/en-us/library/bb411798(WinEmbedded.11).aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx

