
Microsoft Enterprise Library 5.0 and

Unity 2.0 Migration Guide

April 2010

This document is provided for informational purposes only and Microsoft makes no warranties, either
express or implied, in this document. Information in this document, including URL and other Internet
Web site references, is subject to change without notice. Unless otherwise noted, the companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in
examples herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these
patents, trademarks, copyrights, or other intellectual property.

 2010 Microsoft Corporation. All rights reserved.

Microsoft and Visual Studio are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

1

Microsoft Enterprise Library 5.0 and

Unity 2.0 Migration Guide

Contents

Contents .. 1

Introduction .. 1

Migration and Update Scenarios .. 2

Migration Prerequisites .. 3

Suggested Steps for Migration .. 4

Before You Begin ... 4

Start the Migration ... 5

Replace the Assemblies and References .. 5

Update Configuration Files ... 7

Deal With Breaking Changes and Deprecated Functionality .. 8

Finalize the Migration ... 9

Introduction

Migrating your existing applications to use the latest versions of Enterprise Library and Unity can provide

a range of benefits. These include:

 Additional functionality. New and upgraded features of the application blocks and the Unity

dependency injection and interception mechanism can make future updates to your application

easier and extend its capabilities.

 Bug fixes. New releases of Enterprise Library and Unity contain fixes for existing issues that

were discovered after release of the previous versions.

 Increased performance. Many of the features of the new versions of Enterprise Library and

Unity have been fine tuned to maximize performance.

2

 Easier configuration. Simplified schema syntax for Unity, and a new graphical configuration tool

for both Enterprise Library and Unity (provided as both standalone and Visual Studio integrated

versions) makes configuration easier and quicker.

This guide explains the opportunities open to you for migrating applications built using Enterprise

Library versions 3.1, 4.0, and 4.1, and versions 1.0 and 1.1 of Unity to use version 5.0 or Enterprise

Library and version 2.0 of Unity.

Because individual application scenarios and environments vary, and the way Enterprise Library and

Unity are used within existing applications will differ considerably, this guide cannot guarantee success

in every situation. However, it contains practical guidance that is based on knowledge gathered during

the development of Enterprise Library 5.0, and through test migrations of a range of different existing

applications. These applications included:

 The Enterprise Library 4.1 Hands-On Labs.

 A financial application that uses the Enterprise Library 4.0 Exception Handling and Logging

blocks.

 A range of sample applications from presentations prepared by the Microsoft patterns &

practices group. Together, these applications use all of the Enterprise Library 3.1 and 4.x

application blocks.

The Enterprise Library developer community Web sites on CodePlex provide a forum for a wide range of

topics, including migration, and are a good place to post details of any specific issues you encounter. The

forum is actively monitored by the Enterprise Library sustained engineering team, which provides

support for Enterprise Library and Unity.

Enterprise Library community site: http://www.codeplex.com/entlib/.

Unity community site: http://www.codeplex.com/unity/.

Migration and Update Scenarios

This guidance describes simple migration of applications from earlier versions of Enterprise Library and

Unity to the current versions, and does not explore rewriting or adapting an existing application to use a

different architectural style or new features. The basic premise is to replace the existing earlier version

assemblies with the assemblies for Enterprise Library 5.0 and Unity 2.0 without re-architecting the

application, re-writing the code, or requiring anything other than the simplest changes to configuration

files and assembly references.

However, after you successfully migrate your application to use the new assemblies, you should

consider whether to take this opportunity to upgrade your architecture style or code to take advantage

of current application design principles and new Enterprise Library and Unity features.

http://www.codeplex.com/entlib/
http://www.codeplex.com/unity/

3

For example, you should consider whether to adopt dependency injection for creating objects and

obtaining references to objects, in both Enterprise Library and Unity. You may also want to take

advantage of new features implemented in Enterprise Library and Unity to simplify your code or

improve performance.

For more information on the changes to Enterprise Library and Unity, see the topic "Changes in This

Release" in the installed documentation, and available online at

http://go.microsoft.com/fwlink/?LinkId=188874.

Migration Prerequisites

There are some scenarios where upgrading from a previous version of Enterprise Library or Unity is not

possible, or may require additional changes to your application code.

If you have modified the source code for Enterprise Library or Unity and recompiled it, your

modifications will be lost when you migrate to version 5.0 of Enterprise Library and version 2.0 of Unity.

The steps described in this guide for migrating applications assume that you are using the Microsoft

signed assemblies provided with previous versions of Enterprise Library and Unity.

However, if you have recompiled the original source code without modifying it (perhaps to use the

assemblies in partial trust scenarios in version 3.1, or to sign them with your own key), you will be able

migrate successfully to version 5.0 providing that you can meet the following prerequisites:

 Windows Management Instrumentation (WMI) events are no longer exposed by Enterprise

Library, and the Manageable Configuration Source no longer exposes the application

configuration through WMI. The only WMI feature remaining in version 5.0 is the WMI Logging

Trace Listener. If your application relies on WMI events or the WMI configuration features of

Enterprise Library, consider removing this functionality if this is feasible. If your application is

dependent on WMI events or WMI configuration, you cannot migrate it to Enterprise Library

5.0.

 Changes to the Policy Injection Application Block mean that existing applications that use this

block cannot be upgraded directly to version 5.0 of Enterprise Library. At minimum you must

change namespace references for the call handlers, which now reside in other blocks. The

Caching Call Handler has also been removed from this release. If you need to use this call

handler, you must download it from the Enterprise Library Web site on CodePlex at

http://www.codeplex.com/entlib/. In addition, if you have created custom call handlers or

matching rules, you will not be able to migrate your application to version 5.0 of Enterprise

Library without additional work updating these. This topic is out of scope for this guide.

 Enterprise Library 5.0 uses a new configuration console and Visual Studio integrated

configuration editor, and the configuration mechanism in Enterprise Library has changed in

version 5.0. Custom providers that do not have a design-time experience (providers that are

added to the configuration using the built-in "Add Custom ... Provider" option and that accept a

name/value pair containing the configuration values) will continue to work in Enterprise Library

http://go.microsoft.com/fwlink/?LinkId=188874
http://www.codeplex.com/entlib/

4

5.0. However, custom providers that have a design-time experience based on a previous version

of the configuration tool are not compatible with Enterprise Library 5.0. Although you can adapt

them to work with Enterprise Library 5.0, this migration path is out of scope for this guide. For

more information about custom providers, see the topics in the section "Extending and

Modifying Enterprise Library" in the documentation installed with Enterprise Library, and

available online at http://go.microsoft.com/fwlink/?LinkId=188874.

 The configuration system and XML schema used by Unity have changed in version 2.0. You can

upgrade existing Unity configuration files to the new schema, but you must factor in this work

when you migrate an existing application that uses a previous version of Unity.

 Unity container extensions created for version 1.x are not compatible with Unity version 2.0.

Although you can adapt them to work with Unity 2.0, this migration path is out of scope for this

guide. For more information about Unity container extensions, see

http://www.codeplex.com/unity/.

Suggested Steps for Migration

The following steps will help you to migrate your application to Enterprise Library 5.0 and Unity 2.0:

 Before You Begin

 Start the Migration

 Replace the Assemblies and References

 Update Configuration Files

 Deal with Breaking Changes and Deprecated Functionality

 Finalize the Migration

Steps that are specific to migrating from Enterprise Library version 4.0 are marked with [4.0]. You can

omit these steps if you are migrating from version 4.1.

Steps that are specific to migrating from Enterprise Library version 3.1 are marked with [3.1]. You can

omit these steps if you are migrating from version 4.0 or 4.1.

Before You Begin

 Review the most recently published lists of breaking changes and known issues for both

Enterprise Library 5.0 and Unity 2.0. You will find these lists in the Release Notes documents

available at http://www.codeplex.com/entlib/ and http://www.codeplex.com/unity/. You must

make a decision as to whether you can adapt your application to work after reviewing these

changes. If you can, make a note of the changes that are applicable so that you can update your

http://go.microsoft.com/fwlink/?LinkId=188874
http://www.codeplex.com/unity/
http://www.codeplex.com/entlib/
http://www.codeplex.com/unity/

5

application code after you finish migration. If you cannot work around these changes, you

should not continue with the migration.

 [4.0] If you are upgrading from version 4.0 of Enterprise Library, you should also review the lists

of breaking changes for version 4.1 of Enterprise Library.

 [3.1] If you are upgrading from version 3.1 of Enterprise Library, you should also review the lists

of breaking changes for versions 4.0 and 4.1 of Enterprise Library.

◦ Changes in Enterprise Library 4.0: http://msdn.microsoft.com/en-

us/library/cc511712.aspx.

◦ Changes in Enterprise Library 4.1 and Unity 1.2: http://msdn.microsoft.com/en-

us/library/dd139937.aspx.

Start the Migration

 Confirm that the application solution currently compiles without errors and the application runs

correctly. Confirm that all unit tests pass. This will ensure that any issues you encounter during

the migration can be attributed to the migration, and not to an existing fault in the application.

 If any of the sections in your configuration files are encrypted, you must decrypt them using the

tools provided with the version of Enterprise Library you are migrating from. After you complete

the migration to version 5.0, you can reencrypt them using the version 5.0 configuration tools.

Replace the Assemblies and References

 Within your Visual Studio solution, update the Enterprise Library assembly references to point

to the Enterprise Library version 5.0 assemblies. Typically, the Enterprise Library version 5.0

assemblies are installed in the %Program Files%\Microsoft Enterprise Library 5.0 - April

2010\bin folder. Follow these steps for every project in your solution:

◦ Remove all existing references to Microsoft.Practices.EnterpriseLibrary assemblies.

◦ If you are using assemblies located in your lib or bin folder, replace these with the

version 5.0 assemblies located in the bin folder of your Enterprise Library installation.

◦ Add references to your project for the Enterprise Library 5.0 version of the assemblies

you require.

 If you are migrating an application that uses Unity, update the references to point to the Unity

version 2.0 assemblies. Follow these steps for every project in your solution:

◦ Remove all existing references to Microsoft.Practices.Unity assemblies.

◦ If you are using assemblies located in your lib or bin folder, replace these with the Unity

version 2.0 assemblies. All of these are located in the bin folder of your Unity

installation.

http://msdn.microsoft.com/en-us/library/cc511712.aspx
http://msdn.microsoft.com/en-us/library/cc511712.aspx
http://msdn.microsoft.com/en-us/library/dd139937.aspx
http://msdn.microsoft.com/en-us/library/dd139937.aspx

6

◦ Add references to your project for the Unity 2.0 version of the assemblies you require.

 Remove all references to the Object Builder assembly. All of this functionality is now included

within the Unity assemblies. Follow these steps for every project in your solution that

references the Object Builder assembly:

◦ Remove the reference to Microsoft.Practices.ObjectBuild2.dll.

◦ If you are using assemblies located in your lib or bin folder, delete the

Microsoft.Practices.ObjectBuild2.dll assembly file from this folder.

 If your application uses the Policy Injection Application Block, you must add a reference to the

container Service Location assembly. Follow these steps for every project in your solution that

references the Policy Injection Application Block:

◦ If you are using assemblies located in your lib or bin folder, copy the assembly

Microsoft.Practices.ServiceLocation.dll from the bin folder of your Enterprise Library

installation into your lib or bin folder.

◦ Add a reference to the assembly Microsoft.Practices.ServiceLocation.dll to your project.

 If your application uses the Validation Application Block, you must add a reference to the .NET

Data Annotations assembly. This assembly is provided with version 3.5 and later of the .NET

Framework, which is installed automatically with Visual Studio 2008 and later. For every project

in your solution that references the Validation Application Block:

◦ Add a reference to the assembly System.ComponentModel.DataAnnotations.dll to your

project.

 Ensure that your projects reference all of the mandatory Enterprise Library assemblies. For

every project in your solution that uses Enterprise Library:

◦ If you are using assemblies located in your lib or bin folder, copy the following

assemblies from the bin folder of your Enterprise Library installation into your lib or bin

folder if they are not already located there:

 Microsoft.Practices.EnterpriseLibrary.Common.dll

 Microsoft.Practices.Unity.dll

 Microsoft.Practices.Unity.Interception.dll

 Microsoft.Practices.ServiceLocation.dll

◦ Add a reference to each of the assemblies listed above to your project if they are not

already referenced.

 If you are using Unity as a dependency injection or interception mechanism in your application,

ensure that your projects reference all of the mandatory Unity assemblies. For every project in

your solution that uses Unity:

7

◦ If you are using assemblies located in your lib or bin folder, copy the following

assemblies from bin folder of your Unity installation into your lib or bin folder if they are

not already located there:

 Microsoft.Practices.Unity.dll

 Microsoft.Practices.Unity.Interception.dll

 Microsoft.Practices.Unity.Configuration.dll

 Microsoft.Practices.Unity.Interception.Configuration.dll

 Microsoft.Practices.ServiceLocation.dll

◦ Add a reference to each of the assemblies listed above to your project if they are not

already referenced.

Update Configuration Files

 Any configuration file that contains configuration information for Enterprise Library must be

updated to refer to the current version of the assemblies. You must manually replace any

reference to previous versions of these assemblies with the correct information for the release

version, for every single fully qualified type name:

◦ Use a text editor to completely remove the Version, Culture, and PublicKeyToken

attributes from every Enterprise Library element that contains these attributes.

◦ Open your configuration file in the Enterprise Library version 5.0 configuration editor

and then save it. This will add the correct version, culture, and public key token values to

each element.

 Any configuration file that contains configuration information for Unity must be updated to

refer to the current version of the assemblies. However, the configuration schema for Unity has

changed in version 2.0. If you have a <unity> section in any of your configuration files, you must

follow these steps to update this section:

◦ Use a text editor to completely remove the Version, Culture, and PublicKeyToken

attributes from every element in the <unity> section that contains these attributes.

◦ Enable the Enterprise Library and Unity XML schema in Visual Studio. To do this, open

the configuration file in Visual Studio, open the XML menu, and click Schemas. In the

XML Schemas dialog, locate the Unity schema (UnityConfiguration20.xsd) and change

the value in the Use column to Use this schema. Then click OK.

◦ Modify the content of the <unity> section of the configuration file so that it matches the

new schema. The IntelliSense and AutoComplete features enabled by the XML schema

will make this easier. For details of the new configuration schema for Unity, see "Design

Time Configuration" in the documentation installed with Enterprise Library and Unity.

8

Deal With Breaking Changes and Deprecated Functionality

 If your application uses the Policy Injection Application Block, you must update your code to

take account of the change in location of the call handlers. For every project in your solution

that uses a policy injection call hander:

◦ Determine the correct namespace for each call handler you use. The namespaces are:

 Authorization handler:

Microsoft.Practices.EnterpriseLibrary.Security.PolicyInjection

 Exception handling handler:

Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.PolicyInjection

 Logging handler: Microsoft.Practices.EnterpriseLibrary.Logging.PolicyInjection

 Validation handler:

Microsoft.Practices.EnterpriseLibrary.Validation.PolicyInjection

 Performance Counter handler: This call handler remains in the same location as

previous versions

(Microsoft.Practices.EnterpriseLibrary.PolicyInjection.CallHandlers)

 Caching handler: This handler is no longer included in Enterprise Library. You

must download it from Enterprise Library Contrib Project if you need to use it in

your application.

◦ Ensure that your project references the assemblies containing the required namespaces.

It is likely that this is already the case if you are using the application block that a call

handler instantiates.

◦ If you are not using the Performance Counters handler, remove any using, Imports, or

open statements that refer to the namespace

Microsoft.Practices.EnterpriseLibrary.PolicyInjection.CallHandlers.

◦ In your code, ensure that you have a using, Imports, or open statement for the

namespace of each call handler you use.

◦ If you are using the Validation handler, add using, Imports, or open statements that

refer to the namespace Microsoft.Practices.EnterpriseLibrary.Validation.Validators.

 Compile the solution and examine the Errors list for warnings and errors. If you encounter any

errors, check the breaking changes lists to see if the error correlates with a known breaking

change, and update the code to account for this change if possible. If you cannot accommodate

the change, you may need to abandon the migration.

 If you encounter any warnings of deprecated functionality, update your code to use the new API

as specified in the error message or the breaking changes lists.

http://www.codeplex.com/Wikipage?ProjectName=entlibcontrib

9

 If you encounter an error or warning that is not documented in the breaking changes lists, and

you are unable to find a solution, please post details to the Enterprise Library or Unity forums

on CodePlex at http://www.codeplex.com/entlib/ or http://www.codeplex.com/unity/.

Finalize the Migration

 After successful compilation of the entire solution, review the lists that document changes in

behavior of Enterprise Library and Unity to ensure that none affect your application. For

example, Enterprise Library version 5.0 now raises an ActivationException when it encounters a

configuration error, instead of the ConfigurationErrorsException raised in previous versions.

 Run the application and execute all of your unit tests to ensure that they all pass.

 Reencrypt the relevant sections of your configuration files as necessary using the version 5.0

configuration tools.

http://www.codeplex.com/entlib/
http://www.codeplex.com/unity/

